
Hindawi Publishing Corporation
ISRN Biomedical Imaging
Volume 2013, Article ID 943051, 11 pages
http://dx.doi.org/10.1155/2013/943051

Research Article
Evaluation of the Feasibility and Quantitative Accuracy
of a Generalized Scatter 2D PET Reconstruction Method

Hongyan Sun1,2 and Stephen Pistorius1,2,3

1 Department of Physics and Astronomy, University of Manitoba, Allen Building, Winnipeg, MB, Canada R3T 2N2
2 CancerCare Manitoba, Winnipeg, MB, Canada R3E 0V9
3Department of Radiology, University of Manitoba, Winnipeg, MB, Canada R3E 0V9

Correspondence should be addressed to Hongyan Sun; hongyan.sun@cancercare.mb.ca

Received 21 December 2012; Accepted 16 January 2013

Academic Editors: N. Belcari, Y. Chen, and F. Rannou

Copyright © 2013 H. Sun and S. Pistorius. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Scatter degrades the contrast and quantitative accuracy of positron emission tomography (PET) images, and most methods for
estimating and correcting scattered coincidences in PET subtract scattered events from the measured data. Compton scattering
kinematics can be used to map out the locus of possible scattering locations. These curved lines (2D) or surfaces (3D), which
connect the coincidence detectors, encompass the surface (2D) or volume (3D) where the decay occurs. In the limiting case where
the scattering angle approaches zero, the scattered coincidence approaches the true coincidence.Therefore, both true and scattered
coincidences can be considered similarly in a generalized scatter maximum-likelihood expectation-maximization reconstruction
algorithm. The proposed method was tested using list-mode data obtained from a GATE simulation of a Jaszczak-type phantom.
For scatter fractions from 10% to 60%, this approach reduces noise and improves the contrast recovery coefficients by 0.5–3.0%
compared with reconstructions using true coincidences and by 3.0–24.5% with conventional reconstruction methods. The results
demonstrate that this algorithm is capable of producing images entirely from scattered photons, eliminates the need for scatter
corrections, increases image contrast, and reduces noise. This could be used to improve diagnostic quality and/or to reduce patient
dose and radiopharmaceutical cost.

1. Introduction

Compton scattering degrades image contrast and compro-
mises quantitative accuracy in positron emission tomography
(PET) [1, 2]. Scattered coincidences are typically considered
as noise which reduces PET image quality. This issue is more
serious when operating in 3D mode without slice-defining
septa and in large patients, where the scatter fraction can be as
high as 40–60% [3–6]. Consequently a number of approaches
for estimating and correcting scattered coincidences in PET
data have been proposed [3, 7–19]. Most of these techniques
estimate a scatter sinogram, which is used to subtract
the scatter from the projection data [20] in precorrection
methods [21] or as a constant additive term incorporated
in a reconstruction algorithm [22–24]. Inaccuracy in the
estimation of the scatter sinogram will introduce significant

biases in the activity distribution [6]. The subtraction-based
correction methods destroy the Poisson nature of the data,
reduce the system’s sensitivity, and amplify image noise [3,
25].

With list-mode acquisitions in modern PET and im-
proved detector technology, the use of the energy of indi-
vidual photons becomes feasible and some authors have
proposed new approaches that include the energy infor-
mation in the estimation of the scatter distribution and
image reconstruction process [6, 26–28]. These approaches
attempt to improve the accuracy of the rejection of scattered
coincidences from measured data but are limited by the
energy resolution of the detectors [29].

Since the energy of detected photons carries some prob-
abilistic information about the spatial distribution of the
annihilation and by taking advantage of Compton scattering,
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scattered coincidences are also a potential source of latent
information and can be included in PET image reconstruc-
tion. Incorporating scattered coincidences directly into the
reconstruction algorithm eliminates the need for scatter
correction and could improve both image quality and system
sensitivity since a lower energy threshold can be used. In this
work, we propose a reconstruction method similar to that of
Conti et al. [30] that directly includes scattered photons in
the image reconstruction algorithm instead of correcting for
them as do conventional emission imaging methods.

