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ABSTRACT

Electrical resistivity measurements on several dilute Ru Cr
and Ru Fe alloys have been made between the temperatures of 1.45° and
300° K.

The incremental resistivity for the Ru Cr alloys is temperature
independent at low temperature. Above 75° K, deviations from Matthiessen's
rule occur; and these are fitted on the basis of a 'Two Current Model.' For
the Ru Fe system, the incremental rcesistivity is found to be temperature
dependent, increasing as T2 below about 170° K, but more slowly at higher
temperatures. This temperature dependence is attributed to the scatter-
ing of conduction electron from the localized spin fluctuations: confirmat-
ory evidence for this assignment comes from the analysis of existing
measurements on the depression of the superconductivity transition

temperature of Ru by the presence of Fe impurities.
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Chapter One

Introduction




il

Historical sketch

between electrons can be disregarded, analyzed‘quantum mechanically the

An electric field produces a drift of free electrons in metal
and the resistance which this flow encounters is due to the scattering
of electronslby obstacles in their paths. These are provided (a) by

the thermal v1brat10n of the crystal 1att1ce,1 e. the phonons, and

(b) by lattice 1mperfectlons such as impurity atoms, vacancies, and

dlslocatlons. Drude derived the dimensional formula for resistivity.

: = m Vd V : T-
f nfe? . | (1.1)

in which n is the numbeér, e is the charge and'm is the mass of the

.electrohs. Owning to the high "zero point" energy of the degenerated:

electron gasl, the velocity V4 of the electron is essentially independ-

ent of temperature, thus reducing the problem to a calculation of the

- mean free path 4. Lorentz pointed out that electron electron COlllSlOH

can be neglected so that qis entlrely determined by the condition of

‘the lattlce 'ef'  S S ' -

Bloch, making use of the fact that the mutual interaction
' '

'scattering‘of electrons by lattice vibration (i.e. by phonons) in a

peffect‘lattice. This approach'differs from that of Sommerf £ 1d, who

considered electron—electron processes against the background of a

uniform ionic field’ Bloch's theory deals w1th the effect of the
perlodlc field of the lattlce on a 51ng1e electron. He found that‘the
relation between resistance and temperature is identical with the semi-
emplrlcal formula proposed a little latter by Grunelsen on the basis

of experimental data for various metals
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‘ GR is the Bloch-Gruneisen characteristic temperature ‘

This formula has much the same form as the Debye specific heat. THT%
Bloch-Grﬁneieen formula works well as a first approximation, as is shown
in Fig; (1-1), where the data for five different metals can be represent-
ed by a single curve. For high temperatures the integral in Eq. (1.2)
approximates to,%13§34 which leads.to the classical result of 9T,
Apprec1ab1e deviations due to the quantlzatlon of lattice v1brat10ns
only occur below ~ 0.4 8p and at very low temperature T (T<<eR) the

‘integral has a constant value, so that ?CfTS. This region corresponds




Température O T ——

. FJGA 1- 2 Re51stance10f Three Samples 0f Sodium Of Different Purlty
' GWacDonald and Mendelessohn)

to the T° law for the lattice specific heat. At absolute zero,'Blcch's
theory leads to p = O for a perfect crystal. |
The alkali metals can be expected to come closest to the quasi-
~ free electron model used in Bloch's approximation and their resistivities
were therefore made the subject of a careful study at oxford?.
A mccsurement of the resistivity on three ccdium samficc between the

region of helium and hydrogen temperature was made and the results, shown

in Fig. (1-2), yielded a power index of 4.85 which is in close agreement

with the theoretical value of 4.89 derived from Eq. (1.2) for region be-
tween 8° K and ZQ° K. These experiments thus show that the Bloch T5 law

holds for the case of simple metals and that deviation from it must be
due to departures from the quasi-free electron model. Such deviations
have in fact been observed in all the other alkali metals as well as

in those metals of other groups. The Bloch~Griineisen formula suggests

that‘the characteristic température GR should be constant, but in fact eR»



3

like @p, in most cases is temperature dependent” and it has been found
convenient to treat it, too, as a variable quantity, which is useful for
the representation of resistivity data. Temperature dependence of 8p
shows that there must be a departure from the simple quasi-free electron
gas and this is confirmed when we examiné the resistivities of multivalent
métals. The work at Oxford has been extended to metals of the transition
group and the investigated materia152 (Pt, Pd, Rh, Ni, Co and Fe) all
show the same type of deviation from the Bloch-Grimeisen function. At
low enough temperature (T < 6° K) the power index becomes much smaller
than 5, tending towards 9°¢T2. This behaviour may be due to electron-
electron interaction which has been left out of our consideration.

So far‘only the effect of the thermal vibration has been
taken into account and our considerationshave referred to ideal metal
crystals. While efforts have been made to approach such conditions
experimentally, a certain amount of impurity as well as other crystal
- faults cannot be avoided. All these contribute to the resistance of the
sample, but none of these imperfections vary_appreciably with témperature
and the limitation which they set to the mean free paths of eiectroné is
therefore temperature independent. It has been postulated that the
scattering introduced by lattice vibration and by imperfections should
be independent of each other, and that resistivities caused by the two
processes will be simply additive (Matthiessen's Rule). The over all
resistance of a metal sample is.therefore determined by the relative
importance of the two scattering mechanisms. In ordered alloys, and
pure metals, imperfection scattering is so sﬁall.that except at very

low temperature, they are completely masked by the scattering due to




1atti§e vibrations.

It can be seen from Fig. (1-2), that the curves for three
specimens are strictly parallel which is a result of the Matthiessen's
Rule.

Poefs e B

PR —

where {} is the '"ideal'" resistivity due to scattering by lattice vibrat-
ions and Eris the "residual' resistivity caused by the imperfections of
the lattice.

Matthiessen's Rule seems to hold and this allows us to evaluate
the '"ideal" resistivity of the metal from data such as Fig. (1-2), for
compérison with Bloch-Griineisen function.‘In this asPect; any deviations
from this sjmple pattern must appear disturbing.

ﬁordhiem (1931) studied the change of resistivity with change
of concentration of impurity. When a very small concentration c of element
A is introduced into the sOlventjelement B, the electron may be considered
as travelling through the perfect lattice of B, but occasionally they are
scattered by the ''gperiodic" potential around the A atoms, then we éhouldb
expect the scattering probability to be proportional to the number of A
atoms i.e. the concentration of A atoms. If ¢ is not small, we cannot
consider the alloy as consisting of perfect regions with the characterist-
ics of B throughout which small point defects of A are intérsPersed.

There are a fraction c of A atoms and (1 - ¢) of B atoms in the
system and the probability of an electron being scattered by either an
A atom or a B atom will be proportional to c(l - c¢). Thus the residual

resistivity should be of the form




: FT oc ¢(1 - ¢) ' (1.4)

which is known as the ”Nordhiem's Rule”, and will hold quite well in
certain cases provided the two metals form a continuous range of solid
solution and if no ordering or phase change occurs. One would also not
expect it to be valid if the electron density or the Fermi surface

changed with composition.' Yet it does give an idea of the kind of
behaviour which one might expect. Equation (1.4) suggests that a given
cﬁncentration ¢ of A in B should give the same resistivity increase as
does the same concentfation ¢ of B in A. Mott (1934) has shown that this
holds for metals which have similar atomic volume and electron configurat-
ions, e.g. Mg and Cd, Pd and Pt, Au and Ag.

Becaﬁse of the complicated electronic states of the transition
meta}s,‘alloy resistivities with transition elements as impu;ities will
behave differently;w The d-electrons of these transition metal impurities,
since they are degenerate with the conduction band of the host, form virtual
bound states on their own sites, thus the possibility of scattering of
‘conduction electrons by these virtual bound states at the impurity sites
arises and this invalidate the éimple consideration of calculating the
resistivity which we have discussed. Under this consideratioﬁ, some alloys,
in fact, show a resistance minimum and also sometimes a maximum at low
temperature which make their behaviour more complicated.

