
The Design & Implementation

of a Simple

Persistent Object Server

by

Simon Ma

.;!r;

A thesis

submitted to the Faculty of Graduate Studies

in partial fulfillment of the requirements

for the degree of

Master's of Science

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba

Canada

April 1996

l*¡ National LibrarY

Acquisit¡ons and
Bìbliographic Services Branch

395 Wellinglon Slreet
Onâwa, Onlario
KlA ON4

Bibliothèque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395. rue Wellinolon
Onawa (Onlariõ)
KlAON4

You hle Volte ¡élércnce

AúI¡e Nolrc rclércnce

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

ISBN 0-612-r3326-5

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Ganada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-cÍ ne
doivent être imprimés ou
autrement reproduÍts sans son
autorisation.

Canadä

Norne

-
D¡sseñol¡on A.bslrccls Inlernolionolc,¡d Mqslørs Ahslro.ls Inlernoliono/ ore orronged by brood, generol subiect colegories
Pleose select the one subiecl which nrost neorly descrihes lhe conlenl of your disserlolion or lhesÌs. Enter lhe corresponding
fourdigit code in lhe spoces provided.

w{_rN4r
Subject Cotegories

lHE HUl,lÃHlIlES AND SOGtAt SGIENGES

IHE SGIENCES AND ENGINEERING

HrÁtIH AilD tNVtR0Nm¡fl1Ât
s(ltt¡(ts

Vd*im¡v Scieme-.............-o78

-. zrrJPgY.".'.'.'...',, "',, ",', ".',, 0 47 2

'cá''€."1.........-.-.............-....o78ó
Ms¿ical,..,.......07ó0

¡ARIH S(|IH(IS
Bioo6<h€mi¡trv........................ 0¡25
Geõdr*ni*ry .i.....,..,..,....,,,,.,.,,099ó

PSY(HOIOCY
c€ñ€.o1....................................0ó21
B€lrcvioro1................................038¿
dini€o1....,,,...,,.........................0ó22
DsvêloÞmêr'to1..........................oó20
Eo€ri €nrol............................0ó23
lñ¿ushio1..................................0621
P€Eo¡'aliþ................................0ó25
Pàv¡iolooírol0989
Psich.bóbgy...,.......................03de
Psv(homêtrics-.....-.....-.--.......0ó32
S"<ic1.......................................0/sl

A¡c*olnv,........,,,.0282
Bbccfi li6-............0308

'ìica
........,............,...0308

..............,.....,...........0309

..............,........,......,.uJlv
t0329
Iosy...........,........,,,. 0353

.;...,.,....................03¿9
y,,..............0793
bcv0¡l 0
r ::........................0302
¡Ìrco......................0317
rçhy...,.........,....,,0¿ló

Disserlolion Abslrocls lnlernolional esf orgonisé en colégor¡es de sujels. Veuillez s,v.p, choìsir le suiet qui décrit le mieux volre
lhèse et inscrivez le code numêrique opproprié dons l'espoce réservé ci-dessous.

|-|-l-n {JM.I
SUJET

Cotégories por suiets

H¡'!AñA¡{¡IÊS ET SGIEN€ES SOGIAIEs

CODE DE SUJII

SE¡EN€85 ET INGÉNIER¡F

1ecrure.....................................0535
Molhémorioues.................... 0280
Musioue .1.. os22
O¡¡eniorion êr conr!ho1ion....... .05ì9
Philosoohie de l'éducotion 0998
Phvsio,ie 0523
P¡óq¿mme! d érudes êr

enseionemenr 0727
Psvcho!ãoie os25
5crences (J/ l4
Sciences so<ioìes....................... 0534
Sociolooie de l'èducorion........... 03¿0
Technofôsie............... 07ì0

I.ÂNGUT, TIflÉRAfURT Tf
UNGUT5Í0Ut
to¡gles. ,. _trenerolrlê!uôly

Ancieññes....0289
1inouis|ioue...................... ..0290
Mo?erne!.................. . 029t

Litlérolure
Gênêrolirés..................... ...0401
4nciennes........................... 029¿
ComDorée0295
Medíévo|e....02e2
Moderne.............................0298
Alricoine031ó
A¡éricoine 0591
Anolôise....................... .. . 0593
Asi¿lioue.-............. 0305
conoúenne lAnoloisel 03s2
conodrenne lfronco,sel0JJ5
Ge¡monioue 03ì ì
torìno om'áricoine................ 03l 2
Moyen.or;e.role......... .. 03r5
Romõne 0313
Slove êl €t.europænne0314

Çèolçie. . . 0372

Hvd;ol6oiå. ... o38sMi',¿¡olåoie or'ì ì
Ocèonosiophie physique0415
P.lèôhôrõ¡idL,ê O3¿5
Poleðko|ooii........................ ..0¿2ó
P.lÉÒ¡r.ld:è or'l8
Polèozooloäie...........................0985
Polynolosie-........... 0427

s(lt (ts Dt ta saNli It Dt
rrNvtR0 Ntft$Nr
Économie dome!rioue............. .. 038ó
5c ences de I envroñnement 0/óa
Sciences de lo sontê

Générolirés05óó
A¿minislrorion des hìóitôux O7ó9
Alimenrôlionelnukilitn . ..0570
audiolø;e.... . o3oo
chimiôrÊ'érÒôie o99)
Dênriterie..:......05ó7
Déveloooementhrmoin 073A
Enseioååmenr................ .. . 0350
l.-,;"|""i. oga?
1or5rrs.................................(J5/5
Médecine du hovoilel

thérôó;e 035¿
Mede¿ile er ¡hnu¡oie 05ó¿
Obsréhioùe er ovñËcôlôôiê 0380
oohrolmhlôore:i........ .:...... 038ì
Ohhoohonie-.. Oaóo
Porhofooie O57l
Phormocreu5/2
Pho¡mocolooie0a19
Phv<iorhé¡oàie 0382
RôiliôlMiÞ o57À
Sonré mËnrol-"0347

5orn5 nlrrmreßU5óv
loxicologie0383

4ncienne...................-........ 0579
Mediévo|e......0581
Moderñe..........0582
H¡roire des ¡oir'....0328

Conodi€iñe........................033¿
8rors.Unis 0337
Eurooèenne 0335
Movån-orienrole 0333
Loti'no ornéricoiñe.... 033ó
Asie, Aurrolie et Océonie....0332

Hisroire des sciences... 0585
Loisìrs......................081¿
Plonilicorion urboine ei

- régionoleA999

çenero rles uô l5
Adrni¡irroiionÕuhlioùe 0617
Droil et relôrio;!

internorionoles0ól ó
Sociolôo;e

Génirolites............... a626
Aidê er bien.òrre sociol........ 0ó30

élobli";menis
oénitenrioire3 O6t7

DémooroÞhie..........0938
Erudeidd l' indi"id, er

- de lo fomi |e...........0ó28
ErL:des des relotions

inierethñ;ôùe3 er
des relorions rocioles 0ó31

Slruclure et develoooemenr
so<iol.............11........ ozoo

Théorie er mérhodes03¿¿
TrovoileÌ relorions

industrie|jes......................0ó29
Tronloorls 0709
Tro'oìlsociol.................... 0¿52

Bioméd]co|e........... 05al
Choleur ei ther

modvnomioue..........03¿8
Condirìonne"i.*

{Embo |oqel05¿9
Gèñie oèroiooriol 0s38

Génie civil .:................... ...05¿3
Génie élecìronioue et

elê(k;a!e . . .054a
Génie inJurriel..... .. 05¡ó
Gènie mèconioue................05a8
çenenucleorre........... u5ll
Meconroùe ¡ôvôlê l)5Á/
Mèro lurbie o7Á3
Science ðes rnorériou^079a
Technioue du oèlrole . a765
le.hnr.re mrnrÞrê (ì551
Ìê.hni;1,ê((ô.ir^i,êr pt

muni¿iooles.. oss¿
T€chnoloiie hvd¡oLJlioue.. . osa5

Mèconiouê ôåôliiuéê o:]r'¿,
Céorechnoìosii O¿28

fTê¿h""!"l,i.l a7e5
Recheiche ooé¡ãtiónnelle.079ó
Tenieserris!us (Tech¡olosie)079¿

PSY(H0t0GtI(Jenerolrles |J621
Pe¡sonnoliré............0ó25
Psvchobiolooie.... o3¿9
Psicholøie-cl;nioue aó??
Psicholdie d! c¿moo¡remenr o3B¿
Pricholoãie du dev¿lÒóóéñênr 0ó20
P!;choloãieexoérime;iirle.. 0ó23
Psicholoðie in¿ur,ielle .. o62a
PsicholoËie ohvsiolooioue........ 0989
Psicholoãie lo.iole .: .:. . o¿51
Psichom5r,ie oó32

@

...0422

...........03r 0
.........0454

...........0770

..........0272

..........0338

..........0578

o473
0285

S(IINCTS PHYSIOUTS

Sciences Pu¡es
Chìmie

Genê¡ol'rés.......0¿85
Biochimie ¿87
Chi¡nie ooricole..... 07a9
Chimie oñol¡io¡e 0Á86
Chimie min¿'rolå........... .. . O¿8e
(hrm e nucl-ÀoÍe O/34
Chim;e o¡oonioue 0490
Chimieohãrmoceurioue. 0491
Phvsiouå... : oÄ9a
PofvmCres0¿95
Rodrolron.. .. . O/54

Molhémo1ioues..................... .. 0¿05

' c¿nè,olirésoóos
AcoulioLre.............. O98ó

orroohvlioue.-..... 0ó0ó
Elecrroniqire èr élecrricir€ Oó07
rru des el Dlosmo.........o/5y
Méréo¡olobieqéaq
upnqu€,.,, -........................u/J2
Porlicules {Phy!iquenucleonel....0798
Phvsioue orôñioùe 07 Ág
Phisiciue de l étår solide oól I
Phísiciue moleculoire oó09
Pl,i¡iciuenuclæire.... 0ólo
Roijioi;on.......025ó

Sloliliques 04ó3
5ciences Appliqués Et

1nformorioJe........................ . .098¡
lnqè¡ie¡ie

(Jenerolrles.. l)t.l/
Asrico|e0539
Aulomobile . . 05r'O

THE UNÍVERSITY OF MANITOBA

FACUTY OF CRADUATE STUDIES

COPYRIGHT PERMISSION

TEE DESICN & IUPI.EMENTATION OT

A SIMPI,E PERSISTENT OBJECT SERVER

BY

SI¡{ON ¡fÀ

A Thesis/practicum submitted to the Faculty of Graduate Studies of the University of Manitobå in Partial
fulfillment of the requirements for the degree of

HASTER OF SCIENCE

SiEoE Ma @ 1996

permission hâs beeri granted to the LIBRARY OF TIIE UNIyERSITY OF MANITOBA to lend or sell copies

of this thesis/prâcticum, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis/practicum and

to lend orsèll copies of the lilm, and to UNn/ERSITY MICROFILMS INC. to Publish an abstrâct of this

thesis/prâcticum..

This reproduction or copy ofthis thesis hâs been made available by âuthority ofthe copyright owner solely

for the purpose of privâte study ånd research, and may only be reproduced aod copied as Permitted by

copyright laws or'\üith express written âuthorization from the coPyright owner'

Table of Contents

Chapter

Abstract

Acknowledgenents

List of Figures

1.

Page

vi

Introduction

L 1 Motivation and Objectives

L2 Related Work

1.3 Organization of Thesis

System Architecture Overview

2.1 ApplicationProgramminglnterface

2.2 Object Manager

2.3 Storage Manager

2.4 The Benefits of Mach

2.4.1 MicrokemelConcepts

vii

I

5

I

10

13

t6

21,

23

24

25

27

29

30

2,4.2 Support for ClienlServer Development

2.4.3 Support for Extemal Pager

POServer RPC Implementation

35

1'l

40

42

45

49

52

54

56

57

59

62

64

66

67

67

70

72

51

3.

4.

The POServer Object Model

3.1 ObjectRepresentation

3.2 BehaviorRepresentation

3.3 ClassRepresentation

3.4 ClassRelationships

3.5 POServer Class Hierarchy

3.5.1 PrimitiveClasses

3,5,2 ConstructedClasses

3.5.3 Schema Classes

3.6 Referentiallntegrity

3,7 Summary

The POSeruer Object Manager

4,1 Implementation of Schema and Primitive Classes

4.1.1 Class Class

4.1.2 Class Method

4.1.3 Class Attribute

4,1.4 PrimitiveClasses

4.1.5 ConstructedClasses

4.1.6 Class Object

l

73

75

80

4.2

4.3

4.I.7 Object Access Table

Implementation of Inheritance

Behavior Implementation

The POServer Storage Manager 87

5.1 The Persistence Model for POServer 88

5.2 Logical and Physical Object Identifiers 92

5.3 Object Manager Interface 101

Conclusion

6.1 Contributions

6.2 Future Research

103

105

106

108Bibliography

Abstract

Object-based systems are quite heavily investigated in recent years because many

database researchers now agtee that the relational database technology of the 1980s falls

far short of providing the necessary data abstraction and modelling capability. This thesis

presents the implementation design ofa simple object-based system called the Pers¡stent

Object Semer (POServer). The primary function of POServer is to provide object access

and persistence. A system aÌchitecture based entirely on Mach's RPC mechanism is

presented and the Application Programming Interface (API) is illustrated. A simple

object model that consists of the core object-oriented features is defìned. The

implementation design of the Object Manager and the Storage Manager are discussed in

detail. Also, different implementation techniques and design altematives æe examined.

Finally, the algorithms for the implementation of inheritance and behavior are introduced.

The thesis contributes towards a foundation for object-based systems. The system

architecture, the object model and the algorithms form the ftamework of the POServer

system and enable the system designer to take one step closer to building a full-blown

object-based system,

Acknowledgements

I would like to take this opportunity to express my appreciation and thank a few people

for their support and encowagement. First of all, I would like to thank my supervisor,

Dr. Ken Barker, for giving me the opportunity to pursue this practical topic. He has

provided me with a lot of valuable insights and cleæ directions during the course of

writing my thesis. It was a pleasant experience to have worked with him. The thesis has

been proven to be very challenging. I have leamed a lot about the implementation

techniques for object design and development. Most importantly, I am able to make use

of what I have leamed ftom this thesis and apply the concepts and the knowledge to my

work. I am currently involved in the system design of a three rier application architecture

at Great-West Life. Three tier application architecfure is a refinement of the

ClienlServer architectu¡e which separates each application into data, application, and

presentation layers. Secondly, I would also like to thank my peers in the Advanced

Database Systems Laboratory, especially Dr. Peter Graham and Mr. Gilbert Detillie, for

their technical expertise in setting up Mach that allowed me to test out the RPC

mechanism. Last, and definitely not the least, I wish to thank my lovely wife Alice.

Your encouragement over the last two years hæ been invaluable. Without the love and

support from you, I would have never made it this far.

vl

X-,ist of Figures

2.1 The POServer System Architecture

2.2 POServer C Application Programming Interface

2.3 The POServer RPC

Class Employee

Employee Class Hierarchy

The POServer Class Hierarchy

4.1 Object Structwes for Schema Classes

4.2 Object Structures for Primitive and Constructed Classes

4.3 Object Access Table and object instances in memory

4.4 The Inheritance Algorithm

4,5 The Use of Function Pointers for Dynamic Binding

4.6 The Method Resolution Algorithm

4.7 The Method Execution Algorithm

Object storage representations and the IID tables

Object Dereferencing and Instance ID Table

3.1

a)

5.5

5.1

5.2

Page

63

68

74

78

81

84

86

14

20

JJ

44

47

50

97

99

vll

Chapter X

Introduction

Database management systems (DBMS) were introduced in the late 1960s to overcome

the inherent limitations of file management systems such as data redundancy,

inflexibility, and lack of data independence. A DBMS is an implementation of a data

model that consists of a set of services such as backup and recovery, transaction

management, concurency control, and security protection to help maintain the integrity

of the database. Since their introduction in the late 1960s, DBMSs have undergone

several generations of evolution. The principle data models implemented include

network model, hierarchical model and relational model. The relational model as defined

by Codd [14] represents the current generation of DBMSs, in which data are represented

in the form oftables and relations, has met the needs of simple business data processing

applications such as payroll, accounting, inventory control, and so on. However, the

relational model offers the simple notion of tables and character-based data as the only

data structures for user interaction. The set of operations in relational systems is limited

to set theory and first-order logic. The relational model carmot capture the semantics of

complex objects. To model a complex object the information often has to be split into

several tables. This makes each access to such objects slow since the DBMS mustjoin a

lot of tables to gather the object's information. In summary, the flat nature of the

relational data model is not able to adequately support applications that require large

complex data structures. These include images, voice, graphics and documents. For

example, most insurance companies have a substantial onJine database system that

records information for policyholders and their benefit payments. Ideally, these

databases should be enhanced with multimedia data such as digitized images of

ha¡rd-written applications, audio transcripts of underwiters' evaluations, and photographs

ofspecially insured objects, as discussed in Koehler [32].

Many database researchers now agree that the relational database technology ofthe 1980s

falls far short ofproviding the necessary data abstraction or modelling capability to act as

the repository of hypermedia objects and applications. There has been a movement

within the database field to incorporate more and more semantics into the data model so

that the database can mote closely reflect an application. Relational databases cannot

provide direct, natural representation of graph-structured object spaces. Relational

systems are subject to the limitations of a finite set of data types and the need to

normalize data. In contrast, object-based systems offer flexible abstract data-typing

facilities and the ability to encapsulate data and operations via the message protocol. The

intuitive appeal of an object model is that it provides better concepts and tools to

represent the real world as closely as possible. As a result, the object model has athacted

much interest in the database research community. The need for more flexible type

systems has been one of the major driving forces in the development of object-based

systems. As pointed out in Kim [29,31], objecrbased systems are replacing relational

systems and becoming the model of choice for advanced applications that require a rich

type system, highly flexible data structures, and an enriched set of data modelling

constructs. These new applications include geographical information systems (GIS),

software engineering, computer-aided design (CAD) and computer-aided manufacturing

(CAM). The object model represents the latest step in the evolution of database

technology.

