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Abstract

This thesis introduces a new system for measuring ice accumulated on power

transmission lines. The main objective and difficulty is to gain enough information flom

a two dimensional image of wile coveled with ice taken with a simple digital camera and

to approximate the actual thickness of the ice covering the wi¡e. The proposed solution

combines two methods in a non-standard way. Rough Set Theory is used to process

digital images. In the context of filtering digital images an extension of Rough Set

Theory called the ð-mesh is applied to wile images. The ô-mesh is designed to combat

noise in selected dilections without blocking the important infotmation in a wire image.

In the second step, a classical digital image processing algorithm, namely, the Gouraud

shading algorithm is used to approximate parameter values describing the dependency

between actual and measured ice thickness fi'om the image. The core of the system is

based on extraction of information fi'om a bare wir.e with known diameter to approximate

the actual ice thickness. A sample application of a complete system to measure ice

accumulated on powel transmission lines is given. The contribution of this article is an

approach to using lough set theory in digital image processing as an aid in directional

oriented image f,rltering.

Keywords: Approximation, digital image processing, Gouraud shading, ice, linear

interpolation, patteln recognition, power system transmission line, rough sets.
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t. Introduction

This thesis presents an approach to using a combination of r.ough set methods and

classical digital image processing to estimate the thickness of ice accumulation on power

system transmission lines. Rough set methods play a r.ole in pre-pr.ocessing digital

images ofconductors by filtering out noise in wire images. Rough sets were introduced in

[1-2]. Classical rough sets present an appr.oach to approximating, measuring and

reasoning about subsets that belong to a finite univelse. The basic idea was to partition a

finite universe into subsets containing elements that are mathematically equivalent to

each other. Recently, an approach to rough sets that makes it possible to measure

closeness and inclusion of sets in an infinite universe (e.g., reals, typical sensor signal

values) has been introduced [3]. This second apploach to rough sets is briefly introduced

in this thesis because it has been found to be useful in solving the ice thickness problem

based on an analysis of pixels in a wire image. Fi.st, a method of par.titioning subsets of
the leals into subsets of equivalent elements is given. This is made possible by using an

equivalence telation that was introduced in the early stages of this r.esear.ch [4]. The

resulting partition of sets of reals in the plane (of an image) results in superimposition of
a mesh ovel a wire image. By virtue of the way the mesh is constructed, each of the

pixels in each ceìl of the mesh ar.e in some sense equivalent. Second, a measure of
inclusion of one set (e.g., set of pixels is a wi¡e image) in another set (e.g., pixels

belonging to a wi¡e in a digital image) presented in [5] is briefly introduced in this thesis.

It is this second approach to rough sets that provides a mathematical basis for the digital

image filtering techrique introduced in this thesis. The new filtering technique is also

compaled with classical digital image filtering. Also, this thesis includes a brief

introduction to a toolset called ô-mesh which implements the approach to paúitioning

sets of values associated with a signal.

Application of classical digital image pr.ocessing methods introduced by H. Gouraud

[6] and othe[s [7-8] provide a basis for. measuring wir.e diameter.s and the extent of
accumulation of ice covering transmission lines. The approach presented in this thesis

makes use of the Gouraud shading algor.ithm in a context different from the one

originally env.isioned by Gouraud, That is, the Gouraud algorithm is not used in its
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classical application, namely, to produce shaded pictures of curved surfaces. Instead the

Gouraud algorithm proves to be very effective tool in appr.oximation of internal

adjustable system coeffìcients used in the analysis of powel system transmission line

digital images. Therefore, the use of the basic idea in Gouraud's shading algorithm is part

of what can be described as a pattern recognition technique rather than classical digital

image processing. This thesis gives a detailed formulation of the ice-thickness

measurement problem relative to the identification of non-wir.e and non-wire pixels in

digital images of transmission lines. It has been found that it is possible to obtain an

acculate estimate of the thickness of ice accumulation on a wire based on an analysis of
wir-e images obtained with a low-cost digital camera. Remarkabl¡ it is a shading method

introduced by Gouraud in 1971 that provides a key component in the ice-measurement

method introduced in this thesis. As ah'eady mentioned, the Gour.aud algor.ithm provides

a form of pattern recognition useful in the identification of patteÌns in wire images. It

shouìd be noted that in the study of patterns in wir.e images, the application of the basic

idea contained in Goulaud's shading algorithm did not include the initial conditions

needed to process wire images, namely, thel.e is no triangle net set. To meet this

requilements, two separate algorithms fol cleating a net of triangles from a given set of
calibrating points (images) has been introduced in this thesis. Each algorithm tr.ies to

utilize different properties of the coefficients' space to make the approximation of ice-on-

wile measurements more efficient. That is, the fu.st algorithm can be seen as a static

algofithm. It tries to cleate from a given set of points a partition made from triangles,

such that the length of the triangles' sides is possibly shoftest. The second algorithm is

dynamic. Each time a new testing point is considered, a new tr.iangle for this testing

point is found. When a triangle is found, it is the closest triangle to a given point, and

which encloses given point.

After a formulation of the ice-measulement ploblem solved in this thesis, each of the

measulement algorithms used in this work are presented. For readability and future

object-oriented implementation, the C++ code for these algorithms has been given. For.

prototyping, digital image processing and plotting pur.poses, these algorithms have been

implemented in a toolset called the Transmission Line Ice Measurement (TLIM) system.

The TLIM system has been completely written in version 6 of Matlab. For user
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convenience a Graphical user Interface has been designed to make it a straightforward

task to use the TLIM system without need to undel.stand all of the underlying theory.

Finally, this thesis includes a failly compr.ehensive study of set of wir.e images.

Various measurement experiments with wir.e images, especially images containing ice-

coated wi'e, ale presented in this thesis. These experiments wele performed on a

collection of wire images taken during the past 12 months as well as on photographs of
ice-clad transmission lines dur.ing the 1998 ice storm in Eastern canada. The cumulative

effect of these experiments provides a demonstration of the validity of the approach to

ice-measurement and of the TLIM system. It should also be mentioned that one of the

goals of this ¡esearch has been to folmulate a solution to the ice-thickness measurement

problem in such a way that it can be easily implemented by a power system transmission

Iine maintenance engineel or a robotic device using an ordinary digital camera connected

to some form of computel such as a laptop such as an IBM Thinkpad or.personal digital

assistant such as a Compaq i-pack, In most exper.iments per.formed for this thesis, a

digital camera has been used as a device to r.ecord images. However, the TLIM system

capabilities of processing images ale not limited to images made by digital cameras. The

TLIM system can process digital images from any source, resolution and number of
colors with the condition that the calibration and testing phases have been per.formed with

the same dev.ice.
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2. Problem Definition

In this chapter we discuss more precisely the problems arising from an approach

to using digital camera images as input sources in a system to estimate either wùe

thickness or the thickness of ice accumulated on a power system transmission line.

Befole we pfoceed it is important to mention one fact that makes this approach more

general. To make the work clearer, we concentrated only on pictures taken from one type

of digital camela, namely, a SONY CD Mavica Digital Still Camera. A cameta is shown

in Fig. 2.I, more specifications are given in Appendix E.

Fig. 2.1 Digital Camera Used For the project.

However, it should be noted that all algorithms presented in this thesis can be applied to

digital images obtained in other ways (e.g., scanned photographs taken with an ordinary

camera). There are some propefties specific for. the SONY CD Mavica Digital Still

Camera used in thesis, which may not exist when using a scanner or other types of digital

cameras. When this takes place it will pointed out and a solution will be shown, which is

independent of this problem about special camela features. Regardless of digital imaging

device used all images must have a maximum of 256 grey levels.
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2.1. Towards a Solution of the Ice Thickness Measurement Problem

Fi-r'st, considel a precise definition ofthe problem we have to solve and list of all possible

means we are allowed to use to solve this problem. Later on, we divide the main task into

smaller, easier-to-manage sub-problems.

Problem 2.1. Estimate the thickness of ice coating on a power system transmission ìine

using only a digital image of the line taken from 10-500 meters (i.e., Fig. 2.2).

Fig. 2.2 Sample Wire Image

From the folmulation of Problem 2.1, we see that all we have is a pictur.e (i.e., a digital

image) with no additional information. In particular, we do not know the distance to the

wile by looking at the wile image. This makes the measulement of either the wi¡e

diameter or the thickness of ice accumulation on a wil'e difficult. Different distances

result in opparent different sizes of the same whe in a picture and, yet, the thickness of
the wile itself is always the same. In addition, we do not know by looking at a digital

image the camera settings such as zoom factor or image resolution of the camera. Thus,
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given a wfe image such as the one inFig.2.2, we cannot trust any additional information

other than the pure image. With an ice-coated wir.e such as the one shown in Fig. 2.3

(found in [1]), we must rely on a count of the number of pixels as a basis for. measuring

ice thickness on a transmission line.

Fig,2,3 Ice-coated Tr.ansmission Lines I l]

once the numbe¡ of pixels for an ice-coating wi.e is known, then there is still the

unsolved problem of conve[ting a pixel count to centimetres or some other unit of
measulement. Therefore, such a problem requir.es one more pre-step before we could

actually worry about measuring ice-thickness. A ple-step should let us determine the

proper factor to convert pixel values into real world measurement units. In this thesis, an

algorithm to facilitate automatic calculation of this facto¡ is proposed and implemented in

a complete Transmission Line Ice Measurement (TLIM) system.

The information contained in ever.y image depends on various factors. To name

only few imporlant ones, we need to take into account a variety of factors such as

Distance flom an object when taking a picture,

Location of an object,

Scene light (i.e., lighting conditions at the time thar a picture is taken),

a

a

a
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Zoom used,

Image resolution,

Film speed,

Exposure time,

Aperture (i.e., variable opening by which light enters a camera).

If the values of all of these factors are known, it is a straightforward task to convel't the

pixels in any photographed ice-thickness into standard measurement units. Unfortunately,

all ofthese information are not usually known. Hence, we can only measure ice thickness

from an image in pixels. We call this measurement Observed Ice Thickness (OIT). From

what has been observed so far about a digital wi.e image, it is known that OIT is a
function ofseveral variables as in Eqn. (2.1).

OIT =f ( íce thíckness, dístance, Iocation, Iight, zoont, ... ) (2.1)

The only known variable is O1Z (the dependent variable in Eqn. (2.1)), and the

only variable, which we would like O1Z to depend on, is ic¿ thickness.It is obvious that

such a formulation of the problem gives us no chance to succeed. We need to introduce

some simplifications, which may cause some el.or to appeal., but it is possible to solve

the simpler problem with good accuracy.

First, consider the combination of th-ree factors: distance fi.om an object, image

resolution and zooming. Notice: when looking at the picture such as the one in Fig. 2.3,

we cannot tell what zoom was used nor how far the camera was fl.om the photographed

objects. Consequently, it is not necessary to treat these factors separately, but rather as

one factor. Similar argument applies to resolution. For this reason, only one factor called

nngnitude is used instead of three factors (i.e., distance, lesolution, zoom) to compute the

OIT.

In the design of a model for OIT, next consider: light, exposure time and aperture.

This case is not so straightforward as the previous one. These factors have diffelent

influence on picture and it is probably easier to estimate thefu. values from selected

features ofan image. Indeed, the more light in a scene the brìghter picture we obtain, and

a

o

a

o
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the longel exposure time the brighter picture as well as the greater contrast. And finally,

apertule contlols the range where objects are sharp. Even though these factors are nicely

explainable, they intloduce a huge space of possible conditions. We do not want to be

distracted by them but rather it is rnore effective to considel chalacteristic of a camera.

Since all humans perceive light in a similar way, cameras are made to create pictures with

some standard brightness. Therefore, all thee listed factors are used by a camera itselfto

make a "good looking" picture for the human eye. This means that the resulting image is

"normalised" in some way, making it independent of scene light and exposure time. Of
course, nothing can be done for two pictures, where one is taken at noon and the other at

midnight, but this is an extreme example and will not be considered in the design of the

prototype of the TLIM system. As a lesult of what has just been discussed, we do not

have to consider scene light and exposure time as factors. what has left is aperture. This

cannot be simplified too much. Especially when consider.ing ice edge, we have to be very

careful about how much of and what might termed the quality that this edge is recorded,

i.e., as a shalp edge or blurred image. This factor is included in the OIT model and is

given the name aperture and is responsible for apefiure setting and average brightness

produced by camera. This factor is totally camera-dependent and must be adjusted for

each cameta.

The location factor denotes all changes resulting from relative differences of an

object and camera positions. In particular; aperturc can denote the angle at which an

object is seen. For any object, we can discern th¡ee different angles describing location of
the object relative to a camera. Fol a wire covered with ice the situation is fairly simple.

The wire with ice might be modelled by a cylinder with a small diameter. This ¡educes its

description to only two angles (since rotation along a wir.e centre makes no difference). In

order to ¡educe the description even more, we requile taking pictures such that the wi¡e is

perpendicular to the di¡ection in which the camera is pointed. This is not a very restrictive

assumption. Usually, an inspection vehicle o¡ robot is moving along transmission lines

(on one side or beneath the lines) and any par.ticular. point on a wite can be photographed

without violating this assumption. Advantages coming fi.om this restriction are very

important: we can use only one number to describe wir.e location, namely, its angle with

respect to the image bordels, and the w.fue is approximately at the same distance fi.om the
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camera and is not deformed by panoramic projection. The Iatter assumption is not true for

the whole pictule, especially on the sides in an image, but taking into account distance

between wile and camera can be considered to be true in the middle part of an image.

Hence, we end up with four independent variables: íce thickness, rnagnitude,

location and apeüurc. Thus Eqn. (2.1) can be simplified as in Eqn. (2.2).

OIT = f ( ice thíckness, ntagnitude, aperturc, locatiott) (2.2\

This formula is much simplel than Eqn. (2.1), but we ar.e still unable to solve it. In older

to do so, we need to consider two more facts. First, all of the four variables in Eqn. (2.2)

are independent of each other', in particular ice thickness is independent of all other

factors. Second, from basic knowledge of camera construction and basic algebra we

know that nngnítude operations (by which we mean zoom, distance and resolution) are

linear operations on a Ìesulting picture. That is, these magnitude operations are linear, but

still dependent on aperture and location. That is why Eqn. (2.2) can be rewritten as Eqn.

(2.3).

OIT = f (eperturc, location, nrugnitude ) * ice thickness (2.3)

At this point the OIT model cannot be simplified any more. In Eqn. (2.3), all of the

requiled factols needed to measule ice thickness ar.e important and removing any one of
them would cause too big an elror inclease. on the other hand, flom the above discussion

it is clear that the introduced assumptions are reasonable and will not introduce too much

error. For simplicity, we use the notation ,SF (Scale Factor) to denote the function

f(ap e rt urc, lo cation, nng nit ude).

From Eqn. (2.3) we can calculate ice thickness by computing OIT\SF. The only

problem that must be solved is how to obtain SF-values. Eqn. (2.3) contains the

beginning of a solution to the problem of how to compure .!F. That is, solving Eqn. (2.3)

for .9fl we obtain SF=OITlice thickness. However, we cannot use ice since we do not

know its thickness. Assuming that SF is the same for all objects in the same range, then it

is enough to know anything with known dimensions to leatn,gF. In our case, the best
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choice is the wire itself or a neighbouring object of known size such as a transmission

line insulator'. we know the diametel of the wi¡e and we know its shape, therfore from all

angles the wire will have the same thickness. Thus, we find SF from Eqn. (2.4).

OWT = SF * wire thíckne.ss (2.4\

wherc OW denotes Observed Wile Thickness and it is measured dir.ectly from a picture.

This discovery leads us to a definition of another, easier problem.

Problem 2.2. Find out the Scale Factor (,9F) relative to a picture of a wire of known

diameter (wirc thickness) taken from 10-500 meters.

Now, solution to Problem 2.1 must follow the solution of problem 2.2.'lhe complete ice

measurement algorithm is presented next.

Algorithm 2.1 (A method to solve Problem 2.1)

1. Take a picture ofa wile (partly bare and par.tly ice-covered).

2. Measure OIlZ(Observed Wire Thickness) and O1Z(Observed Ice Thickness).

3. Find out Scale Factor fiom equation 2.4, givenwirc thickness.

4. Find out ice thickness from equation 2.3 wher.e

f (aperturc, location, magnitude )=SF.

The partly bare whe in step I of Algorithm 2.1 provides a basis for a set of experìments

used to validate the prototype of the TLIM system toolset. The bar.e wire in step 1

provides a ñ'ame-of-reference for preliminar.y ice-thickness measurements. Although ít

might be difficult to find in real life a transmission line thar is partly bare and partly ice-

covered. Howeve¡ this method is not bounded to wires only. Instead of wi¡e we can use

any object (e.g., an insulatol) which has known dimensions. The steadfast feature of a

wile image in step 1 of Algorithm 2.1 is the presence of cylindrically shaped objects, as

the transmission line wire dimensions ar.e approximately the same from any angle. For
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transmission lines we can use, for example, insulators instead of bare wi-re as a frame-of-

reference. Insulators ale cylindrical in shape and are always in place on transmission

lines. As can be seen from what has been said so far., the proposed measurement method

is quite powerful and independent of the object being measured.

2,2. Image Processing

In the last two subsections, we discussed some general issues related with the problem of
measuring ice thickness on a transmission line wi¡e or conductor using a camera image.

This problem was divided into two smaller problems and it was pointed out that the flrst

step is to process a pictule with an object with known dimensions. This raises a question

about the plecìsion of measurements of wi¡e thickness. This subsection is devoted to

some preliminary problems related to this issue. what we are interested in is only wire

thickness given in pixels. we will not use scale Factor nol will we use the fact that we

know the actual value of a wile diametel..

Fig. 2,4 Sample of Wile Fig. 2,5 Zoom To Left End of Wi¡e

A sample image of a transmission line is shown în Fig.2.4. This is the image we

will be working with in this section. The wir.e in Fig.2.4 has the appearance of a straight

black line clearly distinguishable fi'om rhe sky. Ir may make the impression that if we

want to know its thickness, all we have to do is to count black pixels across the wfe. In
fact, problem is much more complex. In the Fig 2.5 we see the same picture, but zoomed

on the left side of the image. This zoomed-in image of a wi¡e shows that a wfue consists
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not only of black-coloured pixels, but also of pixels with many shades of grey. In the

following sections, some more issues related to the natule of digital images are discussed.

2.3. Image Compression Problem

Due to larye memory requilements of digital images various methods of lossy

compression are used by a digital camera. Instead of many advantages, such

compression techriques also introduce some additional information into an image. This

problem is specially visible in digital images of solid shapes with sharp edges. For

example, the wile in Fig. 2.6 is surrounded by a whitish "shadow', that has no meaning in

the real world and is the pure effect of the compression algorithm used by the digital

camera used to take the picture of the wir.e. This phenomenon makes it difficult to

distinguish between a wile and the sky. It is assumed that the sky is a uniform area with a

small rate of change in colours. The wir.e "shadow" does not belong to a wir.e, but is a

coÍrmon occu 'ence in pictures with quite high changes in blightness. The presence of a

shadow surrounding a wile image can result in a blurred tlansition between the whe and

the sky.

