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Abstract

The object of this thesis is to use complex variable methods to re-

duce the solutions of some boundary value problems for simply and doubly

connected regions to solutions of linear inflnite systems, and indicate com-

putational techniques that can be used to obtain approximate numerical

results. The complexity and importance of solving analy'bically and nu-

merically elliptic partial differential equations in mathematics, physics and

engineering are well documented in literature. We are mainly concerned

with fully integrable Laplace's, Poisson's and Helmholtz's equations, whose

general solutions can be expressed in terms of unknown compiex potentials.

These complex potentials include relevant logarithmic singularities and Lau-

rent series. For Poisson's equations on doubly connected regions, we have

the general solutions satisfiiing the boundary conditions individually on the

two boundaries and then match the unknown coeffìcients arising from the

complex potentials. These procedures lead to equivalent systems of sets

of infinite linear algebraic equations with an infinite number of unknowns.

Tluncation techniques are applied to derive numerical values for the coeffi-

cients of the complex potentials. The results are applied to find the rates of



flow in the case of slow and steady viscous flow in a pipe-in-a-pipe configu-

ration, whose cross-section is bounded by two eccentric circles. Helmholtz,s

equations on the simply connected regions with boundaries which can be

expressed in the form zZ : f (, t Z) or ziZ: g(z7),(which inciudes the

weli known elliptic case,) are considered. The main contribution of the the-

sis is in applying complex variable techniques to derive equivalent linear

infinite algebraic systems for the eigenvalues of the Laplacian on elliptic re-

gions. The numerical results are briefly compared with those available in

Iiterature.



Chapter X.

ïntroduction

It is well known that the homogeneous

sociated with the two dimensional Laplace

represented by,

Y2u : 0, (Laplace's equation)

Y2u: L .L being a constant

and the eigenvalue problem,

boundary value problems as-

-o 6z 6zoPeratorYo:-*-isoxl. oa"

(1.1)

(Poisson's equation) (1.2)

V2u * À2u : 0. (Helmholtz's equation) (1.3)

The problems in two dimensional simply and doubly connected regions are

of fundamental importance in various classical and modern fields including
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vibration systems, antenna analysis, and quantum mechanics.

The ensuing chapters will present solutions of various theoretical prob-

Iems and numerical algorithms using as our method. The expressions f'or

the equations are in terms of complex variables z : r I i,y and its conjugate

2 : ï - iy, and followed by integration of the equations to derive gen-

eral solutions in terms of relevant functions of complex variables (including

logarithmic singularities, Taylor series and Laurent series). The simply con-

nected regions considered are bounded by closed convex curves which can be

expressed in the form z2: f (zIZ) or ztZ: g(zZ).These expressions in-

clude boundaries like circles, ellipses, rectangles, etc. The doubly connected

regions are annuli bounded by concentric circles or eccentric circles. In all

the problems discussed, the solutions are reduced to solving equivalent infi-

nite linear algebraic equations. Compared to traditional numerical methods

which need information regarding solution itself for any meaningful error

analysis, the infinite system approach embodies truncations, error analysis

and estimates.

Techniques for solving these problems on various domains include sepa-
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ration of variables, complex variables method, and approximation methods

of solutions including asymptotic analysis [8], Green function, finite diff'er-

ences, finite elements. For some details of separation of variables see [20]

and f'or an excellent treatment using complex variables see [12]. For some

basic properties of these elliptic partial differential equations see [1g].

In Chapter 2, we introduce some preliminary information about the equa-

tions, the nature of their solutions and description of the regions in terms

of complex variables. A brief description of confbrmal mapping with some

examples is aiso given. In Chapter 3, for the three equations which are fully

integrable, the general solutions are derived for both simply and doubly con-

nected regions. Chapter 4 deals with the fluid flow problem f'or the doubly

connected regions bounded by two eccentric circles. We use the technique

of satisfying the conditions on the two boundaries individually and then

matching the unknown constants in the general solution. This leads to

an equivalent inflnite system of linear algebraic equations which are then

truncated and numerically evaluated. Rate of flow per unit cross-section

per unit time is calculated and the results compared with known results in

[18]. Chapter 5 deals exclusively with the Helmholtz equation for an elliptic

boundary. The analysis again leads to an equivalent infinite system of linear

algebraic equations with coefficients of the matrix being known polynomials
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of À' The numerical values are then compared to known numerical results i¡

the literature [9]. In chapter 6, problems involving Hehnholtz equations f'or

doubly connected regions are stated and their method of soiution indicated.

Future work would involve establishing the equivalence of solutions of the

boundary value problems and the infinite systems, and the establishment of

meaningful error analysis where possible.



Chapter 2

Preliminaries

2.L Some Complex Variable Results

We use the complex variables z: tli,y and Z: r -i,g to express com-

plex potentials, which are analyiic in the specified regions, as Taylor and

Laurent series. The domain D will either be a bounded simply connected

region (i.e. if any simple closed curve J in D can be shrunk to a point

continuously in the set of D.) or a bounded doubly connected region (i.e.,

domain bounded by two simple closed curves and not simply connected). In

the fbrmer case, complex potentials expressed by Taylor series for functions



and the latter case would involve Laurent series and a logarithmic term to

give the multi-value property of the function. I would then have the form

CHAPTER 2. PRELIMINARIES

of a single variable, have the form

a(z):Ðo,r"
n:0

a(z):Btnz*,t*u,r,

with the assumption that the origin is outside the domain.

Stokes' theorem in complex form is given by

l"rQ,Z)d'z: zt lrfras

¡n
| ̂  f Q) ¿, : 2tri! Residue(z¡)rc Et

In this thesis, we need only n : 1.

(2.1)

(2.2)

(2.3 )

(2.4)

f'or the simply connected region ,9 enclosed by a curve c with a similar ex-

pression for doubly connected regions. We will also use the Cauchy Residue

Theorem which states that for C, a simple closed positively oriented path,

with / analyiic inside and on C, except at fÌnitely many isolated singularities

zr, 22,.. ., zn inside C, then
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2.2 Conformal Mapping Methods

For solutions of two dimensional elliptic boundary value problems, conf'or-

mal mapping of regions in the z-plane to circular regions in the (-plane, by

a mapping z: f (e), is often used. Although the mapping is guaranteed to

exist, known speciflc mappings fbr specific regions are very fêw.

Problems in some irregular shaped convex regions that are simply con-

nected or doubly connected can also be solved by conformal mapping. A

conf'ormal rnapping preserves the magnitude and orientation of the angles

between any two curves which intersect at any point in the domain. It can

be shown that a mapping f : C. --. C in the complex plane is conformal if

and only if / is a complex holomorphic function and /'(r) I 0 [10]. From

this latter reference, we also have the f'ollowing remarks:

Remark 2.2.L. Any si,mply connectedregi,on6, wlti,chhas aboundarA con-

si'stzng of a pi,ecewi,se smooth si,mple closed curae cz.n be mapped conformally

onto the i,nteri,or of a uni,t ci,rcle.

Remark 2.2.2. A doubly-connected regi,on can be mapped one to one and

conformally onto a concentric circular annulus, proui,ded that the fronti,er of

the regi,on cons,ists of two d,i,sjoi,nt cont'inua and each oJ them conta,ins more
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than one point.

Although the existence of such maps are known, the problem of finding

explicit expressions of mapping f'unctions fbr all regions are still open. If

a and b are radii of two concentric circles of the annulus, then the modu-

lus of region D given Uy I i, a number uniquely determined by D. More
o,

precisely, for any doubly connected region with smooth boundaries, there

exists a unique real number þ, 0 < p < 1, such that there exists a one to

one analytic function /, that maps D onto the annulus ,4. : f,, < lz,l < I.

If the outer boundaries correspond to each other, then / is determined up

to a rotation of the annulus. By Remark 2.2.7 and 2.2.2, some problems on

arbitrary domains can be worked out by conformal mapping.