An important difference between our work and that of
Conti et al. [30] is that the method proposed by Conti et
al. makes use of both time-of-flight (TOF) information and
the energy of individual photons to reconstruct scattered and
unscattered PET coincidences [31]. This paper focuses on a
non-TOFPET algorithmwhich does notmake use of the time
difference between the two detected annihilation photons.
Another difference is that we use Compton kinematics to
predict the locus of possible scattering positions to confine
the annihilation position instead of using a pixel-driven
approach, which can reduce the computational workload.
This work has been presented, in part, at theWorld Congress
onMedical Physics and Biomedical Engineering in 2012 [32].

In this paper, we evaluate the feasibility of this approach,
the effects of the scatter fraction, and the choice of a new coin-
cidence selection threshold, which uses both the scattered
photon energy and detector position for each coincidence,
on the image quality obtained using a generalized PET
reconstruction algorithm.

2. Materials and Methods

2.1. Reconstruction Theory. In clinical PET systems, more
than 99.7% of the scattered events undergo Compton interac-
tions in water at 511 keV [33]. Coherent scattering is neglected
because its contribution to the total cross-section is small
for the energies of interest in nuclear medicine [25]. In
approximately 80% of detected scattered events, only one of
the two annihilation photons undergoes a single Compton
interaction [5, 8, 34].This assumption has been validatedwith
both Monte Carlo (MC) simulation and experiment mea-
surements in the single-scatter simulation (SSS) technique
[35, 36].

Figure 1 illustrates a scatter coincidence in a patient. The
two annihilation photons are generated at source X and the
unscattered photon is detected at A while the second photon
undergoes a scatter at S and is detected at B with energy 𝐸

.
The scattering angle 𝜃 is given by the Compton equation
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𝑒
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where the scattering angle 𝜃 is defined as the angle between
the direction of the incident and the scattered photon,𝑚

𝑒
𝑐
2 is

the electron restmass energy equal to 511 keV,𝐸 is the incident
photon energy, and 𝐸

 is the scattered photon energy in keV.
The energy of the scattered photon decreases as the scattering
angle increases with the energy of the scattered photon
ranging from ∼170 to 511 keV, corresponding to backscatter
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Figure 1: A diagram of a Compton scattering event in a patient.The
two antiparallel photons are generated at the annihilation position
X shown by the green dot. The unscattered photon is observed by
detector A while the other photon suffers a Compton scattering
event at S, deviates from its initial path by an angle 𝜃, and is detected
by detector B.This figure also illustrates the two circular arcs (TCA),
shown as blue dotted curves, which describe the locus of possible
scattering locations for the scattered photon and which enclose the
annihilation position.

and forward scatter, respectively. By taking advantages of the
kinematics of Compton scattering, a 2D surface described by
two circular arcs (TCA) connecting the coincidence detectors
(rather than the conventional straight line assumption which
is true only for unscattered photons) which scribes the
possible scattering locus and encompasses the annihilation
position can be identified as shown in Figure 1. The locus
defined above ignores the positron range, and the accuracy is
closely related to the energy resolution of the detectors. Our
preliminary investigation assumes that the detectors have
perfect energy resolution and data was simulated with the
Monte Carlo code.

The size and shape of the area encompassed by the
TCA are a function of the scattering angle and the detected
positions of the coincidence photons. Figure 2 illustrates
that, in the limit, where the scattering angle approaches
zero and the energy of the scattered photon approaches
511 keV, the shape approaches the line of response (LOR)
for unscattered photons. Thus, the true coincidences may be
considered as a subset of the scattered coincidences with zero
scattering angle. We therefore propose a generalized scatter
(GS) approach which generalizes the conventional meaning
of scatter to include both true and scattered events and will
show in Section 2.2 that they can be used to reconstruct an
image in a similar way.