These minima and maxima4 in the resistivity have been observed
‘below 10° K in certain samples of gold, magnesium and other metals and

seemed to be associated with traces of impurities. Much research has been
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FIG. 1-3 Typical R-T Curves Of Alloys

(a) Non~Magnetic'Case. (b) With Magnetic Impurities
i (Resistance Minimun)
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G. J. Van DenlBerg, in"Progress in Low.Temperature Physics'

devotea to this effectvduring the past ten years; at this point we hriefly
summarise the two theoretical models currently used to ekplain these
'phenomena, returning to a fuller discussion later.

J. Kondo® concluded that the resistivity minimum (curvevb in
Figure 1-3) is‘a diréct cohséquence of’conduction electrons scattering
fron a well defined spin (or magnetic moment) at the transition metal site.
This minimum can be deduced from a simple model for the coupling between

- this magnetic moment and the surrounding conduction electrons —— the s-d

exchange model - as discussed by Zener®, Kasuya’, Yosida8 and Frolich

and Nabarrog.




Calculations5 based on the s-d exchange model, indicate that

the resistivity of dilute magnetic alloys can be expressed by: -
P = ar® +cp - cfpInT (1.5)

where Pe is again the value of residual resistivity, a is constant, C
is the concentration of magnetic impurity and

§ = - fa I e

where J is the exchange integral between d-electron spin and the s-electron

spin, Ep the Fermi energy, and
fm = 37TmJ2 S(S + 1) (V/Na//zeZK'€F o , ’;‘Fi.7)

. For J < 0, this expression, Equation (1.5) would giveva resistivity

minimum at the temperature given by: -

f1 VRS o ae
i Tl =L S

Kondo's calculation, based on the s-d model, assuﬁes that the
lifetime of the transition metal magnetic moment is infinite. This is
only true when the Coulomb repulsion U between spin up and spin down
electrons localised at the impurity site is infinite. When the restfict—
ion U—s—oc is relaxed, the magnetic moment at an impurity site aquires

a finite lifetime, i.e. it fluctuates with time.
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Kaiser and Doniachlo, using a two band approach, considered
the effect of s eléctron scattering from d-level spin fluctuations
localized within the impurity unit cell. On the assumption.that the
spin independent'Coulomb potential associated with these isoelectronic
impurities is vanishingly small, these authors predicted the following

behaviour for the incremental resistivity, Zlf(T)

16

T ~ T

FIG-1-4 -

Universal curve for spin fluctuation
resistivity calculation from Equation 1.33
the dotted line is the high temperature
limit, :

o 0.4 0,8 1.2 |
T/Ts o . »V . Y

depending on temperature was predicted as following:-

AP oo e ( _.,12._)2 for T £ 1/4 Teg and
sf
CAP(M @ ¢ ( _;l;s.f) for T > 3/5 Tes ‘ (1.10)

LY

where ¢ is the impurity concentration and Tsg is termed the characteristic

spin fluctuation temperature corresponding to the peak in the wave vector
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averaged Spectral density function A(w) for localized spin fluctuations
(£sf). The behaviour predicted by Equation (1-10) is reproduced in

Figure 1-4; and accounts qualitatively for the observed resistivity

typically in transitional metal alloys like Rh Fell
and EE_Felz;
Having outlined the two basic theoretical approaches, we now

proceed with a more detailed discussion of impurity states in alloys.
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1.2 Screening

One of the simplest treatments of impurity atoms in a host
metal is to consider the electrostatie field around the charged impurity
as a perturbation in a solid. If we substitute‘an iﬁpurity ion for a
host metal ion in the lattice, we put into the system a net charoe which
equals the difference in charge between impurity and host atoms. We
can thus treat this impurity as if 1t were a simple point charge in a
neutral background, and calculatlons can be made based on a free-electron
gas model. ' |

The pertufbing potentiel ean be written as:f;

oU = Zfii exp [-—)\T’] , | (1.11)

T ' wheve 7 is the charge chrfefence

this potentlal behaves like that of the point charge near { = 0, for

larger Y this screened Coulomb potent1a1 falls off exponentially w1th

dlstance hav1ng & screening potential radlus of 1/7L . This short rangeA

‘potentlal is effective only close to the 1mpur1ty 51te in a metalllc

- Potential Energy For " .
- Isolated Atom : Vir?ual Bound State

Fermi Level '

Periodic
Potential

W

FIG. 1-5 Virtual d Level On X In MX.

MMy

u///j:::::/// - Conductlon Band
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enviornment ( A large) and is much longer ranged in a semi-conductor.
The impurity has introduced an excess nuclear charge which
for electrical neutrality must be screened. The excess charge induced
in the vicinity of the impurity can be obtained by integrating the change

‘A (T ) (charge induced) in the density of states, and is given by>

2 |
45TfAP(T) v far - 7,3-—% 24 + 1)[7@(@)
- - | _ -

= | (1.12)

where M, is the phase shift introduced in the L th. partial wave by potential

(charge) scattering.

For sufficiently large T , the second term may be neglected

~and hence Equation (1.12) gives the Friedel's Sum rulels.
2 - . - ’ . - . - - -

e o

where Z is the excess impurity charge.
On differentiating Equation (1.12) with respect to ¥ and
keeping only the leading term, we find the radial dependence of the

extra charge is given by eap(r) where

Ap(r) = '{1’%'73%(2“ D sin My(€p) cos (kg™ +Mg=47)
R ! R . (l-.14)
A?(T) oscillates in sign and tends to zero orily as 1/T3 . Consequently

the screening charge in the neighbourhood of the impurity is not simply
heaped up, but zxg(r) assumes positive and negative values.

Assuming that phase shift for a particular { shows a resonance at
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€y it follows that when €p&é€; x&ﬁkp) will be small and the dis-
turbanc_e of the FermiAsea will also be small. At éF > Q,k s the phése
shift apprecaches 9] and so‘the number of states below Ep increases by
"ﬁeariy 20240+ 1) (including spin) as a result of screening the impurity,
) butlthe distrubance at large ¥ ié again small. At épcsér,Tkng) will be
‘ close the % /2 so the scattering cross section for this £ th partial wave
~will be close to its maximum value.
The physical interpretation of the situation discussed above is
éécomplished in ;erﬁs‘of virtually bound states that are spatially
| 'localiééd in the vicinity of‘the impurity site and energetically localized

_near 'E,x .

FIG.~1-¢ Screening Of A Point Charge And Long Range Oscillation In

Electronic Dénsity.
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‘1.3 Virtual bound states

For an isolated, single d electron atom, the d electron is
bound for all time to the atomic core by the Couloﬁb force; This defines
a true bound state. When ;uch én atom is placed in metallic environment
where the electron band widths are broad; the energy levels of this d
electron would in general lie within the conduction band. As a result,
this d electron decays rapidly into the continuum of one electron band
states. The unbalanced excess charge then left at the impurity site is
- in fact screened out by the charge density:ﬁ? built up around it (discussed

- previously). No particular electron forms this screening charge cloud

Conduction
Band

g(®)

Virtual
Bound State /

FIG.-1-7 Effect Of A Virtual Bound State On The Density Of States vs. Energy
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perﬁanently,‘but rather, in fhe time average sensé;a.net‘fiXed amount
| of‘charge.is acéﬂmulatgd. This is the 'Virtual Bqﬁnd State'."The

..corresponding impurity states are not truely logalize&;ibut have a finite
energy width A given by: - | |

A = N _No(E)
F'(E)

- : ‘ R d . ’ i ) - .ﬂ ' ‘ ]
with F' (E) = P.P., f Nm( € ) € A (1 . 15) . ,~.==.—_—,.—,l-.—L-,-..F;._ .
| ~ E—¢ L

Np(E) is the density of states in band m.
The tendency towards ' magnetism arises in a ﬁatural way from

the electron-electron exchange potential. In a self consistant way

within the frame work of the Hartree Feck theory14, if this virtual

'bbund level is sufficiently close enough to the Fermi level, the impurity
atom might develop an exchange potential that polarizes the electrons in
its vicinity, and thus produce a moment. In this limit the virtual bound

d state energy can be writtenl® as

E = Eq+ +iA , (1.16)
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where Ej is the original d-state energy now shifted by an amount T
(which is proportional to the mixing probability between s and d state)
and broadened into a Lorentzian with an energy width A, given by
Equation 1.15.
Further: -

T - P.P.J _Kd" Hsa | W01 2 g3 oaan

- (E - Ep)
where |[d> and |k> are the eigen functions of the impurity and conduction

electron states respectively, and the density of states associated with this

Lorentzian virtual bound state is: -

B = 2L+ 1) A (1.18)
d T (€ =B an? -

where (2 + 1) arises from the'orbital degeneracy in the absence of
crystal field effects.

| There is no doubt that the concept of virtual bound state is
physically meaﬁingful-in tﬁe theory of electronic structure of dilute
alloys involving transition elements and séveral properties of alloys

of transition metals can be explained with this concept.
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in. Figure-1-9.

