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INTRODUCTION

A univergal algebra, or briefly, algebra (T is an ordered

pair ( A;F > where A is a non-empty set and F is a family of
finitary operations on A. For each natural number n, we can
consider the set P(n)(éZ) of n—ary polynomials of ¢Z which
are certain functions from A" to A built up from the variables
Xy i =1;2y5009n by substituting them in the operations f,
f € Fy successively in a finite number of stepse.

An n-ary polynomial p over ¢ is said to depend on x, if
there exist al,OQ,,ai,a;,eao,ah in A such that

p(al,o.o,ai,.oogan) # p(alpoao,ai,..c,ah)o

By an essentially n-ary polynomial over ¢ is meant a n—ary
polynomial over 4 which depends on each variable X9 1= 100
sosgnle For n =1, let pn(éZ) designate the number of essent-
ially n-ary polynomials over ¢Z . We denote by pl(dZ) and
po(d?) the number of non-constant unary polynomials excluding
X, and the number of constant unary polynomials respectively.
Thus, with any algebra Z , there is as;ociated an o -gequence
.‘ of cardinals <'po(dz),pl(dZ),o.e,pn(UZ),oa.‘> .

Let C be a class of algebra. A sequence (po,pl,..,,pn,o..>
of cardinals is said to repregentable in O if there exists
an elgebra & in € with P, = pn(d?) for each n = 0. If C

is the class of all algebras, then we say that the sequence

<’po,p1,°.°,pn,e..> is representable. An algebra ¢ = {AsF D>
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is said to be idempotent if f(xy.ceyx) = X, for any £ in F.
Thus, it is easy to see that an algebra {7 is idempotent if
and only if po(éz) = pl(éf) = 0, We shall say that an algebra
X =< A;F) can be represented as an algebra (L * =

{ A3y 48 p00000 > OF type T if it is possible to choose a
sequence (f1,f290009) of polynomials from F in such a way

| that the sequence of the arities of the fi equals T . Note
that the set of polynomials {fi} can be taken as a set of
operations in L .

Our basic problem is to study and characterize representable
sequences. An easy combinatorial argument shows that this
problem is equivalent to Problem 42 in [ 6 1 which can be stated
as follows ¢ Let K be an equational class, and let Fn denote
the cardinal of the free algebra over X on n generatorse
Characterize the sequence ¢ Fn:> o

The development of the study of (pn)> sequence mey briefly
be divided into three stages.

The period that started in 1910 may be considered as the
initial stage. In this period, even théugh there were no sign-
ificant contributions to the theory, the idea was foreshadowed
by the work of S. Sierpinski. He published a series 6? articles
between 1918 and 1945 for the purpose of investigating the
composition of functions. One of his typical results ( see [ 411 )

says that given any set A and any function f ¢ An-———>A, f can



be obtained by an appropriate composition of binary functions.
Recently; R.¥W. Quackenbush studied the corresponding problem
for idempotent functionse He proved [ 37 ] that every idempotent
function on a given set A can be obtained by composition of
binary idempotent functions provided |A| =>2. For |4 | = 2,
the role of binary functions is replaced by ternary functionse.

The explicit formulation of the basic problem, given by
E. Marczewski in 1963 = 1964, may be considered as the beginning
of the second stage. Since it was considered too difficult to
deal with explicitly; E. Marczewski and his colleagues in
Wroclaw studied only problems associated with ite 1In particular,
he himself defined for each € , the zero get

Z2(&X2) = {n/pn(é"cf)ao}

and showed, for instance, in [ 22 | that for algebras without
constants and with one essentially n-ary symmetry ( or even
gquasi=gymmetric ) polynomial the complement of the zero se%
Z(&) contains the arithmetical progression n + k(n - 1),
( k = 0414000 )o This generalizes a result of J. Plonka [28]
for n = 2. One of the deepest results ﬁas obtained by
K. Urbanik [ 42 ] who gave a complete description of all possible
gsets Z2(X).

It was in 1968 that the present stage began with a system—
atic and intensive investigation of the basic problem in
G. Gratzer's seminar at the University of Manitoba. Influenced

by the first paper due to G. Gratzer, J. Pionka and A. Sekanina



[11] ; a steady flow of contributions to it, by the members of
the seminar, has appeared in 1968 = 1969. G. Gritzer, J. PZonka
and R. Padmanabhan have especially enriched and clarified the
subject. The results were summarized by G. Gritzer [ 81 who
gave a survey lecture at the Conference on Universal Algebras
held at Queen®s University in October, 1969.

In this period, the investigation of the basic problem
was naturally split into two categories : (1). Study the basic
problem for non-idempotent algebrass (2). Study the same for
idempotent algebras. The first case weas attacked by Ge Gratzer,
Jo Pionka; A. Sekanina in [11] , [121 and [323] . Some of
their results were of the type that sequences satisfying some
mild condition ( e.ge p, = 0 ) are all representable, and so
the p; are independent. However, the situation completely
changes when we deal with the idempotent case. As a matter of
fact, the cardinals pn(d?), for idempotent algebra ¢ , turn
out to be quite strongly interrelated ( see, for instance, [13]
and [141 ). Because of this extremely interesting fact,
recently, most papers were devoted to tﬁe study of idempotent
algebra § this study can be separated roughly into two parts :
(4). Investigate the behaviour and the maximum asymptotic rate
of growth of the general sequence (D > 3} (8). Description
of all algebras representing a given seguence with application
to the Minimal Extension Property ( for definitin, see Chapter

two of Part IV ).
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The purpose of this thesis is to provide some results for
the second part of category 2 in a systematic way with emphasis
on applications to the Minimal Extension Property. The equivalent
Problem of <(pn> sequences in Group Theory, the so called growth
function of free groups, has been extensively studied for equa~-
tional classes of groups by British mathematicians j; for instance,
Go Higman ( see [ 161 and [23]1 ), P. Neumann and his students.
The application of ('pn> sequences to semilattices was considered
in G. Gratzer and J. Pionka [15] while the case of idempotent
semigroups was settled by J.A. Gerhard [ 5] . In this thesis,
Wwe make a first attack in applying the <'pn> sequences to
Lattice Theorye.

This thesis falls into four parts with nine chapters alto-
gether, Since a short description of the content is given at
"the beginning of each chapter, we shall include here only a
brief outiines Part I, which consists of three chapters, is
devoted to study idempotent algebras with one essentially binary
polynomial. The sequence <’O,O,1,24> has, in particular,
very interesting properties. Thus, we éestrict our attention
to this sequence in the first two chapters. Some results of
Part I are generalized to Part IY in which we consider idempotent
algebras with one essentially m-ary polynomial for m == 2. All
of these are applied to derive the function F(n,k) with the

property that F(n,k) is the least value such that the sequence

______
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algebra. Part III consists of two chapters. PZonka's basic
lemmas are used in Chapter 1 to derive some results about the
sequences ¢ 0,0,2,m > . ‘The considerations of Chapter 2
center around the algebras repreéenting ( 0,0;3,m‘> o Part
IV consists of two chapters. Previous results are applied to
Lattice Theory in Chapter 1 and the Minimal Extension Property
in Chapter 2. |

Cross references are given in the form (III,1,2) where
III stands for Part III, 1 for Chapter 1 and 2 for section 2.
The part and chapter numerals will be omitted in case the
refefence is ma@e‘in the same chapter.

For those basioc concepts and notations, we refer to

Go. Gratzer®'s books [ 61 and [ 9] .

viii




TABLE OF CONTERTS

PAGE
ACKNOWLEDGMENT ii
INTRODUCTION iii
PART I. IDEMPOTENT ALGEBRAS WITH ONE ESSENTIALLY
BINARY POLYNOMIAL 1
CHAPTER 1. Algebras Representing (0,0,1,2> 2
l. Basic Lemmas 2
2. Two Types of Algebras 9
3o Characterization Theorem and
Applications 13
CHAPTER 2, Algebras Representing ¢ 0,0,1,2%
( Continued ) 18
l, Existence Theorems —-—- -~ - 18
2. Other Examples & 21
3. A Theorem on Subalgebras 27
4. A Lower Bound for pn(@) 36
5. Finite Subdirectly Irreducible Algebras 44
CHAPTER 3. Algebras Representing ( 10,0,1,n> 61
1. Construstion of Algebras 62
2. Main Theorem 66
PART II. IDEMPOTENT ALGEBRAS WITH ONE ESSENTIALLY
m=ARY POLYNOMIAL, m == 2 — 70
CHAPTER 1. Algebras Representing <0,0,al,“.,ak,m>
g !

Withalﬂooo=ak=1



1.
2,

3.

CHAPTER 2,

1,
2.

3.

PART III.

ESSENTIALLY BINARY POLYNOMIALS »

CHAPTER 1.

1.
2e
3e
4.

CHAPTER 2.

1.
2e

3e

PART IV.

APPLICATIONS

The Cagse m = 2

The Function F(n,k)
Some Preliminary Resulis
The Value of F(n,l)

F(n,k) Described

The Representability Theorem

The Characterization Theorem

IDEMPOTENT ALGEBRAS WITH TWO OR THREE

The Sequence < 0,0,2,m >

Binary Polynomials
Plonka's Basic Lemmas
The Smallest Value of m
Algebras Representing

{ 04043,mD> —oee -

Fundamental Results & — -

The Sequence

The Smallest Value of m

{ 04052,10% .

The Best Lower Bound for <'pn(&Z)'> S

CHAPTER 1., Applications of <(pn> Séquencesto

1,

Lattice Theory

Absorption Laws

Characterizations by Identities without

PAGE

71
79
82
85
86

95
107

115
116
117
123
126
129
135
135
140

150

152

153

154




PAGE

2o Distributive Lattices and {p > Sequences —— 165

3e Modular Lattices and {pn> Sequences ———— 169

CHAPTER 2. The Minimal Extension Property 177

l. Examples 178

2. Main Results 179
CONCLUSION ._ 186

_ APPENDIX 191

BIBLIOGRAPHY 194



e mmeme PART I

IDEMPOTENT ALGEBRAS WITH ONE ESSENTIALLY BINARY POLYNOMIAL



CHAPTER 1

ALGEBRAS REPRESENTING £0,0,1,2>

The sequence (0,091 ,l> is, evidently, representable.
This can be seen simply by taking a non—-trivilal semilattice.
To go one step further, we are interested in the case where
p3 = 2o Thus, the follewing questions naturally arises :

(1). Is the sequence ¢ 0,0,1,2) representable ?

(2)e If the answer to (1) is in the affirmative, what

can we say about those algebras representing

£ 0,0,1,2> ¢

It is the main object of this chapter to provide solutions
to the above questions. We shall see that the sequence
{04041,2) is indeed representable. As a matter of fact, it
is shown that there exist exactly two equational classes of
algebras '&1 and )\(/2 such that an algebra ¢ represents
< 0,0,1,2) if and only if ( can be represented as an algebra

belonging to either )31 or AK,2°

l. Basic Lemmas.

Let & be an algebra representing <0,0,1 > . Then (f has
one and only one essentially binary polynomizl which is
commtative and idempotent. There are two possible cases,

namely, the binary polynomial is either associative or non-



associative. Lemma 2.2 gives a sufficient condition for the

former case to be happen.. We need the followings

Lemma 1.1 (J. Ptonka[28 1).

let 42 be an algebra without constants. If p(xo,xl) is an
essentially commutative binary polynomial over dC s then

p(xo, P(X1y (eeey P Xp-29 Xpo1) ee) )) is essential n-ary,

fOI‘ ea-ch n=2,3’ eesoce

Lemma 1,2 .

Let & be an algebra representing { 0,0,1) . If there
exist n € { 3,4,5y00.. } such that py( (€ ) < -13~ (2" - 1Yt ),
then ¢ has a semilattice operation.

Proof: Suppése that the binary Operation " ¢ " is non-
associative. We claim that p,( (L ) > %(ZH— (-1>" ) for each
n=3;44 so0s

First of all, consider the ®llowing ternary polynomialss
(xy)z 4 (y2)x 5 (2x)y -

It follows from Lemma Z.1 that they are all essential.

By the commutativity of "e", it is easy to see that the equality
of any two would imply the associativity of ".", which contradicts
our assumption. Thus, we have p3( X )p3 = % (23— (-1) 3 )

Since p3(d?) > 3 > 2, we can apply a result (Theorem 4
of [101) and obtain p, (& )> %— (2% 1" ), for n =4, ss

reguired.




Hence, "." must be associative and therefore (L has a

semilattice operation.

Suppose that (L is an algebra representing {0,0,1,2) .
By Lemma 1.2, ar has a semilattice operation."." . By Lemma 1.1,

we have already one essentially:teinary-polynomial xeyez over (J[ .

Thus, if Py ( 0L )=2, there must exist one and only one essentially

terhary polynomial f(x,y,z) which is distinet from xyz . Our
aim, here, is to investigate the general properties of the poly=-
nomial f£(x,¥,2)

Clearly, we have
(1) f(x,y,2) is idempotent.

Observe that if p= p(xpy eeey X,_7) is an essentially n-ary
polynomizl over (L , them s0 is p = D(Xow s °°°s Xip=lwx ) TOT
each o € S(n), where S(n) is the symmetric group on n symbols.
Thus, f(y,x,z) is essentially ternary. If f(yy%;2) = xXyz, then
f(xyy,2) = yxz = xyz, a contradiction. Hence, it follows that
(2) f(x,¥,2) is symmetrice

By identifying any two variables in f(x,y,z), the resulting
polynomial is binarye. The following crucial result shows that

it is essentially binary.

(3) £(x,7,5) = xy
Proof : As { represents (0,031> , we have only the following

three cases:



oy,
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f(x,y',y) =

Case 1 £(x,57,¥) =x

First of all,; we claim that the following polynomials
(*) f(x,y,z)x, f(xﬁ)’vz)y’ f(nyyZ)Z
are pairwise distincte.

Assume that f(x,y,2)x = f(x,¥,2)y. Setting x=2z, we get
yx=y, a contradiction. By symmetricity of f(x,y,z) it follows
that polynomials in (*) are pairwise distinct.

Next, we assert that each polynomial in (*) is essentially
ternary. By symmetry, we need only check for f(x,y,z)x. Clearly,
f(x,y,2)x depends on x « Moreover, it depends on y if, and only
if it denends on z. Thus, if f(¥,y,z)x is not essentislly
ternary, we then get

f(x,742)X = X o
Setting x=y, it follows from (2) that zx=x, which is impossible.
Hence f(x,y,z)x is essentially ternary, as was to be. shown.

Accordingly, if f(x,¥,¥) = x holds, we would have p3( 0. )>3;.
a contradiction.

Case 2 (x5y5) = ¥

In znalogy to case 1, we claim that the vpolynomials in (¥)
are poirwise distincte.

For this opurpose , assume that’ f(x,y,z)x = f(x,y,z)y .

Setting x=y, we obtain x=xy, a contrasdiction. Thus, they are



pairwise distincte.
If one of them is essentially ternary, then so are the
other two and hence p3(éK ) > 3, a contradiction. Since, for

example, f(x%,y,2z)x is not essentislly ternary we have

g M

f(an1Z)X =

MoN
[
%5

B
1
~

SIS
4 N

£y

-

From the fact that f(x,y,z)x depends on x and is symmetric
with resnect to y,z, it follows that
f(x,7,2)% =% o
Set y=zos Then we obrain yx =x, a contrasdiction.
Thus, we conclude that the case f(x,¥,¥) =y is impossible.
Therefore, it is necessary that f£(x,y,y) =xy, oroving (3).
(4) f(x,y,2) is not disgonal.

Proof If £(x,v,z) were diagonal, we would have

F(x,5792) = F(£(x,592)y £(Xy¥y2Yy F(X3552) ) (1)
= F(£(X3792)s T(Y9Xs2Yy T(Ty29%) ) (2)
= £xyx,%) (diagonality)
_ x, (1)

which is a contradiction.
The following result will be of great use in deriving
other identities.
(5) £(xyy%,¥) = %o
Proof :  As po( U )=0, £(xy,x,y) ig not a2 constant. However,

by symmetry, f(xy,x,y) depends on x if, end only if



it denends on y. Hence f(xy,x,y) is essentially binary and thus

f(xy,x,5) = xy, since pg(ﬂt ) = 1.

From (5), we obtain
(6) £(xyz,xy,2) = 22 -
(7) f(xyz,xy,%2) = Xyz »
Consider the following ternary polynomial:
(xy,552) »
It is easy to check that f(xy,y,z) is essentislly ternsry. Thus

we have the two possible cases:?

J £(x,7,2)

£(xy,¥,2) !
U Xyz
Suppose f(Werz) = f(xvyazv) (A)
We observe that
» xyz = £(xyz,xy,x2) , (7)
= f(z;xy,xy,xz)
= £(z,xy, x3) (4)
= T(xz,2,%xy) (2)
= £(x,24xy) (4)
= fyx,x,2) (2)
= F(x,5,2) (4), (2)

vhich is impossible. Thus, we have
(8) f(xy,y,z) = XYZ o
The following are immediate consecuences of the above

identitiess



(9) £(xy,%2,2) = Xyz »
(10) f(nyXZQX) = XY2Z o
(11)  f(xyz,¥y2) = xyz -

(12) f(xyz,xy,y) = xyze

Though most of the identities of f(x,y,z) are easy
consecuences of the previous ones, the following seems to be
an exception.
(13) f(xy,y2,2%) = Xy2
Proof ¢ Consider f(xy,yz,zx). Set x=y . Then we obtain
f(x,%x2,%xz) = xz by (3). Thus, f(xy,yz,2x) depends on z. By
symmetry, it also depends on x and y . Hence f(xy,yz,2zx) is

essentially ternarye.

If f(XY9yZvZX) = f(xvy,z) (B)

then xyz = f(xyz,xy2z,%xy2) (1)

= P(xyeyz, yze2x, 2X:iXy)
= £(xy,52,2%) (3)
= £(x,7,2) ()
which is a contradiction. Therefore, (13) follows.
A ternary operation f is associative if the following
property holds:
f(f(X9Y7Z)1u9V) = f(xvf<yyzvu)yv) = £(x,5,£(zyu,yv) )0
Clearly, we have

(14) f(x,y42) is non-associative.




2. Two Types of Algebras.

In this section, we continue our study of ternary poly-
nomials built up from "." and "f". As a result, we obtain two
types of algebras which are both compatible with our hypothesis.

To begin with, let us consider the polynomial f(x,¥y,2)°x -
It turns out that f(x,y,z)x is essentislly ternary. Thus, we
have
[£(xyy,8) —-—— I
(%, ¥92)x = 5
L Xz B

From now on, we shall naturally split our investegation into
two parts, each of which deals with each of the two possibilities

in detail. We shall call those algebras satisfying the identity

I, Type I algebras and those satisfying II, Type II algebrase

TYPE I . F(x,552)% = £(x,5,2) I
In this cese, by the symmetry of f(x,y,z), we get
(15) f(x,y,z)x = f(xvavZ)Xy = f(xvyvz)xyz = f(xryyz)°

Consider the polynomial f£(f(x,¥,2),ys2)s We have

£(£(x,¥,2)y752) = (£(%,592)5:72) (15)
= £(x,¥,2)y2 (8)
= £(xy¥y2) (15)
Thus, it follows that
(16) P(£(xy57+2)s¥y2) = F(Xy¥y2)e

By applying the same asrgument, using (8) and (15) the

following identities cen be derived immediately.




(17) f(f(x,y,z),xy;z) = f(x,y,z) °

(18) f(f(x,y,z),xyz,z) = f(vawz) °

(19) f(f(xryvz)9XY9X) = f(xryvz)e

(20) f(f(xyyvz)rxyyxz) = f(X9Y1Z) °

(21) £(fxy592) yxy29x7) = £(x,7,2) -

TYPE IT. f(x,7y2)% = xy2 II

In this case, as f(x,y,2) is symmetric, we have
(22) f(x,y,z)x = f(X1Y1Z)y = f(X9YvZ)Z = XYZ e
Now, consider the polynomial f(Ff(x,¥,2),¥,2)o It cen be

eagily checked that it is essentially ternary.

If £(£(x2y592)3752). = £(x57,2) ——n—r (C)
then  f(xy5,2)= £(x,5,2)s £(x,¥,2)
= £(£(xy752)9¥s2) £(xy7,2) (c)
= £(x,y,2)y2 (22)
=  Xyz (22)

vhich ' is a contradiction. Thus it follows that
(23) £(£(xy5,2)s¥,2) = xy2 *©
Similarly, ve get
(24) £(£(xy552)yxy,2) = xy2 »
(25) £(£(xy552)yxy,%2) = xy37 *

Observe that

f(f(x,y,z),xyz,z) = f(f(xvysz)vxy'zvz)
= XY& f(xsyvz) (8)
= xyz ' (22)

10



Thus, we have
(26) F(£(x,592)9xy2,2) = x¥2 -

Similar arguments can be applied to yield the followingse
(27) f(f(x,y,z),xy,x) = XYZ

(28) £(£(xy502) 9xy2,3y) = X¥2 *

Let L be an algebra representing <0,0,1,2> . Let
p(x,y,2) be an arbitrery ternary polynomizl over (i » Then
p(x,y,z) is built up from the set of symbols { X552 by
substituting them in two operation symbols "." and "f" . If [
is a Type I algebra, then by making use of those identities hold
in {{ , p(x,¥,2) can be reduced to one of the ternary polynomials
{ xvzy £(xy5,2)} o If {{ is a Type IT algebra, the same situation

holds. For clarity, we now give the following lists

11




i v
TYPE I { TYPE II
- T(xy,552) . N
: | D
; f(xy,xz,%) ‘ i
£(xy,y2,2)
£ |
A (xy,yz,zx) ! & - xy3 ) = xyz
i f(xy37Y9Z) | % .
| f(xyzyxy, =)
i
| f(xyzyxy,y) - !
é f(xyzny9yZ) J
fx,7y2)% )

. i
£(xyy42)xy = £(xy,2) } = xyz
f(xvY9Z)xyZ ’
£(£(%y742) 375 2) 1 3

{ i
f(f(xvyaz)yXsz) % '
f(f(xvyvz)7XY9x) ; ;

‘, P = f(xyy2) . 3 = xys
% f(f(xvyvz)r XY1XZ) i Cd

; 5

g f(f(x,y,z),xyz,z) %

% f(f(x,y,z),xyz,xy) J )

12




3+ Characterization Theorem and Applications.
We are now ina position to establish some of the main

results of this chapter. Summarizing all the resulis in

the previous sections, we arrive at the following

Theorem 3.1
Let 4 be an algebra representing <0,0,1,2> . Then 4L

can be represented as an algebra JA; ., £> of type <2,3>
where "." is the semilattice operation belonging to one of the
equational classes_gl,‘gg of algebras where

" (1) £(xy3y2) = £(¥y%s28) = £(yy2,x)

(2) £(xzyyys2) = 2yz

18E1) =< (3) £lay,yzyox) = 2o

(4) f(x,y,z)x = f(X1Y7Z)

r (1) £(xyy,2) = £(7y2,2) = £(ys2,%)
(2) f£(xyyys2) = xy2
- (3) £(xyyyzyex) = xy2
Ta(K,) ﬁ (4) £(x,7,2)% = xy2
P (5) £(£(xy592)s752) = xy2
g (6) £(£(xyyy2)9x7,2) = xy2
t.(7) £(£(x,552) 9%y4%2) = xy2
Moreover, if ({ € K1 and p(x,y,2) is an essentially

ternary polynomial over (f{ then

13



gff(x,y,z) if the whole factor f(x,y,z) appears

p(x,7,2) =¢ in p(x;¥,2)

¢

N Xyz otherwise
If @ € Ko end p(x,¥s2) is an essentially ternary
polynomial over ({ then

f(x,y,2) if p(x,y,2) is of the form f(x,v,z)

P(X1Y1Z) =£
é Xy 2 otherwise

A
We will now prove the converse of Theorem 3.1 . The two

types of algebras will be considered separately.

Theorem 3.2 (Type I).

Let & =<A; +, £> be an algebra of type <2,3> where "."
is the semilattice operation and f(x,y,z) is the ternary operation
satisfying Id(/I\{l) of Theorem 3.1 . Then (f/ represents < 0,0,1,2> .
Proof ¢ Since "." is idempotent and f(x,x,x) = x 'by (2) of
Td(Ky), it follows that (U is idempotent. This is equivalent
to saying that po(dl ) = p (L ) =0 .

(2) of 1a(K;) implies £(x,y,¥) = xy and £(xy,%,¥) = %y -
Combine these with (1) Of Id(Ky). Then it follows that 'xy® is
the only essentially binary polynomial over &L . Thus, po( L ) = 1.

Finally, we have to prove that p3( (5"? ) = 2. Since
f(x,¥92) £ xy2z, p3(u/if ) = 2. On the other hand, according to
the results in sections 1 and 2, we see thet (1),(2) amd (3) of
Id(,I\{,l) imply that all the forms of fernary polynomials in

category A (see section 2) are the same and equal to xyz.
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Moreover, from (2) and (4) of Id(Xy), it follows that all the
forms. Of the ternary polynomisals in categories B and C are
the same and equal to f(x,y,z). Hence, p3( &) = 2, proving

our theorem.

Theorem 3.3 (Type II).

Let T = {A; oy £> be an algebra of type <« 2,3> vhere
"," ig the semilattice operation and f(x,y,z) is the ternary
operation satisfying Id(:g?) of Theorem 3.l. Then ¢
represents <0,0,1,2> .
Proof 2 In analogy to the proof of Theorem 3.2, we see that
| (1) and (2) of IdQ{,Z) imply that (7 revresents < 0,0,1> .
To prove that p3( d( ) = 2, observe that (1),(2) and (3) guerantee
that 211 the forms of the ternary polynomials in category A are
all the same and equal t0 xyz. Furthermore, (4) of Id(}iig)
implies that 211 the forms of the ternary polynomials in
category B are all the same and equal to xyz. Finally, (2),(4),
(5),(6) and (7) imply that all the forms of the ternary polynomiels
in category C are 211 the same and again equal to xyz. Hence,

P3( /8 ) = 2, as was to be shown.

Combining the above three results, we have the following

characterization theorem.

Theorem 3.4

There exist two equational classes of algebras/\lgl and ’I\{(g
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such that an algebra (ff represents the sequence <0,0,1,2>
if, and only if (L can be represented as an algebra <A; o, £ >
of type < 2,3> where "." is the semilattice operation belonging

to eitherrfgl or Ko o

Applying our main Theorem, some simple resulis which show
the behavior of the sequence < 0,0,1,2, Pgy ecey Py coe>
can easily be derived

In [13 3,G. Gratzer and J. Ptonka proved the following
results Let ¢ be an idempotent algebre having a commutative
and associative binary polynomial. If p,( ) #1 (nz2)

then  ppy (7)) 2 0 () +1 + maxe $p,(€), ne1}

From this, we have

Corollary 3.5

Let (7 be an algebra representing <040,1,2> o Then
p () > 2" -1 for all n)4.
Proof': We prove the corollary by induction on n.
If n=4, then py(fL ) > p3( @) + 1 + max. {p, (7 )43
=7 = Al 1,
2k-1

Assume the statment is true for n=k, that is pk( ga )= - 1.

Consider the case when n=k+l. We have

pk+1(0Z ) 2 () + 1 + max. 1 Py JC )eke1 }

=2p () +1

k+l

=2(2 -1) +1

K_1.

= 2
Hence the Corollary follows.
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Corollary 3.6 .

Let J be an algebra representing <0,0,1,2> . Then for
each integer Kk, pn( & )> k for all but finitely many n.

Corollary 3.7 -

The sequence <O,O,l,2,p4(dz ),p5( ac ), o..,pn( B )yerndd

is unbounded.

Following {13 ], we say that a sequence Ipi> is

conditionally strictly increasing (C.S.T) if 1 —pj~<jV,

implies p; < P Thus, we have

iy1”®

Corollary 3.8 .

Let JU be an algebra representing < 0,0,1,2> .« Then

<ﬂpn((]2: ),pn+1( JZ )i snooooo-> iS C+S.To for each n2 lo
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CHAPTER 2,

ALGEBRAS REPRESENTING £0,0,1,2> ( CONTINUED )

The study of the two equational classes of algebras
representing <0,0,1,2> is continued in this chapter. By
making use of previous resﬁlts, the structures of those algebras
representing <0,0,1,2>> will be considered here.
| This chapter falls into five sections. Though Theorem
3.4 (I,1) characterizes those algebras representing <0,0,1,2> ,
whether these exist algebras in Ky or Ko has not so far been
discussed. In section 1, we establish two Existence Theorems,
one for each ecuational class. Several algebras representing

<0,0,1,2> will be furnished and some relations between them
will be indicated in section 2. The major result of this
chapter states that if dz is an algebra representing <:0,0,1,2;>
then dZ contains one of the eight algebras as a subalgebra.
This is shown in section 3. Applying this main result, we are
able to provide in section 4 a lower bound for {p,( )> which
is much stronger then that in Corollary 3.5 (I,1). Finally,
Tinite subdirectly irreducible algebras in K; and Ko will be

studied in section-5.
l. IExistence Theorems.

Let K(¥) be the class of all algebras of typez . The

n-ary polynomial algebra,

18



ﬁ(n)(r) - (M F)
where the underlying set P(n)(‘t) is the set of 211 n-ary poly-
nomieal symbols and the operations on P(n)('&) are defined in a
natural way (see [ 6 1), is known 10 be an element of K(Z).
Let us now confine ourselves to a special case where
Z = {2,3) end n=3. In this situation, we have an algebra in
K( <2,3> ), namely,
2 (¢233)
Denote by "." and "f" the binary and ternary operations of
ﬁ (3)( {2,3> ) respectively. Consider the following set &, of
identities:
(1) xex=x
(2) (z.y)z = (yz)x
(3) f(xyy53) = £(yyxy2) = £(¥y2,x)
(4) £(xyyy42) = xyz
(5) f(xy,yzy2x) = xyz

(6) f(xvyvz)x = f(xry,z)

L
Remerk : It is proved in [ 24] that the two identities (1) and

il it

(2) of ZJ charecterize the semilattice operation.