If c6 and cv are Jordan curves which bound externally and internally

a doubiy connected region D in the z-prane, which exciude the origin, the

mapping function [15]

a(z): exp[n z+þ(z)1, z:tr1-,iA:re¿o (2.5)

which is unique except for an arbitrary rotation, maps D * Co + C1 onto the

annulus 0 < a <lr/)l < b < oo, where the ratio blais unique and /(z) is

analyiic in D.
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From the above, we get

In(zz) + ó(z) + ö(z) :

We give below some well

solve the boundary value

methods developed in this

known mapp

problems for

thesis:

(

)lnb2, ze Co

ì

Ilnø2, ze Ct

ing functions whi

various regions

(2.6)

ch can be used to

using some of the

(2.e)

(2.7)

where lrl < 1, maps two eccentric circles in z-plane to concentric circles

in (-plane [13].

c

1-C

z:ccltn]\
\ çn ) (2'B)

maps curvilinear polygons in z-plane to circles with radii p 2 1 in

(-plane [15].

,:. (,*ä)

maps an ellipse in z-plane to a circle in (-plane [18]
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z: R(ç * #l (2.10)

where Ë > 0 and 0 1 m L f, -upr an hypotrochoid in z-plane to a

unit disk in (-plane [16].

ø

":î,o,r' (2.rr)
n:0

can be used for a numerical mapping f'or arbitrary regions.



Chapter 3

The Three Equations

The three equations and their transformed equations (using the complex

variables z: r*i,y and its conjugate Z: r-iù are given by

02u

-:n
ðzôz v'

02u L

-:__
0z0z 4'
02u ¡z;--* * -:-u:0.ozclz 4

The complex PDEs (partial differential equations) can

use of holomorphic and analyiic functions. The details

and their roles in the methods of mathematical physics,

tensively in [ ].

V2u:0,

Y2u: L,

V2u*À2u:0,

(Laplace)(3.1a)

(Poisson) (3.1b)

(Helmholtz) (3.tc)

be solved with the

of these functions

are given more ex-

11
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In general, the Laplace equations with homogeneous Dirichlet bound-

ary conditions possess only triviai solutions and are obtainable fiom the

maximum principles. The nontrivial solutions exist with nonhomogeneous

boundary conditions, and various methods of deriving nontrivial solutions

to Laplace's equations have been discussed widely in literatures.

solutions to Poisson's equations can be expressed explicitly on some

regular domains [7] and [to], and in addition,.we can write out the analytic

solutions to Poisson's equation defined in simpry connected regions bounded

by rectangles and circles. For the fÌrst of these latter cases, the solutions can

be obtained by separation of the variables, while in the latter one, we can

assume that the simply connected domain denoted CI is bounded by a circie

of radius a, and then we have the polar-coordinate boundary value problem,

(3.2)

t2

( a2ø 1ôÕ ra2o
) AA+, u+A oæ 

: f(r'o) inn'
I

I O(r, 0) : O on ôCI.

The solution to (3.2) is given by,

u(r,o) : + lr" ooo lo ^ffirØ,t)dt (s.B)

The two dimensional Poisson equation with complex variables (3.1b) with
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L : -Pl p, is given by

02u P
Otôz: - 41"'

which can be f'ormally integrated to give

Pu: -fuzz + a(z) + a(z),

where the complex potential ø(z) has the form

a(z):io,"'.
n:0

This general f'orm can be used for any convex and simply connected region

including an elliptic region. For doubly connected regions, the potentials

can be expressed by a Laurent series combined with a logarithmic term,

which is given by,

a(z):Btnz* Ð bnr"

Here we assume that the origin is outside of the region. The unknown coefi

fìcients b,, and B in general solutions are to be determined by the boundary

conditions.

The Helmholtz equation is also known as the eigenvalue problem of the

Lapiacian. For a given eigenvalue of À, we can solve Helmholtz equations

analfiically on some regular domains. Among the regions, the simply con-

nected region bounded by a circle and the doubly connected region bounded

13

(3.4)

(3.5)

(3.6)
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by concentric circles both have radially symmetric properties. Thus we can

just consider the radical part of the Helmholtz equation in these regions.

The equation can be expressed in polar coordinates and thereafter solved as

an ordinary differential equation. The radical part of Heimholtz equation is

given by

a2e roa .o_
ar2+ror+À'(Þ:o'

This is a typical sturm-Liouville system with eigenvalues Àr, where the

quantities À,, are the roots of -/6(À¿) :0 with -16 the Bessel's f'unction of

the first kind, and ¿ is the radius of the circle. The bounded solutions to the

Helmholtz equation for this simply connected region is given by, Õ : Js(Àr)

with J6 the Bessel function of first kind and order zero. The solution to

the Helmholtz equation in the doubly connected region bounded by two

concentric circles is given by,

I4

ó(r,z): AJy(ÀJzz) + avsçx\/zz1

where A, B are arbitrary constants and J6, Y¡ are Bessel functions of the

first and second kind respectively. These can be expressed as the series,

j9 / t2.., k 
-le -ttrs(À\/tz) : Ð(?) ffi,È:0

ys(À\/dz) : 
? { ['" Y * rf ,or^,tul * ir-rl k+r¡y*(+)^ #]
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\¡ihere 7 is the Euler-Mascheroni constant and H¡r: 1-l- 112+1lB+.. .+Ilk

is a harmonic number.

For the other simply connected regions without such symmetric proper-

ties, we cannot just consider the radical part. However, it is still possible to

solve the eigenvalue problem in elliptic regions, on which the problem can

be f'ormulated by using separation of variables and an elliptic coordinate

system [8].

The elliptical coordinates (0 < u ( ñ,0 ( u ( 2r), are defined through the

transfbrmation equations to Cartesian coordinates:

r : ccosh ucosu;

A - csinh usinu.

Helmholtz equations in these coordinates (2, u) take the form

{rG^; - -"ùl# " #l. n'} t'@'u) : o

ú(u,u) is separable and admits product solutions of the fbrm

,þ(u,u) : U(u)V(u).

15
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The fïnctions [/ and V then satisfii the ordinary differential equations,

a2u
AA+@-Zqcos2u)U(u)

ô2v
ãF -@-2qcosh2u)V(u)

0 (Mathieu f'unction), (3.7)

0 (modified Mathieu function). (3.8)

(3.e)

loss

Discussion of approximate solutions to Mathieu equations and modified

Mathieu equations can be found in [1].

we now consider the two dimensional Helmholtz equation (8.1c) and

integrate. For real /, we assume the formal solution in the fbrm of

ó : Y, z" f^(z) -l conjugate,
n:0

where fn are chosen to have no terms of order lower than zn, without

of generality. Substituting equation (B.g) into equation (3.1c), we get

(æ \2oo ì
1 I "tt"-') Í^(r) * +D,2" rn?) þ + con;,-,gate : 0, (s.10)(":r n:0 )

yielding,

ir" lf, * 
r¡¡;*,(") + | nf,l* conjugare : o.

N:U

Equating the coefiìcients of z to be zero, gives the iteration relation Tor fn

and /,r-,.1,

r2
(n + 1)f[*yØ + îf"(z) :0 f.or n:0,L,2,...



Here we assume that 0 is in the domain of all functions /,r. Letting /6 be

any holomorphic function in the region, means that from cauchy's theorem

[20], the multi-integral can be simplified as

CHAPTER 3. THE THREE EQUATIONS

From the iteration, f, can be expressed as

r,: ! r-{)" r .. f"=;(-Z/ Jo Jo To(t)UP
Y N

¡,: ! -! - (-t\" '"
"! 

(?? r)! (-Z/ Jo Ío@Q -t)"-Idt'

Now we substitute back f, in (3.g), to give,

lo(r):Ðon"",
n:0

17

ó : Ðo,2"Í,(z) + conjugate
n:0

: r,+f #ú(-+)" fo" ro{r){,-t)n-rdtr conjugate

. fz ,S o,,r" (_:ur": fo* 
Jo fo@ 

þ;G:,n (-Z) Q -t)"-tdú* coniusate

(3.11)

(3.12)

and after some simplification, the general form of the solution is

ö : 2Re 
{r,øt - l,' noftto Q,{rç=l) o,} , (3 18)

,)

which is the same as the general solution in simply connected regions given

in [12], where fs(z) is an arbitrary holomorphic function on the whole ele-

mentary domain. For simply connected regions, we can assume

(3.14)
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while for doubly connected regions with the origin outside, we can assume

fo(ò : Btnz + 
,î 

u,r,. (s.lb)

where an, B and b,., are arbitrary real numbers.

