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ABSTRACT

This thesis 1is concerned with the transient response
characteristic of low pass filters designed to be fast with
little or no overshoot.

Methods are proposed to find the pole configuration
for én all-pole transfer function which yields a desirable
transient response. The first method is the pble—shifting
method. The radius vectors of the poles are allowed to move
on a parabolic contour by varying the angles between the
radius vectors and the hegative real axis. Fregency and time
responses are investigated to locate several optimal
positions corresponding to some figures of merit.

Another approach to the problem is by the extremum
method. Some error criteria of the actual and ideal
responses are defined for the time and the frequency
domains.. A performance index which is a weighted sum of the
integrals of these errors is then minimized by a direct
search program. Remarkable results ~are obtained for the

third and fourth order cases. -



The transient responses of the proposed filters are
found to be superior to all- other filters appeared in
literature, In the case of the third order case, for
example, a rise time of 1.761 seconds-is obtained compared
to 2.291 seconds for a Butterworth filter. To make fair
comparisons, the dc gain as well as the 3-db bandwidth are
normalized to unity. The results obtained are very useful in

the’design'of filters for pulse application.
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CHAPTER I

INTRODUCTION

I.1 General introduction

For = a low-pass filter designed for pulse
applications, it is regquired that thev rise time, delay
time and overshoot be as small as possible. ’

The problem of‘designing a network ié really that of
finding a good approximation H(s) wusing a fealizable
rational function of s. Since Butterworth [1] proposed the
maximally flat magnitude charecteristic, numerous methods
have been.suggested. However, the problem of obtaining the
least rise time for a given overshoot or least overshoot
for a given rise time has not been solved. This thesis is
an attempt to improve the transient response and to show

such results,

I.2 Transient Response

It has been a common practice to compare the various
low pass filters by comparing their responses to a
unit-step excitation. The gquantities associated with a
step response are rise time(tr ), delay time(td) and
overshoot(v). By far the most commonly used criterion is
the 50% delay time and 10-90% rise time as depicted in

Figure I.1.



4 5 6 .7 sec
time B

Fig. I.1 Unit step response.

Elmore [20] defined rise time and 'delay time

follows.

t, = h(t)t . dt

o]

t = [2m (t - td)2 h(t) dt]%

where h(t) is the impulse response of the network.

as

I.1

1.2



Elmore's definitions are analytically convenient for
networks with no overshoot or very small overshoot,
Several other definitions have also been proposed and
utilized. However, in the following discussion the

conventional definition is used.

I.3 Formulétion of the problem

The problem is to find the location of poleé for a
all-pole transfer function H(s) which yields a desirable
transient'response. If the dc response 1is normalized to

unity, then the filter function is

I.3

where p;=-0; *jw; is the ith pole in the left half of

the s-plane.

The unit step response of this filter is given by

£(t) =[‘1 [% H(s)] | I.4



In order to evaluate and to compare the performance
of the filters, it is necessary to normalize the bandwidth
to 1 rad/ sec [8]. The requirement imposes the following

constraint,

n Zwi + 1 5
= - I L]

.H 1+ > > ) =2

i=1 ci + w

For the first order filter, in order to satisfy all
the requirements, the pole must be at s=-1. The step
response is monotonic with tg =0,693 sec., and t. =2,197
seconds.

For the second order filter, the poles are pL2=ﬂijm

where ¢, and w, are real and postive.

24
H(s) = 5 > 5 1.6
s + 2013 + Gl + wl
2 2.2, 8=0./w
Let o w, = (cl + wl) 1%
-w &t
e © 2.% -1
Then f(t) =1 - 71 sin (wo(l—g )° + cos £)
: 1-:&9H*
g (1-g5) 7 | '
And - y=e % 100% 1.7
tr = (t90% - th%) sec 1.8
t 1.9

d'= tSOZ sec



For . calculating delay and rise time it is necessary
to solve three transcendental equations. Thus it is
obvious that a direct method of minimizing ty and tg 1is
not feasible.

In chapter II a comparison is made of the various
known systems, which leads to the .development of the
présent work. In chapter III the suggested method and
results are discussed. In chapter IV another method of
optimizing the transient response is briefly described,

followed by the discussion of the two methods presented.