The work in this paper is carried out in two dimensions,
although the same approach can in general be carried out in
three dimensions where it will ultimately be of greater value.

2.2. The Generalized Scatter Algorithm. 𝑃ab(𝜃) represents
the mean number of coincidences, where an unscattered
photon is observed at A while the other annihilation photon
undergoes a Compton scattering through an angle 𝜃 and is
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Figure 2: The TCA shapes versus the scattering angles for the same
two detectors. Each TCA consists of two symmetrically circular arcs.
The inner to the outer arcs correspond to scattering angles of 0, 30,
60, 90, 120, and 150 degrees, respectively. When the scattering angle
is smaller than 90 degrees, the TCA is made up of two minor arcs;
when the scattering angle is 90 degrees, the TCA is a circle; when
the scattering angle is larger than 90 degrees, the TCA is made up of
two major arcs. As the area encompassed by the TCA increases with
scattering angle, the ability to accurately determine the annihilation
position decreases.

observed at B with an energy 𝐸
 (see Figure 1). 𝑃ab(𝜃) can be

calculated using the following equation:
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The inner integral in the above expression calculates the total
photon flux that can reach one of the possible scattering
points (say S) due to the source 𝑓

𝑥
lying on the line segment

AS. If the effect of the noncollinearity of the annihilation
photons is neglected, the photons are emitted isotropically
and no distinction can bemade between the two annihilation
photons. Thus, the probability of the annihilation photons
traveling along AS is 1/2𝜋 instead of 1/4𝜋. Once these
photons arrive at one of the possible scattering positions S,
the possibility of photons suffering a Compton interaction
with a scattering angle 𝜃 is linearly proportional to the
differential Klein-Nishina electronic cross-section 𝑑𝜎

KN
𝐶

/𝑑𝜃

and the electron density 𝜌
𝑒
at this point. The second 1/2𝜋

takes into account that only a portion of the photons scattered
into the solid angle around 𝜃 are detected at B. The outer
integral sums the scattered coincidences over all the possible
scattering positions along the TCA. Tau (𝜏) is the acquisition
time, and 𝜇 is the linear attenuation coefficient.

To reduce the computational load, the electron density
was assumed to be uniformly distributed, and for this
geometry, the attenuation was taken to be negligibly small.
Thus, 𝑃ab(𝜃) is approximately proportional to the integral of
the source intensity within the area confined by the TCA and
𝑃ab(𝜃) can be written as
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where 𝐶 is a constant normalization factor. Considering
the sparse number of coincidences contributing to each
⟨𝑃ab(𝜃)⟩, we derived the maximum-likelihood expectation
maximization (ML-EM) [37, 38] in a list mode in which each
coincidence will be stored and calculated successively. Thus,
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where 𝑝 is the total number of pixels in the image, 𝑁 is
the total number of detected coincidences, and 𝑎

𝑗,𝑖
is the

element of system matrix representing the probability, that
the two annihilation photons emitted from pixel 𝑖 will be
detected as the 𝑗th coincidence (whether scattered or not) in
a list mode entry weighted by the Compton differential cross
section. In practice, 𝑎(𝑖, 𝑗) is proportional to the Compton
cross-section if the 𝑖th pixel falls within the 𝑗th TCA and is
zero if 𝑖 is outside the TCA. The main difference between
this GS-method-based ML-EM algorithm (GS-MLEM) and
the conventionalML-EM algorithm (LOR-MLEM) is that the
summation for each coincidence is over the area confined by
the TCA, instead of being along the LOR.This algorithm also
can account for random coincidences 𝑅 by adding them to
the projector as follows: ∑

𝑝
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=1
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 + 𝑅
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. The GS-MLEM

was implemented in MATLAB as shown in Figure 3. The
ratio of the measured number of coincident events (which is
1 with a list-mode algorithm) to the sum of the pixel values
within each TCA for the current estimate is backprojected
into a “ratio” matrix. This backprojection is repeated for
all coincident events. The “ratio” matrix is used to modify
the current estimate. This process is repeated in an iterative
fashion, updating the current image until a good convergence
is obtained.

