
INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while othen may be from any type of 

amputer pn'nter. 

The quality of this reproduction is dependent upon the quality of the 

copy subrnitted. Broken or indistinct pn'nt, colored or poor quality illustrations 

and photographs, pnnt bleedthrough, substandard margins, and impmper 

alignment can advenely affect reproductbn. 

In the unlikely event that the author did not send UMI a complete manuscript 

and there are missing pages, these will be noted. AIso, if unauthorized 

copyright material had to be removed. a note w-ll indicate the deletion. 

Ovenize materials (e.g., maps, drawings, charts) are reproduced by 

secüoning the original, beginning at the upper left-hand corner and mntimiing 

fmm left to right in equal sections with srnall overlaps. 

Photographs induded in the original manuscript have k e n  reproduœd 

xemgraphically in this copy. Higher quality 6" x 9" black and white 

photographie prints are available for any photographs or illustrations appearing 

in this copy for an additional charge. Contact UMI diredly to order. 

Bell 8 Howell Information and Leaming 
300 North Zeeb Road, Ann Ahor, MI 48lO6-fW6 USA 

800-521-0600 





THE CXIVERSITY OF bIANITOBA 

CONTRIBUTIONS TO QUALIMETRY 

b y 

Hansheng Xie 

submitted to the Faculty of Graduate Studies 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

Department of Statistics 
Winnipeg, 41 anitoba 

Q August 1999 



National Library I*I of Canada 
Bibliothèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services sewices bibliographiques 

395 Wellington Street 395. rue Wellington 
Ottawa ON K I  A ON4 Ottawa ON K i  A ON4 
Canada Canada 

Your fi& Vofre refèrenca 

Our fi& Notre reierence 

The author has granted a non- 
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sel1 
copies of ths thesis in rnicrofom, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts fiom it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la forme de rnicrofiche/film, de 
reproduction sur papier ou sur format 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou autrement reproduits sans son 
autorisation. 



THE UNIVERSlTY OF MANITOBA 

FACULT'Y OF G W U A T E  STUDIES 
***** 

COPYRIGHT PERMISSION PAGE 

Contributions to Qualimetry 

Hansheng Xie 

A Tbesis/Practicum submitted to the Facutty of Graduate Studies of The University 

of Manitoba in partial fulfdment of the requirements of the degree 

of 

Doctor of Philosophy 

Permission has been granted to the Library of The University of Manitoba to lend or sel1 
copies of this thesidpracticum, to the National Library of Canada to microfilm this thesis and 
to lend or seU copies of the film, and to Digsertations Absbacts internationil to pubüsh an 
abstract of this thesis/practicum. 

The author reserves other publication rights, and neither this tbesis/practicum nor extensive 
estracts from it miy be printed or otherwise reproduced without the author's written 
permission. 



CONTENTS 

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii 

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ABSTRACTS viii 

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . .  ix 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 Overall View 1 

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . .  . . 1 

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  :3 

2 Review of the Literature . . . . . . . . . . . . . . . . . . . . . . .  9 
. . . . . . . . . . . . . . .  2.1 History and Evolutioii of Quality Control O 

2 . 2 Theoretical Bmis of Control Charts . . . . . . . . . . . . . . . . . .  11 
. . . . . . . . . . . . . .  2.3 Developments in Control Chsrt Techniques 13 

2.3.1 Shewhart Control Charts . . . . . . . . . . . . . . . . . . . .  13 
. . . . . . . . . . . . . . . . .  2.3.2 High Sensitive Control Charts 14 

. . . . . .  1.3.3 Single Control Charts for both Center and Spread 17 
. . . . . . . . . . . . .  2.3.4 Control Charts for Non-normal Data, 18 

. . . . . . . . . . . . . . . . . .  1.3.5 Multivariate Control Cliarts 19 

. . . . . . . . . . . . . . . . . . . . . . .  3 The Max-EWMA Chart '23 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 Introduction 23 

. . . . . . . . . . . . . . . . . . . . . . . .  3.2 The New Control Chart 23 
. . . . . . . . . . . . . . . . . . . . . . . . .  3.3 Derivation of the UCL 25 

. . . . . . . . . . . . . . . . . . . . .  3.4 Design of a Max-EWMA chart 37 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.5 Charting Procedure 32 

. . . . . . . . . . . . . . . . . . . . . . . .  3.6 An Illustrative Example 33 

. . . . . . . . . . . . . . . . . . . . . . . .  4 The SS-EWMA Chart 38 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 Introduction 38 

. . . . . . . . . . . . . . . . . . . . . . . .  4.2 The New Control Chart 38 
. . . . . . . . . . . . . . . . . . . . .  4.3 Design of a SS-EWMA Chart JO 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 Charting Procedure 43 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.5 An Example 45 

. . . . . . . . . . . . . . . . . . . . . . .  5 The EWMA-Max Chart 49 



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 
5.2 The New ControI Chart . . . . . . . . . . . . . . . . . . . . . . . .  49 
5.3 The Integral Equation Approach for Computing ARL's . . . . . . .  50 
5.4 Design of an EWkIA-Max Chart . . . . . . . . . . . . . . . . . . .  52 
5.5 Charting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 
5.6 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

6 The EWMA-SC Chart . . . . . . . . . . . . . . . . . . . . . . .  61 
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 
6.2 The New Control Chart . . . . . . . . . . . . . . . . . . . . . . . .  61 
6.3 ARL Coniputation . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 
6.4 Design of an EWhIA-SC Chart . . . . . . . . . . . . . . . . . . . .  65 
6.5 Charting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 
6.6 An Examplc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

.. 7 Cornparisons of Several Control Charts . . . . . . . . . . . . .  I ;, .. 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  rs .. 7.2 The Two Cornbiriation Charts . . . . . . . . . . . . . . . . . . . . .  ( 2  
9' 7.2.1 The Combination of the Two Shewhart Charts . . . . . . . .  la  .. . . .  7.2.2 The Corribiriation of the Two Standard ELVhI-4 Char s  , i 

7.3 ARL Coniparisons . . . . . . . . . . . . . . . . . . . . . . . . . . .  SO 
7.4 Diagnostic Ability S tudies . . . . . . . . . . . . . . . . . . . . . . .  38 

8 Discussion on Lognormal Quality Control . . . . . . . . . . . .  93 
8.1 Introductiori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 

. . . . . . . . . . . . . . . . . .  8.1 A Modified Quality Control Scheme 04 
8.3 New Control Charts for Lognormal Processes . . . . . . . . . . . . .  96 

. . . . . . . . . . . . . . .  8.3.1 The Logarithmic Transformation 97 
8.3.2 A Specific Interval for the Lognormal Process Mean . . . . .  98 

. . . . . . . . . . . . .  8.3.3 Derivation of Intervals for Parameters 99 
8.3.4 Constructing Control Charts for Lognormal Processes . . . .  100 

8.4 Properties of the New Control Charts . . . . . . . . . . . . . . . . .  102 
8.4.1 The ARL Calculations . . . . . . . . . . . . . . . . . . . . .  102 
8.4.2 Effects of Changes in Parameters . . . . . . . . . . . . . . .  103 

8.5 Charting Procedure and Example . . . . . . . . . . . . . . . . . . .  104 

9 A Multivariate Max-EWMA Control Chart . . . . . . . . . . .  111 
9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 
9.2 The New Control Chart . . . . . . . . . . . . . . . . . . . . . . . .  112 
9.3 Derivation of the UCL . . . . . . . . . . . . . . . . . . . . . . . . .  114 
9.4 Properties of the ARL . . . . . . . . . . . . . . . . . . . . . . . . .  115 
9.5 The ARL Performance . . . . . . . . . . . . . . . . . . . . . . . . .  117 







Optimal ARL Values of Max-EWMX chart and ELVklA-hIac chart 
when n = 5 and ARLU = 250. . . . . . . . . . . . . . . . . . . . . .  81 
Optimal ARL values of SS-EWMA chart and Combination of the 
two EWMA charts when n = 5 and ARLo = 250. . . . . . . . . . .  82 
Optimal ARL values of EWUA-SC chart and Combination of the 
two Shewhart charts when n = 5 and ARLo = 250. . . . . . . . . .  83 
ARL's of Max-EWMA chart and EWkIA-Max chart when n = 5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  and ARLo = 250. 84 
ARL's of the SS-EWMA chart and the combination of two EFVhIX 
charts when n = 5 and in-control . M L o  = 350. . . . . . . . . . . .  S5 
ARL's of the EWbIA-SC chart and the combination of two Shewtiart 
charts when n = 5 and in-control ARL = 150. . . . . . . . . . . . .  SG 
A comparison of the diagnostic abilities betweeri the !vlax-E WMA 
chart and the EWMA combination chart. . . . . . . . . . . . . . . .  90 
A corn parison of the diagnostic abilities betweeri the SS-EWMA 
chart and the EWMA combiriatiori chart. . . . . . . . . . . . . . . .  9 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Valve data. 106 

( A .  L )  combinations For Max-MEWMA coiitrol schemes in a steadv 
state when *4RLo=200. . . . . . . . . . . . . . . . . . . . . . . . . .  1 15 
ARL values of kIax-hIEW%IA chart when k = 2. n = 2. L = 2.9380 

. . . . . . . . . . . . . . . . . . . . . . . . .  and A = 0.20 in Case I .  122 
ARL values of Mu-MEWh1.4 chart when k = 3. n = 2.L = 3.0025 
and X = 0.20 in Case I .  . . . . . . . . . . . . . . . . . . . . . . . . .  123 
ARL values of Max-MEWi'vI.4 chart when k = 2. n = '2. L = 2.9380 

. . . . . . . . . . . . . . . . . . . . . . . .  and X = 0.20 in Case II. 124 
ARL vaiues of Max-kIEWilIA chart when 1; = 3. n = 2. L = 3.0025 

. . . . . . . . . . . . . . . . . . . . . . . .  and A = 0.20 in Case II. 125 
ARL's of the Max-MEWMA chart and the combination of X2 chart 
and ISI chart when k = 2. n = 5. A = 0.60 and L = 2.7722 in Case 1.129 
ARL's of the Max-MEWkIA chart and the combination of xZ chart 
and JS! chart when k = 2. n = 5. A = 0.20 and L = 2.7732 in Case 1.130 
ARL's of the Max-MEWMA chart and the combination of x2 chart 
and ISI chart when k = 2. n = 5. X = 0.20 and L = 2.7722 in Case 11.131 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Spring data 134 



LIST OF FIGURES 

The 
The 
The 

. . . . .  first Max-EWMA chart for the cylinder diameter da ta  
. . .  second Max-EWMA chart for the cylinder diameter da ta  

third Max-EWMA chart for the cylinder diameter da ta  . . . .  

. . . . . .  The first SS-EWMA chart for the cylinder dianieter data 
The second SS-EW-IIA chart for the cylinder diameter data . . . .  

. . . . .  The third SS-EWMA chart for the cylinder dianieter da ta  
The foiirth SS-EWMA chart for the cylinder diameter da ta  . . . . .  

The first EW41A-Max chart for the cylinder dianieter da t a  . . . . .  
The second EWMA-hhc chart for the cylinder diameter data  . . .  
The third EWhlA-hlax chart for the cylinder diameter data . . . .  

The first EWMA-SC chart for the cylinder dianieter da ta  . . . . . .  
The second EWkI-4-SC chart for the cylinder diani~tcir data . . . .  
The third EWhIA-SC chart for the cglinder dianieter da ta  . . . . .  
The fourth EW-VIA-SC chart for the cylinder diameter da ta  . . . . .  

The probability plot for the valve dhta . . . . . . . . . . . . . . . .  
The probabiiity plot for the logarithrn of valve data . . . . . . . . .  
The first S chart for the valve data . . . . . . . . . . . . . . . . . .  
The first k' chart for the valve data . . . . . . . . . . . . . . . . . .  
The second S chart for the valve data . . . . . . . . . . . . . . . . .  
The second Y chart for the valve data  . . . . . . . . . . . . . . . .  

The Max-IMEWMA chart for the s ~ r i n g  data . . . . . . . . . . . . .  



ABSTRACT 

Under the normality assurnption. four univariate exponentially nioving av- 

erage single control charts are proposed and they are designed to monitor simul- 

taneously both the process mean and the process variability The perforniances 

of these four charts are evaluated by comparing their average run lengths aniong 

tliemselves as well as to two other competing combination charts. Based on thcl 

cornparison of the six ~inivariate charts. a multivariate exponentially nioving aver- 

age single control chart is deveioped as an extension of one of the best univariatt? 

charts. This chart perfornis better than the combination of the two widely iisctl 

riiultivariate chürts when small changes are of interest. 

In dealing with positively-skewed distributed data. the direct logarit hniic 

trarisformation may result in a control chart wi th  inappropriate control paranieters 

in the application of quality control. When a specific interval for the lognornial 

mean is given. a new method is introduced to set up two control charts and these 

two charts can monitor a process for which the underlying distribution of the 

quality characteristic is lognormal. 

viii 
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CHAPTER 1 

Introduction 

1 .  Overall View 

Efforts to iniprove quality of industrial products brought on the technique 

of statistical quality control. .A major objective of statistical quality control is to 

monitor an ongoing process and to detect quickly the occurrence of process stiifts 

so that corrective action niay he taken. -1s a result.  th^ process caii bt! kept in a 

state of control for long periods of tinie. For this purpose the control chart is oric 

of the most usefiil tools and has been widely iised in quality control since the mrly 

1920s. 

If the measurement of the quality characteristic has a. contiriuous scale. the 

quality characteristic is iisually called a variable and the control charts dealing 

with continuous data are collcctively called variables control charts. Lsing this 

general type of control chart. the variables rnostly controlled are the mean value 

and the dispersion of the quality characteristic. To determine a state of statistical 

control. two separate charts are used traditionally: one is an .Y chart and the ot her 

is either an R chart or S chart. The ,y chart is used for controlling the central 

tendency. while the R chart or S chart is used for monitoring the variability of the 

process. 

Since S hewhart [si] introduced control charts, practitioners in quality con- 

trol have comrnonly used these well-known Shewhart control charts. Shew hart 

control charts are simple to construct and easy to understand. If the distribution 

of the characteristic is approximately normal and the process changes are moder- 

ately large, these charts are very effective in detecting mean shifts and variability 



changes of the  process. 

However. Shewhart control charts have sorne disadvantages. Firstly, t hey 

only make use of the information about the process contained in the last plot- 

ted statistic and they are ineffective in detecting relatively srnall changes in the 

process. Secondly. since changes rnay exist in both prowss x v ~ r a g ~  and process 

dispersion. it is inconvenient to use two control charts in monitoring the process 

center and the process spread separately. Thirdly. in some situations the urider- 

lying distribution of t h r  quali ty characteristic niay be very different froni iiorrrial 

and therefore Shewhart control charts rriay not be appropriate. Finally. sonietinies 

a process is infliinced by siniiiltaneous effects of several quality characteristics and 

the univariate Shewhart control charts may not be able to coritrol these qiiality 

characterist ics effectively. 

1.2 Outline of the Thesis 

As Parr [45] pointed out. as the levei of quality niaturity of a conipany 

increases there will be a. corresponding increase in the use of variables control 

charts. This dissertation is rnainly concerned with variables control charts. The 

overall review of literature in Chapter 2 shows that. to deveiop effective alternatives 

to the Shewhart control chart. the latest trends in control charting methodology 

have focused on two research fields. One is the highly sensitive control chart. which 

is sensitive to srnall changes within a process. and the other is the single chart. 

which employs a single plot to monitor both the mean and the variability of a 

process. 

Several new sensitive sirigle control charts are developed in this dissertation. 

In Chapters 3, 4 5 and 6 ,  Four univariate Exponentially Weighted Moving Average 



(EWiLIA) single control charts are proposed and their performances are studied. In 

Chapter 7. the performances of these four charts together with that of two existing 

combined univariate control charts are compared. Based upon ARL comparisons. 

diagnostic ability studies for three of the preferred cont roi charts are discussed. 

In Chaptm 8. two pxisting coritrol charts based on the logormal distribution are 

critically exarnined and a new rnethod is proposed to set up control churts For 

variables having this lognormal distribution. Based on the cornparison of tlic six 

univariate charts. a niultivariate exponentially rnoving average single control chart 

is dewloped as an extension of orle of the best univariate charts in Chapter 9. This 

chart perfornis better thaii the combination of the two widely iised rniiltivariate 

charts when srnall changes are of interest. Finally. conclusions are drawn and 

recornrnendations are given in Chapter 10. 

Several coniputer progranis written in FORTRAN 77 code are included in 

Appendices A and B. These programs are designed to obtain Average Run Lerigths 

(ARL's) for ail the new coritrol charts and the existing coritrol charts considered. 

and to obtain simulations of diagnostic ability studies for the three preferred control 

cbarts. 

1.3 Notation 

The notation below is used throughout the thesis. 

SPC Statistical process control 

EWMA Exponentially weighted moving average 

CUSUM Cumulative Sum 

UCL Upper control lirnit 

CL Center line of a control chart 



LCL 

ARL 

CDF 

pdf 

k 

Lower control limit 

Average riin length 

Cumulative distribution function 

probability density function 

Diriierisiunali ty uf a vectur 

Size of the ith 

Equal size for 

Total number 

Process mean 

Process rnean 

sample. i = 1.2. . . . 

al1 samples 

of sarnples taken from ari in-cuntrol process 

vector 

Process variance 

Process standard deviation 

A kxk process covariance matrix 

Deterrninatit of the process covariance nia t rix 

Correlation coefficient of two quality charac teristics 

Mean function of a distribution 

Variance function of a univariate distribution 

Covariance function of a rnultivariate distribution 

In-control ARL of a control chart 

Standard normal distribution funct ion 

Standard normal density function 

Inverse of standard normal distribution funct ion 

Chi-square distribution function with v degrees of freedom 

Noncent ral chi-square distribution funct ion wit h v degrees 

of freedom and noncentrality parameter 6' 



Chi-squared density function with v degrees of freedom 

Moncentral chi-square density function with u degrees 

of freedom and noncentrality parameter d2 

F distribution function with (vl. u?) degrees of freedom 

A râridùiii variable ,Y foiluws the riorrrid clistributiori 

with mean p and variance a2 

A random variable X follows the lognormal distribution 

with paranieter p ancl o' 

A randoni variable .Y follows the chi-square distribution 

witli v degrees of freedoni 

A randorn variable .Y follows the non-central 

chi-square distri bution wit h v degrees of freedorn 

and nonccntraiity parameter d2 

A randorn variable .Y follows the F distribution function 

with (y. 4 degrees of freedom 

A k x l  random vector X follows multivariate normal distribution 

with mean vector p and covariance matrix C 

Percentage point of the standard normal distribution 

such that 1 - 8 ( z , )  = a 

Percentage point of the chi-square distribution with u degrees 

of freedom such that 1 - H,(&)= cr 

Percentage point of the F distribution function with (yl' u2) 

degrees of freedom such that 1 - Fv,,, ( fa ,,,,,) = a: 

Measurement of a quality characteristic on the jth 

observation in the P sample, a ' =  1.2 ,... a n d j =  1 ? 2  .... 'ni 



Measurement of a k x l  vector of quality characteristics 

ith sample mean of a quality characteristic. = Lx? n,  3=1 -cij 
ith sample mean of a kxl vector of quality characteristiçs. 

=; En= xij 
3 

ith saiiiple range uf a quality characteristic. 

= maz{-Yil. -Yi2, . . . . . -Yin,} - min{.YiI. .Yi2. . . . . . Sint} 

ith saniple variance. = - L ~ ~ ~ l ( - Y i j  - -Yi)2 

ith saniple standard derivation 

Sarnple covariance between two quality characteristics. 
- - 

= -I_ n-1 C:=l(Xil - -Yl)(?ii2 - X2) 
ith kxk sample covariance matrix whose elenients are saniplt. 

variaces and covariances 

Sarnple generalized variance which is the determiriant of Si 

Grand average of sample rneans. = ' Crl  .Yi rn 

Grand average of sample ranges. - x:, ri,R, - 
E,"=i n,  

Grand average of sample variances. - xzl (n, -1)s: - E::,(n, -1) 

Grand average of sample standard deviations. =fi 
Grand average of sample rnean vectors. = q t = , X i  m 

Grand average of kxk covariance matrices. = $CLisi 
A smoothing constant for EWMA scheme. O < X g  

A multiplier of the standard deviation for an EWMA statistic 

A multiplier of a step-shift in the process mean. 

i.e.? p = + aoo 

A multiplier of a step-change in the process standard deviation . 



rn- 

The largest integer that is smaller than or equal to y 

Average of sample sizes. = [$ ni] 

.-\ control chart constant associated with R 

4 control chart constant associated with S 

Nuriiber of tiiiies that orily au irtcreae iii the rileau is detected 

Xtimber of tirnes that only a decrease in the rnean is detectecl 

Number of times that only an increase in the variability is d~tectcd 

Nurnbrr of tinies that only a decrease in the variability is derwted 

Xiimber of  tinies tkiat increüses in both the mean and t tie 

variabili ty are sirnul taneously detec ted 
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A plotting character of an out-of-control signal when process 

mean is dosa and the process variability is up 

.4 plotting character of an out-of-control signal when bath 

the process mean and the process variability are dowri 



CHAPTER 2 

Review of the Literature 

2.1 History and Evolution of Quality Control 

In the rarliest of time. ancient people were concerned about quality of 

products and it is known that rudimentary techniques for quality control niiist 

have eristed (Wierda [58]). Before industrializatiori. individual workers irispectrtl 

the qiiality of their own work and were responsible for providing the quality tlie 

market denianded. Gradually. as the capacity to produce products g e w  and work 

becanie morp specialized. inspectors had the responsibility tor quality and tlieir 

job was to inspect the work of others. 

The industrial revoliition inçreased productivity as well as the neecl for 

standardization of products. In large factories the burden on the inspectors was 

too heavy and independent inspection departnients were created. The rnethod 

of controllirig quality was mass inspection of items produced and the tecliriology 

of quality control was developed to assist the inspection work. However. at that 

stage. quality control was merely quality inspection without concern for quality 

improvement. Quality was kept up only by rernoving unacceptable items produced 

by the process. but assignable causes of the defects were neither identified nor 

eliminat ed. 

In the 1920's. it was realized that. to maintain the quality of products. 

studying the underlying production process was more effective than inspect ing al1 

the finished products. In addition to this important idea. another element for 

quality control was developed at the same time. Sampling inspection began to be 

considered in quality control as an alternative to 100 percent inspection. Much 



of the earliest recorded work in quality control was done in the Bell Telephone 

System. At Bell Telephone Laboratmies. Walter A. Shewhart. with his colleagues. 

recognized that variation in a process is a statistical phenornenon and developed 

st atistical met hods for quality control. 

In 1924. Walter A. Shewhart presented to his chief at Bell Telephone Lab- 

oratories his first control chart showing the monthly number of percent defective 

items in sonie unspecified piece of apparatus. In the December 1925 issue of the 

. l u u n d  of the rlnlerican Stntistical .4ssaciution. he pu blished a paper entitled -Tlie 

Application of Statistics as an ;\id in Maintaining Qiiality of a bIanufacturet1 Procl- 

iict." In this paper. lie introduced the control chart. Later in 1931. tie published 

his fanious book. Econornic Control of Qualit~j of a Munll/actvred Produc t. mit lin- 

ing the control chart rnettiod. This period is generally considered as the beginning 

of statistical quality control. 

In World War II. an imniediate need for large quantities of war material 

increased the productivity of Anierican nianiifacturing industries. Amrrican in- 

dustry rapidly expanded during the war. and therefore. those new and expanding 

factories employed many inexperienced people. Quality then became more inipor- 

tant since the quality of the products suffered from the lack of skilled workers. -4s 

a result. training programs were established by companies and the use of statisti- 

cal quality control was taught during the training. The niassive and widespread 

training programs launched extensive applications among American rnanufactur- 

ing industries. This brought about widespread use and acceptance of the concepts 

of stat istical quality cont rol in manufact uring industries. At the same time. British 

firms and ot hers also wi tnessed similar development of statist ical quality control. 

After World War II, statistical methods for quality control were widely applied in 

a variety of industries in America as well as in other countries. 



2.2 Theoretical Basis of Control Charts 

The construction of a control chart is based on statistical principles. The 

aim of a control chart is to recognize. from a sample. whether the obtained value 

of a sample statistic deviates too far from a desired condition. If a sample is drawn 

from a procesç whose variability is due only to chance causes. a sample statistic 

will be distributed in s n  expected pattern and the process is assunied to be in a 

state of statistical control. or simply in control. Otherwise. if a saniple is drawn 

from a process whose variability is due to assigxiable causes. the distribution of the 

statistic is not desirable and the process is said to be out-of-coritrol. 

The control chart is a grephical statistical tool for monitoring the control 

of a process. A typical univariate control chart displays a quality charactt?ristic. 

which has  been measured from a sequence of samples. on a graph. For exarnplr. 

Shewhart cuntrol charts contain a center line that represcnts the target of the 

quality characteristic. Two control limits. the upper control limit and the lower 

control liniit. are located at a distance from the center line. These control liniits 

give the range of variability to be expected in the sample statistic when the process 

is in control. Basically. the process is said to be in control when results behave Iike 

sampling from a single population. A commonly used criterion for the in-control 

state is that some sample points fa11 within the control limits and behave in a 

random manner. However. if a single sample point falls outside of the control 

limits or al1 the sample points behave in a systematic manner. this is an indication 

that the process could be out of control. When such an indication occurç. taking 

action to find and eliminate some assignable causes will keep the process in a state 

of statistical control. 

The statistical theory employed in control charts is the theory of hypothesis 



testing. Applying a control chart can be considered as doing repeated tests of the 

statistical hypothesis that the process is in a state of statistical control. When a 

sample point is plotted on the control chart. the hypothesis of statistical control is 

to be tested based on the information obtained from the sample. A point Falling 

between the control limits is equivalent to accepting the hypothesis. and a point, 

falling outside the control limits is equivalent to rejectirig the hypothesis. As 

in hypothesis testirig. there are also two types of error for a control chert. The 

probability of type I error represents the probability that the control chart will give 

an out.-of-controi signal wtien. in fact. the process is in control. The probability of 

type II error represents the probability that the control chart will not detect sonie 

assignabie causes when the process is actually out of control. An optimal design 

of a control chart is to achieve the smallest probability of type [I error when a 

desired probability of type I error is given. 

There are a t  least five reasons for the use of control charts ('vlontgoniery [3S]) 

1. Controi charts are a proven technique for improving productivity: 

2. Control charts are effective in defect preventiori: 

3. Control charts prevent unnecessary process adjust mrnts: 

4. Control charts provide diagnostic information: 

5. Control charts provide information about process capability. 



2.3 Developments in Cont rol C hart Techniques 

2.3.1 Shewhart Control Charts 

Since Shewhart originated the concept of statistical control and the control 

chart technique in 1920's. his S. R and S charts have beconie the mostly conimonly 

used control charts in practice for variables data. 

Suppose that a quality characteristic .Y follows a normal distribution with 

mean p and standard deviatiun approximately. Random sarnples of size r i  are 

drawn froni a population prodiiced by the process. The .y chart. basrd o n  the 

distribution of the sample rnean obtained from the process. shows the variation in 

sample averages. The R chart and the S chart show the general variability of a 

process. and they respectively employ sample ranges or sample standard deviations 

to monitor the process variability. It is ciistomary to set control liniits for these 

charts at sonie multiple of the standard deviation of the statistic being plottecl. 

The niost common multiple is 3 and they are called 3-sigma liniits. In practice. 

p and o are usually unk~iown. and they have to be estiniatcd with preliniinary 

sarnples drawn from an in-control process. 

