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Abstract

Surface integral equations satisfied by the induced current density are formulated for axisym-
metric solid conductors by applying the surface impedance model and the perfect conductor
model. Their performance is investigated employing spheres and, also, prolate and oblate con-
ducting spheroids with a large range of geometric parameters at different frequencies. Surface
integral equations are also formulated using the modified surface impedance with first order
curvature correction.

Integral equations are solved by applying a well known numerical technique, namely the
method of moments. Different expansion functions and different weighting functions are em-
ployed to improve the accuracy. Numerical results generated are compared with available
analytical results and with experimental data. The effects of employing different surface dis-
cretizations are presented. The range of validity of the surface impedance integral equations

is also investigated.
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Chapter 1

Introduction

1.1 Overview and Objective

The behavior of electromagnetic fields is completely described by Maxwell’s equations and the
associated boundary conditions. Solving electromagnetic field problems using exact analytical
methods is impossible for most engineering applications. Many numerical methods, in both
the time and frequency domains, have been developed for the analysis of engineering electro-
magnetic problems. The method of moments (MoM) has become one of the most important
numerical methods using the integral equation approach in computational electromagnetics.

In the MoM, a functional operator equation describing the physical problem is transformed
into a matrix equation by, first, approximating the unknown functions using a set of expansion
functions with a set of unknown coefficients and, then, performing a scalar product of the
operator equation with selected testing functions [5]. The MoM has been enriched by many
researchers and new features have been added over the last three decades. In this thesis, MoM
is applied to the quasistationary field analysis.

Kirchhoff developed an integral representation of electromagnetic fields in terms of field
producing sources, which are volume and surface distribution of current and charges [15].

An integral equation is formed by applying relevant boundary conditions, via the Kirchhoff
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integral representation. When the unknowns are volume source distributions the associated
integral equation is called a volume integral equation, whereas when the unknowns are surface
source distributions or equivalent surface distributions the associated integral equation is
called a surface integral equation (or boundary integral equation) [11] [12]. In wave scattering
problems, a volume integral equation is formed by replacing obstacles with free space and
equivalent sources. In many cases, scattering problems are modelled by a boundary integral
equations in terms of electric and magnetic currents if the scatterer is homogeneous [8]. The
integral equation is converted into a matrix equation by applying MoM.

Boundary integral equations are used for solving a wide range of electromagnetic field
problems. They have the advantage of requiring less computation than methods based on the
discretization of the entire conducting region. In general, the accuracy of solutions of these
integral equations is higher than that of solutions of corresponding differential equations. This
is due to the fact that errors at various points may partially cancel each other in the summation
process of the integral methods, whereas, in general, errors propagate along successive steps
when using numerical differential methods. The perfect conductor (PC) model is commonly
used in the formulation of surface integral equations for solid conductors at high frequencies.
It is a reasonable approximation because at high frequencies electromagnetic fields confine
to the outer surface of good conductors. The validity of this model has been analyzed in [1]
for spheroids of various axial ratios by comparing analytical results with experimental data.
At lower frequencies, the electromagnetic field penetrates into conductors and the PC model
is not a good approximation. The standard surface impedance (SI) model is used at lower
frequencies in the formulation of various finite element [9] and boundary integral equation
[14] techniques. The available literature about the application of the SI model to integral

equation formulations is sparce, specially at low frequencies (as in eddy current problems,
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etc..). On the other hand, there are many references dealing with the application of the SI
impedance model at higher frequencies (as in wave scattering problems, etc..). Leontovich
and others have modified the surface impedance introducing a first order curvature correction
and Mitzner [10] has corrected it.

In this thesis, surface integral equations for axisymmetric conductors in the presence of
quasistationary magnetic fields are formulated using both the SI and PC models. These in-
tegral equations are useful in certain applications such as induction heating, heat treatment,
electromagnetic levitation and other eddy current problems. The integral equations are solved
numerically for the unknown current density by applying different expansion functions and
weighting functions in order to analyze their accuracy. Power losses and electromagnetic
forces are derived from the induced current determined from SI and PC integral equations,
and are compared with available analytical results and with measured data for various con-
ducting spheres, and prolate and oblate spheroids in the presence of magnetic field produced
by current-carrying turns. Numerical results obtained from the modified surface impedance
(MSI) integral equation are compared with those determined from the SI integral equation.
The minimum number of necessary unknowns for a desired accuracy is also determined for
the spherical and spheroidal conductors. The range of validity of the SI integral equations is

also investigated.

1.2 Thesis Outline

Chapter 2 describes theoretical aspects which are useful in the formulation of integral equa-
tions. Electromagnetic fields are represented in integral forms and their evolutions are given
starting from Maxwell’s equations.The SI model is derived using the phenomena of incidence

of plane waves on an conducting semispace. A mathematical explanation for MOM is also



presented.

In chapter 3, the formulation of integral equations for arbitrary shaped conductors is
presented. They are solved applying a point matching procedure. A convenient way of defining
the surface of the arbitrary shaped conductors is given. The integrals involved are taken in
principal values and the evaluation of their singularities is elaborated. The electromagnetic
force upon conducting bodies is evaluated in a simple manner. Chapter 3 also explains the
calculation of power loss in conducting bodies numerically.

Chapter 4 is dedicated to formulate integral equations for spherical conductors in the
presence of magnetic fields produced by current-carrying turns. Formulas are derived in
spherical coordinates to numerically evaluate quasistationary electromagnetic fields created
by a single current-carrying turn. The SI and PC integral equations are solved applying
the point matching procedure. The power losses and electromagnetic forces are evaluated at
different frequencies from both the SI and PC models for spherical conductors with different
ratio of sphere radius to the depth of penetration and compared with exact analytical solutions.
The range of validity of the results from the SI integral equations is also investigated using
spherical conductors in chapter 4. The accuracy of the results is improved by employing a
finer mesh. Galerkin’s method is also implemented using three constrained rectangular pulse
functions.

Integral equations formulated in spheroidal coordinates are given in Chapter 5. An in-
troduction to the prolate coordinate system is presented at the outset of the chapter. It is
convenient to use the prolate coordinate system in the formulation of integral equations for
prolate spheroidal conductors because tangential field components can be found easily. Power

loss and force are evaluated using the point matching and the Galerkin method for prolate
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spheroidal conductors with different axial ratios and compared with corresponding analyti-
cal results and available experimental data. Numerical results evaluated from MSI integral
equations are also presented.

In Chapter 6, the oblate coordinate system is used to formulate integral equations. Power
loss and force are evaluated for a wide range of oblate spheroidal conductors from the SI
and PC integral equations and compared with relevant analytical results. Chapter 7 contains

conclusions and suggestions for future work.



Chapter 2

Background Theory

In this chapter, the representation of electromagnetic fields in the integral form is discussed
starting from Maxwell equations. The concept of the magnetic vector potential is used in the
representation of electric field in integral form. Quasistationary electric and magnetic fields
produced by a current-carrying turn in free space are given both in the form of integrals and
as summations, which are used to calculate the fields numerically. The surface impedance
and the skin depth are described at the end of this chapter. The modification of the surface

impedance for smooth boundaries is also explained.

2.1 Integral Representation of Electromagnetic Fields

Electromagnetic field quantities, whenever they have continuous derivatives, obey Maxwell

equations, which in the frequency domain are

VxH=jwD+J (2.1)
Vx E=—-jwB (2.2)
V-D=p (2.3)
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V-B=0 (2.4)

where F is the electric field intensity, H is the magnetic field intensity , J and p are the electric
current density and the electric charge density respectively, and w is the angular frequency.
The field intensities E and H are related to the electric flux density D and magnetic flux

density B as

D=¢cFE (2.5)

B=yH (2.6)

where € and g are the permittivity and the permeability of the linear isotropic media.

It is a well known vector identity that the divergence of a vector which is itself the curl of
another vector is zero and so satisfies (2.4). Helmholtz theorem states that a vector is uniquely
defined if, and only if, both its curl and its divergence are specified. Thus, we can define a
new vector A which we call the magnetic vector potential as a vector whose divergence is zero

and whose curl is B,

VxA=B V-A=0. (2.7)

Substitution of (2.7) into (2.2) yields an expression for E in terms of A and of a scalar
potential ¢,

E=—juA—V¢. (2.8)

In some eddy-current problems, only the induced component of E is of practical importance,
i.e.

E=—jwA. (2.9)

Displacement current jwD is negligible as compared with J for quasistationary fields. In



regions with uniform permeability , (2.1) is written as

V x B = pud. (2.10)

Figure 2.1: Volume current distribution.

With the vector identity V x (V x A) =V (V- A4) — (V- V)A and equation (2.7), (2.10)
yields V2A = uJ. For an unbounded homogeneous space, the well known solution of this

equation is [13]
_ k[ J(x)d
O (2.11)
14

where R = r— 7/, 7, ¥ being the position vectors of the observation point P and the source
point, respectively, and dv’ being the volume element. The volume current density is con-
strained in a finite volume V, as shown in Fig. 2.1. A surface current density Js on a surface

S in a homogeneous unbounded space produces
_ [T )ds'
A(r) = y f 7 (2.12)
s

where ds’ is the surface element on S, as shown in Fig. 2.2. In a similar manner, the vector
potential in an unbounded homogeneous space produced by a wire carrying a current [ is

given by

pl [dl

T
C

A(r) (2.13)



Figure 2.2: Surface current distribution.