There is a solution to the problem of white shadows due to digital compression

algorithms. The software options fol most digital devices make it possible to choose non-

lossy folmat (e.g., titr, targa ol bmp). It pr.oduces files a few times lar.ger, but the

"shadow" problem is totally solved. For the TLIM system only part of an image is

needed, which makes the amount of data to be stor.ed reasonable. On the other hand, if a

digital camera or some other digital device has software that makes it possible to set the

compression level, it is enough to set the compression level to the best quality. Usually,

the obtained image is clear enough to be processed by the TLIM system. In the

experiments described in this thesis, jpeg compressed frles wer.e successfully used

yielding low erior-rate classification results. For example, in experiment descr.ibed in

section 5, where a scanned photograph was used, erroÌ rate obtained for. ice measurement

was 9.5Vo.
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Fig. 2.6 Two Colour Wile And JPEG Compression.

2.4. Image Brightness Prûblem

Depending on the sun brightness and its position a whe image can consist of two

colours (see F|g. 2.6). This makes the task of finding out which pixels belong to the whe

much more difficult. Instead of one type of transition from a black to blue, we have

second type, namely, a transition fiom a white to blue. In addition, there is one more

transition within a wile between its black and white parts. These non-black parts of a wir.e

image do not caüy any useful information for us.

Since there is no straight forward software solution for this image br.ightness

ploblem it is suggested that in taking pictures of transmission lines to locate the sun and

make sure the wile is totally in shadow. This can be achieved in two ways: by choosing

days with presence of clouds in the sky or by positioning the camera so that the sun is

behind the wile. These methods can significantly reduce the wire reflection effect,

although these methods cannot remove it completely. In the following chapters, we will
see some remainings of this phenomena and a software solution.

2,5. Non-parallel lVire Image Problem

A transmission line in an image does not have to be perfectly straight nor do the

edges of a wile have to be parallel. The frst problem is related to the actual shape of
wiles stretched between power towe¡s. The wire is not straight, but curved (deflected)

because of earth's gravity. The second problem is enti.ely caused by camer.a perspective.
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We know that the edges of a wile ale per.fectly parallel, but if one side of the wir.e is

close¡ to the camera than the other, it looks a slightly wider. If this happens, a Scale

Facto¡ is not going to be the same for different parts of an image. This problem has to be

avoided by some means.

The solution to the non-paÌallel wir.e image problem has two steps. Fir.st, at the

time of taking a picture, the camera must be situated in a perpendicular direction to a
wile. This eliminates the distofted wile shape problem. There is not much we can do

about line curvature or deflection though. Thus, this is the subject of the second step.

While selecting an area of a wile image to be measured, we should choose only a small

part of the picture. A shoÍ wiÌe has very small curvature (i.e., effectively str.aight) and

when considering only a piece of one-meter long, for example, the curvature of a

suspended wi¡e can be neglected. The selection of a short wir.e image segment also

combats the problem of non-parallel edges and the wÍe will have the same thickness on

the entire image. This is a reason why in expeliments described in this thesis only short

wte-image segments we¡e selected to calibfate the TLIM system. The aver.age size was

approximately 64-80 pixels for the longer. side of the image. An alternative to wire

segment image selection is to use image warping. That is, a line curvature can be

calculated from mathematical equations and an image can be warped to yield a straight

wir.e. It should also be noted that these manual wire image segment selection procedur.es

can be automated, for example using tlu'esholding [4-5] and Hough transfor.m [2-3].

2.6. Picture Axis Problem

It may happen that the wfue in a digital image is not paraìlel to any picture axis.

That is, at different ctoss-sections a wire may consist of different number of pixels.

Further', the wile pixels may not be black and white, but instead consist of a full r.ange of
colouls. Thelefore, it is hald to tell which pixels are paÌt of a wi¡e and which belong just

to the sky.

The solution to the picture axis problem cannot change the fact that a wir.e's

boundaly is spread across mole than one pixet. This is not how we would imagine an

image produced by digital camera with response to an ideal zeroJength transition
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between dark wire and blight sky. Ther.e ar.e other processes involved dur.ing picture

taking with a digital camera such as image sharpening by a camera itself. So we must

learn how to use this infolmation during the TLIM system creation process. what can be

done though is to design the TLIM system with a mechanism that responds to the fact

that a wfue is not parallel to image horizontal borders. To cope with this problem, the

TLIM system must lotate the image so that it is palallel with the horizontal bolder of an

image. Afterward, the resulting wire will have the same ctoss-section at any point,

provided that the image was taken to satisfy all previously stated requh.ements.
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3. Measurement Method

We have ah'eady seen some preliminary discussion in chapter 2 concerning pre-

processing of digital images as input for a digitat image processing system used to

measure the ice accumulations on a power transmission line. In this chapter, we assume

that images are aheady prepared to satisfy all previously mentioned requirements,

namely,

o Each image contains only wir.e with the sky in the background with no other

objects;

The angle between wi¡e and horizon must be in a range -45",45";

Each pixel is described by one byte;

A greyscale level is replesented by 0 for black pixels and 255 for. white pixels

we concentrate now on the best method to measure precisely wire thickness based on

pixel-based analysis of a wi'.e in a digital image. The principal objective is to obtain

better than one pixel precision from an input image.

An info¡mal presentation ofthe idea of measuring the degree that one set ofpixels

is approximately a subset of anothel set (this is usually called a measure of rough

inclusion [1-3] and will be defined in section 3.2.) is presented in this section. In rough

set theory, diffelent forms of what are known as rough membership functions are used to

measure rough inclusion [4]. Rough set theory [5] itself is briefly explained in Appendix

A. It is a particular fo'm of .ough inclusion measure that has been found useful in

solving the palticular digital image processing ploblem presented in this thesis. Befor.e

the folm of rough inclusion measure used in this thesis is presented, a brief description of
the digital image problem space is given in this section.

3,1, Setting for Measuring Rough Inclusion of Pixels

Given an image of a wir.e, we need to locate the edges of the wire. The easiest

way to do this is to identify pixels which belong ro the wir.e and to the sky. The edge of

a

t
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the wire in an image must be just between the other two sets of pixels, namely, ..sky"

pixels and "wile" pixels. However, some pixels are difficult to classify. That is, some

pixels are grey, so they may pal'tially belong to the wir.e and partially to the sky. Because

of this classification problem, the transition region between sky and wi_r.e in a digital

image can be wider than one pixel. Hence, the pixels in a digital image containing a

transmission line wire with the sky in the background can be labelled wire, partially-

tvitz-partially-sþ,, sþ. Therefore the problem of determining the diameter of a

transmission line shown in a digital image can be for.mulated in the following way.

Problem 3.3. For each pixel in a picture of transmission line wire, determine the degree

that the pixeì belongs to the wbe.

Thus, we are looking for a measure of r.ough inclusion of digital image pixels in wire-

pixels that is a measure p,,, : NI x N ---+ [0,1] , where the input space is a given picture. For

example, consider the picture in Fig. 3.1(b), where the input space is (nr,n)€N, and

nt,n e[0,255]), and ¡r," computes values close to 0 for pixels belonging to the sky and

values close to 1 for pixels belonging to the wÍe. A plot of r.ough inclusion

measulements fol each pixel is given in Fig. 3.1(a).

Fig. 3.1(a) Rough Inclusion Measulements Fig. 3.1(b) Image of a Wire

A space of all possible lough membership functions is huge. If we do not use any

properlies of a wile, we will have too many pal.ameters to set to make this problem

solvable. Therefore, we use the assumption, that we suggested earlier, namely,
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Assumption. A wi¡e is stl'aight in the entire picture and the sides of the wire are parallel.

In practice, this is a reasonable assumption, since a section of a digital image of a

deflected (bent) wile may be selected in such a way that the wile in the selected image is

approximately straight. As a result, there is a dfuection for which the measurement of
rough inclusion ofpixels in the set ofpixels representing a wile is constant. This makes

it possible to reduce the three-dimensional problem into a two-dimensional problem. This

results in a significant reduction of the search space used to solve the wir.e measul.ement

ploblem. Now, we can consider only the cross-section of a wir.e, because any cross-

section at any point is the same.

At this stage precision is crucial in measuring the inclusion of any pixel in the set

of wile pixels in the digital image of a transmission line. Hence, an extension of rough set

theoly is introduced to measure pixel inclusion in a set of pixels associated with a wi-re.

3.2. ô-mesh

In this section, a rather straightfo|ward approach to paúitioning sets of reals into subsets

of equivalent leal-values is introduced in the context of classical rough set theor.y [5].

This partition is called a ô-mesh, where ô is a parametel used to control the size of mesh

cells. To facilitate understanding of the basic approach to measuring the degree of
inclusion of one set of pixels in another set of pixels in a digital image, a very brief

introduction to idea of a ð-mesh is given in this section. A blief introduction to one form

of measure of inclusion is also incuded in this section. Measurements of pixel-inclusion

are carried out in the context of a ô-mesh.

To begin, let 15 = (U, A) be an infinite information system where U is a non-empty

subset of the reals 9l and A is a non-empty, finite set of attributes, where a : U -+ V, and

% c !l for every ae A, such that 9l=v=U% . Leta(r)>0,ô>0,xe gì (set ofreals)

and let la(r)/ôl denote the grearest integer less than or equal to a(.¡)/ô (also called the

"floor" of a(x)/ô). The parameter ô serves as a "neighbour.hood,' size on real-valued
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intervals. Reals within the same subinterval bounded by frõ and (t+1)ô are considered

indistinguishable because the elements belong to the same subinter.val ofreals.

Definition 3,1 Indistinguishabilit! Relstion. For each B g A, there is an associated

equivalence relation Inga,6(B) such that

Ins^,r(B)= {(¡,¡')e U2lYae n .la(x)t6 )=la(x')/õ l}

Proposition 3,1 Inge,r(B) is an equivalence relation.

The notation [-r]! denotes equivalence classes of Ing r,o (B). Notice that the parameter ô

in the definition of the relation Ing makes it possible to adjust the coarseness or
"granularity" of a partition of the subinterval of reals (universe) over which sensor

signals (or digital image pixels) are classified. The relation Ing was introduced in [6].

Further, partition Ul Ing ¡,5 (B) denotes the family of all equivalence classes of

relation Ing e,a (B) on u. This partition is called ô-mesh. The ô-mesh was introduced in

[7] and applied in [9-11]. For X c U, the set X can be approximared only from

information contained in B by constructi¡g a B-lower and a B-upper approximation

denoted by BX and EX , respectively, where ¿x = {Ì I trl;.,, s X} and

EX = {x 1¡x7i.," a X + Ø} . In cases where instead of using .r we use sensor reading y, we

create equivalence class consisting from all points for which sensor readings are'close'to

y and define trfl=kP, for such¡ thar a(x)=y.

Definition 3.2 Measure of Inclusion. Let S = (U, A) be an information system with

non-empty set U and non-empty set of attributes A. Further, let B c A and let tr,li be an

equivalence class of any sensor leading )¡ e 91. Let p be a measure of a set X e (J(q,

where (t (u) is a class (set of all subsets of Lr¡. Then the rough inclusion set function

¡tlþ :çt(U)-+tO.1l is defined in (3.1).
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ug,¡"¡= 
P(1^lli)

o(trJi)

folany Xep(U).

(3.1)

Definition 3.2 is slightly different from the original definition where the argument of the

rough membership function is an object x and the set X is fixed [1].

Example 3,1 Sample ô-mesh

For visualisation of a ô-mesh, see Fig. 3.2 that displays a sample ô-mesh provided by a

tool developed for õ-mesh applications. In the main panel of Fig. 3.2 is a plot of a real

function with a ô-mesh superimposed on it. The cell size can be adjusted independently

for each dimension. This makes it possible to control amount of information we want to

preserve in a ô-mesh cell before further processing. In this new space, each point

represents information collected fi'om other "equivalent" points in a ô-mesh cell, which

are close enough. In othef words, if in the original space any two points happen to be

placed in the same ô-cell, they are considered to be indistinguishable. Changing

parameter ô makes it possible to adjust the sensìtivity to any required level.
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Fig. 3.2 A ô-mesh Tool,
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Since the operation of applying ô-mesh causes to the loss of some information, it

can have a beneficial side-effect in the case of a noisy signal inasmuch as the signal

information contained in a ô-mesh cell can lead to a decrease in the noise level of a

selected signal segment. Although, there are several applications of the ô-mesh (see [9-

111), we go no further with ô-mesh theory in this thesis. Instead, we concentrate on the

use of a ô-mesh to conûol the noise level in making digital image measurements. That is,

we will adjust mesh cells in certain way to pleserve information we need and remove

unwanted noise.

Example 3.2 ô-mesh calculation

In this example we will see, step by step, how a ô-mesh is applied to the digital image

containing the wi¡e. This application is somehow similar to applying the low pass filter,

but the user has more parameters to contrcl the dilection in which information is

preserved. For this thesis, ô-mesh is considered as a structure based on

indistinguishability relation, which results in squale mesh cells. In general case, mesh

cells can have any particular shape, depending on chalacteristic of objects trying to be

distinguished. For wire edges, the most important factor is the sharp transition in one

dtection. Therefore, squares with one side longer than the other where used.

Tlree parameters contlolling ô-mesh are: vertical and horizontal mesh size and

the angle, by which the mesh is rotated. The angle together with selection of longer mesh

side decide where the process ofnoise reduction must be pelformed. consider the image

1Ìom figure 3.3. This is the input image of size 78 holizontal pixels by 44 ver.tical pixels.

The same image, after levelling the wire is shown on figur.e 3.4. The minimum pixel's

values have quite big variability and it is difficult to determine exact wire edges or the

exact wile angle.
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Fig. 3,3 Sample image with wire. Fig, 3,4 Simple rotation. Image size 78x44.

In figure 3.5, we see the same image, but after applying ô-mesh of such adjusted mesh

sides that in each di'ection we have 32 cells. As we can see, because of the fact, that the

ô-mesh was applied in dilection of the wir.e, image from figure 3.5 characterises with

high valiability in vertical direction and small variability in horizontal dhection. This

results in more precise measurement for measuring the w .e edges. On figure 3.6, we see

the same image, but this time in horizontal direction number ofcells is l6 and in vertical

32. We preserved information needed fol edge detection and removed the noise along the

wire.

+
I h¡gh variability

+

€
small variability

Fig.3.5 õ-mesh applied. Image size 32x32.8ig.3.6 ô-mesh applied. Image size 16x32.

The appropriate size of mesh cells were found during exper.iments. The system

was run with various setting and errol was calculated. The best setting were 32x32 fot

finding the angle and 16x16 fo¡ calculating angle criterion function.

Î hìgh variauitity

J

€
very small Ya.riability
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The superimposing of ô-mesh is done in two stages. First, all points belonging to

the same cells are localised. Then a point representing each cell is being calculated. In

order to introduce noise attenuating effect, the colour of Ìepresenting pixel is set as an

average of all pixel's colouls from given mesh cell. Then a new image, with smaller

lesolution, consisting fi'om these averaged pixels is created.

3.3. Linear Interpolation

It is usually the case that a digital image of a conductor is tilted (not horizontal).

Estimates of wile diameter and ice thickness on a tlansmission line are facilitated by

adjusting the angle ofa wile image such that it becomes horizontal (i.e., parallel with the

horizontal axis of a ô-mesh containing a wile image). Before we show how to find the

right angle, consider the process of rotating itself. In Fig. 3.8 a sample image and its

lotation are shown. The image is an example of a low-resolution image - the same kind

of low-resolution image we can expect to obtain from an avelage digital camera. In order

to see differences in rotation methods, considel the test image in Fig. 3.8(a) that contains

two wolds, one-stloke figures (circle and lines) and a regular grid of points. In the Fig.

3.8(b)we can see ¡esult of simple rotation of 36 degrees.

teså

;$rfrE$e

image partitioned
into equivalence
classes

find cells'
reprcsentants

Fig. 3,7 Overview of ô-mesh steps.

Fig. 3.8(a) Test image
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The quality in Fig. 3.8(b) is very poor. That is, rhe rotated words have become blurred

and hard to read, the perimeter of the rotated cilcle contains gaps and the rotated grid of
points is not uniform any more. In sum, the simple 36 degree rotation causes loss of
important info¡mation. In other words, after lotation we get the wile that is somehow

different from the one we started with. one way to solve the ploblem of image distortion

resulting fi'om rotation is linear interpolation. The basic linear interpolation idea is

presented in Fig. 3.9. That is, the colour of each pixel point is approximated from four

neighbouring pixels. In addition, the resolution of image is increased to yield more

differently shaded pixels. This increases computational time, but the final effect is

rewarding. For example, Fig. 3.10(a) contains an image rotation with linear interpolation

using the same information found in Fig. 3.8(b). The rotation in Fig. 3.10(a) preserves

dependency between pixels and does not result in the loss ofany valuable data,

o-^ b
"uur''''-.'''--.' ..,-''-

:i
ëti Ii¡j (",v)
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o,^..........-..-....... ....-........ '9rr

Fig. 3.9 Linear interpolation.

Let (x, y) denote plane coordinates ofconsidered rotated pixel, and let a, b denote

distances to the pixel fi'om original image, which coordinates are given ¡V fLxl,LV-J).

Let g0o, g0t, Bro, Brr denote values ofthe closest four pixels Ílom original image to a given

rotated pixel (x,y). In Fig. 3.9, f(x, y) computes the value of pixel (x, y) as a linear

combination of four given pixel values g0o, g0r, glo, g¡ weighted by their corr.esponding

distances to point (x, y).

The last step of rotation is superimposing a õ-mesh on top of the image. This

smoothes the image and removes the rest of disturbances introduced by rotation. The

final result is shown in Fig. 3.10(b). Alrhough rhe image in Fig. 3.10(b) looks blumy, this

9or

f (x,y): Bm * (B,o - Bm) al (Eot - gu)b *
(8* * 8,, 8ro- Bo,)ab
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has no negative influence. The most important thing to notice in Fig. 3.10(b) is that there

is less "noise" and the infolmation in Fig. 3.10(a) has been preserved. As a result a

smooth transition contains for us the same information as a sharp edge, but contains less

noise. The õ-mesh makes it possible to obtain more accuÌate image measurements. For

this reason, the ô-mesh has been found to be useful in the measurement of ice

accumulation on a transmission line.

Fig. 3.10(a) Linear interpolared image

3.4. Angle Detection

FiS. 3.10(b) Image inside ð-mesh

Angle detection is done in two stages. An overview ofthe angle detection method

used in this thesis is given in Fig. 3. I t.

Fig, 3,11 Flow Chart for Wire Angle Detection Algorithm.

using last trvo angles
predict better

approximation

repeat until criterion <0.01
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Fi¡st, a rough approximation is calculated and then during an iterative process

adjustments are made to yield an acceptable value. It is assumed that a wfte can be

situated at all angles except vertical. Angles in the range -45 to 45 degrees (with respect

to horizontal direction) ale preferable. Since positive and negative angles result in the

same image distortion, after detecting the angle its absolute vaìue is used for further

calculations,

The frst step in discovering the conect angle of rotation is to obtain a rough

approximation of the angÌe using a ô-mesh. We need to find a rotation angle with

tolerance of few degrees (relative to the horizontal). The application of a ô-mesh with 32

x 32 cells results in a very precise estimate of the desi¡ed rotation angle. This ô-mesh size

is set regardless ofan original image size. on the one hand, it has been found that 32 x 32

cells is enough to obtain the required accuracy and, on the other hand, each cell in a32 x

32 mesh contains on average more than one pixel. This results in some noise attenuation.

