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ABSTRACT

This thesis is concerned with the transient response

characLeristic of low pass filters designed to be fast with

little or no overshoot"

Methods are proposed to find the pole configuration

for an all-pole transfer function which yields a desirable

transient response. The first method is the pole-shifting

method. The radius vecto::s of the poles are allowed to rnove

on a parabolic contour by varying the angles between the

radius vectors and the negative real axis. Freqency and time

responses are investigated to locate several optimal

positions corresponding to some figures of merit.

Another approach to the problem is by the extremum

method. Sorne error criteria of the actual and ideal

responses are defined for the time and the frequency

domains.. A perfornìance j-ndex which is a weíghted sum. of the

integrals of these errors is then minimized by a di¡:ect

search program. Remarkable results are obtained for the

third and fourth order cases.



The transient responses of the proposecl filters are

found to be superior to all other filters. appeared in

literature. In the case of the third order case, for

example, a rise time of 1.761 seconds is obtained conrpared

to 2.291 seconcls for a Butterv¡orth filter" To make fair

comparisons, the dc gain as well as the 3-db band.width are

normalized to unity" The results obtained are very useful in

the design of filters for pulse application.
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CHAPTER T

ÏNTRODUCTION

I.1 General introduction

For a low-pass filter designed for pulse

applications, it is required that the rise time, delay

time and overshoot be as small as possible u ?

The problem of designing a netvrork ís realJ.y that of

finding a good approximatíon H (s) using a realizable
rational function of sc Since Butterworth t1l proposed. the

maximally flat magnitude charecteristic, numerous methocfs

have been suggested. Hor^¡everr the problern of obtaining the

least rise time for a given overshoot or least, overshoot

for a given rise time has not been solved. This thesis is
an attempt to improve the transient response and to shorv

such results.

I.2 Transient Response

It has been a connon practíce to compare the various

low pass filters by comparing their responses to a

unit-step excitation. The quantities associated with

step response are rise time(t, ), delay time(tU) and

overshoot(y). By far the most commonly used criterion is
the 50Í delay time and 10-90% rise time as depicted in
Figure Io1.
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where h(t) is response of the network.



Elmorers definitions are

networks with no overshoot

Seve¡:al other definitions have

ut,ilized. However, in the

analytically conveníent for

or very small overshoot"

also been proposed and

following discussion the

conventional definition is used.

f.3 Formulation of the problem

The problem is to find the location of poles for a

all-pole transfer function H(s) v¡hich yields a desirable

transient response. If the c1c response is normalized to

unity, then the filter funct.ion is

n lp- I

H(s) = ¡
i=r (" - Pi)

r.3

the

where pi=-øi tjc,ri is the ith pole in the left half of

s-p1ane.

the unít st.ep response of this filter is given by

,k) = f-t
^-

r* H(s) l T,4

3



In order to

of the filters,

to 1 xad/ sec

constraint,

Let

Then f (r)

evaluate and to compare the

it. is necessary to normalize

IB]. The requirement imposes

performance

the bandwiclth

the following

n 2t¡. * In (r+-f ,)=2i=l ol + ulll_a

r.5

satisfy aIl

s=-'l " The step

and t, =2"197r

For the first order filter, in order to

the requirementsr the pole must be at

response is monotonic with td =0.693 sec.

seconds "

,2 *zor"*ol

For the second order filter, the poles .t" p,,r-1tjt,

where ø, and c,r, are real and postive.

tI(s ) =

2201*11
r.6

2ftl

L'2

-r¡ äto-,e
=l - ,),

(1 - E-)"

ul)";E=orltrro

sin (oo :--€2)4

.2
oJ- = (o,

o
22
r*01

-1+ cos E)

? -L.
And y = e-rE(l-E-) :< 1002

a, = (r9o* - tror) sec

*:tSgC-d "501z "

r.7

r.8

T.9



For - calculating delay and rise time it, is necessary

to solve three transcendental eguations. Thus it, is
obvious that a direct method of minimízíng t¡ and t¿ is
not feasible.

In chapter II a comparison is made of the various

known systems, which leads to the development of the

present, work" In chapter IIf the suggested method and

results are discussedo In chapter IV another method of

optimizing the transient, response is briefly described,

followed by the discussion of the two methods presented.



CHAPTER TÏ

PREVIOUS CONTRIBUTTONS

II.1 Introduction

The problem of determining the suitable transfer

functions of lowpass filters has attracted much attention

in recent, years " lluch of the work rvas involved in f inding

a locus for the poles on the left half of the s-plane.