Figure 2.3: Line current.

where dl is a vector length element in the direction of the current along the wire, as depicted

in Fig. 2.3. Taking the curl of both sides of (2.13), we have the relation

_pl [dIxR

B(r) =1 / = (2.14)
c

Similarly, the expression for B in terms of J; is

B(r) = Z#?r / -‘L(—Tgfﬁds'. (2.15)
S

2.1.1 Induced Electric Field due to a Single Current-Carrying Turn

In this section, the electric field produced by a single current-carrying turn in free space is
obtained since it is needed in the solution method by integral equations in chapter 3. The

circular turn has a radius b; and is located in a plane z = z,. Rectangular and cylindrical
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P (p,0,z)

Figure 2.4: Current-carrying turn in free space.

coordinate systems are used in the solution method. From symmetry, it is known that in
cylindrical coordinates the vector potential A has only a component A4 in the azimuthal
¢-direction and its magnitude is independent of ¢. Therefore, for simplicity, the point P is
chosen in the semispace ¢ = 0,  and z coordinates of P being p and z respectively.

The position vectors and 7/ are expressed as pu, + zu, and b, cos ¢'uy + b, sin ¢'w, + 25,
respectively, where u;, w, and u, are unit vectors in z, y and z directions and the vector length

element is df. Then

R=lr—1]= \/(p~bscOS¢’)2+b§sin2¢'+(z_zs)z

Substituting df' and R in (2.13), we have

Ay = u_oI bs cos @'do

27
. 2.16
4r 0/ P2+ b2 —2pbscos ¢’ + (2 — 2)2 (2.16)

This integral has to be solved numerically. The turn is divided into a number of L elements

and R is considered to be the distance from the center of elements to the point P. Equation
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(2.16) is expressed as

ol & by cos{2r (i — 1)} 2¢

I \/p2 + 02 — 2pbscos{ZE(i — 1)} + (2 — 2,)?

(2.17)

Ay

As shown earlier, the electric field intensity is related to 4 by (2.9). Since A has only a
component in azimuthal ¢-direction, E has also only a component Ey; in ¢-direction. Then,
from (2.17) and (2.9) we obtain

_jwugI L bs COS{%E@ - 1)}27”
ar I \/p2 + b2 — 2pbscos{Z (s — 1)} + (2 — 2,)?

Ey= (2.18)

The electric field intensity AE, at P produced by a narrow circular strip having a uniform
surface current of density J, can be obtained from (2.18) by assuming that all the current is
concentrated on the center line of the strip. For a circular strip of width Aw located such

that its center line is coincident with the current carrying turn in Fig. 2.4, we have

_ jwpJsDw L bscos{¥ (i — 1)} 3£
4m i=1 \/,02 + b2 — 2pbg cos{ZE (i — 1)} + (2 — z,)?

AE; = (2.19)

2.1.2 Magnetic Field due to a Single Current-Carrying Turn

The magnetic field produced by a circular current-carrying turn in free space is also needed in
the formulation of ST and MSI integral equations for axisymmetric systems. Equation (2.14)
developed in section 2.1 is used to compute the quasistationary magnetic flux density at P.
With df = —byd¢’ sin ¢/, + bsdep’ cos ¢'u, and R = (p — b, cos ¢')uy, — by sin ¢'uy, + (2 — 2, ),

as before, we have
dl x R = by(z — z,) cos ¢'d¢'u, + bs(2 — 2,) sin ¢'d¢’uy + (b2 — pb, cos ¢')dd'u,.

Substituting in (2.14) yields

21
5 kol / [bu(z = 28) cos s + (B2 — pbs cos &) u,)dg

dm [0? + b2 — 2pbscos @' + (2 — 2,)?]3/2
0

(2.20)
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B is calculated numerically by dividing the turn into a number of L elements as described in

the previous section. Hence, the integration in (2.20) is converted into a summation, namely

B= ol i [bs(2 — 25) cos dsug + (b2 — pbs cos ¢;) u,) 2=

47 [0% + b2 — 2pbs cos ¢; + (z — 25)?]3/2

i=1

(2.21)

where ¢; = 2£(¢ — 1). Again, like in the previous section, the magnetic flux density AB at P
produced by a narrow circular strip having a uniform surface current of density J, and width

Aw, located with its center line on the circular turn, is

_ poJsAw i [bs(z — 25) cOS sy, + (b2 — pbs cos ¢;) u,) 2=

AB
Ar [0 + b2 — 20b, cos §; + (2 — 2,)%/2

(2.22)

2.2 Surface Impedance

The concepts of surface impedance and skin depth or depth of penetration are often used in
the literature [4], associated with high frequency propagating electromagnetic waves though
they are also used in quasistationary field problems. These concepts are introduced based
on the behavior of time-harmonic electromagnetic fields in linear, homogeneous and isotropic
media. Combining the Ohms law J = ¢ E, where o is the conductivity in the medium, with

(2.5) - (2.1) and (2.6) - (2.2), we obtain
V x H= (0 + jwe) E (2.23)

and

V x E=—jwpH. (2.24)

The substitution of (2.23) in (2.24) after taking curl both side of (2.24), gives

VxVxE=KE (2.25)
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where k = /—jwpu(c + jwe) is called the wave number of the medium. k is usually written
as

k=k —jk"
where %', the real part of k, is the phase constant and k”, the imaginary part of k, is the

attenuation constant. In a source free region equation (2.25) becomes
V:E +K*E=0. (2.26)

Consider F to have only an £ component independent of z and y. Then (2.26) reduces to

% + k*E, = 0. (2.27)

This equation is the one-dimensional Helmholtz equation whose solutions are linear combina-

tions of e’** and e~**. Consider only e~** which gives a forward travelling wave. Then,
Ex = Eoehjkz = Eoe_k”zenjklz (228)

where Ej is the amplitude of E, at z = 0. The associated magnetic field intensity of E, is
obtained from (2.24) and has only a y component, namely

— FBo e _ —k—Ex. (2.29)
wy Wi

Hy

For good conductors o is much greater than we so that k is approximately equal to
v/—jwpo. Then k' and k" are equal to y/wuo/2. Thus , the attenuation of electromag-
netic field penetrating into a good conductor is very high. For example, a 10 MHz wave would
attenuate 97.89 percent in 0.1 mm of travel in aluminum. The field is practically constrained
in a thin surface layer. This phenomenon is known as skin effect. The distance in which a
wave is attenuated to 36.8 percent (1/e) of its initial value is called the skin depth or depth

of penetration 6. Thus,

==y e (2.30)
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For example, the depth of penetration in aluminum at 8 KHz is approximately 0.92 mm.

On a flat surface of a good conductor, the ratio of E, to H, is equivalent to the standard
surface impedance, Z,, when the wave is travelling normal to the conductor surface. According
to (2.29), Z, is equal to wu/k. This means that the tangential components of electric field

and magnetic field on the conductor surface are related by
nx E=—-Zmnx (nx H) (2.31)

where n is the inward normal unit vector to the surface. For an infinite conducting plane,

The relation between Z, and the ¢ is,
Zy= (2.32)

Even though (2.32) is strictly true for an infinite conducting plane, it can be used for conducing
surfaces as well, provided that dk, and 6k, are much less than one, where k, and k,, are the
principal curvatures. v and w are the principal curvature coordinates, with u, X u, = n
where u, and w, are unit vectors along the curves with constant v and w, respectively.

For finite radii of curvature, Leontovich has presented a first order curvature correction

term in (2.30) and Mintzner [7] [10] has corrected it as

E,=(1+p)ZsH, (2.33)
E, = —(1-p)Z:H, (2.34)

where
p=0.25(1+ 5)0(ky — ky). (2.35)

Equations (2.33) and (2.34) are valid for any smooth surface.
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2.3 Perfect Conductor Model

As discussed in the previous section, electromagnetic fields do not penetrate deep into con-
ducting metals, especially at high frequencies, being confined to a very thin layer. In scattering
problems, this phenomenon is approximated, in general, as fields interacting with perfect con-
ductors because no electromagnetic field can exist inside perfect conductors. In the PC model
Z is considered to be zero. In other words, tangential electric field on the surface is equal
to zero. The tangential magnetic field intensity on the surface is equal in magnitude to the

surface current density induced.

2.4 Method of Moments

Consider an inhomogeneous linear equation L,(f) = g where L, is a linear operator, g is
known and f is unknown. To determine f, it is expanded in a series of functions fi, fo, f3, ...

as

M
f = Z Jmfm (2'36)

m=1

where Jy, are constant coefficients. fn are called expansion functions or basis functions [5].
M
Considering the linearity of L,, we can write Lo(f) = g in the form > JpLo(fm) = g- Then,
m=1
the inner product of it with selected weighting functions w, (w;, ws, ws,..) in the range of L,

is taken on both sides, yielding
M
Y - Im(wn, Lo(fm)) = (wn, g) (2.37)

m=1

From (2.37), a set of linear equations is obtained and written in matrix form as

[tnm) [Jm] = [gn] (2.38)

where
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(w1, Lo(f1)) (w1, Lo(f2)) -+- (w1, Lo(far))
(wa, Lo(f1))  (wa, Lo(f2)) +++ (w2, Lo(fur))

[lnm] =

(war, Lo(f1))  (wnr, Lo(f2)) -+ (war, Lo(fumr))

Ji
J2

[Jm] =

Iu

and

(71)1,9)

o= | O

| (wnt, g) ]

There is a solution to [Jy,] if [lhn] is nonsingular. 'The evaluation of the inner product
(wn, Lo(fm)) is often a tedious task in problems related to practical applications. Taking
wy, to be the impulse function, approximate solutions can be obtained satisfying equation
Lo(f) = g at discrete point of interest. This procedure is known as point matching. For the
simplicity, basis function f, are selected such that they exist only over the subsections of the

domain of f. The Garlerkin’s procedure is implemented choosing wy, = fm.



Chapter 3

Integral Equations for Arbitrarily
Shaped Axisymmetric Conductors

Integral equations are formulated for arbitrarily shaped conductors with smooth surfaces in
the presence of current-carrying coils. The formulation is general so that the PC, SI and MSI
models can be implemented. The application of the method of moments to yield a set of
linear equations is elaborated. Numerical evaluation of the integrals involved are described.
Handling the singularities in their integrands is also given in this chapter. The calculation of

power loss in the conductor and electromagnetic force upon it is explained in the last section.