Object-oriented (OO) concepts have evolved in three different âreas: first in programming

languages, then in artificial intelligence, and then in databases. Simula is generally

regarded as the first OO programming language. Simula [17] introduced as its basic

building block the object, a package containing both the data and procedures which acted

on that data. This was also the beginning of the use of data encapsulation within

programming languages. Since Simula, researchers in programming languages have

taken two different paths to pfomote OO programming. One was the development of

new OO languages, most notably Goldberg's Smalltalk [23] and such languages as Eiffel

[39]. It is important to note that object models can contain tuples, for example, the

dictionary class in Smalltalk is a form of table. Another approach was the extension of

conventional languages, for example, Objective C and C++ [21] as extensions ofC. OO

programming has shifted the focus considerably closer to that of databases, by

emphasizing the organization of software around the data objects, rather than around flow

of control. In the OO approach, objects have a prescribed behavior that enables them to

respond to messages from users and fiom other objects. objects are grouped into classes

and the prescribed behavio¡ ofa class applies to all objects that are instances ofthe class.

The ¡ich modelling semantic of an object model provide inhinsic elements that facilitate

classification, data abstraction, encapsulation and inheriîance. These new features lead

to a greater degree of program modularization, software reusabitity, modifiability and

mainøinability.

Object DBMS (ODBMS) research has been under way in universities and research

laboratories for many years. To fully understand the possibilities of the ODBMS

technology, two of the most common approaches taken by database researchers are

considered. The early object database systems were developed as extensions of OO

programming languages such as C+l and Smalltalk. This approach, sometimes called the

persistent language approach uses existing programming language type system as the

object model. Permanent storage is then added to objects defined in the object

programming language. Data definition and type checking are bonowed from the

programming language. The systems ftom this category can be viewed as persistent

versions of C++ and Smalltalk. For example, Gemstone [10] illushates this approach.

The second approach taken by the researchers is to add object extensions to a relational

DBMS. These systems are often called extended relational DBMSs. This is typically

accomplished by relaxing the data type constraints imposed by conventional systems.

The extended features include binary language objects (BLOBs), set and tuple-valued

fields, user-defined and abstract data types, path expressions, triggers/rules, and so on.

Two of the most prominent research prototypes that use this approach are posrGRES

from University of Califomia, Berkeley [55] and Starburst from IBM's Almaden

Research Centre [25, 36]. Relational DBMS commercial products (e.g., Ingres, Oracle,

sybase) are gradually incorporating some of the above object-oriented extensions. For

example, Sybase has added "stored procedures" in their SeL Server product.

The persistent language approach provides an easier, more flexible way for users to store

language objects. However, they are often restricted to the capabilities of the specific

object-oriented language. That is, it provides no simple means for accessing the objects

from any other language. Meanwhile, an explicit goal of the relational extension

approach is to minimize changes to the relational model, thus the basic model in this

approach is still based on the notion of records and tables. As a result, some problems

remain un¡esolved such as impedance mismatch [15] and inefficient single-object access.

The extent to which the relational model and the object-oriented model can be nanowed

while remaining within the borurds of relational theory is thus uncertain.

1.1 Motivation And Objectives

The ground up Object DBMS approach is quite heavily investigated in recent years. The

purpose of this thesis is to present and discuss the implementation design of a simple

object-based system called the Persístent Object Server (POServer). The approach taken

by POServer is broadly similar to the research prototypes Iris [22], TIGUKAT [26] and

O, [8, 19]. The strategy adopted in these OO systems is to buiid an object model on a

database foundation. The object model foundation allows the user to benefit from the OO

features of encapsulation, information hiding, inheritance, polymorphism, and dynamic

binding. The DBMS foundation provides the traditional DBMS features such as

recovery, concurrency, security, and so on. The result is a true ODBMS. These systems

also allows access to the database tom multiple languages and a query language to

access and manipulate objects, The separation of the object model implementation from

programming languages and storage management is considered a step in the right

direction because this approach can obtain most benefits and offer the highest level of

object-orientation. Essentially, POServer can support applications in any programming

language for which a language binding exists since it is based on a language independent

object model.

Object-oriented systems such as EXODUS [11] and Mneme [40] are being classified as

Persistent Object Stores because these systems have been built without providing all the

functionality of a DBMS, for example, recovery and hansaction management. POServer

can be considered to be in the same group. The primary functions of P0Server are to

provide object persistence and object access. Persistence refers to the capability of

storing objects in non-volatile storage and allowing the programmer to read the objects

back later in core memory for ñfiher processing. A persistent object is one which

continues to exist after the application that created it has terminated. computer programs

use volatile memory for their runtime data storage. This applies equally to C+r and

COBOL programs. Both objects created by a C+ program and records created by a

COBOL program must be transfened to secondary storage if they are to persist.

Poserver is based on a clienvserver architecture and oonsists of two major components:

1) Object Manager (OM) and 2) Storage Manager (SM). The OM is responsible for the

implementation of the conceptual object model and object management. The SM

provides persistent capability and buffer management. The implementation issues which

are ofdirect concem to system designers are highlighted.

This thesis is also motivated by the advanced capabilities of Mach. The server market

has moved rapidly toward UNIX and it is widely accepted that UNIX now dominates the

clienVserver environments. Mach is a Unix-compatible microkemel-based operating

system developed by Camegie Mellon University (CMU). Mach's original development

was based on BSD 4.3 Unix as described in [1]. It provides users with extensive

interprocess communications, improved memory management, multiprocessors support,

and multith¡eading facilities. Mach is also a distributed operating system that is

extremely suitable for developing distributed object-based systems [27]. The benefits of

using Mach for building a clienlserver system will be frrlly discussed, The focus of this

thesis is not to present a complete object model, but rather to demonstrate how to design

and implement a simple persistent object-based server.

There is currently a research project in the Advanced Database systems Laboratory

(ADSL) to develop a Distributed ObjecrBased System. During the early stage of the

resea¡ch project, arrangements wefe made with cMU's software distribution manager to

enable one of our workstations in the DB lab to obtain source code and binary code for

Mach over the Internet. The netcrypt.c file was installed which allows us to do periodic

software updates. The microkemel Mach system was ported to two Decstation 5000's. It

was set up to run on Carbon and Boron under the directory /usr/mach. A few

client-server modules were developed to validate Mach,s IPC facilities. These programs

can be found under /usr/mach,/machpgm. The concepts for the pOserer RpC was then

formed.

This thesis contributes to the broad objective of building an object-based system in the

following ways:

1 Provides a working environment running Mach in the DB lab for system testing and

prototype development.

2. Validates the facilities provided in Mach and determines how to make the best use of

it to build an object-based system.

J. Defines a framework for a simple objecfbased server and it is served as a prototype

for the Distributed ObjecrBased System to be developed in the lab.

Provides algorithms for the design and implementation of inheritance and method

resoultion.

1.2 Related Work

In this section, two object-based systems reported in the literature that have direct

influence on this thesis are reviewed. The first one is Iris [22] (Hewlett-Packard's Open

ODB is based on the Iris prototype). Iris implements an object model which is managed

by an object manager on top of a relational storage and transaction manager. In lris, the

object-oriented model is based upon three components: objects, types and functions.

Objects are a combination of data and stored functions. Types allow you to classiff

similar objects. Functions operate on data in the database and also define the behavior of

that data in the database. Iris uses a client/server architecture and allow users to

interactively enter Object SQL (OSQL). The object manager executes OSQL calls made

by the Iris clients. The OSQL interface layer is constructed to hansparently connect

client's programs to a relation database manager, HP-SQL. The interface layer defines a

general algorithm to map from objects to database representations and back again.

Another research prototype that demonstrates similar approach is the TIGUKAT

(tee-goo-kat) system [26]. TIGUKAT is a term in the language of the Canadian Inuit

people meaning "object". This system is currently under development at University of

Alberta. The object manager encloses the core object model and is responsible for the

interaction between TIGUKAT Query Language (TQL) and persistent stofage manager

(ESM). ESM supports a client/server topology where the client module is linked with

the host application progtam and interacts with the ESM server. The TIGUKAT object

model is very well defined. lt includes T_object, T_type, T_behavior, T_semantics,

T;funclion, T_collection and T_qtomic. T_atomic contains primitive objects such as

reals, integers, characters, sets, bags, lists, etc. T_type is used for defining and

structuring objects; T_behavior and T_semantics together provides support for speci$ing

the semantics of the operations which may be performed on the objects; T_function is

used for specifring the implementations of behaviors over væious types and T_collection

supports the grouping of objects in the system.

1.3 Organization Of Thesis

This thesis is divided into six chapters. This chapter has discussed the evolution of

database management systems and the shortcomings of relational systems. The rapid

change in application environments and the applicability of object-based systems were

also presented. This was followed by a brief history of object orientation and highJevel

10

descriptions of oo concepts. Two most common approaches taken by the researchers to

building object-based systems, 1) adding persistence to a language environment and 2)

extending a relational DBMS, were examined and compared. Object-based systems

represent the latest generation of database technology. The trend is to use object-based

systems for the design and development of complex applications. Section 1.1 addressed

the purpose of this thesis, an approach for implementing the persistent object server, and

the motivation of using the micro-kemel operating system Mach. POServer is based on a

clienlserver architecture because clienlserver computing has received widespread

recognition as a leading foundation technology. A couple ofrelated research prototypes,

Iris and TIGUKAT, were briefly reviewed in section 1.2.

The remainder of the thesis is organized as follows. Chapter 2 gives an overview of the

system architecture. The application programming interface is presented in Section 2.1.

Section 2,2 and 2.3 briefly discuss the roles and responsibilities of the two key

components, the Object Manager and the Storage Manager, in the POServer system and

how they fit into the overall picture. Section 2.4 and 2.5 discuss the benefits of Mach and

how to use its RPC facility to implement a clienVserver system, Chapter 3 presents the

conceptual object model. Sections 3.1-3.4 define andjustifu what an object-based system

should be, on the basis of a small set of central object-oriented concepts such as the

notion of abstract data typing, encapsulation, inheritance and object identity. Section 3.5

defines the primitive class hierarchy for the POServer object model. Section 3.6 briefly

discusses referential integrity in the object model. In the main part of the thesis, chapter

4 discusses the implementation design of the object Manager. It first outlines the major

design guidelines and system requirements, section 4.1 is broken into seven subsections.

It focuses on object representation in memory and the physical implementations of the

data structures used in the system. The implementation algorithms for inheritance and

behavior are addressed in subsequent sections. Issues and features which are of direct

concern to system designers are also highlighted. Chapter 5 discusses the implementation

design of the Storage Manager. Section 5.1 first gives a brief comparison between the

two most common persistence models. The persistence model for POServer is then

presented. Section 5.2 describes in detail the logical and physical OIDs. The object

manager interface routines are presented in Section 5.3. Finally, Chapter 6 concludes

with some suggestions for enhancing the POServer system.

Chapter 2

System Architecture Overview

Before presenting the details of the conceptual object model in Chapter 3, this chapter

begins by giving an abstract view of the system architecture and how the components of

this architecture interact. The purpose of this chapter is to outline and define the

functional specifications for each component in the POServer system. The POServer

system architecture is based in part upon Iris architecture as presented in Fishman et al.

[22]. It adopts a three-schema architecture and shares very similar functionality as found

in most conventional database systems. The top layer represents the extemal model

which links the communication between application users and the system. This is usually

implemented as a graphical user interface (GUI) or a language interface, consisting of a

set of programmatic and interactive interfaces that supports the Data Definition Language

(DDL) and the Data Manipulation Language (DML) as illustrated in SQL/DS [16]. The

middle layer represents the conceptual or logical model. It supports the core data model

and is independent of how information is stored. The physical model is represented at the

bottom layer which is a low level disk manager that performs storage and file access

management. It defines the intemal representation of information in the system. The

architecture consists offour major components: l) Graphical User Interface; 2) Language

Interface; 3) Object Manager (OM); and 4) Storage Manager (SM). These four

13

components form the foundation ofa general-purpose object-based system. Figure 2.1

depicts an overview ofthe POServer system architecture.

Figure 2.1 The POServer System Architecture

6)

À
¿Ë

6)

X
trì

q)

o
À
(l

(u

o
Q

C)E
raa
Ét

q)

Graphical User I
Query Brower / Editor

Language Interface
User Applicâtions (POServer RPC's)

SM Client
Mach Micronel

IPC Virtual Memory Tkeads

VirtualMemory Th¡eads
Mach Mic¡okemel

This basic system architecture may be extended in several dimensions to make it a more

complete object-based system. First, integrity features such as transaction management

and concurrency control may be added. zapp 160l provides a model of transactions inan

object-based system. Second, performance-related features such as secondary indexing

and query optimization may be included. Third, the architecture may be extended with

security and authorization for a multi-user environment. A model of authoriz¿tion for

object-based systems has been discussed in great details in Rabitti's [48]. The poServer

architecture is unique in the following respects. First, the overall system architecture is

based on a clienlserver (C/S) model. POServer's C/S model is supported by Mach's

Remote Procedure Call (RPC) mechanism. All interfaces are built as clients to the lower

level components in the hierarchy and they always communicate to each other by RPC's.

As mentioned in Mullender [41], a remote call has the same semantics as a local call so

the server may be running on the same or a different machine. The RPC mechanism can

determine where the requested procedure is located on the network, translate the

generalized call into the appropriate machine or OS specific call, and retum the values to

the caller via the network. The clienlserver model enables users to efüciently utilize the

available computing power. Second, the advanced features provided in the Mach

microkemel such as interprocess communication and memory management are fully

utilized in the system. This greatly reduces the complexity of the Object Manager as

compared to O, [9] where a dedicated communication manager is needed to handle the

passing of messages. Third, a normal storage manager includes a number of facilities

such as disk space management, clustering and recovery, etc. For the purpose of this

thesis, only the features necessary to make an object persistent are demonstrated. To

provide a better understanding of the Poserver architecture, the responsibilities of each

component of the system architecture are we described in the following sections.

2.1 Application Programming Interface

All database systems require a mechanism for describing new structures to the database

and interacting with the metamodel. The mechanism can be graphical, a declæative

DDL, or an application programming interface (API). A subset of ',standard', SeL

commands comprise the DDL for Relational DBMSs. The traditional approach to

language interface taken by relational DBMSs is by defining a sublanguage (e.g. SQL) to

be embedded in a general-purpose programming languages such as COBOL or C. The

combined source code is passed through a pre-processor and translated into subroutine

calls in the syntax ofthe host programming language. The generated object code is then

linked with the DBMS runtime library. This approach was adopted by SQL/DS [16]. A

standard DDL does not exist for object DBMSs, although a number of choices are

competing for adoption. Some object DBMSs do not use a specific data manipulation

language to store and retrieve information, but use the OO programming language

directly, for example C++ or Smalltalk. This means that a specific interface to the object

DBMS is not necessary. These systems are thus closely coupled with the object

t6

programming language. The class declaration syntax ofthe C++ programming language

is cunently the most common DDL for object DBMSs. Smalltalk also has an advantage

as a DDL since it is extensible. Despite all this we should bear in mind that different

languages are appropriate for different jobs, Most programming languages are built to

achieve a specific set of goals or requirements. C++ and Smalltalk alone are not

sufficient for writing all applications and in many situations an interactive ad hoc query

language is more desirable. For POServer, the object model serves as the core of the

system and multiple language interfaces can be developed on top of it. This approach

provides openness to other languages and the ability to reuse existing applications.

Therefore, classes created by one programming language may be used by another

programming language, instances populated by one language may be read by another

language, instance methods may be executed by multiple languages.

There are three main steps in object manipulation. First, a scheme for the class is

designed, which defines the objects and their attributes. Second, the class is populated

with objects. Third, the objects are queried for processing. For the illustration of the

POServer API, an object query language similæ to the ones used in Iris [22] and O, [19]

is chosen. The PoServer API consists of three types of statements: 1) Object Definition

Language (ODL); 2) Object Manipulation Language (OML); and 3) Object Query

Language (OQL). ODL is the language interface to be used by application designers and

has constructs for defining and generating new classes, behaviors, and relationships

among classes, e.g. subclass and superclasses. For example, CREATE CLASS and

CREATE METHOD statements. once an application model is established, the next step

is to populate the class and update the data and code contained within the system. OML

is the language interface to be used by programmers and has constructs for generating

new objects and manipulating existing objects, for example, CREATE INSTANCE and

EXECUTE METHOD statements. OQL is a declarative SQLJike query language. It

takes the well known SELECT-FROM-WHERE structure of SQL by adding the object

extensions, IN collection or list of aggregates, as follows:

query result = SELECT <list of objects>

FROM <range variable> IN <collectior/class>

WHERE <predicate>

OQLts syntax is simple and flexible. It provides very high level operators that enable

users to sort, group, or agg¡egate objects. This syntax makes it possible to select any set

of attributes or functions in the list of objects from a class or from any aggregate in the

system. One major difference between relational SQL and OQL is the use of dot notation

to navigate through objects. OQL takes advantage of the semantic knowledge built into

object structures, for instance, if we have an Employee "john" and we want to know the

name of the Department he works in, the OQL is john.dept.name. As another example, to

get the names of the employees ofthe Department "d254".

18

SELECT e.name

FROM e IN d254.emps

This query inspects all employees of Department d254 and, its result is a collection of

employee names. Other object extensions to SQL include the use of methods in

projection lists and WHERE clauses to take advantage of the implementation hiding

inherent in the object approach, for example, WHERE e.age > 65. The notion for calling

a method is exactly the same as for accessing an attribute or traversing a relationship.

