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5.4 Values by using the bisection method



Abstract

The object of this thesis is to use complex variable methods to re-
duce the solutions of some boundary value problems for simply and doubly
connected regions to solutions of linear infinite systems, and indicate com-
putational techniques that can be used to obtain approximate numerical
results. The complexity and importance of solving analytically and nu-
merically elliptic partial differential equations in mathematics, physics and
engineering are well documented in literature. We are mainly concerned
with fully integrable Laplace’s, Poisson’s and Helmholtz’s equations, whose
general solutions can be expressed in terms of unknown complex potentials.
These complex potentials include relevant logarithmic singularities and Lau-
rent series. For Poisson’s equations on doubly connected regions, we have
the general solutions satisfying the boundary conditions individually on the
two boundaries and then match the unknown coefficients arising from the
complex potentials. These procedures lead to equivalent systems of sets
of infinite linear algebraic equations with an infinite number of unknowns.
Truncation techniques are applied to derive numerical values for the coeffi-

cients of the complex potentials. The results are applied to find the rates of



flow in the case of slow and steady viscous flow in a pipe-in-a-pipe configu-
ration, whose cross-section is bounded by two eccentric circles. Helmholtz’s
equations on the simply connected regions with boundaries which can be
expressed in the form 2Z = f(z + Z) or 2 &+ z = g(2%),(which includes the
well known elliptic case,) are considered. The main contribution of the the-
sis is in applying complex variable techniques to derive equivalent linear
infinite algebraic systems for the eigenvalues of the Laplacian on elliptic re-
gions. The numerical results are briefly compared with those available in

literature.



Chapter 1

Introduction

It is well known that the homogeneous boundary value problems as-

2 32
sociated with the two dimensional Laplace operator V2 = (9_ + — is
ox?  9y?
represented by,
V2u =0, (Laplace’s equation) (1.1)
Viu=1L L being a constant  (Poisson’s equation) (1.2)
and the eigenvalue problem,
V2u+ A4 =0. (Helmholtz’s equation) (1.3)

The problems in two dimensional simply and doubly connected regions are

of fundamental importance in various classical and modern fields including
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vibration systems, antenna analysis, and quantum mechanics.

The ensuing chapters will present solutions of various theoretical prob-
lems and numerical algorithms using as our method. The expressions for
the equations are in terms of complex variables z = 2 +4y and its conjugate
zZ = r — iy, and followed by integration of the equations to derive gen-
eral solutions in terms of relevant functions of complex variables (including
logarithmic singularities, Taylor series and Laurent series). The simply con-
nected regions considered are bounded by closed convex curves which can be
expressed in the form 2Z = f(z £ Z) or 2 & Z = g(2Zz). These expressions in-
clude boundaries like circles, ellipses, rectangles, etc. The doubly connected
regions are annuli bounded by concentric circles or eccentric circles. In all
the problems discussed, the solutions are reduced to solving equivalent infi-
nite linear algebraic equations. Compared to traditional numerical methods
which need information regarding solution itself for any meaningful error
analysis, the infinite system approach embodies truncations, error analysis

and estimates.

Techniques for solving these problems on various domains include sepa-
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ration of variables, complex variables method, and approximation methods
of solutions including asymptotic analysis [8], Green function, finite differ-
ences, finite elements. For some details of separation of variables see [20]
and for an excellent treatment using complex variables see [12]. For some

basic properties of these elliptic partial differential equations see [19].

In Chapter 2, we introduce some preliminary information about the equa-
tions, the nature of their solutions and description of the regions in terms
of complex variables. A brief description of conformal mapping with some
examples is also given. In Chapter 3, for the three equations which are fully
integrable, the general solutions are derived for both simply and doubly con-
nected regions. Chapter 4 deals with the fluid flow problem for the doubly
connected regions bounded by two eccentric circles. We use the technique
of satisfying the conditions on the two boundaries individually and then
matching the unknown constants in the general solution. This leads to
an equivalent infinite system of linear algebraic equations which are then
truncated and numerically evaluated. Rate of flow per unit cross-section
per unit time is calculated and the results compared with known results in
[18]. Chapter 5 deals exclusively with the Helmholtz equation for an elliptic
boundary. The analysis again leads to an equivalent infinite system of linear

algebraic equations with coefficients of the matrix being known polynomials
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of A\. The numerical values are then compared to known numerical results in
the literature [9]. In chapter 6, problems involving Helmholtz equations for
doubly connected regions are stated and their method of solution indicated.
Future work would involve establishing the equivalence of solutions of the
boundary value problems and the infinite systems, and the establishment of

meaningful error analysis where possible.



Chapter 2

Preliminaries

2.1 Some Complex Variable Results

We use the complex variables z = 2 + 4y and z = z — iy to express com-
plex potentials, which are analytic in the specified regions, as Taylor and
Laurent series. The domain D will either be a bounded simply connected
region (i.e. if any simple closed curve v in D can be shrunk to a point
continuously in the set of D.) or a bounded doubly connected region (i.e.,
domain bounded by two simple closed curves and not simply connected). In

the former case, complex potentials expressed by Taylor series for functions
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of a single variable, have the form

w(z) = Z anz" (2.1)
n=0

and the latter case would involve Laurent series and a logarithmic term to

give the multi-value property of the function. I would then have the form

w(z) = Blnz+ i b 2" (2.2)

n=—oo

with the assumption that the origin is outside the domain.

Stokes’ theorem in complex form is given by

/C f5)dz =2 [ Las (2.3)

s 0%
for the simply connected region S enclosed by a curve C with a similar ex-
pression for doubly connected regions. We will also use the Cauchy Residue
Theorem which states that for C, a simple closed positively oriented path,
with f analytic inside and on C, except at finitely many isolated singularities

21,29, ..., 2y inside C, then

/ f(z)dz = 271 ) " Residue(z;) (2.4)
c )

In this thesis, we need only n = 1.
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2.2 Conformal Mapping Methods

For solutions of two dimensional elliptic boundary value problems, confor-
mal mapping of regions in the z-plane to circular regions in the (-plane, by
a mapping z = f((), is often used. Although the mapping is guaranteed to

exist, known specific mappings for specific regions are very few.

Problems in some irregular shaped convex regions that are simply con-
nected or doubly connected can also be solved by conformal mapping. A
conformal mapping preserves the magnitude and orientation of the angles
between any two curves which intersect at any point in the domain. It can
be shown that a mapping f : C — C in the complex plane is conformal if
and only if f is a complex holomorphic function and f(z) # 0 [10]. From

this latter reference, we also have the following remarks:

Remark 2.2.1. Any simply connected region &, which has a boundary con-
sisting of a piecewise smooth simple closed curve can be mapped conformally

onto the interior of a unit circle.

Remark 2.2.2. A doubly-connected region can be mapped one to one and
conformally onto a concentric circular annulus, provided that the frontier of

the region consists of two disjoint continua and each of them contains more
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than one point.

Although the existence of such maps are known, the problem of finding
explicit expressions of mapping functions for all regions are still open. If
a and b are radii of two concentric circles of the annulus, then the modu-
lus of region D given by g is a number uniquely determined by D. More
precisely, for any doubly connected region with smooth boundaries, there
exists a unique real number p, 0 < g < 1, such that there exists a one to
one analytic function f, that maps D onto the annulus A: p < |2/] < 1.
If the outer boundaries correspond to each other, then f is determined up
to a rotation of the annulus. By Remark 2.2.1 and 2.2.2, some problems on

arbitrary domains can be worked out by conformal mapping.