3.1 Formulation

Consider an arbitrarily shaped axisymmetric good conductor having a smooth surface, as de-
picted in Fig. 3.1 in the presence of a quasistationary magnetic field produced by coaxial turns
carrying sinusoidal with time currents of same frequency. As discussed earlier, at sufficiently
small depths of penetration, the electromagnetic field can be analyzed by determining the
equivalent surface current density which has an azimuthal ¢—direction.

Combining (2.13) and (2.9), the tangential electric field intensity produced by the inducing

17
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Figure 3.1: Solid conductor in the presence of current-carrying turns.

turns alone in free space is given by

— jwho at

Cy

where dl is the vector element in the direction of the current along the respective inducing
turn Cy, carrying the current I and N is the total number of turns. The induced currents
in the conductor which are again in the azimuthal ¢— direction produce a tangential electric

field equal to

—jwio [ Js(r)ds’
oy [ HE
S

The total tangential electric field Fy is a superposition of the field produced by the external

turns and by the induced currents, i.e

. , K
Ey(r) = ZZ2E0 () - M+ L [ 3.1
otr) = =22 S/ et [ ] 5.)

Ck
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According to (2.14), the tangential magnetic field intensity due to the external turns is

N
1 dl x R
= ) [ ST
k=1 C
where w, is the unit vector along the generator curve C of the conductor. The tangential

magnetic field intensity due to the induced currents on the conductor surface is obtained from

(2.15) as

1 Jo(r') x Rds'
Eut(r) / R3 .
s

The total tangential magnetic field intensity produced by the external turns and by the induced

currents is given by

Hy(r) = 11; [ut(,,.) /:_I_S.(_i);sﬂ 4 ;Ikut(r) : dl’}; R} (3.2)
s =1 '

C

The integral equation satisfied by J; is constructed by imposing the condition that the tan-
gential electric field intensity E4(7), at the conductor surface S, is related to the tangential

magnetic field intensity Hi(r) at the same point through the surface impedance Z,(r) as
Egls = —Zs(r)Hys. (3.3)

The minus sign present in the above equation is due to the cross product wu, X % pointing
outward from the surface. The surface integral equation formulated is rearranged keeping the
unknown terms on one side of the equation and the known terms on the other side. The result

is

~soauats) - [ 2D 4 7,y - [ ORI
s s

S 1[omute)- C/ % - - [ 5] (5.4

k=1 Cr
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The surface integral equation using the PC model is obtained from (3.4) by taking Z,(r) = 0.
The simplest SI integral equation is obtained by using the standard surface impedance model,
ie. Zs(r) = Z,. The MSI integral equation is formed when Z,(7) is evaluated as in (2.33)-

(2.35).

3.2 Solution Method

The above integral equation is solved by applying the point matching procedure. Due to
the axisymmetric nature of the system, the induced current density has only a component in
the ¢-direction. The unknown current density is expressed in terms of M subdomain basis

functions f,,(t) as

Jo =g Y Jmfm(t) (3.5)

m=1

where ¢ is the length variable along C. f,,,(¢) is considered to be a rectangular pulse function,
as shown in the Fig. 3.2. In other words, the induced current density is approximated step-
wisely, as depicted in Fig. 3.2. Then, each Jy, in the expansion (3.5) affects the approximation
of f only over a subsection of interest. The width of the pulse is Aw,,. The weighting function

wy(t) in the point matching procedure is the Dirac delta function
wn(t) = 6(t —t,) (3.6)

which is a function only of the variable ¢ due to the axisymmetry. For convenience, all the
observation points on § are located on the z-z plane, ¢ = 0. Substituting (3.5) into (3.4) and

taking the inner product of (3.4) with (¢t —t,) gives

M ’ / M
~juopo| 3 i / O] 21 Y () /fm<t ) R’ _

dl x Rkn:| (3'7)

Z_fk l:jw/.l,o’ll,¢ (1) - / — Zs(T)w(rn) - R

Ck
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Figure 3.2: Pulse function and step approximation of current density.

where R, is the distance vector from the source point on S, related to f,,, to the observation
point on S, related to t,, Ry, is the distance vector from the source point on the inducing turn
k to the observation point on S related to t,, and 7, is the position vector of the observation
point on S in the z-z plane at ¢ = ¢,,. Equation (3.7) is a linear equation with a number M of
unknowns. It is evident that a number M of linear equations are required to solve for these
unknowns. M weighting functions at different observation points (¢,, n = 1 to M) are used to
obtain the required number of linear equations in the form [l;n][Jm] = [9s]. All observation

points are chosen to be the midpoints of the corresponding rectangular pulse functions.

3.2.1 Discretization

A physical interpretation of (3.7) gives an additional insight into the method of moments.
Consider the first term in the left hand side of (3.7). For a particular m, it is proportional
to the tangential electric field at the observation point on the surface, having a position

vector 7, and being produced by a circular strip of width Aw,,, carrying a uniform current
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density J,. The second term in the left hand side of the equation is proportional to the
magnetic field intensity tangential to the generator curve C at the same observation point,
produced by a circular strip carrying the uniform current density J,,. This means that the
current distribution on the conductor surface is approximated by M coaxial circular strips,
each carrying a uniformly distributed current. These two integrals are solved numerically.

The contribution to the tangential electric and magnetic field intensities at a point on the
surface is evaluated by assuming that the current of each strip is concentrated on its center line,
except where the source point coincides with the observation point. The surface integrals in
(3.7) are taken in principal values when the source point coincides with the observation point.
The next section describes how singularities are evaluated. Each strip is divided into a number
of elements in order to evaluate their electric and magnetic field intensities. Equations (2.19)
and (2.22) are used to calculate the electric field intensity and the magnetic field intensity on
the surface, where the source point does not coincide with the observation point.

The generator curve C of the conductor may not be represented by a well defined function.
So the surface of the conductor is defined by specifying the radius z,, of the circle at the center
plane z = 2z, of each circular strip, the width of the strip, Awy,, and the angle o, between
the z-axis and the normal vector to the surface at (2,,0,2y,). ¢, is measured from the 2 axis.
Up(Tm, 0, 2,) and u(Tm, 0, 2,) are the unit normal vector and the unit tangential vector in

the z-z plane, respectively. Then, we have

Uy * Uiy, 0, 2p) = — COS Qg Uy WL, 0, 2) = SiD Qi (3.8)

Uy * Up (T, 0, 2m) = Sin Oy Uy + Up (T, 0, 2m) = COS iy (3.9)

1t is obvious that u, - U(Tm, 0, 2n) = 0. Substituting (2.19), (2.22) and (3.8) into (3.7), the



23

A
u(x 0,2)

Figure 3.3: Normal and tangential unit vectors to the surface.

matrix element l,,, is obtained as given in (3.10).

L |mstm, = — j2mw o Ay, & Tm COS
nm|n#m L i=1 \/-'17727, -+ IE?n — 2Tp T COS @; + (zn - zm)2

+ 27 Zs(1n) Awy, zL: [~ Zm(2n — 2m) cOs aty, cOS §; + sin (22, — LTy, COS $i)]
L Py [£2 + 22, — 2T Tm cOS §; + (21 — 2m)?] 32
(3.10)

where ¢; = 2n/L. Z,(r,) is independent of 7, unless the surface impedance is modified as
discussed in section 2.2.

The first and the second terms on the right side of (3.7) are proportional to the electric and
magnetic field intensities at the same observation point on S, produced by the external current
carrying turns. The elements of the column matrix [g,] are also written as a summation by

substituting (2.18), (2.21) and (3.8) into (3.7). The result is

N L .
27 —bg(2n, — 21) COS Oy, COS @; + sin o, (b2 — bz, COS B;
9n =f ZIk ’:“Zs(rn) Z k( = k) 2 L ¢2 n( £ : 31;2 ¢ )
k=1 i=1 [:IJ% + bk — 2z,b cos ¢; + (Zn - Zk)2] (3 11)
L .
. by cos ¢; }
+ jw
J@ho ; VE + b — 2z,by, cos §; + (2 — 26)2

where by, is the radius of k-th inducing turn.



24

3.2.2 Singularities

The calculation of [,, requires special treatment in order to evaluate singularities. These
singularities appear in (3.10) when ¢ = 1 and m = n. The contribution of each rectangular

self-patch of dimension g'-by-A’ to the electric field intensity Ej at its center is given by

;:-%]i[g'ln@—:ﬂ/wrg—;)+h’ln(i—:+ 1+%—2>] (3.12)
The derivation of (3.12) is listed in Appendix A.
The contribution of the same self-patch to the magnetic field intensity Hj at its center is
given by [5]

H =-% (3.13)

Then the diagonal elements of the matrix [I,,] are evaluated as

2w o AWy, cos ¢;
Lo, =4} + dn Zy(ry) H — L202H0ZYn i
L i=2 2(1 — cos ¢;)
L (3.14)
sin oy,

T Zs(Tn) Awp,
+ .
L “— Tn\/2(1 — cos ¢;)

Once all the elements of the matrixes [I,,,;] and [g,,] are evaluated, the unknown current density

matrix [J,] can be found from (3.7).

3.3 Calculation of Power Loss and Force

Losses in conducting objects at high frequencies can be evaluated using the surface resistance
Ry for both the PC and SI models, considering the actual conductivity o of the material. The
time-average power loss is
p= % / Ro|J|%ds. (3.15)
s

This integral is converted into a summation to evaluate it numerically, as

M
P =R, Y  Aum|Jn[*Tm (3.16)

m=1
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The electromagnetic force acting upon the conducting body is evaluated by calculating the
resulting total force upon the inducing turns, which is the same in magnitude but opposite
in direction. The resultant time-average force exerted upon the system of inducing turns is

expressed as

N N
1 *
F=_Re [Z I / (ug x B;;)dz] = —u,m Y bRe(l;By}) (3.17)
where the asterisk indicates the complex conjugate and By is the outwardly oriented radial

component of the magnetic flux density produced only by the induced currents in the con-

ducting body at the points on the k-th inducing turn.