The poles v¡ere located at the intersection of the curve

wit,h radial straight lines from the origin v¡ith fixed
Butterworth anglesi or they vrere located on the curve

with equally spaced imaginary parts 1,71- 1,121 " The

following is a comparison of various known systemsn which

leads to the work of this thesis.

In comparing various. systenisr the following aspects

are studied.:

(1) pole locations,
(2') rise time and delay time t 

-

(3) overshoot.

In order that these comparisons to be valid,

normalization is carried'out according to the description

in chapter Io



Lf"2 Various systems

(1) Butterworth Configuration t1l

The poles lie symmetrically on the left half of a

unit circle in the complex plane. Tt has the advantage of

fast transíent responsesc However the large overshoot is
very undesirable for pulse networks. Furthermore the

overshoot increases with the increase in the order of the

filter.

(21 Thomson configuration 121 .

This class of filters has negligible overshoot for
low-order and no overshoot aL all for high-order filters.

Quite contrary to Èhe anticipationr the rise time and

delay time are much smaller than Butterworth response. For

example the third order filter has a rise time and delay

t,ime of 2.181 and 1" 681 sec. compared to Butterworthr s

2"291 and 2.135 seconds" This is true only after bandwidth

normalization

(3) Transitional Butterworth-Thomson Configuration t3l

This class of filter can be made to attain response



charact.erstics between those of Butterworth and Thomson by

choosing poles which lie on paths passing through the

ButLerworth pole pr(rur0u) and Thomson pole p"(rrr0r). The

path is defined by

p = r"j (tt - o) = -r"-jo II. 1

I,{here
mt.=tT

0=0r-t(OS-0r)

m = variable parameter.

(4) Elliptic Configuration t9l

This class of filters r,¡as proposed by J. O. Scanlan.

Poles are located with equal spacing on the imaginary axis

and are generated by varying the eccentricity of the

ellipse.

The equation of the ellipse is given by

This entails a trade off

characteristics rather

both simultaneously.

between Butt,erworth and Thomson

than providing the advantages of

TT.2
2 2., 2,O. = a (l - ûJ.)t- ' l-'

(5) Catenary Conf j-guation t 1 0l

This class of filters was proposed by l.f.S. Ghausi and



M" Adamowicz. Poles Iie on a catenary curve given by

o. =-alcosh r¡. - À) II.3
1

where aç, À are real positive constants such th¡t the

curve passes through the point.(-1,j0) on the s-p1ane. Thus

ac and À are related by

àc= À-1

and pole locations are

the curve with radial

as

determined by the

straight lines from

intersection of

the origin given

ûJ. = o. tan 0a ']- I

(6) Parabolic Configuratíon L7l

This conf iguration was suggest.ed

poles Lie on a parabolic arc defined by

24(ao+b) (oi+Ð =ri

TT.4

by Mullick. The

IT.5

from the

from the

where

vertexi b

ort-gl_n o

;,

is
is the dist.ance of the focus

the shift of the focus to the right

The poles are located at the intersection of radial

lines of Butterworth angles and the parabolic contour.



Figure II"1 shov¡s some of the loci and pole locations

for third order filters. Tab1e II.1, TI.2 and II"3 cornpare

the rise time, delay time and overshoot of the various

systems described.

f I,.3 Observation

The follovring observations are made. For Butt,erworth

and Thomson filtersr the pole locations are fixed, whereas

for parabolic, elliptic and other recent filters, a curve

is defined in the left half p1ane. By varying the

parameter associated with the curve, the shape of the

curve can be changed. With a carefully chosen value for
the parameter certain improvements are macleo An example is
given for the fourth o::der filters

Butterworth

Parabolíc b=0

Parabolic b=3

t" (sec)

2.432

2"374

2" 058

t¿(sec)

2.820

2" 557

1.858

1(iÃ)

1 0,830

2.560

0.218

Both the rise t.inre and delay time for b=3 are much

smaller than the corresponding values for b=0. Hor,vever¡

this is not the rbestr filter, further optimizations are

to be made.

