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ABSTRACT

Under the normality assumption. four univariate exponentially moving av-
erage single control charts are proposed and they are designed to monitor simul-
taneously both the process mean and the process variability. The performances
of these four charts are evaluated by comparing their average run lengths among
themselves as well as to two other competing combination charts. Based on the
comparison of the six univariate charts. a multivariate exponentially moving aver-
age single control chart is developed as an extension of one of the best univariate
charts. This chart performs better than the combination of the two widely nsed
multivariate charts when small changes are of interest.

In dealing with positively-skewed distributed data. the direct logarithmic
transformation may result in a control chart with inappropriate control parameters
in the application of quality control. When a specific interval for the lognormal
mean is given. a new method is introduced to set up two control charts and these
two charts can monitor a process for which the underlyving distribution of the

quality characteristic is lognormal.
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CHAPTER 1

Introduction

1.1 Overall View

Efforts to improve quality of industrial products brought on the technique
of statistical quality control. A major objective of statistical quality control is to
monitor an ongoing process and to detect quickly the occurrence of process shifts
so that corrective action may be taken. As a result. the process can be kept in a
state of control for long periods of time. For this purpose the control chart is one
of the most useful tools and has been widely used in quality control since the early
1920s.

If the measurement of the quality characteristic has a continuous scale. the
quality characteristic is usually called a variable and the control charts dealing
with continuous data are collectively called variables control charts. Using this
general type of control chart. the variables mostly controlled are the mean value
and the dispersion of the quality characteristic. To determine a state of statistical
control. two separate charts are used traditionally: one is an .Y chart and the other
is either an R chart or S chart. The X chart is used for controlling the central
tendency. while the R chart or S chart is used for monitoring the variability of the
process.

Since Shewhart {51] introduced control charts, practitioners in quality con-
trol have commonly used these well-known Shewhart control charts. Shewhart
control charts are simple to construct and easy to understand. If the distribution
of the characteristic is approximately normal and the process changes are moder-

ately large, these charts are very effective in detecting mean shifts and variability



changes of the process.

However. Shewhart control charts have some disadvantages. Firstly. they
only make use of the information about the process contained in the last plot-
ted statistic and they are ineffective in detecting relatively small changes in the
process. Secondly. since changes may exist in both process average and process
dispersion. it is inconvenient to use two control charts in monitoring the process
center and the process spread separately. Thirdly. in some situations the under-
lying distribution of the quality characteristic may be very different from normal
and therefore Shewhart control charts may not be appropriate. Finally. sometimes
a process is influnced by simultaneous effects of several quality characteristics and
the univariate Shewhart control charts may not be able to control these quality

characteristics effectively.

1.2 OQutline of the Thesis

As Parr [45] pointed out. as the level of quality maturity of a company
increases there will be a corresponding increase in the use of variables control
charts. This dissertation is mainly concerned with variables control charts. The
overall review of literature in Chapter 2 shows that. to develop effective alternatives
to the Shewhart control chart. the latest trends in control charting methodology
have focused on two research fields. One is the highly sensitive control chart. which
is sensitive to small changes within a process. and the other is the single chart.
which employs a single plot to monitor both the mean and the variability of a
process.

Several new sensitive sinigle control charts are developed in this dissertation.

In Chapters 3, 4, 5 and 6, four univariate Exponentially Weighted Moving Average

[ 3]



(EWMA) single control charts are proposed and their performances are studied. In
Chapter 7. the performances of these four charts together with that of two existing
combined univariate control charts are compared. Based upon ARL comparisons.
diagnostic ability studies for three of the preferred control charts are discussed.
In Chapter 8. two existing control charts based on the lognormal distribution are
critically examined and a new method is proposed to set up control charts for
variables having this lognormal distribution. Based on the comparison of the six
univariate charts. a multivariate exponentially moving average single control chart
is developed as an extension of one of the best univariate charts in Chapter 9. This
chart performs better than the combination of the two widely used multivariate
charts when small changes are of interest. Finally. conclusions are drawn and
recommendations are given in Chapter 10.

Several computer programs written in FORTRAN 77 code are included in
Appendices A and B. These programs are designed to obtain Average Run Lengths
(ARL'’s) for all the new control charts and the existing control charts considered.

and to obtain simulations of diagnostic ability studies for the three preferred control

charts.

1.3 Notation

The notation below is used throughout the thesis.

SPC Statistical process control

EWMA Exponentially weighted moving average
CUSUM Cumulative Sum

UCL Upper control limit

CL Center line of a control chart



LCL
ARL
CDF
pdf

Lower control limit

Average run length

Cumulative distribution function
probability density function

Dimensionality of a vector

Equal size for all samples

Total number of samples taken from an in-control process
Process mean

Process mean vector

Process variance

Process standard deviation

A kxk process covariance matrix

Determinant of the process covariance matrix

Correlation coefficient of two quality characteristics

Mean function of a distribution

Variance function of a univariate distribution

Covariance function of a multivariate distribution
In-control ARL of a control chart

Standard normal distribution function

Standard normal density function

Inverse of standard normal distribution function
Chi-square distribution function with v degrees of freedom
Noncentral chi-square distribution function with v degrees

of freedom and noncentrality parameter §°



Fu;.u«:(')
X ~ N 0?)

X ~ LN(p.0?)

X~

‘Y ~ Ful.ll'z

X ~ Ni(p. X)

favyl W2

Xi;

Chi-squared density function with v degrees of freedom
Noncentral chi-square density function with v degrees

of freedom and noncentrality parameter §2

F distribution function with (1. vs) degrees of freedom

A random variable X follows the normal distribution

with mean p and variance o?

A random variable X follows the lognormal distribution
with parameter p and o2

A random variable X follows the chi-square distribution
with v degrees of freedom

A random variable .X follows the non-central

chi-square distribution with v degrees of freedom

and noncentrality parameter J°

A random variable X follows the F distribution function
with (1. 1,) degrees of freedom

A kx1 random vector X follows multivariate normal distribution
with mean vector g and covariance matrix ¥

Percentage point of the standard normal distribution

such that 1 — ®(2,) = «

Percentage point of the chi-square distribution with v degrees
of freedom such that 1 — H,(x2,)=«a

Percentage point of the F distribution function with (v, 1)
degrees of freedom such that 1 - F,, ,.(fau 0.) = @
Measurement of a quality characteristic on the j*

observation in the i** sample, i=12...and j=1,2,...,n;



[Z YT O

N > U

Measurement of a kx1 vector of quality characteristics

h sample mean of a quality characteristic. = ni ;":l X
i*" sample mean of a kx1 vector of quality characteristics.
=% Z?:L X
h sample range of a quality characteristic.
= ma;L'{X,»l. .Yig, e .Ym'} - min{.‘(,-l. )("2 ....... X ’gn,}
h sample variance. = oo (X - Xi)?
i*" sample standard derivation

Sample covariance between two quality characteristics.
=AY Xa - X)X ~ Xo)

i*" kxk sample covariance matrix whose elements are sample
variaces and covariances

Sample generalized variance which is the determinant of S;

Grand average of sample means. =Ly" X

Grand average of sample ranges. = %ﬁ:‘—n@-

Grand average of sample variances. = —T';..L(I%%_UTS)'-
Grand average of sample standard deviations. =Vs2
Grand average of sample mean vectors. =+ X
Grand average of Axk covariance matrices. =157 S
A smoothing constant for EWMA scheme. 0<A<l1

A multiplier of the standard deviation for an EWMA statistic
A multiplier of a step-shift in the process mean.

e, g = o+ aog

A multiplier of a step-change in the process standard deviation ,

i.e., o = bag



m-+

v+

m+v+

The largest integer that is smaller than or equal to y

Average of sample sizes. =257 n

A control chart constant associated with R

A control chart constant associated with S

Number of times that only an increase in the mean is detected
Number of times that only a decrease in the mean is detected
Number of times that only an increase in the variability is detected
Number of times that only a decrease in the variability is detected
Number of times that increases in both the mean and the
variability are simultaneously detected

Number of times that an increase in the mean and a decrease
in the variability are simultaneously detected

Number of times that a decrease in the mean and an increase
in the variability are simultaneously detected

Number of times that decreases in both the mean and the
variability are simultaneously detected

A plotting character of an out-of-control signal when only

the process mean is up

A plotting character of an out-of-control signal when only

the process mean is down

A plotting character of an out-of-control signal when only

the process variability is up

A plotting character of an out-of-control signal when only

the process variability is down

A plotting character of an out-of-control signal when both



m-+v-

m-v+

m-v-

the process mean and the process variability are up

A plotting character of an out-of-control signal when process
mean is up and the process variability is down

A plotting character of an out-of-control signal when process
mean is down and the process variability is up

A plotting character of an out-of-control signal when both

the process mean and the process variability are down



CHAPTER 2

Review of the Literature

2.1 History and Evolution of Quality Control

In the earliest of time. ancient people were concerned about quality of
products and it is known that rudimentary techniques for quality control must
have existed (Wierda [58]). Before industrialization. individual workers inspected
the quality of their own work and were responsible for providing the quality the
market demanded. Gradually. as the capacity to produce products grew and work
became more specialized. inspectors had the responsibility for quality and their
job was to inspect the work of others.

The industrial revolution increased productivity as well as the need for
standardization of products. In large factories the burden on the inspectors was
too heavy and independent inspection departments were created. The method
of controlling quality was mass inspection of items produced and the technology
of quality control was developed to assist the inspection work. However. at that
stage, quality control was merely quality inspection without concern for quality
improvement. Quality was kept up only by removing unacceptable items produced
by the process. but assignable causes of the defects were neither identified nor
eliminated.

In the 1920's. it was realized that. to maintain the quality of products.
studying the underlying production process was more effective than inspecting all
the finished products. In addition to this important idea, another element for
quality control was developed at the same time. Sampling inspection began to be

considered in quality control as an alternative to 100 percent inspection. Much



of the earliest recorded work in quality control was done in the Bell Telephone
System. At Bell Telephone Laboratories. Walter A. Shewhart. with his colleagues.
recognized that variation in a process is a statistical phenomenon and developed
statistical methods for quality control.

In 1924. Walter A. Shewhart presented to his chief at Bell Telephone Lab-
oratories his first control chart showing the monthly number of percent defective
items in some unspecified piece of apparatus. In the December 1925 issue of the
Journal of the American Statistical Association. he published a paper entitled “The
Application of Statistics as an Aid in Maintaining Quality of a Manufactured Prod-
uct.” In this paper. he introduced the control chart. Later in 1931. he published
his famous book. Economie Control of Quality of a Munufactured Product. outlin-
ing the control chart method. This period is generally considered as the beginning
of statistical quality control.

In World War II. an immediate need for large quantities of war material
increased the productivity of American manufacturing industries. American in-
dustry rapidly expanded during the war. and therefore. those new and expanding
factories employed many inexperienced people. Quality then became more impor-
tant since the quality of the products suffered from the lack of skilled workers. As
a result. training programs were established by companies and the use of statisti-
cal quality control was taught during the training. The massive and widespread
training programs launched extensive applications among American manufactur-
ing industries. This brought about widespread use and acceptance of the concepts
of statistical quality control in manufacturing industries. At the same time. British
firms and others also witnessed similar development of statistical quality control.
After World War II, statistical methods for quality control were widely applied in

a variety of industries in America as well as in other countries.
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2.2 Theoretical Basis of Control Charts

The construction of a control chart is based on statistical principles. The
aim of a control chart is to recognize. from a sample. whether the obtained value
of a sample statistic deviates too far from a desired condition. If a sample is drawn
from a process whose variability is due only to chance causes. a sample statistic
will be distributed in an expected pattern and the process is assumed to be in a
state of statistical control. or simply in control. Otherwise. if a sample is drawn
from a process whose variability is due to assignable causes. the distribution of the
statistic is not desirable and the process is said to be out-of-control.

The control chart is a graphical statistical tool for monitoring the control
of a process. A typical univariate control chart displays a quality characteristic.
which has been measured from a sequence of samples. on a graph. For example.
Shewhart control charts contain a center line that represents the target of the
quality characteristic. Two control limits. the upper control limit and the lower
control limit. are located at a distance from the center line. These control limits
give the range of variability to be expected in the sample statistic when the process
is in control. Basically. the process is said to be in control when results behave like
sampling from a single population. A commonly used criterion for the in-control
state is that some sample points fall within the control limits and behave in a
random manner. However, if a single sample point falls outside of the control
limits or all the sample points behave in a systematic manner, this is an indication
that the process could be out of control. When such an indication occurs. taking
action to find and eliminate some assignable causes will keep the process in a state
of statistical control.

The statistical theory employed in control charts is the theory of hypothesis
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testing. Applying a control chart can be considered as doing repeated tests of the
statistical hypothesis that the process is in a state of statistical control. When a
sample point is plotted on the control chart. the hypothesis of statistical control is
to be tested based on the information obtained from the sample. A point falling
between the control limits is equivalent to accepting the hvpothesis. and a point
falling outside the control limits is equivalent to rejecting the hypothesis. As
in hypothesis testing. there are also two types of error for a control chart. The
probability of type [ error represents the probability that the control chart will give
an out-of-control signal when. in fact. the process is in control. The probability of
type II error represents the probability that the control chart will not detect some
assignable causes when the process is actually out of control. An optimal design
of a control chart is to achieve the smallest probability of type II error when a
desired probability of type [ error is given.

There are at least five reasons for the use of control charts (Montgomery {38])

1. Control charts are a proven technique for improving productivity:

Q]

Control charts are effective in defect prevention:
3. Control charts prevent unnecessary process adjustments:
4. Control charts provide diagnostic information:

5. Control charts provide information about process capability.



2.3 Developments in Control Chart Techniques

2.3.1 Shewhart Control Charts

Since Shewhart originated the concept of statistical control and the control
chart technique in 1920°s. his X. R and S charts have become the mostly commonly
used control charts in practice for variables data.

Suppose that a quality characteristic .X follows a normal distribution with
mean p and standard deviatiun ¢ approximately. Random samples of size n are
drawn from a population produced by the process. The .X chart. based on the
distribution of the sample mean obtained from the process. shows the variation in
sample averages. The R chart and the S chart show the general variability of a
process. and they respectively employ sample ranges or sample standard deviations
to monitor the process variability. It is customary to set control limits for these
charts at some multiple of the standard deviation of the statistic being plotted.
The most common multiple is 3 and they are called 3-sigma limits. In practice.
i and o are usually unknown. and they have to be estimated with preliminary
samples drawn from an in-control process.

It is important to maintain control over both the process mean and the
process variability, because the output from a process may be attributable to a
shift in the mean and/or a change in the dispersion. It is then necessary to monitor
both the shifts in the mean and the changes in the variability. Under normality
assumption, two control charts are often employed to separately monitor the mean
and the variability. Because people without sophisticated statistical knowledge can
easily understand the concept of measuring variability with the range. one of the
most commonly used pairs of charts is the combination of the X chart and the R

chart. But the range ignores all information between the two most extreme values,
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and it becomes less efficient. as a measure of variability. for large sample size. The
sample standard deviation makes use of all information available and can provide
a better estimate of the process variability than the range. Thus. the combination
of the X chart and the S chart is also used in quality control.

Shewhart control charts have many advantages. such as. their simplicity and
their effectiveness under certain circumstances. However. Shewhart control charts
also have some disadvantages. To improve on these. great efforts in research on
control charts have been made. and various modifications to Shewhart control
charts have been developed. Some modifications of Shewhart control charts are

still based on the statistics used by Shewhart. but others make use of new statistics.

2.3.2 High Sensitive Control Charts

To increase the sensitivity to small shifts in process mean. Weindling et
al. [56] modified Shewhart control charts and established a pair of warning limits
for the Shewhart charts. The warning limits are located inside the conventional
control limits. Corrective action will be taken when a run of a specified number
of consecutive sample statistics falls between the warning limit and the control
limit. The mean action time is a function of shifts in the process mean. and it is
used to measure the sensitivity of the modified chart. Small shifts are detected by
means of the occurrence of critical run accumulations in the warning regions: large
shifts are detected by means of a single sample statistic outside the conventional
control limits. Compared with the Shewhart control chart, the modified chart is
more sensitive for small and moderate shifts in the process mean. However, for
the modified chart. the drawback is that the false alarm rate will increase.

Page [44] proposed the cumulative sum (CUSUM) control chart as an alter-
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native to Shewhart control charts. Plotting the cumulative sums of the deviations
from a target value, the CUSUM chart directly incorporates all of the information
in the sequence of sample values. There are two forms for the CUSUM charts.
the tabular CUSUM. and the V-mask form of the CUSUM. The tabular CUSUM
employs two sample statistics: one is one-sided upper CUSUM that accumulates
the deviations above the target. and the other is one-sided lower CUSUM that
accumulates the deviations below the target. Being similar to Shewhart charts.
the tabular CUSUM still has two straight lines as its control limits. Instead of
conventional control limits. the V-mask form of the CUSUM requires the use of
a mobile V-shaped mask to decide whether a shift occurs. Of the two forms. the
tabular CUSUM is preferable due to its esier applicability. It is possible to de-
vise cumulative-sum schemes for a statistic that follows a non-normal distribution
to monitor process variability. Because the CUSUM chart combines information
from several samples. it is more effective than Shewhart control charts for detecting
small process shifts.

Another form of control chart. which has recently received a great deal of
attention and has gained extensive applicability. is the exponentially weighted mov-
ing average (EWMA) control chart. Robert [47] first developed an EWMA control
chart to detect shifts in the process mean. An exponentially weighted moving av-
erage gives the greatest weight to the most recent observation and the decreasing
weights to all previous observations in geometric progression from the most recent
to the first. As interest centers on early detection of smaller and smaller changes.
the appropriate smoothing value decreases from unity and becomes smaller and
smaller, and more information is gained from the past data.

Robert compared the EWMA control chart with a special kind of modified

Shewhart control chart and with the ordinary moving average control chart. The
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modified Shewhart control chart is based on a Runs Test that prescribes rejection
of the null hypothesis if a single sample point falls outside 3.13¢ limits or ten
consecutive sample points fall on one side of the central line of the control chart. For
the ordinary moving average control chart. the statistic is based on the average of a
set of sample means. To get the latest average. the oldest sample mean is dropped
and the newest one added to the set. Both of these two control charts are more
effective in detecting small shifts in the process mean than the Shewhart control
chart. Roberts siiowed that the EWMA control chart compare most favorably with
the modified Shewhart control chart and the moving average control chart with
regard to charting and statistical properties. Hence. the EWMA control chart has
high potential for on-line automatic sensing and control of manufacturing process.

Further research has also provided evidences that the EWMA control chart
is a useful process monitoring and control tool. Robinson and Ho [48]. Crowder [13].
and Lucas and Saccucci {36] gave numerical procedures which make the properties
of EWMA schemes easy to investigate. Roberts [47] and Chantraine [8] presented
graphical methods. which make the EWMA much easier to be applied in industries.
Hunter [25] viewed the EWMA as a compromise between the Shewhart and the
cumulative sum charting procedures. and promoted the EWMA as a method for
establishing real-time dynamic control of industrial processes.

In addition to many of the EWMA control charts constructed for monitoring
the mean of a process. Wortham and Ringer [59] suggested the use of the EWMA
to construct a control chart to monitor the variance of a process. Sweet [55]
modified Wortham and Ringer’s model. and proposed two models to construct
simultaneous control charts to monitor the mean and the variance of a process.
For the same purpose, Ng and Case [42] discussed the methodologies to construct

coupled control charts of the EWMA of the sample mean and the sample range.
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To detect increases in process variability. Crowder and Hamilton [14] developed an
EWMA control chart based on the log transtormation of the sample variance. They
showed that the EWMA control chart is superior to the Shewhart control charts
in term of its ability to quickly detect small increases in the standard deviation of

a normal process.

2.3.3 Single Control Charts for both Center and Spread

Using two control charts to separately monitor the process mean and the
process variability is usually inconvenient and time-consuming. In dealing with
theoretical issues as well as practical concerns. efforts have been made to design
a single control chart to achieve the same purpose as Shewhart control charts for
variables data.

White and Schroeder [57] introduced a simultaneous control chart. Through
the use of resistant measures and a modified box plot. this single chart controls the
process level and variability. Iglewicz and Hoaglin [26] extended and refined the
techniques discussed by White and Schroeder. It is argued that the simultaneous
control chart provides more effective decision making than the Shewhart control
charts. But the information contained in a single plot can be confusing due to
its complexity. and it may be ineffective for small sample size. Chan. Cheng and
Spiring [6] provided an alternative to the box-plot style of simultaneous control
charts that had added advantage of performing equally for both large and small
sample sizes. Except for the added advantage of appearing on a single chart. the
techniques used are similar to that of Shewhart control charts. However, this chart
is not simple since it requires plotting two types of quantities separately on a chart.

Domangue and Patch [18] discussed some EWMA statistical process moni-
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toring schemes. The control charts discussed are sensitive to changes in the mean
and/or the variability. but cannot indicate whether the change has actually oc-
curred in the process mean or in the process variability. Cheng and Li [10] pro-
posed a single variable T chart. which plots the sum of magnitudes of deviation of
the extreme values in the sample from the target value. Nuland [43] described the
“circle technique™. in which a circle is always involved. as ~an effective and simple
statistical technique for insuring compliance with ISO 9000". From the idea of
the “circle technique”. Chao and Cheng [5] developed a semicircle control chart to
jointly combine the detection of the location shift and the dispersion deterioration
into one chart. This chart is essentially a 2-dimensional chart and much easier to
use. Chen and Cheng [9] designed a single control chart. the Max chart. to monitor
both the center and the spread for variables data. The Max chart is shown to be
just as effective when it is compared with the combination of Shewhart control
charts. However. these single control charts. except for Domangue and Patch’s

charts. are not sensitive to relatively small changes within a process.

2.3.4 Control Charts for Non-normal Data

A fundamental assumption in the use of Shewhart control charts is that the
underlying distribution of the quality characteristic is normal. In many situations.
this assumption may be violated. Whenever the data indicate the normality as-
sumption is inappropriate. difficulties are probably encountered and satisfactory
results may not be obtained using Shewhart control charts. Even if the form of the
underlying distribution is known in some cases. it could still be difficult to derive
the sampling distribution of some statistics and to obtain exact probability limits

for the control charts.
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Morrison [41] described difficulties in the application of the traditional sta-
tistical control chart technique to some real data in industry. In the radio valve
industry it has been found that much of the thermionic valve test data are posi-
tively skewed. some to a very marked degree. For fitting these kinds of positively
skewed data. the lognormal distribution is widelv applied. Morrison discussed the
generation of these skew distributions in theoretical and practical terms. He in-
troduced a modified quality control scheme for these cases: the geometric sample
mean is used instead of the arithmetic sample mean as a measure of the process
center: ratio of maximum to minimum sample values is used instead of sample
range as a measure of the process variation: and the logarithmic transformation is
used to calculate control limits.

Morrison's paper offers a new method and a knowledgeable discussion for
dealing with non-normal data in the field of quality control. However. the con-
trol limits are obtained directly from the direct transformation of their normal

counterparts and may be inaccurate for the lognormal distribution.

2.3.5 Multivariate Control Charts

When a process is simultaneously characterized by more than one related
quality characteristics, a separate Shewhart control chart for each character can
give misleading results. Multivariate quality control techniques will take advantage
of the multivariate nature generated by the process. Suppose that several related
quality characteristics approximately follow a multivariate normal distribution. As
an extension of univariate control charts, many of the statistical techniques used in
univariate quality control have been modified and extended to multivariate quality

control.
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Hotelling [24] first proposed a multivariate approach to quality control.
and applied his procedure to bombsight production process during World War II.
He introduced the x? control chart, an extension of .X chart. as a technique for
monitoring a multivariate process. Hicks [23]. Jackson [27] [28]. and Montgomery
and Wadsworth [40] continued the research on control procedures for several related
quality characteristics.

As in the univariate situation. several alternative control charts to the y?
control chart have also been developed and some of them are more powerful in
detecting small shifts in the mean vector. Healy [22] and Smith (53] used the fact
that a cumulative sum control chart can be viewed as a sequential probability
ratio test to develop a multivariate cumulative control chart. In the univariate
CUSUM scheme. the nt* sample statistic is shrunk toward 0 by a constant. Crosier
[12] generalized the univariate shrinking method to the multivariate situation by
replacing the scalar quantities of the univariate cumulative sumn into vectors. Lowry
et al. [35] proposed a multivariate EWMA control chart. and showed that the
properties of the multivariate EWMA control chart are more similar to and often
even better than those of the multivariate cumulative sum control charts.

Because the concept of covariance is complicated and it is difficult to deal
with the changes in the covariance, very few papers are published on multivariate
control charts for dispersion. One approach is due to Alt [2], Alt and Bedewi [3].
and Alt and Smith [4]. They proposed three control charts. The first chart uses a
statistic that is the negative of twice the natural logarithm of the likelihood ratio
test statistic, which is slightly modified in order to make the test unbiased. The
second chart and the third chart employ the same statistic, namely, the generalized
sample variance |S|, which is the determinant of the sample covariance matrix of n

new observations. But the proposed control limits for these two charts are different.
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The control limits of the second chart are derived with the desired probability.
however, that of the third chart are determined by the expectation of |S| plus or
minus three times the standard deviation.

Hotelling [24]. Jackson and Hearne [30]. and Jackson [29] proposed another
line of approach. They used a generalized measure of the sample dispersion around
the sample mean to develop a control chart. This chart is a multivariate analog of
the univariate S? chart. and it is easier to construct than the charts developed from
the first approach because the exact distribution for the statistic is known and the
computation is simple. For a multivariate control chart. it is difficult to determine
which of monitored variables is responsible for the out-of-control signal. Alt [2].
Doganaksay. Faltin. and Tucker [17] and Fuchs and Benjamini [19] suggested using
univariate control chart for variability as a supplement to the multivariate control
chart. A disadvantage of this method is that it is unable to detect a change in
correlation structure.

Assuming the in-control covariance matrix is unknown. Wierda {58] pre-
sented four tests for the covariance matrix and concluded that the control chart
based on the modified likelihood ratio test performs very well. He recommended
using a hierarchical procedure that divides the modified likelihood ratio test statis-
tic into three components. A control chart is used for each component and the
univariate control charts are also consulted. These control charts can indicate
what happened with the covariance matrix when a signal occurs. and the univari-
ate control charts are able to detect changes in only the variances. However. this
procedure is complicated because a large quantity of computation is required.

Runger. Alt and Montgomery [49] developed a diagnostic. which is analo-
gous to measures of influences in regression modeling, for a x* chart. Utilizing the

correlation between the variables, the diagnostic effectively determines the root
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cause of an out-of-control signal. In addition to the simplicity of computation and
interpretation. this diagnostic could be useful for the signal from other control
charts. which are based on quadratic forms of the observed vector.

Based on the univariate semi-circle control chart. Cheng and Mao [11] ex-
tended the single control chart to multivariate situation and proposed a multivari-
ate semi-circle control chart for variables data. Based on the ARL performance.
it is shown that the control chart performs quite favorably relative to the combi-
nation of the x° control chart and the |S| control chart. As an extension of the
alternative variables control chart for univariate case. Spiring and Cheng [54] pro-
posed a single chart for the multivariate situation. The multivariate procedure is
similar to the traditional Hotelling x? style of charts but results in a control chart
that provides information regarding the process proximity to the target value as
well as the overall variability. However. similarly to their univariate counterparts.

these two single charts are insensitive to relatively small changes within a process.
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CHAPTER 3
The Max-EWMA Chart

3.1 Introduction

As illustrated in Chapter 2. there is an abundance of new developments
in control chart techniques. Much attention has been focused on developing two
kinds of control charts: the high sensitive chart. and the single chart. Among
those high sensitive charts. the EWMA-type chart is one of the most effective in
detecting small changes in the process mean and variability. However. to monitor
both the process mean and variability. two EWMA charts are usually required. For
the single charts that have been developed. they are capable of monitoring both
the process mean and variability. but are not sensitive in detecting small changes
within a process.

In this chapter. a new control chart. the Max-EWMA chart. is proposed.
This chart can simultaneously monitor both the process mean and the process
variability. and detect the source and the direction of an out-of-control signal.
[t is also sensitive in detecting small changes within a process. and capable of
handling the case of varying sample size. A design strategy using optimal A and L
is introduced. and an example is given to illustrate the implementation of the new

chart.

3.2 The New Control Chart

j=1,2,....n; Let uy be the nominal process mean and gy be a known value of

the process standard deviation, and assume that the process parameters y and o
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can be expressed as u = ug + agy and o = bgy. where a and b are constants and
b > 0. The process is in control when a = 0 and b = 1: otherwise the process has
changed.

It is known that X; and S? are uniformly minimum variance unbiased esti-
mators. which have many good features. for the process mean and variance respec-
tively. These two statistics are independent. but they follow different distributions.
When sample sizes are different. further complications arise since varying sample
sizes can cause varying control limits for the same statistics. To deal with the

above two situations. two transformed statistics from X; and S? are defined below:

Xi— o
Zi = 3.1
UO/\/ni (3-1)
W, = (I)‘I{Hn’_l [M] } (3.2)
]

It is apparent that Z; and W, are independent. When ¢ = 0 and b = 1.
both Z; and W; follow the standard normal distribution and they don't depend on
the sample size n;.

The two EWMA statistics. based on Z; and W;. are given by

Ui=(1- AU + AZ; t=1.2.... (3.3)

Vi=(l=-NVio + AW, i=12.... (3.4)

with Zy and W, as the respective starting values, 0 < A < 1.
Because U; and V; follow the same distribution. a new statistic for the single

control chart can be defined as

M; = maz{|Ui], [Vi[} (3.5)
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Notice that M, is the maximum of the absolute values of the two EWMA
statistics. It is natural to name this new chart the Max-EWMA chart. Construc-
tion of a Max-EWMA chart involves computing the value of M;.i =1.2..... and
plotting these points on a control chart. The statistic A/; will be observed over
time and its values can indicate the state of a process. A large value of M; means
that the process mean has drifted away from pg and/or the process variability has
changed. On the other hand. a small value of M; implies the process mean and
variability remain close to their nominal values respectively. Specifically. each M;
is only compared against an UCL since M; is a non-negative statistic. A value of
M; that is greater than UCL would cause an out-of-control signal. Otherwise. it

indicates that the process is in-control.

