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Abstract

Deuterium nuclear magnetic resonance (NMR) spectroscopy was used to explore molecular motions
in the mesophases of calamatic liquid crystals 4 —n—pentyloxybenzylidene—4' —heptylaniline(50.7),
p-(methoxybenzylidine)-p-n-butylaniline(MBBA or 10.4), 4-n-hexyloxy-4’-cyanobiphenyl (60CB),
a mixture of 60CB and 4-n-octyloxy-4’-cyanobiphenyl (80CB), and discotic liquid crystals hexakis(n-
hexyloxy)triphenylene(HAT6). The Zeeman and quadrupolar spin—lattice relaxation times were
measured as a function of temperature at 15.1 MHz and 46 MHz using a broadband multiple—pulse
sequence. In addition, quadrupolar splittings were measured for 60CB, 60CB/80CB mixture and
columnar phase of HAT6. The TZ model was used to interpret the deuteron relaxation of biaxial
molecules in the uniaxial medium. For 50.7, the analysis of the relaxation data in the nematic and
smectic A phases supports a model which includes director fluctuations and rotational diffusion of
an asymmetric rigid rotor in a biaxial potential of mean torque. The molecular biaxiality of the
molecule is found, based on the relaxation data, to give a small positive molecular biaxial order
parameter S;; — Syy. In addition, the activation energy for the tumbling motion of the molecule
is found to be larger than that for the spinning motion. For MBBA, the zero-frequency spectral
densities Jy(0) data is quantitatively interpreted using a model that includes director fluctuations
and rotational diffusion of symmetric rotors in a nematic phase. The contribution to Jy(0) from
director fluctuations has mainly a second-order component, whereas the first-order contribution
to Ji(w) is suppressed in the megahertz region(Larmor frequencies are 15.1 and 46 MHz) due to
the high-frequency cutoff, which is estimated to be around 3-10 MHz for MBBA. For 60CB and
60CB/80CB mixture, the data analyses were carried out for both samples in order to achieve a

consistent physical picture. The additive potential method is employed to model the quadrupolar



splittings of 60CB, from which the potential of mean torque is parametrized, and the order pa-
rameter tensor for an "average” conformer is determined. A decoupled model is used to describe
correlated internal motions of the end chain, which are independent of the molecular reorientation.
The latter motion is treated using the small-step rotational diffusion model of Tarroni and Zannoni,
while the former motion is described using a master rate equation. In comparing the NMR results
of the pure 60CB sample and of the 60CB/80CB mixture, both the dynamic and static behaviours
appear to be similar, and there are no dramatic changes upon entering the reentrant nematic phase
of 60CB/80CB, supporting the belief that the effects driving the reentrancy in this mixture are
very subtle. The tumbling motion of 60CB molecules shows quite different behaviours in the two
studied samples. Both 60CB and 80OCB possess a strong terminal electric dipole and tend to form
"loose” dimers. The degree of dimerization can be inferred from the tumbling motion of 60CB
molecules and their internal chain dynamics. For discotic HAT6, a similar analysis procedure to
60OCB was carried out in the columnar phase. It is found that the tumbling motion of the molecular
core is slightly faster than its spinning motion, in contrast with the findings in the calamitic liquid
crystals. The decoupled model of Dong for correlated internal rotations in the end chains is used
for the first time in a discotic liquid crystal. The usefullness of the global target analysis approach

was demonstrated throughout this thesis.
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are attached. The liquid crvstalline phases are classified according to the molecilar ordering. The
nematic phase is the most common phase in liguid crvstals. which is mainly enconntered in this
stidy. The smectic A phase is also studied. [t is noted that both nemartic and smectic A phases are
uniaxial phases. that is. only one phase symmetry axis exists. Discotic liquid crvstals form more

ordered phases known as columnar phases. although discotic nematic phases may exist.

1.2 Classification of Mesophases Involved in the Present Scudy

Nematic Phase:

This nematic phase has the lowest ordering of all the mesophases and. if present. precedes the
transition to the isotropic liquid at the clearing point. The molecnies making up the nemartic phase
are arranged in such a manner that there is no positional order of their centers of mass. like in the
isotropic liquid. but is characterized by the presence of a long range orientational order. in which
the molecules tend to align parallel to each other. The molecnles tend to orient on the average along
a preferred direction within a large cluster of molecules. The prefered direction defines a svmmerry

axis called the director 77.

Smectic Phase:

[n smectic phases. molecules not only have the long range orientational order. but also possess
a certain degree of translational ordering resulting in a layvered structure. The molecular centers
of mass are, on the average. arranged in equidistant planes. There exist several different types of
smectic phases. labelled S4. Sg. .... 57, The most common type is smectic A, which is studied in this
thesis. In the smectic A phase. the molecules within the laver are on the average aligned parallel

to the layer’s normal.



Reentrant Nematic Phase:

There is a special nematic phase called reentrant nematic phase. Some samples. when cooling down
from the isotropic phase. possess two or more nematic phases. with one or more smectic phase(s)
in between. The reentrant nematic phase refers to the lower temperature phase below a more or-
dered phase like smectic A. The 60CB/80CB mixture sampie. for the composition ranging herween
approximately 25 and 31 wt. % 60CB. exhibits a reentrant nematic (RN) phase at atmospheric
pressure, i.e.. one observes a trapsition from the smectic A phase to a nematic phase on eirher
heating or cooling the system. The collective packing of the chains. which enhances the stability of

the 5S4 phase, is frustrated in a reentrant phase.

Discotic Phase:

Liquid crystal phases exist also in systems composed of disk-like molecules. The coliunnar mesophases
are built up with bi-dimensional central rigid part. in contrast with the rod-like mesophases. The

first evidence of existence of discotie liquid crystals was reported by S. Chandrasekhar[1.2] in 1977,

The diamagnetic susceptibility tensor { in a uniaxial medium bas two principal components

and y_. which are along and normal to the director. respectively. The diamagnetic susceptibility

anisotropy Ax(= y| — x_) is positive for most rod-like molecules resulting in the director being

aligned parallel to the external magnetic field. whereas the discotics have negative Xy such rhat

the director is aligned perpendicular to the external magnetic field.(see the next section)

1.3 Effects of External Fields on Liquid Crystals

The diamagnetic susceptibility anisotropy Ax = x; — x. can be associated primarily with the



7 electrons of the aromatic rings. so the diamagnetism is particularly strong when the molecnle
contains an aromatic core. When those molecules are placed in a magnetic E) field. it costs less
energy for the magnetic fHeld to lie in the plane of the ring. In this case. the nematogen has a
positive diamagnetic susceptibility anisotropy. The maguetic contribution to the Gibbs free energy
density[L.3] is

fn = == _B? = == Ay (ﬂ»?)z (L1)
Hence. if Ax > 0. the magnetic free energy density is minimized when the director is colinear with
the B tield. When Ax < 0. the director is aligued normal to the B tield in order to minimize the
magunetic free energy density.
Consider the competing effects of a wall (surface alignment) and of a magnetic field on the alignment
of a nematic sample. Deformation of surface alignment away from the wall in the presence of a
homogeneons magunetic field can take place over a characteristic distance £, which is a measure of
the length of the region over which the orientation changes from parallel to perpendicular when the
H field is normal to the wall surface. Near the wall there is a transition layver in which the direcror
undergoes elastic deformations. which are described by elastic constants splay (Ay,). twist (Nyy)
and bend (Ay) in the Oseen-Frank theory of nematics[l.-1. 1.5]. The equilibrinm confignration is

determined by minimizing the free energy density. then the "coherence length” € is given by[l.6]

wh )1
=(50) 5 .

where A is some average of A';. A4y and Az, The statie distortions in liguid crystals are due to the
response of bulk samples to external disturbances. Now it is appropriate to regard the liguid crystal
as a continnum medium with enrvature elasticity. Deformational Huctuations in iiguid crystals are
described by a director field (7). The average (macroscopic) director iy is simply the spatial

4
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(@) Splay (K,,)

(c) Bend (Ksy)

///

Figure 1.1 Three types of deformation in a director field (a) splay, (b) twist, and (c) bend. The
double arrows are used to emphasize the apolar nature of nematics. 72y is chosen along the Zp axis

of the director frame.



1.4 Liquid Crystal Samples

The following liquid crystalline solvents are used

(1) 50.7-d, and 50.7-d4:

4-n-pentyloxybenzylidene-d,-4 -heptylaniline

4-n-pentyloxybenzylidene-4 -heptylaniline-2,3,5,6-d4 (see Fig. 1.2)

50.7-d, was purchased from Merck Sharp and Dohme Canada Ltd. in Montreal, and 50.7-d4 was
kindly provided by Dr. J. W. Doane, Kent State University, U.S.A.. Those 2 samples were used

without further purification.

H H
(a CHO‘QC
) 511 N C
H H
H H
(b) ‘Q ‘<©§~

Figure 1.2 The molecular structure of (a) 50.7-d, and (b) 50.7-d,.

7 O

For NMR studies of liquid crystals{1.7], deuterons have often been used as spin probes to measure

the Zeemen(T\z) and quadrupolar (T)g) spin-lattice relaxation times. These two relaxation times

7



can be simultaneously determined in a Jeener-Broekaert typefl.8 and see Chapter 2| experiment
and allow a seperation of the two spectral densities of motion J;{wq) and J,(2wy). where /27 is the
Larmor frequency. Oun the other hand. these spectral densities can be calculated for liguid cryseals
using a model which emplovs a rotational diffusion mechanism as well as a relaxation mechanism
due to director fluctuations{see Chapter 5]. The rotational diffusion model[1.9. 1.10] assumes a
stochastic Markov process for molecnlar reorientation in which each molecule moves in rime as a
seqiience of small angular steps caused by collisions with its neighboring molecules and nnder the
influence of an anisotropic potential set up by these neighbors. Nordio and co-works[1.10] consid-
ered reorientation of cylindrical molecules in nniaxial phases. Each molecule is characterized by
a rotational diffusion tensor D. normally defined in a frame fixed on the molecule. The principal
components of D are D, = D, and D.. A number of models of increasing complexity has been
proposed[1.11-1.15] for rigid molecules reorienting in uniaxial and biaxial liquid crystalline phases.
As an extension to the Nordio model. reorientation of asymmetric moleciles in nniaxial phases has
been considered by several groups. including the rigorons treatment by Tarroni and Zaunounifl.13].
However. applications of the latter theoretical model to interpret NMR data remain scarce[l.12].
In order to address this problem in liquid crystal. we consider the experimental data[Ll.16] of 4-n-
pentyloxyvbenzylidene-1 -heptylaniline (50).7). The data were analyzed previously based on either
the third-rate model[1.17] or Nordio model[l.10]. The deuteration of 5().7 samples at methine and
aniline ring sites allows us to treat the molecule as a "rigid” rotor. As a result of the present work[see
Chapter 7], the analysis of the relaxation data in the nematic and smectic A phases of 30).7 supports
a model which includes director finctuations and rotational diffusion of an asymmetric rigid rotor
in a potential of mean torque which reflects the molecular biaxiality. The molecule is fonnd. based
on the relaxation data, to show a small positive order parameter S,, — S.,.

8



(2) MBBA-d,3 (or 10.4):
p-(methoxybenzylidine)-p-n-butylaniline (see Fig. 1.3)
This MBBA sample was purchased from Merck Sharp and Dohme Canada Ltd. and used without

further purification.

Figure 1.3 The molecular structure of MBBA, showing the carbon labelling.

Director fluctuations are unique and important sources of nuclear spin relaxation in liquid crvs-
tals{1.7, 1.18 and see Chapter 5|. These fluctuations involve collective motions of a large number
of molecules. Studies of director fluctuations can provide information on molecular properties such
as elastic constants and viscosities. This dynamic process was fisrt used to explain light scattering
experiments in liquid crystals by Chatelain[1.19]. de Gennes[1.20] was first to recognize that di-
rector fluctuations consists of long-range collective modes of motion in liquid crystals. Pincus[1.21]
derived a w!/? frequency relation for the nuclear spin-lattice relaxation rate. Lubensky(1.22] noted
the square of the nematic order parameter in the spin-lattice relaxation rate. When using a small
angle (@) approximation, where 8 is the angle between the instantaneous director and its equilib-
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rinm orientacion. the director Auctuations contribute a ' term in the spectral density Jy(«) and
have zero contributions in 5 (2w) and Jg(0). Whereas for the second order director Hnetuarions
(x §%). the frequency dependence in J, is calcnlated to be generally small. but .J; is predicated to be
quite large as w — 0[1.23]. Althongh director fluctuations pormally give small contributions iu the
megahertz region. there are at least two liquid crystals 50.7[see Chapter 7] and 40.8{1.24] in which
director Hnernations have been used to account for part of Jy(w). For these two liquid ervstals. the
high-frequency cutoffs appear to be on the order of 10? MHz. while for p-(inethoxvbenzylidine)-p-
n-butylaniline (MBBA or 10.4). there is no detectable coutribution from director fnctuations to
the deuteron spin-lattice relaxation in the megahertz region[1.25]. The same conclusion was made
by Vilfan et al.[1.26] on the basis of their proton NMR study. The spin-spin relaxation data of
VBBA show. however. that there is a substantial contribution from director Huctnations to Jy(0).
We believe that a possible explanation of the different behaviours among the studied Henid cryvs-
tals of n0).n series may due to their high-frequency entoffs. which has motivated us to measure
the spin-spin relaxation time 75, by the modified Carr-Purcell pulse sequence[see Chapter 2|, In
combination with ./, and .J,. the experimental .Jy values can be obtained[see Chapter 2. Onr 1)
and T, data support the idea that MBBA has a relative low value for the high-frequency cutoff
(around 3-10 MHz). The contribution to Jo(0) from director Huctuatious has mainly a second-order
component(35% — 50%). whereas the first-order contribntion to .Ji(w) is suppressed in the mega-

hertz region{< 10%) since our Larmor frequencies are 15.3 and 16MHz.

(3) 60CB-dy; and 60CB/8OCB mixture
4-n-hexyloxy-4’-cvanobiphenyl (60CB) (see Fig. L.4)
d-n-octyloxy-4’-cyanobiphenyl (80O)CB)
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The 60CB-dy; was purchased from Merck, Sharp and Dohme Canada and used without further
purification. The 60CB/80CB mixture has 28 wt. % of 60CB. They were put together, melt

thoroughly and evenly, de-gased and sealed.

N=C

Figure 1.4 Schematic diagram of a 60CB molecule and various coordinate systems used.

The constituent molecules of liquid crystals usually contain an aromatic core and one or more flexible
pendant chains. Marcelja[1.27] was first to explicitly consider flexible end chains in the ordering
process resulting from the molecular field of neighbour molecules, since the alkyl chains not only
occupy space but also contribute to the anisotropic potential and interactions which are responsible
for molecular ordering in liquid crystals. Deuterium NMR spectroscopy is also a powerful technique
on providing valuable information on dynamical processes in liquid crystals, which include not only
the molecular reorientations and collective motions known as director fluctuations, but also the
internal rotations[1.28-1.31]. The molecular core is assumed to be relatively massive such that
the internal bond rotations in the chain can be treated independent of the overall motion of the
molecule, the so called decoupled model{1.29]. In order to test this model for longer alkyl chains in
molecules, we chose the pure 60CB and 60CB/80CB mixture with 28 wt. % of 60CB. The pure
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60CB sample shows only a nematic phase, while the latter sample shows a nematic, smectic A and
reentrant-nematic (RN) phases. We have carried out data analyses for both samples in order to
achieve a consistent physical picture. In comparing the NMR results of pure 60CB sample and of
the 60CB/80OCB mixture, both the dynamic and static behaviors appear to be similar, and there
are no dramatic changes upon entering the RN phase of 60CB/80CB, supporting the belief that
the effects driving the reentrancy in this mixture are very subtle. The tumbling motion of 60CB
molecules, however, shows quite different behaviors in the two studied samples. Both 60CB and
80CB possess a strong terminal dipole and tend to form "loose” dimers. The hope that the degree
of dimerization may be inferred from the tumbling motion of 60CB molecules and their internal

chain dynamics is realized in the present study.

M

R = OC6H13

Figure 1.5 Hexakis(n-hexyloxy)triphenylene (HAT6) shown with coordinate systems used in the

text, and a schematic view of its columnar D, mesophase.
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(-1) HATG6

hexakis(n-hexyvloxy)triphenvlene (see Fig. 1.5)

Chain deuterated HATG

Ring deuterated HAT6

Both HATG6 samples were kindly provided by Prof. N. Bodeun. Center for Self-Organising Molecular

Svstems. The University of Leeds. Leeds. The United Kingdom.

The disc-like molecules such as the hexakis(alkyloxy)triphenylenes (HATun) can form columnar
phases[1.32]. These disc-like molecules are stacked. with only short-range positional order. into
columns which are arranged on a two-dimensional lattice. typically hexagonal. Denterated HATn
molecitles have been studied using proton and deuteron NMR by Luz and co-works{1.33-1.36] more
than 10 vears ago. To explain[1.37] the spectral deusities of aromatic denterons in HATG. Nordio
model[1.10] was used and rotational diffusion constants for HATG moleenles were derived. The
quadrupolar splittings of the chain denterons were also modeled[1.38] using additive potential (AP)
method which was pioneered by Marcelja[1.27]. These earlier attempts for the homologous series
HATn unfortunately contained nnmerical errors and good fits were therefore fortuitive. In the
present stidy. the decoupled model[1.29] is applied for the first time to deal with the dynamics of
internal bond rotations of discotic liquid eryvstal. The geometric factors of this disk-like molecule
are re-adjusted. and the interaction tensors for both disk-shaped core and cigar-shaped C-C bond
are treated appropriately. The AP method is used to model the quadrupolar splittings. from which
the potential of mean torque is parameterized, and the order parameter tensor for an ‘average’
conformer is determined. The small step rotational diffusion model is nsed to find the rotational
diffusion constants Dy and D for the spinuing and tumbling motions of molecular core. It is found
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that D_ is slightly larger than Dy in constrast with the findings in calamitic lignid ervstals. The

jump constants for internal bond rotations are also derived.

1.5 Thesis Qutline

Chapter 1 gives the introduction to liquid crystals and samples used in this study as well as the
motivation and anticipated significances of this thesis. Chapter 2 presents the basic NMR theory
and the experimental details. The broadband pulse sequence can be used to simultaneously measure
the spin-lattice relaxation times T,z and T)q. and the modified Carr-Purcell pulse sequence is used
to measure the spin-spin relaxation time T,. An outline of the theoretical framework of additive
potential (AP) method involved in describing orientational order of Hexible mesogens is ziven in
Chapter 3. Chapters -6 are presentations of the existing theories of the molecular dynamics of
liquid crystals necessary for the current study. i.e.. molecular reorientations of biaxial molecules in
the uniaxial phases. described by the Tarroni-Zannoni (TZ) model. is given in Chapter L. director
Huctuations. the unique dynamic property of liquid crystals. is outlined in Chapter 5. and Chapter
6 presents the deconpled model of internal and overall motions for the Hexible chain dynamies.
Chapters 7 through 10 contaiu the experimental results and discussion for the studied lignid erysral
samples. The final chapter gives an overview of varions findings from the various systems. and

makes comparison of molecular properties where possible.
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Chapter 2

Basic ?H NMR Theory and

Experimental Methods

2.1 Introduction

A mucleus in an external magnetic field has two or several spin energy levels which are produced
by the interactions between the magnetic moment and the applied field. Figure 2.1 gives the ex-
planatory diagram of energy levels for a deuteron spin ({ = 1) in a large external magnetic fiekd.
Wheun a collection of nuclei is irradiated with the characteristic resonant frequency of the nuclei. the
population of each spin state is changed due to the excitation by the applied alternating field. After
the rf-pulse the spin system relaxes back to its equilibrium state. and the induced magnetization
could be detected. Various theories and experiments have been developed to study the relaxation
process since it can give information about the "lattice” and the dynamics of the nuclei. The lattice
is defined as all degrees of freedom excluding those of a spin system. Several experiments under
different circumstances and observations of different nuclei in the same system are often needed in
order to obtain a consistent molecular picture; correspondingly. different theories and models are
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required to account for the diversity of various circumstances and observations of different nuclei.

The theoretical treatment of nuclear relaxation in a non-isolated spin system started with Bloember-
gen, Purcell and Pound who treated nuclear spin relaxation in a liquid[2.1]. The rate of statistical
fluctuation in the interaction with the surrounding system defines the correlation time of the nuclei.
Later the Wangsness-Bloch theory(2.2, 2.3] gave a possibility to calculate the decay constants of

the transverse and the longitudinal relaxations.

I~ l> 'y i

wo U°+wo —> MH

|O> Y

w" }‘}o-wo —_ ML

BE

Zeeman HQ £ 0

Figure 2.1 Energy level diagram of deuteron (n = 0 assumed) in a large external magnetic field.

wp/27 is the Larmor frequency.

2.2 2H NMR
There are two main contributions to the energy for a deuterium(*H) nucleus in a magnetic field;

Zeeman energy and quadrupole energy. The spin Hamiltonian may be written as
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H=H2+HQ (2.1)

where Hz is the Zeeman Hamiltonian and Hg is the quadrupolar Hamiltonian. H, describes the

interaction of the nuclear magnetic moment 77 with the static magnetic field Hy.

Hy = -7 eHy=—~hT eHy=—~hlzH, (

I~
<
—

where ~ is the gyromagnetic ratio. 7) is the nuclear spin operator and the field H.) is taken along
the Z; direction of a laboratory frame. The Larmor frequency. wq. equals ~H,y.

The quadrupolar Hamiltonian H, arises from an electrostatic interaction of the nuclear gquadrupole
moment (Qny) with the electric feld gradient (efg). Vou(= V?) at the position of the nucleus. 17,4

and Q. are second order tensors and are defined as

C)ad = ¢ Z (31'01-(1'Jrc - dnﬂrﬁ) (_)-5)
x{protons)

R (2-4)

ad T (')_'1,'“(.)1'5 nnelen -

Since the field is sourceless. V7 satisfies the Laplace’s eqnation giving V., + 1, + 1., = (0. In the

principal axis coordinate system (PAS) of the efg. all off diagonal rerms are zero and the quadmpolar
Hamiltonian is:

e

o= 151 -1

2 1 - - 2 P
(V22313 = 1+ 1)+ 5(Vxx = Vi) (22 + 1) (25)

The asymumetry parameter 5 is customarily introduced as

_ Pxx =l
) = ———

r
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Generally, the efg asymmetry parameter is small for deuterons, n < 0.06, with the principal z axis

being along the direction of the C —2 H bond, and can usually be neglected.

Figure 2.2 Rotations used in the definition of the Euler angles.

Usually the elements V,; are known in a fixed molecular coordinate system but the spin operators
I, I, and [, are quantized along the laboratory fixed magnetic field. Therefore it is necessary to
rotate efg tensor through a coordinate transformation. This is done by making successive rotations
through Euler angles a, 8, v(Fig. 2.2) [2.4]. A natural choice of basis is the spherical basis where efg

tensor can be expressed in terms of its irreducible components V2, (m = 0, 1, +2). In the principal
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axis coordinate system

- 3.
‘O" = 5"'22
V2, = Vzx +ilzy =0 (in PAS)
-2 L . . - L . . . Yy =
V3, = S(Wx = Vyy) 2 dxy =5ulzz  (in PAS) (2.7)

2

The transformation from one frame to another simply involves the Wigner rotation matrices D;, .

12 = S Dhlen )12 (2.8)
m=-2

2.3 Relaxation
The phenomenon of evolution towards the statistical equilibrium of a macroscopic system is given
the name 'relaxation’. In nuclear magnetic resonance the whole system consists of two weakly cou-
pled parts: 1. the spin system counsisting of all degrees of freedom dependent on the spin-operators
of the nuclei. and 2. the lattice consisting of all other degrees of freedom associated with the molec-
ular rotations and translations. Nuclear magnetic relaxation is the evolution of the spin svstem
towards its thermal equilibrium with the lattice. and is called spin-lattice relaxation. Since the lat-
tice temperature is not affected measurably by the exchange of energy with the spin system taking
place during relaxation. it is considered to be an ‘infinite’ bath. Relaxation times are connected to
well defined characteristics of the dynamics of molecular motions and translations. In general. the
only physical quantities considered in nuclear magnetic relaxation are the components of nuclear

polarization.

