
Dynamic Pricing for
Predictive Analytics in Parking

by

Deyu Deng

A thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

September 2021

Copyright © 2021 by Deyu Deng

Thesis advisor Author

Dr. Carson K. Leung Deyu Deng

Dynamic Pricing for

Predictive Analytics in Parking

Abstract

Despite urbanization benefiting modern society and the people living in the urban

city, the limited public resources, especially parking resources, remain a problem.

Parking pricing acts as a tool to adjust the available resources. A logical question is:

How to use parking pricing to maximize parking resource utilization while optimiz-

ing the parking revenue for parking management? In this MSc thesis, I propose an

architecture that utilizes available public resources while optimizing revenue with pre-

defined restrictions, especially in the parking management field. More specifically, I

first (a) design a data-driven time series based prediction model, and then (b) design a

reinforcement learning based dynamic pricing model to incorporate price restrictions.

Moreover, I also (c) come up with metrics to evaluate the dynamic pricing model,

as well as (d) implement and evaluate the proposed models with real parking data.

Evaluation results show the effectiveness and practicality of my predictive analytics

architecture for dynamic pricing for parking applications.

ii

Table of Contents

Abstract . ii
Table of Contents . iv
List of Figures . v
List of Tables . vi
Acknowledgements . vii
Dedication . 1

1 Introduction 2
1.1 Thesis statement and contributions 4

2 Background 7
2.1 Time series prediction . 7

2.1.1 Auto-regressive integrated moving average (ARIMA) model . 8
2.1.2 Neural network-based time series prediction 10
2.1.3 Recurrent neural network (RNN) 10
2.1.4 Long short-term memory (LSTM) 10

2.2 Reinforcement learning . 11
2.2.1 Markov decision process (MDP) 12
2.2.2 Q learning . 14
2.2.3 Deep reinforcement learning 15

2.3 Summary . 16

3 Related works 17
3.1 Dynamic pricing . 17
3.2 Reinforcement learning . 19
3.3 Summary . 22

4 My dynamic pricing system 23
4.1 System overview . 24
4.2 Time series prediction . 24

4.2.1 LSTM model variants . 25

iii

iv Table of Contents

4.2.2 Prediction period . 26
4.2.3 Weighted ensemble prediction 27
4.2.4 Algorithm for time series prediction 28

4.3 Reinforcement learning for dynamic pricing 31
4.3.1 State space . 31
4.3.2 Action space . 32
4.3.3 Reward space . 33
4.3.4 Algorithm for price control . 36

4.4 Summary . 38

5 Evaluation 40
5.1 Experiment setup . 40

5.1.1 Data set . 40
5.1.2 Data pre-processing . 41
5.1.3 Experiment environment . 42

5.2 Time series analysis . 42
5.2.1 Parameters . 42
5.2.2 Evaluation metrics . 43
5.2.3 Results and discussions . 44
5.2.4 Ensemble results . 48

5.3 Dynamic pricing . 52
5.3.1 Model selection . 52
5.3.2 Parameters . 52
5.3.3 Evaluation . 52
5.3.4 Results . 53

5.4 Summary . 57

6 Conclusions and future work 58
6.1 Conclusions . 58
6.2 Future work . 60

Bibliography 71

List of Figures

5.1 Results of LSTM prediction on the number of bookings for the VAA
data set . 49

5.2 Results of LSTM prediction on the number of bookings for the ECO
data set . 50

5.3 Results of LSTM prediction on the number of bookings for the PKD
data set . 51

5.4 Results of double deep Q network prediction on price adjustment for
the VAA data set . 54

5.5 Results of double deep Q network prediction on price adjustment for
the ECO data set . 55

5.6 Results of double deep Q network prediction on price adjustment for
the PKD data set . 56

v

List of Tables

5.1 Parameters for the LSTM . 43
5.2 Adam optimizer variants . 43
5.3 Evaluation of time series analysis with period = 7 days 46
5.4 Evaluation of time series analysis with period = 30 days 46
5.5 Evaluation of time series analysis with period = 60 days 47
5.6 Evaluation of time series analysis with period = 120 days 47
5.7 Ensemble predictions . 48
5.8 Price adjustment unit earnings . 53

vi

Acknowledgements

Special thanks to my wife, my parents, my academic advisor (Dr. Carson K.

Leung), my advisory/examining committee members (Dr. Mike Domaratzki from

Computer Science at University of Manitoba/Western University, and Dr. Xikui

Wang from Warren Centre for Actuarial Studies and Research in Asper School of

Business), MSc defence chair (Dr. Parimala Thulasiraman), and also the people who

have supported me along the way.

I also thank Mitacs and Winnipeg Airports Authority (WAA) for their financial

support. Thanks also to Scott Marohn, Colin McFadyen, Ronalyn Olaes-Zimolag,

Trevor Strome, Ran Wei, and Balder Zamorano at WAA, as well as Blake Podaima

at Virtuistix Inc./Manitoba Training & Research Consortia (MTRC), for their domain

expertise.

Besides, I also appreciate myself for holding up over days and nights, across fears

and tears.

Deyu Deng
B.Sc. (Maj.), The University of Manitoba, 2017

The University of Manitoba

September 02, 2021

vii

This thesis is dedicated to someone special.

I miss ya.

Chapter 1

Introduction

This is the era of artificial intelligence (AI) and data science. High volumes of data

are being collected from numerous sources—sensors, payment transactions, traffic

conditions. Afterwards, people try to understand the data they collected and make

use of them. Data science has been purposed to deal with the challenge from the

data. Different skills and areas under data science have been developed:

• Data mining aims to extract useful information and valuable insight such as

patterns from large batches of data.

• AI, on the other hand, provides the ability to make decisions on machines by

utilizing the “smart” algorithms along with the voluminous data.

In daily life, there are problems that can be enhanced with modern technologies,

including AI. For example, the situation exists that the available resources may not

be fully utilized, especially in the parking management field. On the one hand, it

is a typical sensorial that in the urban city people can not find a parking lot easily

2

Chapter 1: Introduction 3

during the peak/rush hours. Drivers are circling around to find the possible parking

lot while wasting time and fuel (or resources). On the other hand, from the parking

management perspective, the parking space will be fully utilized on working days but

most likely will in less use during the night due to the nature of the human activity.

Researchers have come up different approaches to utilize the parking resources

with modern technologies. For example, Zou et al. [ZKWL15] proposed a pricing

mechanism design for parking lot assignment in the information era.

In addition, the smartphone reservation system also has been being widely used

in modern cities. For example, Sheelarani et al. [SASS16] discussed the parking

reservation system with an Internet of Things (IoT) based Intelligent Parking Sys-

tem (IPS). It provides the ability of a user to use an Android application to book

a reservation and make a payment. The researcher also noticed that drivers had

different preferences on the types of parking, such as garage parking vs. curbside

parking [IL15; ZZ16; DYMJ19].

AI has also been applied in this field. For example, Jiang et al. [JWW+18] applied

big data analysis and neural networks to recognize the vehicle plate number, which

is broadly used in the ticketless parking system.

There are only a limited number of researchers who considered the parking chal-

lenge from a parking revenue management perspective. Parking price as a tool, which

can affect the modern traffic system [Sho17], could be used to adjust the demand for

parking resources. Dynamic pricing, on the other hand, is a study that aims to opti-

mize the selling price, has been involved as a method in this situation to balance the

limited resource under dynamic demand. According to Tian et al.’s work [TYWH18],

4 Chapter 1: Introduction

the dynamic price could benefit revenue as well as the utilization of parking spaces.

Lei et al. [LO17] developed approximate dynamic programming (ADP) based dy-

namic pricing policy with mathematical programming with equilibrium constraints

(MPEC) model for IPS. The numerical outcome indicates it achieves better system

performance.

However, there is a common condition that exists in real life. Some parking lot

has a policy that specifies the boundary of the parking price. Also, it may restrict

the amount of rate change for each time. For example, the policy may indicate the

maximum allowed parking price; also, each price adjustment should be less than a

certain amount. Since parking is a way of public service, it has to preset the maximum

pricing, which can be treated as the ‘ceiling’ of the price. The ‘ceiling’ of the price is to

guarantee that such a resource is affordable to the public. As a result, how to utilize

the available parking resource so public resources will not be wasted while optimizing

the parking revenue for parking management agencies with predefined ‘ceiling’ has

become a challenge.

1.1 Thesis statement and contributions

In my thesis, I propose an architecture that utilizes the available public resource

while optimizing revenue with predefined restrictions, especially on the parking man-

agement field. In particular, I investigate on the following questions:

Q1. As the available resource fluctuates year over year, can the system adapt itself

to the resource fluctuations?

Chapter 1: Introduction 5

Q2. How can we distribute the limited resource to the people that urgently need the

resource?

Q3. How to integrate different policy restrictions into the model (e.g., what if the

policy regulates the final price should be less than a certain amount)?

Q4. After concatenating different components, what would be the best metrics to

evaluate the overall consequence?