The next step (from Fig. 3.11) is to find minimum values of pixel brightness in

each column. From assumption that in the picture we have only wir.e and the sky and by

selecting pixels of smallest values of pixel brightness we are sure, that we identify pixels

belonging to the wile. At th.is point it is not impoÌtant that each time we can choose a

diffelent point of wire cross-section. In a digital image of transmission line, the wire is

very thin compared to its length, hence assuming it is actually one dimensional does not

introduce extla enor. Chosen points, form a piecewise ìinear function y=f(x) on an image.

In order to find main direction dete¡mined by them, a linear last square fit (or linear

regression) is applied to apploximate this function. Linear regression formula is given by

3. i.

h'(x) = tmean + S*, (x - x,n*n) / S"* (3.1)

where xn.*n is the mean of the x-values, y,*n is the mean of the y-values, S,* is the

variance of x-values, and S*, is the covariance between x and y values, while x and y

denote horizontal and vertical image coordinates respectively.
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The angle between horizon and linear. regr.ession is obtained by computing the

inverse tangent of S*, / S^". In Fig. 3,12 we can see a sample plot showing a function /
made of minimum values ofpixel brightness and its linear regression.

Fig.3.12 Example of Measuring Wire Angle

In the second step, we determine exact angle of rotation of a wil.e image such that

the wire is parallel with the horizontal axis of a ô-mesh. To do so, we use more complex

methods to determine the position of a wire. Because of the previous step, namely,

finding rough approximate of the angle, we can use the fact that a wi'e is approximateìy

levelled. what follows, is that vertical di¡ection of an image corresponds to cross-section

of the wfu'e and the holizon of the image corresponds to the di¡ection along the wi¡e. The

information (i.e., pixel's br.ightness deteÌmining the degree that they belong to a wÍe)
which is important for us is oriented along vertical axis.

As mentioned before, vertical cross-sections are very similar to each other.

Valiations between them are caused by the noise and the angle between the wi¡e and

horizon. we try to use only one soul'ce. Noise carries no information and is removed by

averaging inside a ô-mesh cell. In order to preserve information in the ver.tical direction

and attenuate noise in the horizontal direction, mesh cells ale designed with a r.ectangular

(instead of squared) shape with the horizontal side being longel than the vertical side of a

mesh cell. By looking at the cross-sections of an image, we can see that the shift of the

shape ofthe wile depends on the angle (see Fig. 3.13).

510 15 20 25 30
p¡xel count
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Fig.3.13 Rotated Image After Fir.st Step And Two Shifted Cr.oss-Secrions.

The greater the angle the biggel the shift and, in particular', if the wfue is totally levelled

all cross-sections should overlap. This observation is very important and we use it for our

calculations.

Before comparing c¡oss-sections, we have to select points that belong to the wh.e

ol its close neighboulhood. From the right side of Fig. 3.13, we see that the extreme left

and light parts of the plot are tending to the value 255. This is caused by white spots

introduced by rotation. white spots due to rctation yield no infolmation and can only lead

to faulty calculations. We select impoftant points (ones tvith above average rough

inclusion values) by lemoving pixels belonging to white spots. With the r.emaining

points, we l'epeat the same algor.ithm again. This 'þurging', procedure makes it possible

to remove all outsiders, leaving only points fi'om the wil'e or points (pixels) in the wil.e-

sky neighbourhood. After that, the difference between cross-sections lying at the same

distance fi'om the centre is computed. The two extteme cross-sections in Fig. 3.13 are

distoÍed by the rotation process, and are not taken into account. Thus, from 12 cross-

sections, after taking away two and performing subtraction, we obtain only five cross-

sections to consider. Then a mean value is computed that results in only one aver.aged

cfoss-section. A plot illustrating this idea is shown in Fig. 3.14. Next, a middle point is

found, and all non-zero points on each side of it are separ.ately summed. The difference

between these two sums provides a c¡itel.ion for deciding on the angle of a wir.e image.

39



brightness

p¡xels count

Fig. 3.14 Averaged Cross-section. Fig. 3.15 Angle Crirelion Plot.

The proposed algorithm lequir.es many steps, but the resulting wir.e-angle decision

criterion is a quite precise determinant of the exact wire angle. In Fig. 3.15, the plot

shows decision criterion values with respect to the wte angle. The maximum and

minimum values in Fig. 3.15 are 90 deglees apart. Yet the most interesting property is its

behaviour close to zero. In the range +10 degrees from an angle for which wire is

levelled, decision criterion behaves like a linear function. This makes process of finding

zero much easier. riy'e do not need to search blindly using only the sign of the criterion

function. Instead, we can predict the roots of the criterion function knowing its two

values. If we assume that the specified region represents a linear function, then from two

points in this subplot we can calculate the slope and find out for which angle the plot

crosses zero. And of course, we can assume this because of the first step, namel¡ step

where we used minimum values of pixel's values and linear regression to estimate the

wìle angle, which assures us that present angle is in the r.equired range.

This apploach in preparing a wir.e image for measurement turns out to be very

effrcient. That is, it has been found with experiments with hundreds of wire images that

only four to five iterations are requiled to find angle for which the criterion value is

smaller than 0.01. The resulting angle is exact with a precision of t{.06" (this has been

checked for seven different palts of the same image). This means that we are able to

measure this angle with a precision of less then one pixel!

The importance of the ô-mesh can be observed in the behaviour of the criterion

function. If we did not use it, this function becomes more ¡andom and its linear part

8

6

4

angle
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becomes twice as small. conside' Fig. 3.16, decision criterion crosses zero for. angle

close to 20 degrees, however decision criterion's values can be approximated by linear

function only in a range 15 to 25 degrees. In plot segments for angles close to +90

deglees from point whele decision criter.ion crosses zetor namely, -10 and 50 degrees,

decision criterion function is very unpredictable. This causes longer time of convergence

and sometimes even divergence, when the first two guesses ale outside linear part.

Corresponding "bumps" in the Fig. 3.15 have different characteristic. When ô-mesh is

used A plot of decision criterion has "bumps" located at apploximately equal distances.

Most plobably this is result of some properties of the image, not just noise. For this

reason ô-mesh proves to be effective tool in combating noise without destroying

undellying plocess.

Fig. 3.16 Angle Criterion Plot Without ô-Mesh.

Observed Wire Thickness

In this section, we assume that the image has been rotated and contains an exactly

leveled wfu'e. Next task is to determine the exact edges of a wile. As in the previous case,

we ale interested in a much greater accuracy than one pixel, Therefor.e, we need to use

information contained in pixel values, not only in their location. Since wir.e edges ar.e

20
angle

3.5.
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parallel to the hotizontal sides of an image, we can stop considering the image as a fwo

dimensional data set. The data can be averaged columnwise. As result, we get a function

describing the average light intensity in each row of pixels in the image. plot of this

function is shown in Fig. 3.17. For the sake of simplicity the plot on rhe righr side

couesponds to image on the left, but after. removing rows influenced by white pixels

introduced by rotation (see the right side of Fig. 3.13 for comparison). This shows how

this function differs from an ideal membership function we would like to see. All pixels

belonging to a wi¡e should have approximately the same brightness. But in the plot we

observe phenomenon, which was mentioned earlier. That is, the wir.e is lit up by the sun

and part of it is lighter than the rest. Notice, also, that ther.e is small paft of the image

covered with shade. on the plot, the corresponding pixels have small brightness values

(approximately 80). Notice how this influences border paÍs. We can see that there are

two kinds of transition. The right w.ile-to-sky transition in Fig. 3.17 is as expected. That

is, dark colours become gladually lighter and lighter until they have some level

characteristic of the sky. obviousty there is some point where colour is bright enough to

denote sky. But the left wi|e-to-sky transition in Fig. 3.17 is different. That is, the wte
close to the edge is much darker resulting in higher conÍast. And there is an interesting

peak right in the middle of the transition. we did not expect this to occul., since there is

no reason to see pixels bl.ighter than the sky. All we see on this pictule is wi¡e and the

sky, but some ofthe pixels obviously do not belong to either wire or sky. So what caused

this phenomenon?

The answel to this question is digital camer.a itself as the source of the unexpected

pixels. In ordel to produce shatper pictures camera uses the same trick as the human eye.

That is, whenever there is a quick and flat transition between colours of different

blightness, the camera adds some brighter (or darker') pixels to make this transition more

visible. Since the human eye does it, pictu'es which already have it look nicer to us.

Thelefore, this algorithm was implemented in digital cameras and its result is seen on the

left transition.

To sum up, in ordel to detect wir.e edges we have to be familiar with some

chalacteristic features of the wi¡e cross-section such as uneven wile brightness or two

different kinds of wile-to-sky transition.
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Fig. 3.17 Rotated Wir.e Image And Its Columnwise Average.

In what follows, we repeatedly refer to the image and plot Fig. 3.17, because it has been

found aÍtel many experiments that this figure typifies what has been found in ar.riving at a

method of measure wile diametel.s in hundreds of pictutes of transmission lines.

Next, we staÍ looking for edges by localising the middle of a wir.e. The simplest

way to do this is to find the darkest point or the point with the smallest pixel brightness

value flom the given image cross-section. Now, assume we would like to detect the left

edge fli'st. we find the filst local maximum on the left side of the minimum, This does not

have to be the maximum made by camera, but just some distortion in the sky. Thus, we

check if this maximum is the one we are looking for. If it is, it will be characterised with

a lalge to moderate late of change in brightness around the point r.epresenting a

maximum. If this is the case as in our example, we consider this point to be the exact left

edge. Now, we turn to the right side of the wir.e image and repeat the process again. But

this time the situation is more complicated. The first maximum we find is located within

the wile (e.g., around 40 on x axis on the r.ight side of Fig. 3.17). But this is nor the

transition we are looking for because this is the middle of a wire, not the wir.e's edge.

Therefore, we perform a check if the first maximum value is above average. If it is not,

we discard this point and start looking for anothel one. The next point we find on the

right side of Fig. 3.17 con'esponds to an x value of ar.ound 78. We check the new

maximum in the example on the right side of Fig. 3.17 and discover a differ.ence between

maximum and its neighbouring points is less than or equal to l. This means that the slope
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is too flat to be part of the wire-to-sky transition. It is again not the point we need. Even

so, the information we gained during this search is not useless. That is, we have located a

closed interval, where the function is monotonic and one end belongs to the w.he and the

second to the sky. A tlansition between wile and sky must be somewhere in this interval.

Deciding which point exactly corresponds to the edge of a wile image is a ver.y difficult
problem. For sule, we cannot use some fixed value, since it is dependent on the aveÌage

picture blightness. A better approach is to look only at the relative change in brightness.

That is why in the next step a vector of differences between adjacent points from a given

interval is calculated (this corresponds to finding the derivative for.the continuous case).

This vector of differences is constructed from the end belonging to the sky till the point

where a value bigger than some th¡eshold is found. This tlu'eshold indicates that the

brightness is changing fast enough so we aLeady reached the wi'e-to-sky transition part.

This point is denoted on the right side of Fig. 3.17 by a square.

Using this algorithm we can detect two points denoting wire edges and calculate

observed wile Thickness by simply finding the distance between them. At the beginning

of this section, it was mentioned that the aim was to estimate a wire diameter with

accuracy better than one pixel. The algorithm plesented in this section allows us to
measure thickness with a precision up to one pixel only. In order to detect observed whe
Thickness we have to rotate the wi'e. But .otation is performed simultaneously with

oversampling and linear interpolation. The resulting rotated image can have a few times

better resolution. Thus the frnal resolution with respect to the original image is better than

one pixel, as we expected.

The second conìment addresses a problem of how close we ar.e to the real wire

edge. This algorithm tells how to f,ind it, but does not justify why it is correct. In one case

we trust in camera operations, in second we use some pre-selected th.eshold. Fortunately,

we do not have to exactly know the real wire edge to get a good estimate of wir.e

thickness (i.e., diameter). The more important issue is that we are always at

approximately the same distance fi.om the wi¡e when pictures ar.e taken (e.g., pictur.es

taken from a vehicle parked in the same place or by a pelson or robot stopped in the same

place each time pictures are taken). That is why the estimated wbe thickness is called

observed wire Thickness, It is assumed that what is seen in an image does not have to
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conespond exactly to the actual wile. But it is possible to convelt the obser.ved thickness

into actual wire size with low error'. In other words we allow only for. a linear dependency

between observed and actual wire sizes and this assumption satisfies the proposed

approximation method (i.e., "measuring r.oughness").
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4. System Calibration

We have described a method to measure Observed Wire Thickness. Thus, we are

ready to compute the Scale Factor SF fiom Eqn. 2.4, namely,

ollZ = SF* tyirc thichrcss = f (aperturc, location, magnítude ) * wirc thickness

Recall that the Scale Factor depends on tlx'ee variables, namely aperture, locatíon and

nngnitude. Here, we show how to combine this knowledge to pledict the correct scale

Factor for an unseen wile image.

Locatíon is nothing else than the angle between the wir.e and horizon. We know

how to find it using the method described in the previous chapter (i.e., see section 3.4).

The nngnitude pa'ameter in Eqn. 2.3 controls the size of the observed wire Thickness,

which is also known. If we take a calibrating set of wile images containing pictures with

wiles of known diameters, we get many tuples (locatiorr, nngnirude, Scale Factor). For

mole details on how to obtain these tuples see chapter 5. This information can be stored

in a lookup table. However, we cannot take all possible pictures from all possible angles

and distances. Therefore, we have to use a lookup table only as a sour.ce of guiding

points. We try to apptoximate Scale Factor values between known points using some

interpolation algolithms.

In a Fig. 4. 1 a block diagram of the proposed measur.ement system is shown. This

measurement system consists of two separate subsystems. They ale replesented by two

gtoups of veltically connected blocks. The subsystem shown on the left side ofFig. 4.1

is responsible for calibration. The subsystem shown on the r.ight represents a user's end

module responsible for pelforming measulements of ice thickness based on information

retrieved during the calibration process.

Fi¡st consider the calibration module. Input data consists of a calibrating set of
digital images l'epresenting transmìssion lines. It is assumed that input images wer.e pre-

processed priol to caliblation. Therefore, they contain only a wire and the sky in the

backg'ound. The fust step is the calculation of the exact angle between the wil.e and the

holizontal axis ofthe image. This is block (1) in Fig. 4.1. Implementation of this stage is
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based on the use of a ô-mesh, linear regression and a decision criterion devised specially

for solving the problem of determining the relative wire angle. The exact angle is crucial

to the next step (2), where observed wfe Thickness is found. The detecting wire

thickness algorithm is based on ô-mesh, minimum-maximum pixel's brightness

comparisons and derivatives. The thi¡d box (i.e., box (3) in Fig. 4.1), denotes important

logically step. A knowledge fi'om an image, namely, observed wire Thickness measured

in pixels, and background knowledge, namely, known real wire size in millimetres, is

combined. This results in a tuple of two independent variables <OWT, angle> and one

dependent scale Factor.sF. The foulth box in Fig. 4.1 represents the output table, whe¡e

each row consists of three just-mentioned numbers.

User module's goal is to measure ice thickness accumulated on powel

transmission lines using information from the image a of wi¡e with known diameter,

partially covered with ice. The fir'st two steps of the right-hand sequence of blocks in

Fig. 4.1 are identical to those used in the calibration sequence in Fig. 4.1: the exact angle

of a wte with respect to horizon is calculated and the observed wire Thickness if
measured. Box (5) repÌesents approximation of scale Factor value for pr.eviously

calculated ow and angle. Boxes (6), (7) and (8) denote tlu'ee different algorithms which

may be used to find the best apploximation of scale Factor. These three algorithms are

Nearest Neighbourhood, Gouraud shading and the improved Nearest Triangle Gour.aud

shading, respectively. In the last step (9), measured obselved Ice Thickness combined

with the calculated Scale Factor gives actual ice thickness.
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INPUT: Calibrating set of wire

Create a matrix of tuples MFS:
(OW, angle, SF)

INPUT: Set of wire images

From matrix MFS and calculated
(Ol{7, angle) find ,lF using:

Find thickness using
Scale Factor and O/I

Fig. 4.1 Measurement System Block Diagram.

The main approach to approximating SF values for unknown points is to
interpolate them fi-om nearest known points. ,tF is a tluee dimensional function ,!F =
f(OWT, angLe). This raises a question: how shall we treat OWT and angle values if their

mean values are different? If this is a case and, for example angle values are on average

five times bigger than ow, then by searching fo¡ the closest points we take into

consideration only points with the same angle, but diffe¡ent ow. This means that the

angle factor is five times less important than owr. Moreover, we do not have this

information a priori.

To obtain deeper insight into this pr.oblem let us see how the proposed method is

correlated to the physical process of taking a pictule. we should concentrate on

dependency between owr and wile angle, and shalpness of wire edges. It is tlue that the

sharper the image the smaller the tlansition on a wire-to-sky edge. on the othe¡ hand, the

wire angle has nothing to do with image sharpness. The edge can be shifted, but the angle

is still the same. This shows that there is some correlation between aperture settings and
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OIVZ. Depending on the apefture, importance of O\VT can be differ.ent, i.e., OI4IZ is more

trustworthy for sharper pictures and less for blurry pictures with the constant importance

of wire angle. Therefore, we need some scaling patameter to adjust magnitudes of OW
and the wfe angle. This parameter is called aperture and is the last one we need for Eqn.

2.3. Our final formula for Scale Factor is (4.1).

gP 
= flaperturcxOWT, angle) (4.r)

where aperturc is any real number. In the next subsection, an algorithm to find an

applopriate aperlure value is given.

4,1. NearestNeighbourhood

A very simple method for approximating the closest value for a new point is given

in this section.

Nearest neighbourhood method

Input: set of all points ZR, coordinates of given point p;

Output: nearest point to p;

Algorithm 4.1:

- fol each point in table TR find its distance to pointp;

- select point fi'om TR with the smallest distance to p;

A table ?R contains all calibrating points, namel¡ all known for the system

tuples: < OWT, angLe,,lF >. Yet in this algorithm only the first two variables are used.

Point p, is a two dimensional stluctul'e < owr, angle > and represents information about

new wire for which we want to find scale Factor, The word "distance" means standard

Euclidean distance in two dimensions using the fir'st two variables, that is owr and, angle

(for more information about metlics, see Appendix E.I). A C++ implementation of
Algorithm 4.1 is plesented in Appendix C.
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Assume we aLready have a matrix of Scale Factor.s (call it SF matrix). Given a

new observed lvire Thickness and angle of rotation to orient a wile image relative to the

horizontal axis of an image, we find a point ñ'om the sF matlix such that the point found

has the smallest distance to the new point. After f,rnding this point, we copy the value of
the Scale FactoÌ ofthe data point found. This algorithm is fast and easy to implement.

In Fig. 4.2 a Scale Factor map is plotted for the nearest neighbourhood method.

The dark colour denotes small sF values and white denotes big .gF values. There is a

noticeable dependency between observed wi¡e Thickness and Scale Factor, since a

pixels' brightness seems to gradually increase when moving to the right along horizontal

axis.

