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A computational model for mitochondrial function has been developed from oxygen con-

centration data measured in the Oroboros Oxygraph-2k and oxygen consumption rates

measured in the Seahorse XF24 Analyzer. Measurements were acquired using embryonic-

cultured cortical neurons and isolated mitochondria from CD1 mice. Based on the bio-

logical mechanism of mitochondrial activity, a computational model was developed using

biochemical kinetic modelling. To modulate mitochondrial activity, dysfunctions were in-

troduced by injecting the inhibiting reagents oligomycin, rotenone, and antimycin A, and

the uncoupling reagent carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP)

during measurements. To incorporate these changes, model equations were adapted and

globally calibrated to experimental data using the genetic algorithm developed by Jason

Fiege of the University of Manitoba by fitting oxygen concentration data. The model was

coded in MATLAB R2014a along with the development of a graphical user interface for

simulating mitochondrial bioenergetics in silico.
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Chapter 1

Introduction

1.1 Background

Cellular mitochondria are the primary source for biological energy production in the

form of adenosine triphosphate (ATP) [1][2]. Considering the inherent complexity and

variability of biological systems, there are numerous alterations in the properties of the

mitochondria that may be found in certain cell types, but not others. For instance,

increased levels of mitochondrial cristae folding are found in liver cells compared to many

other cell types [3]. Additionally, the mitochondria also show variations in structure

and/or function due to genetic mutations or disease [2][4].

To adequately describe the properties of mitochondria that may be altered in these states,

the standard properties of mitochondrial structure and function must first be firmly es-

tablished.

1.1.1 General Mitochondria Biochemistry

The general characteristics of the mitochondrion, such as structure and general function,

have been explained in great depth [1][2]. The general structure of the mitochondria is

1
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shown in Fig. 1.1.

Figure 1.1: A protoytypical mitochondrion. A graphical representation of a typical mi-
tochondrion. Each mitochondrion contains two separate membranes, both inner and
outer membranes. The innermost space, enclosed by the inner membrane, is known as
the mitochondrial matrix. The space enclosed by the inner and outer membranes is
known as the intermembrane space. Folds in the inner membrane, known as cristae, al-
low for increased surface area of the inner membrane, where the bioenergetic machinery
of the mitochondria are housed. Figure modified from [5].

The mitochondria contain an outer membrane that is permeable to small molecules and

ions. The unique nature of the mitochondria begins with the existence of an inner mem-

brane, that is impermeable to most molecules and ions. This membrane, referred to as

the inner mitochondrial membrane, separates the mitochondria into two major subspaces:

an inner space referred to as the mitochondrial matrix, and a small region between mem-

branes referred to as the intermembrane space (IMS). The most important role of this

inner mitochondrial membrane, however, is that it houses a system of protein complexes

known as the electron transport chain (ETC) [1][3][6].

The role of the ETC is to use potential energy stored in oxidizable compounds, such

as glucose, to be converted into the form of energy used at the cellular level, which is

ATP. The ETC requires the transport and processing of these oxidizable compounds
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into the mitochondrial matrix. The result of this processing is the transfer of electrons

from oxidizable compounds to the ETC primarily by using carrier molecules known as

Nicotinamide dinucleotide (NADH). Once they are delivered to the ETC, they can be

carried by the protein complexes in this system to generate ATP.

The ETC consists of a chain of reducing agents organized into four major protein-metal

complexes:

• NADH-coenzyme Q oxidoreductase, or complex I,

• succinate-coenzyme Q oxidoreductase, or complex II,

• Coenzyme Q-cytochrome c oxidoreductase, or complex III,

• cytochrome c oxidase, or complex IV.

An additional integral protein that is closely related to the function of the ETC is ATP

synthase, also referred to as complex V, which carries out ATP synthesis as a result of

electron flow through the ETC. Complex V is found primarily in the folds of the cristae

in the inner mitochondrial membrane, adjacent to ETC systems [7].

Electrons delivered to the ETC propagate through the system of proteins from input

at complexes I and II, up until the final electron acceptor, molecular oxygen, O2, in

complex IV. The reactions that allow for electron propagation through these complexes

are detailed in the following section.

1.1.2 Biochemical Reactions in the Mitochondria

As electrons are passed through each complex, as shown in Fig. 1.2, they are sequentially

transferred from one redox centre to another. This series of electron transfers generates

a small amount of energy that is effectively used to transport protons (H+) across inner

mitochondrial membrane through complexes I, III and IV in the ETC. This transport
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Figure 1.2: The Electron Transport Chain. This figure illustrates the electron transport
chain (ETC) of the mitochondria, along with ATP synthase or complex V. There are
four primary protein complexes in the electron transport chain, complexes I-IV, and
an ancillary protein complex that accompanies ETC sites, complex V. Electron flow,
shown by the blue arrow, starts in the ETC at complexes I and II, and ends as electrons
are taken up by molecular O2. Red arrows show the translocation of protons across the
inner mitochondrial membrane through complexes I, III, IV, and V. More detail about
the function of the ETC is detailed in Sections 1.1.2 and 1.1.3. Figure developed with
assistance from: Alvin Cadonic.

thereby creates an electrochemical gradient across the membrane that favours H+ flow

back through complex V [1].

This electrochemical gradient, known as a protonmotive force or pmf, represents a po-

tential that drives the flux of protons back through complex V in towards the matrix

[1]. This pmf has two components, the chemical potential energy due to a difference

in H+ concentration, and the electrical potential energy due to the charge differential

when protons are separated across an impermeable membrane. Since charge associated

with proton build-up on the outside of the membrane creates a net positive charge, the

intermembrane space is referred to as the positive or P side, whereas the mitochondrial

matrix becomes the negative or N side [1]. Protons located in the P side are designated

H+
P , whereas protons located in the N side are designated H+

N .
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The overall reaction for generating this pmf is [1]:

NADH +H+ +
1

2
O2 + 10H+

N −→ NAD+ +H2O + 10H+
P . (1.1)

This equation shows that a single NADH delivering two electrons reduces a half mole

equivalent of O2, producing a single molecule of H2O and pumping ten protons across the

membrane. The activity of each complex is discussed separately below in relation to the

delivery of a single set of electrons from one NADH molecule.

In the overall reaction given by equation (1.1), this does not make clear how each complex

is involved in transferring electrons from the original delivery agent NADH to O2. As

NADH are delivered to the ETC, complex I binds to NADH and catalyzes the redox

reaction between NADH and ubiquinone (Q) [2]. This results in the transfer of electrons

from NADH to ubiquinone, forming ubiquinol (QH2). This reaction is coupled to the

translocation of protons from the mitochondrial matrix to the intermembrane space, and

has an overall reaction of [1]:

NADH +H+ + 4H+
N +Q −→ NAD+ +QH2 + 4H+

P (1.2)

Electrons can also enter the ETC through complex II, where electrons are shuttled using

the carrier FADH2 instead of NADH, following the reaction:

Succinate+ 2H+
N + FAD 
 Fumarate+ FADH2 (1.3)

Electrons in FADH2 are quickly then shuttled through complex II and are once again

transferred to ubiquinone to form QH2[1]:

FADH2 +Q
 FAD +QH2 (1.4)
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yielding an overall reaction of:

Succinate+ 2H+
N +Q
 Fumarate+QH2 (1.5)

In complex I, four protons are translocated into the P side, while complex II results in

no net translocation. Both complex I and complex II act as entry points for electrons

into the ETC, resulting in the production of QH2 to carry electrons toward complex

III. The QH2 transfers electrons to complex III, which then flow to the next electron

acceptor: cytochrome c (cyt cox)[1][2]. In the naturally occurring state of cytochrome c,

it is considered oxidized relative to its reduced form following electron acquisition. Once

cytochrome c accepts electrons, it is converted from the cyt cox form to cyt cred. QH2

effectively reduces two molecules of cytochrome c, transferring a single electron to each

[1]:

QH2 + 2cyt cox + 2H+
N −→ Q+ 2cyt cred + 4H+

P (1.6)

Protons are once again taken up from the N side and then shuttled through complex III

into the P side.

Electrons can now enter complex IV by the activity of cytochrome c, where they are

then transferred to the ETC’s final electron acceptor: oxygen. The overall reaction for

complex IV is [1]:

2cyt cred + 4H+
N +

1

2
O2 −→ 2cyt cox +H2O + 2H+

P (1.7)

In this reaction four reduced cytochrome c’s are required for the operation of complex

IV, although this discussion involves electron flow from the supply of a single pair of

electrons.

Electrons flowing through the complexes pass along various enzyme elements, originating

from the carriers NADH and FADH2 and terminating at O2 [2]. The result of directing
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electrons through this system is to generate a pmf, which is accomplished by the pump-

ing of protons into the intermembrane space [1][2]. Protons are driven by this pmf to

translocate back into the mitochondrial matrix through a proton channel located within

complex V, which results in the production of ATP.

1.1.3 The Chemiosmotic Theory of Bioenergetics

The chemiosmotic model describes the coupling of proton flow with the activity of com-

plex V [8]. The pmf generated by proton flow represents both a concentration and

electrical gradient across the inner mitochondrial membrane, which directs protons to-

ward the mitochondrial matrix [2]. The chemiosmotic model of ATP production states

that proton flow through complex V results in a structural rotation of a set of subunits

within the complex, thus creating torque from the flow of protons. This rotational energy

is then harnessed to drive the production of ATP through an effective binding of ADP

and an inorganic phosphate Pi together, thereby acting to couple proton flow to ATP

generation. As this process requires the acceptance of electrons by molecular oxygen O2,

electron flow to oxygen resulting in the production of ATP generated by proton flow is

known as oxidative phosphorylation [1][2][8].

There are several chemical agents that may affect either the structure or functioning of

the ETC, thereby affecting the process of oxidative phosphorylation. The specific agents

used in this project are oligomycin, carbonylcyanide-p-trifluoromethoxyphenylhydrazone

(FCCP), rotenone, and antimycin a.

Oligomycin inhibits the activity of complex V by binding to the proton channel segment,

disallowing protons to flow through the complex [9]. Since protons can no longer flow

through this channel, ATP production is ceased as no rotational energy is generated to

produce ATP. The second reagent injected is FCCP, which effectively uncouples complex

V from the ETC. FCCP results in the production of ionophores in the inner mitochondrial

membrane, which allows protons to freely flow through the membrane back into the
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mitochondrial matrix [1][10]. This decouples complex V from the ETC since the ETC

can now operate without using complex V as a proton channel. This also represents

a state of maximal activity for the mitochondria, since the ETC can process electrons

fully without the resistance generated by the pmf. In this state, protons can immediately

equilibrate through ionophores created by FCCP. The reagents rotenone and antimycin

A result in full inhibition of the system. Rotenone inhibits the activity of complex I

by blocking the NADH binding site [11], whereas antimycin A inhibits complex III by

blocking the binding sites for Q [12]. Thus, electrons cannot be effectively delivered to

the ETC and cannot produce any QH2 for complex III, disallowing the ETC to proceed.

In this case, oxygen is no longer consumed since the ETC does not accept or transmit a

flow of electrons toward O2.

1.1.4 Objective

Development of a mathematical model to describe the function of a mitochondrion allows

for a method to build a simplified representation of an otherwise complex system. Thus,

the goal of this project was to develop a mathematical model that could not only describe

the functioning of the mitochondria, but to also allow for prediction of mitochondrial

functioning under different biological conditions.

The strategy of the modelling approach was to mathematically describe the biochemical

reactions detailed above in Section 1.1.2 as kinetic enzymes. Experimental manipulations

described in Section 1.1.3 were also incorporated into the model to ensure reproducibil-

ity of experimental data. The aim for this model was to build a simulation package

that is user-friendly, powerful, and affords description and prediction of mitochondrial

functioning in silico.



Chapter 1. Introduction 9

1.2 Modelling the Mitochondria

Models describing the functioning of mitochondria have been developed in many different

biological systems, such as in cardiac systems [13][14][15][16][17] and skeletal systems

[18]. It is rare, however, to find models that aim to explain mitochondrial functioning

specifically in the nervous system. To allow application of a mitochondrial model to neural

functioning or neurodegenerative disorders, the limited selection of developed models is

problematic since mitochondrial properties are known to show differences in structure

and function between different biological systems [19].

Many previous models describe the ETC and its associated reactions using kinetic mod-

elling schemes [13][14][15][16][17][18][20][21], similar to the approach used in the current

work. A key difference between previous models, however, regards what components are

additionally described by the model. In addition to modelling the ETC using kinetic

models and thermodynamic principles, Beard [14] also described phosphate system con-

trol (i.e. the conversion and translocation of ATP and its derivatives) and transport

system fluxes for protons and potassium. Wu et al. [13] expanded this model to focus on

the reactions of the citric acid cycle, and relevant citric acid cycle substrate transporters.

Korzeniewski and Zoladz [18], and Korzeniewski et al. [17] modelled oxygen consumption

rate and proton translocation, as in the current model, but also described the creatine

kinase system, proton production/consumption, and mitochondrial/cytosolic volumes.

More complex models of mitochondrial functioning have also been developed, such as

the two-compartment redox model of Kembro et al. [22], the thermodynamic redox

models of Wei et al. [16] and Cortassa et al. [15]. The model developed by Cortassa et

al. involves modelling not only the kinetic properties of the mitochondria, but also the

thermodynamic activity of the ETC, the citric acid cycle, and calcium dynamics. Many

elements of this model were adapted from and developed from a mathematical model of

oxidative phosphorylation developed by Magnus and Keizer [23][24][25] and models of

the citric acid cycle developed by Dudycha and Jafri [21]. Further developments of this
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model involve modelling additional components such as pH and ion flux rates [16], or

introducing regulation of reactive oxygen species networks [22].

Bertram et al. [26] developed a simplified model based on the Cortassa et al. model [15]

by reducing the complexity of the underlying flux rates. The motivation for adapting this

general model was the completeness and liberal consideration for model elements during

derivation.

The approach undertaken in the current project has numerous deviations from the ap-

proach taken in previously developed models. First of all, the current model focuses on

complex IV activity, due to the nature of the experimental data acquired in this project,

as detailed in Section 2.2.1. Secondly, experimental data was acquired from brain tis-

sue, not from cardiac or skeletal tissue. Additionally, while previous models often used

simple Michaelis-Menten kinetics, the current model additionally incorporated activation

kinetics, outlined in Appendix A.1.4. Furthermore, the current model was developed to

reproduce experimental data that detailed both normal and altered functioning of the

mitochondria. This was incorporated by adapting the model to represent the mode of ac-

tion of the chemical reagents used in the experimental protocol, detailed in Sections 1.1.3

and 2.1.2. Mathematical adaptations to the model are outlined in Section 2.2.6. Finally,

a graphical user interface (GUI; see Fig. 3.14) was created for user-friendly operation

and manipulation of the model. This allows users to simulate mitochondrial functioning

under different conditions by changing the components of the model without adapting

the model’s code.



Chapter 2

Methods

2.1 Biological Methods

Calibration of the mathematical model developed in this project was carried out by

optimizing the model to fit experimental oxygen concentration data. This data was ac-

quired by measuring oxygen concentration over time in isolated chambers in the Oroboros

Oxygraph-2k using homogenated cortical tissue from CD1 mice. Qualitative behavior of

the rate of oxygen consumption rate was validated by measurement in a 24-well plate in

the Seahorse XF24 analyzer using cultured cortical neurons from CD1 mice.

2.1.1 Embryonic Cell Cultures

Cultures were carried out on 15-day old timed-pregnant CD1 mice. On the day prior

to culturing, specialized Seahorse 24-well plates were coated with poly-D-lysine (Life

Technologies) overnight.

On the day of the cell culture, two solutions were prepared. Firstly, the supplemented

Neurobasal growth medium (NB-S) was prepared by adding reagents to glutamine-free

Neurobasal growth medium (NB; Life Technologies). Reagents added were: 3 mL of 200

11
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mM L-glutamine (Thermo Scientific) per 500 mL of NB, 2.5 mL of 1M HEPES (Thermo

Scientific) per 500 mL of NB, 10 mL of B27 Supplement (Life Technologies) per 500 mL

of NB, and 5 mL of 10 mg/mL Streptomycin (Calbiochem) per 500 mL of NB. Secondly,

supplemented Hank’s balanced salt solution (HBSS-S) was prepared by adding 500 mL

of 1M HEPES and 5 mL of 10 mg/mL Streptomycin to 500 mL of Hank’s balanced

salt solution (HBSS; Thermo Scientific). Additionally, on this day the plate was rinsed

of poly-D-lysine using double-distilled H2O and left to air dry for at least 1 hour prior

to loading the plate with a cell suspension. Mice were anesthetized and decapitated to

euthanize the mother. The embryos were then removed from the mother and placed in

cold 70% ethanol for two minutes. Following ethanol treatment, the embryos were then

quickly transferred to cold HBSS-S. Embryos were dissected in HBSS-S in a petri dish,

seated on ice, using a dissection microscope. Both hemispheres of cortex were removed

from each embryo, requiring approximately six embryos for each Seahorse plate. Cortical

tissue was suspended in 15 mL of cold HBSS-S. After this time period, 12 mL of HBSS-S

was removed, and then warmed NB-S with 5% fetal bovine serum (FBS) was added to

top-up the solution to 10 mL. Cortical tissue in this solution was then triturated using

a 20 µL pipette, gently breaking up the tissue until the solution became cloudy. This

solution was then filtered using a 40 µm cell strainer (BD Falcon) to separate cells and

cellular debris. The filtered solution was then topped up to 10 mL using NB-S with

5% FBS. 20 µL of this cell suspension was added to 20 µL of Trypan blue dye (Thermo

Scientific) to count out the amount of cells per mL of suspension using a haemocytometer

(Hausser Scientific). 400 µL of the cell suspension was then loaded into each non-control

well in the Seahorse plate with a density of 300,000 cells per 400 µL. Control wells (wells

A1, B4, C3, and D6) were loaded with 400 µL of NB-S with 5% FBS without cells. After

loading, the seahorse plate was then incubated at 37oC in 5% CO2 in air overnight. The

following day, 400µL of NB-S with 5% FBS from each well was replaced by 400 µL of

NB-S without FBS. At the end of this day, 50 µL of 18 µM cytosine arabinofuranoside

was added to each well. 24 hours following addition of CA, all 450 µL of media was

removed from each well and replaced with 500 µL of freshly made NB-S without FBS.
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The plate was left to incubate at 37oC with 5% CO2 for the remainder of the culture,

with 50% media replacements (replacement of 250 µL growth media with freshly made

NB-S without FBS) every 3 days.

2.1.2 Seahorse Measurements

Cortical neurons were cultured for 9 days prior to bioenergetic measurements in the XF24

Analyzer (Seahorse Bioscience). The day prior to measuring oxygen concentration levels

in the specialized cell plate, a calibration plate was loaded with 1 mL of calibration

media (Seahorse Bioscience) in each well and incubated at 37oC overnight. The Seahorse

experimental protocol was prepared in the software accompanying the XF24 Analyzer,

specifying the reagents to be added and the layout of the cells on the culture plate.