2.3. The GATE Platform and Phantom Measurements. The
proposed algorithm was evaluated by simulating a 2D small
animal PET system using GATE [39]. GATE is an object-
oriented Monte Carlo simulation platform based on Geant4
libraries (a generic Monte Carlo code) [40]. The simulated
PET scanner had a 24 cm diameter detector ring made up
of 42 detector blocks. Each detector block is arranged in
a 9 × 5 lutetium oxyorthosilicate (LSO) crystal array. Each
crystal element had a surface area of 2 × 2mm2 and was
18mm thick. The energy resolution of the simulated scanner
in this preliminary investigation was 0.1% full width at half
maximum (FWHM) at 511 keV, and a 170–511 keV energy
window, in which all single scattered coincidences can be
selected, was used. Noise and dead time were not included
in the simulation process in order to focus on the role of that
scattered coincidences played in the image quality.

A simplified Deluxe Jaszczak phantom [41, 42] having
3 hot disks and 1 cold disk with radii of 1.5mm, 3mm,
4.5mm, and 6mm within a cylindrical water phantom with
a 40mm radius and a hot-to-background ratio of 4 as shown
in Figure 4 was used.

Images were reconstructed within a 99 × 99 pixel matrix,
with a pixel size of 1 × 1mm2. The contrast recovery ratio of
the reconstructed images was analyzed using the mean value
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Convergence
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Yes

No

Output image

Update image by multiplying ratio matrix with image matrix

Reconstruction algorithm: based on MLEM (but equally could use OSEM, FBP, etc.)
initialize ratio matrix

Calculate the scattering angle for each pair and identify
TCA (2D) or volume of response (3D) for each pair

Sum pixel valuse encompassed by TCA (2D) or volumes of response (3D) defined above
Normalize and back project into a ratio matrix

Sum for all coincidences

Figure 3: The GS-MLEM algorithm flow chart. The additions and changes to the conventional MLEM (LOR-MLEM) algorithm are
highlighted by the boxes with a black thick outline.

of the disks relative to the local background while the noise
was calculated using the relative standard deviation (RSD) of
a 10mm diameter circular region of interest (ROI) located
in the center of the phantom image. Two concentric circular
ROI’s with diameters of 6mm and 8mmwere defined within
the #3 and #4 disks, respectively. Annular ROI’s with a 20mm
outer diameter and an inner diameter of 9mm and 12mm
respectively, were drawn in the background around disks #3
and #4.The local contrast recovery coefficient (CRClocal) was
defined by

CRClocal =
(𝐻/𝐵 − 1)

𝑅 − 1
, (5)

where 𝐻 is the average values within the ROI in the hot disk,
𝐵 is the average value in the annulus around the disk, and 𝑅

is the experimentally simulated hot-to-background ratio. For
the cold source, CRClocal is defined by

CRClocal = 1 −
𝐶

𝐵
, (6)

where 𝐶 was the average value of the ROI in the cold disk.

For the purpose of evaluation, a point on the CRC curve
was determined which was the shortest distance from the
CRC curve to the point defined by an ideal CRC of 1 and a
RSD of 0.

2.3.1. The Feasibility Test of Images Reconstructed Using Only
Scattered Coincidences. To illustrate that scattered coinci-
dences can indeed be used to reconstruct images, 106 scat-
tered coincidences were used to reconstruct images using
the GS-MLEM method. By comparison the conventional
ML-EM (LOR-MLEM) method which takes scattered coin-
cidences as true was used to reconstruct 106 scattered coin-
cidences as well as 106 true coincidences generated using the
GATE simulation.