It is important to maintain control over both the process mean and the 

process variability. because the output from a process may be attributable to a 

shift in the rneari andior a change in the dispersion. It is then necessary to monitor 

both the shifts in the mean and the changes in the variability. Under normality 

assumption. two control charts are often employed to separately monitor the mean 

and the variability. Because people wit hout sophistica ted statistical knowledge can 

e a d y  understand the concept of measuring variability with the range. one of the 

most commoniy used pairs of charts is the combination of the ,y chart and the R 

chart. But the range ignores al1 information between the two most extreme values. 



and it becomes less efficient. as a measure of variability. for large sample size. The 

sample standard deviatioo rnakes use of al1 information available and can provide 

a better estimate of the process variability than the range. Thus. the combination 

of the chart and the S chart is also iised in quality control. 

Shewhart control charts have many advantages. siich as. their ~irnplirit~y and 

their effect iveness under certain circumstances. However. Shew hart control charts 

also have soriie disadvaritages. To improve on these. greüt efforts in researcti on 

control charts have been made. and variaus modifications to Shewhart control 

charts have been developed. Some niodifications of Sliewliart control charts are 

still based on the statistics iised by Shewhart. but others rriake use of new statistics. 

2.3.2 High Sensitive Control Charts 

To increase the sensitivity to small shifts in process mean. Weindlirig et 

al. [56] niodified Shewhart control charts and established a pair of warriing lirnits 

for the Shewhart charts. The warning limits are located inside the conventiotial 

control limits. Corrective action will be taken when a run of a specified riurnber 

of consecutive sample statistics falls between the warning limit and the control 

liniit. The rnean action time is a function of shifts in the process mean. and it is 

used to measure the sensitivity of the modified chart. Sniall shifts are detected by 

means of the occurrence of critical run accumulations in the warning regions: large 

shifts are detected by means of a single sample statistic outside the conventional 

control limits. Cornpared with the Shewhart control chart. the modified chart is 

more sensitive for srnall and moderate shifts in the process mean. However. for 

the modified chart. the drawback is that the false alarm rate will increase. 

Page [44] proposed the cumulative sum (CUSUM) control chart as an alter- 



native to Shewhart control charts. Plotting the cumulative sums of the deviations 

from a target value, the CUSUM chart directly incorporates al1 of the information 

in the sequence of sample values. There are two forms for the CUSUM charts. 

the tabular CUSUM. and the V-mask form of the CLTSU-UI. The tabular CUSCIM 

employs two sample statist ics: one is one-sided upper CUSUM t hat a(-riirniilnt~s 

the deviations above the target. and the other is one-sided Iower CUSC'hf that 

accumulates the deviations below the target. Being siniilar to Shewhart charts. 

the tabular CUSGM still has two straight lines as its control limits. Insteacl of 

conventional control limits. the V-mask form of the CUSU41 req~iires the use of 

a mobile V-shaped mask to decide whether a shift occurs. 01 the two fornis. the 

tabular CUSUM is preferable diie to its esier applicability It is possible to de- 

vise cumulative-sum schernes for a statistic that follows a non-normal distribution 

to monitor process variability. Because the CGSUY chart combines inforniation 

from several saniples. it is niore effective than Shewhart control charts For detecting 

small process shifts. 

Another form of control chart. which has recently received a. great deal of 

attention and has gained extensive applicabili ty. is the exponent ially weighted mov- 

ing average (EWMA) control chart. Robert [d'il first developed an  EWMA control 

chart to detect shifts in the process mean. An exponentially weighted rnoving av- 

erage gives the greatest weight to the most recent observation and the decreasing 

weights to a11 previous observations in geometric progression from the most recent 

to the first. As interest centers on early detection of smaller and smaller changes. 

the appropriate smoothing value decreases from unity and becomes srnaller and 

smaller, and more information is gained from the past data. 

Robert compared the EWMA control chart with a speciai kind of modified 

Shewhart control chart and with the ordinary moving average control chart. The 



modified Shewhart control chart is based on a Runs Test that prescribes rejection 

of the nul1 hypothesis if a single sample point falls outside 3.130 limits or ten 

consecutive sample points fall on one side of the central line of the coritrol chart. For 

the ordinary moving average control chart. the statistic is based on the average of a 

set of saniple nieans. To %et the latest averag. the oldest sample niean is dropprtl 

and the newest one added to the set. Both of these two control charts are niore 

effective in detecting small shifts in the process mean than the Shewhart control 

cliart. Roberts siiowed that the EWbI.4 control chart compare most f ~ o r a b l y  witli 

the niodified Sliewhart control chart and the moving average control chart witli 

regard to charting and stütistical properties. Hence. the EWMA control chart lias 

high potential for on-line autoniatic sensing and control of manufacturing process. 

Further research has also provided evidences that the EWMA coritrol chart 

is a useful process monitoring and control tool. Robinson and Ho [U]. Crowder [13]. 

and Lucas and Saccucci [36] gave numerical procedures which make the properties 

of EW'VIA schenies easy to investigate. Roberts [47] and Chantraine [8] presentecl 

graphical methods. which niake the EWbIA niuch easier to be applied in industries. 

Hunter [25] viewed the EWMA as a compromise between the Shewhart arici the 

cumulative sum charting procedures. and promoted the EWMA as a niethod for 

establishing real-time dynaniic control of industrial processes. 

In addition to many of the EWMA control charts constructed for monitoring 

the mean of a process. Wortham and Ringer [59] suggested the use of the EWbIA 

to construct a control chart to monitor the variance of a process. Sweet [55] 

modified Wortham and Ringer's model. and proposed two models to construct 

simultaneous control charts to monitor the mean and the variance of a process. 

For the same purpose, Ng and Case [42] discussed the methodologies to construct 

coupled control charts of the EWMA of the sample mean and the sample range. 



To detect increases in process variability. Crowder and Hamilton [l4] developed an 

EWMA control chart based on the log trarisformation of the sainple variance. They 

showed that the EWMA control chart is superior to the Shewhart control ctiarts 

in term of its ability to quickly detect small increases in the standard deviation of 

a normal process. 

2.3.3 Single Control Charts for both Center and Spread 

Using two control charts to separately rnonitor the process niean and the 

process variability is usually inconvenient arid tinie-corisuming. In dealing with 

theoretical issues as well as: practical concerris. efforts have been made to design 

a single coritrol chart to achieve the sanie purpose as Siiewhart coritrol cliarts for 

variables data. 

White and Schroeder [57] introduced a simultaneous control chart. Throiigii 

the use of resistant rneasurcs and a modified box plot. this single chart controls the 

process level and variability. Iglewicz and Hoaglin 1261 extended and refinecl the 

techniques discussed by White and Schroeder. It is argued that the simultaneoiis 

control chart provides more effective decision making t h r i  the Shewhart control 

charts. But the information contained in a single plot can be confusing due to 

its complexity. and it may be ineffective for srnall sample size. Chan. Cheng and 

Spiring [6] provided an alternative to the box-plot style of simultaneous control 

charts that had added advantage of performing equally for both large and small 

sample sizes. Except for the added advantage of appearing on a single chart. the 

techniques used are similar to that of Shewhart control charts. However. this chart 

is not simple since it requires plotting two types of quantities separately on a chart. 

Domangue and Patch [la] discussed some E W A  statistical process moni- 



toring schemes. The control charts discussed are sensitive to changes in the mean 

and/or the variability. but cannot indicate whether the change has actually oc- 

curred in the process mean or in the process variability. Cheng arid Li [IO] pro- 

posed a single variable T cliart. which plots the sum of magnitudes of deviation of 

the extreme values in the sample From the t a r g ~ t  valii~. Siiland [43] dw:rihrd the  

"circle technique". in which a circie is aluvays involved. as "an effective and simple 

statistical technique for insuring conipliance with ISO 9000". Froni the idea of 

the **circle technique". Chao and Cheng [5] developed a semicircle control chart tu 

jointly combine the detection of the location shift and the dispersion deterioratiori 

into one chart. This chart is essentially a '-dimensional cliart and niuch easier to 

use. Chen and Cheng [9] designed a single control chart. the .Clau chart. to nionitor 

both the center and the spread for variables data. The Max chart is showii to h~ 

just as effective when it is corripareci with the combination of Shewhart coritrol 

charts. However. these single control charts. except for Donlangue and Patch's 

charts. are not sensitive to relatively small changes withiri a process. 

2.3.4 Control Charts for Non-normal Data 

-4 fundamental assumption in the use of Shewhart control charts is that the 

underlying distribution of the quaiig characteristic is normal. In many situations. 

this assumption may be violated. Whenever the data indicate the normality as- 

sumption is inappropriate. difficulties are probably encountered and sat isfact ory 

results may not be obtained using Shewhart control charts. Even if the form of the 

underlying distribution is known in sorne cases. it could still be difficult to derive 

the sampling distribution of some statistics and to O btain exact probability limits 

for the controi charts. 



Morrison [4li described difficulties in the application of the traditional sta- 

tistical control chart. technique to some real data in industry. In the radio valve 

industry it has been found that much of the thermionic valve test data are posi- 

tively skewed. some to a very marked degree. For fitting these kinds of positively 

skewed data. the lognornial distribution is widely applied. 'vlorrison rlisciiss~d the  

generation of these skew distributions in theoretical and practical ternis. He in- 

troduced a modified quality control scheme for these cases: the geometric sariiple 

mean is iised instead of the arithmetic sarnple mean as o measure of the proccss 

center: ratio of maximiini to minimum saniple values is used instead of sarriple 

range as a measure of the process variation: and the logarithniic transforrriatioii is 

iised to calculate control lirriits. 

'vlorrison's paper offers a new method and ü knowledgeable disciissiori for 

dealing with non-normal data in the field of quality control. However. the con- 

trol limits are obtained directly frorn the direct transformation of their nornial 

couriterparts and m. be inaccurate for the lognormal distribution. 

2.3.5 Multivariate Control Charts 

W hen a process is simul taneously characterized by niore t han one related 

quality characteristics. a separate Shewhart control chart for each character can 

give misleading results. Multivariate quality control techniques will take advantage 

of the rnultivariate nature generated by the process. Suppose that several related 

quality characteristics approximately follow a multivariate normal distribution. As 

an extension of univariate control charts, many of the statistical techniques used in 

univariate quality cont rol have been modified and extended t O multivariat e quality 

control. 



Hot elling [24] first proposed a mu1 tivariate approach to quality control. 

and applied his procedure to bombsight production process during World War II. 

He introduced the x2 control chart. an extension of' S chart. as a technique for 

monitoring a rnultivariate process. Hicks [23]. Jackson (271 [28]. and Montgoriiery 

and Wadsworth !4O! continued the research on control procedures for sewrsi r e la t~d  

quality characteris t ics. 

As in the univariate situation. several alternative control charts to the 

control chart have also been developed and some of thern are niore powttrfiil in 

detecting sniall shifts in the niean vector. Healy [22j and Smith [53] used thti fact 

that a cuniulative suni control chart can be viewed as a seqiiential probability 

ratio test to develop a rnultivariate cumulative control chart. In the ilnivariate 

CUSUM scherrie. the nth ssaniple statistic is shrunk towerd O by a constant. Crosiw 

[12] generalized the univariate shrinking niethod to the niultivariate sit~iation by 

replacirig the scalar quantities of  the univariate cumulative sum into vectors. Lowry 

et ai. [35] proposed a multivariate EWMA control chart. arid showed that the 

properties of the rnultivariate EWMA control chart are more similar to and often 

even better than those of the miiltivariate cumulative sum control charts. 

Because the concept of covariance is complicated and it is difficult to deal 

with the changes in the covariance, very few papers are published on rriultivariate 

control charts for dispersion. One approach is due to 41t [2]. Alt and Bedewi [3]. 

and Alt and Smith [4]. They proposed three control charts. The first chart uses a 

statistic that is the negative of twice the natural logarithm of the likelihood ratio 

test statistic. which is slightly modified in order to make the test unbiased. The 

second chart and the third cbart employ the same statistic. namely, the generalized 

sample variance S 1 which is the determinant of the sampie covariance matrix of n 

new observations. But the proposed control limits for these two charts are different. 



The control limits of the second chart are derived with the desired probability. 

however. that of the third chart are determined by the expectation of ISI plus or 

minus three tirnes the standard deviat ion. 

Hotelling [%]. Jackson and Hearne [30]. and Jackson [29] proposed another 

line of approach. They used a generalized rneasure of the sample dispersion aroiind 

the sample niean to develop a control chart. This chart is a niultivariate analog of 

the univariate S2 chart. and it is easier to construct than the charts dev~lopecl frorri 

the first approach becaiise the exact distribution for the statistic is knowri ancf t h  

cornputation is simple. Fm a niultivariate control cliart. it is difficult to deterrriirie 

whicli of rnonitored variables is responsible for the out-of-coritrol signal. Alt [ii]. 

Doganaksay. Faltin. and Tucker [17] and Fuchs and Benjamini [19] suggested tising 

univariate coritrol chart for variability as a supplement to the niultivariate control 

chart. A disadvantage of this method is that it is iinnble to detect a change in 

correlation structure. 

Assuming the in-cont rol covariance matrix is unknown. Wierda [58] pre- 

serited four tests for the covariance matrix and concluded that the control chart 

based on the modified likelihood ratio test perfornis very well. He recommended 

using a hierarchical procedure that divides the modified likelihood ratio test statis- 

tic into three components. A control chart is used for each component and the 

univariate control charts are also consulted. These control charts can indicate 

what happened with the covariance matrix when a signal occurs. and the univari- 

ate control charts are able to detect changes in only the variances. However. this 

procedure is complicated because a large quantity of cornputation is required. 

Runger. Alt and Montgomery [49] developed a diagnostic. which is analo- 

gous to measures of influences in regression rnodeling, for a X2 chart. Utilizing the 

correlation between the variables, the diagnostic effectively determines the root 



cause of an out-of-control signal. In addition to the simplicity of computation and 

interpretation. this diagnostic could be useful for the signal from other control 

charts. which are based on qudrat ic  forms of the observed vector. 

Based on the univariate semi-circle control chart. Cheng and Mao [Il]  ex- 

tended the single control chart to multivariate situation and proposeci a miil tivari- 

ate semi-circle control chart for variables data. Based on the ARL performance. 

it is shown that the control chart performs quite favorably relative to the conibi- 

nation of the ,y2 control chart and the /SI control chart. As an exterision of the 

alternative variables control chart for univariate case. Spiring and Cheng $41 pro- 

posed a single cliart for the multivariate situation. The multivariate procediire is 

similer to the traditional Hotelling X' style of charts but results in a control chart 

that provides information regarding the process proximity to the target value as 

weil as the overall variability. However. similarly to their univariate coiinterparts. 

these two single charts are insensitive to relatively sniall changes within a process. 



CHAPTER 3 

The Max-EWMA Chart 

3.1 Introduction 

As illustrated in Chapter 2. there is an abundance of new developrnents 

in control chart techniques. hluch attention has been focused on developing two 

kinds of control cliarts: the high sensitive chart. and the single chart. Aniong 

those high sensitive charts. the EWMA-type chart is one of the most effertiv(~ in 

detecting sniall changes in  the process mean and variability. Howev~r. to tiioiii tor 

both the process mean and variability. two EWMA char ts  are tisually rcqiiiretl. Fur 

the single charts that have been developed. they are capable oE monitoring both 

the process mean and variability. but are not sensitive in detecting small changes 

within a process. 

In this chapter. a new control chart. the Max-EWMA chart. is proposed. 

This chart can simultaneously monitor both the process rnean and the process 

variability. and detect the source and the direction of an out-of-control signal. 

It is also sensitive in detecting small changes within a process. and capable of 

handiing the case of varying sample size. .A design strategy using optimal A and L 

is introduced. and an example is given to illustrate the implernentation of the new 

chart. 

3.2 The New Control Chart 

Assume that a series of randorn samples XG - N ( p .  a2): i = 1.2. . . . and 

j = l1 2. . . . . ni. Let be the nominal process mean and 00 be a known value of 

the process standard deviation. and assume that the process parameters p and O 



can be expressed as p = pg + au0 and a = bao. where a and b are constants and 

b > O. The process is in control when a = O and b = 1: otherwise the process has 

changed. 

It is known that .Yi and S? are uniformly minimum variance unbiased esti- 

niators. which have many good features. for the process mpan and varianre resper- 

tively. These two statistics are independent. but t hey follow different distrihut ions. 

When saniple sizes are different. further complications arise since varying saniple 

sizes can cause varying control limits for the same statistics. To deal with the 

above two situations. two transformed statistics froni ?ii and S? are defined below: 

It is apparent that Zi and CK are independent. When a = O and h = 1. 

both Zi and Wi follow the standard normal distribution and tliey d o i t  depend on 

the sample size *ni. 

The two EWnYI.4 statistics. based on Zi and \CIi. are given by 

with Zo and I.Vo as the respective starting values. O < X 5 1. 

Because Ui and V,  follow the same distribution. a new statistic for the single 

control chart can be defined as 



Notice that Mi is the maximum of the absolute values of the two EWMA 

statistics. It is natural to name this new chart the Max-EWMA chart. Construc- 

tion of a Max-EWMA chart involves computing the value of Mi. i = 1 . 2 . .  . . . and 

plotting these points on a control chart. The statistic ibIi will be observed over 

time and its values can indicate the state of a process. A large value of !Cli means 

tha t  the process mean has drifted away from po and/or the process variability has 

changed. Or1 the other hand. a small value of ibli implies the process mean and 

variabili ty remain close to t heir noniinal values respect ively. Spicifically. rach Mi 

is only compared against an UCL since .\Ii is a non-negative statistic. A valut? of 

lCIi that is greater thari UCL would cause an out-of-control signal. Otherwise. it 

indicates t hat the process is in-control. 

3.3 Derivation of the UCL 

When a = U and h = 1. Zi and CI;, independently follow the staridard normal 

distribution N(0.  1). hssuming that Cio = = O. Cii and Li can be rewritten as: 

Then. it can be seen that 



and 

~ [ l - ( l - ~ ) ~ ' ;  where o& = O$ = 2-x 

Because Cii and b; are independent. the in-control cuniulative distribution 

function (CDF) of Mi is found to be 

The correspoiiding probability density function (pdf) of .Cf, is the derivative 

of F (y: au, ) given by 

Using nunierical coniputation. the mean and variance of ilfi are obtained 



and 

respec tively. 

Therefore. the UCL is tiefined in a traditional way given by 

As i gets larger. the UCL will approach the steady-state value given by 

The design parameters of the Max-EWMA chart. L and A. control the performance 

of the chart. 

3.4 Design of a Max-EWMA chart 

On the basis of the theoretical studies by Crowder il31 and Lucas and 

Saccucci [36]. the cnterion for designing an optimal Max-EWMA chart is to make 

the chart have the best ARL performance. For a desired in-control ARL. if one 

wants to detect a specified pair of changes in the process mean and variability 

quickly. the combination of (A. L) for the optimal design provides the desired in- 

control ARL and minirnizes the out-of-control ARL for the specified changes in 



the mean and variability. For the Max-EWM4 chart. there is no direct way to 

compute the ARL. so each ARL value is obtained using 10.000 simulations. 

For a given in-control ARL of 250. and X = 0.05(0.005) 1. the corresponding 

L is found such that the (A .  L)  combiriation gives the desired in-controi ARL. Using 

19 1 such combinations. each out-of-control ARL is calciilatd with respect. to  a pair 

of specified a and b. The optimal (A. L)  combination. for a pair of specified n and 

b. is the one which leads to the smallest value of 191 out-of-control ARL's. 

The approxiniatr GCL iri Equation (3.15) is the stcady-state v i h e  that  

will be approached after the Max-EWMA chart has been runriing for several t h e  

periods. which is approxirnately taken as 5. It is more likely tliat the process will 

stay in the in-control state for sorne period of time before it drifts to the out-of- 

control state. Using the approximate UCL. Table 3.1 contains some represeritat ive 

optinial values of ( A .  L )  and the corresponding out-of-control ARL's for n = 5 and 

for various changes in the process mean and the process variability wi th  the in- 

control ARL of 250 and the starting values Zu = CVo = O. For exarnple. if onc 

wants to have a n  in-control AR1 of 250 and to guard agüinst one qiiartrr unit 

iricrease in the mean and one qiiarter unit increase in the variability. i.e.. rc = 0.25. 

b = 1.25. the optimal paranieter values are A = 0.185 and L = 4.028. 

As illustrated in Table 3.1. smaller values of X are more effective in detecting 

srnall changes in the mean and/or the variability. Although Table 3.1 contains 

ARL's only for the desired in-control ARL of 250. the performance at  otlier in- 

control ARL's is nearly the same as when the in-control ARL is 250. 

MacGregor and Harris [37] investigated properties of the EWMA chart. and 

concluded tha t  using the exact variance of the EWMA statistic leads to a natural 

fast initial response for an EWMA chart. This means tha t  initial out-of-control 

conditions can be detected more quickly using the exact UCL in Equation (3.14). 



Table 3.1: (A.  L )  conibinations and the corresponding ARL's for optinial 
Max-EWMA control schemes in a steady state and n = 5 .  

X 0.4900 0.4900 0.4900 0.5 150 0.9500 1 .O000 1 .O000 1 .O000 
0.25 L 3.22112 3.221 12 3.221 12 3.22692 3.25645 3.258 11 3.2581 1 3.258 11 

- A R L  2.27 2.27 2.27 2.16 1.13 1 .O0 1 .O0 1 .O0 
X 0.2200 0.2200 0.2200 0.4250 0.8750 1 .O000 1.0000 1 .O000 

0.50 L 3.07464 3.01464 3.07464 3.20021 3.2573 3.25811 3.1581 1 3.258 11 
ARL 

X 

X 0.1500 0.1850 0.2430 0.4700 0.7700 0.9050 0.9800 1.0000 
1.25 L ' 1.96115 3.02835 3.09836 321647 3.28794 l.23778 3.21844 2.79345 

5.41 5.41 5.22 2.76 1.35 1 .O0 1 .O0 1 .O0 
0.9900 0.0650 0.1600 0.4450 0.7350 0.9050 1.0000 1.0000 

ARL 
X 

1.50 L 
XRL 

X 
2.00 L 

.A RL 
X 

2.50 L 
AFU 

X 
3.00 L 

ARL 

1.00 L ! 3.25728 2.65411 2.98588 3.20021 3.25629 3.25718 3.25811 3.%8ll 
ARL 1 149.93 94-57 8.38 2.94 1.56 1.09 1.01 1 .O0 

17.79 12.79 7.10 2.86 1-60 1.15 1 .O2 1 .O0 
0.3600 0.4 100 0.4650 0.n 150 0.8050 0.8950 0.9950 1 .O000 

3.172 18 3.19524 3.21481 3.24252 3.25728 3.25828 3.25745 5.258 1 
6.28 5.69 4.51 2.52 1.59 1.19 1 .O5 1.01 

0.7800 0.8050 0.7400 0.8100 0.8600 0.8750 0.9600 1 .O000 
3.2581 1 3.35728 3.25629 3.25794 3.25960 3.25728 3.25745 3.2581 1 

2.50 3.45 2.28 1.82 1.44 1.21 1.08 1 .O3 
0.8550 0.8550 0.8500 0.8550 0.8650 0.8800 0.9500 0.9550 

3.25944 3.25944 3.2590 3.25944 3.25861 3.25761 3.25645 3.25622 
1.84 1.81 1.75 1.56 1.36 1.20 1.11 1 .O5 

0.8550 0.8550 0.8550 0.8550 0.8650 0.8800 0.8800 0.8800 
3.25944 3.25944 3.25944 3.25944 3.25861 3.25761 3.25761 3.25761 

1.66 1.64 1.60 1.50 1.36 1.24 1.14 1.08 



Table 3.2: (A. L) combinations and the corresponding ARL's for optirnal 
Max-EWMA control schenles in an initial state and n = 5. 

a 
b 

X 
0.25 L 

ARL 
X 

0.50 L 
ARL 

X 
1.00 L 

A 
X 

1.25 L 
AM 

X 
1.50 L 

. A U  

! 0.00 0.35 0.50 1.00 1 .50 2.00 2.50 3.00 
0.0500 0.0500 0.0500 0.0500 0.0500 1 .O000 1.0000 1 .O000 

2.53632 2.53632 2.53632 2.53632 2.53632 3.25778 3.25778 3.25778 
1.58 1.58 1.58 1.58 1.00 1 .O0 1 .O0 1 .O0 

0.0500 0.0500 0.0500 0.0500 0.0500 0.0600 1.0000 1.0000 
2.53632 2.53632 2.53632 2.53632 2.53632 2.62010 325778 33.25778 

3.68 3.68 3.48 1.88 1 .O8 1.00 1 .O0 1 .O0 
0.4950 0.0500 0.0500 0.0500 0.050Q 0.0500 0.0500 O. 1450 

3.22361 3.53632 2.53632 2.53632 2.53632 '2.53632 2.53632 2.95119 
249.84 18.58 5.97 2.05 1.26 1.04 1 .O0 1 .O0 
0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0650 

2.53632 2.53632 2.53632 2.53632 2.53632 2.53632 2.53632 2.65411 
12.54 9.02 4.87 2.06 1.32 1 .O7 1.01 1 .O0 

0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 
2.53632 2.53632 2.53632 2.53632 2.53632 2.53632 2.53632 2.53632 

4.41 4.03 3.20 1.90 1.34 1.10 1 .O2 1 .O0 



The ARL performance of the Max-EWMA chart agrees with MacGregor and Har- 

ris' conclusion. Using the exact UCL. Table 3.2 also contains sonie representative 

optimal values of (A. L) and the corresponding out-of-control ARL's for n = 5 and 

for various changes in the process mean and the process variability. with the in- 

control ARL of 550 and the starting values Zo = PVq = O. It shows tliat al1 the  

ARL's in Table 3.2 are smaller than or equal to the corresporiding oncs in Table 

3.1. An interesting phenornenon is that 0.05. the smallest value for X in the choseri 

set. is the optimal value for h even if the changes in the process mean and/or the 

variability arc large. This is because. for a. small X value. the exact CCL is niiicli 

snialler than the approximate one during the initial stage. In the initial stage. 

using the exact L'CL will improve the performance of the hlax-EWklA chart in 

detecting an initial out-of-control condition. 

To detect small to moderate changes in the mean and the variability. the 

reconiniended X values are in the range 0.05 to 0.30 because using smaller X values 

can detect snialler changes. When using small A values. occurrence of an inertia 

problem is the worst state for the EWMA-type control charts. For example. in  

the worst-case situation. Mi will be very riear the CTCL when a large change in 

the other direction occurs. resulting in a slow reaction to the large change if a 

small X value is used. To guard against this problem. one can simultaneously use 

an additional Max-EWMA chart with X = 1. Montgomery (381 and Lowry [34] 

discussed the inertia problem associated wit h the EWMA-type control charts. 

Notice that when h = 1. this particular Max-EWMA chart is equivalent to 

the Max chart which is a useful alternative to the common practice of using S and 

S (or R) charts. 

For given in-control ARL's of 185 and 250, and for some commonly used 

X values, the corresponding L is found such that the (A, L) combination gives the 



desired in-control ARLk when using the approxirnate UCL and the starting values 

Zo = Wo = O. Table 3.3 lists these (A. L )  combinations. 

Table 3.3: (A.  L) combinations For Max-EWIulA control schemes in a steady state 
when sample size n = 5. 

3.5 Charting Procediire 

The charting procedure of a Mau-EWMA chart is similar to that of an? 

other EWMA charts comnionly used. The successive ,Cl;s are plotted on a ctiart 

versus the sample number or rime. However. to identify the source and the tlirec.. 

tion of an assignable cause. several piottiiig characters must be used dong  witti 

sample points. 

The procedure can be briefly summarized in the following steps: 

- 
1. If po is unknown. substitute S for pu. If 00 is unknown. substitute s/c4 (or 

R / d 2 )  for 00 and 9 for 0;. 

2. For each sample. compute Zi and Wi. 

3. To detect specified changes of the process mean and variability in an initial 

stage, choose the optimal (A, L) combination from Table 3.2. Calculate Ui 

and with Zo = Wo = O as starting values, and construct UCL according 

to Equation (3.14). 