CHAPTER 1T

PREVIOUS CONTRIBUTIONS

IX.1 Introduction
The problem of determining the suitable ﬁransfer
functions of lowpass filters has attracted much attention
in recent years. Much of the work was involved in finding
a 1locus for the poles on the left half of ﬁhe s-plane,
The poles were located at the intersection of the curve
with radial straight 1lines from the origin with fixed
Butterworth angles; or they were Jlocated on the curve
with equally spaced._ imaginary parts [7]-[12]. The
following is a comparison of various known systems, which
leads to the work of this thesis., |
In comparing various systems, the following aspects
are studied:
(1) pole locations,
(2) rise time and delay time,

(3) overshoot.

In order that these comparisons ~ to be wvalid,
" normalization is carried out according to the description

in chapter I.



IX.2 Various systems

(1) Butterworth Configuration [1]
| The poles lie symmetrically on the left half of a
unit circle in the complex plane. It has the advantage of
fast transient responses. However the large overshoot is
very undesirable for pulse networks. Furthermore the
overshoot increases with the increase in the order of the

filter,

(2) Thomson configuration [2] .

This class of £filters ﬁas negligible overshoot for
low-oxrder and nc overshoot at all for high-order filters.
Quite contrary to the anticipation, the rise time and
delay time are much smaller than Butterworth response. For
example the third order filter has a rise time and delay
time of 2.181 and 1.681 sec. compared to Butterworth's
2.291 and 2.135 seconds. This is true only after bandwidth

normalization.

(3) Transitional Butterworth-Thomson Configuration [3]

This class of filter can be made to attain response



characterstics between those of Butterworth and Thomson by

choosing poles which 1lie on paths passing through the

Butterworth pole pB(rB,eB) and Thomson pole pT(rT,eT), The
path is defined by
| | p=red (M= 0 o 70 II1.1
Where , r = rTm
6 = GB - m(eB - eT)
m = variable parameter.

This entails a trade off between Butterworth and Thomson
characteristics rather than providing the advantages of

both simultaneously.

(4) Elliptic Configuration [9]

This class of filters was proposed by J..O. Scanlan.
Poles are located with equal spacing on the imaginary axis
and are generated by varying the eccentricity of the
ellipse.

The equation of the ellipse is given by

62 = 2% (1 - wd) II.2
i i’

(5) Catenary Configuation [10]

This class of filters was proposed by M.S. Ghausi and



M, Adamowicz. Poles lie on a catenary curve given by
Gi =.a(cosh wi - A) II.3

where ac,\ are real positive constants such thrt the
curve passes through the point(-1,3j0) on the s-plane. Thus

a. and A\ are related by

and pole locations are determined by the intersection of
the curve with radial straight lines from the origin given
as

‘w, = 0, tan 9 . IT.4
i i

(6) Parabdlic Configuration [7i
This configuration was suggested by Mullick. The
poles lie on a parabolic arc defined b§
4(agt b) (o, +g) = ul I1.5
wherewalP is the distance of thé };cdé frbm tné
vertex; b is the shift of the focus to the right from the
drigin.
The poles are/located at the intefsection of radial

lines of Butterworth angles and the parabolic contour.



Figure II.1 shows some of the loci and pole locations
for third order filters. Table II.1, II.2 and II.3 compare
‘the rise time,’ delay time and overshoot of the various

systems described.

1153 Observation

The following observations are made. For Butterworth
and Thomson filters, the pole locations are fixed, wherea;
for parabolic, elliptic and other recent filters, a curve
isk defined in the 1left half plane. By varying the
parameter associated with the curve, the shape of the
curve can be changed., With a carefully chosen value for
the parameter certain improvements are made. An example is

given for the fourth order filter:

tr(sec)  ty(sec)  ¥(%)

Butterworth 2,432 2,820 10.830
Parabolic b=0 2.374 2.557 2.560
Parabolic b=3 2,058 1.858 0.218

Both the rise time and delay time for b=3 are much
smaller than the corresponding values for b=0. However,
this is not the 'best' filter, further optimizations are

to be made.