Chapter 4

Integral Equations for Spherical
Conductors

In this chapter, integral equations are formulated for spherical conductors in the presence
of current-carrying turns. The evaluation of the tangential electric and magnetic field com-
ponents on the conductor surface can be performed by employing the spherical coordinate
system. The electric field intensity and the magnetic flux density produced by a current-
carrying turn are determined in the first section. In section 3, numerical results for power loss
and electromagnetic force upon the conductor obtained from the SI and PC integral equations
are compared with their exact analytical results [17]. The accuracy of the results are improved
by employing a finer mesh. The last section compares the performance of Garlerkin’s method

against the point matching.

4.1 Electric Field Intensity and Magnetic Flux Density
in Spherical Coordinates Produced by a Current-
Carrying Turn

The electric field intensity and the magnetic flux density produced by a single turn carrying

sinusoidal current I are found in spherical coordinates for the turn placed as shown in Fig.

26
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4.1. The magnitude of the position vector of a point on the turn is r;. The angle between
the z-axis and the position vector of the point on the turn is §,. The coordinates of the
observation point in the z-z plane are (r5,6,,0). The vector length element on the turn at the
source point, (rs, 05, ¢), is dI where dl' = —rysin 6, sin ¢'d¢'u, + r,sin 6, cos ¢'d¢'w,. The

distance between the source point and the observation point is given by

R = /r2 4+ 12— 2rpry(sin b, sin 0, cos ¢’ + cos b, cos b;).

The vector potential is calculated substituting d¥ and R into (2.13). Using (2.9), the electric

field intensity is found as
27

Ey— _jwuol / 5 5in 6, cos ¢'d¢g . (4.1)

47 R
0

This integral is evaluated numerically discretizing the turn into a number of L elements as

) L .
E, = _jw,uof Z 7¢8in 05 cos ¢;(2m /L) (4.9)

4z R;

=1
where R; = /12 4+ 12 — 2r,r,(sin 8, sin 65 cos ¢ + cos 0, cos,) and ¢; = (27 /L)(i — 1).
P 8 p p 7 P

Equation (4.2) is modified as discussed in section 2.1.2 to obtain the electric field intensity

produced by a circular current-carrying strip,

L
j sA sJg g i 3 4
E, = _ JwhorsAbsJ, Z 75 8in 05 cos ¢; (27 /L) (4.3)

47 R;

1=1

where r;Af; is the width of the strip.
The magnetic flux density produced by a current carrying turn is obtained using (2.14).

The distance vector R from the source point to the observation point is given by
R = (r,sin6, — r,sinf cos ¢')u, — r,sin b, sin ¢, + (7, cos b, — s cos ) .

Substituting df x R and R into (2.14), we obtain

2
I 1
B= % i [rs sin 4, (r,, cos B, — 5 cos ) cos ¢,
0 (4.4)

+ (r2sin® 0, — rpry sin 8, sin 6, cos ¢')uz} d¢’
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Figure 4.1: Source points and the observation point in spherical coordinates.

which is evaluated numerically by discretizing the turn into L elements as described in Section
2.1. Using (A.2), (A.3) and (A.4), the 6-directed flux density By is obtained by taking the

dot product uy - B, namely

L

By = %’7% Z -]%3—. [7'3 sin fs(rp cos b, — 75 cos f5) cos 6, cos ¢;

=1 "

(4.5)

— rg8inf; sin 0,(rs sin 6, — 7, sin 6, cos qbz-)] 2—2:

where uy is the unit vector in the -direction.By produced by the circular strip considered

above is computed from

rsAsJy o 1
By = H_O_.szﬂ_si Z = [T’s sin 8,(rp cos b, — 5 cos ;) cos 6, cos @
=1 "

(4.6)

— 75 8in 0, sin 0, (r, sin 6, — 1, sin 6, cos qbi)} —21_7,r
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Figure 4.2: Spherical conductor in the presence of current-carrying turns.

4.2 Formulation

The integral equations are formulated for a spherical conductor in the magnetic field produced
by coaxial turns carrying sinusoidal with time currents of the same frequency, as shown in
Fig. (4.2). Using (2.9), (2.12) and (2.13), the total tangential electric field intensity at a point

on S is given by

2
3 / /
I / 7, 8in Oy, cos ¢'do (@7)

w S (6)r sm6’d de X
E, = Juo[// 0 ¢ iyt -2
0 k=

=1 0

where R, is the distance between a source point and the observation point on the sphere
surface, and R, is the distance between a source point on turn k and the observation point on
the conductor. The tangential magnetic field intensity at the same observation point is given

in (4.8).

T 27 21
- 71}7? [ug_ / Jo(ug(4) le)rgsine'd¢'d9'+i L /(uqb(qs')ka)rksmekdﬂ
k=1

R J R}
(4.8)
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The tangential electric field intensity E4 and the tangential magnetic field intensity Hp are

related through the standard surface impedance as,

= Z.. (4.9)

4.3 Application of Point Matching Procedure

A set of linear equations [I,|[Jm] = [gn] is obtained by applying the point matching procedure
to solve the integral equation. The surface current density is approximated by rectangular
single pulses. Dirac delta function is selected as the weighting function. Hence, the integral
equation is transformed into a system of algebraic equations by discretizing the conductor
surface into a number of M circular current-carrying strips. Each such circular strip and each
inducing turn is divided into a number of elements to evaluate their electric and magnetic
field intensities. The contributions to field intensities from circular strips are calculated by
assuming that the current density is concentrated at the center of each element except when
a singularity is present. Using (4.3), (4.6) and (4.9), the matrix element l,,, is obtained as

2 jw T2 AO, L sin,, cos &;
T

i=1

27rZ31~0 sin 8, A0,
T Z

[(COS 60, — cos by,) cos by, cos ¢; (4.10)

g=1

— (sin 6, — sin 6, cos ¢;) sin Bn]
where Rp; is the distance from the center point of the i-th element on the m-th strip to the
observation point on the n-th strip. The width of the strip is 70A0,,. The element g, of the

column matrix [g,] is found to be

o= 71-_7(4)/,50 ZI Z T Sin kCOS¢ TLSs Z]—kz 7 I:frk s]ﬂ@k('r'o cos b,

k=1 =1 ki ki

(4.11)

— 71, €08 0 €os by, cos ¢p; — 1% (ry, sin Oy, — rg sin 6, cos ¢;) sin G, sin Gn]
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where Ry is the distance from the center point of the ¢-th element on the k-th inducing turn to
the observation point on the n-th strip. The diagonal element l,,,, is evaluated by treating the
singularities as described in chapter 3. The unknown current density is found from [l,m]~[gn].
The solutions of the PC integral equation is determined taking Z; = 0.

Numerical results are generated for aluminum (o = 3.77x 107 S/m) spheres in the presence
of three coaxial turns connected in series and carrying a current ;. The three turns are placed
on the surface of a cone of opening 23, as shown in figure 4.2, the distance between the plane
of the lower turn and the sphere center being d;. To illustrate the performance of the surface
integral equation in (4.9), the power loss and the electromagnetic force upon various spheres

are evaluated using (3.16) and (3.17), respectively.

201

—— Sl integral equation
- =+ PC integral equation
-+ Exact analytical

R I22)
S0

P/(

Figure 4.3: Normalized power loss versus d; /b; for an aluminum sphere of radius ry = 2.5¢cm
at 8 kHz, with N = 3, tan 8 = 0.4, and d/b; = 0.25: (I) r/b; = 0.5; (II) ro/b; = 0.75.
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Figure 4.4: Error of the normalized power loss versus 74/8 for aluminum spheres at 8 kHz,
with N = 3, tan8 = 0.4, d/b, = 0.25, d1 /by = 0.6 and ro/b; = 0.5.

The time-average power loss normalized to R,I2/2, at a frequency of 8 kHz, with N = 3,
tan 8 = 0.4, d/b; = 0.25 for a sphere of radius ro = 2.5 cm is given in Fig. 4.3 as a function
of the normalized distance between the sphere center and the inducing turns. The percentage
error of the normalized power loss calculated from the integral equations with respect to the
exact analytical solution for aluminum spheres is plotted in Fig. 4.4 versus the ratio of the
sphere radius to the depth of penetration 6. The error decreases when the size of sphere
increases. An accuracy of at least 97 percent has been achieved for the power loss by using
the SI integral equation for spheres with ry/8 above 20, while the errors introduced when

using the PC integral equation are higher. The surfaces of the spheres have been discretized
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into coaxial circular strips whose width is about 10 times the depth of penetration and each
strip has been divided into a number of elements such that the element length was about 10

times the depth of penetration, with at least 10 elements per strip.

25

— Slintegral equation
Lo — -, = PCintegral equation
- ~eL + Exact analytical

F/(u, Ii/Z)

Figure 4.5: Normalized force versus d; /b; for an aluminum sphere of radius ry = 2.5cm at 8
kHz, with N = 3, tan 8 = 0.4, and d/b; = 0.25: (I) ro/b; = 0.5; (II) 7o/by = 0.75.

In Fig. 4.5, we compare the time-average electromagnetic force normalized to uol2/2
obtained by using the SI and the PC models with that from the exact analytical solution
for the sphere system considered in Fig. 4.3. The percentage error of the normalized force
obtained from the integral equations with respect to the exact analytical solutions for various
sizes of spheres is shown in Fig. 4.6. The conductor surface entails 30 strips and each strip

entails 60 elements. An accuracy of over 99 percent has been achieved by using the SI integral
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Figure 4.6: Error of the normalized force versus ro/d for aluminum spheres at 8 kHz, with
N = 3, tan,B = 04, d/bl = 025, dl/bl = 0.6 and To/bl = 0.5.

equation for calculating the force upon spheres with ry/é above 20. The error associated with
the PC integral equations for evaluating the force upon spheres with ry/§ below 20 is very
high.