4. To detect specified changes of the process mean and variability in a steady- 

state. choose the optimal (A. L )  combinatioo from Table 3.1: if it is not 

apparent what  changes in the process mean and the process variability should 

be guarded against. choose the desired (A.  L)  combiriation from Table 3.3. 

Calculate Lii and C; with Zq = CC;i = O as starting valii~s.  and constriict liCL 

according to Equat ion (3.15). 

5. Cornpute ,LIi and compare it wi th  the UCL's. 

6. Plot a sarnple point against the sarnple nuniber i when lbIi 5 <;CL. 

7 .  Plot a plotting character against the sample nuniber i when ilri > UCL. For 

the casr of only IUJ > LICL. plot "m+" if L; > O and plot "m-" if L:i < 0: 

For the case of only 1 I;/ > U C L  . plot "vt" if I/; > O. and plot "v-" if I; < O: 

For the case of both !Ut( > U C L  and ICJ > U C L .  plot " m t v t "  if L;, > O 

and b; > O. plot " rri+v-" if LI, > O and b; < O: plot " m-v+" if Iii < O aiid 

I;, > O: plot "rn-v-" if Ui < O and Ç; < 0. 

8. Investigate the cause(s) associated with each out-of-control signal. 

3.6 An Illustrative Example 

This example is taken from DeVor. Chang and Sutherland [16]. where data 

from the first 35 samples of size five were collected every half an hour. The mea- 

surements represent the inside diameter of cylinder bores in an engine block and 

are made to 1/10000 of an inch. such as 3.5205. 3.5202. 3.5204. . . . . For sirnplicity. 

the last three digits in the measurements are given in Table 3.4. 



Table 3.4: Cylinder diameter data. 

Samplei XI .Y? X3 X4 X5 
1 205 202 204 207 205 
9 - 202 196 201 198 202 
3 201 202 199 197 196 
1 205 203 196 201 197 
5 199 196 301 200 195 
6 203 198 192 217 196 
3 

/ 102 202 198 203 203 
8 197' 196 196 200 204 
9 199 200 204 196 202 
10 202 196 4 195 197 
11 205 204 202 208 205 
12 LOO 301 199 100 201 
13 205 196 201 197 198 
1-1 202 199 200 198 200 
15 200 200 201 205 201 
16 201 187 209 202 200 
17 302 202 204 198 203 
18 201 198 2 0  201 201 

Sample i .YI *Y2 Y -Y4 .Y5 
19 207 206 194 197 201 

Suppose tbat based on past experience an operator wanted to guard against 

the changes u = 1.50 and b = 1.50 with in-control ARL = 250. To use the Max- 

EWMA chart to rnonitor the cylinder production process. po is estiniated by .f 
= 200.24 and fi is estimated by s / c4  = 3.30. Using these estimates. the first 

Max-EWbIA chart. consisting of the first five points for the initial stage with X = 

0.05 and L = 2.536 and the other thirty points for the steady-state stage with X 

= 0.805 and L = 3.258. is shown in Figure 3.1. As indicated in Figure 3.1. there 

are three points above the UCL. Ui? & and bi6 are respectiveiy greater than UCL. 

Sample 1 is related to an increased shift in the process mean while sampie 6 and 

sample 16 are related to increased changes in the process variability. According to 

DeVor. Chang and Sutherland [16], sampie 1 occurred at 8:00 a.m., corresponding 



roughly to the startup of the production line in the morning when the machine was 

cold. An investigation reveals that sample 6 and sample 16 corresponded to the 

time when the regular operator was absent. and a less-experienced relief operator 

was in charge of the production line. When these three samples are excluded. new 
- 

estirnates are obtained as ,y = 200.10 and s / c 4  = 2-96. TO guard against the 

changes u = 1.50 and b = 1.00. the optimal values are A = 0.735 and L = 3.256 

for the steady-state stage and the second chart is plotted in Figure 3.2. -4s stien 

from the plot. one point (sample 11 in the original data set) is found to b~ CL - b ove 

the UCL. Ull is greater tlian UCL and it is related to an iiicreased shift iri tlic 

process mean. Sample 11 was produced at 1:00 p.m.. corresponding roughly t o  the 

startup of the production line directly after the lunch hour. when the machirie was 

shiit down for tool changing. Once the machine warmed up. in about 10 niiniites 

the problern seems to disappear. When this sample is removecl. the two estiniates 
- 

are given by .y = 199.94 and S/c4 = 2.98. To detect srrial1 changes wit h a = 0.50 

and b = 1.25. the optimal value of (A.  L )  is (0.245. 3.098). The display of the third 

chürt in Figure 3.3 shows there is no out-of-control signal. 



Figure 3.1: The first >la--EWYA chart for the cylinder diameter data 

Figure 3.2: The second Max-EWMA chart for the cylinder diameter data 



Figure 3.3: The third Max-EWMA chart for the cylinder diameter data 



CHAPTER 4 

The SS-EWMA Chart 

4.1 Introduction 

In addition to the efficiency of a control chart. it is important. especially 

in a job-shop nianufacturing environment. to inake the charting procedure easy to 

iniplerrient . Chao and Cheng [SI developed a single control chart. the seniicircle 

chart. wtiich is simple to use and easy to understand. One of clie most iniprrssivt? 

features of the serriicircle chart is that it is easy to attribute an out-of-control signal 

to the cause of the mean shift orland variability change. 

Combining this thought with the EWMA technique. a new single control 

cliart. SS-EWMA Chart. is proposed. The properties of this chart is siniilar to 

those of the Max-EWMA chart. but it has an added adwntage of charting more 

easily in practical application. which allows for greater Hexibility than the usual 

approach. As done in Chapter 3. designs are also made using the optimal velues 

of A and L. and the implementation of the new chart is illustrated through an 

example. 

4.2 The New Control Chart 

Under the same assumptions as in Chapter 3. the formulas for Zi. Wi. Ui 

and V, in this chapter are defined in the same way as given in Chapter 3. 

Based on (3.3) and (3.4) : the new statistic for this single chart is defined as 



A large value of SSi results from a shift in the process mean and/or a change in 

the process variability. otherwise. the value of SSi will be small and the process 

is in-control. Because the statistic SSi for this new chart is the sum of squares of 

two EWblA statistics. i t  is natural to name this chart as SS-EWMA chart . with 

only an UCL needed due to the non-negative nature of SSi. 

Because $ and 4- independently follow the identical standard riornial 
I (TL' ,  

distribution. X ( O .  1). it is obvious that 

Therefore. the L'CL is given by 

As i gets Iarger. the UCL approaches 

where L and A? the design parameters of SS-EWMA Chart. can control the per- 

formance of the chart. 



4.3 Design of a SS-EWMA Chart 

For the SS-EWMA Chart. the same design strategy proposed for the &Im- 

EWMA chart can be used to find the optinial (A. L )  combination with respect to 

the desired in-control ARL and specified changes in the process mean and vari- 

ability. Because there is still no direct way to compute the ARL. each ARL value 

is o btained using 10.000 simulations. 

For a giren in control ARL of 250 and h = 0.05(0.005)1. there are 191 ( A .  L )  

combinations and the optinial one leads to the smllest out-of-control ARL. Csirig 

the  approxiniate UCL and the exact UCL. Tables 4. I and 4.2 respectively contain 

representative optimal values of (A.  L) and the corresponding out-of-control XRL's 

for n = 5 and for changes in the process niean and the proccss variability. witti the 

starting values Zo = O and LC; = 0. 

In Table 4.1. the results. sirnilar to the results obtained in Table 3.1. siiggest 

that smaller values of X are more effective in detecting small changes in the  mean 

and/or the variability. Agairi siniilar to the  results obtained in Table 3.2. the 

results in Table 4.3  show that using exact GCL. the smallest A in the chosen set 

is niostiy likely to be the optimal value even if the changes within the process are 

large. It is interesting to see that al1 the ARL's in Table 4.2 are smaller or equal 

to the corresponding ones in Table 1.1. 



Table 4.1: (A. L) combinations and the corresponding ARL's for optimal SS- 
EWMA control schemes in a steady state and n = 5 .  

a 

b 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00 
X 0.4311 0.460 0.510 0.840 1.000 1.000 1.000 1.000 

0.25 L 
ARL 

X 
0.50 L 

ARL 
X 

1.00 L 

- .ARL 
X 

1.25 L 
ARL 

X 
1.50 L 

ARL 
X 

2.00 L 
ARL 

X 
2.50 L 

ARL 

4.423 4.441 4.465 4.522 4.528 4.528 4.528 4.525 
2 . 1  4 2.19 8 1.00 1.00 1.00 1.00 

0.195 0.205 0.265 0.485 0.905 1.000 1.000 1.000 
4.074 4.103 4.240 4.460 4.523 4.528 4.528 4.528 
3.96 5.31 4.17 2.32 1.36 1.00 1.00 1.00 

0.090 0.060 0.170 0 .45 0.760 0.925 0.975 1.000 
3.510 3.141 3.991 4.415 4.533 -4.524 4.528 4.528 

249.91 24.40 8.83 3.01 1.62 1.11 1.01 1.00 
0.175 0.190 0.265 0.555 0.815 0.905 1.000 1.000 
4.008 4.060 4.240 4.482 4-51?' 4.523 4.528 4.523 
17.11 11.67 6.58 2.78 1.59 1.15 1.02 1.00 
0.415 0.415 0.160 0.690 0.795 0.925 0.985 1.000 
4.415 4.415 4.441 4.516 4.519 4.524 4.528 4.538 

5.93 5.36 4.08 2.33 1.52 1.17 1.04 1.01 
0.780 0.770 0.755 0.845 0.895 0.940 0.950 0.960 
4.521 4.522 4.522 4.523 4.524 4 . 2  4.527 4.527 
2.17 2.12 1.98 1.62 1.34 1.16 1.06 1.02 

0.875 0.900 0.915 0.915 0.900 0.910 0.950 0.960 
4.524 4.523 -1.522 4.522 4.523 4.524 4.525 4.526 

1.45 1.43 1.40 1.30 1.20 1.12 1.06 1-02 



Table 4.2: (A. L) combinations and the corresponding ARL's for optimal 
SS-EWMA control schemes in an initial state and n = 5. 

- 

X 
1.50 L 

ARL 
A 

2.00 L 
ARL 

X 
2.50 L 

ARL 
X 

3.00 L 
ARL 

0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 
3.105 3.105 3.105 3.105 3.105 3.105 3.105 3.105 
4.30 3.78 2.93 1.79 1.29 1.09 1.02 1.00 

0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 
3.105 3.105 3.105 3.105 3.105 3.105 3.105 3.105 

1.78 1-74 1.64 1.40 1.21 1.09 1.03 1.01 
0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 
3.105 3.105 3.105 3.105 3.105 3.105 3.105 3.105 

1.30 1.29 1.27 1.20 1.13 O 1.04 1.01 
0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 
3.105 i3.105 3.105 3.105 3.105 3.105 3.105 3.105 

1.14 1.14 1.13 1.11 1.08 1.05 1.03 1.02 



Noting that small X values are more effective in detecting small changes. 

small X values in the range 0.05 to 0.30 can be used to detect small to moderate 

changes in the mean and/or variability. When using small X values. one can 

simultaneously use an additional SS-EWMA chart with X = 1 to guard against a 

possible inertia problem. 

Table 4.3 lists some commonly used (A. L )  combinations iising the approx- 

imate UCL and the starting values Za = Cl;o = 0. 

Table 4.3: (A.  L) combinations for SS-EWMh control schemes in a steady-stattl 
when sarnple size n = 5 .  

4.4 Charting Procedure 

The charting procedure of a SS-EWMA chart differs from niost of the 

EWMA charts commonly used. Instead of a summary statistic SSi. successive 

pairs of ( L I i .  V,) 's  are plotted on a chart. The position of a point (CIî. I.;) on the 

plane can directly indicate the source and the direction of an assignable cause. 

The control region for the SS-EWMA chart is a circle because Equation 

(4.1) is a circle. The circle is centered a t  (O. O) with radius dm and each 

sample point is plotted with coordinates (U. V). The circular control region is 

useful in indicating the source and direction for a detected change. If a sample 

point is out of the circle? the process is likely out of control. It will indicate that 



the change is due to a shift in the process mean when the point deviates sufficiently 

h m  the V axis. It will indicate that the change is due to a change in the process 

variability when the point deviates sufficiently from the ü auis. It will indicate 

that the change is due to a combination effect of both the process meari and the 

process variability when the point is close to either the line U + V = O or the line 

U - V = O. For an out-of-control signal. it is also easy to identify the cbanging 

directions for the process mean and the process variability from the position of the 

saniple point. For example. a point in the first quadrant indicates that both the 

process niean and the process variability have increased. 

The procediire cari be briefly sumniarized in the Following steps: 

- 
1. If po is unknown. substitiite .y for PO. If nu is unknown. substitiite S I C ,  (or 

R / d 2 )  for au and S? for O,?. 

2. For each sampie. compute Zi and Wi. 

3. In an initial stage. if «ne wants to quickly detect specified changes in the 

process mean and the process variability for the desired in-control ARL 

of 250. clioose the optimal (A. L) combination from Table 4.2. Let L t  = 

tric circles. compute L I  and y. i=1.2.3.4.5. where Zo = O and Wo = O are 

starting values. Cornpute d m .  which is the radius of tlie circular 

control region for the first five samples. 

4. In a steady-state. if one wants to quickly detect specified changes in the pro- 

cess mean and the process variability for the desired in-control ARL of 250. 

choose the optimal (A: L) combination h m  Table 4.1: if it is not apparent 

what changes in the process mean and the process variability should guard 



against. choose the desired (A. L) combination from Table 4.3. Compute 

according to Equation (4.6). 

5.  In an initial stage. draw a circle centered a t  (O. O )  with radius dm: in 

a steady-state. draw a circle centered at (O. O )  with radius d m .  

6. In an initial stage. plot sarnple points ( L i .  Li'). i=1.3.3.-L.5 : in a steady-state. 

plot sample points (U j .  I;,). 

7 .  Check if nny point is outside of its corresponding circle. For an out-of-control 

signal. identity the source and the direction according to the positon of t h  

point on the chart. and indicate the source and the direction using plotting 

characters. 

Y. Investigate the cause(s) associated with each out-of-control signal. 

4.5 An Exarnple 

For the data given in Table 3.4. suppose that based or1 past experiencci an 

operator wanted to guard against the changes (I = 2.00 and b = 1.50. To use the 

SS-EWMA chart to monitor the cylinder production process. po is estiniated by 
- ,v = 200.24 and a. is estimated by S/c4 = 3.30. Using these estimates for the 

iiiitial stage. the first SS-EWMA chart with in-control ARL = 250. X = 0.05 and 

L = 3.105 is shown in Figure 4.1. There is one point (sample 1) out of the circle. 

As indicated in Figure 4.1. the point deviates far from the V a i s  and 

hence the change is related to the process rnean. According to DeVor. Chang 

and Sutherland [16], sample 1 occurred at 8:00 am.. corresponding roughly to the 

startup of the production line in the morning when the machine was cold. After 

sample 1 is rernoved, estirnates are recalculated as 2 = 200.12 and S/c4 = 3.35. 



As the process is already in a steady-state. the  SS-EWJIA chart is applied with 

in-control ARL = 250. X = 0.925 and L = 4.524. The second chart is given in 

Figure 4.2. This time. two points (saniple 6 and sample 16 in the original data set) 

are outside the circle. Since these two points are located far from the U mis. both 

of them are related to the process variahilit- A n  investigation rrwals that saniple 

6 and sarnple 16 corresponded to the time when the regular operator was absent. 

and a relief operator. who was less experienced. was in charge of the production 
- 

lirie. When ttiese two sarnples are excluded. estimates arc obtained as S = 200.10 

and SIs = 2.97 and the third chart is plotted in Figure 4.3. -4s seen froni the 

plot. one point (sample I I  in the original data set) is found to be outside the circle. 

and it is related to the process mean since it deviates sufficiently froni the V axis. 

Sample I l  was produced at 1:00 p.m.. corresponding roiighly to the startup of the 

production line directly after the lunch hoiir. when the machine was shut down for 

tool changing. Once the machine warmed up. in about 10 minutes. the probleni 

seerns to disappear. When this sarnple is further removed. the two estimates are 
- 

given by .Y = 199.95 and s /c4  = 2.99. and the display of the fourth chart in Figure 

5.4 shows there is iio point fallirig outside the circle. 



Figure 4.1: The first SS-EWMA chart for the cylirider diameter data 

Figure 4.2: The second SS-EWMA chart for the cylinder diameter data 



Figure 4.3: The third SS-EWMA chart for the cylinder dianieter data 

Figure 4.4: The fourth SS-EWMA chart for the cylinder diameter data 



CHAPTER 5 

The EWMA-Max Chart 

5.1 Introduction 

The Max Chart proposed by Chen and Cheng [9] is a single control chart 

which is essentially equivalent to a combination of the chart and the S chart. 

[t has the main advantage of siniultaneously monitoring the process mean ami the 

process variahility. however. similar to Shewhart charts. this chart is not sensitiv~ 

to sniall changes of a process. 

To iniprove the sensitivity of the !VI= chart. the EWMA techniqiies are 

directly applied to the 'vlau statistic. and a new single control chart. the EWh1.A- 

Max chart. is proposed. This chart can siniultaneousiy monitor the process rneari 

and the process variability. moreover. it is capable of detecting srrial1 changes in 

the mean arid/or the variability. . h o t  her adwntage is t hat an iritegral equat ion 

method could be used to conipute ARL's of the EWMA-Max chart. The integral 

eqiiation approach rnakes the ARL calculation much easier than the simulation 

approach does. Therefore. in addition to an optinial design of in-control .ARL = 

250. optimal designs of two otlier in-control ARL's are also given. 

5.2 The New Control Chart 

ünder the same assumptions of Chapter 3: the formulas Zi and Wi in this 

chapter are the same as those used in Chapter 3. The statistic for the Max chart 



The EW4IA statistic Y ;  is cornputcd t'rom the sequence of G,'s given by 

with k; as the  starting value. 

Becausr t ht. EW'VL.4 technique is applied to the Mau statistic. this chart is 

nanied as EWMA-Max diart .  with only a CCL rieeded due to the non-tirgativtt 

nature of Y;. 

Siniilar to the derivation of the UCL in Chapter 3.  The UCL of this chart 

is given by 

As i gets larger. the UCL will approach the steady-state value @en by 

5.3 The Integral Equation Approach for Computing ARL's 

Three methods that are often used to compute ARL's of an EWMA chart 

are Markov chain method. integral equation method and simulation method. As 



was done in Ctiapter 3 and Chapter 4. simulation had to be used because it was 

impossible to use the first two approaches. Of the first two approaches. Chanip and 

Rigdon [7] showed that  the integral equation approach is preferable wherever an 

integral cari be found. This is the case for the EWMA-Max chart. and the integral 

equation approach proposed by Crowder [13] is used to compute the ARL's. To 

do this. it is necessary to find the PDF of Gi. From the independence between Zi 

and Pl/;.. the CDF of G, is found to be: 

The pdf of Gi is the derivative of the CDF given by 

Let L(Yo) denote the ARL with the starting point 6 = E(k;.). When 

samples have the same size, the integral equation for th ARL is a Fredholm integral 



equation of the second kind. and it is given by 

To find acîiirat~ of .4RL0s. 64-point, Gaussian quadrature is rired to numerically 

solve this integral equation. Notice that ARL can be denoted as a function of the 

starting point For the EWMA-Max chart. 

5.4 Design of an EWMA-Max Chart 

For the EWhIA-bIax ctiart. the design strategy is the same as that for the 

Mau-EWMA chart. In a steady state. each ARL value is obtained using Crowder's 

rnethod to solve Equation ( 5 . 7 ) .  

Given the respective in-control ARL's of 250. 370. and 500. Tables 5.1. 5.2 

and 5.3 represrntatively contain some optimal values of (A .  L )  and the corresporid- 

ing out-of-control ARL's using the approxiniate UCL for n=5 with the startirig 

value Y. = 1.128379. Provided that the in-control ARL = 250. Table 5.4 gives the 

related results obtained from simulations when the exact UCL is used. Based on 

the results in these two tables. the same conclusions as seen in Chapters 3 and 4 

can be drawn. 

It is also recommended that A values in the range 0.05 to 0.30 be used to 

detect small to moderate changes in the mean and the variability. and one more 

EWMA-Max chart with h = 1 be used simultaneously to guard against the possible 

inertia problem. Notice that when A = 1, the EWMA-Max chart is equivalent to 

the Max chart. 

Table 5.5 lists some commonly used (A. L) combinations using the approx- 

imate UCL and the starting values & = 1.128379. 



Table 5.1: (A .  L) combinations and the corresponding ARL's for optimal 
EWMA-Max control schemes in a steady state when ARLo = 250 and n = 5. 



Table 5.2: (A. L) combinations and the corresponding ARL's for optimal 
EWMA-Max control schemes in a steady state when .-LRLo = 370 and n = 5. 

a 
b 

X 
0.25 L 

XRL 
X 

0.50 L 
ARL 

X 
1.00 L 

ARL 
X 

1.25 L 
ARL 

A 
1 .  L 

A RL 
X 

3.00 L 
XRL 

X 
3.50 L 

A RL 
X 

3.00 L 
ARL 

1 0.00 0.25 0.50 1 .O0 1 .50 2.00 2.50 3.00 
0.3100 0.3100 0.3100 0.3650 0.8650 0.9950 1.0000 1.0000 

3.05993 3.05933 3.05933 3.13304 3.42842 3.44425 3.44431 3.44431 
2.74 2.74 2.74 2.50 1.26 1 .O0 1 .O0 1 .O0 

0.0700 0.0700 0.0700 0.2750 0.7250 0.9850 0.9950 0,9950 
2.31427 2.31427 2.31427 3.01377 3.38468 3.44399 3.44415 3.44435 

L-LX~ 13.03 9.68 3.55 1.47 1 .[)O 1 -00 1 -00 
0.0600 0.0700 0.0700 0.3100 0.6500 0.8950 0.9800 0.9950 

3.95007 2.31427 1.31427 3.05993 3.34669 3.43441 3.44379 3.44425 
369.82 91.53 18.06 3.74 1.66 1 .O9 1.01 1 .O0 
0.0700 0.0700 0.1700 0.3650 0.6500 0.8450 0.9550 0.9900 

2.31427 2.31427 2.79609 3.13304 3.34669 3.42387 3.44220 3.44413 
18.52 1-1-73 9.03 3.32 1.70 1.18 1.03 1 .O0 

0.2300 0.2750 0.3100 0.4800 0.6500 0.8200 0.9350 0.9800 
2.KXll4 3.0 1371 3.05993 3.23778 3.34669 3.4 1757 3.43900 3.44319 

6.49 5.97 4.80 2.72 1.67 1.22 1 .O5 1.01 
0.5350 0.5350 0.5700 0.6300 0.7250 0.8450 0.9000 0.9600 

3.27865 3.27865 3.30054 3.33614 3.38468 3.42387 3.43523 3.44262 
2.38 2.33 2.20 1.81 1 .46 1.22 1 .O9 1 .O3  

0.6950 0.6950 0.7250 0.7550 0.8100 0.8650 0.9000 0.3550 
3.37106 3.37106 3.38468 3.39632 3.41485 3.42842 3.43523 3.44220 

1.54 1.53 1.50 1.39 1 .21 1.16 1 .O8 I .O4 
0.8200 0.8200 0.8200 0.8450 0.8650 0.9000 0.9250 0.9550 

3.41757 3.41757 3.41757 3.42387 3.42842 3.43523 3.43900 3.44220 
1.26 1.35 1.24 1.20 1.16 1.11 1 .O6 1 -04 



Table 5.3: (A. L)  combinations and the corresponding ARL's for optirne1 
EWMA-Max control schemes in a steady state when ARLo = 500 and n = 5. 

b 
X 

0.25 L 
ARL 

X 
0.50 L 

XRL 
X 

1.00 L 
A RL 

X 
1.35 L 

A RL 
X 

1.50 L 
A RL 

X 
2.00 L 

A Ri, 
X 

2.50 L 
XRL 

A 
3.00 L 

ARL 



Table 5.4: (A. L) combinations and the corresponding ARL's for optimal 
EWMA-Max control schemes in an initial state and n = 5. 

.qfiLo = t au  
a 

b [ 0 . 0 0  0.25 0.50 1.00 1-50 2.00 2-50 3.00 
X 

0.25 L 
ARL 

X 
0.50 L 

XRL 
X 

1.00 L 
ARL 

1.25 L 
XRL 

X 
1.50 L 

A 
X 

3.00 L 
.%RL 

0.0500 0.0500 0.0500 0.0500 0.0500 1.0000 1.0000 1.0000 
2.0572 2.0572 2.0572 2.0572 2.0572 3.2576 3.2546 3.2576 

1.52 1-32 1.82 1.82 1.82 1.00 1.00 1.00 
0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 1.0000 1.0000 
2.0572 2.0572 2.0572 2.0572 2.0572 2.0573 3.257'6 3.2576 

9.76 3.82 6.33 2.25 1.15 1.00 1.00 1.00 
1.0000 0.0500 0.0500 0.050G 0.0500 0.0500 0.0500 0.0500 
3.2576 2.0572 2.0572 '2.0572 3.0572 2.0572 2.0572 2.0572 
249.93 66.23 12.51 2.53 1.35 1.05 1.00 1.00 

2.0572 3.0572 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572 
12.98 10.21 6.02 2.36 1.41 1-10 1.01 1.00 

0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 
2.0572 1.0572 2.0572 2.0572 2.0572 2.0572 1.0572 2.0572 

4.42 4.10 3.35 2.04 1.40 1.13 1.03 1-00 
0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 
2.0572 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572 2.0572 

1.94 1.91 1.81 1.55 1.31 1.15 1.06 1.02 



Table 5.5:  (A.  L) combinations for EWhIA-Max control schemes in a steady state 
when sample size n = S. 

5.5 Charting Procedure 

The clisrting procedure of an EWMA-hIaw chart is siniilar to that of a 

Ma-EWhlA chart. It  can be sunimarizeci as follows: 

- 
1. if po is unknown. substitute S for po. If 00 is tinknowri. substitiite (or 

~ / d ~ )  for oo and g2 for 00. 

2. For each sample. compute Zi and Wi. 

3. To detect specified changes of the process meün and variability in an initial 

stage. choose the optimal (A. L) combination from Table 5.4. Calculate k; 

with ko = 1.128379. Set up UCL according to Equation (5 .3)  and compare 

Y, with the UCL. 

4. To detect specified changes of the process mean and variability in a steady- 

state. choose the optimal ( A o  L) combination from one of Table 5.1. 5.2 and 

5.3: if it is not apparent what changes in the process mean and the process 

variability should guard against, choose the desired (A, L) combination from 



Table 5.5. Calculate Y,  with Y. = 1.128379. Set up UCL according to 

Equation (5.4) and compare Y;  with the UCL. 

5 .  Plot a sarnple point against the sample number i when ki 5 UCL.  

7. Plot a piotting character against the sample number i when Y ;  > UCL.  For 

the case of otily Oi > LTCL. plot "ni+" if Zi > O and plot "m-" if Z, < O: For 

the case of only Qi > U C L .  Plot " v i "  if IVi > 0. and plot "v-*' if  CC, < 0: 

For the case of both Oi > LiCL and Qi > L;CL. plot " ni+v+" if 2, > O 

and CC; > O. plot "ni+v-" if Zi > O and CVi < O: Plot "rn-v+" if 7, < O and 

CVi > O: plot "m-V-" if Zi < O and CI;, < 0. 

