The Design & Implementation
of a Simple

Persistent Object Server

by

Simon Ma

A thesis
submitted to the Faculty of Graduate Studies
in partial fulfillment of the requirements
for the degree of

Master's of Science

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba
Canada

April 1996

National Library
of Canada

Acquisitions and

Bibliotheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
QOttawa, Ontaric
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa {Ontario)

Your flite Voire rélérence

Cur file Nolre rélérence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la these ni des exiraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-13326-5

iel

Canada

Natne

Dissertation Abstracts Infernational and Masters Abstracts International are arranged by broad, general subject categories.
Please select the one subject which most nearly describes the content of your dissertation or thesis. Enter the corresponding
four-digit code in the spaces provided.

i .
i B s N -~ 1 P i
Lmen_:}m { &y SQ: G 1 i V) !/} g l"i"
' SUBJECT TERM SUBJECT CODE
Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE ARTS

Architecture 0729
Art History 0377
Cinema .. P00
Daice . 378
Fine Ars . L0357
Information Science... 0723
Jovmalism .ceeneen.s L0391
Library Science L0399
Mass Communications0708

mch Communication . ..0459

EDUCATION

General ...ovcvnvenes 0515
Administration ... 0514
Advult and Confinving ..0516
Agricvltural0517

Bilingual and Multiculteral ..0282
Businass ..0688
Communily College 0275
Curriculum and Instru 0727
Eai hildheod 0518
Elementary 524
inance ... 277
Guidance 519
Health .. 4680
Higher 745
History of 0520
e Economics .0278
Indusirial 0521

Lan, uage‘;;c.i. Yiteral
Mathemalics

Philosophy of ..

T Y <

hure

Religious .
Sciences ..

ary
Social Sciences ..
Sociqlo!gyof
2=t DO
Teacher Traini
Jechno ng

Tests and Maasurements .
Vocalional....cocveeeeceevensisvenrenes 0747

LANGUAGE, LITERATURE AND
LINGUISTICS

Language |

An%emmdenl e O
Linguistics .
Modem

Literature
Generdl ...
Classical ...
Comparglive .
modewa

Mo,
Alrican ...,
American..
Asian v,
Canadian (English) ..
Canadian {French}...

glish ..o

Lafin American .
Middle Eastern .
Romancecvivevirnen:

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
Agriculture
General gggg
ﬁ:-:\:?rezlmmmd
Nutrition . 0475

EARTH SCIERCES

B hemistrycoevvennnen.... 0425
S O -

Geodasy0370
Geology ... 0372
Geophysics L0373
Ezdm}ogy .0388
ineralogy .. L0411
Paleobotany0345
Palececology .0426
Paleontology 0418
Fobacks 0427
QANYTROTY saarnriraarse .
Physical geogmphy0368
ysical Oceanogrephy0415
HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences
Health Sciences
2T B——
gtﬁo‘c
emothera
Dentis p)'
f{i’;h?r&
ital Management
Human Devebgment
Medidine and Surgery
Menlal Hedlth
Nursing

NUETHON o vemmmrereeesree oo

Chstetrics and é%moln?{:fosso
ceneenrns 0354

Occupational Health a

PHILOSOPRY, RELIGION AND
THECLOGY

Phil By oo eeensenneseneneanenenn 0422
Religion

enoral i
Biblical Studies .

.0321
OIGY woparnes 0319
Hislory of ...cooroecrmrereiriecenns 0320
Philosophy o -....0322
Theology ... 0469
SOCAL SCENCES
American Studios0323
i
Ar:haec%gy 0324
Cu|h§ra| 0.

ysica
Business Administratio
General ..vvenirricniennnn. 0310

Goneral ..., 0501
Agricvltural...... ... 0503
Commerce-Business . ..0505
INENCE .overrcnaeen ..0508
History ..0509
Labor’.. ..0510
eory 0511
fsolkfore o gggg
eogr “ .
Sniology 0351
History
General .. 0578
Speech Pathology
Toxicology ...
Home Economics
PHYSICAL SCIENCES

Astronomy and
Astrophysics ..c..owerererens... 0606
Almospﬁeric Scienco0608
AJOMIC ..o rvecrneni s e 0748
Electronics and E]ecfriﬁ'g ... 0607
Elementary Parficles
High Energy v voeemriesienns 0798
Fluid end Plasma 0759
lecular 0609
Nuclear ..0410
ics ... 0752
Radiation 0756
id State . .. 0611
SHaHShES covriiremie s 0443
Applied Sciences
Applied Mechanics .

Computer Science ...

European....... -
Latin American0336
Middls Eastemn0333
United States0337
History of Science ..0585
Political Science
BNOA] covreieenieienesaieenneen . 0615
International Lew and
Relaions ..cccvvreevreeereneensn. 0616
?ub_lic Administralion . L0817

Recrealionccece.ae.
Social Work ..ovvvecrecireinesisinans
Sociology
General .ouevriernseniirennsessenans
Criminology and Penclogy ... 0627
Demogmpg
Ethnic and Racial Studies0631
Individual and Family
Studies ... e 0628

Social Strudure and

Development
Theory and Methods
Transportation ...
nhing099%

Urban and Regional Pla
Women'’s Stedies

Engineerin

genem .
SrOSPaca .,
Agricuplz:ml,
Avuvlomotive .
Biomedical ..
emical
Electronics and Elecirical 0544
Heat ung:l T i

Sanitary and Municipal........
SysieerScience pa
Geotechnology
Operations Research .
astics Technclogy ...
Textile Technology .cevveirvasrecrens

Nom

Dissertation Abstracts Infernational est organisé en catégories de sujets. Veuillez s.v.p. choisir le sujet qui décrit le mieux voire
thése et inscrivez le code numérique approprié dans 'espace réservé ci-dessous.

LLLL] UMI

Catégories par sujets

SUJET

HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET LES .ARTSD

Architecture .

Beaux-orts ...

Bibliothéconomie . (399
Cindmaocoevene L0900
Communication verbale .. .0459
Communications 0708
Dansecc.o..... .0378

Histoire de 'art .
Journalisme ..
Musique ...
Sciences
Thédtre ..o

EDUCATION
Géngralités ..o 515
Administration ..

Colléges communautaires .
Commerceoocovvnennnn.0488
Economie domestique ..
Education permanente .
Educalion préscclaire ..
Educalion senitaire ...
Enseignement agricole0517
Enseignement bilingue et

muficulturel ...
Enseignement indusriel
Enseignement primaire.
Enseignement professionne!
Enseignement religieux
Enseignement secondaire
Enseignement spécial
Enseignement supérieur ..
Evaluation
Finances
Formation des enseigna
Histoire de |'éducation .
Langues et litérature ...

SCIENCES

SCIENCES BIOLOGIQUES

Agriculture
Générahités ... 0473
Agronomie. ..., 0285
Alimentation et technologie

alimentaire ... 359

Colture ...
Elevage et alimentotion0475

Exploitation des péturages ...0777
Pathologie animale ...0
Pathologie végélcle ...
Physiologie vé?étale .
SyKrEcuhwe et fauneo......
Technologie du bois..............

Biclogie
Généralités ..
Analomie.....
Biologie (Stalisliques) .

Biclogie moléculaire .. L0307
Botanigue 0309
Cellule0379
Ecologie0329
Entomologie . ..0353
Génétique ... 0369
Limnclogie ... 0793
Microbiologie 0410
Neurologie .. L0317
Océanograph 0414
Physiologie0433
Rediation0821
Science véférinaire . ..0778
- %}oo!og'[e..........,....,..........A..0472
tophysigue
png(icfilés 0784
Medicale ..o 0760
SCIENCES DE LA TERRE
Biogéochimieco.ccooeoo.. 0425
Géochimie... ...09%96
Gécdésie0370
Géographie physique............... 0368

ET INGENIERI

lecfure .vovvvvveieiveciiiie ... 0535
Mathématiques .
Musique ...
Crientation et consultation .

Philosophie de 'éducation 0998
Physiqueovov oo 0523
Programmes d’études el

enseignement _..................... 0727
Psycholegie 0525

Sciences sociales .
Sociologie de I'ed
Technologie

LANGUE, {ITTERATURE ET
LINGUISTIQUE
langues
énéralitéso...........067%
Anciennes ..
Linguistique
M g emgs
Liérature
Généralités (401
Anciennes L0294
Comparée .. 0295
Mediévole ... 0297
Moderne . .0298
Africaine03ié
Américaine . L0591
Anglaise ... 0593
Asictique0305

Canadienne [Anglaise)
Canadienne (Frangaise)
Germaaique
Latino-oméricaine ..
Moyen-orientale .
Romaone

Slave et est-européenne0314
Géclogie ... e 0372
Géophysique . .0373
,Izizdrologie .0388
Oinéralogie : . 83} ;

céanographie physique .
?o!éobg?onf{;ue p 7 .0345
Paléoscologie0426
Pajéontologie0418
Paléozoologie 0985
Palynologieccovurvrennnn... 0427
SCIENCES DE LA SANTE ET DE
L’ENVIRONNEMENT
Economie domeslique 0386
Sciences de I'envircnnement0768
Sciences de lo sonlé

Geénéralités ..o 0566

Administration des hipitaux .. 07469

Alimentation et nutrition 0570

Audiologie0300

Chimiothérapie

Dentisterie

Deéveloppement humain

Enseignement

Immunclogie ...

Loisirs ...

Médecine du travail et

HhErapie ..o 0354

Médecine et chirurgie0564

Obstétrique ef gynécologie ... 0380

Cphtalmelogie5......038]

Orthephonie0460

Pathologie .. 0571

Pharmecie0572

Phormacologie . 0419

Physiothérapie .0382

Radiolegie ... 0574

Santé mentcle . 0347

Santé publique 0573

Soins mfirmiers
Toxicologie —...vovirierieeenane.

PHILOSOPHIE, RELIGION €T
THEOLOGIE

Philosophie ..o
Religion
enéralités ..o,

er
Etudes bibliques ...
Histoire des religions
Philosophie de fa religion

Théologie ..o oroeorreoerro

SCIENCES SOCIALES

Anthropolegie
Archéologie ..., 0324
Culturelle™... .

Physique . .
Droit e
Economie

Générdlités

Commerce-Affaires

Economie agricole ...

Economie du travail ..

Finances0508
Histoire ... L0509
Théorie ... L0511

Etudes américaines .
Etudes conadiennes .
Etudes feministes ..

Folklore0358
Géographie .. 10366
Geérontologie ...

Gestion des alfaires

Générolités0310
Administration 0454
Bongues .. .0770
Comptahilité .. 0272
Markeling0338
Hisloire
Histoire générale0578
SCIENCES PHYSIQUES
Sciences Pures
imie
Genérolités ...
Biochimie

Chimie agricole ..
Chimie onalyligue .
Chimie mingrale .
Chimie nucléaire ...
Chimie organique ...
Chimie phormaoceutig
Physique ...
PelymCres ..
Radiation ...
Mathématiques ...
Physique
Genéralifésc.cocorcnnnnn.
Acoustique ...
Astronomie et
astrophysique ...
Elecironique et éleciricité
Fluides et plasma ...

Météorologie . .- 0608
Optlique e 0752
Porticules (Physique

nucléaire)0798

Physique atomique ...
Physique de ['état solide
Physique meléculaire .

Physique nucléaire0610
Radiation 0756
SIatishiqUescouerirreeincns 0463
Sciences Appliqués Et
Technologie
Informalique ..o 0984
Ingénierie
Genéralités ...o...ccooveee.... 0537
Agricole053%
Avtomabilec....c.c........ 0540

CODE DE SUJET

ANCIBNNE ..o
tedigvole .
Moderne
Histoire des noirs ..
Atricaine ...
Caonadienne ..
Etals-Unis ..
Européenne ..
Moyen-orientole ...
Latino-américaine ...
Asie, Australie et Océani
Histoire des sciences..........
LOISIrs cvvvviericre e
Pianification urbaine et
régionale ...
Science politique
Généralites0615
Administration publique0617
Droit et relations

infernationales 0616
Sociclogie
Généralités0626

Adde el bien-dtre sociol 0630
Criminologie ef

élablissements

énitenliﬁires 0627

Démographie ...
Etudesgdeﬁ’ individu et

delafamille ... 0628
Etudes des relations

interethniques ef

des relations racicles0631
Structure et développement
social oo 0700
Théorie ef méthodes. 0344
Travail et relations
industrielles 0629
Transports 0709

0452

Travail social

Biomédicale ..o
Chaleur et ther
modynamique
Condilionnement
{Emballage) ...
Geénie agrospatial ..
Génie chimique ..
Génie civil ..o
Génie électronique et
éleclrigue ...,
Génie industriel ..
Génie méconique ..
Génie nucléaire
Ingénierie des systimes .
Mécanique navale ...
Métallurgie
Science des motériaux ..
Technigue du péirole
Technique miniére ...
Technigges sanitaires
municipales......................
Technologie hydraulique0545
Mécanique appliquée
Géotechnologiec.cococone
Maliéres plastiques

{Technologie) 0795
Recherche opérationnelle 0796
Texlies et fissus (Technologie)0794
PSYCHOLOGIE
Généralités ...

Personnalilé
Psychobiclogie ...
Psychelogie clinique
Psychologie du comportement .. (384
Psychologie du développement ..0620
Psychologie expérimentale0623
Psychologie industrielle
Psychologie physiologique ..
Psychologie sociale
Psychomélrieccoo.cccnnnn... 0632

THE UNIVERSITY OF MANITOBA
FACUTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION

THE DESIGN & IMPLEMENTATION OF

A SIMPLE PERSISTENT OBJECT SERVER

BY

SIMON MA

A Thesis/Practicum submitted to the Faculty of Graduate Studies of the University of Manitoba in partial
fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Simon Ma © 1996

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or sell copies
of this thesis/practicum, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis/practicum and
to lend or sell copies of the film, and to UNIVERSITY MICROFILMS INC. to publish an abstract of this
thesis/practicum.,

This reproduction or copy of this thesis has been made available by authority of the copyright owner solely
for the purpose of private study and research, and may only be reproduced and copied as permitted by
copyright laws or with express written authorization from the copyright owner.

Table of Contents

ii

.......................

Chapter
Abstract
Acknowledgements
List of Figures
1. Introduction
1.1 Motivation and OBJECtiVES ..ccocvvivrceciriiies e seeeseveenen
1.2 Related Work s
1.3 Organization of Thesis .ovivvveiviiiinenin
2. System Architecture Overview ...
2.1 Application Programming Interfaceccoccrvivcrvecinicinonniverennns
2.2 Object Manager e eieenesessesses
2.3 Storage Manager = ..
24 TheBenefitsof Mach ...
2.4.1 Microkernel Concepts e
2.4.2 Support for Client/Server Development
2.4.3 Support for External Pagerccoceeveenene
2.5 POServer RPC Implementation covervirennee

Page

vi

vii

The POServer Object Model

3.1 Object Representation

3.2 Behavior Representation

3.3 Class Representation

3.4 Class Relationships

3.5 POServer Class Hierarchy
3.5.1 Primitive Classes
3.5.2 Constructed Classes
3.5.3 Schema Classes

3.6 Referential Integrity

3.7 Summary

The POServer Object Manager
4.1

4.1.1 Class Class
4.1.2 Class Method
4.1.3 Class Atiribute
4.1.4 Primitive Classes
4.1.5 Constructed Classes

4.1.6 Class Object

iil

Implementation of Schema and Primitive Classes

..

--

--

...

...

...

--

37

40

42

4.1.7 Object Access Table ...coeeicevevicineiinecee et 73

4.2 Implementation of Inheritance ..o 75
43 Behavior Implementation =~ e 80
S. The POServer Storage Managerccccvevsiiveeienereeenecsnesenenne 87
5.1 The Persistence Model for POSEIVELocvvvvieicvinierireriireiiseenen. 88
5.2 Logical and Physical Object Identifiers ccvvveeviiririniennnas 92
5.3 Object Manager Interface ccovvverevininiisiesnneeesseeisieens 101
6. Conelusion e sse e 103
6.1 Contributions 105
6.2 TFuture Research =~ . 106
Bibliography s 108

v

Abstract

Object-based systems are quite heavily investigated in recent years because many
database researchers now agree that the relational database technology of the 1980s falls
far short of providing the necessary data abstraction and modelling capability. This thesis
presents the implementation design of a simple object-based system called the Persistent
Object Server (POServer). The primary function of POServer is to provide object access
and persistence. A system architecture based entirely on Mach's RPC mechanism is
presented and the Application Programming Interface (API) is illustrated. A simple
object model that consists of the core object-oriented features is defined. The
implementation design of the Object Manager and the Storage Manager are discussed in
detail. Also, different implementation techniques and design alternatives are examined.
Finally, the algorithms for the implementation of inheritance and behavior are introduced.
The thesis contributes towards a foundation for object-based systems. The system
architecture, the object model and the algorithms form the framework of the POServer
system and enable the system designer to take one step closer to building a full-blown

object-based system.