The Helmholtz equation is also known as the eigenvalue problem of the

Laplacian. For the eigenvalues of the Laplacian, we have the following the-

oreITt

Theorem 3.0.3. AII the ei,genualues of the Laplaci,an are posi,tiue i,J the

ei,genualue problem sati,sfi,es the Di,ri,chlet boundary conditi,on.

Proof: Let u and À be an eigenpair, z is the unit normal. Then

s,Irra*: -[çnr1ra,Jn Jo'--
: 

lnlvul'a* - Irr,ffa,çr¡
: I lvul'¿*I I " "lJa

Therefore

s ln 
2a* : 

lnlvulrar 
) o.

Now, we only need to prove

fnlvrl'a* + o
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Suppose 
fnlVrl'a*: 

0, then lVul : 0. i.e. u is a constant on domain 0.

Since we have the homogeneous Dirichlet boundary condition, and u : 0

on ô0, then u : 0 on the whole domain, which is contrary to u l0 as an

eigenfunction.n

It is also well known that, eigenvalues of the Laplacian are positive real

numbers satisfying,

19



Chapter 4

Flow of Fluids

Poisson equation occurs frequently in classical theoretical physics and in en-

gineering applications [21], such as the steady state of some diffusion equa-

tions, the steady state of heat distribution, astronomy, fluid dynamics and

electrostatics, because it describes the behavior of electric, gravitational,

and fluid potentials. one of the most important applications of poisson

equation which will discussed in the thesis is in the fÌeld of the slow and

steady flow of an incompressible and irrotationai ideal fluid through pipes

whose cross-sections are simply or doubly connected regions.

20
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4.L Mathematical Model of the Problem

The velocity of the fluid satisfies the Naiver Stokes equation,

div q

: f -vp
:0

in a bounded domain D c lRS with the boundary of crass c2 and. q ís

the velocity vector, p is the pressure in an incompressible fluid; (.,.) is the

scalar product in R3. Also / : D x [0, *) -- ]R.3 represents the external

force [3]. The system contains four equations and the unknown f'unctions

are the three components of the velocity field and the pressure p. In our

case, \,r/e consider slow and steady viscous flow under a constant pïessure

gradient P : Yp along the pipe. The fluid in our problem is supposed to be

viscous and steady, and therefbre it is reasonable to ignore the velocity in the

vertical direction. In another words, there is no rotation in the pipe. With

the assumption of slow fluid, we have ff 
: O. Then the problem can be

modeled easily by Poisson equation *iti, nornogeneous Dirichlet boundary

conditions. In the published paper [18], Shivakumar gives some analysis

of flow through a pipe, whose cross-section is bounded by an eilipse and a

circle. The conformal mapping (2.g), is introduced which maps the outer

ellipse in the z-pIane to a circle of radius b in the (-plane. In his later work

27

ff - uu+ (q, V)q

(4.1)
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with Ji in [13], they also considered the probiem on the doubly connected

region bounded by concentric circles and eccentric circles. In this thesis,

we f'ollow the mathematical model of the problem set up by Shivakumar by

introducing the complex variables z: tr*i,y and2: r-i.y 173), and we

can use the two dimensional Poisson equation of complex form (3.1b), given

by,

(4.2)

on ôD

where P is the constant pressure gradient along the pipe in the direction of

the fìow, u(z,z) is the velocity of the fluid in the direction of the axis of the

pipe, and ¡r, represents the viscosity of the fluid. Assume that the general

form of the solution tu (a.2) is given by,

( o'r- P

) aro-r--4t"

l,:o

(4.3)

where a.,(e) represents the complex potentials given by (2.1) in simply con-

nected regions and (2.2) in doubly connected regions. We wili be concerned

with the rate of flow, calculated by Stokes formula (2.3) with outer boundary

C1 and inner boundary C2,

D
fL

:
I |,"o,ùard,y: I |rue,z)d,s

* I,-"""'(#'- ''ç¡) a' (4.4)
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The procedure to derive the formuia of the rate of flow is described below,

R: [[,¿s
J ln

: Il,(&ra - "ff) as

: I l,l*oò - * (",#) * ffi,,] o'
1 [ u,¿z-! [,2*a,-I tI zzd"s.: - z¿ J"r-""1IþLLL - z¿ J"r-"r'þd;uþ - +tt J L,

On both boundary curves we have z : 0 and therefore

I

J",-"ruzd'z 
: o'

From the general form of the solution, we obtain the expression,

0u P_
* 

: - n" 'f u'(z)'

Substituting the above equations in the expression of -R, then we get,

R : -*, I,-"," (t'+a'Q)) d" - + 1",-*"'#
7 f /P P \: -ù J",-"," (trtt - 4uz+u'(z))dz

: !t lP ,.ll¿,: 
a J",-"r'" \rr' - '' lz' /

4.2 The Concentric Annulus

'We consider here the doubly connected region of an annulus bounded by

concentric circles and the simply connected region of a disk bounded by a
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circie. Because the concentric annulus region that we consider here possesses

radiaÌ symmetry, provided that we set the centers of the circles to be the

origin of the coordinate system, the solution to the poisson equation on such

a region will contain only powers of r : 1/Tz. For a simply connected region

bounded by the circle zz:12,the complex potential is given by (2.1), and

here in our case it is given by,

a(z) : ao, a6 is an arbitrary real number. (4.b)

By ref'erring to the equation (a.3) and the boundary z2: l2, onthe bound-

ary, we have,

lu\z,z) : _4rrri2ao

P: -,12i2as
4H,

Û

from the which, we find oo : !" _P and the solution is z : -!-ez - lr).- 8¡-r' 4¡-t' /

on applying the formula f'or the rate of flow, we have trrat .R is given by

o: I |ru(z,z)d,s:'# (4.6)

Referring to (2.2) and the symmetric properties, we can assume the
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potential f'or the concentric annulus to be

a(z) : Blnz *bo, B and ós are arbitrary. (4.7)

Then the real solutionto (4.2) on such a region becomes

Pulz,2) : - nrt, * B ln zZ I2bo. (4.9)

Assuming that the region is bounded by two circies C1 and Cz of radii ¿

and b respectively, we have boundary conditions given by

u:0, on C1 : zZ : o,2 and on C2 : zZ : b2.

substituting the boundary conditions in (4.8), we have a linear system of

two equations in the two unknowns B and b6, given by,

-*o' * B In a2 + 2bs : o, (a.9a)
4¡L'

-lu' r B In b2 + 2bs : o. (4.9b)
4¡,t

Now we can obtain the solution b (a.\ from (4.ga) and (4.gb) on the region

bounded by the concentric circles, and find that,

B: P a2-b2
9¡L.lna - lnb'

ô, P a2lnb-b2lna
" 4p, lnô-ln¿ '

ancl

25

a
Inzz -nb

6z

n
,a'

",

P/
U:--lZZ-

4r¿ \
o,ln

o,t"
b

b

2ln

l" ) 
(4 10)2l
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Substituting the above equations in @.a) we get the rate of flow through

the pipe wirose cross section is the concentric annulus bounded by C1 and

C2, and this is.just

p: A¡oa - b4) + Pr (a2 - b\z
8¡r' / 8plnb-ln¿

4.3 The Eccentric Annulus

4.3.L Mathematical Model

(4.11)

Consider the cross-section of the pipe when it is bounded by two eccentric

circles c1 and c2, expressed in the cartesian coordinate system by,

Ct, (*-h)'+a2:o2, Cz: (r-k)r*a2:b2 (4.I2)

Ref'erring to Remark 2.2.2, there exists a conformal mapping, which maps

the annulus bounded by eccentric circles to the one bounded bv concentric

circles. As in [13], the mapping function (2.g),

cz:7-- z:rI,iU, e:t+i,n, creals-r (4.13)

with z'(O f 0 can be used. For the transformation to be conformal, the

ring space excludes the critical point ( : 1. In Cartesian coordinate, the

mapping (4.13) has the form:

@t + a')çç : 12 * E2 + 2cr + c2
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and the eccentric circles showing in @.r2) are concentric in the (-plane, and

lÇl: p, p: pr, p2 and Æ ) pz. The following relations are satisfied:

Pr: E; Pr: k
, ,oa' 0"

C:--ll:--khk
tt t
o-k_h:p_ø

Figure 4.1: Conformal mapping of doubly connected region

The details of the method and numerical results can be f'ound in shiv-

akumar and Ji's paper [13].