3.3 Derivation of the UCL

When e = 0 and b = 1. Z; and W, independently follow the standard normal

distribution V(0. 1). Assuming that U, = Vg = 0. U; and V] can be rewritten as:

i—1
Ui=A) _(1-AVZi, (3.6)
Jj=1
=1 ‘
Vi=A) (1= AW (3.7)
Jj=1
Then. it can be seen that
U; ~ N(0.0%) (3.8)

25



and

Vi~ N(0.07) (3.9)

All=(1-4)%1
where o}, =of, = J—-,%,\—'\)—-*

Because U; and V; are independent. the in-control cumulative distribution

function (CDF) of M, is found to be

F(!/:UU.) = P(-"’Ix < y)
= P(|Uil < y. Vil <y)
= P(Uil < y)P(Vil < y)

= [z@(%)y y >0 (3.10)

The corresponding probability density function (pdf) of M; is the derivative

of F(y:oy,) given by

o) = (Y yae( Yy —
f(y-o'u.)—05‘(9(0&)(2@(00') 1 (3.11)

Using numerical computation. the mean and variance of M; are obtained

B(M) = /0 "y f(y:ou)dy

1.1283790y, (3.12)
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and

x<
Var(M;) = / V2 (y: o0, )dy

= 0.36338107, (3.13)

respectively.

Therefore. the UCL is defined in a traditional way given by

UCL = E(M;)+ L/Var(M;)

= oy, (1.128379 + Lv/0.363380 )

Al = (1 =A%
- \/ Lt l |(1.128379 + 0.602810L) (3.14)

As i gets larger. the UCL will approach the steady-state value given by

A
UCL = \/ /\(1.1‘28379 + 0.602810L) {3.15)

[y

The design parameters of the Max-EWMA chart. L and A. control the performance

of the chart.

3.4 Design of a Max-EWMA chart

On the basis of the theoretical studies by Crowder [13] and Lucas and
Saccucci [36]. the criterion for designing an optimal Max-EWMA chart is to make
the chart have the best ARL performance. For a desired in-control ARL. if one
wants to detect a specified pair of changes in the process mean and variability
quickly, the combination of (A, L) for the optimal design provides the desired in-

control ARL and minimizes the out-of-control ARL for the specified changes in
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the mean and variability. For the Max-EWMA chart. there is no direct way to
compute the ARL. so each ARL value is obtained using 10.000 simulations.

For a given in-control ARL of 250. and A = 0.05(0.005)1. the corresponding
L is found such that the (A. L) combination gives the desired in-control ARL. Using
191 such combinations. each out-of-control ARL is calculated with respect to a pair
of specified @ and b. The optimal (A. L) combination. for a pair of specified a and
b. is the one which leads to the smallest value of 191 out-of-control ARL's.

The approximate UCL in Equation (3.15) is the steady-siate value that
will be approached after the Max-EWMA chart has been running for several time
periods. which is approximately taken as 5. It is more likely that the process will
stay in the in-control state for some period of time before it drifts to the out-of-
control state. Using the approximate UCL. Table 3.1 contains some representative
optimal values of (A. L) and the corresponding out-of-control ARL’s for n = 5 and
for various changes in the process mean and the process variability. with the in-
control ARL of 250 and the starting values Z; = Wy = 0. For example. if one
wants to have an in-control ARL of 250 and to guard against one quarter unit
increase in the mean and one quarter unit increase in the variability. i.e.. a = 0.25.
b = 1.25. the optimal parameter values are A = 0.185 and L = 4.028.

As illustrated in Table 3.1. smaller values of A are more effective in detecting
small changes in the mean and/or the variability. Although Table 3.1 contains
ARL'’s only for the desired in-control ARL of 250, the performance at other in-
control ARL'’s is nearly the same as when the in-control ARL is 250.

MacGregor and Harris [37] investigated properties of the EWMA chart. and
concluded that using the exact variance of the EWMA statistic leads to a natural
fast initial response for an EWMA chart. This means that initial out-of-control

conditions can be detected more quickly using the exact UCL in Equation (3.14).
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Table 3.1:

(A.L) combinations and the corresponding ARL’s for optimal
Max-EWMA control schemes in a steady state and n = 5.

ARLy = 250
a
b ™ 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00
Py 0.4900 0.4900 0.4900 0.5150 09500 1.0000 1.0000  1.0000
0.25 L |322112 3.22112 3.22112 3.22692 3.25645 3.25811 3.25811 3.25811
ARL 2.27 2.27 227 2.16 1.13 1.00 1.00 1.00 |
) 0.2200 0.2200 0.2200 0.4250 0.8750 1.0000 1.0000  1.0000
050 L |3.07464 3.07464 3.07464 3.20021  3.2573 3.25811 3.25811 3.25811
ARL 5.41 5.41 5.22 2.76 1.35 1.00 1.00 1.00
A 0.9900 0.0650 0.1600 0.4450 0.7350 0.9050 1.0000  1.0000
1.00 L |3.25728 265411 2.98588 3.20021 3.25629 3.25778 3.25811 3.25811
ARL | 24993  24.57 8.58 2.94 1.56 1.09 1.01 1.00
A 0.1500 0.1850 0.2450 0.4700 0.7700 0.9050 0.9800  1.0000
.25 L | 296515 3.02835 3.00836 3.21647 3.28794 3.25778 3.25844 2.79345
ARL 17.79 12.79 7.10 2.86 1.60 1.15 1.02 1.00
) 0.3600 0.4100 0.4650 0.5150 0.8050 0.8950 0.9950 1.0000
1.50 L | 3.17218 3.19524 3.21481 3.24252 3.25728 3.25828 3.25745  3.2581
ARL 6.28 5.69 4.51 2.52 1.59 1.19 1.05 1.0l
A 0.7800 0.8050 0.7400 0.8100 0.8600 0.8750 0.9600  1.0000
200 L |3.25811 3.25728 3.25629 3.25794 3.25960 3.25728 3.25745 3.25811
ARL 2.50 2.45 2.28 1.82 1.44 1.21 1.08 1.03
A 0.8550 0.8550 0.8500 0.8550 0.8650 0.8800 0.9500 0.9550
250 L |3.25044 3.25944  3.2590 3.25944 3.25861 3.25761 3.25645 3.25612
ARL 1.84 1.81 1.75 1.56 1.36 1.20 111 1.0
A 0.8550 0.8550 0.8550 0.8550 0.8650 0.8800 0.3800  0.8800
300 L | 325944 3.25944 3.25944 3.25944 3.25861 3.25761 3.25761 3.25761
ARL 1.66 1.64 1.60 1.50 1.36 1.24 1.14 1.08
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Table 3.2:

Max-EWMA control schemes in an initial state and n = 5.

(A\. L) combinations and the corresponding ARL’'s for optimal

ARLy = 250
a

b 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00
A 0.0500 0.0500 0.0500 0.0500 0.0500 1.0000 1.0000 1.0000

0.25 L 2.53632 2.53632 2.33632 2.53632 253632 3.25778 3.25778 3.2577
ARL 1.58 1.58 1.58 1.58 1.00 1.00 1.00 1.00
A 0.0500 0.0500 0.0500 0.0500 0.0500 0.0600 1.0000 1.0000

0.30 L 253632 2.53632 2.53632 2.533632 253632 2.62010 3.25778 3.2577
ARL 3.68 3.68 3.48 1.38 1.08 1.00 1.00 1.00
A 0.4950  0.0500 0.0500 0.0500 0.0500 0.0500 0.0500  0.1450
1.00 L 3.22261 2.53632 2.53632 2.53632 2.53632 2.33632 2.53632 2.95719
ARL | 249.84 18.58 5.97 2.05 1.26 1.04 1.00 1.00
A 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0650
1.25 L 2.53632 2.53632 253632 2.53632 253632 2.53632 2.53632 2.65411
ARL 12.54 9.02 4.87 2.06 1.32 1.07 .01 1.00
A 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
1.50 L 2.53632 253632 2.53632 2.53632 253632 2.53632 2.53632 2.53632
ARL 4.41 1.03 3.20 1.90 1.34 1.10 1.02 1.00
A 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
2.00 L 2.53632 2.53632 2.53632 2.53632 2.53632 2.53632 2.53632 2.53632
ARL 1.94 1.88 1.78 1.48 1.25 1.11 1.04 1.01
A 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
2.50 L 2.53632 2.53632 2.53632 2.53632 2.53632 2.53632 2.53632 2.53632
ARL 1.46 1.44 1.39 1.28 1.17 1.09 1.04 1.02
A 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
3.00 L 2.53632 2.53632 2.53632 2.53632 2.53632 2.53632 2.53632 2.53632
ARL 1.27 1.26 1.24 1.18 1.11 1.07 1.04 1.02
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The ARL performance of the Max-EWMA chart agrees with MacGregor and Har-
ris’ conclusion. Using the exact UCL. Table 3.2 also contains some representative
optimal values of (A. L) and the corresponding out-of-control ARL’s for n = 5 and
for various changes in the process mean and the process variability. with the in-
control ARL of 250 and the starting values Zy = Wy = 0. [t shows that all the
ARL’s in Table 3.2 are smaller than or equal to the corresponding ones in Table
3.1. An interesting phenomenon is that 0.05. the smallest value for A in the chosen
set. is the optimal value for A even if the changes in the process mean and/or the
variability are large. This is because. for a small A value. the exact UCL is much
smaller than the approximate one during the initial stage. In the initial stage.
using the exact UCL will improve the performance of the Max-EWMA chart in
detecting an initial out-of-control condition.

To detect small to moderate changes in the mean and the variability. the
recommended A values are in the range 0.05 to 0.30 because using smaller A values
can detect smaller changes. When using small A values. occurrence of an inertia
problem is the worst state for the EWMA-type control charts. For example. in
the worst-case situation. M; will be very near the UCL when a large change in
the other direction occurs. resulting in a slow reaction to the large change if a
small A value is used. To guard against this problem. one can simultaneously use
an additional Max-EWMA chart with A = 1. Montgomery [38] and Lowry [34]
discussed the inertia problem associated with the EWMA-type control charts.

Notice that when A = 1. this particular Max-EWMA chart is equivalent to
the Max chart which is a useful alternative to the common practice of using X and
S (or R) charts.

For given in-control ARL's of 185 and 250, and for some commonly used

A values, the corresponding L is found such that the (A, L) combination gives the
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desired in-control ARL’s when using the approximate UCL and the starting values

Zo = Wy = 0. Table 3.3 lists these (A. L) combinations.

Table 3.3: (A. L) combinations for Max-EWMA control schemes in a steady state
when sample size n = 3.

ARLy = 185 |
A 005 0.10 0.15 020 0.25 0.30 0.40 0.50 0.80 1.00
L 224 260 2.78 286 293 297 3.03 3.06 3.10 3.10
ARLy = 250
A 005 0.0 0.15 0.20 0.25 030 0.40 0.50 0.80 1.00
L 246 279 296 3.04 3.10 3.14 3.19 3.22 3.26 3.26

3.5 Charting Procedure

The charting procedure of a Max-EWMA chart is similar to that of any
other EWMA charts commonly used. The successive M[s are plotted on a chart
versus the sample number or time. However. to identify the source and the direc-
tion of an assignable cause. several plotting characters must be used along with
sample points.

The procedure can be briefly summarized in the following steps:

1. If yg is unknown. substitute X for io. If o is unknown. substitute S/cy (or

R/ds) for oy and S? for o3.
2. For each sample. compute Z; and W,.

3. To detect specified changes of the process mean and variability in an initial
stage, choose the optimal (A, L) combination from Table 3.2. Calculate U;
and V; with Zy = Wy = 0 as starting values, and construct UCL according

to Equation (3.14).
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4. To detect specified changes of the process mean and variability in a steady-
state. choose the optimal {A. L) combination from Table 3.1: if it is not
apparent what changes in the process mean and the process variability should
be guarded against. choose the desired (A.L) combination from Table 3.3.
Calculate U; and V; with Zy = W, = 0 as starting values. and construet UCL

according to Equation (3.15).

Compute M; and compare it with the UCL's.

(o1}

6. Plot a sample point against the sample number i when M; < UCL.

=3

Plot a plotting character against the sample number i when M; > UCL. For
the case of only |U;f > UCL. plot "m+" if U; > 0 and plot "m-" if U'; < (0:
For the case of only |V;| > UCL . plot "v+" if V; > 0. and plot "v-" if V] < 0:
For the case of both |U;}] > UCL and |V;| > UCL. plot ™ m+v+" if U; > 0
and V; > 0. plot "m+v-" if U; > 0 and V; < 0: plot "m-v+" if U; < 0 and

Vi > 0: plot "m-v-" if U; < 0 and V; < 0.

8. Investigate the cause(s) associated with each out-of-control signal.

3.6 An Illustrative Example

This example is taken from DeVor. Chang and Sutherland [16]. where data
from the first 35 samples of size five were coilected every half an hour. The mea-
surements represent the inside diameter of cylinder bores in an engine block and
are made to 1/10000 of an inch, such as 3.5205. 3.5202. 3.5204. . ... For simplicity.

the last three digits in the measurements are given in Table 3.4.
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Table 3.4: Cylinder diameter data.

Samplei X; Xo X3 Xy X; |Samplei X, X, X3 Xy X;
1 205 202 204 207 205 19 207 206 194 197 201
202 196 201 198 202 20 200 204 198 199 199

201 202 199 197 196 21 203 200 204 199 200

203 196 201 197 22 196 203 197 201 194
199 196 201 200 195 23 197 199 203 200 196

203 198 192 217 196 24 201 197 196 199 207

202 202 198 203 202 25 204 196 201 199 197

8 197 196 196 200 204 26 206 206 199 200 203
9 199 200 204 196 202 27 204 203 199 199 197
10 202 196 204 195 197 28 199 201 201 194 200
11 205 204 202 208 205 29 201 196 197 204 200
12 200 201 199 200 201 30 203 206 201 196 201
13 205 196 201 197 198 31 203 197 199 197 201
14 202 199 200 198 200 32 197 194 199 200 199
15 200 200 201 205 201 33 200 201 200 197 200
16 201 187 209 202 200 34 199 199 201 201 201
17 202 202 204 198 203 35 200 204 197 197 197
18 201 198 204 201 201

=1 O UV 4= 2 W2
(]
<
(4]

Suppuose that based on past experience an operator wanted to guard against
the changes ¢ = 1.50 and b = 1.50 with in-control ARL = 250. To use the Max-
EWMA chart to monitor the cylinder production process. yg is estimated by X
= 200.24 and gy is estimated by §/c; = 3.30. Using these estimates. the first
Max-EWMA chart. consisting of the first five points for the initial stage with A =
0.05 and L = 2.536 and the other thirty points for the steady-state stage with A
= 0.805 and L = 3.258. is shown in Figure 3.1. As indicated in Figure 3.1. there
are three points above the UCL. U}, V; and Vi are respectively greater than UCL.
Sample 1 is related to an increased shift in the process mean while sample 6 and
sample 16 are related to increased changes in the process variability. According to

DeVor, Chang and Sutherland [16], sample 1 occurred at 8:00 a.m., corresponding
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roughly to the startup of the production line in the morning when the machine was
cold. An investigation reveals that sample 6 and sample 16 corresponded to the
time when the regular operator was absent. and a less-experienced relief operator
was in charge of the production line. When these three samples are excluded. new
estimates are obtained as X = 200.10 and S/cqy = 2.96. To guard against the
changes ¢ = 1.50 and 6 = 1.00. the optimal values are A = 0.735 and L = 3.256
for the steady-state stage and the second chart is plotted in Figure 3.2. As seen
from the plot. one point (sample 11 in the original data set) is found to be above
the UCL. Uy, is greater than UCL and it is related to an increased shift in the
process mean. Sample 11 was produced at 1:00 p.m.. corresponding roughly to the
startup of the production line directly after the lunch hour. when the machine was
shut down for tool changing. Once the machine warmed up. in about 10 minutes
the problem seems to disappear. When this sample is removed. the two estimates
are given by X =199.94 and S/ey = 2.98. To detect small changes with a = (.30
and b = 1.25. the optimal value of (A. L) is (0.245. 3.098). The display of the third

chart in Figure 3.3 shows there is no out-of-control signal.
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Figure 3.1: The first Max-EWMA chart for the cylinder diameter data
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Figure 3.2: The second Max-EWMA chart for the cylinder diameter data
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Figure 3.3: The third Max-EWMA chart for the cylinder diameter data
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CHAPTER 4
The SS-EWMA Chart

4.1 Introduction

In addition to the efficiency of a control chart. it is important. especially
in a job-shop manufacturing environment. to make the charting procedure easy to
implement. Chao and Cheng [5] developed a single control chart. the semicircle
chart. which is simple to use and easy to understand. One of the most impressive
features of the semicircle chart is that it is easy to attribute an out-of-control signal
to the cause of the mean shift or/and variability change.

Combining this thought with the EWMA technique. a new single control
chart. SS-EWMA Chart. is proposed. The properties of this chart is similar to
those of the Max-EWMA chart. but it has an added advantage of charting more
easily in practical application. which allows for greater flexibility than the usual
approach. As done in Chapter 3. designs are also made using the optimal values
of A and L. and the implementation of the new chart is illustrated through an

example.

4.2 The New Control Chart

Under the same assumptions as in Chapter 3, the formulas for Z;. W;. U;
and V; in this chapter are defined in the same way as given in Chapter 3.

Based on (3.3) and (3.4). the new statistic for this single chart is defined as

SS;=U+V? i=12,... (4.1)
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A large value of SS; results from a shift in the process mean and/or a change in
the process variability. otherwise, the value of SS; will be small and the process
is in-control. Because the statistic SS; for this new chart is the sum of squares of
two EWMA statistics. it is natural to name this chart as SS-EWMA chart . with
only an UCL needed due to the non-negative nature of S5;.

Because ;L'L- and ;Vf— independently follow the identical standard normal

distribution. V(0. 1). it is obvious that

=+~ (4.2)
O'E'/‘ O'Zrl O’["J
Hence.
E(5S;) = 20} (4.3)
Var(S5:) = 40’& (4.4)

Therefore. the UCL is given by

UCL = E(SS;)+ Ly/Var(SSi)

= 205 (1+ L)
21 = (1 = N)¥ )
- N 9(_,\ ) ](1+L) (4.5)
As i gets larger. the UCL approaches
2
UCL = 9:\/\(1+L) (4.6)

where L and ), the design parameters of SSSEWMA Chart. can control the per-

formance of the chart.
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4.3 Design of a SS-EWMA Chart

For the SS-EWMA Chart. the same design strategy proposed for the Max-
EWMA chart can be used to find the optimal (A. L) combination with respect to
the desired in-control ARL and specified changes in the process mean and vari-
ability. Because there is still no direct way to compute the ARL. each ARL value
is obtained using 10.000 simulations.

For a given in control ARL of 250 and A = 0.05(0.005)1. there are 191 (A. L)
combinations and the optimal one leads to the smllest out-of-control ARL. Using
the approximate UCL and the exact UCL. Tables 4.1 and 4.2 respectively contain
representative optimal values of (A, L) and the corresponding out-of-control ARL’s
for n = 5 and for changes in the process mean and the process variability. with the
starting values Zy = 0 and W, = 0.

In Table 4.1. the results. similar to the results obtained in Table 3.1. suggest
that smaller values of A are more effective in detecting small changes in the mean
and/or the variability. Again similar to the results obtained in Table 3.2. the
results in Table 1.2 show that using exact UCL. the smallest A in the chosen set
is mostly likely to be the optimal value even if the changes within the process are
large. It is interesting to see that all the ARL's in Table 4.2 are smaller or equal

to the corresponding ones in Table 4.1.
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Table 4.1: (A, L) combinations and the corresponding ARL’s for optimal
EWMA control schemes in a steady state and n = 5.

SS-

ARLy = 250
a
b 000 025 050 100 150 200 250 3.00
A 0.430 0460 0.510 0.840 1.000 1.000 1.000 1.000
0.25 L 4428 4441 4465 4522 4528 4.528 4.528 1.528
ARL 251 242 219 148 1.00 1.00 1.00 1.00
A 0.195 0.205 0.265 0.485 0.905 1.000 1.000 1.000 |
050 L 4.074 4103 4.240 4.460 4523 4.528 4.528 4.528
ARL 396 537 417 232 126 1.00 1.00 1.00
A 0.090 0.060 0.170 0.415 0.760 0.925 0.975 1.000
1.00 L 3.510 3.141 3.991 4415 4.523 4.524 4.528 4.528
ARL | 24991 2440 883 3.07 162 111 1.01 1.00
A 0.175 0.190 0.265 0.555 0.815 0.905 1.000 1.000
1.25 L 4.008 4.060 4.240 +4.482 4517 4523 4.528 41.528
ARL | 17.11 1167 6.38 278 1539 115 1.02 1.00
A 0.415 0.415 0.460 0.690 0.795 0.925 0.985 1.000
1.50 L 4415 4415 4441 4516 4519 4.524 4.528 4.528
ARL 593 526 4.08 233 152 L.17 104 1.01
A 0.780 0.770 0.755 0.845 0.895 0.940 0.950 0.960
200 L 4521 4522 4522 4.523 4.524 4.527 4.527 4.527
ARL 217 212 198 162 134 116 1.06 1.02
A 0.875 0.900 0.915 0.915 0.900 0.910 0.950 0.960
250 L 4.524 14523 4.522 4.522 4.523 4.524 4.525 4.526
ARL L4 143 140 130 120 1.12 106 1.02
A 0.950 0.930 0.955 0.920 0.960 0.975 0.960 0.995
3.00 L 4.524 4.525 4.526 4.523 4.526 4.528 1.526 4.528
ARL 121 120 120 116 1.12 1.08 1.05 1.03
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Table 4.2: (A. L) combinations and the corresponding ARL's for optimal
SS-EWMA control schemes in an initial state and n = 5.

a
b 000 025 050 100 150 200 250 3.00
A 0.050 0.050 0.050 0.050 0.105 1.000 1.000 1.000
025 L 3.105 3.105 3.105 3.105 3.698 4.329 4.529 4.529
ARL 1.7 1.70 154 107 1.00 1.00 1.00 1.00
A 0.050 0.050 0.050 0.050 0.050 0.065 1.000 1.000
050 L 3.1056 3.105 3.105 3.105 3.105 3.322 4.529 4.529
ARL 406 3.64 280 160 1.05 1.00 100 1.00
A 0.205 0.050 0.05¢ 0.050 0.050 0.050 0.050 0.070
1.00 L 4126 3.105 3.105 3.105 3.105 3.105 3.105 3.382
ARL {24992 1885 6.11 209 1.28 104 100 1.00
A 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.090
1.25 L 3.105 3.105 3.105 3.105 3.105 3.105 3.105 3.580
ARL | 1211 830 454 200 1.31 107 L01 1.00
A 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
1.50 L 3.105 3.105 3.1056 3.105 3.105 3.105 3.105 3.105
ARL 420 378 293 179 129 109 1.02 1.00
A 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
200 L 3.105 3.105 3.105 3.105 3.105 3.105 3.105 3.105
ARL .78 L74 164 140 121 109 1.03 1.01
A 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
250 L 3.105 3.105 3.105 3.105 3.105 3.105 3.105 3.105
ARL .30 1.29 127 120 1.13 1.0v 1.04 1.01
A 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
300 L 3.1056 3.105 3.105 3.105 3.105 3.105 3.105 3.105
ARL 114 114 113 111 108 1.05 1.03 1.02
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Noting that small A values are more effective in detecting small changes.
small A values in the range 0.05 to 0.30 can be used to detect small to moderate
changes in the mean and/or variability. When using small A values. one can
simultaneously use an additional SS-EWMA chart with A = 1 to guard against a
possible inertia problem.

Table 4.3 lists some commonly used (A. L) combinations using the approx-
imate UCL and the starting values Z; = Wy = 0.

Table 4.3: (A. L) combinations for SS-EWMA control schemes in a steady-state
when sample size n = 3.

ARLy = 185
0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.80 1.00
L 258 323 355 3.74 387 396 408 4.14 421 4.22
ARLy = 250
0.10 0.15 020 0.25 030 0.40 0.50 0.80 1.00
L 296 360 391 409 422 430 440 447 452 4.533

o
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4.4 Charting Procedure

The charting procedure of a SS-EWMA chart differs from most of the
EWMA charts commonly used. Instead of a summary statistic SS;. successive
pairs of (U;.V;)'s are plotted on a chart. The position of a point (U;. V;} on the
plane can directly indicate the source and the direction of an assignable cause.

The control region for the SS-EWMA chart is a circle because Equation
(4.1) is a circle. The circle is centered at (0, 0) with radius vVUCL and each
sample point is plotted with coordinates (U, V). The circular control region is
useful in indicating the source and direction for a detected change. If a sample

point is out of the circle, the process is likely out of control. It will indicate that
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the change is due to a shift in the process mean when the point deviates sufficiently

from the V axis. It will indicate that the change is due to a change in the process

variability when the point deviates sufficiently from the U axis. It will indicate

that the change is due to a combination effect of both the process mean and the

process variability when the point is close to either the line U + V = 0 or the line

U -V = 0. For an out-of-control signal. it is also easy to identify the changing

directions for the process mean and the process variability from the position of the

sample point. For example. a point in the first quadrant indicates that both the

process mean and the process variability have increased.

L.

The procedure can be briefly summarized in the following steps:

If p0 is unknown. substitute X for po. If o is unknown. substitute S/¢, (or

R/d,) for oy and S? for a3.
For each sample. compute Z; and W;.

In an initial stage. if one wants to quickly detect specified changes in the
process mean and the process variability for the desired in-control ARL
of 250. choose the optimal (A.L) combination from Table 4.2. Let U
,/,\[1 = A)"] and V! = V,/A[l =5 ,\)'- To avoid drawing several concen-
tric circles. compute U; and V. i=1.2.3.4.5, where Z; = 0 and Wy = 0 are
starting values. Compute /2(1 + L), which is the radius of the circular

control region for the first five samples.

In a steady-state, if one wants to quickly detect specified changes in the pro-
cess mean and the process variability for the desired in-control ARL of 250,
choose the optimal (A, L) combination from Table 4.1; if it is not apparent

what changes in the process mean and the process variability should guard
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against. choose the desired (A. L) combination from Table 4.3. Compute

VUCL according to Equation (4.6).

V)]

. In an initial stage. draw a circle centered at (0. 0) with radius v/2(1 + L): in
a steady-state. draw a circle centered at (0. 0) with radius VUCL.

6. In an initial stage. plot sample points (L7]. V7). i=1.2.3.4.5 : in a steady-state.

plot sample points (U;. V}).

~1

Check if any point is outside of its corresponding circle. For an out-of-control
signal. identity the source and the direction according to the positon of the
point on the chart. and indicate the source and the direction using plotting

characters.

8. Investigate the cause(s) associated with each out-of-control signal.

4.5 An Example

For the data given in Table 3.4. suppose that based on past experience an
operator wanted to guard against the changes a = 2.00 and b = 1.50. To use the
SS-EWMA chart to monitor the cylinder production process. pg is estimated by
X = 200.24 and oy is estimated by S/cy = 3.30. Using these estimates for the
initial stage. the first SS-EWMA chart with in-control ARL = 250. A = 0.05 and
L = 3.105 is shown in Figure 4.1. There is one point (sample 1) out of the circle.

As indicated in Figure 4.1, the point deviates far from the V axis and
hence the change is related to the process mean. According to DeVor. Chang
and Sutherland [16], sample 1 occurred at 8:00 a.m., corresponding roughly to the
startup of the production line in the morning when the machine was cold. After

sample 1 is removed, estimates are recalculated as X = 200.12 and S/cy = 3.35.
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As the process is already in a steady-state. the SS-EWMA chart is applied with
in-control ARL = 250. A = 0.925 and L = 4.524. The second chart is given in
Figure 4.2. This time. two points (sample 6 and sample 16 in the original data set)
are outside the circle. Since these two points are located far from the U axis. both
of them are related to the process variability. An investigation reveals that sample
6 and sample 16 corresponded to the time when the regular operator was absent.
and a relief operator. who was less experienced. was in charge of the production
line. When these two samples are excluded. estimates are obtained as X =200.10
and S/cy = 2.97 and the third chart is plotted in Figure 4.3. As seen from the
plot. one point (sample 11 in the original data set) is found to be outside the circle.
and it is related to the process mean since it deviates sufficiently from the V axis.
Sample 11 was produced at 1:00 p.m.. corresponding roughly to the startup of the
production line directly after the lunch hour. when the machine was shut down for
tool changing. Once the machine warmed up. in about 10 minutes. the problem
seems to disappear. When this sample is further removed. the two estimates are
given by X =199.95 and S/cy =2.99. and the display of the fourth chart in Figure

5.4 shows there is no point falling outside the circle.
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Figure 4.1: The first SS-EWMA chart for the cylinder diameter data

Figure 4.2: The second SS-EWMA chart for the cylinder diameter data
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Figure 4.3: The third SS-EWMA chart for the cylinder diameter data
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Figure 4.4: The fourth SS-EWMA chart for the cylinder diameter data
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CHAPTER 5
The EWMA-Max Chart

5.1 Introduction

The Max Chart proposed by Chen and Cheng [9] is a single control chart
which is essentially equivalent to a combination of the X chart and the S chart.
[t has the main advantage of simultaneously monitoring the process mean and the
process variability. however. similar to Shewhart charts. this chart is not sensitive
to small changes of a process.

To improve the sensitivity of the Max chart. the EWMA techniques are
directly applied to the Max statistic. and a new single control chart. the EWMA-
Max chart. is proposed. This chart can simuitaneously monitor the process mean
and the process variability. moreover. it is capable of detecting small changes in
the mean and/or the variability. Another advantage is that an integral equation
method could be used to compute ARL’s of the EWMA-Max chart. The integral
equation approach makes the ARL calculation much easier than the simulation
approach does. Therefore. in addition to an optimal design of in-control ARL =

250. optimal designs of two other in-control ARL’s are also given.

5.2 The New Control Chart

Under the same assumptions of Chapter 3. the formulas Z; and W; in this

chapter are the same as those used in Chapter 3. The statistic for the Max chart
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is defined as

Gi = ma:z:{jZLI “’V,’

}

The EWMA statistic Y; is computed from the sequence of G,’s given by

Yi=(1-NY_, + AG; i=1.2.... {5.:

Ut
o
—

with Y; as the starting value.

Because the EWMA technique is applied to the Max statistic. this chart is
named as EWMA-Max chart. with only a UCL needed due to the non-negative
nature of Y;.