8. Investigate the çause(s) associateil with each out-of-control signal. 

5.6 An Example 

For the data given in Table 3.4. suppose that  based on the past experience 

an operator wanted to guard against the changes a = 1 .XI and b = 1.50. To use 

the EWMA-Max chart to monitor the cylinder production process. PI, is estimated 
- 

by ,Y = 200.24 and 00 is estimated by s /c4  = 3.30. Using these estimates. the 

first EWMA-Max chart. consisting of the first five points for the initial stage with 

h = 0.05 and L = 2.057 and the other thirty points for the steady-state stage with 

A = 0.67 and L = 3.170. is shown in Figure 5.1. As indicated in Figure 5.1 . there 

are three points above the UCL. Since Oi is greater than UCL and Zl is greater 

than O, sample 1 is related to an increased shift in the process mean. However. 

sample 6 and sample 16 are related to increased changes in the process variability 



because both Q6 and Q16 are greater than UCL and both LVs and W16 are great 

than O. When these three sarnples are excluded. estirnates are obtained as .t = 

200.10 and S/c4 = 2.96. To y a r d  against the same changes for the steady-state 

stage. the second chart is plotted in Figure 5.2. As seen from the plot. saniple 11 

in the original data set is found to be above the CCL. Since 011 is greater tliaii 

CCL and ZI1 is greater than O. it is related to  an increased shift in the process 

rnean. Wheri this sample is fiirther rernoved. the two estiniates are given by .? = 

199.94 and 3/c4 = 2.98. The third chart in Figure 5.3 indicates that there is no 

point above the UCL. 

Figure 5.1: The first EWMA-Max chart for the cylinder diameter data 



Figure 5-2: The second EW'vlA-Max chart for the cylinder diameter data 

UCL - f 4 m  

Figure 5.3: The third EWMA-Max chart for the cylinder diameter data 



CHAPTER 6 

The EWMA-SC Chart 

6.1 Introduction 

The semicircle (SC) chart proposed by Chao and Cheng [5] is another usefiil 

alternative to a conibination of the .Y chart and S chart. -1s described in Chapter 

2. this single coritrol chart is essentially a 2-dirnensional chart that is very easy to 

use. However. the SC chart is also insensitive to  small changes of a process. 

To niake the SC chart sensitive to small changes. the EWhIX techniques 

are directly applied to the statistic eniployed in the SC chart. and a n rw siri+ 

control chart. the EWMA-SC chart. is proposed. With high sensitivity to srnaIl 

changes. this chart is capable of sirnultaneously monitoring the process niean and 

the increased process variability Moreover. it preserves the good feature of the 

SC chan  in charting procedure. from which the source of an out-of-control signal 

can easily be cietected. Similar to the ARL calculation for the EWMA-lax  Chart. 

Crowder's integral equat ion approach is used to provide t hree optimal designs. 

with in-control ARL' of 250. 370. and 500 respectively. 

6.2 The New Control Chart 

Under the same assumptions of Chapter 3. the atatistic of the SC chart is 

defined as 



Let T; = %Ti- The EWVlVIA statistic Qi is computed from 

with Qo = n. 

Because T: ..- X: when a = O and b = 1. it is easy to show that 

Eqiiation (6.2) can also be rewritten as 

where 

with Uo = Vo = 0. 

Because this EWMA chart is based on the statistic of the SC chart. this 



chart is named as EWMA-SC chart. Since Qi is non-negative. only a UCL is 

needed. The UCL. corresponding to Equation (6.2). is given by 

The UCL. corresponding to Equation (6.5). is given by 

As i gets larger. the UCL will approach the s t ead - s t a t e  value. Equation (6.61 will 

Eqtiation (6.7) will becorne 

6.3 ARL Computation 

To use the integral equation approach for ARL computation. the PDF of 

T; has to be found. T; can be decomposed as 



where 

n - l  
TL = - s,T 

- b%,2 

Because T; - y:.6,. Tc -- 'y:-,. and they are independerit. Tc + T;' - y:.&-. where 

-9 a h- = ng 

A Gaussian approxirriation for CDF of T; (see Jensen and Solonion [ 3 1 ] )  is 

given by 

where 

and 

Differentiating (6.11) with respect to y. the Gaussian approximation for 

hn,d? (Y)  is found to be 



Hence. the pdf of T: is given by 

Therefore. the integral equation for the hRL of the EWIyIA-SC chart is foiind to 

be 

U C L  
Y - (' - ')go )dg 

X 

The ARL is solved from ttiis iritegral eqiiation using the 64 point Gaussian qiiadra- 

6.4 Design of an EWMA-SC 

For the EWMA-SC chart. the des ign strategy is the sanie as t h s t  for t 

Max-EWb1.A chan and the EWMA-Max chart. In a steady state. each ARL value 

is obtained using Crowder's method to solve Equation (6.14). 

Given the respective in-control ARL's of 250. 370 and 500. Tables 6.1. 6.2. 

and 6.3 contain some representative optimal values of ( A .  L) and the corresponding 

out-of-control ARL's using the approximate UCL for n = 5 with the starting value 

Qo = 5. Provided that the in-control .4RL = 250. Table 6.4 gives the related 

resuIts obtained from simulations when the exact UCL is used. Based on the 

results in these four tables. the same concIusions as seen in Chapters 3. -4 and 5 

can be drawn. 

Table 6.5 lists some commonly used (A. L) combinations using the approx- 

imate UCL and the starting values Qo = 5. 



Table 6.1: (A.  L) combinations and the corresponding ARL's for optimal EW'vlh- 
SC control schemes in a steady state when ARLa = 250 andn = 5. 

-- 

b 
X 

1.00 L 
ARL 

X 
1-25 L 

ARL 
X 

1.50 L 
.4 RL 

X 
3.00 L 

ARL 
X 

2.50 L 
.4 RL 

X 
3.00 L 

A RL 

n 
0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00 
0.0500 0.0500 0.0500 0.0500 0.4100 0.7000 0.9200 0.9800 
1.87996 1.87996 1.87996 1.87996 3.40589 3.75687 3.87189 3.88 108 
250.00 73.46 22-60 5.16 2.11 1.25 1 .O3 1 .O0 
0.0500 0.500 0.500 0.3000 0.4650 0.7000 0.9000 0.9700 
1.87996 1.87996 1 .€!?SI96 3.18646 3.4909 1 3.75687 3.56667 3.8802 1 

9.43 8.50 6.5 1 3.22 1.79 1.23 1 .O5 1 .Xi 
0.'2'250 0.2650 0.2650 0.4 100 0.5700 0.7300 0.8850 0.9600 
3,07814 3.10506 3.10506 3.40589 3.6301'2 3.78053 3.86209 3.87901 

4.17 3.96 3.44 2.30 1.56 1.20 1 -06 1 .O 1 
0.4650 0.5000 0.SOOQ 0.5900 0.7000 0.7950 0.8850 0.9500 
3.49091 3.54163 3.54163 3.65165 3.75687 3.52'226 3.86209 3.87'766 

1.57 1.84 1.76 1.52 1.30 1.14 1 .O6 1 .O2 
0.6550 0.6550 0.7000 0.7000 0.7950 0.8600 0.9100 0.9350 
3.71688 3.71688 3.75687 3.82226 3.85326 3.55328 3.86948 3.81510 

1.34 1.33 1.31 1.3-1 1.16 1.10 1.05 1 .O2 
0.4950 0.7950 0.7950 0.8250 0.8600 0.8850 0.9350 0.9350 
3.82326 3.82226 3.82226 3.83783 385328 3.86209 3.87510 3.57510 

1.16 1.16 1.15 1.13 1 .O9 1 .O6 1.04 1 .O2 



Table 6.2: ( A .  L )  combinations and the corresponding ARL's for optimal EWMLIA- 
SC control schemes in a steady state when ARLo = 370 and n = 5 .  

b 
X 

1.00 L 
ARL 

X 
1.25 L 

A RL 
X 

1.30 L 
-4 RL 

X 
2.00 L 

ARL 
X 

2.50 L 
.A RL 

X 
L 

3.00 .\FU, 

- -- 

O 

0.00 0.35 0.50 1 .O0 1.50 1.00 2.50 3.00 
0.0500 0.0500 0.0500 0.0500 0.3650 0.6550 0.9000 0.9800 

1.94790 1.94790 1.94790 1.94790 3.57945 3.99578 1.15768 1.14281 
36939 78.75 23.66 5.33 2-26 1.30 1 .O4 1 .O0 
0.0500 0.0500 0.0500 0.2650 0.4650 0.6730 0.8850 0.9750 

1.94790 1.94790 1.94790 3.34585 3.75513 4.01538 4.15283 4.  17241 
9.80 8.80 6.73 3.17 1.89 1.27 1 -06 1 .O1 

0.0500 0.0500 0.2750 0.3650 0.5550 0.7000 0.8700 0.9500 
1 .!N79O 1 .!l-L79O 3.37492 3.37945 3.88463 4.039 16 4.14728 4.17076 

4.48 4.28 3.71 2.44 1.64 1.24 1 .O7 1 .O 1 
0.4650 0.4650 0.4850 0.5550 0.6550 0.7850 0.8800 0.9300 

3.75513 3.75513 3.78798 3.88463 3.99578 4.10416 4.15108 4.16931 
1.96 1.93 1.84 1.58 1.33 1.16 1 .O7 1 .O3 

0.6550 0.6550 0.6550 0.6750 0.7530 0.8450 0.5800 0.9800 
3.99578 3.99578 3.99578 4.01538 4.08420 4.13631 4.15108 4.16554 

1.38 1.35 1.37 1 .27 1.18 1.11 1 .O6 1-02 
0.7750 0.7850 0.7850 0.8 150 0.8450 0.5800 0.9300 0.9300 

4.09778 4.10416 4.10416 4.12147 4.13634 4.15108 4.16554 4.16554 
1. 18 1.17 1.17 1.14 1.10 1.07 1 .O4 1 .O2 



Table 6.3: (A .  L) combinations and the corresponding ARL's for optimal EWMA- 
SC control schemes in a steady state when dRLo = 500 and n = 5 .  

1 .O0 L 
XRL 

A 
1.25 L 

XRL 
X 

1.50 L 
XRL 

X 
2.00 L 

-4 RL 
X 

2.50 L 
A RL 

X 
3.00 L 

.I\ RL 

-1.81295 1.98485 1.98485 1.98485 3.67776 4.20688 4.37768 4.39549 
499.99 80.96 24.08 5.42 2 -37 L .34 1 .O5 1 .O0 
0.0500 0.0500 0.0500 0.0500 0.4650 0.6550 0.8550 0.97.50 
1.98485 l.98-l85 1.98485 1.98485 3.95253 4.20688 4.36167 4.39474 

9.95 8.93 6.82 3.63 1.97 1.30 1 .O7 1.01 
0.0500 0.0500 0.0500 0.3250 0.5000 0.6750 0.8450 0.9600 

1 -98485 1.98485 1.98485 3.67776 4.01069 4.22752 4.35674 4.39305 
4.54 4.34 3.85 1.56 1.69 1 .26 1 -08 1 .O2 

0.4650 0.4650 0.4650 0.5700 0.6750 0.7450 0.8450 0.9300 
3.95253 3.95253 3.05253 4.10935 4.22753 4.31610 4.35674 4.38162 

2.04 2 .O0 1 .90 1.63 1.36 1.18 i .U7 1 .O2 
0.6300 0.6300 0.6550 0.6750 0.7500 0.9150 0.9000 0.9300 
4.18027 4. ISOE 4.20688 4.22752 4.29857 4.34 115 -4.37936 1.38762 

1.41 1 -40 1.38 1.29 1.20 1.12 L .O6 1 .O3 
0.1300 0.7750 0.7850 0.7850 0.8450 0.8450 0.9050 0.9300 
4.28130 4.31610 4.32300 4.32300 4.35674 4.35674 4.38117 -4.38762 

1.19 1.19 1.18 1.15 1.11 1 .OS 1 .O5 1 .O3 



Table 6.4: (A. L )  combinatioiis and the corresponding ARL's for optimal EWMA- 
SC control schemes in an initial state and n = 5 .  

Values of X in the range 0.05 to 0.30 are usually used to detect srnall to 

nioderate changes in the mem and the variability. and an additional EWMA- 

SC chart with A = 1 is siniultaneously used to guard against the possible inertia 

problem. It is worth notirig that when A = 1. this particular EWMA-SC chart 

is equivalent to SC chart which is a useful alternative to the common practice of 

using the .y and the S (or R) charts. 

b 
X 

1.00 L 
ARL 

X 
1.25 L 

ARL 
X 

1.50 L 
XRL 

X 
3.00 L 

A R L  
X 

2.50 L 
ARL 

X 
3.00 L 

A R L ,  

a 
0.00 0.25 0.50 1.00 1.50 2.00 2-50 3.00 
0.40 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

3.4054 2.1150 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 
249.94 66.30 31.21 3.61 1.61 1.12 1.01 1.00 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

3.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 3.1180 
7.53 6.61 4.77 3.38 1.46 1-13 1.02 1.00 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

3.1180 2.1180 3.1180 2.1180 2.1180 3.1180 2.1180 2.1L80 
3.07 2.92 2.57 1.82 1.35 1.12 1.03 1.00 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.llSO 
1.56 1.54 1.49 1.34 1.20 1.10 1.04 1.01 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 
1.23 1.22 1-21 1.17 1.11 1.06 1.03 1-01 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 2.1180 
1.11 1.11 1.10 1.09 1.06 1.04 1.02 1-01 



Table 6.5: (A.  L) combinations for EWMA-SC control schemes in a steady state 
when sample size n = 5. 

6.5 Charting Procedure 

For the EWMA-SC chart there are two ways to plot the statistic: plottirig 

Qi ügairist i. and plotting ( K .  C;) on the two diniensiorial chart. Of the two w-S. 

the latter is preferable because the source of an assignabie cause caii be identifiecl 

directiy frorn the location of the plotted sample point on the chart. On a U-Cf 

coordinate plane. the control region. {(LI,. C.;) : Lii + I.; 5 CICL?}. consisbs of al1 

the points on or below the line LIi + = UCL2. If a sarnple point is above the line. 

i t  will indicate that the change is due to a shift in the process mean when the point 

deviates sufficiently from V axis: it will indicate that the change is due to a change 

in the process variability when the point deviates sufficiently from U a i s .  and it 

will indicate that the change is due to a combination effect of both the process 

mean and variability when the point is close to one of the two Iines: Ui - = O 

or Ui + I/;. = O. For an out-of-control signal. it is also easy to identify the direction 

of a shift in the process mean from the position of the sample point. A point in 

the right half plane indicates that the process mean is increased. otherwise. the 



process mean is decreased. 

The procedure can be briefly summarized in the following steps: 

1. If pg is unknown. substitute ac for PO.  If oo is unknown. substitute Sis (or 

f2 /d2)  for 00 and S? for O,?. 

2. For each sarnple. conipute IIi and C i  with Lio = = 0. 

3. In an initial stage. if orle wants to quickly detect specified changes in the 

process meari and the process variability ARL of 250. choose the optimal 

( A .  L )  combination from Table 6.4. Let = c\,/,,!,-(,?,:,,! and Li' = 

b ~ ~ A ~ l - ~ ; ~ - $ ~ l  !(2n1 To avoid drawirig several parallel lines. cornpute L;> arid 

Ci'. i=1.2.3.-4.5. and plot them on l i t-Vt coordinate plane. Draw the linr 

li: + by = L as the boundary of the control region. 

-4. To detect specified changes of the process mean and variability in a steadv- 

state. choose the optinial (A .  L )  combination froni one of Table 6.1. 6.2 and 

6.3: if it is not apparent what changes in the process mean and the process 

variability should be guarded against. choose the desired (A .  L )  conibination 

from Table 6.5. Plot Ci and I/;: on U-V coordinate plane with the line U+V = 

L@ as the boundary of the eontroi region. 

5. Check if any point is outside of its control region. For an  out-of-control signal. 

identify the source of the signal the direction of a mean shift according to the 

location of the point on the chart, and indicate the source and the direction 

using plot ting characters. 

6. Investigate the cause(s) associated with each out-of-control signal. 



For the data given in Table 3.1: suppose that. based on past experience, an 

operator wanted to guard against the changes a = 1.50 and b = 1.50. To use the 

EWMA-SC chart to monitor the cylinder production process. po is estimated by 
- 

= 200.24 and 00 is estimated by S/c4 = 3.30. Using these estimates. the first 

EWMA-SC chsrt. consisting of the first five points for the initial stage wi th  X = 

0.05 and L = 2.118 and the otlier thirty points for the steady-state stage with X = 

0.57 and L = 3.630. is shown in Figure 6.1. As indicated in Figure 6.1. there is no 

point abovc the line II' + CF' = 2.12 although the point of sample is very close to 

the control boiind. This is because the EWhIA-SC chart is designed for detecting a. 

mean shift acconipanying increased variability. but decreased variability tri- affect 

the ability to detect an i~icreased mean shift. 

The second chart is given in Figure 6.2. .As the process is already in a 

steady-state. the EWMX-SC chart is applieci with in-control AR1 = 250 . X = 

0.57 and L = 3.630. This tinie. two points are above the line Li + V = 7.25. Since 

these two points are located far from the U axis. both of them am related to the 

process variability. When these two samples are ercluded. estimates are obtained 
- 

as ,y = 200.22 and s/c4 = 2.93. To guard against the sarne changes for the steady- 

state stage. the third chart is plotted in Figure 6.3 . As seen from the plot. saniple 

11 in the original data set is found to be above the line. It is related to the process 

mean since it deviates sufficiently from the V a i s .  When this sample is further 

removed, the two estimates are given by l? = 200.08 and = 2.95. The fourth 

chart in Figure 6.4 indicates that there is no point above the line. 



Figure 6.1: The first EW'VIA-SC chart  for the cylirider diameter data 

Figure 6.2: The second EWMA-SC chart for the cylinder diameter data 



Figure 6.3: The third EWMIIA-SC chart for the cylinder diameter data 

Figure 6.4: The fourth EWMA-SC chart for the cylinder diameter data 



CHAPTER 7 

Cornparisons of Several Control Charts 

7.1 Introduction 

To assess the performance of a control chart. a cornnion way is to evaluatc 

the ARL characteristics of the control chart. The concept of ARL refers to  th^ 

nuniber of sample points that are plotted iintil an out-of-control signiil is received. 

If performances of two control charts with the same in-control ARL arP comparrd. 

the better chart is the otie tiiat has snialler out-of-control ARL. 

.-\ssuniing that pu and Q are known. and sarnple sizes ni are al1 eqiial to 

n. different control charts are compared under the same assuniptions of Cliapter 

3. ARL corriparisons are carried out among the four new charts. the conibiriation 

of the two Shewhart charts and the combination of the two EWhIA charts in the 

steady state. i.e.. al1 types of the EWMA charts are using the approxiniate control 

limits. The two new charts. the Max-EWMA chart and the SS-EWvIA chart. 

denionstrate good overall ARL performances. In addition to the ARL comparisons. 

diagnostic abilities are further studied on the Max-EWLIA chart. the SS-ECV4IA 

chart and the combination of the two standard EWMA charts in the steady-state. 

7.2 The Two Combination Charts 

7.2.1 The Combination of the Two Shewhart Charts 

The two Shewhart charts, the x chart and the S chart: have been considered 

as the most important and useful on-line SPC techniques since Shewhart [51] 

introduced the control chart theory in the 1920's. 



To rnonitor the process rnean. a chart has the following control limits: 

Letting cr = 0.003 and n = 5 .  then Z,,? = 3.090 and this specific S chart has a 

Type I error probability 0.002 when the process is in coiitrol. 

To munitor the process variability. an S chart with probability Lirnits is 

used. A probability 0.001 is assigned to each tail and the coritrol liniits arp given 

b~ 

Lettiiiga = 0.002 and n = 5. then xq = 18.466. x~-L,i-,,2 - - 0.908 and the 

type 1 error probability is also 0.002 when the process is in control. 

The combination of the X chart and the S chart has a combined Type I 

error probability 1 - (1 - 0.002)' 0.004. which is equivalent t o  have an in-control 

ARL of  250. 

Let pst be the probability of an out-of-control signal detected by the R chart. 

Let ps be the probability of an out-of-control signal detected by the S chart. Let 

p be the probability of a n  out-of-control signal detected by the combination of the 

X chart and the S chart. For various changes in the process mean and/or the 



process variability. we have 

Because .Il. &. . . . are independent and so are Sl. S2.. . . . the ARL for the coni- 

bination of the S chart and the S chart is l l p  with respect to n and 6 .  

EWMA diarts are known to be effective in detecting small changes in the 

process rnean and/ar variability. Of the two EWMA charts employed in the corn- 

bination. orle is the usual EWMA proposed by Robert 1-17]. and the other is 

a modified EWMA In(S2) chart in Crowder and Hamilton [Id]. In the Following 

discussion. it is assurned that the sample size n is equal to five. 

To monitor the process mean. the 

limits: 

L'CLl = pl + 

CL1 = Pl 

LCLl = pl - 

EWbfA .y chart has the following çontrol 

where hl and LI are the parameters that controi the performance of the EWMA 

chart, pl = po and ol = 3. 



The plot ting statistics are 

Q = (1 - Q + Y i  i = 1.2. .  . . 

where Qo = pl. 

To nionitor the process variability. the original EW'IIA ln(S2)  chart is mod- 

ified into a two-sided chart since the original one is primarily designed to drtect 

an  increase in the variability. For the modified EWMA l n ( S 2 )  chart. the control 

lirnits are 

where X2 and L2 are the parameters that control the performance of the EWMA In(S2) 

chan. pz is the approximation mean of In(S2) given by 

and O; is the approximate variance of ln(S2) given by 

The plotting statistics are 



where = pz. 

Based on the numerical evaluation of run-length distributions of E WkIA 

charts. Crowder [13] concluded that. for the in-control large ARL cases. the run- 

length approximately follows a geometric distribution wit h parameter as the re- 

ciprocal of the in-control ARL. Because Qi and Y,  are independent. the in-coritrol 

ARL for the combination of the two EWMA charts can be obtained in the sanie 

way as that for the conibination of the two Shewhart charts in term of the in-ccmtrol 

ARL's of the two EWb\/TA charts. 

Given in-control ARL of 500 for both the EWMA .y chart and the EW'VIA 

ln(S2) chart. Table 7.1 contains the optimal (XI .  L i )  values for specified shifts in 

the process niean. the optinial (A2. LZ) values for specified changes in the process 

varia bili ty and the correspondirig sniallest ARL 'S. which are O btained froni solvirig 

integral equations in the sanie way as that in Crowder [13] and Crowder and 

Hamilton [14]. 

Table 7.1: The optimal parameter values iised for the EWMA S chart and the 
EWLlA 1n(S2) chart when ARLo = 500 and n = 5. 

For the combination of the EWMA x chart and the EWMA In(S2) chart. 

79 

EWMA X Chart 
a 

XI 
LI 

.4RL1 

0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00 
0.655 0.055 0.160 0.430 0.765 0.940 0.995 1.000 
3.084 2.645 2.920 3.060 3.088 3.090 3.09@ 3.090 
500.0 24.4 9.6 3.0 1.6 1.1 1.0 1.0 

EWMA ln(S2) Chart 
b 

X2 
L2 

ARL2 

0.25 0.50 1.00 1.25 1.50 2.00 2.50 3.00 
0.445 0.180 0.435 0.050 0.110 0.200 0.270 0.330 
3-575 3.095 3.561 2.633 2.900 3.143 3.292 3.402 

2.0 5.0 500.0 24.5 10.3 4.8 3.3 2.6 



the in-control ARL is given by 

where .4RLli is the in-controi ARL for the combination chart. ARLoi is the in- 

control ARL for the EWiLI4 chart and .4RLU2 is the in-control ARL for the 

ELVh1.A 1n(S2) chart. 

Because t here is no direct way to cornpute the out-of-control ARL. each of 

the  ARL value h a  to be estirnated frum 10.000 sirnulatecl run lengtlis. 

7.3 ARL Cornparisons 

To compare the performance of the various control chart schemes on an 

equal footing. each scheme is calibrated so that the in-control ARL is approx- 

imately equül to 250. Since an EWMA-type chart is controlled by the (A.  L)  

combination. there are many possible ARL's for an out-of-control condition and 

two approaches can be employed to rnake cornparisons among the five EWMLIA-type 

charts. The first approach compares the best ARL performance of each EWMA- 

type chart with that of the other EWMA-type charts. and the combination of the 

1v chart and the S chart. 

For a pair of specified changes in the process mean and the process variabil- 

ity as given by specified a and b. the smallest out-of-control ARL for each EWMA- 

type chart is obtained using its optimal parameters, whereas the combination of the 

chart and the S chart only has one out-of-control ARL. Tables 7.2: 7.3 and 7.4 



Table 7.2: Optimal ARL Values of Max-EWMA chart and EWhIA-Mau chart 
when n = 5 and ARLo = 250. 

display results of such comparisons for the six charts. The entries for the tour riew 

charts are taken from Tables 3.1. 4.1. 5.1 and 6.1. The entries for the combination 

of the EWMA chart and the EWMA ln(S2) chart are obtained based on the 

optimal parameter values for the combinations of the (A1. L I )  and (A2. L2). which 

are given in Table 7.1. The entries for the combination of the X chart and the S 

chart are calculated as l l p  with respect to various changes of the process. 

The second approach is to make comparisons when the five EWMA-type 

charts use the same values for the weight. Le.. A = XI = Xz. Tables 7.5, 7.6. and 7.7 

display the respective out-of-control ARL's of the six charts for various changes in 

b 
0.25 
0.50 
1.00 
1.25 
1.50 
2.00 
2.50 
3.00 

Max-EWMA Chart 
n 

0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00 
2.27 2.27 2.27 2.16 1.13 1.00 1.00 1.00 
5.41 5.41 5.22 2.76 1.35 1.00 1.00 1-00 

249.93 23.95 5.58 9 1.56 1.09 1.01 1-00 
17.79 12.80 7.10 2.86 1.60 1.15 1.02 1.00 
6 .  5.69 4.51 2.52 1.59 1.19 1.05 1.01 
2.50 5 2.28 1 . 2  144 1.21 1.08 1.03 
4 1.81 1.75 1.59 1.36 1.20 1.11 1.05 
1.66 1 1.60 150 1.36 1.24 1.14 1.08 

EWiLIA-Max Chürt ! a 
b 

0.35 
0.50 
1.00 
1.25 
1 .  
2.00 
'2.50 
3.00 

0.00 0.25 0.50 1.00 1.50 3.00 2.50 3.00 
2.54 '2.54 2.54 2.32 1.13 1.00 1.00 1.00 

13.39 12.29 9.04 3.26 1.35 1.00 1.00 1.00 
250.02 19.44 16.76 3.46 1-57 1.09 1.01 1.00 

17.07 13.52 8.14 3.08 1.62 1.15 1.02 1.00 
5.92 -5.45 -1.41 2.54 1.59 1.19 1.05 1.01 
2.25 2.20 2.08 1.13 1.41 1.20 1.08 1.02 
1.49 1.48 1.45 1.35 1.24 1.11 1.07 1.03 
3.00 1.23 1.22 1.18 1.14 1.09 1.06 1.03 



Table 7.3: Optimal ARL values of SS-EWMA chart and Conibination of the two 
EWMA charts when n = 5 and ARLo = 250. 

SS-EWMA C hart 
n 

0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00 
2.31 '2.42 2.19 1.48 1.00 1.00 1.00 1-00 
5.96 5 . 3  4.17 2.32 1.16 1.00 1.00 1-00 

'249.91 24.40 8.83 3.07 1.62 1.11 1.01 1.00 
11.11 1 . 6  6.38 2.78 1.59 1.15 1.02 1.00 
.5.93 5.26 4.08 3.33 1.52 1.11 1.04 1-00 
2.17 2.12 1.98 162 1.34 1.16 1.06 1.02 
4 1.43 1.40 1.30 1.20 1.11 1.06 1.02 
1-31 1.20 1.20 1.16 1.12 1-08 1.05 1.02 

EWMA Combination Chart 
a 

0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00 
1.99 1.99 1.99 1.94 1.10 1.00 1.00 1.00 
4.99 4.99 4.84 2.77 1.37 1.00 1.00 1.00 

150.13 23.53 8.47 2.94 1.55 1.09 1.01 1.00 
20.83 16.52 7.99 2.94 1.61 1.15 1.03 1.00 
9.26 8.58 6.40 2.88 1.66 1.21 1.05 1.01 
3.83 6 4.00 2.54 1.70 1.31 1.11 1.04 
2.57 3 . 1  2.88 2.16 1.64 1.36 1.18 1.08 
2.04 2.58 2.34 1.89 1.56 1.37 1.21 1.12 



Table 7.4: Optimal ARL values of EWMA-SC chart and Conibination of the two 
Shewhart charts when n = 5 and ARLo = 250. 