We shall now define a binary relation @ on’g(”( £2,3> )-
as follows ¢ TFor any two elements p, g in P(3)( £2,3> ), we
put pzq(@) if, and only if the identity o=¢ 1is provable from
the set Xj4e

It turns out that & is an equivalence relation on P(3)( <2,3> )e
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Furthermore, one can c};leck that # has the Substitution Property.
Thus, @ is a congruence relation on the a,lgebrajg(:%)( <2,3> ).
From this, we get a quotient algebra, namely,

B <2.35)

Now, by maeking use of4he results in Chapter 1 (I) and the
identities of ¥,we can describe the set of all ternary poly-
nomials over the al'gebrabg(—:’)( <2,3>)/® which turns out to
'bé the following:

x ¥y z
Xy ya zZX
1 XYz £(x,7,2)

Evidently, xyz and f(z,y,z) are the only essentially
ternary polynomials. Thus ° Pa('ﬁc3><<2’3>)/é))=2, The only
essentially binary polynomial is xy and there are no constants
and no unary polynomials which are distinct from the projections.

Consequently, we have the following ¢

Theorem 1.1 (Existepce Theorem of Type 1 Algebras)

<3)
The algebra 739 <<2'i>)/é represents the sequence
4¢3 -
<0,0,1,2> . Moreover, 75 (<2'5>y® € Xi.
g
On the other hand, instead of the set £3, let us take the

following:
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(1) xex = x

L (2) (xe3)z = (y2)x

(3) f(xy552) = £(ysxy2) = £(y,2,%)
(4) #(zyyyy2) = xyz

Z,+ 1 (5) f(xy,yz,2x) = xy2

(6) £(xy7,2)% = xya

(1) £(£(xy352)s5y2) = xy2

(8) f£(£(x;5,2)9%ys2) = xy2

L (9) f(f(x73’1z)7XY7xz) = Xyz;

Moreover, instead of #., we define a binary relation & on
ﬁ(B)( <2,3> ) as follows: For any elements p , g in P(3)( <{2,3>)
we put p=q (P ) if, and only if the identity p = g is provable
from the set L,,

In anslogy to the ‘first case, it follows that & is a

. 3
congruence relation on/§(3)( <243> ) and the algebra 7‘3 «2“”}/{)

'

has the following properties.

Theorem 1.2. (Existence Thorem of Type 2 Algebras).

(3) .
The algebra J'gj” (<2'3y§ represents the secuence

(3
<0,0,1,2>. Moreover ysS «2'3% € Ko.

2. Other Examples.
In this section, we shall construct eight algebras I(j),
II(3)y § = 1424344, where 5 <3lI(j)|, "II(j)I << 8, four for esach

equational class Ky 4, 1 = 1,2 and each of which represents the
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sequence < 0,0,1,2> .
(4) Exemples in Kj.

1) Algebra I(1) where iI(l)' =5

o €

a’ S b ’ ® e
Fig. 1
2) Algebra I(2) wvhere ‘1(2)‘ =6

e

S

o5 b o e
Fig, 2
3) Algebra I(3) where 'I(3)l =7

e
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4) Mlgebra 1I(4) where |1(4)] = 8.

e
Q
d
/,Ak\\\\
\\\\
o)
L —"“”‘"4>~“““---~,:,r”' I
o P
// e -
) c
. Pig, 4

For each j = 1,2,3,4 , I(j) is an algebra of type < 2,3>
where the base set is shown in Fig,d . The binary operation
", in I(j) regarded as a join semilattice operation while the
ternary operation "f" is defined as follows:

[e if {x,¥,2} = {a,b,c}
f(xv.Y’Z) =i )
Xy 2z otherwise

It follows immediately from the above definition of f
that f(x,y,z) is an essentially ternary polynomial over I(j)
and f(x,y,z) # xyz. To show that each algebra I(j) , J = 1,2,3,4
is on element in Xy, we have to show by Theorem 3.2 ('1,1) that
the ternary operation "f" defined ahove satisfies the set Id(gl)
of Thorem 3.1 (I.,1). We shall now give a proof for the algebra
I(4). The other three can be proved in a similar way.

Clearly, f(x,y,2) is symmetric. Thus (1) of I&(E;) holds.
To see that f(xy,y,2) = Xyz, we note that {xy,y,z} (S) # {asb,c)
for any substitution S. For if {xy,y,z} (S) = {a,b,c} then

(xy)(8) = a say, and we would get y(S) = a, a contradiction.
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Thus by definition, f(&y,y,z) = XY eYe? Xyzs which was to be

shown. Similarly, we have f(xy,yz,2X) = xyz. Finelly, we claim

1]

that f(x,y,2)x = £f(x,¥,2)s To this end, observe that if {zy5:2} (5)
{asbyc} , then f(a,b,c)a = ea = e = f(a,b,c). If {x,v,2} (5)
# fasbsc}, then (£(x,3,2)2)(8) = [(ayz)x] (8) = (xyz)(s)

f(x,5,2)(S). Thus the identity f(x,y,z)x = f(x,y,2) follows.

i

Hence, we hzve

Theorem 2.1.
For each j = 1,2,3,4, I(j)E€ XK1
(B) Example in‘g?.

1) Algebra IT(1) where |II(1)} =5

/

/

.4
'//49\\\
Py
,‘/A //
e ‘ .\\\
VS

/ .\\.
e ° D © ¢

a

Fig, 5.

2) Algebra II(2) where ‘II(2)I =6

Fig, 6.
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3) Algebr; II(3) where 'II(3)% =7

d
F\\
~
A © /////)k\\\
, \\\\
{/ o .

Fig., T

N

c

4) MAlgebra II(4) vhere !11(4)} =8

For each j = 1,2,3,4, II(j) is an algebra of type {2,2>
where the base set is shown in Fig(4+j). The binary overation
", in IT(3) is regarded as a join semilattice operation whiile
the ternery ovperation is defined as follows:

e if {X,y,z} = {a,b,cj‘(
(x5, z) =

Xy 2z otherwise
Clearly, f(x,y,z) is an essentielly ternary polynomisl over
II(j) and f(x,y,2) # xyz. By using the similar argument as before,

it can be showm that the set Id(K,) of Theorem 3.1 (I,l) is
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satisfied by "f" and thus we get
Theorem 2.2.
For each j = 1,2,3,4, II(j) € Koo

It is quite interesting to note that the structures of the
four algebras, for each equational class‘gi, i=1,2 are closely
related. Thus, it is perhaps worthvhile to point out =ome
relationships between them.
Remark. 1

(3

Observe that ‘the cardinality of the algebra 2 (<Zﬁfjbaé
shown in section 1 is eight. In fact, this algebra is isomorvhic
to the algebra I(4) and it turns out that both of them are the
free algebra over Ky with the free generating set which consists

three unordered elements. In notation,

3}
X (<2,3y r F.3» = Jw
I

L3

Similarly, we have

fi§

3>
B T<22>) F 3 = 1«
’ K
/§ ~z
Remark 2.

It is easily seen that for each j = 1,2,3,4, I(j) - ifel ,
considered 2s 2 semilattice, is 2 homomorphic image of the free
semilattice I(4) - {e} . Moreover, they are the only homomorvhic
images of I(4) - {e} .

The seme relation holds for II(j) - {e} and II(4) - fel o
Remark 3.

If we consider only the semilattice structure, then it is

clear that I(1) is isomorphic to a sub-semilattice of I(4).
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Indeed, I(1) cen be embedded in I(4) and is isomorphic +o the

five-element sub-semilattic {ab,bc,ca,d,e} of I(4).

However I(1) is no longer a subalgebra of I(4) if we consider

both of them as algebras of type {2,3> , for f(ab,bc,ca) = abe
= d in I(4) while in I(1), we have f(a,b,c) = e.

The sezme remark is true for IT(1) and II(4).

3¢ A Theorem on Subalgebras.

The eight algebras I(j), II(3), j = 1425344, play central
roles in the study of the equational classes K; and Koo In
Lattice Theory, it is well-known that a lattice is non-
distributive if and only if it contains M5 or N5 as sublattices.
In our case, vwe have a similar result for the lonly if" part.
This can be seen from the following
Theorem 3.1.

Let L be an elgebra of type (2,3) which represents
{0,0,1,2> . If # € X1, then ¢f contains one of the I(j),
J =1,2y3,4 eas subalgebre. If [ € Ko, then (T contains one

of the II(j), j = 1,2,3,4 as subalgebra.
Proof: Let f be the ternary operation in & . Since £(x,57,2)
# xyz, there exist a,b,c € A such that
f(aybye) £ 2bec  in A.
Claim 1. &;b,c are pairwise distinct.

If this is not the case, say a = b, then we would have
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f(a,b,c) = f(a,a,¢)
= ac
= abc

which is a2 contradiction. Hence a,b and ¢ are pairwise distincte.

A partial ordering can be defined in A in a natural way,
namely, p=<{q if and only if pg = g.

Claim 2. The set {a,b,c} is unordered.

Otherwise, say b = a, i.e., ab = g, then it follows
that f(a,b,¢) = f(ab,b,c) = abe,
a contradiction. The other possible cases can be proved similarly.
Thus, { a,b,c} is unordered.

Now, if we set d = abc , e = f(a,b,c), we assert that
d and e are comparable.

Indeed, if T € Kj, then f(x,y,2)zyz = £(x,5,3) holds in
6T . From this, it follows that e.d = e and so e > d.
If (T€ Ko, then f(x,y,2z)xyz = xyz holds in T . Thus we get
ed = d, i.e., € << d,; as required.

Now, {l , being an algebra containing a, b and c, must
contain the subalgebra generzied by {a,b,c} .

If (T € Ky, then e > 4 and the -subalgebra generated by
{ayb,c} must be one of the I(j), j = 1,2,3,4.

Ir @ € Ko, then e << d. Observe that e and each of the
elements in {a.,b,c} are incompvarable. For :

f(a,byc)a = 2be = d

ie€ey, - ea = d
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If e and a are c0mparéb1e then either e = 4 or e = 2 which
are impossible. Thus, knowing this fact, it is easy 1o see
that the - subalgebra generated by f{a,b,c} is one of the II(j),

j = 142434 This completes the proof of the theorem.

The converse of Theorem 3.1 is tempting, however falge,
in general. In what follows, we shall construct two counter
examples.

Example 1.

Consider the following algebra (T = { A;.,f > (see Fig. 9)

where "." 'is the semilattice operation and f is the ternafy

operation defined by

if {x,5,2}

®

{a,b,c}

{a'ybyc}

f(x,5,2) = et if {x,y,3}

xyz  otherwise

oD ‘\bc'

(.
A Y
~.

Fig. 9.
It is easy to check that (T contains I(1) as subalgebra.

But & ¢ K; since
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f(a'sbycla’ = e'a? =e £ &' = f(a’,b,c),
ie€., f(xy¥y2)x = £(x,y,2) does not hold in (T .
Consider the following algebra (T = {Aje,f> (see Fig. 10)
where "." is the semilattice overation and the ternary overation

T is defined as follows:

r .
. e if {x,¥,2] = {a,b,c!
i
f(x,5,2) = et if {x,¥,2} = ja',b,c}
Xy =z otherwise.
e )
VAR
// d‘\
N
’;///‘/ \\
,/ N
o N, ‘\
// \\\ \\
./// "/.‘ ,."/. e A ", \\\
rd - N
/ s ’ // b \\\
oL s e c .
a . N
Fig. 10.

Clearly, II(1) is a subalgebra of /{ . However, (7 € Ko

since f(a'sbycl)a’ = e'a' = et £ d = a'be,

ie€oy f(xy,7,2)x = xyz does not hold in {7 .

In view of Theorem 3.1, in order to get some information
about the sequence {p,(dC )> where T is en algebra representing
{0,0,1,2> , it is necessary to study the relstionship between
the sequences {pn(I(j)), pn(II(j))} s 3= 142,34

There are redundant essential polynomials over I(j) and II(j).

30




Indeed, if for n= 2, we let p(XI,ooaa,Xn) be a non-trivial
n-ary polynomial (i.e., with éxactly n variables). Then we
have
Lemma 3.2.

For each.j = 1,2,3,4, p(X]19eeceeyXn) is an essentially
n—ary polynomial over I(j) and II(j).
Proof : It suffices to prove that p(xl,....,xn) depends on
x1+ Observe that if we put X; = oo = X, = a (see Fig. 1 - 8),
then by the idempotence of "." and "f", it follows that
P(ayesesya) = a. On the other hand, if we set x; = 4, Xp = eee
= Xp = 2y then by using an inductive argument, we will get
p(dyayeeeqa) = d in I(j) and II(j). Thus, as p(asa5eeeya)

# p(dyay00092)y D(X1ye00y%,) depends on X1, as required.

Corollary 3.3,

Let L be an algebra representing {0,0,1,2> « Then
P(X)yee0yx,) is essential over & .
Proof : Let us note that if 8 is a subalgebra of & , then if
P is an essentially n-ary polynomial overB, so is p over {7 .
Combining this fact with Theorem 3.1 and Lemma 3.2, the

Corollary follows.

Let p be a2 polynomizl over L . For simplicity, ve denote

by p_(S), an element in A which is obtained from p under the

a
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substitution S.
Lemma 3.4.

Let /8 be a homomorphic imege of (T » Then py(B )< p, (),
for each n = 041,2,4000
Proof : Let @: L— B be a homomorphism of (¥ onto B .
Let p(xyyee00,%,) be an essentially n-ary polynomial over B .
In what follows, we shall prove thet p(Xyjecesyx,) is an essen—
tially n~ary polynomial over f{ . It suffices to prove that p
depends on xj. By assumption, there exist bl'bi;bg,,.°,bn € B
such that pﬁ(bl,bg,,..,bn) # p@(bi',bg,..,,bn)e As@is onto,
there exist aj,aj'sapjecegan € A With a;¢=Db; 1 = l,e0eyn

and al'@ = bleo Thus de (a'lyoo.’&n)W = pB (al¢ ,...,anq0)

p&(’bl,bg,...,bn) £ 'pﬁ (b1 'sboyecesby) = pzs (21%380@ yoesyan® )
= p&.(al',az,...,an)¢7o Hence éz(al’a2’°°°'an) # Qﬁ(a1'732’°°°9an)'
as was 1o be shown.

Now,; let p ; g be two distinct essentially n-ary polynomials
over B « Then there is a substitution S such that gﬁ(s) # qB(S).
Let T € A with T@= S. .Then p(Z(T)@ = pza(TQ’?) = pg(S) # qB(S)
= q@(Tq9) = q%(T)¢7. Hence QZ(T) £ qﬂ(T) and so p # q over & .
From these, it follows that p, (8 )< py(&) for each n,

proving Lemma 3.4.

Theorem 3.5.
(1) pp(I(1)) = 5, (I(2)) = »,(I(3)) = pa(T(4));
(2) pu(TI(1)) = py(TI(2)) = p,(TI(3)) = pp(1I(4)),

fOI' each n = O,l,2,0‘o-.
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Proof : We will prové only (2). The proof of (1) is similer.
It is easy to check that for i < J 0 13 = 1,23,4,I1(3) is
a homomorphic image of II(j). Thus, invoking Lemma 3.4, we
have  pn(TI(1)) < pa(11(2)) = p,(I1(3)) < py(II(4)), for each
n. Hence, to get (2), it suffices to prove that

pn(II{4)) < pp(II(1)), for each n.

To this end, let p , g be any two essentially n-ary
polynomials with p # q over II(4), By Corollary 3.3, p and g
are essentially n—ary polynomials over I(1). Thus, what we have
to prove is that p # q over I(1).

As p £ q over II(4), there exist a non-trivial substitution
S such that pII(4)(S> # qII(4)(S) (see Fig. 8). Observe that
pII(4)(S)’ qII(4)(S) ¢ {a,bjc} since S is non-trivial. Hence,

by symmetry, we have only four possible cases:

o [t
pII(4)(S) (?) { ab
ary(g)(S) (3) { ab

ac
(4) {d
Suopose (1) holds, ie.e.,
Prr(g)(8) = @
= abe.
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Then, since qII(4)(S) = ab, we have S © [a,b,ab} . However,
in this case, pII(4)(S) < d , which is a contradiction. Thus,
(1) is impossible.

Suppose (2) holds, ie€e,

L
[\

Pr1(4)(S) =
qII(4)(S) = abe
Since pII(4)(S) = e and S is non-trivial; it follows that
{a,bye} & S.
On the other hand, qHM)(s) = ab implies
S = {a,b,ab} .
Combining the two inclusions, we have
{asbye} & {asb,2b} ,
which is a contradiction. Thus, (2) is impossible.
Suppose (3) holds, i.e.,

ab

pII(4)(S)

I11(4)(®)
ab implies S ¢ {a,b,ab} and

acCoe

Clearly, pII(4)(S)

qII(4)(s) ac implies S € {a,c,ac}
Hence, S & {asbyab} {1 {asc,ac} = {a} and so S = ia},
which contradicts the fact that S is non-trivial. Thus, (3)
is impossible.
In conclusion, we must have (4), ieee,
Prr(4)(8) = ¢

€ o

i

qII(4)(S)
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Since qII(4)(S) = e agd S is non-trivial, it follows that

S < {a,b,c,é} o
In this situation, we can use the same substitution § for II(1)
as {aybycye} < II(1). Clearly, we have

Prr(1)(8) = ¢

e o

]

and arr(1)(s)

Hence p # q over II(1), which was to be shown.

Theorem 3.6.

Let D(xy5e009X,)y a{X19e0ey%,) be two n-ary polynomials.
Then p £ q over (¥ , for each algebra (T representing <0,0,1,2>
if. and only if p # q over I(1) and II(1).

Proof : One implication is trivial. Thus, assume that p ;é q
over I(1) and II(1). Let & be an arbitrary algebra representing
{0,0,1,2> , we shall prove that p # q over (7 .

By Theorem 3.1, (7 contains one of the algebras I(3),II(j)

J=142,3,4 as subalgebra. Thus, if we know that
p # q over I(3),I1(3)sd = 1,2,3,4,
it is clear that p ,-! q over (7

Observe that I(1),II(1) are homomorphic images of I(j),
I1(3)sj = 1,2,3,4 respectively. Hence, if p # q over I(1) and
II(1), then p # q over I(j) and II(j) for each j = 1,2,3,4, by

Lemma 3.4. Therefore the proof of Theerem 3.6 is complete.
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Theorem 3.7

Let ¢ be an algebra representing <0,0,1,2> . Then
p,( &£ ) > min, { P, (I(1)), pn(II(l))} for each n = 0,142, co.,
Proof 3 If /T € K; then (C contains I(j) as a subalgebra, for
some j = 1,2,3,4. Thus

Pp( ) >p,(1(3)) = p(1(1)) >min { po(T(2))5 pn(TI(2))}

If &L € X,, then there exists a j = 1,2,3,4 such that

p,( 00 ) =1, (T1(3)) = po(IT(1)) > min. { pa(I(1), pp(zz(1)) ke

Hénce the theorem follows.

4. A Lower Bound for pn(JC R

Though Theorem 3.7 gives us a lower bound for p,(dC )>
in terms of {p,(I(1))> and <pn(II(l),)> , we still do not know
the exact rate of increase of the sequence. In this section,
we shall fill this gap by providing a lower bound for (pn( « )} .
It turns out that this lower bound is much stronger than that |
in Corollary 3.5(II,1).

Our main result is the following:

Theorem 4.1.

Let JT be an algebra representing the sequence < 0,0,1,2 .

ns
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Then p,( T ) > 11 for each n > 4.

The proof of Theorem 4.1 is based on the following
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construction of polynomials and Lemmas 4.2, 4.3.

Construction of Polvnomials.

It is a simple matter to check that the following eleven
polynomials are essential and distinct over I(1) and II(1).
Thus, by Theorem 3.6, it follows that for each algebra
representing <0,0,1,2> , (C has at least eleven essentially
4 - ary polynomialse.

‘ Xy X, X3 Xp
f(xl,xz,x3)x4, f(xz,x3,x4)xl, £(x39X9%7 )Xoy f(X4,X1,X2)X3
f(xlx2vx3tx4)9 f(xlx3vxév3{4)‘rf(xiles.xéfx:s)
f(x2x3,x1,x4), f(x2x4,xl,x3), f(X3X4vx17X2)

Now, for each polynomial listed zbove, we claim that we can
construct at least five S5-ary polynomials. For instance,

1) From x we construct

1%p%3%y0
P X XpRa%yEs
f(xl,x2x3x4,f5) f(xlxg,xéx4,f§)
f(xz,xlx3x4,x ) f(xlx3,x2x4,zi?

f(x3,xlx2x4,f§) f(xlx4!x2x3jfi)

L f(xa,xlx2x3,fi)

2) TFrom f(xl,xz,xs)x4, we construct
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- f(x NS )x

425

f(xlfi,x2,x3)x4

f(xl,x EN )x

23

f(xl,§2,x3f§)x4

L f(f(xl’XQ’XB)’X4’fj)

3) From f(xlxz,x3,x4), we construct
f(xl-:r.g,x..s,x[]r)ii
f(xlngi,x3,x4)
f(xlxé,xBfi,X4)

f(xlxz,x3,x4f§)

L £( f(x-l 13{295) ,X3,X4)
Similar constructions can be given for the other polynomials .
Suppose that we are given a 5-ary polynomial p(xlg so0y x5)

which is obtained from one of the eleven 4-ary pquhomials by

using the sbove Construction. Applying the same argument, it

is not difficult to construct six S6-ary polynomials out of p.

For example,

1) If p = X,X.X.X,X we construct

1727374757
5
[~ jTX‘X/

i=t 1 _O

s
f(xl, ;rr l’ .}_C_6.)’ f(xlx27x3x4ﬂx57fé)
f(x2,xlx3x4x5,x6), f(xlx3,x2x4x5,f§)
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2) If v = f(xl,xz,XB)x we construct

4¥57

- f(xl,xz,x )x4 5%

f(xlfé,xg,x3)x4x5
f(xl,xzfé,xB)x4x5
f(xl,xg,x3f§)x4x5
f(f(xl,xz,XB),x4x5,f§)

f(x4,f(xl 2x3)x5,x6)

- f(x59f(xlvxewx3)341fé) .

We are now in a position to construct, by using an inductive
argument, at least n + 1 (n+l)-ary polynomials out of a given
n-ary volynomial.

Let p(xl,...,xn) be such a n-ary polynomials, Consider the
followingvthree types of constructions 2

(a) p(x1’°°°’xn)°xn+l 3

(B) If there is a factor f(4,B,C) in p, we set
l) f(A.J—{n-!»l'B’C)’
2) f(A,Bex, 14C),

3) f(A’B,C°§n+l) mn p(xlyooogxn)o

(C) If there is a product TT 4 in p(xl,.,.,x ) where
oteh n
|A] >1 and A is maximal (in the sense that if there is

a product _(;];]AA in p(xl,..a,xn) with AE A then A =4 ),

P

we set
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f( OlGI o<7 TrAaQX ) in p(x 7aoe,x )

where {I,J} is a partition of the index set A_ .

Let us note that under these constructions, those (n+l)-ary
polynomials have the following properties:

1) Let p(xl,e..,x ) be such a (n+l)-ary polynémial,

n+l
the number of occurrences of each varizable Xi in » is
exactly one.

2) By Corollary 3.3, all such (n+l)-ary volynomial are

essential.

3) All such (n+l)-ary polynomials are of different forms.

Lemma 4.2.

Let p(xl,aoe,xn) be an n-ary polynomial. Then the number
of (n+1)—ary polynomials obtained by using the construciions
(4), (B) and (C) is greater than or equal to n+l.

Proof : Let r be the number of occurrences of the symbol "
in p(xl,.ea,xn), Then, by applying the constructions.(A) and
(B) we have at least 1 + 3r (n+l)-ary polynomials.

If r > then 1+3r 2= l4n, and the proof is complete.

n

3?
n .

Thus, we may assume 1 <:§, in other words, 3r <« n

L4

In order to have n+l (n+l)-ary polynomials, we need

(n+1) - (3r+1) = n-3r more (n+1)—ary polynomials. OQObserve that

we have at most 3r positions in all the .forms f( , ’ ), therefore
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at least n-3r variables appear in the vroduct form T!‘Ai in p.
Lence, by construction (C) we get at least n=3r (n+l)-ary

[2

polynomials. This completes the proof of Lemma 4.2.

For a given n-ary polynomial which is constructed by
induction, we obtain, by Lemma 4.2, at least n+l (n+l)-ary
polynomialg different in forms. The question arises: are

these(n+l)-ary polynomials distinct over algebra repre-
senting €0,0,1,2> ? The answer to this question is in the
affirmative. Indeed, this can be geen ffom the following

somevwhat sironger version:

Lemma 4.3.

Let  be an algebra representing 0,0,1,2> . Let p , q
be two essentially n-ary poiynomials over ({ such that

1) The number of occurrences of each varizble x; (i=1,0004n)

in both p and g is exactly one;

2) p and g are in different forms.

Then ©p £ q over (T .

Proof: In view of Theorem 3.6, it suffices to show that p £ g
over I(1) and II(1).

If p = j& Xs then by condition 2), there is a fector
f(A,B,C) in ¢ . Let us construct a subsiitution S for the

variables xi's with resprect to the algebrea II(l) in such a
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way that
£(4,B,C)(S) = £(ayb,c)
and xi(S) = e for every x, not in £{A,3,C).
Obzerve that according to the condition 1) such a substitution
exists. -
In this situation, we get
abe
pII(l)(S) =y Or = dj
abce
while qII(l)(s) =e .
Thus, p £ q over II(1).
To show that p # q over I(1), we construct a substitution
T for the variables xi's with respect to the algebra I(1l) in
such a way that
f(4,8,0)(T) = f(a,b,c)
and xi(T) = d for every x, not in f(A,B,C).
Again, such a T exists by 1). In this case, we get
abe
Pr(1)(T) ={ or r=4d ;
abed
while qI(l)(T) =e o d=¢e€ .,
Hence, p £ q over I(1), which was to be shown.
Now, we may assume that both p and ¢ are different from
;ﬁ;xi - In other words, both p and g include £f( , , ) as

a factor. By assumption 2) there is a factor f*(Al’AQ’A3) in p,
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say, such that for eaéh.factor f(Bl’B2’33> in q , Aj # B,

for some i,j = 1,2,3 « Let us choose such & f*(Al’AZ’A3) in
vhich the number of occurrences of variables is minimum. Ifr

we construct a substitution S for the variables xi's Weret IT(1)

in such' a way that

£.(41+4,,4,)(8) = £(a,b,0)

and xi(S) = e if x, is not in f*(Al’AZ’A3)’
then we get pII(l)(S) = e
“while abe
qII(l)(S) = or =d
abce

(Note that there is no factor f(a,b,c)in qII(l)(S); for otherwise,
if fA(Bl,Bz,B3) exists in g such that fA(Bl,BZ,BB)(S) = f(a,b,c),
we would change the roles of f, and f, ).

Hence, p £ q over I1(1).

To show that p £ q aver I(1), we use the same argument as
about but instead of the substitution S, we construct T in such
a way that

f*(A11A21A3)(T) = f(a,b,c)
and xi(T) = d if x, is not in f*(Al’AZ’A3)°

It then follows that

1
(]
L4
Q
il
[+

pI(l)(T) =

while qI(l)(T) de

i

Thus, » £ q over I(1).

The proof of Lemma 4.2 is therefore complete.
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Proof of Theorem 4.1 ¢ Tor n = 4, let pn(()’(_ ) be the set of

all essentially n-ary polynomials over J{ . If N is the set of
essentially n-ary polynomials constructed by induction, let
R(N) denote the set of all essentially (n+l)-ary polynomizals
induced by some element in N by using the constructions (4),(B)
or (C)o Then by Lemmas 4.2 and 4.3, we have

|R(N)| = (ne1) |n].

Evidently,

oD
Paa (@) 2 RE( . (2(2)...)),
where E is the set of those eleven 4~ary polynomials.

From this, it follows that
pn+1(02' ) = ,pn+l( x )t
= (n+1)n(n-1) ...5|E]

9
11~£3-‘%,1i for each n > 3.

This completes the proof of our main Theorem,

5. Finite Subdirectly Irreducible Algebras.

An algebra O is called subdirectly irreducible if the

relation A(®i li € I) = @ implies that @i = & for some i € I,
where for each i € I, ®i € C(®& ). EBquivalently, (T is

subdirectly irreducible if there exist u, v € A such that u £ v

and u = v(®) for each @ = w.
From Birkhoff's classical result (see[ 1 ]) on subdirect

decompositions which asserts that every algebra having more then



one element is =z subdirect produet of subdirectly irreducible
algebra,s, it thus follows that subdirectly irreducible algebras
play an important role in the study of structure of algebras.

The purpose of this section is to give a characterization
theorem for finite subdirectly irreducible algebras in the
equational class ’K«l" To this end, we shall first define some
notation and basic concepts.

Let OT 6}\('1 such that |A| is finite. Consider the following
set of triples:

T = {(aiybipci)/aigbigcieA’ f(ai’bi,ci) ;é aibici

Let us make the following elementary observations:
1) Since f(x,y,2) # xyz in € , thus, T £ @ and {T] is
finite.
2) As "' and "." are symmetric, hence if (a,b,c) € T,
so does (am,bx,ox), wherea is any permutation on the set
{ 2yb,c} .
3) If (a24byc) € T, then it follows from the proof of
Theorem 3.1 that {a,b,c} are pairwise distinct .and incomparable.

Thus abec>a,b,c.

For each i and for each (ai,bi,ci) € T, denote

e, = f(ai’bi'ci) H d, = a.b.c

i iivic
Since f(xyy,z)xyz = f(x,¥y,2) holds in XK.+ we have e,> d., for

each' i . Let
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E ={ei/(ai7biyci) G T}o

Then E is a finite subposet of A. Thus, the set of maximal
elements in E is not empty. By the Axiom of Choice, let e¥
be a maximal element of E.

Let d.¥ = a,b.c. where {a b ;c.} is a triple of elements

dJ J J3 SdT 33

of A such that f(aj,bj,cj) = e¥, Let d* be one of the maximal
elements in {dj*} o .We have e* > g% .