10
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b=1
b=o

Butterworth

0=6o\r

Fig. fI.1 Parabolic distribution

n=3 "

of polesi
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n=3

Butterworth

Thomson

Transitional-
Butterv¡orth-

Thomson

Elliptic

CatenarT

Parabolic

Table II" 1

Í0= .2

m=. 4

m=.6

Ír=o I

a=o 4

â=o 6

a=o B

À=2 "

.À=2 " 5

,\=5.0

b=0.0

b=1 .25

b=3"0

b=8.0

t¡ (sec)

2,2907

2" 1B0B

2.247 2

2"2472

2,2217

2.19 t6

2 " 4t!61

2.269 7

2.2047

2.3000

2.31 48

2 "3196

2 "3641

2 "3647

2 "2893

2.2528

t¿ (sec)

2 "1352
1.6808

1 "9766

1 "9 766

1 .8420

1 .7 552

2.207 0

1"9434

1 "77 56

2 "1 311

2"11TTB

2.0318

2 "2804
2 "1 2gB

1 " 9 733

1"8498

^r @¡s)

8.1462

0.7541

3.8731

3.8731

2 .4 684

1"4411

1 "0922

2 .21 61

1 " 5007

7 "2401

.5"6061

2. 04 58

9.4495

2.9141

0 " 0000

0 " 0000

Comparison of rise

and overshoot for

tinen delay time

3rd order filters"

12



n=4

Butterr,¡orth

Thomson

Transitional-

Butterv¡orth-

Thomson

Elliptic

CaternarT

Parabolic

Table LT.2

m=0.20

¡=Q. 4 0

m=0"60

m=0. B 0

a=0. 4 0

a=0.6 0

a=0. B 0

À=2.00

À=2 " 50

À=5.00

b=0"00

b=1 "25

b=3.00

b=8.00

Comparison of
and overshoot

tr (sec)

2 " 4324

2"2039

2 "3996

2 "3t!37

2"2847

2 " 2355

2 "37 30

2 " 2683

2"1547

2 " 4543

2 "4496

2 "2031

2 "37 42

2"1078

2.057 B

2"1070

t¿ (sec)

2.8203

2 .07 62

2"6672

2.4961

2 "3320

2.1 BB3

2 .681 6

2.3308

1 " 
8000

2"8008

2 "7 308

2 " 2539

2 "557 4

2.0640

1"8578

1.6957

7 (%)

10 .8297

0 " 881 0

'l 
"5790

s. 03 23

3 "1210

1"7485

4 "1321

1.8400

0.0731

8.3523

5"5799

0"1263

2"5598

0.3370

0 "2182

0. 053 4

rise time, delay tinre

for 4th order filters"

13



n=5

Butt.en.¡orth

Thomson

Transitional-
Buttenvorth-

Thomson

Elliptic

CaternarT

Parabolic

Table II"3

m=0.20

m=0. 4 0

m=0. 6 0

m=0.80

a=0"40

a=0.60

a=0.80

Ã=2. 0 0

X=2.50

À=5.00

b=0.00

b=1 .25

b=3 " 00

b=8 " 00

Comparison of

a¡id overshoot

t" (sec)

2. 5624

2.201 5

2"5139

2 " 4200

2.3243

2.2496

2 " 2006

2 " 2345

2"r+401

2 " 2483

2.49 g5

2.1 230

2"2313.

2" 07 45

2"1322

2"1728

t¿ (sec)

3"4955

2.3996

3 "2807

3.0180

2 "7 680

2 " 5609

2.7132

2.6262

3"4190

1.þ346

3.21 B6

2 "4587

2.7 262

2 "17 62

2.03g1

1.8651

^t (?¿

12"7093

0 .77 25

8.8386

5.7581

1 .8340

1.8340

0 "9299

1"3618

16"9] 81

1 "0726

5.1115

0.41 93

1.0785

0.3423

0.1 325

o"ot¡a

rise time, delay time

for 5t.h order f ilters 
"

14



CHAPTER TIT

oPTIMIZATION By POLE SHTFTTNG Ilgl

III. l Introduction

From the observation in chapter ïï, it is realized
that, the transient response characteristics can be further
optimized. A method of accomplishing this, based on the

shifting of poles along the parabolic contour to locate

the optimal transient response, is present,ed, The

technique, although discussed here with reference to

parabolic filters, is equally applicable to other types of

pole distributions. .

III"2 The l4ethod

The radius vectors of the poles are allowed to move

on the parabolic contour by varying the angles between

the radius vectors and the negetive real axis , Both the

frequency and time responses are invest,igated for each

combination of angles. With the help of a digitat
computer, this method offers a systematic search strategy,

and is practical up to fifth order filters.