1.16 1.16 1.15 1.13 1.09 1.06 1-04 1.02 
Shewhart Combination Chart 



Table 7.5: ARL's of h1a~EWlulA chart and EWPVIX-Max chart when n = 5 and 



Table 7.6: ARL's of the SS-EWMA chart and the combination of two EWMA 
charts when n = 5 and in-control ARLa = 250. 

SS-EWMA chart 
a 

0.00 0.25 0.50 1.00 3.00 
4.2 4.1 3.9 3.1 2.0 
4 6.9 5.8 4.0 2.4 

250.0 24.5 10.3 4.9 2.6 
8.7 7.9 6.5 4.3 2.5 
4.3 4.2 4.0 3.3 2.3 
3.5 3.4 3.2 2.8 2.0 
6.4 5.9 4.9 3.3 2.0 

250.0 35.4 9.1 4.0 2.1 
7.3 6.6 5.4 3.5 2.1 
3.5 3.5 3.3 2.7 1.9 
2.9 2.8 1.6 2.0 1.7 
6.0 5.4 4.3 2.8 1.9 

250.0 31.5 8.9 3.4 1.8 
6.1 5.7 4.6 2.9 1.7 
3.9 2.9 3.7 2.2 1.5 
2.6 2.6 3.3 2.0 1.0 
6.5 5.6 4.2 2.5 1.3 

250.0 40.6 9.7 3.2 1.5 
6.0 5.4 4.3 3.6 1.4 
2.6 2.5 2.4 2.0 1.4 
2.5 2.4 2.2 1.8 1.0 

11.0 8.7 5.3 2.3 1.0 
350.0 61.3 13.4 3.1 1.2 

6.0 5.3 4.1 2.4 1.3 
2.3 2.2 2.1 1.7 1.2 
3.9 3.6 2.7 1.5 1.0 

45.5 35.0 16.6 3.0 1.0 
250.0 99.3 25.0 3.9 1.1 

6.5 5.8 4.4 2.4 1.2 
2.2 2.1 2.0 1.6 1.2 

11.3 9.8 6.3 1.7 1.0 
128.1 103.0 53.5 6.1 1.0 
250.0 126.6 38.4 5.4 1.1 

7.5 6.7 5.0 2.6 1.2 
3.5 3.4 2.9 2.0 1.2 

Combination Chart 
a 

0.00 0.25 0.50 1.00 2.00 1 



Table 7.7: ARL's of the EWhIA-SC chart and the combination of two Shewhart 
charts when n = 5 and in-control ARL = 250. 

b 

EWblA-SC chart 
a 

0.00 0.25 0.50 1.00 2.00 

Combinat ion Chart 
a 

0.00 0.25 0.50 1.00 2.00 
5 .  128.1 38.1 5.1 1.1 

8.3 7.5 5.8 2.9 1.2 
2.4 2.4 2.2 1.8 1.2 

250.2 128.1 38.1 5.1 1.1 
8.3 7.5 5.8 2.9 1.2 
2.4 2.4 2.2 1.8 1.2 

350.2 128.1 38.1 5.1 1.1 
8.3 7.5 5.8 2.9 1.2 
2.4 2.4 2.2 1.8 1.1 

250.3 128.1 38.1 5.1 1.1 
8.3 7.5 5.8 '2.9 1.2 
2.4 2.4 2.2 1.8 1.2 

A = 0 . ~ 5  i . ~  i 25U.I) 73.5 22.6 5.2 1 6  
LES = 1.88 1.50 

2.00 
X = 0.10 1.00 

LES=2.45 1.50 
2.00 

X = 0.20 1.00 
LES = 2.93 1.50 

2.00 
A=0.30  1.00 

LES=3.19 1.50 
2.00 

4.3 4.2 3.7 2.6 1.4 
2.2 2.1 2.0 1.8 1.3 

250.0 109.2 27.5 5.2 1.5 
4.3 4.1 3.6 2.5 1.4 
2.1 3.1 2.0 1.7 1.2 

250.0 128.4 34.2 5.2 1.4 
4.2 4.0 3.5 2.4 1.3 
2.0 1.9 1.9 1.6 1.2 

250.0 134.8 39.3 5.4 1.3 
4.2 4.0 3.4 '2.3 1.3 
1.9 1.9 1.3 1.6 1 



the process mean and the process variability. 

Similar results are shocvn in Tables 7.2 - 7.7. It should be noted that.  in term 

of detecting srnall changes in the rnean and/or the variability. the performance of 

the combination of the S chart and the S chart is very poor in cornparison to 

others. It is also seen that. in term of detecting shifts in t h e  m m n  alone ( h  = 1). 

the iLlm-EPV?vlA chart. t he  SS-EWMA Chart and the combination of the ECVhIA 

-y chart  and the EWMA ln(S2)  chart yield snialler ARL's than the other chiirts. 

and they perform almost equaily well. One interesting point to be noteci is tha t  

the Max-EWMA cliart and the SS-EWMA chart have similar ARL performances. 

In terni of drtecting meari shifts that are acconipanied witli variability ctiaiiges 

when the variability is decreased. the cornbination of the EWMA .y chart and th(? 

EW-VIA In(S2) chart perfornis bctter than the others but is only slightly superior to 

the Max-EWMA chart and the SS-EWMA chart. However. when the variability is 

increased. the four new charts perform better than the combination of the ECV'vl.4 

.y chart and the EWMA l n (S2) .  This difference in performance can be explairieci 

by the fact that symmetric control limits are used in the EWhI.4 l n (S2)  chart. but 

the distribution of l n ( S 2 )  is not symmetric. 

For the cornparisons arnong the four new charts. the SS-EWLIA chart have 

the srnallest ARL's when a mean shift accompanies a decreased variability change. 

while the EWMA-SC chart yields the smallest .4RL's when a mean shift accom- 

panies an increased variability change. Another interesting result is that even for 

large changes of a process. most optimal ARL values of the four new charts are 

smaller than the ARL values of the combination of the X chart and the S chart. 

The overall ARL performance for these charts shows that the Max-EWMA 

chart and the SS-EWMA chart appear to be better control schemes than others 

for detecting various shifts in the process mean andior changes in the process 



variability because in dif-f'erent situations their ARL values are at least close to the 

smallest ones. If a mean sliift accompanies a non-increased variability change. the 

combination of the EWMA chart and the EWMA ln(S2) chart has good ARL 

performance. When a mean shift accornpanies an increased variability change. the 

EWMA-SC chart performs well. In general. when an EWMX-tvpe chart is used. 

srnaller A values give better performance for detecting smaller changes in the niean 

and/or the variability. 

It is important to note that. for the cornparisons of these control charts. 

the in-cimtrol ARL of 250 is only one of niany possible choices and it is a valiic 

betweeri 155 and 370. which are two often used values for the in-control ARL in 

quality control. If any otlier value is chosen for the in-control ARL. the resiilts 

woiild most likely be the sarne as thosc when the in-control .-\Ri, is 250. 

7.4 Diagnostic Ability Studies 

From the results of  the last section. the Max-EWMA chart arid the SS- 

EWMA chart denionstrate overall good ARL performances. Since our mairi ob- 

jective is to provide alternatives to the use of combination of the existing charts. 

further corn parisons of the diagnostic abilities are made among the Max-E WSIA 

chart. the SS-EWMA chart and the cornbination of the EWMA -r chart and the 

EWMA ln(S2) chart (referred to as the combination chart in the following dis- 

cussion). To identi@ the source and the direction of the detected changes. 1.000 

out-of-control signals are simulated. Each chart. with in control ARL of 250. is 

applied to the same set of the 1.000 signals using the approximate UCL. Out-of- 

control signals are counted according to the charting procedure of each chart. 

Table 7.8 contains some comparative results of the Max-EWMA chart and 



the combination chart. where (A.  L) = (0.10.2.79). (Ai .  L I )  = (0.10.2.81) ancl 

(A2, L 2 )  = (0.10.2.86). Table 7.9 contains some comparative results for the SS- 

EWMA chart and the conibination chart. where (A. L )  = (0.10.3.60). (Xi .  L I )  = 

(0.10.2.81) and (Az.  L I )  = (0.10.2.56). Notation in Tables 7.8 arid 7.9 is defined 

as follows: +O denotes the number of tinies that a n  incr~ase in the niean i ~ l o n ~  is 

detected: -O deriotes the niimber of times that a decrease in the mean atone is 

detected: O+ denotes the niimber of tinies that an increase in the variability CL 1 oncl 

is detected: O -  denotes the nuniber of times that a decrease in the variability aloiie 

is detcctecl: ++ denotes the number of tinics that an increase in both the  rriean and 

the variability is detected sirnultaneously: +- denotes the nurnber of times that iui 

increase in the niean and a decrease in the variability are sirnultaneously detected: 

-+ denotes the nuniber of times that a decrease in the rnean and an increase in 

the variability are sirnu1taneou.ily detected. and - - denotes the riumber of tinies 

that a decrease in both the mean and the variability is detected simultaneously. 

It can be seen from Tables 7.8 and 7.9 that. in the in-cuntrol case (a = O. h = 

1). the hIax-EWMA chart and the SS-EWMA chart give a balanced performance 

while the combination chart gives an unbalanced performance. Also. it can be seen 

that. in the out-of-control cases. the two new charts perform as well or nearly as 

well as the combination chart does when the variability is decreased. however. both 

of the two new charts perform better than the combination chart does when the 

variability is increased. The two new charts. especially the SS-EWMA chart. seem 

to be more effective than the combination chart for detecting simultaneous changes 

in both the mean and the variability. For example, when a = 1.00 and b = 0.25. 

out of the ioOOO simultaneous change out-of-control signals. the Max-EWMA chart 

identifies 304 signals, the SS-EWMA chart 651 signals and the cornbination chart 

105 signals. In term of the accuracy of detecting the source and direction of an 





Table 7.9: A cornparison of the diagnostic abilities between the SS-EWMA chart 
and the EWMA combination chart. 



out-of-control signal. the Max-EWMA chart is the best among the three charts. 

and the SS-EWMA chart produces a few more incorrect signals than the other two 

in some cases. Overall. the Mau-EWbfA chart seems to have the highest diagnostic 

ability of the three charts. These results are consistent with that of Section 7.3. 



CHAPTER 8 

Discussion on Lognormal Quality Control 

8.1 Introduction 

The lognormal distribution L N ( p .  a'). is defined as the distribution of a 

random variable whose logarithm follows the normal distribution N ( p .  a?). Since 

niariy kinds of data in real life have a positively-skewed distribution. the logriornial 

distribution has been widely applied in niaiiy üreas. 

'vlorrison [4 11 first applied the lognormal distribution to quality coritrol. 

and proposed a rnodified quality control scheme that can process skewed (lata in 

the original scale of measurement when the assurnption of normality can not be 

made. Fertell 1201 also siiggested using this control schemc for compiiting and 

plotting control charts wlieii data are frorn a badly skewed distribution which can 

be approximated by a lognormal distribution. 

Based on the fundamental relatioriship between normal and lognormal dis- 

tributions. Morrison derived control limits for the lognornial variable frorn the 

corresponding control limits for a normal variable. using the inverse logarithmic 

transformation. However. because of the cornplexity of the lognormal distribu tiori. 

its application to quality control cannot be referred to that of the normal distri- 

bution by simply taking the direct transformation. which may result in a control 

chart with inappropriate control parameters. 

For simplicity. in this chapter a lognormal process refers to a process in 

which its characteristic follows a lognormal distribution and a normal process refers 

to a process in which its characteristic follows a normal distribution. 

To rnonitor a lognormal process, the corresponding normal process is ob- 



tained through the logarithmic transformation and a new quality control scheme 

is developed. When it is given that the lognormal process mean lies in a specific 

interval. then two control charts are set up for the lognormal process. The control 

of a complex lognormal process is siniplified to that of a normal process. for which 

good control schemes are available and it is much easier to implernent. 

8.2 A Modified Quality Control Scheme 

Suppose that  .Yij. i = 2 .  . . . and j = 1.2.  . . . . n represent tlie qiiality 

characteristic of a process. aiid they follow lognormal distri but ion LX@. a'). Let 

ILj = InX,. then Fij. i = 1 .2 .  . . . and j = 1.2. . . . . n. Foilow riormal distribution 

N ( p .  a'). 

In the rnodified quality control scherne proposed by Morrison [-LI]. the statis- 

tics for a logriornial process and the corresponding 30 control limits can be obtairied 

froni the following derivations. Notice that  

where Y is the sarnple midrange for a normal process. and X i ( l )  and Xi(,, are the 

minimum and maximum of the ith sample. respectively. 



Similarly. 

where R, is the sarnple range for a normal process. and d2 and d3 are control chart 

constants. 

Thiis. frorn (8.1). the geonietric sample rnean ,/'- is used as a mea- 

sure of the lognormal process mean and the exact control limits are e z p ( p  k 30~). 

Wit h the üvailable saniple results. the control limits are est iniated by 

where .Y<li and *Y(,,) are the minimum and maximum in nn sample values for a 

lognormal process. r' is the average ratio of the rnawimum to the minimum From m 

samples of size n for a lognorrnal process. and .A2 is a control chart constant. 

.Y*(", Siniilarly. from (8.3). the sample ratio is used as a measure of the 

lognormal process variability and the exact control limits are e z p (  (d2 + 3 d 3 ) a ) .  

which are estimated by 

and 



where D3 and D4 are control chart constants. 

From the derivations. it is seen that the in-control probability of the tierived 

statistics for a lognormal process is the same as that for its normal counterpart. 

but the control lirnits for lognormal control charts are inaccurate. Becausr the 

control parameters For lognorrrial and normal processes are different. the direct 

transforniatioris may not assure that t lie stat ist ical statx of a logriormal procrss 

is the sanie as that of  the corresponding nornial process. .Clorrison's cfiart act i i -  

ally sets the target as the normal process mean. and therefore a normal procrss is 

monitored through its lognormal counterpart. Moreover. because the parameter 

estimators of (8.3). (8.4) and (8.5) resuiting from the inverse logari t hmic transfor- 

mation are biased. the control charts neither have proper probability nor proper 

%sigrria control lirnits. 

8.3 New Control Charts for Lognormal Processes 

It is difficult to directly constnict a control chart for a lognormal process 

since sampling properties associated with the lognormal statistics are not easy to 

derive. Making use of the relationship between normal and lognormal distributions 

and having been given a specific interval for the lognorrnal mean to a lognormal 

process? a new method is proposed to avoid the cornplexity of the lognormal dis- 

tribution. The two control charts for lognormal distribution can be constructed to 

monitor a lognormal process. 



8.3.1 The Logarit hmic Transformation 

In statistical analysis. a logarithrnic transformation is often applied to a 

set of positively-skewed distributed data before proceeding wit h the analysis. This 

approach works well for usual statistical analysis. However. the direct logarithmic 

transformation may result in a control chart wi tli inappropriate curit rol pararileters 

in the application of quality control. For a lognormal process. it is of interest to 

coritrol the paranieters p. and o.. while. for a normal process. p and a are of 

interest. It  caii be shown that. For a specified significance level C r .  the control 

limits for individual nieasiirenients of a logriornial process is different froni tliat 

of the correspondhg normal process. Without loss of generality. assunie that 

.Y - L N ( O . 1 ) .  tlien Y = ln(.Y) - N ( O . 1 ) .  For a = 0.0027. it follows froni 

that the upper percentile x ~ . ~ 0 1 3 5  can be found as 

Hence. the upper control limit for the K chart is 

and ln(UCL4y) = 3.81. 



The upper control Limit for the Y chart is 

Obviously. ~ T ~ ( C ' C L ~ )  is not equal to U C L v  so that the direct transfornia- 

tion niay result in different control state for corresponding normal process. There- 

fore. somc standards have to be given in order to guarantee the control state of 

the corresponding process is equivalent t,o that of the original lognornial proçrss. 

8.3.2 A Specific Interval for the Lognormal Process Mean 

Suppose that rn sarnples are randonily drawn from a lognormal process. anci 

p. is known to lie in an interval: 

and it is given for the process according to technical specifications. I t  could be 

either a given margin of error or specification limits for a single measiirement. The 

rnargin of error is give by 

i = 1 . 2  ,... . m : j = 1 . 2  .... .n 

where al and a? are known positive constants. 

Equation (8.6) can be written as 



i = 1 . 2  . . . .  .rn: j = 1 . 2  . . . .  .n 

which is equivalent to 

Hence. an  interval for possiblt. values of p.  is 

If specification limits are available. ~ h e  upper and lower specificatioti liniits 

can be used as  p.^ and  p.^. respectively. 

8.3.3 Derivat ion of Int ervals for Paramet ers 

The control parameters for a lognornial process are p. and 0:. The control 

parameters for the corresponding normal process are kt and o. The parameters p. 

and a: are functions of p and 0 given by 

M preliminary samples collected from the in-control process can be used to  



estimate 02 by ô* = ç2. From (8.9). an inteval for p is obtained as below: 

From (8.10). an inteval for a: is obtained as below: 

a:, = e z p ( 2 p r r  + 02) [exp(>') - t ]  

of, = rirp(2pL + a ? ) [ e ~ ~ ( a ~ )  - ï]  

(5.13) 

(S. 14) 

Because the nornial distibution is syrnmetric about niean. the targt  for t h e  

corresponding nornial process is 

which implies that the target for the lognormal process is the geometric mean of 

/-'*CI and  p.^. Le.. ~ 1 . a  = ,/m. 

8.3.4 Constructing Control Charts for Lognormal Processes 

When m preliminary samples are taken from a lognormal process. the loga- 

rithms of each observation form the m initial samples of the corresponding normal 

process. To determine whether the process variability is stabilized, an S chart c m  



be set up with control limits: 

LCL, = 
n - l c 4  

(Y. 17) 

where a3 and n, are Type 1 error prubabilities for lower and upper tails respectively. 

If al1 the standard deviations of these samples plot inside the control lirriits. 

then the process variability appears to be in control. Otherwise. each of the out-of- 

control points for which assignable causes can be found is discarded anci the coritrol 

limits are recalculated. Then these control limits can be used for controlli~ig currcmt 

or future production and o2 is estimated from the forniula a" S2. 
- 

The percentiles for Y chart can be obtained by setting 

where <YI and a2 are Type 1 error probabilities for lower and upper tails respectively. 



A Y chart can be set up with the following control limits: 

- - 

8.4 Properties of the New Control Charts 

When a specific interval for p. is given. the derivations of control liniits for 

the control charts monitoring the two related processes are reversible and lierice 

the statistical control state of the logriornial process can refer to that of the  cor- 

responding normal process. As a result. it is necessary to study propertics of the 

two control charts for the normal process and effects of normal parameter changes 

on  the lognormal parameters. 

8.4.1 The ARL Caiculations 

Assume that - iV(po, 002) independently. where i = 1.2. . . . . m: j = 

1 .2 . .  . . . n .  Suppose that the normal process niean changes from po to po + aao 

and the normal process standard deviation changes from 00 to boa. 

The probability of type II error for I chart can be computed from 



When a = 0. the probability of type I error for chart is 

(S. 26) 

from which it is noted that û.p is a function of and 00. To achieve a small a g .  

EL and are usually not larger for high precision products so that the process 
P. L 

variability has to be small. while. 00 is allowed to be a little bit large for mediiini 

or low precision prodiicts. 

The ARL's for chart can be easily obtained from 

When ap is fixed. ARL will decrease as a and TI iricrease. 

The ARL's for S chart can be coniputed from 

8.4.2 Effects of Changes in Parameters 

When there are changes in the normal process mean and process variability. 

the lognormal parameters will be changed to 



where a # O and b > 0. 

Because the derivatives of pl .  with respect to a and b are 

Notice that pl. is a monotone increasing function of a and h. and 01. can 

be written as a monotone increasing function of pl.: 

since Jerp((boo)?) - 1 > O. Then 01. is also a monotone increasing functiori of u 

and b. 

Thiis. the direction of an-out-of-control signal from a logriormal proçess can 

be identified from the corresponding normal process. 

8.5 Charting Procedure and Example 

The steps to set up the two charts are summarized below: 

1. Determine the values of p.cr and  p.^. 

(a) Use values provided by technical specifications. or if not available. 

(b) use p , ~  and  p.^ obtained from preliminary data as follows: 

if the overall range of the data is less or equal to al + az. calculate p.u 

and  p.^; however. if the overall range is greater than al +az! remove the 

possible outliers X(l). . . . , until the overall range is less or equal 

to al + a*, and then calculate  p.^ and p , ~ .  



2. Transform data using Y = ln(.Y). 

3. Construct an S chart and estimate a2 by 9 when the process variability is 

in control. 

4. Compute pu. PL.  PO. c& and of,. 

5. Construct a E' chart. 

6. For a satriple point that plots outside one of the coritrol limits. calculetr jl*i 

and üsing as the estimate of p and S: as the estiniate of n2. Plot .rri+' 

or 'ni-' agairist sarnple riurnber if only f i S i  > p.~r or fi., <  p.^: plut .v+' ' 

or 'v-' against saniple riuniber if only ri., > a . ~  ur à., < a.~: plot .rri+v+'. 

'mtv-'.*ni-v+' or -ni-v-' against sampie nuniber according to the soiirces and 

the directions of an out-of-control signal. 

7 .  Exarni rie the assignable cause(s). 

An example is given to illustrate how to appiy the riew control sctierne to 

lognormal distributed data. The data. consisting of 3-4 samples of size 5. are giveri 

in Table 8.1. The first 30 samples are taken from Morrison [-LI]. wliere it was 

stated that they were collected from a process in the valves industry. The last 4 

samples are added to  simulate an out-of-control process. For the rneasurement of 

individual values. the upper and lower specification limits are 1 and 10. 

A probability plot of the real data in Figure 8.1 suggests that the obser- 

vations do not behave as though arising from a normal distribution. To adjust 

for non-normality. lognormal transformation is applied to the original data. A 

probability plot of the transformed data in Figure 8.2 shows t hat a lognormal dis- 

tribution curve can be fitted quite well, suggesting that lognormal quality control 



Table 8.1: Valve data. 

Sample i -Yl -Y2 Xg Y ,Ys 
1 4 . 5  4.99 3.62 3.52 3.77 
2 1.93 3.95 4.10 4.16 1.61 
3 2.22 1.73 5.10 4.52 4.06 
4 2.71 2.45 4.6 2.09 1.90 
5 2.91 5.68 4.33 3.51 3.24 
6 2.20 5.66 3.71 3.35 1.62 
7 2.82 5.22 3.75 3.50 3.31 
8 2.76 3.4 3.13 1.55 3.70 
9 4.98 4.05 1.00 7.20 3.18 
10 4.88 2.71 3.51 3.15 4.81 
II 4 .  1.95 3.41 2.87 1.90 
12 O 4.02 4.17 4.33 4.06 
13 2.39 2.91 3.09 3.15 2.52 
14 2.92 4.25 3.02 2.26 5.72 
15 2.56 4.38 1.24 2.62 1.92 
16 2 . 3  4.16 3.75 3.17 1.72 
17 3.41 3.10 6.02 1.09 2.92 

Sample i XI .Y3 Y 'Cs 
18 2.85 4.16 3 . 7  2.30 3.91 

scheme should be ernployed in this case. Suppose that the first %O samples in Table 

9.1 are used as preliminary samples. .\fter applying logarithmic transformation. 

an S chart is set up with as = 0.0027 and it is shown in Figure 8.3. When the 20 

sample standard deviations are plotted on this chart. there is no indication of a n  

out-of-control condition. Then a2 is estimated by s2 = 0.1263. 

Since z,, = -3.0449 and z,, = 3.0449. a Y chart can be set up witli 

ap = 0.0023 and it is shown in Figure 8.4. When the 20 sample means are plotted 

on this chart. there is also no indication of an out-of-controI condition. Since the S 

and Y charts constructed using the first 20 samples indicate that both the process 

variability and the process mean are in control. the control limits obtained can be 

used in on-line statistical process control. 



Assuming that there is a 200 shift in the process mean and a 3 tinies change 

in the process standard deviation. the probability of detecting the mean shift on the 

first subsequence sample is 0.9236. and the probability of detecting the variabili ty 

change on t h e  first subsequence sample is 0.7398. Hence. the erpected nuniber of 

samples taken before the shift is detectad is 1.0827. and  th^ ~ x p ~ c t ~ d  niimhrr o f  

saniples taken before the change is detected is 1.3517. When the last 14 saniple 

means are plotted on the I chart shown in Figure 8.5 ancl the last 1-l samplr 

standard deviations are plotted on the S chart shown in Figure 8.6 . it is seeri 

that the last 4 points are abobe at least one of the UCL's. This indicrates tliat thc 

lognornial process is out of control with an increase in p. and a:. To icientify t hc 

sources of these out-of-coritrol signslç. fi.* and &?, are calculated. I t  is found that 

fi,3L and are greater than  p.^. and ri%,. and ad, exceed 6TLI which is 

eqiial to 13.4651. This diagiosis is supported by reference back to the individual 

rneasurenients of' the last 4 samples. since there are individuals exceeding p.~ i  in 

sample 31 and 33 and greater variability within sample 32. 33. and 34. It shoiild 

be noted that. for the last sample. only the lognormal process wriability is out of 

control although both of the corresponding normal process niean and variability 

are out of control. 
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Figure 8.1: The probability plot for the valve data 
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Figure 8.2: The probability plot for the logarithm of valve data 



Figure 5.3: The first S chart for the valve data 

Figure 8.4: The fint P chart for the valve data 
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Figure 8.5: The second S cliart for the valve data 

UCL - 1 .eo 

Figure 8.6: The second chart for the valve data 



CHAPTER 9 

A Multivariate Max-EWMA Control Chart 

9.1 Introduction 

There are many situations in which a process is simriltaneously cliaractt.r- 

ized by niore than one related quality characteristic. Because these quality char- 

acteristics are correlated. quality cont rol requires a mult ivariate approach. t h t  is. 

it is necessary to simultaneoiisly control t hese related quality characteristics. 

-4s showri in Chapter 3 and Chapter 7. the uriivariate .\.Im-EWi\.I.A cliart 

has high capabiiity of detecting srnaIl changes in the process mean aiidlor variabil- 

ity as well as identifying the source and the direction of an out-of-controi sigrial. [ri 

this chapter. the technique tised in the univariate Max-E WMA chart is extendecl 

to niultivariate quality control and a multivariate Max-EWMA Chart is proposed. 

This new chart can be used to simultaiieously monitor both the process rriean vec- 

tor and process variability iri the multivariate case as well as identify the source 

and the direction of an out-of-control signal. Once an out-of-control signal is de- 

tected. a diagnostic developed by Runger. Alt and Montgomery [49] is emplqed to 

investigate which quality characteristic is responsible for the out-of-control condi- 

tion. ARL properties are studied and Monte Car10 simulation is used to evaluate 

the ARL performance. Compared with the combination of the x2 and the 1SI 

charts. the new chart is more sensitive in detecting small changes of a process. .An 

example is given to illustrate the implernentation of the new chart. 

I l l  



9.2 The New Control Chart 

Assume that a process consists of k quality characteristics denoted by X. 

where X -- lLi,(p. X) and X i , .  Xi?. . . . . Xi , .  i = 1.2 .  . . . . are the ith sample of àize 

n drawn froni the process. Let p, and Xo be the mean vector and the  standard 

covariance mat rix. respect ively. 