Let a € A. Then a is said to be a component of an element
of T if there exist b,c € A such that (a,b,c) € 7. Thus, it
follows that if a is not a component of any element of T, then

For
‘TU
f(ayuyv) = auv 2ll u,v € A.

We are, now, ready to establish the following

Theorem 5.1.

Let J be a finite algebra in K;o Then # is subdirectly
irreducible if and only if & satisfies all the following
conditions:

1) e¥* »— 4%

2) Let u,v € A such that u — Vv and {u,v} £ {d*,e*},

If both u and v are not components of elements of T, then

there exists p € A such that u = p but v £ p.

3) Tor each ¢, ¢' in A such that i) ¢ >— ¢' and

ii) (aybyc) € T if, end only if (a,b,c') € T,

if f(a,b,c) = f(a,bye') for (a,b,c) € T, then there
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exists p € A sucl;l that ¢' < p but ¢ ¢ Do
Proof ¢ Let JC ve a finite subdirectly irreducible algebra
in K.+ We shall show that conditions 1), 2) and 3) hold in .
Pirstly, we have Claim: e* is the maximum element of (7 .
Suppose that this is“not the case, let m be the largest
element of L . Then m = e%*, If

(1) There exist m, ym, € &, my £ m, such that m,— m,

1

m, —<m (see Fig. 11), then consider the following two

equivalence relations

-~ L4

-

Fig. 11
§l = {(x,x)/x € A} U {(ml,m)s(m,ml)} ’
&, = {(x,x)/x €eay y {(mz,m),(m,m?_)}, .

It is a simple matter to check that both my and m,, cennot
be components of any elements of T, Thus, from the previous
observation 3), it follows that él‘ and §, have the Substitution
Property with respect to "." and "f*" . Hence, él and @Q are

congruence relations of a. Clearly, §1, é? — ®», but

§1 A §? = w. This contradicts the fact that & is subdirectly

irreducible, Therefore (1) is not the case, but then we have
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(2) +there exist mys M, € A such that my,—m —m ( see

QFigél2) m

I,
~ 5\1\

$n

7’
4
/

\
}
2
:

¥

PP
-

Fige 12

Consider the following two equivalence relations s
9, {x)/xea} U {(m,ml),(ml,m)} y

8, = {(xx)/xea} U {(m,m,)y(nym)}.

Clearly, m,. cannot be a component of elements of Te The

n

game ig true of m For, if it were, then there exist b, ¢ € A

2;‘

such that ('mz,b,c) € Te S0, €, = f(mz,b,c)>m2bc>m e Since

2 2

m> e¥, thus m=>e, and so m=> e, ( note that we assume (1) is
not the case ! ) We have

m = m]}> e2> m2bc >m2 ?
which contradicts the fact that my >— Mye

As my and m, are not components of elements of T, it follows -

2
that @1 and @2 have the Substitution Property with respect to #f®
and ".". Thus, @1, Qze C(X). However, the fact that @1, _?é2>w
and @1 A @2 =w contradicts our assumption that (7 is subdirectly
irreducible,

‘Hence, we conclude that e* is the largest element ind 4, as

was 1o be showne

By applying the same argument as in the first part, it follows
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that if e* »— p for some Py then e®* = x implies p = x. In

other words, the algebra (f is illustrated in Fig. 13.

We are now in a position to prove the statements 1), 2) and
3)e Assume that 1) is not the case, i.eo, €¥ /L 4%, then there
exist Py 4D, € [d*ge*) such that e¥ p— Py > Dye Clearly, 1 is
not a component of elements of T, The same is true of Pye Fory
if it were; then there exist b, ¢ € 4 such thaf (p2,b,c) € T Thus
e, =.f(p2,b,c) = p,be =>p,. If e, = e¥*, then pybe = 4% = p,
== 4%, contradicting the fact that d* is maximal in ‘{dg} o If
e, << e*, then by the above observation, e, =< Py and so0 e¥® 5 Py
—= e, = p2bc = Pos which contradicts Py >— DPye Consecuently,
p2 is not a component of elements of To From this, it follows

that equivalence relations
8 = {Gux) /xea} U {(exp))s(p,e%)}
9, = {(zx) /xea}y {(p132,)s (0,90, )}

have the Substitution Property with respect to "f" and ".". Thus

@1, EZ € C({). As ﬁl A @2 =w, while @1, @2:>~a>, we get a
contradiction. Hence, e* »— d%, proving 1).
To prove 2), suppose to the contrary that there exist u, v

€ A such that u — v, {u,v} # .{d*,e*} s both u and v are not
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components of elements of T and that u < x implies v = x for
each x € Ao

Let us consider the following equivalence relation

@ = {(va)/x € A} U {(U.yV),(V,u)} o

Claim ¢ § € c(@@).

We first prove that ® has the Substitution Property with
respect to ".". It suffices to show that u = v (§) and x = x ()
imply ux = vx (0)e (1)eIf x =< u, then x = vo Thus ux = u = v
=vx (8). (2).If x || u, then ux > u. By assumption, ux > v.
Thus, ux >=> vx. On the other hand, u == v implies ux = vXe
Hence ux = vx and so (ux,vx) € Q. (3)eIf x = uy, then by assumption
X =vVe Thus, ux = x = vx and so (ux,vx) € Q.

It remains to prove that @ has the Substitution Property
with respect to "f", Observe that u= v (§), v =u (F) and
x=x (0) imply that £(u,v,x) = f(v,u,x) (§), since f(u,v,x)
= f(v,u,x). Thus, it suffices to show thet u= v (@), x = x (J)
and y = y (0) imply f(u,x,y) = £(v,x,5) (F)e To see this, we note
that as u and v are not components of elements of Ty by a previous
observation, we obtain

f(uyx,5) = uxy and £(v,x,y) = vxyo

Hence, f(u,x,y) = uxy = vxy = £{v,x,y) (§), as req%;.iredo
Therefore, § € C(®).

Consider the following congruence relation of U,

® (e*,a%) = {(x,x)/xea} U {(e*,a%),(a*,e*)}.
Clearly, @) (e*,d*), @ > w, vhile @ (e*,d*) A 0 = w ,
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since {u,v} £ {d¥,e*¥} and u — vy d*¥ — e¥, Thus, 0 is sub-
directly reducible, a contradiction. Hence, 2) follows.

Again, assume that 3) is not the case. Then there exist Cy
¢’ in A such that ¢ >~ ¢!, (asb,c) € T iff (asbyc') € T and
f(asbyc) = £a,b,e?) for (a,by,c) € T, but c' < x implies c=x x
for each x € A.

In what folléws, we shall prove that the following equivalence
relation § = {(x,x)/x €ea} U {(c,c'),(c‘,c)} is in C(0T),
The method used above can be applied again to show that @ has
Subgtitution Property with respect to ".". To show the same for
"fi'. we need only check that

c=c' (Q) |

x=x (2) imply £(x4y5¢) = £(x,53,0*) ().

y=y (@

This is, indeed, the case for (1) If (x,y,c) € T, then (x,y,c')
€ T and f(x,ys¢) = f(x,y,¢') by assumption. Thus, f(x,y,c) =
f(x,5,e") (@) (2) If (x,5y,¢) & Ty then (x,y,c') € T by assumption.
Hence, f(x,yy¢) = xyc and f(x,y,¢') = xyc's. From the fact that
xye = xyc' (§), it follows that f(x,y,c) = f(x,y,c*) (§)s Hence
b e c@).

Since e¥* and d¥ cannot be components of elements of T and
- {e¥d¥} A {cyc'} ¢ thus we have

@ (e*,a%) > w, §>w but @ (e*,d*) A D =0 ,
which is a contradiction. Therefore 3) followse

Conversely, let d{ be a finite algebra in 'Isl satisfying the
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conditions 1), 2).and 3)9 What we are going to prove is that
is subdirectly irreducible. To achieve this; we prove, for each
@ecw), ®> @, that d* = e* () always holds.

For preparation, we make the following observations

Claim 1. e¥* is the greatest element of (7 .

Suppose that this is false. Ley m be the greatest. Then
m > e¥, Let s € A be such that m »>— s = e¥*, Evidently, my: s
cannot be components of elements of T and {m,s} £ {e¥*,d*} .
Thus,; by virtue of 2), there exists p in A such that s < p but
m :#p. The fact that m is the greatest element implies P << Me
Thus, we have s — p == m, contradicting the fact that g — me
Hencé, e¥ ig greateste.

Claim 2. If x — e*, then % == d¥ for each x in Ae

Suppose to the contrary that there is a y in A such that
¥ = e¥ but y% d¥, Let g be in A such that y = ¢ — e%*,
Clearly, g <& d*. Furthermore, {gse*} « {d*,;e*} and both g
and e* are not components of elements of T. Thus, according to
the condition 2), there is a p in A with g =< p but e*<£ p.
Since e* is the greatest element of A, it follows that e* — p
= qo This, however, contradicts the fact that e* »— q. Thus,
Claim 2 follows.

From the above two observations, it is now clear that ¢
is illustrated in Fige. 13.

Let ® € C() such that > w. Then there exist s, % in
A such that s £ t and s =1t (® ). Since, (1) s =1 (® ) implies

st=1% (@) and (2) s=1+% (@ ) implies x=y (® ) for each x, -
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y in [s,t] if s < t; hence, without loss of generality, we may
assume s —< 1o

Suppose that e* 5% a* (@ ). Then {syt} # {a*,e*} . In
facty 8 ~—~<t == d¥%, Let mws chéose a pair {sgt} such that ¢ is
maximal. ( Note that this is possible as @ is finite, )

We have the following four cases 2

Case I. Both s and t are not components of elements of To

Case 1I. s is a component of an element of T but + note

Cage III, t is a component of an‘element of T but s not.

Cage IV, Both s and + are components of elements of T.

Case I. In this case, by 2), there is a p in A such that -

s == p but t <& pg ( see Fige 14 )o Now, s=t (@ ) implies

- .tp
’,/'/ q
b oo
.4 D
N
Fige. 14

that sp=tp (® ) and so p =tp (@ ). Clearly, tp > p => s»
Let g € (pytp] such that g »—pe As p=q (@ ), it follows
thet {p,q} # {d¥*,e*} where p > s.
Cage II. Since s is a component of elements of T; thus,
there exist b, ¢ in A such that (s,byc) € T. We have
es = f(s,b,c).:> sbee
As t is not a component of any element of T; thus, (t,b,c)

& T and so £(t,byc) = tbce
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Observe that s = ;t (@) implies £(sybyc) = £(t,b,0) (®),
iceey e = the (®). 1f (1) e # +tbe, then as e = s and
tbe = t = sy we can choose pyq in A such that p — gy P= @
vhere py q & [minimal(esr,tbc),es.(tbc)] e Obviously, p > s
and {pyq} # {d¥,e*} . If (2) e, = tbe, then as the = e >
sbc and t =& (@ ) implies tbe = sbe (@ ), there exist p, g
in [sbeytbe] such that p—~< q and p = g ( @D )o Observe that
(sybyc) € T implies sbe = s and thus p = s. |

Casge III.., Since t is a component of element of T; there -
exist bye in A such that (t,b,c) € To Thus, e, = f(t,b,c) >
tbc. Because s is not a component of any element of T, we obtain
£(sybyc) = sbee As s =1t (@) implies £(syby0) = £(t,b,¢) (B ),
we get sbe = e, (@). Observe that sbe = gso For, if sbc = s
then be = s and s0 tbec = ts = to On the other hand, as (%,b,c)
€ Ty it follows that the > t, a contradiction. Hence sbec > g,
as required. From this, we have ( see Fige 15 )

e, = tbec == sbe > s »

$
et

Fige 15
Let py, q¢ € [sbc,et] such that p —< go Clearly, p=¢ (® )

and {p,q} # {d*,e*} where p > se

Case IVe In this case, we assume that both s and t are

components of elements of T.
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If (1) there exist &, b in A such that (a,b,s) € T but
(aybyt) & T, then the same argument as in Case IT can be avplieds
If (2) there exist ay B in A such that (a,b,t) € T but (a,b,s)
¢ T, then the situation is same as Case III. If (1) and (2)
are not the case, we have (3), (a;bys) € T iff (a,b,t) € T for
ay b € Ao

If f(a,bys) # £lasbyt) for some azb € 'A, then s=+ (@ )
implies f(a,bys) = f(a,b,t) (@ ) where

f(aybys) = abs > =
and f(a,b,t) > abt > t > s.

Let py, q be in [minimal {£(a,bss)sf(ab,t)],f(a,b,s)f(asb,t))

such that p —¢ ge Clearly, p= ¢q (@ )9 {psa} r“—( {d¥;e*} and

P > Se
Now, if f(a,bys) = £(asb,t) for all such a, b in A, then by

3) there is a p in A such that s < p but + =5 p ( see Fig 16 )

-4 tp
.
.
-
-
e q
.
-
’/
.
-
- ,/
g
-6 P
-
e
///’
//
-
"/
8

Fige 16
Clearly, s=t (® ) implies sp = tp (@ ), i¢coy p= tp (@ )
As tp = py let g € (pytp] such that p—< qo We have p=q (@ ),
tpeay # [d¥,e¥} and p > se
Hence, in any case, we obtain & pair {p,q} with p — q,
{pyq} # {d*,e*} , p=q (® ) and p = s. This, however,

contradicts the maximality of s Therefore the assumption that
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e¥* 3_4 a* (@ ) is false. Consequently, for each @ € C(JZ), @ >0
we have e¥ = a* ( @ )o Hence, (C is subdirectly irreducible,
¥hich was t0 be showne

Thusy the proof of Theorem 5.1 is completes

Following from the proof of Theoren 5013 we have
Corollary 5.2..

f:et dC be a finite algebra in Ky If JTis subdirectly irre-
ducible, then e* is the greatest element of f{ « Moreover, d7
has one and only one dual atom d¥ which contains every element

other than e*.,.

Let dC € Kye By Theorem 3.1, /T contains one of the four
algebras I(j), J = 1,2,3;4 as subalgebra. In particular, however,
ifd is assumed to be a finite subdirectly irreducible algebra,
then by virtue of the Characterization Theorem 5.1, we are able
to prove that /& must contain I(1) as subalgebra. Indeed, we have
the fol‘lowing :

Corollary 5.3

The algebra I(1l) is subdirectly irreducible. The algebra

I(j) is subdirectly reducible, for each j = 243,4

Corollary 5.4,

Let (T be a finite algebra in K3. IfJCis subdirectly irre-
ducible, then (f contzins I(1l) as subalgebrae.

Proof : Letdl be a finite subdirectly irreducible algebra in ,&1.
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In view of Corollary 5.2, JC can be represented by Fig. 17.

Let us choose a triple (a*,b*,c%) in T such that
f(a*,b¥*,c*) = e* and a¥b¥*c* = 4%,
If 2*b¥* = a*c* = b¥c* = d%, then, clearly, & contains the algebra

of Fig. 18 as subalgebra. In this case, the proof is completes

ha
= e TN

Fige 18
Thus, we may assume, say, a¥b* << d¥. Let s be in [a¥*b¥,q¥)

such that s — a* ( see Fige 19 ).

e*
d
P
~2%D
a¥* d'/ \b& ol
Fig. 19

If s is not a component of any element of T, then by condition
2) of Theorem 5el, there exists p in A such that s == p but d*gé: Do
This implies that p % e¥1iceey P < €%, As D % d*, by Corollary 5.2,
p << d¥, Thus, it follows that s« p = 4%, which contradicts

the fact that s — d¥,
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Therefore, s must be a component of some element of Ty and
so there exist b_,c_ in A such that (s,bs,cs) €T ( see Fig. 20 ).

e
i

%ﬁ

=] -

d// o1 % oo

Figo 20

a*

Evidently, f(s,bs,cs) > sbge, => s. MNoreover, as by c
£ e*, we have by cg =< d%. Thus, b, ¢ < d¥ since d* camnot
be a component of any element of To Clearly, sbscs:s; a¥, If
sbscs =z d%; we would obtain 5 = s'bscS << d*, contradicting the
fact that s —< d¥. Hence, it follows that sbgey = @¥. But then
f(s,bs,cs) = sbgeg = d¥ and therefore f(sybgycg) = e*¥. Now, if
the elements s,bs,cs are such that sby = sc, = biCy = d¥; then
contains the algebra of Fige 2I as subalgebra. In this case,

the proof is complete.

Figo 21

Thus, we may assume bgeg == d¥ ( note that as s — ax, sbS
= Scg = d¥ )e Following the same argument, we will abitain
elements ty, t,, t3 € A such that (tl,tz,tB) € Ty £(ty9%0513)
= ¥ > t1tpty = d¥ > %5, i = 1,2,3 and % »— 4, == b o . If

b
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tlt2 = t2t3 = t3tl = d¥, the proof is complete. Otherwise, we

would continue this process. Since I is finite, the process will

stop after finitely many steps. Hence, the Corollary follows.

The following examples 1 and 2 are subdirectly irreducible
algebras in‘g1 while example 3 is an algebra in'g1 vhich is sub-

directly reducible.
Example 1,
The algebra is the semilettice of Fig. 22 with the ternary
operation "f" defined as follows 2
e; if {xyy,2}) = {a;sbiscy]

f(11YvZ) =
Xy otherwise

Fige 22

Example 2.
The algebra is the semilattice of Fige 23 with the ternary

operation "f" defined as above.
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Fige 23

Example 3.
The algebra is the semilattice of Fige 24 with the ternary

operation "f" defined as above.

.
:

L
ﬁ'/ \'\
Qz\?‘x \
/"ﬂy \\~.
e S
> ; ™
~ / ' N :
-4 5o \\ c <§) N

°al Jaz o 2 > Co 1 ~oc1

Remarke.

It is conjectured that the corresponding results on finite
subdirectly irreducible algebras can similarly be obtained in the

equational class K,e In this case, of course, the role that I(1)

plays in’gl will be revlaced by II(l) in‘gQ.
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CHAPTER 3
ALGEBRAS REPRESENTING €0,0,1,m>

In this chapter; we shall deal with the representability
of the sequence { 0,0,Yym) , for an arbitrary natural number m.
The case m = 1 and m = 2 have been considered before. By a
result of Go Gritzer and Re Padmansbhan ( see [ 20 1), it is
knowm that if & is the idempotent reduct of an abelian group
of exponent 3, then p(d) = <f0,0,p2,p3, ,..,.,pn,oo.o.o,>
where p_ = % ( R ( =1 )® )o Thus, in particular, the sequence
<'0,0,1,3:> is representable. It is, therefore, natural to
ask ¢ given an arbitrary natural m, is the sequence < 0,0,I1,m>
always representable ?

Let f{ be an algebra representing (0,0, > . Then (T has
one and only one idempotent, commutative esgentizlly binary
polynomiale If pB(JZ) >> 3, then the binary polynomial is not
necessary associative. However, if we assume that it is assoc—
iative, then for each natural number m, it is possible to find
such algebra J{ such that p3(dZ) = me More precigsely, we are
able to construct a semilattice with certain ternery operations
defined on it so that the resulting algebra has exactly m ess-
entially ternary polynomials. Thus, the sequence< 0,0,1,m> is,

a fortiori, representable, for each natural number m, which

solves the above problem.
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1., Construction of Algebras.

In this section, we start to construct algebras which will
be shown to meet the requirement in next section.

For each natural number m,; let us consider the four types

of semilattices {A; ) described by Fig. 25—28

Fig. 25
K4 77T N
! d \1 E
{ F\A,
\ )
/’/<\ N
(ii) e N
Y .

Fig. 26
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is

K . -
i\ //\ /'7
K >
( ) // (_,- ~N - N .
iii h
f& \0\
/’,r ' \.\\ P
////’ \\\\\ e
0/// " //// .
a °%h %0
Pig. 27

(iv)

i'or each type of semilattice, the subset

B ={ d,el,eg,...,em_l}
a m—element subsemilattice such that for each i = 1,25e004m=1,
either (&) e, = dj
or (b) e, << d but e, is incomparzble with every
element of A - F .
Or (c) e is incomparable with every element
of (A - E)U{d] .

Given any of the semilattices { 4; .» , we shall define,
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for each i = 1;2,60.ym=1, a ternary operation fi on A as follows:

e if {xy7y2} = {a,b,c}

fi(X1YbZ) =
Xy a otherwvise

Evidently, we have the following elemenfary observations:

(1) The polynomial fi(x,y,z) is essentially ternary, for

each i = 1524000ym=ls

(2) fi(x,x,x) = x for each i = 1,2;¢00,m=1o

(3) fi(x,y,z) is symmetry, for each i = 1,2;e00ym~1

(4) 1If i £ j then fi(x,y,z) # fj(x,y,z) over A.

Now, to any of the semilattices <{Aj; °> s We can associate
an idempotent algebra

q =<4 F)

where F = {"fl’f2’°°°’fm—l} consists of one semilattice

operation and m-l1 ternary operations which are defined as above.

Remark.

If m = 2, there are exactly eight different algebras (up to
isomorphism) obtained from the construction. They are isomorphic
to I(3)y II(3) j = 1,2,3,4 respectively. |

If m = 3, we obtain exactly twenty different algebras from
the construction. For instance, the following are constructed

from the first type of semilattice,
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Fig. 29

Where for each i = 1,2, fi is defined as above.

65



2. Main Theorem.,

We are now in a position to prove the following

Theorem 2.1,

For ezch natural number m, any one of the algzebras wvhere
lE‘ = m as constructed in section 1 has exactly m essentially

ternary polynomials.

Corollary 2.2,

Letjg'be the class of all idempotent algebras with a
semilattice operation. Then, for each natural number m, the

sequence <€ 0,0,1,m)> is representable ini{:

Proof of Theorem 2.1 ¢ Let JU be such a given algebra with

|El = me Then 47 has at least the following m essentially
ternary nolynomials:
Xy2Z, fl(x,y,z), cescsscay fm_l(x,y,z)o

Thus, to show that p3(éz ) = m, we have to show that the collection
of all these m essentially ternary polynomials is closed under
substitution. In other words, let p(x,y,z) be an arbitrary
essentially ternary polynomial over (7 . Our purpose is to show
that p(x,y,z) is the same as one of the above m essentially
ternary polynomials.

To this end, let p(x,y,z) be given. First of all, we

claim that: p(a,b,c) € B.
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Suppose that thié is not the case. Then p(a,b,c)€ A -~ E
{asbycyab,ac,be}  (note that the later set devends on (T ).
However, by definition of fi(x,y,z) and the fact that abe = 4,
the above inclusion is impossible. Hence, p(a,b,c) € E, as
required.

Similarly, p(amqu,ua) is an element of E for any permutation
o on the set {a,b,c} °

Next, Wé prove that p(x,y,z) is symmetric over T . It
suffices to show that p(x;y,z) = p(yex,2)e The other cases can
be shown similarly.

| Let S be a substitution for {x,y,z} .

If S # {a,byc} , then evidently by definition of f,, we have

p(x,5,2)(S) = (xyz)(8) = (yxe)(S) = p(y,x,2)(S).

If S = {a,byc} , say x(S) a; y(S) =b, 2z(S) = ¢, we have

to prove p(e,byc) = p(b,a,c).
For simplicity, let us make the following conventions:
(l) If there is a factor fi(a,b,c) in p(a,b,c), we denote
fi(a,b,c) by ei;
(2) 1If there is a factor fi(u,v,w) in p(a,b,c) where
{uw,v,w} £ {a,b,c] , we denote fi(u,v,w) DY uvwe
(3) 1If there is a factor abc in p(a,b,c), we denote abe
by de.
Thus, from these and the fact that "." is a semilattice

operation, it follows immediately that
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IT e.

jex 1
(gggei)ab [or ( ;;ei)bc or ( giei)ac]
Lor ( Tle;la

vhere I is a finite subset of 1y250e03m=1 , possibly empty.
If p(a,b,c) = Tle; or (;Egei)d, then from the fact
that fi(x,y,z) and xyz are symmetric, the result follows.
If plasbye) = ( ;;ei)a, then p(bya,c) = ( liei)b, We

shall prove that ( liei)a = ( ;;e.)b.

=]

€... Since B is a subsemilattice

For simplicity, write e = ;

u-.:l
s
o

of A. Thus, eie E imply e € E

Case 1. e << d.

In this case, as e € E and e — d we have

ea = d = eb.

Case 2. e £ d

In this case, clearly, we have

ea = ed = eb.

Thus, p(a,b,c) = p(bya,c), as was to be showm.

For the other possible values of p(a,b,c), the proof is
similar . Hence, we conclude that p(x,y,z) is, indeed,
symmetric.

Since p(a,b,c) € E, it follows that p(a,b,c) = 4 or
p(a,b,c) = ;s for some i = 1,...,m-1.

(1) If p(a,b,c) = d, we claim that p(x,v,2) = xyz.
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Let S be a substitution for the varisbles X9V 9%
If 8 # {asbyc} then clearly
p(%,5,2)(S) = (xyz)(8)-
If S = {a,b,c} s then by symnetry of p(x,y,z), we have
p(x,7,2)(5) = »(asbye) = d = abo = (xyz)(S).
Hence p(xyy,2) - Xyz, as required.
(2) If ov(a,b,c) = e;y for some i = lyeesym-l. We claim
thet p(x,y,2) = fi(x,y,z).
| Let S be a substitution for the varisbles x,y,z. If S £
{eyb,c} , then clearly,
p(x,y,2)(8) = (xy2)(8) = (£,(x,5,2))(5).
If S = {aybyc} , then by symmetry of p(x,y,z), we have

p(%,7,2)(S)

(i}

p(asb,c)

= e,
1

fi(a,b,c) ‘

fi(xvyv Z)(S)°
Hence o(x,y,2) = £ (x,5,2).

Therefore, we conclude that

I
jeX]

Xyz if p(a,bsc) =
P(xryv Z) =

t
&)

fi(x,ygz) if p(an.bgc) =

" which completes the proof of Theorem 2.1.
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——————— PART IT —eeeeememeumes

IDEMPOTENT ALGEBRAS WITH ONE ESSENTIALLY m—ARY POLYNOMIAL, m =2
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CHAPTER 1

ALG‘:EBRAS REPHES}BI‘ITIN‘G < O ,O 9 a,l °0 0o yg aky m> UITH C.l o oo =ak=_]:-

In this chapter, we shall, naturally, deal with the same
problems as in Part I for the more general segence <:O,O,a1..,,
ak,m‘>-with 2y = ,.; = ak = 1 where k,m are srbitrary positive
integers. It turns out that almost all the results in Part T
can be extended to this general case.

The case that m = 2 will be examined in section 1. We obtain a
generalization of Theoren 304(1,1)9 Moreover, a lower bound for
sequence <IE> is provided in this case. In section 2, the
representability Theorem for the sequence <:0,0,ai,oee,ak,n1>
with 8y = eee = 2 = l, k,m are arbitrary possitive integers,

is established. It is applied, in section 3, to prove a

characterization Theorem about the seguence <‘0,0,l,a.1,m,n:>

1. The Case m= 2.

k—-
se3ly2 >

Let dL be an algebra representing the sequence <'0,0;i;
where k is a positive integer (we may assume k = 1 )° By
Lemma 1.2(I,1), ¢ has a unique semilattice operation. Since
pk+2(dz') = 2, it follows that there is one and only one essentielly
(x+2)-ary polynomial, denoted by f(xl,e.o,xk+2), which is

distinct from %ﬁzxi over ({ . For the sake of simplicity, we
i=1
write n = k+2. Clearly, f is idempotent and symmetric. If we

identify x; = x, in ¥, we obtain the polynomial f(x2,x2,x3,oooyxn)o
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As (7 represents <0,0,1,“,,l> and f is symmetric, we have

r

*2
By
f(xg,xg,xs,ue,xn) = A
..
L i=2 *
If f(xz,xz,x3,.“,xn) =%, setting Xy = Xy We obtain Xy =%,
which is impossible. If £(X,yX, 3K 50009% ) = g X., setting
o1 ¥p1¥39 n .TT3 i
1=
. n n
Xy = X,y 1t follows that x, e T7x, = T - N _
3 4 2 i=5 1 i=4 le Svt X4 = ee06 = Xn
We have XpeX, = X 5 @ contradiction. Thus it is necessary that

_ _ n
(1) f(XQ,XQ’X3ooo’Xn) = TI%;.
i=2
From this, it follows immediately that
n
(2) f(xlxz,xl,xg,x4,eo.,xn) = x1x2i]j;lxig

Let us now consider the polynomial p = f(xlx?,x27x3,...,xn).

. : n
Setting X, = X,y we obtain by (1) that o = jngi . Thus,
p depends on Xs9 for each 1 = 3,e003ne Setting xB = X,y We

yel
have p = X1J{2iT__T4Xi o Thus p depends on Xl and x?a Hence p isg

essentielly n-ary.
If f(Xlx?-pX?,aea,Xn) = f(xlyeooyxn) —‘—“—"—‘"(A)y

1 n N
f(‘,nr:xj., TTXg0 X 71 %5 xlxz}n“xi, ’°°7TT2Xi°Xn) (2)
i=l - i=2 i=3 i:[f i:l

then ﬁ' X.
i=1 *

f(X ¥ %X:, X T%X.’ X X Trl\'x.,oco, r—lﬁ'gx.’ X ) (A)
1 {ap 1 li=3 i l‘2i=4 i sop i n
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f(xl,xz,o.e,xixj,ae.,xn) (4)

il

f(xl,ngeaenggeoegxn) . (a)

which is a contradiction. fThus, we obtain
n
(3) f(xlxg,xz,.o.,xh) = fjixi o

Let us write I;Xi = xlx2°°°xj-1xj+l°°°xn for each
j = lyeeeyne The polynomial f(ETxi,zgxi,ee,,ggxi) is clearly
essentially n-arye.

It f(?xig?xigaoo,-l;‘.xi) = f(xlyxggoaegxn)

1]

n n
then Ty x; f(]ayxi,o,.,Jj'xi)
i=1 i=1 i=1

f X. o .6 ° . ceceo .0 {.% ooe L
(E? i T;Xl eeeTl%ss ,Ile Z?yl Ilyﬁ)

f<TFXi'IJKi’°°°"§IXi)

f(xl,xz, °°°’Xn) ’

a contradiction. Thus, it follows that

n
(4) f(szi’IJXi’°°°’IIXi) = ;Dixi .