This flexible syntax ftees the user ftom knowing whether the property is stored (an

attribute) or computed (a method). More information about object query languages can

be found in lris [22] and O, [18, 19]. The POServer system is accessed by a remote

procedure call interface called POServer(aHandler, anAPlshnt, listofargs). A complete C

program with POServer API is illushated in Figure 2.2. It shows how a POServer

schema is declared and how to populate and manipulate objects in the system.

The Query BrowseÆditor is a facility which allows users to retrieve and update object

values and metadata with graphical and forms-based displays. The user interface accepts

input from a workstation, provides a graphical interface, and formats queries for the

underlying system. This kind oftool is essential because it facilitates rapid prototyping

and increases the speed of application development. It also enables ad hoc query and

reporting systems because application users are not forced to write, compile, link-edit,

and debug a program just to get the answer to simple queries.

19

#include <POServer.h>
main Q {

/* Contains POServer data struchues */

POShanlder myHandler; /* Contains return code & enor messages */
int tempAge;
char * tempName;

/* Creates a new class Department */
POServer(myHandler, "CREATE CLASS department ATTRIBUTES(

name String,
number Integer,
location Char(4),
emps Set", 0);

/* Creates a new class Employee */
POServer(myHandler, "CREATE CLASS employee ATTRIBUTES(

name String,
dob Date,
dept Department
job_grade Integer",0);

/* Creates a new Department d254 Tech¡ical Services */
POServer(myHandler, "CREATE INSTANCE department :d254

ATTRIBUTES(name, number, location, emps)
VALUES('Technical Services', 254,'5N', Nil)", 0);

/* Creates a new Employee instance John Smith */
POServer(myHandler, "CREATE INSTANCE employee john

ATTRIBUTES(name, dob, dept)
VAIUES('John Smith', Date'1960-01-01', :d254,10),,, 0);

/* Creates a new Method for Class Employee */
POServer(myHandler, "CREATE METHOD age FOR employee

RETURNS(Integer)", 0);

/* Returns John's name and age */
POServer(myHandler," SELECT j ohn.namej ohn.age",2,&tempName,&tempAge) ;
printf("Name : %s, Age : 0/0i", tempName, tempAge);

/* Makes d254 and John persistent */
POServer(myHandler, "EXECUTE METHOD john.persistent", 0);
POServer(myHandler, "EXECUTE METHOD d254.persistent", 0);

)
Figwe 2.2 POServer C Application Programming Interface

20

2.2 Object Manager (OM)

The Object Manager (OM) is a program that directly supports and implements the

POServer object model. It conesponds to the query processor of the relational system

(e.g. Relational Data System [16]) which performs query compilation and optimization

with a flexible rule-based optimizer. The OM validates and executes the RPC calls, and

retums the data in a form that is usable by the clients. The actual query processing and

access path evaluation involve typechecking and execution plan generation. Data access

requires a means for specifuing what data to access and mechanisms to ensure that the

conect data is obtained effrciently. The query optimizer chooses an efficient access path

for the query using information about the structure of the query, the size of the objects,

the number of instances, and the indexing or clustering strategies. Data independence is

supported so the presence or absence of indexes in the physical database and the

application proglams will still run regardless of changes to file storage organizations.

The OM achieves a higher level of data independence than relational systems by

providing data abstraction and information hiding. The intemal structure ofan instance

variable, the implementation of a fimction or the class relationship can be changed

entirely transparent to the existing applications. Query optimization will not be addressed

in this thesis. Musteata [42] describes query optimization in considerably more detail.

The object structure and the conesponding operators æe supported by the Object

Manager. It is the OM which attaches the object semantics to the bytes retumed from the

21

storage Manager and presents them as an object to the client modules in the higher level

of the hierarchy. For example, system defined classes such as Date, Time, Bag, List, and

set are manipulated by the object Manager to hide the intemal implementations. Date is

presented as a Character string of the form 'YYYY-MM-DD, but stored as a 4-byte

decimal intemally. Through the use ofoDL all object definitions and class reiationships

are defined and stored in the system. This information is often referred to as meta-data

which is a schema of classes that make up the database. The oM is responsible for

schema management and uses the information for typechecking and validation. For

instance, we define two new classes Canadian$ and US$. Both are actually Real data

types. However, each is regarded as a separate and distinct data type. An application

would fail if it tried to add a Canadian$ to a US$ because of data incompatibility. This

concept is known as strong typing in the OO paradigm and is enforced by the OM.

In relational systems, Codd [14] introduced the notion of user-defined identifier keys to

represent the identity ofan item. An identifier key is some subset ofthe athibutes ofan

item which is unique for all items in the relation. There are several problems with

identifier keys because the concepts of data value and identity are mixed. In POServer,

each object stored in the system has a system-provided, unique handle called an object

identifier (OID). OIDs relieve users flom creating unique keys to identi$ stored

information. The OM is responsible for maintaining the OIDs of persistent objects and

providing a correspondence between OIDs and objects on disk, The user application may

22

request objects in the system from OM by passing it an OID. The OM elementarily

supports calls to get, put, and delete objects by OID, for instance, DELETE OBJECT

WHERE OID ='00001 002:00000010'.

2,3 Storage Manager (SM)

The Storage Manager is responsible for the management of persistent objects on

secondary storage and the management of cache for the SM clients. This includes

allocation and deallocation ofpages on disk, movement ofpages to and from disk and the

cache area, object clustering and indexing on collections etc. The SM conesponds to the

Data Manager (DM) layer of SQL/DS [16] and performs very similar functionality. The

SM handles all physical level details and deals only with pages. The POServer SM is

essentially a page server. The SM server stores and retrieves pages of data in response to

request from the OM. Requests to SM might include reading or writing data and code

within the object-based system. The Storage Manager only interacts with the OM and

acts as a server to OM that requests persistent object services. The main advantage ofa

page server architecture is that it has no knowledge ofthe contents ofa page and does not

understand the semantics of objects. Since entire pages are transferred between the OM

and the SM server, the overhead on the server is minimized. This makes the SM very

simple and can support more object managers concurrently, The SM simply passes pages

to and from the OM, and stores them on disk.

The sM maintains a cache area in the oM, a pool ofobject pages that have reeently been

used' The cache is maintained according to a "least recently" used policy: the least

recently used page is replaced when a new one has to be fetched into the cache. when an

application signals a memory fault, the OM determines whether the page being accessed

is in its cache. If the oM cannot locate a particular object in the cache, it generates a

page fault to the Storage Manager. The SM server transmits the page and puts it into the

cache. The address of the page containing the requested object is retumed by SM and

then an offset is added to it so the OM can get the particular object.

2.4 The Benefits Of Mach

As illustrated in Figure 2.1, the entire system architecture is based upon Mach. Mach's

microkemel architecture has important advantages for users and applications over today's

monolithic operating systems such as UNIX. Robushress, scalability, maintainability and

extendibility are just some of the more noticeable ones. Mach provides five different

classes of services: 1) Virtual memory management; 2) Tasks and threads; 3) Interprocess

communications (IPC); a) I/O support and intemrpt management; and 5) Host and

processor set services. Mach was proposed and chosen because its primary services

support distribution and the level of control required for the implementation ofobject and

storage management in a clienlserver platform. The Open Software Foundation (OSF)

24

Research Institute has been a proponent of Mach teehnology. The industry, through OSF

and others, has entered into agteements with Carnegie Mellon University to license Mach

technology and contribute work back into Mach. This represents one of the essential

benefits of open systems, with work from many resowces benefiting all. As a result,

Mach receives wide acceptance in the research and academic communities. The

advantages of using Mach as the foundation of the Poserver system is summarized

below.

2.4,1 Microkernel Concepts

Mach adopts the microkemel approach. It is designed to isolate the most essential

services and platform-specific functions of an operating system in a small core of code

that runs in the most privileged state of the computer. The rest of the system is supported

as set of applications running in nonprivileged space (user space), isolated from the

kemel by a clearly defined set of interfaces. The limited set of well-defined interfaces

enables orderly growth and evolution. The system can be enhanced with new

functionality in a modular fashion without retesting and rebuilding everything. Services

that were traditionally integral parts of an operating system such as file systems and

windowing systems are becoming peripheral modules that interact with the kemel and

each other. This reduces the size of the OS code running in kemel space and maximizes

the amount of space available for user applications. The microkemel approach makes the

t{

machine-dependent modifications for different architectures easier. CMU has

successfully implemented support for DOS, UNIX, OS/2 and MacOS on top of the Mach

3.0 kemel. The ability to concurrently support multiple operating systems, such as UNIX

and DOS has been demonstrated in 124,351.

CMU is distributing the Mach kemel, libraries, PMAX etc. (no license required) to

outside research groups. The distribution is done by electronic hansfer over the Intemet

using the software upgrade protocol (SUP) [52]. SUP is a client program, run by system

maintainers, which initiates the upgrade activity on a machine requesting the latest

version of a collection of files. Arrangements with CMU have been made and an

encryption key for starting SUP has been obtained. The netcrypt.c file has been installed

so that periodic SUP updates can be made to keep up with bug fixes, additions and other

changes. Instructions for setting up and building Mach 3.0 for different types of

computers such as DecStation 5000, i386, Sun3, MircoVax etc., are distributed from

CMU and documented in [57, 58]. These documents explain exactly what is required to

build the Mach microkemel and the Unix-server; to set up the directory structue

./RFS/.LOCAIROOT; and to boot a Mach 3.0 system up multi-user. The Mach 3.0

kemel plus the Unix-server is compatible with UNIX BSD 4.3 programs. The emulation

uses the original AT&T and U.C. Berkeley source code and is complete enough to run

executable files compiled and linked under BSD LINIX.

2,4.2 Support For Client/Server Development

Message-based interprocess communications (IPCs) and threads are primarily of interest

to system designers of clienVserver development. Mach is a message-passing kernel that

supports the clienlserver paradigm, and makes heavy use of shared virlual memory to

facilitate communication between tasks. IPC is the mechanism whereby the different

parts of distributed applications can communicate. The IPC facility allows clients and

servers to call each other and exchanges data regardless of where they are executed in a

network configuration. Message passing is a very natural way to structure systems in

which components are distributed over a loosely-coupled set of individual processors

because it enables location and distribution hansparency. Without Mach,s IPC support,

system designers would have to be concemed about the low level networking protocols

(e.g. TCPÂP) and their compatibility; and programmers would have to write applications

through socket interface. Mach provides a capability-based interprocess communication

facility. IPC facility in Mach is integrated with the virtual memory system and capable of

transferring large amounts of data. Message passing can take the form of simple

send/receive protocols (e.g. system calls mach_msgSend(requesf _msg) and

mach_msg_receive(reply_msg)) or simple send./receive messages can be combined into a

form of remote procedure call (RPC) to better suit clienVserver types of communications.

RPC provides a standardized netwo¡k communication process interface that can hide the

network details that a developer would have to know to make use of netrvork or

distributed resources, In order to help clients find servers in a flexible and portable

27

manner, Mach provides a name service called NetMsgServer to stofe network

communication information. Because the mircokemel does not need to know whether the

message comes from a local or remote process, the message-passing scheme offers an

elegant foundation for RPC's. Also, Mach IPC messages are typed collections of data.

This allows the microkemel to perform data conversion and achieve heterogeneous

operations.

The traditional IINIX process is divided into two separate components in Mach. The first

is the task, which is a basic unit ofresource allocation that includes a page address space,

protected access to system resources such as processors, ports, and memory. The second

is the thread which is a basic unit of CPU utilization. A Mach task may have many

threads of execution, all running simultaneously. Threads are lightweight processes that

share a single address space and the task's resources. A task is a passive collection of

resources; tlueads are active entities in Mach because they execute instructions and

manipulate their registers and address spaces. Most importantly, system designers can

now easily develop concurrent program by using multiple threads of control. This often

results in better performance than would be possible without threads. The ability to use

threads is critical in some applications, for instance, multithreading a database seryer can

offer increased concurrency and parallelism. Mach provides the system call

mach_thread_creafeþarent task, &new_thread) for requesting a new th¡ead and the

thread can be terminated by calling mach_thread_terminate(new_tltread). Threads in

28

different tasks communicate with each other by exchanging messages through a

communication port. The system call machlorl_allocateQtarent_task, &new1:ort) is

used to allocate a new port and the port can be deallocated by calling

machlort_deallocate(pment-task, new¡rort). Mach also allows a set of ports to be

grouped together and a single mach msg receive system call can then read the first

available message ftom any ofthe ports in the set.

2,4.3 Support For External Pager

For efficient implementation of the persistent object store in a clienlserver environment,

some control at the virtual memory level is needed, that other operating systems like SUN

OS do not provide. Mach has a powerful and highly flexible memory marìagement

system based on paging. It supports large, potentially sparse address spaces with flexible

memory-sharing; copy-on-write virtual copy operations; read/write memory sharing

between tasks; and memory mapped files. vm_allocate(larget_task, &new_memory,

vm_page_size, find_space) allocates a chunk of memory. vmlage_size is the default

system page size and find space controls the allocation of the virtual memory.

vm_deallocate(target_task, ner¡r'_memory, vmjage_size) retums the virtual memory

back to the operating system. Copying data within the virtual memory of the cunent task

can be done tsing vm_read, vm_write and vm_copy. The notion of a memory object is

generalized to allow general purpose user-state extemal pager tasks to be built, Mach

29

also permits userJevel (also known as extemal) pagers to manage memory regions.

Mach microkemel and the memory management facility communicate thtough a

well-defined protocol, making it possible for users to wdte their owrì memory managers.

Users can control memory sharing and paging operations directly, for instance,

memory_object_data_request and memory_object_data_provided a¡e used for page-in

and page-out operations. Main memory may be used as a cache for userJevel data

objects, such as databases and files. This ability allows database designers to implement

paging systems with very special requirements. For a more complete discussion of the

concepts in Mach, the reader should see Accetta [1] and Black [7], and for details of

specific system calls, Baron [5] and Walmer [59].

2.5 POServer RPC Implementation

Some approaches to providing object persistence proceed by modifring existing

compilers [15] to provide as clean an interface as possible. Instead, Mach's Remote

Procedure Call (RPC) mechanism is used because it fits well into the client-server

architecture. The interface for Mach 3.0 is currently only available in C, therefore the

POServer interface is also illustrated using C. It is not necessary to use any

object-oriented language to implement the interface or the OM as long as the

programming language is capable of building the foundation system. This has been

proven in the case of GemStone[l0] which was implemented using C and runs on most

UNIX environments such as Sun3 and DEC. In this section, Mach's Rpc mechanism and

how it can be effectively used to implement the Poserver ApI is illushated. This should

help to make the abstract discussion ofthe core object model in next chapter concrete.

The POServer RPC is the high level programming interface to the pOserver system.

The RPC can be defined with the following C language specification:

POServer(POShandler aHandler, Char *APIstmt, Int numargs, listofargs);

POShandler aHandler /* contains retum code and error messages x/

Chæ *APIStmt /* ODL, OML or OQL statement */

Int numargs

listofargs

/* number of arguments, 0 if no argurnents */

/* optionally include one or more arguments */

aHandler is a POServer data structure which contains information about the RpC call

statement. APIstmt is any valid OML, ODL or OQL statements. The POServer RpC can

optionally include one or more argumeîts. numatgs indicates the number of additional

arguments to be passed and should be 0 if no argument is required. listofargs is

implemented by calling the C macro va_arg0 which allows a variable number of

arguments to be passed to a function. The most common example of a function that takes

a variable number of arguments is prlnffl) [50]. The OM validates and interprets the ApI

statement. It then parses the list of paÌameters using the C macro va start(argptr,

3t

numargs). This macro retums a pointer to numargs, The subsequent parameters are then

retrieved via calls to va_arg(argpr, shing) in a loop.

Every remote procedure must be pre-defined so that the client and server programs follow

the same protocols when communicating to each other. Mach provides an interface

generator called Mach Interface Generator (MIG). The Poserver Rpc can be defined

using a C-like language called the Interface Definition Language (IDL). The IDL is then

used to generate three outputs: 1) a client stub, 2) a server stub and 3) a C header file.

The generated client stub contains the client code supporting the pOserver(aHandler,

APIstmt, listofargs) function, The server stub contains the OM server side code to make

an upcall to the POserver function, which executes in the server address space. The C

header file contains the type and data structure definitions used in the clienlserver

interface. The user application ptogram w¡itten in C source code can invoke the

POServer RPC directly. The user application is then linked to the client stub and the

RPC runtime library, generating an executable POServer client module. Development of

the OM server is accomplished in exactly the same way, using the same header file as the

client; the only difference is that the OM server code is linked to the server stub, rather

than the client stub. By using MIG, the client application is guaranteed to communicate

with the OM using the same specification. The IPC calls mach-send_msg and

mach_receive_msg are hidden in the client and the seruer stubs respectively and are

32

transparent to application users. The RPC mechanism for the pOServer RpC is

illustrated in Figure 2.3.

OM Server

Client Code
POServer(myHandler,
myAPIstmt, listofargs)

Stub
netname_look_up0
mach_send_msg0

RPC Runtime Library

Server Code
POServer(aHandler,
anAPlstmt, listofargs)

Server Stub
netname_check_in0
mach_receive-msgQ

RPC Runtime Library

Client Program

NetMsgServer

Figure 2.3 The POServer RPC

Notice that in Figure 2.3, there æe two functions called POServer. The client application

uses the POServer function just like a local procedure call because it is actually a remote

call to the oM Poserver function which carries out the real operation. The oM server

process the API request, provides the result, and passes it to the server stub, to RpC, and

back to the application program via the OM client stub. The OM server must make the

POServer RPC information available to application clients. The network messaging

mechanism is based on a name service provided by Mach called network message server,

NetMsgServer. By using NetMsgServer, a client may obtain the required service without

having to know how to talk directly to the server. The oM server stub first registers the

POServer function and the OM server port to the name server by calling the system

function, netname_check_in, with the following parameters:

netname_check_in(NetMsgServerjort,"POServer", task_self0, OM_server¡:ort)

The NetMsgServerjort is a global variable initialized by crt,o during program creation

and initialization. The network information is obtained during system startup. The

second argument is the name of the function, POServer, that is going to be registered.