If Co and C; are Jordan curves which bound externally and internally
a doubly connected region D in the z-plane, which exclude the origin, the

mapping function [15]
w(z) = expllnz + ¢(2)], z=1x+iy=re? (2.5)

which is unique except for an arbitrary rotation, maps D + Cy+ C; onto the
annulus 0 < a < |w(z)| < b < oo, where the ratio b/a is unique and ¢(z) is

analytic in D.
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From the above, we get

- In bQ, z € (Cy
In(22) + ¢(z) + ¢(2) = (2.6)
Ina?, zeCy
We give below some well known mapping functions which can be used to

solve the boundary value problems for various regions using some of the

methods developed in this thesis:

(2.7)

where |z| < 1, maps two eccentric circles in z-plane to concentric circles

in ¢-plane [13].

A
z=c( <1+E> (2.8)
maps curvilinear polygons in z-plane to circles with radii p > 1 in

¢-plane [15].

zzc({+%> (2.9)

maps an ellipse in z-plane to a circle in (-plane [18]
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m

z=R(C+Cn

) (2.10)

where R >0and 0 < m < %, maps an hypotrochoid in z-plane to a

unit disk in {-plane [16].

2= an(" (2.11)
n=0

can be used for a numerical mapping for arbitrary regions.



Chapter 3

The Three Equations

The three equations and their transformed equations (using the complex

variables z = z + iy and its conjugate z = z — iy) are given by

V=0 Ou (Laplace)(3.1a)
’ 020z P '
2
Viu=1L, 88z8uz = -%, (Poisson) (3.1b)
9 9 u  N?
Veu 4+ Au =0, 5205 + Tu= 0. (Helmholtz) (3.1¢)

The complex PDEs (partial differential equations) can be solved with the
use of holomorphic and analytic functions. The details of these functions
and their roles in the methods of mathematical physics, are given more ex-

tensively in [4].

11
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In general, the Laplace equations with homogeneous Dirichlet bound-
ary conditions possess only trivial solutions and are obtainable from the
maximum principles. The nontrivial solutions exist with nonhomogeneous
boundary conditions, and various methods of deriving nontrivial solutions

to Laplace’s equations have been discussed widely in literatures.

Solutions to Poisson’s equations can be expressed explicitly on some
regular domains [7] and [19], and in addition, we can write out the analytic
solutions to Poisson’s equation defined in simply connected regions bounded
by rectangles and circles. For the first of these latter cases, the solutions can
be obtained by separation of the variables, while in the latter one, we can
assume that the simply connected domain denoted €2 is bounded by a circle

of radius a, and then we have the polar-coordinate boundary value problem,

o’ 10% 1 6%% .
2t o Trage =0 g, (3.2)
3(r,0) = 0 on 06,

The solution to (3.2) is given by,

1 [e T pPr? + at — 2rpa’ cos(6 — )
U(?”, 0) - E/O pdp/() In a2 [7,2 +p2 — 27"pCOS(9 — 7)] f(p> ’Y)d’)’ (33)

The two dimensional Poisson equation with complex variables (3.1b) with
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L = —P/p, is given by
0%u P

020z 4p’
which can be formally integrated to give

U= —gzz +w(z) +w(z), (3.4)
where the complex potential w(z) has the form

x>
w(z) = Z an2". (3.5)
n=0
This general form can be used for any convex and simply connected region
including an elliptic region. For doubly connected regions, the potentials
can be expressed by a Laurent series combined with a logarithmic term,
which is given by,

w(z) =Blnz+ i bp2™ (3.6)

n=—oo

Here we assume that the origin is outside of the region. The unknown coef-
ficients b, and B in general solutions are to be determined by the boundary

conditions.

The Helmholtz equation is also known as the eigenvalue problem of the
Laplacian. For a given eigenvalue of A, we can solve Helmholtz equations
analytically on some regular domains. Among the regions, the simply con-

nected region bounded by a circle and the doubly connected region bounded
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by concentric circles both have radially symmetric properties. Thus we can
just consider the radical part of the Helmholtz equation in these regions.
The equation can be expressed in polar coordinates and thereafter solved as
an ordinary differential equation. The radical part of Helmholtz equation is
given by

9*® 109

2% —
‘57_—24‘;5-’—)\@—0.

This is a typical Sturm-Liouville system with eigenvalues ), where the
quantities A, are the roots of Jo(Aa) = 0 with Jy the Bessel’s function of
the first kind, and a is the radius of the circle. The bounded solutions to the
Helmholtz equation for this simply connected region is given by, ® = Jo(Ar)
with Jo the Bessel function of first kind and order zero. The solution to
the Helmholtz equation in the doubly connected region bounded by two

concentric circles is given by,
#(z,2) = Ado(A\V2Z) + BYp(M\/2Z)

where A, B are arbitrary constants and Jy, Yy are Bessel functions of the

first and second kind respectively. These can be expressed as the series,

© /A2\* 2k zk
s k!

=

Yo(AVz2)

I
3o

M\7Z R - VRIS LA
[m ) +7] JO(A‘/;H;(“D He\ 7 ) 7w
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where 7 is the Euler-Mascheroni constant and Hy, = 1+1/2+1/3+---+1/k

is a harmonic number.

For the other simply connected regions without such symmetric proper-
ties, we cannot just consider the radical part. However, it is still possible to
solve the eigenvalue problem in elliptic regions, on which the problem can
be formulated by using separation of variables and an elliptic coordinate
system [8].

The elliptical coordinates (0 < u < 00,0 < v < 27), are defined through the

transformation equations to Cartesian coordinates:

T = ccoshucosuv;

y = csinhusinwv.

Helmholtz equations in these coordinates (u,v) take the form

= A B $(u,v) =0
c?(cosh2u — cos 2v) |Ou? = Ou? =

U(u,v) is separable and admits product solutions of the form

b(u,v) = UV (v).
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‘The functions U and V then satisfy the ordinary differential equations,

2
gTU; + (@ —2gcos2u)U(u) = 0 (Mathieu function), (3.7)

0%V o . .
o (@ —2gcosh2v)V(v) = 0 (modified Mathieu function). (3.8)

Discussion of approximate solutions to Mathieu equations and modified

Mathieu equations can be found in [1].

We now consider the two dimensional Helmholtz equation (3.1c) and

integrate. For real ¢, we assume the formal solution in the form of

o= Z 2" fo(2) + conjugate, (3.9)
n=0

where f,, are chosen to have no terms of order lower than 2", without loss

of generality. Substituting equation (3.9) into equation (3.1c), we get

00 9 ©0
{Z nZ(n“l)f,’L(z) + )\Z Z Z”fn(z)} + conjugate = 0, (3.10)
n=1 n=0

yielding,
Z zZ" [(n + 1) frga(2) + —an(z)J + conjugate = 0.

n=0

Equating the coeflicients of z to be zero, gives the iteration relation for fn

and fn-l—l)

22
(n+1)f’rlb+1(z)+z.fn(z):0 fOI'?’LZO,].,Q,"-
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From the iteration, f, can be expressed as

)\2 n z z
fn:%<~z) /0/0 folt)dt---dt. (3.11)
N e’ n

Here we assume that 0 is in the domain of all functions f,. Letting fy be
any holomorphic function in the region, means that from Cauchy’s theorem

[20], the multi-integral can be simplified as

In L1 <_%2>n/0z folt)(z — )" Ldt. (3.12)

" nl(n—1)!

Now we substitute back f,, in (3.9), to give,
[ee]
¢ = Zaninfn(Z) + conjugate
n=0
0 5" A2\" 2z
= fo+ Z _J_T <~—4—> /o fo(®)(z — )" 1dt + conjugate

. g,z A2\ " 1
= fo+ Jo(t — <————> z—t)""*dt 4+ conjugate

= fo(z) — /OZ fo(t)%Jo (/\\/Z(Z - t)) dt + conjugate,

and after some simplification, the general form of the solution is

¢ = 2Re { folz) — /0 ’ fo(t)%Jo </\\/2(z — t)) dt} , (3.13)

which is the same as the general solution in simply connected regions given
n [12], where fo(2) is an arbitrary holomorphic function on the whole ele-

mentary domain. For simply connected regions, we can assume

fol2) = ane™, (3.14)
n=0
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while for doubly connected regions with the origin outside, we can assume

fo(z) =Blnz+ Z bp2™. (3.15)

n=—o

where a,,, B and b, are arbitrary real numbers.