To answer these questions, I design a data-driven time series based prediction model

and a dynamic pricing model based on reinforcement learning. I also adapt and

optimize these two models with price restrictions. To measure the performance, I

evaluate these models with real-life data. Hence, my key contributions include:

1. my design of a data-driven time series based prediction model,

2. my design of another dynamic pricing model based on reinforcement learning,

3. my adaptation and optimization of the aforementioned prediction and dynamic

pricing models with price restrictions,

4. my design of evaluation metrics for the dynamic pricing model, and

5. my implementation and evaluation of these proposed models with real data.

This thesis is organized as follows. The next chapter introduces the related back-

ground techniques—especially the time series prediction and reinforcement learning.

Chapter 3 provides the literature review for the dynamic pricing field. Chapter 4

introduces the details of this dynamic pricing architecture for predictive analytic in

6 Chapter 1: Introduction

parking. Chapter 5 discuss the experiment result for this thesis. Finally, Chapter 6

draws the conclusion and discusses future work.

Chapter 2

Background

As this thesis covers two sub-problems (time series prediction and dynamic pric-

ing), I provide some background information on these two sub-problems in this chap-

ter. In particular, for the time series prediction problem, I first describe different

types of time series prediction and then mainly focus on two types—namely, auto-

regressive integrated moving average (ARIMA) and neural network-based time series

prediction. As for dynamic pricing, I describe dynamic pricing with reinforcement

learning.

2.1 Time series prediction

Time series prediction (TSP) approximates a particular duration based on given

sequential observations.

Definition 2.1.1 (Time Series Prediction [HZL+21]) By given a series of tem-

poral related observations xt, we expect to get the predicted result xt+n. It can be

7

8 Chapter 2: Background

expressed as:

xt+n = f(xt, · · · , xt−h) (2.1)

where n, h ≥ 1. The xt+n represents the predictions that can be one or multiple steps.

2.1.1 Auto-regressive integrated moving average (ARIMA)

model

The auto-regressive integrated moving average (ARIMA) model [Ham95] is the

statistical approach that describes the behaviour of a noisy linear dynamical system.

It can represent the time series due to its flexible modelling capability [LHZS16]. It

was initially performed in econometrics by Box and Jenkins [BJ90].

In detail, ARIMA extends the existing auto-regressive moving average (ARMA)

model by the integrated auto-regressive (AR) model with the moving average (MA)

model. The general form of ARIMA model can be expressed as ARIMA(p, q) with

the following equation [STS18]:

xt = c+

p∑
i=1

(φixt−i) + εt +

q∑
i=0

(θiεt−i) (2.2)

where

• c is the constant.

• p represents that the AR model uses the dependencies between the observation

and the number of lagged observations.

• φi indicates the auto-correlation coefficients, and φi 6= 0.

Chapter 2: Background 9

• εt indicates the Gaussian white noise series.

• q represents the lagged observations of the forecast errors from the MA model.

• θi is a weight applied to the stochastic term in the time series where θi = 1, and

θi 6= 0.

After differentiating the time series from a non-stationary time series into a sta-

tionary time series by the integrated step, the general form of an ARIMA model can

be expressed as ARIMA(p, d, q) [STS18].

ARIMA has been shown its success in multiple fields. For example, Benvenuto

et al. [BGV+20] used the ARIMA model on Johns Hopkins epidemiological data to

predict the coronavirus disease 2019 (COVID-19) trends. Arumugam and Saranya

[AS18] used ARIMA as a statistical approach to making the rainfall prediction. Xu

et al. [XQH10] utilized the ARIMA model to forecast the demand of commodities

after natural disasters.

Despite its success, ARIMA also suffers from few limitations. For example, it is

challenging for a simple ARIMA model to handle the nonlinear relationships between

input variables [STS18]. Note that, in a real-world situation, the relationship be-

tween observations may not be linear. Moreover, existing algorithms for estimating

parameters of ARIMA have to access the entire data set in advance, which may not

adapt to the steaming characteristics of time series data [LHZS16].

10 Chapter 2: Background

2.1.2 Neural network-based time series prediction

Things have improved with new techniques, especially with the deep learning

models. A simple neural network would enhance things differently.

2.1.3 Recurrent neural network (RNN)

The recurrent neural networks (RNN) are a kind of neural network that handles

sequence data. Unlike the artificial neural network (ANN) (in which the neurons are

all independent of each other), the RNN uses the output from the previous step as

the input for the next step. The main idea of RNN is to make use of the sequential

information from earlier stages. The reason it is called “recurrent” is that it follows

the same logic to handle every element from a sequence. The internal state from RNN

records the information from past input. However, in practice, the limitation of RNN

is that it only remembers the information from a few steps earlier. RNN suffers from

the vanishing gradient problem. As a result, RNN is not the best option for handling

the long sequence data, especially the time series data.

2.1.4 Long short-term memory (LSTM)

The long short-term memory (LSTM), on the other hand, solves the drawback

of the RNN. It is a particular type of RNN with extra components that can learn

long-term sequences. The LSTM unit contains a cell, an input gate, an output gate

and a forget gate. The cell is used to remember the values and connects the modules

from one to another. The gates are the layers mainly used to control and adjust the

content in the LSTM cell. In each gate layer, it produces numbers from the range of

Chapter 2: Background 11

0 to 1. Note that 0 indicates nothing will be passed while 1 means everything will be

passed without modification.

The forget gate generates numbers between 0 and 1 that are mainly used to control

what information will be ignored. The input gate uses the numbers to decide what

values will be updated. The output gate follows similar patterns as other gates but

in different behaviour. It uses the numbers to decide what values will be filtered.

The LSTM is capable of handling the long sequence data in practice. As a result,

I choose LSTM on my thesis to make predictions.

2.2 Reinforcement learning

Reinforcement learning is the technique that acts as an agent to provide optimal

actions based on a reward function under an environment. It differs from supervised

learning in which the model is trained with the correct result. The reinforcement

learning model has to learn the optimal action that it can take from the experience

by utilizing the rewards. There are several terminologies in reinforcement learning:

• Rewards define how good or bad an action is taken. It is the core of reinforce-

ment learning application. To better define a reinforcement learning problem,

the reward has to be described by the maximization of expected cumulative re-

ward. Once we have the reward, the overall goal aims to maximize the reward.

• An agent can be represented by the reinforcement learning models. It takes

observations from the environment as input and provides the optimal actions

defined by the policy.

12 Chapter 2: Background

• An action indicates all the possible behaviour that an agent can take under an

environment. The action can interact with the environment and produce the

state.

• Environment indicates the things that agents can interact with. It receives the

action taken by the agent and provides the reward based on the reward function.

• Q function—aka action-value function—calculates the Q value, which measures

the overall expected reward in a state with a specific action.

• A state indicates the relationship between action and the environment. It is

used to decide what happens next.

• A policy maps state with action. It can be used to pick the optimal action for

a state.

• The Bellman equation [SW10] is a method that is used to find the optimal

solution for dynamic programming. It can transform the dynamic optimization

problem into a sequence problem.

2.2.1 Markov decision process (MDP)

By combine all the aforementioned terms together, we can make a simple Markov

Decision Process (MDP) denoted as 〈S,A,P ,R, γ〉 where

• S is a set of states, which contains all the information to decide what will

happen.

• A contains a set of actions agent can take.

Chapter 2: Background 13

• P is the transition probability matrix which defines the transition probabilities

from all states s to their next state s′.

• R is the reward function

• γ where γ ∈ [0, 1] is a factor to adjust focus in MDP.

Once we have the MDP, we can calculate the reward based on a reward function

with state-value function along with Bellman equation as follows:

vπ(s) = Eπ [Rt+1 + γvπ (St+1) | St = s] (2.3)

where

• s indicates for the state

• E gives the expected value for policy π

• Rt+1 represents to the immediate reward

• γvπ (St+1) represents the discounted value of other state.

– γ indicates the discount factor

– St+1 means the state for time t+ 1.

– vπ (St+1) represents the state value for state St+1 at time t+ 1.

To find the optimal value for maximizing the reward, the Bellman optimality

equation is used:

V ∗(s) = max
π

vπ(s) (2.4)

14 Chapter 2: Background

where

• s indicates for the state

• V ∗(s) indicates the optimal value for state s

• π indicates the policy

• v indicates the value for the state s that calculated based on the Equation (2.3)

The idea of Equation (2.4) is to find the policy π that brings the maximum value

v for the state s. The optimal value could used to solve the MDP. However, MDP

might be high dimensional in some complex cases, and it is difficult to be resolved.

2.2.2 Q learning

In addition, Q-learning is another approach in reinforcement learning. It does not

need a model. Instead, it utilizes the Q table, which contains the expected future

rewards for actions that can be taken at each stage to find the optimal action that

can be taken for a state.

In more details, the Q value (or the action-value) can be expressed by the equation:

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + . . . | st = s, at = a, π

]
(2.5)

where

• E gives the expected value.

• rt refers to the reward at time t.

Chapter 2: Background 15

• s indicates the state.

• a indicates the action.

• π indicates the policy.

Based on Equation (2.5), the Q value for time t can depend on the rewards from

other times.