Acknowledgements

I would like to take this opportunity to express my appreciation and thank a few people
for their support and encouragement. First of all, I would like to thank my supervisor,
Dr. Ken Barker, for giving me the opportunity to pursue this practical topic. He has
provided me with a lot of valuable insights and clear directions during the course of
writing my thesis. It was a pleasant experience to have worked with him. The thesis has
been proven to be very challenging. I have learned a lot about the implementation
techniques for object design and development. Most importantly, I am able to make use
of what I have learned from this thesis and apply the concepts and the knowledge to my
work. I am currently involved in the system design of a three tier application architecture
at Great-West Life. Three fier application architecture is a refinement of the
Client-Server architecture which separates each application into data, application, and
presentation layers. Secondly, I would also like to thank my peers in the Advanced
Database Systems Laboratory, especially Dr. Peter Graham and Mr. Gilbert Detillie, for
their technical expertise in setting up Mach that allowed me to test out the RPC
mechanism. Last, and definitely not the least, I wish to thank my lovely wife Alice.
Your encouragement over the last two years has been invaluable. Without the love and

support from you, I would have never made it this far.

vi

2.1

2.2

2.3

3.1

3.2

33

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

5.2

List of Figures

The POServer System Architecture
POServer C Application Programming Interface

The POServer RPC

Class Employee
Employee Class Hierarchy

The POServer Class Hierarchy

Object Structures for Schema Classes

Object Structures for Primitive and Constructed Classes
Object Access Table and object instances in memory
The Inheritance Algorithm

The Use of Function Pointers for Dynamic Binding
The Method Resolution Algorithm

The Method Execution Algorithm

Object storage representations and the IID tables

Object Dereferencing and Instance ID Table

vii

Page

14
20

33

44
47

50

63
68
74
78
81
84

86

97

99

Chapter 1

Introduction

Database management systems (DBMS) were introduced in the late 1960s to overcome
the inherent limitations of file management systems such as data redundancy,
inflexibility, and lack of data independence. A DBMS is an implementation of a data
model that consists of a set of services such as backup and recovery, transaction
management, concurrency control, and security protection to help maintain the integrity
of the database. Since their introduction in the late 1960s, DBMSs have undergone
several generations of evolution. The principle data models implemented include
network model, hierarchical model and relational model. The relational model as defined
by Codd [14] represents the current generation of DBMSs, in which data are represented
in the form of tables and relations, has met the ne.eds of simple business data processing
applications such as payroll, accounting, inventory control, and so on. However, the
relational model offers the simple notion of tables and character-based data as the only
data structures for user interaction. The set of operations in relational systems is limited
to set theory and first-order logic. The relational model cannot capture the semantics of
complex objects. To model a complex object the information often has to be split into
several tables. This makes each access to such objects slow since the DBMS must join a
lot of tables to gather the object's information. In summary, the flat nature of the
relational data model is not able to adequately support applications that require large

1

complex data structures. These include images, voice, graphics and documents. For
example, most insurance companies have a substantial on-line database system that
records information for policyholders and their benefit payments. Ideally, these
databases should be enhanced with multimedia data such as digitized images of
hand-written applications, audio transcripts of underwriters' evaluations, and photographs

of specially insured objects, as discussed in Koehler [32].

Many database researchers now agree that the relational database technology of the 1980s
falls far short of providing the necessary data abstraction or modelling capability to act as
the repository of hypermedia objects and applications. There has been a movement
within the database field to incorporate more and more semantics into the data model so
that the database can more closely reflect an application. Relational databases cannot
provide direct, natural representation of graph-structured object spaces. Relational
systems are subject to the limitations of a finite set of data types and the need to
normalize data. In contrast, object-based systems offer flexible abstract data-typing
facilities and the ability to encapsulate data and operations via the message protocol. The
intuitive appeal of an object model is that it provides better concepts and tools to
represent the real world as closely as possible. As a result, the object model has attracted
much interest in the database research community. The need for more flexible type
systems has been one of the major driving forces in the development of object-based

systems. As pointed out in Kim [29, 31], object-based systems are replacing relational

systems and becoming the model of choice for advanced applications that require a rich
type system, highly flexible data structures, and an enriched set of data modelling
constructs. These new applications include geographical information systems (GIS),
software engineering, computer-aided design (CAD) and computer-aided manufacturing
(CAM). The object model represents the latest step in the evolution of database

technology.

Object-oriented (O0) concepts have evolved in three different areas: first in programming
languages, then in artificial intelligence, and then in databases. Simula is generally
regarded as the first OO programming language. Simula [17] introduced as its basic
building block the object, a package containing both the data and procedures which acted
on that data. This was also the beginning of the use of data encapsulation within
programming languages. Since Simula, researchers in programming languages have
taken two different paths to promote OO programming. One was the development of
new OO languages, most notably Goldberg's Smalltalk [23] and such languages as Eiffel
[39]. It is important to note that object models can contain tuples, for example, the
dictionary class in Smalltalk is a form of table. Another approach was the extension of
conventional languages, for example, Objective C and C++ [21] as extensions of C. OO
programming has shifted the focus considerably closer to that of databases, by
emphasizing the organization of software around the data objects, rather than around flow

of control. In the OO approach, objects have a prescribed behavior that enables them to

respond to messages from users and from other objects. Objects are grouped into classes
and the prescribed behavior of a class applies to all objects that are instances of the class.
The rich modelling semantic of an object model provide intrinsic elements that facilitate
classification, data abstraction, encapsulation and inheritance. These new features lead
to a greater degree of program modularization, software reusability, modifiability and

maintainability.

Object DBMS (ODBMS) research has been under way in universities and research
laboratories for many years. To fully understand the possibilities of the ODBMS
technology, two of the most common approaches taken by database researchers are
considered. The early object database systems were developed as extensions of OO
programming languages such as C-++ and Smalltalk. This approach, sometimes called the
persistent language approach uses existing programming language type system as the
object model. Permanent storage is then added to objects defined in the object
programming language. Data definition and type checking are borrowed from the
programming language. The systems from this category can be viewed as persistent
versions of C++ and Smalltalk. For example, GemStone [10] illustrates this approach.
The second approach taken by the researchers is to add object extensions to a relational
DBMS. These systems are often called extended relational DBMSs. This is typically
accomplished by relaxing the data type constraints imposed by conventional systems.

The extended features include binary language objects (BLOBs), set and tuple-valued

fields, user-defined and abstract data types, path expressions, triggers/rules, and so on.
Two of the most prominent research prototypes that use this approach are POSTGRES
from University of California, Berkeley [55] and Starburst from IBM's Almaden
Research Centre [25, 36]. Relational DBMS commetcial products (e.g., Ingres, Oracle,
Sybase) are gradually incorporating some of the above object-oriented extensions. For

example, Sybase has added "stored procedures" in their SQL Server product.

The persistent language approach provides an easier, more flexible way for users to store
language objects. However, they are often restricted to the capabilities of the specific
object-oriented language. That is, it provides no simple means for accessing the objects
from any other language. Meanwhile, an explicit goal of the relational extension
approach is to minimize changes to the relational model, thus the basic model in this
approach is still based on the notion of records and tables. As a result, some problems
remain unresolved such as impedance mismatch [15] and inefficient single-object access.
The extent to which the relational model and the object-oriented model can be narrowed

while remaining within the bounds of relational theory is thus uncertain.

1.1 Motivation And Objectives

The ground up Object DBMS approach is quite heavily investigated in recent years. The
purpose of this thesis is to present and discuss the implementation design of a simple

5

object-based system called the Persistent Object Server (POServer). The approach taken
by POServer is broadly similar to the research prototypes Iris [22], TIGUKAT [26] and
0, [18, 19]. The strategy adopted in these OO systems is to build an object model on a
database foundation. The object model foundation allows the user to benefit from the OO
features of encapsulation, information hiding, inheritance, polymorphism, and dynamic
binding. The DBMS foundation provides the traditional DBMS features such as
recovery, concurrency, security, and so on. The result is a true ODBMS. These systems
also allows access to the database from multiple languages and a query language to
access and manipulate objects. The separation of the object model implementation from
programming languages and storage management is considered a step in the right
direction because this approach can obtain most benefits and offer the highest level of
object-orientation. Essentially, POServer can support applications in any programming
language for which a language binding exists since it is based on a language independent

object model.

Object-oriented systems such as EXODUS [11] and Mneme [40] are being classified as
Persistent Object Stores because these systems have been built without providing all the
functionality of a DBMS, for example, recovery and transaction management. POServer
can be considered to be in the same group. The primary functions of POServer are to
provide object persistence and object access. Persistence refers to the capability of

storing objects in non-volatile storage and allowing the programmer to read the objects

back later in core memory for further processing. A persistent object is one which
continues to exist after the application that created it has terminated. Computer programs
use volatile memory for their runtime data storage. This applies equally to C++ and
COBOL programs. Both objects created by a C++ program and records created by a
COBOL program must be transferred to secondary storage if they are to persist.
POServer is based on a client/server architecture and consists of two major components:
1) Object Manager (OM) and 2) Storage Manager (SM). The OM is responsible for the
implementation of the conceptual object model and object management. The SM
provides persistent capability and buffer management. The implementation issues which

are of direct concern to system designers are highlighted.

This thesis is also motivated by the advanced capabilities of Mach. The server market
has moved rapidly toward UNIX and it is widely accepted that UNIX now dominates the
client/server environments. Mach is a Unix-compatible microkernel-based operating
system developed by Carnegie Mellon University (CMU). Mach's original development
was based on BSD 4.3 Unix as described in [1]. It provides users with extensive
interprocess communications, improved memory management, multiprocessors support,
and multithreading facilities. Mach is also a distributed operating system that is
extremely suitable for developing distributed object-based systems [27]. The benefits of

using Mach for building a client/server system will be fully discussed. The focus of this

thesis is not to present a complete object model, but rather to demonstrate how to design

and implement a simple persistent object-based server.

There is currently a research project in the Advanced Database Systems Laboratory
(ADSL) to develop a Distributed Object-Based System. During the early stage of the
research project, arrangements were made with CMU's software distribution manager to
enable one of our workstations in the DB lab to obtain source code and binary code for
Mach over the Internet. The neterypt.c file was installed which allows us to do periodic
software updates. The microkernel Mach system was ported to two DecStation 5000's. It
was set up to run on Carbon and Boron under the directory /usr/mach. A few
client-server modules were developed to validate Mach's IPC facilities. These programs
can be found under /usr/mach/machpgm. The concepts for the POSerer RPC was then

formed.

This thesis contributes to the broad objective of building an object-based system in the

following ways:

1. Provides a working environment running Mach in the DB lab for system testing and
prototype development.

2. Validates the facilities provided in Mach and determines how to make the best use of

it to build an object-based system.

3. Defines a framework for a simple object-based server and it is served as a prototype
for the Distributed Object-Based System to be developed in the lab.
4. Provides algorithms for the design and implementation of inheritance and method

resoultion.

1.2 Related Work

In this section, two object-based systems reported in the literature that have direct
influence on this thesis are reviewed. The first one is Iris [22] (Hewlett-Packard's Open
ODB is based on the Iris prototype). Iris implements an object model which is managed
by an object manager on top of a relational storage and transaction manager. In Iris, the
object-oriented model is based upon three components: objects, types and functions.
Objects are a combination of data and stored functions. Types allow you to classify
similar objects. Functions operate on data in the database and also define the behavior of
that data in the database. Iris uses a client/server architecture and allow users to
interactively enter Object SQL (OSQL). The object manager executes OSQL calls made
by the Iris clients. The OSQL interface layer is constructed to transparently connect
client's programs to a relation database manager, HP-SQL. The interface layer defines a

general algorithm to map from objects to database representations and back again.

Another research prototype that demonstrates similar approach is the TIGUKAT
(tee-goo-kat) system [26]. TIGUKAT is a term in the language of the Canadian Inuit
people meaning "object”. This system is currently under development at University of
Alberta. The object manager encloses the core object model and is responsible for the
interaction between TIGUKAT Query Language (TQL) and persistent storage manager
(ESM). ESM supports a client/server topology where the client module is linked with
the host application program and interacts with the ESM server. The TIGUKAT object
model is very well defined. It includes T" object, T type, T behavior, T semantics,
T function, T collection and T atomic. T_atomic contains primitive objects such as
reals, integers, characters, sets, bags, lists, etc. T type is used for defining and
structuring objects; T_behavior and T_semantics together provides support for specifying
the semantics of the operations which may be performed on the objects; T__function is
used for specifying the implementations of behaviors over various types and T_collection

supports the grouping of objects in the system.

1.3 Organization Of Thesis

This thesis is divided into six chapters. This chapter has discussed the evolution of
database management systems and the shortcomings of relational systems. The rapid
change in application environments and the applicability of object-based systems were
also presented. This was followed by a brief history of object orientation and high-level

10

descriptions of OO concepts. Two most common approaches taken by the researchers to
building object-based systems, 1) adding persistence to a language environment and 2)
extending a relational DBMS, were examined and compared. Object-based systems
represent the latest generation of database technology. The trend is to use object-based
systems for the design and development of complex applications. Section 1.1 addressed
the purpose of this thesis, an approach for implementing the persistent object server, and
the motivation of using the micro-kernel operating system Mach. POServer is based on a
client/server architecture because client/server computing has received widespread
recognition as a leading foundation technology. A couple of related research prototypes,

Iris and TIGUKAT, were briefly reviewed in section 1.2.

The remainder of the thesis is organized as follows. Chapter 2 gives an overview of the
system architecture. The application programming interface is presented in Section 2.1.

Section 2.2 and 2.3 briefly discuss the roles and responsibilities of the two key
components, the Object Manager and the Storage Manager, in the POServer system and
how they fit into the overall picture. Section 2.4 and 2.5 discuss the benefits of Mach and
how to use its RPC facility to ixﬁplement a client/server system. Chapter 3 presents the
conceptual object model. Sections 3.1-3.4 define and justify what an object-based system
should be, on the basis of a small set of central object-oriented concepts such as the
notion of abstract data typing, encapsulation, inheritance and object identity. Section 3.5

defines the primitive class hierarchy for the POServer object model. Section 3.6 briefly

11

discusses referential integrity in the object model. In the main part of the thesis, Chapter
4 discusses the implementation design of the Object Manager. It first outlines the major
design guidelines and system requirements, Section 4.1 is broken into seven subsections.
It focuses on object representation in memory and the physical implementations of the
data structures used in the system. The implementation algorithms for inheritance and
behavior are addressed in subsequent sections. Issues and features which are of direct
concern to system designers are also highlighted. Chapter 5 discusses the implementation
design of the Storage Manager. Section 5.1 first gives a brief comparison between the
two most common persistence models. The persistence model for POServer is then
presented. Section 5.2 describes in detail the logical and physical OIDs. The object
manager interface routines are presented in Section 5.3. Finally, Chapter 6 concludes

with some suggestions for enhancing the POServer system.

12

Chapter 2

System Architecture Overview

Before presenting the details of the conceptual object model in Chapter 3, this chapter
begins by giving an abstract view of the system architecture and how the components of
this architecture interact. The purpose of this chapter is to outline and define the
functional specifications for each component in the POServer system. The POServer
system architecture is based in part upon Iris architecture as presented in Fishman et al.
[22]. It adopts a three-schema architecture and shares very similar functionality as found
in most conventional database systems. The top layer represents the external model
which links the communication between application users and the system. This is usually
implemented as a graphical user interface (GUI) or a language interface, consisting of a
set of programmatic and interactive interfaces that supports the Data Definition Language
(DDL) and the Data Manipulation Language (DML) as illustrated in SQL/DS [16]. The
middle layer represents the conceptual or logical model. It supports the core data model
and is independent of how information is stored. The physical model is represented at the
bottom layer which is a low level disk manager that performs storage and file access
management. It defines the internal representation of information in the system. The
architecture consists of four major components: 1) Graphical User Interface; 2) Language

Interface; 3) Object Manager (OM); and 4) Storage Manager (SM). These four

13

components form the foundation of a general-purpose object-based system. Figure 2.1

depicts an overview of the POServer system architecture.

Graphical User Interface Language Interface
Query Brower / Editor User Applications (POServer RPC's)

Mach IPC

Object Manager

SM Client
Mach Micronel
IPC Virtual Memory Threads

!

IPC Virtual Memory Threads
Mach Microkerel
SM.Server

Storage Manager

-

N

Intermal Model Conceptual Model External Model\

Figure 2.1 The POServer System Architecture

14

This basic system architecture may be extended in several dimensions to make it a more
complete object-based system. First, integrity features such as transaction management
and concurrency control may be added. Zapp [60] provides a model of transactions in an
object-based system. Second, performance-related features such as secondary indexing
and query optimization may be included. Third, the architecture may be extended with
security and authorization for a multi-user environment. A model of authorization for
object-based systems has been discussed in great details in Rabitti's [48]. The POServer
architecture is unique in the following respects. First, the overall system architecture is
based on a client/server (C/S) model. POServer's C/S model is supported by Mach's
Remote Procedure Call (RPC) mechanism. All interfaces are built as clients to the lower
level components in the hierarchy and they always communicate to each other by RPC's.
As mentioned in Mullender [41], a remote call has the same semantics as a local call so
the server may be running on the same or a different machine. The RPC mechanism can
determine where the requested procedure is located on the network, translate the
generalized call into the appropriate machine or OS specific call, and return the values to
the caller via the network. The client/server model enables users to efficiently utilize the
available computing power. Second, the advanced features provided in the Mach
microkernel such as interprocess communication and memory management are fully
utilized in the system. This greatly reduces the complexity of the Object Manager as
compared to O, [19] where a dedicated communication manager is needed to handle the

passing of messages. Third, a normal storage manager includes a number of facilities

15

such as disk space management, clustering and recovery, etc. For the purpose of this
thesis, only the features necessary to make an object persistent are demonstrated. To
provide a better understanding of the POServer architecture, the responsibilities of each

component of the system architecture are we described in the following sections.

2.1 Application Programming Interface

All database systems require a mechanism for describing new structures to the database
and interacting with the metamodel. The mechanism can be graphical, a declarative
DDL, or an application programming interface (API). A subset of "standard" SQL
commands comprise the DDL for Relational DBMSs. The traditional approach to
language interface taken by relational DBMSs is by defining a sublanguage (e.g. SQL) to
be embedded in a general-purpose programming languages such as COBOL or C. The
combined source code is passed through a pre-processor and translated into subroutine
calls in the syntax of the host programming language. The generated object code is then
linked with the DBMS runtime library. This approach was adopted by SQL/DS [16].- A
standard DDL does not exist for object DBMSs, although a number of choices are
competing for adoption. Some object DBMSs do not use a specific data manipulation
language to store and retrieve information, but use the OO programming language
directly, for example C++ or Smalltalk. This means that a specific interface to the object
DBMS is not necessary. These systems are thus closely coupled with the object

16

programming language. The class declaration syntax of the C++ programming language
is currently the most common DDL for object DBMSs. Smalitalk also has an advantage
as a DDL since it is extensible. Despite all this we should bear in mind that different
languages are appropriate for different jobs. Most programming languages are built to
achieve a specific set of goals or requirements, C++ and Smalltalk alone are not
sufficient for writing all applications and in many situations an interactive ad hoc query
language is more desirable. For POServer, the object model serves as the core of the
system and multiple language interfaces can be developed on top of it. This approach
provides openness to other languages and the ability to reuse existing applications.
Therefore, classes created by one programming language may be used by another
programming language, instances populated by one language may be read by another

language, instance methods may be executed by multiple languages.