4 moment existsg experimentally if the

. 2
= N _p?
3k3

Sarachik et alll.showed the

> Density Of State por Spi'n\!f
e . .
’. \“%"‘\ v C

3 ¢

Fermji Level

Spinf '

» FIG.vl-g Localized Magnetlc Moment.Arises FromiA Virtual Bound State
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but is an isolated impurity effect.

on the impurity.site (in a bné~orbital modelj. However, the up spin and
&own spin electrons at the impurity site and in the(surfounding electron
| gas could be correlated via the local coulomb interaction, such thatv

when a up spin (déwn spin) electron.is on the site, a down spin (up spin)

electron is’nearby in the electron-gas.

] PCEY T
f .
. Fé(g) 1 . .. .4;( . 1 N
U L u .
&1 . =
‘(a) A X (D) AN
FIG.-1-10 Non-Magnetic T ‘ Magnetic -,

In'figure 1-10 we shéw the density of states for spin ﬁp;j;(ej, éﬁd spihA
"down, g(e ), as a function of U(A . Figure 1-10(a) for which U(A << 1
means that the numbef of spin up and spin down electrons is always equal,

and hence the impurity state is non magnetic. Figure 1-10(b) depicts

‘the situation fpr which spin fluctuations are important, while Figure 1-10(¢)

approaches the s-d modet regime.
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Under the assumption that the wave function may be expanded in terms of

Wannier functions from a single band

that is neglecting interband

matrix elements of the impurity Potential V -

FI1G,-1-11

Typical Plot Of F,(E) vs. E

Fu(E) = p.p.jf’m (€) de

- (E -€)

. Fm(E) e

 hm

— e et eewe -, —-——-——L.—-—-.—-—

<2Ln (Y‘ ~ R, )! lCﬁﬂ ( Y - R, i> Vnn' Snn B(Rl - Ro) B(RJ - Ro)

(1.19)

where(lp and (Qn' are the Wanniers: funductions of conduction electron

states at Rj and Rj‘respectively.

~ where R is the location of the impurity.

s using the method of Koster and Slater

'will be given by:

V=3 B[ @A, F- ]

"where

CUn (®)

16

--""
elk R,

With this approximation and

, the scattering wave function

(1.20)

_{l‘_v
mm

F ®]

LT Y N, () (1.21)

Wlth Fm(E) and Nm(E) as deflned in Equatlon (1. 15)

We wish to con51der the factor [1 ~ me Fm(E)] that appears
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in the denominator of Equation (1.21). In particular, we are interested
in the zeros of this expressién, which gives the maximum value of Un(Rg) -
The zeros of this expression [1 - Vim Fm(E)] are then deter-
mined by the intersections of the line 1/Vmm with Fp(E) as in Figure (1.10).
For an attractive potentiél, there are two roots (labeled Ej and Ej). It
is clear from the diagram that the roots occur in pairs, and that for the
simple sort of F(E) curve that we are considering, there can either be
zero or two of them. We are now interested in the case in which there
are two roots and will particularly focus our éttention on that ioot of
the expressionlaf which F(E) has a negative derivative. (at E = Eo in
‘Figuré (1.11) ). |
Now consider the effect of éddition of a spin dependent potent-

jal to Vpp, dropping the band subscript, the two potentials for spin up and

) - B | |
2 | (b)
|
Ey= 2
al
S
Zo - -
BN
>
[7.8)
-3 1
' 0 3
AN -
FIG.

~1-12 %Vf vs. gV; For (a) The Virtual Level Is. At The.Fermi Lewvel

And Polarized (b) Unpolarized
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(a) (®)

FIG.-1-13 %V} vs. BVl (a) For A Case In Which The Virtual Level
" Is Slightly Displaced From Fermi Level, But Remain Polarized.

(b) Shifted Far Enough From The Fermi Level To Destroy Polarization.

spin down electrons are V + SVf and V + BV; , then Equation (1.18)

will become ' E . - ”,‘fff ;

3

© - i—]z ’ﬁ .
,u? (Ry) e 0

Ty FE] -0 g onmy (2

and a similar expression holds férAUL (ﬁo). Wolff calculatedAthe change
in the Hartree Fock field of impurify, and under the self consistent_
limitation which requires that the change in’the two matrix elements of
VHF be equal to §V4 and 8V¢

J _ (EF - EO)F' %V\‘ -, Jf_}
SV'I‘ 3 - SVJ)Z T {tan 1[ T N VYN,V s oVt 2

J 1 TRGr - B W |
“'.T_VVZF'{tan TNo 4 .2} (1.23)
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; -2 |, ! 2 2 - 43 K
where J = a(r - R Q(r'- R | “=C = d7r d°Y
J[j-'>( I I
the exchange intergal. With the limit %Vl 1 and Eg = Ep
v

I O S S

o = VZ2E' T Nov2
T ST S (1.24)
(O.Vil = V2F| tan [ ,h' N0V2 ] L . ‘ ,,_____,_§

i
e

Typical plots of these equations are illustrated in Figure
(1.12A) and Figure (1.12B) with J/{*\{"v“ Po F'(E)} >1 and < 1 respect-
 i§eiy. There are three roots; one with %V¢ = gvi = 0 which implies
" no localized moment, and two stable ones with §V4 = —%Vi = + (constant).

When considering the situation with Eg # Eg, it follows from

- the graphs in Figures (1.13a) and (1.13b), that a stable moment existsA

if
O t) 1 or
- vy )
. ) 5
J (Ef - Eg)” +A (1.25)
NIV F®) : A’
j.e. a relatively sharp level close to the Fermi surface favours the

formation of a moment.

Friedel emphasized that the virtual bound state corresponds
to a maximum in scattering cross-section. If the virtual level occurs
at the Fermi level, it should give rise to an unusually large residual

resistance. This, according to the Anderson and the Wolff models, is
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just the situation in those alloys in which the Fe atoms first begin to

acquire a moment.




25

1.5 The s-d Exchange Model.

6

The s-d exchange model was first proposed by Zener and

Frohlich and Nabarrog, they considered the exchange interaction
between d-electrons, localized at the impurity sites, and s-electrons
itenerant over the range of the crystal. The Exchange Hamiltonian
can be written as:-

Hgg = -2J s-0 | - - (-26)
where J is the exchange integral defined in the previoﬁs section, s
and & are spin operators for d-electron and the conduction‘electron
re5pective1y} |

4, one finds that

Working Qith the First Born Approximation
"~ the transitionvprobability,4by the Golden Rule, is given by:

J2 < M2> N(E) = 1/3 J2 S(S+1) N(E) ‘ (1-27) -
which shows no temperature dependence. | :

Kondo# calculated up to the Second Born Approximation the
scattering of éonduction electron by the s-d interaction, and found that
‘the resistivity is given by: |

Pm = KJIZ s+ [ 1 + 4IN(0) 1ﬁ§_g_T_] (1-28)

where K is the constant and D is the half width of the d-band.
The second term diverges logarithmically at the temperature

T & Tk where Ty is the Kondo temperature given by:
Tgkg = D exp [ -1/ ]3] N(0)] (1-29)

The origin of this divergence lies in Pauli principle restriction on the

jntermediate states, which comes into play as a result of non-commutati-

vity of the spin operators. As a matter of fact, the resistivity
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minimum is indeed a result of such a many body effect.