The normalized power losses in a sphere with 75 = 14 cm at frequencies of 0.5 kHz and
2 kHz, with N = 3, tan8 = 0.4, d/b; = 0.25 and by/b; = 0.5 are depicted in Fig. 4.7. The
normalized power loss evaluated from the PC integral integral equation is independent of the
frequency, while the power loss evaluated from the SI integral equation and exact analytical
method increases with frequency. Fig. 4.8 illustrates the variation of the normalized force

with the ratio d; /b; at frequencies of 0.5 kHz and 2 kHz for the same system as in Fig. 4.7.
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Figure 4.7: Normalized power loss versus d; /b; for an aluminum sphere of radius 9 = 14cm,
with N = 3, tan 8 = 0.4, d/b; = 0.25 and r/b; = 0.5 at (a) 0.5 kHz; (b) 2 kHz.

The normalized force obtained from the SI integral equations and from the exact analytical
method increases with the frequency. The normalized force calculated from the PC integral
equation is independent of frequency. The results based on the SI model are much closer to

the exact analytical solution than the results based on the PC model.
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Figure 4.8: Normalized force versus dy /b, for an aluminum sphere of radius 7o = 14 cm, with
N =3, tan 8 = 0.4, d/b; = 0.25 and ro/b; = 0.5 at (a) 0.5 kHz; (b) 2 kHz.
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4.3.1 Refining the Mesh for Spheres

When calculating the electric and the magnetic field intensities from neighboring patches,
errors are introduced due to the fact that current density is considered to be concentrated on
the center of the patch. A finer mesh is constructed by dividing the circular strips into 10
sub-strips in order to improve the accuracy. Each sub-strip of the circular strip carries the
same current density J,,,. The contribution to the electric and the magnetic field intensities at
the observation point is found by summing up individual contributions from the 10 sub-strips.
When evaluating individual contributions to the field intensities by a sub-strip, the current
density is considered to be concentrated at the center line of that sub-strip.

A sphere of radius rg = 14 cm at a frequency of 8 kHz, with N = 3, tan 8 = 0.4 and d/b; =
0.25, is considered to determine the effectiveness of the finer mesh. The normalized force has
been evaluated using the SI integral equation for four cases and given in the Table 4.1. The
percentage deviation of the force with respect to the SI analytical results and the computation
time are compared for different cases. Computational time refers to a personal computer
with Pentium IV processor. It is evident that subdividing only 10 neighboring strips makes
significant improvement of the results. To obtain the same accuracy without subdividing
the strips, the number M of strips and the number L of patches of each strip have to be
increased to twice of that in the case of subdividing only 10 neighboring strips. Furthermore,
the evaluation with increased M and L takes more computing time. The percentage error of
the results obtained subdividing all strips has decreased only by 0.04 percent, while consuming

more CPU time as compared with that when subdividing only the neighboring strips.
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Table 4.1: Percentage deviation of force with respect to

ST analytical solution.

Case Percentage Computing time (s)
deviation

M=30L=60

without subdivid- | 0.9 0.3

ing strips

M =60L=120

without subdivid- | 0.45 141

ing strips

M=30L=60

subdividing 10 | 0.45 0.68

neighboring strips

M=30L=:60

subdividing all | 0.41 1.44

strips

4.3.2 First Order Surface Impedance Correction for Spherical Con-

ductors

The equations to modify the surface impedance for smooth boundaries given by Mitzner are
presented in chapter 2. We choose u, = uy and w, = uy directing w, X wu, inward to the
surface. Equation (2.33) is selected in order to obtain the relation between E; and H, with
modified surface impedance. Radii of curvature &, and k, are equal to 1/rq [16].Hence, p in
(2.33) becomes null. This implies that the first order correction of the surface impedance is

already taken into account for spherical conductors.
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4.4 Applying Galerkin’s Method for Spheres

Numerical results for power losses and forces for spheres are also evaluated choosing fp,(t)

and wy(t) to be functions consisting of three constrained pulses [5] as shown in Fig. 4.9. The

A
1 1
1 2 3
] | : ! >
m-1 m m+l1
e

Figure 4.9: Expansion function consisting of three constrained pulses.

three pulses of each f,(0) and w,() are taken with the peak values of the side pulses equal

to half of the peak value of the middle pulse. Then, the matrix element [,,, is expressed as

1 1 1
lnm = _Anzmz + - (An2m1 + Ammz + Anzma + Angmg) + - <An1m1 + An1m3 + An3m1 + Angma)

2 4 4
(4.12)
where Apm, = Enmy — ZeHnmy, Enim, and Hp,,, being the electric and magnetic field
intensities on the sphere surface at the center of the i-th pulse of w,(8) due to the kth pulse
of Jnfm(0); i,k = 1,2,3. Epm, and Hym, are calculated as in the previous case where

rectangular basis functions and impulse functions are used.The column matrix element g, is

expressed in the form
M1 1
n = Z §Asn2 + 1 (Asm + A8n3> (4.13)
s=1

where Ag,, = ZoHopn, — B,y Eop, and Hy,, being the electric and magnetic field intensities

on the center of the k-th pulse of w,(6) due to the s-th inducing turn. Table 4.2 compares the
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number of basis functions required to obtained the same accuracy implementing Galerkin’s
method and the point matching procedure for a sphere of radius ry = 25 cm at the frequency
8 kHz, with N = 3, tan8 = 0.4, d/b; = 0.25, d;/b; = 0.6 and r9/b; = 0.5. The number of
basis functions consisting of one rectangular pulse required to achieved the same accuracy has
to be increased to about twice the number of basis functions consisting of three constrained
rectangular pulses.

Table 4.2: Comparison of basis functions required for
the same accuracy of Galerkin’s solution and the point

matching solution for SI integral equations.

Number of basis | Number of basis
functions in functions in point
Galerkin’s method | matching method
10 20

15 31

20 39




Chapter 5

Integral Equations for Prolate
Spheroids

Integral equations are formulated for prolate spheroidal conductors in the presence of current-
carrying turns. These inducing turns are placed axisymmetrically. The system of orthogonal
curvilinear coordinates of the prolate spheroid is employed for analyzing the system considered.

The first section describes the prolate spheroidal coordinate system. The evaluation of
electric and magnetic fields in prolate coordinates produced by inducing turns is described in
section 5.2. The SI and PC integral equations are solved using both the point matching and
Galerkin’s methods. Numerical results are compared with available experimental data. The
accuracy is improved using a finer mesh. In the last section, results from the SI and the MSI

integral equations are compared with experimental data.

5.1 Introduction to Prolate Spheroidal Coordinates

The prolate spheroidal coordinates (7, £, ¢) are shown in Fig. 5.1. u,, u¢ and g are the unit
vectors oriented in the increasing sense of the respective coordinates. £ = &; is the equation of
the surface of the prolate object. 7 changes from -1 to +1 while £ varies from +1 to infinity.
¢ is the semi-focal distance.

The coordinates of the prolate spheroids [1] are related to the rectangular coordinates

41
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n=-1

§
ua’
Un
n=0 CT -
'S >
]
dl

n=+l1

—ple—>|

-
<+

Figure 5.1: Prolate coordinate system.

(‘T’ y?’z) by

z=c/I - )@ —T)cos$

y=cvV(1—7%)(€—1)sing (5.1)
z=cng

The corresponding Lamé parameters are

2 __ 2\ 1/2 9 2\ 1/2
b =o(320) he=o(52T) he=c/T-PE-T. (52)

The semifocul length ¢ is equal to /ad — b where aq, by are the semi-major axis and the

semi-minor axis, respectively.
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5.2 Electric and Magnetic Fields Produced by a Single

Turn in Prolate Spheroidal Coordinates

Consider a single turn carrying a sinusoidal current I, whose coordinates are n = 75, and

§ =& From(5.1), it is obvious that the radius of the turn b, is equal to ¢ /(1 — n2)(£2 — 1).
The quasistationary electric and magnetic fields are found at the observation point P in the
z-z plane having coordinates (1,,&p,0). The vector length element of the circular turn at a
point (1, &s, ¢') is given by dl = —b, sin ¢'d¢’ u, +b; cos ¢'d¢’ w,, with dlI' = byd¢’. The position
vector of the observation point is expressed as r = z(ny, &, 0)uy +y(np, &, 0)wy + 2(n,, £p, 0)u,

where functions z, y and 2z are (see 5.1)

219, p,0) = /(1 =) (€ — 1)
Y(1p, §p,0) = 0

Z(’I]p, Ep) 0) = Cnpgp-

The position vector of the source point 7/ = b, cos ¢'u, + bssin ¢'u, + 2'(ns, &, ¢')u,. The

distance from the source point to the observation point R = |r— 7/|, is given by

R= /[, £, 0) — Bucos 2 + BSin® ¢ + [2(np, 6, 0) — #(ms G0 ). (5:3)

The substitution of R and dl' into (2.13) yields the vector potential. The tangential electric
field intensity Ey is found using (2.9). It is evaluated numerically by discretizing the turn into

L elements as given in (5.4),

jwpoI bs cos ¢
5.4
Z \/ x(ﬂp, §P7 bs Cos ¢’L]2 + bg Sin2 ¢2 + [z(npa gp, 0) - z'(ﬂs, 58) ¢z)]2 ( )

where ¢; = ng(z —1). The above equation is modified to determine E, produced by a circular
strip whose coordinates of its center line are 7, and &;. The width of the strip is hy,Ang, Ans

being the incremental 7 of the strip. It is assumed that the current density is concentrated
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on the center line of the strip. The result is

_ JwioJsh, Ans

By = oL

L

Z bs cos ¢; (5.5)
=1 \/[93(7710’ gp: 0) - bs Cos ¢1]2 + bg Sin2 ¢’L + [Z(T],’D) §p$ 0) - z/(nsa €8) ¢Z)]2

An expression for the magnetic flux density B is obtained substituting R and dI' x R into
(2.14). In order to evaluate B numerically we discretize the turn into a number of L elements

and, then,

L
B(npa gp’ 0) ZH—;}EIE —]% [{z(npv fp’ O) - Z'(Us, 537 ¢z)} Cos ¢zu:z
= (5.6)

+ {bs — z{(np, &p, 0) cos ¢z}uz]

where R; = \/[2(1p, &, 0) — bs cos ¢;]2 + b2 sin® ¢; + [2(p, &, 0) — 2/ (1, &5, #4)]2. The 7-directed
component of B is obtained by taking the dot product of (5.6) with the unit vector w,. w,-w,,

u, - U, and u, - u, are listed in Appendix B. Hence, n-directed component is

L 2
piodbs = 1 { &1 { ) }
B ’ aO = 3T pram—-a 1 ) 70 — 2 \Ns)Sss P COS ¢;
n (7, €p, 0) oL 2 R T 2 (1, €p, 0) (1, &5, $1) ¢

1—n2
£§ __Z;% {bs - l’(np, gpa O) Cos ¢’L}] .