On the day of the experiment, assay media was prepared by adding 600 µL of 100 mM

sodium pyruvate (Life Technologies) and 600 µL of 1M glucose in Dulbecco’s modified

eagle medium (DMEM; Life Technologies) to 59 mL of DMEM. The assay media was then

incubated in a water bath at 37oC for 15 minutes. The cell culture plate was removed from

the CO2 incubator and placed in the biosafety cabinet. Then 400 µL of culture media

was removed from each well. Immediately after removing culture media, 1 mL of warmed

assay media was added to each well. Approximately 1 mL of media was then removed

from each well, leaving 100 µL of media in each well. After this wash with warmed

assay media, each well was then topped up to 675 µL by adding 575 µL of additional

assay media. The Seahorse plate was then incubated at 37oC for 1 hour. During this

time, the injection reagents were prepared by: adding 20 µL of 10 mM oligomycin to

1980 µL of warmed assay media; adding 20 µL of 10 mM rotenone and 20 µL of 10 mM

antimycin A to 1960 µL of warmed assay media; adding 10 µL of 5 mM FCCP to 990 µL

of warmed assay media, and then adding 40 µL of this dilution to 1960 muL of warmed

assay media. The drugs were then loaded into the calibration loading plate with: 75

µL of oligomycin loaded into port A of each non-control well, 83 µL of FCCP into port

B of each non-control well, 93 µL of the rotenone/antimycin A solution into port C of
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each non-control well. For control wells A1, B4, C3 and D6, assay media was added to

each port with 75 µL in port A, 83 µL in port B, and 93 µL in port C. The calibration

plate and calibration loading plate were then loaded into the Seahorse and the protocol

was initiated in the software. After 30 minutes of calibration, the calibration plate was

ejected and replaced with the Seahorse culture plate. The assay proceeded to inject each

reagent at regular intervals and measure oxygen concentration throughout the remaining

90 minutes of analysis. Once complete, the non-control wells of the Seahorse culture

plate were then scraped using neurofilament buffer (NF) and stored at -4oC for protein

normalization.

2.1.3 Oxygraph Measurements

Homogenate used in the Orobos Oxygraph o2k measurements was prepared from CD1

mouse cortical brain tissue. The white matter was removed from the cortical tissue.

The cortical tisse was mechanically homogenized using 500 µL of mitochondrial isolation

buffer, and then centrifuged at 800 G for 10 minutes at 4o Celsius. The supernatant was

then centrifuged at 8000 G for 15 minutes at 4o Celsius. The pellet was resuspended and

then centrifuged again at 8000 G for 15 minutes at 4o Celsius. The pellet, containing

isolated mitochondria, was resuspended in mitochondrial isolation buffer. A Bradford

protein assay was performed to determine the protein concentration of the homogenate

solution.

The oxygraph was calibrated using 2 mL of Budapest buffer at 37o Celsius. 200 µg of

cortical mitochondrial protein was added to each chamber. 20 µL of 1 M sodium pyruvate

was added, resulting in a final concentration of 10 mM. 4 µL of 1 M malate was added

for a final concentration of 2 mM. 8 µL of 0.5 M ADP was added for a final concentration

of 2 mM. 2 µL of 1mM oligomycin was added for a final concentration of 1 µM. 10 µL

of 100 µM FCCP was added for a final concentration of 0.5 µM. 2 µL of 1 mM rotenone

were added for a final concentration of 1 µM. 2 µL of 1 mM antimycin A were added for

a final concentration of 1 µM.
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2.2 Translation into a Mathematical Model

2.2.1 Modelling Strategy

The experimental data available are oxygen concentration and oxygen consumption rate,

which represent the activity of the mitochondria. Since oxygen consumption occurs at

complex IV, the focus here is on modelling this complex. However, complex IV cannot

function in isolation. Complexes I, III, and V control proton movement across the inner

mitochondrial membrane, which directly affects the activity of complex IV. Complex IV

also requires delivery of the reduced form of cytochrome c, which is produced by complexes

I - III. Thus the end product of complexes I-III functions as input into complex IV, which

allows for a description of the set of complexes I-III as a single input. Modelling the

function of complexes I-III, complex IV and complex V thereby constitutes the baseline

model shown below in system (2.9). Furthermore, incorporating the effects of the reagents

described above, oligomycin, FCCP, Antimycin A/rotenone, produces three additional

systems shown in (2.10), (2.14), and (2.15), respectively.

These developed models are kinetic descriptions of the chemical reactions in the mito-

chondria. The reaction driven by complex IV is described previously in (1.7), but since

complexes I-III are described as a unique subsystem in the model, the previously described

chemical reactions (1.2) - (1.6) sum to:

complex I − III : 2Cytcox +NADH2 + 6H+
N −→ NAD+ + 2Cytcred + 8H+

P (2.1)

Thus, the four substrates pertinent to the models are:

• cytochrome c reduced, where its concentration at time t is represented by the state

variable r(t),

• oxygen, where its concentration at time t is represented by the state variable o(t),
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• matrix protons H+
N , where its concentration at time t is represented by the state

variable ω(t),

• inter-membrane space protons H+
P , where its concentration at time t is represented

by the state variable ρ(t).

Since it is assumed that NADH+ is abundant in the system, NAD and NADH+ are not

explicitly described in the model.

The general framework for the rate of change of concentration for the four main substrates

takes the form:
dr
dt

= 2F0 − 2F4

do
dt

= −1
2
F4

dω
dt

= −6F0 − 4F4 + F5

dρ
dt

= 8F0 + 2F4 − F5

(2.2)

The functional Fi represents the reaction speed of each reaction: F0 describes complex

I-III activity, F4 describes complex IV activity, and F5 describes complex V activity. The

fundamental assumption for these reaction speeds is that protein complexes are modelled

as enzymes. The specifics of each reaction speed are detailed in the following sections.

2.2.2 F0: Complexes I - III

The rate equation for the compound input F0 can be determined by using simple enzyme

kinetic derivation on a single substrate. This reaction can then be modelled as a simple

enzymatic reaction catalyzing the reduction of cytochrome c oxidized. Assuming simple

Michaelis-Menten kinetics as derived in Appendix A.1.2, the reaction speed generally

follows:

v =
VmaxS

Km + S
(2.3)

where Vmax is the maximum speed of the reaction, S is the substrate, and Km is the

concentration of substrate at which the reaction achieves half the maximum speed, known
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as the Michaelis-Menten constant. It is assumed that substrate S for the the combined

complexes I to III is cytochrome c oxidized. Furthermore, since cytochrome c is conserved

in the system, the concentration of cytochrome c oxidized is obtained from the total

concentration of cytochrome c c0 and cytochrome c reduced r, such that S = cyt cox =

c0 − r.

Additionally, since the ratio of protons on either side of the membrane, ω and ρ, will

influence the rate of electron transport chain activity, the balance of protons must scale

the function of equation (2.3). Under ideal circumstances, the membrane potential of the

inner mitochondrial membrane ∆Ψ, but this must be determined experimentally, which is

not available in the current study. Thus, to approximate the effect of membrane potential

∆Ψ, the pH ratio ω
ρ

is used. Since protons existing in the mitochondrial matrix, ω, would

drive the ETC forward if ω > ρ, then v can be scaled by multiplying by ω
ρ

to represent

the effect this balance will have on ETC function. This ratio approximates the effect

of the pmf established by the migration of protons from the N side to the P side, thus

affecting the activity of the ETC.

Altogether, this gives a rate equation for complexes I-III as:

F0(r, ω, ρ) =

(
VmaxcI−III

(c0 − r)
KmcI−III

+ (c0 − r)

)(
ω

ρ

)
. (2.4)

2.2.3 F4: Complex IV

Deriving the rate equation for complex IV assumes that it follows activation enzyme

kinetics, detailed in Appendix A.1.4. This is a valid assumption for complex IV since

cytochrome c reduced must first be bound to complex IV before oxygen can bind [27],

thus illustrating the activating effect cytochrome c reduced has on complex IV’s processing

of oxygen. For activation enzyme kinetics the general rate equation is:

v =
VmaxS

b

Km

(
1 + K1

Aa

)
+ Sb

(2.5)
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where S represents the enzyme substrate with stoichiometric constant b, and A represents

the enzyme activator with stoichiometric constant a. For complex IV, the substrate

is oxygen and thus S = o, while the activator is cytochrome c reduced, so A = r,

with stoichiometric constants b and a initially determined by reaction (1.7). However,

since the reactions occur in a parallel manner and result in simultaneous binding of all

required substrates [1], both a and b can approximate binding availability by assuming

that a = b = 1.

Finally, as with complexes I-III, since the activity of the ETC is modulated by proton

balance across the membrane, equation (2.5) is also modulated by the ratio ω
ρ
. Thus, the

rate equation for complex IV is:

F4(r, o, ω, ρ) =

(
VmaxcIV o

KmcIV

(
1 + KcIV

r

)
+ o

)(
ω

ρ

)
(2.6)

2.2.4 F5: Complex V

An existing model of complex V activity was used to describe the rate of complex V in

the current model. The model developed by Jain and Nath [28] was derived by a similar

derivation as in Michaelis-Menten kinetics, but with additional considerations for pH and

the ratio of protons across the inner mitochondrial membrane. Jain and Nath modelled

complex V with the following equation for reaction speed:

v =

[
(kskrE0)H

+
P

H+
P +

(
K1

K2

)
H+
N +

(
K1 + krE0

kt

)] (2.7)

Since the biological conditions in their experiment and the experiments used for the

current model are different, constant terms such as ks, kr and E0 were instead modelled

as parameters in the current model. Additionally, the units for v in equation (2.7) is

s−1. Since the reaction speeds in the current model are nmol/(mL s), and complex V

is directly modulated by the level of ρ protons, this rate equation is also scaled by ρ

concentration in the current model. This corrects the units of v to nmol/(mL s).
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With these slight modifications to equation (2.7), the equation for F5 used in the current

model is:

F5(ω, ρ) =

(
VmaxcV ρ

ρ+KcV ω +KmcV

)
ρ (2.8)

where VmaxcV = kskrE0, KcV = K1

K2
, and KmcV

= K1 + krE0

kt
.

2.2.5 The Baseline Model

Using the forms of Fi developed in the previous sections, and the general framework for

the model given in subsystem (2.2), the equations for the baseline system are collected

together below in subsystem (2.9). Thus, substituting Equations (2.4), (2.6) and (2.8)

into subsystem (2.2) yields:

Baseline



dr
dt

= 2
(
VmaxcI−III

(c0−r)
KmcI−III

+(c0−r)

)(
ω
ρ

)
− 2

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
do
dt

= −1
2

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
dω
dt

= −6
(
VmaxcI−III

(c0−r)
KmcI−III

+(c0−r)

)(
ω
ρ

)
− 4

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
+
(

VmaxcV
ρ

ρ+KcV ω+KmcV

)
ρ

dρ
dt

= 8
(
VmaxcI−III

(c0−r)
KmcI−III

+(c0−r)

)(
ω
ρ

)
+ 2

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
−
(

VmaxcV
ρ

ρ+KcV ω+KmcV

)
ρ

(2.9)

This system of equations represents the baseline subsystem, prior to injection of any

chemical reagents outlined in the experimental protocol.

2.2.6 Modelling Changes to Oxidative Phosphorylation

The experimental protocol involves injection of four chemical reagents as discussed in

Sections 1.1.3 and 2.1.2. Each of these reagents affect the operation of the mitochondria,

and thus require adaptation of the baseline subsystem shown above in Equation (2.9).
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Oligomycin, the first injection reagent, disrupts the activity of the proton channel in

complex V by binding to the ring of c subunits in this enzyme. This results in the flux

of protons dropping to zero, implying that F5 → 0. Therefore, in this condition F5 is 0,

yielding:

Oligomycin



dr
dt

= 2
(
VmaxcI−III

(c0−r)
KmcI−III

+(c0−r)

)(
ω
ρ

)
− 2

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
do
dt

= −1
2

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
dω
dt

= −6
(
VmaxcI−III

(c0−r)
KmcI−III

+(c0−r)

)(
ω
ρ

)
− 4

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
dρ
dt

= 8
(
VmaxcI−III

(c0−r)
KmcI−III

+(c0−r)

)(
ω
ρ

)
+ 2

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
(2.10)

The next reagent injected experimentally is FCCP , which re-enables OCR by uncoupling

complex V from the ETC. This occurs by the ionophore activity of FCCP , which creates

a artificial proton channels in the membrane, as discussed in Section 1.1.3.

The flow of protons due to injection of FCCP must be modelled using the Nernst-Planck

equation [29], which models the flow of a charged chemical species through a continuous

fluid. This equation is given by:

J = −D(∇c+
zF

RT
c∆Ψ) (2.11)

where J is the flux of flow of the compound over a certain area, D is its diffusion coefficient,

c its concentration, z is its charge, F is Faraday’s constant, R is the universal gas constant,

T is the absolute temperature of the system, and Ψ is the membrane potential. Assuming

that the protons are moving toward equilibrium or the nernst potential of H+ [29], which

is given by:

∆φ =
RT

zF
ln
( ρ
ω

)
, (2.12)

this potential can then be applied to ∆φ in equation (2.11) yielding:

F6 =
DH+

A

(
(ρ− ω) + ρ ln

( ρ
ω

))
(2.13)
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where DH+ is the diffusion coefficient for a proton, and A is the area over which we are

measuring the flux of protons. Since this area is variable and unknown, this model will

estimate the coefficient
DH+

A
as a single model parameter, namely parameterDh. Equation

(2.13) represents the rate of proton movement toward the mitochondrial matrix.

It is noteworthy to mention that when F5 is inhibited by oligomycin, F6 → 0 at equilib-

rium since at this point proton concentrations balance across the membrane and there

will be no net flux of protons.

Thus, following FCCP injection, the subsystem becomes:

FCCP



dr
dt

= 2
(
VmaxcI−III

(c0−r)
KmcI−III

+(c0−r)

)(
ω
ρ

)
− 2

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
do
dt

= −1
2

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
dω
dt

= −6
(
VmaxcI−III

(c0−r)
KmcI−III

+(c0−r)

)(
ω
ρ

)
− 4

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
+Dh

(
(ρ− ω) + ρ ln

(
ρ
ω

))
dρ
dt

= 8
(
VmaxcI−III

(c0−r)
KmcI−III

+(c0−r)

)(
ω
ρ

)
+ 2

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
−Dh

(
(ρ− ω) + ρ ln

(
ρ
ω

))

(2.14)

When rotenone and antimycin a are injected, both complex I and complex III are com-

petitively inhibited. Complex I is inhibited by rotenone while complex III is inhibited by

antimycin a. Inhibition of complexes I and III result in F0 ≡ 0, yielding the system:

Inhibition



dr
dt

= −2

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
do
dt

= −1
2

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
dω
dt

= −4

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
+Dh

(
(ρ− ω) + ρ ln

(
ρ
ω

))
dρ
dt

= 2

(
VmaxcIV

o

KmcIV

(
1+

KcIV
r

)
+o

)(
ω
ρ

)
−Dh

(
(ρ− ω) + ρ ln

(
ρ
ω

))
(2.15)



Chapter 2. Methods 22

2.2.7 Parameter Estimation

The model contains eight parameters within the provided set of three equations shown in

system (2.9) and an additional parameter due to the introduction of FCCP as shown in

equation (2.13). Finally, initial concentrations for cytochrome c reduced and oxidized were

also optimized as parameters. Thus, the full set of parameters is represented uniquely by

the 11-vector:

~p =
[
VmaxcI−III

, KmcI−III
, VmaxcI−III

, KmcIV
, KcIV , VmaxcV , KmcV

, KcV , Dh, Cyt cred(0), Cyt cox(0)
]

(2.16)

To estimate the set of parameter values ~p that provide the closest approximation to

the experimental data, a process referred to as calibration, each parameter in ~p was

independently varied and used by the model to simulate oxygen concentration over time.

The error between model output and the experimental oxygen concentration data was

then minimized. This was done by finding the ~p that produced the smallest mean-squared

error (MSE) calculated as:

E(~p) =
1

n

n∑
i=1

(o(ti, ~p)− x(ti))
2 (2.17)

where o(ti, ~p) is the concentration of oxygen evaluated by the model at time ti using the

parameter set ~p, and x(ti) is the experimental concentration of oxygen at the time ti.

Parameter values in each evaluated ~p were systematically varied using a genetic algorithm run on

the MATLAB R2014a platform. A genetic algorithm is an optimization technique that mimics

the principles of genetic mutations and DNA crossovers to introduce parameter value variations

in a set of parameters ~p. The general implementation of the genetic algorithm outlined in

Appendix D was applied as follows:

1. Create an initial population of n solvers, where each solver represents a unique ~p. In this

project, two parallel populations were created each with size n = 125.

2. Give each solver an initial set of m parameter values in the form {p1, p2, p3, ..., pm}. Thus

each solver started with the same ~p values.
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3. Randomly change the values of some of the parameters of each solver to create variation

in the initial population. Changes were bounded according to Table 2.1, where bounds

were approximated by using literature values of similar parameter values as listed in Table

3.1.

4. Evaluate the MSE for each ~p.

5. Allow the 10% of solvers that had the smallest MSE’s to proceed to the next generation.

6. Introduce partial interchanges of matching parameters between two random solvers in the

top 10%. This entailed decreasing the value(s) from one randomly selected top solver,

and increasing the value(s) of the same parameter(s) in another randomly selected top

solver by the same amount. This interchange occurred between top solvers from the

same population at a rate of 0.1, or between one top solver from each population at a

probability of 0.25. Interchanges continued until two new populations were created with

size 125, including the top 10% of solvers from the previous generation.

7. Randomly introduce alterations to parameter values within the new populations. The

probability of this occurring was 0.1.

8. Repeat the process from step 4 until the smallest MSE remains the same, for the same ~p

for 100 generations. The ~p that produced this MSE then became the best parameter set,

designated ~p∗, and the genetic algorithm exits.

The software used to carry out the genetic algorithm outlined here was developed by, and

used with permission from, Dr. Jason Fiege from the Department of Physics and Astronomy,

University of Manitoba.

This process was used to find a global minimum MSE, or smallest error. The parameter set

resulting in this smallest error was designated ~p∗.

2.2.7.1 Calibrating Multiple Conditions

The subsystems detailed in Section 2.2.6 refer to separate systems of equations depending on

the reagents in the cellular environment. In the experimental protocol, injection points are
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Table 2.1: Bounds for each parameter during parameter estimation. Bounds for the
values of each parameter in the parameter set ~p. Each parameter was allowed to vary
within these bounds, inclusively, during the operation of the genetic algorithm. Bounds
were largely determined based on literature values for each parameter, as listed in
Table 3.1, and then expanded to allow for a more thorough investigation through the
parameter space.

Parameter Lower Bound Upper Bound Units

VmaxcI-III 1× 10−2 1× 104 nmol/mL s
KmcI-III 1× 10−3 1× 105 nmol/mL
VmaxcIV 1× 10−2 1× 104 nmol/mL s
KmcIV 1× 10−3 1× 105 nmol/mL
KcIV 1× 10−2 1× 104 nmol−1s−1

VmaxcV 1× 10−2 1× 104 nmol/mL s
KmcV 1× 10−3 1× 105 nmol/mL
KcV 1× 10−2 1× 104 -
Dh 1× 10−2 1× 105 cm2/s

Cyt cred 1× 10−2 1× 103 nmol/mL
Cyt cox 1× 10−2 1× 103 nmol/mL

introduced without interruption of the system. Thus, each condition is continuous with the next.

In calibrating the system, the Runge-Kutta integration technique was used to integrate each

system of equations by using the previous system’s final state values as initial conditions for the

next. For instance, Fig. 2.1 shows that the final values for r(t), o(t), ω(t), and ρ(t) in the baseline

subsystem are provided as initial values into the subsequent oligomycin subsystem. This was

applied to each transition time point toligo, tFCCP , and tinhibit, allowing for full simulation of

the experimental protocol without discontinuity.