15



III.3 Computer Subroutines

Several computer subroutines are written to
facilitate the investigations. These subrout,ines are

ROOTo"to locate the poles and associated angles.

NORM.oto find the unnormalized bandv¡idth and the

normalizecl new pole positions.

. PAFA..to calculate the residues of the .poles for
the inverse Laplace Transform.

TRTD interpolation for t, ancl td.

OSHT.oto find % of overshoot.

COBF""to obtain coefficients (.i ) for the

characterist,ic polynomial.

The flow charts for the subroutines ,are shown in
Appendix A. The main program calIs these subprograms for
each combination of angles and calculates the responses.

16



The selected responses are plotted by a calcomp plott.er

which is an off-line plotter in the university of lfanito]:a

Computer Centre.

IfI.4 Second Order

Before normalization, poles with larger value of b

will be further away from the j<,r axis; hovrever when the

bandwidth is normalized to unityr the pole rocations. are

founcl to be independent of b. The only workable parameter

is the angle 0.

Rise time remains const,ant for small angle g at
values of approxímately 2.16 seconds" It decreases

steadily to 1"60 seconds as € approaches 90 degrees. Delay

timer on the other hand, increases from 1. oB seconds Èo

maximum 1.62 seconds which correspond.s to angre 0 of 7s

degrees. overshoot increases rapídIy as angle increases.

The new bandwidth, rise time, delay time, overshoot, pole

locations ( a tjß ) and the coefficients of the

characteristic polynomial are summarized^ in Table rrï.1
and Figures IfI.l and III.2,

17



Angle

Bandwidtlï

t,. (sec)

tU (sec)

r(%)

0.644

2"162

1"081

0,000

-1.552

0. 000

3" 103

2"410

200

0 "725

2"155

1 " 140

0"000

-1 " 337

0.487

2.67 5

2 "026

1"039

2"150

1"355

2.365

-0. 935

0" 701

1.670

1. 1Bg

600

1 .696

2"094

1 "646
1 6.302

-0. 393

0"691

0"796

0.618

900

2.591

'1"798

1"705

57 .467

-0. 1 14

0"648

0 "228

0. 433

0u
o

40

g

ß

a1

ao

Table III"1 Summary of 2nd order filters with

increasing angles"

(a, B are the real and imaginary parts

of the conjugate poles)

(al raO are the coefficients of the

characteristic polynomials),

Unless otherwise stated.rthe band.width values given

are referred to those before normalization. The value

of, t,. and t¿ are values obtained after normalizaticn.

r8



a
ru
il

o
@

bl
t
ù-f
t- e

J,

rise time

¿- ----ì

E'q
-or or¡

Fig. III.1

*'*7"
of)"

/.,

-- --n1-/'

ÊQ.0s 4S.QU 6Q,ßß
ANÊLE IN DEÊNEE5

Rise time ancl delay tirne vs.

gtì ,0s

angle (n=2)

a

TþQa
lFr ¡-¡;7azc

&o
Ft
o

D
m
â

oo
nJ
Fl

at
Ð

úo
*

oe
do

t-r)
Ð
tnc
ttl

E>

0s, q$.Q{

Fig III.2

¿a.sq '+B-çq 60.qs
ArVÊLr IN TEËRTE5

Overshoot and banch.¡iclth vs. angle (n=2) 
"

19



III"5 Third Order

rn the case of the third order filters, one pole is
on the negative real axis and the ot,her two pores form .a

conjugate pair. The complex pole makes an angle g with
the negative real axis" As 0 increases, the bandrvidth of
the filter increases and the effect of b becomes more

apparent,o

The bandwidth, overshoot, rise time and delay time

versus angle are plotted in Figures rrr.3, rrr.4, rrr"5
and rrr"6" The rise time is almost, constant but the delay

t,ime gradually increases as the pore angre increases from

zero to forty degrees; within this interval the overshoot

is negrigibre. The rise time, delay time and overshoot

become larger as the angle continues to increase except

in the region close to the imaginary axis where the trend
is reversed. rn this region, the rise time drops sharply
but, points of infrexion are observed in the transient
response which results ín the distortion of the output
pulse shape. rn generaJ-, the poles with angles smalrer

than Butterworth angles and with large focus distance
correspond, to the favorabre response. For example, one

such angle would be 22 degrees, with rise time and delay

time of 2"151 and 1,429 seconds respectively. The

frequency response is reasonably good.