210
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=3

tr (sec) tq (sec) Y (o/o)
Butterworth 2.2907 2.,1352 8.1462
Thomson | 2.1808 1,6808  0.7541
Transitional- m=,2 2.2472  1.9766  3.8731
Butterworth- m=, 4 2,2u72 1.9766 3.8731
Thomson m=,6 2,2217 1.8420 2.4684
m=.8 2,19  1.7552  1.4411.
Elliptic a=.u 2.4461  2,2070 1.0922
a=.6 2.2697 1.9434  2,2161
a=.8 2,2047  1,7756  1.5007
Catenary r=2, 2.3000 2.1311  7.240t

2=2,.5 2.3148 2,1148  5.6061
X=5.0 2,3186 2,0318 2.0458
Parabolic b=0.,0  2.3641 2.2804 8.4485
b=1.25 2.3647 2.1238 2,8141
b=3.0 2,2883 1.9733 0.0000

b=8.0 2.2528 1.8498 0.0000

Table II.1 Comparison of rise time, delay time

and overshoot for 3rd order filters.

12



=4

ty (sec) tgq (sec) Y (%)
Butterworth 2.4324 2.8203 10.8297
Thomson 2,.2039 2.0762 0.8810

Transitional- mw=0.20 2.3996° 2.6672 7.5790
- Butterworth- m=0.40 2,3437 2. 4961 5.6323
Thomson n=0,60 2,2847 2.3320. 13,1210
m=0,80 2,2355 2.1883 1.7485

Elliptic a=0,40 2,3730 2,6816 4.1321
a=0.60 2.2683 2.3308. 1.8400

a=0,80 2.1547 1.8000 0.0731

Caternary A=2,00 2.4543 2.8008 8.3523
A=2.50 2.4496 2.7308 5.5799

A=5.00 2,.2031 2.,2539 0.1263

Parabolic b=0.00 2.3742 - 2,5574 2.5598
b=1;25 2.1078 2.0640 0.3370

b=3.00 2,0578 1.8578 0.2182

b=8.00 2,1070 1.6957 0.0534

Table II.2 Comparison of rise time, delay time

and overshoot for 4th order filters.

13



=5

tr (sec) tq (sec) T (%)
’Butterwoith 2.5624 3.4955 12,7093
Thomson - 2.2015 2,3996 0.7725

Transitional- m=0,20 2.5139 3.2807 8.8386»
Butterworth- wm=0.40 2.4260 3.0180 5.7581
Thomson m=0.60 2.3243  2,7630 1.8340

m=0.80 2.2496  2,5609  1.8340

Elliptic Ca=0.40  2,2006 2.7132  0.9299

a=0.60 2.2345 2,6262 1.3618

a=0.80  2.4401 3.4180 16.9% 31

Caternary X=2,00 2,2483 10346 1.0726
V4 X=2.50 2,496  3.2186 5.1115

A=5.00 2,1230 2.4587 0.4193

Parabolic b=0.00 2.2313  2.7262 1.0785
b=1.25 2.0745 2.1762  0.3423

b=3.00 2.1322  2.0381  0.1325

b=8.00 2.1728 1.8651 0.0136

Table II.3 Comparison of rise time, delay time

and overshoot for 5th order filters.

14



CHAPTER IIX

OPTIMIZATION BY POLE SHIFTING [19]

IIX.1 Introduction

From the observation in chapter iI, it is realized
that the transient response characteristics can be further
optimized. A method of accomplishing this, based on the
shifting of poles along the parabolic contour to locate
the optimal transient response, is presented.._The
technique, although discussed here with reference to
parabolic filters, is equally applicable to other types of

pole distributions.

II1I.2 The Method

The radius vectors of the poles ére allowed to move
on the parabolic contour by varying the angles between
the radius vectors and the negetive real axis . Both the
frequency and time responses are investigated for each
combination of angles. With the‘ help .of a aigital
computer, this method offers a systematic search strategy,

and is practical up to fifth order filters.

15



II11.3 Computer Subroutines
Several computer subroutines are written to

facilitate the investigations. These subroutines are
ROOT..to locate the poles and associated angles.

NORM..to find the unnormalized bandwidth and the

normalized new pole positions.

3

- PAFA,. . to calculate the residues of the :poles for

the inverse Laplace Transform.
TRTD..an interpolation for t. and tqe
OSHT..to find % of overshoot.