This approach was used to simultaneously calibrate the four systems developed to determine

parameters globally consistent with the experimental protocol. Time points of integration were

matched to experimental data across all conditions, and equation (2.17) was minimized for time

points spanning all conditions simultaneously.

2.2.7.2 Sensitivity Analysis

Following the method outlined in [14], the sensitivity of each parameter given finite changes in

parameter values were determined by calculating the maximum error due to a 10% change in a
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Figure 2.1: Representation of the calibration strategy used. The final values of each
subsystem are used as initial conditions for evaluation of the next system. Illustrated
here is the usage of the final concentrations of r, o, ω, and ρ from evaluation of the
baseline system as initial conditions in the oligomycin system. This strategy is used to
transition between subsystems at each injection time point.

Time
0 toligo tFCCP tinhibit

Baseline Oligomycin FCCP Inhibition
system system system system

rbaseline(toligo) = roligo(toligo)

obaseline(toligo) = ooligo(toligo)

ωbaseline(toligo) = ωoligo(toligo)

ρbaseline(toligo) = ρoligo(toligo)

Baseline system

final values

Oligomycin system

initial values

specific parameter value. Thus, sensitivity coefficients were determined for each parameter as

follows:

Si = max

(
|E(p∗i ± 0.1p∗i )− E(~p∗)|

0.1E(~p∗)

)
(2.18)

where E(~p∗) is the minimum MSE as calculated by equation (2.17), p∗i is the optimal value of

the ith parameter in ~p∗, and i = {1, 2, 3, ..., 9}. The term E(p∗i ± 0.1p∗i ) is an evaluation of

equation (2.17) after deviating p∗i by 10 % both above and below the estimated value.
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Results

3.1 Biological Data

Experimental data was acquired using both the Seahorse XF24 Analyzer and the Oroboros

Oxygraph-2k.

Fig. 3.1 depicts a representative graph of oxygen concentration versus time and OCR versus

time as measured by the Oroboros Oxygraph-2k. The blue line represents oxygen concentration,

whereas the red line represents OCR. Both experimental protocols described in section 2.1 rep-

resent data collected for baseline, oligomycin, FCCP , and rotenone/Antimycin A conditions.

Figures 3.3 and 3.2 depict representative graphs of oxygen consumption rate (OCR) versus time

and oxygen concentration versus time as measured by the Seahorse XF24 Analyzer. Evident

in the graph of OCR measured by the XF24 in Fig. 3.3, maximal OCR during the FCCP

condition is much more pronounced than that measured in the oxygraph condition in Fig. 3.1.

Since the measurements in the XF24 were recorded using cells as described in Section 2.1.2,

some substances required for optimal baseline activity are not supplemented as they are in the

Oxygraph protocol as detailed in Section 2.1.3. This is largely a result of the permeability

of the plasma membrane acting as a barrier to certain substances. Given this difference, and

the operation of the XF24’s plunger during recording (discussed below in Section 4.1), the data

acquired from the XF24 was not used to calibrate the model quantitatively. Instead, the response

26
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Figure 3.1: Experimental oxygen concentration and OCR data from the Oroboros
Oxygraph-2k. The blue line shows oxygen concentration data, whereas the red line
shows OCR data. Measurements were taken in cortical mitochondria from CD1 mice
following the experimental protocol outlined in Section 2.1.2.

of the mitochondria to the injected reagents, oligomycin, FCCP, rotenone, and antimycin A

was validated by ensuring similar responses are acquired between the XF24 and Oxygraph

measurements. Given the red curve shown in Fig. 3.1, representing OCR measurements, the

response of mitochondria is similar to that in the XF24 in Fig. 3.3.
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Figure 3.2: Experimental oxygen concentration data from the Seahorse XF24 Analyzer.
Measurements were carried out using cultured cortical neurons from CD1 mice. Oxy-
gen concentration is measured in four different conditions: under baseline functioning,
following oligomycin injection, following FCCP injection, and following injection of
rotenone and antimycinA. Although the data appears oscillatory, this is a result of
the measurement plunger lifting between measurement intervals, allowing each mea-
surement space to mix with the entire well. The details and consequences of this
measurement procedure are discussed in Section 4.1.
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Figure 3.3: Experimental oxygen consumption rate data from the Seahorse XF24 Ana-
lyzer. Measurements were carried out using cultured cortical neurons from CD1 mice.
OCR is measured in four different conditions: under baseline functioning, following
oligomycin injection, following FCCP injection, and following injection of rotenone
and antimycinA. In cultured cells, the response of the system to FCCP is pronounced
compared to that of baseline, although this is due limited availability of certain biolog-
ical substrates in cells but not found in tissue due to the permeability of the plasma
membrane as a barrier. This is further discussed in Section 4.1.
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3.2 Model

3.2.1 Parameter Estimation

The model was calibrated to oxygen concentration data by minimizing equation (2.17), yielding

a minimum value of E(~p∗) = 1.664 after n = 1311 generations. Fig 3.4 shows a plot of the

experimental oxygen concentration data alongside the output of oxygen concentration o(t).

Figure 3.4: Calibration of the model to experimental oxygen concentration data. The red
line shows the experimental oxygen concentration data as measured in the Oxygraph-2k,
whereas the black line shows the simulated oxygen concentration over time as output by
the model. The MSE of the fit between simulated and measured oxygen concentration
was E(~p∗) = 1.664, calibrated by using the genetic algorithm outlined in Section 2.2.7.

It is evident from this figure that the model accurately predicts oxygen concentration levels as

measured by the Oxygraph-2k. In the baseline condition, the model produced stable, constant

consumption of oxygen, consistent with the Oxygraph data and with a constant OCR shown in

the Seahorse data.

In the oligomycin condition, although the model predicts no consumption of oxygen, there is

some transient consumption of oxygen shown in the Oxygraph data. This may be interpreted

as a result of proton leak allowing protons to move through the membrane without flowing

through complex V. These protons then react with oxygen resulting in very slow, but non-zero

consumption of oxygen. The model does not incorporate a representation for proton leak, which
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may explain the slight disparity in the oligomycin condition. However, the model provides an

accurate representation of the Oxygraph data, and also qualitatively matches the effect obtained

in the Seahorse data.

In the FCCP condition, the model predicts a constant consumption of oxygen, which fits the

pattern of oxygen consumption in the Oxygraph data and a constant OCR shown in the Sea-

horse data. Finally, the rotenone/antimycin A condition dictates that there will be no oxygen

consumption due to complete inhibition of the system, which the model predicts. Thus each

condition is accurately represented by the model, both quantitatively as per calibration to the

Oxygraph data, and qualitatively as per comparison to the Seahorse data.

The output of the model for the system with initial conditions as defined by the experimental

protocol is shown below in Fig. 3.5.

Figure 3.5: Output for the calibrated model. These graphs show simulated oxygen con-
centration, OCR, cytochrome c reduced, matrix proton concentration, and intermem-
brane space (IMS) proton concentration over time. The calibrated parameter values
for this simulation are listed in Table 3.1.
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Table 3.1: Calibrated model parameter values. Estimated values for the best parameter
set ~p∗, as determined using the genetic algorithm and calibration approach described
in Section 2.2.7. Literature values listed here were also used to determine approximate
ranges of calibration for each parameter as listed in Table 2.1.

Parameter Description
Estimated

Value
Literature

Value
Units

VmaxcI-III Maximum reaction velocity of F0 9812.4 a - nmol/mL s
KmcI-III

Michaelis-Menten reaction constant for F0 12.251 a - nmol/mL
VmaxcIV Maximum reaction velocity of F4 0.7225 37.33 - 40.47 [19] nmol/mL s
KmcIV

Michaelis-Menten reaction constant for F4 0.1627 7 - 10 [19][30] nmol/mL
KcIV Equilibrium constant for F4 365.02 a - nmol−1s−1

VmaxcV Maximum reaction velocity of F5 43166 57 [28] nmol/mL s
KmcV

Michaelis-Menten reaction constant for F5 11388 6607 [28] nmol/mL
KcV Ratio of K1

K2
in complex V 9342.6 900 [28] -

Dh Diffusion coefficient of hydrogen per unit area 5116.1
b5.8× 10−5/A

[31]
s−1

cyt cred(0) Initial concentration of cytochrome c in reduced form 0.0500 - nmol/mL
cyt cox(0) Initial concentration of cytochrome c in oxidized form 6.3766 - nmol/mL

c0 Total initial cytochrome c 6.4266 c - nmol/mL

aThese values are novel to the current model, thus no reference values exist.
bThis reference value regards diffusion DH+ from [31], whereas Dh regards

DH+

A , diffusion normalized
to an area A, which is not measureable in the current experimental protocol.
cThis value is set by the initial values of the model.

Table 3.1 shows the estimated parameter values upon calibration of the model to experimental

data. For each parameter common values ranges for the given parameter and their units are

listed. Literature values listed in Table 3.1 were acquired experimentally in brain tissue, but

with differing biological conditions a range of common values for complex IV kinetics is pro-

vided. Ranges for common values are dependent on the properties of the mitochondria, such

as availability of oxygen [32], source of tissue [19], cellular location of mitochondria [33], or age

[33][34]. The literature values listed were used to construct the value ranges for each parameter

during calibration, as outlined in Section 2.2.7.

The parameter values estimated for the current model are slightly lower than found in the

literature, particularly for the maximal velocity of complex IV. The model parameters for the

adopted function F5, however, show much higher values than in the original model [28]. This

is likely due to the constraints placed on pH values, discussed below in Section 3.2.2, which

were not carried out in the original complex V model [28]. Jain and Nath rather illustrated

the effect of varying pHs and the pH gradient between the matrix and IMS, which resulted in

the current model’s pH values (IMS pH = 7.4 and matrix pH = 7.8) and pH gradient (∆pH
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= −0.4) showing low levels of complex V activity. Thus, the increased parameter values in the

current model may reflect a compensatory response to adequately describe an appropriate level

of complex V functioning given the assumed pH values.

As more experimental data is acquired, specifically by measuring the dynamics of the system

aside from just oxygen concentration, the ideal parameter set ~p∗ may represent values expressed

in the literature more closely.

3.2.2 Robustness of the Model

Initial conditions are inherently set in the experimental protocol of both the Seahorse XF24 An-

alyzer and the Oroboros Oxygraph. Altering these values, however, can provide an estimate for

the behavior and limitations of the model in comparison to biological expectations. Alterations

to initial conditions are run in the baseline model over an extended time frame (t→ 2000 s) to

show the output of the model without introduction of chemical reagents.

The altered initial conditions used for testing robustness of the model are summarized in Table

3.2. High and low concentration values were determined by multiplying baseline concentration

values by a factor of 103 or 10−3, respectively. Each figure shown in Figs. 3.6 - 3.13 show

two simulations of the model, where the black lines represent output of the model under nor-

mal initial concentrations, and red lines represent output of the model under altered initial

conditions.

Table 3.2: Summary of the output during the tests of robustness. Each primary sub-
strate in the model was either increased by a factor of 103 or decreased by a factor of
10−3. The resulting model outputs are shown in Figs. 3.6–3.13, and are listed here
with the accompanying change to initial conditions.

Substrate Changed
High

Concentration
(nmol/mL)

Low
Concentration

(nmol/mL)

Model
Concentration

(nmol/mL)

Initial cytochrome c reduced concentration 50
(Fig. 3.6)

5.0× 10−5

(Fig. 3.7)
0.0500

Initial oxygen concentration 1.71055× 105

(Fig. 3.8)
0.171055
(Fig. 3.9)

171.06

Initial matrix proton concentration 15.85
(Fig. 3.10)

1.585× 10−5

(Fig. 3.11)
0.01585

Initial Intermembrane space (IMS) proton concentration 39.81
(Fig. 3.12)

3.981× 10−5

(Fig. 3.13)
0.03981
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The output of the model under normal conditions have initial concentrations of r(0) = 0.0500

nmol/mL, o(0) = 171.05 nmol/mL, ω(0) = 0.01585 nmol/mL, and ρ(0) = 0.03981 nmol/mL.

The initial concentration of cytochrome c reduced was acquired through optimization, yield-

ing r(0) = 0.0500 nmol/mL. Experimental data dictated an initial concentration of oxygen to

be o(0) = 171.05 nmol/mL. Since a pH of 7.4 was determined experimentally, this pH dic-

tated ρ(0) = 0.03891, as described in [1]. Finally, assuming a resting pH gradient of -0.4 pH

units [35][36][37], with the matrix compartment less acidic than the IMS, this yielded an initial

concentration of matrix protons to be ω(0) = 0.0158 nmol/mL, or a pH of 7.8 in the matrix.

It is expected that under normal conditions, oxygen will be fully consumed, thus o(t)→ 0 as t→

∞. This will result in stabilization of proton flow, but since complex V is still operational, matrix

protons will equilibrate to a final proton concentration ωf and IMS protons will translocate into

the matrix, resulting in ρ(t) → 0 as t → ∞. Since cytochrome c reduced will no longer be

oxidized by complex IV, it is also expected that cytochrome c will primarily be in reduced form

[38], thus r(t)→ c0 as t→∞.

The effect of changing initial levels of cytochrome c reduced, or r, is shown in Figs. 3.6 and 3.7.

Setting r(0) = 50 nmol/mL resulted in similar output to that of normal conditions, with a minor

increase in overall activity, shown by the slightly more rapid equilibration and full consumption

of oxygen compared to baseline. Also, since increasing initial cytochrome c concentration affects

total cytochrome c concentration c0, r(t) shows a higher final concentration since r(t) → c0 as

t→∞.

Simulating low initial r concentration by setting r(0) = 5.0 × 10−5 nmol/mL yields output

matching that of the baseline initial conditions, as shown below in Fig. 3.7. Oxygen is consumed

at a similar rate compared to normal conditions until oxygen is fully consumed at approximately

t = 450 s.

When the initial oxygen concentration is increased to o(0) = 1.71055 × 105 nmol/mL, it is

expected that cytochrome c reduced levels remain fairly consistent or consumed slowly as oxy-

gen is quickly consumed. Equation (2.6) illustrates that increasing oxygen would also greatly

increase oxygen consumption rate. Fig. 3.8 shows constant consumption of oxygen, however,

which is due to the limitation of the low level of initial cytochrome c reduced in the system

since r(0) = 0.0109 nmol/mL. Cytochrome c reduced is continually consumed by complex IV
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Figure 3.6: Model output with a high initial concentration of cytochrome c reduced.
Here, the initial concentration of cytochrome c reduced is set to r(0) = 50 nmol/mL.
Black lines represent output under normal conditions, whereas red lines represent out-
put under altered initial conditions.

at a maximal rate, constrained by the amount of cytochrome c reduced produced by complexes

I-III, evident in the graph depicting OCR over time. This maximal OCR affects proton balance,

since the activity of the ETC will continually translocate protons from the matrix, resulting in

ω remaining at a low final concentration ωf . Maximal activity of the ETC will force protons

against the pmf faster than complex V can normally translocate protons into the matrix, thus

resulting in an increase in ρ. Equilibrium has not been reached on the timescale simulated,

however, due to the abundance of oxygen available to the ETC. Validating this output of the

model may be necessary with additional experimental data.
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Figure 3.7: Model output with a low initial concentration of cytochrome c reduced.
Here, the intiial concentration of cytochrome c reduced is set to r(0) = 5.0 × 10−5

nmol/mL. Black lines represent output under normal conditions, whereas red lines
represent output under altered initial conditions.

When oxygen is set to a small initial concentration o(0) = 0.171055 nmol/mL, oxygen is assumed

to fully deplete, thus o(t)→ 0 nmol/mL as t→∞. Due to the small amount of oxygen available

to the system, it is fully consumed rapidly. Full consumption of oxygen results in the cessation

of the entire chain, which results in rapid equilibration of ω, ρ and r. Since this results in similar

activity of the system under normal conditions, but reaching a state of oxygen depletion much

sooner, ωf , r and ρ show similar steady state values.

Increasing proton concentration in the mitochondrial matrix resulted in rapid relaxation toward

equilibrium, as shown in Fig. 3.10. Biologically, when the initial concentration of matrix protons
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Figure 3.8: Model output with a high initial concentration of oxygen. Here, the initial
concentration of oxygen is set to o(0) = 1.71055× 105 nmol/mL. Black lines represent
output under normal conditions, whereas red lines represent output under altered initial
conditions.

is increased, the proton gradient multiplicative factor ω
ρ is increased, resulting in rapid activity

of the system driven by the pmf to equilibrate proton levels across the inner mitochondrial

membrane. This matches the rapid initial activity shown in Fig. 3.10. It is also shown that

ω(t) equilibrates to a higher ωf than under normal conditions, which may be due to the higher

initial concentration of overall protons available to the system.

Fig. 3.11 shows that a low starting concentration of matrix protons results in output matching

that of normal conditions with a slight delay. A lowered concentration of initial matrix protons

results in a smaller multiplicative factor ω
ρ . This thereby reduces the initial rate of activity for
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Figure 3.9: Model output with a low initial concentration of oxygen. Here, the initial
concentration of oxygen is set to o(0) = 0.171055 nmol/mL. Black lines represent out-
put under normal conditions, whereas red lines represent output under altered initial
conditions.

F0. Due to the small concentrations of protons, however, the ratio ω
ρ quickly approaches values

similar to those under normal conditions. This can explain the slight delay in functioning under

low matrix proton conditions.

Increasing IMS proton concentration shows a similar effect to increasing matrix proton concen-

tration, as shown below in Fig. 3.12. This may be occurring since higher ρ results in rapid

activity of complex V, which drives protons inward to the matrix. This rapidly increases ω,

which then results in similar general output to that of increased initial ω. Fig. 3.13 shows that
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Figure 3.10: Model output with a high initial concentration of matrix protons. Here,
the initial concentration of matrix protons is set to ω(0) = 15.85 nmol/mL. Black lines
represent output under normal conditions, whereas red lines represent output under
altered initial conditions.

decreasing initial proton concentrations in both IMS and the matrix results in a short delay of

the function of the system.

Investigating the effect of changing initial concentrations of the state variables of the model

provides insight into the flexibility of the model in simulating various biological environments.

The output shown in Figs. 3.6 - 3.13 shows that the model can sufficiently predict mitochondrial

functioning after altering the initial conditions of the model.
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Figure 3.11: Model output with a low initial concentration of matrix protons. Here, the
initial concentration of matrix protons is set to ω(0) = 1.585 × 10−5 nmol/mL. Black
lines represent output under normal conditions, whereas red lines represent output
under altered initial conditions.
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Figure 3.12: Model output with a high initial concentration of intermembrane space
protons. Here, the initial concentration of intermembrane space protons is set to ρ(0) =
39.81 nmol/mL. Black lines represent output under normal conditions, whereas red lines
represent output under altered initial conditions.
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Figure 3.13: Model output with a low initial concentration of intermembrane space
protons. Here, the initial concentration of intermembrane space protons is set to ρ(0) =
3.981× 10−5 nmol/mL. Black lines represent output under normal conditions, whereas
red lines represent output under altered initial conditions.
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3.2.2.1 Comparing Oxygen Consumption Rate

OCR provides an important measure of mitochondrial activity, and in particular activity of

complex IV. OCR is often used to quantify mitochondrial activity in an experimental setting

[39][40][41]. Determining the effect of changing initial concentrations of the model on OCR is

thus an important consideration for the applicability of the model. Output OCR curves for the

conditions tested above have been aggregated into Table 3.3 below, juxtaposed for comparison

purposes. In each OCR graph shown, the black lines represent unaltered initial conditions,

whereas the red lines show altered initial conditions.