Beceuse of what we have now proved, it is evident that we
can apply arguments similar to those of Chapter 1 of Part I to
derive geveral identities thet hold in O . In this wey it cen

be shown that there are two tyves of algebras satisfying the

identities
f(xl,aoo,xn)xl = f(xlgoooyxn> I
n
T e oo - L = . T
f(xl, ,yn)>1 ;jixl I

resnectively.

In conclusion, we arrive at the following result.
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Theorem 1.1,
For each positive integer k = 15250005 theve exist two

equational classes of algebra glk and ,I\{,%_ such that an algebra

.

JC represents the sequence <O,O,’l—,_°1§:':f,2> if and conly if

fU cen be revresented as an algebra of tyve 2, k+2> Belonging

to either X or

1x °F Ko -

If ¥ = 2 ;, the following examples can easily be checked to
represent the sequence { 0,0,1,1,2 > . Let us note that the
free semilattice on four generators consists of 15 elements,
and that therefore , there are eleven non-isomorphic semilattices
generated by four elements, the homomorphic images of the free

one. Hence, we have the Hllowing twenty twd algebras, (see Fig. 30)

o e
a (%d
;%N N\ :
yd / | g k
oz / a \va \ a o, da \‘oa va
i 2 3 4 2 3 <
11(1,2) 1(1,2)




where each algebra I(j’2), I1(j,2) is a semilattice shown as

above and the 4-ary operation f is defined by

P
Lo if {xl,yg,x } = {al,a?,a3,a4}

f(xl,xg,x3gx4) = 1 _ﬁ_xl
o) i=l
{
In general, for each positive integer k, the free semilsttive

on k+2 generators consists of 2k+2 ~ 1 elements. Eence, there are

2k+2 - (k+3) non-isomérphic semilattice generated by k+2 elements

otherwise

which are the homomorphic images of the free one. Therefore, by

k+3

using the same idea, we can contruct 2 - 2(k+3) algebras iec€oey

. . . k+2
I(Jvk)y II(Jvk)r J=13250009 2

the sequence ¢ 0,0{i::%::i,Z} o

- (k+3) each of which represents

The following result cen similarly be shown.

Theorem 1.2
—
Let d be an algebra representing the sequence & 0,0 1,...,1 2>
| By be le\f@f){,ll/ d an &‘\(\,(,vav / W\UL<° r-’f)> W}rq}p
where k is an arbitrary positive integer. Then d{;«contalnc one

1
of the algebras I(J,k)y II(J,k); § = 1925000252 = (ke3) as a

subalgebra.

Let ¢Z be an =lgebrs in K, or K, o Let o, g be two
essentially n-ary polynomials over JC . By Theorem 1.2, it
follows that if p £ q over I(1,k) and II(1,%), then p £« over & .

In view of this fact, we can now provide a lower bound for the

sequence (pn( xz)>.
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Theorem 1.3,

Let (T be an algebra representing the sequence <0,0{i:;%::f,2>
for ikt = 1. Then p (@) = [T + 3(k+3)(xexa) | (ee3)? 043 gy
each n = k+3.

Proof ¢ It is not difficult to check that the following
1+ %(k+3)(k+4) polynomials are distinct and essential over the
algebras I(1,k) and I1(1,k). Thus, by the sbove obgervation,

dC has a2t least 1 + %(k+3)(k+4) essentially (k+3)—ary polynomials,

namely :

%ﬁjxi,

i=1
f(xlg 00 ,x1(+2)xk+3, f(x"zg-eo ° gy.k+3)xlg 6000y f(xk+3,X19607X1{+1 ');X'_l{+2’
f(xI’°°°’xk+l’xk+2’xk+3)’°°°°°’ f(x2’°'°’xk+2’xlxk+3)
We shall now construct new polynomials inductively from the
above polynomials in the following manner 3
Let p(xl,,oo,xn) be an n-ary polynomial obtained by induction.
Uith respect to p, we produce the following (n+l)—ary polynomizals
by using three types of constructions :
(A) p(}fl,ooogxn>oxn+l;

(B) If there ig a factor f(Algooe,Ak+2) in p, we then sget

1) (8%, ehpseenshy ),

2) f(Al’A23n+l’°°°’Ak+2)’

@

-4

k+2) f(Al’A2’°°°’Ak+th+1) ;
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(C) If there is = product T[] A, in p where J is maximal
je3
( in the sense of Theorem 4.1(I,2) )s we set

f( ﬁ AA.,Q\:, l A.9 X
jed(1)d sed(xe)d -ntl
possible ) where { J(1)yee0,d{k+1)}is a partition of the

) in p ( if this is

index set Jo

Now, observe that if there is an occurrence of "f' in p,
then by congtructions (A) and (B), we have at least k + 3 (n+l)-
ary polynomials. If there is no occurrence of "f" in p(xl,o.,xn),
then since n == k + 3, we obtain at least k + 3 (n+1)—ary poly-
nomials by using the constructions (A) eznd (C)e Applying the
same argument as in Theorem 4.1(I,2), it follows that all such
(n+l)=ary polynomials are essential and distinct over (T o There-

fore, the theorem is proved.

For each positive interger k, let'glk’~52k be the two equa-
tional classes of algebras as shown in Theorem l.l. We have the
following

Theorem 1.4.

There is a one=tgone but not onto mapping from K. to K.,
for each i = 1,2, if s << %o
Proof ¢ We consider the case i = 1« The other case is similar.
For simplicity, we replace sy t by s = 2 and t = 2 resp-
ectively., Let (C 6151(3-2)° Set
D = {(al,eoo,as)‘//ai € 4, f(al,oae,as) % ;ﬁiai} o

Since f(XlxégXQ,ooogxs) = j%‘xi and

i=l

17



f(xl,%cl,x?’,oe,x ) = x TT % hold in 47 4 it follows that for
each (al,”.,a ) € Dy the elements a; 's are pairwise disztinct
and incomparzble.

To each (a’.\.‘”“”'as) € Dy let us adjoin a set of new elements
{a's+1’°"’at} in such a way that

1) The set {al,e”,a ,»as+l,eu,at) is pairwise distinct

s
and incomparable;

2) aa — §ra. y for each j = s+ljeeeyt}

3) a:J << ¢ 1ff ‘ﬁ'la e for ¢ € A, where J = stlgeeeyt;
4) 2 || by for e;ch b %ﬁa in &y j = stlyeceyt;

i=1
5) If (algeoopa.s), (bl,oeogbs) (S D and {algaoogas} ;é

{bigooa,bs} ¥ then a.J.'lbr for jg r = S+1yooog'to

Let A% = A [ U {{as_l_l,.“,as} /A(al.v,...,as) € D} o Then

A* is a semilattice. Define a t-ary operation g in A¥ as follows 3

f(algeoe,a, ) if {X‘i,oogxt} = {al,..,asy,as‘bl’
g(xl,x?—goooyx.t) and (algoaogas) €D H
ffr x5 othervise

From the fact that J7€ K K1 (g=2)? it is easy to show that the
algebra ¢C* ={A¥;.,2> belongs to 51(t-2)° Moreover, it follows
from our construction that if @& ¥ B , then @* ¥ 8%, Thus,
the mapping @ : flzl(s-?) —_— El(t—z) defined by @(@) = ¢r*
for ¢7 in fI\{«l(s-Z) is one-to-one. Clearly, ¢ is not onto gince
there does not exist an algebra 42 in El(s-!?) such that 7% =

I(Qt-(t+1),t-2)e

18
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Corollary 1.5,

For each i = 1, 2 and k = 1, we have I»Kik' << Lgi(k+1)

2o The Representability Theorems,

In this section, our purpose is 1o extend the results of
Chapter 3 of Parﬁ I to the much more general situation. We will
observe that by expesnding those algebras representing {0,0,1,m>
in a suitable way, we cen construct algebras representing the
sequence (0,0,i::%:;f,m>> for a given pair of positive integers
ky me

One remark should be mentioned is that for k = 1, if & is

. Tk .
an algebra representing <0,0,1,1,,,,1,n1> s then 0 has a mmique

14

semilattice operation. For k = 1, this is, however, not necessary

in generel.

Constructions.

For each pair of positive integers <{myk> , let us consider

the following types of semilattice <Aj.> ( see Fige 31 )
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T

where & = {d’el’e2’°°°’em—l} is a m-element gub-semilattice of
{ A5 o> and for each type, {(A-E)U{a} ; . , considered
e2s a semilattice, is a homomorphic image of the free semilattice
generated by {al’a2’°’°’ak+2} o The elements of E satisfy the
following conditions ¢ for each i = 1;250009m=1,
either (z) e, > 43
or (b) ei =< d and ei is incomparable with every
element of A - I
or (c) e is incommarable with every element of
(4 = B)utdl .

Given any one of the semilattices {43 «> ; we shgll define,
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for each 1 = 1;2,c000ym=1, a (k+2)-ary operation f. on A as

follows:
_
1 i {xypeeeny b = {agreensay o)
£ mamgreeesm ) = k+2 .
TT % otherwise |,
j=1"

N

Note that for each i = I';24000qm=1

(1) fi(xl’°°"xk+2) is essentially (k+2)-ary;

(2) £ (xppeeeym,,,) 4 Lfﬁij ;

(3) fi(xl,.eo,xk+2) isagdempotent and symmetrics
(4) fi(xlgsoeyxk+2) # fj(xl’°°°’xk+2) ififdio.

Thus, each of the semilattices (A; o> s 1s associated
with an idempotent algebra ( = {A; F> vhere F = {e,flgoergfm—1}
consists of a semilattice operation and m~1 (k+2)-ary operations
defined eas above.

Theorem 2.1,
For each peir of positive integers {myk> , a2ny one of the

algebras with }EE = m constructed above has exactly m essentially

(k+2)-ary polynomials.

Corollary 2.2.

For each pair of positive integers <m,k > , the sequence
<f0,0,1,;;%:T,m:> is representable inlgrwhere‘g;is the class

of all idempotent algebras with a semilattice operation.

The proof of Theorem 2.1 can be carried out by modifying
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that of Theorem 2,1(f,3)o

3e The Characterigzation Theorem.

Consider the following seguence

(*) < 0,0;I:;%::?sm,n >

where k is a natural number, m and n are positive integrse.
Theorem 2.1 says that if m=l then the sequence (¥*) is representsble
for each n = 1;2500.. In this section, we are going to prove
the converse of this result; namely , we show that if the
sequence (*) is representable for each n = 15250009 then it is
necessary that m = 1.

First of all , we shall state the following Lemma which
is a slight generalization of the Lemma 3 in J. PZonka [34 ]
Its proof is in fact identical with the proof of that Lemma.
Lemma 3.1.

Let ¢ be an algebra such that po( ) = p, (& ) =0,
p,( ) >1. 1If p3(JC)>O “then p3(éz)>3.

Remarke.
If, in addition, we assume p2( gt ) = 2 4 then this is
Pionka's Lemma.
Lemma 3.2,
Suppose that the segquence
(%) : <’0,0;I:;%:;I,m,n >
is representable. Then any one of the following conditions

implies that m = 1.
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(1) ¥ >1 and n < m+ maxe { myk+3} ;

1l and n < 4.

7

(2) x
(3) k=0, m >0 and 0 < n < 2.

Proof : Assume (1) holds. Since k > 13 Py = Py = 1 and hence

]

it follows that the only binary polynomial is a semilattice
polynomiale If m £ 1, then we cen apply a result of G. Gritzer
and J. Plonka to yield the following:
n = pk+3> D, + 1 + maXe {pk+2, k+3}
= m+ 1 + maxXe {m, k+3}
> m+ maxe { my k+3} ,
which contradicts our assumption. Thus, m = 1, as required.
Assume (2) holdse As k = 1, the sequence becomes
(*)s < 0,0,1,myn> .
Ifp, =n <4 < %(24 ~(-1)%), then by Lemma 1.2(I,1), it
follows that there is a semilattice poIynomial over any algebra
JU representing the sequence (*¥)« Thus, if m > 1, we obtain
n=p4(d'(,)> p3(d§’,)-.+1 + MmaxXe {pB(JZ )4}
=m+ 1 +mexe {my 4}
>1+ 4 =5
which is a contradiction. Hence m = l.
Finally, suppose that 4the condition (3) holdse. In this case
the sequence becomes (*) ¢ < 0,0,myn >,
Ifm;él then by (3), P, = m > 1l. Since p3 =n >0, by

invoking Lemma 3.1, it follows that Py =n = 3. But this
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contradicts our assumption that n =< 2. Hence we must have

m = 1, completing the proof of Lemma 3.2.

In view of this Lemma and Corollary 2.2, we arrive at the

following result.

Theorem 3.3.

Let k be a non-negative integer end m, a positive integer.
e .
The seguence ('O,O,l,.g,,l,mﬂ1> ig representeble for every

positive integer n if and only if m = 1.
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CHAPTER 2

THE FUNCTION F(n,k)

In this chapter, we are devoted to the following problem @
Given a positive integer n, what is the minimum value of m so
that the sequence {0,0,I,n,m> is representable ? In other
words, our object is to search for the number m* such that

(1) the sequence {030,1l,n,m*> ‘is representable;

(2) if the sequence (0,0,1,n,m> is representable, then

m > m¥,

The result we obtain is the following ¢ Let _Ié(l) be the
class of 211 idempotent algebras with a semilattice operation
such that 211 the essentially ternary polynomials are symmetrice
For each n, let F(n) be the smallest integer such that the seq-
uence ¢ 0,0,1,n,F(n)> is representable by algebras in k(1)

Then F(n) = 10n ~ 9,

Furthermore, by applying similar techniques, we are able
to extend the above result to a more general situation and obtain
the following result ¢ For each pair of pogitive integers {n,k>,
kX > 1, let F(n,k) be the smallest value such that the seguence
{ 0,0ﬁ;jlf::i‘,n,F(n,k)> is representable in K(k) where K(k) is
the class of all idempotent algebras such that alil the essentially
(k+2)-—ary polynomials zre symmetric. Then

Flnyk) = 1 + 3(n=1)(ke3)(kr4).
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1., Some Preliminary Resultse
Throughout this chapter, we shall adopt the following notation.

Let ¢C(1) = {Aj;.) be the four-element semilattice ( see Pige 32 )

| //"" g \\
- ~
< La, e
Pig. 32

‘Let C(2) = <A?;99f1> be the algebra II(1) ( see Fige 5 )e
Inductively, for each positive integer n, let dC(n) =

¢ An;o,fl,a“,fn__l> be the algebra ( see Figo 33 )

Pt A BN N
e /" H ‘~.\_ ~ -
: ,// | N
e : N N
- o c & © ¢ i e e € 0O \Oe \"-\\
,.-"/ el e2 [ e T
- n=1 ~
-~ $a Ne o
Fige 33
where !An’ =1n + 35 "." is the join semilattice operation and

for each 1 = 1,2;0004n-1, fi is a ternary operation defined as

follows @ .
Ml ey
fi(X9Y9Z) =
! " .
¢ XYz othervise.
N

According to the results of Chapter 1, it is known that
for each positive integer n, the algebra d7.(n) represents the
sequence <0,0,1,n> . We shall show that p4( dC(n)) = 10n - 9,
To this end, we prove the following lemmase. For simplicity, if

P = q is an identity, we write L for p and R for q { Ly R stand
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for left and right respectively ).
Lemma 1.1
I 3 [ o = .
n the algebra dZ(n), fi(xlx2913,x4) fl(xi,x3,x4)fi(ngx3?x4),
fOI‘ each i = 172gooogn"1o
Proof : It suffices to consider the case i = 1.

Let S be a substitution such that L(S)

i

el, ioeeg
fl(x1x29x3,x4)(8) = e
This can happen only if either (1) (xlxz)(S) = x3(S) = xa(S) = e

or (2) (Xlx2)(s) = 299 x3(S) = a5 x4(S) = a, ( or symmetrically o
Assume (1) holds. We obtain xi(S) = e; 5 for each i = 1,2,3,4.

Thus, R(S) = ey.

If (2) is the case, then xl(S) = xz(S) = as x3(S) = 2,
x4(S) =‘a3a Thus, R(S) = fl(al,a27a3)f1(al,a2,a3) = €je

Hence, L(S) = e, implies that R(S) = e

1 1°
Let S be a substitution such that L(S) = e s k = 2ye00yn-1,

ieeey fl(x1329x3,x4)(8) = e, Since k £ 1, we have (x1x2)(8)
= x3(S) = x4(S) = e,y by definition of f. Thus, xi(S) = e

for each i = 1,2,3,4 and hence R(S) = e Thusy L(S) = e, implies

k° k

R(S) = e,
Conversely, let S be a substitution such that R(S) = €.

Then fl(xl,xB,x4)(S) = fl(xg,x3,x4)(s) = e, We have either

(1) x,(8) = e; , for each i = 1,2,3,4 or (2) x,(8) = x,(5) = apy

XB(S) = a2, XA(S) = a3 ( or symmetrically )o Clearly, in each cease,

L(S) = ele

Let S be a substitution such that R(S) = e , k = 25000 9N—-1y

k
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ie€oe, fl(xl,x3,x4)(8) = fl(x2,x3,x4)(8) = e o Since k A1, it

follows by definition that xi(S) = e 3 for each 1 = 1,2,3,4.

k

Thus, L(S) = Hence, we prove that R(S) = e implies L(S)

eko
=ei9 for each i = l,z,ooa,n—la

Therefore, we conclude that L = Ry, as required.

The following Lemma can be proved easily.
Lemma 1.2.

In the algebra dC(n), fi(xl,x2,x3)xl = ¥,y for each

*1%2%3
i = 192900991‘1"10
Lemma 1.3.

In g2(n), fi(fi(xl?xz,x3),x4,xl) = :ﬁr %50 for each i =
1goeo’n~lo
Proof ¢ We need only prove the lemma for i = 1.

Let S be a substitution such that L(S) Then either

ele
(1) fl(x19X29X3)(S) = X4(S)=X1(S)=ei or (2) fl(xl’x29z3)(s) = a19
XA(S) = a, xl(S) = a, ( or symmetrically ). Evidently, (2) is
impoggible as fl(a3,x2,x3)(s) P4 a;s Thus, we have (1)s But then
it follows that x.(S) = ey for each j = 1,2,334. Therefore,
R(S) = (14? (S)—Tfe - o,

Let S be a substitution such that L(S) = ey Ik = 250009n=1s

Then fl(fl(xl,xz,x3),x4,xl)(S) = e . As k % 1, we obiain

k
f1<xl’x2’x3)(s> = x4(S) = XI(S) =

1,2,3,4 and so R(S) = Hence,

1

e
L(s) = e_j inmplies R(S) = ej, for each j = 1325e00yn~1e

3

Thus, xj(S) = e, for each j
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Conversely, it is clear that if S is a substitution and
R(s) = e ss then L(S) = e for each j = lyeee,n-lo
From these, we thus conclude that L = R over a(n)e

Lemma 1.4,

In ®(n), fi(fj(xl’x27x3)7X4’xl) = —#r xyy where i,j
t=1

1,2,000,1’1—1? end 1 # jo

Proof : Without loss of generality, we may assume i = 1y 3 2o

Let 5 be a substitution such that L(S) = e , i.e.,

17

e

]

fl(fg(xl9X29X3)7X41Xl)(s) 1

fi

Then either (1) fz(xl,xz,XB)(S) = x4(S) xl(S) = e or (2)

fZ(XI?X29X3)(S) = 2y, x4(S) = a,9 xl(S) 2, ( or symmetrically )

Observe that (2) is impossible as fz(a39X2,x3)(S) # aje

Hence, we have (1). But this implies that xt(S) = e for each

17
t = 1,%,3,4. Thus, R(S) = eys

Let S be such that L(S) = e,o Then we get

fg(X1’x27x3>(S) = x4(S) = xl(S) = ee

Since f?(eg,xg,XB)(S) = e, implies xt(S) = e,y b= 1,234, it

follows that R(S) = e,

Let S be such thet L(S) = € k 3pecegn—l. Then we get

i

xt(S) =ey t =1,2y3,40 Thus, R(S) e, o
N Ea
Conversely, if 3 is 2 substitution such that R(S) = €9

X =1;2;0009n~1, then it follows immediately that L(S) = e e

Hence, we heve L(S) = e . if. znd only if R(S) = e, 9 It =1,

byt
Al

P9e00gn~-1, in 5Z(n>, Therefore, L = R, which completes the

proof of Lemma 4.
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Ilemma 1 o éa
Let fi(p,q,r) be an essentially 4-ary polynomial over (7 (n)
where p, ¢ and T ere pairvise distinct polynomials over OZ(n)

vhich contain no sub-polynomizls of the product form ¥ X Then
[

't‘
fi(paq,r) = 3%5 X in @(n).
Proof ¢ Let i = 1, and let S be a substitution such that L(S)

= €. Then we have either (1) p(S) = ) q(S) = a9 r(S) = a3

( or symmetricelly ) or (2) p(8) = q(S) = =(S)

elo
Claim ¢ (1) is imposmible.
Observe that since fl(p,q,r) is essentially 4-ary, it consists

of four distinct variableés. As fj(x1,x2,x2) = X x2 holds in

1
dZ.(n) and there is no product of the form xsxt ceecuring in p,

g and ry it follows that at least one of the {p,q,r} must

contain a factor fj( e s ) consisting of at least three distinct

variables. Therefore, at least two of {pyqyr} have a variable in

common. Suppose that (1) is the case. Then all varisbles in p, g

and r must be substituted by al,a2 and a., respectively ( or Sy m—

3
metrically ). This can be happen only if any two of {pyqsr}
have no variebles in common, a contradiction. Thus, (1) is
impossible, as required.

Hence, we have (2). It then follows immediately from the
assumption that xi(S) = e;y for each i = 1,2,3,4. Thus, R(S)
= 178 = e

Let S be such that £, (p,q,r)(S) = kK = 250009n=1s Then,

ek,

p(S) = ¢(S) = »(8) = e, by definition. From this, it follows
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that xi(S) = © for each i = 1,2,3,4. Thus, R(S) = TTe =-e o

i
(]
-~

Conversely; it is clear that R(S) = e, implies L(S)
for each j = 1,25000yn~1. Hence we conclude that L = R, as was to
be shown,

Remark.

Let us note that Lemmas 1.3 and 1.4 ave indeed gpecial cages

of Lemma 1.5

Lemma 1.6,

Let T‘Ff (xa(l)’xa(g)’ (3)) be an essentially 4-ary poly-

cLeA

nomial over Ot(n), where i = 1 2,e.evn«1 is a fixed index.

= i if
Then ;;R'l(x“(l), o 2) 1% (3)) ~TE . in dU(n) it |A]| >3
Proof ¢ Let i = 1. We may assume that for each o ¢ A s the set
{xm(1>,xd<?),xu(3)} of variables is pairwise distinct. For

otherwise, using the identities
9 -

£1 (5 9%5%,) = 1%

and fl(xl’XQ’X3’)X1 = XX,%y

that hold in dZ(n), it is easy to check that W“Tf <xd(1)”m(2)’ d(3))

A .
= TTX Y
j=1

If IA]= 3, then JTf (xd(1), x(2) 7% (3))
- fﬁ-‘rx(l>’Xo<(z>v’%xm”1“‘@(1-)7%(2)%(3))fl(xzr<1)*"f<z>"<x<3>>'
saye.

In order that the variables in each factor fl( y ¢ ) are
pairvise distinet, the number of occurrences of ecach of +the four

variables xl,x2,x3,x4 is at least two and at most three in the
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volynomial. Thus the partition of nine positions should be
2 82 22 33
Without loss 6f generality, we way assume the following

distribution (See Fig. 34)

x| %o

X3 X4

Fige 34

i
!
i
i
i
}

3 2 2 2

E
|
!
i {
Thus, we have ;;Xfi(xu(l)’xd(2)’xd(3))

= fl(xl,X29X3)f1(x1,X2,X4)fl(xl,X3gx4)o
To prove that fl(xl,x2,x3)f1(x1,x2,x4)fl(xl,x3,x4) = j:lxj in

dC(n), let S be 2 substitution such that L(S) = e This implies

10
fl(xl’x27x3)(s) = fl(X19X2yX4)(S) = fi(x19x3ix4)(0) = el °
From this, it follows that xi(s) = e,, for esch i = 1,2,3,4.

Thus R(S) = e, « If L(S) = e kK = 2y..0yn-1 then xi(S) = e

1
for each i = 1,2,3,4. Hence, R(S) = e

k?
k°
Conversely, it is clear that R(S) = ej implies L(S) = ej,

for each j = l,e.04n=-1. Ilence we conclude that forl]\!: 3

_ 4
B L E U L

If |Al>3, then

Jgkfl(xa(l)’XM(z)’xa(3)) = fl(xd(l)’xm(2)’Xd(3))fl<xﬁ(l)’xp(2)’x3(3))

£ Gy a2) *(3) L (1) 1% g 2) 1%5(3)!)

%% TTT1 (g (1% 529975 3))
- fex,
j=1

Hence, the proof of Lemmalt is complete.
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Lemma 1.7.
it -
In ¢(n), fi(xl’xz’x3)fj<x2’x3’x4> = ;ﬁixt vhere
153 = 1525000yn=1 and i £ 3 .
Proof : We may assume i =1, j = 2.
Let S be a substitution such that L(S) = e;. Then we get
fl(xl’x2’x3)(s) = f2(x2,x3,xﬁ)(8) = ey Hence, xi(S) = €y,

for each i = 1,2,3,4. This implies R(S) = e Symmetrically,

10

, imolies R(S) = €,

Let S be such that L(S) = ek, k = 33446009n=1e Clearly, we

L(S) = e

obtain Xi(b) = e, . Thus, R(S) = e

The converse is trivial. Hence Lemma 7 follows.

We are now in a position to establish the following

Proposition 1.8.

There ere exactly 10n~9 distinect essentially 4-ary polynomials
over dl(n). They are :
r .
Xy Xp¥aXy
fi<xl’x2’x3)x4’ fi(xe,x3,x4)xl, fi(x3,x4,xl)x2, fi(x4,xl,x2)x3;
(%) fi(:{l 'XQ’X_S)fi(xl 955273(4)9 fi(xl ,X3,X2)fi(xl 9}:373{4)’

fi(xl’XA’XZ)fi(Xl’X4’x3)’ fi(x29x3,xl)fi(xz,x3,x4),

L fi(xz,x4,x1)fi(x2,x4,x3), fi(x3,x4,xl)fi(x3,x4,x2),
For each 1 = 1,2560049n-10

Proof : First of 211, it is routine to check that the Q=T
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polynomizals in (¥, are distinct and essential over ¢7(n)e
Now, let p(xl,x29x3gx4) be an essentially 4~-ery polynomisl

over ¢Z(n). By Lemma 1.1, p can be written as
P(X19X27X3vx4) = T_rfl(AO(l’BO(lacdl) _]—rf?_(AO(Q’BLXZ’CO(Z) eesoe

weres TTE, 3 (Ay(n 13980001 ) 1Cor(ne1)) TR0

where, for each o and i, A_., Ba

. C.. are polynomials which
i LR ¢

i
consist of no sub-polynomials of the product of the form xixj°
He may assume that p cannot be reduced to a simpler forme

By Lemmas 1.3, le4y, 1.5, we have

p(xlvxsz39x4) = T—Tfl(xo(l9x§lsxn)W_ng(xdzsxﬁzvxm)

se00o0 TTfne-l(Xo((n—l)7X€s(n—l)’le(n—l)>Trxko

If p has no "fi" factors, for each i = ljeee,n=1, then

P = T4rx.o
j=1 J
If p has a factor "fi" for some i, then by Lemmal7, it

follows that

b

mfi(xdi’x@i’xo’i) T,

Case lo ‘A_l 1.

In this case, p = fi(xa,xﬁ,xg)xé, where {&;p,r,8 }
= {1,2,3,4} by Lemma le2.
Case 2. ‘J\! = 2o
In this case;, p = fi(xu’x@7xﬁ)fi(¥y7xpfxé> TTxk
= fi(xa’xp?Xx)fi(xafngx5>9
vhere {cl,B,7,5} = {1,2,3,4} s by Lemma 1.2
Case 3. | A == 3

If this is the case, then by Lemma 1.6, p = 7%‘ Xje
1
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Hence, any essentially d—ary polynomial over 6Z(n) mist
be ecual to one of the polynomials in (¥*). The number of the
polynomials in (¥*) is 1 + (n-l)(f) + (n-l)(f) = 10n - 9, This

completes the proof of Proposition 1.8.

2. The Value of F(n,1).
Let K(I) be the class of all idempotent algebras with a
semilattice operation such that all the essentially ternary
polynomials are symmetrice Thus, for instance, d(n) is an
element in,gﬂl), for n = 1y2y¢0000.. For each positive integer Ny
let JU be an algebra in X(I) representing <0,0,1,n> . Since
JL has one semilattice operation "o'"; we have one essentially
XX

17273°
:.{ gl(xl 7X29X3)

ternary polynomial x As p3(01) = n, let
gg(xl 7X27X3)

-]

©

L gn—l(xlyx2’x3)
denote the other n-1 essentially ternary polynomials over (T o
Note that as (v € K(1), gi(xl,xg,x3) is symmetric, for each i =
1;2,0009n=10

In this section, our purpose is to prove that, corresponding
to the 10n - 9 distinet essentially J-ary polynomials of ¢i(n)
which were described in Provosgition 1.8, the following 10n - 9

{~ery polimomials are distinct and essential over ¢7 @
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x1z2x3x4,

gi(xl’x27x3)x4? gi(xgix39x4)xl9 gi(x37x47xl)x2’ gi(x41X17X2>X37

(A) gi(xl7x?7x3)gi(X19x27X4)7 gi(xl’x ?~2>gikxltx31x4)1

"
2

gi(x]_gx4vxg)gi(xlyx4yx3)s gi(x273139x4)gi(x2,x3,xl),

A
gi(x29k49xl}gi(Xg?x4$X3)7 gi(x39x49xl)gi(x39x47xz>9
for each i = 1,2;000,n~10

Ifn 1, we have nothing to prove.

it

O

If n = 2, then J{, being an algebra revresenting <0,0,1,2),

mist belong to one of the equational classes.gl anﬂ'§2a Ir
d. € Xy, then p, (&) >p4(1(1))° If €K, then p4(az‘) =

pA(II(l)) = p4( gt (2))s Thus, it suffices to show tha® the above
eleven polynomials are distinct and essentizl over I(1). However,
it is clear that this is, indeed, the case. Hence, from now om,
we may assume that n = 3.