(5.7)

+&

Equation (5.7) can be easily modified to determine B, produced by a circular current-carrying

strip assuming the current density is concentrated on its center line.

5.3 Formulation in Prolate Spheroidal Coordinates

The prolate spheroidal coordinate system is used to formulate the integral equations for prolate
spheroidal conductors in the presence of a quasistationary magnetic field produced by coaxial
turns carrying sinusoidal currents /, as shown in Fig. 5.1.

The ¢-directed tangential electric field intensity at the conductor surface is the sum of

the electric fields produced by the inducing turns and the induced currents on the conductor
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itself. Using (2.9), (2.12) and (2.13) the total tangential electric field intensity is obtained as
1 27
_ quo Is(n')/ (€5 — '2)(50 — 1)d¢'dny’
Es = Ug -
0 (5.8)

+ZI /c\/l—nk §k—1)cos¢’d¢’]

Ry

where R; is the distance between a source point on a conductor surface and the observation
point in the z-z plane on the conductor surface, Ry is the distance between a source point
on the k-th turn and the observation point on the conductor. B; and Ry are evaluated using

(5.3). Using (2.14) and (2.15), the tangential magnetic field intensity is expressed as

LA [T ) ws@) x B B = Ddddy
~Lw /]

R}
N o (5.9)
(us(¢') x Re)ey/ (1 —m) (€ — 1)dd/
The relation between E; and H, is
By _
A Zs(n)- (5.10)

In the case of the simplest SI integral equations, Z,(n) is equal to the standard surface
impedance, Z;. The MSI integral equations are formed by taking Z;(n) = Zsmoq, Where
the evaluation of the modified Zgm,q is given in section 5.5. As already mentioned, the in-
tegral equation based on the PC model is obtained forcing E, to be null on the conductor

surface.

5.4 Solution of Integral Equations in Prolate Coordi-

nates

Integral equations are solved by applying the point matching procedure and converting them

into a set of linear equations, [lnm)[Jn] = [gn). The rectangular single pulse function and the
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Dirac delta function are chosen as the basis function and the weighting function, respectively.
This means that the current distribution on the spheroid surface is approximated by M coaxial
circular strips, each carrying a uniformly distributed current [6]. The integral equation in
(5.10) is transformed into a linear equation with M number of unknowns, using (5.4), (5.5)

and (5.7). The matrix element l,,, is given as

JW,UOC 2 A, Z V(65 —n2,) (& — 1) cos &
4 Ry

lnm ln:,ém

77n)02A77m Z o [ —na (€2 — 1) §2 nm{cnnﬁo cnmgo} cosg;  (5.11)

i=1

—m2
+ i@~ 1)/ & — ) 513—_?7%{\/1—n%—\/1—n%cos¢i}]

where Rp,; is the distance from the center of the ¢-th element on the m-th strip to the obser-

vation point on the n-th strip. g, is (see 5.12).

Ry

L
_c Z (77n ZI \/ 1—m) (& — );R—llgc;[ ” ;20 {nnﬁo nkék}cosqsi (5.12)

+ & '—513__737% {\/(1 -2 —1) — \/(1 —n2)(&2 ~ 1)C03¢i}]

Jwﬂoc ZI Z \/ 77k §k — 1) cos ¢

where Ry; is the distance from the center of the i-th element on the k-th turn to the observation
point. l,, is evaluated treating the singularities by using (3.12) and (3.13). All elements in
[lnm)] and [gs] are found by enforcing Ey/H, = —Z,(n) at the center line of each strip on the
conductor.

The prolate spheroid is discretized into circular strips such that the incremental 7 for each
strip, A, is the same for each strip. Then the width of the strips (h,An) closer to poles
is wider than that of the strips closer to the equator. The results obtained discretizing the

surface into strips with same A7 are not accurate especially for the SI integral equation. This
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is why the conductor surface is discretized into strips with same width. The coordinates of the
center line of the m-th strip, 7,,, is calculated using (5.13) where strips are counted starting

from the pole corresponding to n = —1.

1
T (m —0.5) [ hydn
/mm= ==

-1

i (5.13)

22r

181

141
"o 7 — Sl integral equation
= ) * - = PC integral equation
= ¢ Sl analytical model
<3 o PC analytical model

1F + Experimental [1]

d /b

1

Figure 5.2: Normalized force versus d;/b; for aluminum prolate spheroids at 2 kHz, with
N = 3, tanﬁ = 04, d/b1 = 025, bo/CLo = 06, and bo = 2 cm: (I)bo/b1 = 05, (H)bo/bl = 0.75.

Numerical results both from the PC integral equation and the SI integral equation are
generated for prolate spheroids of major and minor semi axis ag and by, respectively, in the
presence of three coaxial turns connected in series and carrying a current Iy. The three turns
are placed on the surface of a cone of opening 23, as shown in Fig.5.1, the distance between the

plane of the lower turn and the spheroid center being d;. Power loss in the prolate conductor
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—— S8l integral equation
+ PC integral equation
Si analytical model
PC analytical model!
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Figure 5.3: Normalized force versus d;/b; for aluminum prolate spheroids at 2 kHz, with
N = 3, tanﬂ = 0.4, d/bl = 025, bo/ao = 0.8, and bo =2 cm: (I)bo/bl = 05, (H)bo/bl = 0.75.

and the electromagnetic force upon it are evaluated using (3.16) and (3.17).

The time-average force for prolate spheroids at a frequency of 2 kHz, with N = 3, tan8 =
0.4, d/by = 0.25, by = 2 cm, with bg/b; = 0.5,0.75 and by/ap = 0.6,0.8 is plotted in Figs. 5.2
and 5.3, respectively. The force obtained from the SI and PC integral equations is in good
agreement with that from the analytical solutions for the SI and PC models. As expected, the
experimental data are much closer to the results obtained from the SI integral equation. The
accuracy of the numerical results for the force has been increased by increasing the number
M of strips up to 20 and the number of strip elements on each inducing turn up to 40. In Fig.
5.4, the normalized force has been plotted for a frequency of 8 kHz, with N = 3, tan8 = 0.4,

d/by = 0.25, by = 2 cm with by/b; = 0.5 for by/ag = 0.4 and 0.6. The depth of penetration
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Figure 5.4: Normalized force versus d;/b; for aluminum prolate spheroids at 2 kHz, with
N =3, tanf = 0.4, d/by = 0.25, by/b; = 0.5, and by = 2 cm: (I)by/ag = 0.4; (I1)by/ag = 0.6.

for aluminium at the frequency of 2 kHz is about 1.8 mm. When the frequency has been
increased, the deviation of the PC model results from the experimental data and from the SI
model results has decreased.

The errors associated with the electric and magnetic fields at the observation point pro-
duced by the neighboring current-carrying strips are minimized by dividing the circular strips
into 10 sub-strips. Each sub-strip on the m-th strip has the same current density J,,. The
total contribution from the m-th strip is evaluated by summing up the individual contribu-
tions of the sub-strips on the m-th strip, as described in chapter 4. Table 5.1 compares the
normalized power loss obtained from solving the PC integral equations using a fine mesh and

a coarse mesh. The surface has been discretized into 30 strips and each strip into 60 elements
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for the coarse mesh. Analytical results are also given for a frequency of 8 kHz, with N = 3,
tanB = 0.4, d/b; = 0.25, by = 2 cm, by/by = 0.5, d1/by = 1 with by/ap = 0.1,0.5 and 0.9. It
is evident that the results obtained with a fine mesh are much closer to the analytical results
than results obtained with a coarse mesh as expected.

Table 5.1: Comparison of power loss obtained from PC
integral equations with a fine mesh and a coarse mesh
for prolate spheroids at 8 kHz, with N = 3, tan 8 = 0.4,
d/by = 0.25, by = 2 cm, by /by = 0.5, d1 /by = 1.

bo/ao coarse mesh fine mesh Analytical results
from PC model [1]

0.1 7.8042 9.9619 9.7680

0.5 8.344 8.2948 8.2339

0.9 6.7736 6.6537 6.6538

Galerkin’s method has also been implemented, by choosing both the basis functions and
weighting functions to be three constrained rectangular pulses. The accuracy of the numerical
results obtained from Galerkin’s method is higher. Namely, the number of basis functions
consisting of one rectangular pulse required to achieve the same accuracy has to be increased
to about twice the number of basis functions consisting of three constrained rectangular pulses

for spheroids with the same axial ratios between 0.4 and 0.8.