The Helmholtz equation is also known as the eigenvalue problem of the
Laplacian. For the eigenvalues of the Laplacian, we have the following the-

orem

Theorem 3.0.3. All the eigenvalues of the Laplacian are positive if the

eigenvalue problem satisfies the Dirichlet boundary condition.

Proof: Let v and A be an eigenpair, v is the unit normal. Then

)\/ vidr = —/(Av)'ud:z:
Q Q
ov
— 270 -
= /QIV'UI dx /BQvayds(a:)
= /|Vv]2dm
Q

Therefore

A/U2d$=/ [Vo|2dz > 0.
Q Q

Now, we only need to prove

/ |Vol2dz # 0
Q
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Suppose / |Vv|?dz = 0, then |[Vu| = 0. i.e. v is a constant on domain €.
Q

Since we have the homogeneous Dirichlet boundary condition, and v = 0

on {2, then v = 0 on the whole domain, which is contrary to v # 0 as an

eigenfunction.[

It is also well known that, eigenvalues of the Laplacian are positive real

numbers satisfying,

D<A <A <Covr < Ay



Chapter 4

Flow of Fluids

Poisson equation occurs frequently in classical theoretical physics and in en-
gineering applications [21], such as the steady state of some diffusion equa-
tions, the steady state of heat distribution, astronomy, fluid dynamics and
electrostatics, because it describes the behavior of electric, gravitational,
and fluid potentials. One of the most important applications of Poisson
equation which will discussed in the thesis is in the field of the slow and
steady flow of an incompressible and irrotational ideal fluid through pipes

whose cross-sections are simply or doubly connected regions.

20
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4.1 Mathematical Model of the Problem

The velocity of the fluid satisfies the Naiver Stokes equation,

0
%*qu+<q,V>q = f-Vp

divg = 0 (4.1)

in a bounded domain D C R3 with the boundary of class C? and g is
the velocity vector, p is the pressure in an incompressible fluid; (-,-) is the
scalar product in R3. Also f : D x [0,00) — R3 represents the external
force [3]. The system contains four equations and the unknown functions
are the three components of the velocity field and the pressure p. In our
case, we consider slow and steady viscous flow under a constant pressure
gradient P = Vp along the pipe. The fluid in our problem is supposed to be
viscous and steady, and therefore it is reasonable to ignore the velocity in the
vertical direction. In another words, there is no rotation in the pipe. With
the assumption of slow fluid, we have % = 0. Then the problem can be
modeled easily by Poisson equation with homogeneous Dirichlet boundary
conditions. In the published paper [18], Shivakumar gives some analysis
of flow through a pipe, whose cross-section is bounded by an ellipse and a
circle. The conformal mapping (2.9), is introduced which maps the outer

ellipse in the z-plane to a circle of radius b in the ¢-plane. In his later work
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with Ji in [13], they also considered the problem on the doubly connected
region bounded by concentric circles and eccentric circles. In this thesis,
we follow the mathematical model of the problem set up by Shivakumar by
introducing the complex variables z = 2 + 4y and Z = z — iy [13], and we

can use the two dimensional Poisson equation of complex form (3.1b), given

by,
8%y _ _£
020z 4y (4.2)
=0 on 8D

where P is the constant pressure gradient along the pipe in the direction of
the flow, u(z, Z) is the velocity of the fluid in the direction of the axis of the
pipe, and p represents the viscosity of the fluid. Assume that the general

form of the solution to (4.2) is given by,

u(z,z) = —Z]Z—zz +w(z) +w(z) (4.3)

where w(z) represents the complex potentials given by (2.1) in simply con-
nected regions and (2.2) in doubly connected regions. We will be concerned
with the rate of flow, calculated by Stokes formula (2.3) with outer boundary

C1 and inner boundary Co,

R = //Du(x,y)dacdy=//su(z,2)d5
1

= 2Z <§z - w'(z)) dz. (4.4)

2i Joy—cy
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The procedure to derive the formula of the rate of flow is described below,

R = // udS
U
= // (8z (uz —z:a;)dS’
ou %y
N // {Bz 8z < 8z> + aza“”} a5
1
= QZ Cl_@uzdz—g oo zbzdz—4# // 22dS.

On both boundary curves we have u = 0 and therefore

/ uzdz = 0.
C1—Cs

From the general form of the solution, we obtain the expression,

%——Ez—kw()
0z 4y

Substituting the above equations in the expression of R, then we get,

1 P 1 P
R = —— 2z ——'z‘-l—w’z)dz——,/ 272
2 C1—Co ( 4/1’ ( ) 21 C1— 8/1'
1 P P
= 5 ) (e e

1
= — 2Z <£2 - w'(z)) dz.
2iJei—c,  \8u

4.2 The Concentric Annulus

We consider here the doubly connected region of an annulus bounded by

concentric circles and the simply connected region of a disk bounded by a
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circle. Because the concentric annulus region that we consider here possesses
radial symmetry, provided that we set the centers of the circles to be the
origin of the coordinate system, the solution to the Poisson equation on such
a region will contain only powers of r = v/2z. For a simply connected region
bounded by the circle 2z = {2, the complex potential is given by (2.1), and

here in our case it is given by,
w(z) = ao, ap is an arbitrary real number. (4.5)

By referring to the equation (4.3) and the boundary zZ = 2, on the bound-

ary, we have,

u(z,z) = —ﬁzz—Fan
P
= —— 2
4#1 + 2ag
= 0

from the which, we find ag = 512 and the solution is u = —Z]%(z'z’ —1%.

On applying the formula for the rate of flow, we have that R is given by

R= / /S u(z,2)dS = JZZLI. (4.6)

Referring to (2.2) and the symmetric properties, we can assume the
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potential for the concentric annulus to be
w(z) = Blnz + by, B and by are arbitrary. (4.7)
Then the real solution to (4.2) on such a region becomes
- P -
u(z,z) = —Z;zz+Bln 2Z + 2bg. (4.8)

Assuming that the region is bounded by two circles C; and Cy of radii a

and b respectively, we have boundary conditions given by

u =0, onCi: 23=da? and on Cy: 23="0

Substituting the boundary conditions in (4.8), we have a linear system of

two equations in the two unknowns B and by, given by,

P

~—a?+Blna’+ 2 = 0, (4.9a)
4p

~£b2+31nb2+2b0 = 0. (4.9b)

Now we can obtain the solution to (4.2) from (4.9a) and (4.9b) on the region

bounded by the concentric circles, and find that,

B f.___M ,
8ulna —Inbd
2 12

9%y Pa*lnb—-b lna,

4—/,2 Inb—1Ina

and

Inzz — (4.10)

P B a? —p? _ a?Inb—b%lna
22 2lna —2Inbd Inb—Ina )
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Substituting the above equations in (4.4) we get the rate of flow through
the pipe whose cross section is the concentric annulus bounded by C; and

C», and this is just

Pr 4 4
=Tt b
R Su(a )+

Pr (a® — b%)?

8ulnb—Ina’ (4.11)

4.3 The Eccentric Annulus
4.3.1 Mathematical Model

Consider the cross-section of the pipe when it is bounded by two eccentric

circles C1 and Cy, expressed in the Cartesian coordinate system by,
Ci: (z—h)?+y*=d? Co: (z—k)?+y%=0p (4.12)

Referring to Remark 2.2.2, there exists a conformal mapping, which maps
the annulus bounded by eccentric circles to the one bounded by concentric

circles. As in [13], the mapping function (2.9),

z=x+1y, (=¢&+1in, c real (4.13)

with 2/(¢) # 0 can be used. For the transformation to be conformal, the
ring space excludes the critical point ¢ = 1. In Cartesian coordinate, the

mapping (4.13) has the form:

(@ +9°)¢C = 2% + 4 + 2cz + &
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and the eccentric circles showing in (4.12) are concentric in the ¢-plane, and

IC] = p, p = p1, p2 and p1 > p2. The following relations are satisfied:

—_a' __b
PL= 75 P2 =7
a? b?
c=% Th=%-

v a?
kb=t —m

Figure 4.1: Conformal mapping of doubly connected region

The details of the method and numerical results can be found in Shiv-

akumar and Ji’s paper [13].