‘e need the following Lemmas 3

Lemu & 201 °

In JC [ {”,‘_.‘(Xl,}{;),xp) = Xl}:g’ fOI' e?ch i = ].,.’j’oao,rl"'lu

‘roof ¢ We nerd only nrove the lemma for i = 1. Since (&

s .
represents < (0,0,1> ; we hove only three possible cases 3

oz

‘ 1

j
o (- r }
&"l("l’}?’"?) \} X?

!

4 XX

{

Case 1, gl(xl,x?,x2) = Xy
He first cleim that the following polymonials are vairwise

distinet and essentially ternary.
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27}:3)}:17 gl(x17x29:(3)}{27 {I:l(x]_ 9:{27.’2{3)}{2

g (7 9350 %3)

e

Observe that if gl(X17X?7X3)X1 = gl(x19x2,x3)x2, then

1 = xlx?, a contradiction. Hence

cetting Xy = XB, we obtain x
NS N riomil Y -
by symmetry, the nolynomials gl(xl,xg,x3)x19 gl(xl’xz’x3)x2’

gi(xl’XZ’x3)x3 are pairvise distincte.
If gl(xl,xg,x3)xl = gi(xlgx29x3) for some i = 2y60004n=1,
then gi(x29x3,xl) = gl(ngxs,xl)xz. Prem this, it follows that
gi(xlgx2,x3)x1 = gi(xémxssxi);
= gl(x2,x3,x1)x2
= 8'1(3{1- 935293’53)3{27
which is & contradiction. Hence we conclude that the above n+l

ternary polynomials are pairwise distinct.

Congider v

it

gl(xl,xQ,XS)xla Set x, = xye We hove
P = gl(XI’XQ’XQ)Xl =X

Hence, p depends on x Setting x 3 1t follows that

= X
1° 1 -
P = XX Thug, v depends on xée As p is symmetric with repect

-
)

to %, and Xyy D also depends on X3o Thus p is essentially ternary,

Similarly, gl(xl,xg,x3)x2 and gl(xl,x2,x3)x3 are essential.

Hence, if we assume g, (x.,%X.3x.) = x y we have p (€ ) >> n+l.
1Y 1o 1 3 =

which is a contradiction. Thus case 1 is impossible.
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Case 2. & (x)4%,,%,) = x50

Agein, we claim that the polynomials as shown in case I are
distinct »nd egsential.

Note that if gl(xl,xz,x3)x1 = gl(xl,XQ,x3)x2, then setting
X, = X3 it follows that X = XY & contradiction. If
gl(xl,x27x3)xl = gi(xl,xg,XS) for some i = 2,3,..0yn-1, then,
as in case 1, we would have

gl(x1,x2,x3)xl = gl(xl,xg,x3)x2,

vhich is impossible. Hence we have n + 1 distinct polynorialse.

How, observe that if one of the polynomials gl(x1912,x3)xig
i =1,42,3 is essentially ternary, then, by the symmetry of
gl(xl,xgyx3>, so are the other two. In this situvation, we
would have pg(dZ) == n + 1, vhich is a contradiction. Ience,
gl(xl,x29x3)xl cannot be essentizlly ternary. As (7 reprecents
{ 0,0,1> 5 we have the following possibilities :

n
o

1

S
I

r‘rl(xl 9}{?;}:3)

L 273

Since gl(xl,x?gx3)xl is symmetric with respect to x,. and

x3; it follows theat

gl(x17x27x3)x7 =

[
!
]
I
z
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Ir gl(xlyxp,XB)xl = Xy then setting X, = Xpy Ve obtain

3
x2x1 = Xqy @ contradiction. If gl(xl’x27X3)X1 = x2x3, setting
Y, = x39 it follows that X,¥y = X,y Whlch is a contradiction,

These arcuments show that the assumption gl(xl,xg,xz) =X,
is impossible. Therefore, we must have
81(X17X29X2) =-xlx2,
as wag to be showne
Lemma 2,2,

In 47 gi(xixz,xl,xz) = XX,y for each i = 1,2y.00yn-1.
Proof ¢ Since po(dl) = 0, gi(xlngxlpxz) is not a constant.
However, if gi(xlxggxlpxg) depends on Ty it depends on X, by
symmetry. Thus, gi(xlxg,xlgxg) is essentially Dbinary and hence

gi(xlxg?xlyxg) = XyXs9

as pg(ﬂ) = 1,

T i:? = T T ea 1 1 = LY Ll e

In ¢t gi(xlxg,x2gx3) xlx2x3, for each 1 1,24 g1
Proof : Assume i = 1. Observe that the volynomial p = gl(xlxz’XQ’x3)
is essentially ternary. For, if we set Xl = x?, ve obtain p = xlx3,
by Lemma 2.,1. Thus, p depends on x3. Setting X = 13, we have

P = XX by Lemme 2.2. Thus, p depends on X.. Setting x. = x
127 Y § . ? L 2

3?
it follows that p = ¥aX o by Lemma 2.1. Thus, p depends on %y
lience, p is an essentially ternary polynomizl.

Since pB(ﬁl ) = n, it follows that
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gl(xlgx29x3)

gl(xlX27X29X3) = gk(xlix2?x3) y k % 1
\ X1X2X3
If &) (3 %p0%,0%,) = ) (2pexyexy)  —— (1)

then observe that

X1¥o K

gi(x1X2X3’ Xy X9 xlx3) (Lemna 2.2)

= g (x5 ®x9 X1X3) (by (1))
=.gl(xl,x3,xlx2) (by (1))
= gl(xl,xz,x3) (by (1))

which is a contradiction. Hence (1) is impossibles

Ir gl(xlxg,xg,x3) = gk(xl’xZ’x3)’ for some k = 24350001 —(2)

then note that gk(xlxg,xz,x3) = gl((xlx2)x2,x2,x3) (vy (2))
= &) (x; 75075075
= gk(xli}:27x3) (by (2))
Thus, we have gk(xlxe,xg,XB) = gk(X11X2,X3) (3)

Now, observe that

X)X %y = gl(xlx2x3,x1x2,xlx3) (Lemma 2.2)
= gk(XB,xlxz,xlx3 | (by (2))
= & (2 472597y %,) (by (3))
= gk(xz’xl’XS) (by (3)
- 6y,

a contradiction. Hence, (2) is impossible. It therefore

follows that gl(xlxg,XQ,x3) = XX Xq9

proving Lemma 2.3,
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With the aid of these Lemmas, we are now in a position
to prove the following result.

Proposition 2.4,

Let (T be an algebra in K(1) representing <0,0,1,n) .
Then p,( @ ) = 10n-9.
Proof : It suffices to consider n = 3.
By Lemma 2«1,.it is easy to prove that the polynomials in
(8) are essentially 4-ary Over (T . For instance, take
P = gi(xi,ngx )x .
ClearTy, p depends on Xhe Setting Xy= X,y We have p = XX 3 4
Thus, p depends on xé. By symmetry, p depends on every variable.
Hence, p is essentially 4-ary. Next, consgider
P = gi(xl9x29x3)gi(xl,x2,x4).

Set x We obtain p = gi(xl,xg,xB) vwhich is essentially

3 = Xye
ternary. Thus, p depends on x and ng Set Xy = Xpe It follows
that p = gi(xl,xl,x3)gi(xl,xl,x4) = XXy, which depends on %y
and x4. Hence p is an essentially 4~ary polynomial.

It remains to prove that all the polynomials in (A ) are
distinct. By symmetry, we have only to prove that the twenty-one
essential polynomials with i = 1,2 are distinct.

In preparation, we make the following observations.

Since x,x %3 # gl(xl,x2,x ); there exist CrsCyr0y € A
such that ¢, ¢ c3 % gl(cl,cz,c )e Let

c¥

1]

gl(clic2yc3)

and c = 010203.
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Observe that if o, = cy (or symmetrically), then by Lemma 2.1,

gl(ci,cg,cs) = gl(cl’CQ’OQ) = c102 = clcgc3, a contradiction.

Ir cp= ¢ then CpCa= Coe It follows by Lemms 2.3 that cqC

3 3 2
= gl(cl,c3,cgé3) = gl(cl,c3,02), which is impossible. Hence

2C3

we conclude that (1) cl,c2,c3 are pairwise distinct;
(2) CysCyyCy aTe pairwise incomparable (Thus,
.6 > ci, i = 1'2,3)0
As gl(xl,xg,x3) £ gz(xl,x2,x3); there exist bl,bgbe € A

such that gl(bl,bg,b3) # gg(bl,bg,b3)e Let

b¥*

B

gl(bltbgﬁbB)

.
and b gz(bl,b29b3).

Note that if bl = b2 then b1b2= bl. Thus, by Lemma 2.3, we have
= g?(bl’b?’b3)’ a contradiction. Hence we conclude that the

elements bl’ bp and b, are pairwise distinet and incomparable.

3

We are now ready to prove that the nolynomials are distincte.

(1) X1 %,% 3%, £ gl(xl,x2§x3)x4o

There are several cases to consider ¢

(2) © > c*.

Let S be a substitution such that xi(S) = C.» i = 1,243,
x4(S) = c¥, Then L(S) = cc* = ¢ while R(S) = c*c¥* = c¢*. Thus,
L(s) # r(S).

(b) T <<%,

Let S be such that xi(S) =cyy i

15243, x4(s) = ¢+ Then

L[

¢* while L(S) = c,c.c.c

R(S) = c¥cy = (c*E)cl = c*(Ecl) = c¥*c 1650307
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= c. Thus, L(S) £ R(sv).

(¢) o |]ec*.

Let S be the same as that in (a). We have R(S) = c* vhile
L(S) = cc* > c*, Thus, L(S) # R(S).

(2) ) X% Xy £ gl(xl’XQ’X3)gl(X1’X2’X4)°

If (2) is not the case, then setting Xy = X,y Ve obtain
XXXy = gl(xl’XQ’x3)’ a contradiction. Thus, (2) followsge

Before carrying on, let us prove the following assertion.

(W) In L, if c* << o, then c, =k c* for esch i = 1,2,3

.To this end, we need only prove that ¢, < c¥.

Asspme that c¥ << Co Consider the polynomial gl(xl,x27x3)xlo
Evidently, it is essential. Thus we have

( 81(X17X21X3)
M CENEN Rt
gk(xlvx213€3)y k 74 1.

The case gl(xl’XZ’X3)xl = gl(xl,xg,x3) is impossible. For
equality implies, by symmetry, that gl(xl’XQ’x3)X1X2X3 =
gl(xl,x?,XB)a Thus, we obtain c*c = c¥ , i.e.y c¥>= ©C, 2
contradiction.

If gl(xl,xg,XB)xl = X TRy Ve have c¥o, = ¢ > c*, Thus,
if ¢y < c¥*, it follows that c¥ = c*clj:> c*, & contradiction.

. % .
Hence c* & C19 as required.

If gl(xl,xg,xs)xl = gk(xl’x2’x3)’ k % 1, then by symmetry,

. - o ~ M1 o ~ c¥o
gl(xl,xQ,x3)xlx?x3 = gk(xl,ﬂg,x3)° Thus, gk(ol’CQ’CB) c*c
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_—,-— *, * *:* = =
c >c If cl;5§ c*, then c c cl 01(01,02903)01

gk(cl,02,03)4:> c¥, a contradiction. Hence, °y = c*, os

required. This proves (W),

(3) gl(xlgx2,x3)x4 P gl(xg,x3,x4)xlo
There are three cases to consider :
(2) c* <~ ce
Let S be such that xi(S) = Ciy i=1,243 y4(S) = ¢¥, Then
L(S) = c¥c* = c%, R(S) = gl(CZ’OB’C*)Cl° ote that R(S) # c*.

e Thisg 9

=

For, if it were, then g1(02,03,c*)cl = c¥ implies c* > ¢y

however, contradicts the assertion (W).
(b) c* > c.

Let S be such that xi(S)

il

cir 1= 19293, x4(S) = c,o Then
L(S) = c¥c, = o¥ while R(S) = ¢ by Lemma 2.l
() o* || 3.

Let S be that of (b)e Then L(S) = c*, R(3) = c.

(4) gl(xl,x21x3)x4 £ gl(x1,x23x3)gl(xl,x2,x4)-
(2) c* = Goe
Let S be such that xi(s) = oy 1= 13233 xA(s) = c,o Then

R(S) = ¢*, L(S) = c*¥c,o If R(S) = L(S), we would have c* = c*c

3 3
which implies that c* = Cye This, however, contradicts the
assertion (W). Thus, L(S) £ R(S).

(b) c¢* >C.

Let S be such that xi(S) =c;y 1= 1,2, XB(S) = Cq9 x4(S)

Then by Lemma 2.1, R(S) = ¢ Ce

(c¢) c* ll Co

= C

c 0% = o¥, L(5)

3° 172
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Apply the same argument as in (b).

(5) gl(X11X29X3)X4 # gl(x17x4gx2)g1(x19xd,x3>a

If (5) is not the case, then setting %, = x., we have by
2

2
Lemma 2.1, XXXy = gl(xl,x4,x2), a contradiction.
(6) & (xyoxpnxydu, £ g, (%) mp0my )2 0

If (6) is not the case, setting X, = gi(xl,xg,x3), we
obtain gl(xl,xz,x3) = gz(xl,xz,x3)gl(xl,x2,x3). Thus, by sym-
metry, it follows that gl(xl,xz,x3) = gz(xl,xz,XS), a contrad-
iction.

(7) gl(xl’XQ’XB)x4 # g?(x2,x3,x4)x1.

(a) c¥* <= Co

Let S be such that xi(S) = Csiy 1= 14243, x4(S) = ¢¥*, Then
L(S) = e*, R(S) = g2(02,c3,c*)clo If L(S) = R(S), then c¥* > Cys
contradicting the assertion (W)

(b) e* <£ G.

Let S be such that xi(S) = Ciy 1= 1,23, XA(S) = c,o Then
L(s) = c*c2 = c*, R(S) = ¢ by Lemma 2.1. If L(S) = R(S), we
would have ¢ > c¥*, a contradiction.

(8) gl(xlgxg:x3)x4 # gg(xl,x29x3)32(x19x27x4)o

(a) bp* << D',

Let S be such that xi(s} = by i=1,2,3, x4(S) = b¥, Then
L(S) = b* while R(S) = '8, (byyb,, b*) = b's  Thus, R(S) = b

> b* = L(8).
(b) b* <& b

Let S be such that xi(S) = bi’ 1= 14255, x4(S) = b3o Then
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R(S) = b', L(S) = b*b3.;> b¥, Thus, if L(S) = R(S), we would

have b' > Db*, a contradiction.
(9) gl(xlfx27x3)x4 % 82(X39X49X1)82(X3,X41X2)~
If gl(xl,x2;x3)x4 = gz(XB,x4,xl)g2(x3,x4,x2), setting X = x2,

we would have x1x3x4 = gz(x3,x4,xl), a contradiction.

(10) &y (xyaxprxydey (xy0xy0m,y) £ &y (2peyimy D) (20 0%,) o
(a) o¥ < Te
Let S be such that xi(S) = Cy» i=1,2 xi(S) = 03, i = 3,4.

Then L(S) = c¢* ana R(S) = 0*02030 If L(S) = R(S), we would have

c* > €50y >0y which contradicts the assertion (W).

(b) o* £ Co

Let S be such that xi(S) =0,y 1=1,2,3, x4(S) = ¢,o Then

2

L(S) = c*c >> c* and R(S) = ¢ by Lemma 2.1. If L(S) = R(S),

1%
it follows that ¢ > c¥*, a contradiction.
(11) gl(xl’XZ’XB)gl(xl?XZ’x4) # gl(x3ﬂx49xl)gl(x37x49x2)’
If (11) is not the case, setting Xy = Xy We obtain

gl(xl,x2,x3) = X%,%yy & contradiction.

(12) gl(X11X21X3)81(X19X29X4) % g2(xl7xzix3)g2(xl7X2¥x4)°

If (12) is not the case, setting Xy

gl(xl,xz,xB) = g2(x1,x2,xs), a contradiction.

= %x,, We have
4

(13) & (xy0xp033)ey (xyaxyp0my) # 8, (% 0% 507, e, (3 %%, )
(3) b* > bt
Let S be such that xl(S) = by, xz(S) = x4(S) = b3, XB(S) = b,e

"Then R(S) = b' while L(S) = b*b,b Thus, L(S) = b* = b = R(S).

1°3°
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(b) bv* =4 v,

Let S be such that xi(S) =Dy i =1,2,3 x4(S) =D Then

38
L(S) = b* and R(S) = b'b1b3 = b' If L(S) = R(S), it follows that
b¥ > Db, a contradiction.

(14) gI(xlax29x3)gl(x1,x27x4) # gz(x37x4,xl)gz(x39x4,x2)o

If (14) is not the case, setting x, = x,, we obtain x.x.x

3 4 17273

= gl(xl,xg,x3) by Lemma 2.1, which is impossible.

Now, it is a simple matter to check that all the other
possible cases are just permutations of the above fourteen cases.
Thus, a similar argument can be applied for them.

It therefore follows that the polynomials in (A) are essential
and distinet over (7 . Hence, we have p4(dt) = 10n-9. This

completes the proof of Proposition 2.4.

We shall now establish the following main result.
Theorem 2.5,

For each positive integer n, let F(n,1) be the smallest
value such that the sequence < 0,0,1,n,F(n,1) > is representable
in‘g(l)e Then F(n,l) = 10n-9,

Proof ¢ By Proposition 1.8 and the above result.

3¢ F(n,k) Described.
We shall extend the results in the previous sections to a
more general case in this section. Instead of the sequence

{ 0,0,l,n,F(n,l){) s we shall consider the seqguence
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{ 0,0,1,. 57,0, (n,k) > where k¥ = 1.

Throughout this section, the following notations will be

adopteds.

For each positive integer k =1, let L(1,k) = {A(L,k);.>

be the (k+3)-element semilattice ( see Fige 35 )o

d
/:'/'21'
T
// ! //\\\.
/// P ./ S \\.\\\
//'/ // /:"/ ‘\\\ \\\\
7 S
[+] 0/ % @ 0 0 o © \) o ak+2
a a, 3 el
B ig ® 35

For each pair of positive integers

Aln,k);F

n,e 4 let (n,k)
be the algebra ( see Fig. 36 )

where |A(n,k) | =

n+k+2 and the set of the operations F

{o,flgooogfn 1} consists of one join semilattice operation

and n~1 (k+2)-ary Qperation fi such that for each i = ljeseyn=l,

fi is defined by the following rule 3

s

i{ ei if {leeo-,}[k+2} =
fi(xl’°'°'xk+2) = 1

Ceyreerangn)

i~
o

4

=

Xj otherwise ,
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According to a previous resgult, it is known that the algebra
k-
Jl(n,k) represents the sequence <0,0,1,900;T,n>> o Further-
more, applying an argument similar to one used in the previous

sections, we can prove that the following identities hold in

JC (n,k).
(1) fi(X17°°°9Xk+1’Xk+2xk+3)

= fi(xl"°"xk+l’xk+2)fi(xl’°°°’xk+1’xk+3);

k+ .
(2) fi(xl,pl,...,pk+2)xl = x; ps where py is a poly—

_ j=1
nomial over {l(n,k);

29
|

<

k+
(3) #3250y so oo ) gy peeeom) =TT
i,j = 1927000,1’1—1; '
k+ i .
(4) fi(pl,oo.,pk+2) = 3{6 %50 where fi(p1’°'°’pk+2) is an
essentially (k+3)-ary polynomialj; the pj's are pairwise

distinct polynomials over (L (n,k) conteining no sub-

polynomials of the product of the form XX o

+
(5) fi(xl’°°"Xk+2)fj(x2"°°’xk+2’xk+3) = ;Zi Ty where
if 5
_ k+ . ~.
(6) —[J—\]:fi(xd(l),ooo,xc((k*-z)) = ;‘i Xj if !_/\,‘ == 3.
With the aid of the identities (1)---(6), we are able %o

arrive at the following

Proposition 3.le

In the algebra dZ(n,k), only the following (k+3)-ary poly-

nomials are distinct and essential ¢
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5 =
j=1 9
fi(xl,ooo,xk+2)xk+3, fi(xz,o.o,xk+3)xl,eoo,

eee9ccey fi(xk+3’xl’°°°’xk+l)xk+2’

(#) £ty p ooy 0% ) By (o reeii g v 5D,

e © ¢ o

fi(x2’°°°’Xk+2’x1)fi(x2’°°°’Xk+2’xk+3)’

for i = 172,oco,n"lo
Thus, p,_.( 00 (n,k)) = 1 + 2(n-1)(k+3)(k+d).
k+3 2
Proof ¢ It is triviel that all the (k+3)-ary polynomials in (#)
are distinect and essential over dl(n,k).
On the other hand, let p be an essentially (k+3)-ary poly-

nomial over (C(n,k). By (1), p can be expressed aos

p = TTfl(Al,,,.,Ak+2) Tng(Bl,o,,,Bk+2)... TTfh_l(hﬁ,e..,h&%g)'TTxk
where Ai’°°"Mi are polynomials which contain no sub-polynomials
of the product of the form Xixj and the Ai's are pairwise distinct
over (l(n,k). The same is true for B, 'syee., and M, 's.

By (3) and (4), we have

P = —rTfl(Xo((l)yooo,Xo((Ic+2))ooooo ﬁfn—l(xg(l)’”"’Xf&(k+2)) TTXJ.@

If there is no occurrence of fi in p, then

k
P = "F%X.o
j=1 9
If p has a factor "f.,", for some i = ly.eoyn-1, then by (5),

P = ;T;E\fi(xb,(l),..e,zg(k+2))ﬂxj e
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By (6), the number of occurrences of the symbol "fi" is
either one or two. If the number is one, then by (2),
P = fi(xl'°'°’xk+2)xk+3' or symmetricallye.
If the number is two, then, again. by (2), we have
p = fi(xl,..o,xk+1ka+2)fi(x1,eeo,xk+1,xk+3), and SO One
Thus, the polynomials in (#) are the only distinet and
essentially (k+3)-ary polynomials over (T(n,k). From this, it

1+ (1)) + (1))

follows that pk+3( A (n,k))

1+ %2.(11_1)(1{+3>(k+4>,

which was to be showne.

ow, for each k > 1, let us denote by‘gﬂk) . the class of
all idempotent aligebras such that all the essentially (k+2)-ary
polynomials are symmetric. Evidently, ¢Z(n,k) € K(k)  for
each positive integer n. Let (L be an a2lgebra in.gjk) _
representing the sequence '<0,0;i:1%::I;n o Since k =13 it
is easily seen that the only essentially binary polynomial over
AU must be a semilattice polynomial. Thus, we have already one
essentially (k+2)-ary polynoémial, namely, %ﬁng. As pk+2(01 ) = n,
let 89 i = 1;e0e9n=1 denote the remaininngil essentially (k+2)—ary
polynomials. Since d7€ XK(k) , g; is symmetric for each i = 1,2,
oeogN=ls

In what follows, we are going to prove that corresponding

to the 1+%(n-1)(k+3)(k+4) distinct essentially (k+3)-ary

polynomials of dC(n,k) which were described in Proposition 3.1,
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the following (k+3)—ary polynomials are distinet snd egsential

over (JC :
3 k+3
X.3

gi(xlyooe,Xk+2)X'1c+39g-"i(X2sooo 9xk:+3)xl,aoeo soe

(e) 60090;0@00Gﬂo,gi(xl<+3,xl,°.07xlc+l)xk+2 b

8; (xpr oo nme 107y p)8, Gy penen oz, 5)

L4

o
L)
o

N Rt SPTL P LA COVRITTE NN WY

where 1 = 132;0004n-1

By generaliging the technique which was applied in proving
Lemmas 2.1y 2.2 and 2.3 in a suitable way, we have the following
basic Lemmas:
Lemma 3.2,

k+l X
In 00, gi(xl’°°°’xk+l’xk+l) = jj‘xj g for each i = 1324600yn=1"
j=1

Lemma 3.3.
! . ) k+l
In Uy & (xyamprecerm g omoom oy ) = %50 ter
2 1 5=
each 1 = 142500e4n=10
Lemma oo
k+2
In Oy gy axpreces®a®y g9® 1% ,,) = 'rng » for each
~ A S L j::

i = 1,2,ooe’n—lo

With the help of these Lemmas, we have

Proposition 3.5.

. . L oA T
Let ¢ be angebra in K(k) representing <0,0,1,,.o,l,n:>.

Pre3( ) =1 + 3(n-1)(k+3)(k44).

Then
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Proof : Lemma 3.2 implies that the polynomials in (8 ) are
essentially (k+3)-ary over (L . Our proof will be complete if

we can show that the polynomials in (& ) are distinet. By meking
use of Lemmas 3.2; 303 and 3.4, and following the same arguments
as in the proof of Propositién 2.4, it can Be shown that this is,

indeed, the case. For instance, to check that

k+
~r‘sxj # &y (xypeeenmn)n g

el

choose a subset {ci’°°°’ck+2} of A such that
k+2 - * . ‘
;[Ecj =c¢ £ c* = gi(cl,...,ck+2).

By Lemmas 3.2 and 3.4, it follows that CqpoeesgC are pairwise

k+2
distinet and incomparable.

Case 10 -(; <C*

Let S be a substitution such that x.(S) = Cs9 1 =2 19256009k42,

and x,  .(S) = ¢ Then we have L(S)

k+3

1]
Q

1 j=¢ while R(S)

= g1(°1’°"’°k+2)°1 = c¥o, = (c*E)ci = c*(ccl) = c¥c = o*
Thus R(S) # L(S).

Case 2. © </ c*

Let S be such that xi(S) =y 1 = 1y2y000,ke2 and
xk+3(S) = ¢*, Then L(S) = Ge* = ¢, R(S) = c¥c* = c*, If
L(8) = R(S), it follows that ¢* >> ¢, which is impossible. Thus,
L(s) # Rr(s).

k+

) 3
Hence, it follows that “rrxj # gl(x1’°°°’xk+2)xk+3’ as

J:
required.
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By combining thig with Proposition 3.1, we obtain the
following main resulte.

Theorem 3.6,
For each integer k¥ > 1, let }.{,(k) be the class of all

idempotent algebras such that all the essentially (k+2)-ary

polynomials are symmetric. For each positive integer n, lei

F(n,k) be the smallest value such that the sequence
(Q',O,’i;lf._,—i‘,n,}?(n,k) > is representable in X(k) . Then

F(n,k) =1 + 5(n=1)(k+3)(k+4).
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PART III mmem e

oo o e

IDEMPOTENT ALGEBRAS WITH THWO

OR THREE ESSENTIALLY BINARY POLYNOMIALS
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CHAPTER I

THE SEQUENCE <0,0,2,m>

Idempotent algebras with exactly one essentially binary
polynomial have been discussed in Part I and Part II. In this
chapter, we start to consider idempotent algebras with two
essentially binary polynomials, i.e.; algebras representing

< 0,0,2>

It is known that the sequence {0,0,2,0> is representable.
For instance, if (€ is a diagonal semigroup, then pe(dl) =2
and pn(éz) = 0y for each n # 2. J. PZonka proved in[34]that
if the sequence '(0,0,2ﬂc> is repreéentable and k¥ > 0y then
k = 3. The case k = 3 is possible. It turns out that algebras
representing (0,0,2,3) can be classified into four equational
classes of algebras which are described in[35 1. It has been
pointed out by J. Gerhard in [ § ] that the sequence {0,0,2,6>
is representable, In fact, if /7 is an idempotent semigroup
satisfying aba = ab, then pn(dZ) = n! for each n == 2.

It ig,; perhaps, important to note that there is a common
feature in all the algebras shown above. That is, each of them
has one and only one essentially binary polynomial vhich is
non-commutative, Thus, in order to continue their investig-
ations, it is natural to study the opposite casej namely, algebras
with two distinet commutative essentially binary polynomialse.

The main object of this chapter is to deal with this case.
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In section 1, the binary polynomials are studied in detail.
The results are summariged in Proposition l.4 which will be of
great use in developing the Characterigation Theorems in
Chapter 1 of Part IV. Some results of Plonka are mentioned in
section 2 which are applied to prove our main results in

sections 3 and 4.

1. Binary Polynomialse.
Throughout the remaining chapters, let X be the equational

classes of algebras defined by the following two identities:

X +4y=y+Xx
Xy = JX

vhere x + ¥y, xy are two distinct essentially binary polynmomials
over algebras in K. Thusy—if—dE-is—an—algebra—oftype—<2y2>
and-—p{l)—=—2y—then—6T-6- Ko

Let ¢z € X represent the sequence <0,0,2> . Then clearly,
x + ¥y and xy are the only two idempotent, commutative essentially
binary polynomials over ¢ .

Consiﬁer the binary polynomials x + Xy, x(x + y)o As

p3(dZ) = 2, we have the following possibilities

( x x
!
| - y
X + Xy = 3 x(x +y) =
i Xy Xy
l X+ ¥y X +Yy
N
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Thus, there are sixteen cases for x + xy and x(x + y) in
general, However;, we shall show in Proposition 1.4 that there
are, in fact, only four. To this end, we first establish the
following Lemmas.

Lemma l.l.

Let JC € X represent the sequence {0,0,2> . Then

x+xy £y and x(x+y) £y

Proof : Assume that x(x +y) =¥ (2)

We have the following four possible cases.

Case 1. x + Xy = X (b)
Obgerve that x +y =x + x(x + ¥) ( vy (2) )
= x ( vy (b))
which is a contradiction.
Case 2. X +xy =Y — (e)
We have x + ¥y = y(y + (x + y)) ( vy (2) )

y((x + y) + )

y((x +3y) + x(x + ¥)) ( by (2) )

]

y((x +y) + (= + y)x)

= yx ( vy (c) )

which is a contradiction.