Similar to the derivation of the UCL in Chapter 3. The UCL of this chart

is given by

UCL = E(Y)+ L/Var(Y})

= 56y + 1A

AL = (1= A)Z]
2 -\

= 1.128379 + O.602810L\/

As ¢ gets larger. the UCL will approach the steady-state value given by

[ A
UCL =1.128379 + 0.602810L S (5.4)

5.3 The Integral Equation Approach for Computing ARL’s

Three methods that are often used to compute ARL’s of an EWMA chart

are Markov chain method. integral equation method and simulation method. As
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was done in Chapter 3 and Chapter 4. simulation had to be used because it was
impossible to use the first two approaches. Of the first two approaches. Champ and
Rigdon [7] showed that the integral equation approach is preferable wherever an
integral can be found. This is the case for the EWMA-Max chart. and the integral
equation approach proposed by Crowder [13] is used to compute the ARL's. To
do this. it is necessary to find the PDF of G;. From the independence between Z;

and W;, the CDF of G, is found to be:

Fe(t:nia.b) = P(G;<t)
= P(|Zi| <t Wi <t)

= P(Z]| < HP(IWi < 1)

= [8(; - 5V ~ B(~; ~ V]
-1 _
{Hy, - I(M) - Hn‘_l(w”‘t >0 (5.5)

b')

The pdf of G; is the derivative of the CDF given by

| t
fe(t:ni.a.b) = 5[4’(5 - %\/ﬁt) +o(—p - %\/n_,)]

H!' (® (1]
[Ho n.—1b(2 (t))) — Ha H, —122( )))
1 t a I a
+b—g[q’(5 - E\/"_i) — (-7 - 5\/@]
.[hn.—l( 1(‘I}(m)fl“'(t)
P, - ( mL (D(2))
- (ZEEED) 4y

5.6
o L @) | (56)

Let L(Y;) denote the ARL with the starting point Y; = E(Y;). When

samples have the same size, the integral equation for th ARL is a Fredholm integral
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equation of the second kind. and it is given by

wn
Z

1 Ut t—(1-A)Y,
W =1+ [ e (

To find accurate of ARL’s. 64-point Gaussian quadrature is used to numerically
solve this integral equation. Notice that ARL can be denoted as a function of the

starting point for the EWMA-Max chart.

5.4 Design of an EWMA-Max Chart

For the EWMA-Max chart. the design strategy is the same as that for the
Max-EWMA chart. In a steady state. each ARL value is obtained using Crowder’s
method to solve Equation (3.7).

Given the respective in-control ARL’s of 250. 370. and 500. Tables 5.1. 5.2
and 5.3 representatively contain some optimal values of (A. L) and the correspond-
ing out-of-control ARL’s using the approximate UCL for n=5 with the starting
value Yy = 1.128379. Provided that the in-control ARL = 250. Table 5.4 gives the
related results obtained from simulations when the exact UCL is used. Based on
the results in these two tables. the same conclusions as seen in Chapters 3 and 4
can be drawn.

It is also recommended that A values in the range 0.05 to 0.30 be used to
detect small to moderate changes in the mean and the variability. and one more
EWMA-Max chart with A = 1 be used simultaneously to guard against the possible
inertia problem. Notice that when A = 1, the EWMA-Max chart is equivalent to
the Max chart.

Table 5.5 lists some commonly used (A, L) combinations using the approx-

imate UCL and the starting values ¥, = 1.128379.
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Table 5.1:
EWMA-Max control schemes in a steady state when ARLy =

(A. L) combinations and the corresponding ARL’'s for optimal
250 and n = 3.

[ a ]
b 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00 |

A 0.3500 0.3500 0.3500 0.3800 09150 0.9900 0.3100 0.0700

0.25 L 2.92782 2.92782 292782 296419 3.24743 3.25379 2.87517 2.12800
ARL 2.54 2.54 2.54 2.32 1.13 1.00 1.00 1.00

A 0.0700 0.0700 0.0700 0.2750 0.7850  0.990C 0.9900 0.9850

0.50 L 2.12800 2.12800 2.12800 2.82531 3.21732 3.25379 3.25379 3.25636
ARL 12.63 11.63 8.74 3.25 1.35 1.00 1.00 1.00

A 0.0550 0.07¢0 0.0700 0.3100 0.6500 0.900¢ 0.9800 0.9900

1.00 L 267344 2.12800 2.12800 2.87517 3.15977 3.24495 3.25342 3.25379
ARL | 249.96 70.94 15.81 3.46 1.57 1.09 I.01 1.00

A 0.0700 0.0700 0.1700 0.4300 0.6500 0.8550  0.9600  0.9900

1.25 L 212800 2.12800 2.60789 3.01085 3.15977 3.23623 3.25211 3.25379
ARL 16.20 13.03 8.14 3.08 1.62 1.15 1.02 1.00

A 0.2850 0.2850 0.3100 0.4800 (.6700 0.8450 0.9450  0.9800

1.50 L 2.84036 2.84036 2.87517 3.05198 3.17031 3.23392 3.25091 3.25342
ARL 5.92 5.45 4.41 2.54 1.59 1.19 1.04 1.01

A 0.5700  0.5700 0.5900 0.6500 0.7550  0.8450  0.9250  0.9600

2.00 L 3.11466 3.11456 3.12689 3.15977 3.20714 3.22392 3.24862 3.25221
ARL 2.25 2.20 2.08 1.73 141 1.19 1.08 1.02

A 0.7250 0.7250 0.7350 0.7650 0.8200 0.8650 0.9250  0.9550

2.50 L 3.19584 3.19584 3.19988 3.21058 3.22769 3.23839 3.24862 3.25180
ARL 1.49 1.48 1.45 1.35 1.24 1.14 1.07 1.03

A 0.8250 0.8250 0.8450 0.8550 0.8650  0.9000 0.9250  0.9550

3.00 L 3.22909 3.22909 3.23392 3.23623 3.23839 3.24495 3.24862 3.25180
ARL 1.23 1.23 1.22 1.18 1.14 1.09 1.06 1.03
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Table 5.2:

(A. L) combinations and the corresponding ARL’s for optimal
EWMA-Max control schemes in a steady state when ARLy; = 370 and n = 3.

a

b 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

A 0.3100 0.3100 0.3100 0.3650 0.8650 0.9950  1.0000 1.0000

0.25 L 3.05993 3.05933 3.05933 3.13304 3.42842 344425 344431 344431
ARL 2.74 2.74 2,74 2.50 1.26 1.00 1.00 1.00

A 0.0700 0.0700 0.0700 0.2750 0.7250 0.9850 0.9950  0.9950

0.50 L 231427 231427 231427  3.01377  3.38468 3.44399 3.44425 3.44425
ARL 14.22 13.03 9.68 3.55 147 1.00 1.00 1.00

A 0.0600 0.0700 0.070¢  0.3100 0.6500 0.8950  0.9800  0.9950

1.00 L 3.95007 2.31427 231427 3.05993 3.34669 3.43441 344379  3.44425
ARL | 369.82 91.53 18.06 3.74 1.66 1.09 1.01 1.00

A 0.0700 0.0700 0.1700 0.3650 0.6500 0.8450 0.9550  0.9900

1.25 L 231427 231427 2.79609 3.13304 3.34669 3.42387 J3.44220 3.44413
ARL 18.52 14.73 9.03 3.32 1.70 1.18 1.03 1.00

A 0.2300 0.2750 0.3100 0.4800 0.6500 0.8200 0.9250  0.9800

1.50 L 293914 3.01377 3.05993 3.23778 3.34669 3.41757 3.43900 3.44379
ARL 6.49 5.97 +.80 2.72 1.67 1.22 1.05 1.01

A 0.5350  0.5350 0.5700 0.6300 0.7250 0.8450 0.9000 0.9600

2.00 L 3.27865 3.27865 3.30054 3.33614 3.38468 3.42387 3.43523 3.44262
ARL 2.38 2.33 2.20 [.81 1.46 1.22 1.09 1.03

A 0.6950 0.6950 0.72560 0.7550  0.8100 0.8650 0.9000  0.9550

2.50 L 3.37106 3.37106 3.38468 3.39632 3.41485 3.42842 3.43523 3.44220
ARL 1.54 1.53 1.50 1.39 1.27 1.16 1.08 1.04

A 0.8200 0.8200 0.8200 0.8450 0.8650 0.8000 0.9250 0.9550

3.00 L 3.41757 3.41737 3.41757 3.42387 3.42842 3.43523 3.43900 3.44220
ARL 1.26 1.25 1.24 1.20 1.16 111 1.06 1.04
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Table 5.3: (A. L) combinations and the corresponding ARL’s for optimal
EWMA-Max control schemes in a steady state when ARL; = 500 and n = 3.

a
h I 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

A 0.3100 0.3100 0.3100 0.3500 0.8450 (0.9950 1.0000  1.0000

0.25 L 3.19607 3.19607 3.19607 3.25148 3.56561 3.58648 3.58654 3.58654
ARL 2.89 2.89 2.89 2.64 1.41 1.00 1.00 1.00

A 0.0700 0.0700 0.0700 0.2300 0.6950 0.9800 0.9950 0.9950

0.50 L 246947 246947 2.46947 3.07745 3.51099 3.58605 3.58648 3.58648
ARL 15.55 14.23 10.50 3.77 }.R7 1.01 1.00 1.00

A 0.0850 0.0700 0.0700 0.2300 0.6950 0.9800 0.9950 0.9950

1.00 L 342779 2.50623 2.46947 3.19607 347435 3.57026 3.58605 3.58648
ARL | 499.56 110.28 19.72 3.97 1.73 1.13 1.01 1.00

A 0.0760 0.0700 0.1550 0.3100 0.6300 0.8450 0.9800 0.9950

1.25 L 246947 2.46947 2.89870 3.25148 347435 3.56561 3.58447 3.38637
ARL | 0.1700 0.2300 0.2850 0.4800 0.6500 0.8100 0.9250  0.9800

A 0.1700  0.2300 10.2850 0.4800 0.6500 0.8100 0.9250  0.9800

1.50 L 2.93686 3.07745 3.16284 3.37537 3.48484 3.55464 3.58120 3.38605
ARL 6.94 6.37 5.09 2.85 1.73 1.24 1.06 1.01

A 0.5350  0.5350 0.5700 0.6300 0.6950 0.8200 0.8950  1.9550

2.00 L 341651 3.416501 3.43836 3.47435 3.51099 3.55926 3.57649 3.58447
ARL 2.49 2.43 2.29 1.88 1.50 1.24 1.10 1.03

A 0.6700 0.6700  0.6950 7550  0.7950 0.8550 0.9000  0.9450

2.50 L 349711 3.49711 3.51099 3.53735 3.55163 3.56804 3.57733 3.58358
ARL 1.59 1.57 1.54 1.43 1.29 L.17 1.09 1.04

A 0.7950 0.8100 0.8200 0.8450 0.8650 (.8950  0.9250  0.9530

3.00 L 3.55163 3.55646 3.55926 J3.56561 3.57026 3.57649 3.58120 3.58447
ARL 1.28 1.27 1.26 1.22 1.17 1.12 1.07 1.04
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Table 5.4: (A.L) combinations and the corresponding ARL’s for optimal
EWMA-Max control schemes in an initial state and n = 5.

ARLg = 250
a
b 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

A 0.0500 0.0500 0.0500 0.0500 0.0500 1.0000 1.0000 1.0000

0.25 L 20572 203572 2.0572 2.0572 2.0572 3.2576 3.2576 3.2576
ARL 1.82 1.82 1.82 1.82 1.82 1.00 1.00 1.00

A 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 1.0000 1.0000

0.50 L 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572 3.2576 3.2576
ARL 9.76 8.82 6.33 2.25 1.15 1.00 1.00 1.00

A 1.0000 0.0500 0.0500 0.050G 0.0500 0.0500 0.0500 0.0500

1.00 L 3.2576 2.0572 2.0572 2.0572 2.0572 20572 20572 2.0572
ARL | 24993  66.23 12.51 2.53 1.35 1.05 1.00 1.00

A 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500

1.25 L 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572
ARL 1298 10.21 6.02 2.36 1.41 1.10 1.01 1.00

A 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500

1.50 L 2,0572 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572
ARL +4.42 4.10 3.35 2.04 1.40 1.13 1.03 L.00

A 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500

2.00 L 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572
ARL 1.94 1.91 1.81 1.55 1.31 1.15 1.06 1.02

A 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500

2.50 L 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572
ARL 1.51 1.50 1.47 1.37 1.25 1.15 1.08 1.04

A 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500

3.00 L 20572 20572 2.0572 20572 2.0572 2.0572 2.0572 2.0572
ARL 1.42 1.41 1.40 1.34 1.25 1.17 1.10 1.06
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Table 5.5: (A. L) combinations for EWMA-Max control schemes in a steady state
when sample size n = 5.

5.9

ARL, = 250
0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.80 1.00
L 243 237 258 270 279 286 299 3.07 3.22 3.25
ARLy = 370

>

A 005 010 015 020 0.25 030 0.40 0.50 0.80 1.00
L 264 257 278 290 298 3.05 3.18 3.25 3.41 3.44

ARLy =500
0 . 0.20 0.25 0.30 0.40 0.50 0.80 1.00
L 27 272 293 305 3.12 3.19 332 339 3.55 3.59

Do
o
(9]
b
—
o
<
—
()]

Charting Procedure

The charting procedure of an EWMA-Max chart is similar to that of a

Max-EWMA chart. [t can be summarized as follows:

(3]

. If po is unknown. substitute X for o. If 0¢ is unknown. substitute S/c, (or

R/d,) for g and S? for a.
For each sample. compute Z; and W,.

To detect specified changes of the process mean and variability in an initial
stage. choose the optimal (A. L) combination from Table 5.4. Calculate Y;
with Yy = 1.128379. Set up UCL according to Equation (5.3) and compare
Y; with the UCL.

To detect specified changes of the process mean and variability in a steady-
state, choose the optimal (A, L) combination from one of Table 5.1. 5.2 and
5.3; if it is not apparent what changes in the process mean and the process

variability should guard against. choose the desired (A, L) combination from
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Table 5.5. Calculate Y; with Yy = 1.128379. Set up UCL according to

Equation (5.4) and compare Y; with the UCL.
3. Plot a sample point against the sample number i when Y; < UCL.

6. Calculate Oi = {1 - /\)Y,_l_ + /\lZzl and Qi = (1 - ’\)Y:—l + /\II/V“I

=~

Plot a plotting character against the sample number i when Y; > UCL. For
the case of only O; > UCL. plot "m+" if Z; > 0 and plot "m-" if Z; < 0: For
the case of only Q; > UCL. Plot "v+" if W; > 0. and plot "v-" if W; < 0:
For the case of both O; > UCL and Q; > UCL. plot ™ m+v+" if Z; > 0
and W; > 0. plot "m+v-"if Z; > 0 and W; < 0: Plot "m-v+" if 7; < 0 and

W, > 0: plot "m-v-" if Z; < 0 and W; < 0.

8. Investigate the cause(s) associated with each out-of-control signal.

5.6 An Example

For the data given in Table 3.4. suppose that based on the past experience
an operator wanted to guard against the changes ¢ = 1.50 and b = 1.50. To use
the EWMA-Max chart to monitor the cylinder production process. yg is estimated
by X = 200.24 and oo is estimated by S/c; = 3.30. Using these estimates. the
first EWMA-Max chart. consisting of the first five points for the initial stage with
A = 0.05 and L = 2.057 and the other thirty points for the steady-state stage with
A =0.67 and L = 3.170, is shown in Figure 5.1. As indicated in Figure 5.1 . there
are three points above the UCL. Since O, is greater than UCL and Z; is greater
than 0, sample 1 is related to an increased shift in the process mean. However,

sample 6 and sample 16 are related to increased changes in the process variability
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because both Q¢ and @, are greater than UCL and both Wg and Wy are great
than 0. When these three samples are excluded. estimates are obtained as X =
200.10 and S/c; = 2.96. To guard against the same changes for the steady-state
stage. the second chart is plotted in Figure 3.2. As seen from the plot. sample 11
in the original data set is found to be above the UCL. Since O,; is greater than
UCL and Z,, is greater than 0. it is related to an increased shift in the process
mean. When this sample is further removed. the two estimates are given by X =
199.94 and S/¢; = 2.98. The third chart in Figure 5.3 indicates that there is no

point above the UCL.

UCL = 2 4n

e

[e] s 1o LE-1 20 25 3o 35
Sampie numMber

Figure 5.1: The first EWMA-Max chart for the cylinder diameter data
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o s o 18- 20 25 30
Sample number

Figure 5.2: The second EWMA-Max chart for the cylinder diameter data

E
LUCL = T 4
25
z -
§ " ,
[
i
‘ o8
o - e e e e e
o s to s 20 2s EL)

Samplie Number

Figure 5.3: The third EWMA-Max chart for the cylinder diameter data
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CHAPTER 6
The EWMA-SC Chart

6.1 Introduction

The semicircle (SC) chart proposed by Chao and Cheng [5] is another useful
alternative to a combination of the X chart and S chart. As described in Chapter
2. this single control chart is essentially a 2-dimensional chart that is very easy to
use. However. the SC chart is also insensitive to small changes of a process.

To make the SC chart sensitive to small changes. the EWMA techniques
are directly applied to the statistic employed in the SC chart. and a new single
control chart. the EWMA-SC chart. is proposed. With high sensitivity to small
changes. this chart is capable of simultaneously monitoring the process mean and
the increased process variability. Moreover. it preserves the good feature of the
SC chart in charting procedure. from which the source of an out-of-control signal
can easily be detected. Similar to the ARL calculation for the EWMA-Max Chart.
Crowder’s integral equation approach is used to provide three optimal designs.

with in-control ARL" of 250. 370. and 500 respectively.

6.2 The New Control Chart

Under the same assumptions of Chapter 3, the statistic of the SC chart is

defined as

T, =(Xi —po)?+—82 i=012... (6.1)
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Let T} = ;";T, The EWMA statistic Q; is computed from
Qi=(1-ANQi-t +AT; i=12.... (6.2)

with Qg = n.

Because T ~ x2 when a = 0 and b = 1. it is easy to show that

E(Q) = E(T7)

= n (6.3)

AL-(1-0%

Var(Q) = S Var(T)
_ 2nA[l-(1- A%
= T (6.4)
Equation {6.2) can also be rewritten as
Qi=U;+Vi+n (6.5)

where

Ui=(1- AUy + A[M -1
0

S2
V= (L= WVWiet + Al(n - (5 = 1)
0

with Uy =V, = 0.

Because this EWMA chart is based on the statistic of the SC chart, this
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chart is named as EWMA-SC chart. Since @Q; is non-negative. only a UCL is

needed. The UCL. corresponding to Equation (6.2), is given by

UCL, = E(Q;)+ L/Var(Q))

2 — (1= A)%
= n +[.'V/ mAlL 5 .El,\ )*] {6.6)
The UCL. corresponding to Equation (6.3). is given by
2 — — 2i]
UCLy = L [2nA[L — (1 = N (6.7)

2_1\

As i gets larger. the UCL will approach the steady-state value. Equation (6.6) will

become

2n\

UCLi=n+1L 57N (6.8)
Equation (6.7) will become
2nA
UCLy = Ly 575 (6.9)

6.3 ARL Computation

To use the integral equation approach for ARL computation. the PDF of

T; has to be found. T can be decomposed as

T =T}, +T3,)
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where

n

L= ﬁ‘%[(“?i — p) + aog|*
[ b20'g Si

(6.10)

Because T ~ xi 5. T ~ X3_,. and they are independent. Tj; + T}, ~ 3 ;. where

EEiS

=
0" =n

A Gaussian approximation for CDF of T; (see Jensen and Solomon (31]) is

given by
Hos:(y) ~ B{=(

nd\Y] = d

where
1 20

T 5[1 - (n+

c=14+ rir—1
and

d= ry/2(n + 22?)

n + 62

{6.11)

Differentiating (6.11) with respect to y. the Gaussian approximation for

hns2(y) is found to be

T

hng2(y) = dn 1 09)¢
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Hence. the pdf of T} is given by

frely) = ghnar(z). 20 (6.13)

Therefore. the integral equation for the ARL of the EWMA-SC chart is found to
be

veL T
L(Q) =1+ §/ L (LN, (6.14)
Q

The ARL is solved from this integral equation using the 64 point Gaussian quadra-

ture.

6.4 Design of an EWMA-SC Chart

For the EWMA-SC chart. the design strategy is the same as that for the
Max-EWMA chart and the EWMA-Max chart. In a steady state. each ARL value
is obtained using Crowder’s method to solve Equation (6.14).

Given the respective in-control ARL's of 250. 370 and 500. Tables 6.1. 6.2.
and 6.3 contain some representative optimal values of (A. L) and the corresponding
out-of-control ARL’s using the approximate UCL for n = 5 with the starting value
Qo = 5. Provided that the in-control ARL = 250. Table 6.4 gives the related
results obtained from simulations when the exact UCL is used. Based on the
results in these four tables. the same conclusions as seen in Chapters 3. 4 and 5
can be drawn.

Table 6.5 lists some commonly used (A, L) combinations using the approx-

imate UCL and the starting values Qy = 5.



Table 6.1: (A. L) combinations and the corresponding ARL’s for optimal EWMA-
SC control schemes in a steady state when 4RLg = 250 andn = 5.

{ a

b 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

A 0.0500 0.0500  0.0500 0.0500 0.4100 0.7000 0.9200 0.9800
1.00 L 1.87996 1.87996 1.87996 1.87996 3.40583 3.75687 3.87189 3.88108
ARL | 250.00 73.46 22.60 5.16 2.11 1.25 1.03 1.00

A 0.0500 0.500 0.500 0.3000 0.4650 0.7000 0.9000 0.9700
1.25 L 1.87996 1.87995 1.87996 3.18646 J3.49091 3.75687 3.86667 3.88021
ARL 9.43 8.50 6.51 3.22 1.79 1.23 1.05 1.90

A 0.2250 0.2650 0.2650 0.4100 0.5700 0.7300  0.8850  0.9600
1.5( L 3.07814 3.10506 3.10506 3.40589 3.63012 3.78053 3.86209 3.87907
ARL 4.17 3.96 3.44 2.30 1.56 1.20 1.06 1.01

0.465¢ 0.5000 0.5000 0.5900 0.7000 0.7950 0.8850  0.9500
3.49091 3.54163 3.54163 3.65165 3.75687 3.82226 3.86209 3.87766
L 1.87 1.84 1.76 1.52 1.30 1.14 1.06 1.02

0.6550 0.6550 0.7000 0.7000 0.7950 0.8600 0.9100 0.9350

L 1.34 1.33 1.31 1.24 1.16 1.10 1.05 1.02

0.7950 0.7950 0.7950 0.8250 0.8600 0.8850  0.9350  0.9350
3.82226 3.82226 3.82226 3.83783 385328 3.86209 3.87510 3.87510
ARL 1.16 1.16 1.15 1.13 1.09 1.06 1.04 1.02

A
L
R
A
2.50 L 3.71688 3.71688 J3.75687 3.82226 3.85326 3.85328 3.86948 3.87510
R
A
L

3.00

66




Table 6.2: (A. L) combinations and the corresponding ARL’s for optimal EWMA-
SC control schemes in a steady state when ARLy = 370 and n = 5.

I n
b 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

A 0.0500  0.0500 0.0500 0.0500 0.3650 0.6550 0.9000 0.9800
1.00 L 1.94790 1.94790 1.94790 1.94790 3.57945 3.99578 1.15768 4.14281
ARL 369.99 78.75 23.66 5.33 2.26 1.30 1.04 1.00
A 0.0500 0.0500 0.0500 0.2650 0.4650 0.6750 0.8850 0.9750
1.25 L 1.94790 1.94790 1.94790 3.34585 3.75513 4.01538 1.15283 4.17241
ARL 9.80 8.80 6.73 3.47 1.89 1.27 1.06 1.01
A 0.0500 0.0500 0.2750 0.3650 0.5550 0.7000 0.8700 0.9300
1.50 L 1.94790 1.94790 3.37492 3.57945 3.88.463 4.03916 4.14728 4.17076
ARL 4.48 1.28 3.71 2.44 1.6+ 1.24 1.07 1.01

A 0.4650 04650 0.4850 0.5550 0.6550 0.7850 0.8800  0.9500

2.00 L 3.75513 3.75513 3.78798 3.88463 3.99578 4.10416 +4.15108 4.16931
ARL 1.96 1.93 1.84 1.58 1.33 1.16 1.07 1.03

A 0.6550 0.6550  0.6550 0.6750 0.7550 0.8450  0.8800  0.9800

2.50 L 3.99578 3.99578 3.99578 4.01538 4.08420 4.13634 4.15108 4.16534
ARL 1.38 1.35 1.37 1.27 1.18 1.11 1.06 1.02

A 0.7750 0.7850  0.7850 0.8150 0.8450 0.8800 0.9300  0.9300

L 4.09778 4.10416 4.10416 4.12147 +4.13634 4.15108 +4.16554 4.16554

3.00 ARL 1.18 1.17 1.17 1.14 1.10 1.07 1.04 1.02
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Table 6.3: (A. L) combinations and the corresponding ARL's for optimal EWMA-
SC control schemes in a steady state when ARLy = 500 and n = 3.

[2)

b 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

A 0.0750 0.0500 0.0500 0.0500 0.3250 0.6350 0.8950  0.9850
1.00 L 4.81295 1.98485 1.98485 1.98485 3.67776 4.20688 4.37768 1.39549
ARL | 499.99 80.96 24.08 5.42 2.37 1.34 1.05 1.00

A 0.0500 0.0500 0.0500 0.0500 0.4650 0.6550 0.8550  0.9750
1.25 L 1.98485 1.98485 1.98485 1.98485 3.95253 4.20688 4.36167 4.39474
ARL 9.95 8.93 6.82 3.63 1.97 1.30 1.07 1.01

A 0.0500 0.0500 0.0500 0.3250 0.5000 0.6750 0.8450  0.9600

1.50 L 1.98485 1.98485 1.98485 3.67776 4.01069 4.22752 43567+ +4.39305
ARL 4.34 +.34 3.85 2.56 1.69 1.26 1.08 1.02

A 0.4650 0.4650 0.4650 0.5700 0.6750 0.7750  0.8450  0.9300

2.00 L 3.95253 3.95253 3.95253 4.10935 4.22752 1.31610 4.35674 1.38762
ARL 2.04 2.00 1.90 1.63 1.36 1.18 1.07 1.02

A 0.6300 0.6300 0.6550 0.6750 0.7500 0.8150 0.9000 0.9300

2.50 L +4.18027 4.18027 4.20688 1.22752 4.29857 4.34115 4.37936 1.38762
ARL 1.41 1.40 1.38 1.29 1.20 1.12 1.06 1.03

A 0.7300 0.7750 0.7850 0.7850  0.8450 0.8450  0.9050  0.9300

3.00 L 428130 4.31610 4.32300 +4.32300 +4.3567+4 4.35674 4.38117 -.38762
ARL 1.19 1.19 1.18 1.15 1.11 1.08 1.05 1.03
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Table 6.4: (A. L) combinations and the corresponding ARL’s for optimal EWMA-
SC control schemes in an initial state and n = 5.

a

b 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00
A 0.40 0.05 0.05 0.05 0.05 0.05 0.05 0.05
1.00 L 3.4054 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180
ARL | 249.94 66.30 21.21 3.61 1.61 1.12 1.01 1.00
A 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
1.25 L 2.1180 2.1180 2.1180 2.1180¢ 2.1180 2.1180 2.1180 2.1180
ARL 7.53 6.61 4.77 2.38 1.46 1.13 1.02 1.00
A 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
1.50 L 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1:80
ARL 3.07 2.92 2.57 1.82 1.35 1.12 1.03 1.00
A 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
2.00 L 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180
ARL 1.56 1.54 1.49 1.34 1.20 1.10 1.04 1.01

o
~
(V]

(3]
(3]
w

A 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

2.50 L 21180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180
ARL 1.23 1.22 1.21 1.17 1.11 1.06 1.03 1.01

A 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05

3.00 £ 2.1180 2.1180 2.118¢ 2.1180 2.1180 2.1180 2.1180 2.1180

ARL | L.11 1.11 1.10 1.09 1.06 1.04 1.02 1.01

Values of A in the range 0.05 to 0.30 are usually used to detect small to
moderate changes in the mean and the variability, and an additional EWMA-
SC chart with A = 1 is simultaneously used to guard against the possible inertia
problem. It is worth noting that when A = 1. this particular EWMA-SC chart
is equivalent to SC chart which is a useful alternative to the common practice of

using the X and the S (or R) charts.

69



Table 6.5: (A. L) combinations for EWMA-SC control schemes in a steady state
when sample size n = 3.

ARLq, = 250
A 005 0.10 0.15 0.20 0.25 0.30 040 0.50 0.80 1.00
L 1.88 245 274 293 308 319 339 3.54 3.82 3.88
ARLy = 370

A 0.05 010 0.15 020 025 0.30 0.40 0.50 0.80 1.00
L 195 265 298 3.17 3.32 344 3.65 3.81 411 4.17
ARLy = 300
A 005 0.10 0.15 0.20 0.25 030 040 0.50 0.80 1.00

L 198 278 316 336 3.51 362 384 401 433 140

6.5 Charting Procedure

For the EWMA-SC chart there are two ways to plot the statistic: plotting
@; against i. and plotting (U;. Vi) on the two dimensional chart. Of the two ways.
the latter is preferable because the source of an assignable cause can be identified
directly from the location of the plotted sample point on the chart. On a U-V
coordinate plane. the control region. {(U;. V;) : U; + Vi < UCL,}. consists of all
the points on or below the line U; +V; = UCL,. If a sample point is above the line.
it will indicate that the change is due to a shift in the process mean when the point
deviates sufficiently from V axis: it will indicate that the change is due to a change
in the process variability when the point deviates sufficiently from U axis. and it
will indicate that the change is due to a combination effect of both the process
mean and variability when the point is close to one of the two lines: U; — V; =0
or U; +V; = 0. For an out-of-control signal, it is also easy to identify the direction
of a shift in the process mean from the position of the sample point. A point in

the right half plane indicates that the process mean is increased, otherwise, the
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process mean is decreased.

1.

2.

3.

{52

The procedure can be briefly summarized in the following steps:

If pq is unknown. substitute X for o. If og is unknown. substitute S/¢; (or

R/dy) for gg and S? for o2.
For each sample. compute U; and V; with Uy = V5 = 0.

[n an initial stage. if one wants to quickly detect specified changes in the

process mean and the process variability ARL of 250. choose the optimal

(A. L) combination from Table 6.1 Let U! = Us\/sr=ieman and V) =
22
AL=(1=0)"12n)

To avoid drawing several parallel lines. compute {7 and
V!, i=1.2.3.4.5. and plot them on U”-V"' coordinate plane. Draw the line

]

Ul + V! = L as the boundary of the control region.

To detect specified changes of the process mean and variability in a steady-
state. choose the optimal (M. L) combination from one of Table 6.1. 6.2 and
6.3: if it is not apparent what changes in the process mean and the process
variability should be guarded against. choose the desired (A. L) combination

from Table 6.5. Plot U; and V; on U-V coordinate plane with the line U +1" =

L/222 as the boundary of the control region.

Check if any point is outside of its control region. For an out-of-control signal.
identify the source of the signal the direction of a mean shift according to the
location of the point on the chart, and indicate the source and the direction

using plotting characters.