4.3.2 A New Approach

We consider here another approach to the problem as an alternative to

using conformal mapping. We introduce the formal solutions (4.3) to the
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Poisson equation (3.1b) with unknown potential w(z) on doubly connected

regions, given by (3.6). Substituting these in (3.4), the solution has the

form,
y L Wi o (4.14)

= —— w .
4 “
P o0

= ——2Z+<Blnz+ Z bnz™ » + conjugate
4’“’ n=—00
P o0 o0

= gt Blnzz+2bp+ » bp(2" +2") + > bon(z "+ 27"

n=1 n=1

Then applying the two boundary conditions respectively and separately
to the formal solutions, and equating the coefficients, we obtain an in-
finite system of linear equations Ab = f with infinitely many unknowns
B, bo, bi---,bp,---. The coefficient matrix A is truncated to an n x n
matrix, and the approximate values of B, by, b1---,by,--- obtained by
solving the truncated linear system. Focusing on the eccentric circles prob-
lem and examining the change of the rate of flow when the inner boundary
approaches to the outer one and finally almost touches it, means the doubly
connected region tends to a simply connected one. Figure [figured4.2] illus-
trates this change, but note that here we fix the center of the inner circle at

the origin and keep the origin outside the doubly connected regions.

Denote the radii of the boundary circles by a and b, and the distance
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concentric circles — e L T e touched circles

Figure 4.2: Moving the circles to touch

between the two centers by h. The two eccentric circles can then be described

by,

(x — h)2+ 4y =17, (4.15)

where a < b and b — a > h. In the 2-plane, the boundary can be expressed

as

Ci: z2=a% Cy: (2—h)(z—h) =b (4.16)

and so Cs in the z-plane can be then mapped conformally to a circle in the

¢-plane of radius b with its center at the origin. This is given by,

¢{=0", where(=2-h (4.17)

So finally the new boundary value problem of complex form would be
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written as,
(5% p
=—— inQ
5207 ap
u=20 on C4
{ =20 on Cy

30

(4.18)

Using the homogeneous boundary condition, we have © = 0 on Cj in

z-plane. So applying the boundary condition to the formal solution (4.14),

we obtain,
Pa,2 ) b _
u = —Zﬂ—-kBlna + Z bp (2" + 27)
n=—o00
a2
= —P—+Blna + 2bg
4p
o0 >

Z 2" 4 a2 ™) + Zb_n(z_n + a7

n=1
= —£—+Blna2—|-2bo
4
o
+Z(b +Tn)z”+z a®™ +b_y)2"

=1

By equating coefficients on both sides, we have,

P 2
Blna® +2by = —a,
4p
b_p = —bpa®® n=12,---,00.

" =0.

(4.19a)

(4.19b)
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On the outer boundary ¢¢ = b?, the equation (4.14) becomes,

u = —£(<+h)(5+h) +w(() +w(¢)

= (c+h)(c+h)+31n(g+h )(C+h) + Z bn [(C+h)" + (C+ R)"]

On substituting (4.19a) and the boundary condition ¢¢ = b? in the above

equation, we have

u = —4%[h2+(c+5)h+52]+Blnb2+31n<1+-?>+Bln<1+%>+2bo
+> b [(CH+R)"+ (C+R)"] Z [(C+R) ™+ (C+h)™]
n=1 n=1
— __5 2 2 2
= 4M(b +h%) + BInb?® + 2b

. Ph
+{Bln< C)+Zb (C+h)" ZaQbC+h) —4;-}

+conjugate.

By the assumption b > a and h < b — a, and the fact that |¢| = b on
h
Cs, we have h/{ < 1. Therefore the Taylor expansion of In <1 + Z> is
convergent, which can be expressed as,
h 0 (_1)n—1 IO
(14 _) _y e
(1+2) =25

2 n
Then every term in the solution is in terms of coefficients of ¢™ and (——> ,

¢
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and u is given by,

_ 2 2 2 n
u = —4—(b +h*) + Blnb +2b0+2n22b nh
p o (=) thr
RS D
< o0 C
+Z b < >hk‘ ncn Zzaﬂcb < )hn kan
n=1k=n n=1k=1
P p? L (—=1) a2
et S (5)
= k k—n b2 " o 2k k n—k 1
2 2n(o)e (5) -o e, s
n=lk=n n=1 k=1
~ 0 (4.20)

Equating the coeflicients on both sides of the above system (4.20), we

obtain the set of equations

S~ P
2 2 _ 2 2
B(lnb? —Ina )+2n§ O:bnh" = ®*+h7)

k—1 ab]_—Ph
b2 +Zl~ch b~ =

( n lhn n kbk —
b2n Zbl‘“< >hk " Z b2n <TL— )hn -+ =0

P 2
which is combined with (4.19a) to replace 2by with <f:— —Bln a2>. The

new system in terms of coeflicients of (", n = 0,1,2,--- , co, is thus given
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by,
> P
¢®: B(lnd’ -Ind®)+2> :bnh“:—4—(b2+h2—a2) (4.21)
1L
n=1
o Phb?
C: Bh+k;lch’” 162by, — a’b; = ™
G R kN k—n,2 S —k —k
n . . nypan __ n — —
e B———n +k§:njbk . hE—"p I;a b oL h 0,m=23,-, 00

2

The expression <
n—~k

> can be written as,
—k? _ n—k n—1
(w ) =0 (22)

So finally the system (4.21) can be written in matrix notation as A4b = f,

where

b=(B,by,by,...,bp...)T

and
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and the coefficient matrix A is given by,

In(b/a) h h? B3 . h"
h b2 — o2 2b%h 322 ... nb2pn—1
—h? n
—_ a’h b —a* 34 ... ( >b4hn—2
2 2
h3 n
A= n —a2h? ath B — b ... pSpn—3
3 3
(—1);+1hn (—1)ra2n-1 . p2n _ 420

For the coefficient matrix A, all the entries above the diagonal are positive

and those below the diagonal are of alternating sign, The sign matrix for



el
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this system would then be,

+ -+ o+ o+ o+ o+
- 4+ - 4+ o+ o+ o+
+ -+ -+ o+ 4
-+ - 4+ -+ o+

This sign pattern is following one of the patterns in [14], but the infinite
matrix A does not fully satisfy all the conditions of non-singularity in [14].
However, the matrix A possesses some useful properties when A is smaller
than 1; for example, the magnitudes of the entries tend to zero along each
row and each column. In addition, when h << 1, all the conditions of non-

singularity presented in [14] are satisfied.
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The (4, 7)th entry of A is denoted as A;; and given by the following ,

( Inb/a, i1=7=1;
hi—1, i=1,7>1;
(—1)*ht1 , .
—_—t =1
’Z:— 1 bl ? > 1,] 3
A = (4.22)
p2(-1) _ a2(i——1), i=j ?é 1;
J—=1\,: ;9. .
: R 7% — 1, I<i<y;
1—1
—a2(=1)(—1)i-i (Z - 2) R, i>4>1.
—J

\

Truncating the infinite system, we can solve for the unknowns 5, and
thereafter we can approximate the solution u of the differential equation

(4.2) defined on the eccentric annulus.