There are three main steps in object manipulation. First, a scheme for the class is
designed, which defines the objects and their attributes. Second, the class is populated
with objects. Third, the objects are queried for processing. For the illustration of the
POServer API, an object query language similar to the ones used in Iris [22] and O, [19]
is chosen. The POServer API consists of three types of statements: 1) Object Definition
Language (ODL); 2) Object Manipulation Language (OML); and 3) Object Query
Language (OQL). ODL is the language interface to be used by application designers and

has constructs for defining and generating new classes, behaviors, and relationships

17

among classes, e.g. subclass and superclasses. For example, CREATE CLASS and
CREATE METHOD statements. Once an application model is established, the next step
is to populate the class and update the data and code contained within the system. OML
is the language interface to be used by programmers and has constructs for generating
new objects and manipulating existing objects, for example, CREATE INSTANCE and
EXECUTE METHOD statements. OQL is a declarative SQL-like query language. It
takes the well known SELECT-FROM-WHERE structure of SQL by adding the object

extensions, IN collection or list of aggregates, as follows:

query result = SELECT <list of objects>
FROM <range variable> IN <collection/class>

WHERE <predicate>

OQL's syntax is simple and flexible. It provides very high level operators that enable
users to sort, group, or aggregate objects. This syntax makes it possible to select any set
of attributes or functions in the list of objects from a class or from any aggregate in the
system. One major difference between relational SQL and OQL is the use of dot notation
to navigate through objects. OQL takes advantage of the semantic knowledge built into
object structures, for instance, if we have an Employee "john" and we want to know the
name of the Department he works in, the OQL is john.dept.name. As another example, to

get the names of the employees of the Department "d254",

18

SELECT e.name

FROM e IN d254.emps
This query inspects all employees of Department d254 and its result is a collection of
employee names. Other object extensions to SQL include the use of methods in
projection lists and WHERE clauses to take advantage of the implementation hiding
inherent in the object approach, for example, WHERE e.age > 65. The notion for calling
a method is exactly the same as for accessing an attribute or traversing a relationship.
This flexible syntax frees the user from knowing whether the property is stored (an
attribute) or computed (a method). More information about object query languages can
be found in Iris [22] and O, [18, 19]. The POServer system is accessed by a remote
procedure call interface called POServer(aHandler, anAPlIstmt, listofargs). A complete C
program with POServer API is illustrated in Figure 2.2. It shows how a POServer

schema is declared and how to populate and manipulate objects in the system.

The Query Browse/Editor is a facility which allows users to retrieve and update object
values and metadata with graphical and forms-based displays. The user interface accepts
input from a workstation, provides a graphical interface, and formats queries for the
underlying system. This kind of tool is essential because it facilitates rapid prototyping
and increases the speed of application development. It also enables ad hoc query and
reporting systems because application users are not forced to write, compile, link-edit,

and debug a program just to get the answer to simple queries.

19

#include <POServer.h> /* Contains POServer data structures */

main () {
POShanider myHandler; /* Contains return code & error messages */
int tempAge;
char * tempName;

/* Creates a new class Department */
POServer(myHandler, "CREATE CLASS department ATTRIBUTES(

name String,

number Integer,
location Char(4),
emps Set", 0);

/* Creates a new class Employee */
POServer(myHandler, "CREATE CLASS employee ATTRIBUTES(

name String,
dob Date,
dept Department

job_grade Integer", 0);

/* Creates a new Department d254 Technical Services */

POServer(myHandler, "CREATE INSTANCE department :d254
ATTRIBUTES(name, number, location, emps)
VALUES('Technical Services', 254, 'SN', Nil)", 0);

/* Creates a new Employee instance John Smith */

POServer(myHandler, "CREATE INSTANCE employee :john
ATTRIBUTES(name, dob, dept)
VALUES('John Smith', Date'1960-01-01", :d254,10)", 0);

/* Creates a new Method for Class Employee */
POServer(myHandler, "CREATE METHOD age FOR employee
RETURNS(Integer)", 0);

/* Returns John's name and age */
POServer(myHandler,"SELECT john.name,john.age",2, & tempName,&tempAge);
printf("Name : %s, Age : %i", tempName, tempAge);

/* Makes d254 and John persistent */
POServer(myHandler, "EXECUTE METHOD john.persistent", 0);
POServer(myHandler, "EXECUTE METHOD d254.persistent", 0);

}
Figure 2.2 POServer C Application Programming Interface

20

2.2 Object Manager (OM)

The Object Manager (OM) is a program that directly supports and implements the
POServer object model. It corresponds to the query processor of the relational system
(e.g. Relational Data System [16]) which performs query compilation and optimization
with a flexible rule-based optimizer. The OM validates and executes the RPC calls, and
returns the data in a form that is usable by the clients. The actual query processing and
access path evaluation involve typechecking and execution plan generation. Data access
requires a means for specifying what data to access and mechanisms to ensure that the
correct data is obtained efficiently. The query optimizer chooses an efficient access path
for the query using information about the structure of the query, the size of the objects,
the number of instances, and the indexing or clustering strategies. Data independence is
supported so the presence or absence of indexes in the physical database and the
application programs will still run regardless of changes to file storage organizations.
The OM achieves a higher level of data independence than relational systems by
providing data abstraction and information hiding. The internal structure of an instance
variable, the implementation of a function or the class relationship can be changed
entirely transparent to the existing applications. Query optimization will not be addressed

in this thesis. Musteata [42] describes query optimization in considerably more detail.

The object structure and the corresponding operators are supported by the Object

Manager. It is the OM which attaches the object semantics to the bytes returned from the

21

Storage Manager and presents them as an object to the client modules in the higher level
of the hierarchy. For example, system defined classes such as Date, Time, Bag, List, and
Set are manipulated by the Object Manager to hide the internal implementations. Date is
presented as a Character string of the form 'YYYY-MM-DD' but stored as a 4-byte
decimal internally. Through the use of ODL all object definitions and class relationships
are defined and stored in the system. This information is often referred to as meta-data
which is a schema of classes that make up the database. The OM is responsible for
schema management and uses the information for typechecking and validation. For
instance, we define two new classes Canadian$ and US$. Both are actually Real data
types. However, each is regarded as a separate and distinct data type. An application
would fail if it tried to add a Canadian$ to a US$ because of data incompatibility. This

concept is known as strong typing in the OO paradigm and is enforced by the OM.

In relational systems, Codd [14] introduced the notion of user-defined identifier keys to
represent the identity of an item. An identifier key is some subset of the attributes of an
item which is unique for all items in the relation. There are several problems with
identifier keys because the concepts of data value and identity are mixed. In POServer,
each object stored in the system has a system-provided, unique handle called an object
identifier (OID). OIDs relieve users from creating unique keys to identify stored
information. The OM is responsible for maintaining the OIDs of persistent objects and

providing a correspondence between OIDs and objects on disk. The user application may

22

request objects in the system from OM by passing it an OID. The OM elementarily
supports calls to get, put, and delete objects by OID, for instance, DELETE OBJECT

WHERE OID ='00001002:00000010".

2.3 Storage Manager (SM)

The Storage Manager is responsible for the management of persistent objects on
secondary storage and the management of cache for the SM clients. This includes
allocation and deallocation of pages on disk, movement of pages to and from disk and the
cache area, object clustering and indexing on collections etc. The SM corresponds to the
Data Manager (DM) layer of SQL/DS [16] and performs very similar functionality. The
SM handles all physical level details and deals only with pages. The POServer SM is
essentially a page server. The SM server stores and retrieves pages of data in response to
request from the OM. Requests to SM might include reading or writing data and code
within the object-based system. The Storage Manager only interacts with the OM and
acts as a server to OM that requests persistent object services. The main advantage of a
page server architecture is that it has no knowledge of the contents of a page and does not
understand the semantics of objects. Since entire pages are transferred between the OM
and the SM server, the overhead on the server is minimized. This makes the SM very
simple and can support more object managers concurrently. The SM simply passes pages
to and from the OM, and stores them on disk.

23

The SM maintains a cache area in the OM, a pool of object pages that have recently been
used. The cache is maintained according to a "least recently" used policy: the least
recently used page is replaced when a new one has to be fetched into the cache. When an
application signals a memory fault, the OM determines whether the page being accessed
is in its cache. If the OM cannot locate a particular object in the cache, it generates a
page fault to the Storage Manager. The SM server transmits the page and puts it into the
cache. The address of the page containing the requested object is returned by SM and

then an offset is added to it so the OM can get the particular object.

2.4 The Benefits Of Mach

As illustrated in Figure 2.1, the entire system architecture is based upon Mach. Mach's
microkernel architecture has important advantages for users and applications over today's
monolithic operating systems such as UNIX. Robustness, scalability, maintainability and
extendibility are just some of the more noticeable ones. Mach provides five different
classes of services: 1) Virtual memory management; 2) Tasks and threads; 3) Interprocess
communications (IPC); 4) I/O support and interrupt management; and 5) Host and
processor set services. Mach was proposed and chosen because its primary services
support distribution and the level of control required for the implementation of object and
storage management in a client/server platform. The Open Software Foundation (OSF)

24

Research Institute has been a proponent of Mach technology. The industry, through OSF
and others, has entered into agreements with Carnegie Mellon University to license Mach
technology and contribute work back into Mach. This represents one of the essential
benefits of open systems, with work from many resources benefiting all. As a result,
Mach receives wide acceptance in the research and academic communities. The
advantages of using Mach as the foundation of the POServer system is summarized

below.

2.4.1 Microkernel Concepts

Mach adopts the microkernel approach. It is designed to isolate the most essential
services and platform-specific functions of an operating system in a small core of code
that runs in the most privileged state of the computer. The rest of the system is supported
as set of applications running in nonprivileged space (user space), isolated from the
kernel by a clearly defined set of interfaces. The limited set of well-defined interfaces
enables orderly growth and evolution. The system can be enhanced with new
functionality in a modular fashion without retesting and rebuilding everything. Services
that were traditionally integral parts of an operating system such as file systems and
windowing systems are becoming peripheral modules that interact with the kernel and
each other. This reduces the size of the OS code running in kernel space and maximizes

the amount of space available for user applications. The microkernel approach makes the

25

machine-dependent modifications for different architectures easier. CMU has
successfully implemented support for DOS, UNIX, 0S/2 and MacOS on top of the Mach
3.0 kernel. The ability to concurrently support multiple operating systems, such as UNIX

and DOS has been demonstrated in [24, 38].

CMU is distributing the Mach kernel, libraries, PMAX etc. (no license required) to
outside research groups. The distribution is done by electronic transfer over the Internet
using the software upgrade protocol (SUP) [52]. SUP is a client program, run by system
maintainers, which initiates the upgrade activity on a machine requesting the latest
version of a collection of files. Arrangements with CMU have been made and an
encryption key for starting SUP has been obtained. The netcrypt.c file has been installed
so that periodic SUP updates can be made to keep up with bug fixes, additions and other
changes. Instructions for setting up and building Mach 3.0 for different types of
computers such as DecStation 5000, 1386, Sun3, MircoVax etc., are distributed from
CMU and documented in [57, 58]. These documents explain exactly what is required to
build the Mach microkernel and the Unix-server; to set up the directory structure
JRFS/LOCALROOT; and to boot a Mach 3.0 system up multi-user. The Mach 3.0
kernel plus the Unix-server is compatible with UNIX BSD 4.3 programs. The emulation
uses the original AT&T and U.C. Berkeley source code and is complete enough to run

executable files compiled and linked under BSD UNIX.

26

2.4.2 Support For Client/Server Development

Message-based interprocess communications (IPCs) and threads are primarily of interest
to system designers of client/server development. Mach is a message-passing kernel that
supports the client/server paradigm, and makes heavy use of shared virtual memory to
facilitate communication between tasks. IPC is the mechanism whereby the different
parts of distributed applications can communicate. The IPC facility allows clients and
servers to call each other and exchanges data regardless of where they are executed in a
network configuration. Message passing is a very natural way to structure systems in
which components are distributed over a loosely-coupled set of individual processors
because it enables location and distribution transparency. Without Mach's IPC support,
system designers would have to be concerned about the low level networking protocols
(e.g. TCP/IP) and their compatibility; and programmers would have to write applications
through socket interface. Mach provides a capability-based interprocess communication
facility. IPC facility in Mach is integrated with the virtual memory system and capable of
transferring large amounts of data. Message passing can take the form of simple
send/receive protocols (e.g. system calls mach msg send(request msg) and
mach_msg_receive(reply _msg)) or simple send/receive messages can be combined into a
form of remote procedure call (RPC) to better suit client/server types of communications.
RPC provides a standardized network communication process interface that can hide the
network details that a developer would have to know to make use of network or

distributed resources. In order to help clients find servers in a flexible and portable

27

manner, Mach provides a name service called NetMsgServer to store network
communication information. Because the mircokernel does not need to know whether the
message comes from a local or remote process, the message-passing scheme offers an
elegant foundation for RPC's. Also, Mach IPC messages are typed collections of data.
This allows the microkernel to perform data conversion and achieve heterogeneous

operations.

The traditional UNIX process is divided into two separate components in Mach. The first
is the task, which is a basic unit of resource allocation that includes a page address space,
protected access to system resources such as processors, ports, and memory. The second
is the thread which is a basic unit of CPU utilization. A Mach task may have many
threads of execution, all running simultaneously. Threads are lightweight processes that
share a single address space and the task's resources. A task is a passive collection of
resources; threads are active entities in Mach because they execute instructions and
manipulate their registers and address spaces. Most importantly, system designers can
now easily develop concurrent program by using multiple threads of control. This often
results in better performance than would be possible without threads. The ability to use
threads is critical in some applications, for instance, multithreading a database server can
offer increased concurrency and parallelism. Mach provides the system call
mach_thread create(parent_task, &new thread) for requesting a new thread and the

thread can be terminated by calling mach thread terminate(new thread). Threads in

28

different tasks communicate with each other by exchanging messages through a
communication port. The system call mach_port allocate(parent_task, &new port) is
used to allocate a new port and the port can be deallocated by calling
mach_port_deallocate(parent_task, new_port). Mach also allows a set of ports to be
grouped together and a single mach msg receive system call can then read the first

available message from any of the ports in the set.

2.4.3 Support For External Pager

For efficient implementation of the persistent object store in a client/server environment,
some control at the virtual memory level is needed, that other operating systems like SUN
OS do not provide. Mach has a powerful and highly flexible memory management
system based on paging. It supporis large, potentially sparse address spaces with flexible
memory-sharing; copy-on-write virtual copy operations; read/write memory sharing
between tasks; and memory mapped files. vm_allocate(target_task, &new_memory,
vm_page_size, find_space) allocates a chunk of memory. vm_page size is the default
system page size and find_space controls the allocation of the virtual memory.
vm_deallocate(target_task, new_memory, vm_page_size) returns the virtual memory
back to the operating system. Copying data within the virtual memory of the current task
can be done using vin_read, vin_write and vm_copy. The notion of a memory object is

generalized to allow general purpose user-state external pager tasks to be built. Mach

29

also permits user-level (also known as external) pagers to manage memory regions.
Mach microkemel and the memory management facility communicate through a
well-defined protocol, making it possible for users to write their own memory managers.
Users can control memory sharing and paging operations directly, for instance,

memory_object _data_request and memory_object data_provided are used for page-in
and page-out operations. Main memory may be used as a cache for user-level data
objects, such as databases and files. This ability allows database designers to implement
paging systems with very special requirements. For a more complete discussion of the
concepts in Mach, the reader should see Accetta [1] and Black [7], and for details of

specific system calls, Baron [5] and Walmer [59].

2.5 POServer RPC Implementation

Some approaches to providing object persistence proceed by modifying existing
compilers [15] to provide as clean an interface as possible. Instead, Mach's Remote
Procedure Call (RPC) mechanism is used because it fits well into the client-server
architecture. The interface for Mach 3.0 is currently only available in C, therefore the
POServer interface is also illustrated using C. It is not necessary to use any
object-oriented language to implement the interface or the OM as long as the
programming language is capable of building the foundation system. This has been
proven in the case of GemStone[10] which was implemented using C and runs on most

30

UNIX environments such as Sun3 and DEC. In this section, Mach's RPC mechanism and
how it can be effectively used to implement the POServer API is illustrated. This should

help to make the abstract discussion of the core object model in next chapter concrete.

The POServer RPC is the high level programming interface to the POServer system.

The RPC can be defined with the following C language specification:

POServer(POShandler aHandler, Char *APIstmt, Int numargs, listofargs);
POShandler aHandler /* contains return code and error messages */
Char *APIStmt /* ODL, OML or OQL statement */
Int numargs /* number of arguments, 0 if no arguments */

listofargs /* optionally include one or more arguments */

aHandler is a POServer data structure which contains information about the RPC call
statement. APIstmt is any valid OML, ODL or OQL statements. The POServer RPC can
optionally include one or more arguments, numargs indicates the number of additional
arguments to be passed and should be 0 if no argument is required. listofargs is
implemented by calling the C macro va arg() which allows a variable number of
arguments to be passed to a function. The most common example of a function that takes
a variable number of arguments is printf{) [50]. The OM validates and interprets the API

statement. It then parses the list of parameters using the C macro va_start(argptr,

31

numargs). This macro returns a pointer to numargs. The subsequent parameters are then

retrieved via calls to va_arg(argpr, string) in a loop.

Every remote procedure must be pre-defined so that the client and server programs follow
the same protocols when communicating to each other. Mach provides an interface
generator called Mach Interface Generator (MIG). The POServer RPC can be defined
using a C-like language called the Interface Definition Language (IDL). The IDL is then
used to generate three outputs: 1) a client stub, 2) a server stub and 3) a C header file.
The generated client stub contains the client code supporting the POServer(aHandler,
APIstmt, listofargs) function. The server stub contains the OM server side code to make
an upcall to the POServer function, which executes in the server address space. The C
header file contains the type and data structure definitions used in the client/server
interface. The user application program written in C source code can invoke the
POServer RPC directly. The user application is then linked to the client stub and the
RPC runtime library, generating an executable POServer client module. Development of
the OM server is accomplished in exactly the same way, using the same header file as the
client; the only difference is that the OM server code is linked to the server stub, rather
than the client stub. By using MIG, the client application is guaranteed to communicate
with the OM using the same specification. =~ The IPC calls mach_send msg and

mach_receive_msg are hidden in the client and the server stubs respectively and are

32

fransparent to application users.

illustrated in Figure 2.3.