4.3.2 A New Approach

we consider here another approach to the problem as an alternative to

using conformal mapping. we introduce the formal solutions (4.3) to the
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Poisson equation (3.lb) with unknown

regions, given by (3.6). Substituting

form,

P
-;:rz+a(z)+a(z)

411

28

potential a(z) on doubiy connected

these in (3.4), the solution has the

(4.r4)

Pl:l: -l-zz+iBlnzi Ð bnt" f +con¡ugate4¡L' ( n:-æ
I) oo oo

- 
r n; , B ln zz * 2bs +\ar1z" + z") +Ða_,þ-" + z-"), þL l+l-L n:r n:r

Then applying the two boundary conditions respectively and separately

to the formal solutions, and equating the coefficients, we obtain an in-

frnite system of linear equations AË : / with infinitely many unknowns

B, bo, bt." ,bn,.... The coefficient matrix,4. is truncated to an nxn

matrix, and the approximate values of B, bo, bt. . . ,bn,. . . obtained by

solving the truncated linear system. Focusing on the eccentric circles prob-

lem and examining the change of the rate of flow when the inner boundary

approaches to the outer one and frnally almost touches it, means the doubly

connected region tends to a simply connected one. Figure [figure4.2] illus-

trates this change, but note that here we flx the center of the inner circle at

the origin and keep the origin outside the doubly connected regions.

Denote the radii of the boundary circles by a and b, and the distance
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Figure 4.2: Moving the circles to touch

between the two centers by ñ.. The two eccentric circles can then be described

bY'

-2 , ^.2 _ o,2rL _Tg

(, - h)t + a2 : b2, (4.15)

where ø ( b and b-a) h. In the z-plane, the boundarycan be expressed

AS

ct, z2:o,2, czt Q-n)Q-n¡:62. (4.16)

and so C2 in the z-plane can be then mapped conformally to a circle in the

(-plane of radius b with its center at the origin. This is given by,

e|:b2, where C:z-h (4.17)

So finally the new boundary value problem of complex fbrm wouid be

29

movino llìe ouler circle to lhe richt
Concentr¡C CrrCIeS tOUChed Circles
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written âs,

30

ð2u P
=---- : -- in l)iJziJ7 4¡.t,

u:0 on C7

u:0 on C2

(4.18)

Using the homogeneous boundary condition, we have u : 0 on C1 in

z-plane. so applying the boundary condition to the formal solution (4.r4),

we obtain,

P^Z co

u : -++Brna2+ L bn(2"+z")
4¡t" 

n_-roo

Pa2: - 
^, 

*Blna"+2bs
oo oo

+lu,1z" + a2" z-"¡ + I b_n(r-" + a-2, z")

T-") ^ ',:'
: - , *BIna"+2bs

4lt'

.Ë (u .H),'+i{u,o,2n +b-n)z--,:0.

By equating coefficients on both sides, we have,

o^2
Blna2 +2bo:Y, (a.lga)

b-n:-bra2n n:I,2,..',æ, (4.1gb)



On substituting (4.19a) and the boundary condition Ce : b2 in the above

equation, we have

u : -ãfn'+ ((+ a)h+b2l+ BInb2 +ar" (r. f) .arn (r +Lr) +za,

* Ë u, Ke + D"+ (( + h),1 -îor,u,lG + h)-, + (( + h)-,1
n:I n:I

: -lfu, + tz2) + Btnb2 +2bo
4¡,r"

. 
{r 

r" (r + ?) .,i u"te + h), - 
_too,,u,G 

+ n¡-, '#}
fconjugate.
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On the outer boundary ((:b2,the equation (4.1,4) becomes,

By the assumption b > a and h < b -ø, and the fact that l(l : b on

C2, we have h/( < I. Therefore the Taytor expansion of f" (r * ?) 
t.

convergent, which can be expressed as,

n(t+!l:T(-t)"-'n"\- (/ L. e"' n:I

Then every term in the solution is in terms of coefficients of (-- - /b2\"
,'" and 

\¡/ 
1
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and u is given b¡

¡)o
.)¿

u : - -!fu, + h\ + Btnb2 -l2bs ¡zia,n,4¡,t,' t 
n:l

-!e+Bi er)":rh(
+u '2 nb2n \' n:I

-'å 
å 

rr(:)¡k-nçn 
: å ",*bo(*-! r)n"-- #

_Pb2 +BË Gr)".rh (br\"
4t'Ç "k nb2' \C/

. 
Ë å,- (:) 

*-" (T)" -,Ë 
äo,r 

ur (,-: r) h"-r ä
: 0. Ø.20)

Equating the coefficients on both sides of the above system (4.20), we

obtain the set of equations

B(tnb2 -tna2)* rË bnhn - -!1u, + n )
n:o 4P'

BJ *S r¡*-r¡,- - 
a2bt : ryb2 ' .L-'u'u "rc - b2 - T¡,k:r

uc4:Y. 
å,^(:) 

hk-, - Ð#(,-j-) hn-k : o

which is combined with (4.19a) to reptace 2b6 with (#- B tn or) . T1r"

new system in terms of coefficients of (2, n:0,I,2,... ,oo, is thus given
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by'

and

b : (8,bt,b2,...,bn...)T

f : (fi*2 -b2 -h'),'#,0,...,0...)'

.f .)

(0 , B(tnb2 -tna2)*, Ë bnh, : -Ifu, + h2 - a2) (4.2r)
n:r +P'

co

( : B h +fnnu-t6tb¡ - a2bt :'?ut
k:L 4¡t'

Cn , u't)"-th . 
å 

r^ (i) ¡,k-n62n -Ë"uu*(,]-) hn-k - 0,n :2, 3, . , oon

The expresrion ( -k, ) .un be wrirten as,' \n- k/

("-: r): (-1¡n-r(; _ i)

so finally the system (4.2r) can be written in matrix notation * Aú : f',

where



CHAPTER 4. FLOW OF FLUIDS

and the coefficient matrix -4 is given

h

34

Ln(bla)

by'

¡z ¡rz hn

-n,"
2

t) ,o"-a" 2b2h 3b2h2 ,62¡rn-7

o,2h b4 - a4 BbLh

-o,2h2 û4h b6-a6A- ¡r3:
.)

62n _ o2n

For

and

the coefficient matrix A, aII the entries above the diagonal are positive

those beiow the diagonal are of alternating sign, The sign matrix for



CHAPTER 4. FLOW OF FLTIIDS

this system would then be,

DÉÐd

+

+

+

+

I
I

+

+

+

+

+

+

+

+

+

+

+++
+++
+++
+++
+++
+++

+++

This sign pattern is following one of the patterns in [14], but the infinite

matrix ,4 does not fully satisbr all the conditions of non-singularity in [1 ].

However, the matrix ,4 possesses some useful properties when h is srnaller

than 1; for example, the magnitudes of the entries tend to zero along each

row and each column. In addition, when h << r, all the conditions of non-

singuiarity presented in [1a] are satisfied.