20
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III.6 Fourth and hj-gher orders

The analysis of higher order cases is sírníLar to the

thírd order case, The 4th and sth order results are

plotted in Figures IIT.7 to fIT.14.

As the order n increases, the rise time and delay

time increase but the bandwídth and ove::shoot clecreasen Orr

the other hand, the effect of the variation of the angles

and. the parameter b on the rise time and delay time

becomes less as the order increases.

The curves of rise time versus angle show a

noticeable decrease in rise time when angle øZ is between

60 and 70 degrees" Follovring a local minimum, c.f. Figure

III.9 and III"13, the rise time Íncreases considerably.

The loca1 minimum is smaller for greater angle ê1.

However, increasing both angle €1 and angle eZ will give

rise to undesirable distortion of the output pulse shape.

For general application, therefore, the angles should not

be greater than 70 degrees"

The following are some results when a pattern .search

program 1"17) is employed to find. the loca1 minimium.

n b €1 eZ t,' (sec) t¿ (sec) ^r (fÃ)

4 0.9 10"7 70..0 2.014 1.914 0.003

2.0 1 0.0 1 0" 0 2,144 1 "621 0,000

5 2.8 5.0 40.0 2.147 1 "920 0" 000

5 0"3 27.6 70"0 2"065 2"185 0"219
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III.7 Discussion

The curves on Figure III.7 to ITI"14 shorv how the

rise time, delay time and overshoot vary with the angles.

For the third order caser âD optimal point is located at

an angle of 22 d.egrees. The rise time and delay time are

2.151 seconds and 1"428 second.s respectivelyr âs cornpared

to 2.364 seconds and 2.280 seconds of the parabolic filter
with an angle of 60 degrees.

For the fourth and fífth order cases, several optimal

points rt." located depending on the reJ.ative importance of

the rise t,ime delay t,ime, overshoot or the frequency

responses. For example, two optimal points are located for
the fourth order case. The first point has a minimum rise
time of 2"014 seconds and the second poínt has a mininrum

delay time of 1 "621 seconds. Both points have negligible
overshoots and reasonable frequency responses. If the

requirement on the output pulse shape is relaxed, faster
responses can be obtained by increasing the angles.

28



CHAPTER TV

OPTT¡4IZATTON BY BXTRE}.,IUM ¡,IETFIOD

IV" 1 Introductíon

For an nth order filt,er, there are n d,egrees of

freedom in choosing the position of. poles. A reguired

constraint, of fixed bandwidth removes one degree of
freed.om result in n-1 degrees of freedom. For a complete

optimization, there should be n-1 pararneters to work with.
Table IV" 1 shorvs the number of parameters available for
the pole shifting technique.

. ORDER OF DEGREES OF PARAI,IETERS
FILTER FREEDOM AVAILABLE

2101

3 2 b, €1

4 3 b, €1, e2

5 4 b, €1, e2

6 5 .b, €1, Q2, €3

7 6 b, Q1, QZ, €3

8 7 bo €1, e2, €3, €4

Table IV"1 Available parameters for pole-shifting
method, where 01is the angle of the ith pole vector.
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Therefore, instead of confining the poles on a

parabolic, elliptic or any ot.her loci, the designer has

complete freedom to choose t,he pole locations from the

left half plane, subjected only to the bandrvidth

constraínt.

IV "2 Pole distribution under bandv¡idth constraint

Consider the third order case, and let p., u pZ, p3 be

the poles on the left half plane such that

pr= (-b+jc¡ ; pr= (-a+j0) ; p3= (-b-jc)

where arbrc are real posiÈive numbers.

The transfer function of the filter is

H(s) =
a (a2 + .2) rv.1

(s+a) ("2*2bs*b2+"2)

Let q=b2+"2

aqH(s) =
(s+a) ("2+2bs+q)
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The bandwidth is

l"(j r) l2 =

:"a 
equal to unity.

22ao

of q.

The sign before

expression positive.

2 .2c =g"D

provided

the sguare root is chosen to make :the

_2
-b IV.6

(L+az)
., ')((q-L)'+4b')

= 4 IV,z

Equation fV "2 is rearranged as a quadratic equation

(^2,- t) qz * zqçt *^2)-(r+4bz)(1 +a2)=o -IV.3

Let g_= rv.4

then
:1 +q= IV.5

^2,
2b2

;;æ
IV. 7
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Similarly, for the fourth order case, let p1, p2, p3

and pUbe the poles of the transfer funcLion"

p1= (-A+jB) r P2= (-C+jo¡ ;

p3=(-c-jD) r P¡{=(-A-js) i

Q1=e2+g2 i Q2=C2+D2.

where A, B, C and D are real positive numbers.