The longitudinal relaxation time 7. is due to the change in the magnetization component along
the axis parallel to the applied magnetic field (the Z, axis of the laboratory frame). Any change in
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the Z;-magnetization is accompanied by an energy How between the nuclear spin system and orher
degrees of freedom of system(the lattice). 7, is also called the spin-lattice relaxation time. When
a static feld is applied along the Z; axis. the longitudinal magnetization Mz has a non-vanishing
value My. whereas the transverse components My and My vanish. at thermal equilibrinm. Starting
from a non-equilibrium state. the evolution of Mz towards 1, modifies the energy of the spin sys-
tem. which corresponds to an exchange of energy with the lattice, whereas the decrease in transverse
magnetization components does not produce such an exchange of energy. The transverse relaxation
time. T,. is defined by the relaxation of the magnetization components on the XY -plane. The
T,-mechanism arises from the spread in precession rates caused by the magnetic field that one nu-
clens produces at another; T, is also referred to as the spin-spin relaxation time. In constrast to the

longitudinal decay. the transverse relaxation couserves the spin energy in the static magnetic field.

The spin system needs a ‘spin-lattice interaction’ to exchange energy with the lattice and in the case
of the deuteron. the dominant mechanism is invariably the coupling of the electric field gradient
with the quadmpolar moment of the nucleus. Since the orientation of the electric feld gradient with
respect to the main external field is randomly modulated as a function of time by the molecular
motions. there is a relaxation Hamiltonian whose average value vanishes. 1) gives information on
relatively fast dyvnamical molecular processes having correlation times in the vicinity of approxi-
mately 107 %. This is because longitudinal relaxation involves an exchange of either one or two
quanta of nuclear energy between the spins and the lattice. Thus 7 involves the spectral deusicy
J(w) of the spin-lattice interactions in the vicinity of frequency wg and 2w, where Larmor frequency
wp /27 depends on the static magnetic field strength and is either 15MHz or Ll6MHz in the present
study. 75, is the relaxation time associated with the increasing dispersion of phase accunntlated by
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the nuclear spins due to thermally driven fuctuations in the quadrupolar splitting. Fast motions

that contribute to Ty also contribute to T, so T, < T is always satistied. Slow motions which satisfy
.. 2 . . . . . .

the condition that (wet.)” > 1. where 7, is the correlation time. contribute appreciably to 7, but

not to Ty. Therefore when T, <« 7). the significance of slow motions can be recognized.

2.4 *H NMR Relaxation Rate

How a nuclear spin system achieves thermal equilibrinim by exchanging energy with its surronnding
medium or the ’lattice’ is governed by the NMR relaxation rates. Pulsed NMR provides a highly
versatile and flexible tool to determine spin relaxation rates. which can probe the entire spectrum
of molecular motions. These include the molecular rotations. the translational self-diffusion. the
"coherent” rotational motion. and the internal motion in pon-rigid molecules. However. several
nuclear interactions may simultaneously all contribute to the relaxartion of the spin system. These
may inclide the magnetic dipole-dipole interaction. the quadrupole interaction. the spin-rotation
interaction. the scalar coupling. and the chemical shift anisotropy iuteraction. Due to the need of
estimating certain nuclear couplings and/or correlation times associated with molecular motions.
considerable uncertainty may exist in identifving and separating these contributions. Followinyg the
ideas of Redfield[2.3]. the Bloch-Wangsness-Redfield theory[2.6] developed on the basis of density
matrix method. gives a semi-classical treatmeut, simply because it uses time correlation funetions

which are classical.

The most difficult problem in any relaxation theory is the calculation of correlation functions or

spectral densities of motion. It is often possible to determine the mean square spin interaction



<H;’(t)>. where H,(t) is a component of the spin Hamiltonian which Huctuates randomly 1n time
owing to molecular motions. The time dependence of correlation function (H,(f)Hy(t — 7)) can

often be approximated by an exponential decay function of 7. i.e.
(He(t)Hy (t — 7)) = (Hq(t) Hy () ¢ T (2.9)

where the angle brackets denote an ensemble average. and the correlation time 7. for the motion
can be determined with the help of experiments. In NMR. the coupling between the lattice and
Zeeman reservoir of the mclear spin svstem is magnetic in all cases except oue. The exception
is the quadrupolar coupling between the nuclear qunadrmpole moment (for spin angular momentum
[ > %) and the lattice via an electric field gradient. which is electrical in nature. When this conpling
exists. it is generally more efficient than anv magnetic coupling. Deuteron (spin / = 1) has a small
quadrupole moment with a coupling constants 20/ L typically 150-250 kHz. large enongh so that
relaxation is dominated by the quadrupole interaction and small enough so that the perturburion

theorv is applicable.

Suppose that an assembly of .V identical spin systems is considered. This allows a quantum statis-
tical description of a spin system. If the spin system is in a state of wavefunction or ket | (). the

expectation value of a physical observable given by its operator ( 1s
(@) = (e [ Q] vx) (2.10)

NMR spectroscopy deals with the observation of macroscopic ohservables. Thus. one needs to

perform an average over the N systems in the ensemble:
N
(@)= (Q)/N (2.11)

k=1
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In genaral. the ket | ) is time dependent and may be expanded nsing a complete orthonormal

basis set of i stationary kets | oy) =| )

1243

ew) = D C5(t) | 9) (2.12)

J=1

where the expansion coefficient C¥ are time dependent. This leads to
(@) =3_(31 Q1) Tault) (2.13)
n.J
where the 7 is defined as density operator. whose matrix elements in the orthonormal basis | rv) are
Tas = (” [’T | ').) = C,,(f]C;(f) (-)J.U

and the bar denotes an ensemble average. The eguation of motion for « is obtained from the
Schrédinger equation for | ©)

d

—ju)y=—itH v (2.15)
where H is an appropriate spin Hamiltonian (in angular frequency units) for the spin system. The

equation for the time dependence of the density operator a is obtained by evaluating da, 4/dt to

give

d,

7;% = —i[H.a(t)] (2.16)
A spin system with the Hamiltonian given by

H = Hy + H'(t) (2.17)

is now taken. where Hy is the static Hamiltonian and H’(¢) represents time-dependent spin-lattice
coupling. H' is a random function of time with vanishing time average [i.e. H_’(f—) = 0]. and H,
includes the Zeeman interactions, static averages of dipolar and quadrupole couplings. and time-
dependent radiofrequency (rf) interactions. Writing o and H' as 7 and H' in the interaction
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representation and using the second-order perturbation theory. the time evolution of the density

operator can be shown to obey

d7 t =
d_‘t’ _ _/0 dt' [H'(1). [H'(t = t). (3(t) = 7cq)]] (2.18)

where the bar is now used to indicate an average over all identical molecules in the sample. Using
]

the eigenket basis of the static Hamiltonian Hy (i.e. Hy | «v) = a | o)), Redfield has obrained a set

of linear differential equations:
d . ) - - .
'('Eﬂ,m = }: exp [—L(u«'an' - w‘;m')t] Roaras [”;’m'(f) - ”dd'(x)} (2.19)

RF]

where wy = a—3{(h = 1). 74 (o) corresponds to the matrix elements 74,4 at thermal equilibrinmn.

and the terms R, g4 are elements of the Redfield relaxation supermatrix[2.7]. which are given by

Rnn'uu' = L"nn’dd’ + L"’du’an’ — Oy g’ Z L,“r’?dn — Ony Z ('.d'n"‘.-' (‘)-)-”J
“ 7

This treatment is closely related to the relaxation theory of Wangsuess and Bloch[2.6]. The

functions are farther simplified by examining. for example. Uy

- At .
Unasr = /0 dr exp(—iww ¢ 7)Coer s (7)
y {exp[i(ﬂ -3 -+ 3)At-71)] - l}

il — 3 — o +.9)At (2.21)

where Gagaw (7) denote correlation functions of a stationary random funcrion H'(#). which is by

definition independent of the origin of time. and

Gndn';’i’(r) = (!\"Lf’ (t) Hr"nd(t + T) (--)2)

where H,(t) = (o | H'(t) | #). Note that the integrand is large only if 7 < 7. the correlation time
for Guyarw (7). Thus, the upper limit (At) of the integral can be set to infinity. The bracket in the
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integrand is a constant (At > 7) and equal to L. [n this limit. ULq g0 = Jadar g (@aar ). the spectral

densities which are given by
’x‘ .
Jnisorar) = [ A exp(=icser.r )G (7) (2.23)
and the relaxation matrix elements are now given by

Rnu’dd’ = 'lndu’d' ('-‘Ju’.i') + qurt’.'i' (“’-"nd) - On’.‘l’ Z '/-nf—-n (‘u.'-,n)
“~>

—ap I rarvi (Waar) (2.24)
Y

Because of the large heat capacity of the lattice relative to that of the nuclear spins. the lattice mayv
be considered at all times to be in thermal equilibrinm. while the time-varving spin states. in the
absence of a rf field. evolve to thermal equilibrinm because of the spin-lattice interactions. When
the exponential argument (w,o — way ) in Eq. (2.19) 1s significantly larger than the spin relaxation
rates. the exponential term oscillates rapidly in comparison with the slow variation in the density
matrix dne to relaxation. As a consequence. the impact of these terms becomes zero. The so-called

secular approximation (weow = wyy) effectively simplifies the equation of motion to

l ' - N
;'i;frf,,{,' = Z Roara [Fay(t) — &4 ()] (:

I~
(14
o
=

where the prime on the summation indicates that only terms that satisfy waar = wyy are kept. Now
the exponentials in front of those R,y in Eq. (2.19) are clearly secular. These R,,,s, parameters
control the spin-lattice relaxation and are associated with the diagonal elemenrts a,,. which specifv
the probabilities (£,) that spin states |) are occupied. The exponentials in front of R,z.4 are
also secular. These R,,,s parameters control the spin-spin relaxation. \When only spin-lattice

relaxation is considered, the important Redfield terms in the eigenbase representation are limited
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to the following two types:

Roass = 2. adad(‘-‘”’nd) - 2605 Z S sva (wra)
Rnnnu = =2 Z J'm-wt(w'wn) = - Z R".wxn (-2—)())
Y Ean Y £n

The H'(t) in Eq. (2.17) determines what is called the relaxation mechanism. The quadrupolar

Hamiltonian with an axially symmetric (5 = 0) electric field gradient tensor is given by

Hit) = 5= \/3/8(*qQ/ M) Tom, { D2, oS2(1)] = D2 o} (2.27)

my
where the time dependence arises via Euler angles (2 in the Wigner rotation matrices D7, ,(£2). and

T, . the spin operator in the laboratory frame, are given for a deuteron by

1 Y .
Top = %(:51;—1-)
Ty = %(1 I+ 1.17)
L. = < (17 (2.28)

When the cross products between spin Hamiltonian matrix elements of different my values can be
ignored (e.g. in liquids) where m is the projection index of a rank L (=2) interaction Hamiltonian.

the spectral densities of Eq. (2.23) becomes

Jasar iy (Was) =§ (‘—,‘%‘i)z:,m | Toang |3 | o |3 iy (wan) (2.29)

where
oy () =/0°°Gm(r]a—wrir (2.30)

with
G, (1) = ({ D2, o[82(8)] = D&, o} { D, ol02(t = 7)1 = D, o}) (2.31)
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It should be noted that the J,, (w) are quauntities that are obtained from experiments withont
reference to any molecular dynamics model. Now. Eq. (2.19) can be transformed back to the
Schrodinger representation:

{ )
oo (1) = [0, Ho| + 3 Rowvir (s (1) = aen ()] (

RicH

I
‘- O
>
N
—

The first term on the right-hand side describes spin precessions and is only important for spin-spin
relaxation. According to Redfield. the above equation is valid provided that the relaxation elements

are small in comparison to the inverse correlation time 7,”! of the thermal motion. i.e.

1
— > At> 7 (2.33)

er'.‘ﬂi" ‘
where A? represents the time interval over which the density matrix of the spin system has not

appreciably changed.

The following gives the application of the Redfield theory to a denteron with its quadrupolar monient
experiencing a fluctuating electric field gradient owing to molecular motions in an anisotropie Hquid
crvstal. As in Fig. 2.1, H; # (. this static average of quadrupolae iuteraction is inchided in the
static Hamiltonian Hy. The density operator matrix for a deuteron spin is of the dimension 3 x 3
and the corresponding Redfield relaxation supermatrix has the dimension of 3% x 3%. \When ounly
muclear spin-lattice relaxation is considered. the spin precession termi in Eq. (2.32) iy ser to zero

and the diagonal elements a,, (v = 1.2.3) satisfv

d
E;Pa(t) = Ray[Ps(t) — Py(x)] (2.34)
‘ Fel
where P, = P. P, = £, and Py = P_| are the populations in spin states |1). |0) and | — 1),

respectively (see Fig. 2.1), and Ryy = Raaup given in Eq. (2.26). R,y represents the trausition
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probability per second from the spin state .7 to the spin state o and R,5 = Ry,. Thus. unclear
spin-lattice relaxation involves transitions between nuciear states of different energies induced by
time-dependent spin interactions. Letting ?(t) be a vector with components P(t) — P(x). Eq.

(2.34) may be expressed in matrix form:
d F\ = -
— Pt)=RPF(t) (2.35)
dt
whose formal solution is simply given by
P (t) = exp[Rt] B(0) (2.36)

The matrix elements of R can now be obtained from Eqgs. (2.26) and (2.30). For instance. the

off-diagonal element K. is

Ry = 2Jy(wo)

_ I( ; ) S™ (L] Taamy 10) (L | Ty | 0)" oy (o) (2.37)
my

where wy = w4 and the Hamiltonian matrix element is non-zero only if mny = 1. i.e.

L
(L T, 1 0) = ——= {2.38)

V2
Hence. Ry, = KgJi(wo) with Ky = (372/2)(e*qQ/h)?. Similarly. the diagonal elements can he

obtained. e.g.

3
Ru = 2Ju(0) =2 Joipilws)

+=1

= 1\‘Q [—_/l (w’g) - 2-}’2(2«.‘4’())} (359)
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where wy = 2wy and the Redfield relaxation matrix in Eq. (2.35) 15

=Ji(wa) = 2S2(2w0)  Ji(wo) 2.J2(20)
R = I\rQ J[ (w‘()} _2'11 (\4)()) '/l (w’()) (‘)'u))
2.J5(2u) Jy(wp) —Jy(wy) = 2J2(2w0)

Now R may be diagonalized through a similarity transformation and Eq. (2.36) can be expressed

in terms of linear combinations of the eigenstate population £,.

Pi(t) + Py(t) + P_ (1) 1 0 0
P(t) = P.((t) = | 0 exp(—t/T\z) 0
=Py (t) +2F(t) — P_((t) 0 0 exp (—t/Tq)

P(0) + Py(0) + P_,(0)
X Pi0) = P_,(0) (2.-H1)
—P(0) + 2P (0) — P_,(0)
where the denteron spin-lattice relaxation times 1z and T are for relaxation of the Zeeman and

quadrupolar orders. respectively.

T = Kol/i(wn) + 11(2w0))

Tl_Ql = 3.[\’(1) J[ (WO) (..’4.2)

[n the above equations. wg is assumed to be vanishing small. otherwise one needs to replace J,, (r1wy)
by % [Sin(tnwo = wq) + Jin(1wo + wg)][2.8]. where wq is shown in Fig. 2.1. In alipned liquid crystal
samples. both Tz and T\ can be simultaneously measured using the modified Jeener-Broekaert

pulse sequence 905 — 7 — 437 — t — 457 [2.9][see Section 2.7].



The applicable terms of spin-spin relaxation in the present stndy are the off-diagonal elements
7,5 of the density operator matrix. Suppose a selective excitation experiment is considered nsing

90° — 7 — 180° spin echo sequence with the 90° pulse selectively irradiating the 1 — 2 ({1) — 10))

transition at wo—wq (see Fig. 2.1). The single transition (or fictitious spin-+) operators may be nsed

2
in the eigenbase of Ho[2.10]. The complete set of single transition operators for a denteron2.11]

. . . . . (12)
is represented by the nine generalized Pauli spin matrices. For example. the operator [_ ' =

1%+ {1 gives

010
" =1000 (2.43)
0 0 0

o 2 12 - L
and the transverse magnetization (./(.l )) = Tr(rr[(, )) = ay,. From Eq. (2.32). the following is

obtained:

74 .
e = [7. Holyy + Z Riss [030(t) = a5 ()]
’ Jd’
= —iwpon + Rop [ow — o(X)] + Rins (02 — dus(x)] (2.44)

where other terms in the double sum involve zero Rs. Since the other component of the doublet is

not irradiated. gy = ay3(<) = 0 and the selective spin-spin relaxation rate is

o . [3 3 _
[2 = —Rpyp = -I\Q [—)JO(O) + ;-ll(u—’n) + Sy (2w) (2.45)

[t is noted that the 180° pulse in the selective spin echo experiment reverses dephasing from both

magnetic field inhomogeneities and a distribution of the order parameter{2.12].

2.5 *H NMR in Liquid Crystals
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NMR is one of many techniques emploved in the experimental investigation of liquid crvstals. Re-
cently internal dvnamics of mesogenic molecules have attracted nmceh efforts: both experimental
and theoretical studies have been carried ont. Experimentally, deuterium NMR can be used to
probe relations among the NMR observables. The measurements usually vield parameters that are
averages over both internal and external molecular motions. The spectroscopic rimescale for *H
NMR. 7, = 3 x 107%. is long enough to render appreciable motional-averaging due ro molecenlar
motions. Thus NMR occenpies a unique place among spectroscopic techniques. The slow motions.
which have correlation time 7. > 7,. have negligible infinence on the spectrum of liquid crystals.
The fast motions. i.e.. 7. <€ 7,. have a large influence on the spectrum due to motion-averaging
of spin interaction over fast motions. The site specificity of deuterons is often evident in the *H
NAMR spectrnm. and the thermally driven molecular motion can be snudied by spin relaxation time

IHeasirenents.

2.6 Apparatus

The home-built pulse NMR spectrometer nnst transmit an rf pulse to a sample and receive its
resulting response. A large sensitivity scale should be taken into account. For example. the rf
pulse transmitted to the sample is relatively large. but the resulting response from the sample is
quite small. Thus. the spectrometer must work in such a way that it protects the seunsitive parts of
the spectrometer which are used to detect weak signals from the sample. while large r f pulses are
being sent to the sample. The spectrometer is conutrolled. or activated. by signals sent from a pulse
programmer controlled by the GE 1280 computer. A block diagram of the spectrometer is shown

in Fig. 2.3.
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Frequency Syuthesizer

The frequency svnthesizer generates two initial radio frequency (rf) signals: Oue is the intermedi-
ate frequency ([ F) signal with a frequency of the Larmor frequency plus 30MHz. and the other is a
L0MHz signal whose frequency is multiplied by three to provide a reference signal for the receiver.
The IF frequency can range from 0.1 to 160 MHz. This frequency is set at the value of the Larmor
frequency of the nuclear moment being studied plus 30MHz aud is expressed as vy + 30MHz. This
intermediate frequency ([ F') is chosen because many of the spectrometer’s components operate at
a frequency of 30MHz. [n particular. manipulation of rf phases is done at 30MHz. lt will be
seen later that the combination of vy + 30MHz and 30MHz signals in the spectrometer produces an

appropriate signal at the Larmor frequency. which is sent to the sample.

0° Power Splitter
The power splitter splits the 19 + 30MHz frequency into two signals with the same frequency and
phase as the incoming sigual. One of them is carried to the single sideband mixer. while the other

voes to the receiver. Both components are discussed below.

Frequency Tripler

The L0MHz signal from the frequency synthesizer enters the frequency tripler to produce a 30MHz
signal. The 10 MHz signal which enters the tripler. is initially sent throngh a 0° power splitter. One
of these split signals is then passed through a frequency doubler to give a signal with a frequency
of 20 MHz. This signal is sent through a 20 MHz filter in order to remove unwanted frequencies
produced by the frequency doubler. The resulting signal, along with the other 10 MHz signal from
the power splitter. is fed into a double-balanced mixer to produce a signal with a frequency of 30
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MHz. Since the mixer also produces the difference in the two signals (20 MHz—10 MHz) as well
as leakages from the input signals (10 MHz and 20 MHz). a 30 MHz filter is used to remove those
frequencies other thau the 30 MHz. The 30 MHz continuous signal from the frequency tripler enters
the four-phase modulator. or shifter. Since the other input signals for the four-phase modulator

come from the pulse expander/driver. it is discussed as follows.

Pulse Expauder/Driver

The computer program of the spectrometer controls the phase of the r f pulses which will be sent
to the sample. The four-phase modulator generates four phases. which are 0°, 90°. 180° and 270°.
The phase chosen for the rf pulse sent to the sample determines the direction in which the torgue
will rotate the total magnetization (M) of the sample. The signals from the computer’s pulse pro-
srammer are not the actual rf pulses sent to sample. but merely determine which phase channel
is activated in the spectrometer to give an rf pulse of a given pulse duration. The computer also
controls timing of the spectrometer functions. triggering certain components at appropriate times.
Since the signals from the pulse programmer do not have the power required to drive the compo-
nents of the spectrometer. the pulse expander/driver is used to increase their power such that they

will be capable of driving the spectrometer’s components.

Four-Phase Modulator

The four-phase modulator has four different chaunels which generate r f signals of different phases
(0°. 90°. 180°, 270°) at 30MHz. The 30 MHz input signal is first amplified. and then split by
a 0° power splitter into two output signals. Oune of these two signals is fed to the phase shifter
which allows precise phase adjustment to provide the reference signal for the receiver. The other
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signal is again split into two signals by a 90° power splitter. The frequency of two signals remains
unchanged. but their phases become 0° and 90°. Both signals are fed into 180° power splitters.
The input signal with 0° phase is split into two signals with phases of 0° and 180°. while the 90°
sigmal is split into two signals with phases of 90° and 270° with respect to the 30MHz signal nsed
for the reference phase of the receiver. Each signal then passes through circuirry which allows small
adjustment of the phase to produce the precise phase required for each signal. It then enters an
electric attenuator for the precise adjustment of its amplitude. These signals are continuous sinu-
soidal signals and have identical amplitudes and precise rf phases. The rf pulses are accomplished
by feeding the continnous rf signals into four double-balanced mixers. each of which is connected
to one of the channels (0. L. 2. or 3) from the pulse expander/driver. A gating signal received from
the pulse expander can trigger (or turn on) oue of the mixers. which will allow the signal with the
desired phase to pass through the circuitry at the proper time for a duration of the gating signal.
From here. all of the rf pulse signals enter a 0° power combiner. This combines all the signals so
that they leave the four-phase modulator as a single output. The output is amplified and fed into

another electronic attenuator for further adjnstment of the r f amplitude.

In principle. the dials ou the front panel of the four-phase modulator allow independeut adjustiment
of the amplitudes and phases of the four r f channels. However. it is found that adjustment of either
the phase or the amplitude of a 7 f signal produces a change in the other parameter. Thus care is
required in making adjustments to the phases and amplitudes of the four rf channels such that the

90° pulse widths for these channels are precisely the same.

Single Sideband Mixer
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To minimize r f leakages. the output of the four-phase modulator is made to pass throngh another
rf gate. This produces a gated rf signal of a frequency 30MHz and a phase o, which may be
represented by 30MHz+o. The 30MHz+o signal and the IF from the syvnthesizer are then fed to
the single sideband mixer in order to convert the signal to the Larmor frequency . while retaining
the phase information. o. obtained from the four-phase modulator. Each of these signals is split by
two 90° power splitters. The gated 30MHz+o signal and the continuous ry+30MHz sigual. both
with 0° phase. are then sent to a mixer. Similarly. the corresponding signals of 90° phase are also
fed to another mixer. These mixers combine the two signals such that the frequencies are suunmed
and subtracted. Only the signals producing the difference in frequencies for the two pairs of signals
are desired and they are recombined in a combiner to give a gated signal of vg+o. This 1+ signal
leaves the single sideband mixer. then passes through a pre-amplifier to remove anv frequency dis-
tortion. This pre-amplifier has a narrow bandwidth about 1 and allows only the desired frequency

to pass on to the next componeunt. the RE Gate.