With the approximate solution u, we can find the rate of flow from the
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formula for R (4.4), and we have

R://udS
D
1 p

= - 22—z - (2 ) dz
2t Joy-c (SN )

where C7 and Cj are the eccentric circles, w(z) can be expressed by B, b,, n=
1,2,---. Substitute the solution in the formula for R, and the rate of flow

in this case is given by,

. P 4 4 2 2 P 212 2 2 = n
R—Sﬂw(b a*)+Br(a b)+4u7rhb ma’bih+mb? Y nbph™ (4.23)

n=1

4.3.3 Numerical Results

In the following tables, we compare the numerical results of the rate
of flow with previous results using conformal mapping given in [13]. Let h
be the distance between the centers of the circles, which corresponds to the
value of h — k in [13], and let a and b be the radii of the circles. We can
take b = 1 and 5 = 1. R; denotes the rate of flow computed by conformal

mapping and Ry denotes the rate of flow computed by our approach.

The tables show the rates of flow for different radii of the eccentric cir-

cles. We can observe the change in R, when the centers of circles diverge.
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b=1.000 a=0.05 | area=3.134 | R.=2.09812
distance between centers Ry Ry n=2 Ry n=10 Ry n=15
0.01 2.098296 | 2.098293 2.098293 | 2.098293
0.06 2.104425 | 2.104313 2.104311 2.104311
0.11 2.119244 | 2.118886 2.118863 | 2.118863
0.16 2.141784 | 2.141890 2.141783 | 2.141783
0.21 2172815 | 2.173126 2.172814 | 2.172814
0.26 2.211598 | 2.212315 2.211597 | 2.211597
0.31 2.257676 | 2.259091 2.257674 | 2.257674
0.36 2.310489 | 2.312989 2.310485 | 2.310485
0.41 2.369373 | 2.373433 2.369367 | 2.369367
0.46 2.433556 | 2.439718 2.433545 | 2.433545
0.51 2.502152 | 2.510988 2.502132 | 2.502132
0.56 2.574153 | 2.586211 2.574120 | 2.574119
0.61 2.648427 | 2.664136 2.648371 2.648370
0.66 2.723702 | 2.743254 2.723611 2.723607
0.71 2.798397 | 2.821731 2.798413 | 2.798396
0.76 2.871129 | 2.897328 2.871188 | 2.871127
0.81 2.939994 | 2.967297 2.940177 | 2.939993
0.86 3.002909 | 3.028233 3.003439 | 3.002965
0.91 3.057576 | 3.075877 3.058720 | 3.057786
Table 4.1: b=1, a=0.05
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b=1.000 a=0.2 | area=3.3.016 | R,=1.338

distance between centers R Ry n=2 Rs n=10 | Ry n=15
0.01 1.337857 1.337857 1.337857 | 1.337857

0.06 1.346150 1.346155 1.346150 | 1.346150

0.11 1.366210 1.366262 1.366210 | 1.366210

0.16 1.397838 1.398071 1.397838 | 1.397838

0.21 1.440719 1.441400 1.440719 | 1.440719

0.26 1.494418 1.495990 1.494418 | 1.494418

0.31 1.558385 1.561486 1.558385 | 1.558385

0.36 1.631946 1.637419 1.631946 | 1.631946

0.41 1.714312 1.723177 1.714312 | 1.714312

0.46 1.804572 1.817963 1.804572 | 1.804572

0.51 1.901696 1.920738 1.901696 | 1.901696

0.56 2.004535 2.030134 2.004535 | 2.004535

0.61 2.111826 2.144330 2.111826 | 2.111826

0.66 2.222197 2.260857 2.222197 | 2.222197

0.71 2.334175 2.376302 2.334175 | 2.334175

0.76 2.446191 2.485819 2.446194 | 2.446192

Table 4.2: b=1, a=10.2
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b=1.000 a=0.3 | area=2.859 | R.=0.955
distance between centers R Ry n=5 Ry n=10 | Ry n=20
0.01 0.955586 | 0.955586 | 0.955586 | 0.955586
0.06 0.964233 | 0.964233 | 0.964233 | 0.964233
0.11 0.985154 | 0.985154 | 0.985154 | 0.985154
0.16 1.018156 | 1.018156 | 1.018156 | 1.018156
0.21 1.062930 | 1.062930 | 1.062930 | 1.062930
0.26 1.119054 | 1.119054 | 1.119054 | 1.119054
0.31 1.185996 | 1.185996 | 1.185996 | 1.185996
0.36 1.263111 | 1.263112 | 1.263111 | 1.263111
0.41 1.349648 | 1.349650 | 1.349648 | 1.349648
0.46 1.444751 | 1.444758 | 1.444751 | 1.444751
0.51 1.547465 | 1.547483 | 1.547466 | 1.547466
0.56 1.656741 | 1.656782 | 1.656741 | 1.656740
0.61 1.771440 | 1.771530 | 1.771441 | 1.771440
0.66 1.890348 | 1.890524 | 1.890350 | 1.890348
Table 4.3: b=1, a=0.3
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b=1.000 a=0.5 area=2.356 | R.=0.395791
distance between centers R Ry n=5 Ry n=10 Ry n=20
0.01 0.396014 | 0.396014 0.396014 0.396014
0.06 0.403840 | 0.403840 0.403840 0.403840
0.11 0.422783 | 0.422783 0.422783 0.422783
0.16 0.452693 | 0.452693 0.452693 0.452693
0.21 0.493331 | 0.493331 0.493331 0.493331
0.26 0.544372 | 0.544372 0.544372 0.544372
0.31 0.605412 | 0.605412 0.605412 0.605412
0.36 0.675965 | 0.675965 0.675965 0.675965
0.41 0.755475 | 0.755476 0.755475 0.755475
0.46 0.843315 | 0.843316 0.843315 0.843315

Table4.4: b=1, a=0.5

b=1.000 a=0.75 | area=2.356 | R,=0.395791
distance between centers Ry Ry n=5 Ry n=10 Ry n=20
0.01 0.057484 | 0.057484 0.057484 0.057484
0.06 0.062247 | 0.062247 0.062247 0.062247
0.11 0.073784 | 0.073784 0.073784 0.073784
0.16 0.092024 | 0.092024 0.092024 0.092024
0.21 0.116849 | 0.116849 0.116849 0.116849

Table 4.5: b=1, a=0.75
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In tables [4.3 to 4.5 |, the numerical results are obtained by truncating
the infinite systems at n = 5n = 10 and n = 20 for Ro; Table 4.1 and Table
4.2 give the numerical results are obtained by truncating the infinite systems
at n =2n =10 and n = 15 for Ry. The advantage of the new approach is
that we can estimate the rate of flow through the pipe, whose cross-section
is bounded by two nearly touching circles (see figure [4.2] touched circles)
and therefore the region is nearly simply-connected. It is clear that the rate
of flow becomes larger while the distance between the two circles is smaller.
i.e., the rate of flow gets larger while the inner circle moves closer to the
outer one. We may finally obtain the greatest rate when the circles are al-

most touching.

In addition, even if the areas of the regions are the same, the rates of
flow vary depending on the eccentricity. We can see this by comparing the
rate of fluid through the simply connected regions of the same area with

different shapes.

Table 4.6 shows the comparison of the rates of flow through the pipes,

whose cross-sections are of the same area.
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a area concentric circles | one circle | almost touching eccentric circles
0.05 | 3.13374 2.09821 3.12596 3.09349
0.2 | 2.85885 0.95534 2.60155 1.98764
0.3 | 2.35619 0.39579 1.76715 0.91912
0.5 | 2.09531 1.33762 2.89529 2.53472
0.75 | 1.37445 0.05735 0.60132 0.14135

Table 4.6: Comparison of rates of flows through the pipes of different cross-
sectional area when b =1

In the case where the circles touch, the coefficient matrix A is almost
singular, and it causes larger errors in the approximation. The values for
nearly-touching case given in Table 4.6 are approximate values obtained by
computing rates of flow when the two circles are very close to each other

and the system is truncated at larger n.



