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Abstract

Surface integral equations satisfred by the induced cu¡rent density are formulated for axisym-

metric soiid conductors by applyrng the su¡face impedance model and the perfect conductor

model. Their performance is investigated employing spheres and, also, prolate and oblate con-

ducting spheroids with a large range of geometric parameters at different frequencies. Surface

integral equations are also formulated using the modified surface impedance with first order

curvature correction.

Integral equations are solved by applying a well known numerical technique, namely the

method of moments. Different expansion functions and different weighting functions are em-

ployed to improve the accuracy. Numerical results generated are compaxed with available

analytical results and with experimental data. The effects of employing different surface dis-

cretizations a,re presented. The range of validity of the surface impedance integral equations

is also investigated.
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Chapter 1

Introduction

1.1 Overview and Objective

The behavior of electromagnetic fields is completely described by Maxwell's equations and the

associated boundary conditions. Solving electromagnetic field problems using exact analytical

methods is impossible for most engineering applications. Many numerical methods, in both

the time and frequency domains, have been developed for the analysis of engineering electro-

magnetic problems. The method of moments (MoM) has become one of the most important

numerical methods using the integral equation approach in computational electromagnetics.

In the MoM, a fu¡ctional operator equation describing the physical problem is transformed

into a matrix equation by, first, approximating the unknown functions using a set of expansion

functions with a set of unknown coefÊcients and, then, performing a scalar product of the

operator equation with selected testing functions [5]. The MoM has been enriched by many

researchers and new features have been added over the last three decades. In this thesis, MoM

is applied to the quasistationa.ry field analysis.

Kirchhoff developed an integral representation of electromagnetic fields in terms of field

producing sources, which a¡e volume and su¡face distribution of current and charges [i5].

An integral equation is formed by applying relevant boundary conditions, via the Kirchhoff
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integral representation. When the unknowns âre volume source distributions the associated

integral equation is called a volume integral equation, whereas when the unknowns are surface

source distributions or equivalent surface distributions the associated integral equation is

called a surface integral equation (or bounda.ry integral equation) [11] [12]. In wave scattering

problems, a volume integral equation is formed by replacing obstacles with free space and

equivalent sources. In many cases, scattering problems are modelled by a boundary integral

equations in terms of electric and magnetic currents if the scatterer is homogeneous [8]. The

integral equation is converted into a matrix equation by applying MoM.

Boundary integral equations a.re used for solving a wide range of electromagnetic field

problems. They have the advantage of requiring less computation than methods based on the

discretization of the entire conducting region. In general, the accuracy of solutions of these

integral equations is higher than that of solutions of corresponding differential equations. This

is due to the fact that errors at various points may pa.rtially cancel each other in the summation

process of the integral methods, whereas, in general, errors propagate along successive steps

when using numerical differential methods. The perfect conductor (PC) model is commonly

used in the formulation of surface integral equations for solid conductors at high frequencies.

It is a reasonable approximation because at high frequencies electromagnetic fields con-fine

to the outer surface of good conductors. The validity of this model has been analyzed in [1]

for spheroids of various axial ratios by comparing analytical results with experimental data.

At lower frequencies, the electromagnetic field penetrates into conductors and the PC model

is not a good approximation. The standa¡d surface impedance (SI) model is used at lower

frequencies in the formulation of va¡ious finite element [9] and boundary integral equation

[14] techniques. The available literature about the application of the SI model to integral

equation formulations is sparce, specially at low frequencies (as io eddy current problems,
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etc..). On the other hand, there are many references dealing with the application of the SI

impedance model at higher frequencies (as in wave scattering problems, etc..). Leontovich

and others have modified the su¡face impedance introducing a first order curvature correction

and Mitzner [10] has corrected it.

In this thesis, surface integral equations for axisymmetric conductors in the presence of

quasistationary magnetic fields are formulated using both the SI and PC models. These in-

tegral equations are useful in certain applications such as induction heating, heat treatment,

electromagnetic levitation and other eddy current problems. The integral equatiors are solved

numerically for the unknown current density by applying different exlpansion functions and

weighting functions in order to analyze their accuracy. Power losses and electromagnetic

forces a¡e derived from the induced current determined from SI and PC integral equations,

and are compared with available analytical results and with measured data for various con-

ducting spheres, and prolate and oblate spheroids in the presence of magnetic field produced

by current-carrying turns. Numerical results obtained from the modified surface impedance

(MSI) integral equation are compared with those determined from the SI integral equation.

The minimum number of necessary unknowns for a desired accuracy is also determined for

the spherical and spheroidal conductors. The range of validity of the SI integral equations is

also investigated.

L.2 Thesis Outline

Chapter 2 describes theoretical aspects which are usefu-l in the formulation of integral equa-

tions. Electromagnetic fields are represented in integral forms and their evolutions are given

sta.rting from Maxwell's equations.The SI model is derived using the phenomena of incidence

of plane vr'aves on an conducting semispace. A mathematical explanation for MOM is also
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presented.

In chapter 3, the formulation of integral equations for arbitra¡y shaped conductors is

presented. They are solved applying a point matching procedure. A convenient way of defining

the surface of the arbitra.ry shaped conductors is given. The integrals involved are taken in

principal values and the evaluation of their singula.rities is elaborated. The electromagnetic

force upon conducting bodies is evaluated in a simple manner. Chapter 3 also explains the

calculation of power loss in conducting bodies numerically.

Chapter 4 is dedicated to formulate integral equations for spherical conductors in the

presence of magnetic fields produced by current-ca.rrying turns. Formulas are derived in

spherical coordinates to numerically evaluate quasistationary electromagnetic fields created

by a single current-carrying turn. The SI and PC integral equations are solved applying

the point matching procedure. The power losses and electromagnetic forces are evaluated at

different frequencies from both the SI and PC models for spherical conductors with different

ratio of sphere radius to the depth of penetration and compa.red with exact analytical solutions.

The range of validity of the results from the SI integral equatiors is also investigated using

spherical conductors in chapter 4. The accuracy of the results is improved by employing a

finer mesh. Galerkin's method is also implemented using three constrained rectangular pulse

functions.

Integral equations formulated in spheroidal coordinates are given in Chapter 5. An in-

troduction to the prolate coordinate system is presented at the outset of the chapter. It is

convenient to use the prolate coordinate system in the formulation of integral equations for

prolate spheroidal conductors because tangential field components can be found easily. Power

loss and force a¡e evaluated using the point matching and the Galerkin method for prolate
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spheroidal conductors with different axia^l ratios and compared with corresponding analyui-

cal results and available experimental data. Numerical results evaluated from MSI integral

equations are also presented.

In Chapter 6, the oblate coordinate system is used to formulate integral equations. Power

ioss and force a,re evaluated for a wide range of oblate spheroidal conductors from the SI

and PC integral equations and compared with relevant analytical results. Chapter 7 contains

conclusions and suggestions for futu¡e work.



Chapter 2

Background Theory

In this chapter, the representation of electromagnetic fields in the integral form is discussed

starting from Maxwell equations. The concept of the magnetic vector potential is used in the

representation of electric field in integral form. Quasistationary electric and magnetic fields

produced by a current-carrying turn in free space are given both in the form of integrals and

as summations, which a¡e used to calculate the fields numerically. The surface impedance

and the skin depth a¡e described at the end of this chapter. The modification of the surface

impedance for smooth boundaries is also explained.

2.t Integral Representation of Electromagnetic Fields

Electromagnetic field quantities, whenever they have continuous derivatives, obey Maxwell

equations, which in the frequency domain are

VxH:juDlJ (2.1)

VxE:-juB

Y'D:P

(2.2)

(2.3)
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(2.4)

where -E is the electric field intensity, H is the magnetic field intensity , ./ and p are the electric

current dersity and the electric charge density respectively, and ø is the angular frequency.

The field intensities -E and H are related to the electric flux density D and magnetic flux

density .B as

D: eE (2.5)

B: þH (2.6)

where e and p, are the permittivity and the permeability of the linear isotropic media.

It is a well known vector identity that the divergence of a vector which is itself the curl of

another vector is zero and so satisfies (2.4). Helmholtz theorem states that a vector is uniquely

defined if, and only if, both its curl and its divergence are specified. Thus, we can define a

new vector ,4 which we call the magnetic vector potential as a vector whose divergence is zero

and whose curl is Il,

VxA:B V',4:0. (2.7)

Substitution of (2.7) into (2.2) yields an expression for lg in terms of ,4 and of a scala.r

potential /,

6: -¡aA-Vó. (2.8)

In some eddy-current problems, only the induced component of .Ð is of practical importance,

i,.e.

B: -jaA. (2.9)

Displacement current jaD is negligible as compa¡ed with J for quasistationa.ry fields. In



regions with uniform permeability , (2.i) is written as

y x B: I.LJ. (2.10)

Figure 2.1: Volume current distribution.

With the vector identity V x (V x A) : V(V .Á) - (V .V),4 and equation (2.7), (2.10)

yietds VzA : ¡-tJ. For an unbounded homogeneous space, the well known solution of this

equation is [13]

(2.11)

where R: r - /, T, / being the position vectors of the observation point P and the source

point, respectively, and du' being the volume element. The volume current density is con-

strained in a finite volume I/, as shown in Fig. 2.7. A surface current density ./s on a su¡face

,9 in a homogeneous unbounded space produces

A(r\: p I J(r)du'
\ /  trJ R

v

A(r):#Try (2.12)

where ds'is the surface element on 5, as shown in Fig. 2.2. In a similar maruler, the vector

potentiai in an unbounded homogeneous space produced by a wire carrying a current f is

given by

A(r): # I +
C

rt

(2.13)



Figure 2.2: Su¡face current distribution.