RE Garte

The RF gate removes the distortion at the edges of the rf square pulse which leaves the single
sideband mixer. The gate is triggered by the sum pulse (sum of gating sigmals from channel 0-
3) from the pulse expander/driver. The gate allows no signal from the single sideband mixer to
pass through until the sum pulse arrives and turus the gate on. Thus. the RE gate allows only the

desired square pulses to pass to the next component and any distortion in the pulse shape is removed.

Power Amplifier

The signal which leaves the RF Gate is of the correct phase and frequency to be sent to the sam-
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ple. However. its power is not great enongh to noticeably excite the sample. The desired power is

obtained by first feeding the rf pulses to a high power (ENI amplifier. 1 kW) power amplifier.

Sample Probe

The sample probe receives its input from the power amplifier and sends its output to the receiver.
The probe withstands the large input 7 f voltage and recovers quickly to sensitively detect the weak
nuclear. or FID, signal generated in the sample. Pairs of antiparallel diodes are nsed with the power
amplifier and the receiver. Since current can only How in one direction of the diodes and the two
diodes are antiparallel. it would appear that current may always How through this circuitry in eicher
direction. However. diodes are non-linear elements and do not conduct. or allow current flow. until
the barrier potential is overcome. Thus. a pair of crossed diodes in series cirenit allows current ro
pass in either direction if the incoming signals are large. If the signals are small. the cirenit aces
like a poor conductor and current does not pass throngh. Conversely. a pair of crossed diodes in
parallel with the circuitry. or parallel crossed diodes. performs the function of a shunt for large
signals and has no effects on small signals. Obviously. series crossed diode circuits may be used to
remove equipment which produces large signals from small signals which are being fed back. while
parallel crossed diode circuits may be used to protect equipment. which receives small signals. from

large signals.

The sample under study is put in the rf coil. The rf coil is connected with a capacitor to form
an LC. or inductor-capacitor, circuit tuned to the Larmor frequency. The series crossed diodes act
like a switch and are required to isolate the power amplifier from the output uuclear signals. The
parallel crossed diodes also act like a switch and are required to protect the sensitive receiver from
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the large input rf signals. Thus. the input rf signal from the power amplifier first passes throngh
a series crossed diode circuit. and then is fed to the sample probe. The output FID signal detected
from the sample can enter the receiver without being affected by a parallel crossed diode circuit to
ground just in front of the receiver. It is important that the cable connecting the series and parallel

crossed diodes circnits has a length equivalent to one quarter the transmitted wavelengeh.

According to the transmission theory. a line which has a length of one guarter of the transmitted

wavelength (A/4) acts like impedance transformer. The transformation is given by
” 72
ZxZo - lzl

where Z; =input impedance. Z, =output impedance and |Z|* =real squared resultant impedance.
The transformed impedance is a characteristic of the specific cable used. If the inpurt is shorted
(Z; = 0). then the output impedence becomes infinity(Z, — x). It can be seen that connecting
a A/4 line to a shorted input has the same effect as connecting nothing to the output. Le. it is
an open circuit. When the power amplifier is on and the rf signal is being sent to the probe. the
impedance of the parallel crossed diodes is very small (Z; approaches zero). The A/ line then
transforms this low input impedance to a very high ourput impedance and as a result. no eurrent
is allowed to pass through the A/ line to the receiver. Any current which may pass through the
line does not reach the receiver since the parallel crossed diode cirenitry acts as a shunt. Thus, the
sensitive receiver is protected from the damaging large rf signals used to excite the sample. When
the power amplifier is off. both the series and parallel crossed diodes do not conduet (Z; becomes
very large). Thus. the muclear signal emitted by the sample is not fed back to the amplifier and the

A/4 line transforms the very large impedance of the parallel crossed diodes to a very small ontput
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impedance at the NMR probe. or LC. circuit. The parallel crossed diodes then have little or no

effect on the nuclear signal and the receiver may detect the mclear signal.

Receiver

The nuclei in the sample induce an emf in the inductor of the LC circuit of the probe. This signal
from the probe is too small and is first amplified by pre-amplifiers in the receiver. In fact there are
three narrowband filters. each tuned to the Larmor frequency. put in between the pre-amplifiers.
The amplified signal now must be compared to the 30 MHz reference signal in order to obtain
informartion regarding the sample. [t has a frequency slightly different than the Lannor frequency
(vo £ Av). Now. one of the 19 + 30MHz signal from the power splitter is put into the receiver.
This signal is mixed with the signal from the sample (1 £ Ar). and the resultant NMR signal is
obviously 30MHz+Ar. which is now compared to the reference 30MHz signal using a (uadrature
detector. I[nside the quadrature detector. each signal is split into two signals. The phase of one of
the two reference signals is then shifted by 90°. Each of the two reference signals is then combined
with one of the nuclear signals to produce signals which have amplitudes and phases equivalent to
the differences in the amplitudes and phases of the reference and nuclear signals. The two ourpur
signals are in quadrature, i.e. their phases differ by 90°. The two signals which leave the receiver
are fed into a filter component which is composed of two filters. one for each of the signals from che

receiver. Those filters remove noise from the signals by narrowing the observation bandwidth.

Channel Cycler
After passing through the filters, the 0° and 90° quadrature outputs enter the channel cyveler. The

0° quadrature signal enters the A input of the cycler and the 90° quadrature signal enters the B
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input of the cycler. The channel cyeler has the ability to determine what are the A and B onrputs
to £o to the computer memories. The cyeler may either leave the inputs alone as outputs. or pur the
0°¢ quadrature signal in the B output and the 90° quadrature signal in the A output. The switching
between the two options occurs after every fourth acquisition. And the rf phase must be shifted by
90° every four scans so that no mixing of the real and imaginary signals oceurs in the computer. In
reality. the phase difference of the two channels in the receiver may deviate from the desired valne
of 90° and the gains of these channels may not be exactly the same. These problems are solved
by using phase cveling of both radiofrequency pulses and the receiver channels. The computer
controls the four-phase modulator to produce rf phases at 0°. 90°. 180°. 270°. Each channel in
the quadrature detector takes its turn in detecting the real and imaginary parts of the FID signals
as the receiver phase is cveled between 0° and 90°. As a result. the two channels equally share
any error in (uadrature or amplification. Then the computer collects the real and imaginary parts
of the FID signal and sums them in two separate memories (one acquires the signals from che A
outpnt and the other acquires the signals from the B output). Thus the imperfections in rf phases

and in the quadrature detector of the receiver are compensated[2.1:3-2.15].

The above home-built superheterodyvne coherent pilse NMR spectrometer has performed many den-
terium NMR experiments[2.16-2.19]. This home-buiit spectrometer was operated at either 15.1 MHz
using a Varian 15 electromagnet or at 46.05 MHz using a 7.1 Tesla Oxford [ustrmments supercon-
ducting magnet for deuterinum nuclei. The sample was placed in a NMR probe whose temperature
was regulated in the superconducting magnet by air flow with a Bruker BST-1000 temperature
controller. while in the electromagnet by an external oil bath circulator. The temperature gradient
across the sample was estimated to be better than 0.3 °C. The 7 /2 pulse width of about 3.8ps was
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prodiced by a ENI power amplifier. Pulse control and signal collection were executed by a General
Electric 1280 mini-computer{2.18, 2.19|. Fourier transformation and data processing were done by

Spectral Cale and Micro Cale Origin software on a IBM-PC computer.

2.7 Pulse Sequence

[n order to observe relaxation effects, the spin system has to be disturbed from equilibrinm. [n
N)MR this is done by applying an oscillating magnetic field for a short period. This oscillating feld
carries a frequency at or near the Larmor frequency wg of the spiu. For all pulse sequences 8 evelops
phase cveling was used to minimize errors due to instrumental imperfections. The repetition times
were chosen to be at least 57 to ensure the sample had returned to equilibrinm before applving the
next pilse trian. Modified Jeener Broekaert pulse sequence, the so called broadband J-B (Wim-
peris) sequence[2.20-2.22]. with phase cycling was used to measure the Zeeman and quadrupolar

spin-lattice relaxation rates. See below and Tables 2.1 and 2.2.

Jeener Broekaert sequence (¢ > 57Y)

90g, — 7 —4dq, — 7 — g, — t — Ay, — t—

The first three pulses in this pulse sequence[2.9] allows the creation of “spin alignment” and the
observation of a stimulated echo[2.23] for a spin-1 system. Each deuteron gives rise to a donbler
due to incomplete averaging of the quadrupole coupling. The intensities of the two lines of this

doublet. named 'L" and "H'. depend on the time 7, as

M+ My x C+exp(—n/T\z) (2.46)
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My — M, x exp(=72/To) (2.17)

where C is the constant related to the equilibrium magnetization (\\,). 7 is chosen to maximize

the quadrupolar order for a particular doublet splitting.

TABLE 2.1 TABLE 2.2
J-B Sequence with Phase-cycling Broadband J-B Sequence with Phase-cycling
Receiver receiver

o1 o2 o3 AquT o5 AquT Phase(*) o o2 Gy 93 on AquT o4 Aqu T Phase(*)
X ¥y X = 0 X -y v y X - t)
-y X y - 90 -y -X X X y - ")
X ¥ -X 0 X -y A v -X - ]
-y X -y - 40 -V -X X X -V - 90

¥y - 90 ¥y - 90

X - ] X - D]

-y - 90 -y - )

-X - 0 -X - 1]

-X - 0 -X - 0

-y - 90 -y - B

X - 0 X - 3]

¥ - 90 ¥ - 9}
oy - i Xy ¥y - 90
-y -X -X - 0 -y X -X -X -X - 1]
X -y ¥ - 90 X A - %
-y -X X - 0 -y X X =X X - 0]

{*) +/- during aquisition {Aqu) denotes addition to or subtraction of the signal from computer mewmory: cveling of

the receiver phase minimized the quadrature iinages.
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The modified J-B pulse sequence (Table 2.1) has inchuded an additional monitoring 455, pulse to
minimize anyv long-term instability of the spectrometer. This pulse was phase cveled to have a net
effect of subtracting the equilibrium magnetization (V) signal from the J-B signal. making ¢ =0
in the Eq. (2.46). After the spin syvstem has been put in a non-equilibrinm state by the first rwo
pulses of the sequence. the relaxation to its equilibrium state is monitored by a detecrion pulse ar

ZArLONs timne 7.

Modified Broadband Jeener Broekaert (¢ > 57)

904, — 27y — 67.3g, — 27 — 43¢, — 71 —ADg, — T2 — D¢, =t — D¢, — 1 —
1 2 3 1 d (3

The broadband J-B sequence can also be used to simultaneously measure 777 and 1\ with the ap-
propriate phase-cyeling of radiofrequency and receiver phases [Table 2.2]. This avoids the necessity
of martching the pulse separation between the first two pulses in the traditional J-B method to the

quadrupolar splitting of the observed deuteron.

Modified Carr-Purcell

90¢, — 7 — 90g, — (27 ~ 90g, ) — #—

This echo pulse train. with an eight-step phase cyeling scheme was used to measure 75,{2.24.2.25].
Free induction decays (FIDs) after the last 90° pulse for different n were recorded with quadratnre

detection and then fast Fourier-transformed to obtain deuterium NMR spectra. In measuring 75 at
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16.05 MHz. FID signals were averaged over 24 scans or less with a repetition time of 100 ms. Each
T, experiment consisted of 32 different n(=1.1.8- - -.128) values and sample heating was found to
be minimal(< 0.3°). A plot of the peak intensity of a quadrupolar doublet versus 2n7m was used to
determine T5. It has been shown that{2.25] the measured T, depends on the pulse spacing. Two
limiting cases produce different linear combinations of spectral densities Jo(0). .Ji(wq) and Ji(2wy).
where wy/27 = 16.05 MHz. When the pulse spacing 7 is small such that 7 < 1/vg with 2uy
being the quadrupolar splitting of the deuteron in measurement. the denteron spin relaxes as if the
splitting is absent. This limit is not experimentally feasible because of rather large quadrupolar
splittings in liquid crystals and the the problem of over-heating the sample by the rf pulse train.
The another limit corresponds to 7 > 1/vg when the two lines of the doublet relax independently

and the deuteron spin-spin relaxation rate 1/7, is given in Eq. (2.15).
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Chapter 3

Theory: Orientational Order

For a mesophase of cvlindrical svmmetry formed by symmetric and elongated objects. the orienta-

tional order was defined by Tsvetkov(3.1] 50 years ago. ie..
S =< (3cos*3-1)/2> (3.1)

where .7 is the angle between the molecular and mesophase svmmetry axes. and the angular brackets
indicate a statistical average. This order parameter has the nice feature of being zero when the
molecular axes are randomly distributed with respect to the laboratory axes. i.e.. when the phase
is an isotropic liquid. It also becomes unity when the molecular axes are completely aligned wich

respect to the director or a laboratory direction.

More generally, the purely orientational distribution can be expanded using the Wigner rotation

matrices

P) = > prmnDE,.(82) (3.2)

L.n.n

where €2 = («.4.v). the Euler angles. specify the orientation of a molecule with respect to the
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director.

3.1 Cvlindrical Molecules in Uniaxial Phase

To treat samples with nniaxial phases(ie.. nematics or smectic A). the assumption is char che
axis of the evlindrical svmmetry(the director) is along the laboratory Z; axis. Thus no observable
property will change by rotating the sample about the Z; axis. The probability for a molecule to
have orientation (ev. 3. ~) should be the same whatever the ev. since the angle o describes a rotation
around the Z; axis. Also for the molecules possessing uniaxial symmetry. the distribution should

not depend on the angle v which involves a rotation around the molecular =y, axis. so that
P{ee. 3.7) x P(,9) (3.3)

with the normalization condition

l/‘T sin 3P ()d3 = 1 (3.1)

0

In identifyving a set of parameters that we can use in lieu of P(.4). the distribution is expanded in
a basis set of orthogonal functions. Such a set is that of the Legendre polvuomials £ (cos . 3). for
which

2

/ ‘ sin JPp (cos I Pyv{cos 3)dT =

—0r v 3.5
0 5L + 1O (3.5)

Clearly these functions correspond to a special subset of the Wigner rotation matrices used in the

general expansion. The explicit forms of the first few Legendre polvnomials are

Py(cos 3)

I

Pi(cos3) = cos3



Py(cos.3) = (3cos?3—1)/2
Ps(cos3) = (5cos’ 3 — 3cos.d)/2

Pi(cos3) = (35cost 3 —30cos® .3+ 3)/8 (3.6)

Legendre polyvnomials are either even functions or odd functions of cos.3. corresponding to either

the rank L is even or odd. i.e..

Pr(cos 3) = (=) PLleos(m — 9)] (3.7)

If the molecules are unable to distinguish head from tail in a macroscopic sample. this corresponds
to the experimental finding that on turning the aligned sample upside down no observable property
changes. One has

P(3) = P(x - .9) (3.8)
Thus only even L terms need to be retained when expanding the distribution £(.3)

Pleos 3) = > prPr(cos3) L even (3.9)
L =0

The coefficient pg is easily fonnd as

2L + 1
e =—5—(FL) (3-10)
with
(P) = / " sin 3P, (cos 3)P(3)d3 (3.11)
0

[t is apparent that the knowledge of the infinite set of (£,) completely defines the distribution and

that the averages of Legendre polynomials (FL) represent a set of orientational order parameters.

[
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aud the number of independent quantities is correspondingly reduced.

When we choose the molecular frame with three (", syvmmetry axes. turning the biaxial particle
upside down does not change anyvthing. We need to retain the functions that are invariant under
the transformation .3 — (7 — .3). In this operation. the spherical harmonics D, (3. ~) have the
following relation

Dg(#~) = (=)EDg (7 — 3.4) (3.17)

Therefore. we only need to expand in Wigner rotation matrices of even rank L. The first few are

Dyy(3.~) = 1
Di(3.v) = Py(cos i)

Y ) 3 . )
3.~ gsm‘z Jexp(Fi2~)

-
o
1]
o
—
e
2
=
Il

Djo(3.v) = Pylcos.3)

3 J ) N | .
Dg-:z(-i ~) = V10 (l-l(‘()s(‘ 5~ Ldcost 5 T 3cos” ;) sl” exp(Fi2~)
4 /= v - .
Dy_((3.~) = 0 cos’ = sin ;e.\'p(IFa-l‘a) (3.18)

The rank L order parameters can be calenlated from
<DE > = b / d$) P()DE (1) (3.19)

At second rank level. L = 2. and in the general case of biaxial molecules. there are at most five
independent order parameters < D3 >. which conld be chosen as the independent components of

Cartesian ordering matrix S first introduced by Saupe(3.2]



K - 3 . e 2. - : .
< 3sin® Jeos? ¥y — % > <sin® Jceosvsiny > < sindceos.Jeos >

S=1] <sin®Jeosvsiny > < 3sin? Isin®~ -1 > <sindcos Isiny > (3.20)

-

< sindcosdeos v > < sin Jcos . Isiny > <Zcostd-1i>
This order matrix is traceless and symmetric. Also it can be easily converted from the Saupe to

the Wigner rotation matrix form[3.3].

BRe < Dty > -1 < D3 > —\/glm < D, > _\/gR" < Dj, >
v B . Iy . . 3 . ) .
S = —\/glm < Di, > —%_%"Rr' < D, > —% < D3, > \/glm < Di, > (3.21)
—\/gRr' < D§ > \/glm < D3 > < D§, >

We call the ordering martrix frame the principal axis system (PAS) of S when 5 is diagonal. The
number of independent parameters is reduced to 2 in the PAS. < D3, >. and Re < Dj, >. or 5...
Zuld b‘_f.‘l‘ - b'.,”,.

Sie = Sy = V6Re < D3, > and S.. =< D3 > (3.22)

While < D2, > measures the alignment of the molecular 2y, axis with respect to the director as in
the case of cvlindrical molecules. the non-zero Re < D, > is caused by the molecular biaxiality.
It provides the difference in ordering of the xy, and y,; axes for the molecule in the ligquid crvstal
solvent. When the molecules have the cylindrical symmetry. then biaxiality parameter S, -5, = (0
and only one independent order parameter survives, ie.. S.. =< D% >=< (3cos? 3= 1)/2 >. the
samte as described by Eq. (3.1). The molecular biaxiality may be due to either the rigid non-
cvlindrical part of molecules or the flexible parts of chain which are attached to the aromatic core.

These order parameters < D2, > and < D3, > are very important in both modelling the quadrnpo-



lar splittings and spectral density calculations using theoretical models.

The guadrupolar splittiug Awy of the Cy deuteron. whose C — D bond is fixed in the molecular

(PAS) frame. is given by(y = 0)
Dy = =200 [ (8he) < Py > +5(Ser = Spy)(c0s Oy, — 050 3.23
Yo = 75 00(0sz) < P > 72( rr = Syy)(cos™ Oy, — cos™ by, (3.23)

where @y, and 6, are angles between the C-D bond (cthe principal b axis of the EFG rensor) and
the molecular xy and yyy axes. respectively. and 8,. = 0 is defined as the angle between the C-D

. . . - - 0) .
boud and the molecular 3y axis. For the denteron at methine site of 50.7 and MBBA. the ‘h(,b) is

raken as 185kHz. The above equation can be expressed in terms of the polar angle ¢ and azimuthal

angle o of the " — D bond in the PAS of §
_ 3 o L. N P
Dy = - 000) < Py > +;(.5u = Syy)sinT deos 20 (3.24)

If 5 # 0. the quadrupolar splitting is given by[3.4]

3 , 1, ,
Av = ——7)-(1,,,,5::{[(150(0,,:) + ;1/(('05' 0. — cos” 0,.)]
1 * v ) Y
-i-;(b” - .S,,y)[(:()s' Opr — cos™ Oy,
+f-3’((3052 ur — COS* Op — 08”0, + cos®0,,)]} (:3.25)

This is used for a C-D bond on a phenyl ring. Eqs. (3.24)-(3.23) are appropriate when the C-D

boud does not participate in internal motions.

3.3 Molecular Field Theory of Flexible Molecules: The AP method
The constituent molecules of liquid crystals usually contain an aromatic core and one or more fex-
ible side chains. NMR studies of order parameter profiles in these molecules have revealed that
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the ordering of their rigid segments varies with respect to each other and with temperature. Since
the flexible chains not only occupy space but also contribute to the anisotropic potential and in-
teractions. thev are partially respounsible for molecular ordering in liquid crystals. [n attempting to
interpret the deuterinm quadrupolar splittings Aw;. which are both temperature dependent and sire
dependent. it is necessary to assume that molecular couformation is independent of molecular ori-
entation. thereby separating the internal and overall motions. The additive potential (AP) method
was first nsed by Marcelja[3.5] to explicitly take the alkyl chain into account in calenlating physical
properties of liquid crystals. and extended subsequently by Emslev. Luckhurst and Stockley(3.6].
Due to internal degrees of freedom. the chain therefore does not always exist in an all-trans com-
formation. An additional average is needed for flexible molecules because different couformational
states are available to the molecules. In doing so. it is necessary to determine all of the allowed
conformations and their relative weights pe,(n). the equilibrium probability for finding the molecnle
in the nth conformation. It is assumed that each molecular conformer is a perfect rigid entity. To do
the conformational average, it requires all configuratious generated by the rotational isomeric state
(RIS) model of Flory([3.7]. In this model. the bond lengths are taken to be fixed and the only angle
that is allowed to vary is the bond rotation angle . Rotation abont each carbon-carbon (C-C)
bond in the chain mayv take one of the three dihedral angles (0 = 0. £112°). These correspond to
the trans (t) and two symmetric gauche (g=) states. [n the RIS model. ouly states in the potenrial
minima are assumed to be appreciably populated. This is due to the very steep potential barriers
between these minima. The gauche states have higher internal energy in comparison to that of the
trans state by an amount E,,. When the chain contains a ¢ ¢~ or a ¢ ¢~ linkage. an additional
internal energy Ey=,= may be added because these linkages bring parts of the chain near to one
another, the so-called "pentane effect”. The E,; values reported for gaseous alkanes lie between 2.1
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and 3.2 k.J/mol. while the E =,= value is about three times larger{3.7]. For 60CB and HATG. the
() — C bond is fixed and each C; — C;_; bond (i=1.---.5) can take three positions correspouding to

the potential minima. and the number of configurations is 3%=2-3.