Case 3o x + Xy = XYy (a7

Observe that x = (xy)((xy) + x) ( vy (a) )
= (xy)(xy) ( vy (a) )
= Xy,

which is a2 contradiction.
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Case 4. X+IXy =x4+7y ‘ (e)

Note that xy = x(x + Xy) ( by (a) )
= x(x + y) ( by (e) )
=¥ (by(a) )1

vwhich is a contradiction.
Hence, if (a) holds in (L , we have no choice for x + xy.

Therefore, x(x + y) £ y, as required. Similarly, x + xy £ Fo

Lemma 1.2 -

Let JU € K represent the sequence < 0,0,2> . Then
X +xy = x if and only if =x(x + y) = xXe
Proof : By symmetry, it suffices to prove that x + Xy = X
implies x(x + y) = xo Thus, assume

X 4+ Xy =X _ e (a_)

holds in Jdl « By Lemma l.l, we have three possible cases:
[ x
|

x(x + y) =1 Xy

X+ y

Case 1. x(x+y)=xy e+ e (D)
Observe that x + 3y = (x + y) + (x + y)y ( vy (2) )
= (x+y)+xy ( by (b))

Thus, we have x +y = (x + y) + xy (c)

Moreover, x + y (x + y)(x +y)

= ((x +y) + xy)(z + y) ( by (c) )
= (x + y)(xy) ( by (b))
ieeey, x+y=(x+y)zy) e (@)
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From these, we obtain

T+ y

fl

=Xy

a contradiction.

Case 2. x(x +¥y) =x + ¥y.

(x +y) + xy

(xy) + (xy)(z + y)

If this is the case, we would have

X

X + Xy

(xy)x

icesy x = (zxy)x

(zy)(zy + x)

Now, it follows that x + ¥

which is impossible.

Thus, we must have x(x + y)

Lemma 1.2.

Lemma 1l.3.

Let & € X represent the sequence { 0,0,2> ,

1) X +xy =x +y implies

2) x(x + y) = Xy implies

]

x(x + y)
(z(x + y))x

x , completing the

¥(x + y) = x + 3

X+Xy=xyo

Proof: By symmetry, it suffices to prove 1).

Thus, assume that x + xy = x +¥

120

(

by (c) )
by (d) )

by (a) )

(e)

by (a) )

by (e) )

by (2) )
(£)

by (e) )

by (e) )

by (£) )

proof of

Then
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By Lemmas 1.1 and 1.2, we have

x(x +y) = [‘Xy

-

If x(x + y) = xyy (v)
we would have x(xy) = x(x + xy) ( vy (b)
| = x(x + y) ( vy (2)
= XY, ( vy (b)

iceey, x(xy) = xy (c).
Similarly, x + ( x + ¥) = x + x(x + y) ( vy (2)
= X + Xy ( vy (v)
Sxay (v ()

ieea, x+(x+y)=x+y - (a)
- Furthermore, (xy)(z + y) = (xy)(x + xy) ( vy (a)
= (xy)x ( by (b)
= xy ( vy (e)

ie€o, (xy)(x + y) = xy (e)

Similarly, by (a), (b), (&), we have

(x +y) +xy=x+Yy ()
It thus follows that x + y = xy + (x + ¥) ( oy (£)
= xy + (xy)(x +¥) ( vy (2)
= xy + xy ( vy (e)
= XYy

which is a contradiction.
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vhich is (1). Moreover, it follows that

(x +y) +x=x(x+y) +x ( vy (2) )
= x(x + y) ( vy () )
=X +y ( vy (&) )

which is (2).

To prove (3), consider (x + y) + xy and (x + y)(xzy).
Clearly, both of them are symmetric with respect to ¥ ang b
Thus, if they depend on x, they must depend on y simultaneacusly

and vice versa. As po( R ) = pI( @ ) = 0, we have

_ ‘ [x + ¥ fx + ¥
(x +y) + xy = R (z + y)(xy) =§
lxy LX}’
If (x + v) + XYy =X+ Yy - : (C)
then  (x + y)(xy) = ((x + y) + xy)(xy) ( by (c) )
=xy + (x + y) ( vy (a) )
=% +y (by(c) )‘

Thus, (x + y) + xy = x +y implies that (x + ¥)(xy) = x + y.

Cn the other hand, if (x + J) + Xy = %y  ——mmcmmme ()

then (x + y)(xy) = (x + y)((x + y) + xv) ( vy (a) )
= (x +y)+xy ( vy (a) )
= xy ( by (a) ).

Thus, (x + y) + xy = xy implies (x + y)(zy) = xy.

From these, (3) follows.

2. Plonka's Basic Lemmas.

Let J be an algebra having two distinct binary polynomials
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denoted by x + y and xy. We shall introduce the following

notation ¢

[ty = (x+y) 42 £y = (xy)z
f,=(y+2) +x £, = (y2)x
f15=(z+x) +y £,y = (ax)y
£y = (x + ¥)z 9 =37 + 2
£, = (y + z)x £y, = Y2 + x

q f33 =(z +x)y f43 = 2X 4+ ¥

The following Lemmas are stated without proofs. In fact,
they are included in J. Pionka [ 29 ] .
Lemma 2.1,

If x + y and xy are both commutative and idempotent, then

fik is an egsentially ternary polynomials for each i,k =‘l,2,3,4,

Lemma 2620
If x + y and xy are both idempotent and commutative, then

£, are distinct for i £ j.

ik and f,

jt
The next Lemma says that if we have two idempotent and
commutative binary polynomials in an algzebra we then have at
least eight distinct essentielly ternary polynomialse
Lemma 2.3,
Let x + y and xy be both idempotent and commutative.

(1) If x + y and xy are not associative, then £13cr Fop f31,
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f41, k =1,2,3 are distinet;
(2) If x + y is associative but xy not, then 199 Ty Ty
f41, k = 1,243 are distinct;

(3) If xy is associative but x + y not, then f f

1c? Torr fypv

f4k’ k =1,2,3 are distinct.
Let L = { Aj+;50) be an algebra where "+" and "." satisfy
the idempotent, coﬁmutative and associative laws. It is known
that (T is not a lattice in general since the absorption laws
are independent of those mentioned above., However, if we assume
that |a| > 2 and p2(dZ) = 2, then we can prove that dU is,
indeed; a lattice. This can be seen from the following.
Lemma 2.4.
Let X = <{ Aj+,+> be an algebra such that (1) |A]| = 2;
(2) x + ¥y and xy are the itwo distinct idempotent, commutative,
associative essentially binary polynomials in X ; (3) no other
essentially j-ary polynomials for j = 1,2 except X; ¥y X + ¥y X¥o

Then the absorption laws x(x + ¥) = x + Xy = x hold in & »

Lemma 2.5.

If x + ¥y and xy are distinct idempotent, cammutative essentially
binary polynomials in & with |A| >= 2 and the polynomial
f31 = (x + y)z is symmetric, then there exists in J an essent-
ially binary polynémial which is different from ¥ + y and xye

The game statement is true if we replace the polynomial f31 by

f,, = xy + ze

41
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3. The Smallest Value of me

In this section, to begin with, we bring forward the foll-
owing problem ¢ Find the greatest integer m¥ such that if a
sequence <'0,0,2,n1> is representable in X, then m = m*. Our
first result reveals that the required integer m¥* is "9", Thus,
to proceed, it is natural to investigate whether there is any
algebra representing <0,0,2,9> o Our next result provides a
positive answer to this.
Theorem 3.l.

If the sequence < 0,0,2,m» is representzble in K, then
m =9,
Proof : Let &€ be an algebra in X representing the sequence

< 0,0,2,m> o Let x +y and xy be the only two distinct idemp-

otent, commutative essentially binary polynomials. Since X + ¥y
£ xy, |a] = 2. The following are the only four possible
cases ¢

(1) x + y and xy are non-associative ;

(2) x + y is associative but xy not ;

(3) =xy is associative but x + y not ;

(4) x + y and xy are associative.

If (1) is the case, then according to Lemmas 2.1 and 2.3(1),
the following fll’ f12’ fl3’ f21, f22, f31, f41, f23 are distinct
essentizlly ternary polynomials over @7 .

Consider the polynomial f31 = (x + y)zo If it is symmetric,

then by Lemma 2.5, we obtain p,(¢Z) = 2, a contradiction.
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i - _ 3 3 3 m o ~ ATEe
The cose for f41 = Xy + 2z is similar. Thus, f31 and f41 are

not symmetric. Hence the following essentially ternery poly-

nomials
1 T30 Iy
I T Iy
are pairwise distinct. For example, if f3l = f32, then f33

(z+x)y=(x+2)y=(z+v)x=(y+ 2z)x

f32; ig€oy f3l

= f32 = f33,a contradictione.
By Lemmas 2.1 and 2.2, it follows that m = p3(03) =12
= 9,

If (2) is the case, then according to Lemmas 2.1 and 2.3(2),
we have the following distinct essentially ternary polynomials 3

B0 Tope Topr Toge Ty Fge Fogs £y o

If f41 is symmetric, then by Lemma 2.5, we would have

pQ(OZ) > 2, a contradiction. So f41, f42, f43

distinct. By Lemmas 2.1 and 2.2, we have

are pairwise

m = p3(dl) =10 =>9,

The case (3) is symmetric to (2). The proof is similar.
Thus, it remains to consider case (4). In this sitvation,
observe that as J represents {0,0,2 > , all the three conditions
of Lemma 2.4 are fulfilled. Accordingly,; the two absorption
laws hold in ¢ « In other words, ( is a lattice. Now, let

us look at the following polynomials 3
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Xyz X4+ ¥+ 2

Xy + g (x + y)z
yz + % (y + z)x
ZX + ¥ (z + x)y

Xy 4+ Yz + zx
It is 2 simple matter to check that they are distinct and ess-
entially ternary over € . For instance, if xy + z =
Xy + y2 ¢+ 2X, setting x = y, we have X + 2 = x + Xz = X, a
contradiction. Therefore, we obtain m = p3(0z) =9, The

proof of Theorem 3.1 is thus complete.

The following result shows that the case m = 9 is possible.
Theorem 3.2,

Every distributive lattice with more that one element
Tepresents the sequence {0,0,2,9) .
Proof : Let ¢ be a given distributive lattice with more than
one element. Let us consider P(n)(é?), the get of n—ary poly-
nomials over (I . Being a lattioce, it is well-known that P(n)(éZ)
is a free distributive lattice onvn generators. Clearly, P(O)(ét)
=g ; P(l)(éf) is one element lattice ; P(2)(6Z) is the four-
element lattice Cg. Moreover, the lattice P(3)(6?) consists of
eighteen elements, and its diagram is given below ( see Fig. 37 ).

Let C be an equational class of algebras, and let Fn denote
the cardinality of the free algebra over C on n generators. Let

B be the free algebra over C on w generators, P = pk(ZB)e
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Then we have the following nice formula ( seel 21 ])

n /n
F =n+ 37(.) D =
n ko ¥k

Invoking this, a direct computation shows that gl represents

the sequence <0,0,2,9> .

Summarizing all the results about the sequence (0,0,Z,m} 9
ve have

Corollary 3.3

Let (7 be an algebra representing the sequence <0,0,2,m>
The following are the only two vossible cases ¢
(1) If & has a2 non-commutative essentially binary poly-

2o

nomial, then m = 0 or m ==
(2) If & has two distinct commutative essentially binary

nolynomials, then m == 9.
4. Alcebras Representinz < 0,0,2,10> .

It wos shown in section 3 that the sequence < 0,0,2,9 >

is representable. In this section, we study the sequence
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{0,0,2,10 > &
Let us consider the following algebra &£ (4) = {L(4)5450>

vhere {L(4);.> is the following four-element join semilattice

/T\d

7 o N

/ .
s N\

3 o/ ‘ b"b b

Fig. 38

( see Fime 38 )

and the binary operation "4+" is defined as follows :
e if {x,5) = {a,b}
X+ ¥y =
Xy otherwise »
For the sake of convenience, let us denote x + y by f(x,¥y).

It is a simple matter to prove that the following identities

hold in o (4).

(1) f(xyy)x = xy

(2) f(zyy2) = £(x,2)f(y,2)

(3) £(£(x,5)90(xy2)) = £(x,7)£(x,2)
(4) £(£(£(5,5)2)yx) = xyz

(5) £(£(£(xy5)52)92) = £(x,5)2

(6) £(£(£(xy¥)y2),T(x,5)) = £(x,¥)52
(1) £(£(£(x,7)92) 1 T(xy2))
(8) £(£(xy¥)s2)x = xy2

() £(£(x,7),2)0(x,y2) = £(x,2)7(y,2)

(10) f(f(x,y),z)f(f(x,z),y) = XY2

i}

£(x,2)5(yy2)

(11)  £lx,)f(yyz}(z,x) = xyz
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It follows from (1) and (2) that the polynomials f(x,y),
Xy are the only two essentially binary nolynonmials over of (4).
Let v be en arbitrary essentially ternery polynomial over

oL (4)s By (2), p cen be written as

P = —H—f(qirl‘i)ﬂxJ

i€T
where qss r, are polynomiels containing no sub-polynomizls of
the form A.B and * € {x,v,2} o
Assume that p cannot be reduced to any simpler form. Then
according to the above identities, the case II} = 3 is
impossible. If ]I | = 2, we have f(x!y)f(x,z) and the poly—
nomials formed from it by symmetry. If (I | = 1, we have
£(xyy)z, £(£(x,v),2) and the polynomials formed from them by
symmetry. ITf lI | = 0, we obtain xyz.
Thus, the following are the ten and only ten distinct ess-
entially ternary polynomials over 06(4) :
[ Xyz
% (x+v)+2y (y+2)+x, (z2+3%)+3,
(z +x)(z+y) (=2+zxy),
(x + ¥)(v + =),
(v + =)y + 2,
L ( + ¥)zy, (v + 2)xy, (2 + %)y
Consequently, we hove the followings
Thearem 4.1,

The nlgebra o (£) revresents the sequence < €,0,2,10 > .
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As 2 matter of fact, the almzebra dC(d) nlays o coentral

o
mn

role in the class of slgebras representing <f0,0,2;10)> o
is o consecuence of the following Theorem.
Theorem 4e?2

Let & be an algebra of K representing <{0,0,2,10 > . Then
JZ cen be represented as an algebra which contains o(4) as a
subalgebrae
Proof : Let x + y, xy be the two commutafive essentially binary
nolynomials over & .

Cese 1e x + y and xy are non~associative.

In this case, as in the nroof of Thecrem 3.1, we have

?3(52) == 12, a contradiction. -

Case 2. x + y and xy are associative,

ig imnossible.

Accordingly, one of themy, X + y say 1s associative and the
other is not. In this sitvation, as in the proof of Theorem 2.1,
we have al least the followiug ten disgtinet essentially ternary

nolynomials 3

Xz
(x+7)+2y (y+2)+x (z2+3)+y,

(*)

X + yz, ;o4 Z}:, 7 + J{y,

AY
L (x+y)zy (v o+ 2)x, (2 4+ x)y
In virtue of Proposition l.4; we have the following four

nossible cases @

132



X+ y
L (1)
é X + 3
| (% + ¥
j - — (2)
g(x + ¥)x g \ XY
L‘x + Xy ( x
e (3)
L X
- xy
- - (4)
Xy

The case (1) is impossible, for, if it were the case, we would
have xy = xy + xy = xy + (xy)y =Xy + ¥y =X+ Yy, a contradiction.
Assume (2) holds, ie€ey (x + ¥)Xx = x + ¥y 2nd % + XYV = XY
We claim that the polynomial p = (x + y)(y + z)(z + x) is ess—
entially ternary and is distinct from the polynomials in (*).

It is trivial that p is essential. If p = xvz, setting
¥y = z, we have (x + y)y = Xyy le€0ey X + y = Xy, 2 contradiction.

Thus o # xyz. If p = (x + y) + gy then as p is symmeitric, it

it

follows that (x + y) + 2 (y +2) +x=(z+x)+ ¥y which is
impossibles Thus p £ (x + y) + z. The proofs of the other
cases are similar. Accordingly, we have p3(62) = 11, which

contredicts our assumpition.

it

Assume (3) holdsy ieee, (x + y)x X = % + XVe In analogy

(x + )y + z)(z + ¥

i

to the previous cese, we clzim that »
is essentiesl and distinet from the polymomials in (%)
Clearly, » is essentlelly. If n = xyz, putting z = x, we

have (x + y)x = XY; le€oy X = xy, a contradiction. Thus
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P % xyz. The proofs of other cases are similar to the above.
Hence, we have p3(5l) == 11, which is impossible.

Therefore, if ¢C E,K,representsﬁ(O,O,2710:> s 1t is necessary
that

(x+y)x=xy=x+xy e (#)

Consider the algebra g * = <'A;+,,> e As x + ¥y # v,
there exist 2, b € A such that 2 + b % sbe In view of (#), we
have a ||bs Set e = o + b, d = abe From the fact thot
(> + y)xy = xy, it follows that e < d. MNoreover, by (),
e! !a, e! | b Hence ¢L* contains 06(4) as o subalgebra, as

was to be showne.

Some further results along this line will be showm in

(Iv,1).
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CHAPTER 2.

THE SEQUENCE <0,0,3,m> .

Suppose that we are given an arbitrary sequence <'O,O,n3m> o
Let us consider the following general problem: For each n,
what is the smallest value of m such that the sequence <{0,0yn,m>
is representable. If n =1, the corresponding value of n is,
of course, equal to one. The case that n = 2 has just been
dealt with in CorolYary 3.3(III,1). In this chapter, we go one
step further by considering the sequence <0,0,3,m > »

This chapter fzlls into three sections. In the first
section, we shall develop a series of fundamental results con-
cerning ternary polynomials on which our main results are based.
The answer to the above problem (when n = 3) will be given in
section 2. In section 3, we study the sequence <{0,0,3,m¥>

where m¥ ig the minimum value in the above sense.

1. Fundamental Results.

Let (T be an algebra representing the sequence <0,0,3.> .
Then there are exactly three distinct idemvotent essentially
binary polynomials over J . The following are the only two
possible cases ¢

Cose 1. Yach of the three essentially binary polynomials

is commutative.
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Cagse 2, There is one commutative essentially binary
polynomial while the other one is non-commutative.

Observe that if Case 1 holds in (7 , then in view of
Lemma 2.3 (III,1), it follows that p3( @)= 8.

From now on, in order to obtain some information about
p3( &), we shall be interested in Case 2. So, let x + ¥ be
the commutative idempotent essentially binary polynomial and
xy be the non-commutative one. Thus x + ¥y, xy and yx are
exactly the three essentially binary polynomialse.

We shall use the following notation 3

811 = (X + y) + 3z 812 = (y + z) + X gi} = (z + x) + ¥
8oy = (x + y)z 8oy = (y + z)x €0 =(z + x)y
g3 = z(x + y) &30 = x(y + z) £33 = y(z + %)
g41=xy+z g42=yZ+x :(:";4-))=ZX+y‘

Lemma 1.1,
In JT , 8 3 is essentially ternary for each i = 1,2,3,4,
Jj=1,2,3.

Proof : gij is clearly essentially ternary by Lemma 2,1(III,1)-

To orove that €51 is essential, note that By setting x = ¥,
we have €y = X o 2o Thus 851 depencs on z and one of x and Y.
However as x and y are symmetric, it followg that 801 is
essentially ternary. Similarly, g2j, 833 are essential for
J= 142,30

It remains to consider the polynomial 81 = XY + ze Setting
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X = ¥y we obtain g41 ; x + z. Thus g41 depends on z and either
X or y. If ghl depends on x but not y, then we would have
841 = XT + 7 =X + ze
Setting z = xy, we obtain xy = x + xy. Setting z = x, we
have xy + x = xo Thus, it follows that xy = X + xy = x, a
contradiction. If g,y depends on y but not x, then we would
have g41 = XYy + 2 =Y+ 2
Setting z = xy, we have xy = ¥y + xy. Setting z = y, we obtain
Xy + ¥ = yo Thus, it follows that xy = y, which is a contradiction.

Hence €41 is essentially ternary . The proof is similar for g4j»°

Lemma 1.2,

In JC ] glj % gil’ Jj = 192’31 is= 2,394'
Proof s If 817 = (x + y) +2=(x+ y)z = 8577 setting x = ¥,
we have x + z = Xz, a contradiction. Thus g, # Byy °

Ir g12 = (y + z) + X = (x + y)z = g21’ setting > = y, we

have

(x + 2) + x = %2 (1)

z and g = x regpectively, we obtain

Again, setting y

y+x=(x+yy (2)

(v +x) +x=(x+y) » (3)
It thus follows that xy = (x + y) + x ( vy (1))
= (x + y)x | ( vy (3) )
=X + Yy ( vy (2) )

which is impossible. Thus 815 # €p1 °
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Ir 8,‘13=(Z+X)+y (X+y>z=g219 we have
8y = (x+y)z=(y+=x)a=(z+y) tx=(y+2)+x-= &1 00

a contradiction. Thus, 13 %’ggla

i

Ir gll = (x + y) + 7 = z(x + y) = g31, setting x Vg Ve
have x + z = 2zx, a2 contradiction. Thus, 811 £ 831°
Ir 815 = (y + 2) +x = 2(x + y) = gBl’ then setting x = ¥y,

Yy = z and z = x, we have; respectively,

(x+2)+x=m —— (1)
y+x=y(x+y) (2)
(y+x) +x=x(x+y) —— (3)
From these, it follows that
yx=(x+y)+x ( vy (1))
= x(x + y) ( vy (3) )
=x+7y ( vy (2) )

which is a contradiction. Thus, & 5 % g3l.

Similarly, g13 % g31.

If gll = (v + y) + g3 =Xy + 2 = g41, gsetting 2z = xy, we

obtain (x + y) + Xy = xy. Hence if we set z = ¥ + ¥, we have

X +y =3y + (x + y) = xXyy a contradiction. Thus, 811 # gAlo

It o

810 = (y +2) +x=xy+ 2= Bpy0 then setting y = 2z,

X =y and 2z Xy, we have, respectively,

i

g 4+ ¥ = Xy 4 y O P (1 )
(X + Z) + X =X + 2z e e e ( 2 )
(y + X:\’) + X = XYy e s e s e ( 3 )

Hence, xr = (v + xy) +x=(y+x)+x=x+ Yy by (l),
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(2) and (3), which is impossible. Thus, 5 # Bpp°

Similarly, we have g13 % g4lo

Lemma 1,30

In T 4 the following polynomisls 810 g21, 8311 8,y 2Te
pairwise distincte.
Proof ¢ The proof is triviél. For instance, if 8oy = g31,
setting x = y, we obtain xz = zx, a contradiction. If 831 =
8417 setting x = y, we have zx = x + 3, which is again a

contradiction.

Lemma 1 040
In 0C , 853 # g3j, for each i, j = 142436

Proof ¢ By Lemma 1.3 and the commutativity of x + y, it suffices

to prove that €50 % g31. ir 8oy = (y + z)x = z(x + y) = g31,
then setting y = 2y x = y, x = 3, ve have, respectively,

y(x + ¥),

yx

(X + Z)x = ZXs

(v + x)x = x(x + y).

yx, a contradiction.

i

Thus, xy = (y + x)y = y(x + y)

i

Hence, %50 % g31, as required.

In 4C Boo # Sy
Proof ¢ If g,, = (y + 2)x =¥y + 3 = 8417 sétiing x = ¥, we
have
(x + 2)x =x + 3 (1)
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Again, setting x = ¥y +'z, we obtain by (1) that

y+a=(y+2z)+z o (2)

Set z = yzo It follows thet

(v + y=)x = zy + yx : (3)
Moreover, putting y = z, we obtain
VX = XY + ¥ e et b (A)

Ags £op = g41; xy + z=(y + 2z)x = (2 + y)xr = xz + v« Thuz,

if we set x = gz, we have

XY + X = X 4 Y e e (5)

Now, observe that x +y = (x + y)x ( by (1))
= (y + x)x
= (yx + y)x ( vy (5) )
= ¥y + yx C by (2) )
= xy + (v + 7) ( vy (4) )
=Xy + ¥ ( vy (2) )
= yx ( vy (4) ).

as wes t0 be showne

=
jny
[
n

[y
2}

[wN

mnosgnible Thus, & o
, e 9 ?? % € 417

2. The Smallest value of m.
In thig sectiony, we are going to search for the smallest
value of m guch that the sequence <T0,0,3,m:> ig representsble.

For prevaration, we shall first esteblish the following lenmas

where 21! algebras are assumed 1o heve one comnutative and one

o]

non-commtative essentially binary polynomials denoted by x + ¥y

and xy respectively.
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Lemma .Q_ele

Let J7 be an olgebra revresenting {03043 ¢ Ifxz+y
is associative, then p3(02);;> 7o
Proof : We claim that the following polymomials
are pairwise distinet over 42 .

By Lemmas 1.2 and 1.4, it suffices to show that 2y £ S5
g3i ¥'é35wf0r'i“¥ Jje By the commutativity of x + ¥, it remains
to prove that g1 # PP

Assume that g Then (x + y)z = (y + z)xe If we

21 T &op°

set z = x + v, we have x + 3y = (y + (x + y))x = (x + y)x by the

n

associativity of x + y. Again, setting z ¥y we obtain yx =

(x + y)ye Thus, it followg that

x+y=(x+y)x=_(y+x)x=xy,
which is impossible. FHence €1 # Eop1 aS required. Similarly,

831 % g32, Thus, Lemma 2.1 follows.
In view of Lemma 2.1, we shall now deal with the cese that
X + ¥ is non-associative in the following Lemmag 2¢2-—=2.6,

Since it is assumed that (T revresents the sequence

< 040,3 > ; we have the following five possible cases :

(};+y)x= X+ y
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Lemma 2.2.

If (x + y)x = x holds in ¢C , then the following polynominls
8151 8549 83171 g41,vfor each i = 1,2,3, are distinct over €T ,
Proof : By assumption, we have (x + y)x = x ——0 (A)o

By virtue of Lemmas lel==-1l.5, our proof will be complete
if we can show that g, # 8pp a0d 8,5 £ 8y e

However, this is indeed the case., For, if

gy = (x +¥)z = (v + 2)x = g,,s

then setting x = y gives xz = x by (4). This is impossible.

Again, if g23 = (z + x)y =Xy + z = g41, setting x = y,

we have x = x + z by (A). Thus, €53 # 8410 @8 Tequired.

Lemma 2.50
If (x + y)x = y holds in 4L , then the following polynomials

8147 Bo3r 8319 &40 for each i = 1,2,3, are distinct over (T .

Proof ¢ By assumption, we have (x + y)xz =¥ — (B).

In analogy to Lemma 2.2, it guffices to prove that

However, if = 8,59 setting x = y, we obtain by (B)

801

that xz = z. If 853 = setting x = y agein, we have

g41?

2 = X + e Thus, the Lemma followse
¥

Lemma 294&

Suppose that (x + y)x = x + y holds in Z . Then
either (1) g?B = g41 and the polynomials 8147 8oy 1 g3i, g4l

are distinct for each i = 1,2,3 ;
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or (2) g23 # gAl and the polynomials

distincet for each i = 1,2,3

Proof 3

Assume first that g,, = (z + x)y

show that 8159 8oy g3i, g41, i=1,243

to Lemmas 1.2-~-1.4, we need only prove

By hypothesis, we have

€13

l, gzi? g319 g41 are

(x+y)x=x+y ——(C)
= Xy + 2 = g41° We shall
are distinct. According

that

g31 % 8329 332 % 8417 g33 % €41°

Since g23 = g41, setting 2 = %, ¥

have, respectively,

¥ 4+ z and ¥y = zy we

XY = XYV + X (1)
x+z=x(x+2)+zg —(2)
(y+x)y=xy+y ——— (3)
Now, if g31 = g32, then z(x + y) = x(y + Z)o Setting
X = ¥y we have
zx = x(x + ) ——e — (4).

Thus, it follows that x+z=x(x+12)+ 2 ( vy (2) )
= X + 7 ( vy (4) )
= zx ( vy (1) ),

which is a contradictione.

If gy, = €9 then x(y + z) = xy + z. Setting y = z, we
obtain
Xy = Xy + ¥ (5).
Thus, x+y=(y +x)y ( vy (C) )
=Xy + ¥ ( vy (3) )
= xy ( by (5) )
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which is impossible.
If 833 = 810 then v(z + x) = xy + 2. Setting z = x, we
have yx = xy + x = xy by (1), a contradiction.
H i o
encey g3l % g32, g32 % g41 and g33 % g4l, as required
Thus, we mey assume now that 853 # 8y ° In this situation,

we claim that the following 813 g 1 =1,2,3 are

? g2i9 g311 g41
distinct. Observe that by Lemmas 1.2---1.5 and the assumption

0 . ‘ How is i
g23 # g4l, we need only prove that 801 % 8ooe lowever, this is
triviale For, if g2f=(x +y)z = (y + z)x = 8,01 then setting
¥ = z, we obtain, by (C), that = +y = (x + ¥)y = y%, 2

contradiction.

The proof of Lemma 2.4 is thus complete.

Lemma 2.5,

Suppose thaot (x + y)x = xy holds in JZ . Then
1 = O a ial 3
either (1) 831 = S35 and the polynomials g,y 8,ys By Fps
are distinct for each i = 1,2,3 3
or (2) 831 £ g4, and the polynomials gy 8411 351 g1 are

distinet for each i = 1,7,3,
$-9

Proof : By assumption, we have (x + y)x = XY e — (D)
Agssume that 531 = g3? ( #nd hence g3l = 33? = g33 ). He

shall prove that T30 By g 1 = 1,243 are distinct.

g319 841

By Lemmas l.2-—1.4, it suffices to prove that

821 % §4?1 g?1 % g439 g31 % 3429 g3l % 843 and

Fas # Fas for i £ jeo
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If g,) = &y, then (x + y)z = ¥z + %o Setting y = z, ve

obtain, by (U), that yx = (x + y)y =y + x, a contradiction.