As a result, by combining Equation (2.5) with Bellman equation (i.e., Equa-

tion (2.4)), the optimal Q function can be calculated as follows:

Q∗(s, a) = E
[
r + γmax

a′
Q∗ (s′, a′)

]
(2.6)

where

• E gives the expected maximum value

• r indicates the reward

• γ indicates to the discount factor

• Q∗ (s′, a′) represents the maximum Q value for the state s′ of the action a′

2.2.3 Deep reinforcement learning

Deep reinforcement learning, on the other hand, adapts deep learning with the

traditional reinforcement learning concept. Deep Q learning(DQN) [MKS+15] is one

of the most popular deep reinforcement learning approaches. In more detail, instead

of finding the optimal Q value, deep Q learning uses neural networks as the function

16 Chapter 2: Background

approximator to estimate Q values with the Bellman optimally Equation (2.6). In

more details, it uses three layers of convolutional neural network followed by a fully

connected network to estimate the Q value. It also uses a technique called “Experience

replay“ to stabilize the DQN network.

2.3 Summary

In summary, the time series prediction has shown its power in forecasting related

temporal observations. For instance, the traditional ARIMA is a time series pre-

diction technique that handles time-series observations from a statistical approach

but suffers from the nonlinear observations. On the other hand, LSTM has shown

not only its ability to handle nonlinear observations but also its power in multivari-

ate predictions. Moreover, as an important topic in machine learning, reinforcement

learning mainly focuses on the interaction between the modelled agent and the preset

environment. Deep reinforcement learning, which combines reinforcement learning

with deep learning techniques, has become a widespread technique in the field. As a

type of deep reinforcement learning algorithm, deep Q learning utilizes deep learning

techniques as a function approximator with Q-learning to estimate the Q values to

find the optimal actions for the state.

Chapter 3

Related works

Here, I discuss related works on two techniques (dynamic pricing and reinforce-

ment learning), which are relevant to this thesis.

3.1 Dynamic pricing

The reach for dynamic pricing has been ongoing. For instance, Netessine and

Shumsky [NS02] indicated the dynamic pricing strategy has been applied in different

industries, such as airlines and hotels.

The purpose of dynamic pricing is to adjust the product price dynamically based

on different factors, so that the product is sold to a specific customer on a particular

time and cost, to earn the maximum revenue. Dynamic pricing is highly correlated to

demand, inventory, and price history [Den15]. Among all factors, customer demand

is the most crucial part. Demand could be uncertain or fixed. The inventory, act-

ing as an available resource that sellers can provide to buyers, could also be limited

17

18 Chapter 3: Related works

or unlimited. Price is also an essential part. The seller uses the price as a tool to

manage revenue, while the buyers use price to evaluate the actual needs. In recent

years, the dynamic pricing strategy has been widely applied in different fields with

more enhancement on newer technologies. For example, Airbnb uses a customized

regression model to take advantage of a binary classification model with the regres-

sion model, to predict user’s booking action to optimize the price to maximize the

revenue [YQC+18].

In recent years, with the new technologies such as the internet of things (IoT) used

in the parking management field, the concept of ‘smart parking’ has been applied and

continuously changed the parking management methods. Parking authority is able

to know the real-time parking availability by using the internet of things. Online

booking and availability checking were also developed in the past couple years.

The usage of newer technologies provides a dynamic management of parking re-

sources, which then leads to dynamic pricing. For example, Zheng and Gerolim-

inis [ZG16] developed an Macroscopic Fundamental Diagram (MFD) multi-modal

traffic modeling approach to capture congestion at network level for car and bus and

integrated with a parking model with pricing strategies.

Mackowski et al. [MBO15] tried to bring the concept from the Stackelberg leader-

follower game model theories and converted it into a dynamic Mathematical Program

Equilibrium Constraints (MPECs). This model provided a reasonable estimate for

the market response, but may need to incorporate stochasticity in demand and user

behaviour. Besides, solving the MPEC problem is another challenge due to the nature

of MPEC problems.

Chapter 3: Related works 19

Other than MPEC, approximate dynamic programming (ADP) has also being

studied, which was able to solve this dynamic pricing parking challenge. ADP takes

advantage of simulation techniques and parametric approximations to provide the

estimate. Lei and Ouyang [LO17] brought up a non-myopic ADP approach along

with the bi-level MPEC model to show the effectiveness of this method.

However, the approaches above are heuristics, which means the solution is case

by case. The performance of a system might be affected by optimization error. Be-

sides, solving the complexity of dynamic pricing problems, especially the dynamic

programming part, is also a challenge. As a result, other approaches appeared.

3.2 Reinforcement learning

Reinforcement learning (RL) is one of the popular techniques, which takes ad-

vantage of the mathematical model with multiple variables. It is an agent-based AI

algorithm that uses agents to optimize actions. In general, reinforcement learning can

be formalized into a Markov Decision Process (MDP) as discussed in Section 2.2.1.

Value function based approaches try to solve the MDP by finding the optimal value

for a given state.

Q-learning is a value function based approach. Based on the given state and all

successive steps, it can estimate the optimal action-value function from existing finite

MDP.

Deep Q-learning [MKS+13] uses the deep convolutional neural network as a non-

linear function approximator to represent the action-value function. It enhances the

ability to support large amounts of actions.

20 Chapter 3: Related works

Moreover, double deep Q-networks (double DQN) [vGS16] has been explicitly pro-

posed focusing on reduced overestimation bias. For example, Rainbow [HMVH+18]

combines the advantages of the following:

• distributional RL [SJLS00],

• multi-step learning [MKS+15],

• prioritized replay [SQAS16],

• double DQN (or DDQN) [vGS16],

• dueling DQN [WSH+16], and

• noisy net [FAP+18]

to provides enhanced performance. Policy search based approach is another strategy

to solve an MDP. It aims at directly finding the optimal policies, usually by gradient-

free or gradient-based methods.

Furthermore, the following used a trusted region to restrict the optimization steps:

• Trust Region Policy Optimization (TRPO) [SLA+15],

• Asynchronous Advantage Actor-Critic (A3C) [MBM+16],

• Proximal Policy Optimization (PPO) [SWD+17], and

• Soft Actor Critic (SAC) [HZAL18].

It can prevent policy updates being too extensive from previous policies.

Chapter 3: Related works 21

Reinforcement learning is wildly used in areas such as nature language processing,

motion control, recommendation system, etc. [GHLL17; LC17; SSS+17; ZZZ+18;

KSRR19].

Demand response is another popular field that was involved with reinforcement

learning. For example, Rana and Oliveira [RO15] found that different products may

have interconnections with each other. Increasing the price or demand of product A

may affect the demand of product B. Therefore, the researchers proposed a reinforce-

ment learning Q-learning model to focus not only on the individual product, but also

on multiple products. The result of this model showed its success on maximize the

expected revenue of interdependent products and also optimal pricing of perishable

interdependent products.

Kara and Dogan [KD18] connected reinforcement learning with an inventory man-

agement system of perishable products. It utilized Q-learning and Saras algorithm

to balance the random demand of perishable products with deterministic lead time.

In this system, a stock-based policy was used to replenish stock based on stock level,

and an age-based policy was used to represent the inventory level and stocked item

age.

Lu et al. [LHZ18] used reinforcement learning to study a smart grid system. The

nature of the grid system indicated that people may have a high demand for electricity

during day time, but have low demand during night. Also, industry and residency may

take different priorities in demand. A reinforcement learning system was brought up

based on the service provider’s profit and customer’s cost, to manage the relationship

between supply and demand.

22 Chapter 3: Related works

Mocanu et al. [MMN+19] built energy optimization based on deep Q-learning

and deep policy gradient, to solved the same sequential decision problem and on-line

scheduling of energy resources at the building level and the aggregated level.

3.3 Summary

In summary, reinforcement learning has shown its potential to the dynamic pricing

system, and has been widely used on resource distribution and allocation systems

such as the smart grid. On the other hand, the dynamic pricing system focuses on

allocating the resource to urgent needs. Combining reinforcement learning along with

dynamic pricing provide the ability to take care of the change of demands for limited

resources.

Chapter 4

My dynamic pricing system

In this M.Sc. research on dynamic pricing systems, I am solving the following two

questions: (a) As the available resource fluctuates year over the year, can the system

adapt itself to the resource fluctuations? (b) As the system may take restrictions

and these restrictions may change over time, can the model dynamically adapt to

the constantly changing restrictions? To answer these questions, I propose in this

chapter a system that consists of the following components: (a) a dynamic pricing

system structure that utilizes artificial intelligence models, especially the machine

learning-based time series prediction model; and (b) a reinforcement learning-based

price control unit to address the questions above. The data set has been discussed in

Chapter 5.

23

24 Chapter 4: My dynamic pricing system

4.1 System overview

The main objective of this dynamic pricing system is aggregating multiple sources

as the inputs then feed into the price control unit. One major source of inputs is

the time-series based prediction. As a result, the dynamic pricing system comprises

two components: the time series based prediction and reinforcement learning based

dynamic pricing adjustment.

To elaborate on dynamic pricing, I introduce the content from time series predic-

tion to provide a reference for the reinforcement learning model. It takes n inputs

from historical data and produces n predictions. I use machine learning techniques,

peculiarly the long short term memory model, to make the prediction.

As for the second part of the system, the price control unit will take into account

the restrictions and inputs then provide the price adjustments. The core of the

price control unit utilizes the advantages of reinforcement learning, especially deep Q

learning, as the controller. It has the ability to find the optimal price based on the

given equation. It will take several sources as inputs.