Chapter 5

The Helmholtz Equation on

Elliptic Domains

One of the applications of the Helmholtz equation is in the determination of
the eigenvalues and eigenfunctions of the Laplacian. This problem is very
important in vibrating systems and quantum mechanics. In addition, the
research on the Helmholtz equations has been extensive as it is associated
with hyperbolic equations or wave equations via Fourier Transform with re-
spect to time [6]. In an elliptic region, the classical way has been to get
approximate eigenvalues of the Helmholtz equations with the help of Math-
leu equations (3.7) and (3.8). The eigenvalues A are obtained by evaluating

qg= ()\202 / 4). The details of solving the Helmholtz equation through vari-

44
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able separation and then solving the resulting Mathieu equations have been
introduced earlier in Chapter 3. Some notable works are using the WKB
expansion to estimate the eigenvalues [2]; developing a visualization of a
vibrating elliptical membrane [9]; using matrix evaluation of Mathieu equa-
tions [5]. Note that (3.8) is derived from (3.7) by replacing z with iz. As an
example, if attention is concentrated on solutions of (3.7), which are even
with period 7, denoted usually by Ceg,(z, ), then an intricate method used
to derive approximate eigenvalues with an included error analysis, is given
n [17]. All the eigenvalues can be isolated in disjoint intervals so that the
eigenvalues can be calculated to any required degree of accuracy, using error
estimates and bisection techniques. In [8], a defect-minimization method for
ellipse is proposed to give approximate eigenvalues and eigenfunctions. An
excellent account of visualization of special eigenmodes is given by [9] with
approximate numerical values for eigenvalues given. Asymptotic solutions
for large eigenvalues are discussed in [2] and for this procedure, separation
of variables is unnecessary. The region in this case is a two dimensional

convex domain and the boundary is an arbitrary piecewise smooth curve.
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5.1 Solution of the Problem
5.1.1 General solutions

Using the complex variables z = z + iy and Z = 2 — iy, we can write the

eigenvalue problem of the Laplacian by referring to (3.1c), which is given

by,
0%y A2
= D= in D
pz0z T 7v=0 oD,

u =0, on C,

(5.1)

where u is a real function of complex variable z, 2 and we denote

2+Z 22—z

U(fv,y)=U< 5 5 >:u(z,z).

Correspondingly, the boundary condition in (5.1) needs to be expressed in

terms of the complex variables z and z

The general real solution of (5.1) is given by ([12] page 58 ) and (3.13) as,

w = 2me (1) - [ 050 (WEE—T) )
{f(z) — /OZ f(t)%Jo (A\/Z(z - t)) dt} + conjugate  (5.2)

I

where f(z) is an arbitrary holomorphic function in the simply connected
domain D bounded by the curve C. Integrating (5.2) by parts then we

have,

u = {f(O) + /OZ 58% () Jo(AVZ2(z — t))} + conjugate. (5.3)
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For a simply connected region, there are no singularities and we can

assume a Taylor series expansion for f(z) given by,

[e o]
= }: anz", (5.4)
n=0

where the coefficients a,, are arbitrary real numbers and in the above Jy is

the Bessel’s function of the first kind of order 0, namely,

k=0

On substituting (5.4) and (5.5) in (5.3), we obtain:

aoJO(/\\/EE)+§:i< )j) n;ﬁ /Oztn‘l(z—t)kdt}

u p
n=1 k=0
+conjugate
= 2(“»]0(/\\/5)
o0 o0 k _
N\ nay (22)"
—— ) ————B(n,k "4zt 5.6
+;k>:=o< c) Bl p e ), (56)

where, B(n, k+ 1) denotes the Beta function with integer parameters n and

k +1, given by
(n—1)k!

B(n,k+1)= CFIR

We will rewrite (5.6) to give :

u = 2a0Jo(AV2Z) + ZZ (" +z" an(zz)k, (5.7)
n=1 k=0
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where

A2\* g
Ank:<———> —B(n,k+1), n=12-,00, k=0,1,2--,00.

(5.8)

Equation (5.7) gives the general solution of Helmholtz equation on an
arbitrary simply connected domain. The problem (5.1) now reduces to find-
ing the coefficients a, n = 0,1,2,--- 00, which will be determined by the
boundary condition. Since the eigenvalue problems all possess homogeneous
Dirichlet boundary conditions, the solution depends of the shape of the do-

main.

5.1.2  An identity for 2" + 2"

The solution (5.7) consists of terms of (2Z)™ and powers of (z+Z). On the
boundary, the power series representation for v can be simplified consider-
ably, and this will be a key element in the determination of the coefficients
of the power series . If 2™ + 2" can be expressed in terms of 2Z using the
expression of the boundary, then we can equate the coefficients of 2% in (5.7)

to obtain equations for ag, a1, az,--- in (5.7).
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Using the identity ([11] page 27):

cos(nf) = 2" Lcos™ § — 2"‘3% cos" 26 + 2”_Sg (n I 3) cos"44... (5.9)

and using the polar form of the complex variable z = r(cosd + isinf), we

can write 2™ + 2" in terms of z + z and 2%, as,

2"+ 2% = 2r"cos(nd)

[n]

— n n
= r [(20089) + m—1

(-)m= (” e 1) (2 cos 9)”‘””}

m=1

)
= @+ + Y (—1)"% <" ;ﬁ . 1) (24 2)""2™ (25)™.
m=1

5.2 Elliptic Boundary

An example of this method is our case of an elliptic boundary. We consider

the two dimensional domain bounded by an ellipse given by

which can also be expressed in the complex plane as,

(z +2)? = a + b2z, (5.10)

40232 _ 4a?
3 a2 b= a— 3

where ¢ =
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Due to the symmetry of the ellipse with respect to both of the axes, the

arbitrary holomorphic function f(z) in (5.6) can be assumed as

oo
f(z) = Z anz*"
n=0
and correspondingly, (5.7) becomes,

U= 20,0JO()\\/§) + i iAQn)k (zZn + 2271) an(ZZ)l” (5.11)

n=1 k=0

Now, we will express 22" + 22" as a function of 2z and (z + Z) using (5.10).

From the identity (5.9) we can write

Pry g = opn cos(2nf)

= " [(2 cos 6)*" + i (—1)’”2—72 (Qn - 1> (2cos 9)2n_2m2|

m m—1
m=1

= (z+27+ Y ()T (2” -me 1) (z + 2)2P72™ (z3)™,

2
— m m—1

Substituting for (z+2)? in terms of 22, using equation (5.10), for a given

n and 2z on the boundary curve, we get,

n l
2n =2n __ (_1)m(2n_m_1)!2n n—m n—lpl-my . =\1
FrAan = gn;) m! (2n — 2m)! l—m)° b (=2)
n
= ) by (22), (5.12)
=0
where

by, = Z (=1)™(2n—m—1)!2n (n - m> n—lpl—m (5.13)

: 1(2n — ! -
= m! (2n — 2m)! [—m
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[=1,2,---n and by, = a™.

Now reverting to (5.7), we can rewrite, formally interchanging summa-

tions and rearranging

NgE:
LR gL

n
U = 2&0]0()\\/2_2) -+ Agn,]c(ZZ)k Z bl,n (zZ)lan
=0

n
n

0o
= 2(10(]0()\\/5) + Z A2n,kbl,n (zz)H—kan
n=1 k=0 [=0
= 2(10J0()\\/E§) + Z Z AQn,kbO,n(zz)kan

k=0n=1
+ Z {Z A2n,kbl,n:, (zz)l-*_kan
k=0 =1 Ln=l
= 2a0Jo(AV2Z) + > > Asnbon(27)kan
k=0n=1
ook o0
200 {Z An,k_zbl,n} (%) an.
k=1l=1 Ln=l

Substituting the series for Jp from (5.5), on the elliptic boundary, u(z, 2)

can be expressed in terms of a power series in (2Z) given by
x
u = 2a9+ Z A2n,000,n0n
n=1
> )\2 k 2&0 k

. i
> <A2n,kbo,n +y An,k_lbl,n> anJ (22)F

Ln=1 =1
r oo

k
> <A2n,kbo,n+ZAn,k_lbz,n> anJ (z2)%. (5.14)

in=k+1 =1

ES
Il
—

[~]8 T[]e

i
)
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5.3 Boundary Value Problem

We need u = 0 on the bounding ellipse given by (5.10) to solve the bound-
ary value problem (5.1). This implies equating powers (2Z)* to zero for

k=0,1,2--- in (5.14).