The transfer function of the filter becomes

H(s) =
QrQz

IV. B
("2 + 2As + Qr) ("2 + b" + Qz)

The bandrvidth is set to unity.

o? oi
L¿=

t (al - t)z + tri zl 
t (42 - t)2 + ¿,c21

Equation IV.9 is rearranged as a quadratÍc equation

of Q1.

<q;* zez t - trc') al+ z e3- zqz* 1+ 4c2) Ql

- Q3 - 2ez+ L + 4c2) G¡2 +1) = o

IV.9
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q7*zsr-t-4c2
qtr-rqr*t*4c2

cl**rq,

Let

then

Qr=

the sign before the square

expression positive.

"'= er- o'

- GA2 * l) = g

root is chosen to make the

-L2

IV.11

IV.L2

IV.13

provided

L+GÃ2+1)rn>0

Thus , for the third orcler case, the tr,¡o independent

variables rat and tbt are the real parts of poles pl and p,

respectively. The imaginary part of pt is calculated from

equation (IV.6). The imaginary part of the second pole is

zero because it. lies on the negative real axisn For the
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fourth order case¡ the three
oArrscr and rD¡" The value

equation (IV.13). The transfer

the third and fourt,h order

bandwidth constraint"

indepenclent variables are

of rBr is obtained from

funct-ion thus obtained for

filters rvil"l satisfy the

follows

IV.14

IV" 3 l4inimizing the performance index

The simplest performance index is defined as

-0= rl"r(x) + wrtu(x) + wry(x)

where wi are the weighting functions and x is the

design parameter vector. For the third order case, the

elements of the vector are ¡ae and tbt i v¡hereas, for the

fourth order caser the elements are tA, o rC¡ and tDt o A

direct search program, namelyr the pattern search t19I

program, is employed. to minimize the function l. Very

small values of rise tíme and delay time can be obtained

from this simple performance index by decreasing rar and

increasing tct. The situation corresponds to moving the

poles towards the imagínary axis in chapter III, This

index is discarded. because the frequency response is not

acceptable.

A new performance index is defined. to enable the

control of the frequency response as well as the shape of
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the output pulse in the process of opti-mization"

ú=
k

r(t) le(x,t)l at + óP(x,r¡)

e (xrt) =u (t) -f (x, t)

I ry.15

rv.16

where P(x, c,r ) is a penalty functiono óis a weignting

factor

The function e(x¿t) is the error between the actual

and the desíred netv¡ork responses. It, is defined as

follows

where u(t) is a unit-step function, f(xrt) is the network

response due to a unit-st,ep excitation and x is the

ad,justable parameter vect,or. A unit-step function has zero

rise time, delay tíme and. overshoot. Therefore, when

f(xrt) is closest to the ideal response, the rise time,

delay time or overshoot will be the least. The weighting

function rv(t) is a time function to emphasize oï

deemphasize certain parts of the response to suit the

designerrs requirement. If w(t)=t, the error is magnified

as t increases. The integer k raises the power of the

error e(xrt), and in this case is set to 2"

P(xrc,r) is a penalty function defined as follor,¡s

f t i'*
P(x,r¡) = lt,t -l uçx,¡ur¡l>1ar, * l¡ n(x,3o)l dur

J. .|1
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It is the frequency integral of the error between

the actual ancl the ícleal low-pass frequency responses o The

penalty function is a minimum when the frequency response

is closest to the ideal lorv-pass response. Thus by

minímizing the function I it is possible to minimize the

rise time and delay time as well as to keep the frequency

response close to the ideal response.

In carrying out the evaluation of the

equation IV,15 is approximated as follows

functíon f t

t.
.-.

Fig" IV.1 Area

frequency domains"

'time

approximation

li-l H(x , 'i) ll¡t,r

IV. 18

frequency

Ln the time and.
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Figure IV.1 depicts the summatíon process and it is
found sufficient to carry the summation up to 10 seconds

for the time domain term and up to 3 racl/sec for the

frequency domain term. After the index is defined., it is
minimized by the pat,tern search .program to locate the

optimal point.