COEF..to obtain coefficients (a for the

characteristic polynomial.
The flow charts for the subroutines .are shown in

Appendix A. The main program calls these subprograms for

each combination of angles and calculates the responses,

16



The selected responses are plotted by a Calcomp Plotter
which is an off-line plotter in the University of Manitoba

Computer Centre,

III. 4 Second.Order

Before normalization, poles with larger value of Db
will be further away from the jw  axis; however when the
bandwidth is normalized to unity, the pole locations4 are
found to be indépendent of b. The only workable parameter
is the anéle 6.

Rise time remains constant for small angle €& at
values of approximately 2.16 seconds. It decreases
steadily to 1.60 seconds as approaches 90 degrees. Delay
time, on the othér hand, increases from 1.08 éeconds 1to
maximum 1.62 seconds which corresponds to angle & of 75
degrees. Overshoot increases rapidly as angle increases.
The new bandwidth, rise time, delay time, overshoot, pole
locations ( 3B ) and the coefficients of the
characteristic polynomial are summarized in Table III;1

and Figures III.1 and III.2.

17



Angle 0° 20 4o 60 80°

Bandwidth 0.644 0.725 1.039 1.696 2,591

tr(sec) 2.162 2.155 2,150 2.084 - 1,788
td(sec) 1.081 1.140 1.355 -1.646 1.705
T (%) 0.000 0.000 2.365 16.302 57.467
a =1.552 -1.337 -0.835 -0.393 -0.114
B 0.000 0.487 0.701 0.681 | 0.648
aq 3.103 2.675 1.670 0.786 0.228
ag -2.410 2.026 1.189 0.618 0.433

Table III.1 Summary of 2nd order filters with

increasing angles.,

(a, B are the real and imaginary parts
of the conjugate poles)
(a1,a0 are the coefficients of the

characteristic polynomials).

* .
Unless otherwise stated,the bandwidth values given
are referred to those before normalization. The value

of t,. and tgq are values obtained after normalization.

18
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III.5 Third Order

In the case of the third order filters, one pole is
on the negative real axis and the other two poles form .a
conjugate pair. The complex pole makes an angle 6 with
the negative feal axis. As 6 increases, the bandwidth of
the filter increases and the effect of b becomes more
apparent,

The bandwidth, overshoot, rise time and delay time
versus angle are plotted in Figures III.3, III.4, III.5
and III.6. The rise time is almost constant but the delay
time gradually increases as the polé angle increases from
zero to forty degrees; within this interval the overshoot
is negligible. The rise time, delay time and overshoot
become larger as the angle continues to increase except
in the region close to the imaginary axis where the‘trend
is reversed. In this region, the rise time drops sharply
but points of inflexion are observed in the transient
response which results in the distortion of the output
pulse shape. In general, the poles with angles smaller
than Butterworth angles and with large focus distance
correspond to the favorable respohse. For example, one
such angle would be 22 degrees, with rise timeA and delay
fime of 2.1517 and 1.428 seconds respectively. The

frequency response is reasoﬁably good,

20
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ITI.6 Fourth and higher orders

The analysis of higher order cases is similar to the
third order case. The U4th and 5th order results are
‘plotted in Figures III.7 to III.14,

As the order n increases, the rise time and delay
time increase but the bandwidth and overshoot decrease., On
the other hapd, the effect of the vériation of the angles
and the parameter Db on the rise time and delay time
becomes less as the order increases.

The curves | of rise time Versus angle show a
" noticeable decrease in rise time when angle &, 1is between
60 and 70 degrees. Following a local minimum, c.f. Figure
III.9 and III.13, the rise time increases considerably.
The 1local minimum is smaller for greater angle 4.
However, increasing both angle 84 and angle 8, will give
rise to undesirable distortion of the output pulse shape.
For general application, therefore, thé angles should not
be greater than 70 degrees.,

The following are some results when a pattern search

program [17] is employed to find the local minimium,

n b 94 9, tr(sec) tg(sec) v (R)

4 0.9 10.7 70.0 2.014  1.814 0,003
4 2.0 10.0 10.0 2.144  1.621  0.000
5 2,8 5.0 40.0 2.147  1.920  0.000
5 0.3 27.6 70.0 2,065 2,185 0.218

23
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III.7 Discussion

The curves on Figure III.7 to III.14 show how the
rise time, delay time and overshoot vary with the angles,
For the third order case, an optimal point is located at
an angle of 22 degrees} The rise time and delay time are
2,151 seconds and 1.428 seconds respectively, as compared
to 2.364 seconds and 2,280 .seconds of the parabolic filter
with an angle of 60 degrees,

For the fourth and fifth order cases, several optimal
- points are located depending on the relative importance of
the rise time delay’ time, overshoot or the frequency
responses. For example, two optimal points are located for
the fourth order case. The first point has a minimum rise
time of 2.014 seconds and the second point has a minimum
delay time of 1.621 seconds. Both points have negligible
overshoots and reasonable frequency responses. If the
requirement on the output pulse shape is relaxed, faster

responses can be obtained by increasing the angles.

