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Abstract

An (nk) configuration is a family of n points and n (straight) lines in the real

plane such that each point is on precisely k of the lines; each line contains

precisely k of the points, and any two points are on at most one line. The

study of configurations goes back more than a century and it was popular-

ized by Hilbert and Cohn-Vossen by introducing an attractive chapter on

geometric configurations in their now classical book called “Geometry and

Imagination.” Recently, this topic has been revived by Branko Grünbaum in

his wonderful book entitled “Configurations of Points and Lines” It presents

in detail the history of the topic, with its surges and declines since its be-

ginning in 1876. It covers all the advances in the field since the revival of

interest in geometric configurations some 25 years ago. Here we refer to this

fundamental publication as “the Book”.

In this thesis, we address several open problems mentioned in the Book.

One of the basic and profound questions frequently asked in this topic is

about the “existence” of configurations. Given an abstract combinatorially

defined point-block configuration, the basic questions are “what do we mean
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by exist” and how do we “realize” the configuration. The Book deals with two

kinds of realizations: points are points in the real Euclidean (or projective)

plane and the blocks are straight lines or (topological) pseudo-lines.

Motivated by the fascinating fact that a non-singular cubic curve in the

projective plane over a field admits a natural group law “+” such that three

points {P,Q,R} are collinear if and only if the the sum P + Q + R = 0

under the group law, we define the concept of a group realization of a

given configuration: an (nk) configuration C is group-realizable if there is

an embedding f of C into a group G such that {P1, P2, . . . , Pk} is a block in

C =⇒ f(P1) + f(P2) + · · ·+ f(Pk) = 0 in G. The group realizations are, in

turn, pressed into service to construct geometric realizations (of (n3)
′s and

(n4)
′s) in the real or the complex plane using the well-known group struc-

tures on cubic curves. Using a variety of techniques from algebra and number

theory like: the resultant of polynomials, Hensel’s Lemma on lifting primitive

roots, companion matrices and Bunyakovski’s conjecture, the following new

realization theorems are proved in this thesis.

1. Group realizations of several cyclic (n3)-configurations.

2. Geometric realizations of (n3)-configurations using the group structure

on cubic curves.

3. Group realizations of several cyclic (n4)-configurations.

4. Group law on non-circular ellipses using points and circles.
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5. A new geometric representation of (n4)’s using point-circle models.

6. Hensel’s Lemma and infinitude of (n3)’s and (n4)’s with group

realizations.

7. Properties forced by group realizations

8. Group realizations of some designs (e.g. finite projective planes,

biplanes etc.).

9. Miscellaneous examples.

(a) The Desargues configuration (103).

(b) Group realizable cyclic (n5)-configurations.

(c) Group realizations of some well-known orchards.

(d) Examples of configurations having no group realization.

(e) The Cremona-Richmond (153)-configuration.
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Chapter 1

Introduction

In this thesis we study the representation of abstract configurations, with

particular emphasis on cyclic configurations, by abelian groups. Finite con-

figurations share analogous properties with plane geometry, the most gen-

eral being an underlying set of points and a distinguished subset of those

points which we will call lines, or blocks. We further require that each point

be incident with the same number of lines, and that each line contain the

same number of points. To clarify, in a given configuration C, the points

P1, P2, . . . , Pn of C being collinear simply means that {P1, P2, . . . , Pn} is a

block (line) of C.

Definition 1.0.1. An (nk) configuration is a set of n points and n lines in

which each point is contained in exactly k lines; each line contains exactly k

points; and, any two lines intersect in at most one point.

We use the notation of Grünbaum ([18] page 68) to represent cyclic (nk)
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Chapter 1. Introduction

configurations.

Definition 1.0.2. A general cyclic configuration Ck(n, a1, a2, . . . , ak−1) con-

sists of k − tuples j, a1 + j, a2 + j, . . . , ak−1 + j, for given a1, . . . , ak−1 with

0 < a1 < . . . < ak−1 < n and for 1 ≤ j ≤ n, all entries taken modulo n.

For example the well-known seven point Fano configuration can be rep-

resented as the cyclic configuration C3(7, 1, 3). Here the points are given by

the set {0, 1, 2, 3, 4, 5, 6} and the blocks by the triples {j, j+1, j+3} (mod 7)

where 0 ≤ j ≤ 6. The configuration table thus obtained for the C3(7, 1, 3) is

depicted in the following table.

0 1 2 3 4 5 6
1 2 3 4 5 6 0
3 4 5 6 0 1 2

Table 1.1: Blocks defining the configuration (73)

Classically, realizability simply meant drawing a reasonably exact drawing

of the configuration in the real plane. The problems with this definition

became clear early in the study of configurations. A suitable remedy followed:

a realization in the real plane would be a coordinatization of the points where

the lines are given by linear equations.

It is a folklore result in the field that the Fano configuration cannot be

represented in the real plane. In addition to the Fano configuration, the

reader is no doubt familiar with the famous Möbius-Kantor configuration, as

well as the configurations associated with the famous Desargues and Pappus

Theorems. The impetus behind this thesis is to embed such configurations

2



Chapter 1. Introduction

into abelian groups by drawing an analogy with the theory of cubic curves.

Namely, as a guide, we adapt the geometric definition of the group law on

cubic curves, and in chapter 4 introduce a new notion of realizability that is

natural for cyclic (n4) configurations.

Definition 1.0.3. A group embedding is an injective mapping, f , from an

(nk) configuration, C, into an abelian group G, such that if a set of k points

{P1, . . . , Pk} is a line C, then f(P1)+ · · ·+f(Pk) = 0 in G. (Extra collinear-

ities may occur in the group image without being true in the original C.)

As a simple example, the Möbius-Kantor configuration, with point set

{0, 1, 2, 3, 4, 5, 6, 7} can be embedded into Z3 × Z3 according to the rule:

i→

2 1

1 0


i0

1

 (mod 3).

This generates the following embedding:

1 2 3 4 5 6 7 0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓1

0


2

1


2

2


0

2


2

0


1

2


1

1


0

1


The verification that the sum of the images of the points on each line(line

sums) is (0, 0) in the group Z3×Z3 is easily verified by inspecting the following
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Chapter 1. Introduction

graphical depiction of the embedding.

5

(2, 0)

2

(2, 1)

3

(2, 2)

6

(1, 2)

0

(0, 1)

4

(0, 2)

7

(1, 1)

1

(1, 0)

Figure 1.1: (83) in Z3 × Z3

Indeed, the majority of the body of this thesis is dedicated to finding the

sort of exponential map illustrated in the previous embedding, and developing

general techniques for their construction. Three of the four major techniques

we use, and develop for embedding cyclic configurations all hinge upon the

resultant of two polynomials.

Definition 1.0.4. The Sylvester matrix of two univariate polynomials f(x) =

amx
m+am−1x

m−1+ · · ·+a1x+a0, and g(x) = bnx
n+bn−1x

n−1+ · · ·+b1x+b0

of degrees m and n respectively, is the (m + n)× (m + n) matrix formed by

filling the matrix beginning with the upper left corner with the coefficients of

f(x); appending the remainder of the entries of the row with zeroes; then,

shifting down one row and one column to the right and filling in the coeffi-

cients starting there until they hit the right side. The process is then repeated

for the coefficients of g(x). We denote this by Syl(f, g;x).
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Chapter 1. Introduction

Definition 1.0.5. The Resultant of two univariate polynomials f(x) = amx
m+

am−1x
m−1 + · · · + a1x + a0, and g(x) = bnx

n + bn−1x
n−1 + · · · + b1x + b0 of

degrees m and n respectively, is defined to be the determinant of the Sylvester

matrix Syl(f, g;x).

Definition 1.0.6. The Singer polynomial of the general cyclic configuration

Ck(n, a1, a2, . . . , ak−1) is denoted by σ(x), and given by σ(x) = 1+xa1 +xa2 +

· · ·+ xak−1.

The resultant of two polynomials is zero if and only if the two polynomials

have a common root (see [11]). By examining the prime factorizations of the

resultants of the associated Singer polynomial of a cyclic (nk) configuration,

and either the nth cyclotomic polynomial (cn(x)) or the polynomial xn − 1,

we can gain insight into potential group candidates with which to construct

our embeddings.

Example 1.0.7. Given the the polynomials f(x) = 3x3 + x2 + 2x + 1, and

g(x) = 5x2+7x+9 their Sylvester matrix Syl(f, g;x) is given by the following:

Syl(f, g;x) =



3 1 2 1 0

0 3 1 2 1

5 7 9 0 0

0 5 7 9 0

0 0 5 7 9


.
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Chapter 1. Introduction

The resultant of Syl(f, g;x) is given by the following:

resultant(f, g;x) = det(Syl(f, g;x))

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 1 2 1 0

0 3 1 2 1

5 7 9 0 0

0 5 7 9 0

0 0 5 7 9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 4697

= 7 · 11 · 61.

So the two polynomials have no common solution over the reals; however,

it can be shown that they share a common solution of 8 modulo 11.

The four basic techniques we develop are influenced heavily by the work

of J.Singer [32], and Mendelsohn, Padmanabhan, and Wolk [31]. They are

briefly described as follows:

• Type 1 Embedding This embedding maps a cyclic (nk) configuration

into a single copy of a cyclic group.

• Type 2 Embedding This embedding maps a cyclic configuration into a

direct product of cyclic groups by considering field extensions.
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Chapter 1. Introduction

• Type 3 Embedding This embedding maps a cyclic configuration into a

single copy of a cyclic group, but differs from the first type by using

the Carmichael Lambda function to identify an appropriate group.

• Type 4 Embedding Cyclic embedding matrices, analogous to the canon-

ical concept of a “companion matrix” (in fact, elementarily equivalent

to the standard form, see [13]. We thank Dr. S. Kirkland for this ref-

erence). Here we associate a square matrix with a Singer polynomial

or one of its factors.

Definition 1.0.8. For a positive integer n ≥ 2, the Carmichael Lambda

function is defined to be the smallest positive integer λ(n) such that for all

integers m where gcd(m,n) = 1, mλ(n) ≡ 1 mod n.

So, for a given positive n ≥ 2, the Carmichael Lambda function calculates

the exponent of the group of units modulo n. In other words it calculates

the lcm of the orders of the elements of the group of units. We can calculate

it with the following formulas:

λ (pα) =


φ (pα) , if α ≤ 2 or p ≥ 3

1
2
φ (pα) , if α ≥ 3 and p = 2

λ (p1
α1 · · · pkαk) = lcm (λ (p1

α1) , · · · , λ (pk
αk)) ,

where the pi are distinct positive prime numbers.
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Chapter 1. Introduction

In this thesis we describe group embeddings for hundreds of cyclic (nk)

configurations. Of particular note we give a partial answer to a question

of Grünbaum [18] page 68, in establishing the existence of infinitely many

geometrically realizable C3(n, 1, 4) configurations. We also describe a new

notion of geometric realizability for cyclic C4(n, 1, 4, 6) configurations which

employs the group law on a non-circular conic and has a natural correspon-

dence with Type 1 Embeddings.
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Chapter 2

Point-Line Configurations,

Groups and Cubic Curves

The importance of cubic curves for the problem of geometric realizations of

configurations comes from two facts:

1. Non-singular cubic curves give a natural geometrically defined group

law such that three points {P,Q,R} on the cubic curve are collinear if

and only if P +Q+R = 0 under the group law.