Equating the constant term in (5.14) to zero, we get

e0]
2a0+ Y Agn0bonan =0, (5.15)

n=1
while equating the coefficients of (2Z)* (k # 0) to zero, yields

k

N 2 S At
4 k! 2n,kY0,n - n,k—1%n | Gn

n=1

oo k
+ Z <A2n,kbo,n + Z An,k—lbl,n> an =0,

n=k+1 =1
E=1,2,--. (5.16)

/\2
Using the expressions for coefficients in (5.8) and (5.13) and letting viln

T, equations (5.15) and (5.16) become, after some simplification,

oo
2ap + Z apa” =0, (5.17)

n=1
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and for the coefficients of (22)*, k=1,2,---,

2a0(—T)* b n)(=T)ka™ & (2n)1(=T)klgn
= !k!—+nz <m+; G h=T )a

> 2n)!(— 2n)1(=T) _
> ( k'(2n+k +Z )'(2n+k——l)>an_0’

n=k+1 l:l

Using equation (5.17), we can eliminate ag from the set of equations

(5.18) to derive the linear algebraic infinite system in matrix form as,
Dd =0, a={a1,ay,...}

where D = (dg5) is an infinite matrix and the coefficients are given by,

- T)k= l(2n) a™(—T)* (2n)! 1
- <k
; 2n+k—l l)!bl’n+ k! ((2n+k)! k!) nsk
dk‘,n =
k 2
(=T)%=t(2n)! a®(=T)* /1 (2n)! 1
\ ;(Qn—l-k——l l)!bl’n+ k! (2n+k)!_ﬂ n>k
(5.19)
where k=1,2,--- ,ooand n=1,2,.-- , c0.

5.3.1 Numerical Solution of Elliptic Boundary Problem

To get numerical values for eigenvalues of the boundary value problem (5.1),

we truncate the infinite matrix in (5.19) to give D™ an n x n matrix with n
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equations and n unknowns a1, as, -+ - , a,. We now find the zeros of det D™
using Maple. Notice that, in the expression of dy ,(5.19), we can factor
(=T)F from each row of the matrix and denote the new matrix by E™),

then the determinant of the matrix D™ = 0 can be expressed as
det D™ = det E™ = 0.

The (k,n)th component of the matrix E = (ey,) and its n x n truncation

E®) ig given by,

n T)~!(2n)! a [ (n) 1
S U 0L R R
; 2n+k~l'(k IR ((Zn—Hc)! k!) =

€kn =

n)! a [ () 1 ]
\;(2n+k~l'(k oike <(2n+k) ﬁ> n>k,
(5.20)

k,n=1,2,3,---. When n = 2, the explicit form of E(?
[ 2 2—5b 40> 4o —2ab
+ —_—

——Q R

3 T 5 T
E® =

_Ba  2-b 7a2+4a—2ab+b2—4b+2
L 24 ' 3T 30 5T T2 i

Computing the determinant of D) we have the polynomial of T is

56Tab 12aT 1162T? 14T ab? 1166272 @373
S e AW W Lo S

H=-—+— 30 15 60 90

For purposes of comparison, we follow the values chosen in [9], where

o =sinh2 and 8 = cosh 2. Substituting these values in E(?), we have,
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%61214& — 496.4930539, w& — 443709.6346T
E(Q) — s
__._18'20;48856 ~ 155.1540794 162701;01750 + 2980’;3?8323 — 129415.3101

and setting det F(?) to zero, the real eigenvalue \ is 0.6513444659. Com-
pared with the result in [9], the first value of C., is 0.65123129; the dif-
ference is 1.13 x 107*. For n = 4, the real eigenvalues are 0.6512312879;
1.388920047, 1.496159845 and 2.454121936. Compared with the first values

of Cey, 0.65123129 and C,, 1.38747716 in [9], the differences are 2 x 10~2

and 1.4 x 1073,
EIGENVALUE | OUR RESULT | [9]RESULT | DIFFERENCE
1 0.6512312879 | 0.65123129 1079
2 1.388920047 | 1.38747716 103
3 1.496159845 | 1.49784709 103

Table 5.1: Comparison of the results when n = 4 for \

EIGENVALUE | OUR RESULT | [9)RESULT | DIFFERENCE
1 0.6512312876 | 0.65123129 1079
2 1.3874937049 | 1.38747716 1075
3 1.4978369769 | 1.49784709 1075

Table 5.2: Comparison of the results when n = 5 for A
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EIGENVALUE | OUR RESULT | [9JRESULT | DIFFERENCE
1 0.6512312882 | 0.65123129 1079
2 1.3874803904 | 1.38747716 106
3 1.4977714457 | 1.49784709 1075

Table 5.3: Comparison of the results when n = 6 for A

From the above tables, we can see that the first three eigenvalues in our
case match with the result in [9] very well. The values in Table 5.4 are given
using the method of bisection. We compare the values here with the values

given by [9] for C,.

Ceo in [9] | Our result | truncation at n
0.65123129 | 0.65123129 5
1.49784709 | 1.49784709 8
2.35503473 | 2.35503473 10
3.21749843 | 3.12671218 15
4.08203626 | 4.08204227 15
4.94732655 | 4.94036498 20
5.81293420 | 5.92055836 25

Table 5.4: Values by using the bisection method

Since we choose the same value of o and 3 as the values in [9], the elliptic
region is close to the shape of a circle. Therefore the infinite matrix D is

almost singular. Numerically, we solve the truncated system, and the real
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solution is further refined by using the bisection method to compare with
the given value in [9]. Table 5.4 shows the comparison of our results by the

bisection method with those values given in [9].



Chapter 6

Helmholtz’s Equation on a

Doubly Connected Domain

The eigenvalue problem of the negative Laplacian is important in electro-
magnetism. However there are few methods for obtaining the solutions of
Helmholtz’s equations on doubly connected regions either numerically or
analytically. Yu references some famous work in his paper, and also intro-
duces a modified perturbation method to find the fundamental frequency
of a doubly connected membrane [22]. The process described in this chap-
ter for finding eigenvalues of the Laplacian on doubly connected regions is
similar to the method we discussed in Chapter 5, which we used to find

eigenvalues on elliptic regions. We now establish general solutions (involv-

58
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ing an infinite number of unknowns) for doubly connected regions and apply

boundary conditions to the general solution.

6.1 General Solutions

We assume that the doubly connected domain D is bounded by two closed
curves C1 and Cy. The complement of D consists of two continuums Dy
and Do, where Dg contains the point of origin and Dy, contains the point

of co.