Figure 2.3: Line current.

where dl is a vector length element in the direction of the current along the wire, as depicted

in Fig. 2.3. Taking the curl of both sides of (2.13), we have the relation

(2.14)

Similarly, the expression for

(2.15)

z.L.L Induced Electric Field due to a Single Current-Carrying Turn

In this section, the electric field produced by a single current-ca¡rying turn in free space is

obtained since it is needed in the solution method by integral equations in chapter 3. The

circular turn has a radius ö" and is located in a plane z : zs. Rectangula,r and cylindrical

B(r):HIq#
C

B in terms of J" is

B(r): L I !:V#gd''
s
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Figure 2.4: Current-carrying turn in free space.

coordinate systems are used in the solution method. Fbom symmetr¡ it is known that in

cylindrical coordinates the vector potential ,4. has only a component A6 in the azimuthal

fdirection and its magnitude is independent of /. Therefore, for simplicity, the point P is

chosen in the semispace ó:0, r and z coordinates of P being p and z respectively.

The position vectors r and / axe expressed * poo+ ru" andb"cosþtu,r*brsinþ'uo*2"1trr,

respectively, where th, lh and u, a¡e unit vectors in r, y and z directions and the vector length

element is d/. Then

R:lr-ll:

Substitutingdl and Ã in (2.13), we have

2r

n - UoI ¡ b"cosf dþ'
' n" Jo t/ P' + b2, - 2Pb"cos /' * (, - ,")'

(2.16)

This integral has to be solved numerically. The tu¡n is divided into a number of .L elements

and .E is considered to be the distance from the center of elements to the point P. Equation
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(2.16) is expressed as

As shown earlier, the electric field intensity is related to ,4 by (2.9). Since á has only a

component in azimuthal fdirection, ,E has also only a component E6 in f.direction. Then,

from (2.17) and (2.9) we obtain

L
_Jøp¿ol ¡- . (2.18)EÓ: /tr0¡ 

-4tr L7=, 1f n' + b3 - 2pb"cos{!(i - 1)} * (z - z")2

The electric field intensity A.Ea at P produced by a naxrorv circula¡ strip having a uniform

surface current of density J , can be obtained from (2.18) by assuming that all the current is

concentrated on the center line of the strip. For a circular strip of width At¿ located such

that its center line is coincident with the current carrying turn in Fig. 2.4, we have

LEó: ju¡tsJ"Lw i--) /l* LJ

b"cos{!(t -1)}T (2.1e)

2.I.2 Magnetic Field due to a Single Current-Carrying Turn

The magnetic field produced by a circular current-ca¡rying turn in f¡ee space is also needed in

the formulation of SI and MSI integral equations for axisymmetric systems. Equation (2.14)

developed in section 2.L is used to compute the quasistationary magnetic flux density at P.

With d/ : -b"dó, sinþ,uo +b"dó, cos þ,uo and R : (p - b"cosþ,)uo -brsinþ,uu + e _ z")u",

as before, we have

dt x R:b"(z - z")cos ó'dó'u,*b,(z - z")sin ó'dó'rh+ (b? -pb"cos ó')dó'u,.

Substituting in (2.14) yields

, _p013 b,cos{l(i-L)t+
^ø_ 4¡r k

2n

D _ lrol [ [b"(" - z")cos Ó'A + (b? - pb"cos$')u,]dþ'
"- 4n l0'

(2.17)

(2.20)
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.B is calculated numerically by dividing the turn into a number of -L elements as described in

the previous section. Hence, the integration in (2.20) is converted into a summation, namely

(2.21)

where ú: tlt - 1). Again, Iike in the previous section, the magnetic flux density L,B at P

produced by a narrow circular strip having a uniform surface current of density J" and width

Atu, located with its center line on the circula¡ turn, is

^ 
,,- tt'oJ"Aw $ [¿"(, - "")"osÓ¿tt,+(b!- 

pb,cosÓ¿)u"]T (,,r\ÅD - 47T ,*L-- 
' \z'zz)

2.2 Surface Impedance

The concepts of surface impedance and skin depth or depth of penetration are often used in

the literature [4], associated with high frequency propagating electromagnetic rvaves though

they are also used in quasistationary field problems. These concepts a¡e introduced based

on the behavior of time.harmonic electromagnetic fields in linea.r, homogeneous and isotropic

media. Combining the Ohms law J: oE¡ where a is the conductivity in the medium, with

(2.5) - (2.1) and (2.6) - (2.2),we obtain

V x "E[: (o + jue)E (2.23)

and

V x .E: _ju¡tH.

in (2.2Q after taking curl both side of (2.24), gives

(2.24)

The substitution of (2.23)

VxVxE:lc2Û (2.25)
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where k : tç¡u6¡6 is called the wave number of the medium. fr is usually written

k: lt' - jk"

where It', the real pa^rt of k, is the phase constant and k", the imaginary part of k, is the

attenuation constant. In a source free region equation (2.25) becomes

v2E +l*E:0. (2.26)

Consider .E to have only an Í component independent of u and y. Then (2.26) reduces to

(2.27)

This equation is the one-dimensional Helmholtz equation whose solutions are linea¡ combina-

tions of ejk" and e-jk". Consider only e-jk' which gives a forward travelling wave. Then,

Er: Eoê-ikz - Bo"-le"z"-iktz (2.28)

where .Ðo is the amplitude of. E, at z : 0. The associated magnetic field intensity of E, is

obtained from (2.24) and has only a y component, namely

# .IezE*: g.

u _kÛo._jt" _ k ¡"o - aF ,ilt"''

For good conductors o is much greater than oe so that k is approximately

(2.2e)

equal to

\tr|;¡to. Then /c' and k" are equal to Ju@,. Thus , the attenuation of electromag-

netic field penetrating into a good conductor is very high. For example, a L0 MHz wave would

attenuate 97.89 percent in 0.1 mm of travel in aluminum. The field is practically constrained

in a thin surface layer. This phenomenon is known as skin effect. The distance in which a

wave is attenuated io 36.8 percent (1/e) of its initial value is called the skin depth or depth

of penetration ô. Thus,

(2.30)
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For example, the depth of penetration in aluminum at 8 KHz is approximately 0.92 mm.

On a flat surface of a good conductor, the ratio of. E, to fI, is equivalent to the standard

surface impedance, 2", when the wave is travelling normal to the conductor surface. According

to (2.29), Z" is equal to u¡-tllc. This means that the tangential components of electric field

and magnetic field on the conductor surface a,re related by

nx E: -Z"n x (nx II) (2.31)

where rz is the inward normal unit vector to the surface. For an infinite conducting plane,

The relation between Z" and the ô is,

7+j
¿s-

oÒ
(2.32)

(2.33)

(2.34)

(2.35)

Even though (2.32) is strictly true for an infinite conducting plane, it can be used for conducing

surfaces as well, provided that ôk, and ôft, are much less than one, where ko and k, a.re the

principal curvatures. u and u are the principal curvature coordinates, with 1r,t) x ?Lw : n

where tr, and thn are unit vectors along the curves with constant u and u,r, respectively.

For finite radii of curvatute, Leontovich has presented a first order curvature correction

term in (2.30) and Mintzner [7] [t0] has corrected it as

Eu : (7 -f p)2"H.

E.: -(1- p)Z"Ho

where

p:0.25(1+ j)6(k, - k,).

Equations (2.33) and (2.34) are va,lid for any smooth surface.
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2.3 Perfect Conductor Model

As discussed in the previous section, electromagnetic fields do not penetrate deep into con-

ducting metals, especially at high frequencies, being confined to a very thin layer. In scattering

problems, this phenomenon is approximated, in general, as fields interacting with perfect con-

ductors because no electromagnetic field can exist inside perfect conductors. In the PC model

Z" is considered to be zero. In other words, tangential electric field on the surface is equal

to zero. The tangential magnetic field intensity on the surface is equal in magnitude to the

surface current density induced.

2.4 Method of Moments

Consider an inhomogeneous linear equation L"U) : g where Lo is a linear operator, g is

known and / is unknown. To determine /, it is expanded in a series of functions h, fz, fs,...

as

(2.36)
m=t

where J* are constant coefficients. fm arc called expansion functions or basis functions [5].

Considering the linea¡it y of. Lo,'üe can write tr,(/) : g in the form f ,^r"U^) : g. Then,
M:L

the inner product of it with selected weighting functions wn (wt,,trz,lrs,..) in the range of -L,

is taken on both sides, yielding

M

Ð J^(rn, L"ff*)) : (wn,g)
m:l

Flom (2.37), a set of linea¡ equatiors is obtained and written in matrix form as

(2.37)

M

r:ÐJ*r*

where

U"^l[J*] : [g") (2.38)
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Un*l:

and

lg"l:

(q, g)

(wr, g)

(wu, g)

There is a solution io [.r-] if [1"*] is nonsingular. The evaluation of the inner product

(r", Lo(là) is ofüen a tedious task in problems related to practical applications. Taking

wn to be the impulse function, approximate solutions can be obtained satisfying equation

L"(f): g at discrete point of interest. This procedure is known as point matching. For the

simplicity, basis function Í^ are selected such that they exist only over the subsections of the

domain of /. The Garlerkin's procedure is implemented choosing um: fm.

(wt, L"(ft)) (rr,
(rz, L"fft)) (rr,

(uM,;"ut)) (.*,

rr l_
l¿ml -

L"(fz',

L"(fz',

L.(h

lû
lt.t-
I ;^,M



Chapter 3

Integral Equations for Arbitrarily
Shaped Axisymmetric Conductors

Integral equations are formulated for a.rbitrarily shaped conductors with smooth surfaces in

the presence of current-carrying coils. The formulation is general so that the PC, SI and MSI

models can be implemented. The application of the method of moments to yield a set of

linear equations is elaborated. Numerical evaluation of the integrals involved are described.