This logarithmic singularity of Equation (1-28) will be
suppressed by an applied external magnetic field‘or by many other
factors®. This applied magnetic field disturbs the free motion of the
spin and prevents its internal degree of freedom from being fully effect-
jve in causing the singularity. A similar effect is also expected for
the spin in a super-conductor where a finite energy is needed to excite

‘a pair of quasiparticles.

Since Kondo's discovery of a logarithmic divergence in
perturbation theory fof the scattering of conduction electrons from
magnetic impurities in metals, a large amount of experimental and

- theoretical work has been devoted.to this problem. Recently Heeger17\
suggested that Kondo effect can be interpreted as arising from an
indirect-electron-electron interaction via the magnetic impurity. Frém
this point of viéw, he speculated that the spin lattice relaxation of
this localized>spin should destroy this effective interaction, and showed

experimentally in a recent letterl® that it was indeed the case that the

anomalous term in the resistivity fitted the following relation:
‘ 1 ,
_PM - A+ 1n (12 + 87 ' (1-30)
C :

where A and B are constants and O is identified with Tgf the sf temp-
erature, previously mentioned and is both impurity concentration and
temperature dependence. The sign of the constant B has been studied19,20
and found to depend on the screening ﬁharge calculated by Friedel Sum

rule in the following manner:

Bee cos (1/5 7 2) : : ' (1-31)
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which shows that for Z < 5/2 or Z > 15/2, B is positive, which implies
that the incremental resistivity AP(T) will be increasing as the

temperature increases, and decreases when B is negative, i.e. 5/2<ZX 15/2.
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1.6 Localized spin fluctuation.

Based on extensive experimental and theoretical efforl,
considerable progress has recently been made in formulating a
:reasbﬁably consistent description of localized impurity states
"associated with first row transitional impurities in noble métaiss’17.
In dilute limit, the increﬁental resistivity A §(T) due to the presence
- of these impurities is found to increase énomalously with decreasing
temperature, and at temperature well below Tx the Kondo temperature,

AN f(T) increases far less rapidly than one predicts in Equation (1-30)

and typically having the form as?0
- T 42
AF(T.,-—-» 0) = A §(0) [ 1 - (—71?) ] , (1a32)

Calculation based on this Hgq Hamiltonian do not reporduce

the limiting temperature dependence 21,22

given in Equation (1-32).
However, a unified description of these electrical proporties of such
alloys has recently been achieved via the localized spin fluctuation

23 yere the first to use a model

| ( & .s,f) modello. Lederer and Mills
6f this type'tovéalculate the scaftering of s-conduction electronk from_
time dependent fluctuation of the magnetization‘at the‘site of a nearly
magnetic transition metal impurity. If the £ .s.f. are slow énough
equilibriate in an applied magnetic field or to flip tﬁe spin of a
conditioﬁ), its temporary magnetic moment may have sufficient time to
equilibrate in an applied magnetic field or to flip the spin §f a
conduction electron, and so will contribute a Curié susceptibility and
a logarithmic resistivity —— an impurity in the slow & ;s.f. regime24

therefore appears to be (weakly) magneticzs.
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In an extention of the Lederer-Mills model, Kaiser and
Doniach showed for isoelectronic alloys that the resistivity due to
localized spin fluctuation scattering in general can be represented by

this dimensionless expression.

) [ f dv\, r\.2
R ] A = (1.33)
Co exp(———9 - l] [1 - exp(— Eﬁa] [ 1+ W2 ]
™ T ~ W
where T = Tot ,and w = KT<F
Tgf is the spin fluctuation temperature defined!® as
[1-unen] |
Tsf = 1_2F _ (1.34)
s£7 RGN GBp) \

¥

where U is the Coulomb repulsion between localized d-electrons in the
Anderson model and Nj (Eg) is the density of states at Fermi level.

In low temperature limits, one can obtain an analytic express

2

N e
ion for f. As temperature — 0, the term w” in the demoninator of

Equation (1.33) can be neglected and hence

P(T—~0) =—"3T-— ) (1.35)

which is the low temperature behaviour found by Lederer and Mills23,

As the temperature

fr—o) = 4-(57) \(1'36)

. ~ o
which shows that P is linear in T in high temperature limit for any

temperature-independent spectral density A(w) as illustrated by the
similar behaviour of the localized spin fluctuation and phonon

resistivity components.
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The universal curve for spin fluctuation resistivity as
calculated from Equation (1.33) and illustrated in Figure 1- 4 exhibits
a transition from T2 to T dependence at approximately 0.25 Tgf. When
ét higher temperature,'the temperature dependent portion of the spectral
density A(w) has to be taken into consideration, the Kaiser and Doniach
model predicts a resistivity that flattens off rapidly, (refer to Figure
1- 4) a result which qualitatively is in agreement with experiment26»1l.

A strong exchange enhancement in the host metal will produce

a spin fluctuation resistivity component for the pure metal. The 72

d17

resistivity component, such as for at low temperature is thought

21". Kaiser and

 to arise largely from "spin fluctuation scattering
Doniach assumed that Matthiessen's Rule holds and the resistivity

components are additive, then:

%
.

PLimp (T) = falloy (T) - fhost (T) (1.37)

and Pimp (T) can be separated into two components,

Pimp (T) = fPmag (T) + fnon-mag. (1.38)

where Pnon-még. is of the temperature independent resistivity (equais to
?imp (0) ) due to non-magnetic scattering from impurities. |
Experimentally, the localized spin fluctuation resistivity
in the host is less interesting than that of the impurity, since in
the host, the T2 law will typically extended to higher temperatures
and cannot easily be separated from phonon resistivity.
When plotting thefdimehsionless ratio P,in Equations (1-35)

- and (1-36) against T2 and T respectively, the slopes will be given:-
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%
L S
M; (low temperature limit) = —3-—T;}Q and
M, (high temperature limit) = a1 1 39).
H P 2 Tsf '

and the spin fluctuation temperature Tgg¢ will be given by the ratio

of My to Mj,.

' M
2% MH
Tsf = _32{ M | ' o (1.40)
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1.7 Superconductivity

The existance of superconductivity in metals discovered by
Kamerlingh Onner in 1911, is not a property of the individual atom, but
due to the structure of the electronic energy spéctrum of the metal or
alloy. Frohlich attempted to explain that the superconductivity
phenonimon is due to interactions involving the electrons, but through
the intermediary of the lattice, i.e. via the electron-phonon interaction.
Bardeen, Cooper and'Schrieffer27’28 (BCS); based on this idea, concluded

‘that the normal states of metals or alloys are represented by the Bloch's

ﬁodel, while for the superconducting ones, the electron pairs (Cooper pairs)

of opposite spin and momentum are invoked.
On the basis of the BCS theory the superconducting transition

temperature Tg of the system is given by
Tc = 1.140p e~1/8 (1.41)

where g measures the strength of this electron-phonon coupling.

Several calculations have been made of the depression of T¢
on élloying. Recent calculations by Ratto and Blandin?® and by Kaiserso,
which apply directly to the systems of interest‘here, yield:

‘Calculationzg’so

of T¢c for non-magnetic alloys has the
carried out, for large half width A (=~ 1.eV) and at low température
T — 0, the ratio of the critical temperature (the superconducting

transitional temperature) Tc of the alloy to that of the pure host is

given by:




where @ * and (3 * are constants defined by

R =S

‘ 2
Ng (EF) ° Ueff
B+ = 7+ D)

The number of impurity states.