The third argument, task_selfQ is known as the signature which prevents unauthorized

tasks from deleting a service from NetMsgServer because the same signature must be

given when calling the system filnction netname_check_out. The client stub later uses

another system function, netname_look_up. to locate the POServer function and obtain a

send right to the OM server port:

netnsme _look_up(NetMsgServer_port, "POServer", &OM_server3ort)

34

Chapter 3

The POServer Object Model

Database researchers disagree as to what constitutes an object-based system because

various definitions exist. Although the object approach does not yet include a clearly

defined data model, there is generai agreement on the concepts and basic capabilities an

object-based system should provide. One of the first attempts to define the requirements

for an object-oriented (OO) DBMS appeared in a paper by Bancilhon, et al. entitled "The

Object-Oriented Database Manifesto" [3]. According to [3], an object model seeks to

group objects into similar classes that have common attributes and behaviors, and to

factor common behavior up and out into more abstract representations. To develop

applications in an object model, we identifr objects, describe their behaviors, and then

allow them to interact by passing messages.

In this chapter, constructs and vocabulary found in Iris [22] and O, [18, 19] æe utilized to

form a conceptual object model. The POServer object model is based on a set of

fundamental OO concepts cornmon to most OO programming languages; it has been

particulæly influenced by Smalltalk [23]. Prior to the discussion of system

implementations in next chapter, it is important to examine the basic concepts of object

orientation that form the foundation of an object-based system. This chapter establishes a

set of terminology that can be used in further discussions. Further, an object model is one

35

which includes, at the minimum, the core oo concepts discussed and justified in this

chapter.

A relational data model supports a predefined set of data types and a relational system is

viewed as a collection of tables. An object model supports a user-defined extensible set

of data types and can model complex data structu¡es that closely match real-world

entities. It can be regarded as a presqiption for how objects might be represented and

how that representation might be manipulated, The Poserver object model is based upon

three major constf)ctsi objects, methods, and classes. The following aspects ofthe object

model are considered: 1. Object representation; 2. Behavior representation; 3. Class

representation; 4. Class relationships; 5. POServer class hierarchy; and 6. Referential

integrity, This chapter will examine each of these aspects in tum, Using this object

model, systems designers can directly model real world applications in an intuitive way.

Six basic OO concepts will be discussed: object identities, data encapsulation, class

hierarchy, class inheritance, polymorphism, and, data abstraction. In broad terms, the

POServer object model is used to describe conceptually the objects in an application

system, relationships between the objects, and the attributes and methods that

chæacterize each class of objects. Although the OO paradigm has been around since

Simula [17] in the mid'60s, it is still relatively immature and there is no universal

agreement on how to characterize it. However, other definitions on the OO model can be

found in Barker et al, [4], TIGUKAT [26], ORIONI3O] and Eitrel [39].

3.1 Objeet Representation

For information modelling, the term object means a representation of some real-world

thing. For object-oriented programming languages, the term object means a run-time

instance of some processing and values. Objects are the units into which we divide the

world, that is, the molecules of the object model. For the POServer object model, each

object has two aspects: I. Idenüry. A¡ identity is that property of an object which

distinguishes each object from all others. 2. State. A. state is the set of values for the

attributes of the object. The term attribute is from relational systems [16] and is an

instance variable in Smalltalk 1231. Let I be the domain of identifiers used to reference

objects. Let D be the union of system-defined fundamental types and user-defined

abstract data types (ADT's). Fundamental types are {Boolean, Real, Integer, Char,

String, Date, Time, Oid). Let A be the domain of athibute names. Thus, an object is:

Definition 3.1.1 An object is simply a pair o = (oid, s) where:

1. oid is the unique identifier ofo and oid eI.

2. s is the state or a set ofvalues, it can be one ofthe foilowing:

2.1 An atomic value is an element of D.

2.2 lar: v:, ..., 4 : vn] is called a ruple vqlue, where q eA and v, eD.

[] represents an empty tuple value.

2,3 {vr,...,v"} is called a set value where v¡ €D.

{} represents an empty set value.

2,4 The special value Nil, represents an undefined object.

37

The following are examples of Department and Employee objects:

Department = (c,, {d,, dr, dr, do})

Employee = (c2, {e,, er, e3, eo, er, eu, er})

(d', [name:'Technical Services', number:254, location:'5N'], emps: {er, e3, e4})

(dr, [name:'Application Services', number: 130, location:'5S'], emps:{e2, er})

(dr, [name:'Operations Services', number:112, location:'3W'], emps:{eu, er})

(do, [name:'New Department', number: 123, location:Nil], emps:{})

(e,,[name:'John Smith', dob:'1961-01-01', job_grade:10, dept:d,, age:34, salary:50000])

(er, [name:'Dave Jones', dob:'1962-01-01', job_grade:9, dept:dr, age:33, salary:45000])

(e3, [name:'Rob Webb', dob:'1963-01-01', job_grade:8, dept:d,, age:32, salary:40000])

(eo, [name:'Jim Wong', dob:'1964-01-01', job_grade:6, dept:d,, age:31, salary:30000])

(er, [name:'Pat Lee', dob:'1965-01-01', job_grade:7, dept:d2, age:30, salary:35000])

(e6, [name:'Donna Ma', dob:'1965-01-01', job_grade:7, dept:dr, age:30, satary:35000])

(er, [name:'Ken White', dob:'1966-01-01', job_grade:6, dept:d, age:29, salary:30000])

Delinition 3.1.2 Two objects o, and o, such that i *j are identical iffo¡.oid = oj.oid. .
The definition states that two objects are identical ifthey have the same object identiflrer.

Definition 3,1,3 Two objects o¡ and o, such that i *j are equal iffo¡.state = oj.state. .
The definition states that two objects are equal if they represent the same identical

semantics.

Objects are implemented intemally in POServer as a number of variables which store

information and a set of methods which operate on that data. It is important to note that

the relational tables can only have single-valued columns whereas the state in the

POServer object model is not reshicted to atomic values or system-defined types. It is

possible to have tuple values and set values. This implies tremendous modelling power

because it means that any repeating values occuning naturally in the application can be

represented directly in the POSever system without having to be normalized.

3GL programming languages use variable names to identifr temporary objects. This

mixes addressability with identity. Relational systems are value-based in which identifier

keys constitute part ofthe state of a record and is used to identifr persistent objects. Both

of these approaches compromise identity. In conhast, the POServer system is

identity-based. An object's identity is independent of state, type, and addressability. All

objects in the system have identity and are distinguishable. Uniqueness is enforced via

system-maintained object identiJìers (OIDs). An OID is permanently associated with an

object. An object is given a unique OID at its creation and keeps it until it is destroyed,

and is never reused. The object identifiers can be used in a variety of ways, for example,

to pinpoint and rehieve an object; and to perform sorting and ordering. For persistent

objects the identity is maintained by the system across multiple progrrims or transactions.

Identity also facilitates the notion of object sharing. Such sharing reduces the update

anomalies [16] that exist in the relational data model.

39

3.2 Behavior Representation

The behavior of an object is the set of methods which operate on the state of the object.

Using the POServer object model, the state encapsulated in an object is accessed from

outside only through its behavior. Poserver allows a method definition to be done in two

steps. First, the programmer declares the method by giving its name and signature. The

signature represents the extemal interface to users and is the only means whereby the

contents of an object can be changed. Second, the implementation of the method is

specified. The method implementation specifies what the method does and how the

result is obtained when it is invoked. The separation of method declaration and its

implementation provides a degree of data independence. Objects in the system

communicate with each other by passing messages. The messages are uniquely identified

by their signature. Messages and methods conespond roughly to procedure calls and

procedures in conventional systems. Thus, methods enable data encapsulation by hiding

the internals of the object implementation from users and exposing only the signature.

Let C be the domain of all classes in the system. A method is defined as follows:

Definition 3.2.1 A method is a pair m = (n, ô) where

l n is the name of the method.

2. ô is the signature ofthe method such that ô = (c, p, r) where

2.1 c is the class to which the method is attached, c € C.

2.2 p is a possibly empty ordered set of parameters, p e C.

2.3 r is the class ofthe result, also possibly empty, r € C.

3. A method with its signature is expressed as follows:

c.n(P', ..., pJ + r

Definition 3,2,2 If m is a method and c is a class of C, then m is defined in c if there is a

method with signature : c.n(p1, ..., p") -+ r. .

For example, age calculates the age of an employee based on his day of birth, dob and

salary calculates gross salary based on the employee's job_grade. Therefore, we define

age and salary with the following signatures:

Employee.age -) Integer

Employee.salary -+ Integer

Employee.dept -+ Department

Object.identical(Object) -) Boolean

e¡.age -) 34

e,.salary + 50000.00

e,.dept -+ d,

el.identical(er) -) False

Methods age and salary æe called computed functions because they æe associated with

executable code. The method construct can also be used to specifu relationships among

41

classes. For example, method dept defrnes behavior on class Employee and specifies the

relationship between an employee and his department. In contrast to age, dept is called a

stored function because it is simply a reference to the class Department. The interface to

each method is defined to reveal as little as possible about its implementation details and

object structures. The object's behavior is defined by the abshact signatures. Note, Iris

further classifies computed ñ¡nctions into derived functions and þreign functions 122].

Derived functions are computed by evaluating an Iris expression whereas a foreign

fi¡nction is implemented as a subroutine written in some general-puqpose programming

language.

3.3 ClassRepresentation

The c/ass construct allows similar objects to be classified. Each object in the system

must know its class. A class is the description of the behavior and structure of a set of

objects. This is referred to as object rype in some systems, e.g. Iris [22] and TIGUKAT

[26]. The class definition includes both the athibutes and methods of the class. From the

point of view of a shongly typed language, a class is a construct for implementing a

user-defined absftact data type (ADT) and is a formal description of an entity. The class

concept captures the instance-of relationship (this is called ihe part-of rclationship in

Bancilhon [3]) between an object and the class to which it belongs. Classes can describe

and model concrete concepts such as Employee and Department, or mote intangible

11a

abstractions such as stack or Queue. A class definition includes a class name (begins

with a capital letter) and the following three aspects: I. Idenriry. This is a unique

identifier for the class since a class is also considered an object in the system. 2.

structure. This defìnes the object's intemal representation, that is, its attributes. It

represents the static part of an object. 3. Behavior. This defines the active part of an

object and includes a set of methods and their intemal implementation. Let A be the

domain of attribute names such as job_grade and location. Let C be the domain of all

classes in the system. Aclassis:

Definition 3.3,1 An class . = (oid, S, M) where:

1. oid is the unique class identifier ofc, oid e L

2. S is the object's structure and is defined with a set value [a¡ : c,, ... , a" : c"] where

q e Aandc, e C, also V q,qe S,i*j + q+q
The definition states that a class structure requires each athibute be uniquely

identified by its name. The domain of an attribute may be any class; system-defined

or user-defined.

3. M is the object's behavior; composed of identifiable methods such that

Vm¡,m¡ e M, i*j+mi rq o

NAME and OID

Employee OID'00000001 :0000 1001'

METHODS

âge Integer
salary Real
dept Department
worksfor ProjectManager

ATTRIBUTES

name String
dob Date
jobgrade Integer
sin Char(9)
sex Char(l)

Figure 3.1 Class Employee

Figure 3.1 is a graphical representation of the class Employee. There are three distinct

parts : 1. The class name and its OID; 2. A set of [attribute-name : attribute-class] pairs;

and 3. A set of [method-name(method-parameters) : reírfl parameter] pairs. The fact

that the domain ofan attribute may be an arbitrary class gives rise to the nested structure

of the definition of a class. This also represents a signifìcant difference from the

normalized relational model where the domain of an attribute is restricted to a

fundamental data type. When creating a class, the class definition can be momentarily

44

incomplete. For instance, class Department can be defined with an additional attribute

div# ofclass Division which is not yet defined. Thus the class is behaviorally defined,

but functionally incomplete. This capability offers great flexibility for schema evolution.

3.4 Class Relationships

Classes within a given problem domain are usually related in some way. A new class

may be defined as a specialization of an existing class and additional athibutes and

methods may be added. This new class is a subclass of the existing class and the existing

class is referred to as the superclass of the new class. In that case, all objects belonging

to the subclass also belong to the superclass. The subclass is considered as a refinement

of the superclass. This process is called specialization of entities and the related classes

form a c/ass hierarchy. The concept ofa subclass specializing its superclass captures the

inheritance relationship. The more general classes are placed higher up in the class

hieræchy, whereas the more specialized ones are placed lower down. This is refened to

as the ¡'s-a relationship in Banchilhon [3] and Eiffel calls this the is-plus-but-except

relationship [39]. When classes are grouped into subclasses, subclasses inherit the

attributes and methods shared by all instances of the superclass. By definition,

inheritance means the "properties or characteristics received ftom an ancestor,, [13].

Inheritance in the Poserver object model allows us to speciff common attributes and

methods once and then specialize and extend those attributes and methods into specifìc

45

cases' In-heritance directly facilitates extensibility within a given system, posever, like

Smalltalk, supports orúy single inheritance [23]. That is, a class inherits behavior and

structure from only one superclass. Some other systems (e.g. C++ and lris) allow a class

to have any number of direct superclasses and to inherit behavior from more than one

superclass; which is referred to as the multiple inheritance capability l2l, 221. For

systems that support multiple inheritance, several parallel inheritance hierarchies can

exist and it is usually the responsibility of the class designer to avoid potential name

conflicts. An object-based system should support at least single inheritance.

Classification and inheritance are useful in organizing information. The POServer object

model allows class designers to use generalization to organize an object space and then

make use of inheritance to share and reuse code. Inheritance, class hierarchy and

instance-of form the structural relationship of the object model. The structural

relationship is central to the operation of the POServer system. It allows the schema to be

better structured and gives tremendous modelling power to the class designer. The

structural relationship concept also distinguishes the POServer object model from

programming with ADT's.

The concept of class hierarchy and inheritance is demonstrated with a concrete example.

Figure 3,2 illustrates the notion of inheritance and class hierarchy through a simple

employee model within an Information Systems (IS) Division. In this example, class

Employee is a superclass or a base class. Systems Engineer, Project Manager, and

46

Technical consultant are all subclasses or derived classes (note that each subclass rs-a

Employee). These th¡ee specialized classes inherit all attributes and methods from the

common superclass Employee,

Employee

method selãry:
lookupjobgrado

Technical
Consultant

#ofhours * hourlyrate

Figure 3,2 Employee class hierarchy

Therefore, the features conÌmon to all employees reside in class Employee (e.g. personal

details) and features unique to specific classes of employees appear in individual

subclasses. For example, a project manager must have at least two persons under his

supervision and a technical consultant must specialize in at least one technical area. The

class Employee can also be refened to as an abstract class if all employees in the IS

division must exist in one of the subclasses. Abstract classes are classes which speciff

common behavior for its subclasses, but no instances of abstract classes may be created,

Definition 3.4.1 A method m is inherited from c where c e C, if there is one superclass

ofc in which m is defined. .

Besides inheritance, a method in a class may be overridden by a method of the same

name defined on its subclasses which is sometimes called overloaded. Inheritance and

overloading of methods gives rise to polymorphism. The woñ polymorphism originates

from Greek and means 'to take many forms'. Polymorphism in the POServer object

model allows different classes to use the same method name and signature (the number of

arguments and the class of result value must be the same as defìned in the superclass).

Assume Technical Consultants æe hourly employees rather than salaried employees, then

the salary method in each employee object must know what class of employee it is

before invoking the method. The salary method of the base class Employee uses

job_grade to calculate the payroll, while the sâlary method of the class Technical

Consultant works with number ofhours and hourly rates,

Relational databases do not store explicit relationships between tables. Instead,

relationships are formed by storing similar data values in table columns and relationships

are made at runtime by joining Tables together [16]. The POServer object model supports

the association relationship to connect two or more object instances. This is referred to

as the object composition or composition through references in O, [19], This relationship

is achieved by embedding references to objects within the state of other objects. For

example, the class Employee has an attribute dept and its domain is class Department.

This implies a link from class Employee to class Department. Similarly, the class

Department has an attribute emps and it contains a set of Employee objects. This

represent a one-to-many relationship between a department and its employees. A Nil

pointer indicates no relationship. The POServer system supports access from one object

to another by traversing a reference stored within an object. By capturing relationships

directly, the POServer object model can much more easily represent complex data

structures and nested relations, for instance, one-to-one, one-to-many, and many-to-many

relationships can all be supported.

3.5 POServer Class Hierarchy

The POServer Class Hierarchy borrows most heavily from Goldberg and Robson,s

Smalltalk-80 Class Library [23]. In Smalltalk, there is only one inheritance hierarchy,

49

and thus one root class. Poserver adopts the same approach. All classes are organized

into a class hierarchy and inherit from a single root class object, either directly or

indirectly. Behavior, which is cornmon to all classes, is colleeted and stored in the class

Object. Figure 3.3 illustrates the class hierarchy for the Poserver object model.

Figure 3.3 POServer Class Hierarchy

Examples of behavior which may be common to instânces of all classes are: the test for

determining which class an instance is associated with and comparison between

instances. when a new class is to be created, the class has to be plaeed somewhere in the

class hieræchy. All classes in the Poserver system are grouped under four abstract

classes: 1. Class Primitive; 2. Class Constructed; 3. Class Schema; and 4. Class

user-defined. The class hierarchy also provides a general taxonomy ofthe fundamental

data types in the system. A class helps organize data and the class hierarchy helps

organize the classes.