ô5 70 75

owT

Fig. 4.2 Scale Factor Map for Nearest Neighbourhood Method.

4,2. Gouraud Shading

The nearest neighboulhood method seems to work well if we have many

calibrating points. In that case, the error made by approximating the current point by the

closest value is small, Nevertheless, if the closest point is far away, the Scale Factor value

a
n
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may be quite different. The Gouraud shading method [2] was implemented to avoid this

situation.

Br.iefly, Gouraud interpolation defines a way to linearly spread vertex values

along a whole triangle. As input, we have tluee points on a plane and theil values (in our

case this would be Scale Factol values, though in most common application is light

intensity, there are even parallel implementations of this algorithm [3]). From simple

algebra, interpolated values can be calculated fol all points inside a triangle. Let Ap

denote the line connecting one of triangle vertices and point p. point A' is a point where

two lines þ and BC cross. Let A, B, C lepresent the vertices of a triangle. See

Appendix C for a C++ implementation of this algor.ithm.

Gouraud interpolation:

Input: three points with known values A,B,C, and a point p.

Output: value of point p as result of linear interpolation from points A,B,C.

Algorithm 4.2:

- find line þ and locate point A';

- from lineal interpolation from points B and C, find value for point A';
- fi'om linear interpolation flom points A and A', find value for point p.

The shading algorithm itself is not very complicated nor computationally

intensive. But in order to use this algorithm we have to create a net of triangles. Then,

while finding approximating value to any point, we have to locate a triangle enclosing

this point. The following is the algorithm and irs detailed description.

Partitioning into triangles:

Input: Set of all calibration points TR.

Output: value of point p as result of linear. interpolation from points A,B,C

Algorithm 4.3:

- cl'eate a list of all possible lines LLTR between points fi.om TR;

- sofi LLIR in ascending order.with respect to thet length;
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- initialise list of non-crossing lines LNCL with the fust line fi.om LLTR;

- remove fi¡st line flom LLIR.

- for each line L in LLTR

- if L does not cross with all lines ÍÌom LNCL

- add L to LNCLI

A'=a9 +G-u)B
p = d2A+ (l- d)A'

"=ffi'"=ffi'

Fig. 4.3, Gouraud Shading.

FiÌ'st a list of all possible lines between caliblating samples is created. Then the

lines are sorted in ascending older with lespect to theil length. This step assures us that

the created triangles have possibly short sides. There is no unique partition into triangles

for any set of points in a plane. From all possìble paltitionings, the one that contains

small triangles was chosen. Now, only lines which do not closs with any other lines are

selected. First the smallest line is chosen - it is for the time being the only element of a
list of triangles' sides. Then each line flom a list of all lines is checked if it crosses any

line flom list of triangles' sides. If not, it is moved to the list of triangles' sides. At the

end, the triangles'sides list is a par.titioning of the whole space of pairs (OWT, angle) on

triangles (see figure Fig. 4.4). This list is created only once. It is part of the system and

does not need to be ¡ecalculated for every new testing point. However, this list must be

created again ifa new point is added to the calibrating list.
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Fig. 4,4 Sample tr.iangle net for Gur.aud shading algor.ithm

The second step in the Gour.aud method must be applied for. every test point. A

triangle, made from points flom table of all calibrating points, containing the test point

must be found. In order to do this, a straightforward ploperty of vertices of a tr.iangle is

used, namely, veftices are the only points, which connected with a given point do not

don't cross any line from the list of tliangles' sides. Tlu'ee points having this properly are

chosen for Gouraud shading.

In Fig.4.5, a map ofScale Factor values is plotted. Again, the dark colour denotes

small SF vaìues and white big sF values. Notica that the transitions between points are

smooth compared to nearest neighbourhood method. The only exceptions, wher.e

transition is not continuous, can be found on edges and outside the convex hull of all

caliblation points. These discontinuities are caused by Iimitations of Gouraud shading

algorithm. using Goulaud shading is impossible to approximate scale Factor values for

point, which is located outside any triangle made from any caliblating points. However., it
is possible to find some other techniques to extend information from three vel.tices of
tliangle to whole two dimensional plane. Nevertheless, in author's opinion, profits gained

from implementing these additional approximation techniques are not worth with

comparison to increased complexity. Therefore, for points outside any triangle made from

calibration points, which is equivalent to the fact of being outside convex hull of al1

54



calibl'ation points, nearest neighbourhood method is used. Fol more information about

convex hulls see Appendix E.II.
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Fig. 4.5 SF Map for. Gour.aud Shading

Nearest Triangle Gouraud Shading

The Gouraud shading method of selecting triangles has one disadvantage in the

study of wire images with or without ice covering. consider a point denoted by a star in

Fig.4.6(a).

Fig, 4,6(a) Triangle for Gouraud Shading Alg.

a
n
s
I

4.3.
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A triangle used for Gouraud shading is denoted by big green dots. From the figure it is

apparent that the chosen triangle is not the best one, A little bit lower and on the left from

a star is anothel point, not used as a calibrating point (see Fig. a.6@)). The information

coming from this point is more reliable for the star, since it is located much closer than

lowest vertex being used. This algorithm uses the same Gouraud shading, but utilises a

different algorithm for finding the surrounding triangle. That is, for. every point, the best

triangle is found. what makes this task difficult, is that given a testing point, it is not

enough to find the thee closest calibrating points. The selected calibr.ating points can

form a triangle, which does not contain the given point.

Find closest triangle:

Input: Set of all calibration points TR, point p;

Output: the closest triangle n1, n2, n3, which encloses point p;

Algorithm 4.4;

- make a list of distances DIST between all points in TR and point p;

- sort TR in ascending ordel of distances from DIST;

- select n¡ first points, which enclose point p;

- if n¡<>3

fi'om n¡-1 first points ñ'om TR, find n2 fllst points, such that these n2 points and

point n¡ enclose point p;

- if n2<>2

from n2-1 first points from TR, find first point n3, such that points nr, n2

and n3 enclose point p;

Algorithm 4.4 starts with creating a list of all calibrating points ordered in

ascending distances fiom given test point. A set of n1 filst points, which create a closed

figure that contains given test point is found. Since n¡ is the smallest number of points

having this propefly, we k¡ow that n¡{h point must be included in final triangle (this is

impossible to make smaller triangle, which surrounds this point, and any triangle having

this property and not build from n¡-th point will have at least one ver.tex located further.

than nt). Ifnl is equal to tlx'ee, we ah.eady have the best triangle. If not, we have to find
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only two points from nr-l flrst points of the previously found figure. To do so, we repeat

the same algorithm, but a figure which must sur'¡ound the test point consists of points

having indices 1 to n2 and point n¡, where n2< n1. Again, the point with index n2 must be

included. By repeating the same procedure once more, we find the lâst vertex and can

perform Goulaud shading using these three points. As in the previous Gouraud method

(algorithm 4.3), if a test poinr is located outside the convex hull of all calibraring points,

the nearest neighbourhood method is used.

Figure 4.7 shows a Scale Factor map for algorithm 4.4. The dark colour. in Fig.

4.4 represents small scale Factor values and white big sF values. Notice, transitions are

not smooth as in previous case. This is caused by sudden change of vertices used for the

triangles.

Fig. 4,7 Scale Factor map for nearest triangle Gouraud shading.

Ice Measurement

After the detailed description of all measurement system methods just given, we

now return to the original problem and attempt to measure ice accumulation (thickness)

on a transmission line. Consider a sample image from Fig. 4.8. The image in Fig. 4.g

shows a wile covered with thick ice on one end (see chapter 5 for detailed descriptions of

4.4.

57



experiments with measurements of ice on a whe). Knowing only wte thickness we try to

measure the thickness of ice accumulation. To do this, we use a database of 279 pictur.es

made of the same wire, but fi'om different distances and different angles. Assume, the

system is calibrated, which means that a Scale Factor map is ready to use.

The f,ust step is to obtain from the image the observed wi¡e Thickness. For this

purpose we use only small part of the image containing only a bare wir.e. we level it and

measure the owr. Knowing the angle and owr we approximate the sF value using any

of described earlier methods. This makes it possible to convert pixels into real measure

units. The last part of the measurement plocess is to measure ice thickness in pixels and

convert pixels into m.illimetres. when measuring ice thickness precision is not as crucial

as when fnding owr. In the experiments described in this thesis, whe thickness is

roughly three times smallel than ice thickness. This means that any emor made when

measuring a wile is multiplied by tlu'ee when measuring ice. Therefore, there was less

attention paid to the part of the measurement system responsible fol measuring ice. In a

more comprehensive ice measule system used by line-maintenance engineers, the ice

thickness estimation part of the system being descl.ibed in this thesis, would take into

account a full range of ice thickness possibilities relative to the owr for a particular

transmission line. The inrent here is to demonstrate the feasibility of making ice

accumulation estimates using wi_r.e images.

Thele are two possible ways to estimate ice thickness on a wi'e. The ñrst step is

rotation of the image of the ice-laden wi¡e to a more or less hor.izontal position. Then the

user has two choices. The user can select measuring points manually using horizontal

bars, or the user can use the same algorithm used to find the owr at a point indicated by

vertical bar. using the tool developed as part ofthe work for this thesis (see section 5 for

a descr.iption of this tool), a measurement in pixels is automatically converted into

millimetres and displayed.
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5. Experiments

Calibration of the transmission line ice measutement (TLIM) system requires a

large database containing sample images. In this chapter, we discuss some methods for

preparing digital camera images of bare and ice-coated wir.e, processing the images and

validating the information obtained from the images.

5.1. Data preparation

In early stages of the experiments using the TLIM to compute the observed wire

thickness (OWT) and observed ice rhickness (OIT), a small copper wire (diameter = 1.7

mm) was used (see Fig. 5. 1(b)). The small dimensions of a wire made it possible to

simulate actual outdoor winter conditions in a common kitchen refrigerator fieezer

compal'tment, since the cold chambers in the chemistry and Microbiology departments

were not available. In o¡der to covel the copper wire with ice of r.equir.ed thickness a

special procedur-e was used. A wir.e was enclosed in a small tube made from aluminum

foil. The tube was closed at one end. To make the tube waterproof, aluminum foil was

covered with hot wax warmed up with a candle, The plocess of tightening a tube with a

wax is shown in Fig. 5.1(a). Aftel covering the tube with wax, it was filled with water.

Then a wi¡e was placed inside the water-filled tin foil tube and then the water-immersed

copper wire was put in the fi.eezer until the water \¡r'as frozen. Cold wax is very fragile

after freezing, hence there were no problems with cracking frozen wax covering the ice

and removing the covering after removing the ice-clad wi¡e from the freezer. In Fig

5'l(b) is shown a schematically cross-section ofa wi¡e inside a tube with ice covered

with wax, and the process of cover.ing it with wax and the final result,
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Fig, 5.1(a) Plepaling Coppel Wir.e. Fig. 5.1(b) Ice-coated Coppel Wile

In more advanced stages of experiments, two kinds of power. system transmission

line wile were used (see Fig. 5.3). The wil.e samples wer.e provided by the line

maintenance depaltment at Manitoba Hydro and al'e the two most corrìrnon types of wires

used for transmission lines. The thicker wire in Fig. 5.2 had diameter 30.9 millimetres

and the thinner one 9.1 millimetres. samples ofthe types ofwhe used are shown in figure

5 2' In o.der to create ice covering on the smaller diametel wire, the same procedure

used as for copper wire in Fig. 5.1 was used again for the Manitoba Hydro wir.e (see Fig.

5.6). However, the 9.1 mm wile requir.ed much more water than the copper wir.e in Fig.

5.1 to cleate a thicker ice ìayer'. For this reason, the construction of the aluminum foil
tubing used to encase the wire was stronger and required an additional design feature,

namely, a wile cage surrounding the transmission line wte to hold the wir.e in the middle

of a foil tube (this wile cage is shown in Fig. 5.6).

Fig. 5.2 Wires Used in the Project.
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calib¡ation of the transmission line ice-thickness measurement or TLIM system

was pelfolmed using the thinner, 9. 1 mm wi¡e. This means that the system created using

wile of this thickness is able to measure ice thickness only relative to 9.1 mm wir.e. In an

industrial version of the TLIM, the system would be caliblated for each of the types of
transmission line wÍe and measurement reference objects such as insulators. For

experiments discussed up to this point in this thesis, a wire of known diameter has been

used as a ftame-of-refelence object in computing the obselved Ice Thickness (o1z). This

frame-of-reference object does not have to be a wi¡e. A frame-of-reference object can be

any object (i.e., a tlansmission line insulator) of known diameter, which is likely to be

seen when taking pictures of transmission lines. Transmission line insulators are coÍrmon

and would make excellent fi'ames-of-reference in an industrial version of the TLIM
system (see Fig. 5.3 for two examples).

Fig. 5.3 Insulators as Ftames-of-¡eference

Fol the purpose of creating a calibrating set,279 pictures were taken, all under

laboratory conditions from a dìstance of approximately 2 metres. In order to simulate real
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conditions where access to transmission lines depends on their location and results in

various distances between camera and the actual wire, seven different digital camera

zoom settings were used. since all of the pictures of tfansmission line wi¡e were taken

from the same place, zoom change was followed also by a change of light pr.oportions in

the scene. Diffelent levels of brightness was compensated by automatic camefa aperture

mechanism. In addition, for each picture the camera was rotated to reflect a variation in

angle, which can be expected when pictures of tlansmission lines are taken. Therefore,

data obtained in the experiments are considered to be sufficiently diverse with respect to

angle, distance and camera aperture values. sample pictures made for this experiment are

shown in Fig. 5.4.

Fig, 5,4 Sample Wire Images from Calibrating Set.

In order to create a map of Scale Factor values, additional knowledge about

conect wh'e thickness is required. To veri$.' that it is impossible to find the Scale Factor

only from a wire image, consider see what would happen if we do not have any other

point of refelence. Suppose, for example, we have an image with a wi¡e of known

diameter only. By using the methods described earlier, namely, levelling the wire image,

we can quite plecisely measufe its observed wire Thickness. However, this is the only

infolmation we can learn fi'om the image. It tulns out to be impossibìe to connect ow? to

some variables, called in this thesis with one word - nngnitude, describing wi¡e size in

the image, namely, distance between wile and the camela, digital camera zoom settings

and resolution. Magnitude is somehow included in a owr measurement, but with no

additional point of refe¡ence it is hidden for us, and we cannot extract it (it is similar to a
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case, where we would like to make a boat move, without any interaction with elements of
the outer world like water, air, magnetic field, etc.).

The point of reference is another. object with known diameter, which must be at

the same distance as the wi-re. In this project, for better acculacy, the point of reference is

thirty th'ee times larger than the wi¡e (shown in Fig. 5.5). It is important to note that we

can measure the point ofreference in an image in pixels. By dividing the known size of a

reference point or what we referred to earlier as a fi'ame-of-reference by the number of
pixels, we obtain a thity three times more precise scale Factor than using the wire only

as a reference point. The information gleaned from the point-of-refe¡ence is used to

calibrate the TLIM system. The real scale Factor used in the system is calculated by

dividing point of reference's ,lI' by the wÍe's ,!F.

Example 5.1. Suppose we have an image showing a wile of diameter 9.1 millimetres and

a point of reference of known size 3O9 millimetres (see, e.g, Fig. 5.5). Assume we use a 4

times scaling to improve resolution. Image measu'ements show that the wir.e is 3.75

pixels wide and the point of reference is 79.5 pixels wide. By dividing 79.5 pixels by 309

millimetres we obtain

SF..r".en." = 79.5 / 309 = 0.257 pixels/mm.

Similarly,

S4u¡."= 3.75 / 9.1 = 0.412 pixels/mm.

Therefore, final scale factor for this aperture, magnitude and angle equals

SF(aperture, nngnitude, angle) - .iF."¡...n"" / SF,u¡," = 0.257 / 0.412 = 0.62

If we apply this info'mation to a picture with a ice-coated wire made with a similar

apefture, magnitude and angle and we want to measure ice thickness, all we have to do is

measure ice thickness in pixels. Then we compute the wire scale Factor (found from the
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same picture) and after multiplying it by 0.62, we obtain the final scale Factor which is

multìplied by the ice measure in pixels to gives us an ice measure in millimetres. one of
the 279 sample images used to calibrate the TLIM system is shown in Fig. 5.5.

Fig, 5.5 Sample Calibrating Image.

5.2, Implementation

Fig, 5.6 Aluminum Foil Alound Wire.

The entire TLIM system has been implemented in Matlab (this can be easily

changed to visual c++ or Java SDK for a laptop such as an IBM Thinkpad or Java Micro

for a PDA (personal digital assistant) such as a Compac i-pack to be used by line_

maintenance engineers). Note that the data acquisition poûion of the TLIM system (i.e.,

image captules) can be caried out by either a stationary or mobile robot as part of robotic

inspection system for powel tlansmission equipment (lines, towers, insulators,

transformers, and so on). The version of the TLIM system described in this thesis is only

a prototype of a full-featured system that can eventually be used in an industrial setting.

The Graphical user Interface of the TLIM system presented in this thesis uses some

features fi'om version 6 of Matlab, so this version is required fol best performance. There

are two windows available fo' the user of the TLIM system. one window is for.

preparation of data images, and the other window is used to perform measurements.

Figules 5.7 and 5.8 show images of these windows with numbers denoting available edit

dialogs and buttons.
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Fig. 5.7 Main Window of Wire Thickness Measuring Software.

First, an image must be loaded into the TLIM system using button (2) in Fig. 5.7.

The filename of an image can be typed into the dialog box (1). Two types of fìles are

recognised by the TLIM system: JPEG and internal program files with extension

.raw.mbw (mole about this format is explained in the part devoted to clipping images).

Loaded image can be clipped by pressing button (3) to open the clipping window. After

retulning from the clipping window, we see a pre-processed image in the main display.

The edit dialog button (4) sets the required scale, This scale number must be an integer

and controls how many times an image is going to be zoomed duling all operations.

Higher values of the scale number result in mole p.ecise measurements, but also longer

computational time.

Button (5) in Fig. 5.7 calls a procedure, which determines the angle between wire

and horizon. This angle shows up in the text dialog on r.ight fr.om the button (5) after

calculations are done. The next step is to calculate the observed wire Thickness (owr)
using the previously calculated angle. An appropr'.iate function is called by clicking
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button (6). The result is displayed in the dialog box below button (6). In the dialog box

(7), a user is supposed to type the actual wir.e thickness in millimetres.

Pressing button (8) loads the TLIM system inro memory. The TLIM System

constructs a table, which contains Scale Factors for each image used in calibration, and

coffesponding pairs <observed wi¡e Thickness, angle>. This information is used to

approximate the Scale Factor for.new samples. Dialog (9) in Fig. 5.7 defines the angle by

which an image is rotated after pressing the button next to it. By default, the wir.e image

rotation angle value is copied fr'om dialog (5) after a wile's angle is found. Nevertheless,

because of uneven ice shape a usel may wish to type into dialog (9) a differ.ent angle to

level the ice. Listbox (10) is designed to allow the useÌ to select an algor.ithm, which is

used for approximating Scale Factor values. Possible box (10) alternatives are:

none (none system, result is given in pixels),

mean value (.çF is just average of all S.F's in the system),

nearest neighbourhood,

Gouraud shading and

nearest triangle Gouraud shading.