_ (29 + 1) A
Nyg(Ep) = (/\l ‘ [ 2 . Ed‘2] T

the Effective Coulomb Repulsion Potential

U :
U = U -1, Ed
ff 1 + —— tan — (1.42)
e £ TEq ( X ) |

and A is the characteristic coupling constant for the pure host.

The critical concentration c¢ of impurity with which

superconduction ofvthe alloy is completely supressed will be given by:

g =1 - o+
~ LO* . [Nd(Ep) J ¢ Uesr

(1.43)
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2.1 Introduction

From the cryogenic view point, electrical resistivity and
other quantities such as magneto-resistance, Hall effect, or super-
conductivity transition temperature measurements are among the
properties whose measurement presents no great difficulties. These
determinations require the entry of only a limited number of electrical
leads into an isolated double can arrangement containing the samples,
and are unaffected by the exchange of thermal energy with the surround-
ings; the specimens are kept in thermal equilibrium with a thermometer
either by direct contact, by exchange gas, or by immersion of the
samples and thermometer into a common refrigerating bath.

It has been noted that the slow drifts in temperature of
the Specimen and their surroundings do not directly affect seriously
the determination as they generally do in Calorimetric or thermal
conduction measurements, yet, they still introduce a small ﬁﬁcertainty'
as to the pfecise temperature éf the samples at the particular times
when measurements are made.

In this investigation the electricai resistance of metals:

or alloys in rod form is measured over a limited range of temperature

from 1.469 K to room temperature by immersing the samples in a
series of liquified gas refrigerants, which boil under controlled
pressure. The gases we employed here in our experiment were nitrogen

and helium of boiling points 77.° K and 4.21° X at normal pressure

respectively.
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2,2 Sample .mounting

Alloys sample of different atomic concentration were prepared
by melting together the appfopriate proportions of the elements of interest,
in an argon arc furnace under controlled pressure. Sets of up to five
sample alloys of various atomic percentage compositions were made énd then
fashioned into thin specimens in rod form of reasonable lengths. Small
form factors (the area to length ratios) A/L were required to yield
reasonably high resistance values, typicaliy 10™3 ohm. |

The set of sample alloys, up to maximum of five, together with
the pure host were mounted onto pairs of knife edge supports attached to
a copper block, as indicated schematically in Figure (2-1).

Four # 2-32 bolts, a mylar insulating strip, and a thin brass

yoke, held the ends of the samples in good electrical and thermal contact

with knife edge supports. For the system of alloys we studied Cr and
Fe in Ruthenium —— the production of long samples was hampered by the
brittle nature of the Ruthenium, they required an addition to the mount-
assemblyl, |

To accomodate shorter samples without substantially alteriﬁg
the original positions of the knife edge supports, the idea of using
"floating" knife g@ge supports was introduced, Figure 2-2, and used in
the manner indicated in Figure 2-la. The effective length L of the
sample is the length between the knife edge supports. As '"floating"
knife edge supforts were introduced in our sample assembly, the upper
and lower fiked—points for effective length measurement were measured
differently.  Instead of measuring the knife edge to knifeledge distance,

a suitable reference point for each sample on the sample holder had to be

chosen; usually we choose the edge of the gas thermometer bulb (see Fig.2-3)
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immediately. above the corresponding péir of knife edge supports. The
distances from this chosen reference point to the upper and lower knife
edges respectively were measured with the travelling microscope.
Measurements én the upper knife edgés could be made easily
before the mounting of the alloy samples. Tﬁe use of "floating' knife
edge supports, however, introduce some measurement difficulties. For
this reason, bigger holesbin the midd1¢ of the '"yoke'" of the "floating"
knife edge supports were made so that knife edges would be viewed through

these holes, and hence measurements could be made more accurately.
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2.3 Resistance measurement

The resistances (and hence the resistivities) of the sample

alloys are found using a simple DC technique. A highly stablized sample

current was required and this was achieved by regulating an OC-36 tran-
‘sistor with a Philbrick P65 AU operationalvamplifier,FIG; 2-4. The
voltages required to operate the operational amplifies were supplied by

a fifteen volt bipolar power supply, FIG. 2-5. ’At the same fime, separate
Zener regulated supplies were used for reference voltage unit and current

supply unit to avoid gfounding problems.

40 V.A.C. D=15.5 V.
- secondary Cy = 250 uf 64 V. R, = 16 K.
115 v.A.C. ¢
» % s C, = 1000 uf 16 V. R, = 12 K. .
primary + 15 V.
- 3 ){ -
[ == = D
+ 5 +
‘1= - I Ry
7 4
0
R
S Ll Cy ::;
T’f’ - 15 V.
D. C

FIG.-2-5  Circuit Diagram Of Op. Amp. Power Supply
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Voltage and current measurements were made on the sémples by
using a staﬁdard four probe techniquez; Currents through the samﬁies
were véried to balance a.highly stable reference voltage using a Kiethley-
vmicrovoltmeter as a null detector. Balance could be obtained to ébqut
2. x 10-9 V.

The sample curfent was found by measuring the voltage
this current produced across a 10 ohms Muirhead standard resistor connected
in series with the Speciﬁensl The potential drop across this resistor was
measured with the D.V.M. with a resolution of about 1 part in 10? which

gave 10 x I where I is the sample current. Both "forward" and '"reverse"

readings were taken, thus effects such as thermal voltage, would be can-

celled out after averagingvthese two results. The voltage and current

ratios for all specimens were found to be independent of the cuirent over

Reference
100 K Voltage
100 K
10 turn S50
. standard / _
iy helipo 7
iy o
—r— : to DVM
1K ‘10K
5K \

NNV -

"FIG.-2.6 Reference Voltage Supply Circuit. IR
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the current range used, implying negligible joule heating effect.
The sample voltages were taken from a wire-wound standard

one ohm resistor (Leeds and Northrup cannister type 29232, of 0.01%),

supplied from a stabilized operational amplifier.Either a 1 K or 10 K
ohm Muirhead (%#0.02%) thermally stable stahdard resistor could be
connected in series with this one-ohm resistor to generate a magnified
voitage (to an order of 10% or 104 respectively) from which the voltage
readings were taken by the D.V.M. The voltage supply circuit is shown

in FIG. 2-6. Again, the actual sample voltage was found by averaging the

forward and reverse readings from the D.V.M.
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2.4 Temperature achievement, control and measurement

Since resistance as a function of temperature was being sought,
an accurate means of varying and controlling the temperature was essential.

The sample holder block with samples was mounted inside a double
can arrangemeﬂt, as indicated in Figure t2-3). Temperatures of 4,21°K>
and below were obtained by surrounding this can with liquid helium,
boiling at controlled vapour pressure, (the outer dewar was filled with
liquid nitrogen at this‘stage)3. The complete picture can be understood
better with the block diagram shown in Figure (2-7). Temperature points
below 4.2° K were obtained by pumping on the liquid helium in the inner
~dewar, and were stabliéed with a manostat in the He pumping line. The
lowest temperéture we could achieve would be about 1.46° K. When the
pressure of helium in the inner dewar was in the range 76 cm to 3 cm. Hg,
temperature measurements were made by measuring this pressure on a mercury
manometer. When the helium pressure was below 3 cm. Hg, an 0il manometer

was used for higher accuracy.

The corresponding temperature were found by linear interpolatidn
between listed vapour pressure-temperature points extracted from "Experiment-
al feéhniques in Low temperature Physics" by G. K. White4; Temperature
measurements were accurate to five millidegrees.