CHAPTER 4. FLOW OF FLTIIDS 36

The (i, j)th entry of ,4. is denoted as A¿,¡ and given by the fbllowing,

lnbf a, i,: j :1;

hj-r,
(-t\t'¡rt-t

¿-1 '

i;: I,i > 7;

ilI,j:I;

4,, : (4.22)
6z(i-t) _ o,2(i-t) , i:i#7;

7<i<i;(;- i) hi-ib2i' - r,

-a2(i-t) Gt)o-¡ (un _r,)n*, , i. > i > r.

tuncating the infìnite system, we can solve for the unknowns ã, and

thereafLer we can approximate the solution u of the differential equation

(4.2) defined on the eccentric annulus.

with the approximate solution u, we can find the rate of flow from the
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formula f.or R (4.4),, and we have

R: IT,*'
: If

2i Jc,_c,

/D \_l r ,, \,, 
\rrt - a'lz) 

) 
az

wlrere Cr and C2 are the eccentric circles, a(z) can be expressed by B, bn, n :

7,2,.... Substitute the solution in the formula for Ã, and the rate of flow

in this case is given by,

T)

R : ! tr (bn - on) + B r (a2 - u,) + ! n n2 a, - n a2 b th + *b, î nb,hn (4.2s)6¡t ' 4¡,t, n:r

4.3.3 Numerical Results

In the fbllowing tables, r¡/e compare the numerical results of the rate

of flow with previous results using conformal mapping given in [13]. Let h

be the distance between the centers of the circles, which corresponds to the

value of h - k in [13], and let ø and b be the radii of the circles. We can

take b : 1 and | : t. .R1 denotes the rate of flow computed by conf'ormal
8p"

mapping and R2 denotes the rate of flow computed by our approach.

The tables show the rates of flow fbr different radii of the eccentric cir-

cles. We can observe the change in .R, when the centers of circles diverge.
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b:1.000

distance between centers

a:0.05

Rt

area:3.134

R2 n:2

R":2.09812

ä2 n:10 A2 n:15

0.01

0.06

0.1i

0.16

0.21

0.26

0.31

0.36

0.41

0.46

0.51

0.56

0.61

0.66

0.77

0.76

0.81

0.86

0.91

2.098296

2.104425

2.719244

2.747784

2.772875

2.277598

2.257676

2.370489

2.369373

2.433556

2.502752

2.574753

2.648427

2.723702

2.798397

2.87L129

2.939994

3.002909

3.057576

2.098293

2.t04373

2.118886

2.147890

2.773726

2.2L2375

2.259097

2.372989

2.373433

2.439778

2.510988

2.5862rt

2.664t36

2.743254

2.821737

2.897328

2.967297

3.028233

3.075877

2.098293

2.704377

2.1 18863

2.141783

2.772874

2.271597

2.257674

2.310485

2.369367

2.433545

2.502132

2.574720

2.64837r

2.72361r

2.798413

2.871188

2.940777

3.003439

3.058720

2.098293

2.r043r7

2.118863

2.747783

2.r728r4

2.277597

2.257674

2.370485

2.369367

2.433545

2.502732

2.574179

2.648370

2.723607

2.798396

2.877727

2.939993

3.002965

3.057786

Table 4.7: b: t, ø : 0.05
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b:1.000

distance between centers

a:0.2

Rt

area:3.3.016

R2 n:2

Êc:1'338

-R2 n:10 Ë2 n:15

0.01

0.06

0.11

0.16

0.2r

0.26

0.31

0.36

0.41

0.46

0.51

0.56

0.61

0.66

0.77

0.76

1.337857

1.346150

1.366210

1.397838

L.440779

r.494418

1.558385

1.631946

7.774372

t.804572

1.901696

2.004535

2.771826

2.222197

2.334775

2.446197

1.337857

1.346155

r.366262

i.39807i

r.44L400

1.495990

1.561486

L.637419

1.723177

1.817963

1.920738

2.030134

2.744330

2.260857

2.376302

2.485819

1.337857

1.346150

1.366210

1.397838

7.4407L9

r.4944t8

1.558385

1.631946

1.774312

r.804572

1.901696

2.004535

2.777826

2.222197

2.334775

2.446L94

1.337857

1.346150

1.366210

1.397838

r.4407r9

r.494478

1.558385

1.631946

7.774372

r.804572

1.901696

2.004535

2.171826

2.222797

2.334175

2.446792

Table 4.2: b: t, a:0.2
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b:1.000

distance between centers

a:0.3

Rt

area:2.859

Rz n:5

E":0'955

Ë2 n:10 R2 n:2Q

0.01

0.06

0.11

0.16

0.27

0.26

0.31

0.36

0.47

0.46

0.51

0.56

0.61

0.66

0.955586

0.964233

0.985154

1.018156

1.062930

1.1 19054

1.185996

1.263111

L.349648

7.444751

r.547465

L.656747

1.777440

1.890348

0.955586

0.964233

0.985154

1.018156

1.062930

1.1 19054

1.185996

r.2631t2

1.349650

r.444758

7.547483

1.656782

7.777530

1.890524

0.955586

0.964233

0.985154

1.018156

1.062930

1.119054

1.185996

1.263111

1.349648

7.444757

7.547466

7.656747

L.777447

1.890350

0.955586

0.964233

0.985154

1.018156

1.062930

1.1 19054

1.185996

r.263771

r.349648

L444757

r.547466

7.656740

7.777440

1.890348

Table4.3:b:I, ø:0.3
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b:1.000

distance between centers

a:0.5

-Rr

area:2.356

Rz n:5

Ë":0.395791

R2 n:IO R2 n:20

0.01

0.06

0.11

0.16

0.27

0.26

0.31

0.36

0.47

0.46

0.396014

0.403840

0.422783

0.452693

0.493331

0.544372

0.605472

0.675965

0.755475

0.843315

0.396014

0.403840

0.422783

0.452693

0.493331

0.544372

0.605412

0.675965

0.755476

0.843316

0.396014

0.403840

0.422783

0.452693

0.49333i

0.544372

0.605412

0.675965

0.755475

0.843315

0.396014

0.403840

0.422783

0.452693

0.493331

0.544372

0.605412

0.675965

0.755475

0.843315

Table4.4:b:1, ¿:0.5

Table 4.5: b: L, a:0.75

b:1.000

distance between centers

a:0.75

Rt

area:2.356

E2 n:5

A":0.395791

-82 n:10 R2 n:20

0.01

0.06

0.11

0.16

0.27

0.057484

0.062247

0.073784

0.092024

0.116849

0.057484

0.062247

0.073784

0.092024

0.116849

0.057484

0.062247

0.073784

0.092024

0.116849

0.057484

0.062247

0.073784

0.092024

0.116849
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In tables [4.3 to 4.5 ], the numerical results are obtained by truncating

the infinite systems at n:5 n:10 and n:20 for R2; Table 4.1 and rable

4.2 give the numerical results are obtained by truncating the infinite systems

at n:2 n:10 and n: r5 for Rz. The advantage of the new approach is

that we can estimate the rate of flow through the pipe, whose cross-section

is bounded by two nearly touching circles (see figure [4.2] touched circtes)

and theref'ore the region is nearly simply-connected. It is clear that the rate

of flow becomes larger while the distance between the two circles is smaller.

i.e., the rate of flow gets larger while the inner circle moves closer to the

outer one. We may finally obtain the greatest rate when the circles are al-

most touching.

In addition, even if the areas of the regions are the same) the rates of

flow vary depending on the eccentricity. we can see this by comparing the

rate of fluid through the simply connected regions of the same area with

different shapes.

Table 4.6 shows the comparison of the rates of flow through the pipes,

whose cross-sections are of the same area.

42
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Table 4.6: Comparison of rates of flows through the pipes of difrerent cross-

sectional area when b: 1

In the case where the circles touch, the coefficient matrix ,4 is almost

singular, and it causes larger errors in the approximation. The values for

nearly-touching case given in Table 4.6 are approximate values obtained by

computing rates of flow when the two circles are very close to each other

and the system is truncated at larger n,.