2. The group of points on a non-singular cubic curve over the complex

field is S1 × S1, and the group over the reals is S1, or S1 × Z2, where

S1 is the circle group. [33]

In particular, every finite cyclic group is a subgroup of S1 (parameter

values viewed as ‘degrees’), and a product of two finite cyclic groups is a

9



Chapter 2. Point-Line Configurations, Groups and Cubic Curves

subgroup of S1 × S1(see page 247 of [18]). Hence a configuration embedded

in a single cyclic group exists in the real plane and similarly a configuration

embedded in the product of two cyclic groups exists in the complex projective

plane. The most well-known example of the latter type is AG(2, 3) which

is embeddable in Z3 × Z3 and hence is realizable in the complex projective

plane as the set of inflection points of a complex cubic (the 19th century

famous Wendespunkte). It was this design that prompted J.J. Sylvester to

make the now famous Sylvester-Gallai Theorem.

Theorem 2.0.1. (Sylvester Gallai Theorem [21]) Given a finite number of

points in the Euclidean plane, either all the points lie on a single line; or

there is a line which contains exactly two of the points.

Using the language of the group law on cubics, we describe some of the

geometric properties of (n3) configurations in the language of groups and

vice-versa.

2.1 The Group Law on a Cubic Curve

The starting point is the binary ∗ − operation defined by the chord tangent

process. In particular, we need the following well-known facts about the

group law on non-singular cubic curves which we state in the form of theorems

(for proofs and more details see [27], and [31]).

Theorem 2.1.1. The following properties are well-known for the chord-

tangent process in a non-singular cubic curve(see Lemma 1.3 in [27]).

10
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1. e ∗ e = e if and only if e is an inflection point(i.e., the tangent at e

meets the curve again at e).

2. P ∗Q = Q ∗ P .

3. P ∗ (Q ∗ P ) = Q

4. (P ∗Q) ∗ (R ∗ S) = (P ∗R) ∗ (Q ∗ S)

5. ((P ∗Q) ∗R) ∗ S = ((S ∗Q) ∗R) ∗ P

In fact, modulo (2.) and (3.), the identities (4.), and (5.) are equivalent.

Knapp has given a detailed proof of (4.) (see Lemma 3.9 of [22]).

Theorem 2.1.2. For a point P on the curve E, the following statements are

equivalent.

1. P is an inflection point i.e. the tangent at P meets the curve again at

P .

2. P ∗ P = P .

3. P + P + P = e, the zero of the group law +: P +Q = (P ∗Q) ∗ e.

Proof. (1.) =⇒ (2.) by the very definition of the ∗ operation. (2.) =⇒

(3.). P +P +P = ((P ∗P )∗e)+P = (P ∗e)+P = ((P ∗e)∗P )∗e = e∗e = e.

11
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(3.) =⇒ (1.) Let P + P + P = e. Then,

(e ∗ P ) ∗ P = e ((3.) of Theorem 2.2.1)

= P + P + P (assumption)

= ((P ∗ P ) ∗ e) ∗ P ) ∗ e, (definition of +)

= ((e ∗ e) ∗ P ) ∗ (P ∗ P ) ((5.) of Theorem 2.2.1)

= (e ∗ P ) ∗ (P ∗ P )

and hence P = P ∗P , meaning that P is an inflection point. In view of this,

we can choose any inflection point as the identity element of the group law.

2

Figure 2.1: Validity of the identity P ∗ ((Q ∗R) ∗ S) = ((P ∗Q) ∗ S) ∗R for
the chord-tangent operation (∗) on non-singular cubic curve.

12
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Theorem 2.1.3. Let e be an inflection point on a non-singular cubic curve C.

Let the binary operation + be defined by the familiar rule P +Q = (P ∗Q)∗e.

Then the algebra (C; +,−, e) is an abelian group such that three points P,Q,R

are collinear if and only if P +Q+R = e.

Proof. It is obvious that the group law + is commutative since the ∗-

operation is commutative. The non-trivial associativity is just a reformula-

tion of (5) of Theorem 2.2.1:

(P +Q) +R = (((P ∗Q) ∗ e) ∗R) ∗ e

= (((R ∗Q) ∗ e) ∗ P ) ∗ e

= (R +Q) + P

= P + (Q+R).

Finally, let three points P,Q,R be collinear. Then

P +Q+R = (P +Q) + (P ∗Q)

= ((P ∗Q) ∗ e+ (P ∗Q)

= (((P ∗Q) ∗ e) ∗ (P ∗Q)) ∗ e

= e ∗ e

= e.

The converse is equally easy to see.

2
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Figure 2.2: Group law on the cubic curve y2 = x3 − 5x+ 4.

Referring to Figure 2.2 here: (0, 2) ∗ (1, 0) = (3,−4) and hence (0, 2) +

(1, 0) = (3, 4). The group law calculation is as follows: the line joining (0, 2)

and (1, 0) is y = 2 − 2x. Eliminating y from the equations of this line and

the given cubic, we have (2− 2x)2 = x3 − 5x+ 4. This cubic in x has three

solutions and already we know two of them: x = 0 and x = 1. The remaining

third root r is where the line meets the curve again. The sum of the three

roots is 4 i.e. 0 + 1 + r = 4 and hence r = 3. So y = 2 − 6− = −4. This

proves that (0, 2) ∗ (1, 0) = (3,−4) and one vertical reflection shows that

(0, 2) + (1, 0) = (3, 4).

In Problem 2 (of Section 2.11, page 151, the Book) asks: Are there any

obstructions to the geometric realizability of (n3) configurations? In this the-

14
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sis, we suggest that the minimal group rank may force an (n3) configuration

to be non-realizable over the real plane. More specifically,

Conjecture 2.1.4. If the minimal group realization of a cyclic (n3)-configuration

contains two or more copies of a cyclic group Zm where m ≥ 3, then it has

no geometric realization.

Here are a few examples proved in this thesis which support this claim.

Table 2.1: Support for Conjecture 2.1.4

Configuration (n3) Minimal Group Realizable over reals?
C3(7, 1, 3) Fano (73) Z2 × Z2 × Z2 No; (realizable over

GF (k) iff k
satisfies 2 = 0)

C3(8, 1, 3) M-K (83) Z3 × Z3 No;(realizable over
F iff k has a cube

root of unity)
C3(15, 1, 3) (153) Z31 Realizable over the real

plane (via cubic curves)
C3(20, 1, 4) (203) Z25 Yes, Realizable over the

Real plane (via cubic curves)
Pappus (93) Z9 Yes, realizable over the

real plane
Desargues (103) Z2 × Z2 × Z2 × Z2 Yes, realizable over the

real plane
Cremona- (153) Z30 Yes, realizable over the
Richmond real plane
PG(2, 3) (134) Z3 × Z3 × Z3 No

15



Chapter 3

Cyclic (n3) Configurations

The cyclic (n3) configurations C3(n, a, b) are perhaps the best studied of

all configurations; early studies of C3(n, a, b) go back to 1895[6] done by

Brunel. They hold an important position in our study of configurations for

several reasons. The (n3) configurations represent the most fundamental

configurations. Indeed among the (n3)’s are the Fano configuration, the

Möbius-Kantor configuration, the Pappus configuration, and the Desargues

configuration. They provide a canonical underlying structure for the notion

of an Extension of a Configuration which we introduce in Chapter 5

The motivation for the study of cyclic (n3)’s comes from a problem of

Grünbaum [18] page 68 problem 4. It asks: Is C3(n, 1, 4) geometrically re-

alizable for some n? Generalize. In section 3.1 we provide some 120 group

embeddings of C3(n, 1, 3)’s most of which are embeddings into single cyclic

groups (implying classical geometric realizability). In section 3.3 we give
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group embeddings for almost 40 C3(n, 1, 4)’s almost all of which are em-

beddings into single cyclic groups, and give a partial answer to Grünbaums

problem. In Chapter 6, using Hensel’s lifting lemma 6.1.1, we show that

there are infinitely many realizations of C3(n, 1, 4)’s. The basis for our study

of cyclic (n3)’s is the paper of Mendelsohn, Padmanabhan, and Wolk [27].

Indeed, much of the work of this chapter focuses on expanding upon and

extending the ideas presented in [27].

3.1 C3(n, 1, 3)

In this section we provide several examples of the embedding types described

in the introduction.

The first example is of Type 1 embedding of an n3 configuration: there

is a prime p dividing the resultant and also n|p− 1.Consider the cyclic con-

figuration C3(19, 1, 3). Since the resultant Res(x3 + x + 1, c19(x)) = 457, a

prime, and 19|456 we have a candidate for an embedding. Note also that 16

has order 19 in the multiplicative group modulo 457. We have the following

result:

Theorem 3.1.1. The cyclic configuration C3(19, 1, 3) has a group realization

in Z457.

Proof. Let f : C3(19, 1, 3)→ Z457 be given by the following:

f : i→ 16i mod 457.

17
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With respect to multiplication, the order of 16 modulo 457 is 19, thus f

is injective. Since 163 + 16 + 1 ≡ 0 mod 457, we have that for any j

f(j) + f(j + 1) + f(j + 3) = 16j + 16j+1 + 16j+3 mod 457

= 16j(1 + 16 + 163) mod 457

≡ 0 mod 457.

Thus f is a group embedding.

2

Corollary 3.1.1.1. C3(19, 1, 3) is geometrically realizable.

The second example is a Type 4 embedding(matrix) of an (n3) configu-

ration: there is a prime power pk dividing the resultant and also n|pk − 1.

The first example in Table 3.1 is C3(7, 1, 3). The resultant of x3 + x+ 1, and

c7(x) is 8, and 7|23−1. Therefore, our target group for embedding C3(7, 1, 3)

is Z2 × Z2 × Z2; however, this isn’t as simple as the Type 1 embedding. For

a Type 4 embedding we embed into a group of units of a factor ring, in this

particular case the group of units of Z2[x]/(x3 + x+ 1), (i.e., GF (8)).

Theorem 3.1.2. The cyclic configuration C3(7, 1, 3) has a group realization

in Z2 × Z2 × Z2.

Proof. Let A =


0 1 0

1 0 1

1 0 0

, and v =


0

0

1

. Define the mapping f :

C3(7, 1, 3)→ Z2 × Z2 × Z2 to be given by the following

18
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f : i→


0 1 0

1 0 1

1 0 0


i

0

0

1

 mod 2.