Handiing the singularities in their integrands is also given in this chapter. The calculation of

power loss in the conductor and electromagnetic force upon it is explained in the last section.

3.1 Formulation

Consider an arbitrarily shaped axisymmetric good conductor having a smooth surface, as de-

picted in Fig. 3.1 in the presence of a quasistationa.ry magnetic field produced by coaxial tu¡ns

carrying sinusoidal with time currents of same frequency. As discussed earlier, at su-fficiently

small depths of penetration, the electromagnetic field can be analyzed by determining the

equivalent surface current density which has an azimuthal /-direction.

Combining (2.13) and (2.9), the tangential electric field intensity produced by the inducing

17
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Figure 3.1: Solid conductor in the presence of current-carrying tu¡ns.

turns alone in free space is given by

_jut.toËn*r,l 
t+4tr ß:l öo

where d/ is the vector element in the direction of the current along the respective inducing

turn C¡, carrying the current .I¡ and N is the total number of tu¡ns. The induced currents

in the conductor which a.re again in the azimuthal /- direction produce a tangential electric

field equal to

Hur@1ry4ns

The total tangential electric field Ea is a superposition of the field produced by the external

turns and by the induced currents, i.e

Eo(ù:-t#l"rr,t !ry.å I¡u6@) 
!r#l

(3.1)
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According to (2.14), the tangential magnetic field intensity due to the exbernal turns is

-N1\-, , \ f dtxR
4" àtnqtr) I :-

C¡

where t4 is the unit vector along the generator curve C of the conductor. The tangential

magnetic field intensity due to the induced currents on the conductor su¡face is obtained from

(2.15) as

1 ,, f J"(f)xRds'
*u\r) J 

____ø_
s

The total tangential magnetic field intensity produced by the external turns and by the induced

currents is given by

The integral equation satisfied by d is constructed by imposing the condition that the tan-

gential electric field intensity E6@), at the conductor surface 5, is related to the tangential

magnetic field intensity H¿(r) at the same point through the surface impedance Z"(r) as

Eø\": -2"(r)H¿1". (3.3)

The minus sign present in the above equation is due to the cross product u6 x tr¿ pointing

outwa¡d from the surface. The surface integral equation formulated is rearranged keeping the

unknown terms on one side of the equation and the known terms on the other side. The result

is

(3.2)

-jut',ol"rr,t I ryf * t^o*e) I !{4w :

å - þ,ro,r@ ! # - z"(r)q(r) I 
q#l

Þ-¡ c¡, ct
(3.4)
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The surface integral equation using the PC model is obtained from (3.4) by taking Z"(r) : g.

The simplest SI integral equation is obtained by using the standard surface impedance model,

i,e. Z"(r) - Zs. The MSI integral equation is formed when Z"(r) is evaluated as in (2.33)-

(2.35).

3.2 Solution Method

The above integral equation is solved by applying the point matching procedure. Due to

the axisirmmetric nature of the system, the induced current density has only a component in

the fdirection. The unknown current density is expressed in terms of M subdomain basis

functions f*(t) as

M

J": utróL l*Í*(r)
m:7

where ú is the length variable along C. f *(t) is considered to be a rectangular pulse function,

as shown in the Fig. 3.2. In other words, the induced cur¡ent density is approximated step-

wisely, as depicted in Fig. 3.2. Then, each J* in the expansion (3.5) affects the approximation

of / only over a subsection of interest. The width of the pulse is Lw*. The weighting function

w"(t) in the point matching procedure is the Dirac delta function

wn(t):6(t-t") (3.6)

which is a function only of the va¡iable ú due to the axisymmetry. For convenience, all the

observation points on ,S a¡e located on the r-z pIane, ó :0. Substituting (3.5) into (3.4) and

taking the inner product of (3.a) \,yith ô(ú - ú,,) gives

(3.5)

-Juþo

(3.7)
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Figure 3.2: Pulse function and step approximation of current density.

where Rnnn is the distance vector from the source point on ,9, related to f^, to the observation

point on ,S, related to tn, R¡rn is the distance vector from the source point on the inducing turn

k to the observation point on 
^9 

related to ú,r, and r' is the position vector of the observation

point on ,9 in the r-z plane at t : ú,". Equation (3.7) is a linear equation with a number M of

unknowns. It is evident that a number M of linear equations are required to solve for these

unknowns. M weighting functions at different observation points (tn, n : 7 to M) are used to

obtain the required number of linea¡ equations in the form ll^"llJ*] : [g"]. Al1 observation

points are chosen to be the midpoints of the corresponding rectangula.r pulse functions.

3.2.L Discretization

A physical interpretation of (3.7) gives an additional insight into the method of moments.

Consider the first term in the left hand side of (3.7). For a pa.rticular nz, it is proportional

to the tangential electric field at the observation point on the surface, having a position

vector rn and being produced by a circula.r strip of width Lw*, carrying a uniform current
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density J-. The second term in the left hand side of the equation is proportional to the

magnetic field intensity tangential to the generator curve C at the same observation point,

produced by a circular strip carrying the uniform current density -I-. This means that the

cu¡rent distribution on the conductor surface is approximated by M coaxial circular strips,

each carrying a uniformly distributed current. These two integrals are solved numerically.

The contribution to the tangential electric and magnetic field intensities at a point on the

surface is evaluated by assuming that the current of each strip is concentrated on its center line,

except where the source point coincides with the observation point. The surface integrals in

(3.7) are taken in principal values when the source point coincides with the observation point.

The next section describes how singularities are evaluated. Each strip is divided into a number

of elements in order to evaluate their electric and magnetic field intensities. Equations (2.19)

and (2.22) are used to calculate the electric field intensity and the magnetic field intensity on

the surface, where the source point does not coincide with the observation point.

The generator curve C of the conductor may not be represented by a well defined function.

So the surface ofthe conductor is defined by specifying the radius z- ofthe circle at the center

plane e : zm of each circula¡ strip, the width of the strip, Aur-, a"nd the a.ngle a- between

the z-axis and the normal vector to the surface at (r*,0,2*). a- is measured from the z axis.

un(r^,O,2*) andlh(x*,O,2*) are the unit normal vector and the unit tangential vector in

the r-z plane, respectively. Then, we have

'th ' ut(t*,O, z*) : - cos a??z

t-h . th(x*,O, z^) : sin a-

It is obvious that uo . r4(t^,0, z*) : g.

ur.rh(r*,O,2*): sina-

u, . un(r^r}, z^) : cos @rn

(3.8)

(3.e)

Substituting (2.19), (2.22) and (3.8) into (3.7), the



ôÐZ\)

u,(x.,O, Ç
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Figure 3.3: Normal and tangential unit vectors to the su¡face.

matrix element 1,,* is obtained as given in (3.10).

In*lr+* r^cosþ¿
12" + x2* - 2rnr*cos /¿ * (tn - "*),
l-n*(zn - z^) cosancosó¿ + sinan(r2* - x^xncosó¿))

lxz, + rl - 2rnr*cos d¿ * (zn - z*¡z)3/2

(3.10)

where ó¿:2nlL. Z"(r") is independent of r,, unless the surface impedance is modified as

discussed in section 2.2.

The first and the second terms on the right side of (3.7) a^re proportional to the electric and

magnetic field intensities at the same observation point on 
^9, 

produced by the external current

carrying turns. The elements of the column matrix [g"] ,"" also written a,s a summation by

substituting (2.18), (2.21) and (3.8) into (3.7). The result is

-j2nu¡tsL¿¿r- 3
f. Z-t t

¡:t !LL
¿-l

-2n4"(rn)Lw* {'L.L
i:T

n, :'4Ë n I -, "(r^\ f 
-b*(zn - zx) cos an cos Ó¿ + sin an(b? - b t'r' cos Ó¿)

lr- I l-2- k:L L ¿=t Lnn + b? - 2rnb¡, cos ót * (zn - ,r),)t/'
L

* japoÉ u*totá, 
, , 

==l¿Å ),

where ö¡ is the radius of &-th inducing turn.

(3.11)
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3.2.2 Singularities

The calculation of 1,r,, requires special treatment in order to evaluate singularities. These

singularities appea.r in (3.10) when z : 1 and rn : n. The contribution of each rectangular

self-patch of dimension g'-by-h'to the electric field intensity EI at its center is given by

(3.12)

The derivation of (3.12) is listed in Appendix A.

The contribution of the same self-patch to the magnetic field intensity H', at its center is

given by [5]

Hí: _*.
2'

Then the diagonal elements of the matrix $n*l arc evaluated as

(3.13)

(3.14)

(3.15)

lnn :4tr E'o * 4n Z r(r*) r' - 
j2nu 

Ío^lwn f^ -+v' L L Hr/z(t_cos/¿)
, nZ"(r,)Lur,$ sina,,:' L ?í r"\Æ= co{Ð'

Once all the elements of the matrixes ll"*] and lg"l *" evaluated, the unknown current density

matrix [J,] can be found from (3.7).

3.3 Calculation of Power Loss and Force

Losses in conducting objects at high frequencies can be evaluated using the su¡face resistance

.R, for both the PC and SI models, considering the actua.l conductivity o of. the material. The

time-average power loss is

o -' 
r, :; 

J R"lJ"lds.
s

This integral is converted into a summation to evaluate it numerically, as

M
P : r&sl Lw*lJ*l2x*

m:7
(3.16)
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The electromagnetic force acting upon the conducting body is evaluated by calculating the

resulting total force upon the inducing turns, which is the same in magnitude but opposite

in direction. The resultant time-average force exerted upon the system of inducing turns is

expressed as

r:|n"[åt lør. q)r,] : -,,zirf,uu^o,o"r,
LÈ:l 

öo 
J Ji:l

(3.17)

where the asterisk indicates the complex conjugate and B¡ is the outwa,rdly oriented radial

component of the magnetic flux density produced only by the induced currents in the con-

ducting body at the points on the k-th inducing turn.