Investigate the cause(s) associated with each out-of-control signal.
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6.6 An Example

For the data given in Table 3.1, suppose that. based on past experience, an
operator wanted to guard against the changes a = 1.50 and b = 1.50. To use the
EWMA-SC chart to monitor the cylinder production process. pq is estimated by
X = 200.24 and oy is estimated by S/cy = 3.30. Using these estimates. the first
EWMA-SC chart. consisting of the first five points for the initial stage with A =
0.05 and L = 2.118 and the other thirty points for the steady-state stage with A =
0.57 and L = 3.630. is shown in Figure 6.1. As indicated in Figure 6.1. there is no
point above the line U’ + I = 2.12 although the point of sample 1 is very close to
the control bound. This is because the EWMA-SC chart is designed for detecting a
mean shift accompanying increased variability. but decreased variability may affect
the ability to detect an increased mean shift.

The second chart is given in Figure 6.2. As the process is already in a
steady-state, the EWMA-SC chart is applied with in-control ARL = 250 . A =
0.57 and L = 3.630. This time. two points are above the line U/ + V" = 7.25. Since
these two points are located far from the U axis, both of them are related to the
process variability. When these two samples are excluded. estimates are obtained
as X = 200.22 and §/c, = 2.93. To guard against the same changes for the steady-
state stage. the third chart is plotted in Figure 6.3 . As seen from the plot. sample
11 in the original data set is found to be above the line. It is related to the process
mean since it deviates sufficiently from the V axis. When this sample is further
removed, the two estimates are given by X =200.08 and § /cq = 2.95. The fourth

chart in Figure 6.4 indicates that there is no point above the line.

72



Figure 6.1: The first EWMA-SC chart for the cylinder diameter data
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Figure 6.2: The second EWMA-SC chart for the cylinder diameter data
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Figure 6.3: The third EWMA-SC chart for the cylinder diameter data

AN U+V=725

Figure 6.4: The fourth EWMA-SC chart for the cylinder diameter data
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CHAPTER 7

Comparisons of Several Control Charts

7.1 Introduction

To assess the performance of a control chart. a common way is to evaluate
the ARL characteristics of the control chart. The concept of ARL refers to the
number of sample points that are plotted until an out-of-control signal is received.
If performances of two control charts with the same in-control ARL are compared.
the better chart is the one that has smaller out-of-control ARL.

Assuming that pg and gy are known. and sample sizes n; are all equal to
n. different control charts are compared under the same assumptions of Chapter
3. ARL comparisons are carried out among the four new charts. the combination
of the two Shewhart charts and the combination of the two EWMA charts in the
steady state. i.e.. all types of the EWMA charts are using the approximate control
limits. The two new charts. the Max-EWMA chart and the SS-EWMA chart.
demonstrate good overall ARL performances. In addition to the ARL comparisons.
diagnostic abilities are further studied on the Max-EWMA chart. the SS-EWMA

chart and the combination of the two standard EWMA charts in the steady-state.

7.2 The Two Combination Charts

7.2.1 The Combination of the Two Shewhart Charts

The two Shewhart charts, the X chart and the S chart, have been considered
as the most important and useful on-line SPC techniques since Shewhart [51]

introduced the control chart theory in the 1920’s.
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To monitor the process mean. a X chart has the following control limits:

Za 20
UCLg = po + \;ﬁ 2

CLg =po
Za,".’UG

/n

LCLg =po -

Letting a = 0.002 and n = 5. then Z,,» = 3.090 and this specific X chart has a
Type I error probability 0.002 when the process is in control.

To monitor the process variability. an S chart with probability limits is
used. A probability 0.001 is assigned to each tail and the control limits are given

by

i Xi_
L’CL5=0'0\/ n—-l.as2

n—1

2
Xn—l.l—a/?.

LCL_g:O'o n— 1

Letting & = 0.002 and n = 5. then x}_, , , = 18.466. x2_, |, , = 0.908 and the
type I error probability is also 0.002 when the process is in control.

The combination of the X chart and the S chart has a combined Type I
error probability 1 — (1 —0.002)% ~ 0.004. which is equivalent to have an in-control
ARL of 250.

Let pg be the probability of an out-of-control signal detected by the X chart.
Let ps be the probability of an out-of-control signal detected by the S chart. Let
p be the probability of an out-of-control signal detected by the combiration of the

X chart and the S chart. For various changes in the process mean and/or the
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process variability, we have

pe=2- 2@[%(3.090 — aV3)]

18.466 0.091
e (580) e (2

p=1-(1—-pg)(l-ps)

Because X;. Xa.... are independent and so are Sj. Sa.. ... the ARL for the com-

bination of the X chart and the S chart is 1/p with respect to a and b.

7.2.2 The Combination of the Two Standard EWMA Charts

EWMA charts are known to be effective in detecting small changes in the
process mean and/or variability. Of the two EWMA charts employed in the com-
bination. one is the usual EWMA X proposed by Robert [47]. and the other is
a modified EWMA In(S?) chart in Crowder and Hamilton [14]. In the following
discussion. it is assumed that the sample size n is equal to five.

To monitor the process mean. the EWMA X chart has the following control

limits:
UCL,=p +L M
1 = M 1 2= A 1
CLi=m
At
LCLy = - Ly 9 ,\101

where A, and L; are the parameters that control the performance of the EWMA

X chart, p; = go and oy, = %
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The plotting statistics are

Qi=(1-A)Qi-1 + M .X; i=1.2....

where Qg = ;.

To monitor the process variability. the original EWMA [n(S?) chart is mod-
ified into a two-sided chart since the original one is primarily designed to detect
an increase in the variability. For the modified EWMA [n(S?) chart. the control

limits are

A2

UCLy = pp+ Lo 5 _—/\ g9
ClLa = o
A
LCLy = o = Lyy[ 5o

where A, and L, are the parameters that control the performance of the EWNMA {n(S?)

chart. p, is the approximation mean of {n(S?) given by

ety Lo L 2
B2 = tM%) = T T 3m =12 " 1n -1

and o3 is the approximate variance of {n(5?)} given by

2 N 2 + 4 16
n-1 (n-01)7% 3n-13 15n-1)>%

a.

"~ N

The plotting statistics are

Yi=(1l-X)Yio +Min(S}H i=12....
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where Yy = us.

Based on the numerical evaluation of run-length distributions of EWMA
charts. Crowder [13| concluded that. for the in-control large ARL cases. the run-
length approximately follows a geometric distribution with parameter as the re-
ciprocal of the in-control ARL. Because @Q; and Y; are independent. the in-control
ARL for the combination of the two EWMA charts can be obtained in the same
way as that for the combination of the two Shewhart charts in term of the in-control
ARL's of the two EWMA charts.

Given in-control ARL of 500 for both the EWMA X chart and the EWMA
In(S?) chart. Table 7.1 contains the optimal (A;. L,) values for specified shifts in
the process mean. the optimal (A,. Lo) values for specified changes in the process
variability and the corresponding smallest ARL’s. which are obtained from solving
integral equations in the same way as that in Crowder [13] and Crowder and
Hamilton [14].

Table 7.1: The optimal parameter values used for the EWMA X chart and the
EWMA [n(S?) chart when ARL;, = 500 and n = 5.

EWMA X Chart

a
0.00 025 050 100 1.50 200 250 3.00
AL 0.655 0.055 0.160 0.430 0.765 0.940 0.995 1.000
L 3.084 2.645 2.920 3.060 3.088 3.090 3.09C¢ 3.090
ARL; | 500.0 244 9.6 3.0 1.6 1.1 1.0 1.0

EWMA [n(S?) Chart

b
025 050 100 125 150 200 250 3.00
Az 0.445 0.180 0435 0.050 0.110 0.200 0.270 0.330
L, 3.575 3.095 3.561 2.633 2.900 3.143 3.292 3.402
ARL, 2.0 5.0 5000 245 103 4.8 3.3 2.6

For the combination of the EWMA X chart and the EWMA In(S?) chart.
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the in-control ARL is given by

ARLg ARLgs
ARLy + ARLgp — 1
250000
300 +500 -1
= 250

-‘1RLO =

where ARL, is the in-control ARL for the combination chart. ARLy; is the in-
control ARL for the EWMA X chart and ARLgy» is the in-control ARL for the
EWMA [n(S?) chart.

Because there is no direct way to compute the out-of-control ARL. each of

the ARL value has to be estimated from 10.000 simulated run lengths.

7.3 ARL Comparisons

To compare the performance of the various control chart schemes on an
equal footing. each scheme is calibrated so that the in-control ARL is approx-
imately equal to 250. Since an EWMA-type chart is controlled by the (A. L)
combination. there are many possible ARL’s for an out-of-control condition and
two approaches can be employed to make comparisons among the five EWMA-type
charts. The first approach compares the best ARL performance of each EWMA-
type chart with that of the other EWMA-type charts. and the combination of the
X chart and the S chart.

For a pair of specified changes in the process mean and the process variabil-
ity as given by specified a and b. the smallest out-of-control ARL for each EWMA-
type chart is obtained using its optimal parameters, whereas the combination of the

X chart and the S chart only has one out-of-control ARL. Tables 7.2, 7.3 and 7.4
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Table 7.2: Optimal ARL Values of Max-EWMA chart and EWMA-Max chart
when n = 5 and ARLy = 250.

Max-EWMA Chart

[4)

b 0.00 925 050 1.00 1.50 2.00 250 3.00
0.25 227 227 227 216 1.13 1.00 1.00 1.00
0.50 541 541 322 276 135 1.00 1.00 1.00
1.00 | 249.93 2395 858 294 156 1.09 1.01 1.00
1.25 17.7 1280 7.10 2.8 1.60 1.153 1.02 1.00
1.50 6.28 569 451 252 159 1.19 1.05 1.01
2.00 250 245 228 1.82 1.44 1.21 1.08 1.03
2.50 1.84 1.81 1.75 1.59 136 1.20 1.11 1.05
3.00 1.66 164 160 1.50 136 1.24 1.14 1.08

EWMA-Max Chart

a

h 0.00 025 0.50 100 1.50 2.00 250 3.00
0.25 254 254 254 232 1.13 1.00 1.00 1.00
0.50 | 13.39 1229 904 3.26 1.35 1.00 1.00 1.00
1.00 | 250.02 79.44 16.76 3.46 1.57 1.09 1.01 1.00
1.25 | 17.07 13.52 8.14 3.08 162 1.15 1.02 1.00
1.50 5.92 545 441 254 139 1.19 1.05 1.01
2.00 225 220 208 1.73 141 1.20 1.08 1.02
2.50 149 148 145 1.35 1.24 1.14 1.07 1.03
3.00 3.00 123 122 1.18 1.14 1.09 1.06 1.03

display results of such comparisons for the six charts. The entries for the four new
charts are taken from Tables 3.1. 4.1. 5.1 and 6.1. The entries for the combination
of the EWMA X chart and the EWMA (n(S?) chart are obtained based on the
optimal parameter values for the combinations of the (A, L;) and (Aq. L2). which
are given in Table 7.1. The entries for the combination of the X chart and the S
chart are calculated as 1/p with respect to various changes of the process.

The second approach is to make comparisons when the five EWMA-type
charts use the same values for the weight, i.e., A = A; = A,. Tables 7.5, 7.6, and 7.7

display the respective out-of-control ARL’s of the six charts for various changes in
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Table 7.3: Optimal ARL values of SS-EWMA chart and Combination of the two
EWMA charts when n = 5 and ARLy = 250.

| | SS-EWMA Chart |
a

b 0.00 0.25 0.50 1.00 1.50 2.00 250 3.00
0.25 251 242 219 148 1.00 1.00 1.00 1.00
0.50 596 5.37 4.17 232 126 1.00 1.00 1.00
1.00 | 249.91 2440 883 3.07 1.62 1.1t 1.01 1.00
1.25 17.11 11.67 6.58 2.78 1.539 L.15 1.02 1.00
1.50 593 526 4.08 233 1.52 L1.17 1.04 1.00
2.00 2,17 212 198 162 134 1.16 1.06 1.02
2.50 1.44 1.43 1.40 130 1.20 Ll.11 1.06 1.02
3.00 .21 1.20 120 1.16 1.12 1.08 1.05 1.02
EWMA Combination Chart

a

b 0.00 0.25 0.50 1.00 1.50 2.00 250 3.00
0.25 199 199 199 194 120 1.00 1.00 1.00
0.50 1499 499 484 277 1.37 1.00 1.00 1.00
1.00 | 250.13 23.53 8.47 294 155 1.09 1.01 1.00
1.25| 20.83 16.52 7.99 294 1.61 1.15 1.02 1.00
1.50 926 858 6.40 288 1.66 1.21 1.05 1.01
2.00 3.83 464 400 254 1.70 1.31 112 1.04
2.50 2.57 321 2.88 216 1.64 1.36 1.18 1.08
3.00 2.04 258 234 189 1.56 137 121 1.12
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Table 7.4: Optimal ARL values of EWMA-SC chart and Combination of the two
Shewhart charts when n = 5 and ARLy = 250.

EWMA-SC Chart
a

b 0.00 0.25 0.50 1.00 1530 2.00 250 3.00
1.00 | 250.00 7346 2260 5.16 2.11 1.25 1.03 1.00
1.25 9.43 8.30 6.31 3.22 1.79 1.23 1.05 1.00
1.50 4.17 396 344 230 136 120 1.06 1.01
2.00 1.87 1.84 1.76 1.52 1.30 L.14 1.06 1.02
2.50 1.34 1.33 1.31 1.24 1.16 1.10 1.05 1.02
3.00 1.16 1.16 1.15 1.13 109 1.06 1.04 1.02
Shewhart Combination Chart

a

b 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00
0.25 6.06 6.06 6.06 6.05 1.14 1.00 1.00 1.00
050 | 68.39 68.39 68.20 17.31 142 1.00 1.00 1.00
1.00 | 250.21 128.14 38.08 35.05 1.6 1.09 1.01 1.00
1.25 ;1 30.92 2385 13.20 3.82 169 1.15 1.02 1.00
1.50 8.30 7.90 578 290 165 1.20 1.08 1.02
2.00 2.43 238 222 180 1.43 1.20 1.08 1.02
2.50 1.52 1.0  1.47 1.37 1.24 1.14 1.07 1.03
3.00 1.24 1.23 1.22 1.19 1.14 1.09 1.06 1.03 [
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Table 7.5: ARL's of Max-EWMA chart and EWMA-Max chart when n = 5 and
ARLy = 250.

r } Max-EWMA chart [ EWMA-Max chart ]
a a

b 0.00 0.25 050 100 200| 0.00 0.25 030 1.00 2.00

0.25 3.9 39 39 39 21 4.0 +0 40 3.7 20

A=0.05 0.50 6.9 69 68 45 23 16.7 153 114 48 20

Ly =246 100 |250.1 239 99 46 24|250.0 967 210 5.1 2.0

Lear =243 1.50 8.7 83 7.1 46 24 8.1 76 64 40 20

2.00 3.1 50 47 39 24 3.6 35 34 29 1.9

0.25 3.2 32 32 32 20 3.0 30 3.0 28 1.4

A=0.10 0.0 3.9 39 58 37 20 13.4 123 9.0 36 1.4
Lye =279 1002500 249 88 39 2012500 794 168 39 1.5
Legy =237 150 7.5 T0 59 37 20 6.3 539 49 3.1 1.5
2.00 1.1 40 38 3.1 20 2.8 27 26 2.2 1.5

0.25 2.7 27 27 27 20 2.7 27 27 25 1.0

A=020 0.50 3.4 54 5.2 3.1 1.8 15.7 904 103 3.3 1.1
Lyp =304 1.00;2499 313 86 3.3 1.7 | 250.1 185 3.6 3.0 1.3
Lgy =270 150 6.6 6.1 50 3.1 1.7 6.0 55 46 28 1.4
2.00 3.4 33 31 25 1.7 2.5 24 23 20 1.3

0.25 2.4 24 24 24 t.2 2.6 26 26 2.4 1.0

A=030 0.50 5.6 56 54 29 1.3 189 176 128 3.3 1.0
Lye =314 10072499 401 94 3.0 1.4 250.1 968 203 3.5 1.2
Ley =286 1.50 6.3 57 46 28 1.5 3.9 55 44 26 1.3
2.00 3.0 29 27 22 1.5 2.4 23 22 1.8 1.3

0.25 2.3 23 23 22 1.0 2.6 26 26 24 1.0

A=0.50 0.50 8.2 82 80 28 1.0y 290 277 221 38 1.0
Lyg =322 1002500 61.2 128 3.0 1.2 | 250.1 108.2 249 3.6 1.2
Legy =3.07 150 6.4 58 45 24 1.2 6.3 537 45 23 1.2
2.00 2.6 26 24 19 1.2 2.3 22 21 1.8 1.2

0.25 2.9 29 29 28 1.0 3.7 3.7 3.7 35 1.0

A=080 050| 267 267 265 5.1 1.0} 514 504 464 77 10

Lyp =326 1002501 1022 246 3.6 1.1]250.1 1215 328 4.2 1.1
Ley =322 150 7.4 66 51 26 1.2 7.3 66 51 27 12
2.00 2.5 25 23 18 1.2 2.3 23 21 1.7 1.2
0.25 6.0 60 6.0 60 1.0 6.1 6.1 61 6.1 1.0

A=100 050 682 682 681 174 10| 690 687 683 173 1.0
Lyeg =326 1.001%250.1 1293 382 50 1.1]250.1 1282 381 5.1 1.1
Lear =325 1.50 8.4 77 58 29 1.2 8.3 75 58 29 12

2.00 2.6 26 24 19 1.2 2.4 24 22 18 1.2
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Table 7.6: ARL's of the SS-EWMA chart and the combination of two EWMA
charts when n = 5 and in-control ARLy = 250.

SS-EWMA chart Combination Chart 1
a a

b 0.00 0.25 0.50 1.00 2.00; 0.00 0.2 0.50 1.00 2.00
0.25 4.2 1.1 3.9 3.1 2.0 3.0 3.0 3.1 3.1 2.1
A =005 0.50 74 6.9 3.8 4.0 2.4 6.1 6.1 60.0 4.4 2.3
L =296 1.00 | 250.0 245 103 4.9 2.6 | 249.6 24.2 9.9 4.7 2.4
L, =261 1.50 8.7 7.9 6.5 4.3 2.5 10.7 10.1 8.0 4.7 2.3
L, =260 2.00 4.3 4.2 1.0 3.3 2.3 59 5.8 3.3 4.3 2.5
0.25 3.5 3.4 3.2 2.8 2.0 2.5 2.6 2.3 2.5 2.0
A=0.10 0.50 6.4 3.9 4.9 3.3 2.0 5.3 5.3 5.2 3.6 2.0
L =360 1.00]| 250.0 25.4 9.1 4.0 2.1 1 252.1 25.1 8.8 3.9 2.0
Ly =281 1.50 7.3 6.6 5.4 3.5 2.1 9.7 8.8 6.9 3.9 2.1
Lo =286 200 3.5 3.5 3.3 2.7 1.9 5.0 1.8 4.5 3.5 2.1
0.25 29 2.8 2.6 2.0 1.7 2.2 2.2 2.2 2.2 1.9
A=020 0.50 6.0 3.4 4.3 2.8 1.9 3.0 5.0 4.8 3.0 1.8
L =391 1.00] 250.0 31.8 8.9 3.4 1.8 | 250.9 31.5 8.6 3.3 1.7
L, =296 1.50 6.4 3.7 4.6 2.9 1.7 10.2 8.7 6.3 3.3 L.7
L, =314 200 2.9 2.9 2.7 2.2 1.5 4.4 1.3 3.9 2.9 1.7
0.25 2.6 2.6 2.3 2.0 1.0 2.1 2.1 2.1 2.0 1.1
A =030 0.50 6.9 5.6 4.2 2.5 1.3 5.5 5.4 5.2 2.8 1.3
L =430 1.00 | 250.0 40.6 9.7 3.2 1.5 | 249.4 10.2 9.4 3.0 1.4
L, =302 1.50 6.0 3.4 4.3 2.6 1.4 12.8 10.1 6.5 3.0 1.3
L, =335 200 2.6 2.3 2.4 2.0 id 4.3 4.2 3.8 2.7 1.5
0.25 2.5 2.4 2.2 1.8 1.0 20 2.0 2.0 1.9 1.0
A =050 0.50 11.0 8.7 3.3 2.3 1.0 8.4 8.2 8.0 2.8 1.0
L =447 1.00| 250.0 61.3 134 3.1 1.2 | 248.0 61.7 12.8 3.0 1.2

L, =307 150 6.0 53 41 24 13| 229 150 75 29 1.3
L, =364 200 2.3 22 21 17 1.2 5.2 49 40 26 1.4
0.25 3.9 36 27 15 1.0 24 25 24 24 1.0

A=080 050 455 350 166 3.0 1.0} 206 206 208 49 1.0
L=452 100)|2500 993 250 39 1.1]2494 995 242 3.7 1.1
L, =309 150 6.5 58 44 24 127 256 174 92 3.1 1.2
L, =388 2.00 2.2 21 20 16 1.2 7.8 68 52 28 1.3
025 113 98 63 1.7 1.0 3.7 36 3.7 37 1.0

A=100 0.50]| 128.1 1030 535 61 10| 361 36.1 354 142 1.0
L =453 100 250.0 1266 384 54 1.1 |2513 1275 38.0 5.1 1.1
L, =309 1.50 7.5 6.7 50 26 12| 252 186 103 36 1.2
L,=395 2.00 3.5 34 29 20 1.2 8.1 73 56 3.0 1.3

85



Table 7.7: ARL’s of the EWMA-SC chart and the combination of two Shewhart
charts when n = 5 and in-control ARL = 250.

EWMA-SC chart Combination Chart
a a
b 0.00 0.25 0.30¢ 1.00 2.00| 0.00 0.25 0.50 1.00

w
o
o

A =005 1002500 735 226 52 162502 1281 381 51 1.1
Les=18 150 43 42 37 26 14| 83 75 58 29 1.2
2001 22 21 20 18 13| 24 24 22 18 12

A=010 1002500 109.2 275 52 152502 1281 381 5.1 1.1
Les=245 150 43 41 36 25 14| 83 75 58 29 1.2
2000 21 21 20 17 12| 24 24 22 1.8 1.2

X=020 1.00 2500 1284 342 52 142502 1281 381 5.1 1.1
Les =293 15| 42 40 35 24 13| 83 75 58 29 1.2
200 20 19 19 16 12| 24 24 22 18 L2

X=030 L.00| 2500 1348 39.3 54 1.3]2502 128.1 381 5.t L1
Les=319 150| 42 40 34 23 12| 83 75 58 29 1.2
2000 19 19 1.8 16 12| 24 24 22 18 1.2

X =050 1.00| 2500 1466 49.5 6.3 1.3 2502 128.1 381 5.1 L1
Les=354 150 45 42 36 23 12| 83 75 58 29 12
2000 1.9 18 18 15 12] 24 24 22 18 1.2

A=080 L00]|250.0 1575 615 84 132502 1281 381 5.1 L1
Les=38 150 52 49 40 25 12] 83 75 58 29 12
2000 19 19 18 15 L1| 24 24 22 18 1.2

»=100 1100|2500 161.4 67.2 100 1.3 2502 128.1 381 5.1 1.1
Les =238 150 57 54 44 26 12| 83 75 58 29 1.2
200 20 19 18 16 12| 24 24 22 18 1.2
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the process mean and the process variability.

Similar results are shown in Tables 7.2 - 7.7. It should be noted that. in term
of detecting small changes in the mean and/or the variability. the performance of
the combination of the X chart and the S chart is very poor in comparison to
others. It is also seen that. in term of detecting shifts in the mean alone (h = 1).
the Max-EWMA chart. the SS-EWMA Chart and the combination of the EWMA
X chart and the EWMA (n(S?) chart vield smaller ARL's than the other charts.
and they perform almost equally well. One interesting point to be noted is that
the Max-EWMA chart and the SS-EWMA chart have similar ARL performances.
In term of detecting mean shifts that are accompanied with variability changes
when the variability is decreased. the combination of the EWMA X chart and the
EWMA [n(S?) chart performs better than the others but is only slightly superior to
the Max-EWMA chart and the SS-EWMA chart. However. when the variability is
increased. the four new charts perform better than the combination of the EWMA
X chart and the EWMA [n(S?). This difference in performance can be explained
by the fact that symmetric control limits are used in the EWMA [n(S?) chart. but
the distribution of {n(S®) is not symmetric.

For the comparisons among the four new charts. the SS-EWMA chart have
the smallest ARL’s when a mean shift accompanies a decreased variability change.
while the EWMA-SC chart yields the smallest ARL’s when a mean shift accom-
panies an increased variability change. Another interesting result is that even for
large changes of a process, most optimal ARL values of the four new charts are
smaller than the ARL values of the combination of the X chart and the S chart.

The overall ARL performance for these charts shows that the Max-EWMA
chart and the SS-EWMA chart appear to be better control schemes than others

for detecting various shifts in the process mean and/or changes in the process
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variability because in different situations their ARL values are at least close to the
smallest ones. If a mean shift accompanies a non-increased variability change. the
combination of the EWMA X chart and the EWMA In(S?) chart has good ARL
performance. When a mean shift accompanies an increased variability change. the
EWMA-SC chart performs well. In general. when an EWMA-type chart is used.
smaller A values give better performance for detecting smaller changes in the mean
and/or the variability.

[t is important to note that. for the comparisons of these control charts.
the in-control ARL of 250 is only one of many possible choices and it is a value
between 185 and 370. which are two often used values for the in-control ARL in
quality control. If any other value is chosen for the in-control ARL. the results

would most likely be the same as those when the in-control ARL is 250.

7.4 Diagnostic Ability Studies

From the results of the last section. the Max-EWMA chart and the SS-
EWMA chart demonstrate overall good ARL performances. Since our main ob-
jective is to provide alternatives to the use of combination of the existing charts.
further comparisons of the diagnostic abilities are made among the Max-EWMA
chart. the SS-EWMA chart and the combination of the EWMA X chart and the
EWMA (n(S?) chart (referred to as the combination chart in the following dis-
cussion). To identify the source and the direction of the detected changes. 1.000
out-of-control signals are simulated. Each chart, with in control ARL of 250. is
applied to the same set of the 1.000 signals using the approximate UCL. Out-of-
control signals are counted according to the charting procedure of each chart.

Table 7.8 contains some comparative results of the Max-EWMA chart and
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the combination chart. where (A. L) = (0.10.2.79). (A;.L,) = (0.10.2.81) and
(Mg, L) = (0.10.2.86). Table 7.9 contains some comparative results for the SS-
EWMA chart and the combination chart. where (A. L) = (0.10.3.60). (A,. L,) =
(0.10.2.81) and (A2. L2) = (0.10.2.86). Notation in Tables 7.8 and 7.9 is defined
as follows: +o denotes the number of times that an increase in the mean alone is
detected: —o denotes the number of times that a decrease in the mean alone is
detected: o+ denotes the number of times that an increase in the variability alone
is detected: o— denotes the number of times that a decrease in the variability alone
is detected: ++ denotes the number of times that an increase in both the mean and
the variability is detected simultaneously: +— denotes the number of times that an
increase in the mean and a decrease in the variability are simultaneously detected:
—+ denotes the number of times that a decrease in the mean and an increase in
the variability are simultaneously detected. and —— denotes the number of times
that a decrease in both the mean and the variability is detected simultaneously.
It can be seen from Tables 7.8 and 7.9 that. in the in-control case (a = 0.b =
1). the Max-EWMA chart and the SS-EWMA chart give a balanced performance
while the combination chart gives an unbalanced performance. Also. it can be seen
that. in the out-of-control cases. the two new charts perform as well or nearly as
well as the combination chart does when the variability is decreased. however. both
of the two new charts perform better than the combination chart does when the
variability is increased. The two new charts, especially the SS-EWMA chart. seem
to be more effective than the combination chart for detecting simultaneous changes
in both the mean and the variability. For example, when a = 1.00 and & = 0.25.
out of the 1,000 simultaneous change out-of-control signals. the Max-EWMA chart
identifies 304 signals, the SS-EWMA chart 651 signals and the combination chart

105 signals. In term of the accuracy of detecting the source and direction of an
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Table 7.9: A comparison of the diagnostic abilities between the SS-EWMA chart
and the EWMA combination chart.

SS-EWMA chart Combination Chart
a a

b 0.00 0.25 050 1.00 2.00| 000 0.25 050 100 2.00
+0 0 N 0 3 994 0 0 0 2 543
-0 6 0 0 0 0 0 0 0 0 0
o+ 0 0 0 0 0 0 0 0 0 0
025 o~ | 994 911 701 346 0| 1000 1000 1000 893 8
++ 0 0 0 0 0 0 0 0 0 0
+- 0 83 299 651 6 0 ] 0 105 449
—-+ 0 ] 0 0 0 g 0 0 0 0
- 0 0 0 4] 0 0 0 0 0 0
+0 0 0 L 294 990 0 i 59 708 979
-0 27 0 0 0 0 0 0 0 0 0
o+ 0 g 0 0 0 0 0 0 0 0
0.50 o— | 973 570 164 b} 0| 1000 999 87+ 108 0
++ 0 0 0 0 0 0 0 0 0 0
+- 0 430 835 701 10 0 0 67 187 21
-+ 0 0 0 0 0 0 0 0 0 0
-— 0 0 0 0 0 0 0 0 0 U
+o | 2564 930 983 997 1000 | 245 961 996 998 999
-0 | 247 0 0 0 0} 236 ¢ 0 0 0
o+ | 244 27 7 2 0 73 5 0 0 0
1.00 o— | 2535 43 10 1 0 444 30 3 2 0
++ 0 4] 0 0 0 0 0 0 0 0
+ - 0 0 0 0 0 1 4 1 0 1
-+ 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 1 0 0 0 0
+o 41 54 189 541 892 54 258 606 944 999
-0 49 1 0 0 0 53 2 0 0 0
o+ | 905 483 249 44 1| 874 696 322 28 0
1.50 o—- 5 9 9 5 3 0 0 0 a 0
++ 0 417 549 410 100 10 +4 72 28 1
+— 0 0 1 0 4 g 0 0 0 0
-+ 0 36 3 0 0 9 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0
+0 32 37 93 245 691 50 137 278 651 963
-0 41 4 1 0 0 52 17 5 0 0
o+ | 862 640 331 246 29 | 8359 792 613 208 6
200 o- 61 82 87 82 41 0 0 0 a 0
++ 3 181 269 425 238 22 47 104 141 31
+— 0 0 0 0 1 0 0 0 0 0
-+ 1 96 19 2 0 17 7 0 0 0
- 0 0 0 0 0 0 0 0 0 0
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out-of-control signal. the Max-EWMA chart is the best among the three charts.
and the SS-EWMA chart produces a few more incorrect signals than the other two
in some cases. Overall. the Max-EWMA chart seems to have the highest diagnostic

ability of the three charts. These results are consistent with that of Section 7.3.
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CHAPTER 8

Discussion on Lognormal Quality Control

8.1 Introduction

The lognormal distribution LN (u.¢?). is defined as the distribution of a
random variable whose logarithm follows the normal distribution N (u.o?). Since
many kinds of data in real life have a positively-skewed distribution. the lognormal
distribution has been widely applied in many areas.