Finally, measurement is taken using buttons (11) or' (12). After selecting "Horizontal

measure" a big cross controlled by a mouse appears on the main display (this is shown in

Fig. 5.7). In this mode, a user uses only the horizontal bar.. The user is supposed to place

the bar on one edge of measured piece of ice. After clicking the left mouse button, an

identical clossed bars show up again. The horizontal bal is supposed to be placed on the

second edge of the wiÌe. After clicking the left mouse button again, a calculated ice-

thickness measure in millimetres is shown in text dialog (13). Both horizontal and

vertical lines stay on the main display and changing the approximation algorithm (10)

causes immediate update of the ice-measufement results. An alternative measurement

method "vettical measure" r'equiles that the usel select only one line. In this mode the

usel'uses the vertical line to make particular ice-thickness measurements. The program

detects ice bolders on the cross-section created by this line and displays the result in

millimetles in dialog box (13).

a

a

a

a

a
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Fig. 5.8 Window for Clipping Images.

Figure 5.8 shows a window designed for. image clipping. This window can be used for

two separate tasks: preparation of calibration data images or clipping areas of interest

found in the main window. Next, a brief description of the functionality of the image

clipping window in Fig. 5.8 is given.

Dialog boxes (14) and (15) in Fig. 5.8 are used ro rype the name ofan input file. If
in (14) only a numbel is typed, it is automatically extended to the full filename used by

the SONY@ CD Mavica Digital Still Camera. Clicking (16) toads the selecred file. A
number typed in (14) is increased by one and dialog box (15) is automatically updated.

The purpose of this procedure is to speed up the process of clipping many images. After

an image is loaded, the user is allowed to use any of the standard Matlab "plotedit menu"

tools. In particula¡ using (23) activates the magnifying box, which is an easy way to

select an interesting wi¡e image area. A button (17) returns the actual image size in a

dialog box below it. In order to comply with the requilement that a wile cannot create a

wider angle with the horizon than 45 degrees, a button (18) causes the whole image to be

rotated by 90 degrees.
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The output file name is conrrolled by dialogs (19) and (20) in Fig. 5.7. The

mechanism of assigning filenames to numbers is similar as with input file names. Saving

a file in .raw.mbw fo'mat is perfo'med by clicking (2i). This fo'mat was created

specially for this project. It consists of a foul bytes header: two bfes for the image width,

two for the image height, and the raw data of image ordered row w.ise. Button (22) is

invisible in this mode.

If the clipping window is opened from the main wìndow (using button (3)), then

there is a different procedure concerning the handling of input and output files. If ther.e

was any image opened in the main window, it is also opened in main display. This fi.ees

the user from typing the same filename twice. In addition, button (22) returns to the main

window and automatically reopens a clipped file in its current dimensions.

5.3. Practical examples

In this section we will see some more practical applications of TLIM system. We

use pictures of power transmission lines covered with ice form ice-stor.m, which took

place in Quebec duling January, 1998. These pictules were scanned from illustrations

from a book (see [1]). Thelefore, we show application of TLIM system when input

images were prepaled with equipment diffe¡ent than digital camer.a.

As we said in previous sections, in order to ptocess any images with ice

accumulated on wile, we need have access to database of wile images to calibrate the

system. For images from ice-storm in Quebec we have only two images of wir.es with no

additional data. Therefore, we make some assumptions, which allow us to perform ice

thickness measurements. However, for industrial applications, actual data must be used

to calibrate the system.
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Fig. 5.9 1998 Quebec Hydro Tr.ansmission Lines [3]

consider the image in the Fig. 5.9 taken fl'om [3]. It shows several transmission

lines covered with thick layer of accumulated ice. what makes Fig. 5.9 different from any

previously considered images, is that the background is not plain. Instead of the sky we

see tlees, leafs and other wires. In addition, the compression level ìs set high resulting in

red and green spots. All of these factors make it very difficult to retrieve the information

about ice thickness. For the purpose of this experiment a small area (denoted by dashed

line on Fig. 5.9) was selected. It contains part of the transmission line on which we want

to concentrate. A digital camera was not focused on a selected image fragment, but the

wi¡e is the thickest in that part, resulting in more information than in any other location.

The wi¡e fi'om selected part in Fig. 5.9 is assumed to be 9.1 mm thick. Therefore,

a database built for calibration purposes on a 9.1 mm transmission line wire obtained

from Manitoba Hydro can be used. In Fig. 5.10 an enlarged selected part fi.om Fig. 5.9

is shown. This image cannot be plocessed by the TLIM system without any modifications

for two reasons. Fi¡st, in the background other wi¡es are visible, whereas input images for

the TLIM system are assumed to contain only one wire. second, the background is darker
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than the actual wire. This makes it impossible to distinguish pixels belonging to a wìr.e

from pixels belonging to a tree in the background. Therefore, prior to processing by

TLIM the image from Fig. 5.10 was pre-processed manually by removing all details from

the background and changing the backg'ound colour to white. As we can see from Fig.

5'10 neighbouring pixels for the ice'ight below the wire are brighter.than corr.esponding

pixels above the wìr'e. In ordel to avoid this situation, when pixels belonging to a ice

could lead to faulty decisions (fol example, darker pixels above the wir.e could be

classified as a part of wire) two different shades of background were used. The r.esult is

shown in Fig. 5. 1l.

¡tg. 5.lU wue Uovered With Ice. Fig.5.11 The Same Wire as in 5.10,

but With Removed Background.

The image in Fig. 5.11 contains the same information about the wire edges as in

Fig. 5.10' but has no additional and useless for details for input to the TLIM system.

Indeed, in Fig.5.12 is shown the wire from Fig. 5.11, but perfectly levelled by the TLIM
system.

Fig. 5.10 Wile Covered With Ice.
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In Fig' 5.13 is shown the wfu'e's cross-section producad by TLIM with denoted points,

detected by TLIM as wùe edges. Notice, because of different blightness of the

background, wile edges are located at different grey levels. This is a very rale situation,

since the sky characteristically contains a small frequency of changes. Nevertheless

TLIM has no ploblems with the finding cor.rect points fo¡ wÍe edges.
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After the system is loaded we can staú taking measurements. As we can see from

Fig. 5.14 it is leally hard to determine upper edge of a wfue. This problem results from a

camera improperly focused on a wfue. The final estimated measul'ement of the ice shown

in the 1998 wile image is 25.65 millimetres.

To obtain deeper insight into the problem of validating the calculated thickness let

us concentrate on soulces of error'. There are thú'ee main factors, which could cause ice

thickness measul ement eltor:

bad approximation of Scale Factor;

not plecisely locating of upper ice edge;

not precise locating of lower ice edge.

Let us start fiom the last two factor.s. Using the TLIM system a thickness of the

boundary region for possible locations of uppel and lowel ice edges was calculated (see

Appendix A for more information fr.om Rough Set Theory). They are 3. 1 and 1.5

millimetres long, respectively (see Fig. 5.14, where boundar.y regions are denoted by

holizontal yellow lines). Assuming the wol'st case scena.io, we could measure ice

thickness 3.1/2+1.5/2=2.3 mm too small or 2.3 mm to big. Thus, the error made during

measuring ice thickness is apploximately +2.3 mm and the range for.possible ice widths

is 23.35 mm to 27.95 mm.

Now, consider the error caused by estimation of the Scale Factor. From

experiments performed for this thesis, we know that the scale Factor approximation does

not introduce eri'ol gl'eater than 0.5vo of wbe thickness. Taking into consideration the

range of possible wire widths we have obtained so far and the erlor caused by bad

apploximation of the Scale Factor (assuming the worst case scenario), we get the new

nnge 23.23 mm to 28.09 mm. (we get ir from 23.35x99.5Vo = 23.23, and 27 .95* 100.5Vo

= 28.09)

Therefore, the measurement of 25.65 mm for the 1998 ice-covered transmission

line can be 2.42 mm too long or 2.44 too short, which gives an error rate of +9.5Vo.

considering that picture in the Fig. 5.9 was not taken for purpose of this measurement,

this is a quite good result. For images dedicated for purpose of measuring ice, namely,
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pictures focused on ice with better resolution and the sky in the backgr.ound only, an even

smaller errol rate is expected.
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6. Performance

In this section we discuss some results showing TLIM system performance.

Most experiments were performed on bare wire only, since this value is the base of all

calculations and has the most influence on the whole system. system performance for

estimating ice thickness was also tested. For validating ice measurements, actual ice

thickness was measured with a micrometer and compaled with the value returned by the

TLIM system.

For all measurements a database consisting of 279 images containing 9.1 mm

transmission wile was used as a calibrating set. In order to improve precision, a scale

factor equal to 4 was used. Fol test purposes, wiles of diameters 9.1 and 7.3 firm were

used. To make the validating process more reliable a cross-validation technique was used.

For each test, a database set was divided into caliblating and testing set. To measure

system accuracy with respect to the size of the caliblating set, nine different calibrating

set sizes wele used, namely, containing 23, 56,..., 251 images, which cor.responds to

10vo,20vo, ..',90va of entire database. Each test was performed several times, each time a

calibrating set was randomly generated fiom the database, and the results wele avelaged.

The testing set was always created fi'om all remaining images from the database after

selecting a calibrating set. To sum up, a string c1000(281251) denotes the following

testing plocedure:

1. A calibrating set consisting of 28 images from279 images is chosen.

2. A testing set consisting from all 251 remaining images is chosen.

3. The euor using the calibrating and testing set is calculated.

4. The testing procedure is repeated 1000 times from point l.
5. All partial results fi'om point 4 are averaged.

6,1. Scale Factor Approximation

We begin from tests per.formed on a transmission line wi¡e only. For this test, we

were trying to calculate the coffect scale Factor fi'om an image of a wir.e. since all
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pictures contain a frame of reference, we can calculate the scale Factor much more

precisely. The enol is the absolute value of the percentage difference between scale

Factor calculated fi'om a wi¡e based on TLIM system and calibrating set, and the optimal

one found using a fiame ofreference as in (6.1)

Error = | 100*( SF1¡-¡¡a / SF¡,o^"o¡,,¡.- 1)l Vo (6. i)

The percentage in (6.1) can be directly converted into millimetres, provided we know the

wi¡e diameter.

Fi'st, consider the influence of the apelture parameter on the system error.. The

purpose of aperture is to maintain a balance between ow and the angle of a wire

relative to the horizontal during the process of approximating the scale Factor. value. It is
supposed that thele is an optimum value, which reflects a correlation between these two

factors resulting in the best performance. In the following discussion, the aperture

denotes the relative proporlions between owr and, angle. For example, for aperture equal

to 1, there is no scaling of ol4¡1 values. Both, ol4¡z and angle are used in any of the thr.ee

implemented algorithms, namely, nearest neighboulhood, Gouraud shading and nearest

triangle Gouraud shading, as they were calculated f¡om the image. For higher apertur.es,

OWT ls more impoftant. For example, if aperture equals 10, all OWT values are

multiplied by i0 before any calculations.

1.5

È
o)

0.5

0r
0

Fig. 6.1 Percentage Error vs, Aper.tur.e Value.

Log of aperture
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In Fig. 6.1 a plot showing the dependency of the approximating Scale Factor error

on apelture is shown. Aperture values are shown in a logarithrnic scale, the calibrating set

consisted of 223 images, which is 80vo of all available images. Each value comes from an

average of 500 trials - c500(223/56) (cross validation 500 times, calibrating set 223

images, testing set 56 images). Error is given as a per.centage. Fig. 6.1 shows the plot

obtained for the nearest neighbourhood algorithm, but is representative fol all thee

algorithms and will be discussed in general and conclusions drawn from it will be

generalised into the Gouraud shading and the nearest triangle Goulaud shading

algorithms.

From Fig. 6.1 we can see a strong correlation between aperture value and the

system error, namely, the bigger aperture the smaller the error. This means that the more

we trust ow values and neglect the angle, the better the result we obtain. This is an

unexpected result, however very optimistic. Independence from the angle means that we

have only one variable on which Scale Factol depends. The search space simplifies to

one dimension onl¡ making the system simpler and faster. In other words, TLIM is

angle invariant! The user does not have to be concerned about the angle of a camera nor.

the angle ofthe transmission line wi'e when taking the pictures. This is a very important

finding, since it greatly simplifies the future use of the TLIM system by transmission line

maintenance engineers using the same kind of camera used fol this research.

I would rather not generalise angle independence to systems where pictures come

from different sources (i.e., different than the digital camela used in this project). As we

have mentioned before, apefture depends on digital device properties and can be different

fol other devices. one can imagine a situation where there is a different number ofpixels

in the horizontal and vertical dilections and this is not properly cotrected by camera (or

computer') software. In this case, the same wfue will have different thickness depending

on the angle relative to horizontal pictule edges. In order to correct this problem (if it
arises with a different camera), the angle must be included in calculations of the Scale

Factor. Therefore, the TLIM model includes angle as a parameter that the scale Factor

depends on, This makes the TLIM unive¡sal and flexible to ensure its independence fiom

used hardware,
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Let us now compare the result from Fig. 6.1 with a Scale Factor map for the

nearest neìghbourhood method. consider Fig. 6.2, where the hor.izontal axis denotes

owr values, the vertical axis denotes absolute values of the angle and the scale Factor is

denoted by different colouls of points (dark denotes small .iF values and white denotes

big .9F values). The fact that the approximation of Scale Factor is independent of angle

means that on the plot in Fig. 6.2, colour will not change along the vertical axis. Indeed,

plot shows some regularities. All points in the same colum¡ seem to have the same

colour. The fact that the colour borders are not aligned vertically comes rather from the

fact that we use a small number ofdata than fr.om some dependency on angle.

40

35

30

20

15
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5

OWT

Fig. 6.2 Scale Factor Map for Nearest Neighbourhood Alg. (aperture g.3333)

Fig. 6.2 shows a Scale Factor map for apefiure equal to 8.3333. In Fig. 6.3 the

scale Factol for aperlute equal to 1000000 is plotted. colour edges have vertical

di¡ection resulting in better class.ification than in previous case.
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Fig, 6.3 Scale Factor Map for Nearest Neighbourhood Alg. (aperture 1000000)

A dependency between aperture and calibrating set size is shown in Fig. 6.4. As

expected, the bigger calibrating set size the smaller the error. Also the bigger.aperture the

better accuracy (as discussed eallier'). This scheme is identical for Gouraud shading and

nearest tr.iangle Goulaud shading algorithms.

-t'

6

5

4

3

2

1

0
23

- -.i'

- -.1'

Fig. 6,4 Calibrating Set Size vs. Aperrure (c1000)

79



Fig. 6,5 Enor vs. Calibrating Set Size for Nearest Ne.ighbourhood

Fig. 6,6 Enol vs. Calibrating Set Size for. Gour.aud Shading

no &mesh

ô-mesh

100 150

Fig. 6,7 Error vs. calibrating set size for nearest triangle Gouraud shading
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In Figs. 6.5, 6.6 and 6.'1, plots of enors calculated with and without ô-mesh are

shown. The apeÍure was set to 8.3333 in all these figufes and the resu]ts come from

1000 trìals on average. As expected, error is many times greater (approximately 7 times)

for the TLIM system where ô-mesh was not used. This is caused by the fact that the noise

is not controlled in the non-application of the ô-mesh resulting in very poor angle

estimation. There is also no significant diffe¡ence between the r.esults for different Scale

Factor approximation algorithms. This fact confllms the observation that this huge error

was introduced in a stage proceeding approximation phase, namely, in the image

processing stage.

Let us now turn to a comparison between the th.ee approximating algor.ithms,

namely nearest neighbourhood, Goulaud shading and nearest triangle Gouraud shading.

The image showing all ttu'ee plots is shown in Fig. 6.8. In order to get the best results,

tests for Fig. 6.8 were performed with 50 c¡oss validation cases, with the aperture equal

to 106. The enor was measured for Scale Factor approximation. For 9.1 mm wire, 1 Zo is

loughly one tenth of a millimetre.

14

..\

--ç- nearesl
- o- Gouraud shading
--o - nê¿rest lr

\ _.\

0.8

04

0.2

150
calibrating set s¡ze

Fig. 6.8 CompaLison of Ttu ee Appr-oximating Algorithms
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As we can see the nearest neighbourhood method gives the best result regardless

of calibrating set size. This is an unexpected result. It suggests, that the approximating

Scale Factor values between points results in worse accuracy than just returning the scale

Factor value of the closest point. A dependency of the scale Factor. only on owr can

also indicate that constlucting triangles, which spread in the angle di¡ection, takes into

account points, which are too far from the point of interest. A hypothesis drawn is that

for a system where hardware used fol taking pictures is rotation invariant (as like in this

case), then the nealest neighbourhood method outperforms the Gouraud shading methods

only if there are enough calibrating points. In order to verify this hypothesis, additional

tests with vely small calibrating set sizes were performed. In Fig. 6.9 the results of these

tests are presented. The performance order is now reversed. For small sets, the nearest

neighbourhood method retulns the worst eflor. This means that when calibr.ating points

are spread, "shading" approximation is much mo¡e efficient than taking the .iF value

from the nearest point. It is also important to mention, that in industr.ial applications, the

calibrating set will cover only a small percentage of all possible testing samples. we can

only take a small numbe¡ of pictures when calibrating the system and r.eal life situations

can lead to a huge number of possible transmission line wiles relative to camera

locations. Thus, the Goulaud shading model has potential possibilities for great

performance in real life applications.
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Fig. 6.9 SI' Approximation Error for. Very Small Calibrating Set Sizes

A table 6.1 contains numeric values plotted in Fig. 6.8.

6.2. Ice Measurement

In the remaining part of this chapter, we show one more example of ice

measurement. For this purpose, a wiÌe of diameteÌ of 7.3 millimetres was used. The wire

was covered with ice using method described in section 5. An image of a wire coated

calibr./testing SF average neírest n Gouraud sh n.tr. G. shading

25t/28 4.6616 0. 1709 0.2841 o.4'721
223/56 4.6436 0.208 r 0.3129 0.4'735
195t84 4.5598 0.2182 0.3238 0.4804
167lt12 4.6924 0.2609 o.4113 o.5770
139/t40 4.6742 0.2807 o.4061 0.58 r7
I12/t67 4.6349 0.3300 0.4845 0.6611
84/195 4.6475 0.3235 0.5128 o.7263
56/223 4.6668 0.5703 0.7358 o.9404
2E/2.51 4.7268 0.9080 r.0493 l.2t89

Tal¡le 6.1 Percentage Error for TLIM System

83



with ice was taken in the same laboratory conditions as images for the calibrating set, e.g.

f'om app'oximately 2 metres. The system was built based on 279 images showirg 9.I
mm tlansmission line wire. Measurements were taken from th¡ee different points on the

ice covering the wfe (see Fig. 6.11). simultaneously, the real ice thickness was measured

using specialised ruler (see Fìg. 6.10). Ice thicknesses estimates returned by the TLIM
system we.e compared with actual wile thicknesses. The'esults are shown in Table 6.2.