Thus 801 # P Similarly, €1 # 813°

If 831 = 84p9 then z(x + y) = yz2 + %« Setting % = y,

Yy = g and z = x, we have, respectively,
ZX = Xz + X (1)
yx+y)=y+x (2)
and by (2), X +¥ =YX +x - (3)e
Again setting z = x + y and using (2), we have
x+y=(x+y)+x — (4)
Now, observe that x + ¥ = yx + x ( vy (3))
= (xy + x) + x ( by (1))
=%y + X ( vy (4) )
= yx ( vy (1) ).
This is impossible. Thus, g., # 815 ( Wote that this is true

31

in general ).

have

if =

\'::31 = 543’ then Z(X + y) = 2X + Ye Settlng X = ¥, we

ZX = ZX + X (5).

Setting z = x + ¥y, it follows that x +y = (x + y)yr + ¥y

we have

=¥y +y ( vy (@) )

= xy ( vy (5) ).
Thus, g3l % g43, as reguired.
It remains to prove that g4i % g4j, i # je By assumption,

=a(x +y)=x(y+2z) =g If we set y = z and

€31 32°
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¥ = xz, we obtain, resvectively,

y(x +y) = =y (6)
z2(x + xz) = x(x2 + 2) —— (7).
If 8a1 = 8401 then xy + z = yz + xo Setting x = y and

X = 2z, Wwe have, respectively,

X+ 3 =Xz + X (8)
and by (8), X+ ¥ =7yX+x (9).
It thus follows that xz = z(x + z) ( vy (6) )
= z(x + x2) ( by (8) )
= x(xz + z) ( by (7))
= x(x + z) ( vy (9) )
= zx ( vy (6) ),

which is impossible. Hence, g1 # g4?°
Ir g41 = g43, then xy + g = 2x + Yy Setting x = y and

z = Xy we have, respectively,

X+ 2 =2x+x -—e——— (10)
Xy + X =X + Y (11,
Accordingly, xy = y(x + v) ( vy (6) )
= y(xy + x) ( vy (11) )
= y(x + xy)
= x(xy + y) ( vy (7))
= x(x + y) ( vy (20) )
= yx ( by (6) )e

This is impossible. Thus g41 # g43, and similarly, g42 # g43o

This proves the first vart.
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Hence, we may assume that g31 ¥‘g39 ( and so B3 % g3j7

i % j )e In this case, we claim that 8157 o1 g3i, g41 are
distinet for 1 = 1,2,3. We need only prove that 35 % 841 and
e33 # 8410
If 8y = €419 then x(y + 2) = xy + zo Setting y = z, we
have Xy = Xy + y ————— (1).
Setting x = y, we have x(x + z) =X + 7 - (2)0
Setting x = z, we have by (2)y, x + ¥ = xy + ¥ —on (3)
Again, if we put z = xy, we obtain, by (1), that
x(xy) = xy ——r— (4).
Moreover, yizxy) = y(zxy + y) ( vy (1))
=y + xy ( vy (2) )
= xy ( by (1) ).
Thus, y(xy) = xy = x(xy) —m— — (5).
Observe that xy = x(xy) ( vy (4) )
= x((x + y)x) ( vy (D) )
= (x +y)((x +y)x) (by (5))
= (x + y)(xy) ( oy (D))
= (xy + x)(xy) ( vy (3) )
= (xy)x ( by (D) )
Thus, xy = (xy)x (6).
From these, we obtain xy = (x + y)x ( by (D) )
= ((x + y)x)(x + y) ( vy (6))
= (xy)(x + y) ( vy (D))
= (xy)(xy + x) ( vy (3) )
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Xy + x ( by (2) )

il

=X +y ( vy (3) ),
vwhich is 2 contradiction. Hence, 835 £ 841"
Ir g?):S = g41, then y(z + x) = Xy 4+ zo Setting z = x and

X = ¥, we have, resvectively,

YX = Xy + X (1)
w(z +x) =x 4+ — . (2).
Setting y = z and ianvoking (2), it follows thet
X+Yy =3y +y ——e (3).
By (D) and (3); we obtain yx = (y+x)y = (x + y)y

(xy + )y = (y + x37)y = y(xy)s ie.ee,

4

y(zy) = yx ———— (4),
From (1) and (4) we have (yx)x = x(yx) + x = =y + x = yx,
ile€oy (y2x)x = y3x ——o (5)

Again, by (D) and (%), we have (xy)x = ((x + y)x)x

= (x + y)x = xy, i.e., (xy)x = xy — e (6)

Hence, it follows that =xz = (x + z)x ( by (D) )
= (x(z + x))x ( vy (2) )
= x(z + x) ( vy (6) )
=X + g ( vy (2) ).

m . L . PR o m ‘ R
This is impossible Thus, g33 % g41

The proof of Lemma 2.5 is therefore completes.

Lemma 2.6,
If (x + y)x = yx holds in (7 , then the following polynomials

o for 1 = 1,2,3 are distinct.

gli’ gZi’ g319 341
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Proof ¢ DBy hypothesis, we have (x + y)x = y¥r —— (&),
According to the Lemmas in section 1, it suffices to0 prove

't:hat <’3‘2i % g2j7 i 7{ j and g23 7{ :.C;Z;Ale

If g, = 8,0 then (x + 3)z = (y + 2z)x. Setting y = z,

we have yx = (x + y)y = (y + x)y = xy by (B), a contradiction.

If g23 = g41, then (z + x)y = xy + z. Setting x = ¥y, 1t

follows that x + z = (2 + x)x = (x + z)x = 22X by (E), a

contradiction. IHence, Lemma 2.6 follows.

Summarizing the results of Lemmes 2.2-~-2.6, we arrive at
the following

Provosition 2.7

Let ( be an algebra representing the sequence < 0,0,3>
If there is a commutative essentially binary polynomizsl which

is non-zssociative, then pB(OZ) == 8,

Theorem 2.8,
If the sequence 0,0,3;m ) is representable, then m = T.
Proof s Let ¢! be an arbitrery algebra representing the sequence
{0;043;m> o« If each of the three essentially binary polynomiels
is commutative, then by Lemma 2.3(III,1), m = 8. Ctherwvise,
there is one commutative and one non-commutative egsentially
binery polynomisls. If the commutative one 1s agsoclative,

according to Lemma 2.1, we have m > 7. Otherwise, by I'ronosition

2.7, it follows thrt m => 8.
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3e The Dest Lower Bound for (jpn> B

In this section, we shall first furnish sn examnle {to show
that the sequence {0,0,3,7 ) is representable. After that, we
will be interested in algebras representing 0,003,7> &

4

Finally, the best lower bound for the secuence
<’O,O,3,7,p4,..,ea,pn,...o >

will be derived.

In[13 ], G. Gr2tzer and J. PXonka consider the ~lgebra
T = X Aj+,0 > of type 2,2 where "+" is a semilattice
operation and "." is a2 vartition function ( see [ 32 ]) in the
sense theot

\

1) xx = x, x(yz) = (xy)z, x(vz) = x(2y) ;

2) (x + y}z Xz 4+ Yo, x(y + z) = X¥ 4+ X% }

3) (x+3y)x = x + Ve
n .
They showed that for n = 2, Dn(oz) = 27 - 1, and po(éz) =
pl(CZ) = Os In fact, it can be shown that for each p(xl,e..,xn)
% Xyt oesee X p(xl,..o,xn) is an essentielly n—-sry roly—
i
nomizl over ¢ if and only if p hes o unigue representation
in the form . + oee + M., (. + + X, where
SOy e ) Gy e ()
( {x, goesyX. b oy {mi g ygeeesx. o} ) is a portition
i(1) i(z)’ i(i+1) i{n)4

of the set | X1’°°°’Xn} o T c repregsents
7 -
\0109397>°

Cn the other hend, surpose that 2 is an ol-ebra represcenting
{Cy0,3,7 > « It is not known that whether J7 can be represented

.

as an cloebra of trve (2,2 satisfying the above conditionse
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However, following the proof of Theorem 2.8, we do have the
followine interesting resulte
Theorem 3.1.

Let OC be an algebre representing the sequence {0,0,3,7 >

Then ¢C has a unique semilattice polynomials

As a consecuence, we heve

COI‘OllaI‘}f 30 e

Let & be an a2lgebra representing the sequence < 0,0,3,7 >

Then pn(JZ) = o™ - 1 for each n > 2.

Proof : Clearly, the above algebra represents the sequence

n

{ 0,0,3475000y2 = ly0e0 > o« On the other hand, if &

represents <0,0,3,7> ; invoking Theorem 2.1, it follows that

. . . . e + . A
there is ¢ sgemilattice polynomial over oo o licnce, if pn(Ct)

A1 (n>2), ve have

0d i § g b
D GL) = ¢ +1 +mex o (7 )m+ 1}
(B = (22) {0 (¢)ym + 1]
PEVERY
= 2 p (L/\—) + 1o
n

- B g — n o 5

We ghall »nrove that pn(aa) = 2 -~ 1 for each n = 2 by
induction. The inemquality is true for n = 2,3. Loreover,

pﬂ(GZ) =2p.(U) 41 =27 +1 =15 =2"-1 3 it thus true
for n = 4. Ascune thet D%(JZ) = 2~ 1. Then for n = £ + 1,

W)y oe () +1 = 0(0-1)+1 =2 1.

we have M. =R R
’ x+1( “iz

From ihig, the Theorem follows,
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PART IV

APPLICATIONS.



CHAPTER 1

APPLICATIONS OF ((pﬁ> SEQUENCES TO LATTICE THEORY.

o Let L,
,9:,@ be the equational classes of lattices, distributive lattices
and modular lattices respectively. Then DT ML K
Let (¢ = (Aj+yo > be a lattice. As the two operations
are idempotent, it follows that pO(OZ) = pl(dZ) = 0. Clearly,
9(2)(62) consists of four elements‘namely Xy9 Xy Xy + Xy XyXge
However, only x, + x, and XX, are essentials Thus, pz(dz) s 26
From now on, pn(éQ) depends, of course, on the gpecific lattice
in question.
Suppose, on the other hand, that we are given an algebra
JZ of K, which represents (0,0,2> o Then (I is evidently not
necessary a lattice. In fact, the class of all T-lattices ( see
{ 41 ) furnish other examples of algebras which represent
{0,0;2 > « Thus, it is interesting to enquire as to what
conditions should be imposed on ¢7 so that if 7 represents
< 0,0,2 > , then & € L, D or M.
In this chapter, we shall attack this problem by using two
different methods. The first one which will be studied in
section one is by imposing identities wvhile the second one

which will be dealt with in section two and three is by cone=

sidering the cardinal p3e
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1. Characterizations Ey Identities without Absorption Lawse.
In general, the difficult part of proving an algebra I
of type (2,2)> 1o be a lattice is to prove the absorption laws.
Thus, at least one of them is always assumed to hold in & »
( See, for instance, [251, [26), [40] . ) However, as we shall
see, this erucial assumption is not necessary in our treatment.
Theorem 1l.1l.
Let &= (Aj+4.) be an algebra in K. Then L € L if
and only if 1) (x+y)+z=x+ (y + 2)
2) (xy)z = x(yz)
3) % represents <0,0,2> .
Proof : The necessity is obvious. To prove the sufficiency,
observe thet as (€ satisfies 1), 2) and 3), it follows that
(2) 1Al = 2 ; (b) x + y and xy are the two distinct idem-
potent, commutative, associative essentially binary polynomials
over (¢ :(c)there are noessentially j-ary polynomials for j =
1,2 except X, ¥y X + ¥y X¥o Thus, by Lemma 2.4 (III,1), we

have x(x + y) = x = X + xy. Hence (T is a lattice.

Recently, R. Padmanabhan [ 27 ] proved that the following
three identities @
(1) (x+y)z=2x+ (2(y + x))

(2) xy + 2z = (2 + x)(xy + z)

i

¥y

(3) =y +v

characterize lattices.
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Keeping (1) and (2), replacing (3) by requiring the algebra
representing {0,0,2> , we are able to prove the same.
Theorem 1,2, ‘

Let df = {(A3+;+)> be an algebra in K. Then & is a
lattice if and only if

1) (x+y)z = 2x + z(y + x)
2) sy +z=(2+x)(xy+ 2z)
3) % represents <0,0,2> .
Proof ¢ It is enough to prove the sufficiency. To this end,
we need only prove that xy + y = y. Sinsce (£ represents
{0,0,2)% , x + y and xy are idempotént and symmetric. Thus,

according to Proposition 1.4(III,1), we have

[ x+y
L X+ Y
- xy
x(x + y) L Xy
X + Xy i \~'x+y
. xy
..
U=
If x(x+y)=x+y (2)
X+ Xy =X+y (v)

then setting z = xy in 2), we have xy = xy + xy = (xy + x)(xy)

= (x + y)(zy) by (b), ice.,

(= + ¥)(xy) = xy (1),

155



By (1) and (b), it follows that xy = xy + xy = (x + y)(xy)+ xy

= (x + y) + XY ieeog

(x+y) +xy=xy (2).
However, if we set z = y in 1), we have, by (a) and (2),
x+y=(x+y)y=yx+35(y +x) =xy+ (x+7y) = x5,

a contradiction.

If x(x +y) = xy : (e)

X + Xy = Xy (a)
then setting z = x + y in 1), we have x +y = xy + (x + ¥)o
Setting z = y in 2)w it follows that xy +y = (y + x)(xy + y)e
Thus, x+y =(x+3y)lz+y)=(x+y)xy+ (x+7))

=(xy)(x+y) =(y+x)(xy +y) =xy + ¥ = Xy, a contradiction.

If x(x+y) =x+y (e)

X + Xy = Xy (£)
then setting y = z in 1), we obtain x + 3y = (x + ¥)y
=yx + y(y + x) = yx + (x + y)o Thus, invoking Lemma 1.5(3)

(I11,1), it follows that

(yx)(x +y) =x+y (1)
However, if we set y = z in 2) and apply (f) and (1), we

(x + y)(xy) = x + ¥y

i

obtain xy = xy +y = (y + x)(xy + ¥)
a contradiction.

Hence, it is necessary that x(x + y) = X + Xy = X, proving
Theorem 1323

Theorem l.3.
Let 7 = <:A;+,e> be an algebra inlﬁ? Then (¢ is a lattice
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in which the identity 'f(ylgyzgoeogyh) = g(yl,yz,@.»,yn) holds
if and only if

1) (T represents the sequence {0,0,2 )

2) ((xf)z +u) +v=((gz)g + v) + ((+ + u)u) holds in & -
Proof : According to a result of R Padmanabﬁan [261, it
suffices to show that x + Xy = Xo

Firstly, as x + y and xy are idempotent, if we put y =
Fy = eee = T 2) becomes
3) ((xy)z +m) +v=((yz)x+ v) + ((+ + w)u)e

In view of Proposition 1.4(IM,1), we have four possible

cases.
If x(x +y) =x+y (a)
[x+xyux+y (v)

3) becomes ((xy)z + u) + v = ({yz)x + v) « (¢ + u) —— (4)

In preparation, we claim that (xy)y=x+y=(x+y) +¥
holds in this case.

Clearly, (xy)y € { Zo¥sxysx + ¥y} o If (xy)y = %, then
x = (x(x + y)){x + y) = x + ¥y, a contradiction. If (xy)y = ¥,
then y = ({(x + y)y)y = x + y, a contradiction. If {xy)y = x¥,
then xy = xy + xy = (Xy)y + Xy =Xy + ¥y = X + ¥, again a

contradiction. Thus, ve have

(xy)y = x + ¥ (5)
Next, observe that (x + y) + y = (x +¥y) + (x + y)y

=(x+y)+{(x+y)=x+y by (2) and (b). Hence, we have

(x+y)+y=x+y (6)
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Now, if we put z =u =v = xy and t = x + ¥y in (4), then
by using (a), (b), (2) and (6), we have xy = ((zy)(xy) + xy) + =y

((y(xy))x + xy) + ((x + 7) +xy) = ((x + ¥)x + xy) + ((x +¥) + xy)

3}

]

((x+y)+xy) + (z+y) +xy) =(x+y) +xy=(x+xy)+xy

X 4+ Xy =%X+Y, vwhich is impossible.

If x(x +y) = xy (e)
{ X + Xy = Xy (a)
then 3) becomes
((zy)z + u) + v = ((yz)x + v) + tu ——— (7).

Observe that x + (x +¥y) € {x, ¥y X + ¥y Xy} o In this
case, it is clear that x + (x+y) & {X, vy} Ifx+ (x+y)
=X +Yy, then we have x +y = (x+ y)Nx +y) =(x+ (x+ y))Mx+y)
= x(x + y) = xy, a contradiction. Thus,

x+(x+y)=xy (8).

Setting x = y = z in (7), we have
(z+u) +v=_(x+v)+ tue
Putting v = x + u, t = u, it follows from (d) and (8) that
x+ue=(x+(x+u)) +u=zxu+uns=xn,

a contradiction.

If [ W(x+y)=z2x+y ——— (&)

X + Xy = Xy (£)
then 3) becomes
((xy)z + u) + v = ((yz)x + v) + (t + u) — (9).
Now, if we put 2 =v =u =3y, t = x + y in (9), then by

using Lemma 1.5(1),(2) (III,1),; we have
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xy = ((xy)(xy) +m)+xy=((y(xy))X+xy)+ ((x + y) + xzy)
=(xy +xy) + ((x+3) +xy) =xy + ((x+¥) + xy)

= (x +y) + xy,

(x + y) + xy (10).

ieceo, Xy
On the other hand, putting X = y = 2, v = x + u and ¢t = xu

in (9), wve get x+us=(x+u)+(x+u)=(x+(x+u))+ (xu+u)

= (x + u) + xu, by Lemma 1.5(2) (III,1) and (f). From this and

(10), it follows that X + ¥y = (X + ¥) + Xy = Xy, a2 contradiction.
Hence, we must have x(x + y) = x = x + xy, proving

Theorem l.3.

ccro:’.lar;! 1940
Let & = {A3+,.> be an algebra in K, Then (Z € L if and

only if 1) (7 represents ( 0,0,2
2) ((xy)z +u) +ve={((yz)x +v) + ({+ + u)u) holds

in&?o

Consider the following equational classes of algebras ¢
k(D) = {é’féﬁ,{/’x(y+ z) = Xy + Xz, X+ yz = (x + y)(x + z)
hold in & } ,
,I\(/(,) = {dzé }!{,,/x(y + z) = xy + %2y (xy) = xy hold in ) .
In what follows, we shall characterize distributive lattices in

terms of K(D) and K(.). We need the following result :

Sholander®s Theorem ( [401] )
be oy adgebive o bapl <2,27

Let Z = {(Aj+,.) 6% . Then J € D if and only if

1) x=x(x +y)
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2) X(& + ) = 2x + X hold in & -
Theorem 1.5
Let & = {Aj+,.) € K, Then (¢ D if and only if
1) ¢ represents (0,0,2> 5 2) L€ K(D).
Proof ¢ Let ( € K be an algebra satisfying 1) and 2). Thus,
X + ¥y Xy are idempotent, commtative essentially binary poly-
nomials over /L . By Proposition 1.4 (III,1), we have four

possible cases.

If { x(x +y) = xy (2)

X + Xy + Xy (v)

then, since (x + y)z = %z + yz holds in (£ , setting z = x + ¥,

we have x +y=(x+y)x+y)=x(x+y)+y(x+3)=xy, a

contradiction.
If x(x+y)=x+y ——m—m-0ou-a (c)
[ X +Xy=X+y —_—e (a)

then, since 3z + xy = (2 + x)(z + y) holds in 4 , setting

z = Xy, we obtain xy = x + ¥y, a contradiction.

If [' x(x + y) = X 4+ ¥y ~—-————*—-(e)

X + Xy = Xy (£)

then setting z = xy in (x + y)z = Xz + yz and invoking
Lemma 1.5(1) (III,1), we obtain
(x + y)(xy) = x(xy) + y(xy) = =y + xy = xy,
fe€o, (x + y)zy) = x5y e — (1)
Setting z = x + yin 2z + xy = (z + x)(z + y) and making

use of Lemma 1.5(2) (III,1), it follows that
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(z+y)+xye(x+3) +x)((x+y) ¢3)=x+y
However, this, together with (1) contradict Lemma 1.5(3) (III,1).
Hence, we have x(x + y) = x = x + xyo By Sholander's
Theoremy, ¢ € D. The necessity is obvious. This completes

the proof of Theorem 1.5,

By a distributive guasi-lattice ( see {36 1 ) is meant an

algebra = { Aj+y.) of K whose operations "+" and "." are
idempotent, commutative, associative anéd satisfying two identities
x(y + 2) = xy + %2, x +yz2=(x+y)(x+ 2)o As a consequence
of Theorem 1.5, we have
Corollary 1.6.

Let (T be a distributive quasi-lattice. Then ¢7 € D if

and only if p?((}Z) z Do

Theorem 1.7
Let (TE€ X, Then ¢ZE€ D if and only if 1) (T represents

< 040,2 > and 2) & € K(.)e
Proof ¢ Let ¢C be an algebra of K with properties 1) and 2).

Then the following identities hold in <<

x(y + z) = 2y + %z (1)
x(xy) = xy (2)
If x(x +y) =xy and x + Xy = Xy y then setting

=y + 2 in (1), we have y + 7 = yz, a contradiction.

If x(x+y)=x+y and x+xy=%+y,
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observe that, as x + y'is commutative, we hav; x(x +y) =
¥y + xyo Thus,

x(x + xy) = xy + x(xy) ———— (3)
Accordingly, we obtain x + y = x + xy = x(x + xy) = %y + x(xv)

= X¥ 4+ XY = Xy, a contradiction.

If x(x+y)=x4+y
[ X + Xy = x¥,
then setting z = x + y in (1), we obtain, by Lemma 1.5(2) (III,1)
that x +yex(x+3) =x(y+(x+3)) =2y + x(x + y) =
xy + (x +¥); ic€ey, xy + (X +¥) =%+ 5o
On the other hand, if we set x = yz in (1), we have by
Lemma 1.5(1) (III,1) that (yz)(y + z) = (y2)y + (y2)z = yz, i.e.,

(zy)(x +y) = xy. Thus, we have

L1}

[ xy +(x+y)=x4+y

(x + y)(xy) = xy,
which contradicts Lemma 1.5(3) (III,1). Hence, by Proposition 1.4
(I11,1), the two absorption laws x(x + y) = x = x + xy hold in
¢C + By Sholander's Theorem, (¢ € D. The necessity is trivial.

The proof is thus complete,

Let us consider the following three identities ¢

xy + xz = x(y + x3) -~ (1)
x(y + 3) = x(y(x + 2) + 8) e (2)
x+yz=x+ ((y + x2)z) ——o-— (3),

Let  X(M) = {@ek (1), (2) and (3) hold in &7} .+ We
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shall now characterize;g in terms of’E(M)°
Theorem 1.8.
Let (l€ K, Then J(€M if and only if 1) & represents
0,0,2% and 2) @ € K(M),
Proof : Since every modular lattice satisfies (1), (2) and (3) ;
the necessity is trivial. Thus, assume that JZ is an algebra
of X with properties 1) and 2).
Ir %(x + y) = xy and x + Xy = Xy, then putting x = z

in (2), we have x(y + x) = x(yx + x)o Thus,

xy = x(xy) (4).
If we set y = 2z in (3), we have, by using (4), that

X +y

1]

x+ ((y+xy)y) =x+ ()y = x + =y = x3,
a contradiction.
If x(x + ¥) = x +y = x + xy, then setting x = gz in

(3), we obtain

U

x+ ((y +x)x) =x+ (x+7y)
(5).

Putting y = z in (2) and making use of (5), we have

X4y =X+ ¥x

fe€e, x+(x+y)=x+y

xy = x(y +y) =x(y(x +y) +5) = x({x + 5) +¥)
=x(x +y) =x+y,
a contradiotion.
If x(x +y) =x +yand x + Xy = Xy, then setting

¥y = 2z in (3), we have
x+y=x+((y+xy)y) =x+ (y +xy) =x +xy = xy,

a contradiction.
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Thus, by Proposi£ion 1.4 (III,1), it follows that
(x +y) =x=x%x + %y
holds in ¢ . Our proof that € M will be complete if we can
show that x + y and xy are associative. To this end, let
p=(x+y)+2, g=x4+(y+ 2)e

Firstly, we claim that ¥y + (y + 2) = ¥y + zo Indeed, by

the absorption laws, we have
y+(y+2)=y(+2)+ (y+2)=y+2 —(6)

Next, observe that

1

y(x(y + (y + 2)) + (y + 2)) ( vy (2))
y(x(y + 2) + (v + 3))  ( by (6) )

y(x + (y + 2))

= y(y + 2)
= Yo
Thus, yix+ (y+2)) =y (1)
Similarly, g(x + (y + 2)) = 2 (8).

From this, we have

p=(x+y)+ 2

+

2)) ]+ z(x + (v + 2))

( vy (7),(8) )
z))) + z(x + (y + 2))

( vy (1))
=(x+(y+e))(x+y)+alx+(y+2)) (vy (7))
(x+ (z+2))((x+3)+2(x+ (y+2)) (by (1))
(x z))((x + ¥) + 2) ( vy (8) )

(x(x+ (y+2)) + y(x+ (v

+

(x+ (y+2))x+yx+ (y

u

[

+

~

«
+
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Interchanging the roles of x and 3z, we get peq = qo

Thus, by the symmetry of xy, it follows that p = q, i.e.,
(x+y)+z=x+(y+ 2

J. Riedan ( see [38] ) proved the following result :

Let ¢ = {Aj+,o> be an algebra in K, Then € M if
and only if (a) =xy + xz = (zx + y)x,

(b) (x+(y+2))z=12 hold in & »

Evidently, by the commutativity of x + y and xy, (a) follows
from (1). To prove (b), observe that, by the associativity of
X 4+ y and the absorption law, we have

(x + (y + 2))z = ((x+y) + 2)z = 2o

Hence, we conclude that & € M.

26 Distributive Lattices and <pn> Sequences.

In Theorem 3.2 (III,l), we proved that every distributive
lattice represents the sequence { 0,0,2,9 > o In what follows,
we shall show that this sequence indeed characterizes distributive
lattices.
Theorem 2.1,

Let & be an algebra in K. Then (¢ € D if and only if <&
represents the sequence {(0,0,2,9) &
Proof ¢ It suffices to prove the sufficiencye

Let & = (Aj+90> be an algebra of K representing { 0,0,2,9)
Then x + y and xy are the only two distinct idempotent, commut-

ative essentially binary polynomials over /0 o As X + ¥ ;! XY,
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ta| = 2.

In analogy to Theorem 3.1 (III,1), there are four and only
four cases ¢ If x + y, Xy are non-associative, we would have
p3(02) = 12, a contradiction. If x + y is associative but xy
not, we obtain p3(02) == 10, which is impossible. The case that
Xy is associative and x + y not is similar to the previous one.
Thus, it is necessary that x + y and xy are associative.
According to Theorem l.l, it follows immediately that (% € L.

.Supp0se now to the contrary that ¢ is non-distributive.

We claim that p3(d7) > 9. Indeed; let us consider the following
ternary polynomial p = (x + y){(r + z)(z + x)s

As po(dﬁ) = O, p is not constant. Evidently, p is symmetric.
Thus, if p depends on x;, it depends on y and » simultaneously.
Hence, p is egsentially ternary. Direct verifications show that
P is distinct from the first eight polynomials listed in the
proof of Theorem 3.1 (III,1). Moreover, if

P = Xy + Yz + 2X,
then /£ satisfies the so-called " Self-Dual Median Law " and
hence is distributive, a contradiction. Thus, pB(éZ) > 9, as

requirede The proof is therefore complete.

Let us denote by ED(n) the free distributive lattice on n
generators., It ig an out-standing problem in Lattice Theory
to determine the cardinal of ED(n), for each n. Though the

problem has been considered for a long time, it is far from
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complete yet. In this section, we shall point out a remark to
it in Proposition 2.2. Instead of "+" and ".", %he notations
"V® oand A" for join and meet will be adopted.

Let p(xl,..e,xn) be a distributive lattice polynomiale

Then p can be written as
P = (iEI(l) Xi) V (161(2) xi) V eee \/(iGI(m) Xi) 9
where I(3j) & {1, 2500ey n] for j = 1,2,0004m

If I(j) < I(k) for some jy k = ly600,m, then

/\

=
ieI(3) *i == iel(x) *i
and so the factor (iel(k) xi) is redundant in p(xl,..a,xn).
Thus, without loss of generality, we may assume
(*) I(3) &£ I(k) for all juk € {1, 2,cc0m]o

Proposition 2.2.

Let (l € Do Then p(xl,eeogxn) is essentially n-ary poly-

nomial over ¢C if and only if iﬁ I(3) = {1, 29qeogn}'o
j=1

Proof ¢ The necessity is triviale.

To prove the sufficiency, we have to prove that p depends
on X, for each 1 = 1, 2,+00y ne However, it suffices to prove
for i = 1.

Let M= {1, 2,eee, m} and J ={keM /1€ I(k)]}.

since (" I(§) = {1, 2600y n} 1 € I(j) for some j. Thus
551

J £ &

Cage 1. J = Mo

i g

He have P = (xlAiCI(l)'—{l} xi) \/ cocoo \/ (xl/\ ieI(Ill\>'-{1} Xi)

167



= xl/\((if:'I(l)-{l} %)V eeee V (iGI(m)-—{l} x;))
Thus, p depends on Xy e
Case 2. J T M

Asseme J = {1, 24000, j] for some j < m. Then

/N

P = [xlA((ieI/(\l\)-{lj )V oo V(iex(ﬁ)-{l} xi))]

V [(164(\}4-1) %)V oo v (ie/:c\(m) "i)]
= (xA¥) vz,

where ¥ = (7(1)-t1y ) Voooe V G-ty %)

z= (ié{(\jﬂ) )V oeee V (ie‘/\l(m) %) .
Evidently, X £ ¥ Xy £ ze
Claim ¢y # =2
For simplicity, set I°(k) = I(k) - {1}, for each k = 1,

240009 jo If y = z, then we have

/\

iere(1) TS (ié'/I\(j+1) %)V eee V (ié'/I\(m) Xy/e

Since 16T9(1) x; is V=irreducible in ?D(n), thus by a property

'

of distributive lattice, we get

A\

I(t) xi 9 for some t = j"'l,eeo,l’ﬂo

=

\ /
1€T%(1) *i = ik

Hence, I°(1) = I(t) and so
I(1) = 1°(1) Ut1rl D 1(t),

contradicting the assumption (*), Thus, y % zy as was to be shown.