The RPC mechanism for the POServer RPC is

/ OM Server

Client Program

Server Code
POServer(aHandler,
anAPIstmt, listofargs)

Server Stub
netname_check_in(}
mach_receive_msg()

!Client Code
POServer(myHandler,
myAPIstmt, listofargs)

Client Stub
netname_look_up()
mach_send _msg()

RPC Runtime Library RPC Runtime Library
1IPC
check_in POServer look_up
—-——— Service 2
Service_3
NetMsgServer

Figure 2.3 The POServer RPC

Notice that in Figure 2.3, there are two functions called POServer. The client application

uses the POServer function just like a local procedure call because it is actually a remote

33

call to the OM POServer function which carries out the real operation. The OM server
process the API request, provides the result, and passes it to the server stub, to RPC, and
back to the application program via the OM client stub. The OM server must make the
POServer RPC information available to application clients. The network messaging
mechanism is based on a name service provided by Mach called network message server,
NetMsgServer. By using NetMsgServer, a client may obtain the required service without
having to know how to talk directly to the server. The OM server stub first registers the
POServer function and the OM server port to the name server by calling the system
function, netname_check_in, with the following parameters:

netname_check_in(NetMsgServer_port,"POServer", task_self(), OM_server port)

The NetMsgServer_port is a global variable initialized by crt.o during program creation
and initialization. The network information is obtained during system startup. The
second argument is the name of the function, POServer, that is going to be registered.
The third argument, task_self() is known as the signature which prevents unauthorized
tasks from deleting a service from NetMsgServer because the same signature must be
given when calling the system function netname check _out. The client stub later uses
another system function, nefname_look_up, to locate the POServer function and obtain a
send right to the OM server port:

netname_look_up(NetMsgServer_port, "POServer", &OM_server_port)

34

Chapter 3

The POServer Object Model

Database researchers disagree as to what constitutes an object-based system because
various definitions exist. Although the object approach does not yet include a clearly
defined data model, there is general agreement on the concepts and basic capabilities an
object-based system should provide. One of the first attempts to define the requirements
for an object-oriented (OO) DBMS appeared in a paper by Bancilhon, et al. entitled "The
Object-Oriented Database Manifesto” [3]. According to [3], an object model seeks to
group objects into similar classes that have common attributes and behaviors, and to
factor common behavior up and out into more abstract representations. To develop
applications in an object model, we identify objects, describe their behaviors, and then

allow them to interact by passing messages.

In this chapter, constructs and vocabulary found in Iris [22] and O, [18, 19] are utilized to
form a conceptual object model. The POServer object model is based on a set of
fundamental OO concepts common to most OO programming languages; it has been
particularly influenced by Smalltalk [23]. Prior to the discussion of system
implementations in next chapter, it is important to examine the basic concepts of object
orientation that form the foundation of an object-based system. This chapter establishes a
set of terminology that can be used in further discussions. Further, an object model is one

35

which includes, at the minimum, the core OO concepts discussed and justified in this

chapter.

A relational data model supports a predefined set of data types and a relational system is
viewed as a collection of tables. An object model supports a user-defined extensible set
of data types and can model complex data structures that closely match real-world
entities. It can be regarded as a prescription for how objects might be represented and
how that representation might be manipulated. The POServer object model is based upon
three major constructs: objects, methods, and classes. The following aspects of the object
model are considered: 1. Object representation; 2. Behavior representation; 3. Class
representation; 4. Class relationships; 5. POServer class hierarchy; and 6. Referential
integrity. This chapter will examine each of these aspects in turn. Using this object
model, systems designers can directly model real world applications in an intuitive way.
Six basic OO concepts will be discussed: object identities, data encapsulation, class
hierarchy, class inheritance, polymorphism, and data abstraction. In broad terms, the
POServer object model is used to describe conceptually the objects in an application
system, relationships between the objects, and the attributes and methods that
characterize each class of objects. Although the OO paradigm has been around since
Simula [17] in the mid '60s, it is still relatively immature and there is no universal
agreement on how to characterize it. However, other definitions on the OO model can be

found in Barker et al. [4], TIGUKAT [26], ORION[30] and Eiffel [39].

36

3.1 Object Representation

For information modelling, the term object means a representation of some real-world
thing. For object-oriented programming languages, the term object means a run-time
instance of some processing and values. Objects are the units into which we divide the
world, that is, the molecules of the object model. For the POServer object model, each
object has two aspects: 1. Identity. An identity is that property of an object which
distinguishes each object from all others. 2. State. A state is the set of values for the
attributes of the object. The term atfribute is from relational systems [16] and is an
instance variable in Smalltalk [23]. Let I be the domain of identifiers used to reference
objects. Let D be the union of system-defined fundamental types and user-defined
abstract data types (ADT's). Fundamental types are {Boolean, Real, Integer, Char,

String, Date, Time, Oid}. Let A be the domain of attribute names. Thus, an object is:

Definition 3.1.1 An object is simply a pair o = (0id, s) where:

1. oid is the unique identifier of o and oid €1.

2. sis the state or a set of values, it can be one of the following:

2.1 An afomic value is an element of D.

2.2 [a;:vy, .., &, V,]is called a tuple value, where a; € A and v; €D.
[] represents an empty tuple value.

23 {vy, ..., v,} is called a sef value where v; €D,
{} represents an empty set value.

2.4 The special value Nil, represents an undefined object. ©

37

The following are examples of Department and Employee objects:

Department = (c,, {d,, d;, d;, d,})

Employee = (c,, {¢,, €,, €, €4, €s, &, €;})

(d;, [name:'Technical Services', number:254, location:'SN'], emps: {e,, €, ,})

(dy, [name:'Application Services', number:130, location:'5S'], emps:{e,, e})

(ds, [name:'Operations Services', number:112, location:'3W'], emps: {¢;, e,})

(d,, [name:'New Department', number:123, location:Nil], emps:{})

(e1,[mame:'John Smith', dob:'1961-01-01', job_grade:10, dept:d,, age:34, salary:50000])
(e, [mame:'Dave Jones', dob:'1962-01-01', job_grade:9, dept:d,, age:33, salary:45000))
(€3, [name:'Rob Webb', dob:'1963-01-01', job_grade:8, dept:d,, age:32, salary:40000])
(4, [name:'Jim Wong', dob:'1964-01-01", job_grade:6, dept:d,, age:31, salary:30000])
(es, [name:'Pat Lee', dob:'1965-01-01', job_grade:7, dept:d,, age:30, salary:35000])

(eg> [name:Donna Ma, dob:'1965-01-01", job_grade:7, dept:d,, age:30, salary:35000])

(e5, [name:'Ken White', dob:'1966-01-01", job_grade:6, dept:d,, age:29, salary:30000])

Definition 3.1.2 Two objects o; and o; such that i #j are identical iff 0,.0id = 0,.0id. ®

The definition states that two objects are identical if they have the same object identifier.
Definition 3.1.3 Two objects o; and o; such that i #]j are equal iff o,.state = o;.state. @

The definition states that two objects are equal if they represent the same identical

semantics,

38

Objects are implemented internally in POServer as a number of variables which store
information and a set of methods which operate on that data. It is important to note that
the relational tables can only have single-valued columns whereas the state in the
POServer object model is not restricted to atomic values or system-defined types. It is
possible to have tuple values and set values. This implies tremendous modelling power
because it means that any repeating values occurring naturally in the application can be

represented directly in the POSever system without having to be normalized.

3GL programming languages use variable names to identify temporary objects. This
mixes addressability with identity. Relational systems are value-based in which identifier
keys constitute part of the state of a record and is used to identify persistent objects. Both
of these approaches compromise identity. In contrast, the POServer system is
identity-based. An object's identity is independent of state, type, and addressability. All
objects in the system have identity and are distinguishable. Uniqueness is enforced via
system-maintained object identifiers (OIDs). An OID is permanently associated with an
object. An object is given a unique OID at its creation and keeps it until it is destroyed,
and is never reused. The object identifiers can be used in a variety of ways, for example,
to pinpoint and retrieve an object; and to perform sorting and ordering. For persistent
objects the identity is maintained by the system across multiple programs or transactions.
Identity also facilitates the notion of object sharing. Such sharing reduces the update

anomalies [16] that exist in the relational data model.

39

3.2 Behavior Representation

The behavior of an object is the set of methods which operate on the state of the object.
Using the POServer object model, the state encapsulated in an object is accessed from
outside only through its behavior. POServer allows a method definition to be done in two
steps. First, the programmer declares the method by giving its name and signature. The
signature represents the external interface to users and is the only means whereby the
contents of an object can be changed. Second, the implementation of the method is
specified. The method implementation specifies what the method does and how the
result is obtained when it is invoked. The separation of method declaration and its
implementation provides a degree of data independence. Objects in the system
communicate with each other by passing messages. The messages are uniquely identified
by their signature. Messages and methods correspond roughly to procedure calls and
procedures in conventional systems. Thus, methods enable data encapsulation by hiding
the internals of the object implementation from users and exposing only the signature.

Let C be the domain of all classes in the system. A method is defined as follows:

Definition 3.2.1 A method is a pair m = (n, §) where

1. nis the name of the method.

2. & is the signature of the method such that & = (c, p, r) where

40

2.1 cis the class to which the method is attached, ¢ € C.
2.2 pisapossibly empty ordered set of parameters, p € C.
2.3 ris the class of the result, also possibly empty, r € C.

3. A method with its signature is expressed as follows:

en(py, e D) —> 1]

Definition 3.2.2 If m is a method and c is a class of C, then m is defined in ¢ if there is a

method with signature : c.n(p,, ..., p,) = .)

For example, age calculates the age of an employee based on his day of birth, deb and
salary calculates gross salary based on the employee's job_grade. Therefore, we define

age and salary with the following signatures:

Employee.age —> Integer
Employee.salary — Integer
Employee.dept — Department
Object.identical(Object) — Boolean

e.age — 34

e,.salary — 50000.00
e,.dept = d,
¢,.identical(e,) —> False

Methods age and salary are called computed functions because they are associated with

executable code. The method construct can also be used to specify relationships among

41

classes. For example, method dept defines behavior on class Employee and specifies the
relationship between an employee and his department. In contrast to age, dept is called a
stored function because it is simply a reference to the class Department. The interface to
each method is defined to reveal as little as possible about its implementation details and
object structures. The object's behavior is defined by the abstract signatures. Note, Iris
further classifies computed functions into derived functions and foreign functions [22).
Derived functions are computed by evaluating an Iris expression whereas a foreign
function is implemented as a subroutine written in some general-purpose programming

language.

3.3 Class Representation

The class construct allows similar objects to be classified. Each object in the system
must know its class. A class is the description of the behavior and structure of a set of
objects. This is referred to as object fype in some systems, e.g. Iris [22] and TIGUKAT
[26]. The class definition includes both the attributes and methods of the class. From the
point of view of a strongly typed language, a class is a construct for implementing a
user-defined abstract data type (ADT) and is a formal description of an entity. The class
concept captures the instance-of relationship (this is called the part-of relationship in
Bancilhon [3]) between an object and the class to which it belongs. Classes can describe
and model concrete concepts such as Employee and Department, or more intangible

42 .

abstractions such as Stack or Queue. A class definition includes a class name (begins
with a capital letter) and the following three aspects: 1. Identity. This is a unique
identifier for the class since a class is also considered an object in the system. 2.
Structure. This defines the object's internal representation, that is, its attributes. It
represents the static part of an object. 3. Behavior. This defines the active part of an
object and includes a set of methods and their internal implementation. Let A be the
domain of attribute names such as job_grade and location. Let C be the domain of all

classes in the system. A class is:

Definition 3.3.1 An class ¢ = (oid, S, M) where:

1. oid is the unique class identifier of ¢, oid € 1.

2. S is the object's structure and is defined with a set value [a, : ¢y, ..., a, : ¢,] where
2, € Aandc; € C,also Va,aeS,izj=a#a

The definition states that a class structure requires each attribute be uniquely
identified by its name. The domain of an attribute may be any class; system-defined
or user-defined.

3. M is the object's behavior; composed of identifiable methods such that

Vi, my € M, i#j=m=m, ®

43

? :

NAME and OID

Employee OID'00000001:00001001"
ATTRIBUTES

name String

dob Date

jobgrade Integer

sin Char(9)

sex Char(1)
METHODS

age Integer

salary Real

dept Department

worksfor ProjectManager

N J

Figure 3.1 Class Employee

Figure 3.1 is a graphical representation of the class Employee. There are three distinct
parts : 1. The class name and its OID; 2. A set of [attribute-name : attribute-class] pairs;
and 3. A set of [method-name(method-parameters) : return parameter] pairs. The fact
that the domain of an attribute may be an arbitrary class gives rise to the nested structure
of the definition of a class. This also represents a significant difference from the
normalized relational model where the domain of an attribute is restricted to a

fundamental data type. When creating a class, the class definition can be momentarily

44

incomplete. For instance, class Department can be defined with an additional attribute
div# of class Division which is not yet defined. Thus the class is behaviorally defined,

but functionally incomplete. This capability offers great flexibility for schema evolution.

3.4 Class Relationships

Classes within a given problem domain are usually related in some way. A new class
may be defined as a specialization of an existing class and additional attributes and
methods may be added. This new class is a subclass of the existing class and the existing
class is referred to as the superclass of the new class. In that case, all objects belonging
to the subclass also belong to the superclass. The subclass is considered as a refinement
of the superclass. This process is called specialization of entities and the related classes
form a class hierarchy. The concept of a subclass specializing its superclass captures the
inheritance relationship. The more general classes are placed higher up in the class
hierarchy, whereas the more specialized ones are placed lower down. This is referred to
as the is-g relationship in Banchilhon [3] and Eiffel calls this the is-plus-but-except
relationship [39]. When classes are grouped into subclasses, subclasses inherit the
attributes and methods shared by all instances of the superclass. By definition,
inheritance means the "properties or characteristics received from an ancestor" [13].
Inheritance in the POServer object model allows us to specify common attributes and
methods once and then specialize and extend those attributes and methods into specific

45

cases. Inheritance directly facilitates extensibility within a given system. POSever, like
Smalltalk, supports only single inheritance [23]. That is, a class inherits behavior and
structure from only one superclass. Some other systems (e.g. C++ and Iris) allow a class
to have any number of direct superclasses and to inherit behavior from more than one
superclass; which is referred to as the multiple inheritance capability [21, 22]. For
systems that support multiple inheritance, several parallel inheritance hierarchies can
exist and it is usually the responsibility of the class designer to avoid potential name
conflicts. An object-based system should support at least single inheritance.
Classification and inheritance are useful in organizing information. The POServer object
model allows class designers to use generalization to organize an object space and then
make use of inheritance to share and reuse code. Inheritance, class hierarchy and
instance-of form the structural relationship of the object model. The structural
relationship is central to the operation of the POServer system. It allows the schema to be
better structured and gives tremendous modelling power to the class designer. The
structural relationship concept also distinguishes the POServer object model from

programming with ADT's,

The concept of class hierarchy and inheritance is demonstrated with a concrete example.
Figure 3.2 illustrates the notion of inheritance and class hierarchy through a simple
employee model within an Information Systems (IS) Division. In this example, class

Employee is a superclass or a base class. Systems Engineer, Project Manager, and

46

Technical Consultant are all subclasses or derived classes (note that each subclass is-a
Employee). These three specialized classes inherit all attributes and methods from the

common superclass Employee.

/

Employee

method salary:
lookup jobgrade

Project Technical
Manager | Consultant

Systems
Engineer

method salary: .
#othours * hourlyrate :

Figure 3.2 Employee class hierarchy

47

Therefore, the features common to all employees reside in class Employee (e.g. personal
details) and features unique to specific classes of employees appear in individual
subclasses. For example, a project manager must have at least two persons under his
supervision and a technical consultant must specialize in at least one technical area. The
class Employee can also be referred to as an abstract class if all employees in the IS
division must exist in one of the subclasses. Abstract classes are classes which specify

common behavior for its subclasses, but no instances of abstract classes may be created.

Definition 3.4.1 A method m is inherited from ¢ where ¢ € C, if there is one superclass
of ¢ in which m is defined. e

Besides inheritance, a method in a class may be overridden by a method of the same
name defined on its subclasses which is sometimes called overloaded. Inheritance and
overloading of methods gives rise to polymorphism. The word polymorphism originates
from Greek and means 'to take many forms'. Polymorphism in the POServer object
model allows different classes to use the same method name and signature (the number of
arguments and the class of result value must be the same as defined in the superclass).
Assume Technical Consultants are hourly employees rather than salaried employees, then
the salary method in each employee object must know what class of employee it is
before invoking the method. The salary method of the base class Employee uses
job_grade to calc;ulate the payroll, while the salary method of the class Technical

Consultant works with number of hours and hourly rates.

48

Relational databases do not store explicit relationships between tables. Instead,
relationships are formed by storing similar data values in table columns and relationships
are made at runtime by joining tables together [16]. The POServer object model supports
the association relationship to connect two or more object instances. This is referred to
as the object composition or composition through references in O, [19]. This relationship
is achieved by embedding references to objects within the state of other objects. For
example, the class Employee has an attribute dept and its domain is class Department.
This implies a link from class Employee to class Department. Similarly, the class
Department has an attribute emps and it contains a set of Employee objects. This
represent a one-to-many relationship between a department and its employees. A Nil
pointer indicates no relationship. The POServer system supports access from one object
to another by traversing a reference stored within an object. By capturing relationships
directly, the POServer object model can much more easily represent complex data
structures and nested relations, for instance, one-to-one, one-to-many, and many-to-many

relationships can all be supported.