As we see, the error is very small, i.e., the e¡ror in TLIM system ice thickness estimates

does not exceed I millimetre.

measurement
location

actual efTor

21.45 26.85 37o

2 31.3 30.33 3.2 7o

3 29.3 28.34 3.4 Vo

IceTable Measurement Error for Image from Fig. 6.11

Fig. 6.10 Measurement of Ice Thickness
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7. Conclusion

In this thesis, a system for measuring ice accumulated on power transmission lines is

presented. The principal goal of this research has been to accomplish the task using

information contained only in digital images of power transmission wires covered with

ice. This new approach combines rough set theoly with classical methods from digital

image processing.

The design of the measurement system is divided into two stages. F.ir.st, a fi.ame of
reference is processed, which is in this case a bare wile, to find the appropriate scale

factor to convert pixels from an image to millimetres. This stage's main part is based on

the use of a ô-mesh tool. The ô-mesh is an extension of Rough Set theory. In the

context of solving the ice-accumulation measurement problem, the ô-mesh is used to

combat the noise contained in a digital image. practical experiments proved the

usefulness of the õ-mesh as a tool for filtering digital images.

The main objective of the f,u.st stage in measuring ice-thickness was to extract

f.om a wile image information about the exact location of wi'e edges. The goal was to

obtain better quality than one pixel. Therefore, techniques utilising pixel colour in

addition to pixel location have been used. The ô-mesh has been combined with a linear.

interpolation method to detect the exact angle of the wire with respect to the hor.izontal

image axis. Then the wire was levelled in p'epa'ation for the next stage in the

measurement process.

In the second stage in measuring ice-thickness, wir.e edges are detected. The ô_

mesh, min-max search and derivative processing are applied to make sure that for each

image the same point representing an edge is detected.

The exact wile angle and proportion of actual wir.e edges extracted fi.om the

image wire edges are used as parameters for caliblating the ice-measurment system. This

makes it possible to extend knowledge fiom a relatively small caliblating set into any

case that can happen in industrial applications. The disclete to continuous case was

extended with the use of the Gouraud shading algorithm. Non-conventional usage of this

classical image processing algorithm in a form of pattern recognition is made possible by
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introducing two additional algorithms for partitioning the parameteÌ space into set of
triangles, As comparison of these efficient, but complex methods with a simple nearest

neighboulhood algorithm is also presented.

The implemented system has been tested on set of 2j9 digital images taken by a

digital camera, as well as on images scanned from photographs of ice-covered

transmission lines during the 1998 Eastern canada ice storm. The error in estimating the

scale factor to conveÌt from pixels into millimetres is very low, not exceeding o.Svo for

caliblating set sizes bigger than 50vo or ar available data. Measuring of ice resulted in a

3Eo errcÍ for images taken by a digital camera and a l\vo error for scanned photographs.

This is considered to be a good estimation and a big step forward in the design of a

robotic approach to inspecting and maintaining power transmission lines systems.

Future work should be concentrated on developing the automation of the pre_

plocessing step of digital images as well as detecting edges of ice. In the present version

of the ice-measurement system, input images can contain only a transmission line wire

with uniform sky in the background. Therefore, any image containing other details must

be manually processed. usage of coÍrmon digital image processing methods like

th.esholding and the Hough transform can make this process enti.rely automatic. In
addition, using a mathematical model for a wi¡e hanging under the influence of gravity

and image warping can extend even more the class of images suitable for the system, For

example, these new methods can help make the system entilely invariant of the location

of the digital cameta and the transmission line wire.

A second problem that requfu.es more future improvement is detecting the ice

edges. The principal objective of this thesis has been to build the core of the system for

image based distance measulements. Therefore, the focus was set on frame-of-reference

objects (e.g., wire, insulators) to facilitate measurements, Nevertheless, ice is partially

transparent (in a degree depending on tempelature) and identifying its edges is totally a

separate problem. This problem needs more study and can be a good starting point for

future work in making this system even more accurate,
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Appendix A (Brief Introduction to Rough Sets)

This Appendix gives a brief overview of some fundamental concepts and features of
rough set theory that are important to an understanding of the under'lying concepts in the

approach to pre-processing digital images for input to the TLIM ice-measurement system.

Rough set theory provides a suite of methodologies useful in the numerical

characterisation of imprecise data [1]-[2].

Set Approximation

For computational reasons, a syntactic reptesentation of knowledge is pr.ovided by r.ough

sets in the fo¡m of data tables. Infolmally, a data table is represented as a collection of
rows each labeled with some folm of input, and each column is labeled with the name of
an attribute that computes a value using the row input. Consider, for example, a small

table reflecting measulements of complexity of two software modules ml and m2 using

LOC (Lines-Of-Code) and McCabe's cyclomaric complexity metr.ic V(G). If a decision

column is added to the table, then the data table is called a decision table (see Fig. A.l).

Fig. 4.1 Sample Decision Table

In Fig. 4.1, for example, module ml has 276 lines of executable and commented lines of
code and V(G) is equal to 43. In this case, the recorded number of changes is 10. In

effect, this table encodes knowledge about metrics data for two software modules ml and

m2 and the con'esponding changes made to these modules. Formally, a data (information)

table is reptesented by a pair' (U, A), where U is a non-empty ,finite set of objects and A is

a non-empty, finite set of attributes, where a..(J -+ V. for every a e A. For each B c A,

there is associated an equivalence relation Ind¡(B) such that
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Indn(B) = {(x,!) e u2 | Va e A. a(x) = ¿(¡'¡¡

If (.r, -r) e Ind¿(B), we say that objects .r and .r' are indiscernible fi.om each other relative

to attributes fi'om B. This is a fundamental concept in rough sets. The notation [.r]¿

denotes equivalence classes of Ind¡(B). Furthe¡ partition u/Ind¡(B) denotes the family of
all equivalence classes of relation Ind¡(B) on U. For X c U, the set X can be

apploximated only fi'om information contained in B by constructing a Blower and B-

upper approximation denoted by g,r' and FX respectiveìy, where gx = { r | [r]¿ c _y ] and

¡J = {r l[x], n x *Ø]. A lower. approximation gx of a set X is a collection of objects that

can be classified with full certainty as members of X using the knowledge l.epresented by

attributes in B. By contrast, an upper approximation Sxof a set X is a collection of
objects representing both certain and possible uncertain knowledge. Whenever Dx = EX ,

the collection of objects can be classified perfectly, and forms what is known as a crisp

set. In the case EN is a proper subset of BJ, then the collection contains objects that

cannot be classified with certainty, and the pair. (Ur, a] ¡ is called a rough set.

II Rough Membership Set Function

In this section, a set function form of the traditional rough membership function was

introduced in [3].

Definition .{,1 Let S = (U, A) be an informarion sysrem, B c A, and let [ø]¡ be an

equivalence class of an object u e U of Ind¡(B). A set function t1:: (J ((, -+ i0, ll
defined by (A.l).

- card ( X r¡luf \u'(Xl- ' "ø'¡,,,rnt-- (A.l)

for any X e (J (Y), Y c U, is called, a tough rnentbership function. A. r.ough member.ship

function provides a classification measure inasmuch as it tests the degree of overlap

between the set X and an equivalence class [u]s. The form of rough membership
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function in Def. 4.1 is slightly different fiom the classical definition [3] wher.e the

argument of the rough membership function is an object u and the set X is fixed. For

example, let X 
"*,". 

e {Ex,a_x} denote a set apprcximation. Then we compute the degr.ee of

overlap between X a,.,", and. [u]s in (4.2).

,,8,v ' 
cardl ltJ1ñx a',',"o,)

l'u \" B,r,t,a\ '¡ - --¡aro-Clú¿f (4.2)

m Attribute Reduction and Decision Rules

Knowledge representation in the form of a discernibility matr.ix was fiÌst proposed by

Skowron and Rauzer' [4]. Informally, a discernibility matrix is an n x n table that

distinguishes one input object from another based on attribute values. This representation

has many advantages, since it enables efficient computation of reduced attribute sets

called leducts and decision rules. An approach to finding a subset of attributes (reduct)

with the same classificatory powef as the entûe set of attlibutes in an information system

is briefly described in this section. This also leads to a brief discussion about the

der.ivation of decision lules with minimal descriptions ìn their left-hand sides. In
de¡iving decision system rules, the discernibility matl'.ix and discernibility function are

essential. Given a decision table DT = (U, A u {d}), the n x n matrix (c¡) called the

discernibility matrix M of S (denoted M(DT)) is def,rned in (A.3).

c¡ = {a e A I a(x¡) l a(x¡)}, for i j = 1, ..., n. (4.3)

A discernibility function fDr relative to discernibility matrix M for a decision table DT is

a boolean function of m boolean var.iables oi,...,"i, corresponding to attributes âr, ..., âm

respectively, and defined in (4.4).

f o, (4,.', 
";,)= * ^ {v; I 

1 < i < t < n, e,, + Ø1, where ci 
{a- | a e cu} (4.4)
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The set of all prime implicants of fs determines the set of all reducts of S. A reduct is a

minimal set of attributes B E A that can be used to discern all objects obtainable by all of
the attributes of an information system. The reducts of a decision system Sd = (U, A u
{d}) colrespond to the prime implicants of the discernibility function for. That is, Inds(B)

= Inds(A). In effect, a reduct is a subset B of attributes A of information system S that

preserves the partitioning of the universe u. Hence, a reduct can be used to perform the

same classifications as the whole attribute set A of the information system. The set of all

reducts of s is denoted by RED(S). Let B g A. The set of all reducts in IS with attribute

set B is denoted by RED(B). A method used to find a proper subset of attributes of A
with the classificatory power as the enti'e set A has been termed attribute reduction [51.

Let ¡!, be a decision-relative discernibility function with respect to discernibility matrìx

M and decision table DT. This boolean function can be constructed from the

discernibility matrix for DT. The set of all plime implicants of /,1 defines the set of all

decision-relative reducts of the decision system S¿. In other wolds, precise conditions for

decision rules can be extracted from fri derived from a discernibility matrix M as in [3].
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Appendix B (Mathematics Related to the Design of the TLIM
System)

I Metrics

The nearest neighbourhood method results ale dependent on the metric used when

the evaluating distance between data points. usually, finding the right distance measure is

itself a separate question and the measure is the main factor influencing the resulting

accuracy. Let us begin by recalling the metric definition for the two dimensional real (lR)

plane.

Definition E.2 A metric M is a function IR x IR-+IR which for all vector.s a,b,c€lR2

satisfies the following conditions:

o nonnegativity: M(a,b) ) 0

o reflexivity: M(a,b) = 0 if and only if a = b

. symmetry: M(a,b) = M(b,a)

o tliangle inequality: M(a,b) + M(b,c) ) M(a,c)

The most known family of metrics parameterised by value t is the Minkowski metric

(called also the Le no¡m):

where r/ is the dimension of the space.

Here, I describe briefly only three members of this family, namely, L¡, þ and L_.

- L¡ known also as the Manhattan or city block distance. A distance is measured only

along dilections that ale parallel to coordinate axis

L*(a,b) =[å,",-o,r 
)
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- L2 is just the Euclidean distance, for the two dimensional real plane Euclidean distance

is given by a formula Lr(a,b) = ./(a, + b, )2 + (a, +b")2 .

- L- is the maximum of pr.ojections ofa and b onto each ofthe d coordinate axes.

In order to the visualise propefties of each metric, in Fig. E.1 a plot of a ci¡.cle of
diameter 1 in each met¡ic is shown.

Fig. E,1 A Chcle In Tlu'ee Differenr MetÌics.

II Convex Sets

The following definitions are cited fi'om [5]. convex set idea is used for description of
area of parameter space covered by particular approximation algofithms, namely, outside

convex hull of all calibrating points neal.est neighbourhood method is always used.

Definition 8.3 A set A is said to be convex if the straight line segment joining

any two poìnts in A lies entiely within A.

Definition 8.4

containing S.

The convex hull H of an arbitrary set S is the smallest convex set

97



m Chain Equation

The following theory may be useful in defining geometr.ical transformations to

straighten the wi¡e on processed image. This can extend the range of images capable for.

TLIM to process.

A mathematical formula describing a uniform and flexible chain hanging under

the influence of gravity is called the cater,dry. In orde' to desc'ibe the shape of the

chain, which could be in our case a wile, we have to define few parameters characteristic

for this wi'e. Let ', denote the unit length of a w e, s the total length of a wir.e, z the

span and å the sag (or deflection). If by x we denote the horizontal axis and x=0 denote

the middle point of the wfue, then ø, r . çL,L) a velociry of a wh.e is given by Eqn.22'
E.l.

H w.xy=-(cosh--1)
wH (8.1)

where rr is constant. If not all of the valiables are given, they can be found from the

following additional equations:

o S = (2H/w) sinh (wL/2H),

o L = (2H/w) sinh-' (,tn/2¡Ð,

. H=(d8h)(52-4h2).

In Fig. E.2 a plot showing a shape of a wir.e stretched between two points is shown.
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Fig. E.2 A Wile Shape Obtained From Catenary Equation.
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Image Warping

Image walping is an algorithm for applying geometrical transformations to digital

images. After finding the tiepoints using algorithm described in E.III we can use them to

straighten the wfe.

Geometrical transformations are used to r.emove (or.add) from an image unwanted

geometrical distortions (see, e.g., Fig. A.3). They are defined by selection a mesh of
points, called tiepoints. one set of tiepoints is located in the input (distoüed) image and

the second set in the output (conected) image. A mapping between input and output

images is going to be exact at specified tiepoints. If by.r and y we denote the coordinates

of the conected image, and by î and ! the coordinates of the input image, then the Fh.st

Older Warp equation is defined by Eqn. (8.2.

(Ð.2)

To find the eight unknown coefficients cb c2, ca, ca and dy, d2, fu, da we need to define

four tiepoints. The coefflrcients can be calculated from simple equations by rever.sing the

[î-c,x+rry+caxy+c4
li=dë+dry+d.ry*do

matrix A. Let

' li i iiil ' lil ' lll ' |;l 'lïl
then we can find coefficients c and d fi.om equations 4.3:

2=Ac + ç-A-tî and i=Ad- + d=A-'| (8.3)

It is also possible to select mote than four tiepoints. In such a case, it is impossible

to satisfy all the equations. A pseudo-inverse matrix is used, which minimises the mean

squared er.tor at all tiepoints. A pseudo-inverse matrix for a given matrix A is given by



Pseudo-inverse(A )= ( Ar A)r Ar (8.4)

Fig. E.3 A Transmission Line Wíe Bent By Means Of Image Warping.

Hough Tiansform

In this section we shortly describe a concept useful in preprocessing of digital

images before they can be plocessed by TLIM system. By using Hough transform, a

transmission line wi¡e can be identified on a picture containing more objects than just a

wire. This makes possible to exclude the user fi.om manual preprocessing of images.

The Hough transform is a mapping, which makes it possible to identify points

lying on the straight line [Error! Reference source not found,]. prior to applying the

Hough transform an image must be pleprocessed to make it consist of two lines. In other

words, the Hough transform can be applied only to black and white images.

The Hough transform main idea is to convert equations of all lines in the image

fi'om cartesian coordinates into polar coordinates. Then for each point from an input

image we constÌuct a curve given by the following formula:

p =.rcos(9)+ ysin(9)

pixelcount
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Points fi'om the cartesian coordinate system coüespond to sinusoidal curves in

the Hough space (p,0). Furthelmore, a line passing through any two points in cartesian

cooldinates is the clossing point for the corresponding two curves in the Hough space

(see, e.g., Fig. E.4). This makes it easy to identify points lying on a straighr line in an

input image. In the Hough space it is enough to identify points, where sinusoidal curves

intersect and find the corresponding to these clossing curves points from an input image.

Fig. E.4 Points In Cartesian Space And Corr.esponding Curves In Hough Space.

VI Rough Measure

In this section, we discuss more some propefties and examples of application of
rough measures intloduced briefly in chapter 3.

Example E.l rhe p in a rough membership function (rmf) can be interpreted as in

(E.6).

r",rxr=4fp= (8.6)

Proposition 8.2 The ¡mf i¡í u in (9.6) is addirive on U.
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Proof, Let X, YcU,andX¡Y=Ø

I ta,
ut" (x r'tYl - 'x"r.¡i -' j ta*

lrti

= p"' 1x¡ + pin qy¡

ra.u+ [ tax I ra, ! ta,
. r)^{rrl)--T 

t,t,
f rì:

It is also the case that l,,'óis a non-negative set function. Hence, by definition of a

measule (i.e., a measure is a non-negative, additive set function laD, p",t is a measure.

This fact has significance for more advanced work on measurement systems used to

inspect power system equipment such as transmission lines, wood towers, and othet

structures. That is, p,'ô provides the basis for an extension of the Lebesgue integral

(called rough integral), which has been shown to provide a fo¡m of ordered weighted

average [5] useful in a variety of applications. The rough integral has been used in

combination with the d-mesh and convex hulls in classifying sensor signals [6] and in

signal analysis [7].

Example E,2 Sample Sensor Signal Measurements

The integral in ((E.6) is evaluated relative to subintervals over which sensors a e B are

defined (i.e., subintervals wherein sensor signal measurements have been recorded).

Consider, for example, a sampling ofa real-valued signal in Fig. E.5 ñ.om a sensor.
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Fig. 8.5 Sampling Of Real-Valued Signal.

From a 24 second signal we are able to measure every odd 0.8 sec. period. our target

value is )=0.5 with tolerance õ=0.1. Therefore,

x = Utl + 1.6t,1.8 + l.6kl -

f r, r.Al , P.6,3.4)u[4.2,s.o]u ts.B,6.6l wt7.4,8.21u t9,9.8j u
[10.6, 1 1.4] v 112.2, 131 \-, [13.8, 14.6] v [15.4, 16.2] v [11 .0, 17 .B] v
[ 1 8.6, 19.4] o [20.2, 21] v [2L8, 22.6] w t23.4, 24.21

and then construct trì|'1,_.., as follows.

til,'1.,, = t1.32, 1.81 vÍ3.42,3.721v15.33,s.681 u t6.96,7.011 u

|1.22,1t.361 v [12.66, t2.9'1 ] u [ 1 3. 1 1, 1 3.69] u [ 1 5.4, 1 5.7 3] v
116.44,16.841u [19.31,19.6s] u [22.33,22.62] u [23.32,23.j4] v t24.s6,2s1

Hence,

xn tr'ti'I,., = tl.32, Lsl uîtr.zz,tr.36lvU2.66,r2.s7lv

[1s.4, 1s.73) u [19.3i, 19.4]v 122.33,22.61u [23.4,23.74]

Then the rough membership function value can be computed as follows.
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I
) tdt

,..r r li'l
lt¡< \^ ) = ----7- =

) tax
rrrS'1,.,

1.8 - 1.32 + I 1.36 - 1t.22 +... + 23.74 - 23.4

1.8 - 1.32 + 3.72 - 3.42 + ... + 25 - 24.56

A rough membership set function provides a classification measure inasmuch as it tests

the degree of overlap between the set X n (J(1, and equivalence class [y]i. A form of

rough membership set function for non-empty, fìnite sets was introduced in [3].

Definition 8.5 Let u e U. A non-negative and additive set function p, (r (X) -+ t0, ".)
defined by p¡4 = p'(fn[rJi) for fe @(Ð, and ), = a(u),where p'. (¿(Ð -+ t0, "") is

called, a rough nteasute relative to u/rna.¿(B) and ¡¿ on the ô-indistinguishability space

(X, (r (Ð, U/Inga,6(B)).