Now, observe that as X9 ¥ and z are distinct, the ternary

Polynomial (xlA y)Vvz is essential over JC o Thus, p depends
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on Xy as required.

Consequently, p(xlg.eegxn) is essentially n-ary over ¥ »

In view of this Proposition, it seems likely that an upper
or a lower bound for the cardinal P, of essentially n-—ary poly-
nomials over L, the free distributive lattice on w generators
can be provideds In fact, this computation would be combinat-

orial in natural. If this is the case, then invoking the

formula
n 4n
Fn = n+ 3 (k) Pkr
k=0
the cardinal of ED(n) can be determined approximatelye

~

3¢ Modular Lattices and <(pn> Sequences.

The relation between distributive lattices and <fpn>
sequence has been studied in section two. It is our intention
in this section to study the same for modular latticese.

Consider the following equational classes 3
K1) = fce K/ (x+y) + z=3+ (y + 2)y (x3)2 = x(y2)

nold in /7 ) .

K(2) = {VTEJEV/ (x+y)z=2x+2(y + x)y xy + 2 = (2 + x)(xy + 2)
hold in &} o
K(3) = { Gek/ ((zy)z + u) + v = ((y2)x + v) + ((t + un)

holds in (7} .
Let K* - L{(l) U E(2) Ui £(3)° Then we have L = K* C K,

Instead of working within the class¢§, as we did for distributive

169



lattices, we shall, reétrict ourselves to the subclass ’E{j‘ of K,
for modular lattices.

Let (T = (Aj+3.> be a modular lattice which is non-
distributive. Thus, by Theorem 3.1 (III,1) and Theorem 2.1,
it follows that p3(ét) > 9. Our object now is to compute the
exact value of p3(éZ).

It is well-known ( see [ 91 ) that the free modular lattice
on three generators consists of 28 elements. Thus, by making
‘use of the formula for F , we obtain p3(62) = 19, In fact, one
can check that the 19 distinct essentially ternary polynomials

over /C are exactly the following ¢

- Xyz X+Y 4+ 2
Xy + 2z ¥z + % ZX + y
) (x + ¥y)z (y + 2)x (z + x)y
(x+2)(y+2) (r+x)z+x) (z2+5)z+y)
Xz + Y2z yX + 2X zy + Xy
L (x+y)y + 2)(z+x%) xy+yz+ 2x
( (x + y)(=z + xy)
(#) (z + x)(y + 2x)

(y + 2)(x + yz)o
Therefore, we arrive at the conclusion that if (¥ ¢ M ~ Dy then
¢Z represents the sequence <{0,0,2,16> o
Suppose, now, that an algebra ¢ of K* is given which
represents ( 0,0,2,19> o It is natural to ask whether it is

true that < must be a modular lattice. We are now going to
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prove that this is exactly the case and hence, from this, it
follows that the class M - D can be characterized from K¥ by the
sequence < 0,0,2,19 > & |

To this end, we first establish the following 3
Lemma 3.1.

If (¢ is a non-distributive lattice, then p3(0?) = 19.
Proof s We shall prove that the polynomials in (*) and (#) are

essential and distinct over & -

For instance, take p = (x + y)(z + xy). Setting x = ¥y,
x=gand y = 2z, we have P = Xy p = X and p = y respectively.
Thus, if p is not an essentially ternary polynomial, then as

¢Z represents <0,0,2) , we have

—

X
y
z
Xy
P = ¢ Xz
ye
X +Yy
Yy + 3z
| zZ+x

Since p is symmetric with respect to x and y; it is thus reduced

to the following

i z
(

H

i w

|

L X+ ¥ »

However, if » = 2z, setting x = y, we obtain x = z, a contradiction.

If p = xy, setting y = 2z, Wwe have y = xy, a contradiction. If

P=Xx+Y, settingy = z, it follows that y = x + y, which is
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impossible. Thus, it-is necessary that p is an essentially
ternary polynomial. The essentiality of the other polynomials
can similarly be proved.

It is routine to check that the polynomials in (*) are
distinet over & »

Now, consider the polynomial p = (x + y)(z + xy). We ghall
show that it is distinct from those listed in (*). For, if
sayy P = yX + zX, setting y = 2z, we have y = yx, which is impo-
ssible. Thus, p # yx + 2Xe

To prove that p £ (x + y)(y + z)(z + x), we first note
that as X is non-distributive, it contains M5 or N5 as

sublattice ( see Fige 39 )

If (7 contains MS as sublattice, putting x = a, y = by, 2z = ¢,
we have (x + y)(z + xy) =ec =¢cy, (x + y)(y + 2z)(z + x) = eee

= e. If (U contains N_ as sublattice, setting x = a, ¥ = ¢

5
and z = b, we obtain (x + y)(z + xy) = eb = b,

(x + y) (v + 2)(z + x) = eea = a.
Thus, it follows that p £ {x + y)(y + 2z)(z + x), which was to

be showme.

Furthermore, we claim that three polynomials in (#) are
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distinct. To this end, by symmetry, it suffices to prove that
p=(x+y)z+xx)f(z+x)y+ 2x)=qo
Observe that if  contains N5 as a sublattice, setting
X=a,y=band z = ¢, wehave p = a(c +b) = a and q =
e(b + d) = be If ¢ contains MS as a sublattice, setting x = a,
Yy =b and = ¢, we obtain p = e(c + 4) = ec = ¢ while q =
e(b +d) =eb = bs Thus, » # q, as required.
It should be noted that any polynomial in (#) is distinct

from any one of (*) over & » Hence, we obtain p3(62) =19,

Lemma 3.2. _
If & is a non-modular lattice, then p3(62) > 19.

Proof ¢ As (¢ is non-distributive, by Lemma 3.1, p3(0?) = 19,

Now, consider the ternary polynomial 1z = x(y + xz).

Putting y = 2z, we obtain r = xy, thus r depends on x. Moreover,

if we set x = y9 x = z, we have I = X.
Since (I represents ¢ 0,0,2% and r depends on x, if r is

not essential, we then have

X+ Yy
r = X 4+ 3z

Xy
x2

If r = x, setting y = z, we have Xy = %, a contradiction. If
re=x+Yy, setting y = 2, we obtain xy = x + ¥y, which is

impossible. Again, if r = x + z, putting y = 2z, it follows
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that xy nmx + ¥y a confradictione If r = xy, setting x = 3, we
have x = Xy, a contradiction. Finally, if =»r = xz, putting
X = ¥, we obtain x = xz, which is impossible. Hence r must be
essentially ternary.
Our proof will be complete if we can prove that r is
distinct from the polynomials listed in (*) and (#). However,
this is indeed the case. For instance, if
T = Xy + ¥z + zZX,

then setting y = 2z, we have xy = y; a contradiction. If
r = (x+y)y+ 2)(z+x)

setting y = z, vwe obtain xy = y, which is impossible. If

r = (x+y)z

setting x = y, we have x = xy, a contradiction. If
T = Xz 4+ Y3,
setting y = 2z, we have xy = y, a contradiction. If
r = (y+x)(z+x)
setting y = z, we obtain xy = y, a contradiction. If
r = (x+y)(z+xy),
setting y = 2z, we have agsin xy = ¥y, a contradiction, If

T = yX + 2X,
then it follows that & is a modular lattice, a contradiction.
The other possible cases can be checked similarly. Thus,
r is distinct from the polynomials listed in (¥*) and (#), as was
to be shown. Hence, it follows that p3(6?) = 20 =19,

proving Lemma 3.2,
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We are now in a position to establish the following 3
Theorem 3.3.

If the sequence (0,0,2,m» is representable in K*, then
either 1) m=9 or 2) m =19,
Proof : Let ¢C be an arbitrary algebra of K* representing
{ 0,0,2,m)» o If (L€ D & K*, then by Theorem 2,1, we have
m = 9. Thus, we may assume that (T ¢ K¥ —‘Ee By Theorems lo.l,
1.2 and Corollary l.4, it Pfollows that (7 is a lattice. If (T
is modular, then m = p3(68) = 19, If ¢ is non-modular, then

by Lemma 3.2, we have m > 19, Hence Theorem 3.3 follows.

Corollary 3.4.

If the sequence ( 0,0,2,m ) is representable in K¥* - D,
TN N

then m = 19.

Theorem 3.5.
Let (¢ be an algebra in K¥. Then (7 represents the

sequence ( 0,0,2,19 » if and only if (€ M =D

Remarks.

(1) It is well-known that the free modular lattice with four
generators is infinite ( see{ 1 1)e Thus, it follows that
the cardinal Py in the representable sequence (0,0,2,19,p4>
with respect to the class}f;* cannot be finite.

(2) It was pointed out by A. Waterman ( [11, p.150 ) that
the free lattice on three generators over the equational

class N5 generated by N5 consists of 99 elements. Thus,
~

175



it follows immediately that p3(d’5 } = 90, for each (T of gso

Hence, following the same reasoning as in distributive and

modular lattices, we have the following conjecture @

Let ¢(C € K*. Then ([ € N if and only if 17/

5
represents the sequence {090,2,90> °
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CHAPTER 2

THE MINIMAL EXTENSION PROPERTY

In 1969, G. Gritzer ( see[7 ] ) introduced the following
concepte
Definition. A finite sequence <po,p1,“.,pn> of cardinals is

said to have the Minimal Extension Property ( M.E.P. ) with

regpect to the classﬁ/ if the following conditions hold @

1) there exists an algebra % in C such that
p (%) =p, for0=<k=n,

2) if ¢ is an algebra in C satisfying pk(da) = Py
for 0 = k == n, then pk( QL*) == pk(dZ) for each

k = 091’29000,080

If C is the class of all algebras, then we say that the

~

sequence <po,pl gese ,pn> has the Minimal Extension Property.

Thus, if a finite sequence <po’p1’°°°’pn> has the M.E.P.
with the minimal extension sequence ~(pj(0’2) > 5 it is clear
that any sequence (pJ.) with P, =< pt(é’Z) for some t > n
cannot be representable. Therefore, to get some significant
result, we need only to investigate the sequences (pj>
with p,_ == p (C), for each k¥ > n.

k k
In this chapter, we shall show by applying previous

resultg thot some finite sequences do possess this property.

177



l. Examplese.

In order to clarify this concept, we shall now give some
examplese.
Example . 1. The sequence {0,0,) has the M.E.P. with the
minimal extension < 09050009090000 > which is represented by

any trivial algebra ( i.e., a non-empty set with no operations ).

Example. 2. The sequence <0,0,1> has the M.E.P. with the
minimal extension (05051,1500051315000 ) which is rTepresented
by any non=trivial semilattice.

Indeed, if ¢ is an arbitrary algebra representing {0,0,1> ,
then ¢ has one commutative esgentially binary polynomial. As
¢ has no conatants, it follows from Lemma 1.1 (I,1) that

Pn(/[) = 1.

Example 3. The sequence (0,0,2% has the M.E.P. with the
minimel extension ¢ 0,042;0506030,000> which is represented

by any nonetrivial diagonal semigroup.

Example 4. ( G. Gritzer and R. Padmanabhan [10] ) The sequence
{ 0,041,3 > has the M.E.P. with the minimal extension

< 0,0,1,3,5,11,,',.,.,,3_%(2n - (<1)")y+.. > which is represented

by an idempotent reduct { Gj. > of abelian group (G;+) of

exponent three ( i.€oy 3% = O o

Example 5. ( J. Plonka [35] ) The sequence {0,0,2,3> has
the M.Z.P. with the minimal extension < 0;04243,4y55e00yny000>

vhich is represented by any algebra bélonging to one of the
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four equational classes described in [35] .

Example 6. The sequence ¢ 0,0,0,1) has the M.E.P. with the
minimal extension (0,04041,05130,1,040005000% which is
represented by an idempotent reduct <B;g>’ of a Boolean group
<IB;+> ( 2 group in which all elements different from the

zero element are of order itwo ) where g(x,&,z) =X + Y 4+ Ze

In facty, it has been shown by Jo Plonka [ 31] and K. Urbanik

[ 42] that {(Bjg) represents the sequence {04040,15041,050000%0
On the other hand, let A ve an arbitrary algebra representing

{ 0,0,0,1 > o Then & has a symmetry essentially ternary
polynomial., Thus, by a result of E. Marczewski [22] , we have
() =1, for each k = 0,152,000 o Therefore,

P30k
pn(ﬂ) = pn(B)g for each n = 0,1921090 °

2. Main Results.
In this section, some special finite sequences described
in the previous chapters will be shown to have the M.E.P. »
First of all, as a consequence of the results in Chapters 1
and 2 (I), we have the following 3
Theorem 2.1
The sequence < 0,0,1,2,11 » has the M.E.P. with the minimal
extension <:O,Oglv29119136,oeogpn(II(l)),ooo > e
Proof ¢ According to Proposition 1.8 (II,2), we have p4y(11(1))

= 11. Thus, the algebra II(1) represents the sequence
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{ 0,0,1,2,11 > &
Let & be an algebra representing ¢ 0,0,1,2,11> . A4s
Z represents {0,041,2) , it follows by Theorem 3.1 (I,1)
that ¢ can be represented as an algebra belonging to either
,151 or ,1520
Ir L€ X, » by Theorem 3.1 (I1,1), & contains I(j) as
a subalgebra for j = 1,2,3;4e It is a simple matter to check

the following 4-ary polynomials are essential and distinct

over I(1) :
[ X XpE %, g

f(xl 9X21x3 )x4v f(xzvx3sx4)xl 9 f(x393'4vxl )sz
f(x4,xlgx2)x3,

f(xlx29x3,x4), f(xlx3§xz,x4), f(x1x4,x2,x3),

f(x2x3,x4,xl), f(x2x4,x1,x3), f(x3x4,x1,x2),

b f(x1'x3px4)f(xegx3,x4) o

Thus, p,((0) = p,(1(3)) = p,(1(1)) >11, by Theorem 3.5 (I,2),

4
which is a contradiction,

Hence, it is necessary that égefgz. However, by Theorem 3.1
(II,1) again, ¢C contains II(j) as subalgebra for some j = 1,2,3,4
Thus, pn(éZ) > pn(II(j)) = pn(II(l)) by Theorem 3.5(I,2).

This completes the proof of our Theoremo

Remarke

The fact that p5(11(1)) = 136 will be shown in Appendix.
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By using a similaf argument, it is not difficult to extend
Theorem 2.1 to the following resulte.
Theorem 2.2,

For each positive integer k, the sequence

_—

{ o,o,ﬁ?.,l,z,lé(kﬁ)(mn> hag the M.E.P. with the minimal

extension <o,o,’i?.lff;i‘,2,1+%(k+3)(k+4),,,,,pn( R(k42))goae d o

Theorem 23«
The sequence ¢ 0,0,2,9> has the M.B.P. with respect to

the class 3;.

Proof : Consider the two-element lattice sz. Since Czis digtri-
butive 3 by Theorem 3.2 (III,1), 02' represents the sequence {0,0;2,9) o
If & is an algebra ofg(_, representing <0,0,2,9> g then by

Theorem 2.1 (IV,1), &£ is a distributive lattice. Since

pz(JZ) =2, |A] > 2. Hence, ¢Z contains C,as a sublattice.

Thus, pn(dZ) > pn(02 ), for each n = 0,1,2;000900 o By

definition, < 0,0,2,9 > has the M.E.P. with respect to K.

Theorem 2040
The sequence (0,0,2,10) has the M.E.P. with respect to

the class K.
Proof : By Theorem 4.1 (III,1), the algebra of(4) represents
the sequence < 0,0,2,10% &

Let ¢ be an algebra of ¥ which represents {0,042,10) &
Then, by Theorem 4.2 (III,1), (¥ contains oL(4) as a sub-
algebra. Thus, pn(G'Z') >pn( ol (4)), for each n. Hence,

Theorem 2.4 follovse
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Theorem 2.5.

The sequence { 0,0,2,19 > has the M.E.P. with respect to
the class X* .
Proof : Consider the lattice M. It is non-distributive but

5
modular. Thus, invoking Theorem 3.5 (IV,1), ¥ Tepresents

{0,0,2,19> .

Let (X be an algebra offl\(/* repregenting <0,0,2,19> °
Then, again, by Theorem 3.5 (IV,1), 2 is a non-distributive
but modular lattice. Since £ is non-distributive ; it contains
M. or N_ as sublattice. Since ¢ is modular ; N5 cannot be a

5 5

sublattice of ¢ « Therefore, (¢ must contain M. as sublattice.

5
Thus, we have pn(éZ) = pn(M5)° for each n = 0;1425c00

proving that <0,0,2,19> has the M.E.P. with respect to K*.

It is known by Example 3 in section 1 that the sequence
< 0,0,2> has the M.E.P. . By restricting ourselves to some
special class of K, it can be shown that <0,0,2) still has
the M.E.P. with respect to such class of algebras. Indeed, we
have
Theorem 2.6,

1) The sequence { 0,0,2 has the M.E.P, with respect to
the glass ‘I\(/* o The algebra representing this sequence with
minimal number of essential polynomials is the two-element
chain.

2) The sequence {0,0,2) has the M.E.P. with respect to
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the class M - D. The algebra in M = D representing this sequence

with minimal number of essential polynomials is the M5 lattice.

Finally, we have the following @
Theorem 2.7.

The sequence { 0,0,3,7 > has the M.E.P. with the minimal
extension < 04073,7515000092 = 1yoccgess > o
Proof : Let Z* = {A;+,.) be an algebra where "+" is a
semilattice operation and "." is a partition function ( see
(I11,2,3) )o Thus, it is known that po(d?*) = pl(éz*) =0
and pn(CZ*) = 2" 1, for n = 2.

Let (Z be an algebra representing < 0,0,3,7> o Then, by
Corollary 3.2 (III,2), we have

Pn(éz) =" 1= pn(cﬁ*), for n = 2.

Hence, Theorem 2.7 follows.

As a conclusion; we give the following table which shows

all the resulis on this topic.
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The sequence With respect The minimal extension

to the class sequance

1 [ {0,0) {0§0900005050000 3

2 {0,0,0,1) { 040,041,0,1,0,1405000 »

OV U USROS, SO

3 |{0,0,1) { 0904151, 00091lg000 3

4 [{0,0,1,2,115 ' { 04051,2,11,13650000 )

= et e s — - ——— VU AU VR U I

5 <anar]—-;—}i-;il9291‘@}2'(1{‘%'3)(1”'4) >

1
6 |{0,0,1,3 { 0,0,1,3,,”,.3(2“-(-,1)“),“ )
7 1{0,0,2) { 05042,05000905000 )
8 [{0,0,25 K* { 09092y9p0000050000 )
9 [{0,0,2) M-D { 09052,19500090000 )

10 [{0,0,2,3) { 0405239490009 Ng000s D
U SN . o . .. RS e e e e = e v s

11 | {0,0,2,9) K { 0509259g0000g0000s >
12 | {0,0,2,10) X { 05052910565 050000 )

13 \;0’092919> K* \/ 090’2g1990@099009 >

14 |{0,0,3,7) {05053y Tgo000s2 15000
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= — 1

Algebra representing the minimal

extensgion sequence

Reference

Trivial algebra

Idempotent reduct of Boolean group

Semilattice

Idempotent reduct of abelian group
with 3x = 0

Diagonal semigroup
Two-=glement chain

¥y

Algebre in one of the four
equational classes

Two—-element chain
oC (4)
M

5

Semilattice with a partition
function

see Theorem 2,1(IV,2)

see Theorem 2.2(IV,2)

see G.Gratzer and R.

see

see

see

gee

see

gee

see

| _Padmensbhen [101

Theorem 2.6(IV,2)

Theorem 2.6(IV,2)

J.PXonka [ 35 ]

Theorem 2.3

Theorem 2.4

Theorem 2.5

Theorem 2.7

NUSSESp N

10

11

12

13

14
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CONCLUSION

Since the appearance of G. Gratzer, J. Plonka and A. Sekanina's
paper [ 11 ] , a number of important developments have taken place
in the study of {p > sequences ( see the Bibliography )o As
a result of all this pioneer work, the topic not only provides
a new line of research but also has become recognized as a sub-
stantial branch of Universal Algebra.

In the investigation of this topic, one will owe much to
one’s close acquaintance with the properties of operations and
polynomials. In view of this fact, the intensive and systematic
gtudy of operations and polynomials becomes very necessary and
important. As a result of the consideration of the connections
between these basic concepts, it is naturally expected that
gseveral new algebras will be discovered and described,; which,
undoubtly, will enlarge the contents of Universal Algebra.

There are a good few disections that research can take in
order to enrich the theory. The results established in this
thesis present some of them. As a conclusion, we would like
t0 mention zome related problems on which further research is

called for.
Problem 1. Prove that the sequence {0,0,1,2> has the

MOEOPO [-3

I{ is surprising that even though we considered algebras
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representing (0909192,\ in detail, we could only prove the
weaker result, that the sequence { 0,0,1,2,11) has the M.E.P. .
According to some results in (I,2) and the fact that
P4(II(1)) <p4(I(1))9 it is easy to see that the sequence
{ 0,0,1,2> has the M.E.P. if and only if pn(II(l)) = pn(l(l)),
for all n. Let p and g be two distinct essentially n-ary poly-
nomials over II(1). It can be shown that if n<7 , then p
and g are again distinct essentially n-ary polynomials over
I1(1). However, if n == 7 , this situation may fail to be
occur. For instance, take

p = f(f(xl,x2,x3),f(z4,x5,x6),x7)f(xl,x4,x7)
and q = f(xl,x2,x3)f’(x49x5,x6)f(xlgx4,x7) R
Therefore, the natural method cannot be applied to prove that
pn(II(l)) < pn(I(l))e In spite of this, we strongly suspect
that p (II(1)) << p (I(1)). In this situation, of course,
some new techniques are needed to attack this somewhat difficult

problem.

Problem 2. Classify the algebras representing ¢ 0,0,2,m)

for 0 < m << 20.

For 0 < m << 20, the sequences { 0,0,2,m)> vhich are
known 10 be representable so far are only the following : ( see
(III,1) and (IV,1) ) ¢ 0,0,2,0) , {0,0,2,3) , {0,0,2,6) ,
{050,2,9),{0,0,2,10> and < 0,0,2,19> o Algebras representing

the first three sequences have one non-commutative essentially
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binary polynomial while those representing the last three seg-
uences have itwo commutative essentially binary ones. Are there
any relations between these two categories ? Do there exist
other new sequences < 0,0,2,m> , O << m << 20 , which are

Tepresentable ?

Problem 3. Let Y be a set of identities including one
of the absorption laws such that JF¥ =L . Let C be the
class of algebras satisfying [ - { absorption laws] and

representing \/090,2 > o Is it true that L=L2

In (IV,I,1), we proved the above conjecture for some
special sets of identities. Observe that one inclugion C O L

is obvious.

Problem 4. Let (7 ¢ K. Is it true that ( € M if and

only if ( represents ('0,092,19‘} ?

We have proved in (IV,1,3) the above result for (L € l(/* e

It is hopefully the case that the class K* can be extended to K.

Problem 5. Prove or disprove that the sequence ( 0,0,3)

has the M.E.P. Ps

It was shown in (IV,2) that the sequence { 0,0,3,7> has
the M.E.P. with minimal extension \"\, 0909397915990'»92!1" 1,oeoee> °
It is still not known whether the sequence \" 0,0,3,7> can be

reduced to \/0,0,3> °
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Problem 6. Study the sequence < 0,0,4,m > o

The sequences < 0,0,1,m)> , < 0,0,2,m» and { 0,0,3,m )
have been dealt with in this thesis. It is natural to go one
step further by considering <0,094,m> o Of course; the larger
the cardinal Pys the more complicated situation we have.
Observe that if (U represents {0,0,4) ;, then (U has either
(1) +two non-commutative essentially binary polynomials 3 or
(2) two commutative essentially binary polynomials and one
non-commitative essentially binary polynomial ; or (3) four
commutative essentially binary polynomials. We have no inform—
ations about any algebras representing < 0,0,4,m > except the
following result due to Jo Gerhard ( see[ 51 ) : Let &l be
an idempotent semigroup satisfying abed = acbd . Then

pn(c{,’) = n%, for n=>= 2.

Problem 7. Let {pn> be a sequence of cardinals
which is represented by an idempotent, equationally
complete algebra. Is it true that there exists a “k"
such that the sequence <O,O,p1,p2,“°,pk> has the

M.E.P. with the minimal extemsion { p > ?

The above conjecture ig falge for general algebras. In
fact, B, Fried has recently found an algebra ¢/ of finite type
which is the three-element tournament lattice such that for
each k, the sequence {O,ngl(éf),e”,pk(&'f)} has no M.E.P.

with the minimal extension (pn(cf)> o Another example of



such a sequence is <pn(0°)> of JoA. Gerhard [ 5] » However,

it is still not known for algebra which is equationally completeo.

Problem 8. Does there exist a finite sequence
{ 040,p;5ee000yp, > which is representeble but has no

MOEOPO ?

Problem 9. Characterizes the projective and injective

algebras in the equational classes /{{4 and 52.
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APPENDIX

With the help of the results in ( II,2,1 ), it can be shown
that there are exactly 136 distinct essentially 5-ary polynomials
over the algebra II(1). In facty, if, for simplicity, we write
i for x,, ij for xiszand (4,B4C) for £(A,B,C), then these 136
polynomials are precisely the following 2
12345
(15293)45 (1,2,4)35 (1,2,5)34 (1,3,4)25 (1,3,5)24

(1,495)23  (2,43,4)15 (2,3,5)14 (244,5)13 (34,5)12

(243,1)(3,4,5)
(1,3,2)(2,4,5)
(1,2,3)(3,4,5)
(152,4)(4,3,5)
(1,2,5)(55354)

(254,1)(2,355)
(¥54,2)(243,5)
(15453)(352,5)
(15354)(4,2,5)
(15345)(5,254)

(2,5,1)(1,3,4)
(15552)(2y354)
(15543)(32,4)
(15594)(442,3)
(19445)(542,3)

[ ((15243)44+5) ((15254)4355) ((152,5)53,4) ((193w4)9295)
((15355)5204) ((1,4,5)52,3) ((243:4),145) ((2,3,5)51,4)

((24445),1,3)  ((34445)5152)

(1,253)(243,4)5
(2,1,3)(153,4)5
(1,253)(2,3,5)4
(251,3)(1,3,5)4
(1,2,5)(245,4)3
(251,5)(1,5,4)3

(152,4)(2,443)5
(251,4)(15443)5
(1,2,5)(2,5,3)4
(241,5)(155,3)4
(1,2,4)(2,4,5)3
(251,4)(1,4,5)3

- 19T

(1,344)(35452)5
(391:2)(142,4)5
(153,5)(355,2)4
(39152)(1,245)4
(145,4)(5,4,2)3
(591,2)(1,2,4)3



(155,3)(5,3,4)2  (1,5,4)(5,4,3)2 (1,3,4)(3,4,5)2
(55153)(153,4)2 (5,154)(15443)2 (351,5)(1,5,4)2
(55253)(25354)1  (542,4)(2,44301 (593,4)(3,4,2)1
(2,5,3)(5,3, 401 (245,8)(5,4,3)1  (3,5,2)(5,2,4)1

(152,3)(1,2,4)(1,2,5)
(15452)(1,4,3)(1,4,5)
(243,4)(253,5)(24351)
(24551)(2,5,3)(2,5,4)
(39591)(355,2)(355,4)

(1,2,3)(2,3,4)(3,4,5)
(1,245)(24543)(543,4)
(152,4)(2,4,5)(455,3)
(24153)(243,4)(3,4,5)
(251,5)(15553)(553,4)
(29154)(15455)(455,3)
(24394)(3,4,2)(4,1,5)
(244,5)(45551)(5,1,3)
(29395)(35554)(5,4,1)
(352,2)(1,2,4)(2,4,5)
(351,5)(1,5,2)(552,4)
(351,4)(1,445)(455,2)
(35244)(24,5)(455,1)
(3;455)(45551)(551,2)
(35255)(2,544)(554,1)

+ (193,2)(2,3,4)(243,5)

(14552)(1,553)(155,4)
(25491)(2,4,3)(244,5)
(39451)(35452)(344,5)
(49551)(45592)(44543)

(1,2,4)(2,4,3)(4,3,5)

.(1,2,3)(29395)(3,5,4)

(152,5)(255,4)(5¢443)
(24T54)(1,4,3)(443,5)

(29193)(19395)(39594) '

(251,5)(145:4)(5,4,3)
(29355)(355,1)(551,4)
(29354)(354,5)(4,5,1)
(294,5)(45553)(5,341).
(35194)(15452)(4452,5)
(39152)(142,5)(2,5,4)
(35145)(3,5;4)(5,442)
(39245)(2,5,21(5,1,4)
(35294)(2,441)(441,5)
(35495)(4,552)(5,2,41)
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(451,2)(1,243)(2,3,5)
(4,155)(1,5,2)(5;2,3)
(45153)(15355)(3,552)
(45243)(2,3,1)(3,1,5)
(443,5)(35551)(551,2)
(45255)(24543)(54351)
(551,2)(152,3)(2,3,4)
(55154)(1,4,2)(442,3)
(55153)(1,3,4)(3,4,2)
(59293)(24351)(3,1,4)
(59354)(35451)(4,1,2)
(59254)(244,3)(43,1)
(153,4)(3,442)(4,2,5)
(15455)(45552)(54243)
(14355)(3,554)(5:4,2)

(45153)(143,2)(352,5)
(451,2)(1,2,5)(2,5,3)
(49155)(14553)(553,2)
(45255)(245,1)(5,1,3)
(45253)(24355)(335,1)
(45355)(35552)(5,2,1)
(59153)(153,2)(3,2,4)
(55152)(192,4)(2,443)
(50154)(194,53)(44352)
(501254)(29451)(451,3)
(50203)(29304)(3,4,1)
(59394)(39452)(452,1)
(15355)(3+552)(5:254)
(15394)(35455)(445:2)
(154,5)(4,553)(59352)
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