2.3.2. Comparison of Images Reconstructed by GS-MLEM
and LOR-MLEMwith Different Scattering Fraction Data. The
scatter fraction is a function of the geometry of scanner,
the density, and the size of the patient as well as the energy
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Figure 4: A simplified Deluxe Jaszczak phantom. The three yellow
circles represent sources with radii of 1.5mm, 3mm, and 4.5mm,
respectively. The black circle represents a cold area with radius
6mm. The red area represents the 40mm water phantom. The hot-
to-background ratio is 4.

window employed. To compare images reconstructed with
different scatter fractions, not affected by the above factors,
we simulated 3 × 10

5 true coincidences and added scattered
coincidences to obtain the required datawith scatter fractions
ranging from 0% to 60% using the same phantom. The
simulation data we used is more artificial than real; however,
it serves the goal of this research to investigate the relative
value of the proposed algorithm for different fractions of
scattered coincidences to the image quality while at the same
time removing unwanted complexities resulting from more
realistic simulations.

2.3.3. Evaluating the Different Energy Thresholds of Scattering
Coincidences on Image Quality. The scatter fraction affects
contrast and noise of images. As more scattered coincidences
are included in the image reconstruction, the noise will
decrease but so will the contrast. However, the strength of the
proposed method lies in its ability to recover contrast while
keeping noise low. The tradeoff between contrast and noise
(for a particular scatter fraction) can be adjusted by varying
the scattered photon energy threshold. Photons scattered
through large angles may still be of value close to the periph-
ery of the phantom. In this paper, those coincident photons
which were scattered in an area defined by the intersection
of the area encompassed by the TCA and the image matrix
which was less than some predetermined threshold were
used. This is similar to using a scattered energy threshold,
but it enables both energy and detector position to be used
to full advantage. A total of 6 × 10

5 coincidences with a
50% scattering fraction were used to test how the varying
thresholds enabled the GS method to trade off between
the contrast and noise. By setting different thresholds and
calculating the intersection areas between TCA and image
matrix, the data was generated and used for reconstruction.

3. Results

3.1. Feasibility Test of Reconstructing Images Only by Scattered
Coincidences. Figure 5(a) displays a typical image produced
from true (unscattered) coincidences using a conventional
ML-EM (LOR-MLEM) algorithm. Figure 5(b) shows that
the same algorithm was incapable of producing recognizable
images from scattered photons only since the LOR assigned
for each scattered coincidence no longer passes through the
annihilation point. This illustrates why scattered photons
are traditionally considered contributing only noise to the
resultant image and are, where possible, typically eliminated.
Our initial experiments demonstrated that the proposed
algorithm was capable of producing an image entirely from
scattered photons and Figure 5(c), while not as good as the
image in Figure 5(a), still adequately represents the activity
distribution. There is still blurring evident in the scattered
photon reconstruction and image converges at least 2-3 times
slower. From the profiles under the corresponding images,
we can see that the image produced using only scattered
events has a decreased contrast and noisier background
compared with that using the same number of true coinci-
dences. Figure 5(c) was used to illustrate the feasibility of
reconstructing an image from only scattered coincidences.
However, in practice, an image would be reconstructed by
incorporating both true and scattered events instead of only
using scattered coincidences.We hypothesized that including
scattered coincidences in the reconstruction provides more
advantages than simply rejecting them and the results will be
shown in Section 3.2.