43

a area concentric circles one circle almost touching eccentric circies

0.05

0.2

0.3

0.5

0.75

3.13374

2.85885

2.35619

2.09531

7.37445

2.09827

0.95534

0.39579

1.33762

0.05735

3.12596

2.60155

1.767r5

2.89529

0.60132

3.09349

7.98764

0.91912

2.53472

0.14135



Chapter 5

The Helmholtz Equation orl

Etliptic Domains

One of the applications of the Helmholtz equation is in the determination of

the eigenvalues and eigenfunctions of the Laplacian. This problem is very

important in vibrating systems and quantum mechanics. In addition, the

research on the Helmholtz equations has been extensive as it is associated

with hyperbolic equations or wave equations via Fourier Tbansform with re-

spect to time [6]. In an elliptic region, the classical way has been to get

approximate eigenvalues of the Helmholtz equations with the help of Math-

ieu equations (3.7) and (3.8). The eigenvalues À are obtained by evaluating

n: (À2c2fa). The details of solving the Helmholtz equation through vari-
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able separation and then solving the resulting Mathieu equations have been

introduced earlier in Chapter 3. Some notable works are using the wKB

expansion to estimate the eigenvalues [2]; developing a visualization of a

vibrating elliptical membrane [9]; using matrix evaluation of Mathieu equa-

tions 15]. Note that (3.8) is derived from (3.2) by replacing r with zu. As an

example, if attention is concentrated on solutions of (3.2), which are even

with period n-, denoted usually by ce2n(r,q), then an intricate method used

to derive approximate eigenvalues with an included error analysis, is given

in [17]. All the eigenvalues can be isolated in disjoint intervals so that the

eigenvalues can be calculated to any required degree of accuracy, using error

estimates and bisection techniques. In [8], a defect-minimization method for

ellipse is proposed to give approximate eigenvalues and eigenfunctions. An

exceiient account of visualization of special eigenmodes is given by [g] with

approximate numerical values for eigenvalues given. Asymptotic solutions

for large eigenvalues are discussed in [2] and fbr this procedure, separation

of variables is unnecessary. The region in this case is a two dimensional

convex domain and the boundary is an arbitrary piecewise smooth curve.
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5.1 Solution of the Problem

5.1.1 General solutions

using the complex variables z: tr * iy and z : r -'iy, we can write trre

eigenvalue problem of the Laplacian by refêrring to (8.1c), which is given

by'
( o2u ¡2

) aro, i 7u:0, in D,

\ """" (5'i)

[':o' onc'

where z is a real function of compiex variable z,Z and we denote

u(r, a) : " (ry, T) : u(2, E).

correspondingly, the boundary condition in (b.1) needs to be expressed in

terms of the complex variables z and z

The general real solution of (5.1) is given by ([tZ] page 58 ) and (3.13) as,

u : 2R" (f a) - 1," 
rroftt' (xJa-:Ð) at)

: 
þro - 1," 

rulftn (>,.,/;Q=¡) ") * 
conjugate (5.2)

where f (z) is an arbitrary holomorphic function in the simply connected

domain D bounded by the curve c. Integrating (b.2) by parts then we

have,

, : 
{rtol 

* lr" fttrt)r0(^\/z(z - t))} +.o,,j,rgut". (b.3)
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f(r) :

where the coeffìcients a,, are arbitrary real numbers and in the above Jo is

the Bessel's function of the fìrst kind of order 0, namely,

n(x/iç,:f,) :å( +) 
-4#

(5.5)

For a simply connected region,

assume a Taylor series expansion f'or

there are no singularities and we can

/(z) given by,

oo

l orr", (5.4)
n:0

(5.7)

On substituting (5.4) and (5.5) in (5.3), we obtain:

F oo oo / ,o\ lc -t 1

u : loon(^,/u) +ii l-+\n nanzk [" *-'r, _ tlkatl* 
L*""v\..vþþ)-?-_r-\ 4) ktÈ! Jo" ",*")

*conjugate

: 2aoJo\t/n)
CO OO / \o\ k , -rl".:å (-i) 'i"tï"(n'k-t7)(2" 

+2") ' (5'6)

where, B(n,k * 1) denotes the Beta function with integer parameters n and

k + 1, given by

{n - L)lk!B(n,k+1):ffi

We will rewrite (5.6) to give :

oo oo

u : 2aoJo(^\/ zz). 
: Ðo"r 

Q" + z") a,(zz)k,
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where

An,k: h."@,k + t), n: I,2,... ,Ø, k : 0, I,2,... ,æ.

(5.8)

Equation (5.7) gives the general solution of Helmholtz equation on ân

arbitrary simply connected domain. The problem (b.i) now reduces to find-

ing the coefficients an TL : 0,7,2,.. .ñ, which will be determined by the

boundary condition. Since the eigenvalue problems all possess homogeneous

Dirichlet boundary conditions, the solution depends of the shape of the do-

main.

5.L.2 An identity for zn + zn

The solution (5.7) consists of terms of (zZ) and powers of (z-lz). On the

boundary, the power series representation for u can be simplified consider-

ably, and this will be a key element in the determination of the coefficients

of the porver series . If. zn * Zn can be expressed in terms of zZ using the

expression of the boundary then we can equate the coefficients of zz in (5.7)

to obtain equations for as,ar,¡ù2,... in (5.7).

(-+)*
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Using the identity ([11] page 27):

cos(nd) - 2".-7 cosn 0 - 2"-t|cosn-2 0 + 2"-rl(" ; 
t) 

cosn_- d.. . (5.e)

and using the polar form of the complex variable z: r(cosd + isind), we

can write zn + Zn in terms of z * Z and zZ, às,

5.2 Elliptic Boundary

An example of this method is our case of an elliptic boundary. we consider

the two dimensional domain bounded by an ellipse given by

oô
x:' 'il"_J_L-1
t2,pr-'

which can also be expressed in the complex plane as,

(z -l 2)2 : a I bz7, (5.10)

. 4a2ß2 4a2lvnerea:;1--- n h--
p'-a' "- a2-þ2'

z' + zn : 2r" cos(n?)

: uhrcoso),. fl eÐ +(";:i t) 
r, "o"Ð.-,^fL7-,7

: ( z -L v\n. g er)^:(" **; t) 
t, + z)n-2m (rz)*.\þ t L) 

?" rn\ m-r )\'-Tþ)
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Due to the symmetry of the ellipse with respect to both of the axes, the

arbitrary holomorphic function f (z) in (b.6) can be assumed as

rQ):îo'""
n:O

and correspondingly, (5.7) becomes,

u : 2aoJo(^J"z)* Ë îor^,* ("rn + z2n) an(zz)k. (b.11)
n:1. Ic:O

Now, we will express ,2n ¡ 22n as a function of zZ and (z * z) using (b.10).

From the identity (5.9) we can write

.2n ¡ -2n t-2nþ -r þ ¿t cos(2nî)

: ,r,l çzcos0)2n* É er)*2#('" ;:, 
t) 

{zcose)2,-2*f
IL rn:7

: (z + z)2'. Ë eÐ*2#(t";:, ') e + z)2n-2* (,2)^.
rn: L

Substitutingfor (z*Z)2 in terms of zZ, using equation (b.10), for a given

n and z on the boundary curve) we get,

,2n 1v2n : + + ?Ð^(2?-m__r)t2n (:-:\on-L¡-mç'2)¿e t þ LL m\zn_,r:urn:u . "#þ(",_;¡o
+ib4nez)I, (5.r2)
I:0

where

It
rn:0

b,^: 2n1)!

)!

m(2n-m-
m! (2n - 2m

(- 1) (: -:\on-r6L-rn (b.18)
\L-m/
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I : I,2,' . 'fr ànd bg,n - o,n.

Now reverting to (5.7), we can ïewrite, f'ormaiÌy interchanging summa-

tions and rearranging

u : 2asJs(À\/zz) * Ë i,tr,,r(rr)r>,b¿,(zz)ta,
n:I lt:O J:0

o^oooo'-: zasJs(À\/zz) + t Ð Ð AznJ,bt,,(zz)t+kan
n:I k:0 I:0

o^ 
co oo

: zasJs(ÀJzz) + Ð D Arn,rbo,n(zZ)kan
k:0 n:L

. 
å å l,:i-^ ̂ u,,,] { 

" 
z)' * r o,

o^ 
oo co

: zasJs(À\/ zz) + t Ð Ar,,*Uo,n(zz)ka,
fr:O n:1

t. Ë É li o.,r-,0,,,1 ç,,¡r o,
t¡:t l:t Ln:l I

substituting the series for -/s from (b.b), on the elliptic boundary, u(z,z)

can be expressed in terms of a power series in (zZ) given by

u : 2oo +l A2r,sbs,ra,
n:7

+ å( +)rffie')r

+ Ë lÉ (o,,,*u,,,*f o,,r-,a,.,\ o,l ç"2¡ut:t ll:t \ ¿:r / J

+ Ë I Ë (o,,,*u,,,*f o,,r-,r,,,) o"'l ("2)k. (5.14)

-n:t L"-_-n+t \ ¿:l / I
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5.3 Boundary Value Problem

We need u:0 on the bounding ellipse given by (5.10) to solve the bound-

ary value problem (5.1). This implies equating por¡/ers (zz)k to zero f'or

k :0,7,2 "' in (5.14).