[n modeling the quadrupolar splittings (Aw,) for the methyiene C, denterons. one nses

()

Ay, = :—)-qﬁf)n[’-_,(cos (-))S,(f)[, (3.26)

where qﬁf)[) = (e%qQ/1); is the quadrupolar coupling constants for C; deuterons and is taken as 165
kHz and 185 kHz for methvlene and ring deuterons. respectively. © is the angle between the director
and the external magnetic field. @ = 0 for the 50.7. 60CB aud MBBA liquid crvstals samples

where director is aligned along the external magnetic field. © = 90° for the colnmunar HAT6 sample

[

where the director is perpendicular to the external field. [n this case. there 1s a factor 5 produced
by the term £, (cos ©). .5( -p 1s a weighted average of the segmental order parameter. Suppose that
ST, represents an order parameter tensor which describes the orientational order of the nrh rigid
conformer. Then in the principle axis (X, Y. Z) frame of the nuclear quadrupolar interaction. one
has

()

’ ’, Un 7L, RO
5t = ¥l | 535 + L3 - 5 (327)

where the sum is over all possible configurations in the chain. the C-D bond is taken to be along
the axis Z (i.e.. qr [) = q‘(zl)l =17} 27 ) 7). the asvmmetry parameter of the electric field gradient. is
defined by

(Izz
and pe,(7) is the equilibrium probability which specifies fraction of molecules in the rth conforma-

tion. For the methylene deuterons, = 0 is a very good approximation. # is taken as 0.064 for the
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where the sum over J is to add together interaction tensors of all rigid subunits. In the jth segmenral
axis frame. €}, represents the local interaction of the jth rigid sub-unit and is assumed to be
independent of the conformation. Let €} and €5 represent the interaction tensors of aromatic core
and of each C-C' segment. respectively. If both of them are assumed to have cyvlindrical svnimetry.
the nunique compouents of ¢§, and €5, are X, and X respectively. In this simplification. the
number of interaction parameters required to caleulate the molecular interaction tensor is redneed
to 2. The segmental interaction tensors €, (1) vary with conformation becanse their components

need to be expressed in a common molecular frame. This dependence is expressed in

¢L‘-';,m(”) = Z D;_)r:_r(“";lJ(:fz,r (55.’)

g

where D7, (<) is a second-rank Wigner rotation matrix. and « denotes the set of Euler angles
needed to transform between axes in the jth segment and the common molecular frame. The p,, (1)
Is given by

Peq(rt) = exp[=Uine(n) /kpT)Qn/Z (3.33)

where (J,. the orientational partition function of conformartion . is
Q. = /v:\:p[—('}r,(n.w')/kHT}d.u (3.34)
and Z. the conformation-orientational partition function. is
Z = ’Zl exp{— Ut (11)/ksT]Qn (3.35)

Now the order parameter for a particular direction & in the conforiner n (in Eq. (3.27)) may be

evaluated in the principal (z.y. ) frame of U, (1. w) according to

‘tlyY:

Siit = 3 Sy cos® Oy (3.36)
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where 07 denote augles for the (', =2 H bond between the k(= X.Y. Z) axis and a principal axis
a(= r.y.z). S, is the principal components of the Saupe ordering matrix for the conformer n.

may be written as[3.9]

st = % (\/(;<rl§_2 Ccos 21.»’>" - <(i;z).u>")
gn = _% (\/6 <dﬁ'._, Cos '3!.-'>n + <d;-;.u>n)

uu

<2

sto= (dg.(,)n (3.37)

In order to evaluate the averages of the reduced rotation matrices. it is advantageons to describe the
director orientation in the principal axis svstem of U, (n.w). Hence. the construeted interaction
“n

tensor L (1e.w) is first diagonalized to obtain the interaction tensor components XJ, and Xj _,

for the conformer n. In the principal frame
Uvse(n ) = = [ X33 o(0) + 2X783 ,(8) cos 2] (3.38)

Using a, = X7, /kgT and b, = 2X,/kgT. the order parameters of the nth conformer can be
8 2.0 12/ 8B I

evaluated according to[3.9]

<d§’0> = 27 / Py(cos 0) lo[bnds ,(8)] explands o(0)] sin 00/ Q,,
n 0 2 .
<d5'2 cos 21:l'> = 2r /ff di 2(0) 11 [bad ,(0)] expland] o(8)] sin 840/, (3.39)
n Q
and Q,, becomes
Qn =27 /0 Io[bndi 5 (0)] expland o(0)] sin 0d0 (3.-40)

and [, (r). the nth order modified Bessel function is given by

1 T
In(z) = ;/0 cos ng explz cos ]d (3.41)
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Finallv. using Eq. (3.33) and Egs. (3.36)-(3.41) in Eq. (3.27). the AP method allows the order

parameter profiles to be modeled along flexible chains of nematogens and some smectogens.

3.4 Applications

The AP method has been applied to study the orientational order profiles in fexible mesogens of
6OCB. MBBA and HAT6. To construct U, (7. «). one needs to know the geometry of the chain.
Both 60CB and HAT6 have alkvloxy chain(s). [t is known that the :COC or :CCC which specifies
the direction of the chain relative to the molecular core plavs an important role in the observed
variations of segmental order and spin relaxation profiles. The molecular core. which includes the
first C,, — O bond in the chain. is assumed to be a rigid subunit and has cylindrical symmetry with
an interaction parameter .X,. This simplification is based on the picture that the core’s rotation
around its symmetry axis is rather fast. As an approximation. the bond interaction parameter of
() — C; bond is taken to be identical to those of C' — C bouds. te. X, = X,.. and the C =* H
seamnents were included in the C — C bonds (i.e.. nnited atoms). According to the model prediction
of AP method[3.6,3.10]. the ratio A, = ../ X, should be independent of temperature. Due to the
different molecular shapes of rod-like and disk-like molecules. different procedures are needed to

process them seperately.

3.1.1 Calamitic Mesogens: 60CB and MBBA
For 6OCB. the C,, — O boud may be taken to be along the bipheny] para axis. while in MBBA.

the Cr — Cy bond is taken parallel to the para axis of the aniline ring. The interaction tensor €2



for this rod-shaped core is written as

|
-3 0 0
X. 0 _% 0 {3.-12)
0 0 1

Since both rod-like core and C = C segment can be regarded as cigar shaped rigid subunirs. the

interaction tensor €5, is also given by

L
-+ 0 0
Xee 0 -1 0 (:3.-13)
0 0 1

The following geometry is uwsed: :CCC = 113.5°. :CCH = 107.5°. {:HCH = 113.6°. :0CC =
LCCC[3.10]. and £COC = 126.4°(3.11.3.12]. The O — C bond was fixed on the ring plane to give
243 conformations in the hexvloxy chain. For MBBA. the first dihedral angle in the bueyl chain is
allowed to sample all three RIS giving 27 different conformations. In a local (1. 2. 3) frame where 3
axis is along the C; — C; - bond. the 1 axis is in the plane bisecting the HCH angle. and the 2 axis

is chosen to complete a right-handed Cartesian coordinate system. the C =2 H vector is given by

oD = A {3.-11)

where b = sin{(ZHCH/2). ¢ = cos(LCCH) and a = /1 — b2 — 2. For 60CB. a common molecular
framne is picked with the z;; axis along the para axis of the core. the ry; axis Iving on the C,, — O =,
plane[see Figure 9.2); while for MBBA. the zj, axis is along the C,, — C| bond and the r), axis
Iving on this ring plane. Then the orientation of the C; —* H vector in the common molecular frame
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is given by

ﬁ.\, _? ) -
Vep =Ry Rz B,V ep (3.13)

where R;_;, is a rotation matrix that transforms between the jth local and the (5 — Ljth local
frame, which consists of two consecutive rotations. One is the rotation around local y; by angle
180° — 2CC'C. which brings the z; axis to coincide with the z;_, axis: the other is the rotation around
local =, axis by angle 180° — o. which brings r; axis to coincide with the »; | axis. Finally. the

rotation matrix can be expressed as

cos Jjcosv;  osiny;  -singd; cos
Rio1; =] -cosidsin v cosy; o osingd;sin v (3.-16)

sin.J, 0 Cos.;

where 3; = 180° — 2C'CC and ~; = 180° — . o is one of the three dibedral angles correspouding to

the potential minima (0.£112°). To obtain the direction cosine in Eq. (3.30). it is necessary to get
the '), —* H vector in the principal frame of the total interaction tensor

M

=7 i 0 (=
Ven (3.17)

Vien =Ry
where the rotation matrix R, s contains the eigenvectors (7>) obtained in diagonalizing the total

n

interaction tensor ¢, for each conformer. The € is obtained by

ad adttj-1j 2

€ad = €ag T Z Ryg-- Ry e PR R.!, (3.48)
1=2

This is the interaction tensor for the nth conformer and is a Cartesian tensor. Ounce it is diagonal-

ized. the Uer(n.w) can be obtained from Eq. (3.38). Note that Eq. (3.47) is also needed to find
M

the direction cosines (or €7.)) in Eq. (3.36) for modeling the ring denteron splitting using the V7.,

for the ring C-D bond. Eq. (3.27) is used for each of the two non-equivalent denterons in the riug.
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[t is necessary to explicitly consider ring rotations. i.e.. need ro average these splirtings due to the

rapid internal ring rotations.

3.4.2 Discotic Mesogens: HATG

The interaction tensor €% for this disk-shaped core can still be written as

-+ 0 0
-'\:a 0 '-% 0 (519}
0 0 1

Since the core is disk-liked and C — C segment is cigar-shaped. care is needed to distingnish one from
another. Two different signs were taken for the interaction tensors of these 2 different evlindrically

symmertric units. The interaction tensor for the rodlike (" — C segment is now given by

1
10 0

Xee | 0 % 0 (3.50)
00 —3

A scaled factor % was implemented in the above expression. The geometry for this molecule is set
the same as that of 60CB. A common molecular frame is picked with the 2y, axis perpendieniar
to the core plane (see Figure 1.5), and the ), axis on the plane bisecting two of the six peudent
chains. Here we construct the total interaction tensor for HATG by explicitly considering two
chains as shown. All the () — €} boud are fixed ou the ring (y,yy) plane. The C,, — O bonds are
included in the core when writing down the €2 ;; also included are the remaining four pendent chains.
Furthermore, the conformations of the two chosen chains are assumed to be identical and noun-

interacting. The local frames and the C —2 H vector V' ¢ are set as before. Now trausformations
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from the Lst local frame to the common molecular frame for the two pendant chains are different.

"

Hence. one has the following ¢

€ns = €ag + Rap i Ang Ry + By AL R\! 1 (3.51)
where
Avy =3 Ria- Ry e R R (3.52)
1=2

where Ry, , and R',,, are rotation matrices for the two chains which transform between their first
M1 ALl

local frames to the molecular frame. For obtaining the direction cosines in Eq. (3.36). we use again

— M - L
Viep=RyaRia- RV en (3.53)

Finally. for the aromatic denterons. a 7 value of 0.064 is assumed. and their splitting (in Eq. (3.26))

is caleulated nsing Eqs. (3.27). (3.36) and (3.47).
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Chapter 4

Theory: A Review of the Tarroni and

Zannoni Model

1.1 Iutroduction

Since its introduction by Debyve[4.1]. the rotational diffusion model has been widely nsed to describe
molecnlar reorientation. and its use in the interpretation of nuclear spin relaxation in isotropic li¢-
uids is well established[1.2]. More recently. rotational diffusion has been nsed extensively as a
model to account for the uuclear spin relaxation behavior in thermotropic lignid crystals. Each
molecule is characterized by a rotational diffusion tensor D. normally defined in a frame fixed on
the molecnle. The principal components of D are D,,. D,, and D... For a symmetric rotor re-
orienting in a uniaxial potential with rotational diffusion constants D., = D, # D... solitions
were first presented by Nordio and co-workers[4.3-1.4]. The Nordio model was used in numerons
experimental studies inclnding NMR. Freed and co-workers[4.5-4.6] subsequently developed a more
general and powerful ESR line shape simulation technique based on the numerical solution of the
stochastic Liouville equation. Nuclear spin relaxation in liquid crystals showing nematic and/or
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smectic A phases can usually be dealt with in a simpler fashion because the molecular reorientation
is fast on the NMR time scale. During the last couple of decades. a nnmber of models of increasing
complexity have been proposed by several groups. aud useful solutions have been provided to the
rotational diffusion equation with a variety of boundary conditionsf1.7-1.9]: e.g.. for the asymmetric
rotor (D,; # Dy, # D::) in a uniaxial potential[-1.10-1.14]. and also for the cylindrically symmerric

rotor{.15] and non-cvlindrically svinmetric rotor[4.16] in the biaxial phase.

There were some attempts to analyze the deuterium spin relaxation behavior of non-cvlindrically
symmetric molecules, e.g.. several asymmetric planar rotors. as rotational diffusion of a symmetric
top in a nniaxial potential[4.17-4.18]. but worries persisted that the less than perfect fits were cansed
by using this approximation. More recently. Bulthuis and Plomp[4.13] attempted to iuterpret re-
laxation data for perdeuterated toluene in Licristal Phase 5 in terms of rotational diffusion of an
asymietric top in a uniaxial potential. but good fits were not achieved. However. their solutions
to the rotational diffusion equation were obtained by truncating the Wigner basis set above rank 1.
and this number of terms might not be sufficient. The rigorous treatmnent of the asvmmetric rotor
has been published by Tarroni and Zannoni[4.1-4} (TZ model). which included terms up to rank 40
in the Wigner basis set. There is a recent report in which the TZ model was applied to study the
deuteron relaxation of a biaxial solute Fluorene-djy in the Licristal Phase 5[1.19]. At the rest part
of this chapter. a briefly theoretical review of TZ model is preseuted. followed by the application of

this model to various situations in the study-.

4.2 Correlation Functions
The rotational diffusional model assumes a stochastic Markov process{4.2. 1.3. 1.7] for molecular
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reorientation in which each molecule moves in time as a sequence of small angular steps cansed by
collisions with its neighboring molecules and under the infinence of an anisotropic potential sec up

by its neighbors. The orientational correlation function can be written as

GEE nt) = [ [ d2d2P(020) D (20)

X P(20]Q24) D (42) (4.1)

where n and 7 represent the projection index in the laboratory frame and the projection index in the
molecular frame. respectively. 2 = (. 3. +) denotes the Enler angles. P(§24]¢2¢) is the condirional
probability of finding a molecule at orientation (2 at time ¢ if the orientation of the molecnle was

(g at t = 0. and the equilibrium probability. £(£2) is given by the Boltzmann distribution:

P() =

exp[—L( ‘32/ (12)
| d2exp[—=t S!/A[] o

where £ is the Boltzmann constant and T is the temperature. (7(§2) is the porential of mean torque
acting on the molecule(-1.20]. and its symmetry is determined by the symmetry of the molecule
and that of the mesophase. In the long time limit. the orientational correlation function may be

noun-zero in an anisotropic medinm. and is given by

L - ; :
Gmn.m’n’ <D0n SZ > <D0u ( )> 0"10()7"’0 (1.5)
This long time plateau has to be substracted from GEE . (#) to ensure its decay to zero in equi-

librinm.

For cylindrical molecules in the uniaxial phase. the potential of mean torque is governed by the

angle only, 1.e. U(2) = U(f3). Here we deal with asymmetric molecules reorienting in a nniaxial
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phase. and the potential of mean torque depends on two Euler angles. i.e.. (7(82) = U(4.~){4.21].

Now the effective anisotropic potential U (§2) can be expanded in terms of Wigner matrices as

J
g ( Z a1 Dy, (3. 7) (4.4)

and the orientational order parameters. averages of the Wigner rotation matrices D (§2). are (see

Chapter 3)

(D&Y = [ d2P(3.%) DE(3.) (4.3)
If the molecular reorientation takes place through a sequence of small angular steps. the evolution
of the conditional probability P(£}]€2t) can be described[1.22} by a differential equation for the

rotational diffusion process as

30010 ()
of (Sd; o) _ S LoDy [L, + Ly (Ei—))] P(q]02t) (1.6)

ad

- . - ._>
where Ly(= L,.L,. or L.)is a component of a dimensionless angular momentum operaror L. and

D is a rotational diffusion tensor. Here we choose a molecule-fixed frame in which D is diagonal

D, 0 0 L+e 0 0
D=| o D, 0 |=0] 0 1-c 0 (L7)
0 0 D.. 0 0 n
where
-D:: + D Dx.: - D 2D~-
p= — B o= ———D D'W. n = ———D D (-1.8)
- rrt yy et vy

€ Is an asvinmetry parameter of the diffusion tensor. going from —1 to +1. » is the ratio berween
diffusion around =z, axis (spinning motion) and that of the z,, axis itself (tnmbling motion) ex-
pressed by p. In the cylindrical symmetry limit (p becomes D_, y becomes Dy/D_. and € reduces
to 0). the diffusion matrix is reduced to the Nordio’s notation.
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Now. back to the more general case with non-zero €. the Eq. (4.6) becomes

1aP(|2) L - v,
p ot - = (.l. -+ f) [Lt + L: ( r kT" )] F (SZ()ISZ?‘)
y L(€2
—(L +e) {L; +L, (L,, lfT))] P(Qg|28)
) L(€
—n [L; + L. (L; k(T))] P(8]02)
= T P(Q/02) (L.9)

where ? is the diffusion operator which. for the purpose of numerical calenlations. can be rewritten

using a unitary transformation as

}1 10)

where P (§2) is the equilibrinm distribution. the nobla operator V* = L2+ L2 +/;L and L. =L, +iL,
is the angular momentum step operator. When € = 0. the above operator [ is rhe same as that
used by Nordio and his co-workers. The diffusion equation in this symmetrized form is given by

(Qo|Q2) -
LOPEXI) _ )1 (1.11)
P ot

where

5.’.0|32t) = P_l/g(SZ)P(SZO|S.).t)Pl/2(SZO) (4.12)

is the symmetrized form of the conditional probability. Now the symmetrized diffusion equation is

easily solved using a mactrix representation in a basis of normalized Wigner matrices given by:

DL () = \/Jé *; lD,Lnn(sz) (4.13)
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[n particular.

P($2019) = 3 Crinn($2.t) D5, (2) (L.14)
Linn

where the expansion coeflicients. Cpp,p,, are evaluated by using the initial coudition P( %i00) =

d(£2 — €2y) to give

CrLmn(£20.0) = DE: (§20) (1.13)
By substituting Eq. (4.14) in Eq. (4.11)., multiplying both sides on the left by DL: (§2) and

integrating over ). a system of linear differential equations is obtained:

}I;C(t) = RC(#) (-1.16)

where
mn L
(R )L'n’Ln - /’ds Dnm'(sz}anm( )
[n solviug the above linear differential equations. a unitary eigenvector martrix .\’ which diagonal-

izes the self-adjoint diffusion matrix R™ should be introduced
Rm i:m — frn,:m (1 1-‘-)
where /" is a diagonal matrix that contains the eigenvalues of ™. The formal solution is
C™(t) = X™exp(tpr™)(X™)TC™(0) (-1.18)

Considering the matrix elements of X™ and substituting the zero time coefficients. we obtain

Crmp($o Z Z( " )sp.k exp(tprig)(. & )l'p K D;{:; (£29) (+.19)

K Jp

where A" is used to label the eigenvalues of the diffusional matrix. £”. Using the un-normalized

Wigner matrices here. the syminetrized conditional probability can be written as

P(|2t

= —ZZZ\/)/+1\/7I’+1( ) 1p

Kq Jp J'p'
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x exp(tprh ) (X7).ip.k D ($2) Dy (820) (1.20)

According to the asvmptotic condition.

lim P($2[82t) = P(52) (1.21)

t—c

all the exponentials in Eq. (20) decay to zero at infinite time except for the one corresponding

to the zero eigenvalue. 7S, The long time behavior of the symmetrized conditional probability is

obtained as

tlggp(szouzt) = P P'2(2)

= gi—g oo V2 V2 4+

.l!lpll \I"l pIII

X(-TU)J" " \ ),ru 7 [)D()p ( )DO e __()) (-1.22)
Eq. (4.1) is rewritten as

mnn’

GLU (1) = /dsz.]P'/‘-’(sz )DL ($3,)

x/riSZP'/"'(( (Q]2t) DL, ,($2) (1.23)

Substituting Eq. (4.20) and Eq. (-£.22) to Eq. (4.23). the correlation functions can be expressed as

GEE (1) = Sexpltori) 3D Y

V2T + DRI+ 120"+ 1) (20" + 1)
K dp J'g S (

(2L + 1)(2L" + 1)
X(X™) sp (X™) s i (XO) s 0 (XY s prinC (S S L3 0 im)

xCLJ".J Lin—p'.p)C(J". J. L' 0.n)C(J" . J. L0’ — p.p)

= S (bEL )k explt(ath, ) k] (1.24)
.

where C(A. B.C;d.¢) is the Clebsch-Gordon coefficient. (kL Vi /p. the decay constants. are the
eigenvalues of the [ matrix, and (b5 )k, the relative weights of the exponeutials. are the corre-
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spouding eigenvectors. In the limit that GEL . can be represented by a single exponential. then

mnn

bLL' , = GLL

mnn mnn’

(0) - GEE (=) (1.25)

mnn

For L = L' =2 and n = n'. *3 reduces to the x(in. n). the mean square of the Wigner rotation

mmn

matrices. given by Freed[4.7].

4.3 Spectral Deunsities
The spectral densities J 8, () are given by the following sum of Fourier transformations of the
I LL nn’ & o 8

correlation functions in Eq. (4.24)
AB Lne  pL'n’ ; o
'154[.'"): ’”’“" Z 4‘1;1()[, MOL / Gmnn f) exp(—“”“"|f)(ﬂ (“llb)

For deuteron NMR experiments. L = L' = 2. A = /327 pdig(0). B = \/3/27qc-pd2.,(0). where
f is the angle between the molecular =y, axis and the principal = axis of the efg tensor (e.g. the

direction of C-D bond). The spectral densities for a biaxial molecule in nniaxial phases are given

by
37.' U P (e I
Jm o) = dn 0 {_, Zinn u mnn e
(rw) = (qcn)? g o @0 (0 )Z}\: (@2 )3 + (mw)? (-1.27)

4.-1 The Ring Rotation and Internal Motions
Eq. (4.27) is for deuterons without internal degrees of freedom. When the aromatic ring is rotating

freely about its para axis with a diffusion constant Dg. the spectral densities are given by

2
/y(rff)(""w') = "')_ (/( [) Z Z [dpu (Or.) ] np(o’\l R)C l,, p(o" &)

mnn [(amnn: I\ + (1 — JPO)DR]
4.28
Z [(amnn') -+ U- h pO)DR]2 + (7ru,g)2 ( )

—

(]



where the strong collision limit is used for ring rotations. g ¢ is the angle between the ' — D bond
and the para axis. and 8y, g. the angle between rhe para axis and the molecular zy, axis. usnally
can be set to zero.

Now the following more general spectral densities are obtained for the case with internal motions:

19 0m) = 2 g2 £ 5 3 e (o K ] (1.29)

il [(a;,;nn JK + Cont]” + (1nw)?

where ¢, is related to the correlation time of internal motion aud [(n. n’l) is a funetion desceribing
the internal motions. The ring internal motion could be free rotation. restricted motion. or « Hip
of ring around its para-axis. etc. For the special case that the ring is fixed on the molecular frame.

e.. the internal motion was frozen. only one term inside Z[: survives ([(n. n'l) = dy and ey, = 0)
and Eq. (1.29) goes back to Eq. (4.27).
For deuterons residing in flexible chains. the spectral density for the chain internal motions {(de-
scribed by a rate equation) has a form similar to Eq. (4.29} except the iuternal function U(rn. n'l)
now includes the chain geometric information and eigenvectors of the rate matrix and the ¢, is
related to the eigenvalues of jump rate matrix. The explicit expression will be given in Chapter 6.

Eq. (6.18).