3.2. Comparison of Images Reconstructed by GS-MLEM and
LOR-MLEMwithDifferent Scattering FractionData. Figure 6
shows the CRC curves for the #3 (largest hot disk) versus
the relative standard deviation of the background obtained
by varying the number of iterations. Figure 7 is similar
except that it shows the results for #4 (the cold) source.
The CRC curves for images reconstructed using the GS-
MLEM algorithm were always above those created by the
LOR-MLEM algorithm. Unlike the CRC curves for the LOR-
MLEM algorithm which decrease with increasing scatter
fraction, the CRC curve for the GS-MLEM algorithm gen-
erally increased with increasing scatter fraction. For the hot
disk, this trend reversed beyond the point where the CRC
curve for the GS-MLEM intersected with that of the CRC
for reconstructions using only true coincidences. For the
cold disk, this reversal was not observed. This reduction
in CRC was small and occurred only for iterations beyond
the evaluation point. For scatter fractions from 10% to 60%,
the evaluation points on the CRC curve for the hot disk
were 0.5–3.0% greater than those obtained using only true
coincidence data only and were 3.0–24.5% greater than the
corresponding curves reconstructed using the LOR-MLEM
algorithm. The noise was reduced by 0–1.7 % in comparison
with the true coincidences data and was 2.0–12.0% less than
that produced by LOR-MLEMmethod with the same scatter
fraction. For scatter fractions between 10% and 60%, the
evaluation points for the cold disk had a CRC 0–3.5% greater
than the curves calculated using only true coincidences and
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Figure 5: (a)The image created by reconstructing 106 true coincidences using an LOR-MLEMwith 36 iterations. (b)The image reconstructed
using 106 scattered coincidences and an LOR-MLEM approach which assumes that these photons are true coincidences. (c) It uses the same
scattered coincidences dataset as in (b) but reconstructs them using a GS-MLEM approach with 62 iterations. The second row plots the
profiles through the above images in the horizontal and vertical direction passing through the center of the images, respectively.

were 4.0–24.0% greater than the LOR-MLEM method. The
noise at the evaluation point was 0–1.6% less than that
obtained using only true coincidences and was 0.5–8.3% less
than that calculated using the LOR-MLEM method with
the same scatter fraction. This trend is consistent with the
position that the scattered coincidences contribute to noise
in the conventional PET image reconstruction and that as the
scatter fraction increases, the image quality deteriorates.

3.3. Evaluating the Different Energy Thresholds of Scattering
Coincidences on Image Quality. Figure 8 plots the CRC of
#3 (the largest source) for different TCA area thresholds
as a function of the relative background standard deviation
obtained by varying the number of iterations. Figure 9 is
similar, except that it shows the results for the #4 (cold)
source.The results show that the value of the CRC for images
reconstructed using the GS-MLEM method were always
greater than those obtained with a conventional LOR-MLEM
approach which assumed that all coincidences that fell into
the typical 350–511 keV energywindowwere true. For theGS-
MLEM method, the evaluation point (point #1 in Figure 8)

for the source had a CRC that was 2.5% better than images
reconstructed with true coincidence data only (which is an
idealistic upper limit on existing algorithms) (point #2 in
Figure 8) and was 13.0% greater than images reconstructed
using the conventional LOR-MLEM algorithm (point #3 in
Figure 8).The image noise was 2.0% less (point #1 in Figure 8)
than the ideal reconstruction using true coincidences (point
#2 in Figure 8) and was 7.0% less than the LOR-MLEM
approach (point #3 in Figure 8). For the cold source, the
evaluation point for the GS-MLEM approach (point #1 in
Figure 9) had a CRC that was 5.0% greater than the CRC
obtainedwith the ideal true coincidence calculation (point #2
in Figure 9) and 18.0% greater than the LOR-MLEMmethod
(point #3 in Figure 9). For the cold source, the noise at the
evaluation point using the GS-MLEM method (point #1 in
Figure 9) was 2.0% less than the ideal reconstruction using
trues (point #2 in Figure 9) and was 8.0% less than the
LOR-MLEM approach (point #3 in Figure 9). Virtually no
difference was found between the CRC curves for thresholds
of 91.8% and 100%. The evaluation CRC/noise point for the
source occurred for thresholds close to 100% of the matrix
sizewhile the evaluation point for the cold sourcewas optimal
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Figure 6: The CRC curves for #3 disk versus the relative standard
deviation of the background. The CRC curves shown with filled
symbols represent the images reconstructed by GS-MLEM with
different scattering fractions. The lines in the same style with
empty symbols correspond to images with the same scatter fraction,
reconstructed by LOR-MLEM. The CRC for true coincidences is
shown as a solid line for comparison. The diamonds reflect the
optimal points on the CRC-RSD curves.

when the threshold was set to 10.2% of the matrix size. The
evaluation contrast recovery point for the source approached
the true value as the threshold approaches zero, but the
CRC for the cold source still showed an improvement for
thresholds approaching 100%.