Morrison [41] first applied the lognormal distribution to quality control.
and proposed a modified quality control scheme that can process skewed data in
the original scale of measurement when the assumption of normality can not be
made. Ferrell {20] also suggested using this control scheme for computing and
plotting control charts when data are from a badly skewed distribution which can
be approximated by a lognormal distribution.

Based on the fundamental relationship between normal and lognormal dis-
tributions. Morrison derived control limits for the lognormal variable from the
corresponding control limits for a normal variable. using the inverse logarithmic
transformation. However. because of the complexity of the lognormal distribution.
its application to quality control cannot be referred to that of the normal distri-
bution by simply taking the direct transformation, which may result in a control
chart with inappropriate control parameters.

For simplicity, in this chapter a lognormal process refers to a process in
which its characteristic follows a lognormal distribution and a normal process refers
to a process in which its characteristic follows a normal distribution.

To monitor a lognormal process, the corresponding normal process is ob-
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tained through the logarithmic transformation and a new quality control scheme
is developed. When it is given that the lognormal process mean lies in a specific
interval. then two control charts are set up for the lognormal process. The control
of a complex lognormal process is simplified to that of a normal process. for which

good control schemes are available and it is much easier to implement.

8.2 A Modified Quality Control Scheme

N(p.o?).

In the modified quality control scheme proposed by Morrison {41]. the statis-
tics for a lognormal process and the corresponding 3o control limits can be obtained
from the following derivations. Notice that

P (,zﬂz, Sg)

Ty

= P (e:rp(u —30y) <exp(Y) < exp(p — 30?))
= P(ezp(p — 30y) < vV Xi)Xiny < ezp(p + 30y)) (8.1)

where Y is the sample midrange for a normal process, and X;(1) and Xj(,) are the

minimum and maximum of the i* sample. respectively.
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Similarly.

P(IR,'—E(R;)IS3)

OR
= Plezp((d: — 3d3)0) < exp(R;) < ezp((d2 + 3ds)0))

r

= P (e.rp((dn - 3da)7) < i‘ 8 < prp((da + 3ds)a ) (8.2)
i(l)

where R; is the sample range for a normal process. and ds and dj are control chart
constants.

Thus. from (8.1). the geometric sample mean /X)X is used as a mea-
sure of the lognormal process mean and the exact control limits are exp(p + 3oy ).

With the available sample results. the control limits are estimated by

emp(}‘:’)'f::'.l Y(l))‘(nm] ( X‘(n)) (83)
(1)

where X(;) and .|, are the minimum and maximum in nm sample values for a
lognormal process. 7 is the average ratio of the maximum to the minimum from m
samples of size n for a lognormal process. and 4, is a control chart constant.

Yl(n)

Similarly. from (8.2). the sample ratio v+ is used as a measure of the

lognormal process variability and the exact cont:rol limits are exp((dx + 3d3)0o).

which are estimated by

1 X D2

=D i(n)

3 - —_ .4
F —( E : ) (8.4)

i=1 “ 1)

and
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oy _ [ 1 Xitn) > -
Foi = (; ; W) (8.5)
where D3 and Dy are control chart constants.

From the derivations. it is seen that the in-control probability of the derived
statistics for a lognormal process is the same as that for its normal counterpart.
but the control limits for lognormal control charts are inaccurate. Because the
control parameters for lognormal and normal processes are different. the direct
transformations may not assure that the statistical state of a lognormal process
is the same as that of the corresponding normal process. Morrison's chart actu-
ally sets the target as the normal process mean. and therefore a normal process is
monitored through its lognormal counterpart. Moreover. because the parameter
estimators of (8.3). (8.4) and (8.5) resulting from the inverse logarithmic transfor-
mation are biased. the control charts neither have proper probability nor proper

3-sigma control limits.

8.3 New Control Charts for Lognormal Processes

It is difficult to directly construct a control chart for a lognormal process
since sampling properties associated with the lognormal statistics are not easy to
derive. Making use of the relationship between normal and lognormal distributions
and having been given a specific interval for the lognormal mean to a lognormal
process, a new method is proposed to avoid the complexity of the lognormal dis-
tribution. The two control charts for lognormal distribution can be constructed to

monitor a lognormal process.
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8.3.1 The Logarithmic Transformation

In statistical analysis. a logarithmic transformation is often applied to a
set of positively-skewed distributed data before proceeding with the analysis. This
approach works well for usual statistical analysis. However. the direct logarithmic
transformation may result in a control chart with inappropriate control parameters
in the application of quality control. For a lognormal process. it is of interest to
control the parameters u. and o,., while. for a normal process. p and o are of
interest. It can be shown that. for a specified significance level «. the control
limits for individual measurements of a lognormal process is different from that
of the corresponding normal process. Without loss of generality. assume that

X~ LN(0.1). then Y = In(X) ~ N(0.1). For a = 0.0027. it follows from
P(X > zqo03s) = 0.00135
that the upper percentile z; 49,35 can be found as
Zo.00135 = exp(3)
Hence. the upper control limit for the X chart is

UCLx = p.+ Zg.001350.

exp(0.5) + ezp(3.5)\/exp(l) — 1

= 45.06

and In(UCLx) = 3.81.
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The upper control limit for the Y chart is

UCLy = p+ 20001350

= 3.00

Obviously. In(UC L) is not equal to UC Ly so that the direct transforma-
tion may result in different control state for corresponding normal process. There-
fore. some standards have to be given in order to guarantee the control state of

the corresponding process is equivalent to that of the original lognormal process.

8.3.2 A Specific Interval for the Lognormal Process Mean

Suppose that m samples are randomly drawn from a lognormal process. and

. is known to lie in an interval:

(Lo fhatr)

and it is given for the process according to technical specifications. It could be
either a given margin of error or specification limits for a single measurement. The

margin of error is give by
a1 < Xij—p. L a (8.6)

i=1.2,....m;3=12.....n
where a, and a, are known positive constants.

Equation (8.6) can be written as

—az + Xij < pa L 01 + X5
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which is equivalent to

Ximny) — a2 < pe £ Xy + 4

‘\’(mn) - .\'(1) <ap +as

Hence. an interval for possible values of p. is

Heyy = ."(1) “+ dy {8.7)

Her = -Y(mn) — a2 (8.8)

[f specification limits are available. the upper and lower specification limits

can be used as .y and p.r. respectively.

8.3.3 Derivation of Intervals for Parameters

The control parameters for a lognormal process are u. and ¢2. The control
parameters for the corresponding normal process are g and o. The parameters pu.

and o2 are functions of u and & given by

ti. = exp(p + 0.507) (8.9)

[ &)

0? = exp(2u + o*)[exp(c?) —~ 1] (8.10)

M preliminary samples collected from the in-control process can be used to
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estimate o? by 42 = S2. From (8.9). an inteval for p is obtained as below:

vy = In(p.y) — 0.56° (8.11)

pr = In(u.) - 0.56% (8.12)

From (8.10). an inteval for o? is obtained as below:

oy = exp(2uy + 07){ezp(6?) — 1 (8.13)

ol = exp(2uy + 6%)[exp(5*) - 1] (8.14)

Because the normal distibution is symmetric about mean. the target for the

corresponding normal process is

pe = 0.5(py + pr)

= 0.5n(p.yp.) - 0.56° (8.15)

which implies that the target for the lognormal process is the geometric mean of

Lo and pop. L€ g = /Ul

8.3.4 Constructing Control Charts for Lognormal Processes

When m preliminary samples are taken from a lognormal process. the loga-
rithms of each observation form the m initial samples of the corresponding normal

process. To determine whether the process variability is stabilized. an S chart can
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be set up with control limits:

2
UCL, = ] Xe S (8.16)
n — 1C4
LCL, = \/—"‘l-lg- (3.17)
n— 1C4

where a3 and ay are Type [ error probabilities for lower and upper tails respectively.

If all the standard deviations of these samples plot inside the control limits.
then the process variability appears to be in control. Otherwise. each of the out-of-
control points for which assignable causes can be found is discarded and the control
limits are recalculated. Then these control limits can be used for controlling current
or future production and o2 is estimated from the formula 6° = S2.

The percentiles for Y chart can be obtained by setting

BU — o = 20,0 (8.18)
UL — fo = 2,0 (8.19)
Then.
zay = B H2 (8.20)
o
Zay = HUu — Ho (8.21)
o

where a;; and a4 are Type [ error probabilities for lower and upper tails respectively.
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A Y chart can be set up with the following control limits:

CLy = ug (8.22)
UCLy = po+ "\"/ﬁ"
- (1_%)/10_,_&\/% (8.23)
LCLy = po+ Z\a/lnf
= (- —\/1-;1—-);10 + % (8.24)

8.4 Properties of the New Control Charts

When a specific interval for p. is given. the derivations of control limits for
the control charts monitoring the two related processes are reversible and hence
the statistical control state of the lognormal process can refer to that of the cor-
responding normal process. As a result. it is necessary to study properties of the
two control charts for the normal process and effects of normal parameter changes

on the lognormal parameters.

8.4.1 The ARL Calculations

Assume that Y;; ~ N(ug,03) independently. where i = 1.2.... .m:j =
1.2.....n. Suppose that the normal process mean changes from pg to ug + aogy
and the normal process standard deviation changes from g to boyg.

The probability of type II error for Y chart can be computed from

By = P(LCLy <Y <UCLy|p = pg + aog; o = boy)

1 TN, | QT .
= O[—In —ayn| - ®{——In —ayvn 8.25
[20'0 (I-hz, ) [ 209 (#.L ) (8:25)
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When a = 0. the probability of type I error for Y chart is

- 2@[——1—111(“‘” ) (8.26)

from which it is noted that ay is a function of Z—LL and oq. To achieve a small ay.
ﬁ—'L and gy are usually not larger for high precision products so that the process
variability has to be small. while. gy is allowed to be a little bit large for medium

or low precision products.

The ARL's for Y chart can be easily obtained from

1
> = D 1nd
:iRLY 1 — df/ (8.-()
When ay is fixed. ARL will decrease as a and n increase.
The ARL's for S chart can be computed from
iRLs = ! (8.28)
. s = = ‘[35 A

where gs = H(X42=1) — H(*232=1) and a5 = a3 + 4.

8.4.2 Effects of Changes in Parameters

When there are changes in the normal process mean and process variability.

the lognormal parameters will be changed to

tt1. = ezplug + agy + 0.5(bag)?]

o2, = ezp[2(po + ady) + (bay)?|lexp((bop)?) — 1]
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where a # 0 and b > 0.

Because the derivatives of u,. with respect to a and b are

Oy,

Pl o > 0 (8.29)
da
au . 2 1

ag = bodp. >0 (8.30)

Notice that y,;, is a monotone increasing function ot ¢ and b. and o, can

be written as a monotone increasing function of p,.:

o1. = m.verp((bag)?) — 1 (8.31)

since \/?;L'p((bcrn)?) — 1> 0. Then oy, is also a monotone increasing function of a
and b.

Thus. the direction of an-out-of-control signal from a lognormal process can

be identified from the corresponding normal process.

8.5 Charting Procedure and Example
The steps to set up the two charts are summarized below:
1. Determine the values of u.y and p.r.

(a) Use values provided by technical specifications. or if not available.

(b) use p.y and p.r obtained from preliminary data as follows:
if the overall range of the data is less or equal to a; + a2, calculate p.y
and pu,r; however, if the overall range is greater than a, +as, remove the
possible outliers X(nm), X(1). ..., until the overall range is less or equal

to a1 + @y, and then calculate y.y and p.p.
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2. Transform data using ¥ = [n(X).

3. Construct an S chart and estimate o2 by S2 when the process variability is

in control.
4. Compute py. pr. po. 03y and o?;.
5. Construct a Y chart.

6. For a sample point that plots outside one of the control limits. calculate j.;
and % using Y; as the estimate of 1 and S? as the estimate of 2. Plot ‘m+"
or ‘m-" against sample number if only g.; > p.p or fiv < p.r: plot v+~
or 'v-" against sample number if only d.; > a.y or 4.; < o.y: plot ‘m+v+",
‘m+v-".'m-v+ or ‘m-v-" against sample number according to the sources and

the directions of an out-of-control signal.

=~

Examine the assignable cause(s).

An example is given to illustrate how to apply the new control scheme to
lognormal distributed data. The data. consisting of 34 samples of size 5. are given
in Table 8.1. The first 30 samples are taken from Morrison [41]. where it was
stated that they were collected from a process in the valves industry. The last 4
samples are added to simulate an out-of-control process. For the measurement of
individual values. the upper and lower specification limits are 1 and 10.

A probability plot of the real data in Figure 8.1 suggests that the obser-
vations do not behave as though arising from a normal distribution. To adjust
for non-normality, lognormal transformation is applied to the original data. A
probability plot of the transformed data in Figure 8.2 shows that a lognormal dis-

tribution curve can be fitted quite well, suggesting that lognormal quality control
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Table 8.1: Valve data.

Sa.mple i .Y]_ .Yg X 3 .Y.g .Ys Sample i :Y[ .Yg .Y;; .Y.[ .‘(5
1 435 4.99 3.62 3.52 3.77 18 285 416 3.17 250 3.91
2 1.3 395 410 416 1.61 19 .16 3.70 261 265 3.42
3 222 L73 510 452 4.06 20 254 477 1.63 264 3.539
4 271 245 46 209 1.90 2 3.61 213 5.08 201 1.92
5 291 568 433 3.51 3.24 22 3.16 420 232 244 1.62
6 220 5.66 3.71 3.35 1.61 23 296 6.09 3.78 229 4.16
7 282 3522 3.75 3.50 331 24 247 349 3.38 445 261
8 276 44 313 155 3.70 25 3.55 335 318 4.75 8.72
9 498 405 400 7.20 3.18 26 1.35 250 251 420 3.50
10 188 2.71 3.51 3.15 431 27 230 226 222 160 9.70
11 150 1.95 3.41 237 190 28 3.71 3.06 1.53 245 6.40
12 3.07 4.02 417 433 4.06 29 9.48 1.72 420 3.37 5.38
13 239 291 3.09 3.15 2.52 30 1.90 256 428 3.18 1.94
14 292 425 3.02 226 5.72 31 8.88 935 9.75 993 149
15 256 4.38 1.24 262 1.92 32 255 132 921 822 3.15
16 253 4.16 3.78 3.77 1.72 33 1.63 15.90 9.62 8.58 9.96
17 341 3.10 6.02 1.09 2.92 34 112 978 850 7.96 9.20

scheme should be employed in this case. Suppose that the first 20 samples in Table
8.1 are used as preliminary samples. After applying logarithmic transformation.
an S chart is set up with as = 0.0027 and it is shown in Figure 8.3. When the 20
sample standard deviations are plotted on this chart. there is no indication of an
out-of-control condition. Then o2 is estimated by §2 = 0.1263.

Since z,, = -3.0449 and z,, = 3.0449. a Y chart can be set up with
ay = 0.0023 and it is shown in Figure 8.4. When the 20 sample means are plotted
on this chart. there is also no indication of an out-of-control condition. Since the S
and Y charts constructed using the first 20 samples indicate that both the process
variability and the process mean are in control. the control limits obtained can be

used in on-line statistical process control.
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Assuming that there is a 20y shift in the process mean and a 3 times change
in the process standard deviation. the probability of detecting the mean shift on the
first subsequence sample is 0.9236. and the probability of detecting the variability
change on the first subsequence sample is 0.7398. Hence. the expected number of
samples taken before the shift is detected is 1.0827. and the expected number of
samples taken before the change is detected is 1.3517. When the last 14 sample
means are plotted on the Y chart shown in Figure 8.5 and the last 4 sample
standard deviations are plotted on the S chart shown in Figure 8.6 . it is seen
that the last 4 points are abobe at least one of the UCL's. This indicates that the
lognormal process is out of control with an increase in u. and o?. To identify the
sources of these out-of-control signals. fi.; and 6% are calculated. It is found that
fi1 and fi.a3 are greater than pu.y. and d%,. 6%, and 62, exceed &%;. which is
equal to 13.4651. This diagnosis is supported by reference back to the individual
measurements of the last 4 samples. since there are individuals exceeding p.p in
sample 31 and 33 and greater variability within sample 32. 33. and 34. It should
be noted that. for the last sample. only the lognormal process variability is out of
control although both of the corresponding normal process mean and variability

are out of control.

107



8
g &
3

4

-

Q

a 2 | 0 1 2 3
Normal Distribution
Figure 8.1: The probability plot for the valve data
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Figure 8.2: The probability plot for the logarithm of valve data
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Figure 8.3: The first S chart for the valve data

wUCL = 0.80
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Figure 8.4: The first Y chart for the valve data
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Figure 8.5: The second S chart for the valve data
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2 4 a -] 10
Sameie numMmber

Figure 8.6: The second Y chart for the valve data

110

14



CHAPTER 9
A Multivariate Max-EWMA Control Chart

9.1 Introduction

There are many situations in which a process is simultaneously character-
ized by more than one related quality characteristic. Because these quality char-
acteristics are correlated. quality control requires a multivariate approach. that is.
it is necessary to simultaneously control these related quality characteristics.

As shown in Chapter 3 and Chapter 7. the univariate Max-EWMA chart
has high capability of detecting small changes in the process mean and/or variabil-
ity as well as identifying the source and the direction of an out-of-control signal. In
this chapter. the technique used in the univariate Max-EWMA chart is extended
to multivariate quality control and a multivariate Max-EWMA Chart is proposed.
This new chart can be used to simultaneously monitor both the process mean vec-
tor and process variability in the multivariate case as well as identify the source
and the direction of an out-of-control signal. Once an out-of-control signal is de-
tected. a diagnostic developed by Runger. Alt and Montgomery [49] is employed to
investigate which quality characteristic is responsible for the out-of-control condi-
tion. ARL properties are studied and Monte Carlo simulation is used to evaluate
the ARL performance. Compared with the combination of the x* and the |S|
charts. the new chart is more sensitive in detecting small changes of a process. An

example is given to illustrate the implementation of the new chart.
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9.2 The New Control Chart

Assume that a process consists of £ quality characteristics denoted by X.

where X ~ Ni(p.¥) and X;, . X,,.... . X;,.i =1.2..... are the i** sample of size

n drawn from the process. Let gy and ¥y be the mean vector and the standard

covariance matrix. respectively.

To monitor the process mean vector. a statistic proposed by Rigdon and

Champ [46] is given by

Zi = (1= NZi_; + MXi = )

with Zg as the starting point.

Because

E(Zi) = p - py
and
Al(1 = A%
Covl(Z;) = ———Ef(lz — /\)) ]E

It is found that

Z; ~ Ne(p — pg, Cov(Z;))

and hence

n(2-12) o -1 2
A AL,/ oyl
g (1 = N7 R
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where 62 = n(p — py)'S "' ( — py). Then a statistic for monitoring the process

mean vector is defined as

n(2 - A)

U; = (I)—l[Hk{_/\[(l Y i]

Z2!%07'2;}) (9.6)

To monitor the process variability. a statistic that is a multivariate analog

of the univariate S? is given by

W; = Z(Xij - X)E Xy - X)) (9.7)

j=1
Obviously. W; ~ xi(n_” when £ = ¥,;. An EWMA statistic is defined as
Yi= (1= MYy + A Y { Hygn-y (W3)} (9.8)
with Y, as the starting point. [t is noted that if ¥ = . then
E(Y;) =0 (9.9)
and
Var(Y,) = AlL - A7) (9.10)

A statistic for monitoring the process variability can be formed as

2-A

A= (o11

Vi =

It is apparent that U; and V; are independent. When g = gy and X = X,
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both U; and V; follow the standard normal distribution. Thus. based on U; and V}.

a new statistic for the multivariate single chart would be defined as below:

M; = maz{|U;|.|Vi]} (9.12)

Notice that M; is the maximum of the absolute values of the two multivariate
EWMA statistics. It is natural to name the new chart the Max-MEWMA chart.
Similar to the univariate Max-EWMA chart. a large value of M,. for the
Max-MEWMA chart. means that the process mean vector has drifted away from
g, and/or the process variability has changed. On the other hand. a small value
of M; implies that the process mean vector and variability have remained close to

their nominal values.

9.3 Derivation of the UCL

Because U; and V; independently follow the standard normal distributions.

and given p = py and £ = . the in-control CDF of A/; is found to be

Fly:pyg.Bo) = P(M; < ylp=py. E = Zg)
= P(Ui| < y. Vil <)
= P(|lUi| < y)P(IVil < 9)

= [28(y)-17 y=20 (9.13)

The corresponding pdf of M; is given by

F(y; o, To) = 46(y)[28(y) — 1)° (9.14)
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Table 9.1: (\. L) combinations for Max-MEWMA control schemes in a steady state
when 4ARLy=200.

K=2andn =2
A 0.05 0.10 0.20 0.30 0.60 0.80 1.00
L 27710 2.8563 2.9380 2.9730 3.0170 3.0230 3.0245
K=2andn=5 |

A 005 010 020 030 060 030 1.00
L 27722 28659 2.9928 3.0592 3.1330 3.1397 3.1436
K=3andn =2 ‘
A 0.05 0.10  0.20 0.30  0.60 0.80 1.00 |
L 27573 2.8751 3.0025 3.0634 3.1330 3.1430 3.1453

Then. through numerical computation it is easy to find that E(.M;) = 1.128379
and Var(M;) = 0.363381.

Therefore. the UCL is given by

UCL = E(M;)+ Ly/Var(M;)

= 1.128379 + 0.602811L (9.15)

where L is a multiplier and controls the performance of the chart with A for a
specified value of in-control ARL.

Table 9.1 lists some comimonly used (A. L) for the starting values Z, = 0

and Yy = 0.

9.4 Properties of the ARL

The ARL study for a multivariate control chart could be very complicated
if changes of the process covariance matrix are concerned. Even for the widely
used |S| chart, it seems that no one has evaluated its ARL performance, resulting

from the complex structure of the process covariance matrix. To simplify the ARL
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study of the Max-MEWMA Chart. two properties are given in this section.

Property 1. Let X,,.i = 1.2..... be independent sample mean vectors from pdf
1and X,.i = 1.2...., be independent sample mean vectors from pdf 2. Let pdf
1 be multivariate normal with mean p, and covariance matriz ¥, /n and pdf 2 be
multivariate normal with mean p, and covariance matric So/n. If S 'y, =
L5 s thenV integer m. fi(Usi=1.2.....m) = fo(Ui.i = 1.2.... .m). where
HUi.i =1.2.....m) is the joint distribution of Uj.i = 1.2..... given pdf | and

folUi i =1.2....) is the joint distribution of U;.i = 1.2..... given pdf 2.

Property 1 is based on Lowry's [34] results where she showed the joint
distribution of T, and thus the ARL depends on g and ¥ only through the value
of the noncentrality parameter d2. Because U; is defined upon T; through two
one-to-one transformation functions. H(-) and ®~*(-). Property 1 can be obtained
directly from Theorem 2 in Lowry [34]. Property 1 implies that. for different mean
vectors as well as different covariance matrices. the joint distribution of U; is still
the same. Then. to investigate the property of shifts in the process mean vector.
one only needs to look at the magnitude of §° and does not have to consider each
possible direction of the shift in one mean vector and each possible covariance
matrix separately. This fundamental property is very useful in the evaluation of
the ARL performance of the Max-MEWMA chart. Without it. too many possible

situations would make the evaluation much more difficult.

Property 2. Suppose that £ = b*E,. When k = 2 and for specified values of b (or
changes for variances), n and p—p,, the value of noncentrality parameter 62 is only

related to the magnitude of 0,5, the covariance of the two quality characteristics.

From Property 1, joint distribution of U;,i = 1,2,..., does not depend on

the direction of g — p; and the special from of Xg.
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. dl 1 d12
Without loss of generality. let g — py = and £ =
0 J12 1

where d; is a constant. Then. the noncentrality parameter is

8 = n(p - pg) (5*0) " n(p - )

nd?
T (1 - oty (9.16)

Because the values of b and n and d, are fixed. d* is only related to the magnitude
of a19.

Property 2 indicates that for & = 2. increases and decreases of the same
magnitude in oo result in the same ARL provided that the values of b and n and
d, are specified. The importance of this property is clear when one realizes that
the number of ARL values required for the evaluation can be reduced to half of

the original ones.

9.5 The ARL Performance

Even though the burden of the ARL evaluation is partially alleviated by
using Property 1 and Property 2. it still requires much work to evaluate the ARL
performance in detail because of the complex nature for a multivariate chart. es-
pecially for a multivariate EWMA single chart. In this section. detailed discussion
of the ARL performance for the Max-MEWMA chart is given with respect to dif-
ferent values of A. k. n, the shift in the process mean vector and the change in the
process covariance matrix. For the Max-MEWMA chart, there is no direct way to

compute the ARL, so each ARL value is obtained using 10,000 simulations.

117



9.5.1 Computation Set-up

According to Property 1. the Max-MEWMA chart is directional invariate

in the mean shift. Without loss of generality. assume that for & = 2.

0 1 p

By = Lu= and ¥ = L -l<p<l
0 a p 1

for k = 3.
0 0 1 pop

=) 0] .p=|0fandZy=| p 1 p|. -1<p<lL

o
s}
©

p 1

That is. for & = 2. 03, = 03, = 1. and ¢}, = 03, = p. the correlation between
the two quality characteristics: for k = 3. 03, = 03, = 0}y = 1. 0}, = 0} =
03, = 03 = 03 = g3, = p. the correlation between any two of the three quality
characteristics.

For a given in-control ARL of 200. ARL’s are simulated. It is seen. from
Property 1. that 6° only depends the magnitude of a and thus only positive values
are needed to be considered for a. Similarly. when & = 2. only positive values
are needed for p based on Property 2. It should be noted that. in order to get a
positive definite matrix X. p can only take limited vales in ( -1. 1).

To calculate ARL’s of the Max-MEWMA chart. we consider three forms of
the changed covariance matrix:

I %y (b>0)

In this case, the correlation between the two quality characteristics is still

equal to p after the covariance matrix has changed. The combinations are set as
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l.k=2:n=2
A =0.05.0.1(0.1)1.0
a = 0.0(0.5)3.0
b =0.0(0.3)3.0
p =0.0(0.3)0.9
2.k=2n=5
A =0.05.0.1(0.1)1.0:
a = 0.0(0.5)3.0:
b =0.0(0.5)3.0:
p = 0.0(0.3)0.9.
3. k=3%n=2

A =0.05.0.1.0.2.0.3:
a = 0.0(0.5)3.0:

b = 0.0(0.5)3.0:

p = —0.3(0.3)0.9.

Tin
ns=| "7 "

012 p

Let p' be the correlation between the two quality characteristics after the
covariance has changed. then p’ = £~ which results in p € (~1.1)N(~0102, 0102).
The combinations are set as below:

For k=2,n=2 0orn=>5; A =0.050.1(0.1)1.0. and a = 0.0(0.5)3.0.

1. Both o, and o, increase with o' < p.
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oy = 1.25 and o, = 2.0:

p = 0.0(0.3)0.9.

X

Only one o increases with p' < p.
oy = 1.25 and g, = 1.0:

p = 0.0(0.3)0.9.

3. Both o, and o, decrease with g/ > p.
gy =09 = 0.6:
or oy = 0.6 and g2 = 0.8:

p=0.0.0.3.

4. Only o increases with p' > p.
oy = 1.25 and o9 = 1.0:

p=0.0.0.3.

One o increases but the other decreases. gy = 0.5 and o, = 1.5 with p' > p.

(1}

p=0.0.0.3.06: 0y = 0.5 and g, = 2.0 with o' = p.

or oy = 0.5 and o, = 2.5 with ¢ < p.

p = 0.0(0.3)0.9.
ai p p
Il ¥ = P 1 p
p pl

In this case. § = phy = pls = Py = Fly = p/o1 and phy = Py = p. where

p e (—0.5,1) n (AyBreier fAryBreion) por b =3n =2, A =0.05,0.1.0.2.0.3.

and a = 0.0(0.5)3.0.
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1. o, decreases with p’ > p.

o, = 0.75. p = —0.3.0.0.0.3.

2. o0y increases with p' < p.
o1 = 1.25: or o, = 1.50: or 0, = 2.0:

p = —0.3(0.3)0.9.

Because too many tables are required to list all the results. Tables 9.2-9.5
display the ARL performance for the various changes in the process mean vector
and variability when A = 0.2. which is one of the popular choices in practice for

EWMA-type control charts.

9.5.2 Discussion

When £ = b, the distribution of U; is given by
PWU; < y)= H (—_b?—) {9.17)

where 6% = & (p — po)' 7 (1 — pay).
Then the ARL performance. in term of the capacity for detecting the shift
in the mean vector. depends on g — gy and X only through the value of §2.
Fork=2~62=@(?_‘pr)-
For example. if A = 0.20,n = 2.and b = 0.5, two cases are chosen as
a = 2.5. pL= 00: ao = 2.0. P2 = 0.6
so that 62 ~ 2. As seen in Table 9.2, ARL, = ARL, =2.3.
— 2 _ _na®(l+p)
For k = 3, 0 = m
For example, if A = 0.20,n = 2,and b = 1.5, two cases are chosen as

a=293,p =03; a2, =20, pp =0.6
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Table 9.2: ARL values of Max-MEWMA chart when £k = 2. n = 2. L = 2.9380
and A = 0.20 in Case [.

ARLy = 200
u
p | 0.00 050 1.00 150 200 250 3.00
00 105 109 74 42 30 23 20
b=050 03] 104 110 69 39 29 21 20
06| 105 107 54 32 23 20 19
09| 105 61 26 20 11 10 10
0.0]2027 306 76 42 30 24 20
b=100 032022 276 71 40 28 23 20
062028 188 54 32 24 20 L7
09{222 62 26 19 13 10 10
00 101 82 55 38 29 24 20
h=150 03] 101 81 53 37 28 23 19
06 100 75 45 31 24 L9 L7
09| 101 49 26 18 13 11 1.0
0.0 43 41 36 31 26 22 19
b=200 0.3 43 41 35 30 25 22 19
0.6 43 40 33 27 22 19 16
0.9 43 35 24 17 14 11 1.0
0.0 29 29 27 25 22 20 18
b=250 0.3 29 29 27 25 22 20 18
0.6 29 28 26 23 20 18 1.6
0.9 29 26 21 17 14 12 L1
0.0 23 23 22 21 20 19 1.7
b=3.00 03 23 23 22 21 20 18 17
0.6 23 23 22 220 19 17 15
0.9 23 22 19 16 14 12 11
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Table 9.3: ARL values of Max-MEWMA chart when £ =3.n = 2.L = 3.0025 and
A =0.20 in Case /.