Table 3.3 shows that both increased and lowered initial concentrations of cytochrome c reduced

results in similar activity to that of normal complex IV behaviour. This indicates that initial

cytochrome c reduced concentration is not a significant contributor to the output of the model,

which is also supported by the sensitivity analysis shown in Section 3.2.3.

As expected, OCR is particularly sensitive to the starting concentration of oxygen. An abun-

dance of oxygen results in a high, constant rate of consumption, whereas an absence of oxygen

produces no consumption.

Changing initial concentrations of matrix and IMS protons similarly affect the shape of the

OCR curve over time. High initial proton concentrations result in an initial rapid consumption

of oxygen, followed by a sharp decrease in OCR. OCR continues to decrease slowly until full

oxygen depletion. These results indicate that higher initial concentrations of protons result in

variable OCR rates prior to oxygen depletion, which may be a result of higher proton flux rates

resulting in higher overall activity of the ETC. Lower initial concentrations result in normal

behaviour, which may be due to a rapid equilibration of proton concentrations toward normal

conditions.
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Table 3.3: Summary of the effect of changing initial conditions OCR. The figures dis-
played illustrate the effect of each substrate on output OCR, where oxygen shows the
greatest control over OCR.

Substrate

Changed
Low Concentration Condition High Concentration Condition

Cytochrome C
Reduced

Oxygen

Matrix Protons

IMS Protons
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3.2.3 Sensitivity Analysis

After looking at the effect of altering initial conditions on the response of the model, the effects

of altering model parameters were also determined by using the sensitivity analysis outlined in

Section 2.2.7.2. The sensitivity analysis used here quantifies the effect of altering parameters

from their optimal values on the model response. The model response is evaluated through the

error between o(t) and experimental oxygen concentration data, as shown in Equation (2.17).

Thus, the sensitivity of the model to each parameter specifically regards the sensitivity of oxygen

concentration o(t) to varying parameter values from the optimal set of values ~p∗.

The results of sensitivity analysis, determined using Equation (2.18), are listed below in Table

3.4. Sensitivities to each parameter were determined for each biological condition separately;

baseline, oligomycin, FCCP and rotenone/antimycin A conditions.

Table 3.4: Sensitivity values for the parameters of the model. These sensitivity values
were evaluated separately for each subsystem in the model. Sensitivity values in bold are
relatively large in contrast to other parameter in the same subsystem. The oligomycin
and inhibited subsystems show little sensitivity to the parameters of the model.

Parameter Baseline Oligomycin FCCP Inhibited System
VmaxcI-III 0.053 0.0005 0.003 -
KmcI-III

0.032 0.0005 0.003 -
VmaxcIV 15.63 0.0011 261.6 0.162
KmcIV

0.770 0.0001 5.110 0.028
KcIV 0.760 0.0001 4.996 0.028

VmaxcV 14.19 - - -
KmcV

7.963 - - -
KcV 5.440 - - -
Dh - - 0.081 0.001

Cyt cred 0.072 0.0009 0.006 0.000

Sensitivity values indicate the relative effect of altering each parameter on output oxygen con-

centration of the model; the larger the sensitivity values the greater the effect. Given equation

(2.18), sensitivity values are relative to the best fit error value and are therefore unitless.

The baseline subsystem shows particular sensitivity to the parameters VmaxcIV and VmaxcV . The

FCCP subsystem shows particular sensitivity to the parameter VmaxcIV . Also, the oligomycin

and inhibited systems both show little sensitivity to model parameters, due to the slowed activity
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of the system in both of these conditions. Interpretations of these sensitivity values are discussed

further in Section 4.2.1.

3.3 Model Interface

The simulation model was coded in MATLAB R2014a and MATLAB R2015a (Mathworks).

The model was programmed using a functional approach, thus using several .m files to collec-

tively simulate mitochondrial function. The content of each .m file is located in Appendix C,

illustrating the functionality of all MATLAB files developed for this project: main.m, setup.m,

finalgui.m, baselineSystem.m, oligoSystem.m, fccpSystem.m, inhibitSystem.m, data formatter.m,

solver.m, fitness.m, sensitivityAnalysis.m, sensitivitySolver.m, and analyzeResults.m

All MATLAB code was developed fully for the purposes of this project. The graphical user

interface (GUI) shown in Fig. 3.14 was initially created using the built-in GUI development

tool GUIDE. Functionality of the components and operation of the GUI was then expanded by

writing specific functions in finalgui.m.

The functions baselineSystem.m, oligoSystem.m, fccpSystem.m and inhibitSystem.m each con-

tain the equations for each biological section as detailed above in Section 2.2.6. The solver.m

function implements the differential equation solver ode45 to integrate the appropriate equa-

tions over all segments of the model as outlined in Section 2.2.7. The data formatter.m function

reads experimental data from an Excel file and imports it, along with time-stamped labels, into

MATLAB for use in the model. The fitness.m function calculates the objective function as de-

fined in Section 2.2.7 for optimization. The function sensitivitySolver.m carries out integration

of the model for each biological condition separately for use in the sensitivity analysis outlined

below in Section 2.2.7.2 and carried out in the code sensitivityAnalysis.m.

The primary code for running the model was programmed in main.m. This function calls

setup.m which initializes all parameters, conditions, and data structures used in the model, and

then opens finalgui.m to allow interactive control of the model.

This finalgui.m function handles all user activities, such as manipulating the parameter or initial

values of the model. As illustrated in Fig. 3.14, the GUI allows for modification of the initial
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Figure 3.14: The graphical user interface of the simulation model. This figure shows the
developed graphical user interface (GUI) of the simulation model. This GUI was coded
in MATLAB R2014a, and simulates both experimental and baseline simulations of the
model in parallel. The operator of the GUI can edit the parameters and initial condi-
tions of each simulation using the controls shown, and the output of each simulation is
shown after the Plot button is clicked.

conditions of the simulation as well as the values of the parameters for both baseline and com-

parison, or experimental, simulations. Both baseline and experimental simulations are carried

out in parallel, to allow for direct comparison between model outputs. The parameters for the

baseline condition are fixed by default, whereas the parameters for the experimental condition

are open to modification by the user. There are also functions that have been incorporated

into the GUI for generating randomized sets of initial conditions or parameter sets for exploring

various biological conditions. The GUI also allows the user to: save progress, load progress, save

or resize output graphs, collectively save the output of the model to a single image, and save a

screen shot of the model output and modifications to the parameters of the model producing



Chapter 3. Results 48

that output in a single image. Instructions for operating the functions of the GUI are found in

Appendix B.
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Discussion

4.1 Biological Considerations

In the initial oxygen concentration data acquired by the Seahorse XF24 Analyzer, shown in Fig.

3.2, it appears that oxygen is periodically supplied to the system throughout the experiment.

This is not the case, however. When oxygen is measured over a small interval, the measurement

plunger measures this in a small closed chamber of approximately 7 µL by moving downward

in the well. After a series of measurements, the plunger then lifts and results in the entire well

mixing. This also allows the level of oxygen to return to the baseline oxygen level available in the

entire well. This allows the XF24 Analyzer to determine the rate of oxygen consumption over an

interval of time and ensure that oxygen will be available for the next interval of measurements.

So although OCR measurements are accurate, the overall behavior of oxygen is influenced by

this process of mixing. Quantitatively, this mixing process thus represents periodic increases

in oxygen concentration into the system, namely some anonymous input function π(t) into do
dt .

This would require introducing a function specific to the mechanical operation of the Seahorse,

however, not to the functioning of the mitochondria. Thus, the need for the Oroboros Oxygraph-

2k.

Oxygen concentration from the Oxygraph-2k is continuous and accurately represents direct mea-

surements of oxygen concentration over time without interruption. To validate that the oxygen

49
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levels are consumed at proper rates, the average rate of consumption within each biological

condition in the Oxygraph-2k data was normalized and compared to that of the Seahorse XF24

data. As evident in contrasting Fig. 3.3 and the red OCR curve shown in Fig. 3.1, the pattern

of consumption rates in the Oxygraph-2k data matched that of the Seahorse XF24 Analyzer

data, validating the response of the mitochondria to each biological reagent qualitatively.

In addition to the issue of using Seahorse XF24 Analyzer data for calibration, there is also a

concern for approximating pH by IMS protons ρ(t), as briefly described in Section 3.2.2. In

modelling the system at solely the level of the electron transport chain, the external concen-

tration of protons, which is thus the concentration of IMS protons, can approximate the pH

of the system [1]. This was used to determine the initial concentration ρ(0) by determining

the concentration of ρ(t) that corresponded to pH = 7.4, which was the pH measured by the

Seahorse XF24 Analyzer. The issue in making this assumption is that the measurements of pH

carried out by the Seahorse XF24 Analyzer are made at a cellular level, which may not fully

represent the environment in the mitochondria, specifically the IMS. To reduce reliance on this

assumption, measurements of proton concentration on both sides of the inner mitochondrial

membrane will be required. Given the aim of the model, however, this assumption provides an

adequate approximation for the initial concentration for ρ(t). Assuming a resting pH gradient

of -0.4 units, within the bounds of previous determinations [35][36][37], allows this pH measure-

ment to also determine an initial concentration for ω(t). Thus direct measurement of the pH

gradient on the inner mitochondrial membrane will allow for a more precise determination of

ω(0).

Investigating the concentration of cytochrome c reduced in the calibrated model, as shown in

Fig. 3.5, shows that the oxidized form of cytochrome c is dominant at t = 0 s. Quickly,

cytochrome c becomes reduced until the reduced form dominates, where cytochrome c reaches

a reduction proportion of 85 %. The reduction proportion achieved during baseline is higher

than in previous studies, such as the 15 - 30 % reduction proportion shown by Muraoka and

Slater (1969) [38]. This over-reduction of cytochrome c may simply be due differences in the

experimental protocols used, or due to the reliance of the system on cytochrome c oxidized as

input into the ETC, instead of the carrier NADH, which was assumed to be in abundance. This

can be further investigated upon expansion of the model, as described in the next section.
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Once cytochrome c reaches a stable reduction proportion, here achieved at 85 % in the base-

line subsystem, reduction will no longer proceed at a significant rate. Although injection of

oligomycin is expected to alter this reduction proportion, it appears in Fig. 3.5 that this does

not occur to any visible extent. Thus, expansion of the model may be required to further repli-

cate proper cytochrome c dynamics. This can be addressed by describing in detail complexes

I-III independently, allowing for a refinement of cytochrome c dynamics.

4.2 Mathematical Considerations

4.2.1 Sensitivity Analysis

The results of the sensitivity analysis are listed above in Table 3.4. This analysis showed that

the model is most sensitive to changes in model parameters VmaxcIV and VmaxcV in the baseline

subsystem; and VmaxcIV in the FCCP subsystem. These results are interpreted here using the

underlying biology of the system.

The oligomycin and inhibited subsystems show significant decreases in sensitivity values to all

parameter values. This is a consequence of the drop in mitochondrial activity under these

conditions.

In the baseline subsystem, the model shows sensitivity to changes in the parameters VmaxcV and

VmaxcV . Sensitivity to VmaxcIV reflects the control of this parameter on the maximal activity

of complex IV, which affects the rate at which oxygen consumption can proceed. This thereby

directly affects the accuracy of the model’s output compared to calibration data. Sensitivity

to this parameter is also exhibited in the FCCP subsystem, where the same argument holds.

Sensitivity to VmaxcV , however, illustrates the importance of complex V to the operation of the

ETC, in that it acts as the only modelled method of dissipating the generated pmf . In the

FCCP condition, the means of pmf dissipation is accomplished through F6, controlled by the

parameter Dh. The model does not prove to be sensitive to this parameter, which may be due

to F6 modelling a passive process of proton movement rather than a tightly controlled process

such as in F5. This can be further investigated once the model is expanded and additional data

regarding measurable proton concentrations are incorporated.
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4.2.2 Expanding the Model

As discussed in section 2.2.1, complex IV became the main focus of the model since experimental

data was inherently collected directly from complex IV activity. This resulted in the description

of complexes I-III by a single function, F0. Further collection of experimental data measuring

continuous concentration levels of other substrates in the system, such as NADH, cytochrome c

reduced, and/or proton levels, will allow model development into a more complete and robust

representation of the ETC without representing complexes I-III by F0.

To extend the current model, kinetic descriptions of all biochemical reactions in the ETC must

be determined. The chemical reactions to be modelled were described above in section 1.1.2,

and are again listed here for clarity:

complex I : NADH2 + 4H+
N +Q −→ NAD+ +QH2 + 4H+

P (4.1a)

complex II : Succinate+ 2H+
N +Q −→ Fumarate+QH2 (4.1b)

complex IIreverse : Fumarate+MQH2 −→ Succinate+MQ+ 2H+
N (4.1c)

complex III : QH2 + 2Cytcox + 2H+
N −→ Q+ 2Cytcred + 4H+

P (4.1d)

complex IV : 2Cytcred + 4H+
N +

1

2
O2 −→ 2Cytcox +H2O + 2H+

P (4.1e)

Notice that since complex II also operates reversibly, this reaction was also included in the

reaction scheme for the ETC, although it is not an energetically favourable reaction and thus

not occur often.

To determine the appropriate kinetic equations for each biochemical reaction in equations (4.1),

the mechanism underlying their function must be analyzed. Given the parallels between each

reaction, it appears that each complex operates to carry out a redox reaction between two

substrates. It is not entirely known, however, whether both substrates can freely bind to the

relevant complex or whether a single substrate (or coenzyme) must first be bound before a

substrate can be bound. Thus, there exists two possible kinetic mechanisms, activation kinetics

or two-substrate kinetics.

Activation kinetics requires a specific substance, referred to as an activator, to firstly bind to

the complex before a substrate may bind. Complexes I, II, III and IV may all follow activation
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kinetics, with the coenzyme involved in each complex acting as the activator. In complex I,

for example, NADH is an active coenzyme in the redox reaction carried out by complex I, thus

NADH would be the activator and Q would be the substrate operated upon. Identification of

activator and substrates for each complex is listed in Table 4.2. Two-substrate kinetics involves

the ability of both substrates to freely bind to the complex, but the reaction only proceeds

once both substrates are bound. Only complexes I, II and III fit with this kinetic mechanism.

This is invalid for complex IV since two electrons are passed to complex IV by 2 molecules of

cytochrome c, it is only once these electrons reach the Cu-Fe bi-center at the end of the redox

chain of complex IV can O2 bind [1]. Thus, cytochrome c must activate complex IV before O2

can bind, disallowing the two-substrate kinetic scheme.

Complexes I-III can thus be modelled as either having activation or two-substrate kinetics,

except for complex IV. Thus, there are 23 = 8 different model types, which is summarized

below in Table 4.1.

Table 4.1: The set of all possible kinetic model types for a full description of the ETC.
Complexes I, II, and III can each be described by using either activation or two-substrate
kinetics, whereas complex IV is solely described by activation kinetics. This results in
eight possible model types when describing the entire ETC.

Complex I Complex II Complex III Complex IV Model Type
Activation Activation Activation Activation 1
Activation Activation Two-Substrate Activation 2
Activation Two-Substrate Activation Activation 3
Activation Two-Substrate Two-Substrate Activation 4

Two-Substrate Activation Activation Activation 5
Two-Substrate Activation Two-Substrate Activation 6
Two-Substrate Two-Substrate Activation Activation 7
Two-Substrate Two-Substrate Two-Substrate Activation 8

The kinetics rate equation for each type of kinetic model have been derived and detailed in

Appendix A, where the rate equation for activation kinetics is:

v =
VmaxS

KM

(
1 + K1

A

)
+ S

(4.2)
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where A is the amount of activator present, and S is the amount of substrate. The rate equation

for two-substrate kinetics is:

v =
VmaxAB

1
KaKb

+ A
Kb

+ B
Ka

+AB
. (4.3)

where A is the amount of one substrate and B is the amount of another substrate.

By separating the biochemical reactions in equation (4.1) by reagent, an equation for the time

evolution of each reagent can be determined. By letting Fi represent the speed of the reaction

for each i-th complex, where i = {1, 2, 3, 4, 5}, the activity of each complex in the ETC is

represented by some function Fi. With these functional representations, the rate of production

for all compounds in the system can be modelled by using the techniques illustrated in Appendix

A, yielding:

d[NADH]

dt
= −F1(NADH,Q) (4.4a)

d[Q]

dt
= −F1(NADH,Q)− F2(Succinate,Q) + F3(QH2, Cytcox) (4.4b)

d[NAD+]

dt
= F1(NADH,Q) (4.4c)

d[QH2]

dt
= F1(NADH,Q) + F2(Succinate,Q)− F3(QH2, Cytcox) (4.4d)

d[succinate]

dt
= −F2(Succinate,Q) + F2rev(Fumarate,MQH2) (4.4e)

d[fumarate]

dt
= F2(Succinate,Q)− F2rev(Fumarate,MQH2) (4.4f)

d[Cytcox]

dt
= −2F3(QH2, Cytcox) + 2F4(Cytcred, O2) (4.4g)

d[Cytcred]

dt
= 2F3(QH2, Cytcox)− 2F4(Cytcred, O2) (4.4h)

d[O2]

dt
= −1

2
F4(Cytcred, O2) (4.4i)

d[H2O]

dt
= F4(Cytcred, O2) (4.4j)

d[H+
N ]

dt
= −4F1(NADH,Q)− 2F2(Succinate,Q) + 2F−2(Fumarate,MQH2)

− 2F3(QH2, Cytcox)− 4F4(Cytcred, O2) + F5(H
+
N , H

+
P ) + F6(H

+
N , H

+
P )

(4.4k)

d[H+
p ]

dt
= 4F1(NADH,Q) + 4F3(QH2, Cytcox) + 2F4(Cytcred, O2)− F5(H

+
N , H

+
P )

− F6(H
+
N , H

+
P )

(4.4l)
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System (4.4) shows the complete description of the ETC, where F1, F2, and F3 can either be

determined by Equation (4.2) or (4.3), based on the assumed model type outlined in Table 4.1.

In applying these rate equations to F1, F2, and F3, Table 4.2 below identifies A, S, and B in

equations (4.2) and (4.3) applied to each function. The functionals F4, F5 and F6 remain as in

the current model, given by Equations (2.6), (2.8) and (2.13), respectively. F6 will be 0 until

FCCP is introduced into the system, similar to the current model.

Table 4.2: Activators and substrates for each complex in complexes I-III. Activation
kinetics requires the identification of an activator A and a substrate S, identified here
for complexes I, II, and III. Similarly, two-substrate kinetics requires the identification
of one substrate A and a second substrate B, which are identified here for complexes I,
II, and III.

Function Activation Two-Substrate
Activator (A) Substrate (S) Substrate 1 (A) Substrate 2 (B)

F1 NADH Q NADH Q
F2 Succinate Q Succinate Q
F3 QH2 Cyt cox QH2 Cyt cox

Extension to the entire ETC will require additional datasets to allow calibration for each com-

ponent of the system. Potential experimental data that will allow for model extension includes

measuring the concentration and consumption rates of: NADH, matrix and IMS protons, suc-

cinate, cytochrome c, and H2O.

4.3 Implications of the Model

4.3.0.1 Utility of the Model

The model has three primary purposes in a research setting:

• Allowing the simulation and prediction of mitochondrial functioning under different con-

ditions in a user-friendly environment,

• Generating, describing, and testing research hypotheses,
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• Supplementing investigation of functional and dysfunction mitochondrial systems, partic-

ularly in disease states.