28



' CHAPTER IV

O?TIMIZATION BY EXTREMUM METHOD

IV.1 Introduction |

For .an nth order filter, there are n degrées of
freedom in choosing the position of poles. A required
constraint of fixed bandwidth removes one degree of
freedom result in n-=1 degrees of freedom° For a completé
optimization, there should be n-1 parameters to work with,
Table IV.1 shows the number of parameters available for

the pole shifting technique.

ORDER OF DEGREES OF PARAMETERS

FILTER  FREEDOM AVAILABLE
2 1 'y

3 2 b, 8,

4 3 . b, 84, 83

5 " ' b, 91, 85

6 5 b, 01, 65, 93

7 6 b, 81, 62, 03

8 7 b, 84, 05, 83, 8

Table 1IV.1 Available parameters for pole-shifting

method, where Giis the ahgle‘of the ith pole vector.

29



Therefore, instead of confining the poles on a
parabolic, elliptic or any other loci, the designer has
complete freedom to <choose the pole locations from the
left half plane, subjected only to the bandwidth

constraint., .

IV.2 Pole distribution under bandwidth constraint

Consider the third order case, and let Pqr pz, P be
the poles on the left half plane such that
= [ o= 3 ° =-+' ° = (==
Py (-b+je); p,=(-a+j0); py=(-b-jc)
where a,b,c are real positive numbers.
The transfer function of the filter is
A 2 2
H(s) = 2 (b < ) — V.1
(s +2a) (s + 2bs +b" + %)
Let q=0b+c?
H(s) = — ad

(s + a) (s2 + 2bs + q)

30



The bandwidth is set equal to unity.

) azqz ‘
[BGL | = 5 5 5 =% Iv.2
(1+a") ((q - 1)7 + 4b7)

Equation 1IV.2 is rearranged as a quadratic eguation

of q.
2 2
(@® -~ 1) q% + 2q(1 + a%) = (1 + 4b%) (L + ad) = 0 V.3
- 2

Let .g*=.L1_:;%l V.4

- (1 +a%)

L+ 1+t ad)g

then q = — IV.5

g

The sign before the square root is chosen to make the

expression positive,

9. o oixJ1ra+ D g,
¢ =gq=-D0" = . - b IV.6
g
2 _ 2p2
provided a” > ———s 1v.7
1+ 2b
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‘Similarly, for the fourth order case, let P1, P2+ P3

and pube the poles of the transfer function.
Py=(-A+jB); p,=(-C+jiD);

p3=(~C~3D); p,=(=2=3B);

Q1=A2+B2; Q2=C2+D2.
wheré A, B, C and D are real positive numbers.

The transfer function of the filter becomes

Q,
(32 + 2As + Ql) (sz + s + Q2)

H(s) =

The bandwidth is set to unity.

2 2
Q) Q

e, - 2+ 48?1 (G, - D

2 2-?402]

V.8

1V.9

Equation 1IV.9 is rearranged as a quadratic equation

6f Q‘!e
(@ + 29, - 1 - 4c?y Qi + 2 (Q§ -2, +1+ 4c?) Q

- (Q§ -2, + 1+ 4c?y wa? + 1) =0
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2

Let m=— 2
Q, - 2Q2 + 1 + 4C
2 2 _
Qp m +2Q - (4A" +1) =0 , V.11
then
-1 +jlu+ (4A2 + 1) m
Q = — ' V.12

m

the sign before the square root is chosen to make the

expression positive,

>
“1 41+ (AT +1
B =q - A’ = -\/m ( )m_ 2 1v.13

provided

1+ (4a% + 1) m > 0

Thus, for the third order case, the two independent
variables ‘a' and 'b' are the real parts of poles P, and P,
respecﬁively. The imaginary part of p, is calculated from
equation (IV.6). The imaginary part of the second pole is

zero because it 1lies on the negative real axis. For the
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- fourth order case, the three independent variables are
'AY,'C' and 'D'., The value of 'B' is obtained from
equation (IV.13), The transfer function thué obtained for
the third and fourth order filters will satisfy the

bandwidth constraint.