To nionitor the procrss mean vector. a statistic proposed by Rigdon and 

Champ [4G] is given by 

with Zo as the start ing point. 

Because 

and 

It is found that 

and hence 



where a2 = n ( p  - p o ) ' ~ - l  - p,,). Then a statistic for monitoring the process 

mean vector is defined a 

To monitor the process variability. a statistic that is a niultivariate analog 

of the univariate S2 is given by 

Obviously. PI;, -- y&,-,, when X = Eo. An EWMA statistic is defined as 

with k; as the starting point. 1t is noted that if C = Co. then 

E(I.;) = O 

and 

A statistic for monitoring the process variability can be formed as 

I t  is apparent that Ui and are independent. When p = p, and C = Xot 



both Ili and follow the standard normal distribution. Thus. based on 0; and Ci. 

a new statistic for the multivariate single chart would be defined as below: 

Notice that !LIi is the niaximum of the absolute values of the two miiltivariatr 

EWMA statistics. i t  is natural to nanie the new chart the Max-MEWhIA chart. 

Similar to the univariate iCla,-EWhM chart. a large value of $1,. for tht? 

Mau-MEWhlA ctiart. means that the process mean vector lias drifted away f r im 

po and/or the process variability has changcd. On the other hand. a sniall value 

of 111, implies tliat the process inean vector and variability have reniaineci close to 

t heir nominal values. 

9.3 Derivation of the UCL 

Because Ui and Ç; independently follow the standard norrnal distribiitions. 

and given p = po and X = Xo. the in-control CDF of .\fi is found to be 

The corresponding pdf of Mi iis given by 

f (y; Po, Zo) = 44(3)[2@(~) - 112 



Table 9.1: (A.  L) combinations for Max-MEWMA control schemes in a steady state 
when ARLo=200. 

K =2 and n = 2 
A 0.05 0.10 0.20 0.30 0.60 0.80 1.00 
L 2.7710 '2.8563 2.9380 2.9730 3.0170 3.0330 3.0245 

K =3 and n = 2 
A 0.05 0.10 0.20 0.30 0.60 0.80 1.00 
L 2.7573 2.8751 3.0025 3.0634 3.1330 3.1430 3.1453 

Tlien. throiigh nunierical cornpiitation it is easy to find that E ( M i )  = l.l?8K!l 

and Var  (lZ.li) = 0.36338 1. 

Therefore. the UCL is given by 

where L is a miiltipiier and controls the performance of the chart with A for a 

specified value of in-control ARL. 

Table 9.1 Iists sorne commonly used (A. L)  for the starting wlues Z[, = O 

and Y. = 0. 

9.4 Properties of the ARL 

The ARL study for a multivariate control chart could be very complicated 

if changes of the process covariance matrix are concerned. Even for the widely 

used (SI chart. it seems that no one has evaluated its ARL performance. resulting 

from the complex structure of the process covariance rnatrix. To simpli& the ARL 



study of the Max-MEWMA Chart. two properties are given in this section. 

Property 1. Let ?CI,. i = 1 . 2 . .  . . . be independent sample mean uectors jrorri pdf 

1 and X2,. i = 1 .2 .  . . . . be independent sample mean uectors from pdf 2. Let pdf 

1 be rn~ultiuan'ate nornaal with mean p, and covariance matrix C l l n  and pdf 2 be 

rnultivariate n a m a l  with meun p2 ~ n d  c o ~ a r i m m  rnatrk Z2 i n .  11 pi  EL^^^ = 

& c ? ' ~ ~ .  then t/ integer m. fi(Uii. i = 1.2 .  . . . . rn) = f 2 ( L T i .  i = 1.2. . . . . ~ t ) .  ichrii~ 

f i  (Ui. i = 1.3. . . . . rn) is the joint distribution of Lii+ i = 1.3. . . . . y i u e n  pd/  1 r d  

f2(Lri .  i = 1 . 2 . .  . . ) is the joint distribution of l / ; .  i = 1.2.. . . . yiuen pdf 2. 

Property 1 is b m d  on Lowry's [34] results where she showed the joint 

distribution of T,  and thus the ARL depends on p and 22 oniy throtigh the valiie 

of the noricentrality parametcr cS2. Because Ui is defined iipon Ti through two 

one-to-one transforniation lurictions. HF) and W1 ( e ) .  Property I can be obtained 

directly froni Theorem 2 in Lowry [34]. Property 1 irnplies thst.  for diffcrerit nirari 

vectors as well as different covariance matrices. the joint distributioii of Lii is still 

the same. Then. to investigate the property of shifts in the process niean vector. 

one onlp needs to look at the magnitude of d2 and does not have to consider eacti 

possible direction of the shift in one mean vector and each possible covariance 

matrix separately. This fundamental property is very useful in the evaluation of 

the ARL performance of the h\IIax-ILIEWbIA chart. Without it. too many possible 

situations would make the evaluation much more difficult. 

Property 2. Suppose that I: = b2Ba. When k = 2 and for specified values of b (or 

changes for variances), n and p-p,, the uahe of noncentralzty paranieter is only 

related to the magnitude of 012: the covaRance of the two quality characteristzcs. 

From Property 1, joint distribution of Cli, i = l1 2 . .  . . , does not depend on 

the direction of p - p, and the special from of Eo. 



where dl is a constant. Then. the noncentrality parameter is 

Becaiise the values of b and T L  and dl are fixed. d2 is only re1att.d to the niagriitiitle 

of 012. 

Property 2 indicates that for k = 3. increases and decreases of the sanie 

magnitude in a12 result in the same ARL provided t h a t  the values of b and n and 

dl  are specified. The importance of this property is clear when one realizes that 

the nurnber of ARL values required for the evaluation can be rediiced to half of 

the original ones. 

9.5 The ARL Performance 

Even though the burcien of the ARL evaluation is partially alleviateci by 

using Property 1 and Property 2. it still requires much work to evaluate the ARL 

performance in detail because of the complex nature for a multivariate chart. es- 

pecially for a multivariate EWMA single chart. In this section. detailed discussion 

of the ARL performance for the bfax-MEWMA chart is given with respect to dif- 

ferent values of A. k. n, the shift in the process mean vector and the change in the 

process covariance matrix. For the Max-MEWMA chart. there is no direct way to 

compute the ARL. so each ARL value is obtained using 10.000 simulations. 



9.5.1 Computation Set-up 

According to Property 1. the Max-MEWRIIA chart is directional invariate 

in the mean shift. Without loss of generality. assume that for k = 2. 

for k. = 3. 

That is. for A: = 2. = a$ = 1. and = ai, = p. the correlation between 

the two quality characteristics: for k = 3. a& = ai2 = O& = 1. = of3 = 

& = O& = O& = = p. the correlation between any two of the throe qunlity 

charac terist ics. 

For a given in-control ARL of 200. ARL's are simulated. It is seen. from 

Property 1. ttiat 6' only depends the magnitude of a and thus only positive values 

are needed to be considered for a. Similarly. when k = 2. only positive values 

are needed for p based on Property 2. It should be noted that. in order to get a 

positive definite matrix X. p can only take limited vales in ( -1. 1). 

To caicufate ARCS of the Max-MEWMA chart. we consider three forms of 

the changed covariance rnatrix: 

I. b2X,  ( b  > 0) 

In this case, the correlation between the two quality characteristics is still 

equal to p after the covariance matrix has changed. The combinations are set as 



below : 

1. k = 1: n = 2: 

X = 0.05.0.1 (O. 1) 1 .O: 

a = 0.0(0.5)3.0: 

h = 0.0(0.5)3.0: 

p = 0.0(0.3)0.9. 

Let pl be the correlation between the two quality characteristics after the 

covariance has changed. then pl = & ?  which results in p E (- 1.l)n (-oia2, ~ 0 2 ) .  

The combinations are set as below: 

For k = 2, n = 2. or n = 5 ;  X = 0.05.0.1(0.1)1.0. and a = 0.0(0.5)3.0. 

1. Both ul and q increase with p' < p. 



al = 1.25 and a2 = 2.0: 

p = 0.0(0.3)0.9. 

2. Only one o increases with p' < p. 

al = 1.35 and crz = 1.0: 

p = 0.0(0.3)0.9. 

3. Both ol and i decrease with p' > p. 

0 1  = (72 = 0.6: 

or al = 0.6 arid i = 0.8: 

p = 0.0.0.3. 

4. Only a increases with p' > p. 

al = 1.25 and Q = 1.0: 

p = 0.0.0.3. 

5 .  One O increases but the other decreases. al = 0.5 and o2 = 1.5 with p' > p. 

p = 0.0.0.3.0.6: al = 0.5 and cq = 2.0 with p' = p. 

or a, = 0.5 and 02 = 2.5 with p' < p. 

and a = 0.0(0.5)3.0. 



1. al decreases with pl > p. 

al = 0.75. p = -0.3.0.0.0.3. 

2. al increases with pl < p. 

al = 1.25: or al = 1-50: or ol = 2.0: 

p = -0.3(0.3)0.9. 

Because too many tables are required to list al1 the results. Tables 9.7-9.5 

display the ARL perforniancr for the various changes in the  process rneaii vector 

aiid variability when X = 0.2. which is one of the popular choices in practicr for 

EWMA-type control charts. 

9.5.2 Discussion 

Wheii E = b2&. the distribution of L/, is given by 

where 6* = $ ( p  - p o ) ' ~ - l ( p  - pO).  

Then the ARL performance. in term of the capacity for detecting the shift 

in the mean vector. depends on p - p, and X only through the value of d2. 

F o r k = 2 ,  d2 = b ? ( l  - p 2 )  ' 

For exarnple. if A = 0.20.72 = ?.and b = 0.5. two cases are chosen as 

al = 2.5. pl = 0.0; a* = 2.0. p2 = 0.6 

so that 6: zz 6;. As seen in Table 9.2, ARLl = ARL2 = 2.3. 

na2(l+p) For k = 3,  d2 = 0 2 ( l + p - 2 p 2 ) .  

For example, if X = 0.20.n = ?,and b = 1.5. two cases are chosen as 

al = 2.5, pl = 0.3: a2 = 2.0, p;, = 0.6 



Table 9.2: ARL values of Mëx-MEWMA chart when k = 2 .  n = 2. L = 2.9380 
and X = 0.30 in Case 1. 



Table 9.3: ARL values of hlax-MEWMA chart when k = 3. n = 2.L = 3.0025 and 
X = 0.20 in Case 1. 



Table 9.4: ARL values of Max-MEWMA chart when k = 2 .  n = 2. L = 2.9380 
and A = 0.20 in Case I I .  



Table 9.5: XRL values of Max-MEWMA chart when k = 3. n = 3. L = 3.0035 
and X = 0.20 in Case I I .  



so that 6; = 82. 4s  seen in Table 9.3. M L l  = dRL2 = 2.3. 

When Ç has the form as defined in II or III. It is inipossibie to directly 

get the distribution of Li,. However. since this new chart is mainly designed for 

detecting small changes of a process. the changes of al and/or q are srnall. The 

usually srnall. and 6: is an approximate noncentrality parerneter for 6. 

For A: = 2. 6;O2 = .*,* 
1 -p- 

For example. if A = 0 . 2 0 . ~  = 2 .  nl = 1.25 and oz = 1.00. two cases are chosen as 

so that 6: ic dg. As seen in Table 9.4. ARL1 = ARL2 = 2.3. 

For k = 3, = ' ' ' ( l ~ r )  
[ - p - ? p i  

For exampie. if A = 0 . 2 0 . ~  = Land ai = 1.25. two cases are chosen as 

so that 6; = d;,?. As seen in Table 9.5. ARL1 = ARL2 = 2.3. 

The resiilts displayed in al1 the tables show that ARL's beconie smaller when 

a increases and/or b (or n's) has a big change. It is noted that. when p increases. 

the highly correlated quality characteristics result in shorter ARL's since more 

information is available in the highly correlated data. One interesting phenunierion 

is that. as k increases. ARL's increase for a shift in the mean vector dorie. but 

ARL's decrease for a change in the variability alone. This can be explained by 

the fact that an increasing arnount of noise associated with the higher dimensions 

makes it harder to detect a shift in the mean vector. but it is more sensitive to 

detect a change in the variability. Another notable fact is that. for a small change 

within the process, the smallest ARL is obtained corresponding to small values 

for weakly correlated data, however, the optimal value for X will become slightly 

larger when data are highly correlated. For an increasing sample size, it is well 



known that ARL's become smaller since more information is contained in a bigger 

sample. 

9.6 One Combination Chart 

Two control charrs. the X 2  chart and the [Si chart. have been widely iiscci 

in rnultivariate quaiity control. 

To moiiitor the process mean vector. the test statistic plotted on the k 2  

chart is 

with UCLl  = ril,*. 
To monitor the process variability. (SI is the plotted test statistic. Wheri 

~ ( n -  1 )/S. i 4 k. = 2. - X?n-r. Then the control limits for the /Si/ chart are giveii by 
:EQ: 3 

For k = 2. n = 5. QI  = 0.0025. and a2 = 0.00125. the combination of the x2 

chart and the ISI chart has a combiried Type 1 error probability 1 - (1 -0.0025)~ zz 

0.005. which is equivalent to an in-control ARL of 200. 

Let po. p and Zo be the same as those defined in Section 9.4.1. To calculate 

ARL's of the combination chart. two forms of the changed covariance matrix are 

considered. 

1. b2& ( b  > 0) 



Let pl be the probability of an out-of-control signal detected by the x2 chart. 

Let p2 be the probability of an out-of-control signal detected by the ISJ chart. Let 

p be the probability of an out-oCcontrol signal detected by the combination chart. 

For various changes in the rnean vector and/or the variability. We have 

2 
x 2 . 0 . ~ 0 ? 5  Pl = 1 -&,p( 

62 

x'. 2 
3 0,00125 p z = I - & (  3 0.99875 

b" 
) + H ~ (  -y-- 

b ' ) 

Because Tf.  T j .  . . . are independent and so are ISi 1. IS21. . . . . the ARL fur the 

combinatiori chart is l / p  with respect to a. b and p. 

In this case. because the distributions of Ti and /Si/ can not be obtairied 

directly. simulations have to be used. The combinations chosen are the sanie as 

those in Section 9.41. 

For various changes in the mean vector alone. in the variability alone. aiid 

in both the mean vector and the variability. ARL's for the combination chart are 

calculated. Some representative results are given in Tables 9.6-9.8 and compared 

with the ARL's obtained from the Max-MEWMA chart with respect to different X 

values. As expected. the Max-MEWMA chart yields smaller ARL's than the corn- 

bination chart. Thus, it is more sensitive than the combination chart in detecting 

small to moderate changes in the mean vector and/or the variability. In general. 

smaller X values give better ARL performance. 



Table 9.6: ARL's of the >fax-MEWMA chart and the cornbination of X? chart and 

p 
0.0 

b = 0.50 0.3 
0.6 
0.9 
0.0 

b=1.00 0.3 
0.6 
0.9 
0.0 

b=1.50 0.3 
0.6 
0.9 
0.0 

b=2.00 0.3 
0.6 
0.9 
0.0 

b = 2.50 0.3 
0.6 
0.9 
0.0 

b=3.00 0.3 
0.6 
0.9 

Max-MEWMA chart 
CL 

0.00 0.35 0.50 1.00 2.00 
3.2 3 2  2.9 1.1 1.0 
3.2 3.2 3.8 1.1 1.0 
3.2 3.2 2.3 1.0 1.0 
3.2 2.6 1.0 1.0 1.0 

201.3 28.4 4.1 1.3 1.0 
199.3 '24.9 3.7 3.0 1.0 
199.3 14.9 2.6 2.5 1.0 
199.3 3.1 1.1 1.0 1.0 

3.6 3.2 3.3 1.3 1.0 
3.6 3.2 2.3 1.2 1.0 
3.6 3.0 2.0 1.1 1.0 
3.6 2.1 1.2 1.0 1.0 
1.5 1.5 1 1.2 1.0 
1.5 1.5 1.4 1.1 L.0 
1.5 1.5 1.3 1 1.0 
1.5 1.3 1.1 1.0 1.0 
L.l 1.1 1.1 1.1 1.0 
1.1 1.1 1.1 1.0 1.0 
1.1 1.1 1.1 1.0 1.0 
1.1 1.1 1.0 1.0 1.0 
1.0 1.0 1.0 1.0 1.0 
1.0 1.0 1.0 1.0 1.0 
1.0 1.0 1.0 1.0 1.0 
1.0 1.0 1.0 1.0 1.0 

Combination C hart 
u 

0.00 0.25 0.50 1.00 2.00 
19.6 19.6 16.8 1.0 1.0 
19.6 19.6 15.1 1.0 1.0 
19.6 19.6 6.6 1.0 1.0 
19.6 10.8 1.0 1.0 1.0 

100.3 48.4 6.6 1.1 1.0 
200.2 -43.6 -5.6 1.1 1.0 
300.2 28.2 3.2 1.0 1.0 
200.2 -4.2 1.0 1.0 1.0 

5.1 4.1 2.6 1.2 1.2 
1 4.0 2.4 1.2 1.2 
5.1 3.7 2.0 1.1 1.1 
5.1 2.2 1.1 1.1 1.0 
1.7 1.6 1 1.1 1.0 
1.7 1.6 1.4 1.1 1.0 
1.7 1.6 1.3 1.1 1.0 
1.7 1.4 1.1 1.1 1.0 
1.2 1.2 1.1 1.1 1.0 
1.2 1.2 1.1 1.1 1.0 
1.2 1.2 1.1 1.0 1.0 
1.2 1.1 1.0 1.0 1.0 
1.1 1.1 1.1 1.0 1.0 
1.1 1.1 1.1 1.0 1.0 
1 .  1.1 1.0 1.0 1.0 
1.1 1.0 1.0 1.0 1.0 



Table 9.7: 4RL0s  of the Max-MEWMA chart and the combination of x2 chart and 
ISI chart when 1; = 2. n = 5. X = 0.20 and L = 2.7722 in Case 1. 

Combinat ion Chart 
a 

0.00 0.25 0.50 1.00 3.00 
19.6 19.6 16.8 1.0 1.0 
19.6 19.6 15.1 1.0 1.0 
19.6 19.6 6.6 1.0 1.0 
19.6 10.8 1.0 1.0 1.0 

200.2 48.4 6 6  1.1 1.0 
200.2 43.6 5.7 1.1 1.0 
200.2 28.2 3.2 1.0 1.0 
200.3 4 .  1.0 1.0 1.0 

5.1 i l  2.6 1.2 1.2 
5.1 4.0 2.4 1 .  1.2 
5.1 3.7 2.0 1.1 1.1 
5.1 3.2 1.1 1.0 1.0 
1.7 1.6 1.4 1.1 1.0 
1.7 1.6 1.4 1.1 1.0 
1.7 1.6 1.3 1.1 1.0 
1.7 1 .  1.1 1.0 1.0 
1.3 1.2 1.1 1.1 L.0 
1.2 1.2 1.1 1.1 1.0 
1.2 1.2 1.1 1.0 1.0 
1.2 1.1 1.0 1.0 1.0 
1 1  1.1 1.1 1.0 1.0 
1.1 1.1 1.1 1.0 1.0 
1 1.1 1.0 1.0 1.0 
1.1 1.0 1.0 1.0 1.0 



Table 9.8: ARL's of the iLfax-MEWMA chart and the combination of X' chart ancl 
IS/ chart when k = 2. n = 5. X = 0.20 and L = 2.7722 in Case I I .  

p 
al=0.60  0.0 
a3 = 0.60 0.3 

0.0 
a l y 0 . 6 0  0.3 
03 = 0.80 0.6 

Max-bfEWM.4 chart 
a 

0.00 0.25 0.50 1.00 2.00 
4.4 4.5 3.6 2.0 1.1 
3.5 3.6 3.2 2.0 1.0 

28.2 9.5 3.9 2.0 1.2 
24.6 5.8 3.6 1.9 1.3 

Combination C h u t  
I? i 

0.00 0.25 0.50 1.00 2.00 1 
49.0 48.4 21.6 1.0 1.0 
13.0 12.8 10.3 L.0 1.0 
53.5 4.7 5.4 1.1 1.0 
47.6 11.3 4.7 1.1 1.0 

14.3 6.5 3.0 1.6 1.0 ( 30.0 11.7 2.8 1.0 1.0 1 



However. as in univariate case. occurrence of an inertia problem is the worst- 

state for a EWMA-type control chart because the EWMA-type control chart may 

not react to a large change quickly. To prevent possible delays in detecting large 

changes. one c m  use an additional Max-MEWMA chart with h = 1 simultarittously. 

9.7 Charting Procedure and Example 

The charting procedure of a Max-LIEWhM chart is similar to that of a L I ; w  

EWMA chart exçept that a diagnostic has to be used to ideritif? which variablo(s) 

contributed to an out-of-coritrol signal. 

The procedure can be briefly sunimarized in the following steps: 

- 
1. If po is unknown. substitute x for p,. If Zo is unknown. substitutr s For 

&l 

2. For each sarnple. compute Zi with Zu = O as starting value: calculate Y ;  with 

Y. = O as starting value. 

3. Calculate LIi and I.; and construct CCL according to (9.15). 

1. Compute Abfi and compare it with the UCL. 

5. Plot a sample point against the sample number i when Mi 5 U C  L. 

6. Plot a plotting character against the sample number i when Mi > UCL. For 

the case of only lui 1 > UCL.  plot k+" if Lli > O and plot " m-'? if Lii < 0: 

For the case of only 1 Ii.1 > UCL y Plot '' v+" if V,  > 0. and plot "v-'' if C: < 0: 

For the case of both IVi( > UCL and lKl > UCL. plot !' m+v+" if Ui > O 

and > 0: plot "m+v-?? if Ui > O and < O; Plot "m-v+" if Ui < O and 

V, > O: plot "m-V-'' if Ui < O and < 0. 



n(2-A) 7. When lui( > UCL. calculate Ci = -z:E-'z~ and then calculate Dj = X 

Ci - Ci( j ) .  j = 1 . 2 . .  . . . k. where Ci(ji denotes the value of Ci obtairied froni 

the k - 1 variables omitting 'i,. Compare the relative magnitudes of each 

Dis. .-\ large value could potentially identify an assignable cause for the 

mean vector. 

8. When II.;( > UCL. calculate Ej = IC;I - jb;lU,. j = 1 . 2 . .  . . . k. whttre 

1 is the value of 1 I/;/ obtained frorn the k - 1 variables omitting (X,, - 

) X  - x). Compare the relative magnitudes of each Eis. -1 largr. 

one could potentially identify an assignable cause for the vsriability. 

9. Investigate the cause(s) associated wit h each out-of-control signal. 

.An exarnple is given to illustrate how to apply the !vlau-MEWiLIA chart to 

multivariate normally distributed data. The data. consisting of 12 samples of size 

5 .  are given in Table 9.9. The first 10 sarnples are taken froni Cheng ancl Ma« 

[Il] .  where it was stated that they were collected every half an hour froni a spring 

process in a spring manufacture company. 

According to historical information frorn the Company. 

are added to simulate an out-of-control process. One quality characteristic is the 

inner diarneter of the spring with specification of 28.30*0.10 and another quality 

characteristic is the elasticity of the spring with specification of 46.0k0.50. With 

ARLo = 200 and A = 0.2. a Max-EWMA chart is set up to monitor the spring 

process and it is shown in Figure 9.1. As seen from the plot. the last two sample 

points are above the UCL. Becase Ull, Ulz and KP are greater than UCL. sample 



Table 9.9: Spring data 

1 1 is reieted to an increaed shift in the meün vector. while saniple 12 are related to 

increased changes in both niean vector and variability matrix. To investigate which 

quality characteristic is responsible for each out-of-control condition. t iie relative 

magnitudes of each Dis and Ejs are compared. It is found that . for sample 1 1. t tie 

inrier diameter of the spring provides an out-of-control signal on the control chart 

which may indicate an assignable cause in the process resulting in a shilt in the 

mean vecter. For sample 12. the elasticity of the spring shows an out-of-control 

signal on the control chart which may indicate an assignable cause in the process 

resulting in changs in both the mean vector and the variability matrix. 



Figure 9.1: The Max-MEWhIA chart for the spring data 



CHAPTER 10 

Conclusions 

10.1 Summary 

The major goal of this study is to develop EWMA single control charts. 

which are designed to simultaneously and effectively monitor both the process mean 

and the process variability when srrial1 changes are of interest. Crider norniali ty 

assiiniption. five new çoritrol charts of this type are presented iri t his thesis. Ariiong 

them. four arc univariate charts and one is a niultivariate chart. 

There are three main properties of a good control chart: high capability 

in detecting out-ofcontrol conditions. identifying the source of an out-of-contn~i 

signal and indicating the direction of an out-of-control signal. 

ARL performance is an indication of the ability of a controi chart t« tletect 

out-of-control conditions for a process. In the univariate case. the ARL conipar- 

isons in Chapter 7 show that. if overall perforniance is considered. the hlax-EWlIA 

chart and the SS-EWbfA chart perform better than the two other new charts. the 

combination of the two Shewhart charts and the combination of the two EbVMA 

charts. However. if a mean shift accompanies an increased variability change. the 

EWMA-SC chart has the best performance of al1 the charts considered and al1 

the four new charts yield smaller ARL's than the two combination charts. In the 

rnultivariate case. the ARL cornparison in Chapter 9 indicates that. in term of 

detecting small changes within a process. the performance of the Max-MEWMA 

chart is better than that  of combination of the x2 chart and the [SI chart. 

Diagnosis is an indication of the ability to identiS the source and the di- 

rection of an out-of-control signal. Al1 the five new charts have this ability except 



that the EWMA-Max chart rnay be insensitive in identifying the soiirce of a small 

change. For the Max-EWMA chart. the EWMA-Max chart and the Max-MEWhIA 

chart. plotting characters are used to indicate the source and direction of a detected 

change. For the SS-EWMA chart and the EWMA-SC chart. the position of a plot- 

ted point can directly tell the source and the direction of an out-of-control signal 

and a number is required to indicate the sarnple number. 

Another goal of this research is to elaborate upon and propose control 

chart when the underlying distribution of the qualitv characteristic is logmorriial. 

Although the lognormal qiiality control was considered qiiite sonie tinie ago. t h t ~  

literatiire seems to be iii error. Based on the basic relatioriship of nornial anil 

lognormal distri butions. the corresponding riormal process is obtairied t liroiigh 

logarithmic transformation after a specific interval for the lognormal nieari is given 

to a lognormal process. Then two control charts are set iip for the lognormal pro- 

cess and thci complicated lognormal process can be monitored tlirough its sinipler 

normal counterpart. 

It should be noted that. in this dissertation. an important assurnption is 

tliat of independence amoug the observations. If this assumption is not met. 

the control charts studied here rnay signal too many false alarms. For correlated 

data. Montgomery and Mastrangelo (391 proposed an approximation of the exact 

time-series mode1 approach based on EWMA technique. which is based on an 

independent ly dist ributed sequence of one-step-ahead prediction errors. 

10.2 Areas for Future Research 

Some t opics below are wort h h r t  her research: 

1. Since al1 the new EWMA single charts are under the normality assumption. 



it is necessary to determine the effect of departures from normality upon 

t hese charts. 

2. Develop multivariate analogue of the SS-EWbl.4 chsrt. The perforniance 

of the multivariate procedure would most likely be siniilar to its univariate 

counterpart. 

3. Conipute values for optimal May-EWMA and SS-EWhI.4 charts at other in- 

control ARL values such as 370 and 300. The ARL properties are expected 

to be the same as those when the in-control ARL is 250. 

4. Conipute ARL values of the Max-'v1EWM.A chart at other in-control ARL 

values such as 370 aiid 500. The ARL properties would niost likely be siiiiilar 

to those when the in-coritrol ARL is 200. 