The first aim of the model has been accomplished through the development of a GUI, described

in Section 3.3 and Appendix B, and shown in Fig. 3.14. The elements of the GUI have been made

user-friendly by incorporating functions that allow for: flexible adaptation of the model, with

the ability to re-simulate mitochondrial functioning after adaptation by clicking a single button;

comparison between baseline and altered conditions by having two separate simulations of the

model occurring in parallel; streamlined re-production of previous simulations, documentation

of simulation output and conditions, and loading of additional data.

The second use for the model is thus naturally available to researchers using this GUI. The model

can be manipulated and re-simulated directly, opening applicability to those that do not have

familiarity with altering and running MATLAB scripts. The GUI has the flexibility for real-time

modification and generating simulations of mitochondrial functioning under different conditions.

This allows users to modify the model and investigate how these modifications may affect the

system without biological experimentation. The results predicted by the model provide insight

into possible behavior of mitochondria under the introduced modifications, which may assist in

generating or investigating research hypotheses in silico. For example, Fig. 4.1 shows the effect

of altering the maximal reaction rate of complex IV activity by lowering the VmaxcIV parameter

one order of magnitude, from 0.7225 to 0.6503. It appears that not only is oxygen consumption

reduced, as expected, but the protons across the membrane also balance more slowly. The

results of this simulation motivates investigating this effect further, illustrating the utility of

the model in generating or motivating hypotheses and potential experimentation.

The results of the model may also be used to supplement biological experiments. The output of

the model can corroborate experimental results when the proper modifications to the model’s

parameters or initial values are introduced. Re-calibrating the model to additional data sets,

such as data collected from disease-state conditions, may also suggest potential mechanisms of

dysfunction in the mitochondria. Upon re-calibration to these data sets, changes to the baseline

parameter set may provide insight into specific changes in mitochondrial functioning.
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Figure 4.1: Simulating the model after adjusting a model parameter. Using the model
to simulate the effect of lowering VmaxcIV by a factor of 10. This shows the output of
simulating both baseline functioning, shown by the black lines, and altered functioning,
shown by the red lines.

4.3.0.2 Next Directions

Although the model is still in its early stages of development, it is evident that the model itself

is adaptable and can be easily expanded to incorporate different properties of the mitochondria,

such as thermodynamic considerations. The model can additionally be further calibrated to

additional data sets, particularly data from other state variables such as cytochrome c concen-

tration, and proton levels on either side of the membrane, as discussed in Section 4.2.2.

The aim for the model is to be utilized as a research tool to investigate dysfunctional mitochon-

dria in the central nervous system. Thus, additional data sets from functional mitochondria

can also be accompanied by matched acquisition from disease-state mitochondria. This is a
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direct application of the model, as outlined in 4.3.0.1. An interesting avenue for applying this

model to disease-state mitochondria is to investigate the effect of Alzheimer’s disease (AD) on

mitochondrial function [4][42][43]. The experimental protocols carried out in this project can

be repeated in either Alzheimer’s-model mice, such as the 3xTg strain [44], or following appli-

cation of amyloid-β protein to control mice [45]. Re-calibration of the model with these data

will provide insight into potential mechanisms of alteration in the mitochondria, depending on

which parameters of the model change and in what way.

Finally, the GUI can be also be developed further by introducing components that may be

essential or helpful for usability. For instance, porting the model into a compiled language, such

as C + +, will allow for the creation of a standalone executable of the model. This will allow

the model to be used without running the main.m script in MATLAB, expanding usability of

the model beyond proprietary software.
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Conclusion

The model developed in this project has been shown to accurately represent oxygen concentra-

tion data acquired from mitochondrial samples. The current model thus provides an accurate

description of complex IV activity under normal functioning, with the introduction of chemical

perturbations to the mitochondria, and as well as in altered biological conditions.

The model was developed with a detailed, interactive graphical user interface (GUI) to provide

ease-of-use in applying the model. The model can be applied to suggest potential avenues of

investigation based on the simulated output. Re-calibration of the model to additional data

sets can also suggest how different experimental conditions may lead to alterations in specific

components of the system, based on how the model parameters must adapt to the additional

data.

The model remains in its infancy, however, as there is still room for development and expansion.

The approach was grounded in a wholly kinetic framework, which therefore requires expansion

to incorporate thermodynamic considerations. Given the adaptability of the model, however,

thermodynamic considerations can be introduced with appropriate additional data. Limited ex-

perimental data availability also constrained the model to focus on primarily modelling complex

IV activity. Though, development and calibration of an extended model to additional sources

of experimental data is the next step in expanding the model’s framework. This will not only

bolster the descriptive and predictive power of the model, but also expand avenues of utility.
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Biochemical Kinetics Derivations

A.1 Kinetic Modelling of Chemical Systems

1

Biological functions are often the direct result of the interaction between various chemical

species, resulting in some change in either the activity of one involved chemical or in the struc-

ture or function of a cellular component. In many of these cases, there are various complex

interactions between a sequence of chemical reactions that ultimately result in some effect at

the cellular level, and these are referred to as pathways. Pathways often incorporate the uti-

lization of enzymes, protein units that catalyze or speed up and allow chemical reactions to

proceed without themselves changing. In order to fully describe the activity of an enzymatic

reaction, a description for a simple reaction is essential. Extending this general description then

to enzymatic activity will allow for a method of deriving the reactions that may represent the

function of the ETC enzymes.

1Sections A.1, A.1.1 and A.1.2 are summarized from [46] and [29] unless citations are otherwise
indicated.
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A.1.1 The law of mass action

A fundamental law of a chemical reaction is the law of mass action, which describes the rate

at which chemicals react to form different chemical compounds. Take for example, the simplest

form of a chemical reaction, involving reactants A and B producing some product C:

A+B
k−→ C (A.1)

Rate of product formation over time can then be expressed as dC
dt , which is dependent on the

collision of reactants A and B and their probability of aggregation given a collision occurs. Thus

the number of collisions per unit time is proportional to the amount of both A and B present

in the system:
dC

dt
= kAB (A.2)

This illustrates that the proportionality constant k in eq (A.2) dictates the speed with which A

and B react to produce C, thus this parameter also represents the reaction rate or rate constant

for the given reaction.

In more applicable biochemical situations, many reactions also thermodynamically afford the

potential for the reaction to proceed in the reverse direction, which would then be shown as :

A+B
k1−−⇀↽−−
k−1

C (A.3)

This equation illustrates that there is a rate constant for both reaction directions. When con-

sidering the rate of production of C, or the rate of consumption of either A or B, both reaction

directions must be considered. The rate at which C is produced is now governed by A and B

reacting as well as C decomposing back into A and B. Similar arguments follow for the reactants

of the reaction. For example, the rate of change of A can be expressed by:

dA

dt
= k−1C − k1AB (A.4)

Production of A in the reverse reaction will depend on k−1 and C, thereby increasing A, whereas

the consumption of A in the forward reaction will depend on k1, A and B, thus decreasing A.
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In general, chemical reactions will take the form:

aA+ bB
k−→ cA+ dB (A.5)

where a molecules of A and b molecules of B react to produce c molecules of A and d molecules

of B.

The rate of change of each reacting component can thus be described by:

dA

dt
= (c− a)kAB (A.6a)

dB

dt
= (d− b)kAB (A.6b)

where kAB represents the speed of reaction, and c − a or d − b represent the stoichiometric

coefficients.

A.1.2 Enzyme Kinetics

Enzymes are protein catalysts that facilitate the conversion of substrates into products without

undergoing any change themselves. Enzymes accelerate reactions by lowering the energy re-

quired for reaction (the activation energy). They require a separate method of describing their

kinetics beyond that of the law of mass action. This incorporates the production of an interme-

diate step, where the enzyme E reacts with a substrate S, forming an intermediate complex C.

This complex C is then immediately broken down into the product P and the enzyme E. This

gives us:

S + E
k1−−⇀↽−−
k−1

C
k2−→ P + E (A.7)

By defining s = [S], c = C, e = [E] and p = [P ], this gives the following differential equations

by the law of mass action:

ds

dt
= k−1c− k1se (A.8a)

de

dt
= (k−1 + k2)c− k1se (A.8b)

dc

dt
= k1se− (k2 + k−1)c (A.8c)
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dp

dt
= k2c (A.8d)

Michaelis and Menten then assumed that the substrate forms C at a rate equal to the rate

at which it is used up, which steadies over time as the system approaches equilibrium. This

assumption is known as the quasi-steady state assumption, which implies that dc
dt = 0. This

assumption is essential to the derivation of enzymatic reactions kinetics, and will be essential is

deriving the kinetics of mitochondrial ETC reactions. An additional simplification is achieved

by noting that since enzyme is conserved in the reaction, there exists a conservation equation

relating the initial amount of enzyme to the amount of enzyme either unbound (e) or bound

to substrate (c). Letting e0 represent the total amount of enzyme present in the system, this

means that e0 = e + c. Using these facts, Equation (A.8c) can be rearranged to solve for the

amount c at any time t:

c(t) =
k1e0s

k1s+ k−1 + k2
(A.9)

Using this equation for c, as well as the conservation equation for e0, eq (A.8a) can then be

rearranged:
ds

dt
= −k2c = − k1k2e0s

k1s+ k−1 + k2
(A.10)

It is evident that the goal of the reaction is to produce P from the substrate S, so the rate of

the overall reaction, or the speed of the reaction, can be represented by either production of

product or consumption of the substrate. Thus:

v(t) =
dp

dt
= −ds

dt
(A.11)

which allows for a potential representation for the overall reaction rate using eq (A.10):

V0 =
Vmaxs

s+Km
(A.12)

where the maximum speed of the reaction is Vmax = k2e0 and the Michaelis-Menten constant is

Km = k−1+k2
k1

. Eq (A.12) is known as the Michaelis-Menten equation. In eq (A.8d), as k2 is the

only rate constant, and in nearly all cases represents a system where k2 � k−1, k2 is the rate-

limiting step and therefore dictates the maximum speed with which the reaction can proceed.

Since k2 by itself is typically so small, it can usually be neglected giving that Km = k−1

k1
. This
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Michaelis-Menten constant Km represents the concentration for s at which the speed of the

reaction proceeds at half of the maximum. This is evident if Km = s in eq (A.12), as it then

becomes V0 = s
2sVmax = 1

2Vmax. Additionally, at the steady state, since conversions between

states are relatively unchanging, Km approximates the equilibrium constant for the system.

A.1.3 Deriving Two-Substrate Kinetics

The activity of an enzyme following two-substrate kinetics is represented as:

E + aA
ka−−⇀↽−−
k−a

EA (A.13a)

E + bB
kb−−⇀↽−−
k−b

EB (A.13b)

EB + aA
ka2−−−⇀↽−−−
k−a2

EAB (A.13c)

EA + bB
kb2−−−⇀↽−−−
k−b2

EAB (A.13d)

EAB
kp−→E + P +Q (A.13e)

where substrates A and B can bind to enzyme E to form EA and EB, respectively, and result

in the production of products P and Q once both substrates are bound as to E as EAB.

Assuming the total amount of enzyme catalyzing this reaction is constant, this means that

ET = E +EA +EB +EAB where ET is constant. Applying the quasi-steady state assumption,

we can equate the rate at which enzymes bind and unbind to substrates A, B and to both A

and B:

kaEA
a = k−aEA (A.14a)

kbEB
b = k−bEB (A.14b)

From this we see that:

EA =
ka
k−a

EAa (A.15a)

EB =
kb
k−b

EBb (A.15b)
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Using these equations we can then substitute this back into the equation for total enzyme

yielding:

ET = E +
ka
k−a

EAa +
kb
k−b

EBb + EAB (A.16)

Rearranging gives:

EAB =
kakb
k−ak−b

( ET − EAB
1 + ka

k−a
Aa + kb

k−b
Bb

)
AB (A.17)

By letting Ka = ka
k−a

and Kb = kb
k−b

this equation can be simplified to:

EAB = KaKb

( ET − EAB
1 +KbAa +KbBb

)
AB (A.18)

With rearrangement we get:

EAB =
ETAB

1
KaKb

+ Aa

Kb
+ Bb

Ka
+AB

(A.19)

This equation provides a measure for the amount of enzyme bound to both substrates A and B

for any given equilibrium constants and substrate amounts. Thus, in order to find the speed of

reaction for producing either product P or Q, we can use the fact that:

dP

dt
= kpEAB (A.20)

which, in conjunction with equation (A.19) and the fact that Vmax = kpET , the general speed

function for the two-substrate model is:

v =
VmaxAB

1
KaKb

+ Aa

Kb
+ Bb

Ka
+AB

(A.21)

A.1.4 Deriving Activation Kinetics

The activity of an enzyme following activation kinetics is represented as:

E + aA
k1−−⇀↽−−
k−1

EA (A.22a)

EA + bS
k2−−⇀↽−−
k−2

EAS
k3−→ E + pP (A.22b)
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where some activator A can bind to enzyme E to form EA, only then allowing substrate S to

bind to EA to form product P .

Assuming the total amount of enzyme catalyzing a reaction is constant, ET = E + EA + EAS ,

where ET is constant. Applying the quasi-steady state assumption, it is known that the amount

of each enzyme form is unchanging, thus
dE

dt
=
dEA
dt

=
dEAS
dt

= 0. From the law of mass action

the following set of equations can be acquired:

dE

dt
= −k1EAa + k−1EA + k3EAS (A.23a)

dEA
dt

= k1EA
a − k−1EA − k2EASb + k−2EAS (A.23b)

dEAS
dt

= k2EAS
b − k−2EAS − k3EAS (A.23c)

which are each equivalent to 0 by the quasi-steady state assumption. Rearranging equation

(A.23c) gives

EAS =
k2EAS

b

k−2 + k3
(A.24)

where
k2

k−2 + k3
=

1

KM
, thus yielding

EAS =
EAS

b

KM
(A.25)

Similarly for equation (A.23a)

E =
k−1EA + k3EAS

k1Aa
(A.26)

Applying these back into ET = E + EA + EAS :

ET =
k−1EA + k3EAS

k1Aa
+ EA +

EAS
b

KM
(A.27)

this can be rearranged to get

k1A
aET =

EASKM

Sb
(
k−1 +

Sb

KM
(1 + k3) + 1

)
(A.28)
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which can then be rearranged to acquire the expression:

EAS =
k3ETS

b

KM

(
1 + k−1

k1Aa

)
+ Sb

(A.29)

Since k3 represents the rate for final conversion of EAS to product, and ET represents the total

amount of enzyme available to catalyze the reaction, k3ET = Vmax. Using this and by letting

K1 = k−1

k1
the rate equation becomes:

v =
VmaxS

b

KM

(
1 + K1

Aa

)
+ Sb

(A.30)
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MATLAB GUI - User Instructions

The readme information shown below is also packaged with the model’s code on

http : //github.com/Synapt1x. Access to the private repository housing the model’s code can

normally be requested by contacting umcadoni@myumanitoba.ca or chriscadonic@gmail.com,

although for the purposes of this masters thesis the code has been supplied.

B.1 GUI Readme

B.1.1 Files

Some of the important files for running this model are: main.m and setup.m. Main.m starts

the program by first generating all of the parameters and relevant model information by calling

setup.m. Next the program is displayed by passing in the parameters structure generated by

setup.m to finalgui.m, which controls the display of the GUI and the functionality of all GUI

components.

Editing system parameters can be carried out directly in the GUI. For more information on

editing within the GUI, see section B.1.3. Parameter values, initial values, and data sources

are all directly modifiable in the GUI. For changing default values in any aspect of the model,
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however, they must be edited at the time of creation of the parameters structure, found in the

setup.m function.

B.1.2 Running the Model

As detailed above, the model can be run simply by navigating to the location of main.m and

then running this script in MATLAB. The model will be initialized and the GUI will be promptly

displayed. Before any simulation is run, the parameters and initial conditions are set to default

values. To change these before simulation, they can be directly edited in the text boxes that

accompany the value desired. To run a simulation of mitochondrial bioenergetics function, hit

the Plot button in the bottom section of the GUI. This will solve the differential equations of

the model using ode45 in MATLAB, and then plot the resulting output in the graphs on the

right side of the GUI.

B.1.3 The Components of The GUI

In Fig. B.1, the layout of the GUI is shown, including output axes and all input areas. Different

aspects of the model can be controlled by the GUI, such as data sources, properties of the model,

and optimization of parameters to additional data.
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Figure B.1: The graphical user interface of the simulation model as shown when first
opened. This shows the interface of the model when the program is first opened. Initial
conditions and the parameters of the experimental simulation model are available for
editing once the program is run.

• Data source control

– Located at the bottom section of the input area, there are three buttons for importing

and graphing additional data, from either Seahorse XF data, Oroboros Oxygraph

data, or from a matlab .mat file

• Model simulation

– Initial Conditions

∗ The user can vary the concentration of each of the listed initial concentrations:

· Total cytochrome c

· Cytochrome c oxidized



Appendix D. GUI Readme 71

· Cytochrome c reduced

· Oxygen

· Matrix protons

· Intermembrane space protons

∗ There is a randomize button for generating a random set of initial conditions

· Pressing the R key will trigger the randomize button

∗ There is a default button for resetting the initial conditions to default values

· Pressing the E key will trigger the reset initial conditions button

– Parameter values for a control condition of the model

∗ Parameter values calibrated to experimental data, representing the baseline

model without modification

– Parameter values for an experimental condition of the model

∗ The user can edit each parameter value directly, which will update the model

values

∗ There is also a default reset button found in the bottom-left section labeled

Optimization

· Pressing the D key will trigger the reset parameters button

– Simulation

∗ The user can click the large green Plot button to instruct the program to sim-

ulate the model, and then display the output of the model in the axes found to

the right of the control panels.

· Pressing the P key will trigger the plot function

• Optimization

– The optimize button is used to run launchQubist.m, which will run Jason Fiege’s

Ferret genetic algorithm (discussed in Section 2.2.7 and Appendix D) for the purpose

of optimizing the parameters to fit additional data.

∗ Pressing the O key will trigger the optimization button
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– The load params button allows the user to search for a -BestResults.mat file, which is

automatically generated by Ferret using the post-processing script analyzeResults.m.

These files are housed within the /DeterministicModel/Solutions/ directory.

∗ Pressing the L key will trigger the load parameters function

– There is a *default* button found here, as detailed above, for resetting the parameter

values in the experimental condition

∗ Pressing the D key will trigger the reset parameters button

The axes illustrate the behavior of the system once Plot is clicked. As shown in Fig. 3.14

in Section 3.3, Plot graphs and labels each axis to display the output of the model under the

conditions set in the user controls.

B.1.4 Additional Functions of the GUI

Several additional functions were introduced into the GUI of the program to provide ease-of-use

and extend the user’s control of the GUI. Each of these functions are discussed in detail in this

section.

B.1.5 Right-Clicking a Graph

Each graph, once plotted, can then be right-clicked for additional options as shown in Fig. B.2.

These options allow for the user to either save a blown-up image of the plot to a PNG file, or

for opening the image in a new figure window for inspection and editing purposes. Both options

facilitate creating large images of the graphs for presentation or publication.

Opening the graph in another figure window enables editing and formatting using the built-in

MATLAB figure editing functionality, as shown in Fig. B.3. Labeling can be controlled using

the figure menus built-in to MATLAB, and the figure can be exported into any format after

editing is finalized. Zooming in and out of the graph can also be done in this figure window.

The save graph as PNG... option simply enlarges the graph to a fullscreen window and saves

the graph with enlarged axis labels in a location selected by the user.
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Figure B.2: Depiction of the menu available to the user when a graph is right-clicked.
The menu will pop-up and allow users to choose to either open the figure in a new,
maximized figure window, or save the graph directly to an image file.