Chapter 4

Integral Equations for Spherical
Conductors

in this chapter, integral equations a¡e formulated for spherical conductors in the presence

of cu¡rent-carrying turns. The evaluation of the tangential electric and magnetic field com-

ponents on the conductor surface can be performed by employing the spherical coordinate

system. The electric field intensity and the magnetic flux density produced by a current-

carrying turn are determined in the first section. In section 3, numerical results for power loss

and electromagnetic force upon the conductor obtained from the SI and PC integral equations

axe compaxed with their exact anaþical results [17]. The accuracy of the results a^re improved

by employing a finer mesh. The last section compaxes the performance of Garlerkin's method

against the point matching.

4.L Electric Field fntensity and Magnetic Flux Density

in Spherical Coordinates Produced by a Current-

Carrying Turn

The electric field intensity and the magnetic flux density produced by a single turn carrying

sinusoidal current 1 are found in spherical coordinates for the turn placed as shown in Fig.
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4.1. The magnitude of the position vector of a point on the turn is r". The angle between

the z-axis and the position vector of the point on the turn is d". The coordinates of the

observation point in the r-z plane are (ro,0e,0). The vector length element on the turn at the

source point, (r",0r, d'), is d/ where d,l : -r"sindrsin ó'dó'A *r"siná" cos$'dþ'tto. ilhe

distance between the source point and the observation point is given by

R: .

The vector potential is calculated substituting dl and .B into (2.13). Using (2.9), the electric

field intensity is found as

This integra^l is eva.luated numerically discretizing the turn into a number of .L elements as

2t¡

D _ iapol / r"sin 0"cosþ'd$'
"o-- 4n .l R '

0

E, - iupol $ "" 
sin d" cos þ¿(2r lL)"o-- 4tr L e

D - 
ju¡t'sr"A'0"J" 3 ""sind"cos þ¿(2nlL)"o--- 4tr L e

(4.1)

(4.2)

where e : and. þ¿: (2nlL)(i, - 1).

Equation (a.2) is modified as discussed in section 2.1,.2 to obtain the electric fietd intensity

produced by a circular current-carrying strip,

(4.3)

where r"4,0" is the width of the strip.

The magnetic flux density produced by a current carrying turn is obtained using (2.14).

The distance vector R from the source point to the observation point is given by

R: (rosin0o - r"sind" cosþ')tt* - r"sin 0rsinS'uu * (rocos 0p - rrcos0r)u".

Substituting dl x R and 
11"t" 

(2.74), we obtain

B : l: I #þ" sin d"(ro cos 0, -r" cos d") cos þ'u,"
o - (4.4)

- rpr"sin 9o sin d" 
"o" 

{¡u"fa['+ (r!sin2 0"
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P (rn,00,0)

dl'

Figure 4.1: Source points and the observation point in spherical coordinates.

which is eva.luated numerically by discretizing the turn into ,L elements as described in Section

2.1. Using (4.2), (4.3) a,nd (A'.4), the d-directed flux density Be is obtained by taking the

dot product tte.B, namely

where tra is the unit vector in the d-direction.Bp produced by the circula¡ strip considered

above is computed from

", 
: #þ_*þ" sin d"(ro cos 0o -r" cos g") cos 0o cos þ¿

- r" sin d" sin do(r" sin 9" - rosinlo 
""" ór)fT

", 
: N# 

> +þ, 
ri' d, (ro cos 0o -r" cos d,) cos 0 o cos s¿i=' 

- r"sin0"sindo(r"sind" - rosin;o"r"óù)T.

(4.5)

(4.6)
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Figure 4.2: Spherical conductor in the presence of current-ca.rrying turns.

Formulation

The integral equations are formulated for a spherical conductor in the magnetic field produced

by coaxial turns carrying sinusoidal with time currents of the same frequency, as shown in

Fig. (a.2). Using (2.9), (2.I2) and (2.13), the total tangential electric field intensity at a point

on 
^9 

is given by

where .R1 is the distance between a source point and the observation point on the sphere

surface, and A¡ is the distance between a source point on turn fr a¡rd the observation point on

the conductor. The tangential magnetic field intensity at the same observation point is given

in (a.8).

Rt)r|sin?'dþ'd?t

(4.7)

@o(ó')
A?

1l- f
-lu¿' I

,]
0

2¡r

I J"(u6(þ') xt-
0

N2n+t lrn, I
ß=1 ó

He:

(4.8)



The tangential electric field intensity E6 and the tangential

related through the standa¡d surface impedance as,

30

magnetic field intensity Hs arc

(4.e)
E6z
fl: o"'

A set of linear equations lI"l[J*]: lg"l is obtained by appiying the point matching procedure

to solve the integral equation. The surface current density is approximated by rectangular

single pulses. Dirac delta function is selected as the weighting function. Hence, the integral

equation is transformed into a system of algebraic equations by discretizing the conductor

surface into a number of M circula¡ current-carrying strips. Each such circula¡ strip and each

inducing turn is divided into a number of elements to evaluate their electric and magnetic

field intensities. The contributions to field intensities from circular strips are calculated by

assuming that the current density is concentrated at the center of each element except when

a singularity is present. Using (4.3), (4.6) and (4.9), the matrix element ln*is obtained as

4.3 Application of Point Matching Procedure

, , 2trju¡tsrfiA,0-åsinl^cosþ¿
Lnmln#m: - ---- L 2_, &",

_2nZ"r8sin0^A,0* $ t Ir ^L Ðs ¡(cosd,, - cosd-) cos?ncosþ¿
i:L 'omi' L

n, :T+teå r yry: o' . ryå - 
å + þ*,in 

o¡,(rscoso,

- r/c cos 9¡) cos 0n cos ó¿ - r *(r xsin d¡ - rs sin g, cos /¿) sin 9r sin d,]

- (sin 0* - sinlncos /¿)sin arl
I

where Rn"¿ is the distance from the center point of the Èth element on the rn-th strip to the

observation point on the n-th strip. The width of the strip is rs\2,n. The element g," of the

column matrix [g"] is found to be

(4.10)

(4.11)
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where ,R6¿ is the distance from the center point of the Èth element on the k-th inducing turn to

the observation point on the n-th strip. The diagonal element 1,r,, is evaluated by treating the

singularities as described in chapter 3. The unknown current density is found from p"*]-l[g,].

The solutions of the PC integral equation is determined taking Z" :0.

Numerical results are generated for aluminum (o :3.77 x 107 S/m) spheres in the presence

of three coaxial tu¡ns connected in series and carrying a current /6. The three turns are placed

on the surface of a cone of opening 2þ, as shown in figure 4.2, the distance between the piane

of the lower turn and the sphere center being d1. To illustrate the performance of the surface

integral equation in (4.9), the power loss and the electromagnetic force upon va¡ious spheres

a¡e evaluated using (3.16) and (3.17), respectively.

- 
Sl integral equation

' -. PC integral equation
* Exact

dt /br

Figure 4.3: Normalized power loss ve¡sus fuffu for an aluminum sphere of radius ro:2.5cm
at 8 kHz, u¡ith ¡'¡ :3, tanB :0.4, and dffu:0.25: (I) r¡1fu: 0.5; (II) rs/h: 0.75.

ô.¡
c-o
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Figure 4.4: Error of the normalized power
with ¡/ :3, tanþ :0.4, df bL:0.25, dLf bl

- 
Sl integral equation.-' PC

ro/ô

Ioss versus rsf 6 for aluminum spheres at 8 kHz,
: 0.6 and rsf h:9.5.
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The time-average power loss normalized to R"Il12, at a frequency of 8 kHz, with N : 3,

tanB :0.4, dl\: 0.25 for a sphere of radius ro:2.5 cm is given in Fig. 4.3 as a function

of the normalized distance between the sphere center and the inducing turns. The percentage

error of the normalized power loss calculated from the integral equations with respect to the

exact analybical solution for aluminum spheres is plotted in Fig. 4.4 versus the ratio of the

sphere radius to the depth of penetration ô. The error decreases when the size of sphere

increases. An accuracy of at least g7 percent has been achieved for the power loss by using

the SI integral equation for spheres with rsf 6 above 20, while the errors introduced when

using the PC integral equation are higher. The surfaces of the spheres have been discretized
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into coaxial circular strips whose width is about 10 times the depth of penetration and each

strip has been divided into a number of elements such that the element length was about 10

times the depth of penetration, with at least l-0 elements per strip.

- 
Sl integral equation

. - . PC integral equation
+ Exact

dl /bl

Figure 4.5: Normalized force versus fiffu for an aluminum sphere of radius ro : 2.5cm at 8
kHz, with.ly':3, tanB:0.4, and df\:0.25: (I) rsfio:0.5; (tt) rsf\:Q.75.

In Fig. 4.5, we compare the tim+average electromagnetic force normalized to pslfrl2

obtained by using the SI and the PC models with that from the exact analytica^l solution

for the sphere system considered in Fig. 4.3. The percentage error of the normalized force

obtained from the integral equations with respect to the exact analytical solutions for va¡ious

sizes of spheres is shown in Fig. 4.6. The conductor surface entails 30 strips and each strip

entails 60 elements. An accuracy of over 99 percent has been achieved by using the SI integral

c.l

^-o

rI.
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- 
Sl integral equation

.-.PGin

rol ô

Figure 4.6: Error of the normalized force versus rsf õ for aluminum spheres at 8 kHz, with
ly':3, tanB:0.4, df\:0.25, dlffu:0.6 and rsfU:9.5.

equation for calculating the force upon spheres with rs/ô above 20. The error associated with

the PC integral equations for evaluating the force upon spheres with 1616 below 20 is very

high.