5 .  Consider applications of the five new charts to correlated data. 

6. Compare the new control charts for lognormal population with other charts 

using simulation studies. 

7. Propose new control charts for other skewed distributions. 
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APPENDIX A 

Computer Programs for New Control charts 

A. l  Programs for Max-EWMA Chart 

A.1.1 ARL Computation 

This program cornputes -4R.L's of a Max-EWMA chart for controlling both the mean 

and the variance of a normal process. For a given in-control ARL of 250. each XRL value is 

obtained using LO.000 sirnulations gerierated with IMSL Fortran Subroutines. Ai anci B 1 are 

chmgcs in the process for the mean anc f  the variance respectively and tliey are exprcsscd as s 

niuItiple of the standard cieviation of a nonrial randoni variable. 

Program Listing 

REAL LA.XRL.SlC.5D.~f.A(10000000~.S.-\l..~A( 100000001.Xl.Bi. 

X.X.T,S(O: ~ooonaoo~.~( ~oor~oc~oo).\r'i ioouaoooi.v( ioooaoaai, 

.kCCL.SI.lV(U: i0000000) 

ISTEGER L.SlZE.COC'IT.SOI:T.NR.C.ISEED 

E S T E R S A L  RNNOA.RNSOA.RNSET.ChIACH 

!.IC=cl 

5D= 1 

\VRlTE(..21 

FORJlAT(S?(.'.-\RL"S FOR .JS SIAX-ElVMA CHART (ARLU=950):') 

LX=O. IODO 

D O  3 N = l . I Z  

B1=N9.?5 

D O  5 bI=O.l:! 

.AL=M*.35 

SIZE=5 

ARL=O 

COLiNT=O 

ISEED=7?3459 

CALL USIXCH (?.NOUT) 

N R= 10000000 

CALL RXSET (ISEED) 

CALL RNNOA(NR.A) 

C=O 

T=O 

UCL= ?.as 
Z(0) =LI U 

W(O)=O.O 

I = l  

IF (T .LE. UCL) THEN 



END IF 

WRITE(*.50) 5IZE.Al  .B t .LA.CCL,.ARL 

50 FUR%IAT(t>S.'SIZE='.I2.5X,'.Al='.F4.2,2X.'BL=".F4.2. 

.C: 2X.'LALIBDA = '.F4.J.IX.'CCL='Fti.J.2X..YhRL ='.F1?.5) 

5 CONï'lNCE 

3 CONTTNL'E 

END 

FUNCTION H ( X )  

REAL X 

H=l-EXP(-]Y/2)*(l+i(/?) 

RETURS 

END 

A. 1.2 Simulations of Diagnostic St udy 

For a given in-control ARL of 250, this program simulates 1000 out-of-control signals 

with respect to a pair of speciiied A l  and BI, which are changes in the process for the rnean 



and the variance respectively. To identify the source and the direction of the detected changes, 

Max-EWMA chart is applied and the out-of-control signals are counted according to the charting 

procedure of the chart. 

Program List h g  





A.2 Programs for SS-EWMA Chart 

A.2.1 ARL Computation 

This prograni cornputes ARC'S of a SS-EWbI.4 chart for controlling both the rncan arid 

the variance of a normal process. For a given in-control ARL of 250. each ARL value is obtained 

using 10.000 simulations generated with IMSL Fortran Subroutines. A 1  and B t are changcs in 

the process for the mean and the variance respectively and they are exprcssed as n miiltipIe of 

the standard deviation of a normal random variable. 

Program Listing 

REAL LA.ARL.ML'.SD.H.h( 10000000).XAl..YA( I0000000)..4L.B 1. 

kX.T.Z(Q:  L000000) ,L'( 10000000) .Y( LOQQOOOO) .V( LOOOU000). 

&UCL,S1.W(0: 10000000) 

INTEGER 1,J.SIZE.COUNT.Z;R.C.ISEED 

EXTERNAL RSSOA.RN?IOt\.RNSET.t'lIACH 

ISEED=723459 

L A z . 3  

MU=O.O 

S ï k 1 . 0  

SIZE=5 

ARL=O 

COUNT=O 

6 CALL UbiACH (2,'IOCT) 

N R= i0000000 

CALL KNSET (ISEED 



C A L L  RNNOA(NR.X) 

C=O 

h 1 =o. 0 

Bl=L.O 

T=O 

CCL=9.9"435 

z(OI=.LIL' 

w(o)=o.o 
I =  L 

IF (T .LE.  CCLl  THEN 

XA 1=0.o 

D O  20 J = C +  1 . C d  

.i( J ) = r \ l + h ( J ) ' B I  

! C A ~ = X A ~ T : \ ( J  ) / 5  

C O N T I N C E  

XA( I )=?CX!  

5-0.0 

D O  20 J=CS+ 1.C'-5 

S=5i{ .A( J)-.Y:\( I ) ) ' l : \ I J ) - ~ A {  1 ) )  

CONTINCE 

SL=S/ ISD*SD)  

Z( I )=(  1-LA i*Z( 1-1 )+L:\*'C..\( 1) 

L ' ( I I=SQRTIJ*~?-L; \ ) /LA ) * ( Z (  II-1IC ) / S D  

X = H ( S I )  

C A L L  IS \ 'SORM( X..YO) 

Y (  [)=?<O 

LV(I)=( l -LA)mlV( l - l ) -L .4 'y t [ )  

V( L)=SQRT((2-LhI/Lt\) 'Wi 0 

r = C ( l ) * ~ : ( I ) - r V t l ) ' V ( I )  

1=1+ 1 

C = C i S  

COTO 10 

E N D  IF 

.ARL=r\RL+!I-1 I 

COCNT=COUNT+I 

IF ( C .GE. 9YYC)OUO) r H E N  

ISEED=123.159 

GOTO 6 

END I F  

I F  (COL'NT .LT. 10000) T H E N  

G O T O  1 

E L S E  

ARL=ARL/  10000 

END fF 

WRITE(*.50) SIZE.LA.XRL 

FORMr\T(SX.'SAZlPLE SlZE = '.I-i.'2S,'LAIIBDA = ' .FJ.3, 

&SX.'ARL ='.F15.2) 

END 

FUNCTION H(X1 

REAL X 

H=l-EXP(-X/2) ' ( l+X/?)  



A. 2.2 Simulations of Diagnostic St udy 

For a given in-control .AR1 of 250. this program sirnulates 1000 out-of-control signds 

with respect to a pair of specified Al and B1. which are changes in the process for the mean 

'and the variance respectively. To identifi the source and the direction of the detected changes. 

SS-EWMA chart is applied and the out-of-control signds are counted according to the charting 

procedure of the chut .  

Program Listing 

REAL LA.MC.SD.H.A(lOOOOOOO).XA1.XA( lOOOOOOO).Al.BI. 

&X.T.Z(O: lOUOOOOO).U( lOOOOOOO).Y( 10000000).V( 10000000), 

&UCL.sL.W(O:10000000),uo1,vOL.t:O?,C'O2 

INTECER COCNT.NOIIT,ZIR.C.ISEEDD~Ilt.L12,\rltCr~. 

kSIVII.~fV12..CfC'?I.SfV12 

EXTERNAL RNNOA.RNNO.4,RNSET.ULIACH 

M U = O  

SD=1 

WRITE(*,2) 

1 FORPVfAT(5X.'DIACNOSTIC ABILITIES FOR THE SS-EWMA CONTROL CHART 





COCXT=COL'NT+L 

IF i C G E .  9990000) THEN 

ISEED= L23.159 

C O T O  à 

END IF 

IF (CO . G E  O )  THES 

IF (UO G T  CCLI) THEN 

IF (VO GT CCLL) THEN 

M V 1 1 = M V L l t l  

ELSE 

IF i VO LT -1-'CL1) THES 

~ l V l f = x I \ ' t Z + l  

ELSE 

\IL=XlI-1 

E N D  IF 

E X D  IF 

ELSE 

IF i \ ' O  GT O )  rHEN 

IF i \'O LE. I'C'Ll) THES 

IF ( ( . A I  EU r i )  OR. tB1  EQ. 1 ) )  rHES 

IF (VO EQ I ' r l )  W E N  

x f v L l = ~ l \ ' l l t l  

ELSE 

IF (CO CT Vo) rHEN 

511=? . lL~l  

ELSE 

V l = \ . l * l  

E S D  IF 

END IF 

ELSE 

.LIVLI=MV11+I 

E N D  IF 

ELSE 

V l = t ' t + l  

END IF 

ELSE 

IF (VO GE.  - C C L l )  THES 

IF ( ( A l  EQ. O )  OR. t BI EQ. 1) )  THEN 

IF (CO EQ -VU1 THEN 

51VL2=.ZlVl2+ 1 

ELSE 

IF (CO .GT. -VO) THEN 

5 I I = h t l t l  

ELSE 

V?=C'2+1 

END IF 

END IF 

ELSE 

MVl?=MV1?+ 1 

END IF 

ELSE 

IF (VO .GE. -CCLl) THEN 



IIV12=MVL?+l 

ELS E 

L'I=V2+ L 

END IF 

E N D  IF 

END IF 

EYD IF 

ELSE 

IF (CO LT - C C L I )  THEN 

(F (VO LT - C C L l )  T H E N  

\IV22=.IIV?2+ 1 

ELSE 

IF (VO GT C C L I )  THES 

IIC'21=MV?l- 1 

ELSE 

\!?=!d3- 1 

E X D  (F 

E S D  IF 

ELSE 

IF (VO LT 0 1  T H E N  

IF {VO GE.  - C C L l i  THEN 

IF ((Al E Q  0 )  OR. iB1 EQ 1 ) )  THES 

( F  (CO EQ. \ 'O)  f'HES 

L!\.22=IIV224- 1 

ELSE 

[F (CO G'r VO) THES 

!.II=!J2+1 

ELSE 

V'?=v-&L 

E N D  IF 

E N D  IF 

ELSE 

\IV22=%IV2?+ 1 

END IF 

ELSE 

L"?=C'?+ 1 

END IF 

ELSE 

IF (\ 'O LE. UCL1) THES 

IF ( ( A l  EQ. il) .OR. ( 8 1  EQ. 1 ) )  T H E S  

IF (GO .EQ.-VO) THEN 

MV?l=LIVZl+L 

ELSE 

IF (UO .LT -VO) T H E N  

.CIZ=bI2+L 

ELSE 

Vl=VL+l 

E N D  IF 

END IF 

ELSE 

StVZl=MV21+1 

END IF 





Program for EWMA- Max C hart 

This program cornputes XRL's of a EWMX-Max chart for controtling both the mean 

and the variance of a normal process. For a given in-control .%RL of 250. a numerical rnethcid 

of using integral equations is used to cornputer ARL's. A0 m d  BO are changes in the process 

for the mean and the variance respectively and they are expressed as a multiple of the standard 

deviation of a norrrial randoni variable. 

Program Listing 





END IF  

I F  ( 1  .EQ.  J )  THEN 

;\(r.J)=\V(I)*T/LA-L.ODO 

ELS E 

A(i.J)=W( J ) 'T /  L.A 

END I F  

20 C O S T I X C E  

10 CONTI?;CE 

CALL FACTOR( A,d4.WK.1PIC'OT.1FLt4C~ 

II.' ( I F L A C  .EQ. O) T H E S  

\VRITE( 6.50)  

END IF 

CALL c'L'BSTIA.IPIC'OT.B.64.S) 

4 RL=c).ODO 

DO 30 l=l.tiJ 

.4RG=t P( 1)-(  1.i)DQ-LA 1'1 L?8379Dc)l/ L.% 

IF(i\RG .LE. O.ODo) T H E S  

T = LOD0 

ELSE 

-r = F(XU.BO.XRC;) 

E'ID i F  

ARL=ARL - Wl  I)'S( 1)'T 

30 C O N T I N L E  

.ARL= i.ODO-ARLjLh 

iVRITE(ti,tiOl LA.KO.H.AO.BO..4RL 

50 FOR~tX~15S.'LA~!BDA=',F-I.2,2X..YkO=',F 5.2x.'H='.F6:1.2.Y. 

k';\O='.F.t.3.2X,'BO= .FJ.2.2X.'.&RL='.F15.5) 

50 FORIIXT(SS. 'ZERO D E T E R h l I S X S T  FOR LtNEAR SYSTEM') 

I C O N T i S C E  

1 C O N T I N U E  

END 

DOUBLE PUECISIOS FL'YC'TIOS F(h0.BO.X) 

DOUBLE PRE(IISI0N X 

DOUBLE PRECISION CF.CFl.CF2.CF3.Y L,Yl.T.BL.B2,B~J.Bi.B5.PPL.Z1.22. 

kH0.H 1 ,H2.fIJ.H~.DH.HOl.H0'2.AO,BO.5R.PPCHI,~~l.T2 

EXTERNAL HO.DH 

SR=DSQRT(5.D01 

B 1=0.319381530DO 

82=-0.354563782D0 

B3=1.i81477937DO 

BJ=- 1.82 1?559Î8DO 

B5= 1.33017442900 

P=0.2316419DO 

T=l.ODO/( I.ODO+P'D4BS(X)) 

Tl=l.ODO/( l.DO+PeDABS((X-hOeSR)/BO)) 

T2=i.0DO/(l.DO+PgDABS((-X-AO.SR)/BO)) 

2=(3.9894??804Ol43?fD- t)*DEXP(-.SDO'XmX) 

[F ( X  .LE. 8.DO) THEN 

Zl=(3.989J228040143f;D- l)'DE.YP(-.SDOe( (X-AO'SR)/BO)'*?) 

ELSE 

Zl=O.DO 

END IF 



I F  ( X  LE. J.5DO) T H E S  

Z?=(3.98942?8O4Ol4J?ÏD-1 ]*DEICPI - 5DOB((-X-AO*SR)/BO)"I) 

ELSE 

Z3=O.DO 

END IF 

CF=1.ODO-Z'(BL-T+B2mT'*2rB3*T**3tB4-TmmJ-rB5mTg*5) 

t F  ((X-AO'SR) jBO GT O DO) T H E N  

C F l = 1  DO-Z1'(Bl~TltB2*Tl~*l+B3*Tt*~3+BJ*'~l*~JrBS'T1"S) 

ELSE 

CF1=Zlo i  BI'Tl -B?*Tl**?-B3-T1'-3-BJ-T1**4~BS-T1**~) 

END IF 

1F ((-X-AO*SR)/BO LE.-3 DO) TtfES 

CF?=U.DO 

ELSE 

CF.!=Z-' (  Bl'~~-~~*~~m*2-B'~'T~o*3-~J'T~'*J~B5~T?~*'Il 

END IF  

cmF'I= L DO-CF 

IF ( CF EU 1 I THES 

Y1=55 

ELSE 

C'ALL ISVHiCF.PPCH1)  

Y l=PPc'Ftl  

END IF 

IF (CF3 EU 11) THEN 

Y2= i1000001 

ELSE 

C A L L  fN\'H( CF3.PPC'HI) 

y-- ,-PPCHI 

END IF 

FII=DH( Y I /  BO'BO)) 

H?=DHIY?/i B0*30) )  

HJ=DHI Y I )  

t fJ=DH(I'?)  

HOl=HO(YL/( BO0B0)) 

HO?=HO(Y?/( BO-BO)) 

F = ( Z f  +Z?)'( HOI-HO1)/BO - iCF1-CF3)*(H LmZ/H3-tH?'Z/H4 ) / (  BO'BO) 

RETCRN 

END 

DOCBLE PRECISION FCSCTIOI ;  HO(?S) 

DOUBLE PRECISION .Y 

HO=L-DEXP(-.Y/?I*(L+X/?) 

RETCRN 

END 

DOUBLE PRECISION FUYCTION DH(X)  

DOCBLE PRECISION X 

DC1=?tgDEXP(-?C/2)/4.00 

RETURN 

END 

SUBROUTINE IKVH(P.PPCHI) 

DOUBLE PRECISION P,X( tOOOOO).EPS.PPCHI 

I= 1 

X( I)=-2*DLOG( 1-P) 



EPS=.SD-6 

1 4 4 -  1 

X(I)=?C( I )r''DLOG( t+X(I-  1 ) / 2 )  

IF (DABS(X(1)-.Y(!-1)) CT. EPS) 'CHEN 

COTO 1 

EYD 1F 

PPCHI=X(  I) 

RETURN 

END 

S C B R O C T I S E  SL'BST(lVL,[PI\ OT.B.N.X2) 

I N T E G E R  IPIVOTi64).I.IP.J 

DOI:BLE PREC12'10S 816J).LVllti4.tiJ )..Y2(64).SCL! 

I F  1 N LE. 1)  THES 

X ? ( I j = B (  L)/M'l( 1.11 

RETCRN 

END I F  

IP=lPIVOTI Li 

X ? ( l I = B ( I P )  

D O  15 !=A$ 

St'M= UDt) 

r 1 =I. 1 

DO 14 J = l . f l  

SLM=bVl(I..l)*X2( JI - 5VXl  

CONTIN1:E 

IP=LPIVOTI 11 

.Y_T(l)=B(LP) - iCSI  

CONTIYL'E 

.Y ,> (N~= .YI (N) , 'LVt iS ,N)  

I2=N-l 

D O  10 ISTEP=l . I2  

!=Y-ISTEP 

ijL'lI= UDO 

13=tt 1 

D O  19 J=I3.S 

SL 'M=Wl(  I.J)*X;>( J) A SC'S1 

CONTINCE 

X?(1)3(X3(  I ) -SCl l~ / \ lVl ( I , I )  

C O N T I S U E  

RETURN 

END 

SUBROUTINE FACTOR~W1.Z;.D1.IPIVOTTIFLAC) 

DOUBLE PRECISION DI(64). \V1(6J.61).A~VIKODD 

COLiLfAX.RATIO.ROW~IA~.TE~IP 

I X T E G E R  IFLAG.lPIVOT(6J).I.1STAR.J.K 

IFLAC=I 

D O  9 I=I.N 

I f  IVOT(I)=I 

ROWMAX=.ODO 

D O  5 J=L.N 

ROW~~AX~DLM~\X~(RO~~~~I.~X,DABS(~~'~(I,J))) 

C O N T I N U E  

IF [ROWMAX .EQ. .ODOl THEY 



I F L A G d  

ROWMAX=1.ODO 

E N D  I F  

Dl(I)=ROW!dAX 

9 C O N T I N C E  

IF ( Y  .LE. 1 )  RETURN 

Nl=N-1 

D O  '20 K=l.NL 

COLSI.4.Y=D.4BSf\Vt[K.K))/ D l (  K I  

tST.4 R=K 

KL-KIL 

D O  13 1-K1.N 

AWIKOD=DABS(kVI( 1.K) ) / D L (  K )  

I F  (AWIKOD G T  C 'OLhIAS)  THES 

(.'OL.lfAX=AWIKOD 

fSTAR=l  

E N D  IF  

13 C O N T I N C E  

IF  iCOLLlAS EQ ODOI rHES 

IFLAG=O 

ELSE 

IF ( ISTAR GT K) THES 

IFLAC=-IFLAG 

[=[PIVOT(  ISTAR) 

l P I V O T ( I S T A R I = I P I V O T ~  K 1 

IP IVOT[K I=I 

TEhtP=DI(iS'T.-\R) 

DL(fSTAR)=Dl(K)  

D l i i i ) =  f E M P  

D O  15 J = l , N  

TEMP=kVl(ISTAR.J)  

Wl( ISTAR.J )= iV1(K.J )  

W l (  K . J ) = T E h I P  

1.5 C O N T I N U E  

END IF 

K2=K+ 1 

DO 19 I=LC?.N 

Wl(t.K)=Wl(I.ti)/\VL(K,K) 

R4TfO=kVl(I .K\ 

K 3 = K + l  

DO 18 J=KJ.N 

W1(I.J)=W1(I.J~-RATIO~Wl(K.J) 

18 CONTINUE 

19 CONTINL'E 

E N D  I F  

?O CONTfNt'E 

IF ( W l ( S . N )  .EQ. .ODO) IFLAG=O 

RETCRN 

END 



A.4 Prograrn for EWMA-SC Chart 

This program cornputes ARL's of a EWMA-SC chart for controtling both the mean and 

the variance of a normal process. For a given in-control .4R..L of 250, a numerical niethotl of usirig 

integral equations is used to cornputer XRL's. A0 and BO are changes in the process for the rnean 

and the variance respectively and they are expressed as a multiple of the standard deviation of 

a normal randorn variable. 

Prograrn Listing 





IF (1 .EQ. J )  T H E S  

.%(I.J)=W(I)'T/LA-1.ODO 

ELSE 

.%(I.J)=W(J)'T/L.% 

E N D  [F 

20 COSTINCE 

10 COXTiNcE 

CALL F.%CTOR(A.G*I.\.VK.IPIV0T.!FLt4C) 

IF ( IFLAC .EQ. O)  T H E N  

WRITE(B.30) 

STOP 

END IF 

CALL SCBST(:\.lPIL'OT,B,Cj4.X~ 

D O  9 I=l,à.( 

IF ( X ( I j  LE. O )  T H E S  

.Y(I)=O 

END IF 

1 C O S T I S C E  

:\RL=.oDO 

D O  .JO 1=  1.6-1 

.4RG=(PII)-i  1.OfJ-L.%)'N):L;\ 

IF(AHG LE. 0.UDOI THEN 

T r 0.0D0 

ELSE 

r = FfN.XII.BO.ARCI 

END IF 

XRL=ARL - W(I) 'X(I )*T 

'10 C O S T I N K E  

.\Ri.= L.UDOtXRL/LA 

WRITE(t5,dO) LA.N.Is;.CCL.ARL 

60 FORLIAT(SX.'LX~IBDA=',Frj.i.2S.'N~~.F5.2.~'z.'zK=~.F7.5. 

k2X.'CCL='.Ft0.S.2X,.Y~\RL=',Ft5.5~ 

50 FORMAT(SX.'ZERO DETERLlISAST FOR L l S E A R  SYSTEXI' I  

END 

DOUBLE PRECISION F C S C T I O S  F(S..-\O.BO..Y) 

DOUBLE PRECISIOS X.H.DE..\l.Bi.hU.BU.S.B 

B=BO'*? 

DE=NmAO'm?/BO"? 

H=(l .Dû/3.D0)*( L.DO+'l.DO'(DE**?)/f SJ-~.DO*DE)**?I 

.%i=t.DO+H*( H-LIm(N+2'DE)/( S-DE)":! 

BI=HmDSQRT(2'(X+2*0E))/(SIDE) 

IF (A0 .EQ. O) THEN 

F=DSQRT(.5DO*X/(3.1JIS6DO*B))'(X~B)'DEXP~-~/(?.DO'B) )/3.DO 

ELSE 

F~H'(X"(H-i))'DE?CP(-((((X/((BOo'~)*(N+DE)))'mH-r~l)/B1)m~2)/?.DO)/ 

k (Bl'(BOm'(1mH))*((N+DE)'*H)*DSQRT(2.DO*3.1J~56DO~) 

END IF 

RETURN 

END 

Jü 'BROUTINE SUBST(WL.IPIVOT.B.NN,Y2) 

INTECER IPIVOT(64),I,IP.J 

DOUBLE PRECISION B(64).W1(64.6~I).X2(6*I),SUJf 



IF  ( N  .LE. 1) THEN 

K2( L)=B(L)/W1(1.1) 

RETL'RN 

END IF  

lP=IPIVOT(  1 ) 

.Y?( l ) = B ( I P I  

DO 15 I=2.S 

iUSl=.ODO 

Il=[-1 

D O  1.l J=1.11 

5CSl=LVl(I,J).X2( J )  - 5CXI 

14 C O S T I N C E  

IP=lPIVOT(  I )  

X2( t )=B( tP)  - SCSI 

15 C O S T I N C E  

S ~ ~ N ) = . Y ? I S ) / U ' I ( N . N I  

12=S-L 

DO 10 tSTEP= 1.12 

I=S-ISTEP 

St'51=.0DO 

13=Irl  

D O  19 J=13.N 

Sl!SI=LVL(I.JI'X?( J )  + 51:51 

1 CONTINL'E 

.Y?(II=(.Y?f I I -SCSII /Wl( I . l~  

?O CONTINUE 

RET L'Ri; 

ESD 

5t:BROL'TIiiE FACTOR(IVl.S.Dl.IPI\'OT.IFLhC) 

DOUBLE PRECISION DL(ti~l).IVlfrj.l.rj4l.AWIKOD, 

COL.llhX.RhTIO.ROtVSIAX.TE5IP 

INTEGER IFLAG.IPIVOT(6J~.I I IST.~R.J.K 

[FLAG=l  

D O  9 f=l .N 

IPIVOT( l )=I  

ROIVMAX=.ODO 

DO 5 J = I . S  

ROW,ClAX=DhlA.YI(ROI~'~IAX.DABS(~VL( 1.J))) 

5 C O N T l N U E  

IF (ROWMAX EQ. ODO) THEN 

IFLXG=O 

ROW%IAX= 1.ODO 

END I F  

Dl(I)=ROWSIAX 

9 CONTINUE 

IF ( N  .LE. r )  RETURN 

NL=Pi-L 

DO ?O K=I.NL 

COLMAX=DA BS(Wl(K.K)}/Dl(  II) 

ISTAR=K 

KL=K+1 

DO 13 t=Kl .N  



.~WIKOD=DABS(WL(l,K))/Dl(K~ 

I F  ( A W I K O D  G T .  C0LSIA.Y) T H E N  

COLM.SX=AWIKOD 

MT.-\ R= 1 

EYD I F  

13  C O N T I N U E  

1 F  (C0LM.k.Y .EQ. 0 0 0 )  THEN 

IFLXG=O 

E L S E  

I F  ( I S T A R  .GT K) THEN 

I F L A C = - I F L A G  

I=IPLC'OT( I S T A R )  

l P I V O T ( I S T A R I = I P I V O T (  K l  

IP I \ 'OT(K)=I  

TE .L lP=Dl i  lSTARl  

D l ( I S T . k R ) = D I i K )  

D L ( K ) =  TESIP  

D O  15 I=L.N 

r E M P = L V I (  lST:\R,J) 

W I ( L S T X R . J ~ = ~ V L ~ K . J 1  

LVlI K.J I= TEkIP  

15 C O N T I N L ' E  

END I F  

K 2 = K + l  

D O  19 I = K ? . N  

W I I  I , K j = W I ( I . K ) / i V l i K . K i  

Rr\'TIO=LVI( 1.K) 

K3=K+l  

D O  18 J=K3.N 

LVI(I.J)=tC'l( 1 .J)-RATIO*\Vl(  K.JI 

18 C O N T f N C E  

IO C O N T I N I ' E  

E N D  I F  

20 CONTISL'E 

I F  ( W L ( N . 3 )  EQ. ODO) IFLAG=O 

RET C R'r 

EXD 

A.5 Prograrn for Max-MEWMA Chart 

This program cornputes ARL's of a Max-MEWMA chart for controlling both the mean 

vector and the covariance matrix of a multivariate normal process in Case 1. For a given in-controi 

ARL of 200, each ARL d u e  is obtained using 10.000 simuiations generated with IMSL Fortran 

Subroutines. 

Prograrn Listing 

IXTEGER L D Z I . L D B , L D C ~ . N C Z ~ , N C B ~ N C C ~ , N R Z ~ , N R B , ~ ~ .  



k LDC2.LDC3.2rCC3.SRC3,IR~SK,ISEED.LDR,LDR.LD~1G,SO~T.NR.LDCOV.C. 

k L.COCXT.LO.LI.Lf.L3 

PARAMETER (LDZl=l.LDB=Z.LDCL=l.NCZ1=2.NCB=2.NCC1=f,SRZ1=~, 

k NRB=I.NHCI= l.LDC?=2.SRC'I=3,NCC-=L.LDC3=lINRC3=I.NCC3=L. 