Equating the constant term in (5.14) to zero, we get

2ao +îor*,ouo,an:0, (5'15)
n:I

while equating the coefficients of (zz)k (k + 0) to zero, yields

/ ¡21À'2ao k / n \
t -- I ------: + Ð I Ar",uuo," + | An,¡-¿b¿,n I an
\ 4) ktkt n:l \ r:L /

oo/k\
+ I I Arn,rbo,n+ t An,p_-tbt,n) o, : o,

n:k+t \ ¿:i /
k:1,2,... (5.16)

Using the expressions for coefficients in (5.8) and (5.13) and letting { :"4

?, equations (5.15) and (5.16) become, after some simplification,

2oo +Ðoran :0, (5'17)
n:7
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and for the coefficients of ("2)k, k:7,2,... ,

2aoGT)k *{(eùteTr"" *$ (2",)r(-r)À-ro" \^k!k! fr \ kt(2n+k)t' ? (k - t)t(2n+k _ t)t )
+ S (Qùter)k,'"*$ (2")t(-r)À-¿o" \*,?*,\-¡lø+Tn- . !6 -¡6. n -a ) 

o" - o'

k:1,2,... (b.18)

using equation (5.r7), we can eliminate a6 fiom the set of equations

(5.18) to derive the linear algebraic infinite system in matrix f'orm as,

Dd:0, d: {ot,or,...}

wlrere D : (dn,") is an inflnite matrix and the coefficients are given by,

.r:{

\a ç-lk-Içzn)t , a"(-Tk / en)t 1\
Lo;n-¡6-b1,"+--- (Þ".8n -F) n<k,

Ðã#ffiq'''*4#(ffi-å) n)k,
(5.1e)

where k:7,2,... ,oo and n:7,2,... ,æ.

5.3.1 Numerical Solution of Elliptic Boundary problem

To get numerical values for eigenvalues of the boundary value problem (5.1),

we truncate the infinite matrix in (5.19) to give D(") annxnmatrix with n
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equations and r¿ unknov/ns ar¡ a2, . . . , an. We now find the zeros of det D(")

using Maple. Notice that, in the expression of cl¡,n(5.rg), we can fäctor

eT)k from each row of the matrix and denote the new matrix by E@),

then the determinant of the matrix p(n) :0 can be expressed as

det D(") : ds¡ ¿(n) : g.

The (k, n)th component of the matrix E : (en,n) and its n x n truncation

¿(n) 1. given b¡

f + eT)-I(2n)t ^ ,on( (2n)t 1\
lL û'"+a(øi¡n-i) nlk'

_)"*'"- I *
I+ GÐ-L(zn)t L ,o"( (2n)t 1\
I Løn+¡=ffih,"+ a (1,;íEn -ù) nlk,

(5.20)

k,n:7,2r3,..' . When n : 2, the explicit form of E(2)

2 2-b 4a2 4a-2ab
--^ 

J- 

- 

__ _.!3*' T' 5 - T
BQ) :

5a , 2-b Ta2 4a-2ab . b2 -4b+2__r :_24 3T 30 5T ' T'2

Computing the determinant of p(2), we have the polynomial of ? is

56Tab 72a1H - --- . .# -4-6b2+ror-ttï3'*#*r'*tt í!0, .#

For purposes of comparison, we follow the values chosen in [g], where

a: sinh2 and É: cosh2. Substituting these values in E(2), we have,



CHAPTER 5. THE HELMHOLTZ E,?UA?ION ON ELLIPTIC DOMAINSS'

54.67646568 81350.08751
- 496.4930539, - 443709.63467

EØ-

Eë#EL - ß5.r5401s4 Y!ryJ. *H* - 12e415.3101

and setting ¿"¡B(z) to zero, the real eigenvalue À is 0.6b13444659. com-

pared with the result in [9], the fìrst value of C"o is 0.6512}129; the dif-

f'erence is 1.13 x 10-4. For n : 4, the real eigenvalues are 0.6512812g1g;

1.388920047, 7.496759845 and 2.454121986. Compared with the first values

of c"o,0.65123129 and c.r, r.38747776 in [g], the differences aïe 2 x 10-e

and 1.4 x 10-3.

EIGENVALUE OUR RESULT [e]RESULT DiFFERENCE

1

2

r)

0.6572312879

1.388920047

1.496159845

0.65723729

r.38747776

7.49784709

10-e

10-3

10-3

Table 5.1: Comparison of the results when n:4 for À

Table 5.2: Comparison of the results when n : 5 fbr À

EIGENVALUE OUR RESULT [e]RESULT DIFFERENCE

1

2

.)
r)

0.65723t2876

1.3874937049

7.4978369769

0.65723729

7.38747776

7.49784709

10-e

10-5

10-5
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EIGENVALUE OUR RESULT [e]RESULT DIFFERENCE

1

2

tr)

0.65723L2882

1.3874803904

7.4977774457

0.65123L29

L.38747716

7.49784709

10-e

10-6

10-5

Table 5.3: Comparison of the results when n : 6 fbr À

füom the above tables, we can see that the flrst three eigenvalues in our

case match with the result in [9] very well. The values in Table 5.4 are given

using the method of bisection. We compare the values here with the values

given by [9] for C"o.

C"o in [9] Our result truncation at n

0.65723729

1.49784709

2.35503473

3.21749843

4.08203626

4.94732655

5.81293420

0.65123129

7.49784709

2.35503473

3.72671218

4.08204227

4.94036498

5.92055836

5

8

10

15

15

20

25

Table 5.4: Values by using the bisection method

Since we choose the same value of o and p as the values in [9], the elliptic

region is close to the shape of a circle. Therefore the infinite matrix D is

almost singular. Numerically, we solve the truncated system, and the real
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solution is further reflned by using the bisection method to compare with

the given value in [9]. Table 5.4 shows the comparison of our results by the

bisection method with those values given in [9].



Chapter 6

Helmholtz's Equation on a

Ðoubly Connected Dornain

The eigenvalue problem of the negative Laplacian is important in electro-

magnetism. However there are few methods for obtaining the solutions of

Helmholtz's equations on doubly connected regions either numerically or

analytically. Yu references some famous work in his paper, and also intro-

duces a modified perturbation method to find the fundamental fïequency

of a doubly connected membrane [22]. The process described in this chap-

ter fbr flnding eigenvalues of the Laplacian on doubly connected regions is

similar to the method we discussed in Chapter 5, which we used to find

eigenvalues on elliptic regions. We now establish general solutions (involv-
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ing an infinite number of unknowns) fbr doubly connected regions and apply

boundary conditions to the general solution.

6.1 General Solutions

we assume that the doubly connected domain D is bounded by two closed

curves C1 and Cs. The complement of D consists of two continuums D6

and D"o, where D¡ contains the point of origin and D"o contains the point

of oo.

The solutions consist of four parts, the elementary part containing only

terms oÍ (zZ)" where n) 0; holomorphic solutions on the whole elementary

region, containing only terms of znZ^, m # n and m,n ) 0; holomorphic

solutions on the infinite D-, containing only terms of Zm f zn, where m,n ) Q

and the solutions represented by terms of rf (znz*). The four parts are,

1. Solutions in terms of zZ or y: {{z in polar coordinates.

u: AJo(Àr) + BYs(Àr),

where A and B are arbitrary and real;



CHAPTER 6. HELMHOLTZ'S EQU,|TION ONA DOUBLY CONNECTED DOMAIN\O

2.

(æ ìu:1Ð2"f"(r)|* conjugate, (6.1)
[;ã )

wirere fn are holomorphic functions in D * D6, and chosen to have

no terms of order lower than zn . and the Taylor series of an arbitrary

holomorphic function /6 is given bv.