1.5 Caleulations
In the calculations presented here. we investigate the simplest and most important case for the
potential of mean torque. that is, only the second rank contribution to the potential of mean torque

is retained. Hence,

(J(IQ‘TI) = a20(T) Pa(cos 8) + axa(T)[D2,(8.v) + D2 _,(3.7)] (4.30)
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where ay_, = @ is assumed[4.20.4.23]. The ratio £ = azp/ay. is a measure of the deviation of
molecular symmetry from cvlindrical symmetry. Then the symmetrized diffusion operator given by

Eq. (4.10) can be evaluated nsing

\Dmn’l v IDrnyl) = [_L(L + ‘l) - ”‘2(” - l)]dL'Ldrl'n

§ L, U(3.7v)]. V20 + 1 R
<Dr[;m. §Vz_ﬁ'_ Dﬁm> = ‘/)L,—Za/q (J+1)+ (n—1)qg7]

xC(L.J. L m. 0)C(L.J.L": 1" = q.q)0pn 4 (-1.31)

L U3 U3 ) )| s
3 (5 (5 o)

; ayqrg\/ I+ 1) —qlq+ L)\ (J + 1) —q(¢ + 1)
- s pmaned /

JJ
x > CULJ.J0.00CLS T q+ 1.4 = 1)
Sr= g
xCL.J". L' 0)C(L.J" L' —qg—q.q+ ¢ )onmn—q-¢ (4.32)

L[, U3 i .
DL L.—=—=]|D
< mn' 1 ( - kT mn
’/V 2L + = 't qn 1 g !
4q'a 40y C(I.T50.0)CL T S q.q)
AT e, 5
xC(L.J" L' 0)C(L.J" L' v —q—q.q+¢)onw q- (-1.33)

(Pt )

= éf\/[L' (L'+ 1) — (' =2) (' = DL (L' + L) =0/ (0" = 1)]0prOnn o

)((LL: + L*)

+é€\/[[/ (L' + 1) — (' +2) (0" + DL (L + 1) — 0! (0 + 1)]0p10nnr - (-1.34)

CL (L, U(B.Y)
L 2 L
<Dvnn 4 (Lf kT ) D"lll >

\#Z e[l + 1) —ala+ D][J(J + 1) = (g + 1)(q +2)]

XC(L.J.L':m.0)C(L.LL:n' —q—2,g+2)0p g2 (:.35)

ndod
{



' l N L"(Alj. ':/}
Dt Ll
< " H ( T KT )

DL>

V2 +1
\/F_Za,,,\/[/ (J+1) —qglg= D] +1) = (g = D(g = 2)]
XC(L.J.L;m. 0)C(L.J L0 —qg+2.q —2)0n—q-2 (-1.30)

L’
<Dmn’
|

L YA
86 (L" A:T ) lD7'l7l
/2
gf-\/%z Za_,,,a,,r,f \/J(J +1)—qlqg+ l)\/J'(J’ + 1) —=¢'(¢g + 1)

Jq J'q
gt
x > CUIT00CS T g+ g + L)C(L.S" L' 0)
S
xCL.J" L' —qg—q =2.g+q +2)0nn—g-q - (-£.37)

DL

L(, V)
<Dmn' (L— I\T ) 1nn>

V2L + 1
= 8\/_+_ZZanapq-\/] (J+1)—qlqg—1) \/l' S+ 1) —=¢'(g -1

dq J'g
d-g
x Z (A J0.0)/CL I T qg= g = DCL.J' . L':m. 0)
NZERT
XC(L.J" L't —qg—q¢ +2.g+q¢ =2)0nn 4 g2 (-1.38)

In deriving Eqs. (-1.31)-(4.38). the following relations have been nsed[-1.24]:

vDh, = [L(L+1)+(y—1)n*] Dk, (1.39)
L.D;,, = nD%, (1.40)
L.Dh, = \JL(L+1)=n(n+1)DL, (A1)
L DE = \/[L(L +1)—nmx)][LL+1) - (nxl)(nt2)]DE, ., (-1-42)

Then. the matrix elements of [ are given by

<DLI |F|Dmn) = (Rm)L'ﬂ'LH

"l Tt
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Chapter 5

Theory: The Director Fluctuations

5.1 Iutroduction

Director Huctuation is a unique dynamic property of liquid cryvstals, and involves slow collective
motions of a large number of molecules. In the quadrupolar Hamiltonian. there are fuctnating terms
because of the rotational and/or collective motions of liquid crvstal molecnles. The antocorrelation
function G,,, (t) may be evaluated in terms of the Wigner rotation martrix D? (2 y) in the

My ey

Hucwating Hamiltonian

G, (1) = 33 [ ol O] [t o] { Dy (2ear0)= Dif ]

my, ru'_"
2« D« -
x [D1uL7n'M(£2LJ"!(t)) - Drn;_m’_._{ > {(5.1)
Now Qp4/(= ev. 3. ) denotes the Euler angles that transform between a molecular frame attached
to the molecular core and the laboratory frame. 8 is the angle between the C-D bond and the zy;
axis of the molecular frame. and 1n; and my, are the projection indices for a tensor of rank two in

the laboratory and molecular = axis. respectively.



There are several motional processes (e.g. reorientation, director fluctuations) that take place simul-
taneously and may cause spin relaxation in liquid crystals. Because of thermal fluctuations of the
director, the orientation of director has both spatial and temporal variation. In the nematic and/or
smectic A phases of the liquid crystals, a local (instantaneous) director n(7) may be introduced to
represent the average direction of molecules within a neighborhood of any point in the sample. The
time interval between molecular collisions is about 107!° ~ 107!2s. Changes in molecular orienta-
tion due to collisions could change the local director on the NMR time scale. Thus, an additional
coordinate system is needed to specify the local director 7(7). The average director 7t is obtained

by spatially averaging the local directors over the sample.

DD

Figure 5.1 A schematic illustration of the coordinate systems used to account for director

fluctuations in liquid crystals.

The Euler angles Q5 (¢) in the autocorrelation function (Eq. (5.1)) denote the orientation of

the principal molecular axes (zur,yar, zar) in the laboratory (X, Y., Z.) frame. The coordinate
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transformation from the (zy, yas. zar) frame to the (X, Y. Z,) frame must be carried out through
successive transformations [Fig. (5.1)] to account for the fast motions of a molecule and the slow
collective Huctuations of the director. That is. 2, = (£2.Q"). where the Euler angles () transform
from the molecular frame (ry. yas. 2a7) to the instantaneous director (. y. z) frame. ) is used to
transform the (z,y, z) frame to the laboratory frame (\X;.}7..Z.). Here we assume the average

director g is parallel to the external field B. which is used to define the laboratory frame.

For director fluctuations. the high frequency cut-off w, arises from the fact that the collective mo-
tions are only valid over the length scales which are large compared with the length of the liquid
crystalline molecules. i.e., in the limit of Larmor frequency «wo << w.. Whereas in the cases of
W > We, the experiment is carried out at a frequency such that no collective motions are detected
and the director fluctuations are not expected to contribute significantly to the spectral deunsities.

(see Eq. (5.4))

In the nematic phase and perhaps high temperature smectic phases. molecules perform long range
cooperative motions, which are slow compared to the rapid reorientational motions of individunat
molecules. The dynamics of these fluctuations depend on the viscosity coefficients and the elastic
constants of the liquid crystal. In the continuum theory, the elastic constants A,. A, and A’y are
the splay. twist and bend elastic constants. respectively[5.1-5.2]. Freed has inclnded these collective
effects in the spin relaxation theory by allowing the orienting potential U(§2) to Huctuate slowly in
time. [t is assumed that the director shows small fluctuations about its mean position. and that
the magnitude of ordering does not change. Then there are three types of motions that contribute
to spectral densities: molecular reorientation. director Huctuations and a cross-term arising from

84



¢8
TeamIaq SHuIdnon ‘SuoRINI IRMHB[OU YIIM T0SITRdUI0D U1 MOS 3IR SUOIIRNINNY I0303IIp J1 ‘sloul
10111 “STonEnIOng I01H2I1p Jo apnirude o) Jo aInseall © St 2y i/ 7y = v Iatomwrered a1l a1aym

.Cnlﬁ .
(¢c) Iavl = "(%7)

[9°¢]o1 Rurpioane (77) Ielewered Ispio HIRWST [RUSH 73 01 PIlR]al S
PR 1010011 JRI0] 471 01 2ATIR[I AJUID[OU 211 Jo Iatewreled Iaplo HlIvwat o1 81 %%7) pue ‘umipau
O[3 JO SITRISTION JTISE[0 o3 PUR SIITSONSIA o1 01 uonewmxoidde 1me1suon 910 11 ale yf puw i ~m
eI JoSIe] Toutl £oTouthal] JOULIRT 411 I0] [[RUIS SaUI0Na( PR Aolaubaly o] e L1 §1 (»/°m) )

4

X

(17¢) v | :SW - T - Pn\& T

YIATIA] IR[UI[OTT 013 JO IapIo o1 ATeandi
VY IST6[0ARA JOI) B TAIA SoPOTUI 11702 a1 Jo 7Y/ /M 1F = “r goiud Sotenbal) Y3 e seajoaul
(7/7m) 7 [or e prejuonatmy Joius o1 pre "10eisuo) T0ISIYIP-Jjas [RUONIRISTRI PodRlar a1 ST /(7 a1sm

et/ ™y + “Q:Tﬁm\/ﬁ _
WA LS

(g0) ¥

ST o, & UL F J010vfal1d 011 a1aT(m

(ec) ()1 [0 0] ¥ ) o A90) = = (m) 4y
€ z

[F¢lst smoneinng 1010811p 011 wtolj (/)1 01 TOUNGLITOD 71 "SITBIYIS0D ST}
9AT JO PREISTT JTALYA00 AIISOOSTA 9ATIIS)e o0 PUR y = ¥y = 7y = 1y °s1 ey ‘nonewmxoldde
AMRISTION-ATI0, o1]1 1] Toneunxoidde Isplo 1817 ® 0l (7)1 01 2INGLIIN0) SJU0 STONRIIIUY 0101

“aprardume IRUSTe (RIS 04T 01 PATHNSSE o STONRIIONY I0193ITP Talam g ¢]Suaul ] 01 SuHupiossy

TONINQUINO,) Japi() IS J ¢

TSTOTI0UT 9831 JO 104y



these two motions produce(3.4.5.7] a small cross term contribution to J; (). Following Freed[5.1].

this negative cross term for the methine deuteron in MBBA can be shown as

37 "
Jier(w) = ‘—(1( p)d

(Pz>2 2 V8L “mo)h =
— = ids (3 E —_— 3.6
1= 30)° [(00 (Farg) ] A((lu)o);\-"‘w") (5.6)

where the subscript CR is to denote the cross term and Jg = (09)  / (bing), are relative weighes

of exponentials that describe the molecular reorientationfsee Chapter 4. Eqs.(4.23-4.24)].

3.3 Second Order Countribution

Standard theories[5.1.5.8-5.9] of spin relaxation by director finctnations in nematics are based on
the notion that the mean square amplitude (3?) of the director’s displacement is small such that
terms of this and higher orders can be neglected. When angular excursions of the local director are
not small [e.g.. low A" or large «]. second-order and higher terms are needed and their contributions
to Jopr(2w) and Jype(0) become nonzero. Faber[5.10] was the first to consider these higher-order
contributions. Recently. second-order contributions from director Huetnations are predicted[5.6.
5.11-5.12] in Jp(0). Ji(w) and .J,(2w). When treating deuterons residing ou the rigid part of a

molecule. the spectral densities are calenlated as follows:

Jape(w) = Jopr(w)/3
== 4((](,'[) *i <P’>O [ QO(‘jilQ)]-L(*“') (-)1—)
For methine deuterons in 50.7 and MBBA. q-p = 185 kHz. aud
7° +q" / -
L(w) = / dq [ d 5.8
() = 10 (@ +¢*)2+ (y/K)” “;-’q (5.8)

with g. = (n/K)'2w!/?. By intergrating over a circle in g, ¢’ space rather than a square. Vold et
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5.4 Countributions to Flexible Chains of Molecule

For C-D bonds located in the Hexible chain. the effect of director Ancruations is made smaller as a
result of additional averaging within the chain from conformational changes[see Chapter 3]. It has
been recognized{5.14] in earlier deuterium NMR studies that the spin-lattice refaxation rates for the
chain deuterous should scale with the square of their quadrupolar splittings if the spin relaxation is
caused ouly by director Huctnations. Indeed the quadrupolar splitting can give the sexmental order

parameter of C-D bond at carbon site i. which is defined by
S((f)[) = <<P2((f()s (—)(i))>> (5.15)

where ©0) is the angle between the ith C-D bond and the equilibrium director. ({ }) denotes both
the conformational average and overall motional average. In uniaxial phases like the nematic and

semetic A, the above equation can be expressed as[5.9]

St = ((Palcos A1) Pa(cos 0)))

= By(3\ o) (Pu) (5.16)

where ([(;0(,.3‘(;‘,)_(2) denotes the conformational average over the .’ii‘,’u angle of the particnlar C-D bond
with respect to the molecular zy; axis. and 0 is the angle between the 2y, axis and the equilibrium
director. The assumption was made for the last step in Eq. (5.16) that the motional modes for the
internal chain motions and for the molecular reorientation are decoupled. Using this simplifving
assumption in writing down the director fluctuation contributions to chain denterons as Eqs. (5.6.
5.10-5.12, 5.14). the geometric factors must involve an additional average due to internal motions
and together with (£) can be replaced by the segmental order parameter (or in terms of the

quadrupolar splitting) of the ith deuterons. Thus, director fluctuations contribute to the chain
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deuterons according to

i i A2 ozl L+ (we/w) .
Shete) = gy (58,) L [ (5.17)
(1 - 5( ) y 1 “Jl/uj

L 371’ i A —1/2 -
Jpw) = ((1£ )2 m(l — ley) ( ) O e (3.18)
X 3“‘ 3 —'2 i 1 we oot
SI%F( w) = 3 e )n)z( 3n)g (5r( })) ;l [1 + (2“;) ] (3.19)

. €3] ’T A ( o(2) ) VOove 8"‘"( Z j ((l[()())[\ (3-)())

_-—(‘I([))z“ “3a)? D

-~
2
=
£
R —0
I

(ﬂmn);\- + w2

where (h(.‘;]n = 165 kHz for methylene deuterons.

5.0 Conclusion

The first order contribution of the director fluctuation to spectral density is proportional ro the
prefactor A and the second order contribution is proportional to A%, Since 4 is a small number,
the value l,n F(22) is indeed very small because of its second order nature and can be neglected
in the megahertz region. But the second contribution to J,% () is non-trival due to rthe small
low-frequency cutoff w;. Finally. the calenlated spectral densities for the ith denterons are obtained

from

JNe) = 1(1)() ]th( )+ 11( r(<) (5.21)
JH 0wy = J82w) + S (2w) = S (2w) (5.22)
J0) = J§R(0) + JSHe(0) (5.23)

where the subscript R is used to denote molecular rotation.

It is noted that in all equations for director fluctuations. the contributions to .Jg. J; and ./, are all
related to the high frequency cutoff w.. The w, value depends on molecular properties and perhaps
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also on the detailed molecular structure. Thus. it is expected to change from sample to sample.
When the Larmor frequency @y < «.. like the case in 50.7 (see Chapter 7). the curoff function
of Eq. (5.1) approaches unity and the differences in w, of different samples become immarterial
in Ji(w). As the cutoff frequency drops below the Larmor frequency. like the case of MBBA (see
Chaprter 8). the cutoff function approaches zero and the negative cross term can in fact cancel the
./f‘[),p(.‘:). The total director fuctnation contribution te Jl(i)(w') may even be negative. Thus. it may
be difficult to study director Huctuations in the megahertz regime using only the spectral densities
.l,(i)(u) and J-_E”(‘.Zw') [see Eqs. (5.21-5.22)]. The zero-frequency component J,g‘)((]) becomes a uniqgue

and useful tool in stndy director fluctuations in this case.
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Chapter 6

Theory: The Flexible Chain Dynamics

6.1 [ntroduction

Liguid crvstals are organic molecules whose structures usually consist of a rigid core with Hexible
pendant chains. It is known that molecular flexibility is erucial in determining the physical prop-
erties of liquid crvstals. The theorerical treatment of dynamical processes of Hexible molecules in
an anisotropic medium is not an casy task[6.1-6.3]. This often requires a certain nnmber of simpli-
fving assumptions which may only be justified by comparison between the model predictions aned
experiments. When modelling internal rotations about each carboun-carbon boud iu the pendant
chains, the configuration transitions of the chain may be superimposed on the rotational diffusion
of the whole molecule. This implies that the molecular core is 'massive’ such that its motion is
independent of configuration transitions in the chain. In modelling quadrupolar splittings in liquid
crystals, the rotational isomeric state (RIS) model[6.4. see also Chapter 3] has been used to generate
all configurations in the chain and anisotropic interactions with the neighbours are described by a
mean-field poteatial. This model has been extended[6.1-6.2] to the time domain in order to describe

spin relaxation in flexible nematogens. [t involves a master equation which describes transitions
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among all allowed configurations in the pendant chaius. To simplify numerical compntations. a
decoupled model was developed[6.1] in which the overall motion is described by a single average
rotational diffusion tensor. It assumes that in a molecule with .V distinet conformarions. rotarion
diffusion tensors for different rotamers do not differ appreciably and that an “average’ molecnlar
iffnsion tensor may be used to solve the rotational diffusion equation[6.5-6.6]. Transitions amony
configurations are described by elementary jump modes[6.7-6.8]: one-bond(k;). two-bond (&) and
three-bond(A3) motions. A one-bond rotation involves rotation of the last bond in the chain defined
as {---.Lm.n} = { - Lom '}, where { } denotes the C-C bond orientations in the carbon-carbou
backbone of a pendant chain. A two-bond rotation is defined as rotation of the penultimate bond
only {---.l.m.n} = {---.L.m'.n'}. ie.. it represents motion of the last two C' — C bouds iu the
chain as a pair, with no rotation about the penultimate carbon[6.9]. In the case of a trans boud.
Le.. [ = n. then n = n'. A three-bond rotation is a kink motion in the chain. i.e.. the interchanging
of two alternate bouds. defined as {---.i.j hko---} = {--- k. joio-- -} is also called the crankshaft

transition[Fig. 6.1].

6.2 Superimposed Rotations Model

[n writing the auto-correlation functions that describe both internal and external motions of a
Hexible mesogen. the Euler angles €275 are nsed to specify the orientation of the principal axes of
a spin tensor (e.g. efg) with respect to the external magnetic field. Suppose that in a local (cv)
frame. the orientation (§2,¢) of a Co —* H bond is time independent. A molecule-fixed (M) frame is
chosen to coincide with the principal axis system of the rotational diffusion tensor of the molecule.
The Euler angles 1,,, that transform between the local frame and the molecular frame are time-
dependent due to the internal motions. The angles €74, depend on time because of reorientation
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of the whole molecule. By successive coordinate transformations, the following is obtained:

D% oo )] =35 D%, ., Qs (1)) D2, e, [t (8] D2, o [Qag] (6.1)

mpr Mo

where §2,¢ is time independent.

(a) ‘

(b) S e e
C
e =
F\W/—L;y »‘&-ll'\ =~
T (=g
i ;=
= L

Figure 6.1 The illustration of jump motions of (a) k; (b) &k, and (c) k3
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The auto-correlation function is

G, (t) = (D2, [0 (0)] D%, [Q1e (8)]) — D20 Qg (0]DZ,0 [21q (2)] (6.2)

where the second term is to ensure that the auto-correlation functions tend to zero as t — oo[6.10].

Now Eq. (6.2) can be rewritten using Eq. (6.1) as

t) =33 D2 (@)D 6(0)Gmymam, (t) (6.3)

Ma m;

where

Grymamy, (1) = 32 (DE iy [Quar (0] D2 e (R (8 )

mMm

x (D2, . Q10 (0)] D2y [Qa (8)])

—D2 m Quar) D% e (Quat) D2y, (Q1a) Doy s (Qasa) (6.4)

because of the usual assumption of decoupling between internal and exteinal motions such that the
two motional parts can be averaged separately. When the correlation functions of internal motions

can be written as

Crnpimiymamt, (t) = ( Dinpma (Qtta (0)] Do . [t (0)]) = D2y (Qn12) D% s (Qnta)  (6:5)

then
GmLmam' Z Z mLm\rme GmMm'Mmami-. (t) + GmMmMm»am (t) mLmMszr:me
mar m'y,
+Grmymymiy (1) D2 pyma Dot o ) (6.6)

where the correlation functions G, m,, m',, (t) describe the overall motions of molecules, and are given

for the TZ model by Eq.(4.24). The complexity here is that the the correlation functions are not
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simply given by a linear combination of products of the correlation functions for each motion. The
correlation functions in the above equation include terms that are products of correlation functions
for one motion and averaged Wigner matrix compouents for the other motion. These extra terms
are zero for the case of relaxation in normal liquids since the average of Wigner matrix elements are
identical to zero. Unlike the random isotropic motions in normal liguids. these terms become non-
zero in mesophases because some restricted (preferred) motional degrees of freedom would producee
non-zero averages of Wigner matrices. However. Eq. (6.6) may be simplified in certain specific cases.
[n the superimposed rotations model[6.3]. it is assumed that internal rotations about different C —C
bonds are independent. and that rod-like molecules reorienting in nniaxial mesophases with each of
their internal motions involve cyvlindrically symmetric rotation about a single axis. theu m, = m

and

DIZRLIII._\J = ‘)mL(]omr\,(] ([’2)
2 = . —
Drn_\, Ma = 0 ((). ] }

Therefore. Eq. (6.2) can be written as [6.10]

GmL (t) = Z Z Z [dan() (/}QQ)] : GmL '".\I"'-'u (t)Gm Ay (t)

may 1n'" e

+‘5an0 <P‘.’>2 z [d‘fn,,o(ﬁn.q)]z Glmm,, (t) (6.8)

Ma
The second term in the above expression represents a cross-term between the internal motions and
overall motions. but is zero except when m; = 0, i.e., it is only required in calenlating ./,(0). or the
spin-spin relaxation time. Otherwise. in calcnlating Jy (w) and J5(2w), or the spin-lattice relaxation
times, the overall correlation functions are given by the linear combinations of the products of the
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correlation functions for each motion. When treating the internal motions further down the chain.
additional coordinate frames are needed to carry out successive transformations from a local o

frame to the molecular fixed frame. (see Chapter 3).

6.3 Decoupled Model for Correlated Internal Motions

Tu evaluate the correlation functions in Eq. {6.3). it is necessary to find the conditional probability

Py [$2par. 182247 (0). 0] that at time t. the molecule has configuration i and orientation €2,y given ar
= (0. the molecule has configuration { and €2 4,(0). Using the assumption of decoupling internal

and external motions. it can be expressed as the product of configuration and orientation conditionaf

probability:

Pilq {S-)-LM . Z|QLM(O)~ 0] = ])(i. t|l O)[)[SZLM. tlQLM (0] [)] ([)9)

Now using the above conditional probability to express the ensemble average in Eq. (6.3).

Gf’"L(f Z//-d()[‘\,{d LW( )(DilL() [SZ ( )}DmLﬂ [“’LQ f)] - rn[()Dm[U)

X Pog (D) pitg [Qpar- 12227 (0). 0] (6.10)

where p,,({) is the probability of occurrence of configuration { at equilibrium. This can be caleulated.
for example. using the additive potential method [see Chapter 3]. The orientation conditional prob-
ability p{Qpar. tQ22,(0). 0] was used to evaluate G7, o, (t) in Chapter L. and p(i. . 0) = py,{t)
is required to evaluate internal correlation functions. To evalnate G, (t). one needs to transform
the electric-field-gradient tensor through successive coordinates to allow for internal motions and
reorientation of the molecule. [nstead of using many local coordinate systems. it is more conveuient
to define a coordinate system (.V) in which the chain may have .V distinct configurations. The

.V frame is attached rigidly on a molecule-fixed (M) frame with an orientation specified by the
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time-independent Euler angles Q3 n. In each configuration. a C — D bond has a known orientation.
[ts motion due to conformational transitions is responsible for spin relaxation. Transitions between
different configurations take place by means of one-bond. two-bond. or three-bond mortion[6.7.6.8]
in the chainfsee section 6.1]. These bond motions involve jump rate constants ky. Ay and kg

respectively. Transitions among configurations are described by a master equation{6.L1].
ap:l al
0 >
Z Pt (2 (6.11)

where R;; is the rate constant for transition from configuration j to confignration :. f2;; is related to
the elementary jump rate constant ri; which depends on the type of bond motion in the trausition.
ry; s zero if transition cannot oceur via one of the three types of bond motion. The diagonal matrix

elements R;; are the negative of sum of all jump rates that deplete configuration .

1=—ZRJz (6.12)

JFr

Moreover. R;; satisfy the detailed-balance principle.

RijPeq(J) = RjiDeq() (6.13)
To construet the R matrix. it is required that ri; = rj; and Ry = p,(i)ri;. The master equation
can be solved[6.9] as an eigenvalue problem. This is achieved by symmetrizing R and then diago-

nalizing to give .V real and negative eigenvalues A, and eigenvectors x("). One of these eigenvalues

(. = 1) is zero. and the correspouding eigenvector +(! is given by the equilibrinun distribution of

configurations:
= [peg(1)]'? (6.11)
The conditional probability p;,(t) is given by
1) (! (n) ()
pult) = 20 (o) " 5" 2Pt exp(— nal) 6.5
n=1
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Now. applving the V frame coordinate system described above. and using the decomposition theo-

rent for the Wigner martrix components. Eq. (6.1) can be rewritten as

Do Qo] =33 D2 o, [Qear (O] D2 [Qun] DZ, o [S2vg ()] (6.16)

myy my
where the Euler angle {2y give the orientation of ("~ D bond in the V frame. Both €7y and Qv
are time dependent because of molecular reorientation and internal motion. respectively. Following

the procedure of section 6.2, the decoupled model gives

2
CmL Z Z Z Z D)n‘ N --\!V) Dy, ""ru'_\. (Szx\/.\r) Gmpmygm’ 1

mar 1 my m

X <Dm\,0 SZN ] Dm' 0 [SZ\Q(f)]>

"‘L() <P) ZZ < m\ll L"'VQ(O)] Dm N ["“VQ f)]> (()J‘T)

my m

The internal correlation functions are given by

< :n\,l] [--\Q(O]JDm 0 [QAVQ(”D = Z“XI)(‘i”'L.\"’f\‘Q)‘[fnVu(-'qu)Prq([)
td

N exp(—l’"l‘l'\'”,lVQJdm' 0( \‘QJP“U(”

Y N . )
= Z exp(—{Alt) [Z J.'f”r)“ exp(—.i'rn..wv{\vq)(l;'nx”(J_IVQ)]

k=1 {=1

LZ l,.”l,, E\p(—mnvan)dm, NE if\',Q)} (G.18)

=1
where ,{jf\,Q and anQ are polar angles of a C — D bond in the rotamer of configuration { in the .V

frame. and Eq. (6.15) was substituted in the last step.