4.2 Time series prediction

Time series analysis and prediction have been developed for years. Several algo-

rithms had been proposed, which have been discussed in Chapter 3. Here, I use the

long short term memory (LSTM) as the main technology to process the time series

data.

By comparing the traditional time series analysis techniques (e.g., ARIMA), LSTM

Chapter 4: My dynamic pricing system 25

has several advantages which outperform ARIMA:

1. LSTM has been proofed LSTM with better performance on forecasting.

2. Due to the nature of recurrent neural network structure, it can take multiple

parameters. As a result, it can be used for multivariate prediction.

Overall, I am using the time series analysis technique, especially the long short-term

memory, to capture the temporal structure in time series data meanwhile make a

prediction based on the temporal correlations.

4.2.1 LSTM model variants

I have three LSTM variants in my thesis—namely, the Encoder-Decoder LSTM,

Stack LSTM and Vanilla LSTM:

1. The Vanilla LSTM is the simplest LSTM variant. It has three layers:

(a) The first layer is an LSTM layer with 200 neurons.

(b) The second layer is the dense layer with 100 neurons.

(c) The last layer is a dense layer with the same number output as the period

date.

For example, if the forecasting period is 7 days, the output in the last layer

should be 7. Both first and second layers use rectified linear unit (ReLU) as the

activation function.

2. The stack LSTM variant has three layers:

26 Chapter 4: My dynamic pricing system

(a-b) The first two layers are the LSTM layer with dropout. Both of them have

100 neurons. They also use the ReLU as the activation function.

(c) The last dense layer follows the number of period dates as the output.

3. The encoder-decoder LSTM variant has five layers:

(a) It starts with a bi-directional LSTM with 200 neurons.

(b) The second layer is the RepeatVector layer from TensorFlow. It adds an

extra dimension to the data set.

(c) The next layer is the bi-directional LSTM layer.

(d) The fourth layer is the time distributed wrapped dense layer.

(e) The last layer is another time distributed wrapped dense layer.

The activation functions for encoder-decoders are ReLU.

4.2.2 Prediction period

To better discover the temporal correlations in the data set, I split the data based

on time duration t. I define this time duration as a prediction period. For example,

I will obtain a data set that contains 52 arrays if I process one year of data with a

time duration has set to 7 (where t = 7). Each array in the new data set will contain

seven elements. On the other hand, I will get a data set of 12 × 30 if I process the

one-year data with t=30. It can be expressed as follows in the equation:

d(n/t, t) = fperiod(n, t) (4.1)

Chapter 4: My dynamic pricing system 27

where

• n is the number of data in the data set, and

• t indicates the prediction period.

By utilizing the LSTM, I can make use of the algorithm to predict the trends based

on different time duration. The prediction period can be varied based on the charac-

teristic of the data set.

Example 4.2.1 Let us set the period date t to 7 days, which means the model will

make a weekly prediction. Consider two time series capturing the first two weeks of

bookings for parking. If there were 10 and 8 bookings for the first day of the first

two weeks, then my algorithm predicts that there will be 9 bookings for the first day

of the third week.

4.2.3 Weighted ensemble prediction

With the contributions of the prediction period, I can reveal the trends in different

periods. The prediction from different periods will indicate the tendency based upon

time interval. However, different time intervals will lead to extra flexibility, and

robustness [AA12]. None of tendency that have flexibility and robustness can achieve

uniformly best forecasts [AV16]. Also, since the prediction will be used for the price

control unit, multiple predictions based on various time duration will be aggregated

into a single but more precise prediction. It would benefit the down streams of the

system.

28 Chapter 4: My dynamic pricing system

The weighted ensemble is a common technique used in time series forecasting.

It can combine forecasts from conceptually different methods, which enhance overall

precision [AA12].

To enhance the prediction precision and merge the predictions, convex combina-

tion weighted ensemble technique has been used in the system. It can be expressed

as follows:

x̄ = fensemble(w, x) = (w1 × x1) + . . .+ (wn × xn) (4.2)

where

• wi indicates the weight for i-th prediction.

• xi indicates the i-th prediction value located from the prediction.

• n indicates the number of predictions.

Example 4.2.2 Consider two time series, in which (a) one capturing four weekly

bookings for parking and (b) another one capturing a monthly booking for parking.

With weights w1=0.7 and w2=0.3, if there were x1=10 bookings on the first day of

the first week and x2=14 bookings on the corresponding first day of the month, then

my algorithm predicts that there will be x̄ = 0.7× 10 + 0.3× 14 = 11.2 bookings on

that day.

4.2.4 Algorithm for time series prediction

The time series prediction can be expressed as Algorithm 1. The algorithm takes

normalized time series data as the input. The first step from lines 1-3 utilizes Equa-

Chapter 4: My dynamic pricing system 29

tion (4.1) to transfer the normalized data into time series entries based on the pre-

diction period. The actual prediction is made in the second step from lines 4-17.

Each prediction period data set are used to make prediction and saved for the next

step. In the second step, I first split the data into training and test data sets. I use

80% of the data as the training data set and the remaining 20% as the test data set.

Then, the algorithm creates and trains the LSTM model with the training data set

in line 8. Also, it accepts different parameters that affect LSTM model accuracy.

The next step after the model has been trained is walking forward prediction which

if from lines 9-17. It takes steps from the test data set and makes predictions. Each

prediction it made should equal to the length prediction period. For example, the

prediction should be 7 if the prediction period set to 7. At the end of the walking

forward prediction, predictions based on different prediction periods will be saved.

The last step of the prediction algorithm is to ensemble the predictions (lines 18-21).

In more details, I generate an array with a preset step n. The elements in the array

fall into the range of [0, 1]. For example, the number will be [0, 0.01, 0.02, 0.03, . . .,

1]. Then, I use brute force to generate the convex combinations from previous array

based on the condition that the sum of the convex combination should always less

than or equal to 1, i.e., [0, 1]. Next step, Equation (4.2) makes use of a series of convex

weight to merge multiple predictions into one final prediction. Example 4.2.2 reveals

the detail of this step. The convex combinations that provides the best performance

will be used as the selected combination for future use.

30 Chapter 4: My dynamic pricing system

Algorithm 1: Time Series Prediction

Data : Normalized Time Series Data Set, Prediction period

Result: Merged Prediction

1 for t ∈ prediction period do

2 period data sets ← fperiod(n, t)

3 end

4 prediction ← ∅

5 for data ∈ period data sets do

6 train, test ← data

7 # Train the model

8 model ← ffitLSTM
(train, params)

9 # Walking forward prediction

10 history ← ∅

11 for entry ∈ test do

12 history.append(entry)

13 yhat ← fforecast(model, history)

14 prediction.append(yhat)

15 end

16 predictions.append(prediction)

17 end

18 # Ensemble predictions

19 Ensembled prediction ← fensemble(predictions, weights)

20 MAPE ← mean absolute percentage error(Ensembled prediction, test)

21 return (Ensembled prediction, MAPE)

Chapter 4: My dynamic pricing system 31

4.3 Reinforcement learning for dynamic pricing

In studying dynamic pricing, determining the best price for customers based on

the estimated demand while under policy restriction is the challenge. In this section,

I solve the following questions:

1. How can we distribute the limited resource to the people that urgently need the

resource?

2. How to integrate different policy restrictions into the model (e.g., what if the

policy regulates the final price should be less than a certain amount)?

In this section, I propose the price control unit. The price control unit is the

primary function of this application. It utilizes the reinforcement learning model,

especially Q-learning. More specifically, I convert the problem above into a Markov

Decision Process (MDP) with a tuple 〈S, β,A,P ,R, γ〉.

In my thesis, the price control unit will take demand estimation as input on behalf

of the state change. Then, the price control unit uses the Q value function to evaluate

the state change and provide the state-action value (Q-value). The optimal Q value

function should be able to provide the maximum return.

4.3.1 State space

The state’s space contains all the possible states of the environment. In this thesis,

the state will be the parking price. As the result, we define state space S as follows:

S = s (4.3)

32 Chapter 4: My dynamic pricing system

where s ∈ Q+.

4.3.2 Action space

The action space demonstrates all the possible actions that this model can take.

As I apply this technique to the parking management field, the possible action in this

situation to limit to three types of action—namely, price increase, price drop, price

hold:

• Price hold will hold the current price without change.

• In contrast, price increase and price drop will update the current price to a

higher or lower price.

Here, I introduce two variables to define the available actions better:

1. The minimum price change amount m.

2. The price change step n.

The price adjustment amount falls into the range of the magnification of the minimum

price change with the price change step, i.e., [−m×n,+m×n]. For example, if we set

the m=$1 within n=5 steps, then the price can be increased from [+$1, +$5] while

the price drop will be in the range of [−$5,−$1].

In this thesis, we used the action space A as follows:

A = n ∗m (4.4)

Chapter 4: My dynamic pricing system 33

where m,n ∈ Q. Moreover, the summation of n ∗m with current price p should in

the range of price restriction.

Rlower ≤ n ∗m+ p ≤ Rupper (4.5)

where

• R indicates the price restriction

• p indicates the current price

4.3.3 Reward space

Reward function is one of the most important parts in dynamic pricing model. It

can quantified multiple given variables by given formula. Also, it provides the ability

to evaluate how good is the state used for enhancing the model.