Proposition E.1 The rmf pfr is a measure of X in U relative to UIInga,6(B).

Bibliography

t1l R.C. Gonzalez, R.E. Woods, Digital Image Processing, prentice Hall, Upper.

Saddle Rive¡, New Jersey 07458, 2002.

l2l http://www.du.edu/-jcalvert/matl/catenar.y.htm

t3l J.F. Peters, S. Ramanna, M. Borkowski, A. Skowron, Z. Suraj, Sensor, filter and

fusion models with rough Petri nets, Fundantenta Infonnatícae, vol. 34, 2001, l-
19.

I4l P.R. Halmos, Measure Theory. London: D. Van Nostrand Co,, Inc., 1950,

t5l Z. Pawlak, J.F. Peters, A. Skowron, Z. Sur:aj, S. Ramanna, M. Borkowski, Rough

measures: Theory and Applications. In: S. Hirano, M. Inuiguchi, S. Tsumoto

t.96_ = 0.44
4.43

t04



t6l

t71

t8l

(Eds.), Bulletin of the International Rough Set Society, vol. 5, no. I I 2, 2001,

177 -184.

J.F. Peters, T.C. Ahn, M. Borkowski, V Degtyaryov, S. Ramanna, Line-crawling

robot navigation: A rough neurocomputing appr.oach. In: D. Maravall, D. Zhou

(Eds.), Fusion of Soft Computing and Hard Computing Techniques for

Autonomous Robotic Systems. Studies in Fuzziness and Soft Computing, J.

Kacprzyk (Ed.). Berlin: Physica-Verlag, 2002 [to appear].

M. Borkowski, Signal analysis using rough integrals. In: J. Alpigini, J.F. peter.s,

A. Skowron, N. Zhong (Eds.), Advances in Rough Sets and Soft Computing,

Lecture Notes in Artificial Intelligence. Berlin: Springer -yerlag, 2002, 218-225.

P.VC. Hough, Methods and means of recognizing complex patterns, U.S. patent

3,069,654. 1962.

105



Appendix C (TLIM System Algorithms in C++)

This appendix contains C++ codes for algorithms used in the project. In order to

simplify code, some intuitive sub-function's names wer.e used:

allocMatrix(a,b) - allocates memory for matrix of dimensions a by b;

sortMatrix(m,c) - soÍs matrix m, by its c column;

isln(p,STR,t3,t2=null,t l=null) - checks if point p is enclosed by a f,rgure made fiom

points: STR[0] ro STRlt3l and STRir2l and STRlrll;
straightfor.ward implementation checks the sum of angles ÍÌo

point p to given points

class point2D {

public:

double OWT;

double angle; ) ;

class po.int3D : public point2D{

public:

double SF; ] ;

I Nearest Neighbourhood

double distance(point3D q, point2D p)

{ return(q.OWT-p.OWT)^2+(q.angle-p.angle)^2;)

point2D nearestNeighbourhood(point3D *TR, int lenTR, point2D p)

{

double minDist = distance(TR[0],p);

int minPoint = 0;

for (int i=1; iclenTR; i++)

{ double d = distance(TRli],p);

if (d < minDisr)
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{ minDist = d;minPoint = i;}
)

return TRlminPoint];

I

II Gouraud shading

double Gouraud(point3D TR[3], point2D p)

{

// llnd the ffust line coefficents

double Al = TR[0].angle-p.angle;

double Bt = -p.OWT-TR[0].OU/T;

double C1 = -p.OW'T*A1-p.anglexB l;

// find the second line coeffìcients

double A2 = TR[2].angle-TR[1].angle;

double B2 = TR[1].OWT-TRI2I.OWT;

double C2 = -TRI t].OWT*42-TRI t ].angle*82;

// Iìnd crossing of these two lines

double D = A1*82-A2xBl.

if (!D)

// Outside tr.iangle! Return Nearest Neighbourhood value

else

double xc = (B 1*C2-82*Ct)/D;

double yc = (C1*A2-C2*Al)lD;

end

// find value for the crossing point

double I = sqÍ(pow(TR[1].OWT-TRt2l.OWT,2)+pow(TR[1].angle-TR[2].angle),2));
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double alpha = sqrt(pow(TRI i ].OWT-xc,2)+pow(TRI t]. angte-yc,2));

double beta = sqÍ(pow(TR[2].OWT-xc,2)+pow(TR[2].angle-yc,2));

if fabs(I-alpha-beta) > 1e- 10

// Outside triangle! Return Nearest Neighbourhood value

double C1 = (alpha*TR[2].SF+betaxTR[1].SF)lt;

// f,ind value for point p

I1 = sqrl(pow(TR[0].OWT-xc,2)+pow(TR[0].angle-yc),2));

alpha = sqrt(pow(TR[0].OWT-p.OWl2)+pow(TR[0].angle-p.angle,2));

beta = sqrt(pow(p.OWT-xc,2)+pow(p.angle-yc,2));

if fabs(I-alpha-beta) > 1e-10

// Outside triangle! Return Nearest Neighbourhood value

ref urn (alpha*C 1+beta*TR[0].SF)/I;

I

III Partitioning Into Tliangles

double *x***partitionlntoTriangles(point3D *TR, int lenTR)

{

// make a table of all lines

int ll - lenTR*(lenTR- i )/2;

double ***tofl = allocMatrix(3,11);

intk= 1;

for (int i=0; i<LenTR- 1; i++)

{ double rrt = TRlil.OWT, tr.2 = TRlil.angle;

for (int j=i+1; j<ltr; j++)

{ tofllO,k] = i; toflll,k] = j;
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rofl [2,k] = (tL1-TR[].OWT)^2+(tr2-TR[].angle)^21 ;k=k+1 ; )

]

// sol1 them in ascending ordel

tofl = sortMatrix(tofl ,3);

double * x*x *ntr = allocMatrix(5,11);

int lntr' = 0;

for (i=0; i<ll; i++)

{ double xl = TRltofl[0,i]l.OlVT, yt = TR[tofl[0,i]l.angle;

double x2 = TRttofl[1,i]l.OWT; y2 = TRlrofl[ 1,i]l.angte;

double A = y2-y1, B = x7-x2, C - -xl*A-y1*B;

for (int j=0; j{¡¡¡; j1a¡

i doubletrll=TRlntr[0j]l.OWT, rr21=TRlnrr[Oj]l.angle;

double trt 2=TRlnrrt I jll.OwT, tr22=TRlntr[ 1 j]l.angle;

if ((xl == trl1 && \7 == ¡¡21¡ ll txr == tr12 && yI == tt22) ll

(x2 == trÍl && y2 == tr21) ll (xZ == tr12 && y). == tr22))

continue;

// find crossing of lines

double D = A*ntr[3j]-nrr[2j] BB, xc, yc;

if (!D)

continue; // parallel

else

{ xc = (Bxntr[4j] - ntr[3 j]*C) / D;

yc = (C*ntr[2j] - nrr[4j]*A) / D;]

// check one vector

double I = sqrt((x1-x2)^2 + (yt-y2)^2);
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double alpha = sqrr((x1-xc)^2 + (yl-yc)^2);

double bera = sqrt((x2-xc)^2 + (y2_yc) 2);

if (I < alpha+bet a-1e-12)

continue;

// check the other

I = sqrr((rrl 1{112)^2 + (tr2I-tr22)^2);

alpha = sqrr((trl t-xc)^2 + (tr21 -y c)^2);

beta = sqrl((rr12-xc)^2 + (tr22-yc)^2);

if (I < alpha+bet a-te-12)

continue;

A=0;B=0;brcak;

I

if (A!=0llB!=0)

{ ntr[0,++lntr] = tofllo,i]'

ntrl 1,lntr] = tofl[1,i];

ntr[2,lntr] = A; ntr'[3,lntr] = B; ntrl4,lntr] = C; ì

Ì

return ntr;

I

IV Find Nearest Ttiangle

point3D[3] findNealestTriangle(point3D *TR, int lenTR, point2D p)

{

double *** allocMatr'.ix(3,lenTR);
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for (int i=0; i<LenTR; i++)

{ sTRt0,il = TRlil.owT; STRIl,il = TRlil.ansle;

STR[2,k] = (p.x-TR[i]. OWT)^2+(p.y-TR[i].angle)^21 ; ]

// sort them in ascending order

STR = sortMatrix(STR,3);

inttl=2,t2=!,¡3-O'
while (!isln(p,STR,rl))

if (++tl == lenTR)

return null; // outside any tr.iangle!

if (r1 != 3)

while ( !isln(p,STR,t2,t 1))

if (++t2 == t 1- 1)

break; // while

ir (t2 t= 2)

while ( !isln(p,STR,r3,r2,r t))

if (++t3 == t2-1)

break; // while

point3D R[3];

Rt0l = 1B¡11 Rtll = rRtt2l Rt2l = 1B¡31'

return R;

I
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Appendix D (TLIM System Mattab Code)

This appendix contains all Matlab source code used for this pr.oject.

File Cliplmages.m:
function varargout = Cliplmages(varargin)
7o Clìplmages Application M-frle for Cliplmages.fig
Vo FIG = Cliplmages launch Cliplmages GUL
7o Cliplmages('callback_name', ...) invoke the named callback.

if nargin == 0 7o LAUNCH GUI

fig = op"n¡tt,-filename,'r'euse') ;

70 Use system color scheme for figure:
set(fi g,'Color',get(0,'defaultUicontrolBackgr.oundColor,));

Vo Generate a structuÌe ofhandles to pass to callbacks, and store it.
handles = guihandles(fig);
guidata(hg, handles);

Vo additional initialization
colormap(gray(256));
plotedit(handles.Cliplmages,'on');

if nargout > 0
varagout{1} = fig;

end

elseif ischar(varargin{ 1}) 7o INVOKE NAMED SUBFUNCTION OR CALLBACK

try
[varargout{ 1:nalgout}] = feval(varargin {: }); Vo FEYlJ, switchyard

catch
disp(lastelr');

end

end

9a ----------------
function valargout = edit l_Callback(h, eventdata, handles, varargin)
7o Stub fol Callback of the uicontrol handles.editl.

number=get(h,'String') ;

if length(number)==1
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filename='dsc0000';
elseif length(number)==2

filename='dsc000';
elseif length(number)==3

filename='dsc00';
elseif length(number)==4

filename='dse0';
else

filename='dsc';end
filename=strcat(filename,nu mber.,'.jpg') ;

set(handles.edit2,'String',fi lename)

7o -----------------
function varalgout = process_Callback(h, eventdata, handles, varargin)
7o Stub for Callback of the uicontrol handles.process.

filename=ger(handles.edit2,'String');

if strncmp(fl iplr(fi lename),'wbm.',4)==1
disp('reading .mbw file...')
Ea attempf. to load a file
Iimg,vsize,hsize]=preprocesslmagel (filename) ;

else
disp('reading .jpg fiIe...')

Eo attempt to load a file
global img;
img=ir¡'"u¿1¡t"name, Jpg') ;

Eo convert to black and white
img=d6¡6¡"1irnt(:, :, 1))+double(img(:,:,2))+doubte(img(:, :,3))/3 ;

Eo [escale colours to full range
mn=min(min(img));mx=max(max(img));
img=(img-mn) *256l(mx-mn) 

;

Vo increase input file number
number-get(handles.edit 1,'String');
number=str2num(number)+1 ;
set(handles.edit 1,'String',int2str(number))
Cliplmages('edit 1_Callback',handles.edit 1, eventdara, handles, varargin);

end
image(img,'Parent',handles.mainWindow);
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IYs,xs]=5i2e¡¡*t¡ '

set(handles.edit4,'String',strcat(int2str(xs),'x',strcat(int2str(ys))));

Vo ----------------'
function varargout = check_size_Caltback(h, eventdata, handles, varargin)
7o Stub for Callback of the uicontrol handles,pushbutton2.

global img;

p=get(handles.mainWindow,'Cameraposition,);
5=get(handles. mainWindow,'DataAspectRatio') ;
set(handles.edit4,'String',strcar(int2str(floor(p( l)+s( l)/2)-round(p( t )-
s( 1 )/2)+ 1 ),'x', int2str(fl ooÌ(p(2)+s (2)/2) -rcund(p (2)-s(2)/2)+ 1 ))) ;

Vo ----------------
function vatargout = edit5_Callback(h, eventdata, handles, varargin)
% Stub for Callback of the uicontrol handles.edit5.

number-get(h,'String') ;

if length(number)== 1

filename='wire00';
elseif length(nu mI: er)==/

filename='wire0';
else

filename='wire';end
filename=strcat(fi [ename,number.,'w.raw.mbw') ;

set(handles.edit6,'String',fi lename)

Vo -----------------
function valargout = expoft_file_Callback(h, eventdata, handles, varargin)
7o Stub for Callback of the uicontrol handles.export_fiIe.
disp('attempting to export f,ile...')

global img;

p=get(handles. mainWindow,'CarneraPosition,);
s-get(handles. mainWindow,'DataAspectRatio') ;

xs=floor'(p( l)+s( I )/2)-round(p( 1)-s( 1)/2)+l;
ys=fl oor(p(2)+s(2)/2)-round(p(2)-s(2)/z)+t;
set(handles.edit4,'String',strcat(int2str(xs),'x',int2str(ys)));

filename=get(handles.edit6,'String');
f=fopen(hlename,'w') ;
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Vo save header
fwrite(f, [xs ys],'uint 16');

Vo save file
fwrite(f, img(r'ou nd(p (2)-s(2) Q :noor(p(2)+s(2)/2),round(p( 1 )-
s( 1 )/2) : fl ooL(p( l)+s( 1)/2))','uint8');

fclose(f);

Vo increase output file number
number=get(handles.edit5,'Stling');
number=str2num(number)+ I ;

set(handles.edit5,'String',int2str(number))
Cliplmages('edit5_Callback',handles.edit5, eventdata, handles, varargin);

Vo -----------------
function varar€out = rotate_image_Callback(h, eventdata, handles, vararyin)
7o Stub for Callback of the uicontrol handles.rotate_image.

global img;
img-img';

image(img,'Parent',handles. mainWindow);

Vo -----------------
funct ion varat.gout
openlmage(gimg,gfilename,gscale,oBorder,anglel,angle2,rThickness)

global img;
global lfilename;
global ggscale;
global goBorder';
global ganglei;
global gangle2;
global grThickness;

img=gimg;
rfilename=gfilename;

image(img);
set(fi ndobj(gcf,'Tag','edit2'),'Stling',rfilename);
set(fi ndobj(gcf,'Tag','returnToMW'),'Visible','on') ;

ggscale=gscale;goBorder'=oBorder;gangle 1=angl e7;gangle2=angle2;grThickness=r.Thick
ness;

Vo ----------------
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function varargout = returnToMW_Callback(h, eventdata, handles, varargin)

global img;
global rfilename;
global ggscale;
global goBorder;
global ganglei;
global gangle2;
global grThickness;

p=get(handles. mainWindow,'CameraPosition');
s=get(handles.mainWindow,'DataAspectRatio') ;
xs=floor(p( 1)+s( 1)/2)-round(p( 1)-s( 1)/2)+ l;
ys=fl oor(p(2)+s(2)/2)-round(p(2)-s(2)/2)+l;

7o open window
gmain
Vo open f,e
gmain('openlmage',img(round(p (2)-s(2)/2):f7oor(p(2)+s(2)/2),round(p( 1)-
s( 1)/2):floor(p( 1)+s(1)/2)),r'f,rlename,ggscale,goBorder,gangte l,gangle2,grThickness);
7o close this window
close Cliplmages

File gmain.m:
fu nction varargout - gmain(varargin)
7o GMAIN Application M-file for gmain.fig
9o FIG = GMAIN launch gmain GUI.
Vo GMAlN('callback_name', ...) invoke the named callback.

if nargin == 0 7o LAUNCH GUI

fig = op"n¡t,.ttlename,'reuse');

7o Use system color scheme for figure:
set(fi g,'Color', get(0,'defaultUicontrolBackgroundColor')) ;

7o additional initialization
cololmap(gray(256));
global gscale;
gscale=1 ;

Vo Genente a structure of handles to pass to callbacks, and store it.
handles = guihandles(fig);
guidata(fig, handles);

if nargout > 0
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varargout{ 1) = fìg;
end

elseif ischar(varargin{ 1}) 7o INVOKE NAMED SUBFUNCTION OR CALLBACK

try
[varargout { 1 :nargout } ] = feval(varargin { : } ); Vo FEYAL switchyard

catch
disp(lasterr.);

end

end

Vo -----------------
function varargout = loadFile_Catlback(h, eventdata, handles, varargin)

global gimg;
global rimg;
global gvsize;
global ghsize;
global gfilename;

gfi lename=get(handles.edit2,'string') ;

if strncmp(fl iplr(gfilename),'wbm.',4)== 1

disp('reading . mbw fiIe...')
Eo attempt to load a file
Igimg,gvsize,ghsize]=preplocesslmagel (gfilename) ;

eISe

disp('r'eading .jpg frle...')