That f is injective can be shown by computation (i.e, order of A modulo 2

is 7). Notice that

f(0) + f(1) + f(3) = Iv + Av + A3v mod 2

=


0

0

1

+


0

1

0

+


0

1

1

 mod 2 ≡


0

0

0

 mod 2

More generally, we have

f(j) + f(j + 1) + f(j + 3) = Aj(I + A+ A3)v mod 2

≡


0

0

0

 mod 2

Thus, f is a group embedding.

2

The third example is a Type 3 embedding which uses the Carmichael

lambda function to identify a target group for an embedding. The resultant of
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the ninth cyclotomic polynomial,c9(x) and the Singer polynomial x3+x+1 is

3. The situation is not amenable to a Type 1 or a Type 2 embedding. To deal

with this situation we use the Type 3 embedding. Notice that λ(27) = 18,

and that the order of 7 modulo 27 is 9, and also that 73 + 7 + 1 ≡ 0 mod 27,

therefore our target group for an embedding of C3(9, 1, 3) is Z27. Thus we

have the following result.

Theorem 3.1.3. The cyclic configuration C3(9, 1, 3) is group embeddable in

Z27.

Proof. Define the map f : C3(9, 1, 3)→ Z27 by

f : i→ 7i mod 27.

Since the order of 7 modulo 27 is 9, f is injective. Since 73 + 7 + 1 ≡ 0

mod 27, we have that for any j

f(j) + f(j + 1) + f(j + 3) = 7j + 7j+1 + 7j+3 mod 27

= 7j(1 + 7 + 73) mod 27

≡ 0 mod 27.

Thus f is a group embedding.

2

The following table gives over 100 group embeddings for cyclic config-

urations: including many not found in appendix II of [27]. Note: a ∗ in

20



Chapter 3. Cyclic (n3) Configurations

the base column of a table indicates that the base is a matrix (i.e., Type 4

embedding).

Table 3.1: C3(n, 1, 3) embeddings

configuration Type Resultant Group base
C3(7, 1, 3) 2 8 Z2 × Z2 × Z2 ∗
C3(8, 1, 3) 2 9 Z3 × Z3 ∗
C3(9, 1, 3) 3 3 Z27 7
C3(10, 1, 3) 1 11 Z11 2
C3(10, 1, 3) 3 11 Z33 13
C3(11, 1, 3) 1 23 Z23 4
C3(12, 1, 3) 1 13 Z13 7
C3(13, 1, 3) 1 53 Z53 36
C3(14, 1, 3) 2 8 Z4 × Z4 × Z4 ∗
C3(15, 1, 3) 1 31 Z31 14
C3(15, 1, 3) 3 31 Z93 76
C3(16, 1, 3) 1 17 Z17 11
C3(16, 1, 3) 3 17 Z51 28
C3(17, 1, 3) 1 239 Z239 216
C3(18, 1, 3) 1 37 Z37 25
C3(19, 1, 3) 1 457 Z457 16
C3(20, 1, 3) 1 61 Z61 37
C3(21, 1, 3) 1 43 Z43 38
C3(22, 1, 3) 1 67 Z67 58
C3(23, 1, 3) 1 47 Z47 34
C3(23, 1, 3) 1 47 Z47 25
C3(24, 1, 3) 2 9 Z9 × Z9 ∗
C3(25, 1, 3) 1 4651 Z4651 3978
C3(26, 1, 3) 1 131 Z131 51
C3(27, 1, 3) 1 379 Z379 193
C3(27, 1, 3) 3 379 Z81 61
C3(28, 1, 3) 1 29 · 23 Z29 26
C3(28, 1, 3) 3 29 · 23 Z87 55
C3(29, 1, 3) 1 21577 Z21577 10907
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C3(30, 1, 3) 3 31 Z93 34
C3(30, 1, 3) 1 31 Z31 3
C3(30, 1, 3) 3 31 Z99 79
C3(31, 1, 3) 1 46811 Z46811 13318
C3(32, 1, 3) 1 449 Z449 321
C3(33, 1, 3) 1 1453 Z1453 1321
C3(33, 1, 3) 3 1453 Z207 142
C3(34, 1, 3) 1 613 Z613 226
C3(35, 1, 3) 1 26881 Z26881 11358
C3(36, 1, 3) 1 73 Z73 23
C3(36, 1, 3) 3 73 Z351 7
C3(37, 1, 3) 1 149 · 3109 Z149 67
C3(37, 1, 3) 1 149 · 3109 Z3109 2186
C3(38, 1, 3) 1 1483 Z1483 724
C3(39, 1, 3) 1 792 Z79 11
C3(39, 1, 3) 3 792 Z477 142
C3(40, 1, 3) 1 241 Z241 47
C3(41, 1, 3) 1 2135117 Z2135117 1650854
C3(42, 1, 3) 1 379 Z379 124
C3(43, 1, 3) 1 173 · 26489 Z173 136
C3(43, 1, 3) 1 173 · 26489 Z26489 21428
C3(44, 1, 3) 1 4357 Z4357 252
C3(45, 1, 3) 1 35281 Z35281 34376
C3(46, 1, 3) 1 47 · 139 Z47 35
C3(46, 1, 3) 1 47 · 139 Z139 105
C3(47, 1, 3) 1 283 · 74731 Z283 216
C3(47, 1, 3) 1 283 · 74731 Z74731 50412
C3(48, 1, 3) 1 577 Z577 505
C3(48, 1, 3) 3 577 Z153 79
C3(49, 1, 3) 1 197 · 28813 Z197 133
C3(49, 1, 3) 1 197 · 28813 Z28813 7969
C3(50, 1, 3) 1 1301 Z1301 666
C3(51, 1, 3) 1 136069 Z136069 90067
C3(52, 1, 3) 1 20593 Z20593 1862
C3(53, 1, 3) 1 209520979 Z209520979 20125211
C3(54, 1, 3) 1 811 Z811 224
C3(55, 1, 3) 1 19567351 Z19567351 16525916

22



Chapter 3. Cyclic (n3) Configurations

C3(56, 1, 3) 1 617 · 23 Z617 20
C3(57, 1, 3) 1 229 · 3079 Z229 167
C3(57, 1, 3) 1 229 · 3079 Z3079 843
C3(57, 1, 3) 3 229 · 3079 Z4113 16
C3(58, 1, 3) 1 65657 Z65657 58953
C3(59, 1, 3) 1 3541 · 709 · 827 Z709 681
C3(59, 1, 3) 1 3541 · 709 · 827 Z827 235
C3(59, 1, 3) 1 3541 · 709 · 827 Z3541 3100
C3(60, 1, 3) 2 121 Z11 × Z11 ∗
C3(60, 1, 3) 3 121 Z793 98
C3(60, 1, 3) 3 121 Z143 46
C3(61, 1, 3) 1 4459734401 Z4459734401 2051096448
C3(62, 1, 3) 1 1117 · 53 Z1117 865
C3(63, 1, 3) 1 3093931 Z3093931 263384
C3(64, 1, 3) 1 204353 Z204353 183585
C3(65, 1, 3) 1 22621 · 1312 Z131 5
C3(65, 1, 3) 1 22621 · 1312 Z131 75
C3(65, 1, 3) 1 22621 · 1312 Z22621 11766
C3(65, 1, 3) 3 672 Z393 136
C3(66, 1, 3) 1 672 Z67 13
C3(66, 1, 3) 1 672 Z67 63
C3(66, 1, 3) 3 672 Z201 130
C3(67, 1, 3) 1 3330973 · 13267 Z13267 9395
C3(68, 1, 3) 1 442069 Z442069 256885
C3(69, 1, 3) 1 14323159 Z14323159 2469685
C3(69, 1, 3) 3 14323159 Z423 25
C3(70, 1, 3) 1 7351 Z7351 3929
C3(71, 1, 3) 1 203878759789 Z203878759789 112633599223
C3(72, 1, 3) 1 1297 · 32 Z1297 397
C3(73, 1, 3) 1 293 · 1494570611 Z293 256
C3(74, 1, 3) 1 1385429 Z1385429 675378
C3(75, 1, 3) 1 151 · 14401 Z151 121
C3(75, 1, 3) 1 151 · 14401 Z14401 13801
C3(76, 1, 3) 1 2033989 Z2033989 1105489
C3(77, 1, 3) 1 4621 · 617 · 3851 Z617 170
C3(77, 1, 3) 1 4621 · 617 · 3851 Z3851 3005
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C3(77, 1, 3) 1 4621 · 617 · 3851 Z4621 3700
C3(78, 1, 3) 1 22777 Z22777 4561
C3(79, 1, 3) 1 8383481 · 517609 Z8383481 521602
C3(80, 1, 3) 1 401 · 641 Z401 157
C3(80, 1, 3) 1 401 · 641 Z641 584
C3(80, 1, 3) 3 401 · 641 Z187 79
C3(81, 1, 3) 1 3 · 303610033 Z303610033 234749658
C3(82, 1, 3) 1 83 · 77081 Z83 35
C3(82, 1, 3) 1 83 · 77081 Z77081 54333
C3(82, 1, 3) 3 83 · 77081 Z249 118
C3(83, 1, 3) 1 20019533360297 Z20019533360297 2085399523672
C3(84, 1, 3) 1 3109 Z3109 1989
C3(84, 1, 3) 3 3109 Z261 142
C3(85, 1, 3) 1 179916121591 Z179916121591 50541620165
C3(86, 1, 3) 1 431 · 31907 Z431 47
C3(86, 1, 3) 1 431 · 31907 Z31907 17963
C3(87, 1, 3) 1 1741 · 523 · 1567 Z523 114
C3(87, 1, 3) 1 1741 · 523 · 1567 Z1567 141
C3(87, 1, 3) 1 1741 · 523 · 1567 Z1741 12
C3(88, 1, 3) 1 89 · 25169 Z89 14
C3(88, 1, 3) 1 89 · 25169 Z25169 11940
C3(89, 1, 3) 1 159311 · 179 · 6956597 Z179 149
C3(89, 1, 3) 1 159311 · 179 · 6956597 Z159311 43670
C3(90, 1, 3) 1 2341 Z2341 582
C3(90, 1, 3) 3 2341 Z837 34
C3(91, 1, 3) 1 1004948196253 Z1004948196253 738933342073
C3(92, 1, 3) 1 277 · 156217 Z277 37
C3(92, 1, 3) 1 277 · 156217 Z156217 37494
C3(93, 1, 3) 1 6517097017 Z6517097017 5190225171
C3(94, 1, 3) 1 941 · 67399 Z941 513
C3(94, 1, 3) 1 941 · 67399 Z67399 32105
C3(95, 1, 3) 1 571 · 7533294421 Z571 521
C3(96, 1, 3) 1 207073 Z207073 51222
C3(97, 1, 3) 1 43457 · 971 · 100062679 Z971 223
C3(97, 1, 3) 1 43457 · 971 · 100062679 Z43457 10308
C3(98, 1, 3) 1 491 · 34693 Z491 394
C3(98, 1, 3) 1 491 · 34693 Z34693 28606
C3(99, 1, 3) 1 30152894311 Z30152894311 8264954137
C3(99, 1, 3) 3 30152894311 Z621 142
C3(100, 1, 3) 1 3273601 Z3273601 1582139
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The data obtained from Table 3.1 was generated using either the Resul-

tant Method 3.4.3 (embeddings into single cyclic groups), or by using the

companion matrix technique illustrated in Figure 9.2. The data also pro-

vides the basis for the following two theorems relating to Type 1 and Type

3 group embeddings of cyclic configurations C3(n, 1, 3).