3.5 POServer Class Hierarchy

The POServer Class Hierarchy borrows most heavily from Goldberg and Robson's
Smalltalk-80 Class Library [23]. In Smalltalk, there is only one inheritance hierarchy,

49

and thus one root class. POServer adopts the same approach. All classes are organized
into a class hierarchy and inherit from a single root class Object, either directly or
indirectly. Behavior, which is common to all classes, is collected and stored in the class

Object. Figure 3.3 illustrates the class hierarchy for the POServer object model.

-

‘i Boolean o ‘——@]

Number

iI\/fag,m'lude } l—‘ Integer
'! Primitive F“——]V——f Chacter [

Undefined

| Object -—{D@
lom]| - —%}ime
= Lol

| Comsmueurea 1
E N

Object i’ (‘Tuple J

-[Schema IL

Altribute

o]
ﬁ' Method
| Awue |

— Metaclass

4! User-defined Classes l

Figure 3.3 POServer Class Hierarchy

Examples of behavior which may be common to instances of all classes are: the test for

determining which class an instance is associated with and comparison between

50

instances. When a new class is to be created, the class has to be placed somewhere in the
class hierarchy. All classes in the POServer system are grouped under four abstract
classes: 1. Class Primitive; 2. Class Constructed; 3. Class Schema; and 4. Class
User-defined. The class hierarchy also provides a general taxonomy of the fundamental
data types in the system. A class helps organize data and the class hierarchy helps

organize the classes.

3.5.1 Primitive Classes

The POServer object model distinguishes between primitive objects and user-defined
objects. Primitive objects are system-defined objects and are instances of all fundamental
data types supported in the system, for example, Boolean, Char, Integer, Real, String,
OID, Date and Time. A primitive class has associated instances, but has no attributes.
These objects are self-identifying since their values indicate the kinds of data types being
used. For instance, the boolean TRUE, the character 'A’, the integer 99, the real 12.25,
the OID '00000001:00001001', the string 'John Smith', the date '1995-01-01", and the time
'12:45' are recognized by the system as primitive literal objects. Each literal object has a
primitive class to which it belongs. Class Boolean defines the common behavior for two
logical values: True or False. Class Magnitude is an abstract class used for comparing
and measuring instances of its subclasses: Character, Date, Time, Number and String.

Class Character defines the behavior for all the characters in the system (i.e. ASCII codes

51

0 to 255). Class Date and Time define the behvaior for comparing and computing dates
and times, respectively. Class Number is an abstract class used for comparing, counting
and measuring instances of its numerical subclasses: Real and Integer. Class String
defines a variable-length and indexable sequence of characters. Class OID defines the
behavior for all the object references, this represents any possible constructed or
user-defined classes. Class UndefinedObject is used to indicate the lack of a value and
has a single value, Nil. In the POServer object model, all the basic data types are
encapsulated as classes. The primitive classes form the groundwork and the basic

building blocks of the system.

3.5.2 Constructed Classes

The POServer object model also makes a distinction between atomic and constructed
objects. Atomic objects are single-valued objects like integers, characters, reals, etc.
whereas constructed objects are made up of a structure and may take on a set of values.
Constructed classes provide the basic data structures used to store objects in a collection.
They are also the means by which one-to-many relationships are modelled. Constructed
classes are sometimes referred to as container classes [30] or collection classes [23]. To
keep the discussion manageable, only the three most common constructed classes are
included in the POServer model: List, Set and Tuple. Complex data types may be

defined recursively using the tuple, list and set constructors. These classes can be used to

52

hold all elements of the same class and have slightly different behavior as suggested by
their names. Class Constructed is the superclass of all the constructed classes. This class
provides the behavior for accessing and manipulating a particular element or all the
elements of a collection. A ser represents a collection of objects of the same class in
which duplicates are not allowed. There is no limit to the number of objects in a set,
however, positioning of the objects is not guaranteed. A /ist is a collection of objects of
the same class in which duplicates can occur and the positioning of the objects in a list is
guaranteed. A list behaves as a flexible and insertable array. A tuple resembles a table in
relational systems, consisting of an ordered set of [attribute name:value] pairs. This
tremendous modelling power also makes it feasible to incorporate a value-based
relational model in the POServer system. For instance, user-defined classes can be

created to represent tables, rows, and indexes.

In the POServer system, there is a system-supported mechanism for grouping objects into
collections or maintaining the class extents automatically. Each object's oid is saved in a
constructed class that represents the extent of all objects in the class. This makes iteration
through a class possible. The extents for classes Department and Employee may be

represented as follows.

Department = (c;, {d,, d,, d;, d,})

Employee = (¢, {€,, €,, €3, €, €5, €6 €7})

53

Note that this approach is similar to O, and TIGUKAT. However, these systems include
constructs for both fypes and classes [19, 26], so as to distinguish between the collection

of objects and their definition.

3.5.3 Schema Classes

The core of any relational DBMS is the system catalog tables, e.g. the SYSIBM tables in
DB2. Rows are added to these tables in response to SQL data definition language
commands. These tables are maintained through commands such as CREATE TABLE,
ADD COLUMN, etc. [42]. The rows in these tables represent both user-defined tables
and the catalog tables themselves. Research into schema evolution for an object model
has been conducted in the context of ORION [30] and Gemstone [10]. The POServer
system adopts a very similar approach. Classes are viewed as objects, that is, as instances
of another class. Note that OO languages such as Eiffel and C++ have chosen not to
consider classes as objects. In Eiffel, classes are regarded as implementing data types. A
class is static and described in the program text, while an instance is dynamic and exists
only during execution [39]. In contrast, by regarding classes as objects in POServer, a
more flexible schema system is obtained, allowing classes to be created or modified
during execution. As classes are now referred to as instances, they must be instances of

some classes. These classes are called schema classes in the model. An application

54

schema may be represented in terms of several system-defined schema classes, analogous

to the system catalogs in relational database systems.

For each user-defined class, attribute, and method, there is a corresponding instance in the
schema classes Class, Attribute and Method, respectively. Instances of these schema
classes represent all objects in the system including the primitive classes. The schema
classes contain the definition and design of the application meta-model and also represent
the POServer model itself so the system is self defining. Every object in the POServer
system, whether it belongs to a schema or a user-defined class, is accessible in a uniform
manner. The uniformity aspect allows every entity to be managed as an object. The
schema classes define behavior for adding new classes to the system and determining the
superclass or subclass(es) of a specific class. Also, instances of these schema classes can
be used for the verification of query processing, type checking, validation of attributes
and relations such as "What attributes and methods each class contains?" The notion of a
Metaclass as the class of a class is also needed. Normally, methods are only performed
on instances, however, the Metaclass makes it possible to define methods to operate on
classes directly and to have class variables. An example of a class variable may be the

number of instances that are created for this class.

33

3.6 Referential Integrity

Referential integrity is a term introduced by Codd and Date [14, 16]. It involves two
relations and imposes the constraint that a group of attributes in one relation is the key of
another relation. An identity-based system like POServer enable referential object
sharing. It also prevents the need for foreign-key joins [16]. Generally speaking,
referential integrity arises whenever one relation includes references to another.
Referential integrity in POServer can be thought of as a pair of inverse pointers, so that if
one object points to another, the second object will have an inverse pointer that points
back to the first object. This kind of relationships is maintained by users. For example in
the case of class Department, a set of employees is maintained via the behavior emps.
Thus, Department 'Technical Services', d,, consists of three employees e,, e;, and e,. For
maintaining proper referential integrity, a corresponding reference to the class
Department must appear in the dept attribute of Employee. That is, dept of ¢, , dept of
e; and dept of e, must refer to d;, Technical Services. Similarly, if Employee ¢, is
deleted, then the reference e, stored in d,.emps should be removed by the application

correspondingly.

(d;, [name:'Technical Services', number:254, location:'SN'], emps: {¢;, e;, &,})
(), [name:'John Smith',dob:'1961-01-01', job_grade:11, dept:d,, age:34, salary:50000])
(€3, [name:'Rob Webb', dob:'1963-01-01', job_grade:8, dept:d,, age:32, salary:40000])

(4, [name:'Jim Wong', dob:'1964-01-01', job_grade:6, dept:d,, age:31, salary:30000])

56

To enforce integrity automatically, the system must at least maintain for each object a list
of identifiers of the objects that reference the object. A link from a referenced object
back to the referencing object is called an inverse relationship in ORION [30]. This
ensures the integrity of the relationship and can be useful for later access. On the other
hand, Smalltalk provides powerful referential integrity through a mechanism called
garbage collection [23]. Therefore, explicit deletion of an object is not supported and
class destructors are not needed, because unreferenced objects are automatically removed

from the system.

3.7 Summary

In summary, the POServer object model extends the relational model with the notions of
objects, methods and classes. Using this object model, a rich set of semantic
relationships among real world entities can be captured. These include the instance-of
relationship between an instance and its class and the inheritance relationship between a
superclass and its subclasses. The POServer object model can be characterized by the
following main features:
1. Objects are associated with classes. A class describes common structure and
behavior for all objects in the class. The metadata model information is stored in

schema classes which can later be used for static or dynamic type-checking.

57

2. Primitive classes form the fundamental data types of the system.

3. Complex structures may be constructed by embedding references to objects within

other objects.

4. Constructed classes can be used for storing class extents.

The POServer object model is similar in many aspects to Smalltalk with the following
differences:

1. Objects can be made persistent.

2. Objects are uniquely identified by system-maintained references, not memory

pointers.

3. In Smalltalk all run-time entities are objects. Even integers are instances of the
Integer class. Smalltalk assumes there is a class Integer that is an abstraction or
representation of integers [23]. POServer allows the primitives such as an integer to
be implemented in the traditional way. As pointed out in Barker [4], we claim that it
is undesirable to force computer applications to build from such a low level of type
abstraction. Therefore, POServer treats integers conceptually as objects, but handle

them differently at the implementation level for efficiency and performance reasons.

4. Objects can be shared across systems.

58

Chapter 4

The POServer Object Manager

As discussed in Chapter 2, POServer is a three-level schema architecture. The Object
Manager (OM) is responsible for the in-memory data structures of the conceptual objects.
This middle layer directly supports all the features of the POServer object model as
outlined in Chapter 3. It is also responsible for enforcing the semantics of inheritance and
for checking the consistency of a schema. However, the object model described in
Chapter 3 was purely conceptual, as it did not suggest how objects should be stored on
either disk or main memory. In relational systems, the data representation is relatively
straight forward because primitive types can be stored in disk format and represented in
memory directly. Also, there is no embedded pointer references in relational systems
except for the use of indexes which are created and maintained separately by the system.
The object-oriented technology has made it easy for the application programmers to
access and manipulate data in the program because more complex structures are offered.
However, this yields some problems for the implementation design of an object-based
system, especially the representations of the complex object structures and their
behaviors. Recently, considerable research efforts have been spent to design a more
efficient mechanism for in-memory object management, see O, [19] and ORION [30].
These object-oriented systems have assumed that all objects reside in a large virtual
memory. Objects are the basic run-time entities in the system and have an associated

59

address like a record in Pascal or a structure in C. To support applications that require
significant pointer chasing for a large number of memory-resident objects, these systems
have been designed to store objects in disk format and map them into memory format for
manipulation by applications. The mapping includes, at the minimum, the conversion of
object identifiers stored in objects to memory pointers. In this chapter, the
implementation design and techniques for the POServer system are described. More
information on the discussion of design and architectural issues for OO systems can be

found in Goldberg [23], Kim [29] and Meyer [39].

POServer follows four basic design principles: 1. All objects must be represented in the
same way in the system. This includes both system objects and user objects. Unique
object representation provides a conceptual simplicity with the result that the
implementation of the system is easier to understand and maintain. An added advantage
is that it will be possible to treat system objects like ordinary user objects, so the system
becomes extensible. 2. Dynamic schema evolution must be supported. New
understanding or changing requirements may lead to reorganization of the class
hierarchy. Schema changes should not affect existing applications or require
recompilation. To support this flexibility, the schema of the class structure held in the
system must also be changeable in the same ways. 3. Performance is another important
design criteria. The efficiency of the system depends heavily on the design of the

behavior implementation and the amount of copying that must take place within the

60

system. As a rule of thumb, copying should be deferred until the object is being used

whenever possible. 4. The POServer system must also scale well as the number of

objects grows. The technique for supporting object identity must allow flexibility for the

movement of objects.

The fundamental requirements of POServer are persistence and efficient sharing of

objects. The design of the Object Manager is abstractly defined by requiring it to provide

three basic functions, namely:

1.

Implementation of schema classes and primitive classes. All these classes must be
represented efficiently in memory because they form the basic building blocks of the
system. The object structures and their behaviors will be discussed in detail. Once
the schema classes and the primitive classes are established in the system, they can be

used to build other system components and data structures.

Implementation of inheritance. Inheritance complicates the design and
implementation of the schema a lot. There are two types of schema changes to an
object-based system. One is to the definition of a class. This includes changes to the
attributes and methods defined for a class, such as changing the name or domain of
an attribute, and adding an attribute or a method. Another type of change is to the
class-hierarchy structure. This includes adding or dropping a class, and changing the
superclass/subclass relationship. An efficient mechanism for keeping track of the

inherited attributes and methods will be described.

61

3. Behavior implementation. An efficient mechanism for selecting and invoking

methods will be described and an algorithm for method resolution will be introduced.

4.1 Implementation of Schema and Primitive Classes

The state of an object consists of values for the attributes of the object and the values are
themselves objects, possibly with their own states. Thus, a natural representation for the
state of an object is a set of identifiers of the objects. Object representation in memory
can be thought of as a flexible structure with insertable slots. Each slot contains a pointer
to an attribute of the object. Since an attribute of an object can be another object or a set
of values, it can also be a pointer to a set of associated objects. From the structural
viewpoint, POServer's in-memory object representation can be implemented as a variable
linear array of pointers. Each element of which is an 8-byte pointer and may potentially
reference any other object in the system. This vector of pointers is called the Object
Descriptor (OD) and is the run time representation of an object. This data structure
possesses the ability to grow or shrink as required. The dynamic and insertable nature of
the object descriptor fits our design requirements very well and provides the necessary
functionalities. The object structures in the POServer system have been refined from

Smalltalk's Large Object-Oriented Memory (LOOM) system [15].

62

An extremely powerful feature of object modelling is polymorphism. To achieve this,
every stored object must know to what class it belongs. Therefore, the first slot of the
OD always contains a pointer to that object's class. The class of an object contains a
template (a list of attributes) that represents the internal organization of the object. This
template is used whenever the OM needs to enforce semantics or to perform
type-checking. This attribute is the class_of of the object by which each object is linked

to its associated class.

/ —T Class Method Class

~—1+—+ Class Class — Attribute
—T* Class Name T Re(c:?iver's 1 . Receiver's
ass Class
.) Atiribute
———Attributes List ~—i—=sMethod Name| —— Name
T Superlcass 1, Inherited —1—» Domain
From
Instance 1, Listof —1 , Inherited
Methods Tuple Parameters From
] Reference
——— Subclass Set ——> Result Class Count
Physical File
. ysli(:tlh —1—, Executable
Code
——» Instanceid —" Source Code
Table
Reference
T Count
Class Method Attribute
Object Object Object

Figure 4.1 Object Structures for Schema Classes

63

For example, the first slot of a method object is an attribute called class_method to
indicate that it is associated with the class Method. Similarly, the first slot of a class
object is an attribute called class_class to indicate that it is associated with the class
Metaclass. The schema classes and the primitive classes are set up the same way but with
appropriate contents in the slots so as to reflect a semantic correspondence to the class
system and to support the associated behaviors. Figure 4.1 illustrates the object structures

for schema classes.

4.1.1 Class Class

In POServer, three different types of objects are used to capture schema information.
They are instances of the system defined schema classes: Class, Method and Attribute,
respectively. Every class in the system is represented by a class-defining object that
describes the structure and behavior of the class, as well as the position of the class in the
inheritance hierarchy. The object structure for the class Class contains class name,
attributes, superclass, subelasses, instance_methods, physical_file and iid_table. The
attribute class_name contains the name of the class; attributes is a list of all attributes
defined for or inherited into the class; superelass and subclasses are the direct superclass
and the set of subclasses of the class, respectively. instance_methods consists of a table

of methods defined for or inherited into the class. The method table can be search

64

directly by the receiver's class and the method name. physical_file is the file path for
storing objects of the class and iid_table is the instance id table. These two attributes
will be discussed in great detail in Chapter 5. It is important to note that the attributes
superclass, subclasses, and instance_methods do not form part of the schema for a
relational system. A class object is like an accessible class descriptor. Like user-defined
classes, schema classes have their associated behaviors. These system-defined methods
for schema classes represent the external interface and hide the internal structures from
users. Behaviors for schema classes are mainly used to retrieve and update metadata.