3.5.1 PrimitiveClasses

The POServer object model distinguishes between primitive objects and user-defined

objects. Primitive objects are system-defined objects and are instances of all fundamental

data types supported in the system, for example, Boolean, Char, Integer, Real, String,

OID, Date and Time. A primitive class has associated instances, but has no attributes.

These objects are self-identifring since their values indicate the kinds of data types being

used. Fo¡ instance, the boolean TRUE, the character 'A', the integer 99, the rcal 12.25,

the OID'00000001:00001001', the string'John Smith', the date'1995-01-01', and the time

'12;45' are recognized by the system as primitive literal objects. Each literal object has a

primitive class to which it belongs. Class Boolean defines the coÍrmon behavior for two

logical values: True or False. Class Magnitude is an abshact class used for comparing

and measuring instances of its subclasses: Character, Date, Time, Number and String.

Class Character defines the behavior for all the chæacters in the system (i.e. ASCII codes

51

0 to 255). Class Date and Time define the behvaior for comparing and computing dates

and times, respectively. Class Number is an abstract class used for compæing, counting

and measuring instances of its numerical subclasses: Real and Integer. Class String

defines a variable-length and indexable sequence of characters. Class OID defines the

behavior for all the object references, this represents any possible constructed or

user-defined classes. Class UndefinedObject is used to indicate the lack ofa value and

has a single value, Nil. In the POServer object model, all the basic data types are

encapsulated as classes. The primitive classes form the groundwork and the basic

building blocks of the system.

3.5.2 ConstructedClasses

The POServer object model also makes a distinction between atomic and constructed

objects. Atomic objects are single-valued objects like integers, characters, reals, etc.

whereas constructed objects are made up of a structure and may take on a set of values.

Constructed classes provide the basic data structures used to store objects in a collection.

They are also the means by which one-to-many relationships are modelled. Constructed

classes are sometimes referred to as container classes 130] or collection classes 1231. To

keep the discussion manageable, only the thtee most coÍlmon constructed classes are

included in the POServer model: List, Set and Tuple. Complex data types may be

defined recursively using the tuple, list and set constructors. These classes can be used to

52

hold all elements of the same class and have slightly different behavior as suggested by

their names. class construeted is the superclass of all the constructed classes. This class

provides the behavior for accessing and manipulating a particular element or all the

elements of a collection. A .sel represents a collection of objects of the same class in

which duplicates are not allowed. There is no limit to the number of objects in a set,

however, positioning of the objects is not guaranteed. A /¡s, is a collection of objects of

the same class in which duplicates can occur and the positioning of the objects in a list is

guaranteed. A list behaves as a flexible and insertable array. A tuple resembles a table in

relational systems, consisting of an ordered set of [athibute name:value] pairs. This

tremendous modelling power also makes it feasible to incorporate a value-based

relational model in the POServer system. For instance, user-defined classes can be

created to represent tables, rows, and indexes.

In the POServer system, there is a system-supported mechanism for grouping objects into

collections or maintaining the class extents automatically. Each object's oid is saved in a

constructed class that represents the extent ofall objects in the class. This makes iteration

through a class possible. The extents for classes Department and Employee may be

represented as follows.

Department = (cr, {dr, d2, d3, d4})

Employee = (cr, {e,, er, e3, eo, er, eu, er})

53

Note that this approach is similar to 02 and TIGUKAT. However, these systems include

constructs for both types and classes 119,26], so as to distinguish between the collection

of objects and thei¡ definition.

3.5.3 Schema Classes

The core of any relational DBMS is the system catalog tables, e.g. the SYSIBM tables in

DB2. Rows are added to these tables in response to SQL data definition language

commands. These tables are maintained through commands such as CREATE TABLE,

ADD COLUMN, etc. 1421. The rows in these tables represent both user-defined tables

and the catalog tables themselves. Research into schema evolution for an object model

has been conducted in the context of ORION [30] and Gemstone [10]. The POServer

system adopts a very similar approach. Classes are viewed as objects, that is, as instances

of anothe¡ class. Note that OO languages such as Eiffel and C+r have chosen not to

consider classes as objects. In Eiffel, classes are regarded as implementing data types. A

class is static and described in the program text, while an instance is dynamic and exists

only during execution [39]. In conhast, by regarding classes as objects in POServer, a

more flexible schema system is obtained, allowing classes to be created or modified

during execution. As classes ate now referred to as instances, they must be instances of

some classes. These classes are called schema classes in the model. An application

schema may be represented in terms of several system-defrned schema classes, analogous

to the system catalogs in relational database systems.

For each user-defined class, attribute, and method, there is a conesponding instance in the

schema classes class, Attribute and Method, respectively. Instances of these schema

classes represent all objects in the system including the primitive classes. The schema

classes contain the definition and design ofthe application meta-model and also represent

the POServer model itself so the system is self defining. Every object in the pOserver

system, whether it belongs to a schema or a user-defined class, is accessible in a uniform

manner. The uniformity aspect allows every entity to be managed as an object. The

schema classes define behavior for adding new classes to the system and determining the

superclass or subclass(es) of a specific class. Also, instances ofthese schema classes can

be used for the verification of query processing, type. checking, validation of attributes

and relations such as "What attributes and methods each class contains?" The notion of a

Metaclass as the class of a class is also needed. Normally, methods are only performed

on instances, however, the Metaclass makes it possible to define methods to operate on

classes directly and to have class variables. An example of a class variable may be the

number ofinstances that are created for this class.

55

3.6 Referentiallntegrity

Referential integrity is a term introduced by Codd and Date t14, 16]. It involves two

relations and imposes the constraint that a group of attributes in one relation is the key of

another relation. An identity-based system like POServer enable referential object

sharing. It also prevents the need for þreign-key joins [16]. Generally speaking,

referential integrity arises whenever one relation includes references to another.

Referential integrity in POServer can be thought ofas a pair ofinverse pointers, so that if

one object points to another, the second object will have an inverse pointer that points

back to the fìrst object. This kind ofrelationships is maintained by users. For example in

the case of class Department, a set of employees is maintained via the behavior emps.

Thus, Department 'Technical Services', d,, consists of three employees er, e3, and eo. For

maintaining proper referential integrity, a corresponding reference to the class

Department must appear in the dept attribute of Employee. That is, dept ofe, , dept of

e3 and dept of eo must refer to d,, Technical Services. Similarly, if Employee e, is

deleted, then the reference e, stored in d,.emps should be removed by the application

conespondingly.

(d', [name:'Technical Services', number:254, location:'5N'], emps: {e,, er, eo})

(e,, [nane:'John Smith',dob:'1961-01-01', job_grade:11, dept:d,, age:34, salary:50000])

(e3, [name:'Rob Webb', dob:'1963-01-01', job_grade:8, dept:d,, age:32, salary:40000])

(eo, [name:'Jim Wong', dob:'1964-01-01', job_grade:6, dept:d,, age:31, salary:30000])

To enforce integrity automatically, the system must at least maintain for each object a list

of identifiers of the objects that reference the object. A link from a referenced object

back to the referencing object is called an inverse relationsåþ in ORION [30]. This

ensures the integrity of the relationship and can be useful fo¡ later access. on the other

hand, Smalltalk provides powerful referential integrity through a mechanism called

garbage collection [23]. Therefore, explicit deletion of an object is not supported and

class destructors are not needed, because urueferenced objects are automatically removed

from the system.

3.7 Summary

In summary, the POServer object model extends the relational model with the notions of

objects, methods and classes. Using this object model, a rich set of semantic

relationships among real world entities can be captured. These include the instance-of

relationship between an instance and its class and the inheritance relationship between a

superclass and its subclasses. The POServer object model can be characterized by the

following main features :

1. Objects are associated with classes. A class describes common structu¡e and

behavior for all objects in the class. The metadata model information is stored in

schema classes which can later be used for static or dynamic type-checking.

57

J.

4.

Primitive c/asses form the fundamental data types of the system.

Complex structures may be constructed by embedding references to objects within

other objects.

Constructed classeJ can be used for storing class extents.

The POServer object model is similar in many aspects to Smalltalk with the following

differences:

l. Objects can be made persistent.

Objects are uniquely identified by system-maintained references, not memory

pointers.

In Smalltalk all run-time entities are objects. Even integers are instances of the

Integer class. Smalltalk assumes there is a class Integer that is an abstraction or

representation of integers [23]. POServer allows the primitives such as an integer to

be implemented in the traditional way. As pointed out in Barker [4], we claim that it

is undesirable to force computer applications to build from such a low level of type

abstraction. Therefore, POServer heats integers conceptually as objects, but handle

them differently at the implementation level for effrciency and performance reasons.

Objects can be shared across systems.

)

58

Chapter 4

The P0Server Object Manager

As discussed in Chapter 2, POServer is a tlueelevel schema architecture. The Object

Manager (oM) is responsible for the in-memory data structures of the conceptual objects.

This middle layer directly supports all the features of the pOserver object model as

outlined in chapter 3. It is also responsible for enforcing the semantics of inheritance and

for checking the consistency of a schema. However, the object model described in

Chapter 3 was purely conceptual, as it did not suggest how objects should be stored on

either disk or main memory. In relational systems, the data representation is relatively

straight forward because primitive types can be stored in disk format and represented in

memory directly. Also, there is no embedded pointer references in relational systems

except for the use of indexes which are created and maintained separately by the system.

The object-oriented technology has made it easy for the application programmers to

access and manipulate data in the pro$am because more complex structures are offered.

However, this yields some problems for the implementation design of an object-based

system, especially the representations of the complex object structures and their

behaviors. Recently, considerable research efforts have been spent to design a more

effrcient mechanism for in-memory object management, see O, [19] and ORION [30].

These object-oriented systems have assumed that all objects reside in a large virhral

memory. Objects are the basic run-time entities in the system and have an associated

59

address like a record in Pascal or a structure in C. To support applications that require

significant pointer chasing for a large number of memory-resident objects, these systems

have been designed to store objects in disk format and map them into memory format for

manipulation by applications. The mapping includes, at the minimum, the conversion of

object identifiers stored in objects to memory pointers. In this chapter, the

implementation design and techniques for the POServer system are described. More

information on the discussion of design and architectural issues for OO systems can be

found in Goldberg [23], Kim [29] and Meyer [39].

POServer follows four basic design principles: 1, All objects must be represented in the

same way in the system. This includes both system objects and user objects. Unique

object representation provides a conceptual simplicity with the result that the

implementation of the system is easier to understand and maintain. An added advantage

is that it will be possible to treat system objects like ordinary user objects, so the system

becomes extensible. 2. Dynamic schema evolution must be supported. New

understanding or changing requirements may lead to reorganization of the class

hierarchy. Schema changes should not affect existing applications or require

recompilation. To support this flexibility, the schema of the class structure held in the

system must also be changeable in the same ways. 3. Performance is another important

design criteria. The efticiency of the system depends heavily on the design of the

behavior implementation and the amount of copying that must take place within the

60

system. As a rule of thumb, copying should be deferred until the object is being used

wheneve¡ possible. 4. The Poserver system must also scale well as the number of

objects grows. The technique for supporting object identity must allow flexibility for the

movement of objects.

The fundamental requirements of POServer are persistence and efficient sharing of

objects. The design ofthe Object Manager is abstractly defined by requiring it to provide

three basic functions, namely:

l. Implementation of schema classes and primitive classes. All these classes must be

represented efficiently in memory because they form the basic building blocks ofthe

system. The object structures and their behaviors will be discussed in detail. Once

the schema classes and the primitive classes are established in the system, they can be

used to build other system components and data structures.

2. Implementation of inheritance. Inheritance complicates the design and

implementation of the schema a lot. There are two types of schema changes to an

object-based system. One is to the definition of a class. This includes changes to the

attributes and methods defined for a class, such as changing the name or domain of

an attribute, and adding an attribute or a method. Another type of change is to the

class-hierarchy structure. This includes adding or dropping a class, and changing the

superclass/subclass relationship. An efficient mechanism for keeping hack of the

inherited attributes and methods will be described.

61

3. Behavior implementation. An efficient mechanism for selecting and invoking

methods will be described and an algorithm for method resolution will be introduced.

4,1 Implementation of Schema and Primitive Classes

The state ofan object consists ofvalues for the attributes ofthe object and the values are

themselves objects, possibly with their own states. Thus, a natural representation for the

state of an object is a set of identifiers of the objects. Object representation in memory

can be thought of as a flexible structure with insertable slots. Each slot contains a pointer

to an attribute ofthe object. Since an attribute ofan object can be another object or a set

of values, it can also be a pointer to a set of associated objects. From the structural

viewpoint, POServer's in-memory object representation can be implemented as a væiable

linear array of pointers. Each element of which is an 8-byte pointer and may potentially

reference any other object in the system. This vector of pointers is called the Object

Descriptor (OD) and is the run time representation of an object. This data structure

possesses the ability to grow or shrink as required. The dynamic and insertable nature of

the object descriptor fits our design requirements very well and provides the necessary

functionalities. The object structures in the POServer system have been refined from

Smalltalk's Zarge Object-Oriented Memory (LOOM) system [15].

62

An extremely powerful feature of object modelling is polymorphism. To achieve this,

every stored object must know to what class it belongs. Therefore, the first slot of the

oD always contains a pointer to that object's class. The class of an object contains a

template (a list of attributes) that represents the intemal organization of the object. This

template is used whenever the OM needs to enforce semantics or to perform

type-checking. This attribute is the class_of of the object by which each object is linked

to its associated class.

Class Clæs

Class Name

Attributes List

Superlcass

lnstance
Methods Tuple

Subclass Set

Physical File
Path

Instance id
Table

Clâss Method Class
Attribute

Rece¡ver's

Class

Anribute
Name

Domain

Inherited
From

Reference
Count

Receiver's
Class

Method

Inherited
From

List of
Patameters

Result Class

Ex€cutable
Code

Source Code

Reference
Count

Class
Object

Method
Object

Attribute
Object

Figure 4.1 Object Structures for Schema Classes

63

For example, the first slot of a method object is an attribute called class_method to

indicate that it is associated with the class Method. similarly, the first slot of a class

object is an attribute called class-class to indicate that it is associated with the class

Metaclass. The schema classes and the primitive classes are set up the same way but with

appropriate contents in the slots so as to reflect a semantic correspondence to the class

system and to support the associated behaviors. Figure 4.1 illustrates the object structures

for schema classes.

4,1,1 Class Class

In PoServer, three different types of objects are used to capture schema information.

They are instances of the system defined schema classes: Class, Method and Attribute,

respectively. Every class in the system is represented by a class-defining object that

describes the structure and behavior of the class, as well as the position ofthe class in the

inheritance hierarchy. The object strucfure for the class Class contains class_name,

attributes, superclass, subclasses, instance_methods, physical îile and iid_table. The

attribute class_name contains the name of the class; attributes is a list of all athibutes

defined for or inherited into the class; superctass and subclasses are the direct superclass

and the set of subclasses ofthe class, respectively. instance_methods consists of a table

of methods defined for or inherited into the class. The method table can be search

directly by the receiver's class and the method name. physical_file is the file path for

storing objects of the class and iid_table is the instance id table. These two attributes

will be discussed in great detail in Chapter 5. It is important to note that the athibutes

superclass, subclasses, and instance_methods do not form part of the schema for a

relational system. A class object is like an accessible class descriptor. Like user-defined

classes, schema classes have their associated behaviors. These system-defined methods

for schema classes represent the extemal interface and hide the intemal structuïes fiom

users. Behaviors for schema classes a¡e mainly used to retrieve and update metadata.

The most basic methods for the schema class Class can be defined with the following

signatures:

aClass.class_name -+aString

aClass.instance_methods +aSet

aClass.attributes -+ al-ist

aClass.subclasses -+aSet

aClass.superclass +aClass

/* retums the name of a class */

/* refums a set of methods for a class */

/* retrieves a list of attributes for a class */

/* retums a set of subclasses for a class */

/* rehrms the superclass ofa class */

aClass.is_subclass(aClass) -+aEloolean /* a class is a subclass of another class? */

aClass.is_superclass(aClass) -+aBoolean /* a class is a superclass of another class? */

aClass.create J anObject /* retums an empty object descriptor for a classx/

aClass.method_selectors -+aSet /* retums a set of method names for a class */

aClass.lookup_behavior(aString) ìanobject /* retums a behavior for the class */

/* retums the associated class for an object */anObj ect.class -) aClass

65

4.1,2 Class Method

The class Method has an instance for every method defined for or inherited into each

class. It contains the representation of the executable code and linkage information. The

object structure for the class Method includes attributes such as method_name,

executable_code, source_code, parameters, result class, inherited_from and

reference_count. The attribute method name contains the name of the method;

executable_code points to the executable module in memory while the source_code

contains the location of the source file including the directory path information;

inherited_from refers to another instance of the class Method and it indicates from

which the method is inherited; pârameters and result-class speciff the signature ofthe

method. The following signatures make up the behaviorial part of the schema class

Method:

aMethod.method_name -+aShing /* retums the name of a method */

aMethod.executable +anObject /* retums a reference to a piece of executable code */

aMethod.execute(alist)-+anObject /*executes the piece ofcode using the list of parms*/

aMethod.parameters -+alist /* retums a list of attributes for the parameters */

aMethod.result_class -+aClass /* retums the result class */

aMethod.ref_count -)anlnteger /x returns the reference count */

aMethod.in_cache -+aBoolean /* tests if the method has been loaded in memory */

aMethod.lib3ath +aString /* retums the library path for the executable code */

66

4.1,3 Class Attribute

The class Attribute has an instance for every athibute defined for or inherited into each

class. It contains the representation of the state ofan object. The object structure fo¡ the

class Attribute is defined as follows: attribute_name, receiver_class, inherite¡r_from,

reference-count and domain. The attribute attribute_name contains the name of the

attribute; receiver-class is the class that owns this attribute; domain specifies the class to

which the value of the athibute is bound; inherited_from refers to an instance of the

class Attribute and it indicates the attribute of the superclass from which the attribute is

inherited. The attributes inherited-from and reference_count in the schema classes

Method and Attribute are used for the implementation of inheritance and will be

discussed fi¡rther in the next section. The following signatures define the behaviors for

the schema class Attribute:

anAthibute.attribute_name + aString /* returns the name of an attribute */

anAttribute.is_attribute(aClass) +aBoolean/* an attribute is in a class's structure? */

anAttribute.domain -+ aClass

anAttribute. receiver -+ aClass

anAttribute, relcount -+ anlnteger

4.1.4 PrimitiveClasses

/* retums the domain of an attribute */

/* retums the receiver's class */

/* retums the reference count */

POServer allows primitive classes to be viewed as objects but are implemented in the

traditional way. It is assumed that instances of primitive classes are self-identifuing and

67

serre as state, identity and reference simultaneously. Therefore, instances of a primitive

class have no identifiers associated with them. This saves the creation and maintenance

of object identifiers for primitive classes. Also, a primitive class has no attributes

associated with it and a primitive object is not fufher decomposed. As shown in Figure

4.2, a primitive object borrows the language primitive types and points to the underlying

data structure directly. That is, if the domain of an attribute is a primitive class such as

integers and reals, the values of the athibute are directly represented. This save memory

space and execution overhead.