Theorem 3.1.4. The cyclic configuration C3(n, 1, 3) has a group realization

in Zk, provided there exists an r which is a common solution to both cn(x) = 0

and x3 + x+ 1 = 0 mod k and the order of r modulo k is n.

Proof Let f : C3(n, 1, 3)→ Zk be the mapping given by

f : i→ ri mod k.

Then since r3 + r + 1 ≡ 0 mod k we have that for any j

f(j) + f(j + 1) + f(j + 3) = rj + rj+1 + rj+3 mod k

= rj(1 + r + r3) mod k

≡ 0 mod k

Since the order of r modulo k is n, f is injective. Thus f is a group

embedding.

2
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3.2 An Algorithm for Type 1 Embeddings

In this section we describe Type 1 embeddings of C3(n, 1, 3) in simple alge-

braic terms, and give a simple algorithm for their determination. Instead of

using cyclotomic polynomials, the polynomial xn − 1 is used to find appro-

priately sized groups.

Example 3.2.1. An algebraic technique to embed C3(11, 1, 3) into Z23.

From Table 3.1 we have that C3(11, 1, 3) can be embedded into Z23 ac-

cording to the rule f(i) = 4i mod 23. Our goal here is to reproduce the

Type 1 embedding found in the previous section by analyzing the algebra

associated with the problem. To this end, we want a finite field in which

x11− 1 = 0, and x3 +x+ 1 = 0 are both soluble. Since x3 = −x− 1, we have

the following two equations:

x6 = x2 + 2x+ 1; (3.1)

x5 = −x3 − x2

= −(−x− 1)− x2

= −x2 + x+ 1. (3.2)

Therefore,
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x11 = x6 · x5

= (x2 + 2x+ 1)(−x2 + x+ 1)

= −x4 − x3 + 2x2 + 3x+ 1

= 3x2 + 5x+ 2

This gives

3x2 + 5x+ 1 = 0. (3.3)

Multiplying equation 3.3 by x and reducing modulo x3 gives

5x2 − 2x− 3 = 0. (3.4)

Solving equations 3.3 and 3.4 gives x = −14
31

in some field where 31 is in-

vertible. Substituting x = −14
31

into x3 + x + 1 = 0 gives 13593
313

= 0. As

13593 = 3 · 23 · 197, we choose the prime 23 (our target group is thus Z23)

and reducing x = −14
31

modulo 23 gives x = 4. Thus we have reproduced the

Type 1 embedding from the previous section.

Example 3.2.2. An algebraic technique to embed C3(13, 1, 3) into Z53.

As a second example we will reproduce the Type 1 embedding of C3(13, 1, 3)

from Table 3.1. Once again we assume that x3 + x+ 1 = 0, and x13− 1 = 0.

27



Chapter 3. Cyclic (n3) Configurations

With a similar series of calculations as in Example 3.2.1 it can be shown that

x13 = −x2 − 8x− 5, giving

x2 + 8x+ 6 = 0. (3.5)

Multiplying equation 3.5 by x and reducing modulo x3 = −x− 1 gives

8x2 + 5x+ 1 = 0. (3.6)

Solving equation 3.5 and 3.6 for x gives x = −49
59

, and substituting this

into x3 + x + 1 = 0 and solving gives −82839
593

= 0 in some field. Since

82839 = 3 ·53 ·521 we select 53 and Z53 is our target embedding group. Since

x = −49
53
≡ 36 mod 53, the base for the embedding is 36. Note that the

order of 36 modulo 53 is 13, thus we have reproduced the Type 1 embedding

from Table 3.1.

We can generalize the procedure illustrated in the previous two examples.

Given the equations xn − 1 = 0 and x3 + x + 1 = 0, we can represent the

equation xn − 1 = 0 as the quadratic ax2 + bx+ c = 0. We get the auxiliary

polynomial bx2 + (c − a)x − a = 0, by multiplying ax2 + bx + c = 0 by

x and reducing modulo x3 + x + 1 = 0. Solving the two quadratics gives

x = − a2+bc
a2+b2−ac , from which we can find our embedding. For example when

n = 11, we have a = 3, b = 5, c = 1.
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Algorithm 3.2.3. QETM1(n) A list of bases and their associated groups

are determined for an embedding of C3(n, 1, 3). A single integer input for the

value of n outputs a list of pairs of integers.

σ(x) := x3 + x+ 1

cn(x)← xn − 1

1. p← cn(x) mod σ(x)

2. q ← x · p mod σ(x)

3. t← solve p and q for x

4. b← σ(t)

5. d← |numerator(b)|

For each element k in the factor set of d if

(i) n|k − 1; and,

(ii) order of t mod k is n

return(t mod k, k)
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Figure 3.1: The MAPLE code for Algorithm 3.2.3.
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3.3 C3(n, 1, 4)

This section has its motivation in addressing a problem of Grünbaum [18]

page 68, problem 4: Is C3(n, 1, 4) geometrically realizable for some n? Gen-

eralize. The techniques and types of embeddings of the previous section are

applicable to C3(n, 1, 4) in an analogous manner, the chief difference being

that the Singer polynomial in the case of C3(n, 1, 4) is x4 + x+ 1.

Example 3.3.1. A Type 1 embedding of C3(18, 1, 4) into Z19.

The resultant of x4 + x + 1, and c18(x) is 19, and 18 divides 19 − 1 = 18;

also, since 2 satisfies the congruence x4 + x + 1 ≡ 0 mod 19 and the order

of 2 modulo 19 is 18. We have the following result.

Theorem 3.3.2. C3(18, 1, 4) has a group realization in Z19.

Proof. Define the map f : C3(18, 1, 4)→ Z19 by

f : i→ 2i mod 19.

Since the order of 2 modulo 19 is 18, f is injective. Since 24 + 2 + 1 ≡ 0

mod 19, we have that for any j

f(j) + f(j + 1) + f(j + 3) = 2j + 2j+1 + 2j+4 mod 19

= 2j(1 + 2 + 24) mod 19

≡ 0 mod 19.

Thus f is a group embedding.
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2

Example 3.3.3. A Type 3 embedding of C3(20, 1, 4) into Z25.

The resultant of x4+x+1 and c20(x) is 5, thus C3(20, 1, 4) is not amenable

to Type 1 methods. So, we look for integers n such that λ(n) = 20. The

resultant of x4 +x+1, and x20−1 is 825 = 3 ·52 ·11. Notice that λ(25) = 20,

λ(55) = 20, λ(165) = 20, λ(275) = 20, λ(825) = 20: any of these give an

embedding. Since the order of 13 modulo 25 is 20, and 134 + 13 + 1 ≡ 0

mod 25 we have the following.

Theorem 3.3.4. C3(20, 1, 4) is group embeddable.

Proof. Define the map f : C3(20, 1, 4)→ Z25 by

f : i→ 13i mod 25.

Since the order of 13 modulo 25 is 20 (i.e. 13 is a primitive root of 25),

f is injective. Since 134 + 13 + 1 ≡ 0 mod 25, we have that for any j

f(j) + f(j + 1) + f(j + 3) = 13j + 13j+1 + 13j+4 mod 25

= 13j(1 + 13 + 134) mod 25

≡ 0 mod 25.

Thus f is a group embedding.

2
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See Theorem 6.2.2 from the chapter on Infinitude of Geometric Realiza-

tions for a sweeping generalization: C3(4× 5n−1, 1, 4) is group realizable for

all n ≥ 2.

Example 3.3.5. A Type 4 embedding of C3(15, 1, 4) into Z2×Z2×Z2×Z2.

The resultant of x4 + x + 1 and c15(x) is 16, and as 15 divides 24 − 1 a

candidate group for an embedding is Z2×Z2×Z2×Z2. To find the embedding

matrix let xn = anx
3 + bnx

2 + cnx + dn, and x4 + x + 1 = 0. Then upon

reduction modulo x4+x+1 we have that xn+1 = bnx
3+cnx

2+(dn−an)x−an,

from whence comes



an+1

bn+1

cn+1

dn+1


=



0 1 0 0

0 0 1 0

−1 0 0 1

−1 0 0 0





an

bn

cn

dn


.

Letting A =



0 1 0 0

0 0 1 0

−1 0 0 1

−1 0 0 0


, routine calculations establish that : the

order of A modulo 2 is 15, and A0 + A+ A4 ≡ 0 mod 2.

The matrix A is a form for a companion matrix, and thus has λ4 + λ+ 1

as its characteristic polynomial. Hence by Cayley’s theorem, the matrix A

satisfies A4 + A+ I = 0.
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Theorem 3.3.6. C3(15, 1, 4) is group embeddable in Z2 × Z2 × Z2 × Z2.

Proof. Let x =

(
0 0 0 1

)T
. Define the map f : C3(15, 1, 4) →

Z2 × Z2 × Z2 × Z2 by

f : i→ Aix mod 2.

Since the order of A modulo 2 is 15, f is injective. Now we have that for

any j

f(j) + f(j + 1) + f(j + 3) = Aj + Aj+1 + Aj+4 mod 2

= Aj(I + A+ A4) mod 2

≡ 0 mod 2.

Thus f is a group embedding.