When applying the TZ model to treat chain deuterons of an asymmetric rotor and letting Qv =0

for simplicity, i.e., the :V frame is coincident with the M frame. the spectral densities of C; denterons
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can be obtained as

1(‘) (npw) =

3 i i
2 (ah) 5 3 3 [oo ol espl o a4

m"m’ k=1 U=1

(k) ol
X L 1,, r,, e\p(—zm‘,ry‘,Q)dm ol iMQ)}

22
Z m m\,m")h [(aml_mum’”),\. + |’\Ll]
2
K

[( frfunum ) i/\kl] +(7”‘L“")2
* lf\kl

+—Z:( )) mLO <Pz) Z ‘Z g L)d \‘I)é) l ("LLW n |I\k|2 (()19)

)
= k=1 l_l i

X

[N

where a and b are defined in section 4.2. Eq. (4.24). The last term of Eq. (6.19) is only needed in

calculating the zero frequency spectral densities .lé')(O) for the chain deuterons.
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Chapter 7

Rotational Dynamics of 50.7

7.1 Introduction

There are two deuterated 50).7 samples. The 50.7-d,| is deuterated at the methine site and 50.7-
d, is deuterated at the auniline ring. Their experimental data were analvzed[7.1] previously ar
each temperature based on either the third rate model or Nordio model. which uses evlindrically
svmmetric diffusion tensor. In particular. Nordio model didn’t seem to work well. The motivation
of re-analyzing these data is to see if a non-cyvlindrically symmetric diffusion tensor (implemented by
TZ model) would be more appropriate for molecular motions. i.e.. does the asymmetry parameter of
diffusion tensor € defined in Eq. (4.8) play a role in the melecular dyuamics?” The earlier treatmenes
with ¢ = 0 were inadequate. The spectral densities at two Larmor frequencies. shown in Fig. 7.1, are
essentially those reported before[7.1]. Since the two samples have slightly different clearing points.
we scale the temperatures to give a common 7T, of 77.6°C. The transition temperatures for vV —.5,.
Sy — Sc.. and S¢: — Sy are 64, 55, and 52°C. respectively. At first. the data were satisfactorily
analyzed[7.1] using the third rate model in which the molecules were treated as cylindrical rotors

plus first order director fluctuations in .J;. The third rate model is one way of addressing the
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Figure 7.1. Plots of experimental spectral densities versus temperature in the nematic and smectic
A phases of 50.7-d, (a) where 57 and A denote J,(w) and J>(2w), respectively, and of 50.7-d; (b)
where (O and O denote J;(w) and J,(2w), respectively. Open symbols denote data at 15.3 MHz,
while closed symbols at 46 MHz. Solid and dashed curves are theoretical spectral densities for 15.3

MHz and 46MHz, respectively.
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inadequacy of the Nordio model. Here. we reexamine the 50).7 data in the V and 5,4 phases[7.2]

using an extension to the Nordio model proposed by Tarroni and Zannonifsee Chapter 1j. For
(P,) < 0.75 in Table 7.1. it is sufficient to solve the rotational diffusion equation (4.11) using a

Wigner basis set up to rank 1.4

Analysis
To calculate the spectral densities for the methine and ring deuterons. Eqs. (4.24). (1.27) were used
to account for the molecular orientation. and Eqgs. (5.2) and (5.6) were used to calenlate director
Huctuations and the cross term in the first order approximation. Thus the calculared spectral

densities for the ith deuteron(s) were obtained from

JP) = Jw) + S D) + SR

Iy = I8 (2w) (7.1)

The spectral density data at different temperatures in the nematic and Sy phases were handled
in the same fitting procedure. This is called the global target approach[7.3.7.1]. A minimization

routine(7.5] (AMOEBA) was used to minimize the sum squared error F.

-~
N~
—

F = Z Z Z z [](l calt (tnw) — Ir(rt)cxp(ﬂl..d)]i (

where the sum over & was for nine different temperatures. 1n = | or 2, and the sum over o was
for two Larmor frequencies. The fitting guality factor () is given by the percentage mean-squared

deviation.
Sk rwiitm [],Sj)c“‘c(mw) - JU ””(mw}]

. : x 100 (7.3)
i T S S [J8° ()]

104



¢oT
ASRAINIL 03 10U Iaplo U] ‘aInjeladuial Wi ATeA Puod 31 ‘(g ¢ UOL0DAS 93S)WNIPaU a3 JO SITRISTOD
JTISR]O 913 PR SoLIISONSTA AT[1 01 PAIR[al ST Joind Avusubaly gy a1 9oulg { 10] sisjauwtered [eqofd

oIk Tp pre 1y C0p pme tuonwmen asend 4g — ¢ o1 1w mayel st M7 amieloduwa a1 aleTm

(82) AL - DY A (ML -DY Y =T

=H-9 ‘somirIladwo) MLILHIP 18 oneA $11 Funyul|
o1l SunejodIaiul e asupoIut 01 ajqissod [[1IS §1 11 "STOIRNINUY 1010211p 971 JO | 101ovjaxd oM
ON1] JodotieIed 105121 © 10] 1SIXS 10T S00D TONR[AI © TS Tl Ay "/ Pue "2 *77 SolRlofls TONRATILE

s : - » oM > o N -F : o) . N > a
.::zv::;r.z.rt 1111 pue cQ pe cQ cQ :Q .r._ﬁu:z:cawz a1d a1v s1ajotmreaed e cﬁu J11] f. ._‘v : L

shg 1 -nonennxoidde 181y © W A7 pue 77 10] powrusse s1 2 AHIolo TOTIRATLIR TOWTUO) B aIoTA

(2°2) [ry/ya-]dxdg = ¥g
(9°1) T.\t\u TT& = g
(c2) [z4/23-]dxaia = ‘a
(1-2) ?t\dm.lw dxe’q = *qg

Funard ssuonejel od-SNTUaYIIY o[dwis

K90 SUTRISTO) TOWHEIP [RTONRI0L o1 JRY1 PUNO) sem 31 yoroldde 1eiIv) TRUPIATPUT 871 WIOL]
“SI0110 TRILISTIRIS OFIR] A PalIat 10/PUR palR]allon AJYSIY aloa [0pOil o1 JO sIalsurered o1l
oM [IJast S[Te[inided prunoj sea s enelediol 7iia £[I00UIS A1eA [apoul o1 Jo sInsurered
10511 101 198 011 JO aFRITRAPE Sa)] SISATRTR 1981e) [RqOfH o7 ], "sloloureled [opoul 872 JO STOTIR]AI
arelsdie 1o seapt amos 338 01 Iapio W aIupesold [RqO[E 871 910j0q paulnjiad aq isnur (aImie
-10dT91 AJSTIS ¥ 10 TOLRZIWITTIN “a°1) SISATRTR 105101 [RUPIATPUL o171 "1SI1J "SeInlvladwiol 1alafI)p

AT 12 SOlIISTIOp [RIloads o7l JO Salifea [RITLMLIedXe MRIGo 01 Pasit alam RIVP JO SaUl] patl1o0otug



the number of global parameters further. the high frequency cutoff is assumed to vary linearly with
temperature from 145 MHz at 348.15K to 85 MHz at 328.15K. This choice appears to be good in

minimizing F.

7.3 Results

In the earlier work of 50.7. the spectral densities were interpretted using the “third-rate’ model[7.1].
In contrast with the Nordio model. the rotational diffusion tensor may be diagonized in the labora-
tory frame with its Z; axis along the director(7.6]. The a-motion represents diffusive precession of
the long molecular axis about the director(D, ). The J-motion refers to the tumbling motion. i.e..
the diffusive motion towards or away the director(Dy = D_). In addition. the rotational motion

abont a molecular 2y, axis(D,) is the so-called ~-motion[7.7]. These three motions give rise to the

‘third-rate’” model.

In the present study. we used nine temperatures with 72 spectral densities to derive ten global
parameters for a given £(= au/axn) value[see Eq. (4.30)]. For convenience. the diffusion pre-
exponentials were not used as global parameters. Rather Eqs. (7.4-7.7) were rewritten in terms
of the activation energies and the rotational diffusion constants D). D;, D.. and D at 348.15K.
giving the set of global parameters nsed in the minimization. Initial rotational diffusion values at the
chosen temperature (348.15K) were first obtained by an "individnal™ target analysis. In che initial
global target analysis. the Nordio model was first used (i.e.. £ is set to zero and D, = D,)) together
with first order director fuctuations and the small cross term. A global minimization of £ produced
a @ value of 0.37%. The fits between calculated and experimental spectral densities were poor in
comparison with those using the third rate model[7.1], especially in the low temperature region.
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Therefore. £ was varied between -0.2 to +0.2 and assumed to be independent of the temperature.
This assumption is necessary since there is no information from the side chains to determine S, . -5,
as the chain deuterated sample is not available in the present study. As a result. it is found that a

best @ value (0.25%) ocenrs at £ = —0.093.

Table 7.1. Order parameters. effective potential coeflicients of the biaxial potential. and rhe pref-
actor A[(defined in Eq. (5.3)] for 50).7 used in the calculatiou. (Dg,) is not listed bacuse of its very

small (positive) valies. The prefactor A values are based on v = 0.085.

T(K) | ax an | (P) | (P) | (D3, (D3, A(st?)

328.15 | -4.473 | 0.416 | 0.746 | 0.407 | -0.0045 | -0.0073 | L.14x10®

333.15 | -3.790 | 0.352 | 0.693 | 0.338 | -0.0055 | -0.0071 | L.81x10®

338.15 | -2.878 | 0.268 | 0.5388 | 0.232 | -0.0069 | -0.0062 | 3.42x10 ©

343.15 | -2.369 | 0.220 | 0.507 | 0.169 | -0.0077 | -0.0052 | 6.06x 10 *

348.15 | -1.795 | 0.167 | 0.397 | 0.103 | -0.0080 | -0.0037 | L.2Tx 107"

For uniaxial media. the orienting potential is expressed in Eq. (1.27). in which the second rauk coef-
ficients auy and ayy can be determined from a knowledge of order parameters S..((£4)) and 5., -9,
based on the maximum entropy principle[7.8]. By applying Eq. (3.23). the experimental doublet
splitting of the methine deuteron (Ar) may be used to determine ayg and the order parameter (£)
of the molecular core for a given €. [n this equation. = 6. is the angle between the C-D bond
and the molecular z,,; axis, and the molecular ,; axis is chosen to lie on the plane which contains

C' = NV and C — D bonds such that 6, = 90° — 8 and 0, = 0. Table 7.1 summarizes the derived
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order parameters and the effective coefficients of the biaxial potential at several temperatures. Lt is
noted that (/) is aboutr 0.3 near T, lower than the typical value of 0.43 dednced from the simple
Maier-Saupe theory{7.9-7.10]. From the global minimization. the calculated spectral densities at
15.3 MHz are shown as solid curves. while those at 46 MHz as dashed eurves in Fig. 7.1. The fits
between the calculated and experimental spectral density data are quite acceptable in view of many
assumptions used in our model. It is also noted that systematic deviations do exist. especially ar
low temperatures and near 7.. We summarized the model parameters by plotting the rotational
diffusion constants in Fig. 7.2 and by listing the prefactor A (v = 0.09 is assumed) for director
fluctuations in Table 7.1. The preseut analysis seems to indicate that the relaxation data of 50.7
could be better reprodnced by the rotational diffusion of a 50.7 molecule as an asvimetric rotor.

since the (Q value was improved by about 50%.

The activation energies and pre-exponentials are summarized in Table 7.2. The error limit for a
particular global parameter was estimated by varving the one under consideration while keeping
all other global parameters identical to those for the minimmm £. to give an approximate doubling
in the F value. Thus these activation energies are fairly well defined. The activation energyv for
the tumbling motion (£;) is found larger than that for the spinning motion (EL). indicating that
rotations about the molecular z3; axis is easier than the rotation of this axis as expected for a
rod-like molecule like 50.7. It is noted from Fig. 7.2 that the behaviours of D. and Dy are similar
and Dg is slightly smaller than D.. Normally one should expect the internal ring rotation to be
faster. But these two diffusion constants are correlated making Dg less accurate. For the calenlated
pre-exponentials, although both D? and D% are well defined. the uncertainty in DY (or DY) is still
large. i.e., D? lies between 1.0x 10'* and 1.4x10'® with an increase of 50% in F value. This indicates
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a very shallow minimum in £ with respect to DY and is related to a common problem in relaxation
caleulations for liquid crystals. viz. a large uncertainty[7.11-7.12] in the magnitude of D_ value
seems to exist. We will encounter this situation in other samples(60CB and HATS6. etc.). It is for

this reason that we have not used the pre-expounentials as target parameters.

Finally. the contribution to the experimental spectral density from director Hucrnations. ./ (?,’ rlw)
and J{g)p(w') for methine and ring deuterons versus temperature is plotted in Fig. 7.3. As seen
from this figure. the contribution depends on the atomic site. the frequency and the temperatnre.
These spectral densities ll('[), rlw) decrease with decreasing temperature. Using typical values of
K =5x 107N and = 6.5 x I072Pa s gives prefactor 4 = 1.8 x 107s"2 at 338.15K. Thus the
derived A values in Table 7.1 are more or less in agreement with the theory. [ts temperature behavior
is consistent with the material constants in MBBA[see Chapter 8]. Thart the high-frequency cutoff

decreases from 153 MHz near T, to 85 MHz in the S phase is also reasonable[7.13].

Table 7.2. The pre-exponentials (in units of s 7!) and activation energies (in nnits of kJ/mol) derived
from the analysis of spectral densities of the 50.7 sampies. The arrows denote lower({) and upper(7)

error limits.

E; E, EF DS D, De Dy
AT+1 | 24.8+02 | 28.3+0.7 | 5.6x10' | 7.8x10% | 3.0x10'* | 8.5x10'
I} 1.OX 10 (%) 2.78x10% | 6.5x 10"
1 LAX 10 (%) 3.2x10% | LIx10M

(*) The value reflects a 50% increase in F.
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Chapter 8

The Analysis of Director Fluctuations

and Reorientation of MBBA

8.1 Introduction

[t is well known that director Huctuations contribute a frequency term in the spectral density J; (&)
and have zero contributions in J»(2w) and Jy(w) when using the small angle () approximation.
where 8 is the angle between the instantaneous director and its equilibrinm orientation(8.1]. How-
ever. angular excursions of the local director can have large amplitudes and high order terms of
f can now contribute to Jy(w). J2(2w) and Jy(w). Second-order director inetnations (x #2) have
been considered by Vold et al.[8.2] and van der Zwan et al.[8.3]. The frequency dependence in ./, is

calculated to be generally small. whereas Jg is predicted to be quite large as w — 0[8.2].

Although director luctuations normally give small contributions in the megahertz region. there are
at least two liquid crystals 50).7[see Chapter 7] and 40.8[8.4.8.5] in which director inctuations have
been used to account for part of Jj(w). For these two liquid cryvstals. the high-frequency cutoffs
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appear to be of the order of 10* MHz. while for MBBA (or 10.1). there is no detectable contribution
from director fluctuations to the deuteron spin-lattice relaxation in the MHz regime([8.6]. The same
conclusion was made by Vilfan et al.[8.7] based on their proton NMR study. Recent published
data[S.8] show. however. that there is a substantial coutribution from director Huctuations to Jy(0).
[t is believed that a possible explanation of the different behaviours among the studied lignid ervs-
tals of nO).m series may be due to their high-frequency cutoffs. since the prefactors A for these liguid
crvstals are expected to be comparable. The possible origin of different cutoff frequencies may be
the different viscoelastic constants or different temperature ranges. since MBBA has a much lower
T. in comparing with 50).7 and 40.8. The motivation is to explore if the high frequency cutoff is

low for MBBA by looking for zero frequency director Huctnatuion contributions.

8.2 Analysis

The data analysis involves both the deuteron spin-spin(8.8] and spin-lattice relaxation[8.6] in the
nematic phase of MBBA using the director fluctnations np to second-order contributions as well as
rotational diffusion model of Tarroni and Zannoni (Chapter -1). Eqs. (4.24) and (6.19) were wsed
to calenlate the molecular rotations of methine deuteron and methvlene deuterons of the chain.
respectively. The second order director fluctuation contributions are accounted for by Eqs. (5.14).
(5.6) and (5.10-5.11) for the methine deuteron and Eqs. (3.17-5.20) for deuterons on the Hexible

th

chain. Finally. the caleulated spectral deunsities for the ** deuterons are obtained from:

T @) = ) + Jew) + S ()

B 2w) = JRQw) + S e(20)

J0) = JE0) + JP (0 8.1
Jo ' (0) Jor(0) + Jopr(0) (8.1)
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where 1 = 0. 1. 2. and 3. with ¢ = 0 denoting the methine site.

The experiments consist of measurements of the spin-spin relaxation rate[8.8] 1 /75 at 16 MHz. aud
measurements of the Zeeman and quadrupolar spin-lattice relaxation rates[&b‘] 1/T\z aud 1/Tq
at 15.3 and 46 MHz. From the spin relaxation theory for deuteron (I=1). these are related to the

spectral densities J,,(rnw) by(8.9-8.11]

L) — 3 3 1 PR
T = SU0) + S (w) + A (2w)
T = JO(w) + 18 (2w)
My = 3P 2

where « is the Larmor frequency.

8.3 Resuits and Discussion

The spectral densities JU (rmmw) at two different Larmor frequencies are reproduced in Fignres 8.1

m

and 8.2(8.6. 8.8]. The analysis of quadrupolar splittings[8.6] using the internal energies £, = 2550
J/mol and E,; = 6000 J/mol gave the model parameters (X, A. = X/ X, < Py > and S, — 5y,)
needed in the analysis. [n particular. the order parameter tensor of the average conformer allows
us to adopt a biaxial orienting potential (specified by ayg. a,y) for solving the rotational diffusion
equation. A global target approach was also used to analyze the spectral densities of mechine Cy and
methylene C; (i=1. 2. 3) deuterons at six different temperatures. Smoothed lines of dara were nused
to obtain the . é"’”"(()). Jl(")”p(w') and J.f)cm(:!\u) values at these temperatires. The optimization

routine (AMOEBA) is used to minimize the sum squared percent error £

(i)calc — J@exp (. )
UAM (mkﬁ Lo () x 100 (8.3)
JEP (1) k

F-TTTT
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Figure 8.1. Plots of experimental and calculated spectral densities of MBBA by using w, = 10
MHz. The circles denote the spectral densities .Jy{0). the open symbols denote Jy(wp), while the
closed symbols denote J5(2wg). The triangles represent the data at 15.3 MHz, while the squares

represent data at 46 MHz. Figures 8.1(a) and 8.1(b) are for Cy, and C;, respectively.
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where the sum & is over six different temperatures. the sum over w for two Larmor frequencies. and
m = 0. 1 or 2. In comparison with Eq. (7.2). the definition of £ here is slightly different. The
reason is that the spectral densities of penultimate site Cy deuterons iu the chain are mnch smaller
than those of methine deuteron. In order to equally weight the data of different sites. the sumn of
relative deviations rather than absolute deviations are adopted. The fitting quality Q 1s still given

by the percentage mean squared deviation.

k x 100% (8.4)

) PIDIND D D [./,(,‘l"“lc(nw) - ./,(,‘;’””(nw}]
Q= : 5

Zk Zw Zi Zm [ r(’:)t'.rp(‘,nw.)]k
[t is believed that the motional biaxiality for the MBBA molecule is very small. Therefore, D, = D,

is set in our minimization. From the individual target analysis. it is clear that the diffusion constants

and the jump coustants k; and k4 all obev simple Arrhenius-type relations. giving:

D, = D%xp(-EP</RT) (8.3)
D. = DYexp(—EP:/RT) (8.6)
ki = A exp(—E;/RT) (8.7)
ky = kSexp(~EN/RT) (8.8)

where the global parameters are the pre-exponentials D%. DY &{ and &}. and their corresponding
activation energies £P= EP: F*_ and E%. When such a relation does not exist for a targer
parameter like &, and the prefactor A of director Huctuations. the following interpolating relations

are used for ky and App( = 4 < Py >?):

ks = k) —kJ(T — Tnar) (8.9)

Apr = App — App(T = Thnas) (8.10)
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where the temperature T,,q. is the highest temperature used in the global analysis. and the global
parameters k). k). A} g and Af are optimized. The above equations are based on weak tempera-
ture dependences for ks and Apg. Thus there are twelve global parameters (two from each of Eqs.

(8.5)-(8.10)) for the global fit.

We analyze the deuteron data at four carbon sites (Cy. C,. Cy. Cy). At each site. there are two
experimental .J, and two experimental ./, values from the two Larmor frequencies. but only one
Jo(0) value due to the zero frequency component being independent of the Larmor frequency. So
we have a total of 120 spectral densities from six temperatures to derive twelve global paramerters
for a given w, value. For convenience. the diffusion and jump rate pre-exponentials were not used
as global parameters. Rather Eqs. (8.5)-(8.8) were rewritten in terms of the activarion energies
and the diffusion and jump constants D.. D.. k). k§ at 309 K (T.). giving the set of global
parameters used in our minimization. Initial values at the chosen temperature (309 K) were first

obtained by an individual target analysis.