The solutions consist of four parts, the elementary part containing only
terms of (2Z)" where n > 0; holomorphic solutions on the whole elementary
region, containing only terms of 2"2™, m # n and m,n > 0; holomorphic
solutions on the infinite Dy, containing only terms of 3™ /2", where m,n > 0

and the solutions represented by terms of 1/(2"2™). The four parts are,

1. Solutions in terms of 2Z or r = /2% in polar coordinates.

u= AJo(Ar) + BYs(Ar),

where A and B are arbitrary and real;
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2.
[o.0]
u= {Z 'z‘"fn(z)} + conjugate , (6.1)
n=0
where f, are holomorphic functions in D + Dy, and chosen to have
no terms of order lower than 2”. and the Taylor series of an arbitrary
holomorphic function fp is given by,
o0
fo(2) =) an2™; (6.2)
n=0
3.
o0
U= {Z ann(z)} + conjugate , (6.3)
n=0
where g,, are holomorphic functions in D+ Dy, and gg can be expanded
1
by Taylor series in > which is then given by,
= b
go(2) =) _ = (6.4)
n=1
4.
o«
hn(z .
u= {Z T;EZ )} + conjugate , (6.5)
n=1

where h, are holomorphic functions in D + D, and

mz) =Y 2. (6.6)
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In order to obtain the solutions described in part 2, we substitute the

expression (6.1) in (5.1), and then we have,

2 [ee]
Zn*”l >+54-;)z”fn(z> = 0 (67)
2
orz {nr D@+ Lo} = o (6

i

2
hence, (n+1)fr1(2)+ %fn(z) 0 forn=0,1,2,--{6.9)

Therefore, following the iteration given by (6.9), we have

fn=<——> n,// /fo t)dtdt - - (6.10)

According to Cauchy formula, the multiple integrals in(6.10) can be written

as,
AN\"1 1 z 1
(AT 2 Y — gt 6.11
o= (%) 2oy [ OG-0 (6.11)
where n = 1,2,---. Substituting (6.11) to the general form of solution, we
have

U = {iz”fn(z)}+ conjugate
00 2
= 2Re fo(z)+Zz“( ’l) ~ n—l /fo )z — )"~ 1dt}

{
,_2Reif0 + [l Z( > %dt}

= 2Re fo(z)—/ t)—Jo (Am) dt} (6.12)
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where u is the general solution in any simply connected domain with the

origin in the domain. It is of the same form as equation (5.3) given in [12].

The procedure for finding the third part of the solutions is very similar,
except that the singular point is 0 rather than co. Referring to (6.3), the
iteration for g, is given by,

/ A2
(n+1)gps1 + R 0,

from which the expression of g, is obtained as,

1 /\2 n roo o0
gn = E <—Z-> /Z ...L go(t)dt...dt
N !
n
The solution is obtained thereafter as,
o0
u = {Z ann(z)} + conjugate
n=0

o0 2\ " oo
e+ 3 () gy [ ot
n=1 z

where go(t) is given by (6.4). The solution exists if and only if for any n the

coefficients of t~" are zeros, i.e., go = 0. In another word, the non-trivial

o0
solution of the form (6.3) with the assumption of go(2) = > g% doesn’t
n=1

exist.
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Now, we come to the fourth part. Substituting back the expression

[e o]
h
U= {Z T;_Ebz)} + conjugate ,

n=0

we have

o0 /Z 9 o0 (2
Z(_ )h_n(__.)__i_’\_ h__(__)

e 1 o + conjugate =0

or i:— <ho(z) + h(z) + ho(z) + hl(z))

o] ’ 9
N ESTRRCRCRE L) S

Hence we have the iteration

(1 —n)hi,_1(2) + %;hn(z) =0, n=23, - (6.13)

Following the iteration (6.13), we obtain the expression of Ay, which is given

by
(n—1)
ha(2) = (%) (n— DR (2). (6.14)
In addition, ho(z) + hléz) + ho(z) + hliz) = 0. However ho(z) + ho(z) has

already been included in case 3, hence here we can ignore these two terms

. . ¢ . ley, .
in case 4. To consider hi(z) = =L the solution of form =21 is also included
z zZz

in case 1. Hence here we can take it away and assume that
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Putting this term back into the solution then we have

oo h(n—l) 4 (n—1)
u = {Z(n - 1)!1—2n—(—z—)- (ﬁ) -+ conjugate (6.15)

n=1
Combining the solutions obtained from the above four cases, we have the

general solution of Helmholtz equations in a doubly connected region,

v = AJo(\r)+ BYy(Ar)

T2Re {f0<z> - [ 0RO t))dt}
oo 4 n—l h(n—l)(z) h(n—-l) (Z)

+ — L + 1 — : (6.16)
;::1 ()\2> ( zn z

If the domain is simply connected, then in (6.16), B = 0 and h; = 0, and

therefore we have the same form of solution as the one given in [12]. If the
domain is bounded by concentric circles with the origin the centers, that is,
the solution only contains the terms of r or zZz, then the solution would be

u = AJo(Ar) + BYp(\r).

6.2 Applications

Substituting the expansions of fy, go and h; (6.2), (6.4), (6.6) in the

solution (6.16), we can get the solution in the form of summations. For
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example,
0 22 k r2k
Jo(Ar) = Z<—Z> PR
pard k!
1)\2 2 k
2 Ar N Vi
%) = 2 [ln(7>+’7} R I L L

k=1

where v is Euler-Mascheroni constant and Hy is a harmonic number, the
logarithm term can be expanded by Taylor series. In chapter 5, we developed

the procedure which expresses the second part of the solution

2Re {fo<z) [ fo(t)%Jo(A\/%——t))dt} ,

as a series shown in equation (5.6)

(<o) k —
2a0Jo(M2Z) + Z Z <—/\£> MB(n, E+1) (=" +2").

1!
v Elk!

For the last part of the solution, we have

A2 zZn 2"

AN 1 (S k-2 (1) (k+n —2)!
< ) ( (Z i )

i
I

I
]38

AN 22 \ &~ (k — 1)lzk-1 (k —1)1zF-1
oo oo n—1 A . '

= ZZ _4 ck(k +n_ 2)-_ <zk—1 n Zk—l) ‘
—=e A2 (k — 1)l(zz)ntk—1

Now, the solutions are in the form of series and with terms of zZ and

(2" + 2™). If (2™ 4+ z™) can be expressed in terms of zZ when applying
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boundary conditions, then it is easy to find the solutions and eigenvalues of
the Laplacian on a doubly connected region. By equalizing the coefficients,
the eigenvalue problem can be worked out by solving an infinite system of

linear equations.



Chapter 7

Conclusions and Future

Work

We have mainly examined two kinds of PDEs, Poisson’s and the Helmholtz
equations. These are both related to the Laplace operator. In Chapter 4, one
of the applications of Poisson equation on the region bounded by eccentric
circles has been studied. The numerical results showed us the effectiveness
of our method by comparing the values of rates of the flow with those in
existing published work. The solution to Poisson’s equation is obtained by
solving an infinite system of linear equations Ab = f Similar methods could
be applied to other doubly connected regions. The formal solution always

holds for any doubly connected region with the origin outside. However, the

67
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infinite matrix A in our case is definitely nonsingular only under the con-
dition that h, the distance between the centers of the two circles, is much
smaller than 1. Hence more work is needed to find out additional conditions

for non-singularity when h is relatively larger.

In Chapter 5 and Chapter 6, we discussed the eigenvalue problem of the
Laplacian on both simply connected and doubly connected regions. The gen-
eral solutions derived in Chapter 5 can be applied to other simply connected
regions, whose boundaries are of the form z+z = f(2Z) or g(2+Z%) = 22. For
example, the rectangular domain is bounded by z = +a/2 and y = +b/2.

The boundary can be written as,
(z+z—a)(z+zZ+a)(z—Z2—bi)(z—Z+bi)=0

or

[(z+2)% —d?|[(z +2)? — 222+ b%] =0

The eigenvalues of the Laplacian are obtained by seeking zeros of the de-
terminant of the coefficient matrix D. In this way, we are able to control
the accuracy of the results, i.e. the larger the truncated matrix is, the ac-
curate the eigenvalues will be. By comparing with the results in existing

published research paper with our results, the method we have developed
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appears very promising. A similar method can also be applied to solving
eigenvalue problems on doubly connected regions. Chapter 6 gives the pro-
cedure for deducing the general solution of Helmholtz equations on doubly

connected region.
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