B.1.6 Save Snapshot

In the File menu, there is an option to save a screenshot of the entire GUI. The purpose of this

is to save the current display of the GUI either for presentation or publication, where the graphs

of each element of the system are shown along with the set of parameters and initial conditions

that produced those results. Default location for saved images are in the StateImages directory,

although the user can choose to save the screenshot to a different location.

The keyboard shortcut for this function is ctrl+d on windows and linux systems (with windows

keyboard layout, not EMACS) and cmd+d on MAC OS X systems.
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Figure B.3: Opening a graph to be edited in a fullscreen figure window. This allows users
to edit and format the appearance of the figure for publication or image generation.

B.1.7 Save Graphs

In the File menu, there is an option to save a screenshot of just the output of the model. The

Save Graphs... option allows the user to take a screenshot of just the graphs shown on the right

side, and save the .PNG image to a folder of their choice.

The keyboard shortcut for this function is ctrl+k on windows and linux systems (with windows

keyboard layout, not EMACS) and cmd+k on MAC OS X systems.

B.1.8 Save/Load Session

In addition to being able to save a snapshot of the GUI as an image to be viewed or presented

later, the state of the model can also be saved. The save and load session commands are found

in the File menu, with shortcuts ctrl+s for saving a session and ctrl+o for opening. Fig. B.6

shows these menu options.
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Figure B.4: Depiction of the menu item used to save a snapshot of the entire GUI
window to an image. This allows users to store an image of the output of the model
alongside the set of model conditions that produced that output. The hotkey for this
function is ctrl+d.

Saving a session allows the user to save the current values of all variables and all graphics objects

in the guidata and handles structures, which will default to save as a .mat file. Once this .mat

is saved, it can later be reloaded using the load command giving the user the chance to re-open

the state of the chosen file. Saved sessions are generally stored in the Savestates directory.

N.B.: Make sure to only load session .mat files when loading a session.
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Figure B.5: Depiction of the menu item used to save a snapshot of the model’s output
to an image. This option allows users to save an image of just the output of the model.
The hotkey for this function is ctrl+k.

B.1.9 Help Commands

In the Help menu, there is a Version button and an Info... button, as shown in Fig. B.7. The

Version button allows the user to confer with the Git system to check the current tagged version

of the program. This will inform the user whether or not there are any available updates to

the model or the GUI code so that the most up-to-date version of the simulation model can

be accessible to the user. The Info... button will pull up this README.md document in the

appropriate default program.
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Figure B.6: Depiction of the menu item used to save and/or load the current properties
of the model. This function allows users to save the altered properties, and any addi-
tionally saved data, to a MATLAB .mat file to continue adjusting simulation properties
at a later time by loading the saved .mat file. The hotkey for saving the simulation
session is ctrl+s, while the hotkey for loading the simulation session is ctrl+o.
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Figure B.7: Depiction of the help menu. This help menu allows users to determine
the version number of the current model, using the git system to identify if there are
any newer version available. The info... menu option opens the readme.md file in an
appropriate program for assistance in using the model.
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MATLAB code

C.1 main.m

function main

%{

========================================

Created by: Chris Cadonic

For: M.Sc program in Biomedical Engineering

Project: Modeling Mitochondrial Bioenergetics

========================================

This is the primary file for running the mitochondrial model created

for my master’s project as part of the biomedical engineering

program.

See the readme file ’manual.pdf’ for more information as to how

this program functions and how each component script functions.

The readme file ’changelog.txt’ indicates the changes implemented

into the model as well as the timestamps for each change.

This code is slightlty altered from its original form to simply model
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the decoupled system, that is, to primarily model complex IV.

For altering the parameters of the model, changes can be made to

the differential equations in ’decoupled_derivative_system.m’, the

setup conditions in ’setup.m’, optimization run by using

’launchQubist.m’, the gui handled by ’main_gui.m’, and the

importing of data handled by ’data_formatter.m’.

%}

parameters = setup; %run the setup function which creates the

%structure storing all variables necessary

%for the model (found in ’setup.m’)

save parameters %save the model parameters in parameters.mat

%create the GUI for interfacing and display

finalgui(parameters);

C.2 setup.m

function parameters = setup

%{

Created by: Chris Cadonic

========================================

The setup function handles the values for each variable in the

system in a structure known as ’parameters’. parameters contains

all of the model’s parameters and also the data, graph labels.

%}

%% Data Import

%import the real data
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[parameters.timePoints,parameters.realo2Data, ...

parameters.realOCR] = data_formatter;

parameters.realOCR = parameters.realOCR * 1000; %correct units to pmol/ml s

%% Define the Parameters of the Model

% control condition parameter values

parameters.ctrlParams.Vmax = 0.7225; %bounds: [0.01 10]

parameters.ctrlParams.K1 = 365.0185; %bounds: [0.1 1E4]

parameters.ctrlParams.Km = 0.1627; %bounds: [0.1 1E4]

parameters.ctrlParams.p1 = 43166.2487041382; %bounds: [1 1E4]

parameters.ctrlParams.p2 = 9342.59161533985; %bounds: [1 1E4]

parameters.ctrlParams.p3 = 11387.5724922773; %bounds: [1E-6 1]

parameters.ctrlParams.f0Vmax = 9812.42645440625; %bounds: [0.01 10]

parameters.ctrlParams.f0Km = 12.2505629561911; %bounds: [0.1 1E4]

parameters.ctrlParams.Dh = 5116.07002586063; %bounds: [1E-6 1]

parameters.ctrlParams.cytcred = 0.0499624001853914; %bounds: [1E-6 1]

parameters.ctrlParams.cytcox = 6.37656163806675; %bounds: [1E-6 1]

parameters.ctrlParams.oxygen = parameters.realo2Data(1); %bounds: [1E-6 1]

parameters.ctrlParams.omega = 0.015849; %bounds: [1E-6 1] pH = 7.8

parameters.ctrlParams.rho = 0.0398107; %bounds: [1E-6 1] pH = 7.4

% experimental condition parameter values

% Initially set to be equivalent to the control parameter set

parameters.expParams.Vmax =parameters.ctrlParams.Vmax; %bounds: [0.01 10]

parameters.expParams.K1 = parameters.ctrlParams.K1; %bounds: [0.1 1E4]

parameters.expParams.Km = parameters.ctrlParams.Km; %bounds: [0.1 1E4]

parameters.expParams.p1 = parameters.ctrlParams.p1; %bounds: [1 1E4]

parameters.expParams.p2 = parameters.ctrlParams.p2; %bounds: [1 1E4]

parameters.expParams.p3 =parameters.ctrlParams.p3; %bounds: [1E-6 1]

parameters.expParams.f0Vmax = parameters.ctrlParams.f0Vmax; %bounds: [0.01 10]

parameters.expParams.f0Km = parameters.ctrlParams.f0Km; %bounds: [0.1 1E4]
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parameters.expParams.Dh = parameters.ctrlParams.Dh; %bounds: [1E-6 1]

parameters.expParams.cytcred = parameters.ctrlParams.cytcred; %bounds: [1E-6 1]

parameters.expParams.cytcox = parameters.ctrlParams.cytcox; %bounds: [1E-6 1]

parameters.expParams.oxygen = parameters.ctrlParams.oxygen; %bounds: [1E-6 1]

parameters.expParams.omega = parameters.ctrlParams.omega; %bounds: [1E-6 1]

parameters.expParams.rho = parameters.ctrlParams.rho; %bounds: [1E-6 1]

%% Define Initial Conditions

%initial conditions in nmol/mL; conversion: 1 nmol/mL = 1E-6 mol/L

parameters.Cytcox = parameters.ctrlParams.cytcox;

parameters.Cytcred = parameters.ctrlParams.cytcred;

parameters.Cytctot = parameters.Cytcox+parameters.Cytcred;

[parameters.ctrlParams.Cytctot,parameters.expParams.Cytctot] = ...

deal(parameters.Cytctot);

parameters.O2 = parameters.ctrlParams.oxygen;

parameters.Hn = parameters.ctrlParams.omega;

%assuming a pH of 7.4 we get 3.981E-8 mol/L or:

parameters.Hp = parameters.ctrlParams.rho;

%% Define boundary times for integration

%define the time boundaries between conditions; First instance of segment

%change

parameters.oligoTime = min(find(parameters.timePoints>=121.8));

parameters.fccpTime = min(find(parameters.timePoints>=271.8));

parameters.inhibitTime = min(find(parameters.timePoints>=432));

%define the arrays holding the time points for each section

parameters.baselineTimes = parameters.timePoints( ...

1:parameters.oligoTime-1);



Appendix C. MATLAB code 83

parameters.oligoTimes = parameters.timePoints( ...

parameters.oligoTime:parameters.fccpTime-1);

parameters.fccpTimes = parameters.timePoints( ...

parameters.fccpTime:parameters.inhibitTime-1);

parameters.inhibitTimes = parameters.timePoints( ...

parameters.inhibitTime:end);

%number of points in each section

parameters.numpoints = [numel(parameters.baselineTimes),numel(...

parameters.oligoTimes),numel(parameters.fccpTimes), ...

numel(parameters.inhibitTimes)];

%% Load Additional Functions

% add the additionalFuncs folder to path if it isn’t already there

curdir = fileparts(which(mfilename));

addpath([curdir,’/AdditionalFuncs/’]);

%% Define the labels and titles for GUI Graphs

%titles and labels for the output graphs

[parameters.title{1:5}] = deal([’Cyt c Reduced Concentration Over’...

’ Time’],’Oxygen Concentration Over Time’, ...

’OCR Over Time’, ...

’Matrix Proton Concentration Over Time’,...

’IMS Proton Concentration Over Time’);

[parameters.ylab{1:5}] = deal(’Cyt c_{red} (nmol/mL)’, ...

’O_2 (nmol/mL)’,’OCR (pmol/(mL*sec))’,’H_N (nmol/mL)’, ...

’H_P (nmol/mL)’);

parameters.xlab = ’Time (sec)’;
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C.3 data formatter.m

function [allTimes,realo2,realOCR] = data_formatter

%{

Created by: Chris Cadonic

========================================

This function reads the excel data files and formats them into

vectors for use in the mitochondria model as calibration data.

This function reads an excel file in a folder called ’Data’, found in

the location of this .m file. Data is read and then stored into a data

matrix, with corresponding labels.

%}

%% Read the files for O2 and OCR

%store the folder in which the model is stored

path_folder = fileparts(which(mfilename));

%file names holding the oxygraph o2 data and Seahorse ocr data

filename = fullfile(path_folder, ’/Data/oxygraphData.xlsx’);

%% Extract Oxygraph Data

%extract all times and all oxygen concentration readings

allData = xlsread(filename,’Sheet1’,’M520:O829’);

allData(1,:)=[]; %delete t=0 time point

%store the times, o2 and ocr data separately

[allTimes,realo2] = deal(allData(:,1),allData(:,2));
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realOCR = -gradient(realo2);

C.4 finalgui.m

function varargout = finalgui(varargin)

%{

Created by: Chris Cadonic

=======================================

This function handles the user interface for the model, which

provides a GUI that allows the model to be fully accessible. The

user can alter parameters and manipulate the model, run additional

simulations, and thus view how alterations affect the model

without having to restart the model.

The instantiation code and object creation code are generated by

GUIDE in matlab. The remaining code was written specifically to

allow functionality in the program and is specific to the model.

GUIDE was primarily used for the interface, and to lay out elements

All Callback functions were programmed manually for use in this

model.

%}

% Last Modified by GUIDE v2.5 09-Feb-2015 12:53:55

%% Initialization Code

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’gui_Name’, mfilename, ...

’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @main_gui_OpeningFcn, ...

’gui_OutputFcn’, @main_gui_OutputFcn, ...
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’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

%% GUI Creation code

% --- Executes just before main_gui is made visible.

function main_gui_OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for main_gui

handles.output = hObject;

% get the location of the current directory

handles.curdir = fileparts(which(mfilename));

%take in the setup parameters from the ’main.m’ function

if ~isempty(varargin)

handles.parameters = varargin{1};

end

handles.ctrlParams = varargin{1}.ctrlParams;

handles.expParams = varargin{1}.expParams;
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%store the default data for the model

handles.initialData = [handles.parameters.Cytctot, ...

handles.parameters.Cytcox, handles.parameters.Cytcred, ...

handles.parameters.O2, handles.parameters.Hn, ...

handles.parameters.Hp, handles.ctrlParams.Vmax, handles.ctrlParams.K1, ...

handles.ctrlParams.Km, handles.ctrlParams.p1, handles.ctrlParams.p2, ...

handles.ctrlParams.p3, handles.ctrlParams.f0Vmax, handles.ctrlParams.f0Km, ...

handles.ctrlParams.Dh];

%store all graph handles in the handles structure as an array

[handles.graphs{1:5}] = deal(handles.Cytc_plot, ...

handles.O2_plot,handles.OCR_plot,handles.H_N_plot,...

handles.H_P_plot);

%store all control editing text boxes in the handles structure as an array

[handles.allcontEdits{1:9}] = deal(handles.V_max_cedit, handles.K_1_cedit, ...

handles.K_m_cedit,handles.p1_cedit,handles.p2_cedit, handles.p3_cedit, ...

handles.f0Vmax_cedit, handles.f0Km_cedit, handles.Dh_cedit);

%store all exp editing text boxes in the handles structure as an array

[handles.allEdits{1:9}] = deal(handles.V_max_edit, handles.K_1_edit, ...

handles.K_m_edit,handles.p1_edit,handles.p2_edit, handles.p3_edit, ...

handles.f0Vmax_edit, handles.f0Km_edit, handles.Dh_edit);

%store all initial concentrations text boxes in the handles structure as an

%array

[handles.allInitials{1:5}] = deal(handles.initial_cytctot_edit, ...

handles.initial_cytcox_edit, handles.initial_cytcred_edit, ...

handles.initial_o2_edit, handles.initial_hn_edit);
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%label the axes for all graphs

graphLabel(handles);

%insert the initial parameter values into the appropriate textboxes

setParams(handles,handles.initialData(7:end),’control’);

setParams(handles,handles.initialData(7:end),’experimental’);

%insert the initial concentration values into the textboxes

handles = setInitials(handles, [handles.parameters.Cytctot, ...

handles.parameters.Cytcox, handles.parameters.Cytcred, ...

handles.parameters.O2, handles.parameters.Hn, ...

handles.parameters.Hp]);

%insert the initial conditions into the textboxes

set(findall(handles.controlGroup,’-property’,’Enable’),’Enable’,’off’);

guidata(hObject,handles);

% --- Outputs from this function are returned to the command line.

function varargout = main_gui_OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Main Callback Functions

function finalgui_WindowKeyPressFcn(hObject, eventdata, handles)

% Keypressfcn for the entire GUI

switch eventdata.Key

case {’p’,’return’}

plot_Callback(hObject,eventdata,handles);
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case ’r’

randomizeButton_Callback(hObject,eventdata,handles);

case ’d’

params_default_Callback(hObject,eventdata,handles);

case ’e’

initial_default_Callback(hObject,eventdata,handles);

case ’o’

optimize_Callback(hObject, eventdata, handles);

case ’l’

loadparams_Callback(hObject, eventdata, handles);

end

function optimize_Callback(hObject, eventdata, handles) %optimize button

%run Qubist for optimization

launchQubist

function initial_cytctot_edit_Callback(hObject,eventdata,handles)

editBox(hObject,handles,’initial’,’Cytctot’);

%get current total Cyt C

currTot = str2double(get(hObject,’String’));

newCytcred = 0;

while ~(newCytcred)

takeVal = inputdlg([’What will be the initial value of Cyt C ’, ...

’reduced? The remaining value from the total amount of ’, ...

’Cytochrome C will be set as Cyt C oxidized. The New value ’, ...

’of Cytochrome C Total: ’,num2str(currTot),’.’], ...

’Set Cytochrome Cyt C reduced’);

newCytcred = ensureRightInput(str2double(takeVal{1}),currTot);
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end

newCytcox = currTot - newCytcred;

%update the values in boxes and parameters structure

set(handles.initial_cytcox_edit,’String’,num2str(newCytcox));

handles.parameters.Cytcox = newCytcox;

set(handles.initial_cytcred_edit,’String’,num2str(newCytcred));

handles.parameters.Cytcred = newCytcred;

guidata(hObject,handles);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Edit boxes for Initial conditions and Parameters

function initial_cytcox_edit_Callback(hObject,eventdata,handles)

handles = editBox(hObject,handles,’initial’,’Cytcox’);

guidata(hObject,handles);

function initial_cytcred_edit_Callback(hObject,eventdata,handles)

handles = editBox(hObject,handles,’initial’,’Cytcred’);

guidata(hObject,handles);

function initial_o2_edit_Callback(hObject,eventdata,handles)

handles = editBox(hObject,handles,’initial’,’O2’);

guidata(hObject,handles);

function initial_hn_edit_Callback(hObject,eventdata,handles)

handles = editBox(hObject,handles,’initial’,’Hn’);

guidata(hObject,handles);

function initial_ph_edit_Callback(hObject,eventdata,handles)

getHpconc = 0;
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oldHp = 0;

newHp = 0;

getVal = str2double(get(hObject,’String’));

if isnan(getVal) %if not, throw error box and reset value

msgbox(’Please input a valid number.’,’Not a number’);

%get the concentration value for resetting the edit box

getHpconc = getfield(handles.parameters,’Hp’);

oldHp = -log10(getHpconc *1E-6);

set(hObject,’String’,oldHp);

else %if so, then update the model with new value

%Hp from the given pH

if checkpH(getVal)

newHp = (10^-getVal) * 1E9;

handles.parameters = setfield(handles.parameters,’Hp’,newHp);

else

%get the concentration value for resetting the edit box

getHpconc = getfield(handles.parameters,’Hp’);

oldHp = -log10(getHpconc *1E-9);

set(hObject,’String’,oldHp);

end

end

guidata(hObject,handles);

function V_max_cedit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’control’,’Vmax’);
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guidata(hObject,handles);

function K_1_cedit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’control’,’K1’);

guidata(hObject,handles);

function K_m_cedit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’control’,’Km’);

guidata(hObject,handles);

function p1_cedit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’control’,’p1’);

guidata(hObject,handles);

function p2_cedit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’control’,’p2’);

guidata(hObject,handles);

function p3_cedit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’control’,’p3’);

guidata(hObject,handles);

function f0Vmax_cedit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’control’,’f0Vmax’);

guidata(hObject,handles);

function f0Km_cedit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’control’,’f0Km’);

guidata(hObject,handles);

function Dh_cedit_Callback(hObject, eventdata, handles)
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handles = editBox(hObject,handles,’control’,’Dh’);

guidata(hObject,handles);

function V_max_edit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’experimental’,’Vmax’);

guidata(hObject,handles);

function K_1_edit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’experimental’,’K1’);

guidata(hObject,handles);

function K_m_edit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’experimental’,’Km’);

guidata(hObject,handles);

function p1_edit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’experimental’,’p1’);

guidata(hObject,handles);

function p2_edit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’experimental’,’p2’);

guidata(hObject,handles);

function p3_edit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’experimental’,’p3’);

guidata(hObject,handles);

function f0Vmax_edit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’experimental’,’f0Vmax’);

guidata(hObject,handles);
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function f0Km_edit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’experimental’,’f0Km’);

guidata(hObject,handles);

function Dh_edit_Callback(hObject, eventdata, handles)

handles = editBox(hObject,handles,’experimental’,’Dh’);

guidata(hObject,handles);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Additional buttons

%function for allowing editing in the control parameters

function enableCont_Callback(hObject, eventdata, handles)

if (get(hObject,’Value’)==get(hObject,’Max’))

set(findall(handles.controlGroup,’-property’,’Enable’),’Enable’,’on’);

else

set(findall(handles.controlGroup,’-property’,’Enable’),’Enable’,’off’);

end;

%function for allowing editing in the control parameters

function enableExp_Callback(hObject, eventdata, handles)

if (get(hObject,’Value’)==get(hObject,’Max’))

set(findall(handles.experimentalGroup,’-property’,’Enable’),’Enable’,’on’);

else

set(findall(handles.experimentalGroup,’-property’,’Enable’),’Enable’,’off’);

end;

%function for randomizing initial conditions

function randomizeButton_Callback(hObject,eventdata,handles)

%generate random vector

randomVect = randn(1,5)*25+100; % 4 initial conditions

randomVect(3) = randn*0.0033+0.01; % set cyt c red very very low initially
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randomVect(1) = randomVect(2) + randomVect(3); % set cyt c tot to ox + red

randomVect(6) = (10^-(randn*1+7))*1E6; % randomize a pH

%send these values to set Initials to change boxes and parameters

handles = setInitials(handles, randomVect, ’randomize’);

guidata(hObject,handles);

%function for resetting initial concentrations

function initial_default_Callback(hObject,eventdata,handles)

handles = setInitials(handles, handles.initialData(1:6), ’setDefault’);

guidata(hObject,handles);

%function for resetting initial parameters

function params_default_Callback(hObject, eventdata, handles)

handles = setParams(handles, handles.initialData(7:end), ...