IV.3 Minimizing the performance index

The simplest performance index is defined as follows

= vyt () + vyt (&) + wyy(x) V.14

where wy are the weighting functions and x is the
design parameter vector. For the third order «case, the
elements of the vector are ‘a‘’ and 'b'; whereas, for the
fourth order case, the elements are ‘'aA', 'C' and ‘D', A
direct search 'program, namely, the pattern search [19]
program, is employed to minimize the function (. Very
small wvalues of rise time and delay time can be obtained
from this simple performance index by decreasing ‘'a' and
increasing ‘c'. The situation corresponds to moving the
poles towards the imaginary axis in chapter III. This
index is discarded because the frequency fesponse is not
acceptable.

A new performance index 1is defined to enable the

control of the frequency response as well as the shape of
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the output pulse in the process of optimization.
” k
(=1 w(t) |ex,t)] dt + ¢P(x,w) V.15
o

whefe f%x,w ) is a penalty function, ¢is a weignting
factor.

The function e(x,t) is the errof between the actual

and the desired network responses. It is defined as

follows
e(x,t)=u(t)~f (x,t) IV.16

where u(t) is a unit-step function, f(x,t) is the network
response due to a unit-step excitation and x is the
adjustable parameter vector. A unit-step function has zero
rise time, delay time and overshoot. Therefore, when
f(x,t) is closest to the ideal respénse, the rise time,
delay time or overshoot will be the least. The weighting
function w(t) 1is é time function to emphasize or
deemphasize certain parts of the response to suit the
designer's requirement. If w(t)=t, the error is magnified
as t increases. The integer k raises the vpower of the
error é(x,t), and in this case is set to 2, |

| P(x,w) is a penaltﬁ function defined as follows

@

1
Px,w) = || -] Hx,dw)])]de + || Hx,jw)| do V.17

o , ' 1
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It is the frequehcy'integral of the error between
the actual and the ideal low-pass frequency responses. The
penalty function is a minimum when the frequency response
is closest to the ideal 1low-pass response., Thus by
minimizing the function Jit is possible to minimize the
rise time ana delay time as well as to keep tﬁe frequency
response close to the ideal response.

In carrying out the evaluation of the function V)

equation IV,.15 is approximated as follows

m
o] B, w) |]aw

i=1

J=F ute) lete,ep)? 86+ o

N
+I |HG&, w)| Aw : 1v.18
j=m-+1 °

Y ! 0 —
1 e ‘time L ) 1_ _ “5 A frequency
Fig.Iv.1 Area approximation in the time and

frequency domains.
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Figure 1IV.1 depicts the summation process and it is
found sufficient to carry the summation up to 10 seconds
for the time domain term and up to 3 rad/sec for the
frequency domain term. After the index is defined, it is
nminimized by the pattern search program to locate the

optimal point.

IV.4 Result of optimization

The minimum points éf the function I aré< different
with different weighting function ¢ . When frequency
response is deemed more important, the weighting facﬁor ¢
is to assume a large value. This weighting process is very
subjective because strictly objective criteria do not
exist. Therefore several optimal points are located with
different weigﬁtings. The results for the third and fourth
order are summarized in Table 1IV.2. For filter I, the
weighting on time response is heavy, giving a rise 'time of
1.761 seconds and 1.966 seconds  for the third and ‘the
fourth orders respectively. Filter III has fhe heaviest
weighting on frequency response, thus the rise ‘time
increases to 2.097 seconds and 2.138 seconds. Figure 1IV.2

and 1IV.4 show that although.filter I has. a smaller rise
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time, the frequency response has a ripple effect. Filter
I, however, is a favorable medium, having a rise timé of
2,04 seconds.for the third order. All the three filters
are superior‘ to the parabolic filter (1IV) which is

included for comparison.
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6¢

II

IIT

Iv

II

I1I

v

b

1,978
1.916

1.698

0.976

0.709
0.685
2,210

0.426

b c ‘ tr(sec) td(sec)

0.525 0.678 1,761 1,395
0.737 0.737 2,041 1.430

0,743 . 0.845 2,097 1.565

0.563 0.845 2.320 2.087

B C D tr(sec)
2.123 1,224 0.042 1.996
7.293 1.493 0.132  2.075

0.380 2,220 0.396 2.138

1.171 0.805 0.325 2.447

Table IV.2 Result of optimization,

(%)

0.000
0.000
0.000
4.075

td(sec)

1.743
1.158
1.614

2.685

Y(%)

0.000
0.004
0.000

2.631



. ./—v—~.'\
10 - / - ’,v-:_;.}-':—.