Temperature above 4.2° K was obtained by slowly heating up the |
sampie holder block, and hence the sample, with a heating coil wound

around the sample mounting block. Temperatures were controlled with this

an A-C

heating coil connected to a feed-back circuit, FIG. 2-8,
phaée—senéitiﬁe Wheatstone Bridge with a rectified D-C feedback current
to the heater. Temperatures of the sample block were roughly estimated

by an Allen-Bradley carbon resistor of 100 ohms normal value, seated at
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amplifier
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‘ ) ' T tHEATHKIT
A o ~ ika o IP-27
AL l'en—BradleyW i

Current output
_Sensing resistor.

to heater coil
- FIG.-2-8 Bridge circuit. Note the three leads to the Allen- Bradley

- to balance the 1ead re51stance

the centre of the sample block, The resistance of this carbon re51stor
increases roughly logar1thmeatly w1th decrea51ng temperature, FIG. 2-9.

~ Accurate temperature measurements above 4.2° K were made with a non-

linear gas thermometer The temperature pressure relatlonshlp for this

gas thermometer arrangement is glven by:- i o T .
e VB VL TR VO "' bP - V ‘ . Vﬁ - ' o “ o B - R c. -— i\ ‘ —?:;h
P[‘T * ?}2“??1‘3‘?“ . |k @ T

where the constant k was evaluated by using the known rllllng temperature

and pressure T, and P (usually, either the ice point values or the helium
temperature values were used). For our eXperimental arrangement the
characteristic values in Equation (2,1) have the following values.

VL —— Volume of the Cryostat tubes = 0.0130 in3, this value might drop

about 1.% from room temperature to 77° K in our systenm.
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Vo — the preséure independent portion of the volume associated with
connecting tubes at room temperature = 1.18 in3.
Vé—-——— the volume of the gas bulb sitting on top of the sample block

1.497 in® at room temperature

1.481 ind at liquid nitrogen temperature

)

]

1.480 in® at 1iquid helium temperature
b — the Wallace and Teernan pressure gauge constant = 0.00115 in3
per inch water pressure.

The corresponding temperature readings for a given
gauge pressure reading was obtained by computer calculation. Further
correctipné were made in_light of the non-ideality of helium gas
(due to mainly Van der Waal type interaction), using interpolations

from a set of Virial coefficients5
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Chapter Three

Dilute Alloy Systems Ru Cr., and Ru Fe.
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3,1 I¥ntroduction

The properties of dilute alloys have been studied quite extensively
during the last twenty years. We presently examine the low temperature
resistivities of some Ru Cr and Ru Fe Alloys. Recently, Riblet and Jensen
studied the suﬁerconducting transition temperature, Tc, for a number of
Ruthenium based alloys, and found that the rates of decrease of Tc with
impurity concentration c, dTc/dc for the '"magnetic' impurity alloys Co1 and
Fe2 were more rapid than that for the "non-magnetic" impurities, Ni, Rh,

Ir, Pt and Pd. These authors, furthermore, noted that this rapid»decrease
in superconducting transition temperature Tc was explicable as the basis of
d-level spin fuctuations localized within the impurity cell. Chromium and

iron, used as impurities in dilute alloy studies, in fact show well defined

3 4

magnetic behaviour in Au Cr” and localized spin fuctuation effects in Al Cr™,

5

Pd Crj EE_Fe6 and EE_Cr7,.and this stimulated our interest in investigating

the dilute Ru Cr and Ru Fe alloys.

Manganese, used as an impurity in dilute alloys, also shows well-

10
defined magnetic behaviour as in Bg_MnS and éE_Mng and £sf effects in Rh Mn

and él.MnS.
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3,2 Experimental Details

The samples were prepared from 99.999% pure Ru sponge, 99;999%
pure Cr beads, and 99.9985% pure Fe rod, all supplied by Johnson Matthey
and Co., .London, U.K.

Metaliic Ru was produced by pressing the Ru sponge in a hardened
stainless steel dye, and melting the resulting pellets together on the
water cooled copper hearth of an argon arc furnace, incorporating a tungsten
electrode and a titanium getter. Ru solidifies into an hcp structure with
a c/a ratio considerably less than "ideal', and is thus very difficult to
cold roll into a suitably shaped resistance specimen., As a result, the Ru
was cast into a long cylindrical trough of approximate diameter 7 mms,
producing a sample of cyliﬁdrical form and approximately 4 to 7 cms long.

~ Master Ru Cr and Ru Fe alloys, containing about 10 at. % Cr and
Fe respectively, were prepared by melting the appropriate amounts of thé
metals together in the arc furnace. Both alloys were homogenised by
inverting and reﬁelting several times; melting losses were negligibly smali.
Ru Cr alloys containing normally 0.2, 0.4 and 0.8 at. % Cr, and Ru Fe alloys
of nominal Fe concentration 0.4, 0.8 and 1.0 at. %, were prepared by dilution.
Resistivity specimens, with a square cross-sectional area of about 2.5 x 10~
sq. cm were then cut from these cylindrical samples using a diamond saw.

The form factors (area to length ratio) were determinéd using a
method described'by Loram, Whall adn Fordll. The knife-edge to knife-edge_
distance of the sampie supports (potential cohtaﬁtg) can be meésured o
accurately with the travelling microscope (discussed in section 2.2).

The density of each sample is determined from lattice spacing data, using

the formula
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2. '
5 ( AjX1 + AyX)) 3.1

N Den51t¥ . a2 A

where N is Avogadro's number, A; and Ay are the atomic ﬁeights of the
elements used, kl and X2 being their respective fractional atomic
compositions, and the factor 2 indicates that there.are two atoms per
unit cell in the h.c.p. ruthenium. The "a" is the concentration depend-
ent lattice constant of the alloy. Bozorth et a11? show that in the
céncentration range under study, Vegard's Law13'is applicable. The
latiice consténts are obtained from the law in conjunction with the
lattice spacing of pure Ru ( a = 2.6987 X, c = 4.2811 K ), pure Cr

( 2.8839 A ) and Fe ( 2.8607 £ ).

From the density, and an accurate measurement of the sample
weight ( 0.1 m gm. ), the volume of the sample is determined. The
travelling microscope is again employed to find the exact length of the
specimen which, with the volume, readily yields the average cross-sectional
area. Making the portions of the specimen which over hang the knife-edge
as short as possible, minimizés the error in the mean cross—sectionalfarea
between the knife-edges. The ratio of the cross-sectional area to the inter- o
knife-edge spacing yieids the required‘form factor for the-specimen. Tabiég’
3.1 and 3.2 list respectively the computed lattice constants, form factors,
and inter-knife-edge spacing for the BB.Cr'and Ru Fe system used.

These specimens were subsequently etched in warm dilute acid of
the followiné composition,

1/5 Volume of water

1/5 Volume of concentrated nitric acid
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3/5 Volume of hydrochloric acid and
a good splash of hydrogen peroxide, and annealed in vacuo for 30 hrs. at
1000°C. |

The resistance of these samples was measured, using a four probe
technique in which the current through each sample was varied to produce a
balanced against a highly stable voltage. The estimated accuracy of resist-
ance measurement is about 2 parts in 104 (Grassie et al, 197114). Temperat-
ures below 4.2° K were stabilized and measured to *5 m deg., and finally,

those above 4.2° K to better than 1.% using a non-linear gas thermometer.




Table 3.1

Summary of the Physical Quantities of Ru Cr Alloys

Concentration Lattice Cross-section Effective * Form factor
(at. % Cr) constant a Area (sq. cm) length (cm) (em)
' ) +0.001 +0,001 ,
Pure Ru 2.6987 4,712 x 1073 4341 1.105 x 107° 3
0.2 " © 2,468 x lO"3 2,450 9.983 x 104
0.4 v _ 3.612 x 1073 5.495 6.603 x 10~4
0.8 L ~ 3.021 x 10-3 3.503 8.697 x 1074

. * Inter-knife edges spacing




Table 3.2

Summary of the Physical Quantities of Ru Fe Alloys

Concentration Lattice e/a Cross-section Effective * Form factor
(at. % Fe) constant a ratio Area (sq. cm) length (em) Cem)
(A) ' +0,001 . 0,001
0.4 2.7050 1.5823 4.216 x 107° 4.987 8.557 x 1074
0.8 2.7045 1.5824 7.032 x 1073 2.866 2,479 x 10—3
2.7040 1.5825 4,184 x 10"3 2.080 2.208 x 10°3

1.0

% Inter-knife edges spacing

19
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3.3 Results and Discussion

(i) Pure Ruthenium

The temperature dependence of resistivity of Ruthenium has been
studied quite eﬁtensively. It has been found thatlresistivity of éingle
crystals of Rufhenium depends on orientationl4?15, the difference between
the resistivity measured parallel and perpendicular to the ¢ axis being

about 10% at room temperature.