The most basic methods for the schema class Class can be defined with the following

signatures:

aClass.class_name —aString /* returns the name of a class */
aClass.instance_methods —aSet /* returns a set of methods for a class */
aClass.attributes —alist /* retrieves a list of aftributes for a class */
aClass.subclasses —>aSet /* returns a set of subclasses for a class */
aClass.superclass —aClass /* returns the superclass of a class */

aClass.is_subclass(aClass) —aBoolean /* a class is a subclass of another class? */
aClass.is_superclass(aClass) —aBoolean /* a class is a superclass of another class? */
aClass.create — anObject /* returns an empty object descriptor for a class*/
aClass.method_selectors —aSet /* returns a set of method names for a class */
aClass.lookup_behavior(aString) —>anObject /* returns a behavior for the class */

anObject.class —>aClass /* returns the associated class for an object */

65

4.1.2 Class Method

The class Method has an instance for every method defined for or inherited into each
class. It contains the representation of the executable code and linkage information. The
object structure for the class Method includes attributes such as method_name,
executable_code, source_code, parameters, result class, inherited from and
reference_count. The attribute method_name contains the name of the method;
executable_code points to the executable module in memory while the source code
contains the location of the source file including the directory path information;
inherited_from refers to another instance of the class Method and it indicates from
which the method is inherited; parameters and result_class specify the signature of the
method. The following signatures make up the behaviorial part of the schema class

Method:

aMethod.method_name —aString /* returns the name of a method */
aMethod.executable -—»anObject /* returns a reference to a piece of executable code */
aMethod.execute(aList)—anObject /*executes the piece of code using the list of parms*/
aMethod.parameters —>aList /* returns a list of attributes for the parameters */
aMethod.result_class —aClass {* returns the result class */

aMethod.ref_count —>anlnteger /* returns the reference count */

aMethod.in_cache —aBoolean /* tests if the method has been loaded in memory */

aMethod.lib_path —>aString /* returns the library path for the executable code */

66

4.1.3 Class Attribute

The class Attribute has an instance for every attribute defined for or inherited into each
class. It contains the representation of the state of an object. The object structure for the
class Attribute is defined as follows: attribute_name, receiver_class, inherited_from,
reference_count and domain. The attribute attribute_name contains the name of the
attribute; receiver_class is the class that owns this attribute; domain specifies the class to
which the value of the attribute is bound; inherited from refers to an instance of the
class Attribute and it indicates the attribute of the superclass from which the attribute is
inherited. The attributes inherited_from and reference_count in the schema classes
Method and Attribute are used for the implementation of inheritance and will be
discussed further in the next section. The following signatures define the behaviors for

the schema class Attribute:

anAttribute.attribute_name — aString /* returns the name of an attribute */
anAtiribute.domain — aClass /* returns the domain of an attribute */
anAttribute.receiver — aClass /* returns the receiver's class */

anAttribute.is_attribute(aClass) —>aBoolean/* an attribute is in a class's structure? */

anAttribute.ref_count — anlnteger /* returns the reference count */

4.1.4 Primitive Classes

POServer allows primitive classes to be viewed as objects but are implemented in the

traditional way. It is assumed that instances of primitive classes are self-identifying and

67

serve as state, identity and reference simultaneously. Therefore, instances of a primitive
class have no identifiers associated with them. This saves the creation and maintenance
of object identifiers for primitive classes. Also, a primitive class has no attributes
associated with it and a primitive object is not further decomposed. As shown in Figure
4.2, a primitive object borrows the language primitive types and points to the underlying
data structure directly. That is, if the domain of an attribute is a primitive class such as
integers and reals, the values of the attribute are directly represented. This save memory

space and execution overhead.

-

Poin'ter. t_o the Pointer to the Pointer to the
—+ primifive — constructed | —T* user-defined
class class class
s Unc]l)e;gmg — |, Associated | _|, First
Class Attribute
Structure
Second
—T Extent Set " Attribute
Third
I Tally 1 Attribute

Figure 4.2 Object Structures for Primitive Classes and Constructed Classes

68

However, from the user's perspective, it is expected that the entire domain of these
primitive classes exists and every primitive object ever needed is assumed to be in
existence and always available when required. In order to allow the primitives to be
treated as ordinary classes and manipulated like other objects, the normal primitive
operators such as the logical operators, the comparison operators and the arithmetic
operators are defined as behaviors in the corresponding primitive classes. For example,

the following signatures define the behaviors for the primitive class Boolean:

aBoolean.not —»aBoolean /* returns the opposite value of a boolean */
aBoolean.or(aBoolean) —aBoolean /* performs the OR operation on two booleans */

aBoolean.and(aBoolean) —»aBoolean/* performs the AND operation on two booleans */

The standard comparison operators are provided for the abstract class Magnitude. The

signatures are defined as follows.

aMagnitude.greater_than(aMagnitude) —aBoolean/* testing for greater than */
aMagnitude.less_than(aMagnitude) — aBoolean /* testing for less than */
aMagnitude.max(aMagnitude)—>aMagnitude/*selects the max between two magnitudes*/

aMagnitude.min(aMagnitude)—aMagnitude /*selects the min between two magnitudes*/

Since all numbers are essentially the same type, therefore the common behaviors are

defined on the abstract class Number, not on the actual class like Real or Integer.

aNumber.plus(aNumber) —aNumber /* returns the sum of two numbers */

69

aNumber.minus(aNumber) —-aNumber /* subtracts the second number from the first */
aNumber.times(aNumber) —aNumber /* multiplies two numbers together */

aNumber.divide(aNumber) —>aNumber /* divides the first number by the second */

4.1.5 Constructed Classes

The constructed classes are mainly used for the manipulation of collections. POServer
provides direct support for collections of objects through classes Set, List and Tuple.
One-to-many and many-to-many relationships can be constructed. In designing the
collection facility, there are several reasonable implementation choices. For example, it
is reasonable to embed a fixed-length array of pointers into the object structure if the
cardinality of the relationship is known to be fairly small. However, a collection can be
arbitrarily large if it is used to store all objects of some class e.g. all employees.
POServer stresses uniformity of access to all system objects and behaviors. Therefore,
the same Object Descriptor approach is used for the implementation of collections as
shown in Figure 4.2. Thus, the object structure for the class Constructed contains
associated_class, extent_set and tally. The atiribute extent_set is implemented as a
pointer to a set of references; associated_class refers to the class of the elements in the
collection. It is possible for one object to hold a collection of references to other objects
and for that collection to be made persistent. A tally is maintained in a collection to

make the behavior aCollection.count more efficient,

70

The following signatures define the basic behaviors for the constructed/collection classes:

aCollection.includes(anObject) —»aBoolean /* tests if the object is in the collection */

aCollection.count —>anlnteger /* returns the number of elements */
aCollection.first -—»anObject /* returns the first element in the collection */
aCollection.last —anObject /* returns the last element in the collection */

aCollection.is_empty —>aBoolean /* tests whether it is a empty collection */

All the collection classes need a basic mechanism for inserting an element, another for
accessing an element, yet another for removing an element and so on. A set of standard
behaviors are used for the manipulation of collections. These include update_element,
add_element, get_element and remove_element. These behaviors are defined in the
abstract class Constructed and assume that collections will have a specific element order.
Since sets do not preserve element order, therefore different result may return when
repeated. It is interesting to note that collection objects can be indexed using array

notation as follows.

aCollection.get_element(anInteger) —>anObject /* returns the specified element */

aCollection.update_element(aninteger, anObject) —>aCollection /¥ returns a new

collection constructed from the original collection by modifying a specified element */
aCollection.remove_element(anInteger) —aCollection /*returns a new
collection constructed from the original collection by removing a specified element */

aCollection.add_element(anInteger, anObject) —aCollection /* returns a new

71

collection constructed from the original collection by adding a specified element */

In addition, behaviors associated to a specific class can be added accordingly. For
example, the signatures for union and append are defined for the class Set and List,

respectively.

aSet.union(aSet) — aSet /* returns a set constructed as the union of two sets */
aList.append(anObject) — aList /* appends an object to a list */

aTuple.lookup(aKey) —>anElement /* returns an element with the associated key */

4.1.6 Class Object

The important comparisons specified in the root class Object are equivalence and equality
testing.
anObject.identical(anObject) —»aBoolean /* tests whether the receiver and the

argument are the same object */

anObject.equal(anObject) —»aBoolean /* tests whether two objects represent

the same identical semantics */
The implementation of the behavior identical is quite straightforward. It is a simply
comparison between the two OID's. It returns True if they have the same OID, otherwise
returns False. For the implementation of the behavior equal, the decision as to what it
means to “represent the same identical semantics" is made by the receiver of the message.
Typically each class must re-implement the method equal in order to specify which of its
attributes should enter into the test of equality. In POServer, the default implementation

72

of the method equal is the same as that of identical at the root class Object and each of
the primitive classes redefine this method equal to do a comparison of values which they
represent. For equality of collection objects, two lists are equal if they have the same
number of components and all corresponding component pairs are equal; two sets are
equal if they have the same number of components and for each component in one set
there is an equal component in the other set; equality of two numbers is determined by

testing whether the two numbers represent the same value.

4.1.7 Object Access Table (OAT)

Other important structures used in POServer are Object Access Table (OAT) and object
caches. The object caches will be discussed in Chapter 5. OAT is maintained by the
Object Manager and is implemented as a tuple. Each entry in the Object Access Table

consists of triplets:

[object_identifier, object_descriptor_location, object_descriptor_state]

as shown in Figure 4.3. The structure of the Object Descriptor (OD) has been discussed
in detail in the previous sections. The object_descriptor_location is simply a pointer to
the corresponding cached OD which points to the physical location of the object in
memory. The object_descriptor_state is used to indicate whether the object has been

created in memory or is being loaded from disk.

73

Index on

OID or Variable Name

Object Access Table
Object gbjec.t t Object Descriptor
} . escriptior State (Loaded
[Identifier . : g
Location being loaded)
Object Ent
i 00000001:00001002 Loaded
00000001:00001001 Loaded
G0001062:00000010 — Loaded
00001001:00000010 Loaded
60001001:00000011 Reing Loaded
£
- ¥
Class Class
> Class] ——| & Class Name
Employee "Employee”
name
-1 “John Smith" i " Attributes List
dob
T 1960-01-01 1" Superclass
- dept T]
X R,
N Class i,
Depariment Class Class
—1 name —1—4 Class Name
"Technical Services” "Department”
numbe]
I u254 r > Attributes List
™ dept_head 1" Superclass

Figure 4.3 Object Access Table and object instances in memory

Objects are referenced through an identifier or an object name. POServer enables explicit
names to be given to any object or collection. As illustrated before (in Figure 2.2),
variable names :d254 and ;john are associated with Department 254 and Employee 'John
Smith', respectively. From a name, an application can directly retrieve the named object

74

and then operate on it or navigate to other objects following the relationship links. All
the named variables of the receiver are available via their names. Two indexes are
maintained by the system to reference an object. One index contains the OID for normal
access to object data and another for translating object variable names to OIDs. Next we
illustrate some of these concepts through an example shown in Figure 4.3. For example,
when Employee :john is referenced, the variable name index is searched first. The
corresponding object entry for OID '00001002:00000010' is then returned. By following
the object descriptor for :john, his associated attributes can be retrieved. An object
reference in memory is effectively a system-allocated pointer that can be followed
directly to find that object. Since :john holds a reference to the department he works in,
therefore his department can be located by following the pointer in dept and
;john.dept.name returns 'Technical Services'. Retrieval of an object which is not in the
Object Access Table will result in the Object Manager sending a request to the Storage
Manager to retrieve the object. The Storage Manager provides the low-level storage

management by interfacing with the operating system.

4.2 Implementation Of Inheritance

Inheritance means that we can develop a new class merely by stating how it differs from
another, already existing class. The new class then inherits the existing class. Since a
class contains object structure and associated behaviors, the reuse of classes is a much
more powerful feature than the reuse of procedures as in traditional programming

75

languages. The main advantage with this approach is that existing classes can be reused
to a great extent. Smalltalk is delivered with an extensive class library and the
inheritance algorithm [23] works as follows. When a message is sent, the methods in the
receiver's class are searched for one with a matching selector. If none is found, the
methods in that class's superclass are searched next. The search continues up the
superclass chain until a matching method is found. This approach obviously causes
performance problem and is highly inefficient because several accesses are required to
validate an object and to execute a method. This performance issue can be solved by the
notion of a technique called class-hierarchy flattening as discussed in Kim [31]. That is,
both attributes and methods are defined for a class and inherited by all subclasses.
Features inherited directly or indirectly are put in a flattened form at the same level. The
implementation strategy is fairly straightforward. It involves taking the union of the
interface sets of all the classes declared as immediate superclasses of the new class being
created. The algorithm iterates through the relevant interfaces and selects all the
behaviors with unique signatures as candidates for insertion into the new class's inherited
set. Class-hierarchy flattening is the best for polymorphic retrieval because only a direct
access is required to get information about one object. However, the size of classes will
increase dramatically since the inherited attributes must be duplicated. Additionally, if
changes occur in the inherited attributes, these changes will affect the attributes of all

subclasses.

76

The recommended approach to implementing inheritance in the POServer system is an
intermediate between Smalltalk's algorithm and the class-hierarchy flattening technique.
Assume that :jim is a Systems Engineer and we are trying to invoke :jim.salary. First we
retrieve a set of method selectors for the Class Systems Engineer by invoking the
behavior method_selectors. Since method salary is not found, therefore
SystemsEngineer.superclass is executed to proceed to the class' parent, the class
Employee is then returned. If the method does not exist in the class referred to by
superclass, then the search is continued upwards in the class hierarchy until, if necessary,
the Object class is accessed. So far the mechanism is similar to Smalltalk's inheritance
algorithm. However, the search up the class hierarchy only needs to be performed once if
the behavior is defined in one of the superclasses. At this point, we will borrow the
class-hierarchy flattening technique. A new instance consists of the receiver's class
(Systems Engineer), the method name (salary) and the address of the executable code is
added to the class Method. Also, the inherited method, salary, is then added to the set of
methods for Systems Engineer. Subsequent invocation of the method, :jim.salary, can
directly retrieve and execute the inherited method. This approach improves performance
significantly and includes less redundancy since not all attributes and behaviors are
copied unnecessarily. The inheritance algorithm for the POServer system is shown in

Figure 4.4,

77

Algorithm 4.1 The Inheritance Algorithm

Begin

Input ReceiverCls Receiver's class
MethodSel Method selector

Var CurrCls Current class
RMthSet A set of methods for receiver's class
CurrMthSet Current method set
TargetMth Target method
InheritedMth Inherited method
Found Search indicator

Found = False

CurrClass = ReceiverCls.superclass
Do While CurrCls ~= Class Object and not Found
CurrMthSet = CurrCls.instance_methods
For each CurrMthSet; € CurrMthSet Do
If CurrMthSet;. method_name = MethodSel
Found = True
TargetMth = CurrMthSet;
TargetMth.ref_Count = TargetMth.ref_count + 1
InheritedMth = Method.create(TargetMth)
RMthSet = ReceiverCls.instances_methods
RMthSet.add_element(InheritedMth)
Endif
EndFor
CurrClass = CurrClass.superclass
EndDo
If not Found
InheritedMth =-1 Method undefined
EndIf
Return InheritedMth
EndBegin

Figure 4.4 The Inheritance Algorithm

78

In the POServer system, some of the schema changes may affect the values of its
subclasses. For example, if Employee.salary was dropped, the inherited method
SystemsEngineer.salary would be invalidated. Algorithm 4.1 uses the reference_count
defined in class Method to implement the deferred-update technique [30]. The
deferred-update technique allows the obsolete information to be deleted at some later
time so that the system can guarantee that a schema change completes quickly. The
reference_count of Employee.salary is increased by 1 when the method salary is
inherited by Systems Engineer. In contrast, the reference_count of Employee.salary is
decreased by 1 when the method salary is overloaded or removed from Systems
Engineer. The method can be cleaned out when its reference_count is dropped back to
0. It is interesting to note that Gemstone adopted the immediate update approach [10].
As the name suggests, the algorithm immediately updates all affected schemas. The
drawback of this approach is that it makes a schema change potentially very time
consuming because the inherited chains must be checked and maintained for each schema

operation.

Meanwhile, the degree of inheritance offered by any particular implementation of an
object-based system may vary from nil to full. POServer provides full inheritance since
any behavior in a class can be inherited by its subclasses, simply by adding the target
behavior to the set of behaviors in the receiver's Class as shown in Algorithm 4.1. In

contrast to this approach, C++ imposes further constraints on inheritance. In C++

79

terminology, only a virtual function [21] as declared by the programmer may potentially
be inherited or replaced in each of the derived classes. This limitation may have some

efficiency benefits for the compiler but it reduces the reusability of the C++ object model.

4.3 Behavior Implementation

Polymorphism is one of the key features in an object-based system. It means that the
sender of a message does not need to know the class of the receiving instance. The
sender simply provides a request for a specified operation, while the receiver knows how
to perform this operation. The polymorphic characteristic sometimes makes it impossible
to determine at compile time which class an instance belongs to. The ambiguity about
which method should be invoked can only be resolved at runtime when the message is
actually sent. Thus, dynamic binding is a way of implementing the polymorphism
characteristic. Dynamic binding is flexible, but reduces performance. If the class of each
object is known at compile time, then the correct method can be determined and called
directly. Static binding is more secure and efficient due to the method look-up algorithm
being performed only once during the compilation. For the POServer system, each object
has a very clear type, namely its class, so objects can be associated with any class in the
system and dynamic binding will occur in all situations. Therefore, in principle, the

method look-up must be carried out during execution.

80

typedef struct

{
boolean (* equal) (); /* basic functions provided at the root level */
oid (* oid) ();
boolean (* identical) ();

} objectclass;

typedef struct

{
boolean (* equal) (; /* function inherited from the superclass */
boolean (* includes) (); /* specific functions for class Set */

integer (* count) ();
} setclass;

objectclass * object_init(self) /* initialization for class Object */
objectclass * self},
{
self->equal = object_equal; /* assign function ptrs to corresponding
methods */
self->o0id = object_oid,;
self->identical = object_identical ;

return(self);
}
setclass * set_init(self) /* initialization for class Set */
setclass * self;
{
self->equal = set_equal ; /* function equal is overloaded */
self->includes = set_includes;
self->count = set_count ;
return(self);
}

/* set objects can invoke the function set_equal by the follow syntax */

(*myset -> equal) (myset, yourset) ;

Figure 4.5 The Use of Function Pointers in C for Dynamic Binding

81

The C language supports an elegant and efficient technique for performing dynamic
binding using a predefined structure containing function pointers. For example, we can
define the class descriptor as a C sfruct containing all the methods defined in the class or
inherited from a superclass. Basically, the class descriptor struct defines the signatures of
the methods visible to a class. Another initialization function, e.g. set init and
object_init, can be set up to define and initialize the class descriptor with the proper
method implementation. Later, a function call can be made that is indirectly referenced
through a pointer variable by applying the function call operator to the pointer as shown

in Figure 4.5.