The normalized power losses in a sphere with r¡ : 14 cm at frequencies of 0.5 kHz and

2kHz, v/ith ¡ü :3,tanB:0.4, dfh:0.25 and bsf\:0.5 are depicted in Fig. 4.7. The

normalized pov/er loss evaluated from the PC integral integral equation is independent of the

frequency, while the povrer loss evaluated from the SI integral equation and exact analytical

method increases with frequency. Fig. 4.8 illustrates the variation of the normalized force

with the ratio d4ffu at frequencies of 0.5 kHz and 2kHz for the same system as in Fig. 4.7.

N
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¿
tug{

ô
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0.5 0.7 0.9

Figure 4.7: Normalized power loss versus d1/b1
with N :3, tanþ :0.4, dfh:0.25 and rslbl

- 
Sl integral equation (a)

.- ' PC integral equation
+ Exact analytical (a)

- - Sl integral equation (b)
O Exact

for an aluminum sphere of radius ro : L4.cm,
: 0.5 at (a) 0.5 kHz; (b) 2 kHz.

The normalized force obtained from the SI integral equations and f¡om the exact analytical

method increases with the frequency. The normalized force calculated from the PC integral

equation is independent of frequency. The results based on the SI model a¡e much closer to

the exact analytical solution than the results based on the PC model.

dr /bl
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- 
Sl integral equation (a)

. -' PC integral equation
+ Exact analytical (a)

- - Sl integral equation (b)
O Exact

dr/bl

Figure 4.8: Normalized force versus fiffu for an aluminum sphere of radius ro: L4 cm, with
Iy' : 3, tan B : 0.4, dlbL: 0.25 and rof h: 0.5 at (a) 0.5 kHz; (b) 2 k]H:z.
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4.3.L Refining the Mesh for Spheres

When calculating the electric and the magnetic field intensities f¡om neighboring patches,

errors are introduced due to the fact that current density is considered to be concentrated on

the center of the patch. A finer mesh is constructed by dividing the circula¡ strips into 10

sub-strips in order to improve the accuracy. Each sub-strip of the circular strip carries the

same current density J*. The contribution to the electric and the magnetic field intensities at

the observation point is found by summing up individual contributions f¡om the 10 sub-strips.

When evaluating individual contributions to the field intensities by a sub-strip, the current

density is considered to be concentrated at the center line of that sub-strip.

A sphere of radius ro: I4cm at afrequencyof 8 kHz, with /rI :3,tanþ:0.4 and df\:

0.25, is considered to determine the effectiveness of the finer mesh. The normalized force has

been evaluated using the SI integral equation for four cases and given in the Table 4.1. The

percentage deviation of the force with respect to the SI anaþical results and the computation

time are compared for different cases. Computational time refers to a personal computer

with Pentium IV processor. It is evident that subdividing only L0 neighboring strips makes

significant improvement of the results. To obtain the same accruacy without subdividing

the strips, the number M of strips and the number .[ of patches of each strip have to be

increased to twice of that in the case of subdividing only 10 neighboring strips. F\uthermore,

the evaluation with increased M and.D takes more computing time. The percentage error of

the results obtained subdividing all strips has decreased only by 0.04 percent, while consuming

more CPU time as compa.red with that when subdividing only the neighboring strips.
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Table 4.1: Percentage deviation of force with respect to

SI anaþical solution.

Case Percentage

deviation

Computing time (s)

M:30 L:60
without subdivid-

ing strips

0.9 0.3

M :60 L:720
without subdivid-

ing strips

0.45 7.41

M:30 L:60
subdividing 10

neighboring strips

0.45 0.68

M :30.L : 60

subdividing all

strips

0.41_ L.44

4.3.2 First Order Surface Impedance Correction for Spherical Con-

ductors

The equations to modify the surface impedance for smooth boundaries given by Mitzner a¡e

presented in chapter 2. We choose u,u : uó and t4, : tr¿ directing ta x 4, inwa.rd to the

surface. Equation (2.33) is selected in order to obtain the relation between E6 and /{á rvith

modified surface impedance. Radii of curvatrue k, and k, are equal to 1/rs [16].Hence, p in

(2.33) becomes nuli. This implies that the first o¡der correction of the surface impedance is

already taken into account for spherical conductors.
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4.4 Applying Galerkin's Method for Spheres

Numerical results for power losses and forces for spheres are also evaluated choosing /-(ú)

and w"(t) to be functions consisting of three constrained pulses [5] as shown in Fig. 4.9. The

Figure 4.9: Expansion function consisting of three constrained pulses.

three pulses of each f*(0) and w"(0) are taken with the peak values of the side pulses equal

to half of the peak value of the middle pulse. Then, the matrix element l,r- is expressed as

In* : To,,*, * 1(o*,*, * A.-,,*, t An"*, + A,,*") *l(o,,*, * An,^, * An *, + A,"*")

(4.12)

where Anr*o : Enr*o - Z"Hno*o, Enr*o and Hnn*, being the electric and magnetic field

intensities on the sphere su¡face at the center of the z-th pulse of w"(0) due to the k-th pulse

of J*f*(0); 'i,lç : I,2,3. Enn*u aîd Hnn^o are calculated as in the previous case where

rectangular basis functions and impulse functions are used.The column matrix element g,, is

expressed in the form

e, : Ë !ro"^, * i(o,-,* o"^) (4.13)

where A"nt : Z"H*r - Ernu, E"nu and I{"rro being the electric and magnetic field intensities

on the center of the k-th pulse of w"(0) due to the s-th inducing turn. Table 4.2 compares the
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number of basis functions required to obtained the same accuracy implementing Galerkin's

method and the point matching procedure for a sphere of radius ro :25 cm at the frequency

8 kHz, with l/ : 3, tanþ : 0.4, df\ : 0.25, ùfh: 0.6 and rsf h :0.5. The number of

basis functions consisting of one rectangular pulse required to achieved the same accuracy has

to be increased to about twice the number of basis functions consisting of three constrained

rectangular pulses.

Table 4.2: Compa,rison of basis functions required for

the same accuracy of Galerkin's solution and the point

matching solution for SI integral equations.

Number of basis

functions in

Galerkin's method

Number of basis

functions in point

matching method

10 20

15 31

20 39



Chapter 5

Integral Equations for Prolate
Spheroids

Integral equations are formulated for prolate spheroidal conductors in the presence of current-

carrying turns. These inducing turns are placed axisymmetrically. The system of orthogonai

curvilinear coordinates of the prolate spheroid is employed for analyzing the system considered.

The first section describes the prolate spheroidal coordinate system. The evaluation of

electric and magnetic fields in prolate coordinates produced by inducing turns is described in

section 5.2. The SI and PC integral equations a¡e solved using both the point matching and

Galerkin's methods. Numerica"l results are compared with available experimental data. The

accuracy is improved using a finer mesh. In the last section, results f¡om the SI and the MSI

integral equations axe compared v/ith experimental data.

5.1 Introduction to Prolate Spheroidal Coordinates

The prolate spheroidal coordinates (q,Ë,ó) are shown in Fig. 5.r. ,ur,ug and u6 are the unit

vectors oriented in the increasing sense ofthe respective coordinates. f: (6 is the equation of

the surface of the prolate object. 4 changes from -1 to *1 while { varies f¡om *1 to infinity.

c is the semi-focal distance.

The coordinates of the prolate spheroids [1] are related to the rectangular coordinates

4L
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Figure 5.1: Prolate coordinate system.

(x,y,z) by

* : 
"t/ 

(! - ,t')(€' - L) 
"o, ó

a : "rftr - n\(€r]"in ô (5.1)

z : ctl€

The corresponding Lamé pa.rameters a,re

o,:"(ffi)''' n,:"(l:+)''' hø:",,ffi:Ð (52)

The semifocul length c is equal to 1@40 where a0, bo a¡e the semi-major axis and the

semi-minor axis, respectively.
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5.2 Electric and Magnetic Fields Produced by a Single

T\rrn in Prolate Spheroidal Coordinates

Consider a single turn carrying a sinusoidal current d whose coordinates arc n - 4" and

€ : €". Fbom(5.1), it is obvious that the radius of the turn b" is equal to cJ( -@@=\.
The quasistationary electric and magnetic fields are found at the observation point P in the

r-z plane having coordinates (rlo,€r,0). The vector length element of the circular turn at a

point (4", €",ó') is given by dl : -brsins'dS"uolb"cos$'d{uo,witlndl' : b"dó'.The position

vector of the observation point is expressed as r: r(tlp,€p,O)a*a(np,{o,0)uo*z(Tp,€p,0)u"

where functions r, y and z a,re (see 5.1)

x(qp,€p,0) : 
"r/(1 - rtB)G" - Ð

U(rlp,€p,0) : 0

z(rlp,tp,O) : utpËp.