5.5 Modified Surface Impedance for Prolate Spheroids

The surface impedance of the prolate conductor is modified using (2.34). ¢ and 7 are the
principal curvature coordinates for a prolate spheroid and ¢ and 7 are equivalent to w and v

in section 2.2. The curvature &, is determined by using its definition [3], [16],

_ LV -1 (5.14)

1= g~
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Then the curvature kg = £/{c\/(6 — n?)(€2 — 1)}.Substituting &, and ks into (2.35), the
modified surface impedance is evaluated as Zgmoq = (1 — p)Zs.

We have considered spheroids with various axial ratios, by/ag = 0.4;0.6;0.8 at a frequency
of 8 kHz, with N = 3, tanf8 = 0.4, d/b; = 0.25, by/by = 0.5, d1/by = 1, and by = 2 cm.
Numerical results for the force from both the MSI integral equations and SI integral equations
are shown in Table 5.2. Experimental results are much closer to results from the MSI integral

equation than those from the SI integral equations.

Table 5.2: Normalized force evaluated from SI and MSI
models at a frequency of 8 kHz with N = 3, tan 8 = 0.4,
d/bl = 025, bo/bl = 05, dl/bl = 1, and bo =2 cm.

bo/ag Using Z, Using Zgmod Experimental [1]
0.4 0.6706 0.6712 0.6714
0.6 0.6728 0.6734 0.6928
0.8 0.5891 0.5894 0.6214




Chapter 6

Integral Equations for Oblate
Spheroids

In this chapter, we formulate integral equations for oblate spheroids in the presence of current-
carrying turns. The system of curvilinear coordinates of the oblate spheroid is chosen for this
formulation.

The oblate spheroidal coordinate system is discussed in section 6.1. The electric and
magnetic field intensities produced by a current-carrying turn are found in oblate spheroidal
coordinates and numerical results from the PC integral equations and the SI integral equations

are compared with relevant analytical results.

6.1 Oblate Spheroidal Coordinates

In oblate spheroidal coordinates (n,&, ¢), the range of £ is from 0 to infinity and the unit
vectors are u,, U and u, as shown in Fig. 6.1. The surface of an oblate spheroid is given by
the equation & = &;. ¢ is again the semi-focal length.

Oblate coordinates are related to rectangular coordinates by

52



53

u’l
/c’\

I ——
K d Iz — D | bs
v v CD b,
v Z

Figure 6.1: Oblate coordinate system.

T =cy/(1 —72)(€2 4+ 1) cos ¢

=cy/(1=n2)(e2 +1)sing (6.1)

z = cné,

where the corresponding Lamé parameters are

hy = (ff:) he = (fﬂ)/ he=c/T-P@+D. (62

¢ is equal to /b2 — a where ag and by are the semi-minor and the semi-major axes, respec-
tively.

A turn carrying a sinusoidal current I, whose coordinates are n; and &, has a radius

bs = cy/(1 —12)(€2 + 1). The electric field intensity and magnetic flux density produced by
the turn are calculated at the observation point (7,, &,,0) in the z-z plane. The position vector

of the observation point is given by 7 = (1, &, 0)uz + Y(1p, &p, 0)y + 2(1p, &p, 0)u, Where
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215,69, 0) = /(1 = )€ + 1)
y(npagpa O) =0

#(Np: €p: 0) = cmpbp
The position vector of the source point is 7/ = b, cos ¢"u, + b, sin ¢’ wy, + 2/ (s, &, ¢')u,. The

vector element of the turn is df = —b, sin ¢'d¢’u, + b, cos ¢'d¢'w,. The distance between the

source point and the observation point is

R= \/[m(npa gp: 0) - bs Cos ¢I]2 + b.% Sin2 ¢/ + [Z(np, gp) 0) - z'(ﬂs: 537 ¢,)]2' (63)

Substitution of R and dl' into (2.13) yields an expression for the vector potential produced
by the turn. An equation for the tangential electric field intensity Ey is found using (2.9). The
turn is discretized into L elements. Ey is evaluated numerically from an equation similar to
(5.4). Modifying this equation as in (5.5), the tangential electric field produced by a current
carrying-strip, whose center line has the coordinates 7, £, is computed numerically. The

distance vector from a point on the turn to the point P is

R = [z(np, &, 0) — bscos ¢'Ju, — bgsin ¢'uy + [2(1hps €p, 0) — 2 (ns, €5, &) . (6.4)

We obtain an expression for the magnetic flux density at P substituting R and dl x R into
(2.14). An equation similar to (5.6) is obtained for the flux density. The tangential component

of the magnetic flux density is obtained by using (A.10), (A.11) and (A.12) as

L
,u,oIbs 1 I: 622, +1 { ; }
B ) 70 = - 2\Tp, ’0 — 2 {Ns, 88, Pi) ¢ COSQ;
1 (Mp» €p, 0) 5T, - R? Mp f,% T 77;2) (11p» €5, 0) (s, s, 0:) )

1— 2
+€p” Zg‘;‘_’%%{bs - l‘(np,fp, 0) COS@'}}

B, produced by a strip carrying an uniform current density, whose coordinates of the center

(6.5)

line are 7, and &, is evaluated by replacing I in (6.5) with J;hy, An,, where J; and hy,, An; are



55

the current density on the strip and the width of the strip, respectively. A7, is the incremental

7 for the strip s.

6.2 Formulation of Integral Equations in Oblate Coor-

dinates

Integral equations are now formulated for a oblate spheroidal conductor in the presence of a
quasistationary magnetic field produced by sinusoidal current-carrying coaxial turns, as shown
in Fig. 6.1. Currents flowing in ¢-direction is induced on the conductor.

The total tangential electric field intensity at the conductor surface produced by the in-

ducing turns and the induced currents is found using (2.9), (2.12) and (2.13), namely,

1
_ jwpo T Joc®\/ (8 + ?)(E¢ + 1)dg'dny
E¢*“‘4ﬂ“¢'//o R,

- (6.6)

N 2
ey/(1 = np) (& +1) cos ¢'dg’
+) I =
k=1 k
where R; is the distance between a source point on the conductor surface and the observation
point, and Ry is the distance between a source point on the k-th turn and the observation

point. R; and Ry are expressed using (6.3). The total tangential magnetic field intensity is

obtained in the form

Hi= [u,,/l 0% Jo{uy(¢") x Ba}e /& + )& + gt

T ir R}

I‘Vl ” (6.7)

{us(¢) x Ritey/(1 —mp) (& + 1)d¢/
+ Z Tpuy - / \/R3 ko ok
k=1 5 k .
"The integral equation is formulated relating E4 and H, through
E
2 = —Z(n). (6.8)

T,
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The PC integral equation is obtained forcing Ey to be zero. The SI integral equation is formed
with Z,(n) = Z, and the MSI integral equation is obtained taking Zs(n) = Zsmod, Where Zsmoa

is given in section 6.3.1.

6.3 Numerical Results for Oblate Spheroids

A point matching procedure is again employed to evaluate numerically the unknown current
density. The conductor surface is discretized into M circular coaxial strips, each carrying a
current of density Jp,. The total tangential electric or magnetic field intensity at a point on
a strip is obtained from the contributions of all the strips and of the inducing turns. These
contributions are evaluated as elaborated in section 6.1. A set of linear algebraic equations,
(lnm)[Jm] = [gn] is obtained by satisfying (6.8) at discrete points on the surface. The matrix

element [, is found to be

lnm ln#m -

quoc PAlhn ~~ V(G + M) (E + 1) cosdy | Zy(na) P AN,
Z g T Zl R, [
V O n

where R,,; is the distance from the center of the i-th element on the m-th strip to the obser-

vation point in the z-z plane on the n-th strip. g, is expressed as

WNOCZI Z V(1 = n2)( 50 +1)cos ¢

Z . >
_c (?7 ka\/ )(£k+1)ZR [ 1/53—037%{%50—%&}(:05@ (6.10)

+ %{\/(1 ~m)E+1) -/ - )& + 1)Cos¢i}]

where Ry; is the distance from the center of the i-th element on the k-th turn to the observation

point on the n-th strip. The diagonal element /,, is evaluated using (3.12) and (3.13), as
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described in chapter 3. When the conductor surface is divided into strips such that An,, is
the same for all of them, the width of the strips closer to the poles are higher than that of the
strips near to the equator as in the case of prolate spheroids. In order to improve the accuracy

of the results, the conductor surface is divided into strips of equal width using (5.13).

—— Sl integral equation
SO, +—- PCintegral equation
R T~ s Sl analytical model
' o PC analytical model

o0

F/u12)

Figure 6.2: Normalized force versus d; /b; for aluminum oblate spheroids at 8 kHz, with N = 3,
tanf = 0.4, d/b; = 0.25, by/ag = 1.25 and by = 2 cm: (I) by /by = 0.5; (II) by/by = 0.75.

Numerical results are generated from both the SI integral equations and PC integral equa-
tions for oblate spheroids of minor and major semi-axes ay and by, respectively, in the presence
of the magnetic field produced by a system of three coaxial turns connected in series and car-
rying a current Iy. The turns are placed as shown in Fig. 6.1. The distance between the plane
of the lower turn and the spheroid center is d;. The power loss and the electromagnetic force

upon oblate spheroids are computed using (3.15) and (3.16).
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Figure 6.3: Normalized force versus d; /b; for aluminum oblate spheroids at 8 kHz, with N = 3,
tan,B = 04, d/bl = 025, bo/ao =2 and bo =2 cm: (I) bo/b]_ == 05, (II) bo/b1 = 0.75.

The time-average force for oblate spheroids at a frequency of 8 kHz, with N = 3, tan8 =
0.4, d/by = 0.25, by = 2 cm with by/by = 0.5;0.75 and by/ao = 1.25;2 is plotted in Figs. 6.2
and 6.3, respectively. The force obtained from the SI and PC integral equations is in good
agreement with that from the analytical solutions for the SI and PC models. The oblate
spheroidal surfaces have been discretized in 30 strips and each strip into 60 elements.