2

The following table gives 68 group embeddings of cyclic configurations

C3(n, 1, 4). Each Type 1 and Type 3 embedding is geometrically realizable

in the real plane, since they are embeddings into a single cyclic group.
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Table 3.2: C3(n, 1, 4) embeddings

configuration Type Resultant Group base
C3(9, 1, 4) 2 33 Z27 22
C3(10, 1, 4) 1 3 · 11 Z11 7
C3(11, 1, 4) 1 3 · 23 Z23 18
C3(12, 1, 4) 3 32 · 5 Z45 13
C3(13, 1, 4) 2 34 Z3 × Z3 × Z3 ∗
C3(14, 1, 4) 1 3 · 29 Z29 4
C3(15, 1, 4) 2 24 · 32 Z2 × Z2 × Z2 × Z2 ∗
C3(16, 1, 4) 1 3 · 5 · 17 Z17 3
C3(17, 1, 4) 1 3 · 103 Z103 93
C3(18, 1, 4) 1 33 · 19 Z19 2
C3(19, 1, 4) 3 3 · 191 Z191 30
C3(20, 1, 4) 3 3 · 52 · 11 Z25 13
C3(20, 1, 4) 3 3 · 52 · 11 Z55 18
C3(20, 1, 4) 3 3 · 52 · 11 Z165 73
C3(20, 1, 4) 3 3 · 52 · 11 Z275 238
C3(20, 1, 4) 3 3 · 52 · 11 Z825 238
C3(21, 1, 4) 1 32 · 127 Z127 50
C3(22, 1, 4) 1 3 · 232 Z23 19
C3(23, 1, 4) 1 3 · 829 Z829 817
C3(24, 1, 4) 1 32 · 5 · 73 Z73 7
C3(25, 1, 4) 1 3 · 1601 Z1601 1104
C3(26, 1, 4) 1 34 · 79 Z79 57
C3(27, 1, 4) 1 34 · 109 Z109 73
C3(28, 1, 4) 1 3 · 5 · 292 Z29 21
C3(29, 1, 4) 1 3 · 5801 Z5801 1125
C3(30, 1, 4) 3 28 · 32 · 11 Z99 40
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C3(31, 1, 4) 1 3 · 11657 Z11657 8788
C3(32, 1, 4) 1 3 · 5 · 17 · 193 Z193 42
C3(33, 1, 4) 1 32 · 23 · 331 Z331 198
C3(34, 1, 4) 1 3 · 103 · 307 Z307 34
C3(35, 1, 4) 1 3 · 71 · 631 Z71 10
C3(35, 1, 4) 1 3 · 71 · 631 Z631 5
C3(36, 1, 4) 1 33 · 5 · 19 · 73 Z73 35
C3(37, 1, 4) 1 3 · 149 · 593 Z149 63
C3(37, 1, 4) 1 3 · 149 · 593 Z593 225
C3(38, 1, 4) 1 3 · 191 · 647 Z647 446
C3(39, 1, 4) 1 38 · 79 Z79 76
C3(40, 1, 4) 1 3 · 52 · 11 · 881 Z881 462
C3(41, 1, 4) 1 3 · 337759 Z337759 84193
C3(42, 1, 4) 1 32 · 29 · 43 · 127 Z43 28
C3(43, 1, 4) 1 3 · 665039 Z665039 198638
C3(44, 1, 4) 1 3 · 5 · 232 · 353 Z353 135
C3(45, 1, 4) 1 24 · 33 · 9091 Z9091 4919
C3(46, 1, 4) 1 3 · 472 · 829 Z47 10
C3(46, 1, 4) 1 3 · 472 · 829 Z47 39
C3(47, 1, 4) 1 3 · 2567987 Z2567987 1145617
C3(48, 1, 4) 1 32 · 5 · 17 · 73 · 193 Z193 48
C3(49, 1, 4) 1 3 · 197 · 25579 Z197 54
C3(49, 1, 4) 1 3 · 197 · 25579 Z25579 6251
C3(50, 1, 4) 1 3 · 11 · 401 · 1601 Z401 145
C3(51, 1, 4) 1 32 · 103 · 32029 Z32029 612
C3(52, 1, 4) 1 34 · 5 · 79 · 1301 Z1301 646
C3(53, 1, 4) 1 3 · 1072 · 1697 Z107 27
C3(53, 1, 4) 1 3 · 1072 · 1697 Z107 92
C3(53, 1, 4) 1 3 · 1072 · 1697 Z1697 50
C3(54, 1, 4) 1 34 · 19 · 109 · 487 Z487 343
C3(55, 1, 4) 1 3 · 23 · 1658471 Z1658471 454790
C3(56, 1, 4) 1 3 · 5 · 292 · 12713 Z12713 12428
C3(57, 1, 4) 1 32 · 191 · 229 · 571 Z571 339
C3(58, 1, 4) 1 3 · 5801 · 18097 Z18097 4438
C3(59, 1, 4) 1 3 · 147135617 Z147135617 37283910
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C3(60, 1, 4) 1 212 · 32 · 52 · 11 · 61 Z61 35
C3(61, 1, 4) 1 3 · 35869 · 8053 Z8053 5133
C3(61, 1, 4) 1 3 · 35869 · 8053 Z35869 35566
C3(62, 1, 4) 1 3 · 11657 · 34721 Z34721 28184
C3(63, 1, 4) 1 33 · 1272 · 3907 Z127 13
C3(63, 1, 4) 1 33 · 1272 · 3907 Z3907 1097
C3(64, 1, 4) 1 3 · 5 · 17 · 193 · 48449 Z48449 13276

In an analogous manner Algorithm 3.2.3 can be adapted to work for

C3(n, 1, 4). Since the Singer polynomial in this case has degree 4, we generate

three degree 3 polynomials, and solve the associated 3× 3 system.
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Figure 3.2: The MAPLE code for Algorithm 2
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3.4 An Infinite Class of C3(n, 1, 3)’s

In this section we take a slightly different approach to finding group em-

beddings of cyclic configurations C3(n, 1, 3). Essentially, we work backwards

from the Singer polynomial σ(x) = x3 + x + 1, evaluate σ(k), and look for

primes p dividing σ(k) from which we can construct group embeddings.

As an example, consider σ(4) = 43 + 4 + 1 = 69. A prime dividing 69 is

23, and the order of 4 modulo 23 is 11. Thus we can embed C3(11, 1, 3) into

Z23.

Theorem 3.4.1. C3(11, 1, 3) has a group realization in Z23.

Proof.

Let f : C3(11, 1, 3)→ Z23 be given by f(i) = 4i mod 23. Thus for any j

we have

f(j) + f(j + 1) + f(j + 3) = 4j + 4j+1 + 4j+3 mod 23

= 4j(1 + 4 + 43) mod 23

≡ 0 mod 23.

That f is injective is obvious. Thus f is a group embedding.

2

The following table gives several examples of group embeddings using this

new procedure.
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Table 3.3: C3(n, 1, 3) embeddings supporting Theorem 3.4.2

k s(k) Prime Order of p mod k Embedding
2 11 11 10 C3(10, 1, 3)→ Z11

3 31 31 30 C3(30, 1, 3)→ Z31

4 69 23 11 C3(11, 1, 3)→ Z23

5 131 131 65 C3(65, 1, 3)→ Z131

6 223 223 222 C3(222, 1, 3→ Z223

7 351 13 12 C3(12, 1, 3)→ Z13

8 521 521 260 C3(260, 1, 3)→ Z521

9 739 739 369 C3(369, 1, 3)→ Z739

10 1011 337 336 C3(336, 1, 3)→ Z337

11 1343 17 16 C3(16, 1, 3)→ Z17

11 1343 79 39 C3(39, 1, 3)→ Z79

12 1741 1741 67 C3(67, 1, 3)→ Z1741

13 2211 67 66 C3(66, 1, 3)→ Z67

14 2759 31 15 C3(15, 1, 3)→ Z31

14 2759 89 88 C3(88, 1, 3)→ Z89

15 3391 3391 226 C3(226, 1, 3)→ Z3391

16 4113 457 19 C3(19, 1, 3)→ Z457

17 4931 4931 145 C3(145, 1, 3)→ Z4931

18 5851 5851 5850 C3(5850, 1, 3)→ Z5851

19 6879 2293 764 C3(764, 1, 3)→ Z2293

20 8021 617 56 C3(56, 1, 3)→ Z617

21 9283 9283 663 C3(663, 1, 3)→ Z9283

22 10671 3557 508 C3(508, 1, 3)→ Z3557

23 12191 73 36 C3(36, 1, 3)→ Z73

23 12191 167 166 C3(166, 1, 3)→ Z167

24 13849 1259 1258 C3(1258, 1, 3)→ Z1259

25 15651 37 18 C3(18, 1, 3)→ Z37

25 15651 47 23 C3(23, 1, 3)→ Z47
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The technique illustrated in the previous table provides the basis for the

following result.

Theorem 3.4.2. Let k be a positive integer and let p be a prime factor of

the Singer polynomial σ(x) evaluated at k. Let n be the order of k modulo

p. Then the cyclic point line configuration C3(n, 1, 3) can be embedded in the

group Zp such that whenever [P,Q,R] is a line in C3(n, 1, 3), then the sum

of the images of P , Q, and R is zero in the group.

Proof. Let the map f : C3(n, 1, 3) → Zp be given by f(i) = ki (mod p).

Then for any j we have

f(j) + f(j + 1) + f(j + 3) = kj + kj+1 + kj+3 mod p

= kj(1 + k + k3) mod p

≡ 0 mod p.

Since the order of k modulo p is n, the mapping is injective. Hence f is

a group embedding.

2

Corollary 3.4.2.1. Since the groups realizing these cyclic configurations are

all cyclic groups, these C3(n, 1, 3) configurations exist in the real plane as

subgroups of the group of a non-singular cubic curve over the reals.

41



Chapter 3. Cyclic (n3) Configurations

Algorithm 3.4.3. The Resultant Method Algorithm(n, σ) builds a cyclo-

tomic polynomial of input degree n (or the polynomial xn − 1) and takes the

resultant of that with the input Singer polynomial σ(x) = 1 + xd1 + · · ·+ xdk .

It outputs a list of pairs of integers, each pair consists of a group and a base

for an embedding of Ck(n, d1, . . . , dk).

cn(x)← cyclotomic(n) (or xn − 1)

1. R← |resultant(cn(x), σ(x))|

2. T ← primefactorset(R)

For every prime p in T

check for common roots r of cn(x) and σ(x) mod p then if

(i) σ(r) ≡ 0 mod p; and,

(ii) order of r mod p is n

return(group p and base r)

The following Figure 3.3 is the actual MAPLE code for Algorithm 3.4.3
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Figure 3.3: The MAPLE code for Algorithm 3.4.3.
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Group Realizations of (n4)

Configurations

Thanks to the recent publication of Grünbaum’s book [18], there has been a

surge in the research on point-line configurations, especially those realizable

over the real plane. While the number of configurations (n4) is exponentially

large, not all of them are realizable over the field of real numbers. See

Grünbaum’s paper entitled “Which (n4)’s exist?” [17] for an interesting

historical survey on this topic.

Given an abstract combinatorially defined point-block configuration, the

basic questions are what do we mean by “exist” and how do we “realize” it.

The Book deals with two kinds of realization: points are points in the real

Euclidean (or projective) plane and the blocks are straight lines i.e. given by

linear equations over the real field. This makes lot of sense because, after all
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we live in this “real-world (R×R×R),” and since geometric pictures drawn

over the real plane provide valuable insight in solving problems, especially in

guessing solutions. But there are many beautiful configurations which are not

realizable in this sense. The second kind of realization arises by weakening the

demand that the blocks may be represented by the so-called pseudolines (see

The Book, page 21). These are the so-called topological realizations. Here

again, there are some nice configurations which are not even topological.

In a recent paper [2], Bokowski and Schewe have shown that there are no

topologically realizable (154) or (164)-configurations. More recently, the same

authors have proved that there is no geometric configuration (174) [3].