IV"4 Result of optimization

The minímum points of the function ï are - different
with different vreightÍng function ó " !,Then frequency

response is deemed more important, the vreighting factor ó

is to assume a large value. This weighting process is very

subjective because strictry objective criteria do not

exist. Therefore several optimal poínts are rocated. with
different weightings. The results for the third and fourth
order are summarized in Table ÍV.2. For filter Í., the

weighting on time response is heavy, giving a rise:time of
1.761 seconds and 1"966 seconds for the third and the

fourth orders respectivery. Filter rrï has Èhe heaviest

weighting on frequency response, thus the rise time

increases to 2.097 seconds and 2.138 seconds. Figure IV.2

and rv.4 show that although filter r has a smaller rise

37



timee the frequency response has a ripple effect. Filter

II, however, is a favorable raedium, having a rise time of

2,04 seconds for the third order. All the three filters

are superior to the parabolic filter (IV) which j-s

included for comparison.
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n=3

I

TI

ITI

ÏV

a

(,
ro

1.974

1"916

1.698

0"976

b

n=4

0" 525

0.737

0"743

0" 563

ÏI

rïI
TV

c

0.678

0.737

0. 845

0"845

A

t, (sec)

1"761

2.041

2"097

2"320

0"709

0"685

2 "210
0"426

B

t - (sec)
ct

1.395

1.430

1"565

2 "08'l

2"123

7 "293
0.380

1"171

c

^Y ('Á)

1"224

1 " 493

2"220

0.805

0.000

0" 000

0.000

4. 075

D

0" 042

0"132

0"396

0.325

Table IV.2 Result of optimization.

tr(sec) tU(sec)

1.996

2"075

2.139

2"447

1.743

1 .159

1.614

2"685

^v (%)

0"000

0. 004

0"000

2.631
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CHAPTER V

CONCLUSTON

This thesis presents methods of improving the

t,ransient responses of low-pass filters. The fírst method

is the pole-shifting method. The rad.ius vectors of the

poles are allowecl to move by varying the angles between

the radj-us vectors and the negative real axis, resulting
in substantial improvements. The rise t,ime, delay tirne and

the overshoot versus angles are plotted in graphs so that
one can find the optimal points corresponding to the

figures of merit of the transient response. ft is found,

however¡ that the angles should not be greater than 70

degrees to avoid und.esirable frequency responses.

Another approach to the problem is presented ín
chapter IV. Some error criteria of Èhe actual and ideal
responses are defined in terms of some workable

parameters" The weighted sum of the integrals of the

errors is then minimized by the pat,tern search routine.
Remarkable results are obtained and are tabulated in Table

ÍV"2. The time and frequency responses are also plotted
for ref erences " The sinall rise time (1 "7 61 sec. ) and

delay time (1 "395 sec. ) are much superior to those of the

4t+



But,terworth filt.er ryhich gives a rise t.ime and delay time

of 2.291 and. 2.135 seconds respectively. The overshoot, for
all the result.s obtained are eiLher zero or negligible.
The 5th or higher order cases can be . obtained easily by

the same procedures.

The pole-shifLing method, though not. as efficient as

the extremum method, gives much more insj-ght into the

relationshíp of the pole pattern and transient response.

Howeverr the numerical method gives a much better result
because of the higher degrees of freedom.

The results obtaíned in the work are very usefuL in
the design of filt,ers for pulse networks. Since the

transmíssion zeros are all at infinity, the filters
considered can be realized as ladder netv¡orks by standard

procedures ",

It is the author¡s feeling that more research should

be carriecl on in both the analytical approach and the

numerical approach as the two methods complernent each

otherG
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APPEI.IDTX A

COI{PUTE R SUP,P ROG RA}f S

Several computer subprograns have been rvritten for
the IBM 360/65 to calculate both the frequency and. time

responseso The language used is WATFIV, . *oaified version

of standard FORTRAN.