Errors which arise due to the fact that the current density is assumed to be concentrated
on the center line of the strip are minimized using a fine mesh.Each strip is divided into
10 sub-strips which carry the same current density. The contribution to E, and H, at the

observation point by the m-th strip is found by adding up individual contributions from the
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sub-strips on the m-th strip. Table 6.1 compares power loss evaluated using the PC integral
equation for oblate spheroids at 8 kHz, with N = 3, tan8 = 0.4, d/b;, = 0.25, by = 2 cm and
bo/by = 0.5, for different ratios of d; /b; and by/as. The number of strips is M = 30 and each

strip has 60 elements. The results obtained with the fine mesh are closer to the analytical

solutions.
Table 6.1:  Comparison of normalized power loss ob-
tained from PC integral equations with a fine mesh and
a coarse mesh for oblate spheroids at 8 kHz, with N = 3,
tan 3 = 0.4, d/b; = 0.25, by = 2cm.
by /ag di /by Coarse mesh | Fine mesh Analytical results
from PC model
1.25 0.6 6.00 5.93 5.67
1.2 1.78 1.75 1.55
5 0.6 5.22 5.14 5.11
1.2 1.31 1.27 1.28

6.3.1 Modified Surface Impedance for Oblate Spheroids

The coordinates ¢ and 7 are the principal curvature coordinates for oblate spheroids, as in

the case of prolate spheroids. The curvature k4 and k, are [3], [16]

§ k= 0VE&+1 §+1 (6.11)

S e " g 1

The modified surface impedance, Zsmoq is equal to (1 — p)Z,, where p is found from (2.35).

Table 6.2 compares numerical results obtained from the SI integral equations and the MSI
integral equations for the normalized forces upon oblate spheroids at a frequency of 8 kHz,
with N = 3, tan8 = 0.4, d/b; = 0.25, by/b; = 0.5 and d;/b; = 0.6 and different by/ag and

bo. The results show that the influence of the modification of the surface impedance increases



when the dimensions of the spheroids reduce or the ratio by/ao increases.

Table 6.2:

Comparison of normalized force obtained

from ST and MSI integral equations for oblate spheroids
at 8 kHz with N = 3, tanf = 0.4, d/b, = 0.25, by/b; =
0.5 and d]_/bl = (0.6.

bo/ao bo (cm) SI  integral | MSI integral
equation equation
1.25 2 0.6006 0.6003
10 0.6368 0.6368
5 2 0.4103 0.4071
10 0.4472 0.4470
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Chapter 7

Conclusion

Integral equations have been formulated using the PC and the SI models for arbitrarily shaped
axisymmetric conductors in the presence of quasistationary electromagnetic fields produced
by coaxial turns carrying current sinusoidally varying with time. Numerical results have
been generated for spherical conductors, prolate spheroidal conductors, and oblate spheroidal
conductors. The surface integrals are taken in principal values and their singularities were
evaluated by considering separately the contributions of a rectangular self-patch. A formula
was derived to evaluate the electric field intensity at the center of the self-patch. Electro-
magnetic forces upon conducting bodies considered have been found in a simple manner by
evaluating the total force on the inducing turns.

For spherical conductors, integral equations have been formulated employing spherical
coordinates. They were solved by applying the point matching and Galerkin’s methods. It
is noticed that the number of basis functions consisting of one rectangular pulse required to
achieve the same accuracy has to be increased to about twice the number of basis functions
consisting of three constrained rectangular pulses for the spheres considered. Normalized
power loss and force for different spheres were evaluated both from the PC and the SI integral
equations at different frequencies, and they were compared with exact analytical results. The

power loss obtained from the SI integral equations is closer to the exact analytical solution
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than that from the the PC integral equations for spheres with the ratio ry/¢ higher than 20.
Brrors associated with the power loss computed from the integral equations increase with the
decrease of 75/6. But the SI integral equation produces more accurate results than the PC
integral equation for forces upon spheres even when r4/4 is less than 20. For the spheres
considered, the accuracy has been improved by employing a mesh where neighboring strips to
the observation point had been subdivided. The same accuracy can be achieved by doubling
the number of strips and the number of elements on each strip, but with increased computing
time.

Power loss and electromagnetic force upon prolate spheroids in the the presence of quasis-
tationary magnetic fields have been determined by solving both SI and PC integral equations
which were formulated in prolate spheroidal coordinates. Normalized forces obtained from the
PC and ST models were compared with experimental data for prolate spheroids with differ-
ent axial ratios and with the ratio of the smallest semi-axis to the depth of penetration being
more than 10. The force calculated from the SI integral equations is closer to the experimental
data. The normalized power losses for prolate spheroids with axial ratios below 0.2, obtained
from the PC integral equation when employing a coarse mesh, deviate significantly from the
analytical results obtained by using the PC model. The numerical solution of the integral
equation has been improved significantly by employing a finer mesh. Normalized forces eval-
uated from the MSI integral equations have been compared with those obtained from the SI
integral equations for various prolate spheroids. Numerical experiments performed show that
the standard SI integral equation is sufficient for many practical applications.

Power loss and electromagnetic force have also been evaluated for oblate spheroids with
various axial ratios. They are in good agreement with analytical results. The comparison

between the performance of the integral equations based on the SI and PC models allows one
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to decide which of the two integral equations is to be used for various engineering applications

in terms of the desired accuracy.

7.1 Future Work

Techniques for improving the accuracy of the local quantities evaluated from the SI integral
equations for objects with the ratio of the smallest dimension to the depth of penetration
below 20 are to be studied further.

We have discretized the conductor surfaces only into rectangular elements. Instead, this
discretization can be performed by employing triangular elements which are expected to give
better results. The dimension of the elements closer to the poles can be reduced in order to
reduce the errors introduced near to poles.

In this dissertation, we have considered only conductors with smooth boundaries. It is
important to compare results obtained from the PC and SI integral equations for conductors

with sharp edges and vertices.



Appendix A
Electric Field Intensity of a Self-Patch

The electric field intensity, produced by a rectangular current- carrying element, at its center
is found analytically. The rectangular patch of dimensions ¢’-by-h’ carries a constant current
density J; as shown in figure A.1. Using (2.12) and (2.9), the electric field intensity at the

center of the patch is
g'/2h'[2

/ jw/"’OJS 1
0 ¢

The direction of E' is in the z-direction. The integral with respect to z is solved according to

formula 200.01 in [2] as

g'/2
1 / 2 / 2
- el [ (M2 VIR R,
T z
(9)1/2 (A'Q)
ST INELE N R Ek
s 2/
0
We make the substitution z = 1/z and dz = —(1/22)dz into (A.2), which yields
2/g
,_Jwkeds [ 1. (z+/(2/K)*+ 22
E = — / = ln< 3/ dz. (A.3)
With [2]
71 52
ln<$+_ ve'ta ) —sinh* ® (A4)
a a
where a is a positive constant, (A.3) is converted into
wiods 1
,_dwomeds [ 1.y 7z
E = - / e sinh 2/h/dz. (A.5)
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h'/2

—> g| /2
>

Figure A.1: Rectangular self-patch

The above integral is solved using formula 731.2 in [2]. The result is

. ’ ] 1] ) N2 2/9'
E' = _dwros lsinh*1 2w + Eln 2/W + V2 + /W) (A.6)
T 2 2 2 z

0.

z

When z — oo, ln(ﬂ-———— MW) — 0. Applying the I’Hopital rule, it can be shown that
1/zsinh™!(zh//2) — 0 when z — co. Then, E' is obtained in the form

. P ! ! 4 N2 2

T |2 g 2 2/¢'
_ _Jwpeds| (R VBP+ P L (9 AN
= 5 _g ln< 7 +A'In 5T 1+ i (A7)

_ jwpeds[ o (K N (9 7\
o _gln(g,-i— 1+<g, {1+ (5))]



Appendix B

Vector Products in Different
Coordinate Systems

B.1 Spherical and Rectangular Coordinates

A position vector of a point P with rectangular coordinates (z,y,2) is given by r = zu, +
yuy, + zu,. The unit vector uy directed in the increasing sense of the spherical coordinate 6 is

expressed as

ugz%—g—g=% %m+%%+g§m] (A1)
Then
w-z%:%gﬁ%eg—-m—?:cowcosgb (A.2)
Uy - Uy = %—BLLI;ZSI—H—QZS = cos @ sin ¢ (A.3)
Uy - U, = %aracgse = —sind (A4)

B.2 Prolate Spheroidal and Rectangular Coordinates

The relation between (z,y,2) and the prolate spheroidal coordinates (7, £, #) has been given in

chapter 5. The unit vector

_10r 1[0z Oy 0z
o= hyOn By 677%_*— 677%+ 3_nuz] (4.5)
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where h,, is the Lamé parameter as described in chapter 5. For ¢ = 0, we obtain

1o _ 13/ PE D) __ [e-1
%'%—h—na—n-‘h—n an =-n €2 2 (A.6)
10
uﬂ'”'.u=7;5%=0 (A7)
19z 1 0(ené) 1—n2

(A.8)

B.3 Oblate Spheroidal Coordinates and Rectangular Co-
ordinates

The n-directed unit vector in oblate spheroidal coordinate (7, &, ¢) is

_10r 1[0z Oy 0z
R e LA (4.9

where hy, = ¢y/€2 + n2/+/1 — n2. The relationship between (z,y, 2) and (n,£, $) are given in

Chapter 6. When ¢ = 0, we have

_ 1k _ 10/ mEery) __ [er
Uy * Us = hn 877 B hn a77 - 52 +772 (A.lo)
1 0y
=—=2 _ A1l
w2 (A1)
_ Lo _108(n) . |1-n’
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