- L T -

p br ta
g' 1.716 1.395
o 2.041 1.430
é-. 2.097 1565
e £2.320 2,087 parabolic
m -
§
L 4 i [
6 7 8 9 sec

time

Fig. 1IV.2 . Unit-step response for the third order

filters.
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Amplitude 'Response

Frequency

Fig. IV.3 Frequency response for the third order

filters.,
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filters.

Iv.4

I 1996 1.743
o 2.075 1158
IO 2338 . 1.614
IV 2447 2,685 parabolic
[) ) ] 1] ¥
) 6 7 8 sec

Time

Unit-step response for the fourth order
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Fig. IV.5 Frequency response for the fourth order

filters,
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CHAPTER V

CONCLUSION

This thesis presents methods of improving the
transient responses of low-pass filters. The first method
is the pole-shifting method. The radius vectors of the
poles are allowed to move by varying the angles between
the radius Vectors and the negative real axis, resulting
in substantial improvements. The fise‘time, delay time and
the overshoot versus angles are plotted in graphs so that
one can find the optimal points corresponding to the
- figures of merit of theAtransient response. It is found,
however, that the angles should not be greater than 70
degrees to avoid undesirable frequency responses.

Another approach to the problem is presented in
chapter 1IV. Séme error criteria of the actual and ideal
responses are defined in terms of some workable
parameters. The weighted sum of the integrals of the
errors is then minimized by the pattern search routine.
Remarkable results are obtained and are tabulated in Table
IV.2..The time and freéuency responses are also plotted
for references. The small rise time (1.761 sec. ) and

delay time (1.395 sec. ) are much superior to those of the
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Buttexrworth filter which gives a rise time and delay time
of 2.291 and 2.135 seconds respectivelj. The overshoot for
all the results obtained are either zero or negligible.
The 5th or higher order cases can be . obtained easily by
the same procedures.

The pole-shifting method, though not as efficient as
the extremum method, gives much more insight into the
relationship of the pole pattern and transient response,
However, the numerical method gives a much better result
because of the higher degrees of freedom,

The results obtained in the work are very useful in
- the design of filters for pulse networks. Since the
transmission zeros are all at infinity, the filters
considered can be realized as ladder networks by standard
procedures.,,

It is the author's feeling that more research should
be carried on in both the analytical approach and the
numerical approach as the two methods complement each

other.
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APPENDIX A

COMPUTER SUBPROGRAMS

Several computer subprograms have been written for
the IBM 360/65 £o calculate both the frequency and time
responses. The language used is WATFIV, a modified version
of standard FORTRAN.

The flow diagrams are given in the following pages.
‘Only the 4th order case is presented. The 3rd and 5th
order cases are similar. The numeric 4 is included in the
names of the subroutines to indicate a #4th order case.

The following is a brief description of the

subprograms.

ROOTH To locate the pole position pi=ai+jwi with a
given equation of the locus and an associated angle ei.
| | NORMWY4 - To calculate the frequency response and to
interpolate the banawidth (FINW) by comparing H(s) with
0.7071. The step size is reduced successively until the
érror is smaller than a given.bound.

PLOCH To check whether poles are simple conjugate,'
double or located on the negative real axis. A value of

-1,0 or 1 is assigned to an indicater 'NCASE'. The value
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thus assigned to NCASE will guide the subsequent
subprograms to choose different equations for different
types of poles.

COPF4 To calcuate the residues of the poles
according to the equations given. |

FUNCTION H - Subroutines TRTD4 and OSHT4 will call
this external function to calculate the value of the
unit-step response f(t) at a given poinf t according to
the type qf poles.

| TRTDY To interpolate the wvalue of t when f£(t)
equals to 0.1, 0.5 and 0.9. The procedure is similar to
NORMWL4, TD is the value of t When f(t) differs 0.5 by less
than the error bound. TR equals to t°9~t°1.