Now let us consider the cyclic (154) configuration defined by the cyclic

base (0, 1, 4, 6) i.e. the configuration C4(15, 1, 4, 6) in the notation of the

Book (see page 60). Since this does not even have a topological realization,

how do we perceive its existence? Can we draw it in the real plane in some

geometrically meaningful way? In this chapter, we answer this question in

the affirmative. After straight lines, we have conics and circles as perhaps

the simplest examples of blocks. In section 4.2 we describe a new procedure

to realize the cyclic C4(15, 1, 4, 6) as a configuration of points and circles in

the real plane so that each block of 4 points lie on a circle in the Euclidean

plane. It will be very clear that this technique will apply to many cyclic (n4)

configurations (see the Table 4.1 for a list of about 60 realizable (n4)’s).
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4.1 Cyclic (n4)’s

Recall the definition of a general cyclic configuration given in [18]. A gen-

eral cyclic configuration Ck(n, a1, a2, . . . , ak−1) consists of k − tuples {j, a1 +

j, a2 + j, . . . , ak−1 + j}, for given a1, a2, . . . , ak−1 with 0 < ai < ai+1 < n and

for all 1 ≤ j ≤ n, all entries taken modulo n.

Theorem 4.1.1. The cyclic configuration C4(15, 1, 4, 6) has a group realiza-

tion.

Proof. The cyclic configuration C4(15, 1, 4, 6) is given by the following

fifteen quadruples.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

4 5 6 7 8 9 10 11 12 13 14 0 1 2 3

6 7 8 9 10 11 12 13 14 0 1 2 3 4 5

Since 10 is a root of x6 +x4 +x+ 1 ≡ 0 mod 31 and the order of 10 modulo

31 is 15, we define the mapping f : C4(15, 1, 4, 6) → Z31 given by f(i) = 10i

mod 31. The mapping is injective as can be seen from the following.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

10 7 8 18 25 2 20 14 16 5 19 4 9 28 1

To verify that f is indeed a group embedding, consider that f(0) + f(1) +

f(4) + f(6) = 1 + 10 + 18 + 2 ≡ 0 mod 31. More generally,

f(j) + f(j + 1) + f(j + 4) + f(j + 6) = 10j + 10j+1 + 10j+4 + 10j+6

= 10j(1 + 10 + 104 + 106)

≡ 10j(1 + 10 + 18 + 2) mod 31

≡ 0 mod 31.

2

Using the same resultant technique appropriate groups and exponential

maps are found to give the group realizations listed in Table 4.1.
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Table 4.1: Cyclic (n4) embeddings

configuration Group base
C4(14, 1, 3, 9) Z43 32
C4(15, 1, 4, 6) Z31 10
C4(16, 1, 4, 6) Z97 85
C4(17, 1, 4, 6) Z1327 1147
C4(18, 1, 4, 6) Z37 3
C4(19, 1, 4, 6) Z2927 1527
C4(20, 1, 4, 6) Z241 6
C4(21, 1, 4, 6) Z883 838
C4(22, 1, 4, 6) Z331 257
C4(23, 1, 4, 6) Z102397 41349
C4(24, 1, 4, 6) Z73 17
C4(25, 1, 4, 6) Z16451 7166
C4(26, 1, 4, 6) Z131 86
C4(27, 1, 4, 6) Z109 88
C4(27, 1, 4, 6) Z541 449
C4(28, 1, 4, 6) Z29 8
C4(29, 1, 4, 6) Z233 38
C4(29, 1, 4, 6) Z5279 1922
C4(30, 1, 4, 6) Z271 19
C4(31, 1, 4, 6) Z683 646
C4(31, 1, 4, 6) Z8929 6290
C4(32, 1, 4, 6) Z3457 1784
C4(33, 1, 4, 6) Z45541 28105
C4(34, 1, 4, 6) Z8161 8078
C4(35, 1, 4, 6) Z211 25
C4(35, 1, 4, 6) Z1471 128
C4(36, 1, 4, 6) Z37 18
C4(36, 1, 4, 6) Z109 17
C4(37, 1, 4, 6) Z149 127
C4(37, 1, 4, 6) Z467977 420663
C4(38, 1, 4, 6) Z26107 894
C4(39, 1, 4, 6) Z157 37
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C4(40, 1, 4, 6) Z41 13
C4(40, 1, 4, 6) Z761 208
C4(41, 1, 4, 6) Z22469 2328
C4(41, 1, 4, 6) Z51907 2056
C4(42, 1, 4, 6) Z127 5
C4(43, 1, 4, 6) Z32423 3357
C4(43, 1, 4, 6) Z81701 1770
C4(44, 1, 4, 6) Z89 36
C4(44, 1, 4, 6) Z353 232
C4(45, 1, 4, 6) Z271 72
C4(45, 1, 4, 6) Z15031 621
C4(46, 1, 4, 6) Z47 30
C4(46, 1, 4, 6) Z1013 757
C4(47, 1, 4, 6) Z19343925737 16337885332
C4(48, 1, 4, 6) Z337 153
C4(49, 1, 4, 6) Z491 164
C4(49, 1, 4, 6) Z19047673 11939844
C4(50, 1, 4, 6) Z251 151
C4(50, 1, 4, 6) Z1451 626
C4(51, 1, 4, 6) Z40258483 28276203
C4(52, 1, 4, 6) Z53 31
C4(52, 1, 4, 6) Z16069 12813
C4(53, 1, 4, 6) Z1697 304
C4(53, 1, 4, 6) Z286559447 174921346
C4(54, 1, 4, 6) Z10909 2209
C4(55, 1, 4, 6) Z121868891 110366746
C4(56, 1, 4, 6) Z113 13
C4(56, 1, 4, 6) Z2857 2573
C4(57, 1, 4, 6) Z571 464
C4(57, 1, 4, 6) Z702469 310740
C4(58, 1, 4, 6) Z59 32
C4(58, 1, 4, 6) Z60089 12688
C4(59, 1, 4, 6) Z1092209 1046041
C4(59, 1, 4, 6) Z14017693 5835262
C4(60, 1, 4, 6) Z4441 3516
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C4(61, 1, 4, 6) Z40047602642833 2814268316620
C4(62, 1, 4, 6) Z311 87
C4(62, 1, 4, 6) Z16493 4978
C4(63, 1, 4, 6) Z631 143
C4(63, 1, 4, 6) Z5647951 3145909
C4(64, 1, 4, 6) Z8019073 1449474
C4(65, 1, 4, 6) Z131 13
C4(65, 1, 4, 6) Z10531 7596
C4(65, 1, 4, 6) Z28081 5850

4.2 Geometric Realizations of (n4) Configura-

tions

Now that we have group realizations of several (n4) configurations, it is nat-

ural to ask whether they can be used to represent the configurations in the

real plane where the points are still the usual points and the blocks are al-

gebraic curves of some constant degree. In the case of (n3) configurations,

the blocks of size three are straight lines. The group embeddings of (n3)

configurations are motivated by the group law on a cubic. For (n4) configu-

rations we take our inspiration from the geometrically defined group law on

a non-circular conic, see [14], [25]. With the embeddings given in Table 4.1

to guide us, here we show that the C4(n, 1, 4, 6) having an embedding into

a single cyclic group can be realized over the real plane where the points

lie on a non-circular conic, and the blocks of size four are circles. In [14],

R.R. Fletcher provides a natural way to realize our group embeddings in the

real plane: it is demonstrated that every cyclic group Zn can be found on
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non-circular conics such that four points are concyclic if and only if their

group-sum is zero in Zn.

Figure 4.1 illustrates the group law on a non-circular ellipse. The group

law on a non-circular ellipse C defined over a field F is quite simple: fix

any point O on C ; to find the sum of two rational points P , Q, draw the

line through O parallel to PQ , and denote its second point of intersection

with C by P + Q. Four points P,Q,R, and S are “collinear” if and only if

P +Q+R + S = 0 under the group law on the conic.

O

P

Q

P +Q

R

(P +Q) +R
Q+R

S

Figure 4.1: Group Law on a non-circular ellipse.
In light of the previous notions, we offer the following new concept of

realizability. An (n4) configuration shall be called circle-realizable over the

real plane if the points of the configuration are the usual real coordinates,

and the blocks of four points have corresponding coordinates which lie on a

real circle.
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4.2.1 A Circle Realization of C4(28, 1, 4, 6)

Since the resultant of x6 + x4 + x+ 1 and the 28th cyclotomic polynomial is

232 = 23 · 29; 86 + 84 + 8 + 1 ≡ 0 mod 29, and 8 is a primitive root of 29 we

get the following embedding. f : C4(28, 1, 4, 6)→ Z29 where

f : i→ 8i mod 29.

The embedding is given explicitly in Table 4.2: the images are the nonzero

elements of the copy of Z29 on the conic in Figure 4.2.

Table 4.2: A group embedding of C4(28, 1, 4, 6)

f(0) = 1 f(6) = 13 f(12) = 24 f(18) = 22 f(24) = 25
f(1) = 8 f(7) = 17 f(13) = 18 f(19) = 2 f(25) = 26
f(2) = 6 f(8) = 20 f(14) = 28 f(20) = 16 f(26) = 5
f(3) = 19 f(9) = 15 f(15) = 21 f(21) = 12 f(27) = 11
f(4) = 7 f(10) = 4 f(16) = 23 f(22) = 9 f(28) = 1
f(5) = 27 f(11) = 3 f(17) = 10 f(23) = 14

Indeed, f(i) + f(i + 1) + f(i + 4) + f(i + 6) = 8i(1 + 8 + 7 + 13) ≡ 0

mod 29, thus we have a group embedding of C4(28, 1, 4, 6) into Z29. The

results of [14] give that the images of our blocks are concyclic, hence we have

a geometric realization of C4(28, 1, 4, 6) in the real plane.
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0

1

28

2

27

3

26

4

25

5

24

6

23

7

22

8

21

9

20

10

19

11

18

12

17

13

16

14

15

Figure 4.2: The circle through the points 4, 7, 20, and 27 of the conic cor-
respond to the block{4, 5, 8, 10} of the cyclic configuration. Notice that
4 + 7 + 20 + 27 ≡ 0 mod 29

4.2.2 A Circle Realization of C4(15, 1, 4, 6)

As promised in the introduction, the following is a group embedding of

C4(15, 1, 4, 6) which implies the circle realizability of the (n4) configuration.

Theorem 4.2.1. The cyclic configuration C4(15, 1, 4, 6) has a group realiza-

tion in Z31.

Proof. Letf : C4(15, 1, 4, 6) → Z31 be given by f(i) = 10i mod 31.

Consider that f(0) + f(1) + f(4) + f(6) = 1 + 10 + 18 + 2 ≡ 0 mod 31. In

general, we have

53



Chapter 4. Group Realizations of (n4) Configurations

f(j) + f(j + 1) + f(j + 4) + f(j + 6) = 10j + 10j+1 + 10j+4 + 10j+6

= 10j(1 + 10 + 104 + 106)

≡ 10j(1 + 10 + 18 + 2) mod 31

≡ 0 mod 31.