The position vector of the source point / : bscos ó'ur+b"sinþ'uo * z'(rlr,€",ó')u, The

distance from the source point to the observation point R:lr- /1, is given by

The substitution of .R and d/ into (2.13) yields the vector potential. The tangential electric

field intensity E6 is found using (2.9). It is evaluated numerically by discretizing the turn into

-L elements as given in (5.4),

E1 - irpol 3 b"cos$¿aø:-"ËL (5'4)

where Óu: lU - 1). The above equation is modified to determine .Ð4 produced by a circular

strip whose coo¡dinates of its center line a¡e 4" and {". The width of the strip is hr"Lr¡", Lr¡"

being the incremental r¡ of the strip. It is assumed that the current density is concentrated
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on the center line of the strip. The result is

Eô: -
L

ju ¡tsJrhr"Lrl"

b"cosþ¿
(5.5)

ã ,/l*(rto, {r, 0) - b" cos óo)' + blsinz ú -f [z(r70,€p, 0) - z'(rt,, Ë", ó¿)]2

An expression for the magnetic flux density .B is obtained substituting Ã and dl x Rinto

(2.14). In order to evaluate .B numerically we discretize the turn into a number of .L elements

and, then,

2L

B(ro,€p,q :ry*å 
+ l{,r,,{o,0) - ",(11",€,,óù} "o,6ou,

* 
{n - 

r(rtp,6e, o)cos fr}*l
(5.6)

where R4: . The 4-directed

component of B is obtained by taking the dot product of (5.6) with the unit vector rh. rh.uo,

urt . th and tr, ' uz are listed in Appendix B. Hence, 4-directed component is

(5.7)

*€p

Equation (5.7) can be easily modified to determine B, produced by a circula¡ current-carrying

strip assuming the current density is concentrated on its center line.

5.3 Formulation in Prolate Spheroidal Coordinates

The prolate spheroidal coordinate system is used to formulate the integral equations for prolate

spheroidal conductors in the presence of a quasistationary magnetic field produced by coaxial

turns ca.rrying sinusoidal cu¡rents d as shown in Fig. 5.1.

The fdirected tangentia.l electric field intensity at the conductor surface is the sum of

the electric fields produced by the inducing turns and the induced currents on the conductor
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itself. Using (2.9), (2.L2) and (2.13) the total tangential electric field intensity is obtained as

where .R1 is the distance between a source point on a conductor surface and the observation

point in the r-z plane on the conductor surface, -Rr is the distance between a source point

on the k-th turn a,nd the observation point on the conductor. -R1 and -R¡ a¡e evaluated using

(5.3). Using (2.14) and (2.15), the tangential magnetic field intensity is expressed as

": fnl" iÏ
-1 0

.å'* { l
The relation between E6 and H, is

tå: 
-z'('ù'

(5.8)

(5.e)

(5.i0)

In the case of the simplest SI integral equations, Z"(n) is equal to the standard surface

impedance, 2". The MSI integral equations are formed by taking Z"(n) : Zs¡nod., where

the evaluation of the modified Z"*o¿ is given in section 5.5. As already mentioned, the in-

tegral equation based on the PC model is obtained forcing Eq to be nuII on the conductor

surface.

5.4 Solution of Integral Equations in Prolate Coordi-

nates

Integral equations are solved by applying the point matching procedure and converting them

into a set of linea¡ equations, It^^)[J*): [gn].The rectangular single pulse function and the
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Dirac delta function are chosen as the basis function and the weighting function, respectively.

This means that the current distribution on the spheroid surface is approximated by M coaxtal

circular strips, each carrying a uniformly distributed current [6]. The integral equation in

(5.10) is transformed into a linear equation with M number of unknowns, using (5.4), (5.5)

and (5.7). The matrix element l,r- is given as

t t jap,scz!q*{, 1ffi@jcosþ¿intntn+m:- 2L L R.",

z"(nòêLn^ { (5.11)
i:7

where fu"¿ is the distance from the center of the i-th element on the rn-th strip to the obser-

vation point on the z-th strip. 9,, is (see 5.12).

,NL

N,:WÐ¿T
&:1 i:7

_ryËn
k:t

R*¿

(t-n'r)(t'r-t)

where -R¡¿ is the distance from the center of the z-th element on the k-th turn to the observation

point. 1,,,, is evaluated treating the singula¡ities by using (3.12) and (3.13). All elements in

ll"*)and [g"] ut"foundbyenforcingEolH,t:-2"(n) atthecenterlineof eachstriponthe

conductor.

The prolate spheroid is discretized into circular strips such that the incremental4 for each

strip, 44, is the same for each strip. Then the width of the strips (hr\ù closer to poles

is wider tha¡r that of the strips closer to the equator. The resuits obtained discretizing the

surface into strips with same A4 are not accurate especially for the SI integral equation. This
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is why the conductor surface is discretized into strips with same width. The coordinates of the

center line of the rn-th strip, 4*, is calculated using (5.13) where strips are counted starbing

from the pole corresponding to r¡: -1.
1

(m-0.5) I hrdrt
-1 (5.13)

..6.''''-o'- 
-'-o'-

- 
Sl integral equat¡on

. -. PC integral equat¡on
. Sl analytical model

" PC analytical model
+

-.n''-':--l-
,t

++

dr /br

Figure 5.2: Norma^lized force versus d4ffu for aluminum prolate spheroids at 2 kHz, with
.ly':3, tanB:0.4, dl\:0.25,bsf as:0.6, and bo:2 cm: (I)bs/bl :0.5; (II)bolbL:0.75.

Numerica.l results both from the PC integral equation and the SI integral equation are

generated for prolate spheroids of major and minor semi axis 06 and b6, respectively, in the

presence of three coaxial turns connected in series and carrying a current /6. The th¡ee turns

a.re placed on the surface of a cone of opening 2þ, æ shown in Fig.5.1, the distance between the

plane of the lower turn and the spheroid center being d1. Power ioss in the prolate conductor

4tn

J 
o'o':

-1

+ o¡

+

c-¡
--ô

o

t!



48

-.''o- -'-'ù,
aö

+
'ã.

+

ôl
ù3 r.s
3

E.

0.5

Figure 5.3: Normalized
N : 3, tanB :0.4, d/bl

o.7
dt /bl

force versus fiffu for aluminum prolate spheroids at 2 kHz, with
:0.25, bsf as:0.8, and bo:2 cm: (Î)bslbr : 0.5; (II)b¡lbL: 0.75.

and the electromagnetic force upon it a¡e evaluated using (3.16) and (3.17).

The time-average force for prolate spheroids at a frequency of.2 kHz, with.lü : 3, tanB :

0.4, df\:0.25, bo:2 cm, with bsfh:0.5,0.75 andbsf a6:0.6,0.8 is plotted in Figs. 5.2

and 5.3, respectively. The force obtained from the SI and PC integral equations is in good

agreement with that from the analytical solutions for the SI and PC models. As e>rpected, the

experimental data are much closer to the results obtained from the SI integral equation. The

accuracy of the numerical results for the force has been increased by increasing the number

M of strips up to 20 and the number of strip elements on each inducing turn up to 40. in Fig.

5.4, the normalized force has been plotted for a frequency of 8 kHz, with ¡/ :3, tanþ :0.4,

df bL : 0'25, b6 : 2 cm with bslh : 0.5 for bsf as : 0.4 and 0.6. The depth of penetration

- 
Sl integral equation.-. PC integral equation

. Sl analytical model
o PC analytical model

1+
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c.¡
--o

ô

- 
Sl integral equation.-. PC integral equation

. Sl analytical model
o PC analyt¡cal model
+

Figure 5.4: Normalized force versus dLfU for aluminum prolate spheroids at 2 kHz, with
-ðy' : 3, tanB :0.4, dlbr:0.25, bsf h:0.5, and bo:2 cm (I)bsla0 : 0.4; (II)bslas: 0.6.

for aluminium at the frequency of. 2 kHz is about 1.8 mm. When the frequency has been

increased, the deviation of the PC model results from the experimental data and from the SI

model results has decreased.

The errors associated with the electric and magnetic fields at the observation point pro-

duced by the neighboring current-carrying strips are minimized by dividing the circular strips

into 10 sub-strips. Each sub-strip on the r¿-th strip has the same current density J*. The

total contribution from the rn-th strip is evaluated by summing up the individual contribu-

tions of the sub-strips on the nz-th strip, as described in chapter 4. Table 5.1 compares the

normalized power loss obtained from solving the PC integral equations using a fine mesh and

a coarse mesh. The su¡face has been discretized into 30 strips and each strip into 60 elements

dr/br
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for the coaxse mesh. Anaþical results a¡e also given for a frequency of 8 kHz, \Mith ¡y' : 3,

tanB:0.4,dlbL:0.25, bo:2cm,b¡f\ -0.5, d'1ffu: lwithbsfa6:0.1,0.5and0.9. It

is evident that the results obtained with a fine mesh are much closer to the analybical results

than results obtained with a coa,rse mesh as expected.

Table 5.1: Comparison of power loss obtained from PC

integral equations with a fine mesh and a coa¡se mesh

for prolate spheroids at 8 kHz, with N :3, tanþ :0.4,
dlb, -- 0.25, bs:2 cnr, bsfh:0.5, d4ffu: I.

bo/ao coarse mesh fine mesh Analfiical results

from PC model [1]

0.1 7.8042 9.9619 9.7680

0.5 8.344 8.2948 8.2339

0.9 6.7736 6.6537 6.6538

Galerkin's method has also been implemented, by choosing both the basis functions and

weighting functions to be three constrained rectangular pulses. The accuracy of the numerical

results obtained from Galerkin's method is higher. Namely, the number of basis functions

consisting of one rectangular pulse required to achieve the same accuracy has to be increased

to about twice the number of basis functions consisting of three constrained rectangular pulses

for spheroids with the same axial ratios between 0.4 and 0.8.