Pointer to the
primitive

class

Underlying
Data

Shucture

Pointer to the
constructed

class

Associated
Class

Extent Set

Tally

Pointer to the
user-defined

class

First
Attribute

Second
Attribute

Third
Athibute

Figtxe 4.2 Object Structures for Primitive Classes and Constructed Classes

68

However, from the user's perspective, it is expected that the entire domain of these

primitive classes exists and every primitive object ever needed is assumed to be in

existence and always available when required. In order to allow the primitives to be

treated as ordinary classes and manipulated like other objects, the normal primitive

operators such as the logical operators, the comparison opeÍators and the arithmetic

operators are defined as behaviors in the conesponding primitive classes. For example,

the following signatures define the behaviors for the primitive class Boolean:

aBoolean.not -+aBoolean /+ retums the opposite value of a boolean */

aBoolean,or(aBoolean) +aBoolean /* performs the OR operation on two booleans */

aBoolean.and(aBoolean) +aBoolean/* performs the AND operation on two booleans */

The standard comparison operators are provided for the abstract class Magnitude. The

signatures are defined as follows.

aMagnitude.greaterJhan(aMagnitude) +aBoolean/* testing for greater than */

aMagnitude.less_than(aMagnitude) -+ aBoolean /* testing for less than */

aMagnitude.max(aMagnitude)-+aMagnitude/*selects the max between two magnitudes*/

aMagnitude.min(aMagnitude)+aMagnitude /*selects the min between two magnitudes*/

Since all numbers are essentially the same type, therefore the common behaviors are

defined on the abstract class Number, not on the actual class like Real or Integer.

aNumber.plus(aNumber) +aNumber /* retums the sum of two numbers */

69

aNumber.minus(aNumber) -+aNumber /* subtracts the second number from the first */

aNumber.times(aNumber) +aNumber /* multiplies two numbers together */

aNumber.divide(aNumber) +aNumber /* divides the first number by the second */

4,1.5 ConstructedClasses

The constructed classes are mainly used for the manipulation of collections. POServer

provides direct support for collections of objects through classes Set, List and Tuple.

One-to-many and many-to-many relationships can be constructed. In designing the

collection facility, there æe several reasonable implementation choices. For example, it

is reasonable to embed a fixedJength anay of pointers into the object structüe if the

cardinality of the relationship is known to be fairly small. However, a collection can be

arbitrarily large if it is used to store all objects of some class e.g. all employees.

POServer stresses uniformity of access to all system objects and behaviors. Therefore,

the same Object Descriptor approach is used for the implementation of collections as

shown in Figure 4.2. Thus, the object skucture for the class Constructed contains

associated_class, extent_set and tally. The attribute extent set is implemented as a

pointer to a set of references; associated_class refers to the class of the elements in the

collection. It is possible for one object to hold a collection of references to other objects

and for that collection to be made persistent. A tally is maintained in a collection to

make the behavio¡ aCollection.count more efficient.

The following signatures define the basic behaviors for the constructed/collection classes:

aCollection.includes(anObject) +aBoolean /* tests if the object is in the collection */

aCollection.count -+anlnteger /* refums the number of elements */

aCollection.first -+ an0bj ect

aCollection. last -+ anObj ect

/+ retums the first element in the collection */

/* retums the last element in the collection */

aCollection.is_empty -+aEloolean /* tests whether it is a empty collection */

All the collection classes need a basic mechanism for inserting an element, another for

accessing an element, yet another for removing an element and so on. A set of standard

behaviors are used for the manipulation of collections. These include update_element,

add_element, get_element and remove_element. These behaviors are defined in the

abshact class Constructed and assume that collections will have a specific element order.

Since sets do not preserve element order, therefore different result may retum when

repeated. It is interesting to note that collection objects can be indexed using array

notation as follows.

aCollection.get_elenent(anlnteger) -+anObject /* retums the specified element */

aCollection.update_element(anlnteger, anobject) -+aCollection /* retums a new

collection constructed fiom the original collection by modifuing a specified element */

aCollection. remove_element(anlnteger) -+ aCollection /*retums a new

collection constructed from the original collection by removing a specified element */

aCollection.add_element(anlnteger, anObject) -+aCollection /* returns anew

7t

collection constructed from the original collection by adding a specified element +/

In addition, behaviors associated to a specific class can be added accordingly. For

example, the signatures for union and append are defined for the class set and List,

respectively.

aSet.union(aSet) -+ aSet /* retums a set constructed as the union of two sets */

alist.append(anObject) -+ alist /* appends an object to a list */

aTuple.lookup(aKey) -+anElement /* returns an element with the associated key x/

4,1.6 Class Object

The important comparisons specified in the root class object are equivalence and equality

testing.

anObject.identical(anObject) -+aBoolean /* tests whether the receiver and the

argument are the same object */

anObject.equal(an0bject) -+aBoolean /* tests whether two objects represent

the same identical semantics */

The implementation of the behavior identical is quite straightforward. It is a simply

comparison between the two OID's. It retums True if they have the same OID, otherwise

retums False. For the implementation of the behavior equat, the decision as to what it

means to 'rrepresent the same identical semantics" is made by the receiver of the message.

Typically each class must re-implement the method equal in order to speciÍ! which of its

attributes should enter into the test of equality. In Poserver, the default implementation

72

of the method equâl is the same as that of identical at the root class Object and each of

the primitive classes redefine this method equal to do a compæison of values which they

represent. For equality of collection objects, two lists are equal if they have the same

number of components and all corresponding component pairs are equal; two sets are

equal if they have the same number of components and for each component in one set

there is an equal component in the other set; equality of two numbers is determined by

testing whether the two numbers represent the same value.

4.1.7 Object Access Table (OAT)

Other important stn¡ctures used in POServer arc Object Access Table (OAT) and object

caches. The object caches will be discussed in Chapter 5. OAT is maintained by the

Object Manager and is implemented as a tuple. Each entry in the Object Access Table

consists of triplets:

Iobjectjdentifier, object_descriptor_location, objecr_descriptor_state]

as shown in Figure 4.3. The structure of the Object Descriptor (OD) has been discussed

in detail in the previous sections. The object descriptor location is simply a pointer to

the conesponding cached OD which points to the physical location of the object in

memory. The object descriptor_state is used to indicate whether the object has been

created in memory or is being loaded from disk.

t3

Index on
OID or Variåble Nsñe

Object Access Table

Figure 4.3 Object Access Table and object instances in memory

Objects are referenced through an identifier or an object name. POServer enables explicit

names to be given to any object or collection, As illustrated before (in Figtxe 2.2),

væiable names :d254 and john are associated with Department 254 and Employee'John

Smith'n respectively. From a name, an application can directly reffieve the named object

and then operate on it or navigate to other objects following the relationship links. All

the named variables of the receiver are available via their names. Two indexes are

maintained by the system to reference an object. one index contains the oID for normal

access to object data and another for translating object variable names to oIDs. Next we

illustrate some ofthese concepts through an example shown in Figure 4.3. For example,

when Employee john is referenced, the variable name index is searched first. The

conesponding object entry for OID'00001002:00000010,is then retumed. By following

the object descriptor for john, his associated attributes can be rehieved. An object

reference in memory is effectively a system-allocated pointer that can be followed

directly to find that object. Since john holds a reference to the department he works in,

therefore his department can be located by following the pointer in dept and

john.dept.name retums 'Technical Services'. Retrieval of an object which is not in the

Object Access Table will result in the Object Manager sending a request to the Storage

Manager to retrieve the object. The Storage Manager provides the low-level storage

management by interfacing with the operating system.

4,2 fmplementation Of Inheritance

Inheritance means that we can develop a new class merely by stating how it differs from

another, already existing class. The new class then inherits the existing class. Since a

class contains object structure and associated behaviors, the reuse of classes is a much

more powerful feature than the reuse of procedures as in traditional programming

75

languages. The main advantage with this approach is that existing classes can be reused

to a great extent. Smalltalk is delivered with an extensive elass library and the

inheritance algorithm [23] works as follows. when a message is sent, the methods in the

receiver's class are searched for one with a matching selector, If none is found, the

methods in that class's superclass are searched next. The search continues up the

superclass chain until a matching method is found. This approach obviously causes

performance problem and is highly ineffrcient because several accesses are required to

validate an object and to execute a method, This performance issue can be solved by the

notion ofa technique called class-hierarchy flattenìng as discussed in Kim [31]. That is,

both attributes and methods are defined for a class and inherited by all subclasses.

Features inherited directly or indirectly are put in a flattened form at the same level. The

implementation strategy is fairly straightforward. It involves taking the union of the

interface sets ofall the classes declared as immediate superclasses ofthe new class being

created. The algorithm iterates through the relevant interfaces and selects all the

behaviors with unique signatures as candidates for insertion into the new class's inherited

set. class-hierarchy flattening is the best for polymorphic retrieval because only a direct

access is required to get information about one object. However, the size of classes will

increase dramatically since the inherited attributes must be duplicated. Additionally, if

changes occur in the inherited attributes, these changes will affect the attributes of all

subclasses.

76

The reeommended approach to implementing inheritance in the POServer system is an

intermediate between smalltalk's algorithm and the elass-hierarchy flattening technique.

Assume that jim is a Systems Engineer and we æe trying to invoke jim.salary. Fi¡st we

retrieve a set of method selectors for the Class Systems Engineer by invoking the

behavio¡ method_selectors. Since method salary is not found, therefore

SystemsEngineer.superclass is executed to proceed to the class' parent, the class

Employee is then retumed. If the method does not exist in the class refened to by

superclass, then the search is continued upwards in the class hierarchy until, ifnecessæy,

the object class is accessed. so far the mechanism is similar to smalltalk's inheritance

algorithm. However, the search up the class hieræchy only needs to be performed once if

the behavior is defined in one of the superclasses. At this point, we will bonow the

class-hierarchy flattening technique. A new instance consists of the receiver's class

(Systems Engineer), the method name (salary) and the address of the executable code is

added to the class Method. Also, the inherited method, salary, is then added to the set of

methods for Systems Engineer. Subsequent invocation of the method, jim.salara, can

directly retrieve and execute the inherited method, This approach improves performance

significantly and includes less redundancy since not all attributes and behaviors are

copied unnecessarily. The inheritance algorithm for the POServer system is shown in

Figure 4.4.

Älgorithm 4,1 The Inheritance Algorithm

Begin
Input ReceiverCls

MethodSel
Var CurrCls

RMthSet
CunMthSet
TargetMth
InheritedMth
Found

Receiver's class

Method selector
Current class
A set of methods for receiver's class
Current method set

Target method
Inherited method
Search indicator

Found = False
CurClass = ReceiverCls.superclass
Do While CurrCls : Class Object and not Found

CunMthSet = CurrCls.instance_methods
For each CunMthSet, e CunMthSet Do

If CunMthSe!.method_name = MethodSel
Found = True
TargetMth: CunMthseq
TargetMth.ref_Count = TargetMth.ref_count + 1

InheritedMth = Method.create(TargetMth)
RMthSet = ReceiverCls.instances_methods
RMthSet.add_elemenf (InheritedMtÐ

Endif
EndFor
CurrClass = CurrClass.superclass

EndDo
If not Found

InheritedMth = -1 Method undefined
EndIf
Return InhsritedMth

EndBegin

Figure 4.4 The Inheritance Algorithm

In the POServer system, some of the schema changes may affeet the values of its

subelasses. For example, if Employee.salâry was dropped, the inherited method

systemsEngineer.salary would be invalidated. Algorithm 4.1 uses the reference_count

defined in class Method to implement the deferred-update technique f30f. The

defened-update technique allows the obsolete information to be deleted at some later

time so that the system can guarantee that a schema change completes quickly. The

reference_count of Employee.salary is increased by I when the method salary is

inherited by Systems Engineer. In contrast, the reference_count of Employee.salary is

decreased by I when the method salary is overloaded or removed from Systems

Engineer. The method can be cleaned out when its reference_count is dropped back to

0. It is interesting to note that Gemstone adopted the immediate update approach fl}j.
As the name suggests, the algorithm immediately updates all affected schemas. The

drawback of this approach is that it makes a schema change potentially very time

consuming because the inherited chains must be checked and maintained for each schema

operation.

Meanwhile, the degree of inheritance offered by any particular implementation of an

objecfbased system may vary from nil to full. POServer provides full inheritance since

any behavior in a class can be inherited by its subclasses, simply by adding the target

behavior to the set of behaviors in the receiver's Class as shown in Algorithm 4.1. In

contrast to this approach, Cl-f imposes further constraints on inheritance. In C+

terminology, only a viftud function [21] as declared by the programmer may potentially

be inherited or replaced in each of the derived classes. This limitation may have some

efficiency benefits for the compiler but it reduces the reusability of the C# object model.

4,3 Behaviorlmplementation

Polymorphism is one of the key features in an object-based system. It means that the

sender of a message does not need to know the class of the receiving instance. The

sender simply provides a request for a specified operation, while the receiver knows how

to perform this operation. The polymorphic characteristic sometimes makes it impossible

to determine at compile time which class an instance belongs to. The ambiguþ about

which method should be invoked can only be resolved at runtime when the message is

actually sent, Thus, dynamic binding is a way of implementing the polymorphism

characteristic. Dynamic binding is flexible, but reduces performance. If the class of each

object is known at compile time, then the correct method can be determined and called

directly. Srilic binding is more secure and effrcient due to the method look-up algorithm

being performed only once during the compilation. For the POServer system, each object

has a very clear type, namely its class, so objects can be associated with any class in the

system and dynamic binding will occur in all situations. Therefore, in principle, the

method look-up must be carried out during execution,

typedef struct

{
boolean (* equal) Q; /* basic functions provided at the root level */
oid (* oid) Q;
boolean (* identical) 0;

) objectclass;

typedef struct

{
boolean (* equal) Q; /* function inherited from the superclass */
boolean (* includes) Q; /* specific functions for class Set */
integer (* count) 0;

) setclass;

objectclass * obj ect_init(sel Ð l* initialization for class Object */
objectclass * self;

{
self->equal = object_equal; /* assign function ptrs to corresponding

methods */
self->oid =object_oid;
self->identical = object identical ;
retum(self);

)

setclass * setjnit(self)
setclass * self;

{

/* initialization for class Set */

self->equal = set equal ; /* function equal is overloaded */
self->includes = set includes;
self->count = set_count ;

retum(self);

)

/* set objects can invoke the function set equal by the follow syntax */

(*myset -> equal) (myset, yourset) ;

Figure 4.5 The Use of Function Pointers in C for Dynamic Binding

81

The C language supports an elegant and effrcient technique for performing dynamic

binding using a predefined structure containing function pointers. For example, we can

define the class descriptor as ac struct containing all the methods defined in the class or

inherited from a superclass. Basically, the class descriptor struct defines the signatures of

the methods visible to a class. Another initialization function, e.g. set init and

objectjnit, can be set up to define and initialize the class descriptor with the proper

method implementation. Later, a function call can be made that is indirectly referenced

through a pointer variable by applying the function call operator to the pointer as shown

in Figure 4.5.

Behavior application involves the retrieval and execution of an appropriate piece of

binary code that is dependent on the receiver's class and the selector for that behavior. A

cursory look at some system implementations of dynamic methods resolution and

execution will be enlightening. The C++ system implementation maintains a virtual

table l2ll for every class that has at least one virtual function. Each object ofa class that

has virtual functions needs to maintain a pointer to that class'virtual table. A call to a

virtual function is resolved according to the underlying type of object for which it is

called. The proper offset into the table is computed at runtime during function dispatch.

A direct jump can then be performed to get to the address of the appropriate code to be

executed. In contrast, the Smalltalk-80 system maintains a structwe called method

dicîionary [23] in the class description for each class. The keys in this dictionary are

message selectors and the values are the compiled form of methods. The protocol

supports eompiling methods, accessing the compiled and noncompiled versions of the

method, and adding the association between a selector and a compiled method. In

summary, sophisticated caching strategies or special dispatch tables are used to minimize

the overhead and to make the method dispatch more efficient.

As for the POServer system, the methods resolution algorithm becomes pretty

straightforward once inheritance Algorithm 4.1 is in place. The receiving instance is

responsible for searching for and finding the appropriate method to be executed. The

receiver's class can be determined fairy easily from the first pointer ofthe object instance

or by calling Receiverobject.class. The method resolution for Poserver which interprets

a message sent to an object therefore operates according to the algorithm shown in Figure

4.6. Algorithm 4.2 can be summæized as follows. When an object is to perform a

method, its associated class selects the required method and performs it using the object's

attributes and the parameters. The method is selected by finding a method that has the

same name as the message. This can be achieved by invoking

ReceiverCls.lookup_behavior(MethodSel) which retums the target method stored in

class Method. If the method is not found in the receiver's class, then the superclass of the

receiver's class must be examined to see if there is a signatue for the passed message.