2

Corollary 4.2.1.1. C4(15, 1, 4, 6) is circle realizable.

The following figure illustrates the mapping from C4(15, 1, 4, 6) to the real

plane and the associated circle realization.

1

0

30

2

29

3

28

4

27

5

26

6

25

7

24

8

23

9

22

10

21

11

20

12

19

13

18

14

17

15

16

1

Figure 4.3: A circular realization of C4(15, 1, 4, 6) in the group Z31, where
[1,2,5,7] are concyclic.
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4.3 The Status of (n4)
′s with 13 ≤ n ≤ 19

The following table summarizes the status of the realizability of (n4) config-

urations with 13 ≤ n ≤ 19.

Table 4.3: The status of (n4)
′s with 13 ≤ n ≤ 19

n Geometric(lines) Topological Group Geometric(circles)
13 No No Z3 × Z3 × Z3 PG(2, 3)
14 No No Z43 Z43

15 No No Z31 Z31

16 No No Z97 Z97

17 No Y es Z1327 Z1327

18 Y es Y es Z37 Z37

19 ? Y es Z2927 Z2927

In [28] Merlin shows that there exist no geometric (lines) (n4) configura-

tions for n ≤ 15. In [3], and [2] Bokoski, and Schewe show that there are no

geometric realizations of (n4) configurations for n ≤ 17, and that there are

no topological realizations of (n4) configurations for n ≤ 16.

From our point of view, the first four cases (i.e, n = 14, 15, 16, and 17) are

interesting. While none of these have geometric realizations in the classical

sense, we show that they are all geometric in the new sense. That is to say,

that blocks of four points in the configuration are concyclic in the real plane

with respect to the group law on the non-circular ellipse. (We have shown

the case where n = 15 in the previous section 4.2.2.)

Since C4(14, 1, 4, 6) is not amenable to our technique of embedding, as

the resultant fails to give useful primes, we give instead a group embedding
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of C4(14, 1, 3, 9). The embedding of C4(14, 1, 3, 9) in turn implies the circle

realization of an (n4).

Theorem 4.3.1. The cyclic configuration C4(14, 1, 3, 9) has a group realiza-

tion in Z43.

Proof. Let f : C4(14, 1, 3, 9) → Z43 be given by f(i) = 32i mod 43.

Consider that f(0) + f(1) + f(3) + f(9) = 1 + 32 + 2 + 8 ≡ 0 mod 43. In

general, we have

f(j) + f(j + 1) + f(j + 3) + f(j + 9) = 32j + 32j+1 + 32j+3 + 32j+9

= 32j(1 + 32 + 323 + 329)

≡ 32j(1 + 32 + 2 + 8) mod 43

≡ 0 mod 43.

2

Corollary 4.3.1.1. C4(14, 1, 3, 9) is circle-realizable.

The paper of Bokowski and Schewe [3] establishes the existence of geomet-

ric (lines) realizations of (n4) configurations for all n ≥ 18, except possibly

for n = 19, 22, 23, 26, 37, and 43. The results of this section demonstrate the

existence of circle realizations for all unknown values in [3] (see Table 5.1).

We conclude this section with the following conjecture.

Conjecture 4.3.2. For n ≥ 15, C4(n, 1, 4, 6) is group realizable in a single

cyclic group, and hence is circle realizable.
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4.4 PG(2,3)

The PG(2, 3)-the projective plane of order 3 is perhaps the most well-known

(n4) configuration. It is folklore that if PG(2, 2) exists in PG(2, k) for some

field GF (k), then 2 = 0 in GF (k), see [26] or [34]. In this section we prove

an analogous result for PG(2, 3). In addition we provide a group realization

of PG(2, 3) into Z3×Z3×Z3 that is minimal with respect to group size and

exponent.

4 5 6

321

7 8 9

13

12

1011

Figure 4.4: PG(2, 3)

Theorem 4.4.1. If PG(2, 3) exists in PG(2, k) for some field GF (k), then

3 = 0 in GF (k).

Proof. The proof is analytical and uses homogeneous coordinates in the

projective plane. Without loss of generality, assign homogeneous coordinates
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to the frame formed by the points 1, 3, 7, and 9 of figure 4.4: 1 → (1, 0, 0),

3→ (0, 1, 0), 7→ (1, 1, 1) ,and 9→ (0, 0, 1).

The line formed by points 1 and 9 is given by 1 ∨ 9 and is simply the

cross product of of the coordinates assigned to the points 1 and 9. 1 ∨ 9 =

(1, 0, 0)×(0, 0, 1) = [0, 1, 0]. Similarly, 3∨7 = [1, 0,−1], and point 5 is defined

as the intersection of the lines 1∨ 9 and 3∨ 7 which is again computed using

a simple cross product. We get that 5→ (1, 0, 1). To assign a coordinate to

point 11 on line {3, 5, 7, 11} we assign it the general coordinates (a, b, c) and

observe that the following equation must be satisfied.

0 =

∣∣∣∣∣∣∣∣∣∣
a b c

0 1 0

1 1 1

∣∣∣∣∣∣∣∣∣∣
= a− c

Therefore we can assign 11→ (1, a, 1).

Through a similar series of calculations it is found that 1 ∨ 3 = [0, 0, 1],

and 7∨9 = [1,−1, 0], and since 13 = (1∨3)∧(7∨9), we assign 13→ (1, 1, 0).

Similarly, 12 → (0, 1, 1). The line {10, 11, 12, 13} must satisfy the following

equation.

58



Chapter 4. Group Realizations of (n4) Configurations

0 =

∣∣∣∣∣∣∣∣∣∣
1 a 1

0 1 1

1 1 0

∣∣∣∣∣∣∣∣∣∣
= a− 2

This allows us to assign 11→ (1, 2, 1).

Through more of the same calculations we see that 10 = (11∨12)∧(1∨9)

so we assign 10→ (1, 0,−1). Also 4 = (1∨7)∧ (5∨13), so that 4→ (2, 1, 1).

Now, the line {2, 4, 9, 11} must satisfy the following the equation.

0 =

∣∣∣∣∣∣∣∣∣∣
0 0 1

2 1 1

1 2 1

∣∣∣∣∣∣∣∣∣∣
= 3

2

We conclude this section with another parallel folklore result on the group

realizability of PG(2, 3). See [12] for a Prover 9 procedure for embedding

PG(2, 3) into a group. The projective plane PG(2, 3) can be described as

the cyclic difference set {0, 1, 4, 6} mod 13 or C4(13, 1, 4, 6) in the notation

of Grünbaum. Conspicuously absent from Table 4.1 is an embedding of

C4(13, 1, 4, 6) into a single cyclic group. Since the resultant of the Singer

polynomial σ(x) = x6 +x4 +x+ 1, and the thirteenth cyclotomic polynomial

c13(x) is 729 = 36, embedding into a single cyclic group is not possible with
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our basic Type resultant technique. However, provided that σ(x) has an

irreducible cubic mod 3, it may be possible to embed C4(13, 1, 4, 6) into the

multiplicative group of GF (27) (i.e. a Type 2 or 4 embedding). To this end,

notice that

x6 + x4 + x+ 1 = (x3 + x2 + 1)(x3 + 2x2 + 2x+ 2) mod 3

We will use x3 = x2 + x+ 1 to describe xn = anx
2 + bnx+ cn, and derive

an embedding matrix. We have that

xn+1 = anx
3 + bnx

2 + cnx

= an(x2 + x+ 1) + bnx
2 + cnx

= (an + bn)x2 + (an + cn)x+ an

= an+1x
2 + bn+1x+ cn+1

from which comes,


an+1

bn+1

cn+1

 =


1 1 0

1 0 1

1 0 0



an

bn

cn



Define the map f : C3(13, 1, 4, 6) → Z3 × Z3 × Z3 by f(i) = Ai


0

0

1


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mod 3, where A =


1 1 0

1 0 1

1 0 0

. Then,

f(0) + f(1) + f(4) + f(6) = (I + A+ A4 + A6)


0

0

1



=


1 0 0

0 1 0

0 0 1

+


1 1 0

1 0 1

1 0 0

+


7 4 2

6 3 2

4 2 1

+


24 13 7

20 11 6

13 7 4



=


33 18 9

27 15 9

18 9 6


≡ 0 mod 3.

More generally,

f(j) + f(j + 1) + f(j + 4) + f(j + 6) = Aj(I + A+ A4 + A6)


0

0

1


≡ 0 mod 3.
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Showing that f is injective is routine (the order of A modulo 3 is 13),

hence f is a group embedding of C3(13, 1, 4, 6) into Z3 × Z3 × Z3.

With Lemma 4.4.2 we have have established Theorem 4.4.3.

Lemma 4.4.2. Any group embedding of PG(2, 3) has at least 13 elements

of order 3.

Theorem 4.4.3. PG(2, 3) is minimally group realizable in Z3 × Z3 × Z3.

4.5 Applications to Some Exercises of

Grünbaum

In this section we use several of the algebraic techniques we have already

developed to address a few miscellaneous questions relating to (n4) configu-

rations.

Problem 3 on page 161 of [18] asks the reader to show that the cyclic con-

figurations C4(15, 1, 4, 6), and C4(15, 2, 8, 12) are isomorphic; C4(15, 1, 5, 7)

and C4(15, 1, 9, 11) are isomorphic, and C4(15, 1, 3, 7) and C4(15, 1, 9, 13) are

isomorphic.

To establish the first isomorphism, consider that C4(15, 1, 4, 6) can be em-

bedded in Z31 according to f(i) = 10i mod 31. Now, as with C4(15, 1, 4, 6)

the resultant of the fifteenth cyclotomic polynomial,c15(x) and σ(x) = x12 +

x8 + x2 + 1 is 31. A common solution to c15(x) and σ(x) is 14. Thus

C4(15, 2, 8, 12) can be embedded in Z31 according to f(i) = 14i mod 31.
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Table 4.4: Isomorphism calculations

C4(15, 1, 4, 6) 10i mod 31 C4(15, 2, 8, 12) 14i mod 31
0 1 0 1
1 10 2 10
2 7 4 7
3 8 6 8
4 18 8 18
5 25 10 25
6 2 12 2
7 20 14 20
8 14 1 14
9 16 3 16
10 5 5 5
11 19 7 19
12 4 9 4
13 9 11 9
14 28 13 28

With the aid of Table 4.4 we can construct the explicit isomorphism

f : C4(15, 1, 4, 6)→ C4(15, 2, 8, 12) it is given by f : i→ 2i mod 15.