ARLy = 200
a

p | 000 050 1.00 1.50 2.00 2.50 3.00
-0.3 63 68 59 38 28 21 20
0.0 63 68 65 45 32 25 21
b=0.50 03 63 69 62 42 3.0 23 20
0.6 63 69 351 32 23 20 19
0.9 64 53 24 20 10 10 1.0
-0.31199.2 255 6.6 J0027 022 19
0.0 {200+ 366 84 45 32 24 21
b=1.00 03 ;2003 300 74 42 29 23 20
0.6 (200.1 182 53 32 23 20 17
09 {2013 55 24 1.8 12 10 1.0
-0.3 75 64 46 34 26 21 18
0.0 73 66 51 38 30 23 20
b=150 03 75 65 49 36 28 19 16
0.6 75 6.1 41 30 23 L7 L2
0.9 79 42 23 22 19 10 10
-0.3 J4 33 30 26 23 20 17
0.0 J4 33 31 28 25 21 L8
b=2.00 03 34 33 30 27 24 19 18
0.6 34 32 29 24 21 18 16
0.9 34 29 21 16 12 11 1.0
-0.3 24 24 23 21 20 18 16
0.0 24 24 23 22 21 19 17
b=1250 03 24 24 23 22 20 17 16
0.6 24 24 22 21 19 17 15
0.9 24 22 19 15 12 10 10
-0.3 20 20 19 18 17 16 1.5
0.0 20 20 20 19 18 17 16
=3.00 03 20 20 19 19 18 15 14
0.6 20 20 19 18 17 11 10
0.9 20 1.9 17 15 12 10 1.0
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Table 9.4: ARL values of Max-MEWMA chart when & = 2. n = 2. L = 2.9380
and A =0.20 in Case [/.

N ARLy = 200 |
a
p [0.00 050 1.00 1.50 2.00 2.50 3.00
0.0 [647 226 7.1 41 29 23 20
oy=125 03|573 199 67 39 28 22 20
oy=100 06372 135 51 32 23 20 L7
09| 86 48 26 18 14 L1 10
0.0]282 152 68 41 30 24 20
oy=125 03!248 135 63 39 28 23 19
gy=125 06155 95 49 32 24 20 L7
09| 47 37 25 18 14 22 Ll
00] 70 63 48 37 29 24 21
o =125 03] 66 57 46 35 28 23 20
72:=200 06| 48 44 36 29 23 20 L7
09 24 23 20 18 L3 13 12
oy =060 03|81 187 80 42 30 23 20
02 =060 0.6|11.1 105 69 39 28 21 20
o =060 03]365 288 81 43 30 23 20
02 =080 0.6|248 220 74 40 28 22 20
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Table 9.5: ARL values of Max-MEWMA chart when £k = 3. n = 2. L = 3.0025
and A = 0.20 in Case [/.

ARL, = 200
a

p | 0.00 050 1.00 1.50 200 250 3.00

-0.3 1077 287 68 38 27 22 19

oy =075 0.0 |156.7 384 87 46 3.2 25 21
0311293 330 76 42 3.0 23 20

0.3, 579 185 63 3.7 27 22 19

0.0 | 803 268 780 44 3.1 25 21

op=125 03| 683 224 70 40 29 23 20
06 | 390 135 50 31 23 19 1.7

0.9 742 23 L7 1.2 1.0 LO

03 200 122 57 36 26 21 19

00 293 175 72 43 3.1 24 21

o =150 03| 243 147 64 39 28 23 20
0.6 135 89 46 30 23 19 L7

09} 403 32 =21 16 1.2 10 10

-0.3 73 63 45 32 25 21 18

0.0 9.7 85 56 39 29 24 20

oy =200 03 84 73 50 35 27 22 19
0.6 56 50 37 27 22 18 16

0.9 25 23 19 15 1.2 10 1.0
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so that 62 = §2. As seen in Table 9.3. ARL, = ARL, =2.3.

When ¥ has the form as defined in II or III. It is impossibie to directly
get the distribution of U;. However. since this new chart is mainly designed for
detecting small changes of a process. the changes of oy and/or &5 are small. The
difference between 07 = (1 — )5 (1 — 1) and 0% = (g — V7 Hp — pg) is

usually small. and d3 is an approximate noncentrality parameter for J.

J::
=]
1o

For k = 2. 0§ = £
For example. if A = 0.20.n = 2. oy = 1.25 and o2 = 1.00. two cases are chosen as
a;=25.p=0.0:a,=20.ps =06
so that 07 = 3. As seen in Table 9.4. ARL, = ARL» = 2.3.

For k=3.4° = %
For example. if A = 0.20.n = 2.and o, = 1.25. two cases are chosen as
a; =2.5. ¢ =03 a; =2.0. pp =0.6
so that d7 = d3. As seen in Table 9.5. ARL, = ARL, =2.3.

The results displayed in all the tables show that ARL’s become smaller when
a increases and/or b (or o’s) has a big change. It is noted that. when p increases.
the highly correlated quality characteristics result in shorter ARL’s since more
information is available in the highly correlated data. One interesting phenomenon
is that. as k increases. ARL's increase for a shift in the mean vector alone. but
ARL'’s decrease for a change in the variability alone. This can be explained by
the fact that an increasing amount of noise associated with the higher dimensions
makes it harder to detect a shift in the mean vector. but it is more sensitive to
detect a change in the variability. Another notable fact is that, for a small change
within the process, the smallest ARL is obtained corresponding to small values

for weakly correlated data, however, the optimal value for A will become slightly

larger when data are highly correlated. For an increasing sample size, it is well
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known that ARL’s become smaller since more information is contained in a bigger

sample.

9.6 One Combination Chart

Two control charts. the x* chart and the |Sj chart. have been widely used

in multivariate quality control.

To mounitor the process mean vector. the test statistic plotted on the >

chart is
T? = n(X; — o) S5 H(Xi = o) (9.18)

with UCL, = x5,
To monitor the process variability. [S| is the plotted test statistic. When

18, } : . .
k=2 :ﬂ"—zil's-'_ ~ X3,_4- Then the control limits for the [S;| chart are given by
120} -

[20 I(Xgaz )2

UCLy = Tn—-1) (9.19)
|Z0|(X6.1-a2)° ;

For k =2, n=35. a; = 0.0025. and a> = 0.00125. the combination of the y?
chart and the |S| chart has a combined Type I error probability 1 — (1 —-0.0025) =~
0.005. which is equivalent to an in-control ARL of 200.

Let pq. p and Xy be the same as those defined in Section 9.4.1. To calculate
ARL'’s of the combination chart, two forms of the changed covariance matrix are

considered.

L B?%, (b> 0)
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Let p; be the probability of an out-of-control signal detected by the x* chart.
Let p, be the probability of an out-of-control signal detected by the |S| chart. Let
p be the probability of an out-of-control signal detected by the combination chart.

For various changes in the mean vector and/or the variability. We have

2
X2.0.0025 )

n=1- Hg.‘g;’( b2
2 2
ps = | — Ho(X2000125 ) | py (X2000875 )
b B2
p=1-(1-p)(1-pa)
Because Tl:,' T§ ... are independent and so are |S;|. |S,j. .... the ARL for the

combination chart is 1/p with respect to a. b and p.

In this case. because the distributions of T; and |S;| can not be obtained
directly. simulations have to be used. The combinations chosen are the same as
those in Section 9.4.1.

For various changes in the mean vector alone. in the variability alone. and
in both the mean vector and the variability. ARL’s for the combination chart are
calculated. Some representative results are given in Tables 9.6-9.8 and compared
with the ARL’s obtained from the Max-MEWMA chart with respect to different A
values. As expected, the Max-MEWMA chart yields smaller ARL’s than the com-
bination chart. Thus, it is more sensitive than the combination chart in detecting
small to moderate changes in the mean vector and/or the variability. In general,

smaller A values give better ARL performance.
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Table 9.6: ARL’s of the Max-MEWMA chart and the combination of x? chart and
|S| chart when £ =2.n=5. A =0.60 and L = 2.7722 in Case /.

Max-MEWMA chart Combination Chart
a a
P 000 025 050 1.00 200 ]| 0.00 0.25 0.50 1.00 2.00
0.0 3.2 3.2 29 1.1 1.0 196 196 16.8 1.0 1.0
b=050 03 3.2 3.2 2.8 1.1 1.0 19.6 196 15.1 1.0 1.0
0.6 3.2 3.2 2.3 1.0 1.0 19.6 19.6 6.6 1.0 1.0
0.9 3.2 2.6 1.0 1.0 1.0 19.6 10.8 1.0 1.0 1.0
0.0 { 201.3 28.4 4.1 1.3 1.0 | 200.2 48.4 6.6 1.1 1.0
b=1.00 03] 1993 249 3.7 3.0 1.0 | 200.2 43.6 3.6 l.1 1.0
0.6 | 199.3 14.9 2.6 2.5 1.0 | 200.2 28.2 3.2 1.0 1.0
0.9 | 199.3 3.1 1.1 1.0 1.0 | 200.2 1.2 1.0 [.0 1.0
0.0 3.6 3.2 23 1.3 1.0 5.1 4.1 2.6 1.2 [.2
b=150 03 3.6 3.2 2.3 1.2 1.0 3.1 1.0 2.4 1.2 1.2 |
0.6 36 30 20 1.1 1.0 51 37 20 1.1 1.1
0.9 3.6 2.1 1.2 1.0 1.0 3.1 2.2 1.1 1.1 1.0
0.0 1.5 1.5 1.4 1.2 1.0 1.7 1.6 1.4 1.1 1.0
b=1200 0.3 1.5 1.5 1.4 1.1 1.0 1.7 1.6 1.4 I.1 1.0
0.6 1.3 1.5 1.3 1.1 1.0 1.7 L.6 1.3 1.1 1.0
0.9 1.5 1.3 [.1 1.0 1.0 1.7 1.4 I.1 1.1 1.0
0.0 1.1 1.1 1.1 1.1 1.0 1.2 1.2 1.1 1.1 1.0
b=230 03 1.1 1.1 1.1 1.0 1.0 1.2 1.2 1.1 1.1 1.0
0.6 1.1 1.1 1.1 1.0 1.0 1.2 1.2 1.1 1.0 1.0
0.9 1.1 1.1 1.0 1.0 1.0 1.2 1.1 1.0 1.0 1.0
0.0 1.0 1.0 1.0 [.0 1.0 1.1 I.1 1.1 1.0 1.0
b=3.00 03 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.0 1.0
0.6 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 1.0
0.9 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 [.0
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Table 9.7: ARL's of the Max-MEWMA chart and the combination of x? chart and
|S| chart when £ =2. n=5. A =0.20 and L = 2.7722 in Case I.

[ Max-MEWMA chart Combination Chart
a a
P 0.00 025 0.50 1.00 2.00| 0.00 0.25 050 1:.00 2.00
u.0 3.2 3.2 3.1 2.0 1.1 196 196 16.8 1.0 1.0
=050 0.3 3.2 3.2 3.0 2.0 1.0 196 196 15.1 1.0 1.0
0.6 3.2 3.2 2.8 1.8 1.0 196 19.6 6.6 1.0 1.0
Q.9 3.2 2.9 2.0 1.0 1.0 196 10.8 1.0 1.0 1.0
0.0 ] 199.4 11.5 3.9 2.0 1.2 ] 200.2 48.4 6.6 1.1 1.0
b=100 03] 199.5 115 3.7 1.9 1.1 ] 200.2 43.6 5.7 1.1 1.0
0.6 | 199.5 i 3.0 1.6 1.0 1 200.2 28.2 3.2 1.0 1.0
0.9 | 199.5 3.3 1.8 1.0 1.0 | 200.2 4.2 1.0 1.0 1.0
0.0 4.2 3.8 3.1 1.9 1.3 5.1 4.1 2.6 1.2 1.2
b=1.50 0.3 4.2 3.8 3.0 1.8 1.2 5.1 4.0 2.4 1.2 1.2
0.6 4.2 3.7 2.7 1.6 1.0 5.1 3.7 2.0 1.1 1.1
0.9 4.2 2.8 1.7 1.0 1.0 3.1 2.2 1.1 1.0 1.0
0.0 2.3 2.3 2.2 1.8 1.3 1.7 1.6 1.4 1.1 1.0
b=1200 0.3 23 2.3 2.1 1.7 1.3 1.7 1.6 1.4 1.1 1.0
0.6 2.3 2.3 2.1 1.5 1.1 1.7 1.6 1.3 1.1 1.0
0.9 2.3 2.1 1.6 1.0 1.0 [.7 1.4 [.1 1.0 1.0
0.0 2.0 2.0 1.9 1.7 1.3 1.2 1.2 1.1 1.1 1.0
b=250 0.3 2.0 2.0 1.9 1.6 1.3 1.2 1.2 1.1 1.1 1.0
0.6 2.0 2.0 1.9 1.5 1.1 1.2 1.2 [.1 1.0 1.0 ¢
0.9 20 1.9 1.5 1.0 1.0 1.2 1.1 1.0 1.0 1.0
0.0 1.9 1.9 1.8 1.6 1.3 1.1 1.1 1.1 1.0 1.0 |
b=3.00 0.3 1.9 1.9 1.8 1.6 1.3 1.1 1.1 1.1 1.0 1.0
0.6 1.9 1.8 1.7 1.4 1.2 [.1 1.1 1.0 1.0 1.0
0.9 1.9 1.8 1.5 1.1 1.1 1.1 1.0 1.0 1.0 1.0
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Table 9.8: ARL's of the Max-MEWMA chart and the combination of y? chart and
|S| chart when £k =2.n=35.A=0.20 and L =2.7722 in Case [I.

Max-MEWMA chart Combination Chart l
a a
p | 000 025 0.50 100 200]|0.00 025 050 1.00 2.00
=060 00| 44 45 36 2.0 1.1]49.0 484 216 1.0 1.0
g,o=060 03| 35 36 32 20 10130 128 10.2 1.0 1.0
0.0 | 28.2 9.5 3.9 2.0 1.2 | 533.5 24.7 5.4 1.1 1.0
o, =060 03] 246 8.8 3.6 1.9 1.3 476 21.3 1.7 1.1 1.0
o, =080 06 ; 14.3 6.5 3.0 1.6 1.0 | 30.0 11.7 2.8 1.0 1.0
0.9 3.7 2.8 1.7 1.0 1.0 5.6 2.4 [.2 1.0 1.0
0.0 10.3 7.0 3.7 1.9 1.2 | 16.7 113 4.0 1.2 1.0
oy =1.25 0.3 9.0 6.4 3.5 1.9 1.2 ] 17.1 9.7 3.5 i.2 1.0
oo =100 0.6 5.9 1.6 2.9 1.6 1.0 | 10.1 2.8 2.3 1.1 1.0
09 24 22 1.7 1.0 0] 23 1.7 1.2 1.0 1.0
00, 32 30 27 19 13| 35 31 23 1.3 1.0

oy=12 03} 30 29 25 18 13| 32 28 21 1.2 1.0
ca=125 06 25 24 22 16 12| 23 21 1.6 1.1 1.0
0.9 18 1.8 16 1.2 1.0 1.2 1.2 L1 1.0 1.0
00| 49 43 33 20 144(113 71 36 1.4 1.1
o =030 03| 45 4.0 3.1 19 13]103 66 3.3 1.4 1.0
72=200 06| 35 32 25 16 .1 72 48 25 1.2 1.0

09, 20 1.9 16 L1 10| 29 22 15 1.0 1.0
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However, as in univariate case. occurrence of an inertia problem is the worst-

state for a EWMA-type control chart because the EWMA-type control chart may

not react to a large change quickly. To prevent possible delays in detecting large

changes. one can use an additional Max-MEWMA chart with A = [ simultaneously.

9.7 Charting Procedure and Example

The charting procedure of a Max-MEWNMA chart is similar to that of a Max-

EWMA chart except that a diagnostic has to be used to identifvy which variable(s)

contributed to an out-of-control signal.

o

The procedure can be briefly summarized in the following steps:

If g, is unknown. substitute X for iy. If £y is unknown. substitute S for

o.-

For each sample. compute Z; with Z; = 0 as starting value: calculate Y; with

Yy = 0 as starting value.

Calculate U; and V; and construct UCL according to (9.13).

. Compute M; and compare it with the UCL.

Plot a sample point against the sample number i when M; < UCL.

Plot a plotting character against the sample number i when M; > UCL. For
the case of only |U;| > UCL, plot "m+" if U; > 0 and plot "m-" if U; < 0:
For the case of only |V;| > UCL , Plot "v+" if V; > 0, and plot "v-" if V; < 0:
For the case of both |U;j > UCL and |V;| > UCL, plot " m+v+" if U; > 0
and V; > 0, plot "m+v-" if U; > 0 and V; < 0; Plot "m-v+" if U; < 0 and

V; > 0; plot "m-v-" if U; < 0 and V; < 0.
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7. When |U;| > UCL. calculate C; = @z;z-lzi and then calculate D; =
Ci—Cyj. J=1.2.... . k. where Ci(j) denotes the value of C; obtained from
the £ — 1 variables omitting X;. Compare the relative magnitudes of each
D's. A large value could potentially identify an assignable cause for the

mean vector.

8. When [Vi| > UCL. calculate E; = |Vi| — [Vi|;. J = 1.2.... . k. where
|Vilij) is the value of |V;| obtained from the £ — 1 variables omitting (X;; —
Xi)'zg‘(xij — X,;). Compare the relative magnitudes of each E}s. A large

one could potentially identify an assignable cause for the variability.
9. Investigate the cause(s) associated with each out-of-control signal.

An example is given to illustrate how to apply the Max-MEWMA chart to
multivariate normally distributed data. The data. consisting of 12 samples of size
5. are given in Table 9.9. The first 10 samples are taken from Cheng and Mao
[11]. where it was stated that they were collected every half an hour from a spring
process in a spring manufacture company.

According to historical information from the company.

28.29 0.0035 -0.0046
Bo = and ¥y = . The last 2 samples

45.85 -0.0046 0.0226

are added to simulate an out-of-control process. One quality characteristic is the
inner diameter of the spring with specification of 28.30+0.10 and another quality
characteristic is the elasticity of the spring with specification of 46.0+0.50. With
ARLy = 200 and A = 0.2, a Max-EWMA chart is set up to monitor the spring
process and it is shown in Figure 9.1. As seen from the plot. the last two sample

points are above the UCL. Becase U;;, U1z and Vi, are greater than UCL, sample
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Table 9.9: Spring data

Xy Xo
28.14 28.31 28.27 2820 28.26 | 46.32 45.79 45.88 45.88 15.80
2850 28.35 28.3 2832 28.20| 45.85 4591 45.80 4591 45.93
28.29 28.30 28.29 2838 28.29 | 45.83 45.75 45.75 45.52 45.38
28.22 2826 28.27 28.27 28.28 | 45.81 45.99 45.78 46.02 45.85
28.30 28.36 28.27 28.32 28.30 | 45.77 4594 46.04 45.77 45.67
28.34 2829 2832 2827 28.19 | 45.77 45.93 45.77 45.92 16.04
28.24 28.32 2831 2836 28.41 | 4590 45.83 45.69 45.78 45.72
28.23 28.36 2834 2831 28.33 | 45.75 45.80 45.66 45.84 45.74
2825 2839 28.31 2835 28.32 | 45.39 46.10 45.87 45.57 45.87
28.31 2828 2831 2836 28.32 | 45.70 45.75 45.78 45.89 45.90
2837 2838 2835 28.45 28.39 | 45.82 45.35 45.76 45.81 45.88
2817 2822 2828 28.12 28.35 | 45.30 45.25 45.73 45.81 45.88

11 is related to an increased shift in the mean vector. while sample 12 are related to
increased changes in both mean vector and variability matrix. To investigate which
quality characteristic is responsible for each out-of-control condition. the relative
magnitudes of each D}s and E's are compared. It is found that. for sample 11. the
inner diameter of the spring provides an out-of-control signal on the control chart
which may indicate an assignable cause in the process resulting in a shift in the
mean vecter. For sample 12. the elasticity of the spring shows an out-of-control
signal on the control chart which may indicate an assignable cause in the process

resulting in changs in both the mean vector and the variability matrix.
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Samplie MNumMmber

Figure 9.1: The Max-MEWMA chart for the spring data
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CHAPTER 10

Conclusions

10.1 Summary

The major goal of this study is to develop EWMA single control charts.
which are designed to simultaneously and effectively monitor both the process mean
and the process variability when small changes are of interest. Under normality
assumption. five new control charts of this type are presented in this thesis. Among
them. four are univariate charts and one is a multivariate chart.

There are three main properties of a good control chart: high capability
in detecting out-of-control conditions. identifying the source of an out-of-control
signal and indicating the direction of an out-of-control signal.

ARL performance is an indication of the ability of a control chart to detect
out-of-control conditions for a process. In the univariate case. the ARL compar-
isons in Chapter 7 show that. if overall performance is considered. the Max-EWMA
chart and the SS-EWMA chart perform better than the two other new charts. the
combination of the two Shewhart charts and the combination of the two EWMA
charts. However. if a mean shift accompanies an increased variability change. the
EWMA-SC chart has the best performance of all the charts considered and all
the four new charts yield smaller ARL’s than the two combination charts. In the
multivariate case. the ARL comparison in Chapter 9 indicates that. in term of
detecting small changes within a process, the performance of the Max-MEWMA
chart is better than that of combination of the x? chart and the |S| chart.

Diagnosis is an indication of the ability to identify the source and the di-

rection of an out-of-control signal. All the five new charts have this ability except
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that the EWMA-Max chart may be insensitive in identifying the source of a small
change. For the Max-EWMA chart. the EWMA-Max chart and the Max-MEWMA
chart. plotting characters are used to indicate the source and direction of a detected
change. For the SS-EWMA chart and the EWMA-SC chart. the position of a plot-
ted point can directly tell the source and the direction of an out-of-control signal
and a number is required to indicate the sample number.

Another goal of this research is to elaborate upon and propose control
chart when the underlying distribution of the quality characteristic is lognormal.
Although the lognormal quality control was considered quite some time ago. the
literature seems to be in error. Based on the basic relationship of normal and
lognormal distributions. the corresponding normal process is obtained through
logarithmic transformation after a specific interval for the lognormal mean is given
to a lognormal process. Then two control charts are set up for the lognormal pro-
cess and the complicated lognormal process can be monitored through its simpler
normal counterpart.

It should be noted that. in this dissertation. an important assumption is
that of independence among the observations. If this assumption is not met.
the control charts studied here may signal too many false alarms. For correlated
data, Montgomery and Mastrangelo [39] proposed an approximation of the exact
time-series model approach based on EWMA technique, which is based on an

independently distributed sequence of one-step-ahead prediction errors.

10.2 Areas for Future Research
Some topics below are worth further research:

1. Since all the new EWMA single charts are under the normality assumption,
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it is necessary to determine the effect of departures from normality upon

these charts.

Develop multivariate analogue of the SS-EWMA chart. The performance
of the multivariate procedure would most likely be similar to its univariate

counterpart.

Compute values for optimal Max-EWMA and SS-EWMA charts at other in-
control ARL values such as 370 and 500. The ARL properties are expected

to be the same as those when the in-control ARL is 250.

Compute ARL values of the Max-MEWNA chart at other in-control ARL
values such as 370 and 500. The ARL properties would most likely be similar

to those when the in-control ARL is 200.
Consider applications of the five new charts to correlated data.

Compare the new control charts for lognormal population with other charts

using simulation studies.

Propose new control charts for other skewed distributions.
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APPENDIX A

Computer Programs for New Control charts

A.1 Programs for Max-EWMA Chart

A.1.1 ARL Computation

This program computes ARL’s of a Max-EWMA chart for controlling both the mean
and the variance of a normal process. For a given in-control ARL of 250. each ARL value is
obtained using 10.000 simulations generated with IMSL Fortran Subroutines. Al and Bl are
changes in the process for the mean and the variance respectively and they are expressed as a

multiple of the standard deviation of a normal random variable.

Program Listing

REAL LA ARL.MU.SD.H.A (100000001 XA 1. XA (10000000).A1.B1,
& X, T.Z¢0: 1000000¢). U'{ LOGN0G00). ¥ { LO0UO000). V' ( 10000000),
L UCL.S1.W(4::0000000)
INTEGER L.31ZE.COUNT.NOUT.NR.C.ISEED
EXTERNAL RNNOA.RNNOA.RNSET.UMACH
MU=0
SD=1
WRITE(".2)
FORMAT(5X."ARL"S FOR AN MAX-EWMA CHART (ARL0O=250):")
LA=0.10D0
DO 3 N=1.12
Bl=N*®.25
DO 5 M=0.12
Al=M*25
SIZE=S5
ARL=0
COUNT=0
[SEED=723459
6 CALL UMACH (2.NOUT)
NR=10000000
CALL RNSET (ISEED)
CALL RNNOA(NR.A)

C=0

7 T=0
UCL= 2.85
Z(0)=MU
W{(0)=0.0
[=1

10 IF (T .LE. UCL) THEN
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XAl=0.0
DO 20 J=C+1.C+5
A(J)=Al+A(J)*Bl
XAL=XALE+AJ)/S
20 CONTINUE
XA(D=Xal
3=0.0
DO 30 I=C+1.C+5
S=S+(AD)- XA "(A(D-XA))
10 CONTINUE
S1=5/15D*SDs
Z(D=(1-LA)*2(1-1)+LAXAD
U(D=3QRT(5%(2-LA /LAY Z(D-MU)/ 3D
X=H¢s1)
CALL INVNORMI(X,XD)
Yil=Xo0
Wih=t1-La)*Wl-hy+LAY(D
VIH=SQRT((2-LAY/ LW
T=MAXCABS(U(IN.ABS(VN)
I=[+1
C=C+5
GOTQO 1o
END IF
ARL=ARL~(I-1}
COUNT=COUNT =1
IF ¢ C GE. 9990000} THEN
I[SEED=123459
GOTO 6
END IF
IF {(COUNT LT. 10000) THEN
GOTO ¢
ELSE
ARL=ARL/10000
END IF
WRITE(®.50) SIZE.A1.BI.LA.UCL.ARL
50 FORMAT(5X,'SIZE = ".12.2X,"A1="F4.2,2X."Bl1=".F4.2,
L 2XULAMBDA = " F4.2.2XUCL="F6.4.2X."ARL =",F12.5)
S CONTINUE
3 CONTINUE
END
FUNCTION H(X)
REAL X
H=1-EXP(-X/2)*(1+X/2)
RETURN
END

A.1.2 Simulations of Diagnostic Study

For a given in-control ARL of 250, this program simulates 1000 out-of-control signals

with respect to a pair of specified A1 and B1, which are changes in the process for the mean
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and the variance respectively. To identify the source and the direction of the detected changes.
Max-EWMA chart is applied and the out-of-control signals are counted according to the charting

procedure of the chart.

Program Listing

REAL LA MU SD H AMI00000000 XAT. XA 10000000) A 1,81,

& X.T.Z(¢0:10000000),U{19000000). Y{ 10000000), V' (10060000),

& UCL.531,\W(0:10000000},U01.VOL.U02. V02

INTEGER COUNT.NOUT,NR.C,ISEED. M1, M2, VL.V,

LNMVILMVI2 MV 2E0MV22

EXTERNAL RNNOA.RNNOA.RNSET.UMACH

MU=0

sD=1

WRITE(*.2)

FORMAT(5X.'DIAGNOSTIC ABILITIES FOR THE MAX-EWMA CONTROL CHART

Lt ARLO=250: SIZE=5):")
UCL=2.81232

DO 3 N=0.4

B1=N*5D0

DO 5 M=l1.1

Al=NM*25

COUNT=0

Ml=0

M2=0

Vi=o

Vi=0

MVLII=0

MVI2=0

MV2I=0

MV22=0

ISEED=T23459
[} CALL UMACH (2.NOUT)

NR=10000000
CALL RNSET (ISEED
CALL RNNOA(NR.A)
C=0

T T=0
Z(0)=MU
W(0)=0.0
=i

10 IF (T .LE. UCL) THEN
XA1=0.0
DO 20 J=C+1,C+35
A(N=Al+A(D*Bl
XAI=XAL+A(J)/S

20 CONTINUE
XA(D)=XAl
$=0.0
DO 30 J=C+1,C+5
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3o

S=S+{AJ)- XA (AI)-XA{D))
CONTINUE

S1=5/(SD*SD)
Z()=(L-LA)*2(I- 1) +LA XA
U()=SQRT(5%(2-LA)/LA)*(Z([)-MLU}/SD
X=H(S1)

CALL INVNORM(X.X0)
Y(h=X0
WD=(1-LA)*W(I-1)+LA*Y(D
VID=SQRT(2-LA)/LA)*WI)
T=MAX(ABS(U(1) 1L ABS(V(DY)
rot=U(I

Vo=Vl

ro2=ABS(LOL}
Va2=ABS(VOL)

1=1+1

C=C=+5

GOTO 10

END IF

COUNT=COUNT+1

IF ({L02 .GT. UCL; AND. (V02 GT. UCLj) THEN
IF (L0l GT. 0) THEN

IF (V0L GT. 0) THEN
MVII=MVIL=1

ELSE

MVI2=MV 12+

END IF

ELSE

IF (V1 GT. 0) THEN
MVII=MV2I+ ]

ELSE

MV2= MV

END iF

END [F

ELSE

IF (C02 .GT. UCL) THEN

IF (L0t .GT. 0) THEN
Mi=MI+1

ELSE

END IF

ELSE

IF (V02 .GT. UCL) THEN
IF (V01 .GT. 0) THEN
Vi=VLi+l

ELSE

V2I=V2+1

END IF

END IF

ENDIF

END IF

IF ( C .GE. 9990000) THEN
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ISEED=123459

GOTO 6

END [F

IF (COUNT .LT. 1000) THEN

GOTO 7

END IF

WRITE(®.50) LALALBLMLM2VLVIAMVILMVI2MV21MV22
50 FORMAT(2X.'LAMBDA = " F4.2,2X.°A =" F4.2.2X'B ="F4.2,

L2XOME =" 42K 0M = 2K V- = 0KV =0 0,

KLUX, M-V = 42X M- Ve = H2XOM- V- =12 X MV =0 1)
5 CONTINUE
i CONTINUE

END

FUNCTION H(X)

REAL X

H=1-EXP-X/D*1+X/D)

RETURN

END

A.2 Programs for SS-EWMA Chart

A.2.1 ARL Computation

This program computes ARL's of a SS-EWMA chart for controlling both the mean and
the variance of a normal process. For a given in-control ARL of 250. each ARL value is obtained
using 10.000 simulations generated with IMSL Fortran Subroutines. Al and Bl are changes in
the process for the mean and the variance respectively and they are expressed as a multiple of

the standard deviation of a normal random variable.