5.5 Modified Surface Impedance for Prolate Spheroids

The surface impedance of the prolate conductor is modified using (2.34). þ and 4 a.re the

principal curvature coordinates for a prolate spheroid and / and r¡ are equivalent to tu and u

in section 2.2. The curvature k, is determined by using its definition [3], [16],

,. €oJ6Ttor: ;lÏt urY. (5.14)



51

bheThen the curvature k6: (l{c1ffi-ffi@j}.Substituting k, and. k6 into (2.35),

modified surface impedance is evaluated àß Zs,nod: (l - p)2".

We have considered spheroids with va¡ious axial ratios, bo/oo:0.4;0.6;0.8 at a frequency

of 8 kHz, with .l/ : 3, tanþ - 0.4, dfh : 0.25, byfbL - 0.5, d,1ffu : 1, and bo : 2 cm.

Numerical results for the force from both the MSi integral equations and Si integral equations

are shown in Table 5.2. Experimental results a¡e much closer to results from the MSI integral

equation than those from the SI integral equations.

Table 5.2: Normalized force evaluated from SI and MSI

models at a frequency of 8 kHz with Iy' : 3, tanB :9.4,
dfbL : 0.25, bof h: 0.5, d,1f fu :1, and bo :2 cm.

bol ao Using Z" Using Z"*o¿ Experimental [1]

0.4 0.6706 0.6712 0.6774

0.6 0.6728 0.6734 0.6928

0.8 0.5891 0.5894 0.62t4



Chapter 6

Integral Equations for Oblate
Spheroids

In this chapter, we formulate integral equations for oblate spheroids in the presence of current-

carrying turns. The system of curvilinea¡ coordinates of the oblate spheroid is chosen for this

formulation.

The oblate spheroidal coordinate system is discussed in section 6.1-. The electric and

magnetic field intensities produced by a current-ca¡rying turn are found in oblate spheroidal

coordinates and numerical results from the PC integral equations and the SI integral equations

are compaxed with relevant analytical results.

6.1 Oblate Spheroidal Coordinates

In oblate spheroidal coordinates (rt,t,ó), the range of { is from 0 to infinity and the unit

vectors are uz,t øq and u¿ as shown in Fig. 6.1. The surface of an oblate spheroid is given by

the equation € : {¡. c is again the semi-focal length.

Oblate coordinates are related to rectangula.r coordinates by

52
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Figure 6.1: Oblate coordinate system.

,: "tF rt\(Ë, +L)"oró

a:"J(I-rt\(tr+Ð"¡nó

Z: C\t,

where the corresponding Lamé pa,rameters are

(6.1)

hó: 
"

(6.2)

c is equal to 1/ffi where a¡ and b6 axe the semi-minor and the semi-major axes, respec-

tively.

A turn carrying a sinusoidal current d whose coordinates a,re ,qs and {", has a radius

b" : ct/(L - nÐG? * 1). The electric field intensity and magnetic flux density produced by

the turn are calculated at the observation point (4o, {r,0) in the r-z plane. The position vector

of the observation point is given by r: r(rlpt€o,O)W * A(np,to,O)% * ,(rlo,Ëo,0)u, where

o,:"(?#)''' nu:"(?+)''' - q2)(t2 + r).
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n(r¡e, €n,0) : ,/ (t - qÐ(€B + t)

U(Itp,€p,o) : o

z(r¡p,tp,O) : 
"rto€r.

Thepositionvectorof thesourcepointis / :b"cosþ'uo*ô"sin ó'th*r'(qr,(r,þ')u,. The

vector element of the tu¡n is d,l : -b"sinþ'dþ'u," *b"cos ó'df uo.The distance between the

source point and the observation point is

Substitution of r? and dl into (2.13) yields an expression for the vector potential produced

by the turn. An equation for the tangential electric field intensity E6 is found using (2.9). The

turn is discretized into .L elements. .86 is evaluated numerically from an equation similar to

(5.4). Modifying this equation as in (5.5), the ta,ngential electric field produced by a current

carrying-strip, whose center line has the coordinates 4", Ç is computed numerically. The

distance vector from a point on the turn to the point P is

R:lr(no,6o,0) - b"cosþ'lu,-b"sinþ'uu*["(rto,€o,0) - z'(r1",€",d)]u,. (6.4)

We obtain an expression for the magnetic flux density at P substituting .R and d/ x J? into

(2.14). An equation similar to (5.6) is obtained for the flux density. The tangential component

of the magnetic flux density is obtained by using (4.10), (4.11) and (4.12) as

(6.5)

B, produced by a strip carrying a.n uniform current densit¡ whose coordinates of the center

line are ?s and f", is evaluated by replacing 1 in (6.5) with J"hr"Lr¡", where ./, and hr"Lr¡" are
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the current density on the strip and the width of the strip, respectively. Aq" is the incremental

4 for the strip s.

6.2 Formulation of Integral Equations in Oblate Coor-

dinates

Integral equations are nor¡r formulated for a oblate spheroidal conductor in the presence of a

quasistationa^ry magnetic field produced by sinusoidal current-ca.rrying coaxial turns, as shown

in Fig. 6.1. Currents flowing in fdirection is induced on the conductor.

The total tangential electric field intensity at the conductor surface produced by the in-

ducing turns and the induced currents is found using (2.9), (2.12) and (2.t3), namely,

1

e- , _ _iu tto l ", . [ [2" J"ê ylGlTñel + Ðdó' d,n'

"o-- 4tr l*'I lo .q,
-1

o*+Ë,rlW)
k:t 0

(6.6)

(6.7)

where .R1 is the distance between a source point on the conductor surface and the observation

point, and R¿ is the distance between a source point on the ,t-th turn and the observation

point. -Rr and .E¡ are expressed using (6.3). The totai tangential magnetic field intensity is

obtained in the form

",:L*1, i f J"{uo(d) x Rr}cz y@ r¡1@ 4¡¿6' ¿r'
Ë1

-t

The integral equation is formulated relating E6 and f/, through

"+ : -2,(n).Itrt
(6.8)
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The PC integral equation is obtained forcing.Ep to be zero. The SI integral equation is formed

with Zr(r) : Z" andthe MSI integral equation is obtained taking Z"(n) : Zsmod., where Z"*od,

is given in section 6.3.1.

6.3 Numerical Results for Oblate Spheroids

A point matching procedure is again employed to evaluate numerically the unknown current

density. The conductor surface is discretized into M circular coaxial strips, each carrying a

current of density J*. The total tangential electric or magnetic field intensity at a point on

a strip is obtained from the contributions of all the strips and of the inducing turns. These

contributions axe evaluated as elaborated in section 6.1. A set of linea¡ algebraic equations,

U"*llJ*l : lg"l is obtained by satisfying (6.8) at discrete points on the surface. The matrix

element lr* is found to be

1t ¡u¡.tsc2Lrl*!Lnmln#m: - -- 2L L
i:l

cosS¿ , Z"(q,)êAr¡*

þ-+rR""¿ 2L

-q"æ:H#F'F' {r*, - cn*€o\ cos6o (6.e)

. {An-ft12,c*t,}]
where R""¿ is the distance from the center of the z-th element on the rn-th strip to the obser-

vation point in the r-z plane on the n-th strip. g,, is e>ipressed as

s,:iry#åtÐW
- ryf r- 1frrixe; *'r þ_ +l-r" F*,u n{ ae. - r-n } 

cos /¿ (6 i0)

where .B¡¿ is the distance f¡om the center of the ¿-th element on the k-th turn to the observation

point on the n-th strip. The diagonal element 1,,,, is evaluated using (3.12) and (3.13), as
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described in chapter 3. When the conductor surface is divided into strips such that Lr1* is

the same for all of them, the width of the strips closer to the poles are higher than that of the

strips near to the equator as in the case of prolate spheroids. In order to improve the accuacy

of the results, the conductor surface is divided into strips of equal width using (5.13).

- 
Sl integral equation

. -. PC integral equation
. Sl analytical model

" PC analytical model

Figure 6.2: Normalized force versus fuf fu for aluminum oblate spheroids at 8 kHz, with Iy' : 3,
tanB :0.4, d/U:0.25, bsf as:1.25 and bo:2 cm: (I) bsfh:0.5; (il) bsf bt:9.75.

Numerical results are generated from both the SI integral equations and PC integral equa-

tions for oblate spheroids of minor and major semi-axes øs and ós, respectivel¡ in the presence

of the magnetic field produced by a system of three coaxial turns connected in series and ca¡-

rying a current 16. The turns a¡e placed as shown in Fig. 6.1. The distance between the plane

of the lower turn and the spheroid center is d1. The power loss and the electromagnetic force

upon oblate spheroids a,re computed using (3.15) and (3.16).

e.ì
e-o

ol-

dr /br
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- 
Sl integral equation.-. PC integral equat¡on

. Sl analytical model
o PC analvtical model

dr/br

Figure 6.3: Normalized force versus d4f fu for aluminum oblate spheroids at 8 kHz, with ly' : 3,
tanB:0.4, dlU:0.25,bsf as:2 andbo:2 cm: (I) b6f\:0.5; (II) bsffu:g.75.

The time-average force for oblate spheroids at a frequency of 8 kHz, with Iy':3, tanþ:

0.4, dl\ -- 0.25, bo : 2 cm with bsf U :0.5;0.75 and bsf as : L.25;2 is plotted in Figs. 6.2

and 6.3, respectively. The force obtained from the SI and PC integral equations is in good

agreement with that from the analytical solutions for the SI and PC models. The oblate

spheroidal surfaces have been discretized in 30 strips and each strip into 60 elements.