This is done by calling inheritance Algorithm 4.1 defined earlier. The inheritance

algorithm continues the search up the superclass chain until the behavior is found. If the

83

signature is unknown, -1 wilt be retumed from Algorithm 4.1 and the erîor message

'unknown method' is displayed. Otherwise, it executes the target method using the

pa¡¿rmeter list by calling TargetMth.execute(Parmlist). Finally, any values f¡om the

execution of the method are retumed.

Algorithm 4.2 The Method Resolution Algorithm

Begin
Input ReceiverCls Receiver's class

MethodSel Method selector
Parmlist Parameter list

Var TargetMth Target method
Found Search indicator
Result Function,s result

Found = False
TargetMth = ReceiverCls.lookup_behavior(Methodsel)
If TargetMth = -l Method not found in receiver's class

TargetMth = Call Inheritance Algorithm 4.1 with
ReceiverCls, MethodSel

If TargetMth = -1 Method undefined
Enor Handling - display message 'unknown method'

Else
Result=TargetMth.execute(Parmlist)-refer to Algorithm 4.3

EndIf
Else

Result = TargetMth.execute(Parmlist)
EndIf
Return Result

EndBegin

Figure 4.6 The Method Resolution Algorithm

84

since it is not possible to know where the required load modules are and what libraries

the program will need at link time, C's shared library facility is used for the

implementation of method execution in POServer as shown in Figure 4.7. The object

TargetMth contains the library path (TargetMth.libsath) of the executable code and the

method selector (TargetMth,method_name) to be executed that are required for the

program execution. Loading a library at run time is known as explicit loading [12] in

UNIX. For performance sake, all primitive classes and the associated methods can be

loaded into a method cache dtxing system initialization. When a message is sent to an

object, the system first sees if the object is already in the method cache. If the message

has a conesponding function in the cache, it is invoked directly to handle the message. If

it is not present, the library path and the method selector ofthe target method a¡e used to

locate the appropriate module in the shared library. A UNIX system service call,

Load(&Handler, LibPath, MethodSel, &ExecutableCode), retums a pointer to the

executable code that implements the message from the shæed library. Program execution

can be done by calling the pointer to the &ExecutableCode obtained in the Load fl¡nction

with the parametor list, for example, Execute(&Handler, FunctionPtr, parmlist,

&Result). The in_cache indicator of the target method is then mæked as true and the

method is made available for all instances of the class. Methods subsequently loaded into

the cache can be maintained by the well known caching technique known as the least

recenlly ased (LRU) algorithm that attempts to replace the methods that have not been

referenced for an extended period, as discussed in Effelsberg and Harder [20].

Algorithm 4.3 The Method Execution Algorithm

Begin
Input TargetMth Tæget method

Parmlist Parameter list
Var Handler Retumed handler from operating system

seryices

FunctionPtr A pointer to the executable code
MethodSel Method selector for target method
LibPath Library path for executable code
ExecutableCode Pointer to executable code
Result Function's result

If TargetMth,in_cache
FunctionPtr = TargetMth.executable

Else
MethodSel = TargetMth.method_name
LibPath = TargetMth.libsath
Load(&Handler, LibPath, MethodSel, &ExecutableCode)
If Handler = ok

FunctionPtr = ExecutableCode
TargetMth.in_cache = True

Else
Enor Handling

Endlf
Endlf
Execute(&Handler, FunctionPtr, Parmlist, &Result)
Return Result

EndBegin

Figure 4.7 The Method Execution Algorithm

86

Chapter 5

The POSever Storage Manager

The primary objective of the POSever Storage Manager (SM) is to provide persistence.

This is the ability to store and allow objects to survive beyond the duration of the process

that created them and after the termination ofthe program that manipulates it. The need

for persistence æises flom the volatile nature and limited capacity of primary memory.

Persistence often means that objects are copied flom a fast and volatile primary memory

to a slow and persistent secondary memory, therefore the Storage Manager must also

provide efficient ways to access and manipulate objects in secondary memory. The end

users should only see the logical view ofthe object model and should not take part in the

decisions about how the physical storage is done, therefore the operations taken by the

Storage Manager should be made totally transparent to end users. The Object Manager

(OM) is the only user of the Storage Manager. They both communicate and interact

through a set of procedural interface called the Object Manager Interface (OMI). The

SM provides access to physical storage for objects. It manages the allocation and

deallocation ofpages on disk, moves pages to and ftom disk, finds and places objects in

object buffers. The SM in fact consists of two components. The SM server deals with

objects in the disk format and is responsible for maintaining physical storage for objects.

The SM client resides with the OM and interacts vvith it to perform object transformations

and object buffer management, The SM is really a page server since it deals only with

pages and does not understand the semantics of objects. Entire pages are transfened

between the SM client and the SM server so the overhead on the communication link is

minimized. If a proper clustering mechanism is in place, a significant fraction of the

objects on each page will eventually end up being referenced by the OM. The SM client

and SM server can be implemented by Mach's remote procedure call (RPC) interface.

The OMI calls made by the Object Manager to the SM elient are translated into RpC calls

to the SM server.

5.1 The Persistence Model For POServer

In general, a persistence model defines and specifies three aspects of an object-based

system: 1) What classes can be made persistent; 2) When objects become persistent; and

3) How objects acquire persistence properties. We shall look at each aspect in tum. The

goal is to minimize changes or extensions to the object model to achieve persistence and

to make the operation as seamless as possible. Persistent objects should be referenced

and manipulated by an application in the same way as transient objects. This is in

contrast to the relational systems, where only certain data types can be persistent. For

example, to read some columns of a table from DB2, if the query retums a set of records

then a cursor mechanism [42] must be defined to co-ordinate between the programming

language and the DBMS as the programmer iterates through the result set, mapping one

record at a time into the buffer. This is because relational systems support only a single

88

data structure -- records. Many database researchers now agree that persistence should be

a characteristic of objects entirely orthogonal to their type. Atkinson called the notion

persistence orthogonal to type l2l.

Two dominant approaches to persistence in present OO systems are considered here. The

first approach is what has been termed reachability based persistence. For example, O,

has defined a reachabilìty model of persistence [19]. Objects in O, are created as

transient, then made persistent when referenced by a persistent object. Access to

persistent objects requires no explicit read or write calls to storage manager, but needs to

mark a¡rd retrieve persistent roots. An object needing persistence would then inherit from

fhe persistent class, When an object or value becomes persistent, so do all of its

components, and vice versa. O, supports the automatic storage of objects with all their

dependants. It is interesting to note that persistence in O, is implemented by associating a

reference count with each object. Therefore, no explicit deletes are required because

objects are garbaged automatically when no longer referenced. Similarly, the notion of

persistence is also built in Eiffel tftrough a database root [39]. To become persistent, an

object or a value must be attached directly or hansitively to a persistent root. Every

object reachable from the database root is persistent. A single root class to provide basic

persistence capabilities guarantees uniform I/O semantics. From the data manipulation

point of view, persistence is transparent. The second approach to persistence is based on

membership in a persistable collecîion class. Systems like ObjectStore take this

89

approach which suggests that the decision about persistence be made prior to object

creation. It restricts the persistence of an object by requiring it to be allocated within

some persistent container [34] during object creation. This is in contrast to type extents

where the object DBMS will automatically maintain object collection. In this approach,

it is the programmer's responsibility not to leave dangling pointers to transient objects in

persistent space which means referential integrity is difticult to maintain in such systems.

Atkinson's principle has a great influence on the Poserver system. POServer can store

instances of any class defined in the object model, notjust those that can be force-fit into

records. POServer objects may be transient or persistent and may be converted from

persistent to transient or vice versa at will. The object descriptors (ODs) introduced in

Chapter 4 are a uniform means to reference objects and values. An OD is applied for

both persistent or temporary objects. Persistent objects remain in the system beyond the

life of a program execution. Transient objects are newly created objects stored only in

the client's memory space and disappear when the application terminates. Our

implementation approach resembles database-style semantics: explicit create and delete

calls. Therefore, two behaviors are implemented for the class Object, namely, persistent

and transient. As an example, :employeex.persistent makes the receiver object

employeex persistent, while :employeex.transient converts the receiver object

employeex fiom persistent to transient, These two behaviors are equivalent to CREATE

OBJECT and DELETE OBJECT in some object systems [22]. Also, the Storage

90

Manager is based on Unix file system. Objects belonging to the same class are clustered

in one contiguous segment and each clæs is physically mapped to the underlying OS file

system. This is similar to relational systems where tuples of a relation are stored in the

same segment of disk pages. Clustering rcferc to storing related objects close together on

secondary storage. It is a highly useful technique that can be used to minimize the I/O

cost of retrieving a set ofrelated objects. Since each class is stored in a separate file, the

SM provides object I/O to disk file hanslation in the same way that 3GL (e.g. COBOL)

provides record I/O. The :employeex.persistent function is thus equivalent to adding a

new employee record to the Employee file while the :employeex.trânsient function

deletes the employee record from the file. The default clustering mechanism helps the

system to maintain the extent of persistent objects in a class. This allows sequential

scanning ofall objects in a class to be carried out efficiently.

However, clustering is much more difficult for OO systems than for conventional systems

because there are more ways in which a set of related objects may be accessed together.

Persistent objects can be accessed explicitly by global variable names or transparently

when references or pointers are followed. It may be beneficial to the Object Manager to

be able to access an object and its embedded objects rapidly if the entire complex object

is needed. Therefore, it may be useful to cluster an object and the objects it references,

even if these objects belong to different classes. Ideally, class designers should be able to

control the clustering of objects within a system. This can be achieved by providing the

9l

information for object clustering when defining the class hierarchy through some ODL

syntax. The information that certain objects must be clustered with other objects in the

same storage extent is then stored by the OM as metaclass information. The SM will then

make use ofthis information to perform proper and efficient object clustering.

5.2 Logical And Physical Object IdentÍfiers

An important design decision for POServer is the implementation of object identity.

Identity is that property of an object which distinguishes each object f¡om all others. The

implementation of object identifiers has a considerable impact on how the rest of the

system is implemented and on its performance. Implementation of the identity of

persistent objects generally differs from that of hansient objects. The object identities

allocated by the OO programming languages such as C++ and Smalltalk are valid only

within a single address space because they are just memory pointers, so handling

reference in a shared environment is hard. In a shared object environment, the object

identities must be unique within that environment. This implies that there must be a

mechanism for controlling the allocation of such identities. The implementation of

persistent object identity has two common solutions, based on either physical or logical

identifiers [3, 29] with their respective advantages and shortcomings. Perhaps the

simplest implementation of the identity ofan object is the physical address of the object.

The physical identifier approach equates the OID with the physical address of the

coffesponding object. The physical storage address can be a disk page address and the

b¡e offset within the page. While these physical identifiers can offer performanee

advantages on certain local operations since the object can be obtained directly from the

OID, this comes at a high cost in flexibility. For example, physical identifiers can make

schema evolution very diffrcult. Schema changes typically require instances to be

moved, which changes their physical address and invalidates all references to the object.

This means there is no location independence with this approach. In contrast, the logical

identifier approach consists of allocating a system-generated and globally unique OID

(i.e. a sunogate) per object. Surrogates are the most powerful technique for supporting

identity because they are completely independent of any physical location. Each object

of any class is associated with a globally unique sunogate when an object is instantiated.

This sunogate is used to intemally represent the identity of its object throughout the

lifetime of the object. A logical OID is invariable and position independent, it allows

transparent storage reorganization and there is no overhead due to object movement.

For the POServer system, the logical identity is used because schema evolution and

object distribution are two of the four important requirements outlined. This approach

gives the SM the flexibility to move and cluster objects around in secondary storage as

necessary to achieve scaleable performance. All references within an application to a

particular object can remain the sâme even if that object is moved or reorganized. The

mechanism for the object identifiers in POServer is similar to that of Orion [30]. Two

93

types of OIDs exist in POServer. One type of object identifiers are pernanent identifiers,

known as Logical Object ldenriJìers (LOIDs), which is unique across multiple systems

and independent of physical object location. The counterpart of the LOIDS at the

physical storage level are called the Physical Object ldentifiers @OIDs) which provide

the actual location of an object on disk. A POID consists ofthree parts: a l-hex partition

number, a 4-hex page number and a 3-hex offset. The 3-hex offset can address up to 4

kilobytes of storage, i.e. l page. The l-hex partition number allows a class to have up to

16 frle partitions. The size of each file partition is calculated as 2t6 * 4K: 256

Megabytes (M). The maximum size for all objects in a class is therefore determined by

256M * 16, which gives 4 Gigabytes of storage. The Object Manager controls the

allocation of the LOIDs and ensure their uniqueness, whereas the POIDs are determined

by the Storage Manager. The higher levels of POServer, including the Object Manager

and the user APIs, use LOIDs to represent object references. LOIDs are visible to the

application and can be passed around. Usually, end users consider LOIDs the only object

identifiers in the system because they do not know or see the POIDs. The structure ofa

logical OID consists of a 4-by'te class identifier (CID) and a 4-byte instance identiJìer

(IID). The CID is the identifier of the class to which the object belongs and the IID is

essentially a serial number to resolve identity within a class. Each IID can hold up to 232

(4 billion) values. The class identifier is designed to be long enough to allow it be

globally unique and the instance identifier is large enough to avoid reuse ofvalues under

any probable conditions. The following are some examples of LOIDs:

94

Class Class 00000001:00000001

Class Department 00000001:00001001

Class Employee 00000001:00001002

DepartmentApplication Services 00001001:00000020

Employee Dave Jones 00001002:00000020

This should be conhasted with Smalltalk's use of a -byte memory pointer Í231 to

implement identity for both classes and instances. The message processing may be

somewhat inefficient because run-time type checking becomes expensive. When a

message is sent to an object, the types of the objects referenced in an object can only be

determined by actually fetching the objects and examining the class identifiers stored in

them. This implies that invalid messages cause unnecessary fetching of objects. The

obvious advantage of our strategy is flexibility because the POServer system can extract

the CID directly from the LOID and then look up the class object to determine if the

message is valid or not, Of course, the flexibility is at the expense ofone table look-up

per object access.

It is essential for POServer to provide an efficient mechanism for mapping the LOID of

an object to the POID storage address of the object. The Class Tuple can be used for this

purpose. The POServer system maintains a pair [IID, POID] in a table called the

95

Instance 1D (IID) table. The lookup behavior in class Tuple ean be used to search for the

corresponding PoID for an object. There is one IID table for each class in the system and

it is referenced by the attribute instance table of the class. The IID table is persistent by

default. It might be very large as it contains one entry for each object in the system. It is

also a highly demanded resource in a multluser environment. Figure 5.1 shows how

classes and their IID tables are represented in disk storage. The tuples in the IID tables

are shown as [IID, object_namel for illustration pu{pose. The object_name should

actually be the conesponding POID. The contents of a class in Figure 5.1 æe also

simplified, only the attributes class_name and instance table are shown to emphasize

the relationship between a class and its IID table. The CID for class Class is 00000001

and its instance table refers to all the class objects, for example, class Department has

IID 00001001 and class Employee has IID 00001002 assigned. As a result, all LOIDs for

Department objects start with 00001001 such that 00001001:00000020 identifies

Department Application Services. Another important point to note is that the POServer

system simply stores LOIDs as part of the attributes of an object. Therefore, the LOID

00001001 :00000020 is embedded in the attribute jones.dept and is physically stored on

disk.

96

Class Class and its IID table

(00000001:00000001, [class_name:'Class,, instance_table:00000010:00000001])

(00000010:00000001, {[00000001, Class], [00000002, Method], [00000003, Anribute],

[000000 I 0, Tuple], [0000 1 00 1, Department], [0000 1 002, Employee]])

Class Department and its IID table

(00000001:00001001, [class_name:'Department', instance_table:00000010:00000001])

(00000010:00001001,{[00000010,Technical Services],[00000020, Application Services],

[00000030, Operational Services]])

Class Employee and its IID table

(00000001:00001002, [class name:'Department', instance table:00000010:00000001])

(00000010:00001002, {[00000010, John], [00000020, Dave], [00000030, Rob],

[00000040, iim], [000000s0, Pat], [00000060, Don]])

Department Application Services

(00001001:00000020, [name:'Application Services', number:130, location:'5s'),

emps: {00001002:00000020, 00001002:00000050})

Employee Dave Jones

(00001001:00000020, [name:'Dave Jones', dob:'1962-01-01', jobgrade:9,

dept:00001 001 :00000020)

Figure 5,1 Object storage representations and the IID tables

one fundamental operation of the oM is to retrieve the embedded object that is referred

to by a source object. This is known as dereferencing of the embedded LOID. To

dereference an embedded LOID, for example jone.dept, pOserver first detemines

whether the required object is already loaded in the Object Access Table (OAT). If it is,

dereferencing simply means setting the memory pointer for jones.depf to the

conesponding department object desøiptor (OD) in memory. t henever the OM

receives a request for an object whose LOID is not cunently in the OAT, it requests the

page containing that object Íïom the SM and dereferencing involves the following steps.

Figure 5.2 presents a graphical representation of the steps required to locate and retrieve

an object on disk. Assuming that we are trying to perform dereferencing for jones.dept

00001001:00000020 because it does not exist in the OAT.

1. First, the CID 00001001 is used to search for the target class object in the OAT.

Since the CID for class Class is 00000001, therefore the LOID for class Department

becomes 00000001:00001001. The search operation is then translated into

OAT.lookup(0000000 I :0000 I 00 1).

2. The object entry for class Department is retumed in step 1. By following the object

descriptor pointer the class Department object is accessed.

3. The next step is to locate the conesponding IID Table. Each class contains an IID

table. The IID table, DeptIID, for the class Department can be accessed by invoking

Department.instance_tåble.