OSHTU To calculate the overshoot .of the time
response; n points are calculated between tj and tg. The
maximum point f(tm) is obtained by a sort program. The
interval is reduced by re~assigning t; and tg a distance
At/2 to the left and to the right of the maximum point.
The procedure is repeated until the interval (tf-ti) is

small enough. Overshoot is (£(t)-1)x100%.
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8j=angle;{/57.2959

C=Tan®;

%

calculate o

eqgin.

Ri=-wixC

%.

Pole P,

Pi=Ry+iw;

P -

‘ RETURN ’

2
w; = SQRT( 4({b+1) e Y-2{b+NC

Flow diagram for ROOT4 - to locate pole position
from the given equation.
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NORMW 4

it b fCOUNT
lmhahze{ w
assign stepsize Aw;
K=l P,
i=] 1
Y <
S=jw ;
4 K »
= [T e
i=1 (S— PI)
Y
ERR=.7071-H
JERR] small ™ FINW=w ;
enough 7 normalize P
' P,=P, /FINW

YES

reduce stepsize , YES print
bt reverse direction, e

& z=-AwXE

M
«interpolation failed

LI=W+ Aw
COUNT=COUNT+]

NO

—>= COUNT>200

'Fléw diagram for NORMW4 - to find bandwidth and new

pole positions after normalization.
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Double YES

NCASE=1

Poles ?

. NCASE=-1

NCASE=0

RETURN

Flow diagram for PLOCH - to check types of poles and

assign value to NCASE.
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' COPF 4 >

NO
NCASE=0 ? NCASE=-1?
calculate calculate calculate
K; by 1 K; by2 - K, by3

‘ RETURN ’

1 K=/ (n(p-Py))
S

Tl 4
2 K=/ (P ngl"’i ) '
, iz
KQ-‘- C/( P2(P2" P|)(P2" P4))
K3=CMPLX(‘I,O)-K|- K4

K4= CONJG(KP

3 K]=C/(A(A'P3\2)
Kp==C{3A-P)/( R(a- P3\3)

K4 = CONJG(K,)

Kg= CONJG(K])

Flow diagram for COPF4 - to calculate the residues of

the poles.,
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FUNCTION H

calculate B —

oo (1) by2
@ calculate RETURN

~ RETURN
- 4
! =143 K eMi'
A <

2 CEn=14 Klep]' Kyt + Kg ep’zf)+ K4ep4t

- Pt t
£ = 14K KN ! + [KgtK,t)e™

-

Flow diagram for FUNCTION H - to calcuate the unit-step

response f(t).



inifialize COUNT;
assign stepsize
At

A

call Function H
to
 evaluate T (1)

1=1(y)
ERR={.5— f(1s)

19~ £(to)

|ERR] <0001’

NO

t increasing 9

RETURN ’

print

reduce stepsize ,

<<= reverse direction, “interpolation failed”
At=— AtxE
increase t NO
Sz t=t} At, COUNT>200 ? N
increase COUNT

Flow diagram for TRIDY - to interpolate the values of

tr and td‘
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initialize t; ¢

. -t
stepsize= .

call function H
evaluate £(t)
at n+1 points

find max £(t,,)

re-assign f;
t; =t -at/2

overshoot

OT=(1-f(1,))x100

‘ RETURN ’

Flow diagram for OSHT4 - to calculate the overshoot.
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APPENDIX B

PATTERN SEARCH

Pattern search [17] is a direct search routine for
minimizing an objective function E(W) of several
variables, where E?=(W1...Wk). The arguement W; is varied
until the minimum E(E) is obtained, Figure B.1 shows a two

dimensional example of the pattern search.

Fig. B.1 Example of a 2-~dimensional pattern search.
The pattern search is successfully applied to the

work of this thesis in two cases. In the first case, the

arguements w3 are the angles between the pole-Vectors
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and the negative real axis. These poles are located on the
parabolic contour. The objective function E(W) is simply
the rise time,

In the second case, the objective function is the
performance index Y and the arguements are 'a' and 'b‘

or 'A','B' and 'D' for the third or fourth ordexr case,
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