Since the reward function is the core function in the system, the equation is able

to adapt the actual use case. To elaborate, mathematically, consider the following

parameters:

• adjustment ceiling (maximum) εm

• estimate demand duration δ

• time slot t

• type of parking lot v

• total parking resource n

34 Chapter 4: My dynamic pricing system

• total revenue R

• parking resource threshold h

• available parking resource θ

Then, the reward function fulfills the follows:

1. Take the prediction of the estimated demand duration δt at time slot t.

2. Provide the price adjustment amount εt,v for time t at type of parking lot v ,

under a preset parameter εm which indicates the price ceiling.

3. Maximize the revenue R based on demand and cost, taking into consideration

of time range [t,T] with number of parking resource [n, N] and types of parking

lot [v, V].

Moreover, we also incorporate the constraints:

1. estimated demand duration δ should be within the available resource θ,

2. available resource should be at most the difference between total resource n and

the preset parameter threshold h (i.e., n− h), and

3. cost parameter εt,v should be at most the preset parameter cost ceiling εm.

More formally, to express the problem in a formula:

R =
V∑
v=1

T∑
t=1

N∑
n=1

εt,v · δt (4.6)

such that 0 ≤ δt,c ≤ θ = n− h (4.7)

0 ≤ εt,v ≤ εm (4.8)

Chapter 4: My dynamic pricing system 35

where

• εt,v indicates the daily parking rate, and

• δt indicates the duration of the customer parking.

• δt,v indicates the duration of the customer parking for a specific parking facility.

Combine them together, I get the earnings for this parking event εt,v · δt. By given

the reward function, I get the total earnings:

V∑
v=1

T∑
t=1

N∑
n=1

(εt,v · δt) (4.9)

based on the accumulation individual earnings with types of parking lot V , the du-

ration of parking T , and the number of parking lot used N .

To define the reward function, one may attempt to apply the discrete finite Markov

Decision Process (MDP) based on the demand function created in the previous step.

The MDP contains a tuple 〈S, β,A,P ,R, γ〉 with reward function (where β ∈ Z+

indicates the sets of available parking price):

R (s, a, s′) =

1 if Rs > 0

−1 if Rs < 0

0 otherwise

(4.10)

where

• s ∈ S,

• a ∈ A, and

36 Chapter 4: My dynamic pricing system

• s′ ∈ S.

The goal of using reinforcement learning is to learn to choose a sequence of actions

that can obtain optimal actions to gain maximum rewards. However, the reward in

Equation (4.10) is not accurate enough to reveal the changes on earning. For example,

the $10 and $200 extra earning shows the same reward.

To enhance it, I define the reward function as follows. Since the earnings price

already show the numerical difference, I can simply use the earnings as the reward.

The resulting reward function would be:

R (s, a, s′) =
V∑
v=1

T∑
t=1

N∑
n=1

(εt,v · δt) (4.11)

where

• s ∈ S,

• a ∈ A, and

• s′ ∈ S.

• εt,v indicates the daily parking rate, and

• δt indicates the duration of the customer parking.

4.3.4 Algorithm for price control

Here, I demonstrate the logic of the pseudo-code which refers to Algorithm 2. For

each epoch, the algorithm has to reset the state and adjustment and initiate a time

series data set that shows in lines 1-4. Since the price control unit does not have

Chapter 4: My dynamic pricing system 37

a clear termination condition, it stops at the end of time series data. Hence, the

for-loop in line 5 stops at the end of time series data.

Lines 6-8 stand for the actual logic to update the model and make a price adjust-

ment. It picks an action from the state-action pair (Q-values). Then, it evaluates the

action-based picked action and the prediction from time series. The reward function

provides the reward and next state-action. A numerical example of lines 6-8 is shown

in Example 4.3.1.

Example 4.3.1 My dynamic pricing model uses the state information retrieved from

the previous state, especially the daily parking price (i.e., p = $12). Meanwhile, the

model reads the predicted number of daily bookings (i.e., ts = 18 bookings). Then,

the model calculates both the reward and the next state based on p and ts. By doing

so, the model provides the price adjustment adj = $4. The consequent daily parking

price will become adj + p = $12 + $4 = $16.

38 Chapter 4: My dynamic pricing system

Algorithm 2: Price Control Unit

Data : Time Series Prediction Data Set

Result: Price adjustment

1 for e ∈ epoch do

2 state ← Environments

3 ts ← Time Series Data Set

4 adjustment ← ∅

5 for i = 1, size of time series do

6 action ← Q(state[i])

7 reward, state′ ← R(action, ts[i])

8 adjustment ← state′

9 end

10 end

4.4 Summary

To summary, my proposed dynamic pricing system utilizes artificial intelligence

models. These include (a) the machine learning-based time series prediction model

and (b) reinforcement learning-based price control unit. In more details, the predic-

tion on the number of bookings for parking was made based on three types of LSTM

variants on different periods. Ensemble techniques were merged to the time series

data to aim for optimal predictions on the number of bookings.

As for the price adjustment model, I defined all the action space, state space and

reward space. Here, the action space captures three types of actions: price increase,

Chapter 4: My dynamic pricing system 39

price hold, and price decrease. The state space captures numerical value. Finally, I

designed the reward function based on the requirement or constraints. The results

predict the price adjustments, and thus their impacts on the extra profile (or loss).

Chapter 5

Evaluation

The experiments have been split into three parts. First, I introduce the data

set and experiment environment. Then, I bring in the experiments for time series

analysis. In the end, I introduce the outcomes from the overall model.

5.1 Experiment setup

5.1.1 Data set

The primary data set I used is a real-life parking data set from a mid-sized Cana-

dian airport. The data contain 25,144 rows of records capturing parking information

from January 15, 2015 to February 29, 2020 inclusive, for a total of 1,884 days.

The data set contains three types of parking lots which can be treated as three

separate data sets. They are

1. parkade (PKD),

40

Chapter 5: Evaluation 41

2. economy parking lot (ECO), and

3. valet parking (VAA).

Each type of parking lot has its charging standards. Each record from the data set

stands for an individual parking booking from the customer. The record contains

booking time, arrival time and booking duration. In this experiment, I mainly use

arrival time for a prediction.

5.1.2 Data pre-processing

I applied few data prepossessing techniques to massage the data. I utilized min-

max techniques to normalize the data. Min-max is mainly used for feature scaling.

The main feature of min-max is to map the values from different scales under a

standard scale. It benefits algorithms that use the Euclidean distance from unified

scales. It follows the the following equations:

Xscaled =
x′ − Vmin
Vmax − Vmin

(5.1)

where

• x′ represents each value that need to be processed,

• Vmax is the maximum of the given range, and

• Vmin is the minimum of the given range.

In addition, I extracted the number of user arrivals per day from the booking data

set since the prediction is on a daily basis. By the end of this process, I have collected

42 Chapter 5: Evaluation

three data sets indicating each parking lot type. Each data set contains 1884 rows of

data representing the number of booking for this data set for that day. To follow the

best practice for prediction, I split the data set into three portions:

• 64% data for training,

• 16% data for validating, and

• 20% of the data for testing.

5.1.3 Experiment environment

The program is mainly implemented in Python with TensorFlow 2.0 [AAB+15]

and scikit-learn library [PVG+11]. The research utilizes the AWS P2 xlarge in-

stanc [Ama21] as the experiment machine. AWS P2 xlarge instance has one NVIDIA

K80 GPU, four vCPU cores and 61 Gib memory. The operation system on the AWS

P2 xlarge instance is Ubuntu 18.04 LTS.

5.2 Time series analysis

5.2.1 Parameters

The LSTM variants have multiple hyperparameters, such as the basic time steps

and batch size. Since we have three data sets, the best hyperparameter may vary

from data set to the data set. As a result, I pick the best parameters in range as

shown in Table 5.1. In addition, I also automated the hyperparameter optimization

process by using the grid search [LBL04] method.

Chapter 5: Evaluation 43

Table 5.1: Parameters for the LSTM

Param Name Content
Batch size 32, 128, 512
Optimizer Adam, Nadam
Epochs 500, 1000, 1700
Dropout rate 0.1, 0.2
Loss MAPE, RMSE

Other than the parameters listed from Table 5.1, I follow the recommended pa-

rameters from TensorFlow for the optimizers listed in Table 5.2 for the Adaptive

Moment Estimation (Adam) variants.

Table 5.2: Adam optimizer variants

Optimizer Type α β1 β2 ε
Adam 0.001 0.9 0.999 1.00E-07
Adamax 0.001 0.9 0.999 1.00E-07

5.2.2 Evaluation metrics

To better evaluate the outcomes, especially the accuracy of the forecast, I applied

multiple evaluation metrics:

• mean absolute error (MAE):

MAE =
1

n

n∑
i=1

|fi − yi| (5.2)

indicates the measures from predictions with actual data. Here, (a) fi stands

for the forecast value and (b) yi stands for the actual value.

44 Chapter 5: Evaluation

• Root Mean Square Error (RMSE):

RMSE =

√∑n
i=1 (yi − fi)2

n
(5.3)

which indicates the standard deviation of the prediction errors.