98

4. The behavior Department.physical file is used to retrieve the path for physical file

Department.

Figure 5.2 Object Dereferencing and Instance ID Table

LOID = ClasslD

LOIDñolfourd

lllttt
L#lJ

Clûss Class

Class Name

"Departñent

Aíributes
List

Pat¡
IÍsta¡c€ ID

Table

+ Inslânc€lD e.g. 00001001100000020

Object Access Table

-'--'-'---.--\
f ì<><ì

I lappri*r¡on I Ills"*i*ll
tÁl

j---.- _--,'l

-l- It l)-L 1/
I

I

#5

99

6.

.1

This step maps the instance id 00000020 to its POID. Search the IID Table for the

conesponding POID which contains the physical address, page# + offset, ofthe

Department object. This is achieved by invoking DeptllD.lookup(00000020).

A new object entry for the department object to be fetched is inserted into the Object

Access Table and the OD status is set to'being loaded'.

Perform the Object Manager Interface routine SM_ReadObject(PhysicalFile, POID,

&ObjectPh) to rehieve the page containing the object from disk back to the Object

Manager. The retumed object pointer is simply the base pointer for the page plus the

offset.

Once the object pointer, &ObjectPh, is obtained from step 7, the OM then uses the

object struchue in the class to build the OD. The OD status is set to 'loaded' and the

addressability to the OD is established accordingly.

Finally, the memory pointer for jones.dept is set to the newly created Object

Descriptor. The dereferencing is now complete and jones,dept.name becomes

accessible.

Class objects may be cached to optimize system performance. Note that the object

descriptors are set up via direct pointers to the fetched object's data in the SM client's

cache without incuning any memory allocation or copying overhead. The objects are

manipulated directly on the cache page on which they reside. This eliminates the need

for poinfer swizzling 1231. The pointer swizzling technique involves expensive

9.

100

conversion of the POID of an object and the converse unswizzling operation when

sending a page back to the SM server. The object descriptors also supports efficiently the

copy semantics ofvalues because only a new OD needs to be created for a copy operation

and the object values can be shared.

5.3 Object Manager Interface (OMI)

In this section the OMI routines are discussed. Object Manager Interface specifies the

interface between the Object Manager and the SM client. The key operations include: 1.

Retrieving an existing object; 2. Creating a new object; 3. Deleting an object; and 4.

Updating an object. For reading an object, the OMI provides a routine, SM_ReadObject,

to retum a pointer to the object within a given disk page; the desired b¡e range can be

calculated based on the object structure of the class. For updating an object, another

routine, SM_WriteObject, is provided to tell SM that a subrange of the b¡es in the page

have been modified. When the behavior object.persistent is invoked, the conesponding

OMI routine SM_CreateObject is executed. It saves the object into the PhysicalFile and

retums its physical object identifier, Similarly, when the behavior object.transient is

invoked, the OMI routine SM_DeleteObject is executed. It removes the object from the

PhysicalFile where the key is equal to the POID, The following are the specifications for

the key OMI routines:

101

SM_ReadObject(PhysicalFile, POID, &ObjectPtr) /* retums a pointer to the object */

SM_CreateObject(PhysicalFile, ObjectString, &POID) /* retums the physical OID */

SM_DeleteObj ect(PhysicalFile, POID) /* deletes an object */

SM_WriteObject(PhysicalFile, POID, ObjectString) /* updates an object */

OMI might also include other routines to insert a sequence ofbytes at a given point in the

object, to append a sequence of b¡es to the end ofthe object, and to delete a sequence of

b¡es from a given point in the object.

102

Chapter 6

Conclusion

The intent of this thesis was to demonstrate the design and implementation of a simple

persistent object server and this is precisely what has been achieved. In this thesis, an

architecture for a persistent object server called POServer is presented, the conceptual

object model defined, and the implementation design of the key structures and functions

in the system are dicussed. Throughout the examination of various implementation

techniques, it is evident that building an object-based system is a very important yet very

diffrcult task. There are many ways a persistent object server can be implemented. Two

significant approaches to developing an object server were examined and compared in the

thesis. The POServer system is based on a clienVserver architecture which is designed to

make use of the very attractive remote procedure call (RPC) facility from CMU. RPC

technologies have evolved to provide standard communication mechanisms and Mach's

RPC can provide location transparency through the name services. Using the features

provided in Mach, POServer is simple to implement as a prototype system which can

offer great flexibility. The two main components of the architecture are an object

manager and a storage manager. From one viewpoint, the Object Manager is the analogy

of a relational manager, while the Storage Manager is the analogy of a fìle system.

103

The development of an object model and object manipulation languages has been the

focus of the research on object-based systems. The POServer object model described

attempts to provide the basic constructs for a firndamental object-based system. The three

constructs defined are object, method and class. Four abstract classes eúst: primitive,

construct, schema and user-defined. The fundamental data types (e.g. character, boolean,

real, integer, etc.) and three most common constructed classes (e.g. set, list and tuple) are

included in the POserver clæs hierarchy. In addition, the object model defines the

protocols for the most common behaviors in each class. An application programmer only

need to unde¡stand the protocol specifications to use the classes effectively. The object

model also demonstrates the classification mechanism and the capability of representing

complex objects. It is important to note that the primitive class hierarchy can easily be

extended to cover more basic data structures or to augment additional object-oriented

semantic modelling concepts. Objects interact with other objects by invoking their

methods. The Object Manager consists of the data structu¡es (e.g. the object descriptor

and the object access table) to support object management. POServer is much more than

just a persistent storage manager, it also supports manipulation of objects through API's.

The object manipulation language illustrated is an upwardly compatible object-oriented

extension to the SQL relational dat¿base language borrowed from the Object

Management Group (OMG).

t04

6.1 Contributions

In general, this thesis shows and examines the techniques and algorithms required to

design and implement a simple object server. The system architecture, the object model

and the algorithms form the framework of the POServer system. This thesis makes an

important contribution as part of the research project for building a Distributed

Object-Based system in the following ways:

1. The set up ofthe Mach system in the DB lab is considered a significant step because

it allows the team members in the project to carry out other system developments and

testing.

The use of Mach's IPC facility to implement the POServer RPC was validated. The

RPC was tested by rururing Mach in multi-user mode using the two Decstations.

Some of the primitive classes were implemented as the code illustrated in Figure 4.5.

Mach's C language interface was tested and the use of C's function pointer was

proven to be very efücient.

Although the object model presented in this thesis includes only the primitive data

types, its generalization to other structured types should be straightforwæd.

The data structures defined and the algorithms introduced form the basic foundation

of an object server and enable us to take one step closer to building a frrll-blown

Distributed Obj ect-Based System.

J.

6.2 Future Research

There æe still many aspects ofan object manager which were not addressed in this thesis

and require further work. Some open problems in object management are discussed

below and the discussion attempts to identifr interesting problems that remain. In this

section some guidelines for future research which would help enhance the POServer

system are proposed:

1. Schema versioning is a problem that has existed in relational databases. With object

identity, objects can be uniquely tracked throughout their lifetime. The POServer

object model could easily be extended to capture historical versions because the

identity is a property that can be maintained across structural and content

modifications of an object.

2. Another area in which the database research community plays a vital role is

distributed systems. Distributed systems enable the sharing and integration of data

and resou¡ces across computer systems. The benefits of combining distributed

computing and object-oriented concepts are undeniable. The study of Distributed

Object-Bøsed Systems 18, 27, 4ll has emerged as one of the most active research

fields in database systems. For POServer to work in a dishibuted environment, the

two-part logical object identifier, [class_id.instanclid], might have to be extended to

include the site identifier (e.g. [sitlid.class_id.instanclid]) of the site in which the

object is created. When site identifier is included, each object becomes

106

self-contained in the distributed environment. All the knowledge that is needed for

communication is encapsulated within the object.

POServer needs to manipulate a lot of complex dynamie data structwes, for instance,

the object descriptors and object caches. Algorithms for a good garbage collector are

required to reclaim space automatically for unused objects and system structures.

Also, referential integrity can be provided through garbage collection.

For a complete and sophisticated object-based system, other architectural issues

include efficient object query optimization, nested transaction management, object

serializability and extended security model.

t07

Bibliography

1. M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A
New Kemel Foundation for LINIX Development. Computer Science Department,
Camegie Mellon University, 1986.

2. M. Atkinson and O.P. Buneman. Types and Persistence in Database Programming
Languages. ACM Computing Surveys, 19(2):105-190, June i987.

3. Bancilhon et al. The Object-Oriented Database Manifesto. Proceedings of
Conference on Deductive and Object-Oriented Database, December, 1989.

4. K. Barker, M.Evans, R. McFadyen and K. Periyasami. A Formal Onthological
Object-Oriented Model. Technical Report TR 92-02, Departmenr of Computer
Science, University of Manitoba, March 1992.

5. R. Baron, D. Black, W. Bolosky, J. Chew, D. Golub, R. Rashid, A. Tevanian, and M.
Young. Mach Kemel Interface Manual. Computer Science Department, Camegie
Mellon Universi!,1987

6. A.D. Binell and B.J. Nelson. Implementing Remote Prosedure Calls. ACM
Transactions on Computer Systems, vol. 2, pp,39-59, Feb. 1988..

7. D. Black, D. Golub, D. Julin, R. Rashid, R. Draves, R. Dean, A. Forin, J. Baner4 H.
Tokuda, G. Malan, and D. Bohman. Microkemel Operating System Architecture and
Mach. Joumal of Information Processing, Vol. 14(4), pp.442-453,1991.

8. F. Boyer, J. Cayuela, P. Chevalier and A. Freyssinet, Supporting an Object-Oriented
Distributed System: Experience with UNIX, Mach, Chorus. SEDMS II. Symposium
on Experiences with Distributed and Multiprocessor Systems, pp.283-299, 1991.

9. J. Boykin, D. Kirschen, A. Langerman and S. Loverso. Programming Under Mach.
Reading, MA: Adison-Wesley, 1991.

10. P. Butterworth, A. Otis and J. Stein. The GemStone Object Database Management
System. Communication of the ACM, 34(10), October, 1991.

11. M.J. Carey, D. DeWitt, J. Richardson, E. Shekita. Object and File Management in
the EXODUS Extensible Database System. Proceedings of the 12th Intemational
Conference on Very Large Databases, 1986.

12. K, Christian. The UNIX Operating System. New York: John Wiley & Sons, 1988.

108

13. P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press, Englewood
Cliffs, NJ, 1990.

14. E.F. Codd. A Relational Model for Large Shared Data Banks. Communication
ACM, 13(6), pages377-387, Oetober 1970.

15. G. Copeland and D.Maier. Making Smalltalk a Datibase System. SIGMOD'84,
Proceedings of A¡nual Meeting, SIGMOD Record, Vol. 14, No. 2, pp. 316-325,
1984.

16. C.J. Date. An Introduction to Database Systems. Addison-Wesley, 1986.

17. O. Dahl and K. Nygaard. Simula - An Algol-Based Simulation Language.
Communications of the ACM, Vol. 9, No. 9, pp. 671-678, 1966.

18. O. Deux et al. The Story of 02. IEEE Transactions on Knowledge and Data
Engineering, 2(1), March 1990.

19, O. Deux et al. The O, System. Communications of the ACM,34(10), October 1991.

20. W. Effelsberg and T. Harder. Principles of Database Buffer Management. ACM
Transaction Database Systems. December 1984, 9(4), 560-595.

21. M.A. Ellis and B. Shoustrup. The Annotated C¡-r Reference Manual. Reading, MA:
Addison-Vy'esley. 1990.

22, D.H. Fishman et al. Overview of the Iris DBMS. In W. Kim and F. Lochovsky,
editors, Object-Oriented Systems, Databases and Programming, pages 174-lgg.
Addison-Wesley Publishing Co., Inc., Reading, Massachusetts, 1989.

23. A. Goldberg and D. Robson, Smalltalk-80: The Language And Its Implementation.
Addison-Wesley Publishing Co., Reading, Massachusetts, 1983.

24. D. Golub, R. Dean, A, Forin and R. Rashid. UNIX as an Application Program. Proc.
of the USENIX Summer Conf., pp 87-95, 1990.

25. L, Haas, W. Chang, G. Lohman, J. Mcpherson. Starburst Mid-Flight As the Dust
Clears. IEEE Transactions on Knowledge and Data Engineering, Vol 2. No. 1,

March 1990.

26. B. Irani. Implementation of the TIGUI(AT Object Model. Technical Report TR
93-10, June 1993.

r09

27. M. Jones and R. Rashid, Mach and Matchmaker: Kemel and Language Support for
Object-Oriented Distributed Systems. In OOPSA'86 Proceedings, Portland, Oregon,
Pages 67 -77 , 1986.

28. M.A. Ketabchi, S. Mathur, T.Risch, J. Chen. Comparative Analysis of RDBMS and
OODBMS: A Case Study. IEEE Transactions on Knowledge and Data Engineering.
May, 1990,

29. W. Kim. Object-Oriented Databæe Systems: Shengths and Weaknesses. Joumal of
Obj ecrOriented Programming, pages 2l -29, July-August 1 99 1 .

30. W. Kim, N. Ballou, H.T. Chou, J.F. Garza and D. Woelk. Features of the ORION
Object-Oriented Database System. In Kim Won and Lochovsky F.H., editor,
Object-Oriented Concepts, Databases and Applications. ACM Press, 1989.

31. W. Kim. Object-Oriented Databases: Definition and Research Directions. IEEE
Transactions on Knowledge and Data Engineering. Vol. 2. No. 3. September 1 990.

32. S. Koehler. Objects in insurance. Object Magazine July-August 1992.

33. G. Krasner. Smalltalk-80: Bits of History, Words of Advice. Addison-Wesley,
Reading, MA, 1983.

34. C. Lamb, G. Landis, J, Orenstein and D. Weinreb. The ObjectStore Database
System. Communication of the ACM, 34(10), October 1991.

35. S.J. Leffler, M.K. Mckusick, M.J. Karels and J.S. Quarterman. The Design and
Implementation of the 4.3 BSD TINIX Operating Systems Principles, Reading, MA:
Addison-Wesley, 1989.

36. G.M. Lohman, B. Lindsay, H. Pirahesh, and K.B. Schiefer. Extensions to Startburst:
Objects, Types, Functions, and Rules. Communications of the ACM, 34(10),
October 1991.

37. M.E.S. Loomis. OODBMS: The Basics. Joumal of Object-Oriented Programming,
3(l), pages 77 -81, 1990.

38. G. Malan, R. Rashid, D. Golub and R. Baron. DOS as a Mach 3.0 Application.
School of Computer Science, Carnegie Mellon University. 1993.

39. B. Meyer. Lessons flom the design of the Eiffel libraries. Communications of the
ACM, 33(9), pp. 68-88. 1990.

110

40. J.E.B. Moss, S. Sinofsky. Managing Persistent Data with Mneme: Designing a
Reliable shared object Interface. In Advances in object-oriented Database systems,
K.R. Dittrich, Ed. Second Intemational Workshop on Object-Oriented Database
Systems, Springer-Verlag, 1 988.

41. S,J. Mullender. Interprocess Communication. In S. Mullender, editor, Distributed
Systems, pages 37-65, ACM Press, 1989.

42. B. Musteata and R. Lesser. DB2 Handbook. Computer Technology Research Corp.,
N. Y. TLM, Inc., 1988.

43. E. Nemeth, G. Snyder and S. Seebass. UNIX System Adminishation Handbook.
Englewood Cliffs, NJ: Prentice Hall, 1989.

44. O. Nierstrasz. A suwey of Object-Oriented Concepts. In W. Kim and F.H.
Lochovsky, editors, Object-Oriented Concepts, Databases and Applications. ACM
Press, 1989.

45. Object Management Group. The Common Object Request Broker: Architecture and
Specification Revision 1.1 . Object Management Group, Framingham, MrA, 1992.

46. H. Osher. Distributed Object Management. Object Magazine, September/October
t991.

47 . M. T. Ozsu. and P. Valduriez. Principles of Distributed Database Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1990.

48. F, Rabitti and W. Kim. A Model of Authorization for Next-generation Database
Systems. ACM Transactions on Database Systems, Vol. 16, No. l, March 1991,
Page 88-131.

49. M. Satyanarayanan. Distributed File Systems. In S. Mullender, editor, Distributed
Systems, pages 149-183, ACM Press, 1989.

50. H. Schildt. C The Complete Reference. Berkeley, Califomia: McGraw-Hill, 1987.

51. E. Seidewitz. Object-Oriented Programming in Smalltalk and Ada. ACM OOPSLA
'87 Proceedings, October 1987.

52. S. Shafer, M. Thompson. The SUP Software Upgrade Protocol. Camegie Mellon
University. School of Computer Science. 1989.

111

53. J' shirley. Guide to writing DcE Applications. sebastopol, califomia: o,Reilly &
Associates, 1992.

54. B. Tay and A. A¡anda. A Survey of Remote procedwe Calls. Operating Systems
Review, vol 24, pp. 68-7 9, 1990.

55. M. Stonebraker, L.A. Rowe, and M. Hirohama. The implementation of pOSTGRES.
IEEE Transactions on Knowledge and Data Engineering, 2(l), March 1990.

56. A. S.Tanenbaum. Modem Operating Systems. Englewood Cliffs, NJ: prentice Hall,
1992.

57. M.R. Thompson and R.P. Draves. Building Mach 3.0. Computer Science
Department, Camegie Mellon University, 1992

58. M.R, Thompson. Setup for Mach 3.0. Computer Science Department, Camegie
Mellon University, 1993.

59. L.R. Walmer and M.R, Thompson. A Programmer's Guide to the Mach User
Environment. Computer Science Department, Camegie Mellon University, l9gg.

60. M, Zapp and K. Barker. An Architecture and Model for Transactions in Object
Bases. Technical Report TR 92-09, Department of Computer Science, University of
Manitoba, July 1992.

It2