,).

foQ):Donr"; (6.2)
n:0

": {å 
z'sn(z)} + .o,'j,rcut" , (6.8)

where gn àre holomorphic functions in DID* and gs can be expanded

1

by Taylor series in :, which is then given b¡
7

ooL

so(z):Ð9r,t (6.4)
n:I

": {Ë ry} + "o,'j,'sut", (6.b)

where hn are holomorphic functions in D + D* and

h1(z):i + (6.6)Lt *n.
N:T

4.
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In order to obtain the solutions described in part 2, we substitute the

expression (6.1) in (5.1), and then we have,

(6.7)

(6.8)

for n:0,7,2,. .(6.9)

Therefore, foilowing the iteration given by (6.9), we have

^: (-+)" * !," l,: - 1," ro')dtdt dt

According to Cauchy formula, the multiple integrals in(6.10) can be written

âSt

, _( À'\"i r f",,- ( -tl" i 
--!- I fo(t)(z-t)'-'dt (6.11)

\ ¿/ n!(n-I)t¡s

where n:7,2,.'.. Substituting (6.1t) to the general form of solution, we

have

inrr,-'tfi,e)++Ë z,f,(z) : o
n:\ n:0

"'å r"{ø+rrl*1et+lnr"t} : o

hence, (n+r)fi*r(ò++f,Q) : o

{þ-*u''}*
zau{ ¡oç¡* i

t n:l

zn"{r,ø * 
lo"

za" 
{r,rø - l,

(6.10)

(6.12)

u:

:

:

:

conjugate

" (-+)",+@\ lo" rot )t, -,)"-' o,\
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where z is the general solution in any simply connected domain with the

origin in the domain. It is of the same form as equation (5.3) given in [12].

The procedure for finding the third part of the solutions is very similar,

except that the singular point is 0 rather than oo. Ref'erring to (6.3), the

iteration for gn is given by,

(n + r)s',*, + !o*: o,

from which the expression of 9,, is obtained as,

n, : n\.(+)" I"* ' l"* no{')ot' ' ' dt'

-n-
The solution is obtained thereafter as,

(æ ì
u : |Ðr"s,(r) l+ conjugate

l.ã)
: zue{ go(z\+ Ë ," ( t\" ! r [* - t¡'.at) ,

L ) * à''" \T ) ",@ - r), J" solt)lz 
)

where 96(ú) is given by (6.a). The solution exists if and only if f'or any n the

coefficients of t-n are zeros) i.e., go : 0. In another word, the non-trivial

solution of the form (6.3) with the assumption of gs(z): Ë $ do"rn't
n:I þ

exist.
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Now, we come to the fourth part. Substituting back the expression

,:fi ,'g.*Ì+.onjusu.",
l-?o zn )

we have

î,eaffi. + Ë ry* conjugate : o

n:L n:l)

or \(n^,,).ry+no(õ.ry)
4\"'.

_fo N .(,\ .l2n,1z;\ 
^^ñi.

I),(t -")-ï1 *ìtlJ+ conjusate :o

Hence we have the iteration

(r - n)h'n-1çr] + ln,çz) 
:0, n:2,3,..' (6.13)

Following the iteration (6.13), we obtain the expression of hr,, which is given

by
, , r ln-l1

hn(z) :(fr) @-¡n\"-1)çz¡. (6.14)

h-(.\ h.(z\
In addition, ho(r) +'ly + hs(z) + ':j:: 0. However h6(z) + h6(z) has

already been included in case 3, hence here we can ignore these two terms

in case 4. To consider hr (ò : },the solution of form i? " 
also included

in case 1. Hence here we can take it away and assume that

h1(z):Ð-?
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Putting this term back into the soiution then we have

" 
: {Ë," - Ðtt-:@-(+)'"-" 

} 
+ .onj,sut" (6 1b)

I n:r

Combining the solutions obtained from the above four cases, we have the

general soiution of Helmholtz equations in a doubly connected region,

u : AJs(Àr)+BY6(Àr)

*2Re {r'f"l - fr" rrfOftaç,l-"ç - t¡lat}

(6.16)

If the domain is simply connected, then in (6.16), B :0 and h1 : 0, and

therefbre we have the same form of solution as the one given in [12]. If the

domain is bounded by concentric circles with the origin the centers, that is,

the solution only contains the terms of r or 22, then the solution would be

u: AJo(Àr) + ff6(.fr¡.

6.2 Applications

Substituting the expansions of lo, go and hr (6.2), (6.4), (6.6) in the

solution (6.16), we can get the solution in the form of summations. For
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example,

CO / ,r\ lf tL
./o(Àr) : )- f-{\ "''"'fi\ 4) ktk!'

^1. ,\\ a ôo (1^r"r¡u1
Y6(Àr) : ; J [,'(+) +r] -ro1.r"¡ +Ët-r¡ro*""*Vt/ 

f 
,

l""À:1 )

where 7 is Euler-Mascheroni constant and H¡, is a harmonic number, the

logarithm term can be expanded by Taylor series. In chapter 5, we developed

bhe procedure which expresses the second part of the solution

,^" 
{toal - 1," nrtlftrol\Ee - Ð)r,} ,

as a series shown in equation (5.6)

2asrs(À\Ez) * Ë å ( +)^ "o1r?o"r B(n,k-t r) (2, + zn) .

For the last part of the solution, we have

Ë(+l 
"-'(t:ø.ry)

: S/4\n-t r /$cr(-r)"-l(lc+n-z)r -'
?r\^, ) ('z)" \3 (k - tyzn-l ',

c¡,(-1¡n-t@+n-Z)
(k - t¡r.2n-t

1)

: S$. /_ 4 \"-t ",,(k+n-2),. (.t_t _n*_t\/-1, 1 \2 I (k_I)l(zZ)n+fr-1 \" tþ )'n:7 k:2 \ /r 
'

Now, the solutions are in the form of series and with terms of zZ and

(2" + z"). If (2" + Z") can be expressed in terms of zZ when applying
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boundary conditions, then it is easy to find the soiutions and eigenvalues of

the Laplacian on a doubly connected region. By equalizing the coefficients,

the eigenvalue problem can be worked out by solving an infinite system of

linear equations.



Chapter 7

Conclusrons and F uture
'Wbrk

We have mainly examined two kinds of PDEs, Poisson's and the Helmhoitz

equations. These are both related to the Laplace operator. In Chapter 4, one

of the applications of Poisson equation on the region bounded by eccentric

circies has been studied. The numerical results showed us the effectiveness

of our method by comparing the values of rates of the flow with those in

existing published work. The solution to Poisson's equation is obtained by

solving an infinite system of linear equations AÚ : f . Similar methods could

be applied to other doubly connected regions. The formal solution always

holds for any doubly connected region with the origin outside. However, the

67
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infinite matrix .4 in our case is definitely nonsingular only under the con-

dition that h, the distance between the centers of the two circles, is much

smaller than 1. Hence more work is needed to find out additional conditions

f'or non-singularity when ä is relatively larger.

In Chapter 5 and Chapter 6, we discussed the eigenvalue problem of the

Lapiacian on both simply connected and doubly connected regions. The gen-

eral solutions derived in Chapter 5 can be applied to other simply connected

regions, whose boundaries are of the form z*2: f (zz) or g(z-lz) : 22. For

example, the rectangular domain is bounded by r : Ial2 and E : lbl2.

The boundary can be written as,

(z * z - a)(, + z + a)(z - z - bi')(z - z + bi') : s

l(z + z)2 - "21ÍQ 
+ z)2 - 2zz * b'l : o

The eigenvalues of the Laplacian are obtained by seeking zeros of the de-

terminant of the coefficient matrix D. In this way, r¡/e are able to control

the accuracy of the results, i.e. the larger the truncated matrix is' the ac-

curate the eigenvalues will be. By comparing with the results in existing

published research paper with our results, the method we have developed

68
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appears very promising. A similar method can also be appiied to solving

eigenvalue problems on doubly connected regions. Chapter 6 gives the pro-

cedure fbr deducing the general solution of Helmholtz equations on doubly

connected region.

69
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