Behavior application involves the retrieval and execution of an appropriate piece of
binary code that is dependent on the receiver's class and the selector for that behavior. A
cursory look at some system implementations of dynamic methods resolution and
execution will be enlightening. The C++ system implementation maintains a virfual
table [21] for every class that has at least one virtual function. Each object of a class that
has virtual functions needs to maintain a pointer to that class' virtual table. A call to a
virtual function is resolved according to the underlying type of object for which it is
called. The proper offset into the table is computed at runtime during function dispatch.
A direct jump can then be performed to get to the address of the appropriate code to be
executed. In contrast, the Smalltalk-80 system maintains a structure called method

dictionary [23] in the class description for each class. The keys in this dictionary are

82

message selectors and the values are the compiled form of methods. The protocol
supports compiling methods, accessing the compiled and noncompiled versions of the
method, and adding the association between a selector and a compiled method. In
summary, sophisticated caching strategies or special dispatch tables are used to minimize

the overhead and to make the method dispatch more efficient.

As for the POServer system, the methods resolution algorithm becomes pretty
straightforward once inheritance Algorithm 4.1 is in place. The receiving instance is
responsible for searching for and finding the appropriate method to be executed. The
receiver's class can be determined fairy easily from the first pointer of the object instance
or by calling ReceiverObject.class. The method resolution for POServer which interprets
a message sent to an object therefore operates according to the algorithm shown in Figure
4.6. Algorithm 4.2 can be summarized as follows. When an object is to perform a
method, its associated class selects the required method and performs it using the object's
attributes and the parameters. The method is selected by finding a method that has the
same name as the message. This can be achieved by invoking
ReceiverCls.lookup_behavior(MethodSel) which returns the target method stored in
class Method. If the method is not found in the receiver's class, then the superclass of the
receiver's class must be examined to see if there is a signature for the passed message.
This is done by calling inheritance Algorithm 4.1 defined earlier. The inheritance

algorithm continues the search up the superclass chain until the behavior is found. If the

83

signature is unknown, -1 will be returned from Algorithm 4.1 and the error message
'unknown method' is displayed. Otherwise, it executes the target method using the
parameter list by calling TargetMth.execute(ParmList). Finally, any values from the

execution of the method are returned.

Algorithm 4.2 The Method Resolution Algorithm

Begin
Input ReceiverCls Receiver's class
MethodSel Method selector
ParmList Parameter list
Var TargetMth Target method
Found Search indicator
Result Function's result

Found = False
TargetMth = ReceiverCls.lookup_behavior(MethodSel)
If TargetMth = -1 Method not found in receiver's class
TargetMth = Call Inheritance Algorithm 4.1 with
ReceiverCls, MethodSel
If TargetMth =-1 Method undefined
Error Handling - display message 'unknown method'
Else
Result=TargetMth.execute(ParmList)-refer to Algorithm 4.3
EndIf
Else
Result = TargetMth.execute(ParmList)
Endif
Return Result
EndBegin

Figure 4.6 The Method Resolution Algorithm

84

Since it is not possible to know where the required load modules are and what libraries
the program will need at link time, C's shared library facility is used for the
implementation of method execution in POServer as shown in Figure 4.7. The object
TargetMth contains the library path (TargetMth.lib_path) of the executable code and the
method selector (TargetMth.method_name) to be executed that are required for the
program execution. Loading a library at run time is known as explicit loading [12] in
UNIX. For performance sake, all primitive classes and the associated methods can be
loaded into a method cache during system initialization. When a message is sent to an
object, the system first sees if the object is already in the methoed cache. If the message
has a corresponding function in the cache, it is invoked directly to handle the message. If
it is not present, the library path and the method selector of the target method are used to
locate the appropriate module in the shared library. A UNIX system service call,

Load(&Handler, LibPath, MethodSel, &ExecutableCode), returns a pointer to the
executable code that implements the message from the shared library. Program execution
can be done by calling the pointer to the &ExecutableCode obtained in the Load function
with the parameter list, for example, Execute(&Handler, FunctionPtr, ParmList,
&Result). The in_cache indicator of the target method is then marked as true and the
method is made available for all instances of the class. Methods subsequently loaded into
the cache can be maintained by the well known caching technique known as the least
recently used (LRU) algorithm that attempts to replace the methods that have not been

referenced for an extended period, as discussed in Effelsberg and Harder [20].

85

Algorithm 4.3 The Method Execution Algorithm

Begin
Input TargetMth Target method
ParmList Parameter list
Var Handler Returned handler from operating system
services
FunctionPtr A pointer to the executable code
MethodSel Method selector for target method
LibPath Library path for executable code
ExecutableCode Pointer to executable code
Result Function's result

If TargetMth.in_cache
FunctionPtr = TargetMth.executable
Else
MethodSel = TargetMth.method_name
LibPath = TargetMth.lib_path
Load(&Handler, LibPath, MethodSel, &ExecutableCode)
If Handler = ok
FunctionPtr = ExecutableCode
TargetMth.in_cache = True
Else
Error Handling
EndIf
EndIf
Execute(&Handler, FunctionPtr, ParmList, &Result)
Return Result
EndBegin

Figure 4.7 The Method Execution Algorithm

86

Chapter 5

The POSever Storage Manager

The primary objective of the POSever Storage Manager (SM) is to provide persistence.
This is the ability to store and allow objects to survive beyond the duration of the process
that created them and after the termination of the program that manipulates it. The need
for persistence arises from the volatile nature and limited capacity of primary memory.
Persistence often means that objects are copied from a fast and volatile primary memory
to a slow and persistent secondary memory, therefore the Storage Manager must also
provide efficient ways to access and manipulate objects in secondary memory. The end
users should only see the logical view of the object model and should not take part in the
decisions about how the physical storage is done, therefore the operations taken by the
Storage Manager should be made totally transparent to end users. The Object Manager
(OM) is the only user of the Storage Manager. They both communicate and interact
through a set of procedural interface called the Object Manager Interface (OMI). The
SM provides access to physical storage for objects. It manages the allocation and
deallocation of pages on disk, moves pages to and from disk, finds and places objects in
object buffers. The SM in fact consists of two components. The SM server deals with
objects in the disk format and is responsible for maintaining physical storage for objects.
The SM client resides with the OM and interacts with it to perform object transformations
and object buffer management. The SM is really a page server since it deals only with

87

pages and does not understand the semantics of objects. Entire pages are transferred
between the SM client and the SM server so the overhead on the communication link is
minimized. If a proper clustering mechanism is in place, a significant fraction of the
objects on each page will eventually end up being referenced by the OM. The SM client
and SM server can be implemented by Mach's remote procedure call (RPC) interface.
The OMI calls made by the Object Manager to the SM client are translated into RPC calls

1o the SM server.

5.1 The Persistence Model For POServer

In general, a persistence model defines and specifies three aspects of an object-based
system: 1) What classes can be made persistent; 2) When objects become persistent; and
3) How objects acquire persistence properties. We shall look at each aspect in turn. The
goal is to minimize changes or extensions to the object model to achieve persistence and
to make the operation as seamless as possible. Persistent objects should be referenced
and manipulated by an application in the same way as transient objects. This is in
contrast to the relational systems, where only certain data types can be persistent. For
example, to read some columns of a table from DB2, if the query returns a set of records
then a cursor mechanism [42] must be defined to co-ordinate between the programming
language and the DBMS as the programmer iterates through the result set, mapping one
record at a time into the buffer. This is because relational systems support only a single

88

data structure -- records. Many database researchers now agree that persistence should be
a characteristic of objects entirely orthogonal to their type. Atkinson called the notion

persistence orthogonal to type [2].

Two dominant approaches to persistence in present OO systems are considered here. The
first approach is what has been termed reachability based persistence. For example, O,
has defined a reachability model of persistence [19]. Objects in O, are created as
transient, then made persistent when referenced by a persistent object. Access to
persistent objects requires no explicit read or write calls to storage manager, but needs to
mark and retrieve persistent roots. An object needing persistence would then inherit from
the persistent class. When an object or value becomes persistent, so do all of its
components, and vice versa. O, supports the automatic storage of objects with all their
dependants. It is interesting to note that persistence in O, is implemented by associating a
reference count with each object. Therefore, no explicit deletes are required because
objects are garbaged automatically when no longer referenced. Similarly, the notion of
persistence is also built in Eiffel through a database root [39]. To become persistent, an
object or a value must be attached directly or transitively to a persistent root. Every
object reachable from the database root is persistent. A single root class to provide basic
persistence capabilities guarantees uniform I/0 semantics. From the data manipulation
point of view, persistence is transparent. The second approach to persistence is based on

membership in a persistable collection class. Systems like ObjectStore take this

89

approach which suggests that the decision about persistence be made prior to object
creation. It restricts the persistence of an object by requiring it to be allocated within
some persistent container [34 | during object creation. This is in contrast to type extents
where the object DBMS will automatically maintain object collection. In this approach,
it is the programmer's responsibility not to leave dangling pointers to transient objects in

persistent space which means referential integrity is difficult to maintain in such systems.

Atkinson's principle has a great influence on the POServer system. POServer can store
instances of any class defined in the object model, not just those that can be force-fit into
records. POServer objects may be transient or persistent and may be converted from
persistent fo transient or vice versa at will. The object descriptors (ODs) introduced in
Chapter 4 are a uniform means to reference objects and values. An OD is applied for
both persistent or temporary objects. Persistent objects remain in the system beyond the
life of a program execution. Transient objects are newly created objects stored only in
the client's memory space and disappear when the application terminates. Our
implementation approach resembles database-style semantics: explicit create and delete
calls. Therefore, two behaviors are implemented for the class Object, namely, persistent
and transient. As an example, :employeex.persistent makes the receiver object
employeex persistent, while :employeex.transient converts the receiver object
employeex from persistent to transient. These two behaviors are equivalent to CREATE

OBJECT and DELETE OBJECT in some object systems [22]. Also, the Storage

90

Manager is based on Unix file system. Objects belonging to the same class are clustered
in one contiguous segment and each class is physically mapped to the underlying OS file
system. This is similar to relational systems where tuples of a relation are stored in the
same segment of disk pages. Clustering refers to storing related objects close together on
secondary storage. It is a highly useful technique that can be used to minimize the I/O
cost of retrieving a set of related objects. Since each class is stored in a separate file, the
SM provides object I/O to disk file translation in the same way that 3GL (e.g. COBOL)
provides record I/0. The :employeex.persistent function is thus equivalent to adding a
new employee record to the Employee file while the :employeex.transient function
deletes the employee record from the file. The default clustering mechanism helps the
system to maintain the extent of persistent objects in a class. This allows sequential

scanning of all objects in a class to be carried out efficiently.

However, clustering is much more difficult for OO systems than for conventional systems
because there are more ways in which a set of related objects may be accessed together.
Persistent objects can be accessed explicitly by global variable names or transparently
when references or pointers are followed. It may be beneficial to the Object Manager to
be able to access an object and its embedded objects rapidly if the entire complex object
is needed. Therefore, it may be useful to cluster an object and the objects it references,
even if these objects belong to different classes. Ideally, class designers should be able to

control the clustering of objects within a system. This can be achieved by providing the

91

information for object clustering when defining the class hierarchy through some ODL
syntax. The information that certain objects must be clustered with other objects in the
same storage extent is then stored by the OM as metaclass information. The SM will then

make use of this information to perform proper and efficient object clustering.

5.2 Logical And Physical Object Identifiers

An important design decision for POServer is the implementation of object identity.
Identity is that property of an object which distinguishes each object from all others. The
implementation of object identifiers has a considerable impact on how the rest of the
system is implemented and on its performance. Implementation of the identity of
persistent objects generally differs from that of transient objects. The object identities
allocated by the OO programming languages such as C++ and Smalltalk are valid only
within a single address space because they are just memory pointers, so handling
reference in a shared environment is hard. In a shared object environment, the object
identities must be unique within that environment. This implies that there must be a
mechanism for controlling the allocation of such identities. The implementation of
persistent object identity has two common solutions, based on either physical or logical
identifiers [3, 29] with their respective advantages and shortcomings. Perhaps the
simplest implementation of the identity of an object is the physical address of the object.
The physical identifier approach equates the OID with the physical address of the

92

corresponding object. The physical storage address can be a disk page address and the
byte offset within the page. While these physical identifiers can offer performance
advantages on certain local operations since the object can be obtained directly from the
OID, this comes at a high cost in flexibility. For example, physical identifiers can make
schema evolution very difficult. Schema changes typically require instances to be
moved, which changes their physical address and invalidates all references to the object.
This means there is no location independence with this approach. In contrast, the logical
identifier approach consists of allocating a system-generated and globally unique OID
(i.e. a surrogate) per object. Surrogates are the most powerful technique for supporting
identity because they are completely independent of any physical location. Each object
of any class is associated with a globally unique surrogate when an object is instantiated.
This surrogate is used to internally represent the identity of its object throughout the
lifetime of the object. A logical OID is invariable and position independent, it allows

transparent storage reorganization and there is no overhead due to object movement.

For the POServer system, the logical identity is used because schema evolution and
object distribution are two of the four important requirements outlined. This approach
gives the SM the flexibility to move and cluster objects around in secondary storage as
necessary to achieve scaleable performance. All references within an application to a
particular object can remain the same even if that object is moved or reorganized. The

mechanism for the object identifiers in POServer is similar to that of Orion [30]. Two

93

types of OIDs exist in POServer. One type of object identifiers are permanent identifiers,
known as Logical Object Identifiers (LOIDs), which is unique across multiple systems
and independent of physical object location. The counterpart of the LOIDs at the
physical storage level are called the Physical Object Identifiers (POIDs) which provide
the actual location of an object on disk. A POID consists of three parts: a 1-hex partition
number, a 4-hex page number and a 3-hex offset. The 3-hex offset can address up to 4
kilobytes of storage, i.e. 1 page. The 1-hex partition number allows a class to have up to
16 file partitions. The size of each file partition is calculated as 2" * 4K = 256
Megabytes (M). The maximum size for all objects in a class is therefore determined by
256M * 16, which gives 4 Gigabytes of storage. The Object Manager controls the
allocation of the LOIDs and ensure their uniqueness, whereas the POIDs are determined
by the Storage Manager. The higher levels of POServer, including the Object Manager
and the user APIs, use LOIDs to represent object references. LOIDs are visible to the
application and can be passed around. Usually, end users consider LOIDs the only object
identifiers in the system because they do not know or see the POIDs. The structure of a
logical OID consists of a 4-byte class identifier (CID) and a 4-byte instance identifier
(IID). The CID is the identifier of the class to which the object belongs and the IID is
essentially a serial number to resolve identity within a class. Each IID can hold up to 2*
(4 billion) values. The class identifier is designed to be long enough to allow it be
globally unique and the instance identifier is large enough to avoid reuse of values under

any probable conditions. The following are some examples of LOIDs:

94

Class Class 00000001:00000001
Class Department 00000001:00001001
Class Employee 000060001:00001002
Department Application Services 00001001:00000020

Employee Dave Jones 00001002:00000020

This should be contrasted with Smalltalk's use of a 4-byte memory pointer [23] to
implement identity for both classes and instances. The message processing may be
somewhat inefficient because run-time type checking becomes expensive. When a
message is sent to an object, the types of the objects referenced in an object can only be
determined by actually fetching the objects and examining the class identifiers stored in
them. This implies that invalid messages cause unnecessary fetching of objects. The
obvious advantage of our strategy is flexibility because the POServer system can exiract
the CID directly from the LOID and then look up the class object to determine if the
message is valid or not. Of course, the flexibility is at the expense of one table look-up

per object access.

It is essential for POServer to provide an efficient mechanism for mapping the LOID of
an object to the POID storage address of the object. The Class Tuple can be used for this

purpose. The POServer system maintains a pair [IID, POID] in a table called the

95

Instance ID (1ID) table. The lookup behavior in class Tuple can be used to search for the
corresponding POID for an object. There is one IID table for each class in the system and
it is referenced by the attribute instance_table of the class. The IID table is persistent by
default. It might be very large as it contains one entry for each object in the system. It is
also a highly demanded resource in a multi-user environment. Figure 5.1 shows how
classes and their IID tables are represented in disk storage. The tuples in the IID tables
are shown as [IID, object_name] for illustration purpose. The object name should
actually be the corresponding POID. The contents of a class in Figure 5.1 are also
simplified, only the attributes class_name and instance_table are shown to emphasize
the relationship between a class and its IID table. The CID for class Class is 00000001
and its instance_table refers to all the class objects, for example, class Department has
IID 00001001 and class Employee has IID 00001002 assigned. As a result, all LOIDs for
Department objects start with 00001001 such that 00001001:00000020 identifies
Department Application Services. Another important point to note is that the POServer
system simply stores LOIDs as part of the attributes of an object. Therefore, the LOID
00001001:00000020 is embedded in the attribute ;jones.dept and is physically stored on

disk.

96

Class Class and its IID table

(00000001:00000001, [class_name:'Class', instance_table:00000010:000000017)

(00000010:00000001, {[00000001, Class], [00000002, Method], [00000003, Attribute],
[00000010, Tuple], [00001001, Department], [00001002, Employee]})

Class Department and its IID table

(00000001:00001001, [class_name:'Department’, instance_table:00000010:00000001])

(00000010:00001001,{[00000010, Technical Services],[00000020, Application Services],
[00000030, Operational Services]})

Class Employee and its IID table

(00000001:00001002, [class_name:'Department', instance_table:00000010:00000001])

(00000010:00001002, {[00000010, John], [00000020, Dave], [00000030, Rob],

[00000040, Jim], [00000050, Pat], [00000060, Don]})

Department Application Services
(00001001:00000020, [name:' Application Services', number:130, location:'5s"),

emps: {00001002:00000020, 00001002:00000050})

Employee Dave Jones
(00001001:00000020, [name:'Dave Jones', dob:'1962-01-01', job_grade:9,
dept:00001001:00000020)

Figure 5.1 Object storage representations and the IID tables

97

One fundamental operation of the OM is to retrieve the embedded object that is referred
to by a source object. This is known as dereferencing of the embedded LOID. To
dereference an embedded LOID, for example :jone.dept, POServer first determines
whether the required object is already loaded in the Object Access Table (OAT). If it is,
dereferencing simply means setting the memory pointer for :jones.dept to the
corresponding department object descriptor (OD) in memory. Whenever the OM
receives a request for an object whose LOID is not currently in the OAT, it requests the
page containing that object from the SM and dereferencing involves the following steps.
Figure 5.2 presents a graphical representation of the steps required to locate and retrieve
an object on disk. Assuming that we are trying to perform dereferencing for :jones.dept
00001001:00000020 because it does not exist in the OAT.
1. First, the CID 00001001 is used to search for the target class object in the OAT.