• mean absolute percentage error (MAPE):

MAPE =
100

n

n∑
t=1

∣∣∣∣yt − ftyt

∣∣∣∣ (5.4)

which is a percentage error for revealing how accurate a forecast system is.

Low values for MAPE, MAE and RMSE indicates high accuracy.

5.2.3 Results and discussions

To better understand the prediction result for the LSTM time series forecasting,

I also introduced the Autoregressive Integrated Moving Average Model (AIMAM) as

the baseline. I also follow the suggested parameters ARIMA model. Since I have

applied the ensemble techniques, the ARIMA predictions also got merged with a

convex factor into an individual forecasting.

The experiment has employed multiple periods for individual forecasting. In more

details, I used 7, 30, 60, 120 days for forecasting. The seven-day prediction from

Table 5.3 shows that Encoder-Decoder achieves outstanding results in VAA and PKD

data sets. Encoder-Decoder had at least 23.5% error less than the baseline. Stack

LSTM also gets the best results in the ECO data set. The 30-day prediction from

Chapter 5: Evaluation 45

Table 5.4 shows that ARIMA outperforms other models on the ECO and PKD data

set. Encoder-Decoder still achieves the best results in the VAA data set. The 60-day

prediction from Table 5.5 shows that Vanilla achieves the best results in VAA and

PKD data set while Encoder-Decoder decreased at least 22.4% error than the Vanilla

in ECO data set. The 120-day prediction from Table 5.6 shows that Encoder-Decoder

achieves outstanding results in VAA and PKD data sets. Encoder-Decoder had at

least 23.5% less error than the baseline. Stack LSTM also gets the best results in the

ECO data set.

By comparing the outcomes from periods refers to Tables 5.3, 5.4, 5.5 and 5.6, I

observed that the 30 days periods has the largest error among all four tables. Be-

sides, the seven days predictions have the lowest forecasting error, which has the best

prediction result. Other than that, the baseline ARIMA shows the ability to predict

on 30 days data where all other LSTM variants shows a lousy performance. However,

since 30 days has the most significant error among all predictions, that may mean

30-day prediction may not represent the nature of the human activity. It may not be

a good prediction option.

Among all three LSTM variants, the encoder-decoder provides the best predic-

tions. Surprisingly the Vanilla LSTM has a better result than Stack LSTM in most

cases. This may because of overfiting in the training process. Adding a dropout layer

may change the situation.

Other than that, I use the MAPE and RMSE as the loss function while using the

MAE, MAPE and RMSE as the evaluation metric. However, the outcomes indicate

that most predictions achieve minor errors in metrics with MAPE as the loss function.

46 Chapter 5: Evaluation

As a result, MAPE has been chosen as the major evaluation metric.

Table 5.3: Evaluation of time series analysis with period = 7 days

Model dataset period RMSE MAPE MAE
ARIMA (baseline) VAA 7 0.089 48.946 0.058
My Encoder Decoder LSTM VAA 7 0.102 38.690 0.063
My Stack LSTM VAA 7 0.151 145.591 0.114
My Vanilla LSTM VAA 7 0.087 41.089 0.058
ARIMA ECO 7 0.131 26.503 0.101
Encoder Decoder ECO 7 0.135 27.823 0.103
Stack ECO 7 0.126 26.003 0.096
Vanilla ECO 7 0.128 26.454 0.098
ARIMA PKD 7 0.193 37.018 0.108
Encoder Decoder PKD 7 0.153 28.311 0.084
Stack PKD 7 0.154 37.816 0.094
Vanilla PKD 7 0.187 30.820 0.098

Table 5.4: Evaluation of time series analysis with period = 30 days

Model dataset period RMSE MAPE MAE
ARIMA VAA 30 0.158 98.061 0.118
Encoder Decoder VAA 30 0.180 88.445 0.143
Stack VAA 30 0.181 89.368 0.144
Vanilla VAA 30 0.205 196.667 0.151
ARIMA ECO 30 0.195 43.259 0.150
Encoder Decoder ECO 30 0.212 44.075 0.160
Stack ECO 30 0.212 43.474 0.159
Vanilla ECO 30 0.241 54.248 0.182
ARIMA PKD 30 0.199 73.432 0.139
Encoder Decoder PKD 30 0.337 185.548 0.256
Stack PKD 30 0.289 79.406 0.189
Vanilla PKD 30 0.312 120.443 0.221

Chapter 5: Evaluation 47

Table 5.5: Evaluation of time series analysis with period = 60 days

Model dataset period RMSE MAPE MAE
ARIMA VAA 60 0.187 113.239 0.129
Encoder Decoder VAA 60 0.181 84.126 0.129
Stack VAA 60 0.204 196.999 0.151
Vanilla VAA 60 0.143 75.712 0.116
ARIMA ECO 60 0.288 70.764 0.235
Encoder Decoder ECO 60 0.221 46.350 0.167
Stack ECO 60 0.287 75.609 0.231
Vanilla ECO 60 0.253 59.795 0.199
ARIMA PKD 60 0.302 94.777 0.214
Encoder Decoder PKD 60 0.345 200.000 0.266
Stack PKD 60 0.233 65.842 0.176
Vanilla PKD 60 0.264 60.152 0.165

Table 5.6: Evaluation of time series analysis with period = 120 days

Model dataset period RMSE MAPE MAE
ARIMA VAA 120 0.185 112.181 0.155
Encoder Decoder VAA 120 0.152 83.669 0.137
Stack VAA 120 0.153 67.554 0.098
Vanilla VAA 120 0.205 198.957 0.151
ARIMA ECO 120 0.148 30.361 0.113
Encoder Decoder ECO 120 0.281 77.632 0.236
Stack ECO 120 0.282 76.503 0.234
Vanilla ECO 120 0.255 62.367 0.205
ARIMA PKD 120 0.212 78.335 0.167
Encoder Decoder PKD 120 0.277 67.347 0.174
Stack PKD 120 0.344 198.892 0.266
Vanilla PKD 120 0.273 67.767 0.173

48 Chapter 5: Evaluation

5.2.4 Ensemble results

The overall ensemble forecasting results for each data set are as below:

Table 5.7: Ensemble predictions

Data set Model RMSE MAPE MAE
VAA ARIMA (baseline) 0.087 50.731 0.056
VAA LSTM 0.072 36.346 0.050
ECO ARIMA 0.129 29.117 0.099
ECO LSTM 0.126 26.003 0.096
PKD ARIMA 0.186 40.923 0.102
PKD LSTM 0.153 28.311 0.084

From Table 5.7, I obtained that LSTM led to 10.7% lower error than ARIMA in

MAPE for ECO. Meanwhile, PKD led to 34.87% lower, and VAA led to 14.5% lower

in MAPE error. By comparing the ensemble outcomes with individual predictions,

the ensemble result has shown a 6% decrease in MAPE error in the VAA data set.

The ensemble techniques work as expected.

Chapter 5: Evaluation 49

Figure 5.1: Results of LSTM prediction on the number of bookings for the VAA data
set

50 Chapter 5: Evaluation

Figure 5.2: Results of LSTM prediction on the number of bookings for the ECO data
set

Chapter 5: Evaluation 51

Figure 5.3: Results of LSTM prediction on the number of bookings for the PKD data
set

Figures 5.1, 5.2 and 5.3 show the comparison of LSTM ensemble predictions,

ARIMA ensemble predictions and the actual data plotted in testing data sets. From

the plotting, I observed that LSTM predictions for all three data set follow a similar

pattern as actual data. In more details, LSTM results in Figure 5.1 for VAA data set

has missed the peak at 2019 Christmas because holiday does not count as an impact

factor for bookings. The data from all three types of data sets show a severe decrease

because of the COVID-19 situation.

To summarize, the forecasting from LSTM outperforms the ARIMA in all three

data sets.

52 Chapter 5: Evaluation

5.3 Dynamic pricing

5.3.1 Model selection

It used the Double Deep Q network [vGS16]. There are four dense layers that

exist. The first dense layer has 24 neurons. The second dense layer has 48 neurons,

while the third has 96 neurons. All of them use ReLU as the activation function. The

last dense layer has three neurons along with a linear activation function.

Regarding the model parameters, I set the learning rate to 0.001, batch size at 64,

I chose Adam as the model optimizer. I followed the suggested parameters for the

optimizer as showing in Table 5.1.

5.3.2 Parameters

There are multiple parameters have been set for this experiment. Expressly, I

have set the price adjustment range from $0 to $7, i.e., [$0, $7]. It follows the same

test data set as time-series predictions which starts from May 2019 till Feb 2020.

The episode has been set to 2000. The discount factor γ has been set to 0.96. It

will be used in the Bellmen equation (Equation (2.6)) to find the optimal policy.

5.3.3 Evaluation

Since the reinforcement learning on the price adjustment does not have a direct

evaluation metric, here I have to find a different approach to evaluate the outcome for

the application. Consider the purpose of the adjustment unit is to adjust the price

and make a profit, I evaluate the price adjustment unit by checking the earnings.