The flolv díagrams are given in the follovring pages"

Only the 4th order case is presented" The 3rd and 5th

order cases are simíLar, The numeric 4 is included in the

names of the subroutines to indicate a 4th order caseo

The follorving is a brief description of the

subprogrëuns o

ROOT4 To locate the pole position p, = oi+jc.rt with a

given equation of the locus and an associated. angle €r.
NORMIV4 To calculate the frequency response and to

interpolate the bandwidth (FINlv) by comparing H(s) with

0.7071 " The step size is reduced successively until the

error is smaller than a given boundc

PLOC4 To check whether poles Are símple conjugate,

double or located on the negative real axis" A value of

-1r0 or 1 is assigned to an indicater TNCASEI" The value
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thus assigned to NCASE will guide the subsequent

subprograms to choose different equations for dífferent
types of poleso

COPF4 To calcuate the residues of the poles

according to the equations given c

FUNCTION H - Subroutines TRTD4 and OSHT4 wil1 call
this external function to calculate the value of the

unit-step response f(t) at. a given point t according to

the Lype of poles.

TRTD4 To interpolate the value of t when f (t)

equals to 0.1, 0"5 and 0"9. The procedure is simiLar to

NORMW4" TD is the value of t when f (t) differs 0.5 by less

than the error bound. TR eguals to t.9-t.1.
OSHT4 To calculate the overshoot of the time

responsei n points are calculated betvreen t1 and t¡. The

maximum point f (tm) is obtained by a sort program. The

interval is reduced by re-assigning ti and. tf a distance

bt/z to the left, and to the right of the _maximum point.
The procedure is repeated until t,he interval (tf-ti) is
small enough" Overshoot is (f(tm)-1)x100%.
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colculote or¡

eqfn.l
R¡=-,¡*c

Pole Pl

P¡=R¡* i<,r¡

RETURN

sr¡ ' sQRT(+fu+ r)2 c2ol ) -2{u+¡c
. .1. . -' :'' 

.'

FIow diagram for ROOT4 - t,o locate pole position

f,rom the given equation.
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dssign sfepsize Á(,)

ERR=.7071-H

FINW=(.);
normolize P¡

P¡=P¡/FINW

ERR<O o increosing ?

l'low diagram for NORM!{4 - to find bandwidth and nev¡

pole positions after normalization.
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Flow diagram for. PLOCtt - to check types of poles and

assign valpe to NCASE.
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.' t
':'

' :'
.'' : :2

K,r= cr/ 
f 
p¡glp¡- r,))

.4
Kt=c¡,*l]jr¡-P¡ ))

R2=c/(P2(P¡ P¡XP¡Pa))

K3= cMprx( ì,o)- Kl - K¿

K4= CONJGIK,)

Kt--c /(A ( A- P3\2 )

K, ==c ( 3 A - n3)/¡a2¡a- e.'¡)

Ka= CONJGIK2ì

Ko= CONJGIKTI

FIow diagram for COPF4 to calculate

the poles.
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colcu lote

f(i) by2

flrrl=t+f x,"Pi
i=l

[(rl = I + Kt ePlt +(l<2t + 13 eÐt¡+ K4ep4t

ftt)= I +(x,r +xr)"Ptl + fKs + fotl"%t

Flow diagram for FUNCTION H - to calcuate the unit-step

response f (t) ,
I
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ioll Function H
lo

evoluote f (t)

lennlcoooi

t increosing 2

reduce slepsize ,

rerærse direction,

Ât=- Àlxt

increqse l
l=t* Ál ;

increqse COUNT

int,erpolate the values of
and td.

-to
tt
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OSHT4

initiolize t¡ t¡

stepsi
tf -f¡

n

coll fun

evoluo

ol n+

ction H
te f(t)
'l points

find mr :x f(t¡1)

re-ossign t¡ t¡
l. --|-- - ^| 

l¿,sr

eno

roll
NO

,{ tf =tmf¿t/2

YES

overshoot

91=(1- 1(t-))xtoo

RETURN

-:'

- Flow diagram for osHT4 - to carculate the overshoot.

54



APPENDIX B

PATTERN SEARCH

Pattern search 1171 is a direct search routine for
minimizing an object,ive functíon E (E) " of several

variables, where WT=(wt. ".[V¡). The arguement lf1 is varied

until the minimum E(W) is obtained.. Figure 8.1 shows a two

dÍmensional example of the pattern search.

Fig. 8.1 Example of a 2-d.imen=rorrr;;;;tterJ search.

The pattern search is successfully applied to the

work of this thesis in two cases. In the first case, the

arguements wi are the angles between the pole-vectors

wr
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and the negative real axis. These poles are located on the
parabolic contour. The objective function E(!,ql is simply

the rise time.

In the second case, the objective function is the
performance index y and the arguements are tat and fbr

or !A¡, 0B¡ and rDr for the third or fourth order case,
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