’control’,’setDefault’);

handles = setParams(handles, handles.initialData(7:end), ...

’experimental’,’setDefault’);

guidata(hObject,handles);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Menu Callback functions

%save the current version of fig

function save_fig_Callback(hObject, eventdata, handles)

%save the image and color map for the overall window

image = getframe(gcf);

try

%save the image to a file specified by the user

[filename,filepath]=uiputfile(fullfile(handles.curdir,’StateImages’, ...

[date,’-sessionImage.png’]),’Save screenshot file’);
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imwrite(image.cdata,[filepath,filename]);

disp([’Image was successfully saved to: ’, filepath,filename]);

catch % if an error is caught, don’t throw error and instead abort save image

disp(’Snapshot save operation aborted.’);

end

%save just the figures

function save_graphs_Callback(hObject, eventdata, handles)

% save the image and color map for the overall window

image = getframe(gcf);

% crop just the graphs and store that as the image

image = imcrop(image.cdata,[565,79,817,685]);

try

%save the image to a file specified by the user

[filename,filepath]=uiputfile(fullfile(handles.curdir,’StateImages’, ...

[date,’-sessionImage.png’]),’Save image of graphs to file’);

imwrite(image,[filepath,filename]);

disp([’Image was successfully saved to: ’, filepath,filename]);

catch % if an error is caught, don’t throw error and instead abort save image

disp(’Saving image of graphs aborted.’);

end

%save the workspace

function save_session_Callback(hObject,eventdata,handles)

%turn off ’use uisave’ warning since uisave is in fact being used

warning(’off’,’MATLAB:Figure:FigureSavedToMATFile’);
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try

% save the current data found in the model

currentdata = getappdata(gcf);

[filename,filepath]=uiputfile(fullfile(handles.curdir,’Savestates’, ...

[date,’-SaveSession.mat’]), ’Save session file’);

uisave(’currentdata’,[filepath,filename]);

disp([’Session was successfully saved session file to: ’, filepath,filename]);

catch % if an error is caught, don’t throw error and instead abort save session

disp(’Session save operation aborted.’);

end

%load a saved workspace

function load_session_Callback(hObject,eventdata,handles)

try

[filename,filepath]=uigetfile(fullfile(handles.curdir,’Savestates’,’*.mat’), ...

’Load session file’);

close(gcf);

load([filepath,filename]);

% check if it was a valid session file

if (exist(’currentdata’))

disp(’Session successfully loaded.’);

else % if not, reload finalgui to reset the GUI

disp(’.mat chosen was not a correct session savestate. Resetting GUI now.’);

finalgui(handles.parameters);

end

catch % if an error is caught, reload finalgui to reset the GUI

disp(’Session load operation aborted. Resetting GUI now.’);

finalgui(handles.parameters);

end
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function exit_prog_Callback(hObject, eventdata, handles)

disp(’Goodbye! Thank you for using my mitochondrial model!’);

close;

function version_Callback(hObject, eventdata, handles)

try

[~,ver]=system(’git describe --abbrev=0’);

msgbox([’The current version of this code is ’,ver(1:end-1),’.’], ...

’Code Version’);

catch

mshbox(’To check the code version, "git" is required.’,’Git not found’);

end

function info_Callback(hObject,eventdata, handles)

cd ..; % go up one directory level

open(’README.md’); %open the readme file

cd DeterministicModel; % Re-enter DeterministicModel directory

function save_graph_Callback(hObject, eventdata, handles)

%output the figure to be saved

newgraph = openGraph(’save’);

%acquire the desired name for the figure

[figname,figpath]=uiputfile(’.png’,’Please save the figure file.’);

%save figure into fig file pointed out by the user

if ischar(figname) %check if user selected an output name

set(newgraph,’color’,’w’);

export_fig(newgraph,[figpath,figname]);

else %if not, then abort saving and provide message
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msgbox(’No output file name provided.’,’Operation aborted.’);

end

%close the figure to free memory

close(newgraph);

function open_graph_Callback(hObject, eventdata, handles)

openGraph; %simply open the figure in a new window

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Plot Graphs Callback

function plot_Callback(hObject, eventdata, handles) %plot button in gui

%store variables for differntiating control and experimental parameter sets

graphColor = {’black’,’r’};

types = {’control’,’experimental’};

params = {handles.ctrlParams,handles.expParams};

%clear all axes graphs using arrayfun to distribute cla to each axes

arrayfun(@cla,findall(0,’type’,’axes’))

for type=1:2

%plug in the equations into the ode solver

[t,y] = solver(handles.parameters,params{type});

%store the values calculated for each variable

[cytcred, o2, Hn, Hp] = deal(y(:,1),y(:,2),y(:,3),y(:,4));

%calculate the OCR values from the oxygen

calcOCR = calculateOCR(handles,cytcred,o2,Hn,Hp,types{type});

calcOCR = calcOCR * 1000;
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%plot the Cyt c concentration over time

axes(handles.Cytc_plot);

hold on

plot(t(2:end),cytcred(2:end),graphColor{type},’lineWidth’,2);

hold off

%plot the O2 concentration over time with real O2 data on top

axes(handles.O2_plot);

hold on

plot(t(2:end),o2(2:end),graphColor{type},’lineWidth’,2);

hold off

%plot the OCR over time with real OCR data on top

axes(handles.OCR_plot);

hold on

plot(t(2:end),calcOCR(2:end),graphColor{type},’lineWidth’,2);

hold off

%plot the Hn concentration over time

axes(handles.H_N_plot);

hold on

plot(t(2:end),Hn(2:end),graphColor{type},’lineWidth’,2);

hold off

%plot the Hp concentration over time

axes(handles.H_P_plot);

hold on

plot(t(2:end),Hp(2:end),graphColor{type},’lineWidth’,2);

hold off
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end

%add vertical lines to all graphs for injection times

for graph = 1:numel(handles.graphs)

axes(handles.graphs{graph});

vertScale = get(gca,’yLim’); % get the y resolution

vertRange = [vertScale(1), vertScale(end)*0.98];

% draw oligo line

line([handles.parameters.oligoTimes(1), handles.parameters.oligoTimes(1)], ...

vertRange, ’Color’,’b’,’LineWidth’,0.01);

text(handles.parameters.oligoTimes(1),vertRange(end)*1.005,’Oligomycin’, ...

’FontSize’,6,’HorizontalAlignment’,’center’,’Color’,’b’);

% draw fccp line

line([handles.parameters.fccpTimes(1), handles.parameters.fccpTimes(1)], ...

vertRange,’Color’,’b’);

text(handles.parameters.fccpTimes(1),vertRange(end)*1.005,’FCCP’, ...

’FontSize’,6,’HorizontalAlignment’,’center’,’Color’,’b’);

% draw inhibit line

line([handles.parameters.inhibitTimes(1), ...

handles.parameters.inhibitTimes(1)], vertRange, ’Color’,’b’);

text(handles.parameters.inhibitTimes(1),vertRange(end)*1.005,’Rot/AA’, ...

’FontSize’,6,’HorizontalAlignment’,’center’,’Color’,’b’);

% while iterating over graphs, also set xLim

set(gca,’xLim’,[t(1), t(end)]);

end
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%update all the graph axes

graphLabel(handles);

guidata(hObject,handles);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Graph Labeling Function

function graphLabel(handles)

%{

since updating the axes elements resets the axis properties such as title,

this function is called each time a figure is plotted so as to reset the

titles and labels to the proper text.

%}

for i=1:numel(handles.parameters.title)

axes(handles.graphs{i})

set(handles.graphs{i},’FontSize’,8);

xlabel(handles.parameters.xlab,’FontName’,’Helvetica’,’FontSize’,8);

ylabel(handles.parameters.ylab{i},’FontName’,’Helvetica’,’FontSize’,8);

title(textwrap({handles.parameters.title{i}},30), ...

’FontWeight’,’bold’,’FontName’,’Helvetica’,’FontSize’,9);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Load Previous Solutions Button

function loadparams_Callback(hObject,eventdata,handles)

%open dialog for user to navigate to file

[filename,filepath] = uigetfile(fullfile(handles.curdir, ...

’Solutions’,’*-BestResults.mat’),[’Select the "BestResults.mat"’, ...
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’containing the parameter set to load’]);

if ischar(filename) %if a file is selected, load that file

load([filepath,filename]); %load the file

%change all the values of parameters to loaded parameter set

handles = setParams(handles,myResults’,’experimental’,’changeVals’);

%additional argin signals setParams to update handles.parameters

guidata(hObject,handles);

else

disp(’No file selected. Load parameters operation aborted.’);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Open Clicked Figure in New Figure

function varargout = openGraph(varargin)

%determine which object was clicked

whichgraph = gco;

obj=get(gca);

% set(whichgraph,’DefaultPlotFontSize’,16);

%open a new figure using the graph from the relevant axes

h2copy = allchild(whichgraph); %extract all children from hObject

if isempty(h2copy) %check to see if the graph exists yet

msgbox([’This function has not been plotted yet. Please use the ’, ...

’plot button below to graph the function before opening it.’],’No Plot’);

else

if ~isempty(varargin)

% create the figure

newgraph = figure(’Visible’,’Off’,’units’,’normalized’,’outerposition’, ...

[0 0 1 1]);
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else

% create the figure

newgraph = figure(’units’,’normalized’,’outerposition’,[0 0 1 1]);

end

hParent = axes; %create handle for axes child

copyobj(h2copy,hParent) %copy the original graph to the new fig

%now add the correct labels to the new figure

xlabel(obj.XLabel.String,’FontName’,’Calibri’,’FontSize’,16);

ylabel(obj.YLabel.String,’FontName’,’Calibri’,’FontSize’,16);

title(obj.Title.String,’FontSize’,22,’FontWeight’,’bold’,’FontName’, ...

’Calibri’);

%change the children to change the reagent text sizes

textChildren = findobj(hParent,’FontSize’,6); % get the text objects

set(textChildren,’FontSize’,12); % increase their font size

%optionally output the figure for the ’save’ feature

varargout{1}=newgraph;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Change all parameter values

function handles = setParams(handles,values,type,varargin)

%insert the parameter values passed to the function in the GUI

%check for whether it is control or experimental parameters

if strcmp(type,’control’)

boxes = handles.allcontEdits;

params = handles.ctrlParams;
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else

boxes = handles.allEdits;

params = handles.expParams;

end

%loop over and change all the displayed values for the parameters

for i = 1:numel(boxes)

set(boxes{i},’String’,values(i));

end

%change all the values in the correct params struc if vargin nonempty

if ~isempty(varargin)

[params.Vmax, params.K1, params.Km, params.p1, params.p2, params.p3, ...

params.f0Vmax, params.f0Km, params.Dh] = deal(values(1), values(2), ...

values(3), values(4), values(5),values(6),values(7),values(8), values(9));

end

if strcmp(type,’control’)

handles.ctrlParams = params;

else

handles.expParams = params;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Change all Initial values

function handles = setInitials(handles,values,varargin)

%insert the parameter values passed to the function in the GUI

%loop over and change all the displayed values for the parameters

for i = 1:numel(handles.allInitials)

set(handles.allInitials{i},’String’,values(i));
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end

%calc pH from concentration and set the proper text box to it

setpH=-log10(values(6)*1E-6);

set(handles.initial_ph_edit,’String’,setpH);

%change all the values in the handles.parameters struc if vargin nonempty

if ~isempty(varargin)

[handles.parameters.Cytctot, handles.parameters.Cytcox, ...

handles.parameters.Cytcred, handles.parameters.O2, ...

handles.parameters.Hn, handles.parameters.Hp] = deal( ...

values(1), values(2), values(3), values(4), values(5), values(6));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Edit text box

function handles = editBox(hObject,handles,type,paramChange)

%extract the new value input by the user

newVal = str2double(get(hObject, ’String’));

if strcmp(type,’control’)

%check for whether or not a correct input was given

if isnan(newVal) %if not, throw error box and reset value

msgbox(’Please input a valid number.’,’Not a number’);

set(hObject,’String’,getfield(handles.ctrlParams,paramChange));

else %if so, then update the model with new value

handles.ctrlParams = setfield(handles.ctrlParams,paramChange,newVal);

end

elseif strcmp(type,’experimental’)

%check for whether or not a correct input was given

if isnan(newVal) %if not, throw error box and reset value
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msgbox(’Please input a valid number.’,’Not a number’);

set(hObject,’String’,getfield(handles.expParams,paramChange));

else %if so, then update the model with new value

handles.expParams = setfield(handles.expParams,paramChange,newVal);

end

else

%check for whether or not a correct input was given

if isnan(newVal) %if not, throw error box and reset value

msgbox(’Please input a valid number.’,’Not a number’);

set(hObject,’String’,getfield(handles.parameters,paramChange));

else %if so, then update the model with new value

handles.parameters = setfield(handles.parameters,paramChange,newVal);

end

end

%also check to see if cytochrome c total needs to be updated

if strcmp(paramChange,’Cytcred’)|strcmp(paramChange,’Cytcox’)

%update the total amount of cytochrome c total

handles = updateInitialCytctot(hObject,handles);

guidata(hObject,handles);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Update Initial Cytchrome C Total

function handles = updateInitialCytctot(hObject,handles)

%get current total cyt c

newCytcox = str2double(get(handles.initial_cytcox_edit,’String’));

newCytcred = str2double(get(handles.initial_cytcred_edit,’String’));

newTot = newCytcox + newCytcred;

%increase cyt c tot by the amount of introduced cyt c red
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set(handles.initial_cytctot_edit,’String’,newCytcox+newCytcred);

handles.parameters.Cytctot = newTot;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Quick function for calculating OCR from o2

function ocr = calculateOCR(handles,cytcred,o2,Hn,Hp,type)

% check whether this calculation is for control or experimental parameters

if strcmp(type,’control’)

params = handles.ctrlParams;

else

params = handles.expParams;

end

ocr = (1/2).*((params.Vmax.*o2)./(params.Km.*(1+(params.K1./cytcred))+o2)) ...

.*Hn./Hp;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Check for input value

function cytcred = ensureRightInput(input,currTot)

if ~isnumeric(input)

msgbox(’Not a valid number. Please enter a number.’,’Not a number’);

else

if input > currTot

waitfor(msgbox([’Please enter a number less than the ’, ...

’total amount of Cytochrome C. That is, less than ’, ...

num2str(currTot),’.’], ’Cytochrome C reduced level too high’));

cytcred = 0;

else

cytcred = input;

end
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Check for valid pH value

function validity = checkpH(value)

validity = true;

if (value < 0) || (value > 14)

waitfor(msgbox(’Not a valid pH.’,’Invalid pH’));

validity = false;

end

C.5 baselineSystem.m

function dy = baselineSystem(t,y,params)

%{

Created by: Chris Cadonic

========================================

This function maintains all the baseline derivatives

relevant to my masters project.

%}

%input all our variables into the state variable y

Cytcred = y(1);

O2 = y(2);

Hn = y(3);

Hp = y(4);

%{

To decouple the system, complexes I-III activity is instead

approximated by ((parameters.Vmax.*(cytcdiff))./ ...
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(parameters.Km+(cytcdiff))).*(Hn./Hp)

Given this, conservation occurs between NADH and NAD, Succ and

Fum, Q and QH2. Since ((parameters.Vmax.*(cytcdiff))./ ..

(parameters.Km+(cytcdiff))).*(Hn./Hp) approximates BOTH

forward and reverse we get consumption and production of each

component in these pairs as equivalent. Thus the other substrates

do not change in concentration, and we have their time derivatives

equal to 0.

For the baseline conditions, these are the full equations (without

FCCP terms in dy(3) and dy(4))

Both cytochrome c reduced and omega have been reduced to order

1 due to the constraint that cyt c delivers electrons one at a time

Also, to incorporate all sections of the data, time points will dictate

the set of equations used for the model. From the data file: oligo

is injected at t = 18.6 m, FCCP starts injection at t = 20.17 m, and

rot/AA start injection at t = 28.13 m.

%}

cytcdiff = params.Cytctot - Cytcred;

dy(1) = 2*((params.f0Vmax*(cytcdiff))/(params.f0Km+(cytcdiff))) ...

*(Hn./Hp) - 2*((params.Vmax*O2)/(params.Km*(1 ...

+(params.K1/Cytcred))+O2))*(Hn/Hp); %dCytcred

dy(2) = -0.5*((params.Vmax*O2)/(params.Km* ...

(1+(params.K1/Cytcred))+O2))*(Hn/Hp); %dO2

dy(3) = -6*((params.f0Vmax*(cytcdiff))/(params.f0Km+(cytcdiff))) ...

*(Hn./Hp) - 4*((params.Vmax*O2)/(params.Km*(1 ...

+(params.K1/Cytcred))+O2))*(Hn/Hp) + ((params.p1.*Hp) ...

/(Hp+params.p2.*Hn+params.p3)).*Hp; %dHn
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dy(4) = 8*((params.f0Vmax*(cytcdiff))/(params.f0Km+(cytcdiff))) ...

*(Hn./Hp) + 2*((params.Vmax*O2)/(params.Km*(1 ...

+(params.K1/Cytcred))+O2))*(Hn/Hp) - ((params.p1.*Hp) ...

/(Hp+params.p2.*Hn+params.p3)).*Hp; %dHp

dy=dy’; %correct vector orientation

end

C.6 oligoSystem.m

function dy = oligoSystem(t,y,params)

%{

Created by: Chris Cadonic

========================================

This function maintains all the oligomycin derivatives

relevant to my masters project.

%}

%input all our variables into the state variable y

Cytcred = y(1);

O2 = y(2);

Hn = y(3);

Hp = y(4);

%{

To decouple the system, complexes I-III activity is instead

approximated by ((parameters.Vmax.*(cytcdiff))./ ...

(parameters.Km+(cytcdiff))).*(Hn./Hp)
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Given this, conservation occurs between NADH and NAD, Succ and

Fum, Q and QH2. Since ((parameters.Vmax.*(cytcdiff))./ ...