Chapter 5: Evaluation 53

5.3.4 Results

Table 5.8: Price adjustment unit earnings

Month VAA($) ECO($) PKD($)
2019-May 532.60 2,173.30 1,169.90
2019-Jun 4,249.20 18,725.15 904.25
2019-Jul 6,565.10 20,693.95 3,500.40
2019-Aug 12,354.10 12,911.50 16,404.45
2019-Sep 5,194.80 16,406.75 29,865.65
2019-Oct 2,074.45 3,666.20 13,529.90
2019-Nov 9,620.70 1,860.20 13,210.00
2019-Dec 8,197.00 2,198.35 11,155.80
2020-Jan 36,894.15 9,698.00 29,067.95
2020-Feb 22,601.40 17,930.45 59,209.60
SUM: 108,283.50 106,263.85 178,017.90

Earnings unit in Canadian dollar ($)

I have grouped the outcomes for this component in Table 5.8. From the sum of

the table, I find out the overall results meet the expectations.

In more details, the earnings for VAA were relatively high in 2019 August, Novem-

ber, December and January 2020. The earnings for ECO data set relatively high in

2019 July, September and 2020 January and February. The earnings for PKD data

set relatively high in 2019 September, 2020 January and February.

By comparing the high earning period with the actual data for VAA and PKD,

the 2020 January has higher earnings than 2019 December. The main reason is that

bookings start increasing in the second half of December due to the Christmas holiday.

Meanwhile, people prefer taking flights in the whole of January and February due to

the cold weather.

ECO data set represents the economic parking lot. From the ECO data set result, I

observed that people have high demands in summer time (June and July), September,

54 Chapter 5: Evaluation

and February 2020. Summer and September are the best time in the year for travel,

while February is the spring break in schools. This may indicate economic parking

lot parking users will choose the best time for travel.

Figure 5.4: Results of double deep Q network prediction on price adjustment for the
VAA data set

Price in Canadian dollar ($)

Chapter 5: Evaluation 55

Figure 5.5: Results of double deep Q network prediction on price adjustment for the
ECO data set

Price in Canadian dollar ($)

56 Chapter 5: Evaluation

Figure 5.6: Results of double deep Q network prediction on price adjustment for the
PKD data set

Price in Canadian dollar ($)

Besides, by comparing the earnings with price adjustment by the timeline in Fig-

ures 5.5, 5.4 and 5.6, I observe that price adjustment will effectively bring the earnings.

For example, the price increment from $0 to $7 brings in earnings over $2000 per day

in 2020 February in PKD data set. However, the price adjustment from $0 to $7 for

the VAA data set in July 2019 only brings in less than $1000 earnings. The reason

behind this is that the algorithm may be too sensitive to fluctuations. This can be

an enhancement work in the future.

To summarize, the price adjustment unit can adjust the price based on predictions

Chapter 5: Evaluation 57

and bring in more earnings under restrictions.

5.4 Summary

In summary, I evaluated our models. The booking estimate unit utilizes the time

series prediction to make the forecasting. Specifically, it utilized three LSTM variants

for the predictions with different periods. Then, I used convex ensemble techniques

to merge the predictions into one prediction that outperformed other individual pre-

dictions. To better evaluate the quality of the LSTM, ARIMA was introduced as

the baseline. Performance was measured by the MAPE as the evaluation metric.

Evaluation results indicated that the LSTM prediction outperformed the ARIMA on

all three parking lots. Specifically, the ensemble technique for ECO and PKD data

sets follows the same prediction as the 7 days prediction. However, the VAA data

showing ensemble technique had 6% less error than the 7 days prediction in MAPE

error. As for the price adjustment unit, I used profit as the evaluation metrics. The

monthly outcomes show that, as expected, all of the three parking lots were making

profits. Moreover, the data also showed that ECO parking lot users preferred to use

the parking lot during the holiday season (e.g., July, Spring break) while PKD and

VAA earned more in August and January.

Chapter 6

Conclusions and future work

6.1 Conclusions

In my thesis, I proposed an architecture that utilizes the available public resource

while optimizing revenue with pre-defined restrictions, specifically on the parking

management field. The architecture has two components: the time series based book-

ing estimate unit and the reinforcement learning based price control unit. I used a

real-life parking data from a mid-sized Canadian airport. It consists of 25,144 rows

of records capturing three types of parking from January 15, 2015 to February 29,

2020, for a total of 1,884 days. In more details, I designed an LSTM based neural

network used for time series prediction as to the booking estimate unit. Evaluation

results show that LSTM based neural network outperforms the traditional ARIMA

model in all three types of parking lot data. Besides, I designed another dynamic

pricing model based on reinforcement learning. I combined and adapted the booking

estimate unit with the price control unit together with a preset price restriction. I

58

Chapter 6: Conclusions and future work 59

chose the overall profit as the evaluation metrics for the architecture. The outcome

of the overall profit met the expectations.

Recall that, in Chapter 1, we asked several questions. I provided answers to these

questions in this thesis. Let me summarize them:

Q1. As the available resource fluctuates year over the year, can the system adapt

itself to the resource fluctuations?

As described in Section 4.2, although bookings may fluctuate by various factors

year over the year, the time series prediction—especially the LSTM prediction

model—adapts to the data fluctuation.

Q2. How can we distribute the limited resource to the people that urgently need the

resource?

As described in Section 4.3, the limited resource can be assigned to the people

that urgently need by the price.

Q3. How to integrate different policy restrictions into the model (e.g., what if the

policy regulates the final price should be less than a certain amount)?

As described in Section 4.3 (in particular, Section 4.3.3), the price will be con-

trolled by the price control unit made by deep reinforcement learning. The

price control unit is able to adjust the price based on multiple inputs. This

thesis uses the prediction data provided from the booking estimate unit, which

utilizes the time series prediction. Moreover, the deep reinforcement learning

model can take restrictions that conform to the real world case that the policy

may regulate parking lots.

60 Chapter 6: Conclusions and future work

Q4. After concatenate different components, what would be the best metrics to

evaluate the overall consequence?

As described in Chapter 5, I presented the overall earnings as an evaluation

metrics to measure the overall consequence. From the experiment, the earnings

from price adjustment significantly increase the earnings.

6.2 Future work

In this thesis, I proposed an architecture that utilizes the available public resource

while optimizing revenue with predefined restrictions, especially in the parking man-

agement field. As future work, one could explore the following:

1. With the development of the time series prediction, the prediction model can

be replaced by a more accurate model. In more details, with the development

of the time series prediction, more popular and influential prediction techniques

may appear. For example, the LSTM variants could be extended with GRU or

attention mechanism.

2. Other than the uni-variant time series prediction, more data sets can be in-

troduced, such as the statutory holiday’s data set. The LSTM had shown its

power on multivariate prediction. By combining multiple data set, the predic-

tion model may provide a more accurate prediction.

3. The dynamic pricing system reveals the potential to take more input. For

example, the flight data may be highly correlated with the parking data. More

input may help the system to adjust the price better based on the needs.

Chapter 6: Conclusions and future work 61

4. Currently, the model only supports the daily adjustment per request. How-

ever, since the raw data set records are logged with date and time. An hourly

adjustment system could be developed by utilizing the data set.

5. To better handle the price restriction with negative numbers such as [−$3, $4],

the supply and demand curve may help to provide a better reference to drop

the price. Other than that, it will explain that why drop the price for a certain

amount. For example, it can explain why to drop $1 instead of $3.

Bibliography

[AA12] Ratnadip Adhikari and R. K. Agrawal. A novel weighted ensemble tech-

nique for time series forecasting. In Pang-Ning Tan, Sanjay Chawla,

Chin Kuan Ho, and James Bailey, editors, Advances in Knowledge Dis-

covery and Data Mining, pages 38–49, Berlin, Heidelberg, 2012. Springer

Berlin Heidelberg.

[AAB+15] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Ge-

offrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz

Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-

jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,

and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. Software available from tensorflow.org.

62

Bibliography 63

[Ama21] Amazon Web Services. Amazon ec2 p2 instances, 2021.

[AS18] P. Arumugam and R. Saranya. Outlier detection and missing value in

seasonal arima model using rainfall data*. Materials Today: Proceed-

ings, 5(1, Part 1):1791–1799, 2018. International Conference on Process-

ing of Materials, Minerals and Energy (July 29th – 30th) 2016, Ongole,

Andhra Pradesh, India.

[AV16] Ratnadip Adhikari and Ghanshyam Verma. Time series forecasting

through a dynamic weighted ensemble approach. In Atulya Nagar,

Durga Prasad Mohapatra, and Nabendu Chaki, editors, Proceedings of

3rd International Conference on Advanced Computing, Networking and

Informatics, pages 455–465, New Delhi, 2016. Springer India.

[BGV+20] Domenico Benvenuto, Marta Giovanetti, Lazzaro Vassallo, Silvia An-

geletti, and Massimo Ciccozzi. Application of the arima model on the

covid-2019 epidemic dataset. Data in Brief, 29:105340, 2020.

[BJ90] George Edward Pelham Box and Gwilym Jenkins. Time Series Analysis,

Forecasting and Control. Holden-Day, Inc., USA, 1990.

[Den15] Arnoud V. Den Boer. Dynamic pricing and learning: Historical origins,

current research, and new directions. Surveys in Operations Research

and Management Science, 20(1):1–18, June 2015.