Table 8.1: Comparisons of activation energles £, (iu kJ/mol) and ficting

results using different high-frequency cutoffs for MBBA.

wo(MHz) |  EM Eks ED- EPD: F Q
3 103 80.0 19.9 15.0 10600 | 0.95%
10 102 +£2|78+2(50.0+£08|443+£06| 9600 | 0.97%
13 100 7.2 49.2 44.0 9000 | 0.97%
20 95.9 75.1 47.8 43.4 7900 | 0.99%
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[t is assumed for simplicity that w,. is constant in the nematic phase of MBBA. The assumption
is probably good for the temperature range studied here. Several high-frequency cutoff values.
between 3 MHz and 20 MHz. were tested (Table 8.1); these fits between the calculated and exper-
imental spectral density data are in general acceptable. since Q values are all less than I'4. The
derived activation energies vary slightly with w.. At w. = 3 MHz. a better Q value of 0.95% was
obtained, whereas at w. = 20 MHz. a better F value of 7900 was achieved. Thus. it is reasonable
to estimate the w, value for MBBA to be around 3 MHz - 10 MHz. [t is noted that the £/ isa
little larger than EP:. indicating the spinning motion of the MBBA molecule is less hindered than
the tumbling motion. This was not achieved when a global target analysis was carried out{8.12]
using only the .J) () and Jy(2w) data. Without loss of generality, the w, = 10 MHz is taken in the
following discussion. From the global minimization. the calenlated site dependences of the spectral
densities and director Huctuation contributions are listed in Table 8.2 for one temperature. Director
Huctnations mainly have effects on the zero frequency spectral densities. They acconnt for 35% of
the methine Jg(0). and over 50% for the methylene (C-Cy) . é”(()). Their total first-order contri-
butions (Jl(i[),F plus negative Jf?.,{) to J*(w) are small but negative: the biggest effects ocenr ar the
chain deuterons. where the director Auctiation contributions amonnt to about 10% of J{*' (). The
second-order contributions of 1§‘,‘, F to .ly)(l.u) are indeed very small and less than 1%. Indeed the
observed frequency dependences in J-_f”('Zw) are mainly due to “slow” molecular rotations. From
this table. it is found that the JypF for the methine deuteron is smaller than that of (') and larger
than those of Cy and Cy. This result may be inferred from Eqs. (5.13) and (5.16)-(5.17). The
director fluctuation contributions to the zero frequency compouents are scaled by the factors of

[d2,(3a1.0)]* and [déo([fl(\i;),q)]z, for methine deuteron and chain deuterons. respectively. For C, and
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Cy. there are more conformational averaging of d%y( ,3.(“;).Q) over the J‘(“,"Q augles. making the overall
contributions to ('; and Cy progressively smaller. The model parameters (3 ks. 2 Ds and A) for
<. = 10 MHz at each chosen temperature are summarized in Table 8.3. The activation energies
(Table 8.1) and the pre-exponentials (k) = 1.75 x 102 7', &) = 4.3 x 10 57!, DY = [.71 x 10®
s™hand DY = 113 x 10" 571) are used to plot the theoretical spectral density curves in Figures 8.1
and 8.2. The .L_E” values at 16 MHz show deviations hetween caleulated and experimental valies
at Cp to Cy. Although there are some systematic deviations between experimental and calculated
spectral densities, the overall fits are quite satisfactory. [t is interesting to note that a comparison
of the rate and diffusion constants with those reported before[8.12] shows reasonable agreements. lu
Table 8.1, the prefactor A values for the different samples of nO.m series are listed. It is noted that
the prefactor A obtained for MBBA is slightly larger than that of 50.7 and 10.8[8.5]. vet there is
negligible contribution from director fuctuations to J; of MBBA at the same Larmor frequencies.
This is of course due to the lower high-frequency cutoff in MBBA. Using typical values of A =
5 x107% Nand 5 = 6.5 x 1072 Pass. A = 1.6 x 1077 s¥2 iy calenlated from Eq. (5.3) at 300
K. Thus. the derived A values appear to agree with the theory. The calculated cross-term ./,(:).R
has absolute values slightly larger than ll('[’, F vontrary to the prediction that the cross-term should
be "small”. Therefore. the controversy[8.13-8.15] with the cross-term remains to be explored with
proper theoretical models. As seen in Table 8.4, the temperature dependence of A in MBBA differs
from those of 50.7 and 40.8. It is not clear at present why the differences exist. The error limit for
a particilar global parameter was estimated by varving the one under consideration while keeping
all other global parameters identical to those for the minimum F£. to give an approximate doubling

in the £ value. Thus the error bar for DI is given by 1.25 — 2.54 x 10" s~!, while that of DY is
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0.88 — 1.53 x 107 s~1. Similarly. &9 lies between 0.85 x10?? 57! and 5.2 x10% 57! and &} from 1.8
x10% 57! to 4.3 x10% s~!. Finally. the error bars for the derived activation energies are indicated
in Table 8.1 for w. = 10 MHz. These activation energies are fairlv well-defined by the global target

analysis.

Table 8.2: Calculated spectral densities for Cg-Cy deuterons due to
director Huctuations and molecular reorientation in the global mini-
mization with a high-frequency cutoff w. = 10 MHz. The numbers (in
s ™!} within brackets are for 46 MHz. while those withont brackets are

for 15.3 MHz. and the temperature is 300 K.

C; JU(O) JO[)F'(O) Jl(w‘) Jl[)F(w’) Jl('ff(w‘) '/2(2w') Jan('—)w')

Co | 7499 26.16 2317 2.46 -LIT 26.2 0.04

(71.59) | (26.16) | (38.5.0) | (0.3) (-2.0) | (21.75) | (0.00)

C | 1027 28.29 10.38 .47 -0.29 1-4.34 0.09

(102.7) | (58.29) | (19.75) | (0.68) | (-.5) | (8.60) | (0.01)

Cy | 3042 18.43 12.21 L.73 -2.94 6.63 0.03

(30.42) | (1843} | (9.12) | (021) | (-1 | (5.72) | (0.00)

Cy | 31.62 20.11 11.1 1.89 -3.21 4.97 0.03

(31.62) | (20.11) | (7.48) | (0.23) | (-1.3) | (3.93) | (0.00)




Table 8.3: Motional parameters derived from a global analvsis of spec-

tral densities using w. = 10 MHz.

TUK) | k(% 10"s™1) | Ay(x10"9s71) | k4(x10"2s71) | D(x107s71) | D.(x10%7") | A(x 105172
309 10.5 1.51 2.58 6.21 3.66 1.920.1
306 .12 1.65 1.92 5.16 3.09 1.76
303 1.79 1.80 141 124 2.60 1.70
300 3.20 1.94 1.04 3.18 2.18 171
297 2.12 2.09 0.76 2.84 1.82 1.76
294 1.39 2.24 0.55 2.31 1.52 1.78

Table 8.4: Comparisons of A values in 10.4. 50.7 and 10.8 at different

reduced temperature Troq(=7/T¢:).

Tred 104 Trea 50.7 Trea | 40.8[ref. 8.5]
0.988 | 1.93x107* |0.993 | 127x107% |0.995| 9.72x10°°
0.979 | L76x10™" [0.979| 6.06x107% [0.981| 5.27x10°"
0.960 | 1.70x107% |0.964| 3.42x107% | 0.966 | 3.85x107"
0.96 | L1.71x10"% | 0.95 | L1.81x10"% |0.952| 298x10"
0.95 | 1.76x107° |0.936| 1.14x10°% | 0938 2.34x10°°
0.94 | 1.78x107° 0.924 | 2.38x10°°
Te = 3126 K Te: = 350.6 K T = 351.8 K
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8.4 Brief Summary

The zero-frequency spectral densities .Jo(0) data in the nematic phase of MBBA was quanritatively
interpreced using a model that include director Huctuations and the rotational diffusion model of
Tarroui and Zanponi (in the limit of D, = D,). The T} and T, data support the idea that MBBA
has a relatively low valie for the high-frequency cutoff. The contribution to .Jy(0) from director
Huctuations has mainly a second-order compounent. whereas the first-order contribution to J, (<) is
suppressed in the megahertz region (Larmor frequencies are 15.3 MHz and 46 MHz) due to the high-
frequency cutoff. which is estimated to be around 3-10 MHz for MBBA. [t is found that director
Huctuations have larger effects on J87(0) (35% — 50%) than on J(w) (< 10%). The derived A
aalues are quite reasonable. ranging between [.7 x 1077 sY/2 and 1.9 x 1077 s!/2. The fits to the
available experimental spectral densities between 293 and 310 K in MBBA are on the whole very

satisfactory with an overall quality Q factor of about 1%.
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Chapter 9

Orientational Ordering and Dynamics of
60CB and 60CB/80CB Mixture: A

Comparative Study

9.1 Introduction
Deuteron longitudinal (77z) and quadrupolar (Ti¢) spin-lattice relaxation times and quadrupolar

and over all the stable mesophases in a

splittings were measured in the nematic phase of 60CB[9.1
mixture of perdeuterated 4-n-hexyloxy-14'-cyanobipheny! (60CB) and 4-n-octyloxy-4"-cvanobiphenyl
(8OCB) at 15.1 MHz and 16 MHz. and the results were compared with each other. The 60CB/8OCB
mixture has 28 wt. % of 60CB and shows a nematic. smectic A and reentrant-nematic (RN) phases.
The motivations are to test the decoupled model of Dong in longer side chains in rod-like molecules
aud in different phases. and to carry out data analyses for both samples in exactly the same manner

such that the dynamic behaviours of pure 600CB sample in its nematic phase may be compared with



those of 60CB/8OCB mixture in high temperature nematic phase as well as in low temperature
smectic A phase and reentrant-nematic phase. The additive potential method[see Chapter 3] is em-
ploved to construct the potential of mean torque using the quadrupolar splittings in these samples.
A decoupled model is used to describe correlated internal motious of the end chain{see Chapter ).
which are assumed to be independent of the molecular reorientation. The latter motion is treated
using the small-step rotational diffusion model of Tarroni and Zannonifsee Chapter -1]. while the
former motion is described using a master rate equation. In comparing the NMR results of the pure
60CB sample and of the 60CB/80OCB mixture. both the dynamic and static behaviours appear
to be similar. and there are no dramatic changes upon entering the RN phase of 60CB/8OCB.
supporting the belief that the effects driving the reentrancy in this mixture are very subtle. The
tumnbling motion of 60CB molecules. however. shows quite different behavionrs in the two stndied
samples. Both 60CB and 80OCB rteud to form “loose” dimers. i.e.. the packing of dimers is not
tight. [t is anticipated that the degree of dimerization may be inferred from the tumbling motion

of 60CB molecules and their internal chain dynamics.

The perdeuterated 60CB-d,, sample was that nsed{9.2] in a previous study and was also nsed to
make a 60CB/80OCB mixture. For the composition ranging between approximately 25 and 31 wr.
% 60OCB. this binary system exhibits a reentrant-nematic (RN) phase at atmospheric pressure[9.:3].
l.e. one observes a trapsition from the smectic A phase to a nematic phase on either heating or
cooling the system. A\ phase diagram of 60CB/80OCB is shown in Fig. 9.1. The 60CB-d,, exhibits
a nematic phase with a clearing temperature (T¢:) of 75°C. Our binary sample consisting of 28%
60CB-d;, and 72% protonated 8OCB by weight was prepared by weighing sufficient quantities of
the components so that the final concentration was accurate to within 0.3%. The binary mixture
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has a clearing temperature 79°C, N-S,4 at 43°C and S4-RN at 32.5°C. The 60CB molecule is

schematically shown in Fig. 1.4 and the peak assignment[9.4] of a representative spectrum for the

60CB-d,; and/or 60CB-d;; /80CB samples is shown in Fig. 9.2.

ISOTROP|(C

[~ NEMATIC

60

T (°c)

SMECTIC
a0

'

7
20 SOLID

| i 1

60CB (wt. %)

Figure 9.1 A phase diagram of 60CB/80CB mixture.
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Figure 9.2 A typical deuteron NMR spectrum (at T~ 313 K) of 60CB-d,; or 60CB-d,; /80CB

mixture showing the peak assignment.

Both 60CB and 8OCB molecules possess a stong terminal electric dipole. These molecules tend
to form pairs of partially overlapping antiparallel molecules in order to minimize electrostatic in-
teractions. One can speak of “loose” dimers. The smectic A phase of 80CB has a laver spacing
d ~ 1.4 where [ is the molecular length. This type of smectic A phase with partial bilavers is
sometime labeled as 44. Various theoretical models have been proposed by including competing
interactions to account for the occurrence of reentrant phenomena in liquid crystals[9.5-9.10]. In
particular, interpretation of experimental data has been based[9.5-9.6] on the simultaneous presence
of monomers and dimers. Recently a molecular field theory{9.10} has been made to link the occur-
rence of reentrant phases to the mole fraction z, of dimers in a mixture of dimerizing molecules.
[t is interesting to note that this molecular field theory predicts a decreasing 4 with decreasing
temperature. In the present study, 243 conformations were used to describe the internal chain mo-
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tion by fixing the O-C; bond ou the ring plane as proposed by some authors[9.11]. The decoupled
model is used to predict spectral densities of motion in the nemaric phase of a 60OCB sample and

in the nematic, smectic A and RN phases of a 60CB/80OCB mixture.

9.2 Analvsis

In this section we outline the procedures and formmlae which are given in previous chapters for
discussing the measured quadrupolar splittings and spectral densities of motion. The geometry
used to describe the carbon-carbon backbone of an alkyloxy chain is adopted as: :CCH=107.5°. -
HCH=113.6° and £ CCC=113.5°. The dihedral angles for rotation of a C-C bound in the chain are
o = 0. £112° for the three RISs. These correspond to the trans (t) and two symmetric gauche (g=)
states. The gauche states have higher internal energy iu comparison to that of the trans state by an
amount E£y,. When the chain contains a g~¢ - ora g "¢~ linkage. au additional internal energy £z =
is added because these linkages bring parts of the chaiu near to one another. the so-called “pentane
effect”. The Ey, values reported for gaseous alkanes lie between 2.1 aud 3.2 kJ/mol. while the £, = =
value is about three times larger[9.12]. The values E,, = 2150 J/mol and E,=,= = 6500 .J/mol were
set. Due to the presence of the oxvgen as well as the ZCOC is larger than the CCC[9.14-9.15].
the energies for trans-gauche(COCC) and gauche-ganche(COCCC) linkages could be different from
those of trans-gauche(CCCC) and gauche-ganche(CCCCC). Thus larger values of £7 (for COCC)

= 13300 J/mol and E]_ - = 10000 .J/mol were used.

The C,-0 boud may be taken to be along the biphenyl para axis. It is known that the £ COC
which specifies the direction of the chain relative to the molecular core plavs an important role in
the observed variations of segmental order and spin relaxation profiles. The molecnlar core. which
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includes the first Cur-O) bound in the chain is assumed to be a rigid subunit and has cylindrical
symmetrv with an interaction parameter .X;. As an approximation. the bond interaction parameter
of the O-C, bond is identical to those of C-C bonds. i.e. X, = X, According to the model pre-
diction[9.13]. the ratio A. = X../-X, should be independent of temperature. The rotational minima
abont the O-C; bond of the hexyloxy chain were also taken to be 0. £112°. while JCOC=126.1

was adopted[9.14-9.15].

By modeling the segmental order profile. the interaction parameters X, and X are determined
and their tensors are given by Eqs. (3.42)-(3.43). Furthermore. principal elements of the order
parameter tensor (< £ >. S, — S,,) for an ‘average’ conformer may be obtained[9.16][see Chapter
3]. Using the TZ model(in the limit of D, = D,) to describe the reorientation of molecules{Chaprer
1]. the internal motions of aromatic ring deuterons and methylene deuterons were described by Eq.

(4.28) and (6.19). respectively.

9.3 Results

Figure 9.3 shows the segmental order parameters 5§”D versus the temperature for both 6OCB
and 60CB/80CB mixture. These segmental order parameters for the two samples show similar
temperature behaviours. An optimization routine (AMOEBA) was used to minimize the sumn

squared error f in fitting the splittings

)’ (9.1)

(i)calc
- |5(.‘D

f= Z (ISF)[)
J(i)calc

where Si.;) is obtained from Eq. (3.27) with Eqgs. (3.36)-(3.41) and the sum over i includes € to

Cs and aromatic deuterons (see section 3.4.1). The f values at different temperatures for 60CB
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Figure 9.3 Plots of segmental order parameters as a function of temperature in (a) 60CB and (b)
60CB/80CB mixture. The solid diamond denotes the aromatic sites. The solid circle. triangle.
and square denote C,. C; and Cs. while the corresponding open symbols denote C,. C; and Cg.
The solid curves are the theoretical calculations for C, to C5 and Cg starting from the top. Note

that the experimental splittings of C; and C, are reversed from those predicted by the theory.
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Table 9.1. Model parameters derived from the analysis of quadrupolar splittings of 60CB. The

interaction parameter X, is in kJ/mol; A.. ay and ayy are dimensionless second rank coefficients.

TE) | Xa | A | <P>| <SSy >| aw | an |10%f
3403 | 445 | 0.225 | 0.491 0.0310 | -2.28 [ -0.347 | 1.1
337.8 [ 173 0.224 | 0.519 0.0308 | -244|-0377| L7
3354 [ 1.93 ] 0.221 | 0.540 0.0304 | -2.57 [ -0.401 | 2.2
332.9 [ 5.07 | 0.222 | 0.556 0.0305 | -2.67 | -0426 | 2.0
328.0 [ 5.31 | 0.223 | 0.584 0.0304 | -2.86 | -0.472 | 2.2
323.1 | 5.52 | 0.223 | 0.607 0.0300 | -3.03 | -0.515 | 2.1
320.6 | 5.61 | 0.223 | 0.618 0.0299 | -3.11 |-0537| 2.5
315.7 [ 5.78 | 0223 | 0.638 0.0296 | -3.28 | -0.584 | 2.7
310.8 | 5.92 | 0.224 | 0.655 0.0203 | -3.42 | -0.629 | 2.9
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Table 9.2. Model parameters derived from the analysis of quadrupolar splittings of the 60OCB/80OCB

mixture. Symbols are same as in Table 9.1.

TE) | Xa | Ae | <P >|<80Sp > aw | an | 10°f
342.4 | 4.90 | 0.216 | 0.526 0.0208 | -2.48 | -0.373 | 1.9
336.7 | 5.51 | 0.213 | 0.582 0.0287 | -2.81|-0443] 2.3
330.9 | 5.93 | 0.208 | 0.620 0.0277 | -3.13 | -0.503 | 2.6
325.2 | 6.26 | 0.205 | 0.650 0.0268 | -3.38 | -0.561{ 2.9
319.4 | 6.62 | 0.201 | 0.678 0.0257 | -3.65 | -0.624 | 3.2
316.5 | 6.69 | 0.200 | 0.686 0.0254 | -3.73 | -0.645 | 3.2
312.7 | 6.82 | 0.200 | 0.698 0.0250 | -3.86 | -0.680 | 3.4
309.8 1 6.89 | 0.200 | 0.705 0.0248 | -3.95 [ -0.708 | 3.4
306.9 | 6.95 | 0.200 | 0.712 0.0246 | -1.03 | -0.736 | 3.5
303.1 | 7.07 | 0.204 | 0.722 0.0246 | -1.15 | -0.784 | 3.6
299.3 | 6.98 | 0.204 | 0.725 0.0248 | -4.19 | -0.807 | 3.6
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Figure 9.4 Plots of spectral densities vs temperature in 60CB. Open svmbols denote 15.1 MHz
data. while solid symbols denote 46 MHz data. (a) circle and square denote J{® (w1 and J§¥(2).
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are calculated spectral densities for 15.1 and 46 MHz. respectively.
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Figure 9.5 Plots of spectral densities vs temperature in 60CB/80CB mixture. The legends are
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(Table 9.1) and for 60OCB/8OCB (Table 9.2) are of the order of 107}, The calculated segmental
order parameters are indicated in Fig. 9.3 as solid lines. As observed in the figure. the experimental
observation[9.4] of Awy < Ay cannot be reproduced by the AP method. The previous reports of
mean field calenlations(9.15. 9.17] for 6OCB. which give the best agreement when the splittings
are assumed to decrease sequentially towards the end of the chain. are also inconsistent wich the
experimental observation of Ay < Awry. Some of the derived parameters X,. ... < £, >. and
(Srr — S,y) are summarized in Tables 9.1 and 9.2. The ay and a,, (also shown in these tables) are
determined from the order parameter teusor of an average conformer. These specify the orienta-
tional potential used in solving the rotational diffusion equation. Despite the relatively poor fits of
the segmental order parameters, the derived orientational potential is found to be rather good in

describing the rotational motion of 60CB molecules.

The spectral densities for 60QCB versus the temperature are given in Fig. 9.4, while those for the
GOCB/8OCB mixture are snmmarized in Fig. 9.5. It is believed that the motional biaxiality is
very small for the 60CB molecule in both these samples. Therefore. D, = D, = D_ is chosen
here. Also. we analyze the spectral densities of ring Cg and methylene C; (i=1-3) denrerons nsing
a global target approach. From individual target analyvses (i.e. analvze the relaxation data at
each temperature} of 60OCB sample. it was found that the rotational diffusion constants and jump

constant &, obeved simple Arrhenius-type relations, giving

D_ = D°exp|-EP-/RT] (9.2)
Dy = DSexp(—Eq"/RT] (9.3)
Dg = D%exp[-EP#/RT) (9.4)
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ko = kYexp{—EL/RT) (9.2)

where the pre-exponentials D°. DY, Df. and k5. and their corresponding activation energies EP-.
E.", EPr and EX were global parameters. For convenience. the diffusion and jump rate pre-
exponentials were not used as global parameters. Rather Eqs. (9.2)-(9.5) were rewritten in rerms of
the activation energies and the diffusion and jump constants D’_. D'J. D'R. A_, at Thax. The T for
the 60)CB sample was set at the highest temperature of 340.3 IX used in the global analysis. When
the Arrhenius-type relation did not exist for a target parameter. it was still possible to introduce

an interpolating relation linking its value at different temperatures. For the 60CB sample. the

temperature dependence of &) and &y were modeled as
]‘:] = k'[ + k’l'(T - Tmax) + k’ln(T - ﬂlnmx)z (Ub)
ks = ky = k(T = Tona) (9.7)

R ' " 17 ' " .
with k. k. &, . ky. &y being the global parameters.

In the 60CB/SOCB mixture. the target parameters may not vary smoothly across all studied
phases. In particular. we found that dynamic behaviours in the high temperature nemaric phase
differ from those in the smectic A and RN phases. Over the narrow temperature ranges of the
smectic A and RN phases. their dynamical behaviours seemed quite similar. Thus. we nsed rwo
slobal target routines for the two temperature regions. From individual target analvses. it was
found that the rotational diffusion constants and jump constant A, still obeved simple Arrhenins-
tvpe relations as described in Eqs. (9.2)-(9.3). The Tax was set at 342.4 K for the high temperature
nematic phase and 312.7 K for the low temperature region of S4/RN phases. For the Sy and RN
phases of the 60CB/80CB sample, the temperature dependence of &, and A3 were modeled the
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same way as Egs. (9.6)-(9.7). whereas for the high temperature nematic phase of the 60OCB/S8OCEB

mixture. it was found that k£, still obeved the Arrhenius-type relation and we used
o D e k
k, = k] exp[—E' /RT) (9.8)

ki‘ = A',i + ‘[",i,(T - Tnmx) =+ A";’(T - Zna.t)z (99)

n

where the global parameters k9. E¥ . k. &y and &, were optimized. Also. Eq. (9.8) was rewritren

in terms of £5' and the jump constant Al at T = 3124 K.

In each global target routine. the diffusion constants D'__. D'l. and D}, as well as the jump constants
L', k'_, and ky at Ty were first estimated from an individual target analysis. Again AMOEBA was

used to minimize the sum squared percent error £ .

9.1 Discussion

The fitting quality factor (@ is defined by:

Zk Zu] Zi Zm [']’Si)Pﬂlc(,"M) - J,(,i)c'[p(IIZM.')].g
(2 = - ko 100%. (9.“))

Zk Zw Zi Zm [' 7(':.””(7”'“")];

where sum over i covers six carbon sites (Cg. C-C5). At each site. there are two J; and owo ./,
alues from the two Larmor frequencies. For the 60CB sample. we have all together 216 spec-
tral densities from nine chosen temperatures; for the 60CB/8OCB mixture. we have ld44 spectral
densities from six chosen temperatures in the nematic phase and 120 spectral densities from five
chosen temperatures in the S4 and RN phases. These spectral densities are used to derive 13 global
parameters in each global target routine, which occur in Eqs. (9.2)-(9.5) plus either Eqs. (9.6).

(9.7) or Egs. (9.8). (9.9). A global minimization required typically 30 hours C.P.U. time in a Digital
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Alpha 255 workstation. The rotational diffusion coustants are summarized in Fig. 9.6 and rhe junp

rate constants in Fig. 9.7.