Errors which a¡ise due to the fact that the current density is assumed to be concentrated

on the center line of the strip are minimized using a fine mesh.Each strip is divided into

10 sub-strips which carry the same current density. The contribution to E6 and H, at the

observation point by the r¿-th strip is found by adding up individual contributions from the

c.l
do
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sub-strips on the rn-th strip. Table 6.1 compares pov/er loss evaluated using the PC integral

equationforoblatespheroidsatSkHz,v¡ith¡/:3,tanþ:0.4,dfh:0.25,bs:2cmand

bsf U : 0.5, for different ratios of. fif \ and bsf a¡. The number of strips is M :30 and each

strip has 60 elements. The results obtained with the fine mesh are closer to the analybical

solutions.

Table 6.1-: Comparison of normalized power loss ob-

tained from PC integral equations with a fine mesh and

a coaxse mesh for oblate spheroids at 8 kHz, with N : 3,

tan B : 0.4, dlbL : 0.25, bo : 2cm.

boloo ùlbt Coarse mesh Fine mesh AnaJybical results

from PC model

1.25 0.6 6.00 5.93 5.67

t.2 L.78 7.75 1.55

5 0.6 5.22 5.t4 5.11

L.2 1.31 1,.27 L.28

6.3.1 Modified Surface Impedance for Oblate Spheroids

The coordinates / and 4 are the principal curvature coordinates for oblate spheroids, as in

the case of prolate spheroids. The curvature k4 andk, a,re [3], [16]

ltô: {c1ffiffi@¡!¡' (6.11)

The modified surface impedance, Z"*o¿ is equal to (7 - p)2", where p is found from (2.85).

Table 6.2 compares numerical results obtained from the SI integral equations and the MSi

integral equations for the normalized forces upon oblate spheroids at a frequency of 8 kHz,

with l/ :3,tanþ:0.4, dfh:0.25,b6ffu:0.5 and dlffu:0.6 and different bsf as and

ó6. The results show that the influence of the modification of the surface impedance increases

, €oJ&+Io': 
M+ rrlw'
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when the dimensions of the spheroids reduce or the ratio bsf a6 increases.

Table 6.2: Comparison of normalized force obtained

from SI and MSI integral equations for oblate spheroids

at 8 kHz with ¡/ :3, tanþ :0.4, dfbL:0.25, bof\:
0.5 and fifbr:9.6.

bolao b6 (cm) SI integral

equation

MSI integral

equation

1,.25 2 0.6006 0.6003

10 0.6368 0.6368

5 2 0.4i03 0.4071.

10 0.4472 0.4470



Chapter 7

Conclusion

Integral equations have been formulated using the PC and the SI models for a¡bitrarily shaped

axisymmetric conductors in the presence of quasistationary electromagnetic fields produced

by coaxial turns carrying current sinusoidally va.rying with time. Numerical results have

been generated for spherical conductors, prolate spheroidal conductors, and oblate spheroidal

conductors. The surface integrals are taken in principal values and their singularities vrere

evaluated by considering sepa.rately the contributions of a rectangular self-patch. A formula

was derived to evaluate the electric field intensity at the center of the self-patch. Electro-

magnetic forces upon conducting bodies considered have been found in a simple manner by

evaluating the total force on the inducing turns.

For spherical conductors, integral equations have been formulated employing spherical

coordinates. They were solved by applying the point matching and Galerkin's methods. It

is noticed that the number of basis functions consisting of one rectangular pulse required to

achieve the same accuracy has to be increased to about twice the number of basis functions

consisting of three constrained rectangular pulses for the spheres considered. Normalized

power loss and force for different spheres were evaluated both from the PC and the SI integral

equations at different frequencies, and they rvere compaxed with exact anaþical results. The

poìver loss obtained from the SI integral equatiors is closer to the exact anaþica.l solution

61
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tha¡r that from the the PC integral equations for spheres with the ralio rsf 6 higher than 20.

Errors associated with the power loss computed from the integral equations increase with the

decrease of. rs/6. But the SI integral equation produces more accurate results than the PC

integral equation for forces upon spheres even when rsf6 is less than 20. For the spheres

considered, the accuracy has been improved by employing a mesh where neighboring strips to

the observation point had been subdivided. The same accuracy can be achieved by doubling

the number of strips and the number of elements on each strip, but with increased computing

time.

Power loss and electromagnetic force upon prolate spheroids in the the presence of quasis-

tationa,ry magnetic fields have been determined by solving both SI and PC integral equations

which were formulated in prolate spheroidal coordinates. Normalized forces obtained from the

PC and SI models ìMere compared with experimental data for prolate spheroids with differ-

ent axial ratios and with the ratio of the smallest semi-axis to the depth of penetration being

more than 10. The force calculated from the SI integral equations is closer to the experimental

data. The normalized power losses for prolate spheroids with axial ratios below 0.2, obtained

from the PC integral equation when employing a coarse mesh, deviate significantly from the

analybical results obtained by using the PC model. The numerical solution of the integral

equation has been improved significantly by employing a finer mesh. Normalized forces eval-

uated from the MSI integral equations have been compared with those obtained from the Si

integral equations for various prolate spheroids. Numerical experiments performed show that

the standard SI integral equation is su-fficient for many practical applications.

Power loss and electromagnetic force have also been evaluated for oblate spheroids with

various axial ratios. They a¡e in good agreement with analytical results. The compa.rison

between the performance of the integral equations based on the SI and PC models allows one
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to decide which of the two integral equations is to be used for va¡ious engineering applications

in terms of the desired accuracy.

7.L F\rture 'Work

Techniques for improving the accuacy of the local quantities evaluated from the SI integral

equations for objects with the ratio of the smallest dimension to the depth of penetration

below 20 are to be studied further.

We have discretized the conductor surfaces only into rectangular elements. Instead, this

discretization can be performed by employing triangular elements which are expected to give

better results. The dimension of the elements closer to the poles can be reduced in order to

reduce the errors introduced near to poles.

In this dissertation, we have considered only conductors with smooth bounda¡ies. it is

important to compare results obtained f¡om the PC and SI integral equations for conductors

with sha,rp edges and vertices.



Appendix A

Electric Field Intensity of a Self-Patch

The electric field intensit¡ produced by a rectangular current- carrying element, at its center

is found anaþically. The rectangular patch of dimensiors g'-by-h' ca¡ries a constant current

density ..I" as shown in figure 4.1. Using (2.L2) and (2.9), the electric field intersity at the

center of the patch is
gt /2 ht /2

,,:-iulr" ltffiauar.00

(A.1)

The direction of E' is in the u-direction. The integral with respect to ø is solved according to

formula 200.01 in [2] as

g'/2

,, _ _iapoJ,- ¡ ,n(h'lz+ IFT@EF\o*
7t /*\ r )**

0

g'/2

_ _iutroJ" ¡ ,n(tl*+ '/@WTúù\.,7r / 
*\ zlh' )**

we make the substitution Í : Lf z and ¿a : -(rlz2)dz into (4.2), which yields

2/s,

E,:luþer" i;^ew)-
with [2]

. /x+,,,@Tæ\ .--,,r
'"\ o /:tton^-

where a is a positive constant, (4.3) is converted into

ñ, jrt"oJ"'/f't.r-r z,D:-J"rrtnn 
?¡yaz.7t 

*un

(4.2)

(A.3)

(A.4)

(A.5)
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Figure 4.1: Rectangular self-patch

The above integral is solved using formula737.2 in [2]. The result is

p, _ _iur.roJ, [1.irrt-, "h' *n' ,n(z/n'+ tffiFP¡1"''
" L;"""' 2-2'"\ , )l*. (A.6)

when z ---+ æ1¡r(z/n'+t/@) - o. Applying the I'Hopital rule' it can be shown that'\"/
l.lzsinh-L(zh' l2) ---+ 0 when z ---+ æ. Then, .E/ is obtained in the form

B' : -iu tlor" 
[u,t*-' i . + ^(W)]

(4.7)



Appendix B

\Iector Products in Different
Coordinate Systems

8.1 Spherical and Rectangular Coordinates

A position vector of a point P with rectangula.r coordinates (*,A,t) is given by r : tuh +

Auo* zu". The unit vector z6 directed in the increasing sense of the spherical coordinate d is

expressed as

7ôr tlôr 0u ôz I
"r 

:, 
ae 

: il6ga+ ðo''h* æ"'l'

tlðr õu 0z'l
,,"1ø* * ôr"'* ar"")
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(A.1)

Then

1ârsin 0cosó
114 ' ?4 : ------ã;-i : COS ä COS @TOU

1ôrsindsinó1I0.Ua:, ôe 
:COSdSm@

L ôrcos 0 .?14'?I": --: -Sl¡1flToa

(A.2)

(A.3)

(A.4)

8.2 Prolate Spheroidal and Rectangular Coordinates

The relation between (r,y,r) and the prolate spheroidal coordinates (q, €, ó) has been given in

chapter 5. The unit vector

tôr,: ,ru, (A.5)
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where å,n is the Lamé parameter as described in chapter 5. For ó:0, we obtain

Lðr taþ1ffij)
qn .+: 

--h, ôn hn 0rl

rh''ua: !*^: o
h, örl

1' ôz t ô("n€) . [T1'th' u": lrrôn: Ih arr : <l ç:4

(A.7)

(A.8)

(A.6)

(A.10)

(4.11)

(A.12)

8.3 Oblate Spheroidal Coordinates and Rectangular Co-
ordinates

The 4-directed unit vector in oblate spheroidal coordinate (ri, €, d) is

7ôr llîn ðu ôz I

' 
: 

,, ur: rhlar* * ar''h * ar"") (A.e)

where h, : 
"J€' I n'¡uT=fi. The relatiorship between (2, y, z) and, (rt,€,ó) are given in

Chapter 6. When ó:0, we have

1, ðuuq.us: ht:,
I õz _ t 0(qÐ :rhr7q- h, ôq -sþ'?t'":

€2+1
PTæ
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