(parameters.Km+(cytcdiff))).*(Hn./Hp) approximates BOTH

forward and reverse we get consumption and production of each

component in these pairs as equivalent. Thus the other substrates

do not change in concentration, and we have their time derivatives

equal to 0.

For the oligomycin conditions, these are the full equations (without

FCCP terms in dy(3) and dy(4)) and without ATP Synthase equations

Both cytochrome c reduced and omega have been reduced to order

1 due to the constraint that cyt c delivers electrons one at a time

Also, to incorporate all sections of the data, time points will dictate

the set of equations used for the model. From the data file: oligo

is injected at t = 18.6 m, FCCP starts injection at t = 20.17 m, and

rot/AA start injection at t = 28.13 m.

%}

cytcdiff = params.Cytctot - Cytcred;

dy(1) = 2*((params.f0Vmax*(cytcdiff))/(params.f0Km+(cytcdiff))) ...

*(Hn./Hp) - 2*((params.Vmax*O2)/(params.Km*(1 ...

+(params.K1/Cytcred))+O2))*(Hn/Hp); %dCytcred

dy(2) = -0.5*((params.Vmax*O2)/(params.Km*(1+(params.K1 ...

/Cytcred))+O2))*(Hn/Hp); %dO2

dy(3) = -6*((params.f0Vmax*(cytcdiff))/(params.f0Km+(cytcdiff))) ...

*(Hn./Hp) - 4*((params.Vmax*O2)/(params.Km*(1 ...

+(params.K1/Cytcred))+O2))*(Hn/Hp);%dHn

dy(4) = 8*((params.f0Vmax*(cytcdiff))/(params.f0Km+(cytcdiff))) ...

*(Hn./Hp) + 2*((params.Vmax*O2)/(params.Km*(1 ...

+(params.K1/Cytcred))+O2))*(Hn/Hp); %dHp



Appendix C. MATLAB code 113

dy=dy’; %correct vector orientation

end

C.7 fccpSystem.m

function dy = fccpSystem(t,y,params)

%{

Created by: Chris Cadonic

========================================

This function maintains all the FCCP derivatives

relevant to my masters project.

%}

%input all our variables into the state variable y

Cytcred = y(1);

O2 = y(2);

Hn = y(3);

Hp = y(4);

%{

To decouple the system, complexes I-III activity is instead

approximated by ((parameters.Vmax.*(cytcdiff))./ ...

(parameters.Km+(cytcdiff))).*(Hn./Hp)

Given this, conservation occurs between NADH and NAD, Succ and

Fum, Q and QH2. Since ((parameters.Vmax.*(cytcdiff))./ ...

(parameters.Km+(cytcdiff))).*(Hn./Hp) approximates BOTH

forward and reverse we get consumption and production of each
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component in these pairs as equivalent. Thus the other substrates

do not change in concentration, and we have their time derivatives

equal to 0.

For the conditions following FCCP injection, these are the full

equations (with FCCP terms in dy(3) and dy(4)).

Both cytochrome c reduced and omega have been reduced to order

1 due to the constraint that cyt c delivers electrons one at a time

Also, to incorporate all sections of the data, time points will dictate

the set of equations used for the model. From the data file: oligo

is injected at t = 18.6 m, FCCP starts injection at t = 20.17 m, and

rot/AA start injection at t = 28.13 m.

%}

cytcdiff = params.Cytctot - Cytcred;

dy(1) = 2*((params.f0Vmax*(cytcdiff))/(params.f0Km+(cytcdiff))) ...

*(Hn./Hp) - 2*((params.Vmax*O2)/(params.Km*(1 ...

+(params.K1/Cytcred))+O2))*(Hn/Hp); %dCytcred

dy(2) = -0.5*((params.Vmax*O2)/(params.Km*(1+(params.K1 ...

/Cytcred))+O2))*(Hn/Hp); %dO2

dy(3) = -6*((params.f0Vmax*(cytcdiff))/(params.f0Km+(cytcdiff))) ...

*(Hn./Hp) - 4*((params.Vmax*O2)/(params.Km*(1 ...

+(params.K1/Cytcred))+O2))*(Hn/Hp)+ params.Dh ...

* ((Hp - Hn) + Hp * log(Hp/Hn)); %dHn

dy(4) = 8*((params.f0Vmax*(cytcdiff))/(params.f0Km+(cytcdiff))) ...

*(Hn./Hp) + 2*((params.Vmax*O2)/(params.Km*(1 ...

+(params.K1/Cytcred))+O2))*(Hn/Hp) - params.Dh ...

* ((Hp - Hn) + Hp * log(Hp/Hn)); %dHp

dy=dy’; %correct vector orientation
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end

C.8 inhibitSystem.m

function dy = inhibitSystem(t,y,params)

%{

Created by: Chris Cadonic

========================================

This function maintains all the inhibited system derivatives

relevant to my masters project.

%}

%input all our variables into the state variable y

Cytcred = y(1);

O2 = y(2);

Hn = y(3);

Hp = y(4);

%{

To decouple the system, complexes I-III activity is instead

approximated by ((parameters.Vmax.*(cytcdiff))./ ...

(parameters.Km+(cytcdiff))).*(Hn./Hp)*(Hn/Hp)

Given this, conservation occurs between NADH and NAD, Succ and

Fum, Q and QH2. Since ((parameters.Vmax.*(cytcdiff))./ ...

(parameters.Km+(cytcdiff))).*(Hn./Hp)*(Hn/Hp) approximates BOTH forward

and reverse we get consumption and production of each

component in these pairs as equivalent. Thus the other substrates

do not change in concentration, and we have their time derivatives
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equal to 0.

For the baseline conditions, these are the full equations (without

FCCP terms in dy(3) and dy(4))

Both cytochrome c reduced and omega have been reduced to order

1 due to the constraint that cyt c delivers electrons one at a time

Also, to incorporate all sections of the data, time points will dictate

the set of equations used for the model. From the data file: oligo

is injected at t = 18.6 m, FCCP starts injection at t = 20.17 m, and

rot/AA start injection at t = 28.13 m.

%}

dy(1) = -2*((params.Vmax*O2) ...

/(params.Km*(1+(params.K1/Cytcred))+O2))...

*(Hn/Hp); %dCytcred

dy(2) = -0.5*((params.Vmax*O2) ...

/(params.Km*(1+(params.K1/Cytcred))+O2))...

*(Hn/Hp); %dO2

dy(3) = -4*((params.Vmax*O2)/(params.Km*(1 ...

+(params.K1/Cytcred))+O2))*(Hn/Hp) + params.Dh ...

* ((Hp - Hn) + Hp * log(Hp/Hn)); %dHn

dy(4) = 2*((params.Vmax*O2)/(params.Km*(1 ...

+(params.K1/Cytcred))+O2))*(Hn/Hp) - params.Dh ...

* ((Hp - Hn) + Hp * log(Hp/Hn)); %dHn

dy=dy’; %correct vector orientation

end
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C.9 solver.m

function [t,y] = solver(parameters,params)

%{

Created by: Chris Cadonic

========================================

This function solves the full situation for my model by step-wise

solving the ODEs for each section using the appropriate equations.

%}

%update all parameter values

parameters.Cytcred = params.cytcred;

parameters.Cytcox = params.cytcox;

parameters.Cytctot = parameters.Cytcred + parameters.Cytcox;

parameters.Hn = params.omega;

parameters.Hp = params.rho;

parameters.O2 = params.oxygen;

params.Cytctot = params.cytcred + params.cytcox;

%Set the options for running ode45

options = odeset(’NonNegative’,[1,2,3,4]);

%Solve by using ode for each section and passing along the final

%values as initial values for the next section

tic

[t1,y1] = ode45(@baselineSystem, parameters.baselineTimes, ...

[params.cytcred,params.oxygen,params.omega,params.rho],options,params);

[t2,y2] = ode45(@oligoSystem, parameters.oligoTimes, ...

[y1(end,1),y1(end,2),y1(end,3),y1(end,4)],options,params);

[t3,y3] = ode45(@fccpSystem, parameters.fccpTimes, ...

[y2(end,1),y2(end,2),y2(end,3),y2(end,4)],options,params);
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[t4,y4] = ode45(@inhibitSystem, parameters.inhibitTimes, ...

[y3(end,1),y3(end,2),y3(end,3),y3(end,4)],options,params);

toc

t = [t1;t2;t3;t4];

y = [y1;y2;y3;y4];

C.10 fitness.m

function F = fitness(X,extPar) %This function evaluates the

%fitness for the input solving agent

parameters=extPar.parameters;

params=extPar.parameters.expParams;

f=fields(X);

f(strcmpi(f,’info’))=[];

for n=length(X):-1:1

if isAbortEval(extPar.status)

F=[];

break

end

for i=1:length(f)

params.(f{i})=X(n).(f{i});

end

%call ode to solve the system of equations for this solver

[t, y] = solver(parameters,params);

%for fitting O2
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evaluations = y(:,2); %evaluated data for o2

realo2Data = parameters.realo2Data; %use actual o2 data

%evaluate using a least-squares

F(1,n) = sum((realo2Data-evaluations).^2)/numel(realo2Data);

pause(0.001);

end

C.11 analyzeResults.m

function analyzeResults(OptimalSolutions)

%{

Created by: Chris Cadonic

========================================

As per code generation suggestions in the Qubist manual, this function

can be called by Ferret after analysis to ’automatically post-process’

results.

In this function, OptimalSolutions is loaded and then it will be saved to

the ’Solutions’ folder in the format "Date-OptimalSolutions.mat".

This structure will then be analyzed in the code below to look for the

global best, which will be stored in the variable result.

%}

%% Initialize vars

%initialize storage variables

myResults = inf;

bestFit = OptimalSolutions.F(:,1).*inf;
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%% Loop over OptimalSolutions to find Best

% To loop over entire optimal set:

for n=1:size(OptimalSolutions.X, 2) % Number of columns = number of solutions.

%first use bsxfun to check ’greater than’ for all elements of bestFit

%vs. OptimalSolutions.F

checkSize = bsxfun(@gt,bestFit,OptimalSolutions.F(:,n));

if all(checkSize) %if current best is greater than optimal then replace bestFit

%all is used to check to see if all F-values are less than best

myResults=OptimalSolutions.X(:,n);

bestFit=OptimalSolutions.F(:,n);

end

end

%% Save files to Solutions folder

folder = fileparts(which(mfilename)); %get the current folder

cd([folder ’/Solutions’]); %change to Solutions folder

todayDate = date; %get the run date

%save the Best solution to the Solutions folder

resultsname = [todayDate ’-BestResults’];

save(resultsname,’myResults’,’bestFit’);

%display a message indicating the files will be saved

disp([’Saving output files to ’ folder ’/Solutions.’]);

cd(folder); %change back to original folder
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C.12 sensitivityAnalysis.m

function sensitivityVals = sensitivityAnalysis()

%{

Created by: Chris Cadonic

========================================

This function carries out a relative sensitivty analysis for the entire system

using the method outlined in Beard (2005).

E_star stores the error values when the model parameter values

are set to the estimated values achieved through calibration.

minusEvals and plusEvals then adjust each parameter to determine

how a 10% increase or 10% decrease in parameter value will

affect the error values. The maximum deviation from ideal

error provides a measure of how sensitive the model is to that

parameter.

%}

%% Setup for Sensitivity Analysis

% clear cmd history for clarity

clc

% get the current directory

curdir = fileparts(which(mfilename));

% intialize storage vectors

[minusEvals,plusEvals,sensitivityVals] = deal([]);

parameters = setup; %run the setup function which creates the
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%structure storing all variables necessary

%for evaluating the model (found in ’setup.m’)

% store the values of the parameters in a vector

paramSet = parameters.ctrlParams;

paramVals = [paramSet.f0Vmax, paramSet.f0Km, paramSet.Vmax, paramSet.Km, ...

paramSet.K1, paramSet.p1, paramSet.p2, paramSet.p3, paramSet.Dh, ...

paramSet.cytcred];

% store +/- 10% values in new structures

paramMT = structfun(@(x)x*0.9,paramSet);

paramPT = structfun(@(x)x*1.1,paramSet);

% names of each parameters as they are stored

parameterIDs = {’Vmax’,’K1’,’Km’,’p1’,’p2’,’p3’,’f0Vmax’,’f0Km’,’Dh’, ...

’cytcred’};

%% Evaluate E* and E*+/- 10%

% evalute E*, consistent across all parameter changes

[E_star,evaluations] = sensitivitySolver(parameters,paramSet,’Estar’);

parameters.initialsOligo = evaluations{1}(60,:);

parameters.initialsFccp = evaluations{1}(135,:);

parameters.initialsInhibit = evaluations{1}(215,:);

% evaluate E* of plus and minus 10 for each parameter

for param=1:numel(parameterIDs)

parameterSet = paramSet;

% Change parameter to be evaluated at minus 10%

parameterSet.(parameterIDs{param}) = paramMT(param);
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if param==10

parameters.Cytcred = paramMT(param);

parameterSet.Cytctot = parameterSet.cytcred + parameterSet.cytcox;

parameters.Cytctot = parameterSet.Cytctot;

end

minusEvals(param,1:5) = sensitivitySolver(parameters,parameterSet);

% Change parameter to be evaluated at plus 10%

parameterSet.(parameterIDs{param}) = paramPT(param);

if param==10

parameters.Cytcred = paramPT(param);

parameterSet.Cytctot = parameterSet.cytcred + parameterSet.cytcox;

parameters.Cytctot = parameterSet.Cytctot;

end

if param==9

plusEvals(param,1:5) = minusEvals(param,1:5);

else

plusEvals(param,1:5) = sensitivitySolver(parameters,parameterSet);

end

% store all the sensitivity vals in a matrix

for cond=1:5

sensitivityVals(param, cond) = max(abs(minusEvals(param,cond) ...

-E_star(cond))/(0.1*E_star(cond)),abs(plusEvals(param,cond) ...

-E_star(cond))/(0.1*E_star(cond)));

end

% calculate and display the sensitivity values

disp([’Sensitivity values for parameter ’, parameterIDs{param}, ’ are: ’, ...

num2str(sensitivityVals(param,:))]);

end
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% save results to a .mat and .txt file for viewing the sensitivity values

cd([curdir, ’/SensitivityResults’]); %change to Solutions folder

todayDate = date; %get the run date

% save the Best solution to the Solutions folder

resultsname = [todayDate ’-SensitivityCoefficients’];

save(resultsname,’sensitivityVals’);

disp([’Saving results to: ’, resultsname]);

C.13 sensitivitySolver.m

function [errors,solutionEval] = sensitivitySolver(parameters,params,varargin)

%{

Created by: Chris Cadonic

========================================

This function solves the full situation for my model by step-wise

solving the ODEs for each section using the appropriate equations.

Additionally, this function also solves for each condition in my model,

and is specifically made for the sensitivity analysis. Thus, the output

of this function is not the raw values, but instead the error values

calculated.

%}

%initialize variables

errors = [];

%Set the options for running ode45
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options = odeset(’NonNegative’,[1,2,3,4]);

%format real data for 5 separate solutions

realData{1} = parameters.realo2Data;

realData{2} = realData{1}(1:parameters.oligoTime-1);

realData{3} = realData{1}(parameters.oligoTime: ...

parameters.fccpTime-1);

realData{4} = realData{1}(parameters.fccpTime: ...

parameters.inhibitTime-1);

realData{5} = realData{1}(parameters.inhibitTime:end);

%Solve by using ode for each section and passing along the final

%values as initial values for the next section

tic

[~,y1] = ode45(@baselineSystem, parameters.baselineTimes, ...

[parameters.Cytcred,parameters.O2,parameters.Hn, ...

parameters.Hp],options,params);

[~,y2] = ode45(@oligoSystem, parameters.oligoTimes, ...

[y1(end,1),y1(end,2),y1(end,3),y1(end,4)],options,params);

[~,y3] = ode45(@fccpSystem, parameters.fccpTimes, ...

[y2(end,1),y2(end,2),y2(end,3),y2(end,4)],options,params);

[~,y4] = ode45(@inhibitSystem, parameters.inhibitTimes, ...

[y3(end,1),y3(end,2),y3(end,3),y3(end,4)],options,params);

%store the first, solution for the entire model

solutionEval{1} = [y1;y2;y3;y4];

%if varargin in nonempty, then this is calculating Estar

if ~isempty(varargin)

parameters.initialsOligo = y1(end,:);

parameters.initialsFccp = y2(end,:);
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parameters.initialsInhibit = y3(end,:);

end

%repeat solving the system for each section separately

[~,solutionEval{2}] = ode45(@baselineSystem, parameters.baselineTimes, ...

[parameters.Cytcred,parameters.O2,parameters.Hn, ...

parameters.Hp],options,params);

[~,solutionEval{3}] = ode45(@oligoSystem, parameters.oligoTimes, ...

parameters.initialsOligo,options,params);

[~,solutionEval{4}] = ode45(@fccpSystem, parameters.fccpTimes, ...

parameters.initialsFccp,options,params);

[~,solutionEval{5}] = ode45(@inhibitSystem, parameters.inhibitTimes, ...

parameters.initialsInhibit,options,params);

% loop over and calculate the error for each condition

for condition = 1:numel(solutionEval)

% calculate error for the entire model

errors(condition) = sum((realData{condition} ...

-solutionEval{condition}(:,2)).^2)/numel(realData{condition});

end

toc
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Genetic Algorithm

D.1 General Description of a Genetic Algorithm

Calibration of the model was carried out by using an optimization algorithm to minimize the

difference between model results and experimental results (see Section 2.2.7).

Calibration of the model for each segment was carried out using a genetic algorithm. The genetic

algorithm is an optimization technique that borrows from natural genetic principles to guide

how parameter values are varied during the optimization process. The general implementation

of the genetic algorithm is as follows:

1. First create an initial population of n solvers.

2. Give each solver the initial m parameter values in the form {p1, p2, p3, ..., pm}.

3. Mutate some of the solvers except for the very first solver, to create variation in the initial

population.

4. Evaluate the objective functions for this population.

5. Check convergence criteria: If met, exit the GA and output best solver, if not, continue

with GA.

127
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6. Allow only the top x percent to survive toward the next population

7. Introduce breeding between these top solvers, with partial crossover between matching

parameter values occurring until a new population is created (with parents + children).

8. Randomly introduce mutations in parameter values within the new population.

9. Re-evaluate objective functions for new population.

10. Repeat process from step 5 until convergence criteria is met.

The genetic algorithm utilized in the calibration of the model to experimental data is known as

Ferret, as part of the Qubist MATLAB software package developed by Jason Fiege (Department

of Physics, University of Manitoba). This is a very robust implementation of a genetic algorithm,

incorporating more advanced features such as machine-learning algorithms altering the condi-

tions of the genetic algorithm to adapt for more efficient optimization. For more information

regarding this software, details are given on the website http://www.nqube.com/qubist/.

D.1.1 Objective Function

As discussed in section 2.2.7, the objective function used for optimizing the parameter values

was the MSE function. This objective function is appropriate for parameter fitting in this model

since there is only a single set of observations for oxygen concentration, thus a single output is

compared to each matching experimental data point. A squared measure of the residual of the

model provides a small remaining error as then the process of fitting the data becomes of order

O(n). More accurate estimates are also available, but then computational efficiency becomes

a concern for evaluating large population sizes in the genetic algorithm. Thus, calibrating the

model by minimizing MSE is an appropriate compromise for calibrating the model.
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