Eo attempt to load a file
gimg=i¡¡'s¿¿1t¡lename, Jpg') ;

Eo convett to black and white
Bimg=¿6u61"1t¡mg(:, :, 1))+doubte(gimg(:, :,2))+double(gimg(:, :,3))/3 ;

7o rcscale colours to full range
rnn=min(min(gimg)) ; mx=max(max(gimg)) ;
gimg=(gimg-mn)x256l(mx-mn) ;

Igvsize.ghsizel=size(gimg) ;

end

image(gimg,'Palent',handles. mainWindow) ;
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nmg=glmg;

Vo ----------------
function varargout = findAngle_Callback(h, eventdata, handles, varargin)

global gscale;
global gimg;
global gvsize;
global ghsize;

set(handles.editAngle,'String','working...');dr.awnow
angle=gdrst I (gimg,gvsize,ghsize,gscale) ;

set(handles.editAngle,'String',num2str.(angle)) ;

set(handles.rotateAngle,'String',num2str(angle)) ;

Irgimg,vsize,hsize]=rotatelmg I (gimg,angle,gscale,gvsize,ghsize) 
;

image(rgimg,'Parent',handles. mainWindow);

7o -----------------
function varargout = scale_Callback(h, eventdata, handles, varargin)

global gscale;
gscale=str2num(get(h,'String')) ;

9a ----------------
function varafgout = outerBorder_Callback(h, eventdata, handles, varargin)

global gscale;
global gimg;

set(handles.showOuterBorder;'String','working...');drawnow

Igw,angle,gfl=ggetBorders(gimg,str2num(ger(handles.edirAngle,'String,)),gscale, l,handle
s);
set(handles.showOuterBorder','String',num2str(gw));

Vo -----------------
function varargout = cliplmage_Callback(h, eventdata, handles, var.argin)

global gimg;
global gfilename;
global gscale;

7o open window
Cliplmages
Vo open file in a window
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Cliplmages('openlmage',gimg,gfilename,num2srr(gscale),get(handles.showOuterBo¡der.,'
String'),get(handles.editAngle,'String'),get(handles.rotateAngle,'Stting,),get(handles.wire
Th,'String'));
% close this window
close gmain

9o ----------------
function varalgout = openlmage(img,filename,scale,oBorder,angle l,angle2,rThickness)

global gimg;
global gfilename;
global gvsize;
global ghsize;
global gscale;

gimg=img'
gfilename=filename;
Igvsize,ghsize]=size(gimg);
gscale=st12num(scale);

image(gimg);
set(fi ndobj(gcl'Tag','edit2'),'Srring',gfi lename)
set(findobj(gcf,'Tag','scale'),'Stling',scale) ;

set(findobj(gcf,'Tag','showOuterBorder'),'Str.ing',oBorder);
set(findobj(gcl'Tag','editAngle'),'String',angle 1);
set(fi ndobj(gcf,'Tag','rotateAngle'),'Stling',angle2) ;
set(fi ndobj(gcf,'Tag','wireTh'),'StIing',rThickness) ;

o/-

function varargout = wheTh_Callback(h, eventdata, handles, varar.gin)

global gwireThickness;

gwileThickness=stl 2num(get(handles.wir.eTh,'String,));

Vo ----------------
function valalgout = loadSystem_Callback(h, eventdata, handles, var.argin)

global gscale;
global gtr';
global gcorlect;
global gangles;
global gntr';
global gnsamples;

7o build system
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load(strcat('tr',int2str(gscale),'.mat'),'tr');
gnsamples=length(tr);
gtt=tr(:, 1 :gnsamples);

Eo gnú =Í net(gtr (1 i2, :)) ;
load(strcat('ntr',int2str(gscale),'. mat'),'ntr') ;

gntr=ntr;

7o load couect values
load'correct.mat' correct
gcorrect=coffect;

Vo load angles
load(strcat('angs',int2str'(gscale),'.mat'),'angs');
gangs=angs;

disp('system 1oaded...')
Vo -----------------
function varalgout = rotatelmage_Callback(h, eventdata, handles, varargin)

global gimg;
global gscale;
global gvsize;
global ghsize;
global rimg;
global rvsize;
global rhsize;

angle=get(handles.rotateAngle,'string') ;

Irimg,r'vsize,rhsize]=16¡¿¡"¡¡¡t l,gimg,st12num(angle),gscale,gvsize,ghsize);
image(rimg,'Parent',handles.mainWindow) ;

7o ----------------
function varaÌgout = dlawlines_Callback(h, eventdata, handles, varargin)

global gtr;
global gntr;
global gscale;

l=findobi(gcf,'Tag','lineOne') ;

if -isempty(l)
delete(l);end

l=findobj(gcl'Tag','lineTwo') ;

if -isempty(l)
delete(1);end
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l=findobj(gci'Tag','lineThree') ;

if -isempty(l)
delete(1);end

¡l=ge¡(handles. mainWindow,'Xlim') ;

[x,y 1]=ginput( 1);
line([xl(i) xl(2)],Iyi y1],'Tag','lineOne','Color','g');

Ix,y2]=ginput( 1);
line([xl(1) xL(2)1,[y2 y2],'Tag','lineTwo','Color','g');

set(handles.realTh,'String','working...');drawnow
d=abs(y1-y2);
width=st12num(get(handles.showOuterBorder,'string')) ;
alpha=st12num(get(handles.wireTh,'Str.ing'))/width;
angle=abs(st12num(get(handles.editAngle,'String')))80.6;

switch get(handles.listbox,'ListboxTop')
case l, l=d;
case 2, l=d*alpha.hean(gtr(3, :))/gscale;
case 3, l=d*alpha/nn(8. 3333 xwidrh,angle,gtr)/gscale;

case 4, l=dxalpha/appg(8.3333 *width,angle,grr,gntr)/gscale;

case 5, l=d*alpha/appgnt(8.3333xwidth,angle,gtr)/gscale;
end

set(handles.realTh,'String',num2str(l)) ;

Va -------------
function varargout = listbox_Callback(h, eventdata, handles, varargin)

global gtr;
global gntr;
global gscale;
global gimg;
global gvsize;

I I =fin¿o6¡,t"t'tug','l ineOne') ;
l2=findobi(gcf,'Tag','lineTWo') ;

13=findobj(gcf,'Tag','lineTlree') ;

if (-isempty(l1) & -isempty(12))7o | -isempty(13)
set(handles.realTh,'String','working...');drawnow

if -isempty(13)
gvsize
¡=get(13,'XData');
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size(gimg(:,floor(x( 1)/gscale)))

lle,rel=gdete 1 (gimg(:,fl oor(x( 1)/gscale)),gvsize,gscale) ;
d=re-le;

else
y1=get(11,'YData');
y2=get(12,'YData');
d=abs(yt-y2);

end

width=str'2num(get(handles.showOuterBorder,'String')) ;

alpha=str2num(get(handles.wireTh,'String'))/width;
angle=abs(str2num(get(handles.editAngle,'String')))x0.6;

switch get(handles.listbox,'ListboxTop')
case 1, l=d;
case 2, l=dEalpha,/mean(gtr(3, :))/gscale;
case 3, l=d*alpha./nn(8.3333*width,angle,gtr)/gscale;
case 4, l=d*alpha/appg(8.3333xwidth,angle,gtr,gntr)/gscale;
case 5, l=d*alpha/appgnt(8.3333*width,angle,gtr)/gscale;
end

set(handles.realTh,'Str ing',num2str(l)) ;
else

set(handles.realTh,'String','--') ;end

Vo ----------------'
function varargout = drawline_Callback(h, eventdata, handles, varar.gin)

global gtr;
global gntr';
global gscale;
global rimg;
globai rvsize;

l=findobj (gcf,'Tag','lineOne') ;

if -isempty(l)
delete(l);end

l=findobj(gcf,'Tag','lineTwo') ;

if -isempty(l)
delete(1);end

l=findobi(gcf,'Tag','lineThree') ;

if -isempty(l)
delete(l);end

y=get(handles.mainWindow,'Ylim') ;
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[x,yy]=ginput( 1);
line([x x],Iy(l) y(2)],'Tag','lìneThlee','Color','r');

[e,re]=gdetei (rimg(:,fl oor(x/gscale)),rvsize,gscale) ;

d=re-le;
width=st12num(get(handles.showOuterBorde¡'string')) ;
aìpha=str2num(get(handles.wireTh,'String'))/width;
angle=abs(str'2num(get(handles.editAngle,'srring')))*0.6;

switch get(handles.listbox,'ListboxTop')
case l, l=d;
case 2, l=dEalpha,/mean(gtr(3, :))/gscale;
case 3, l=d*alpha./nn(8.3333*width,angle,gtr)/gscale;
case 4, l=d*alpha/appg(8.3333*widrh,angle,grrgntr)/gscate;
case 5, l=d*alpha/appgnt(8.3333*width,angle,gtr)/gscale;
end

set(handles.realTh,'String',num2str'(l)) ;

File gdetel.m:
Vo Maciej Bolkowski 2002
7o detect edges

function [e,re]=gdete(slice,svsize,scale)

7o edge threshold
eth= l xscale;

7o f,rnd maximas

Ii,m]=m¡¡15¡¡""¡;mn=mean(slice);

Vo go left
for i=m:- 1:2

if slice(i)-slice(i- I )>=0 & slice(i)>mn
break;end

end
Vo check if this is real edge
if slice(i)-slice(i+scale)>eth

le--i;
else

der 1=slice(i+1 :m)-slice(i:m-1);
for j= 1;1s¡g¡¡1¿.t1,

if abs(der 1())> liscale
break;end

end
le=i+j- I ;
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end

Vo go right
for i=m:svsize- 1

if slice(i+ 1)-slice(i)<=0 & slice(i)>mn
bleak;end

end

Vo check if this is real edge
if slice(i)-slice(i-scale)>eth

re=i;
else

der l=slice(i:- 1:m+1)-slice(i- 1:- 1 : m);
for j= 1:length(derl )

if abs(der'1 O)> 1/scale
break;end

end
re=i-j+ I ;

end

File ggetBorders.m:
Vo Maciej Borkowski 2002
7o f,rnds borders (rhh'd edition)
Vo usage Iw,angle, fl =getB olders(img,angle,scale,width, handles)

fu nction Iw,angle,fl =ggetBorders(img,angle,scale,width,handles)

Ivsize,hsize]=size(img);

Vo rescale & rotate image (use lineal interpolation)
Irsimg,shsize,svsize]=r'o¡¿¡e¡.t 1 max(img,angle,scale,vsize,hsize);

aslice=mean(r'simg') ;

Vo get úd o f borders
rsimg-rsimg(:,2:(end- 1));shsize=shsize-2;
s=0;ls=0;
for ys= 1:svsize

if rsimg(ys, 1)-=255 | r'simg(ys,shsize)-=255
bleak;

else
i=find(Lsimg(ys, :)-=25 5 );
s=s+sum(Ìsimg(ys,i)) ;ls=ls+length(i) ;end

end
for ye=svsize:- 1: I

if rsimg(ye, 1)-=255 | rsimg(ye,shsize)-=255
break;

r24



else

i=find(rsimg(ye, :)-=255);
s=s+sum(rsimg(ye,i)) ;ls=ls+lengrh(i) ;end

end
rsimg-r'simg(ys:ye, :) ;svsize=ye-ys+ 1 ;

if ls-=0
s=Vls ;Iij]=find(rsimg==255;'
rsimg(i,j)=s;end

slice=mean(rsimg');

[e,r'e]=gdete(slice,svsize,scale,handles);

f=scalex widthy'(r'e-le) ;

ys=(re-le)/scale;

File gdrstl.m:
7o Maciej Borkowski 2002
Vo main file (thild edition)
Vo usage angle=gdlst 1 (img,vsize,hsize,scale)

fu nction angle=gdrst 1 (img,vsize,hsize,scale)

Vo frnd initial angle
angle=iniAngle(img,scale,vsize,hsize);
a1=angle;

fl mc=FLMcriterion I (img,angle,scaìe,vsize,hsize);
hflmc=fl mc ;oangle=angle;

if flmc>0 angle=angle- 1;
else angle=angle+1;end

while abs(flmc)>0.01

oflmc=flrnc;
fl mc=FLMcritelion 1 (img,angle,scale,vsize,hsize);

for i=1:length(hflmc)
if abs(hfl mc-fl mc)<0.0000 1

angle=(angle+oangle)/2;break;end
end
if i==length(hflmc)

hflmc=lhflmc flmc];
else

continue;end
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if flmc*oflmc<0
a=angle+fl mc/Cfl mc+ofl mc)*(angle-oangle) ;

oangle=angle;angle=a;
else

a=fl mc/(ofl mc-fl mc)x(angle-oangle)+angle;
oangle=angle;angle=a;

end

disp([angle flmc]);
end

disp([angle angle-a1])

File iniAngle.m:
Vo Maciej Bolkowski 2002
7o f,tnds coarse angle

function angle=iniAngle(img,scale, vsize,hsize);

7o rcscale & rotate image (use linear intelpolation)
[rsimg,shsize,svsize]=ro¡¿1"J*t 1 limg,0,scale,vsize,hsize);

Vo apply delta-mesh
Idmesh,dmx,dmy]=f_dMesh I (r'simg,32,32,shsize,svsize) ;

7o find, angle

lc,il=m¡¡1¿."r¡; '

angle=getAngle( I :dmx,i*vsize/hsize) ;

File getAngle.m:
Vo Maciej Borkowski 2002
Vo finds angle for points using lineal least squares fit

fu nction ang=getAngle(x,y);

c=cov(x,y);

an9=c(I ,2)/c(1 ,l)'
b=mean(y)-angx mean(x) ;

ang=atan(ang)x 180/pi;

File FLMCriterionl.m:
Vo ill{.acie.j Borkowski 2002
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7o finds first-last-match crtiterion (second edition)

fu nction fl mc=FLMcritelion 1 (img,angle,scale,vsize,hsize) ;

Vo rescale & rotate image (use linear interpolation)
Irsimg,shsize,svsize]-rotatelmg I (img,angle,scale,vsize,hsize) ;

Vo apply delta-mesh
Idmesh,dmx,dmy] =f-dMesh I (rs img,24, 12,shsize,svsize) ;

Vo select twice below average
me=mean(reshape(dmesh, l,dmx*dmy)) ;s=0;l=0;
for x=l:dmx

i=find(dmesh(:,x)<me);
70 remove outsiders
if length(i)>1

ro=[];
if (2)-(1)-=1

¡6=[rç l];end
if i(length(i))-i(lensth(i)- 1 )-= I

ro=[ro length(i)];end
for j=2 length(Ð- I

if i(t)-i(i-t)-=1 & i(t+1)-iC)-=1
¡6=[ro j];end

end
i(ro)=¡1;

end

s=s+sum(dmesh(i,x));
l=l+lengrh(i);

end

s=s/l;
dm=zelos(dmy,dmx);
fot' x=1:dmx

i=fìnd(dmesh(:,x)>s);
dm(i,x)=255;

end
Voadd more
for y=1'1¿-t-1¡

i=find(dm(y+1,:)==0);
dm(y,i)=0;
i=find(dm(dmy-y, :)==0).
dm(dmy-y+1,i)=0;

end

127



end
end

Vo find flmc
fl=floor(dmx/2- l);
rt=zer os(dmy,fl);
for x=2:f7

for y- I :dmy
if dm(y,x)-=25S I dm(y,dmx-x+ I )-=255

rt(y,x- I )=d¡¡esþ(y,dmx-x+ 1)-dmesh(y,x) ;end

Eo aveïage fTmc
avrt=sum(rt')/fl;

il= I ;il=dmy;
for i=1:dmy

if avrt(i)-=0
il=i;
break;end

end
for i=dmy:-l:1

if avrt(i)-=0
ir'=i;
break;end

end

im=il+(i¡-il)/2;
if floor(ir¡)==i¡¡

adP=l'
else adp=Q;e¡fl'
ls=sum(avrt(il:floor(im)));
rs=sum(avrt(ceil(im) : ir')) ;

flmc=rs-ls;

File rotatelmagel.ml
Vo Maciej Bolkowski 2002
Eo rotate & rescale image using linear interpolation (second edition)

function Irsimg,shsize,svsize]=r'o¡¿¡"J*t f,img,angle,scale,vsize,hsize)

cosa=cos(-pi*angle/l 80) ;sina=sin(pi*angle/i 80) ;

svsize=scale*vsize;shsize=scale*hsize;
rsimg=m¿¡1¡¡¿*(img))*ones(svsize,shsize);
hsize2=hsize I 2 ;v size2= v size I 2 ;

for Y=sc¿1s¡5tt¡rt-..att
for x=scale:shsize-scale
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xxx=x./scale ;yyy=y/scale;
xx=cosa* (xxx-hsize2)+sinax (yy y -v size2)+hsize2;
yy=cosa* (yyy-vsize2)-sina* (xxx -hsize2)+v sizez;
xs=fl oor(xx) ;ys=fl oor(yy) ;

if xs>0 & xs<hsize & ys>O & ys<vsize
¡f=¡¡_¡s;yf=yy_ys;
rsimg(y,x)=img(ys,xs)+(img(ys,xs+ 1 )-
img(ys,xs))*xf+(img(ys+1,xs)-
img(ys,xs))*yf+(img(ys,xs)+img(ys+1,xs+1)-img(ys+ I,xs)-
img(ys,xs+ 1))*xfxyf;

end
end

end

rsimg=rsi¡¡g1t"ule: svsize-scale,scale:shsize-scale) ;
shsize=shsize-2*scale+ 1 ;svsize=svsize-2*scale+ I ;

File f_dMeshl.m:
Vo Maciej Borkowski 2002
Vo calculates d-mesh (second edition)

function Idmesh,dmx,dmy]=f_dMesh(rsimg,dx,dy,shsize,svsize)

deltax=shsize/dx;if deltax<1 deltax=l;end
deltay=sysi2¿7¿y;if deltay<1 deltay= 1 ;s¡¿
dmx=ceil(shsize/deltax) ;dmy=ceil(svsize/deltay) ;
dmesh=zelos(dmy,dmx) ;

dmc=zeros(dmy,dmx);

fol y=1;svt1r"
fo¡ x=1:shsize

xs=ceil(x/deltax) ;ys=ceil(y/deltay) ;

dmesh(ys,xs)=dmesh(ys,xs)+rsimg(y,x) ;

dmc(Ys,xs)=dmc(Ys,xs)+ I ;
end

end
dmesh=dmesh./dmc;

File preprocesslmagel.m:
Vo Maciej Borkowski 2002
Vo rcad, fiIe and detect whe (second edition)

function Iimg,vsize,hsize]=preprocesslmage 1 (filename)

f = fopen(fi lename,'r');
hsize=fiead(i I )+256*ftead(f, t ) ;vsize=fread(f, i)+256*flead(l 1);
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Iimg,l] =f¡e¿¿1¡ ¡hsize,vsizel);fclose(f) ;

if l-=vsize*hsize
'Unexpected end of file!'
return

end
img=i¡1t''
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Appendix E (Research Project Digital Camera SpecifÏcations)

SONY CD Mavica MVC-CD300 Digiral Srill Camer.a Specifications:

System

Image device

8.93 mm (1/1.8 type) color CCD

Lens

f=7 - 21mm (9132 - 27/32 inches)

F=2.0 - 2.5

Exposure control

Automatic exposure, Shutter speed priority,

Apertule ptiority, Manual exposure

White balance

Automatic, Indoor, Outdoor, One-push

Data system

Movie MPEGI

Still JPEG, cIF (in TEXT mode, Clip Motion),

TIFF Audio with still image: MPEGI

(Monaural)

Recording medium

8 cm CD-R/CD-RW

Recommended flash recording distance (ISO is set to ÄUDIO)

0.3 to 3 m (11 7/8 inches to 8 1/3 feet)

Drive

Read Maximum x8

ftite x4

Readout Noncontact optical readout (using

serniconductor laser)

Laser

777 to 787 nm
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NA 0.5

Maximum output 23 mW

Emission dulation 600ns

Input and Output connector

A,rV OUT (MONO) (Monaural)

Minijack Video 1 Vp-p, 75 O unbalanced, sync negative

Audio 327 mY (at a 47 kO load)

Output impedance 2.2 kA

ACC jack

Mini-minijack (Ø 2.5 mm¡

USB jack

mini-B

LCD screen

LCD panel

TFT (Thin Film Transistor active matrix)

drive

LCD size

2.5 type

Total number of dots

123 200 (560x220) dots

General

Application

Sony battery pack NP-FM50 (supplied)

Power requirements

7.2V

Power consumption (During shooting with the LCD backlight turn on)

3.5 W

Operating temperâture

0'C ro 40'C (32'F ro 104.F)

Storage temperature
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-20'C ro +60.C C4.F to =140.F)

Dimensions (Approx.)

I43x92x94 mn (5 3/t x 3 5/8 x 3 % inches)

(wlhld)

Mass (Appmx.)

650 g (1 lb 7 oz) (including NP-FM50

battery pack, disc and lens cap, etc.)

Built-in microphone

Electret condenser microphone

Builhin speaker

Dynamic speaker

NP-FMS0 battery pack

Battery type

Lithium ion

Maximum output voltage

DC 8.4 V

Mean output voltage

DC7.2V

Capacity

8.5 wh (1180 mAh)

Operating temperature

0'C to 40'C (32"F to 104'F)

Dimensions (Approx,)

38.2x20.5x55.6 mm (1 9/16 xt3/16 x 2 V+

inches) (w/h/d)

Mass (Approx,)

76 g (3 oz)
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