Program Listing

REAL LA.ARL.MU.SD.H,A(10000000).XA1,XA(10000000),A1,B1.
& X.T.Z(0:1000000),U(10000000).Y(10000000),V{10000000).
& UCL,S1,W(0:10000000)
INTEGER [,J.3IZE,COUNT,NR,C.[SEED
EXTERNAL RNNOA,RNNOA RNSET . UMACH
ISEED=723459
LA=.3
MU=0.0
SD=1.0
SIZE=S
ARL=0
COUNT=0
[ CALL UMACH (2,NOUT)
NR=10000000
CALL RNSET (ISEED
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30

CALL RNNOA(NR.A)

Cc=0

Al1=0.0

Bl=1.0

T=0

UCL=9.92435

Z(0)=ML

W(0)=0.0

[=1

IF (T .LE. UCL) THEN
XAl=0.0

DO 20 J=C+1.C+5
Atd)=Al+A(J)*BL
XAl=XAl+A(N)/S
CONTINUE

XA(D=XA!

3=0.0

DO 30 J=C+1.C=~5
S=5+tAL)- XA TACD-XAU)
CONTINUE

S1=3/(SD*SD)
Z(D=(1-LA*Z(I-)+LAXAD
U(D=3QRT(5*2-LA)/LA)*Z(D-MU)/SD
X=H(s1)

CALL INVNORM(X.X0)
Y(=X0
W(h=t1-LA)*W(l-1)=LA®Y(])
V(D=3QRT{(2-LA)/LA}Y*W(])
T=CH*(h+=Vh*vih
I=l+1

C=C+5

GOTO 10

END IF

ARL=ARL+(1-1)
COUNT=COUNT+1

IF ( C .GE. 9940000) THEN
[SEED=123459

GOTO 8

END IF

IF (COUNT .LT. 10000) THEN
GOTO 1

ELSE

ARL=ARL/10000

END IF

WRITE(*.50) SIZE.LA.ARL

FORMAT(5X.'SAMPLE SI1ZE = ".I4.2X.'LAMBDA = " F5.3,

&2X,'ARL =".F15.2)
END

FUNCTION H(X)

REAL X
H=1-EXP(-X/2)*(1+X/2)
RETURN
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A.2.2 Simulations of Diagnostic Study

with respect to a pair of specified Al and B1. which are changes in the process for the mean
and the variance respectively. To identify the source and the direction of the detected changes.

SS-EWMA chart is applied and the out-of-control signals are counted according to the charting

END

SUBROUTINE INVNQORM(P.X0}

REAL C(14).P.Q,R,X,X0

DATA C/2.5066282,-18.6150006,41.3911977,-25.4410605.-8.4715109,
& 23.0833674,-21.0622410,3.13082191,-2.7871893,-2.2979648,

& 4.8501401413,2.3212128,3.5438892.1.6370678/

Q=P-.5D0

IF (ABS(Q) GE. 42:D0) THEN
R=P

IF (Q .GE. 0.D0) THEN
R=1-P

R=3QRT(-LOG(R))
XS(((C(IN"R+CIIN*R+C(10N*R+C(9))
XO=X/((C(14)*R+C(13})°R+1)

ELSE

R=3QRT(-LOG(R}
X=UCUDH-CLLL)*RACUL0N*R-C(9))
XO0=-X/({C(INO"R+C(I3}*"R+1)

END IF

ELSE

R=Q*Q
X=Q*({(C(1)*R-C(3))*R+C(2)°R~C11))
XO=X/(((ICIB R+CI{7))* R+=Ci81)*R=C(5))*R+i}
END IF

RETURN

END

For a given in-control ARL of 250. this program simulates 1000 out-of-control signals

procedure of the chart.

"

Program Listing

REAL LA.MU,SD,H,A(10000000).XA 1.XA{10000000),A1,BI,
& X.T,Z(0:10000000),U{10000000),Y(10000000},V(10000000),
& UCL,S1,W(0:1000000¢},U01,Va1,U02.V02

INTEGER COUNT,.NOUT,NR.C.ISEED.M1,M2,V1,V2,
EMVILMVI2ZMV2IMV22

EXTERNAL RNNOA,RNNOA,RNSET.UMACH

MU=0

SD=1

WRITE(®,2

FORMAT(5X."DIAGNOSTIC ABILITIES FOR THE SS-EWMA CONTROL CHART
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3o

&(ARLO=250; SIZE=5):")
UCL=9.19573
CCL1=3QRT(UCL)

DO 3 N=0.1

Bl=N*.5D0

DO 5 M=1,1

Al=M* 25

COUNT=0

Mi=0

MV1i=0

MVI2=0

MV21=0

MV22=0

ISEED=723459

CALL UMACH (2NOUT)
NR=10000000

CALL RNSET (ISEED

CALL RNNOA(NR,A)

C=0

r=o0

Z(0)=MU

W(0)=0.0

=1

IF (T .LE. UCL) THEN
XA1=0.0

DO 20 J=C~1.C+5

AN =Al+A)*Bl
XAI=XAl+AD)/S
CONTINUE

XA(=XAL

3=0.0

DO 30 I=C+1,C+5
S=34+(A(D-XATN*(AN-XA)
CONTINUE

S1=5/(SP*SD)
Z(D=(1-LA)*Z(I-1)+LA®XA(D)
U{D=SQRT(5%(2-LA)/LA)*(Z(I)-ML)/SD
X=H(S1)

CALL INVNORM(X,X0)
Y{I)=X0
W(D=(1-LA)*W(I-1}+LA®Y(])
V(I)=SQRT((2-LA)/LA)*W(I)
T=U(D*UD+V()*V(D)
vo=uU(l)

Vo=V (1)

I=1+1

C=C+5

GOTO 110

END IF
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COUNT=COUNT+1

IF { C .GE. 9990000} THEN
ISEED=123459

GOTO 6

END IF

IF (LU0 .GE. 0) THEN

IF (U0 GT {CL1) THEN
IF (VO GT. UCL!) THEN
MV1l=MVIil+1

ELSE

[F (VO LT. -UCLL) THEN
MVI2=MVIZ+1

ELSE

Ml=Ml+1

END IF

END IF

EL3E

IF V0 GT. 0) THEN

IF (VO .LE. UCL1) THEN

IF ((Al1 .EQ 0) .OR. Bl EQ. !)) THEN

IF (VO EQ. t/u) THEN
MVI1=MVIL+]

ELSE

[F (Co GT Vo) THEN
Mi=Ml+1]

ELSE

Vi=Vi+l

END IF

END IF

ELSE

MVIEL=MVIL+!

END IF

ELSE

Vi=Vi+1l

END IF

ELSE

IF {V0 .GE. -UCL1) THEN

IF ({(Al .EQ. 0) .OR. (Bl EQ. 1)) THEN

IF (LU0 .EQ. -V0)} THEN
MVI2=MVI241

ELSE

I[F (L0 .GT. -V0) THEN
Ml=Ml+1

ELSE

V2=V2+1

END IF

END IF

ELSE

MVI12=MV12+1

END IF

ELSE

IF (VO .GE. -UCL1) THEN
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MVI2=MV12+1

ELSE

V2=V2+1

END IF

END IF

END IF

END IF

ELSE

IF (L0 .LT. -UCL1) THEN
IF (VO .LT. -UCL1) THEN
MV22=0MV22+1

ELSE

IF (VO .GT UCLL) THEN
MV21=0MV2 -1

ELSE

M2=M2+1

END IF

END IF

ELSE

IF (Vo .LT. 0) THEN

IF (VO GE. -UCL1) THEN
IF ((Al1 .EQ. 0) .OR. Bl .EQ )} THEN
iF (L0 EQ. VO) THEN
MV22=MV2241

ELSE

[F (U0 GT. V0) THEN
M2=M2+1

ELSE

Vi=\V2+1

END IF

END IF

EL3E

MV22=MV2I2+1

END tF

ELSE

Vi=Vv2+l

END IF

ELSE

IF (VO .LE. UCL1) THEN
IF ((Al .EQ. 0) .OR. (Bl .EQ. 1))} THEN
IF (U0 .EQ.-VQ) THEN
MV2U=MV21+1

ELSE

IF (U0 .LT.-V0) THEN
M2=M2+1

ELSE

Vi=Vi+1

END IF

END IF

ELSE

MV21=MV21+41

END IF
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ELSE

Vi=Viel

END IF

END IF

END IF

END [F

IF (COUNT .LT. 1000) THEN

GOTO 7

END IF

WRITE(®.50) LAALBLML M2 VL VI MVLILMVIZAV2I MV
FORMAT(2X,'LAMBDA = " F4.2.2X."A =" F4.2,2X.'B =".F4.2.
CANMA =T H2NCMe =T 42XV =T 42XV. =0,
LLOXMAV - =" 042X, MAV- = XMV = 142X M-Ve =7 [4)
CONTINUE

CONTINUE

END

FUNCTION H(X)

REAL X

H=t-EXP-Xy D% (1+=X/2)

RETURN

SUBROUTINE INVNOQRM(P.X0}

REAL C(14).P.Q.R.X.X0

DATA C/2.5066282,-18.6150006,41.3911977.-25.4410605.-8.4735109.
& 23.0833671.-21.0622110,3.1308291,-2. 787 1893,.2.2979648,

& 4.8501401413,2.3212128,3.5.138892.1.6370678/

Q=P-.5D0

IF (ABS(Q} .GE. 2D0) THEN
R=P

IF {Q .GE. 0.D0) THEN
R=1.P

R=SQRT(-LOG(R))
X=(({CU2*R+C(11))°R+C(101)*R~C(9))
XC=X/((CL4)*R+C(13})°R+1)

ELSE

R=SQRT(-LOG(R))
X=(({(CU)*R+C(11))*R+C(10))*R+C(9))
X0=-X/((C{1l4)*R+C(13))"A+1)

END IF

ELSE

R=Q*Q
X=Q*(((Cl4)*R+C{3))*R+C2N*"R+C(1))
X0=X/{(((C(8)*R+C(7)}*R+C(6))*R+C(5))*R+1)
END IF

RETURN

END
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A.3 Program for EWMA-Max Chart

This program computes ARL’s of a EWMA-Max chart for controlling both the mean
and the variance of a normal process. For a given in-control ARL of 250. a numerical method
of using integral equations is used to computer ARL’s. A0 and BO are changes in the process
for the mean and the variance respectively and they are expressed as a multiple of the standard

deviation of a normal random variable.

Program Listing

DOUBLE PRECISION LA.ARL.ARG.KO,A(64.84),B(84).W (64),P(64),
LX(84). H WK(64).F.T.A0.BO

EXTERNALF

INTEGER IPIVOT(64).IFLAG

P( L)= 0.99930504173577D0

=3
P( 3)= 0.99101337147874D0

2)= 0.9963401 1677196 D0

P{ 4)= 0.498333625388463D0
P( 5)= 0.97332682778991D0
P( 6)= 0.96100879965205D0
P( Ti= 0.94641137435840D0
P{ 8)= 0.92956917213194D0
P( 91= 1.91052213707850D0
P( t0)= .8893154-45995L 1 D0
P( 11)= 0.86599939815409D0
P( 12)= 0.834062929625258D0
P{ 13)= 0.81326531512280D0
P( 14)= 0.78397235894334D0

P{ 15)= 0.75281990726053D0
P( 16)= 0.7LY88185017161D0
P( 17)= 0.68523631305423D0
P( 18)= 0.64896547125466D0
P( 19)= 0.61115535517239D0
P( 20)= 0.57189564620263D0
P( 21)= 0.53127946401988D0
P( 22)= 0.48940314570705D0
P( 23)= 0.44636601725346D0
P( 24)= 0.40227015796399D0
P( 25)= 0.35722015833767D0
P( 26)= 0.31132287199021D0
P( 27)= 0.26:468716220877D0
P( 28)= 0.21742364374001D0
P( 29)= 0.16964442042399D0
P( 30)= 0.12146281929612D0
P( 31)= 7.2993121787799D-02
P( 32)= 2.4350292663424D-02
W( 1)= 1.7832807216964D-03
W( 2)= 4.1470332605625D-03
W( 3)= 6.5044579689784D-03
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W( 4)= B8.8467598263639D-03
W( 5)= 1.1168139460131D-02
W( 6)= 1.3463047896719D-02
W( 7)= 1.5726030476025D-02
W( 8)= 1.7T9517157T5697D-02
W( 9)= 2.0134823153530D-02
W{ 10)= 2.2270173808383D-02
W( 11)= 2.4352702568711D-02
W( 12}= 2.637T469715055D-02
Wi 13)= 1.8339672614259D-02
W( 4)= 3.0234657072402D-02
Wi 15)= 3.20579238354852D-02
W( 16)= 3.3805161837142D-02
Wi IT)= 3.5472213256882D-02
Wi 18)= 3.7055128540240D-02
W( 19)= 3.3550153178616D.02
Wi 20)= 3.9953741132720D-02
W( 2= 4.1262563242624D-02
W( 22)= 4.2473515123654D.02
W( 23)= 1.1533724520323D-02
W( 24)= 4.45905581637570-02
W( 25)= 1.5491627927418D-02
W( 26)= 4.62B4796581314D-02
W{ I7)= 4.6968182816210D-02
W( 2B)= 4.7540165714830D-02
W 20)= 4.7999388506458D-02
W{ 30)= 4.8344762234803D-02
W( 31)= 4.8575467441503D-02
W( 12)= 4.8690957009140D-02
DO | [=1.32

P(85-1)=-P(I)
W(65-1)=\W(I)
CONTINLUE
k0=1.99265D0

LA

=.05D0

H=1.128379D0+k0* DSQRT(0.3633808D0°LA/(2.0D0-LA))
DO 2 I=1.684
Wih=H*W(l)/2.0D0
P(D)=H*(P{)+1.D0)/2.0D0O
CONTINUE

DO 12 N=1.7

BO0=N*®.25D0

DO 3 M=0.6

Al0=M*.25D0

DO 10 I=1,64

B(I)=-1.0D0

DO 20 J=1.64

ARG=(P(J)-(1.0DO-LA)*P(I))/LA

IF(ARG .LE. .0D0) THEN
T = 0.0D0

ELSE

T = F(A0.BO,ARG)
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50

END IF

IF (1 .EQ. J) THEN
A(LI)=W{D*T/LA-1.0DO

ELSE

ALI=W(NH*T/LA

END IF

CONTINUE

CONTINUE

CALL FACTOR({A.84.WK.IPIVOT.IFLAG)
IF (IFLAG .EQ. 0) THEN
WRITE(6,50)

END IF

CALL SUBST(A,IPIVOT.B.64.X)
ARL=0.0DO

DO 30 (=1.54
ARG=(P(1)-(1.0D0-LA)*1.12837T9D0I/ LA
'F{ARG .LE. 0.0Dgy THEN

T = 0.0D0

ELSE

T = F(A0.BO.ARG)

END [F

ARL=ARL « Wn*xX(h*T
CONTINUE
ARL=1.0D0+~ARL/LA
WRITE(6.60) LA.K0O.H,A0,BD.ARL

FORMATI(5N. LAMBDA="F1.2.2X,'k0="F7 5.2x.’"H="F6.4.2X,

&'A0="F4.2.2X,'B0= ,F4.2.2X."ARL="F15.5)

FORMAT(5X."ZERO DETERMINANT FOR LINEAR SYSTEM")

CONTINUE

CONTINUE

END

DOUBLE PRECISION FUNCTION F(AQ.B0.X)
DOUBLE PRECISION X

DOUBLE PRECISION CF.CFL.CF2.CF3.Y1L.Y2.T.B1.B2,B3.B1.B5.P.Z. 21,22,

&HOHL H2.H3.H4,DH . HO1,H02.A0,B0.5R.PPCHL.T1, T2

EXTERNAL H0.DH
SR=DSQRT{5.D0}
B1=0.319381530D0a

2=-0.356563782D0
B3=1.781477937D0
B4=-1.821255978D0
B5=1.330274429D0
P=0.2316419D0
T=1.0D0/(1.0D0+P*DABS(X))
T1=1.0D0/(1.D0+P*DABS{(X-A0*SR)/B0))
T2=1.0D0/(1.D0+P*DABS((-X-AC*SR)/B0))
2=(3.989422804014327D-1)*DEXP(-.5D0* X" X)
IF (X .LE. 8.DQ) THEN

Z1=(3.989422804014327D-1)*DEXP(-.5D0*{{X-A0°SR)/B0)**2)

ELSE
Z1=0.D0
END IF
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[F (X .LE. 4.5D0) THEN
Z2=(3.989422804014327D-1)*DEXPi-.5D0*((-X-A8*SR)/B0)**2)
ELSE

22=0.D0

END IF
CF=1.0D0-Z*(B1*T+B2*T**2+B3°T**3+B4*T**4+B3°T**5)
{F ((X-AD*SR)/B0 .GT. 0.D0) THEN
CF1=1.D0-Z1°(B1*T1+B2°T1°*2+-B3*T1**1+B4*T1°*4+B5"T1°°5)
ELSE
CF1=2Z1*(B1*T1+B2°T1°*2+B3°*T1°*1+B4*T1**4+85°T1**%)
END {F

IF ((-X-A0*SR)/B0 LE.-3.D0) THEN

CF2=0.D0

EL3E
CFI=22%(B1°T2+B2°T2** 2+ B1°T2°*1-B4*T2**4+B5"T2**%)
END IF

CF3=1.DO-CF

IF { CF EQ. 1) THEN

Y1=55

ELSE

CALL INVHICF.PPCHI)

Y1=PPCHI

END IF

IF (CF3 EQ. " THEN

Y 2=.000000!

ELSE

CALL INVH(CF3,PPCHI)

Y2=PPCHI

END [F

H1=DH(Y1/(B0O*BQ))

H2=DH(Y2/1B0*B0))

H3=DHIY1)

H4=DH(Y?2)

HO1=HO(Y1/(B0*80))

HO2=HO(Y2/(B0*BQ))

F = (Z1+22)*(HO1-H02)/B0 +~ (CF1-CF2)*(H1*Z/H3+H2*Z/H4)/(B0*B0O)
RETURN

END

DOUBLE PRECISION FUNCTION HO(X)

DOUBLE PRECISION X

HO=1-DEXP(-X/2)*(1+X/2)

RETURN

END

DOUBLE PRECISION FUNCTION DH(X)

DOUBLE PRECISION X

DH=X*DEXP(-X/2)/4.D0

RETURN

END

SUBROUTINE INVH(P.PPCHI)

DOUBLE PRECISION P,X{100000).EPS,PPCHI

I=1

X(1}=-2*DLOG(1-P)
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EPS=.5D-5

I=l+1

X{(D=X{1)+2*DLOG(L+X{l-1)/2)

IF (DABS(X(I)-X(I-1)) .GT. EPS) THEN
GOTO 1

END IF

PPCHI=X(I)

RETURN

END

SUBROUTINE SUBST(WLIPIVOT.B.N.X2}
INTEGER IPIVOT(84).1.1P.J

DQUBLE PRECISION B(64).W1(6:4.64),X2(64).5UM
[F (N LE. 1) THEN

X2=B(1)/W1(L.)

RETURN

END IF

IP=IPIVOTIl)

X2 =B(IP)

DO 15 {=2.N

SUM=.0D0

ft=f-1

DO 14 I=1.1

SUM=WLLD*X200) = SUM

CONTINUE

IP=IPIVOTID

X2AH=8B(IPY - SUM

CONTINUE

X2(NI=X2(N)/WEHN.N)

12=N-1

DO 20 ISTEP=1.12

I=N-ISTEP

SUM=0D0

I3=i+1

DO 19 J=I3.N

SUM=WNILN*X2(]) « SUM

CONTINUE

X2(D)=(X2(1)-5UM/ WL

CONTINUE

RETURN

END

SUBROUTINE FACTOR(WIL.N.DLIPIVOT.IFLAG)
DOUBLE PRECISION DI1(64).W1({64.64).AWIKOD.
COLMAX,RATIO. ROWMAX, TEMP
INTEGER IFLAG.IPIVOT(684).l.I1STAR,J.K
[FLAG=1

DO 9 I=!L,N

IPIVOT(1)=!

ROWMAX=.0D0

DO § J=L.N
ROWMAX=DMAXI(ROWMAX,DABS(W1({I,J))}
CONTINUE

IF (ROWMAX .EQ. .0D0) THEN
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IFLAG=0

ROWMAX=1.0D0

END IF

DI({I)=ROWMAX

CONTINUE

IF (N .LE. 1} RETURN

N1=N-1

DO 20 K=1,N1
COLMAX=DABSIWI(K.K))/DHK)
[STAR=K

Kl=K+1

DO 13 I=KI1.N
AWIKOD=DABS(WLLK)i/DLK)
IF (AWIKOD GT COLMAX) THEN
COLMAX=AWIKOD

ISTAR=I

END IF

CONTINUE

IF (COLMAX EQ. 0D0) THEN
IFLAG=0

EL3E

fF (ISTAR GT K) THEN
[FLAG=-IFLAG
I=IPIVOT{STAR)
[PIVOT(STARI=IPIVOT(K)
IPIVOT(Ki=I

TEMP=DI(ISTAR)
DIISTAR)=DU(K)

DI(K)=TEMP

DO 15 I=L.N
TEMP=WLU(ISTAR.J)
WUISTAR.J)=WHK. D)
WI(K.J)=TEMP

CONTINUE

END IF

K2=K+1

DO 19 [=K2.N
WHLK)I=WHILK)/WI(K.K)
RATIO=WI(LK}

K3=K+1

DQ 18 J=K3a.N
WHLND=WI([.])-RATIO*WI(K,J)
CONTINUE

CONTINUE

END IF

CONTINCE

IF {WI(N.N) .EQ. .0D0) IFLAG=0
RETURN

END
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A.4 Program for EWMA-SC Chart

This program computes ARL’s of a EWMA-SC chart for controlling both the mean and
the variance of a normal process. For a given in-control ARL of 250. a numerical method of using
integral equations is used to computer ARL’s. A0 and B0 are changes in the process for the mean
and the variance respectively and they are expressed as a multiple of the standard deviation of

a normal random variable.

Program Listing

DOUBLE PRECISION LAARL.ARG.K, A(64.64).B(64). W (64),P(641,
LXi54),F,UCL,WK(84).N.T.A0.BO
EXTERNALF

INTEGER IPIVOT(64),IFLAG
K=3.374550D0

N=5.0D0

LA=.085D0

A0=0.D0

BO=!.D0
UCL=N-+-K*DSQRT(2*°N*LA/(2.0DG-LA})
P( 1)= 0.99930504173577D0

P( 2)= 1.49963401:677196D0
P{ 1)= 0.99101337147674D0
P 4)= 1.98333625388483D0

P( 5)= 0.97332682778991D0
P( 4)= 0.96100879965205D0

P( 7)= 0.94541137485840D0

P( #)= 0.92956917213194D0

P( 9)= 0.91052213707850D0

P( 10)= 0.88931544599511D0
P{ 11)= 0.86599939815409D0
P( 12)= 0.84062929625258D0
P({ 13)= 0.81326531512280D0
P( 14)= 0.78397235894334D0
P( 15)= 0.75281990726053D0
P( 16)= 0.T198818501T16100
P( 17)= 0.68523631305423D0
P( 18)= 0.64896547125466D0
P( 19)= 0.61115535517239D0
P( 20)= 0.57189564620263D0
P( 21)= 0.53127946401985D0
P( 22)= 0.48940314570705D0
P( 23)= 0.44636601725346D0
P( 24)= 0.40227015796399D0
P( 25)= 0.35722015833767DQ
P( 26)= 0.31132287199021D0
P( 27)= 0.26468716220877D0
P( 28)= 0.21742364374001D0
P( 29}= 0.16964442042399D0
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P{ 30)= 0.12146281929612D0
P{ 31)= 7.2993121787799D-02
P( 32)= 2.4350292663424D-02
W{ 1)= 1.7832807216964D-03
W( 2)= 4.1470332605625D-03
W( 3)= 6.5044573689784D-03
W( 4)= 8.8487598263639D-03
W 5)= 1.1183119460131D-02
W( 6)= 1.34630478956719D-02
Wi T)= 1.5726030476025D-02
W{ 81= L.7951T15775697D-02
W 9i= 2.0134823153530D-02
W( 10)= 2.2270173808383D-42
Wi 1= 2.4352702568711D-02
W 12)= 2.637TT469715055D-02
Wi 13)= 2.8339672614259D-02
W l4)= 3.02345657072402D-02
W 151= 3.2057928354852D-02
W( 16)= 31.3805161837142D-02
Wi 17)= 3.5472213256882D-02
W [8)= 3.T055128540240D-02
Wi 19 = 3.8550153178616D-02
Wi 20)= 1.9953741132720D-02
Wi 2= 4.12625632424924D-02
Wi 22)= 4.2473515123654D-02
W 23)= 4.3583724529323D-02
W( 24)= 4.4590558163757D.02
W( 25)= 1.53491627927418D-02
W 24)= 4.6284796581314D-02

-

W( 27)= 4.4968182816210D-02

W{ 28)= 4.7540165714830D-02

Wi 29)= 4.7999388596458D-02

Wi 30)= 4.834:1782234803D-02

W( 3t)= 4.8575467141504D-02

W( 32)= 4.8690957009140D-02

DO 1 [=1,32

P(65-1)=-P(1)

W(65-1)=W(I)

CONTINUE

DO 2 [=1,64

Wi(l)=UCL®.5D0*W(!)

P()=UCL*.5*(P(1)+1.D0)

CONTINUE

DO 10 [=1.64

B(l}=-1.0D0

DO 20 J=1.,84

ARG=(P(J)-(1.0DO-LA)*P())/LA

IF(ARG .LE. 0.0D0) THEN
= 0.0D0

ELSE

T = F(N,A0,B0.ARG)

END IF
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50

IF (I .EQ. J) THEN
A(LJ)=W()*T/LA-1.0D0

ELSE

A(LD)=W({)*T/LA

END IF

CONTINUE

CONTINUE

CALL FACTOR(A.64. WKL.IPIVOT.IFLAG)

IF (IFLAG .EQ. 0) THEN

WRITE(6.50)

STOP

END IF

CALL 3UBST(AIPIVOT.B.64.X)

DO 8 I=1.64

IF (X(1) .LE. 0) THEN

X(1)=0

END IF

CONTINUVE

ARL=.0D0

DO 30 1=1.64

ARG=(P(D-i1.D0-LA)*N)/LA

[F(ARG .LE. 0.0D0) THEN

T = 0.0D0

ELSE

I' = F(N.A0.BU.ARG)

END IF

ARL=ARL - W()*X(I)*T

CONTINUE

ARL=1.0D0+ARL/LA

WRITE(6.60) LA.N.K.UCL.ARL

FORMAT(3X. LAMBDA="F6.4.2X.N="F%.2.2X,'K=",F7.5.
L2X,UCL="F10.5,2X,"ARL="F15.5)

FORMAT(5X."ZERO DETERMINANT FOR LINEAR SYSTEM")
END

DOUBLE PRECISION FUNCTION F(N.A0.BO.X)
DOUBLE PRECISION X.H.DE.A1.B1,A0,B0.N.B

B=B0**2

DE=N®AQ"*2/B0"**2
H=(1.D0/3.D0)*(1.D0+2.D0*(DE**2)/(N+2.D0*DE)**2)
Al=1.D0+H*(H-1)*(N+2*DE}/(N-+DE)"*"2
BI=H*DSQRT(2*(N+2*DE))/(N+DE}

IF (A0 EQ. 0} THEN
F=DSQRT(.5D0*X/(3.14156D0*B}}*(X,B)*DEXP(-X/(2.D0*B))/3.D0
ELSE
F=H*(X**(H-1))*DEXP(-({{(X/((B0**2)*(N+DE)))**H-A1)/B1)**2)/2.D0)/
& (B1°(BQ**(2°H))*((N+DE)**H)*DSQRT(2.D0*3.14156D0))
END IF

RETURN

END

SUBROUTINE SUBST(WL.IPIVOT.B.N.X2)

INTEGER [PIVOT(64),1,IP,J

DOUBLE PRECISION B(64),W1(64.64).X2(64).SUM
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IF (N .LE. 1) THEN
X2(1)=B(1)/Wl{L.1)
RETURN

END IF

IP=IPIVQT(1)

X2 )=B{IP)

DO 15 [=2.N

SUM=.0D0

fi=l-1

DO 14 J=1.11
SUM=WI{LD*X2J) - SUM
CONTINUE

IP=IPIVOT(D)
X2(D=B(IP) - 3UM
CONTINUE
X2(N)=X2UN)/WI(N.N)
[2=N-1

DO 20 ISTEP=1.I2
I=N-ISTEP

SUM=.0D0

[3=[+1

DO 19 J=I13.N
SUM=WLLJ)*X2(J) + SUM
CONTINUE
XUADN=XAD-SUMy/WILD
CONTINUE

RETURN

END

SUBROUTINE FACTOR(WIN.DLIPIVOT.IFLAG)
DOUBLE PRECISION D1(64).W L(54.64),AWIKOD,

COLMAX.RATIO.ROWMAX, TEMP
INTEGER IFLAG.IPIVOT(64),1ISTAR.J.K
IFLAG=!

DO 9 I=1.N

IPIVOT(1)=I

ROWMAX=.0D0

DO 5 J=1.N
ROWMAX=DMAXI(ROWMAX.DABS(WL(L.J)))
CONTINUE

IF (ROWMAX .EQ. .0D0) THEN
IFLAG=0

ROWMAX=1.0D0

END IF

DI{)=ROWMAX

CONTINUE

IF (N .LE. 1) RETURN

Ni=N-t

DO 20 K=1.N1
COLMAX=DABS(W1(K.K)}/D1(K)
ISTAR=K

Kl=K+1

DO 13 [=K1.N
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AWIKOD=DABS(WI(L.K}}/D1(K)
[F {AWIKOD .GT. COLMAX} THEN
COLMAX=AWIKOD
ISTAR=I
END IF
13 CONTINUE
[F (COLMAX .EQ. .0D0) THEN
IFLAG=0
ELSE
IF (ISTAR .GT K) THEN
IFLAG=-IFLAG
I=IPIVOT(ISTAR)
EPIVOTUSTARI=IPIVOT(K)
[PIVOT(K)=I
TEMP=DI(ISTAR)
DUISTAR)=DUK)
DU K)=TEMP
DO 15 I/=1L.N
TEMP=WUISTAR.D)
WIISTAR. =W IHK.J)
W1 K.J)=TEMP
15 CONTINUE
END [F
K2=K+1
DO 19 [=K2.N
WHLK)=WKILK)/WLiIK.K)
RATIO=WI(LK)
K3=K+1
DO 18 J=K3,N
WHL)=WULI-RATIO*WL(K.1)
13 CONTINUE
19 CONTINUE
END IF
20 CONTINCE
IF {WL(N.N) .EQ. 0D0) IFLAG=0
RETURN
END

A.5 Program for Max-MEWMA Chart

This program computes ARL's of a Max-MEWMA chart for controlling both the mean
vector and the covariance matrix of a multivariate normal process in Case I. For a given in-control

ARL of 200, each ARL value is obtained using 10,000 simulations generated with IMSL Fortran

Subroutines.