Figure 10(a) displays the image reconstructed from 3×10
5

true coincidences using a conventional LOR-MLEMmethod.
Figure 10(b) shows the image reconstructed using the same
true 3 × 10

5 coincidences plus 3 × 10
5 scattered coincidences

that fall into the 350–511 keV energy window and recon-
structed using a conventional LOR-MLEM algorithm as a
comparison. Figure 10(c) shows the image produced by 6×10

5

coincidences with 50% scatter fraction and a threshold of
100% reconstructed using the GS-MLEMmethod.

4. Discussion

We have described a novel PET reconstruction algorithm
which can incorporate both true and scattered coincidences
into the reconstruction process. Our initial results have
shown that under the ideal conditions used in this study,
including scattered coincidences in the reconstruction is
more advantageous than simply rejecting them.

It has been shown that an image of the activity dis-
tribution can be reconstructed from scatter data only as
shown in Figure 5(c). The image in Figure 10(c) is still
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Figure 7: The CRC curves for the #4 (cold) disk versus the relative
standard deviation of the background. The CRC curves shown with
filled symbols represent the images reconstructed using the GS-
MLEM with different scattering fractions. The lines in the same
style with empty symbols correspond to images with the same
scatter fraction, reconstructed by LOR-MLEM.TheCRC for the true
coincidences is shown as a solid line for comparison. The diamonds
reflect the optimal points on the CRC-RSD curves.

idealistic and far from optimized, but these results show
that the proposed method produces an image with a more
homogeneous background, sharper edges, reduced noise, and
improved contrast (for both hot and cold disks), relative to
both conventional algorithm (which degrade in the presence
of scatter) and the idealistic situation (only true events
used). Algorithms which incorporate scatter correction will
move closer to the idealistic response curve but will never
exceed it. Thus, including scattered photons directly into the
reconstruction could eliminate the need for (often empirical)
scatter corrections required by conventional algorithms and
increase image contrast and signal to noise ratio (SNR). This
could be used to either improve the diagnostic quality of the
images and/or to reduce patient dose and radiopharmaceuti-
cal cost.

The results in Section 3.3 show that an additional advan-
tage of the GS-MLEM algorithm is that a threshold can
be used to adjust contrast and noise in order to optimize
the role that the scattered coincidences play in the image
reconstruction process. At the optimal threshold, adding
scattered coincidences into imaging reconstruction appears
to result inminimal (if any) loss in contrast while significantly
improving the SNR and contrast recovery. The results show
that by appropriately including a greater number of scattered
photons in the reconstruction, improvements in both con-
trast and noise can be achieved. In addition, this threshold
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Figure 8: The CRC curves for the #3 (largest hot) disk calculated
when only trues are present and with 50% scatter fraction calculated
using the conventional LOR-MLEM approach and with the GS-
MLEM approach using different thresholds defined by the ratio of
the area of intersection between the TCA and image matrix to the
total image matrix area. Points #1, #2, and #3 identify the evaluation
points for reconstructions using GS-MLEMmethod, only trues, and
the LOR-MLEM, respectively.

also can remove partial coincidences scattered within detec-
tors or in the gantry, which usually have relatively larger
scattering angles and unusually short distances between
scattering positions and detector positions. The TCA for
these situations usually covers the whole image space and can
be removed from the reconstruction dataset by employing
the proposed threshold. Our current work has assumed that
intercrystal scattering is small when compared to scattering
within the patient. While LSO crystals have been used in
this simulation, in future we will use a dual layer detector to
minimize inter-crystal scattering.