The pure Ruthenium used in our investigation had an electrical

resistivity ratio ( P(2979K/ P(1.45%K)) of 123 with PT(2979K) = 7.33%

0.08/u:Lcm. which is close to the value of the resistivity for polycrystal-“

line close-packed hexagonal Ruthenium.

Figure 3.1 shows the plot of the temperature dependent part of

.,,Dure Ruthenium electriqal ?esiStivity o .. R
PIm = P - PT = 1.45%) 3.2

‘againstAtemperature. Because the uncertainties in‘éhé measured'P(T)

constitute a considerable propertion of‘Pi(T) at temperature below 300K,

no data below this temperature are plotted in this fig;re; and, it is clearly

impossible to observe the low temperature electroﬁ—electroﬂ scattering

14,16 Within the temperature range from 30°K to

contribution to Pi(T)
60°K. Figure (3.1) indicates that Pl(T)cx:Tn; n = 4.7520.005 which is in

good agreement with the data obtained by White and Woods16 (1959).
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Figure 3.1
The thermal part of the pure Ru electrical resistivity; ?r m = f’(T) - f(l.'45)

The line drawn has a slope of 4.75%0.005 -
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(ii) Ruthenium Chromium Alloys

The experimental data resulting from our measurements on Ru Cr
alloys are shown in Figure (3.2) in which resistivities of alloys containing
0.8, 0.4 and 0.2 atomic percent Cr and of the pure Ru sample are plotted
against temperéture over the range from 1.45° K to 140° K. Close examin-
ation on Figure (3.2) reveals that the resistivities increase linearly with
temperature above 75° K and are constant below 30° K. Figure (3.3) shows
the plot of incremental resistivities

APM = Prrtoy (M - Pru(M
against temperature up to 140° K and from thié figure, the incremental
resistivities of specific impurity concentrations at absolute zero can be
extracted; these are listéd in Table (3.3). As shown in Figure (3.3), the
temperature independence behaviour of AP(T) below 30° K implies that Cr
impurities in Ruthenium are non-magnetic in the static Hartree Fockl7
(Friedal - Aﬁderson) sense; this behaviour is a result of a spin independ-
ent conduction electron scattering cross-section at the impurity sites.
‘At te@geﬁftﬁres bé%ﬁéen 30‘.J K ané 750 K, a smal} increase, whiph dependsv
slightly on impurity concentration, inl{f(T) is observed. Such a
phenomenon is the result of the competing effects of phonon and impurity
scattering with pfesumably differing anisotropieslg, and this results in
the break down of Matthiessen's Rule for khe Ru Cr alloy system. An
attempt to fit these deviations on the basis of a "Two Current' model was

made; the latter yields19

AP(T) -Bp() =P fru (M AP | 3,3
o pp (1) +BAPO)




65

Figure 3.2
The resistivity ﬁ{T) plotted against temperature (in °K) over the range

from 0° K to 140° K, for the four specimens of Ru Cr alloys.
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Table 3,3

~ Summary of Data on the Ru Cr Alloys

Concentration AP(T = 0) Af(T = 298° K)
(at. % Cr) ' +0.005 +0.005
_MSlcms Ak cms
Pure Ru 0.060 7.38 ™
0.2 ’ ‘ 0.114 ’ 0.125
0.4 0.213 0.242
0.8 0.515 ’ 0.524
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Figure 3.3
‘The incremental resistivity of Ru containing 0,2, 0.4, and 0,8 at. % Cr
plotted against temperature. The curve drawn are fits to Matthiessen's

rule breakdown based on a two current model.
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where ¢ and [3; ére regarded as adjustable parameters for different systems.
The solid curves in Figure (3.3) represent a fit of Equation (3.3) to the
data; within experimental error, the data can be fitted with constant
values of = 0.375 ’and = 0.123. These values for and are close
to those est‘ime;ted for Pd based alloys studied by Kao and Williams20 (1973).

The listed values ofAf)(O) in Table (3.3) were plotted against
impurity concentration c¢ in Figure (3.4), which shows a symmetric variat-
ion of Af(0) with Cr concentration.

In fact, AP(O) = 0.6l * O.OZ/LQcm/at. % Cr.
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Figure 3.4
The incremental resistivity at zero temperatureAf(T = 0) for Ru Cr
Alloys plotted against the Cr concentration. The line drawn has a

slope of 0‘61/un cm per atomic percent Cr.
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(iii) Ruthenium Iron Alloys

The electrical resistivity of Ru Fe alloys was measured between
4.2 and 300K and the experimental results are summarized in Table (3.4).
The listed incremental resistivity AP(T = 0) at absolute zero temperature
indicates that this is a nearly isoelectronic system. A plot of the
AP(T = 0) against impurity céncentration in Figure (3.5) gives a slope
of 0.1410.0%/L:1cm/at.% Fe.

" Figure (3.6) shows a plot of the temperature dependence of the
incremental resistivity O(T) over the range from 1.45%K to 140°K. This
figure shows that O(T) clearly rises more rapid in the 1.0 at.% Fe then
in pure Ru. This result indicates a temperature dependent Eontribution
to the total resistivity from the Fe impurities, and attention is now
directed to find a model which might explain the observed behaviour.

‘The temperature depéndent pért of incremental resistivity
A = AP - 890

for 0.8 and 1.0 at % Fe alloys ié plotted against temperature in PiguresA
(3.7) and (3.8) respectively. The error bars in these Figures represent
the effect of * 1.% form factor uncertainty for each sample. A close
examination of these figures shows that at temperature below 170°Kv
the thermal part of the incremental resistivities increase as T2, becoming
iess rapid at higher temperatures; This is exactiy the'température
dependent behaviour obtained by Kaiser and Doniachzo, (1970) and Rivier
and ZlatiCZIé’b (1972). They concluded that this behaviour resulted from
conduction electrons being scattered by localized spin fiucfuation at the

impurity sites. The former authors derived the following resistivity-




Table 3.4

Summary of the Data on the Ru Fe Alloys

Concentration AP(T = 0) AQ(T = 297)* T2 coefficient
(at. % Fe) pmacms £ .1% Macms 1% 10‘6/(,Lﬂ cm/K2
0.4 0.053 0.13 2.5
0.8 0.115 0.37 6
1.0 0.140 0.42 7

The quoted errors in this column result from the *1.% shape factor error on each sample.

1L
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Figure 3.5

The thermal part of resistivity AP (T) = P - P(0) plotted against

temperature (in 9K) over the range from 0°K to 140°K for 1.0 at. % Fe

and pure Ru.
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Figure 3.6
The thermal part incremental resistivity A(T = 0) for Ru Fe alloys
plotted against the Fe concentration. The line drawn has a slope of

0.1410.02/uﬂcm/at.% Fe.
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Figure 3.7

% Fe.

The thermal part, A(T), of the incremental resistivity of Ru - 1. at.

The error bar represents the net effect of a + 1.% shape factor uncertainty

for both this alloy and the pure Ru sample.
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Figure 3.8
The thermal part, A(T), of the incremental resistivity of Ru - 0.8 at.% Fe.

0,

The error bar represents the net effect of a *1.% shape factor uncertainty

for both this alloy and the pure Ru sample.
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temperature relations.