Program Listing

INTEGER LDZ1.LDB,LDC1,NCZ1,NCB.NCC1,NRZ1,NRB,NRC1,NCC2,NRC2,
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& LDC2.LDC3,NCC3,NRC3,IRANK,ISEED,LOR.LDRSIG.NOUT.NR.LDCOV'.C.

& L.COUNT,LO.LL,L2,L3

PARAMETER (LDZ1=1.LDB=21LDC1=1.NCZ1=2.NCB=2.NCC1=2,NRZ1=1,

&L NRB=2,NRCi=1LDC2=2NRC2=2,NCC2=1,LDC3=1,NRC3=1,NCC3=1.
&LDCOV=21,LDRSIG=2,LDR=10000000,N1=2,LDC4=1 ,NCC4=2,NRC4=1,LDC5=2.
LNRC5=2 NCC5=L.LDC6=1.NRC6=I.NCCE=1.LDS=1.NRS=1.NCS=2.LDCO\VQ=2)
REAL XA(1.2).B(LDB.NCB).CI(LDC'1,NCC1},COV(2,2),R(LDR,2).Z1{1.2).

& RSIG(2,2),5(1,2).Y.T,X(2),CULDC2.NCC?),CI(LDC3.NCC3),COV0(2,2),

& CHLDC4.NCCH).C5(LDCS.NCC5),CA(LDCENCCH).P1.PL.

& W(10000000}.K1.K2.L(Q:10000000),V (0: 10000000}, ARL ME,

& LA(0:200.RO.V1(10000000),UCL. AL, B1.Z(10,0:10000000)

EXTERNAL MRRRR.TRNRR.CHFAC . RNMVN.RNSET.UMACH. LINRG.WRRRN.
& CHIDF.ANORIN

WRITE(*.1)

FORMAT{5X."ARL"S FOR AN MAX-MEWMA CHART (ARLO=200):")

UCL=2.771

LA(0)=0.05

DO 12 L1=0.4

DO 13 L2=1.2

DO 14 L3=3.5

Al=LI"05

Bl=L2%0.5

RO=-0.9+L3%0.3

CALL UMACH (2.NOUT)

N R=10000000

N=2

K=
COUNT=0

COovVatl,1}=1.0

COVo(1.2)=R0O

COVo(2,1)=RO

CovVo(L.)=1.0

DO 3 I=1.K

DO 4 I=L.K

COV(L.JY=B1"B1°COVa(L.))

CONTINUE

CONTINUE

CALL LINRG (N1L.COVD.LDCOVO0.B.LDB)
CALL CHFAC (K.COV.LDCOV.0.00001.IRANK.RSIG.LDRSIG)
[SSD=723459

C=0

CALL RNSET (ISEED)

CALL RNMVN (NR,K,RSIG.LDRSIG.R.LDR)
L=l

V(0)=0.0

ME=0.0

DO 8 M=1,K

Z(M.0)=0.0

CONTINUE

[F (ME .LE. UCL(L0)) THEN

DO 5 I=C+1.C+N

R(L.K}=R{I.LK)+Al
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CONTINUE
DO 10 M=t.K
X(M)=0.0
DO 20 [=C+1.C+N
X(M}=X{M)}+RLMY/N
CONTINLCE
XA(LM)=X(M)
ZMLLy=(1-LACLON P Z(M.L- 13+ LA(LO) *NA(LM)
ZLLM)=Z(M. L)
CONTINLUE
CALL MRRRR (NRZ1.NCZ1.Z1.LDZ1.NRB.NCB.B.LDB.NRC1.NCC1.C1,LDC1)
CALL TRNRR (NRCLNCC1.C1.LDC1.NRC2,NCC2,C2.LDC2)
CALL MRRRR (NRZI.NCZ1,21,LDZ1,NRC2,NCC2,C2LLDCINRC],
LNCC3.C3,LDC3)
Y=N*C31,1)°(2.0-LALO)) /LALO)Y
T=0.0
DO 15 [=C+1.C+N
DO 25 M=1.K
S(LAM)=R(LM-XALLM)
CONTINLE
CALL MRRRR (NRS.NCS,5.LDS.NRB.NCB.B,LDB.NRC4.NCC1.C1.LLDC4)
CALL 'RNRR (NRCALNCCH.C4.LDCH.NRCS.NCCS5.05.LDCS)
CALL MRRRR (NRS.NCS,5.LDS.NRC5.NCCS.C5.LDCS.NRC6,NCC8,C6.LDCH)
[=T+C6(1.1)
CONTINUE
K1=20
K2=KI*(N-1)
PI=CHIDF(Y.KI)
[F (P1 .LE. 0.0000t) THEN
P1=0.00001
ELSE
IF (Pl .GE. .9999%) THEN
P1=0.99999
ELSE
PI=CHIDF(Y.KI)
END IF
END IF
P2=CHIDF(T.K2)
[F (P2 .LE. 0.00001) THEN
P2=0.00001
ELSE
IF (P2 .GE. .99999) THEN
2=0.99999
ELSE
P2=CHIDF(T,K2)
END I[F
END IF
U{L)=ANORIN(P1)
W(L}=ANORIN(P2)
V(L)=(1.0-LA(LO}))*V(L-1)+LA(LO)*W(L)
VI(L)=SQRT{((2.0-LA(LO))/LA(LO})*V(L)
ME=MAX(ABS(U(L)),ABS(V1(L)))
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L=L~+1

C=C+N

GOTO 9

END IF

ARL=ARL~+(L-1)

COUNT=COUNT+t

IF ( C .GE. 9990000) THEN

ISEED=123459

GOTO 6

END IF

IF (COUNT .LT. 10000) THEN

GQTO 7

EL3E

ARL=ARL/ 0000

END IF

WRITE (*.30) LA(LD).AL.BL.LRO.UCLILD).ARL
FORMAT (2X,'LA =" F5.2.2X, Al = F4.2.2X.'Bl =
& 'ROU ="F5.2.2X,'UCL =".F6..40.2X,’ARL =" .F8.)
CONTINUE

CONTINUE

CONTINUE

END

LF42.2X
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APPENDIX B

Computer Programs for Combination Control Charts

B.1 Program for Combination of Two Shewhart Charts

This program computes optimal ARL’s of the combination of 7 and S charts for con-
trolling both the mean and the variance of a normal process. For a given in-control ARL of 250.
each ARL value is obtained from the function of the two PDF’s. A0 and BO are changes in the
process for the mean and the variance respectively and they are expressed as a multiple of the
standard deviation of a normal random variable.

Program Listing

DOUBLE PRECISION XI1.X2.Y1.Y2.A0.BO,Ft.F2,PL.P2,
& ARL.N
WRITE(6.3)
3 FORMAT(5X."ARL™S QF COMBINED X BAR L 3 CHART FOR ARLO=250 & n=5:
&)
N=3.Do
DO 1 [=1.12
BO=L* 25D¢
DO 5 J=0.12
A0=IJ* 25Du0
X1=-3.0902/B0-A0*DSQRT(N)/Bo
X2=3.0902/B0-AD*DSQRTI(N)/BO
Y 1=.0908D0/Bu**2
Y2=14.466D0/B0"*2
Pil=1.-FI(XD)+FL(X1)
P2=1-FUYD+F2YL)
ARL=1/(1-(l-PL)*(1-p20}
WRITE(6.10) AD.BO.ARL
g FORMAT(5X."A0="F4.2.2X."B0=".F4.24X."ARL="F10.5)
CONTINUE
1 CONTINUE
END
DQUBLE PRECISION FUNCTION F1(X)
DQUBLE PRECISION X
DOUBLE PRECISION T.B1.82.B3.B4.B5.P.Z
B1=0.319381530D0
B2=-0.356563782D0
B3=1.781477937D0
B4=-1.821255978D0
B5=1.330274429D0
P=0.2316419D0
T=1.0D0/(1.0D0+P*DABS(X))
Z=(3.989422804014327D-1}"DEXP(-.5D0*(X"**2))
IF (X .GT. 0) THEN
F1=1.0D0-Z*(B1*T+B2°T**2+B3*T**3+B4*T**1+B5*T**3)
ELSE
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F1=Z*(B1*T+B2*T**24+B3*T**3+B4*T**4+B5*T""5)
END IF

RETURN

END

DOUBLE PRECISION FUNCTION F2{(X)

DOUBLE PRECISION X

F2=1-DEXP(-X/2)*(1+X/?)

RETURN

END

B.2 Programs for Combination of Two EWMA Charts

B.2.1 ARL Computation

This program computes optimal ARL’s of the combination of the two EWMA charts
for controlling both the mean and the variance of a normal process. For a given in-control
ARL of 250. each ARL value is obtained using 10.000 simulations generated with [MSL Fortran
Subroutines. A0 and BO are changes in the process for the mean and the variance respectively

and they are expressed as a multiple of the standard deviation of a normal random variable.

Program Listing

DOUBLE PRECISION LA.K(0:20).L(0:20},ARL,A0.BO,
& ARLL.ARL2
L¢ 0)= 2.70143
L¢{ )= 2.80055
L( 2)= 2.85931
L({ 3)= 2.89800
L( )= 2.92499
L( 5}= 2.94449
L{ 6)= 2.95890
L( Ti= 2.96968
L( 8)= 2.97782
L( 9)= 2.98397
L(10)= 2.98862
L{11)= 2.99210
L{12)= 2.99470
L(13)= 2.99660
L(14)= 2.99796
L(15)= 2.99891
L(16)= 2.99952
L(17)= 2.99987
L(18)= 2.99998
K( 0)= 2.73430
K( 1)= 2.88050
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K{ 4)= 3.18869
K( 5)= 3.27030
K( 6)= 3.34353
K( 7)= 3.40918
K( 8)= 3.46797
K( 9)= 3.52047
K(10)= 3.56713
K{ll)= 3.60825
K(12)= 3.64399
K(13}= 3.67445
K(14)= 3.69965
K{15)= 3.7T1956
K(16)= 3.73409
K(17)= 3.74315
K(18)= 3.74660
DO 5 1=0.18
LA=.1D0+I®.05D0
DO 10 J=1.8
BO=J* 15D0
CALL CRL2(LA.BO.K«!1),ARL2)
DO 15 M=0.8

A0=M"* 25D0

CALL CRLI(LA.AUL(I),ARLLY

iF ((AO .EQ. 0) AND. (B0 .EQ. 11} THEN
ARL=(ARL1®*ARL2)/(ARL1~ARL2-1)
ELSE

ARL=DMINI(ARLL.ARLZ)

END IF

WRITE(6.20) LA.AG.BO.ARL

FORMAT(3X, LAMBDA="F4.2,2X"A0= " F4.22X,'B0="F4.2,4X.,"ARL OF

L COMBINED EWMA CHARTS = "Fl0.5)
CONTINUE

CONTINUE

CONTINUE

END

SUBRQUTINE CRLI{LA,AQ,K,ARL)

DOUBLE PRECISION LAARL.ARG. K, A(24,24).B(24). W(24).P(24).

&X(24),D,F1, HWK(24),A0
INTEGER IPIVOT(24).IFLAG
H=DSQRT(LA/(2.0D0-LA))*K
P(1)=.9951872199970213D0
P(2)=.9747285559713095D0
P(3)=.9382745520027327D0
P{4)=.8864155270044010D0
P({5)=.820001985973902900
P(6)=.7401241915785543D0
P(7)=.6480936519369755D0
P(8)=.5454214713888385D0
P(9)=.4337935076260451 D0
P(10)=.3150426796961634D0
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P(11)=.1911188674736163D0
P(12)=.06405689218626056 D0
W(1)=.0123412297999872D0
W(2)=.0285313886289337D0
W(3)=.0442774388174198D0
W(4)=.0532985849154368D0
W(5)=.0733464814110803D0
W({6)=.0861901615319533D0
W(7)=.0976186521041139D0
W(8)=.10T4442701 159656 D0
W(9)=.1155056680537256D0
W(l0)=.1216704729278034 D0
W(ll}=.12583745634682831D0
W(12)=.1279381953467521 D0

DO I I=1.12

P(25-N=-P(])}

W(s-N=wW)

CONTINLE

DQ 2 I=1.24

W(L=H*"W{D)

P(=H*P(I}

CONTINUE

D=A0

DO 10 I=1.24

B(l}=-1.0D0

DO 10 J=1.24
ARG=(P(J)-t1.uDO-LA*P(1))/ LA

IF (I .EQ. J) THEN
ALI}=(L8DO/LAI*WID*FItARG-D)-1.0D0
ELSE
A{LN=(1.0DO/LA)*W(II*F1IARG-D)
END IF

CONTINUE

CONTINUE

CALL FACTOR(A. 4. WK, IPIVOT.IFLAG)
IF (IFLAG .EQ. 0) THEN
WRITE(6,50)

STOP

END IF

CALL SUBST(ALIPIVOT.B.24.X)
ARL=.0D0

DO 30 [=1,24

ARG=P(1)/LA

ARL=ARL + W([)*X(I)*F1(ARG-D)
CONTINUE

ARL=1.0D0+ARL/LA
FORMAT(5X."ZERO DETERMINANT FOR LINEAR SYSTEM")
RETURN

END

DOUBLE PRECISION FUNCTION F1(X)
DOUBLE PRECISION X
F1=(3.989422804014327D-1)*DEXP(-.5D0*X"*X)
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RETURN
END

SUBROUTINE CRL2(LA,BO.K.ARL)
DOUBLE PRECISION LA.ALPHA.BETA.ARL.ARG.A(24,24),B0,
LB(24), W(24),P(24}.X(24).F2.8TD.CCL.LCL,V.U, N K.WK(24),T
INTEGER [PIVOT(24).IFLAG

N=5.D0
U=2/(15%(N-1)**4)-1/(N-1)- 1 /(3°(N-1)*"2)
V=2/(Nel)+2/(N-1)**2+4/(3°(N-1)**3)-16/(15% N-11**5)
UCL=C+DSQRT((V°LA)/(2.0D0-LA))*K
LCL=U-DSQRT((V*LA)/(2.0D0-LA)I°K
ALPHA=(N-1)/2.D0
P(1)=.9951872199970213D0
P(2)=.9747285554713095D0
P(3)=.93827.45520027327D0
P(4)=.8864155270044010D0
P(5)=.8200019859738039D0
P(6)=.T401241915785543D0
P(7)=.64809165 19369755D0
P(8)=.5454214713888395D0
P(9)=.4337935076260451 D0
P(10)=.3150426796961634D0
P(11)=.1911188674736163D0
P(12)=.06405689 28626056 D0
W(1)=.012341229799987200
W(2)=.0285313486289337D0
Wi(3)=.0442774388174198D0
W(4)=.05920858491 5436800
W(S5)=.UT33464814110803D0
W(6)=,0861901615319533D0
Wi7T)=.0976186521041139D0
W(8)=.t074442701159636D0
W(9)=.1155056680837256D0
W(10)=.121670D4729278034D0
W(ll}=.12583745634688283D0
W{12)=.1279381953467521D0

DO L i=1.12

P(25-1)=-P(])

W(25-1)=W(l)

CONTINUE

DO 2 I=1.24
W(D)=(UCL-LCL)*W{(I)/2.D0
P(I)=LCL+{UCL-LCL)*(P(I)+1)/2.D0
CONTINUE

STD=BO

BETA=ALPHA/(STD**2)

DO 10 [=1.24

Bil)=-1.0D0

DO 20 J=1.24
ARG=(P(J)-(1.0D0-LA)*P(1})/LA

IF (ARG .GT. 2.2D0) THEN

T=0.0D0
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S0

ELSE

T=F2ARG.ALPHA,BETA)

END IF

IF (I .[EQ. J) THEN

A(LJ)=(1.0DO/LA)*W(I}*T-1.0D0

ELSE

ALD=(LODO/LA)*W)*T

END IF

CONTINUE

CONTINUE

CALL FACTOR( A 24, WK IPIVOT.IFLACG)

[F (IFLAG EQ. 9} THEN

WRITE(5.50)

ITOP

END IF

CALL SUBST(A.IPIVOT.B.24.X)
ARL=.0DO

DO 30 [=1.24

ARG=(Ptl)«(1.UD0-LA)*U) /LA

IF (ARG .GT 2:D0) THEN

T=1.0D0

ELSE

T=F2AARG.ALPHA,BETA)

END IF

ARL=ARL - W(D*X(D*T

CONTINUE

ARL=1.0DO+ARL/LA

FORMAT(5X,'ZERQ DETERMINANT FOR LINEAR SYSTEM)

RETLURN

END

DOUBLE PRECISION FUNCTION F2(X.ALPHA.BETA)

DOUBLE PRECISION ALPHA, ARG.BETA.GAMMA F2.X.Y

Y=X

ARG=ALPHA*Y-BETA®DEXP(Y)
2=BETA®**ALPHA/GAMMA(ALPHA)*DEXP(ARG)

RETURN

END

DQUBLE PRECISION FUNCTION LGAMMA(X)

DOUBLE PRECISION F,LGAMMA . X.Y.Z

Y=X

IF(Y.LT.7.D0) THEN

F=1.Do

2=Y-1.D0

Z=2Z+1.D0

[F(Z.LT.7.D0) THEN

Y=2

F=F*2

GO TQO 1

END IF

Y=Y+1.D0

F=-DLOG(F)

ELSE
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F=0.D0

END [F

Z2=1.Da/Y"*"2
LGAMMA=F+(Y-.50)*DLOG(Y)-Y + .318938533204673+
&(((-.000595238095238D0*Z+.000793650793651D0)
&*Z-.002777TTTITITTVEDAYZ+.083333333333333D0)/Y
RETURN

END

DOUBLE PRECISION FUNCTION GAMMA(X)
DOUBLE PRECISION GAMMALLGAMMA XY
Y=LGAMMA(X)

GAMMA=DEXP1Y)

RETURN

END

SUBROUTINE SUBST(WLIPIVOT,B.N.X2)
INTEGER [PIVOT(64).1.1P.J

DOUBLE PRECISION B(64).\W1(64.64),X2(64).5UM
IF (N LE. 1) THEN

XX 1N=BO1/Wi(l.1)

RETURN

END [F

IP=IPIVOT(1)

X2(1)=B(IP)

DO 15 1=2.N

SUM=.0D0

n=[-1

DO 14 J=i.12

SUM=WI(L1)*X2(]) - SUM

CONTINUE

P=IPIVO'T(1)

X2AH=B(IP) . SUM

CONTINUE

X2(N)=X2(N)/WLN.N)

[2=N-1

DO 20 ISTEP=1.12

=N-ISTEP

3UM=.0D0

[3=1+1

DO 19 J=I13.N

SUM=WI(LNO*X2( + SUM

CONTINUE

X2UD=(X2(D-SUMY/WI(LE)

CONTINUE

RETURN

END

SUBROUTINE FACTOR(WIL.N.DLIPIVOT.IFLAG)
DOUBLE PRECISION D1(64),W1(64,64).AWIKOD.
COLMAX.RATIO.ROWMAX,TEMP

INTEGER IFLAG,IPIVOT(64),[.ISTAR.J.K
IFLAG=1

DO 9 I=L,N

IPIVOT()=1
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ROWMAX=.0D0
DO 5 J=1.N

ROWMAX=DMAXI(ROWMAX.DABS(WI(L.J)})

CONTINUE

[F (ROWMAX .EQ. .0D0} THEN
IFLAG=0

ROWNMAX=1.0D0

END IF

DI(I)=ROWMAX

CONTINUE

{F (N .LE. 1} RETURN

N1=N-1

DO 20 K=t.N1
COLMAX=DABS(WULK.K}))/DlUK)
ISTAR=K

Ki=K~+1

DO 13 [=K1,N
AWIKOD=DABS(WI(1.K1)/DI{K)

[F (AWIKOD .GGT. COLMAX) THEN

COLMAX=AWIKOD
ISTAR=I

END IF

CONTINUE

IF (COLMAX EQ. 0D0) THEN
[FLAG=0

ELSE

IF (ISTAR .GT K) THEN
IFLAG=-IFLAG
I=IPIVOTI{ISTAR)
IPIVOT(ISTAR)=IPIVOT(K)
IPIVOT(KI=I
TEMP=DI(ISTAR)
DUISTAR)=DUK)
DUK)=TEMP

DO 15 J=L.N
TEMP=WI(ISTAR.D
WHISTAR.J)=WI(K.J)
WIUHK.J)=TEMP
CONTINUE

END IF

K2=K+1

DO 19 [=K2.N
WIHILK)=WI(IK)/W1(K.K)
RATIO=WI(L.K)

Ki=K+1

DO 18 J=K3,N
WHLI)=WI{L.J)-RATIO*WI(K.J)
CONTINUE

CONTINUE

END IF

CONTINUE

iF (W1(N,N) .EQ. .0D0) IFLAG=0
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RETURN
END

B.2.2 Simulations of Diagnostic Study

For a given in-control ARL of 250. this program simulates 1000 out-of-control signals
with respect to a pair of specified Al and Bl. which are changes in the process for the mean
and the variance respectively. To identify the source and the direction of the detected changes.
the combination of the two EWMA charts is applied and the out-of-control signals are counted

according to the charting procedure of the chart.

Program Listing

REAL MU.SD.A(1000GC00). XA 1. XA(1000000).A1,B1,
LZ(0: 10000000}, ¥'( 10000000},

LW (0:10000000} L K.LA KA UCL,
LLCL.H,UOVON S TE T2

INTEGER COUNT.NOUT.NR,CISEED.B2. ML M2 VIV
LMVLILAMVLI2 MV, MV22

EXTERNAL RNNOA,RNNOA RNSET, UMACH

\=2.848

LA=0.1

KA=1.1

N=5.0

UO0=2/(15%(N-1)""4)-1/(N-1)-1/(1®(N-1)**2)
VO=2/(N-1)4+2/(N-11""24+4,(3%(N-11**1)-16/(15%{N-1)*"5)
MU=0

SD=1

WRITE(®.1)

§ FORMAT(5X.'DIAGNOSTIC ABILITIES FOR THE COMBINATION OF
& CROWDER"S CONTROL CHARTS (ARLO=230: SAMPLE SIZE=5):")
DO 3 B2=1.4
B1=82%53
UCL=U0+3SQRT((V0*KA)/(2.0-KA))*K
LCL=UQ-SQRT((VO*KA)/(2.0-KA))*K
DO 5 M=1.1
Al=M*25D0
H=DSQRT(LA/(2.0D0-LA)/5.D0)°L
MI=0
M2=0
Vi=0
V2=0
MVil=0
MV12=0

MV21=0
MV22=0
COUNT=0
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[SEED=123457

CALL UMACH (2,NOUT}
NR=10000000

CALL RNSET (ISEED
CALL RNNOA(NR.A)
C=0

Z2(0)=MU

wa)=Ura

I=1

T1=0.0

T2=L0

{F (((T1 .LE. H) .AND. (Tt GE. -H))
&L ((T2 LE. UCL) AND. (T2

XAl=0.0

DO 20 J=C+1.C+5
AtdI=AL+AJBIL
XAl=XAl+A(DY,S
CONTINUE
XA(D=XAl

3=0.0

DO 30 I=C+1.C=5

S=S+(AD-XAN (AD-XAUD

CONTINUE

Z(=t1-LA)*Z(1- ) +LATXAD

ri=2(
Y(DH=LOG(5/4.0}

Wih=cl-KA)I*W(l-Li=-KA*Y(D

T2=WI(DhH

[=1+1

C=C+5

GOTO 10

END IF
COUNT=COUNT =1

IF (T1 .GT. H) THEN
IF (T2 .GT. UCL) THEN
MVII=MV11+1

ELSE

IF (T2 .LT. LCL) THEN
MVI12=MVI12+1

ELSE

Mi=Ml+l

ENDIF

END IF

ELSE

IF (T1 .LT. -H) THEN
IF (T2 .GT. UCL) THEN
MV2I=MV21+1

ELSE

[F (T2 .LT. LCL) THEN
MV22=MV22+1

ELSE

M2=M2+1

GE. LCL))) THEN
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END IF

END IF

ELSE

IF (T2 .GT. UCL) THEN

VisVisl

ELSE

IF (T2 .LT. LCL) THEN

VI=Va+1

END IF

END IF

END IF

END IF

IF (C .GE. 9990000) THEN

[SEED=123.459

GOTO 8

END [F

IF (COUNT LT. 100¢) THEN

GOTO 7

END IF

WRITE(®.50) LAALBLMLMZVEVZMVILMVI2Z NV MV
30 FORMAT(IX LAMBDA = " F4.22X.'A =" F4.2,2X.'B =".F4.2,

L2XUMA+ =T MLAXKOMe =T NV - =XV =,

LIOX M-V = 42X M-V =T 2X M-V e = 42X M- V. =0 1)
5 CONTINLVE
3 CONTINUE

END

B.3 Program for Combination of Two Multivariate Charts

This program computes ARL's of the combination of x* and (S| charts for controlling
both the mean vector and the covariance matrix of a multivariate normal process in Case I. For
a given in-control ARL of 200. each ARL value is obtained using 10.000 simulations generated

with IMSL Fortran Subroutines.

Program Listing

INTEGER LDXA.LDS1,LDS2,LDS3,NCXA,NRXA.LDCOVO,

& IRANK,ISEED.LDR,LDRSIG.NOUT.NR.LDCOV.C.LDFAC,

& L.COUNT.LLI1.12,IPVT(2),LDT.L0O.L2.LDC1.NCC1.NRC1.

& LDC2,NCC2,NRC2,LDC3,NCC3,NRC3.LDB,NRB,NCB

PARAMETER (LDXA=1,NCXA=2,NRXA=],LDT=2,LDFAC=2.LDB=2.NRB=2,
&LDCOV=2,LDRSIG=2,LDR=10000000,LDS1=1,NCS1=2,NRS1=1,LDS2=2,
LNRS?=2.NCS$2=1,LDS3=2,NRS53=2,.NCS3=2,LDCOV0=2.LDC1=1,NCC1=2,
&NRC1=1,LDC2=2,NCC2=1.NRC2=2,LDC3=1,NCC3=1 ,NRC3=1,NCB=2,N1=2
REAL XA(LDXA,NCXA).COV(2.2),R(LDR.2).COV0(2,2),FAC(2,2),

& RSIG(2,2).X(2),RO,LCL2,UCL2,ARL,DS,B1.A1,
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& SI(LDSL.NCS1)L.SLDS2, NCS2),S3(LDS3,.NCS3).UCL1,
& T(2.2),CHL.CH2.DETL.DET2.CH3.Y.C1(LDC1,NCC1).
& CALDC2.NCC2).C3(LDC3,NCCH)

EXTERNAL MRRRR, TRNRR,.CHFAC.RNMVN RNSET.UMACH,WRRRN.LFTRG.

& LFDRG.CHIIN.LINRG

WRITE(*.1)

FORMAT(5X."ARLs OF THE COMBINED CHI-SQUARE
& and |S| CHART (N=5 K=2):"

CALL UMACH (2.NOUT)

NR=10000000

N=5

K=2

CH1=CHIIN(0.9975,2.0)

CH3=CHIIN(0.00125,6.0)
CH2=CHIIN(0.99875,6.0)

DO 1 Lo=1.3

Al=Lg°0.5

DO 2 L2=1.1

Bl=L2*35

DO 3 L1=4.5

RO=-0.9+L1%0.3

COUNT=0

ARL=0.0

COVo(L.1)=1.0

COVo(1.2)=RO

COVD(2.11=RO

covoe.=L0

DO ¢ l1=L.K

DO 5 2=L.K

COV(ILI2)=COoVvo(ll.12)*BL"2

CONTINUVE

CONTINUVE

CALL LFTRG (K.COVO,LDCOVO.FAC.LDFAC.IPVT)
CALL LFDRG (K,FAC.LDFAC.IPVT.DETL.DET2}
UCLLI=CHI1
LCL2=(DETI1*(10°*DET2))*CH3**2/64.0
UCL2=(DETI1*(10°*DET?2))*CH2**2/54.0

CALL LINRG (N1,COVO0.LDCOV0.B.LDB)

CALL CHFAC (K.COV.LDCOV'.0.00001.IRANK,.RSIG.LDRSIG)
[SSD=723459

C=0

CALL RNSET (ISEED)

CALL RNMVN (NR,K.RSIG,LDRSIG.R.LDR)
L=1

Y=UCL1/2.0

DS=(UCL2+LCL2)/2.0

[F ({(Y .LE. UCL1) .AND.

&((DS .LE. UCL2) .AND. (DS .GT. LCL2))) THEN
DO 11 I=C+1,C+N

R(IL.LK)=R(LK)+Al

CONTINUE

DO 10 M=1.K
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X(M)=0.0

DO 20 I=C+1.C+N

X(M)=X(M)+R([.M)/N

CONTINUE

XA(LM)=X(M)

CONTINUE

CALL MRRRR (NRXA,NCXA XA LDXANRB.NCB.B.LDB,NRCL.
&NCC1,CL.LDCL)

CALL TRNRR (NRCI,NCC1.C1L.LDCI.NRC2,NCC2.C2LDCY)
CALL MRRRR (NRXA.NCXA.XA LDXANRC2NCC2.C2,LDC2,

18

15

k]

LNRC3,NCC3,C3,LDC3)
Y=N*C3(1.1)

DO 12 11=1,K

DO 14 2=t K
T(I1.12)=4.0

CONTINUE

CONTINUVE

DO 15 [=C~+1.C-N

DO 25 M=1,K
SUEM)=ROLMI-XACLM)
CONTINUE

CALL TRNRR (NRS1.NC351,

[

r

DS1.NRS2.NCS2,52.LD52)

CALL MRRRR (NRS2NCS2,32,LDS2.NRS1,NCS1.81,LDS1,

LNRSI.NCS3.53,LDSI)
DO 18 l1=1 K

DO 18 I2=1.K
THLI2)=TI1L12) =33¢[1,12)
CONTINUE

CONTINUE

CONTINUVE

DS=ABSUT(L.D*T(2.2-T(LDO*TI2. 1)),/ IN-11*"2)

L=L+1

C=C+N

GOTO Y

END IF

ARL=ARL+«(L-1)
COUNT=COUNT+1

IF ( C .GE. 9990000} THEN
ISEED=123459

GOTO 6

END IF

IF (COUNT .LT. 10000) THEN

GOTO 7

ELSE
ARL=ARL/10000.0
END IF

WRITE (*,30) A1,B1.RO.ARL

FORMAT({2X.'Al =" F5.2.2X."Bl =".F5.2,2X,"RO= ".F5.2.3X,

&'ARL =".F8.2)
CONTINUE
CONTINUE
CONTINUE
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