Similar to conventional energy-based scatter correction
methods, the accuracy of the proposed method is limited
by the energy resolution of the detector. In conventional
scatter-correction-based methods, the ability to distinguish
and reject scattered coincidences is limited by energy res-
olution. In the proposed method, the energy resolution of
detectors determines the confidence with which the TCA
can be defined for each scattered coincidence, which in turn
affects the locus of the possible scattering positions and
hence the annihilation position. The locus is sensitive to the
energy of the detected photons, and a small uncertainty in
the energy of the scattered photon can result in a significant
difference in the shape of the TCA and the position of the
source. For example, if the detector’s energy resolution is
4% at 511 keV, the maximum uncertainty in the calculated
area between the TCA is approximately 21% for a scattered
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Figure 9: The CRC curves for the #4 (cold) disk calculated when
only trues are present and with 50% scatter fraction calculated
using the conventional LOR-MLEM approach and with the GS-
MLEM approach using different thresholds defined by the ratio of
the intersection area between the TCA and image matrix to the
total image matrix area. Points #1, #2, and #3 identify the evaluation
points for reconstruction using GS-MLEMmethod, only trues, and
the LOR-MLEM, respectively.

photon energy of 450 keV. Thus, developing a detector with
high energy resolution and weighting the spatial probability
distribution of the annihilation position by using both the
patient outline [43] and the energy resolution of the detector
will be important future work.

Guerin et al. indicated that neglecting the effect of
multiple scattered coincidences was not a serious source
of error. In practice, multiple scattered events cannot be
distinguished from single scattered events on the basis of the
energy of the scattered photons. Even though the relation
between scattered energy and scattering angle cannot be
connected by Compton scattering equation for multiple scat-
tered coincidences, we propose to use a synthetic scattering
angle for multiple scattered events based on the scattered
photon energy. In addition, the uncertainty in the energy
of the detected photon as a result of the limited energy
resolution of the detector is more challenging for multiple
scattered events when trying to determine the locus of
possible scattering positions. Corrections for randoms can
be addressed by adding a factor to the forward projection in
the algorithm as do most existing methods. The data model
used to derive the reconstruction algorithm can be improved
by including the electron density and tissue attenuation. The
impact of these on the quality of the reconstructed images
is beyond the scope of this paper and will be the focus of
a separate study. Since the TCA is a function of scattering
angle and detector positions, which will be calculated for
each detected coincidences in the reconstruction algorithm,
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Figure 10: (a)The image using 3 × 10
5 true coincidences reconstructed using an LOR-MLEM reconstruction algorithm. (b)The image using

the same true 3 × 10
5 coincidences plus 3 × 10

5 scattered coincidences that fall into the 350–511 keV energy window reconstructed using the
conventional LOR-MLEM algorithm as a comparison. (c)The image using 6 × 10

5 coincidences with a 50% scattering fraction reconstructed
using theGS-MLEMalgorithm.The second row shows the profiles of the above images along horizontal and vertical direction passing through
the center of the images, respectively.

the computational time is currently 3-4 times longer when
compared with a conventional MLEM algorithm. However,
this algorithm still needs to be optimized for calculation
efficiency.

The uniform attenuation phantom used in this work is
simple in comparison to anthropomorphic phantoms and
may not reflect the complexity of scatter in humans.However,
the purpose of this work was to compare the results of
the proposed algorithm as a function of the scatter fraction
which would be difficult to analyze with an anthropomorphic
phantom.

5. Conclusion

A new method which includes scattered photons directly
into the reconstruction has been presented and evaluated in
this paper. The results of the phantom study in this paper
have shown that PET images can be reconstructed from
scattered coincidences. Including scattered coincidences into
the reconstruction eliminates the need for scatter corrections

while increasing image contrast and reducing noise. A thresh-
old, which depends on both energy and detector position,
is used, adjust noise and contrast was also evaluated in this
work. The optimal threshold was different for hot and cold
sources, but the variation in CRC for the cold source was
only weakly dependent on the threshold. Improvements in
the CRC and noise for both hot and cold sources could be
obtained by maximizing the use of all scattered photons.
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