Since the CID for class Class is 00000001, therefore the LOID for class Department

becomes 00000001:00001001. The search operation is then translated into

OAT .lookup(00000001:00001001).

2. The object entry for class Department is returned in step 1. By following the object

descriptor pointer the class Department object is accessed.

3. The next step is to locate the corresponding IID Table. Each class contains an IID
table. The IID table, DeptlID, for the class Department can be accessed by invoking

Department.instance_table.

98

4. The behavior Department.physical_file is used to retrieve the path for physical file

Department.

KDID = ClassID + InstancelD e.g. 00001001:00000020

LOID not found .
Search fur e Object Access Table
class object .
Object Ob‘]ec.t \ Object Descriptor
Identifier Descriptior State (Loaded,
Location being loaded)
I 00000001:00001002 Loaded
#1—1 50000001:00001001 Loaded
00001002:00000010 Loaded
00001001:00000010 Loaded
00601002:00000020 Being Loaded
#2
X
T Class Class
Class Name i
—_“’ll
Depa::'tment Application

Services

ey Afttributes

List #4
T—* Superclass

1, Physical File

Path
X #5
iy Instance ID
Tabte —#3—+ Instance ID Table
Instance 1D Physical OID
00000010
Q0000020 _—

00000030

Figure 5.2 Object Dereferencing and Instance ID Table

99

. This step maps the instance id 00000020 to its POID. Search the IID Table for the
corresponding POID which contains the physical address, page# + offset, of the
Department object. This is achieved by invoking DeptIID.lookup(00000020).

. A new object entry for the department object to be fetched is inserted into the Object
Access Table and the OD status is set to 'being loaded'.

. Perform the Object Manager Interface routine SM_ReadObject(PhysicalFile, POID,
&ObjectPtr) to retrieve the page containing the object from disk back to the Object
Manager. The returned object pointer is simply the base pointer for the page plus the
offset.

. Once the object pointer, &ObjectPtr, is obtained from step 7, the OM then uses the
object structure in the class to build the OD. The OD status is set to 'loaded" and the
addressability to the OD is established accordingly.

. Finally, the memory pointer for :jones.dept is set to the newly created Object
Descriptor. The dereferencing is now complete and ;jones.dept.name becomes

accessible.

Class objects may be cached to optimize system performance. Note that the object

descriptors are set up via direct pointers to the fetched object's data in the SM client's

cache without incurring any memory allocation or copying overhead. The objects are

manipulated directly on the cache page on which they reside. This eliminates the need

for pointer swizzling [23].

The pointer swizzling technique involves expensive

160

conversion of the POID of an object and the converse unswizzling operation when
sending a page back to the SM server. The object descriptors also supports efficiently the
copy semantics of values because only a new OD needs to be created for a copy operation

and the object values can be shared.

5.3 Object Manager Interface (OMI)

In this section the OMI routines are discussed. Object Manager Interface specifies the
interface between the Object Manager and the SM client. The key operations include: 1.
Retrieving an existing object; 2. Creating a new object; 3. Deleting an object; and 4.
Updating an object. For reading an object, the OMI provides a routine, SM_ReadObject,
to return a pointer to the object within a given disk page; the desired byte range can be
calculated based on the object structure of the class. For updating an object, another
routine, SM_WriteObject, is provided to tell SM that a subrange of the bytes in the page
have been modified. When the behavior object.persistent is invoked, the corresponding
OMI routine SM_CreateObject is executed. It saves the object into the PhysicalFile and
returns its physical object identifier. Similarly, when the behavior object.transient is
invoked, the OMI routine SM_DeleteObject is executed. It removes the object from the
PhysicalFile where the key is equal to the POID. The following are the specifications for

the key OMI routines:

101

SM_ReadObject(PhysicalFile, POID, &ObjectPtr) /* returns a pointer to the object */
SM_CreateObject(PhysicalFile, ObjectString, &POID) /* returns the physical OID */
SM_DeleteObject(PhysicalFile, POID) /* deletes an object */

SM_ WriteObject(PhysicalFile, POID, ObjectString) /* updates an object */

OMI might also include other routines to insert a sequence of bytes at a given point in the

object, to append a sequence of bytes to the end of the object, and to delete a sequence of

bytes from a given point in the object.

102

Chapter 6

Conclusion

The intent of this thesis was to demonstrate the design and implementation of a simple
persistent object server and this is precisely what has been achieved. In this thesis, an
architecture for a persistent object server called POServer is presented, the conceptual
object model defined, and the implementation design of the key structures and functions
in the system are dicussed. Throughout the examination of various implementation
techniques, it is evident that building an object-based system is a very important yet very
difficult task. There are many ways a persistent object server can be implemented. Two
significant approaches to developing an object server were examined and compared in the
thesis. The POServer system is based on a client/server architecture which is designed to
make use of the very atfractive remote procedure call (RPC) facility from CMU. RPC
technologies have evolved to provide standard communication mechanisms and Mach's
RPC can provide location transparency through the name services. Using the features
provided in Mach, POServer is simple to implement as a prototype system which can
offer great flexibility. The two main components of the architecture are an object
manager and a storage manager. From one viewpoint, the Object Manager is the analogy

of a relational manager, while the Storage Manager is the analogy of a file system.

103

The development of an object model and object manipulation languages has been the
focus of the research on object-based systems. The POServer object model described
aftempts to provide the basic constructs for a fundamental object-based system. The three
constructs defined are object, method and class. Four abstract classes exist: primitive,
construct, schema and user-defined. The fundamental data types (e.g. character, boolean,
real, integer, etc.) and three most common constructed classes (e.g. set, list and tuple) are
included in the POServer class hierarchy. In addition, the object model defines the
protocols for the most common behaviors in each class. An application programmer only
need to understand the protocol specifications to use the classes effectively. The object
model also demonstrates the classification mechanism and the capability of representing
complex objects. It is important to note that the primitive class hierarchy can easily be
extended to cover more basic data structures or to augment additional object-oriented
semantic modelling concepts. Objects interact with other objects by invoking their
methods. The Object Manager consists of the data structures (e.g. the object descriptor
and the object access table) to support object management. POServer is much more than
just a persistent storage manager, it also supports manipulation of objects through API's.
The object manipulation language illustrated is an upwardly compatible object-oriented
extension to the SQL relational database language borrowed from the Object

Management Group (OMG).

104

6.1 Contributions

In general, this thesis shows and examines the techniques and algorithms required to

design and implement a simple object server. The system architecture, the object model

and the algorithms form the framework of the POServer system. This thesis makes an

important contribution as part of the research project for building a Distributed

Object-Based system in the following ways:

1.

The set up of the Mach system in the DB lab is considered a significant step because
it allows the team members in the project to carry out other system developments and

testing.

The use of Mach's IPC facility to implement the POServer RPC was validated. The
RPC was tested by running Mach in multi-user mode using the two DecStations.
Some of the primitive classes were implemented as the code illustrated in Figure 4.5.
Mach's C language interface was tested and the use of C's function pointer was

proven to be very efficient.

Although the object model presented in this thesis includes only the primitive data

types, its generalization to other structured types should be straightforward.

The data structures defined and the algorithms introduced form the basic foundation
of an object server and enable us to take one step closer to building a full-blown

Distributed Object-Based System.

105

6.2 Future Research

There are still many aspects of an object manager which were not addressed in this thesis

and require further work. Some open problems in object management are discussed

below and the discussion attempts to identify interesting problems that remain. In this

section some guidelines for future research which would help enhance the POServer

system are proposed:

1.

Schema versioning is a problem that has existed in relational databases. With object
identity, objects can be uniquely tracked throughout their lifetime. The POServer
object model could easily be extended to capture historical versions because the
identity is a property that can be maintained across structural and content

modifications of an object.

Another area in which the database research community plays a vital role is
distributed systems. Distributed systems enable the sharing and integration of data
and resources across computer systems. The benefits of combining distributed
computing and object-oriented concepts are undeniable. The study of Distributed
Object-Based Systems [8, 27, 41] has emerged as one of the most active research
fields in database systems. For POServer to work in a distributed environment, the
two-part logical object identifier, [class_id.instance_id], might have to be extended to
include the site identifier (e.g. [site_id.class_id.instance id]) of the site in which the

object is created. =~ When site identifier is included, each object becomes

106

self-contained in the distributed environment, All the knowledge that is needed for

communication is encapsulated within the object,

POServer needs to manipulate a lot of complex dynamic data structures, for instance,
the object descriptors and object caches. Algorithms for a good garbage collector are
required to reclaim space automatically for unused objects and system structures.

Also, referential integrity can be provided through garbage collection.

For a complete and sophisticated object-based system, other architectural issues
include efficient object query optimization, nested transaction management, object

serializability and extended security model.

107

Bibliography

1.

10.

11.

12.

M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A
New Kernel Foundation for UNIX Development. Computer Science Department,
Carnegie Mellon University, 1986.

M. Atkinson and O.P. Buneman. Types and Persistence in Database Programming
Languages. ACM Computing Surveys, 19(2):105-190, June 1987.

Bancilhon et al. The Object-Oriented Database Manifesto. Proceedings of
Conference on Deductive and Object-Oriented Database, December, 1989.

K. Barker, M.Evans, R. McFadyen and K. Periyasami. A Formal Onthological
Object-Oriented Model. Technical Report TR 92-02, Department of Computer
Science, University of Manitoba, March 1992,

R. Baron, D. Black, W. Bolosky, J. Chew, D. Golub, R. Rashid, A. Tevanian, and M.
Young. Mach Kernel Interface Manual. Computer Science Department, Carnegie
Mellon University, 1987

A.D. Birrell and B.J. Nelson. Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems, vol. 2, pp. 39-59, Feb. 1988..

D. Black, D. Golub, D. Julin, R. Rashid, R. Draves, R. Dean, A. Forin, J. Barrera, H.
Tokuda, G. Malan, and D. Bohman, Microkernel Operating System Architecture and
Mach. Journal of Information Processing, Vol. 14(4), pp. 442-453, 1991.

F. Boyer, J. Cayuela, P. Chevalier and A. Freyssinet. Supporting an Object-Oriented
Distributed System: Experience with UNIX, Mach, Chorus. SEDMS II. Symposium
on Experiences with Distributed and Multiprocessor Systems, pp. 283-299, 1991.

J. Boykin, D. Kirschen, A. Langerman and S. Loverso. Programming Under Mach.
Reading, MA: Adison-Wesley, 1991,

P. Butterworth, A. Otis and J. Stein. The GemStone Object Database Management
System. Communication of the ACM, 34(10), October, 1991.

M.J. Carey, D. DeWitt, J. Richardson, E. Shekita. Object and File Management in
the EXODUS Extensible Database System. Proceedings of the 12th International
Conference on Very Large Databases, 1986.

K. Christian, The UNIX Operating System. New York: John Wiley & Sons, 1988.
108

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

. P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press, Englewood
Cliffs, NJ, 1990.

E.F. Codd. A Relational Model for Large Shared Data Banks. Communication
ACM, 13(6), pages 377-387, October 1970.

G. Copeland and D.Maier. Making Smalltalk a Database System. SIGMOD'84,
Proceedings of Annual Meeting, SIGMOD Record, Vol. 14, No. 2, pp. 316-325,
1984,

C.J. Date. An Introduction to Database Systems. Addison-Wesley, 1986.

O. Dahl and K. Nygaard. Simula - An Algol-Based Simulation Language.
Communications of the ACM, Vol. 9, No. 9, pp. 671-678, 1966.

O. Deux et al. The Story of O, IEEE Transactions on Knowledge and Data
Engineering, 2(1), March 1990.

O. Deux et al. The O, System. Communications of the ACM, 34(10), October 1991.

W. Effelsberg and T. Harder. Principles of Database Buffer Management. ACM
Transaction Database Systems. December 1984, 9(4), 560-595,

M.A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Reading, MA:
Addison-Wesley. 1990.

D.H. Fishman et al. Overview of the Iris DBMS. In W. Kim and F. Lochovsky,
editors, Object-Oriented Systems, Databases and Programming, pages 174-199.
Addison-Wesley Publishing Co., Inc., Reading, Massachusetts, 1989.

A. Goldberg and D. Robson. Smalltalk-80: The Language And Its Implementation,
Addison-Wesley Publishing Co., Reading, Massachusetts, 1983.

D. Golub, R. Dean, A. Forin and R. Rashid. UNIX as an Application Program. Proc.
of the USENIX Summer Conf., pp 87-95, 1990.

L. Haas, W. Chang, G. Lohman, J. Mcpherson. Starburst Mid-Flight: As the Dust
Clears. IEEE Transactions on Knowledge and Data Engineering, Vol 2. No. 1,
March 1990.

B. Irani. Implementation of the TIGUKAT Object Model. Technical Report TR
93-10, June 1993.

109

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

M. Jones and R. Rashid. Mach and Matchmaker: Kernel and Language Support for
Object-Oriented Distributed Systems. In OOPSA'86 Proceedings, Portland, Oregon,
Pages 67-77, 1986.

M.A. Ketabchi, S. Mathur, T.Risch, J. Chen. Comparative Analysis of RDBMS and
OODBMS: A Case Study. IEEE Transactions on Knowledge and Data Engineering.
May, 1990,

W. Kim. Object-Oriented Database Systems: Strengths and Weaknesses. Journal of
Object-Oriented Programming, pages 21-29, July-August 1991.

W. Kim, N. Ballou, H.T. Chou, J.F. Garza and D. Woelk. Features of the ORION
Object-Oriented Database System. In Kim Won and Lochovsky F.H., editor,
Object-Oriented Concepts, Databases and Applications. ACM Press, 1989.

W. Kim. Object-Oriented Databases: Definition and Research Directions. IEEE
Transactions on Knowledge and Data Engineering. Vol. 2. No. 3. September 1990.

S. Koehler. Objects in insurance. Object Magazine July-August 1992,

G. Krasner. Smalltalk-80: Bits of History, Words of Advice. Addison-Wesley,
Reading, MA, 1983.

C. Lamb, G. Landis, J. Orenstein and D. Weinreb. The ObjectStore Database
System. Communication of the ACM, 34(10), October 1991.

S.J. Leffler, M.K. Mckusick, M.J. Karels and I.S. Quarterman. The Design and
Implementation of the 4.3 BSD UNIX Operating Systems Principles. Reading, MA:
Addison-Wesley, 1989.

G.M. Lohman, B. Lindsay, H. Pirahesh, and K.B. Schiefer. Extensions to Startburst:
Objects, Types, Functions, and Rules. Communications of the ACM, 34(10),
October 1991.

M.E.S. Loomis. OODBMS: The Basics. Journal of Object-Oriented Programming,
3(1), pages 77-81, 1990.

G. Malan, R. Rashid, D. Golub and R. Baron. DOS as a Mach 3.0 Application.
School of Computer Science. Carnegie Mellon University. 1993.

B. Meyer. Lessons from the design of the Eiffel libraries. Communications of the
ACM, 33(9), pp. 68-88. 1990.

110

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

JEB. Moss, S. Sinofsky. Managing Persistent Data with Mneme: Designing a
Reliable Shared Object Interface. In Advances in Object-Oriented Database Systems,
K.R. Dittrich, Ed. Second International Workshop on Object-Oriented Database
Systems, Springer-Verlag, 1988.

S.J. Mullender. Interprocess Communication. In S. Mullender, editor, Distributed
Systems, pages 37-65, ACM Press, 1989.

B. Musteata and R. Lesser. DB2 Handbook. Computer Technology Research Corp.,
N. Y. TLM, Inc., 1988.

E. Nemeth, G. Snyder and S. Seebass. UNIX System Administration Handbook.
Englewood Cliffs, NJ: Prentice Hall, 1989.

O. Nierstrasz. A survey of Object-Oriented Concepts. In W. Kim and F.H.
Lochovsky, editors, Object-Oriented Concepts, Databases and Applications. ACM
Press, 1989.

Object Management Group. The Common Object Request Broker: Architecture and
Specification Revision 1.1. Object Management Group, Framingham, MA, 1992,

H. Osher. Distributed Object Management. Object Magazine, September/October
1991.

M. T. Ozsu. and P. Valduriez. Principles of Distributed Database Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1990.

F. Rabitti and W. Kim. A Model of Authorization for Next-generation Database
Systems. ACM Transactions on Database Systems, Vol. 16, No. 1, March 1991,
Page 88-131.

M. Satyanarayanan. Distributed File Systems. In S. Mullender, editor, Distributed
Systems, pages 149-183, ACM Press, 1989.

H. Schildt. C The Complete Reference. Berkeley, California: McGraw-Hill, 1987.

E. Seidewitz. Object-Oriented Programming in Smalltalk and Ada. ACM OOPSLA
'87 Proceedings, October 1987.

S. Shafer, M. Thompson. The SUP Software Upgrade Protocol. Carnegie Mellon
University. School of Computer Science. 1989.

111

53

54.

55.

56.

57.

58.

59.

60.

. J. Shirley. Guide to Writing DCE Applications. Sebastopol, California: O'Reilly &
Associates, 1992.

B. Tay and A. Ananda. A Survey of Remote Procedure Calls. Operating Systems
Review, vol 24, pp. 68-79, 1990,

M. Stonebraker, L.A. Rowe, and M. Hirohama. The implementation of POSTGRES.
IEEE Transactions on Knowledge and Data Engineering, 2(1), March 1990.

A. S.Tanenbaum. Modern Operating Systems. Englewood Cliffs, NJ; Prentice Hall,
1992.

MR. Thompson and R.P. Draves. Building Mach 3.0. Computer Science
Department, Carnegic Mellon University, 1992

M.R. Thompson. Setup for Mach 3.0. Computer Science Department, Carnegie
Mellon University, 1993.

L.R. Walmer and M.R. Thompson. A Programmer's Guide to the Mach User
Environment. Computer Science Department, Carnegie Mellon University, 1988.

M. Zapp and K. Barker. An Architecture and Model for Transactions in Object

Bases. Technical Report TR 92-09, Department of Computer Science, University of
Manitoba, July 1992,

112