It is noted that the rotational diffusion constant D_ is smaller than Dy in our samples. In the
6OCB sample. the D_ value is of the order of 107 s~ !, whereas in the mixture the D_ is an order of
magmnitude smaller and independent of temperature at ~ 2 x 10% s 7! except there is a minor jump at
the N-S, phase transition. Despite the spectral densities in the nemartic phases of the two systems
are almost identical (Figures 9. and 9.3). it was found that the two sets of model parameters conld
not be interchanged to produce good fits or comparable (J values. This is a bit surprising. and
seems to point to the importance of having reliable spectral density data. The larger motional
anisotropy (Dy/D_) could be explained if molecules in the mixture appear to pack closer than in
the pure 60CB sample. As a consequence. molecular tumbling is more hindered in the mixture and
now oceurs in a time scale of a few microseconds. This low molecular tumbling has recently been
observed(9.18] in a liquid crystal. though in a more ordered Sy phase. Now the values of D and Dy
are more or less comparable in these samples (see Fig. 9.6). It is interesting to note that D) varies
almost smoothly across the two temperature regions in the mixture. By comparing the activation
energies and pre-exponentials of Dy in both the nematic phases of 600CB and 60CB/8OCB samples.
they are equal to each other indicating the spinning motion of a 60CB molecule cannot distingnish
whether the local environment is composed of 60CB or 8OCB molecnles. The disruption of D_.
Dg. and jump rates across the N-S, phase trausition in the mixture must be taken with cantions.
since the target parameters may be sensitive to the manner of fitting our experimental data as well
as to their experimental uncertainties. For instance, the temperature behaviours of k£, and £, in the
60CB sample can be switched without seriously increasing the @ values. Now the jump constant
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ky (the so called crank-shaft motion inside the chain) is independent of the temperature in the
60CB sample (k% = 4.0 x 10'® s7') and in the S /RN region (1.1 x 10'7 s~} of the 60OCB/8OCB
mixture. while it has much lower values but increases slightly upon decreasing temperature (see Fig.
9.7(b)) within the high temperature nematic phase of the mixture. Given the &y valne for the GOCB
sample being comparable to that in the S4/RN region of the mixture. and the &y value being much
smaller in its high temperature nematic phase. the observations are qualitatively consistent with
the argument[9.10] that the dimer structure in the 60OCB/80OCB mixture becomes less frustrated
and is progressively "loose” upon decreasing the temperature. In the high temperature nematic
phase of the mixture. the three-bond motion is restricted due to the "close” dimer stritcture. while
in the RN phase k3 behaves like that in the nematic phase of pure 60OCB. Iu estimaring the error
limits for Ay. it was found that while any larger &) value does not affect the fits in the 60CB
sample and in the low temperature phases of the mixture. its lower limit is 1.Ox 10" 57! for the
G6OCB sample and is 1.3x10" s ! in the S4/RN region of the mixture. Iu the nematic phase of
the mixture. &} is equal to 4.2x 102 s~'. Its error limits (at Tj,) are 8.0x 10" 57! and 1.6x 10"
s ' In Table 9.3. the activation energies and pre-exponentials in Eqs. (9.2)-(9.5) and (9.8). and
their corresponding error limits. are presented. The error limit for a particular global paramerter
was estimated by varving the one under consideration while keeping all other global parameters
idenrical to those for the minimmm F. to give an approximate doubling in the F value. Finally. che
calenlated spectral densities for 60CB (Q=0.9%). for 60CB/8OCB mixture (Q=0.9% in nematic
phase and Q=2.0% in the S;/RN region ) are indicated by curves in Figures 9.4 and 9.5. By
comparing the fitted results in Fig. 9.4 to the earlier analysis of 60CB[9.1]. the ) value is better
because of the improved geometry. Although all the Q values are acceptable, there exist some
systematic deviations between the calculated and experimental spectral densities at some carbon
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Table 9.3. The pre-exponentials (in s™!') and activation energies (in kJ/mol) derived from the anal-
vsis of spectral densities of the 60OCB and 60CB/80OCB samples. The arrows for &) and &} denote

upper and lower error limits.

Pure 60CB 60CB/SOCB(N) | 60CB/8OCB(S,/RN)

kS 1.8 x 10" 1.0 x 10'° T2 x 107
k9 1 1.5 x 10" 1.6 x 10V 1.2 x 10"
kgl 1.8 x 10" 5.0 x 107 2.3 x 107
k° / 9.6 x 109 /

kY T / 7.8 x 10" /

kL / 5.2 x 10% /

D’ | (5%2)x10° / /

DY | (L5 % 0.3) x 10" | (L3£0.3) x L0V (5 1) x 10"
DY, (9 = 3) x 10" (1.1 +£0.4) x 10° (T+£4) x 10"
E* 9+3 2T+38 395
Ek / 26+ 7 /
ED- 20+ 1 / /

2! 18.8 £ 0.5 18.5 £ 0.5 10.1 £ 0.6
EDP= 12.7+0.9 L5+ 1.5 18 +2
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sites (e.g. C; in Fig. 9.4 and C, in Fig. 9.3). As indicated by the @ value. the fits are relatively
poor in the Sy and RN phases of the 60CB/80CB mixture. However. the observed ./,/.J; > 1 for
(') deuterons at 46 MHz is qualitatively reproduced by the model. vet the predicted ./,/.J; > 1 for
C'y at this frequency is not observed. These discrepancies are nnderstandable given the many as-
sumptions and limitations of the models used in the present study. The calculated spectral densities
are by and large continnous across the N-S phase trapsition in the mixture in gnalitative agree-

ment with the experiment(Fig. 9.3). despite two separate global target routines were used in the fits.

9.5 Summary

A consistent interpretation of both the quadrupolar splittings and the spin-lattice relaxation data
measured in the 60CB and 60CB/8OCB samples have been given. From modeling the splittings
using the AP method. the orienting potential needed to describe the reorientational dyvnamics of
60CB molecules in these samples is obtained. [t is clear that the tumbling motion of a 6OCB
molecule is much slower than its spinning motion in both samples. and in comparison with the
6OCB sample. it is strongly hindered in the 60CB/80CB mixture. When the value of D_ becoes
small, the fitting tends to be less sensitive to its value. This may be the reason why it shows no
temperature dependence in the mixture. The decoupled model provides a simple description of cor-
related internal bond rotations in the chain. The jump rate &y in the S4/RN region of the mixture
is close to that in the nematic phase of pure 600CB. which may indicate that the dimer structure
of 60CB/80CB mixture is "loose” in the low temperature phases, i.e. similar to the “loose” dimer
or monomer structure in the pure 60CB sample. But some other parameters are, at least. not too

much in favor of this point. e.g., the small value of D_ in S4/R.V region.
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Finally. it is pointed out that our relaxation data in the pure 6(0)CB sample could not be fitted betrer
bv including director Huctuations. One possible explanation is that the high cutoff frequency for
director Huctnations is lower or comparable to the Larmor frequencies used for our sample[Chapter
8]. The inclusion of director Huctnations in the RN phase may improve the @ value. bur this
requires more adjustable parameters. In conclusion. despite many simplifving assiunptions nsed in
the decoupled model. the quality of fits to the available spectral densities is more than satisfactory
over the studied temperatures of both syvstems. and the degree of molecular packing in different
phase structures may be qualitatively inferred from some of the derived model parameters. The
present study further demonstrates the usefulness of the TZ model (or Nordio’s model) iu deseribing

the overall motion of lignid crystal molecules.
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Chapter 10

Orientational Ordering and Dynamics in
the Columnar Phase of a Discotic Liquid

Crystal-HAT®6

10.1 Introduction

The novel charge transport properties of the columnar phases{10.1] formed by disc-like molecules
sich as the hexakis(atkyloxy)triphenvlenes (HATn) are potentially exploitable in applications rang-
ing from sensing devices to high-resolution xerography[10.2]. These disc-like molecules are stacked.
with only short-range positional order. into columns which are arranged on a two-dimeunsional
lattice, typically hexagonal (Figure 1.5). HATn molecules have been studied using proton and
denteron NMR by Luz and coworkers[10.3-10.6] more than 10 vears ago. Nordio model[10.7] was
used to explain[10.8] the spectral densities of aromatic deuterons in HAT6. and some rotational

diffusion constants for the HAT6 molecule were derived. The quadrupolar splittings of the chain
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deuterons were modeled[10.9] using the additive potential (AP) method. This earlier attempt for
the homologous series HATn unfortunately contained numerical errors and the good fits were for-
tuitous. Also an interpretation of spectral densities from the chain deuterons{10.6] has not been
attempted. In the present study, there are two deuterated HAT6 samples, one is ring deuterated
and the other is chain deuterated. The motivations are to investigate the dynamics of these discotic
liquid crystal samples and to test Dong's decoupled model, for the first time, in flexible disk-like
molecules. The discotic-isotropic transition temperature 7, of samples was determined by means
of NMR signals. The chain-deuterated sample exhibited a 7, = 99.4° C, while the ring-deuterated
sample a 7, = 100.4° C. When comparing the NMR data of these samples, we scaled the tempera-
tures to give a common 7T, of 99.9°C. The HAT6 molecule is schematically shown in Figure 1.5, and
the peak assignments for the chain-deuterated sample are shown on the representative spectrum in

Figure 10.1 with the peak labels denote the carbon sites (6 refers to the methyl deuterons).

34
56
2
| J
-l_r T T T T ] T T 7 T ‘i T T T T [ B S| T T T—j
20000 10000 0 —-10000 —-20000 Hz

Figure 10.1 A typical deuteron NMR spectrum of chain-deuterated HAT®.
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Since HAT6 has Ay < 0. the columnar axes (directors) are aligned perpendicular to the maguneric
field. The measured T,z and T} with the director at 90° with the field direction are

Tl'Q' = 3.J)(«.90%)

T7 = Ji(w.90") + 1J5(20.90%) (10.1)
which give ./, (w. 90°) and .J,(2w. 90°). These cau be calenlated in terms of J, (. 00) = (i) (0 =

0.1.2) as follows[10.13}:

i)calc 0 Lrow i
T (0. 90°) = 5 [Jw) + 17 ()] (10.2)
; . . 1 . 3
Jieade (2., 90°) = 53.15"(2;,1) + ;Jf’)('_)w) + —:-,/.g"(-_u) (10.3)

Substituting Egs. (4.23) and (6.18) iuto the above equations. the measured spectral densities in onr
experiments can be caleulated. As seen in Figure 10.1. the doublet splittings from Cy and Oy sites

are not resolved. Thus the spin-lattice relaxation times at these sites can not be measured separately.

10.3 Results and Discussion

Figure 10.2 shows the experimental bﬁ‘}) versus the temperature. The temperature dependences of
the measured relaxation rates T\7 and T are summarized in Figures 10.3 and 10.4. The relaxation
rates measured at 46 MHz are similar to those reported in the literature(10.6]. except our values for
the aromatic deuterons are slightly lower and the values for the C; deuterons show slightly different
temperature behaviours. In ﬁtcing the segmental order profiles of the alkyloxy chain. the O = ("
bond is taken to be identical to C — C bond. The COC angle{10.14-10.15] is set at 126.4°. and
the different internal energies £/ (COCC) and £;_,_(COCCC) are nsed due to the presence of the

oxygen and the larger COC angle. We had inputted various values of £y, Ej,. Ej-g=. and Ef,:g:
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Figure 10.2 Plots of segmental order parameters as a function of temperature in the columnar
phase of HAT6. O denotes the aromatic sites. open and closed (s denote C; and C,, respectively.
while open and closed s denote C;_g and C;. respectively. The solid curves are the theorectical

predictions using the additive potential method.
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Figure 10.3 Plot of experimental Zeeman spin-lattice relaxation rates versus the temperature in
the columnar phase of HAT6. Figure (a) and (b) are for data at 15.1 and 46 MHz, respectively.
Circle denotes the aromatic sites, open and closed /s denote C, and C,, respectively, while open

and closed Os denote C3_4 and Cs, respectively. The dashed lines are drawn to aid the eyes.
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Figure 10.4 Plot of experimental quadrupolar spin-lattice relaxation rates versus the temperature
in the columnar phase of HAT6. Figure (a) and (b) are for data at 15.1 and 46 MHz, respectively.
QO denotes the aromatic sites, open and closed s denote C, and C,, respectively. while open and

closed Os denote C;_,; and Cs, respectively. The dashed lines are drawn to aid the eyes.
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and found that the calculated Avy and Avy were different and the best results were obtained by

wsing Eyy = 3.7 kJ/mol. £}, = 1.9 kJ/mol. and £, - = E} = 10 kJ/mol. [t is not clear at the

=gz
present time why E[” is smaller than E,, for HAT6. To model the splitting profiles. we used Eq.
(3.33) and Eqs. (3.36)-(3.-41) to evalnate Ap; and 55‘}, (Eqs.(3.26) and (3.27)]. Iu these discotic
samples. the interaction tensors for the disk-shaped core and rodlike C —C segment are expressed by
Eq. (3.50) and Eq. (3.51). respectively. The total interaction tensor for each conformer is obtained

by Egs. (3.52) and (3.53). The optimization routine (AMOEBA) was used to minimize the sum

squared error f in firting the splittings
v ] * ).L'(ll(‘ 2
f=3 08¢0 = 15¢5™ (10.1)
1

where the sum over z includes C| to C;5 and aromatic deuterons(see section 3.4.2). The f values are of
the order of 107 (see Table 10.1). The calculated segmental order parameters are indicated in Fipure
10.2 as solid lines. Note that Awy and Avy were averaged for comparison with the experimental val-
nes. We summarize in Table 10.1 some of the derived parameters X,. X... < Py >. < 5., -5, >. ay

and a. Asseen in Table 10.1. < 5;,—5,, > is vanishingly small indicating that the HAT6 molecule

is essentially a uniaxial molecule.

From the results of Figures 10.3-10.4 and Eq. (10.1). the spectral densities of the aromartic and
aliphatic deuterons could be determined. These are summarized in Figures 10.5 and 10.6. To show
the site dependence of spectral densities, we plot them in Figure 10.7 for two different tempera-
tures. The J,(w, 90°) and . (2w.90°) are in general largest at the aromatic site (i = 0) and decrease
monotonically along the chain to the methyl group. At 336.4 K and 46 MHz. .J,(2w. 90°) of Cy is

slightly less than that of C;. We model the spectral densities by using Eqs. (4.27). (6.19) and (10.1-
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10.3). In particular. we take advantage of the fact that the target parameters of the model vary
smoothly with temperature by simultaneously analyzing data at all temperatures. From individunal
target analyvses (i.e. analyze the data at each temperature). we found that the rotational diffusion

constants and the jump constant &, obev simple Arrhenius-type relations. giving

Table 10.1: Model parameters derived from the analysis of quadrupolar splittings ar
different temperatures in the columnar phase of HATG6. The interaction parameters
X, and X are in units of kJ/mol. a,g, @y are dimensionless second rank coefficients

in the orienting potential which is used in the rotational diffusion equation.

TE) | Xa | Xeo | <Pr>|<S0—=S, > | aw | 102y | 10°f
364.9 | 17.3 | 0.145 | 0.848 0.00101 7.0 | -105 | L
362.1 | 17.9] 0.136 ] 0.855 0.00087 73| <100 | 1
359.2 | 18.5 | 0.124{ 0.862 0.00073 76 | -93 | L4
355.4 | 194 | 0.111 | 0.869 0.00059 81| -84 | L4
351.6 | 20.4 | 0.098 | 0.878 0.00046 86 | 75 | L3
347.8 | 21.2 | 0.085 | 0.884 0.00037 9.0 | 66 | L3
344.0 | 22.2 | 0.072 | 0.890 0.00028 95 | 57 | L2
340.2 { 23.1 | 0.058 | 0.896 0.00021 | -10.0| 4.7 | L2
336.4 | 24.1 | 0.050 | 0.902 0.00016  [-106| -1 | L.1
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Figure 10.5 Plots of experimental (symbols) and calculated (lines) spectral densities of HATSG.
Figure (a) and (b) are for data obtained at 15.1 and 46 MHz. The open symbols denote J,(wg, 90°),
while the closed symbols denote J3(2wq, 90°). The 7s represent data for Cs, while the Os and Os

represent data at the aromatic sites and C,, respectively.
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Figure 10.6 Plots of experimental (symbols) and calculated (lines) spectral densities of HAT6.
Figure (a) and (b) are for data obtained at 15.1 and 46 MHz. The open symbols denote J; (wg. 90°).
while the closed symbols denote J2(2wyp, 90°). The (s represent data for C,. while the Os represent

data at C;_y4.
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D_ = D%exp [—E;/RT] (10.3)
Dy = D‘?exp [—EJ/RT] (10.6)

ky = k§exp [—Eﬁz/[{T} (10.7)

In Eqgs. (10.5)-(10.7). the global parameters are pre-exponentials D% . DY, k). and their corresponcd-
ing activation energies E-. E!. E*¥2_ For convenience. the diffusion and jump rate pre-expouentials
are not used as global parameters. Rather Eqs. (10.5)-(10.7) are rewritten in terms of the activation
energies and the diffusion and jump constants D’ . D’[. k) at T = 3649 K. When such a relation

does not exist for a target parameter like &, or k4. we model them by a linear relation:
! n
k, =k, — k(T - Thnar) (10.8)

since its temperature dependence is weak. Here the global parameters &), and A'(i = 1 or 3) are
optimized. The diffusion constants D’ . D’I and the jump constants AL, k. &) at T, were first
obtained from an individual target analysis. Again AMOEBA was used in our minimization to fit

the spectral density data. The sum squared percent error F is given by

Jleale(n 5 90°) — JB) . 90° E
F=YYYS [ e 00— G S0 g (10.9)
k w @ om Jn (1. 90°) .

where the sum over & is for nine temperatures. w for two frequencies. ¢ for five methyvlene denterons
(and aromatic denterons) and i = 1 or 2. The fitting (nality factor () is given by the percent

mean-squared deviation

2

Tk T Ti T[S (im0, 90°) — S (310, 90°)] 100 (10.10)
= x ’

Q :
Zk Zu Zi Zm [J’(’:)("L‘U' 900)]i
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particular global parameter was estimated by varying the one under consideration while keeping all
other global parameters identical to those used for the minimum £ (or 2). to give au approximate
doubling in the Q value (e.g. EJ) or in the F value (e.g. k}.EF). When the target parameter
becomes insensitive in the calculation. a lower % in £ was used. Now the pre-exponentials in Eqs.
(10.5)-(10.7) are D® =3.17x 105" DY = 7.05x 10" s 7" and &2 = LIx10% 5!, The uncertainey
in D} is 5.6 - 8.5 x10" 57" and in D° is between 5 x 10" s 7" and LI x10" 57" We nore that ar
the low D° limit. the Dy/D_ ratio is about 2. The error limits for &) are between L9 x10% 5™
and 1 x10?® s7! (for 13 % increase in F). At T,por. k) = 5.0 x10'7 57" and £} = 9.19 x10% 57"
The error bar for &, ranges between 4.25 x10' 57! to 2.4 x10" s7'. While any larger &) value
does not affect the fit. its lower limit is found to be 2 x10' 57!, Finally. the calenlated spectral
densities for HATG6 ((Q = 0.67 %) are indicated by curves in Figures 10.5 and 10.6. Although rhe
final () value is quite small. there exist svstematic deviations between calenlated and experimental

spectral densities. The predicted site dependences of various spectral densities at two temperatures

are also shown in Figure 10.7.

10.4 Conclusion

A copsistent interpretation of both the quadrupolar splittings and the spin-lattice relaxarion dara
measured in the columnar phase of two differently denterated HATG molecules have been given .
From modeling the splittings with the AP method. the orienting potential needed to describe the
reorientational dynamics of molecular disks is obtained. [t is clear that the tumbling motion of a
disk can be slightly faster than its spinning motion. Both jump constants for one- and three-bond

motions are nearly independent of temperature, while the jump constant for two-bond motion is
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thermally activated. The relative reorientation of the disc-like cores and their time dependence
could play an important role in the charge transport in this type of materials. Given the rotational
diffusion constants are of the order of 10* s7!. the packing of molecular disks within a column
must be viewed as a state of high dyvnamic mobility. The decoupled model proposed by Doug for
correlated internal rotations has been applied for the first time to a discotic liquid ervstal. To
understand the large mobility anisotropy observed for charge carrier along and perpendicular to
the colunn. one may speculate that the electronic transport through the insulating chain regions is

further hampered by the very fast one-bond motion (k) at the end of alkyl chains in HATG.
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Chapter 11

Conclusions

Nuclear spin relaxation measurements can be used to study the molecular dyvnamics in liguid ervs-
tals. The global target analyvsis approach was used throughout this thesis. [t had been shown to
produce more reliable model parameters. and was particularly useful when the rarget model param-
eters were strongly correlated and/or affected by large statistical errors. The TZ model (vroposed
by Tarroni and Zannoni) is proven to be verv useful in interpreting the deuteron relaxation of bi-
axial molecules in the uniaxial medium. The director fluctnation. up to second-order contributions.
was used where applicable. The molecular mean field theory based ou the additive potential (AP)
method had been adopted to interpret the order parameter profiles of flexible chains. By modeling
the uadrupolar splittings using the AP method. we obtained the orienting potential needed to
describe the reorientational dynamics of molecules iu the samples studied. [n addition. the equilib-
rium probabilities of all conformers for the flexible chain were determined. These were required iu
the deconpled model (proposed by Dong) for correlated internal rotations. Both the rod-like and
discotic liquid crystals were treated by the decoupled model to give reasonable dyuamical parame-
ters.

170



In Chapter 7. it is shown that a model which includes director finctnations and rotational diffusion
of an asvinmetric rigid rotor in a biaxial potential of mean torque can efficiently nnravel the molec-
ular dyvnamics of 50.7 in the nematic and smectic A phases. In addition. the relaxation data allow
us to determine the molecular biaxial parameters: €. a measure of the deviation from cylindrical
svmmetry of the molecule, and €. the asymmetry parameter of the rotational diffusion rensor. Borh
are found negative for the 50.7 molecule. That the activation epergy £ being larger than E,;l for
this molecule is a significant tinding from spin relaxation of liquid crystals. [t is normally assmumed
that director fluctnations show a high value for the high-frequency cutoff (w. ~ 200MHz). This
high value compared to our Larmor frequencies (13-46 MHz) would result in a significant direcror
fluctuation contribution to Jj(w) in the first order approximation. and appears true in the 50.7
sample. However. this is not the case in the MBBA sample. [n Chapter 8. the zero-frequency
spectral densities Jy(0) derived from T, and T, relaxation dara in the nematic phase of MBBA
support the idea that MBBA has a relatively low value for the high-frequency entoff (aronnd 3-
10 MHz). It is found that director Huctuations have larger effects on J5”(0) (35%-50%) than on
.Il(i)(w)(< 10%), which is due to the fact that the director Huctuation coutribution to J;(0) has
mainly a second-order component. whereas the first-order coutribution to Ji{w) is suppressed in
the limit w. < w. A cowsistent interpretation of both the quadrpolar splitting and spin-lattice
relaxation data of the pure 60CB and 60CB/8OCB mixture is given in Chapter 9. It is shown that
the tumbling motion of 60)CB molecule is much slower than its spinning motion. and in comparison
with the 60CB sample, it is strongly hindered in the 60CB/8OCB mixture. The jump rate iy
in the S1/RN region of the mixture is close to that of pure 60)CB, which may indicate that the
dimer structure of 60CB/80OCB mixture is "loose” in the low temperature phases, i.e.. similar to
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“loose™ dimer or monomer structure in the pure 60CB sample. In Chapter 10. a similar study in
the colnmnar phase of discotic HAT6 molecules is presented. It is found the tumbling motion of a
disk can be slightly faster than its spinning motion. Given the rotational diffusion constants are of
the order of 10* s '. the packing of molecular disks within a column must be viewed as a state of
high dynamic mobility. This state of high dvnamic mobility within the column has implications to

application of HATG6 in developing electric devices.

Finally, we summarize what new findings are obtained from the liquid crystalline samples in the
thesis. The molecular reorientation of 50.7 liquid crvstal samples are treated as “rigid” rotors by
applying the TZ model. and the fitting is improved in comparison with that using the Nordio’s
model. Thus. 50.7 molecules are biaxial rather than uniaxial as assumed by the earlier reports. For
MBBA. the high-frequency cutoff was found quite low. around 3-10 MHz. This is a new discovery
regarding this sample. In this thesis. it is shown that the zero frequency component J3(0) from
the spin-spin relaxation time measurement provides a means of probing direcror finctuations in
samples of low high-frequency cutoff. The decoupled model for correlated internal chain motions
was used before for shorter molecules like MBBA(10O).1) and 5CB. In the present stndy. the 60CB
molecule has a slightly longer chain and also an oxygen site. which is different from the carbon site,
As a result. the usefulness of the decoupled model is further proven for 60CB and 60OCB/80(B
mixture. The picture of "loose” dimer in the low temperature phases of GOCB/80OCB mixture has
been qualitatively addressed here using the NMR experiment data. The decoupled model is used
for the first time to the columnar liguid crystal phase of a discotic sample. Thus. the deconpled
model is not only suitable for rod-like molecules. but also for disk-like molecules. The different
forms of interaction tensor for disk-like core and cigar-shaped C-C segment are introduced in this
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study. and proven valid. Some pre-exponentials for jump constants (e.g. &) in MBBA. &Y in HAT6)
seem too large. since it would be difficult to rationalize these high values in term of the “collision”
frequency in the thermal process. Further studies of other liquid crystals are required to shed light
on this point. This thesis represents. to our knowledge. a first quantitative study of lonyg Hexible

molecules in liquid crystals nsing denteron NMR spin relaxomertry.
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