A (T) o T2 for T < 4Tef

o<T for T > 3/5 Tsf 3.5

The range of temperature we are interested in our experiment is
from 1.459K to room temperature, and thus it is clear that our data do
not extend to sufficiently high temperature to verify the linear temperature
dependence predicted for‘ (T). Yet Tgp can still be inférfed from the
i low temperature data shown in Figures (3.7) and (3.8). Takipg 175%K as the
temperature at which the 72 behaviour ceases, the spin fluctuation temp-
erature Tg¢ for Fe in Ru is found to be about 700°K from Equation (3.5).

Experimental data obtained for 0.4 at. % Fe alloy are not included

here, because the error arising from the form factor uncertainty correspond-

ing to a substantial fraction of A(T) at all measuring teﬁperatures

A (T = 297°K), for example, is O.lSiO.l/xrzcm. The data obtained from'this
alloy, can only be used to set an upper limit on its T2 coefficient. Within
experimental error, the T2 coefficient for the 0.4, 0.8, and 1.0 at.%. Fe
alloys are iisted in Table (3.4) scale with the normal Fe concentration.

Andres et a122 (1969) measured the superconducting trénsition
temperature Tc for BE_Fe alloys containing 1.8, 3.1 and 4.3 at.% Fe, and
the data are reproduced in Figure (3.9) in which the ratio T¢/Tco (Tco is
the transition temperature.fOr pure Ru samplezs) is plotted against the
norminal Fe impurity concentration. In examining this figure, we observed
that T¢ is in facf suppressed rapidly by the addition of Fe atoms>" Andres
et al, (19695 discussed this effect in terms of the decrease in electron-~
phonon attraction. Kaiser?d (1970), taking into account localized spin

fluctuations, has recently formulated a description of this depression in
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Figure 3.9

The ratio T¢/Tco for Ru Fe allbys from Andres et al. (1969), plotted

against the normal Fe concentration. The error bars represent a 0.1 at.%

uncertainty in the Fe concentration., The full curve is a fit to Kaiser's

(1970) expression as explained in the text.
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Tc (as a function of increasing impurity concentration) as a result of
scattering of conduction electrons by the non-magnetic resonant impurity
states, which at the same time; includes the effects of both an effeétive
mass enhancement2® and a strong intrabimpurity Coulomb repulsion27. The
relation between T¢ and the impurity concentration ¢ is given by the
following:zs

In (_Te) =_-( A+B) c

3.6
Teo ) g( 1 - Bc)
where A = _§i£551* ; : | '
N(Ep) o : - . 3.7
N 5 i ~ ) _fo 8 - ST kil T
and B =_"1 (Ep) Ue |
DG 5.8

Here, Ni(Ep) and N(Ep) are the impurity and host density of states per sﬁin
direction at the Fermi level, respectively, g is the BCS coupling constant,
while Ueff is the intra-impurity épin-up, and spin down coulomb repulsion
(2% + 1) accounts for orbital degeneracy. The values of A and B used forr
our fit to Andres data are liéted in Table (3.5). The solid curve in’

Figure (3.9) represent the result of Kaiser's thedry25 a plot of

Equation (3.6). The fact (see Figufe (3.9)) that Andres results can be
fitted to Kaiser's theory gives us supporting evidence for our assigning
the origin of the temperature dependence in A (T) to localized spin
fluctuations.

At.sufficient low temperature, the expression for specific heat

coefficient \{ , for pure Ruthenium can be written as:-




Table 3.5

Summary of the parameters deduced from the depression of T. in Ru Fe Alloys

*
Ni (EF) Uefs Ni (Ep) A
A B states/eV-atom-spin (eV) _states/ev-atom—spin (eV) g
2.17 5.56 ' , 1.0 1.81 3.1 1.44 0.139
' 3
©
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2 | . ,
. =-—2-%—N(EF) kp?( 1 +A) 3.9

where A_ is the effective electron-phonon enhancement of thé'band density of
states?8 and kg is the Boltzmann's constant. With 42? found by Herninger ,
as 3.0 mJ/mol. deg2 and . = 0.38 from McMillah, _N(Ep) is found to be
0.46 states/eV-atom-spin.

From the values of A and B listed in Table (3.5) and Equation (3-7),
the impurity density of state per spin direction at Fermi level Ni(Ep) is
found to be about 1.0 states/eV—atomfspin.

The BCS coupling consfant g, appearing in Equation (3-8), can be

obtained from the relation derived by Schriefférso (1964) : -

Teo = 1.14 Op exp [-_g__] 3.10

With T ,(Ru) = 0.4824 and Debye Temperature 6 5509k 2° then g =-0.139.
Thus from Equation (3.8), Ugff has a value of 1.8leV.
While Kaiser's theory is based on the scattering of electrons by

non-magnetic impurity states, it nevertheless explains the dependence of

To/Tco on impurity concentration ¢ in not only truely non-magnetic syétem
like 1@_Ce31, but also in localized spin fluctuation systems like_él_Mnsz
and IE.USS. In these latter system, Ni(Eg) solved from Equation (3-7) are
substantially smaller than those Ni*(EFj estimated from the increase in Y

on alloying, while Equation (3.8) leads to large valueé'for Uers (>1. eV)

compared with Th Ce. Ru Fe exhibits the characteristics of these latter

"1.s.f. systems,and the depression of T, with impurity concentration c lies

intermediate between Th Ce and Al Mn, with "large" Uesf and small Ni (Ep) =

Q/S)Ni*(EF). A comparison of the superconducting properties of Ru Fe
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with both non-magnetic (Th Ce) and 1l.s.f. (Al Mn, Th U) systems thus
provides supplimentary evidence supporting the present argument of l.s.f.
at the Fe impurity sites'in this systeml

| Within the framework of the Anderson34 (1961) model, an estimat-
jon of the width A of the virtual bound state can be obtained from the

following relation:-

| _ eeenf . 2( (s )‘1 STz
N; (EF) __(__'7_7__&_.1[1 + cot 20248 + 1) ]

Using the Hund's rule value of <n)> = 6, Q.= 2 and with Ni(Ep) from

Tabie (3.5), the value of A is found to be 1.44 eV,

Rivier and Machaughlin35 have modified Equation (3.10) so as to
include the effects of localized spin fluctuations. In the low impurity
cgncentration limit, a comparison of the treatment of these latter authors
with Equation (3.6) yields:- f:ﬂw/ | |

A+ B o .
CN(Ep) J%s(s+1) - 3.12

Tsg=
where J is the conduction electron;impurity coupling constant defined
previously and g is the modulus of the fluctuating impurity "spin'. With
the values listed in Table (3.5), |J| = 0.15eV, and g =-2, (Hund's rule),
the corresponding value of Tg¢ calculated from Equation (3-12) is about
700°K, which is in reasonable good agreement with the value we have deduced

previously.
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3.4 Summary

The resistivity of several dilute Ru Cr and Ru Fe alloys has
been measured between 1.45°K and 300°K.

In Ru Cr system, the incremental resistivity is temperature
independent at temperature below 30°K and from this we deduced that in the
Static Hartree Fock context, Cr impurities_in Ru are non-magnetic. At
higher temperatures, deviations fr;m Matthiessens rule have been observed
and these can be fitted simply in terms‘of a "Two Current Model'.

In the nearly isoelectronic Ru Fe system, a temperature dependent
incremental resistivity'A;P(T) is observed. At temperature below 170°K,

AP(T) increases as Tz, and less rapid at highef.temperature. The origin
of this tmeperature dependence is attributed to conduction electron scatter-
ing from {.s.f. at thé impurity sites, and the characteristic temperature Tgf
'in the Ru Fe system is about 700°K. Analysis of the existing exPerimenfal
data on the depreséion of the superconducting transition temperature in Ru
by Fe impurities using Kaiser's approach lends confirmatory evidence for

such an assignment. Furthermére, the initial depression of T, in this

systém allows a rough estimate of Tsf via the phenomenological expreséion

of Rivier and Machaughlin, this latter estimate agrees reasonably well with

- that derived from our resistivity data.
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