[DYMJ19] Yuchuan Du, Shanchuan Yu, Qiang Meng, and Shengchuan Jiang. Allo-

cation of street parking facilities in a capacitated network with equilib-

64 Bibliography

rium constraints on drivers’ traveling and cruising for parking. Trans-

portation Research Part C: Emerging Technologies, 101:181–207, April

2019.

[FAP+18] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob

Menick, Matteo Hessel, Ian Osband, Alex Graves, Volodymyr Mnih,

Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and

Shane Legg. Noisy networks for exploration. In 6th International

Conference on Learning Representations, ICLR 2018, Vancouver, BC,

Canada, April 30 - May 3, 2018, Conference Track Proceedings. Open-

Review.net, 2018.

[GHLL17] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep

reinforcement learning for robotic manipulation with asynchronous off-

policy updates. In 2017 IEEE international conference on robotics and

automation (ICRA), pages 3389–3396. IEEE, 2017.

[Ham95] James D Hamilton. Time series analysis, 1995.

[HMVH+18] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg

Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and

David Silver. Rainbow: Combining improvements in deep reinforcement

learning. In Thirty-second AAAI conference on artificial intelligence,

2018.

[HZAL18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft

actor-critic: Off-policy maximum entropy deep reinforcement learning

Bibliography 65

with a stochastic actor. In International conference on machine learning,

pages 1861–1870. PMLR, 2018.

[HZL+21] Zhongyang Han, Jun Zhao, Henry Leung, King Fai Ma, and Wei Wang.

A review of deep learning models for time series prediction. IEEE Sen-

sors Journal, 21(6):7833–7848, 2021.

[IL15] Eren Inci and Robin Lindsey. Garage and curbside parking competition

with search congestion. Regional Science and Urban Economics, 54:49–

59, September 2015.

[JWW+18] Ruili Jiang, Haocong Wang, Han Wang, Eoin O’Connell, and Sean Mc-

Grath. Smart parking system using image processing and artificial intel-

ligence. In 2018 12th International Conference on Sensing Technology

(ICST), pages 232–235, 2018.

[KD18] Ahmet Kara and Ibrahim Dogan. Reinforcement learning approaches

for specifying ordering policies of perishable inventory systems. Expert

Systems with Applications, 91:150–158, 2018.

[KSRR19] Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and Chandan K.

Reddy. Deep Reinforcement Learning for Sequence-to-Sequence Models.

IEEE Transactions on Neural Networks and Learning Systems, pages 1–

21, aug 2019.

[LBL04] Steven M LaValle, Michael S Branicky, and Stephen R Lindemann.

On the relationship between classical grid search and probabilistic

66 Bibliography

roadmaps. The International Journal of Robotics Research, 23(7-8):673–

692, 2004.

[LC17] Guillaume Lample and Devendra Singh Chaplot. Playing fps games

with deep reinforcement learning. In Thirty-First AAAI Conference on

Artificial Intelligence, 2017.

[LHZ18] Renzhi Lu, Seung Ho Hong, and Xiongfeng Zhang. A Dynamic pric-

ing demand response algorithm for smart grid: Reinforcement learning

approach. Applied Energy, pages 220–230, June 2018.

[LHZS16] Chenghao Liu, Steven CH Hoi, Peilin Zhao, and Jianling Sun. Online

arima algorithms for time series prediction. In Thirtieth AAAI confer-

ence on artificial intelligence, 2016.

[LO17] Chao Lei and Yanfeng Ouyang. Dynamic pricing and reservation for

intelligent urban parking management. Transportation Research Part

C: Emerging Technologies, 77:226–244, 12 2017.

[MBM+16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex

Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray

Kavukcuoglu. Asynchronous methods for deep reinforcement learn-

ing. In International conference on machine learning, pages 1928–1937.

PMLR, 2016.

[MBO15] Daniel Mackowski, Yun Bai, and Yanfeng Ouyang. Parking space man-

Bibliography 67

agement via dynamic performance-based pricing. Transportation Re-

search Part C: Emerging Technologies, 59:66–91, December 2015.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-

nis Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari

with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,

Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-

dreas K Fidjeland, Georg Ostrovski, et al. Human-level control through

deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[MMN+19] Elena Mocanu, Decebal Constantin Mocanu, Phuong H. Nguyen, Anto-

nio Liotta, Michael E. Webber, Madeleine Gibescu, and J. G. Slootweg.

On-Line Building Energy Optimization Using Deep Reinforcement

Learning. IEEE Transactions on Smart Grid, 10(4):3698–3708, July

2019.

[NS02] Serguei Netessine and Robert Shumsky. Introduction to the Theory and

Practice of Yield Management. INFORMS Transactions on Education,

3(1):34–44, September 2002.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-

plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

68 Bibliography

[RO15] Rupal Rana and Fernando S. Oliveira. Dynamic pricing policies for inter-

dependent perishable products or services using reinforcement learning.

Expert Systems with Applications, 42(1):426–436, January 2015.

[SASS16] P. Sheelarani, S. P. Anand, S. Shamili, and K. Sruthi. Effective car

parking reservation system based on internet of things technologies. In

2016 World Conference on Futuristic Trends in Research and Innovation

for Social Welfare (Startup Conclave), pages 1–4, February 2016.

[Sho17] Donald Shoup. The high cost of free parking: Updated edition. Rout-

ledge, 2017.

[SJLS00] Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba

Szepesvári. Convergence results for single-step on-policy reinforcement-

learning algorithms. Machine learning, 38(3):287–308, 2000.

[SLA+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and

Philipp Moritz. Trust region policy optimization. In International con-

ference on machine learning, pages 1889–1897. PMLR, 2015.

[SQAS16] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prior-

itized experience replay. In 4th International Conference on Learning

Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,

Poster, 2016.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis

Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,

Bibliography 69

Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,

Laurent Sifre, George Van Den Driessche, Thore Graepel, and Demis

Hassabis. Mastering the game of Go without human knowledge. Na-

ture, 550(7676):354–359, October 2017.

[STS18] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. A com-

parison of arima and lstm in forecasting time series. In 2018 17th

IEEE International Conference on Machine Learning and Applications

(ICMLA), pages 1394–1401, 2018.

[SW10] Claude Sammut and Geoffrey I. Webb, editors. Bellman Equation, pages

97–97. Springer US, Boston, MA, 2010.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. CoRR,

abs/1707.06347, 2017.

[TYWH18] Qiong Tian, Li Yang, Chenlan Wang, and Hai-Jun Huang. Dynamic

pricing for reservation-based parking system: A revenue management

method. Transport Policy, 71:36–44, 2018.

[vGS16] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement

learning with double Q-learning. In Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, AAAI’16, page 2094–2100. AAAI

Press, 2016.

[WSH+16] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanc-

70 Bibliography

tot, and Nando De Freitas. Dueling network architectures for deep

reinforcement learning. In Proceedings of the 33nd International Con-

ference on Machine Learning, ICML 2016, New York City, NY, USA,

June 19-24, 2016, pages 1995–2003, 2016.

[XQH10] Xiaoyan Xu, Yuqing Qi, and Zhongsheng Hua. Forecasting demand of

commodities after natural disasters. Expert Systems with Applications,

37(6):4313–4317, 2010.

[YQC+18] Peng Ye, Julian Qian, Jieying Chen, Chen-hung Wu, Yitong Zhou,

Spencer De Mars, Frank Yang, and Li Zhang. Customized regression

model for airbnb dynamic pricing. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 932–940. ACM, 2018.

[ZG16] Nan Zheng and Nikolas Geroliminis. Modeling and optimization of

multimodal urban networks with limited parking and dynamic pricing.

Transportation Research Part B: Methodological, 83:36–58, December

2016.

[ZKWL15] Bo Zou, Nabin Kafle, Ouri Wolfson, and Jie (Jane) Lin. A mechanism

design based approach to solving parking slot assignment in the informa-

tion era. Transportation Research Part B: Methodological, 81:631–653,

November 2015.

[ZZ16] Rong Zhang and Lichao Zhu. Curbside parking pricing in a city centre

using a threshold. Transport Policy, 52:16–27, November 2016.

Bibliography 71

[ZZZ+18] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang,

Nicholas Jing Yuan, Xing Xie, and Zhenhui Li. DRN: A Deep Reinforce-

ment Learning Framework for News Recommendation. [WWW2018]

Proceedings of the 2018 World Wide Web Conference, 2:167–176, 2018.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Thesis statement and contributions

	Background
	Time series prediction
	Auto-regressive integrated moving average (ARIMA) model
	Neural network-based time series prediction
	Recurrent neural network (RNN)
	Long short-term memory (LSTM)

	Reinforcement learning
	Markov decision process (MDP)
	Q learning
	Deep reinforcement learning

	Summary

	Related works
	Dynamic pricing
	Reinforcement learning
	Summary

	My dynamic pricing system
	System overview
	Time series prediction
	LSTM model variants
	Prediction period
	Weighted ensemble prediction
	Algorithm for time series prediction

	Reinforcement learning for dynamic pricing
	State space
	Action space
	Reward space
	Algorithm for price control

	Summary

	Evaluation
	Experiment setup
	Data set
	Data pre-processing
	Experiment environment

	Time series analysis
	Parameters
	Evaluation metrics
	Results and discussions
	Ensemble results

	Dynamic pricing
	Model selection
	Parameters
	Evaluation
	Results

	Summary

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