~LDCOV=~.LDR~'~C=~.LDR=I~~OOOOO,N 1=2,LDC4=l.NCC.1=2,NRCI=L,LDCJ=;'. 

kSRCS=2.SCCf=L.LDC6=l.SRC6=L.SCC8=L.LDS=i.NRs'=1,SCS=2.LDCOVO=~~ 

REAL .Y.%( l.~~.B(LDB.NCB).Cl(LDCl.NCC1),COt'(2.~~.R(LDR.I).Z1(L.I). 

k RSIC;(2.'2).5( l.?).I'.T.?E(2l.C2( LDC?.?;CC2),C3(LDC3.NCC3).CO\'O(2.5), 

.t Cl( LDC-I.NCC.1 I.C5(LDC5.SCCSj.C6( LDC6.'ICCG).Pl.P'?. 

k W( Lû0000001.K l.KZ.C(O: 101)000U01.\.(0: lOOUOOOOI,.ARL.~lE. 

k L.A(O:~O).RO.VL( LOOO~OUU~.~'CL..~L.B~.Z( Lo.o:Ioauoooo) 

EXTERN.%L SlRRRR.TRNRR.CHF.~\C~.RNSIVN.R~SET.~XI.~Cti.LINRG.tVRRRS. 

k CHIDF..\NORIN 

LVRITE(*.i) 

1 FORLI AT(5S.':\RL"5 FOR AS LI.%?<-SIEtVXlA CHXRT [:\RLO=?OO): ' )  

t:CL=2.;ÏI 

LA(O)=c).OS 

DO 12 Ll=O.ti 

DO 13 L,>=L.l 

00 14 L3z.3 .6  

XL=L1'0.5 

B l = L 2 . 0 . 5  

RO=-0.9- L3-0..3 

CALL CMACH i?.SOCT) 

N R= LOOOUOUO 

N = I  

K-,, -- 
COCNT=O 

COVO( 1.1)= 1.0 

COVO( 1.2)=RO 

COt'O(2.I)=RO 

COl'O(f,2)=1.0 

DO 3 I=l.K 

DO 4 J=L.K 

COV( I.JI=B l'Bl*COVO( I.J) 

4 CONTINCE 

3 CONTINUE 

CALL LINRC (N 1.COVO.LDCOVO.B.LDB) 

CALL CHFAC (K.COV.LDCOV.0.00001.IRANK.RSIG.LDRSIG~ 

ISSD=ï33459 

6 C=O 

CALL RSSET ! ISEED) 

CALL RNhIVII (NR.K.RSIG.LDRSIC,R.LDR) 

1 L=l 

V(O)=O.O 

ME=O.O 

DO 8 M=I,K 

Z(h.f.O)=O.O 

8 CONTINUE 

9 IF (LIE .LE. UCL(L0)) THEN 

D O  5 I=C+l,C+N 

R(I,K)=R(I,K)+AL 



CONTINUE 

DO 10 II=L,K 

x( M)=O.O 
DO 10 l=C+L.CtN 

X(~l)=X(SI)+R(I..\-I)/N 

CONTINCE 

K A (  l.M)=X(MI 

Z(SL.L)=( L-LA(LO))*Z(S!.L-lI+L.~(LO,*SA1: 1.M) 

Zl[ l . M ) = Z (  M.L) 

CON'TINC E 

CALL LIRRRR ~'IHZ1.NCZ1.Zt.LDZl.SRB.SCB.B,LDB.SRCI.NCCl,Cl,LDCl I 

CALL TRNRR 'rRCt.SCCI.Cl.LDCl.SRC'2,SCC2.C3.LDC2) 

CALL MRRRR (NUI.NCZ1 .ZL.LDZl.SRC2.XCCI.C2.LDC2'ZSRC77 

JrNCC3.C3,LDC' 1) 

k'=N*C7( I.lI'(? O-LXILOI)/L.Ar LO, 

T=i).O 

DO 15 I=C-1.C-S 

DO 25 31=1,K 

5( l,Ltl=R~ l,.fI)-XAf l.Xl) 

CONTISCE 

CALL LIRRRR i SRS.ZrCS.S.LDS..XRB.NCB.B.LDB.SRCJ.SCC 1.Ci.LDC 4 )  

CALL ÎRNRR i N RC1.NCcJ.C'.I.LDC' I.SRCJ.'rCCS.CS.LDCSI 

C'ALL LIRRRR ( V R S  NCS.S.LDS.NRC'5..YCC5.CSJLDC55?iRC~<jSC'C6.Cti.LDChl 

T=TrC'6( 1.1) 

CONTtNCE 

K 1 =1.0 

K2=Kl0(S-1) 

PL=CtIIDF(Y.Kl i 

IF (Pl LE. O OOOIll i rHES 

P 1 =O.OOOO 1 

ELSE 

IF (Pl CE. 9999r)) rHEN 

P 1 =i].gWgi) 

ELSE 

PI=CHIDFli'.Kl ) 

END IF 

END IF 

P?=CHIDF(T.K2) 

IF (P? .LE 0.00001) THEN 

P?=0.0000 1 

ELÇE 

IF (P? .GE. .99999) THEN 

P?=0.99899 

ELSE 

PÎ=CHIDF(T,KZ) 

END IF 

END IF 

W(L)=A!VORIN(PI) 

W(L)=ANORIN(P2) 

V(L)=(L.O-LA( LO)).V(L-I)+LA(LO)*lV(L) 

VL(L)=SQRT((Z.O-tA(LO))/LA(LO)).V(L) 

ME=MAX(ABS(U(L)),ABS(V1(L))) 



L=L+ 1 

c=c7s 
GOTO 9 

END IF 

.ARL=ARL-(L-1) 

COCNT=COL'NT+L 

IF i C G E .  Y9ti0000) THES 

lSEED= 123459 

GOTO 6 

END IF 

IF (COL'NT .LT .  lOUOO) ïHEN 

GOTO 7 

ELSE 

.A RL=ARLi  LUUOO 

E N D  IF 

LVRITE ia.501 LX(LOI.Ai.Bl.Ri).CC'LI Li)l..ARL 

30 F O R X l A T  (?X.'L.% = ' . F ' i . l . 2 S . ' . \ I  ='.F.I.,'.?.Y.'Bl ='.F.i.).?.Y. 

k ' R O C  ='.FS.2.2X.'tICL ='.Fti..L.?X,'..\RL = ' .F8 .? )  

14  CONTfSCE 

13 CON'TINL'E 

15 CONTINCE 

E N D  



APPENDIX B 

Computer Programs for Combination Control Charts 

B.1 Program for Combination of Two Shewhart Charts 
This program compiites optimal ARL'c; of the combination of 3 and S charts for con- 

troling both the mean and the variance of a normal process. For a given in-control ARL of 250. 
each XRL value is obtained frorn the function of the two PDF's. A0 and BO are changes in the 
process for the niean and the variance respectively and they are expressed as a rnultipIe of the 
standard deviation of a norniai raidom variabIe. 

DOL'BLE PRECISION .Y1.X2.Yl.t'2..\O.BO,FltF2,Pl.P2. 

k ARL.N 

iVRITE( t i . 3 )  

3 FORLIAT(5.Y. -4RL"S O F  COXIBISED .Y B A R  k 5 CliAR'T FOR .~RLO=250  .& n=.5: 

k 

N=S. DO 

D O  1 I = l . l 2  

BO=Im 25DO 

D O  .s J=o.L:! 

..\O=Jm 25DO 

.Y 1=-J.OYO?/BO-AOmD5QRT(S )/BO 

X ~ = ~ . I ) Y O ~ / B O - A D ' D S ~ R ' ~ ~  'i ):El0 

Y 1=.0908DO/BO~*? 

Y?=I8.466DO/ BO"? 

P l = l - F I ( X 2 ) + F I ( . Y L )  

P2=L-F'?(Yf)+F2(\r'l I 

ARL=L/i 1-( 1-PL I*( 1-p2))  

WRITE(6.10) .-\O.BO.ARL 

10 FOR~f.4T(SX.'AO='.F4.SS2~.,YB0='.F~~.2.4X.~.4UL=~,F1U.5~ 

8 CONTINUE 

1 CONTIZIUE 

END 

DOL'BLE PRECISION FCNCTION Fl ( .Y)  

DOUBLE PRECISION X 

DOL'BLE PRECISlON T.BI.32.B3.B.I.BJ.P.Z 

Bl=O.31938 lS3ODO 

B2=-0.356563782DO 

B3=1.781.if793fDO 

84=-1.821255978DO 

BS=1.330274429DO 

P=O.f 3164 19DO 

T=I  .ODO/(1.ODO+P*QABS(.Y)) 

Z=!3.9894?l%O.iOl43'ZïD-l )œDE.uP(-.5DO'('m2)) 

IF ( X  .GT. O) THEN 

Fl~l.ODO-Z'(Bi'T+B2mTmm2+B3mTmo3tB4œToœ4+BSoTmm5) 

ELSE 



FI=Z.(B~*T~B'~'T"~+B~*T**~+B~*T**~+B~*T*~~) 

E N D  IF 

RETL'RN 

E N D  

D O U B L E  PRECISIO'I FL'NCTION F?(IC) 

DOUBLE PRECtSIO'I .Y 

F2=l -DEXP(-X/2) ' (  1-XI1?)  

RETCRN 

END 

Programs for Combination of Two EWMA Charts 

B.2.1 ARL Computation 

This program cornputes optimal ARL's of the  combination of the  two EWbM c-harts 

for controlling both the rriean and the variance of a norrnd process. For (z given in-coiitrril 

ARL of 250. each ARL value is obtiuned using 10.000 simulations generated with IMSL Fortran 

Subroutines. .A0 and BO are changes in the process for the mean and the v a r i a c e  respectively 

and they are expresscd as a niultiple of the standard deviation of a norrrid rmdoni vririnblc. 

Program Listing 



K( ?)= 2.9965; 

K( 3 ) =  3.09790 

K(  4)= 5.18869 

KL 5)= 3.17030 

I(( 6)= 3.34353 

KI 7 ) =  3.40918 

K( d ) =  3.4679: 

K(  9)= 3.52047 

KI IO)= 3.56713 

K( 1 L ) =  3.60825 

K( I I ) =  3.64399 

K( 1311 3.67445 

K( 14)= 3.69965 

K ( l 5 ) =  3 71950 

1<( 16)= J.734Un 

K (  1 7 ) ~  3.74315 

K( L B I =  .J.74<i(iO 

DO 5 t=U,iS 

LA=.  lDO+I'.U.'IDO 

DO 10 J=t .Y  

BO=J' 25DO 

CALL CRL2( LA.BO.Kt I )..ARL'>l 

D O  15 (cl=U.ll 

0=M' 2SDO 

C.4LL (I'RLI(LI\.:\O.LII),~\RLL~ 

IF ( (A0 . E Q .  rll AND. (BO .EQ.  I I )  T H E S  

.4RL=(XRLl*ARL2)/(.ARLl+XRL2- l i 

ELS E 

. 4 R L = D L f f I ( . \ R L I . X R L 2 j  

E N D  IF 

WRITE(tj.20) Lr\.AO.BO.XRL 

20 FOR~l.X~(5X.'L.%~IBDA~'.F~l.I.~.YYY-\O= .F4.2.ZX.'BO='.F~I.'>..LS.';\RL OF 

kCOhtBINED EWLIA CHARTS = ',FLU.S) 

15 CONTISIIE 

L t l  CONTINCE 

5 CONTINCE 

END 

SUBROUTINE CRLl(LA.AO.K. ..\FIL) 

DOUBLE PREClSION LA.ARL..ARG.K..~~244f4i.B(?~L).W(2~t).P~2.1). 

kX(2J~.D.Fl.H.WK(?4).z\O 

fNTEGER lPIVOT(?J) . fFLAC 

H=DSQRT(tA/(?.ODGLA))*K 

P( 1!=.99518Ï?i999Ï0213DO 

P(2 )=.9747?85559713095Du 

P(3)=.938271557007?321DO 

P(4)=.886J 1557700440 LOD0 

P(5)=.8200019859739049DO 

P(6)=.?~012419L5785J43DO 

P(7)= .6480936519369755~ 

P(8)=.54542 LJ?l3888385DO 

P(Q)=.43379350?6?6045l DO 

P(10)=.3150420796961634DO 







ELSE 

T=Fl(ARC..%LPH.A,BET.4) 

E N D  IF 

IF  (I EQ. J )  T H E S  

A(I , J )=(  l.ODO/Lt\)*W(I)*T-L.ODO 

ELSE 

A (  I.J)=(l.UDO/L.A)*W( J ) * T  

END IF 

?O C O N T I S C E  

10 C'ONTINL'E 

CXLL FACTORi :\,I.I.LVK.IPIVOT.!FLt\G) 

IF (IFLAG EU. 0 )  THES 

W RITE(A.50) 

'TOP 

END IF 

CALL ~ ( , ' B ~ T ( X . I P ~ \ ' O T . B . I ~ ~ , . Y I  

+RL=.ODO 

D O  'IO [=1.14 

. ~ R Q = ( P I ~ I - ~  1 UDO-Lr\ lwLI/Ld 

IF  ( A R C  . G T  I ?DO) T H E S  

T=c).ODO 

ELSE 

T=F?(ARG..4LPHA,BET.4) 

E N D  IF 

; \RL=ARL - W( I)*X(L)*T 

10 C O S T I N C E  

.%RL= L.ODO+riRL/ LA 

i O  FOR!vfAT(SS.'ZERO D E T E R L t l S A S T  FOR LlNEAR 5\ '5ï 'EhI')  

R E T C R N  

END 

DOUBLE PRECISION FL'SCTION F2( S.ALPHA.0ET.A) 

DOUBLE P R E C l S i O S  '\LPtlA. . \RG.BET.4.GALlSiA.F'?.S.Y 

Y=.Y 

ARG=ALPHAmt'-BETX0DE.YP( Yi 

F?=BETX**.%LPHA/C;.-\%[.il-\(: ALPt1h) 'DEXPl ARG)  

R E T C R N  

E N D  

DOUBLE PRECISlON F [ : S C T I O S  LGAMMA(.Y) 

DOUBLE PRECfSION F.LC.A.CIS1A.X.Y.Z 

Y = X  

IF(Y.I.T.I.DO) T H E N  

F=I.DO 

Z=Y-1.DO 

1 Z=Z+I.DO 

IF(Z.LT.7.DO) T H E N  

Y=Z 

F=FmZ 

GO T O  L 

E N D  IF 

Y=Y+L.DO 

F=-DLOG( F) 

ELSE 



F=O.DO 

E X D  I F  

Z=l.DO/t'*'? 

LCAhIhIA=FL(Y- 50)'DLOC(Y)-Y- 918938533'204673+ 

kl ((-.000595'13809S?38DOmZ+ llOO~W65OX36S 1 DO) 
k.Z 00.,"'-""-".."' -. , r I I r 8 r 8 r 4 8DO1°Z- 083333333333333DO)/ t' 

RETCRN 

END 

DOCBLE PRECISIOS F C S C T I O S  C;AlIM.A(lC) 

DOUBLE PRECISION CXhIXI.\.LC;t\S15f..\,lC,Y 

Y=LGAhl>I.-\(XI 

CA>ISf.-\=DEXPi Y )  

R E T C R S  

END 

SLBROt 'TINE SCBSTI\VL.IPI\'O'r.B.N.XII 

I N T E C E R  iPIVOTitiJ),I.IP.J 

DOCBLE PRECISIOS B(ti4).LVliri~L.ri+l).SlI6-l).5C:XI 

IF (N LE. 1 )  THEN 

XI(  I l=BiI1 /M' l i  1.1) 

RETC'RN 

END IF 

fP=IPIVOTl  1) 

s3 l ) = B ( f P )  

D O  15 I=L,N 

;1,'51=.0DO 

Il=I-1 

DO 14 J=1.11 

5L'>I=WlII.J)'Y2( JI  - St 'N 

I I  CQNTINKE 

w=mvo+r(  I )  

X 3 1 ) = B ( I P )  - 5LLf 

1 5  C O S T f S C E  

.Y?(S)=.Yf(N)jWL(.V,S) 

12=N- 1 

D O  20 tSTEP=1.12 

(ZN-ISTEP 

5ühI=.ODO 

13=I+ 1 

DO 19 J=13.21 

5IIM=WI(I.JI*.Y2(J1 + SCM 

19 CONTINUE 

.Y2(I)=(X2(I)-SL'Bf)/WI(I.I) 

20 CONTINUE 

RETURN 

END 

SUBROL'TT.VE F.4CTOR(Wl.X,Dl.IPtVOT.IFLAG) 

DOCBLE PRECISIOFi Dl(6J).W1(64,6.().A\VIKOD. 

COLMAX.UTIO.ROWhfA?C.TEhf P 

I N T E G E R  IFLAG.IPIVOT(6J).I.ISTAR.J,K 

IFLAG=l 

DO 9 k 1 . N  

IPIVOT(I)=I 



ROW41AX=.ODO 

DO 5 J = l . N  

ROW,LIA.Y=DMAXI( ROW>IAX,D.i\BS(lVI(I,J))) 

5 CONTINUE 

IF I ROWMAX .EQ. ODOI THES 

IFLAC=O 

ROWS!.~lX=L.ODO 

END IF 

Dl(f)=ROWSlr\.Y 

t CONTISL'E 

IF ( N  .LE. 1) R E T C R S  

S I = > - 1  

DO 20 K=L.Sl 

COL\I.~\.Y=UABS(LVLIK.K))~D~~ K i  

IST.\R=K 

K l = K t l  

DO 13 I = K l . S  

AiVIKOD=D.\BSi lVIII.Ki ),'DL( K )  

IF i XWIKOD G T  C0LLIA.Y I ï H E S  

COt.\IAX=:\iVlKOD 

ISTAR=I 

E S D  IF 

13 CONTINL'E 

IF (COLh1X.Y ËQ ODO) TkiES 

IFLAG=O 

ELSE 

IF (ISTAR G T  K )  THES 

IFLAC=-IFLAC; 

I=IPIVOT(IST.~\RI 

IPIVOT( ISTAR)=IPI\ 'OT(K1 

IPIVOT(KI=I 

TES! P=D L i  IS'I'.tR) 

DliISTARi=DL( ti) 

D l ( K ) = T E b t P  

DO 15 J= 1.N 

TE.CIP=W l (  1STAR.J) 

Wl( ISTAR.JI=Wl(  K . J )  

W I ( K . J ) = T E h t P  

15 CONTINCE 

END IF 

K2=K+ 1 

DO 19 I=h;2.N 

WI(I.K)=Wt(I,K)/W!(K.K) 

U T I O = W I ( I . K )  

K3=K+I 

DO 18 f=K3,N 

Wl(I.J)=WL(1.J)-RrSTf0.WW.J) 

t 8  CONTINUE 

19 CONTINUE 

END IF 

?O CONTINUE 

IF (W1(N,N) .EQ. .ODO) IFLAG=O 



B. 2.2 Simulations of Diagnostic S t udy 

For a given in-control XRL of 250. this program simulates 1000 out-of-control signais 

with respect to a pair of specificd A1 m d  BI. st-hich are changes in ttie prucess for the riieari 

and the variance respectively. To identify the source and the direction of the detectcd changes. 

the combination of the two EWMA charts is applied and the out-of-crontrol signais are trouriteci 

according to the chart ing procedurc of the c h m .  

Program Listing 



ISEED=123457 

C A L L  C'çf ACH (2 .NOCTI  

s R=10000000 

C.4LL R N S E T  ( I S E E D  

CALL RNNOXl NR.A) 

C=O 

Z(O)=SIü 

W(O)=CO 

l= L 

T1=0.0 

r ' 1 = ~ 0  

IF ( ( ( T l  LE H1 . \ND (Tl  G E  -HI) . 4 S D  

k ((T? LE CCL) A N D  iT1 C E  LC'Li), THES 

.Y.+ 1 =O.O 

D O  20  J=C-1.C'-5 

h ~ J I = X l + A ~ J ) * B L  

.YAl=.YAl+. \IJI ,  5 

C O N T I N I ' E  

.YA([)=?L.-\L 

5 =O. O 

DO '30 J=C-1 .C-5  

S=S-r(A[ J)- .YAi  [ ) ) * ( . . \ ( J I - X A ( l )  I 

C O N T I N C E  

Z(I /= i  l - L X ) = Z I t - t  l t L A * X . h I )  

r l = z ( I )  

Y( I )=LOci (S /4 .U)  

W(1)=t 1-KAl*W(I -LI -KXgY( l )  

T2=W[ l )  

t= i+  l 

C=C+S 

GOTO 10 

END IF 

C O c N T = C O r S T - -  1 

IF ( T l  CFT H I  T H E N  

IF (T? GT C C L i  THEN 

S f ~ ' l I = . L 1 V l l + l  

ELSE 

IF (T? LT. LCL) T H E N  

SlV12=MV13+ 1  

ELSE 

?.Il=bf l t l  

E N D  IF 

END IF 

ELSE 

IF ( T l  .LT. - H )  T H E S  

IF (T? .CT. UCL) THEN 

M V ? l = b l V ? l + l  

ELSE 

IF (T2 .LT. LCL) THEN 

.MVSZ=MV?2+ L 

ELSE 



B.3 Program for Combination of Two Multivariate Charts 

This p r o g a m  cornputes .ML'S of the combination of ,t2 and [SI charts for controlling 

both the mean vector and the covariance matriv 01 a multivariate normal process in Case 1. For 

a given in-control XRL of 700. each ARL value is obtained using 10.000 simulations generated 

with IMSL Fortran Subroutines. 

Program Listing 

INTEGER LDXA,LDSI.LDS2.LDS3,NCXh.SRYXXtDC0VO, 

k IFLANK.ISEED.LDR,LDRSlG,'uOCT.NR.LDCOV.C.LDFAC. 

k L.COUNT.Ll.Il.fI,IPVT(2~,LDT.LO.L2.LDCl.NCCl.NRCl~ 

k LDC?,NCC2.NRC2,LDC3,'ICC3,YRC3.LDB,X~.NCB 

PARAMETER (LDXA=L..UCXA=?.NRXA=l,LDT=2,LDFAC=2.LDB=~.YRB=2, 

kLDCOV=2.LDRçlG=3,LDR=IOOOOOOO,LDSl=l.'iCSl=2.SRSL=1,LDS~. 

kNRS:'=?.?iCS2=1,LDS3=2 .'i~3=2.NCS3=2,LDCOV0=2.LDCl=l.~CC!=~. 

kNRCl= t ,LDC2=?.NCC2=l.NRC2=-,LDC3=I.NCC3=l.NRC3=1.NCB=3,Nl=2) 

REAL XA(LDXA.NCXA).COV(?.2),R(LDR.2).COV0(2.2),FAC(2,1), 

& RçIG(2.f).X(2).R0.LCL2.CCL3.3%RL.DSRBL.Al, 



k Sl(LDSl.NCS1 ~.~?(LDS~,NCS~),~~(LDS~,NCS~).~CLI, 

Ac T(2.2 ).CH I.CH2.DETl.DET2.CH3.Y.C1(LDC11NCC~ ). 

k C3(LDC2.NCC2).C3(LDC3.NCC3) 

EXTERN.-\L SIRRRR.TRNRR.CHFXC.RN5fC'S.RSSET.CSI.ACH.LVRRRN.LFTRG. 

k LFDRC.CHIIN.LINRG 

WRITEIo . I )  

1 FORSfAT(SX.'ARLa O F  T H E  COSIBINED CHI-SQC.-\RE 

& and !SI CHART (N=S.K=2):' 

C.%LL CX1XCH ('>..VOLT) 

SR=LOOOOOOO 

N=5 

K=- 

CH I=CHIlSIu.?)S:s.2.0) 

C H 3 z C H I  IN~0.00115.ti.OI 

C'H2=CHlIN10.9clS7S,6.1~) 

DO 1 Li)=1.3 

AI=LUoO.S 

DO 1 L k L . 1  

Bl=L2* 5 

DO '1 Ll=.l.ri 

RO=-Q.StLl*0 .3  

COCNT=O 

ARL=U.O 

CO'.'O( l.lI=L.O 

C'OVO( 1.1)=RO 

COVD(t.1 )=RO 

COL'0(1.5)=1 O 

DO 4 [l=L.K 

D O  S I?=L.K 

~OV(IL.I?)=COVO(I1.I2)*B1"1 

5 CONTINIIE 

1 CONTINiJE 

C'ALL LFTRC; tK.CO~'O.LDCOC'O.F.AC.LDFhC.IPt'T~ 

ÇALL LFDRC (K.FAC.LDFAC.IPV*T.DETI.DET?) 

L'CLI=CH 1 

LCLI=(  DETIo(  10'oDET'2))'CH3'e?/ii.(.0 

UCL2=( DETIO(  10*oDET?))eCH2g*2/ri4.0 

CALL LfNRC (Nl.COVO.LDCOVO,B.LDB) 

CALL CHFAC (K.C0V.LDC0~'.U.00001.1RASK,RS1GGLD~1G1 

ISSD=7?3459 

6 C=O 

CALL RNSET ( ISEED)  

CALL RNLWN (SR.K.HSIG.LDRS1G.R.LDR) 

1 L= 1 

Y=UCLI/'>.O 

DS=(UCL2+LCL2)/2.0 

9 IF ( (Y .LE. U C L I )  .ASD. 

& ( ( D S  .LE. LiCL2) .AND. (DS .GT. LCL?)))  THEN 

DO 11 I=C+I.C+N 

R(I.K)=R(I.K)+AX 

11 CONTINUE 

DO IO L k 1 . K  



X(Jf)=O.O 

D O  20 I=C+I .C+S 

X(M)=X(M)-,-R( l ,M)/N 

C O S T I N C E  

X A ( l . M ) = S ( M )  

CONTINUE 

CALL 1IRRRR (NRXA.SCX.X,X.-\.LD;Y.i,SRB.Z;CB.B,LDB,SRCt. 

dcNCCI.CI.LDC1) 

C h L L  TRNRR (NRCl,NCCl.Cl.LDCl.NRC2,NCC?,C~,LDC?~ 

C h L L  LiRRRR ( NRX.%.NCX.X.Xh.LDX;\.XRC2,NCC2.C?.LDC2. 

kYRC3.NCC3.CJ.LDC3) 

't'=ZI'C3( 1.1) 

D O  12 LL=l.K 

D O  14 I2=i.K 

T( ll,121=tJ.O 

CONTINL'E 

CONTINL'E 

DO 15 [ = C t l . C - Y  

DO 25 Ll=l. t i  

G l t  l .M)=R(  1 ,XI  !-.K.-\[ 1.11) 

CONTINL'E 

CALL TRNRR iSRS1.SC'SL.5l.LDSl.SRS2.SCS?,S?.LDS?) 

C..\LL XIRRRR i NRS?.NCS2.S?.LD52.SRS I.NCSt.Sl,LDS1. 

kNRS3.SCS3.S:I,LDS:l) 

D O  tt l  I l= l .K 

DO 18 I2=1,ti 

r ~ [ 1 . 1 z ) = r r 1 i . t ~ ~ - ~ 3 ~  11.121 

CONTINr.'E 

CONT[Nt:E 

CONTINCE 

DS=ABS((Tli.l~~'~(2.2)-~[1.2)*Tf2.l~),lS-Il*~2) 

L=L+1 

C=C-,-N 

GOTO 9 

END fF 

A R L = A R L r ( L -  1) 

C O C N T = C O C N T + i  

IF ( C .GE. 9900000) T H E S  

ISEED= 123.159 

GOTO 6 

END tF 

IF (COUNT .LT. 10000) THEN 

C O T O  7 

ELSE 

ARL=ARL/10000.0 

END IF 

WAITE (.JO) h1.B 1.RO.ARL 

FORMAT(?X.'A 1 ='.F5.2.?X.'Bl ='.FS.2.?.Y.'RO= '.FS.?.3X. 

k'ARL ='.Fa.?) 

CONTINUE 

CONTIXUE 

CONTINUE 



END 