To establish that C4(15, 1, 5, 7) and C4(15, 1, 9, 11) are isomorphic, com-

pare the block [0, 1, 5, 7] in C4(15, 1, 5, 7) to the four blocks in C4(15, 1, 9, 11)

which contain the point 0. We see that (0, 1, 5, 7) is a multiple of (0, 4, 5, 13)

mod 15. In particular 4(0, 1, 5, 7) = (0, 4, 5, 13) mod 15, from which we ob-

tain the isomorphism f : C4(15, 1, 4, 6) → C4(15, 1, 5, 7) given by f : i → 4i

mod 15. Similarly, we can show that the mapping f : i→ 7i mod 15 induces

an isomorphism from C4(15, 1, 3, 7) to C4(15, 1, 9, 13).
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The Möbius-Kantor

Configuration

5.1 Introduction

The Möbius-Kantor configuration is the unique (83) configuration. Combi-

natorially, one can view the (83) as the deletion of the AG(2, 3) i.e., the (83)

is obtained from the AG(2, 3) by deleting a single point and the four lines

incident with that point, see [20]. Like the AG(2, 3), the Möbius-Kantor con-

figuration violates the Sylvester-Gallai Theorem and hence is not realizable

in the real plane.

From the point of view of group realization the (83) is a more fundamental

structure than the AG(2, 3). Indeed the (83) proves to be an “extendable”

structure in Zn3 × Zn3 (see 5.4 and 5.5 ).
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5.2 Field Embedding Through Parameteriza-

tion

In this section we will demonstrate a coordinatization of (83) in PG(2, k),

and describe the fields Fk in which this is possible. The technique used is

well-known, and colloquially referred to as “coordinate chasing.”

To begin select a frame, that is to say four points no three of which are

collinear; and, WLOG assign them the homogeneous coordinates (1, 0, 0),

(0, 1, 0), (0, 0, 1), and (1, 1, 1). With respect to Figure 5.1, 7 → (1, 0, 0),

6→ (0, 1, 0), 4→ (0, 0, 1), and 5→ (1, 1, 1). We get the updated diagram:

1 2 3

7

(1, 0, 0)

6

(0, 1, 0)

5

(1, 1, 1)

4

(0, 0, 1)

8

Figure 5.1: Coordinate chase STEP 1

Point 3 is assigned a homogeneous coordinate by observing that 5∨7 can

be described by the homogeneous line given by the cross product (1, 0, 0)×

(1, 1, 1), giving 5 ∨ 7 → [0,−1, 1]. Any point on [0,−1, 1] satisfies 0 =
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[0,−1, 1] · (a, b, c), implying b = c, giving (a, 1, 1) as the coordinate to assign

to 3. We get the updated diagram:

1 2 3

(a, 1, 1)

7

(1, 0, 0)

6

(0, 1, 0)

5

(1, 1, 1)

4

(0, 0, 1)

8

Figure 5.2: Coordinate chase STEP 2

To give the point 8 a coordinate, define it as (6 ∨ 3) ∧ (7 ∨ 4). The line

7 ∨ 4 is described by the homogeneous line (1, 0, 0)× (0, 0, 1) = [0, 1, 0], and

6 ∨ 3 by (0, 1, 0)× (a, 1, 1) = [1, 0,−a].
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Now, [0, 1, 0]×[a, 1, 1] = (a, 0, 1), giving 8→ (a, 0, 1). We get the updated

diagram:

1 2 3

(a, 1, 1)

7

(1, 0, 0)

6

(0, 1, 0)

5

(1, 1, 1)

4

(0, 0, 1)

8

(a, 0, 1)

Figure 5.3: Coordinate chase STEP 3

Next we assign 2 a coordinate by defining 2 = (6 ∨ 4) ∧ (5 ∨ 8). The line

6 ∨ 4 is given by the homogeneous line (0, 1, 0)× (0, 0, 1) = [1, 0, 0], and the

line 5 ∨ 8 by the homogeneous line (1, 1, 1) × (a, 0, 1) = [1, a − 1, a]. Now,

[1, 0, 0] × [1, a − 1, a] = (0, a, a − 1), and so 2 → (0, a, a − 1). We get the

updated diagram:
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1 2

(0, a, a− 1)

3

(a, 1, 1)

7

(1, 0, 0)

6

(0, 1, 0)

5

(1, 1, 1)

4

(0, 0, 1)

8

(a, 0, 1)

Figure 5.4: Coordinate chase STEP 4

Next, define the point 1 = (6 ∨ 7) ∧ (4 ∨ 5). Describe 4 ∨ 5 by the

homogeneous line (0, 0, 1)×(1, 1, 1) = [1,−1, 0], and 6∨7 by the homogeneous

line (1, 0, 0) × (0, 1, 0) = [0, 0, 1]. This gives [1,−1, 0] × [0, 0, 1] = (1, 1, 0),

and we map 1→ (1, 1, 0). We get the updated diagram:

1

(1, 1, 0)

2

(0, a, a− 1)

3

(a, 1, 1)

7

(1, 0, 0)

6

6(0, 1, 0)

5

(1, 1, 1)

4

(0, 0, 1)

8

(a, 0, 1)

Figure 5.5: Coordinate chase STEP 5
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Now for the points on the line {1, 2, 3} to be collinear we must have

det((1, 1, 0), (0, a, a−1)(a, 1, 1)) = 0. This implies that a2−a+ 1 = 0, giving

a = 1
2
(1±

√
−3). So provided that

√
−3 exists in the coordinatizing field, a

will exist. The finite fields GF (7), GF (13), and GF (19) all provide examples

of fields which give a coordinatization. In the next section we provide group

realizations for the Möbius-Kantor configuration in bothGF (7), andGF (13).

5.3 Group Realizations Using Cubic Curves

5.3.1 The Möbius-Kantor Configuration in the Affine

Plane AG(2, 7)

The group realization provided in what follows isn’t direct like the field plane

coordinatization provided in section 5.1. Instead, we appeal to a result of

Jungnickel et. al [20], after we have provided a group realization of AG(2, 3)

as the nine inflection points of a cubic curve over a finite field.

A suitable cubic curve is found by examining solutions to the cubic equa-

tion y2 = x3 + c over the finite field GF (7). Since the field has only seven

elements, the calculations are still manageable by hand.

By inspecting the fourth row of Table 5.1. and observing the squares

modulo 7, it is found that (0, 3), (0, 4), (3, 1), (3, 6), (5, 1), (5, 6), (6, 1), and

(6, 6) are all solutions to the cubic y = x3 + 2 over GF (7). By append-
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Table 5.1: Solutions to y = x3 + 2 in GF (7)

x 0 1 2 3 4 5 6
x2 0 1 4 2 2 4 1
x3 0 1 1 6 1 6 6

x3 + 2 2 3 3 1 3 1 1

ing an additional ‘point at infinity’ denoted O, a set of nine points given

by C(GF (7)) = {O, (0, 3), (0, 4), (3, 1), (3, 6), (5, 1), (5, 6), (6, 1), (6, 6)} is ob-

tained. The set C(GF (7)), together with the addition law on cubic curves,

forms an abelian group of order 9. Thus there are two possible groups,

namely Z9, and Z3 × Z3. To distinguish these, we construct a group table.

We will use the following equations found in [31] pages 31, and 107-108 for

the cubic in normal form y2 = x3 + ax2 + bx+ c.

The x-coordinate of 2(x, y) is given by the following, called the duplication

formula:

x-coordinate of 2(x, y) =
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
.

The formula above is particularly useful. For a curve in normal form

along with the points P , and Q, one obtains P +Q from P ∗Q by reflecting

in the x-axis.

The slope of the line between the two points P1 = (x2, y1), and P2 =

(x2, y2) is denoted λ, and given by
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λ =


y2−y1
x2−x1 if x1 6= x2

3x21+2ax1+b

2y1
if P1 = P2.

Then, P1 ∗ P2 = (x3, y3), and P1 + P2 = (x3,−y3) where x3 = λ2 − a −

x1 − x2, and y3 = λx3 + ν, where ν = y1 − λx1 = y2 − λx2.

In particular for y2 = x3 + 2, the duplication formula reduces to: x-

coordinate of 2(x, y) = x4+5x
4x3+1

. A few sample calculations follow.

The x-coordinate of (3, 1) ∗ (3, 1) = 81+15)
108+1

= 5
4

= 3; using the formulas

above, the y coordinate is found to be y = 1, so that (3, 1) ∗ (3, 1) = (3, 1).

This implies that (3, 1) is an inflection point. With the formulas provided,

it is easy to see that (0, 3) ∗ (0, 3) = (0, 3), and (0, 6) ∗ (0, 6) = (0, 6). With

similar calculations it can be shown that each point is an inflection point,

implying each non identity point has order three. This implies the group is

in fact Z3×Z3.The following table can be generated with the formulas above.

This provides a group embedding of AG(2, 3) into Z3 × Z3

Table 5.2: Group table

+ O (0, 3) (0, 4) (3, 1) (3, 6) (5, 1) (5, 6) (6, 1) (6, 6)
O O (0,3) (0,4) (3,1) (3,6) (5,1) (5,6 ) (6,1) (6,6)

(0, 3) (0, 3) (0,4) O (6,1) (5,6) (3,1) (6,6) (5,1) (3,6)
(0, 4) (0,4) O (0,3) (5,1) (6,6) (6,1) (3,6) (3,1) (5,6)
(3, 1) (3,1) (6,1) (5,1) (3,6) O (6,6) (0,3) (5,6) (0,4)
(3, 6) (3,6) (5,6) (6,6) O (3,1) (0,4) (6,1) (0,3) (5,1)
(5, 1) (5,1) (3,1) (6,1) (6,6) (0,4) (5,6) O (3,6) (0,3)
(5, 6) (5,6) (6,6) (3,6) (0,3) (6,1) O (5,1) (0,4) (3,1)
(6, 1) (6,1) (5,1) (3,1) (5,6) (0,3) (3,6) (0,4) (6,6) O
(6, 6) (6,6) (3,6) (5,6) (0,4) (5,1) (0,3) (3,1) O (6,1)
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With some routine calculations, and a few observations, the following

group embedding is obtained.

(5, 6)

3

(3, 6)

8 7

(6, 6)

32

(0, 3)

0

(3, 1)

6

(5, 1) (6, 1)

5

O
4

(0, 4)

1

Figure 5.6: Group embedding of AG(2, 3) into Z3 × Z3

The verifications of the twelve collinearities is obtained from the group

table, and are as follows.

1. ((0, 3) ∗ (0, 4)) ∗ O = O ∗ O = O

2. ((3, 6) ∗ (3, 1)) ∗ O = O ∗ O = O

3. ((6, 1) ∗ (6, 6)) ∗ O = O ∗ O = O

4. ((0, 3) ∗ (3, 6)) ∗ (5, 1) = O ∗ O = O

5. ((0, 3) ∗ (6, 6)) ∗ (3, 1) = O ∗ O = O

6. ((0, 3) ∗ (5, 6)) ∗ (6, 1) = O ∗ O = O

7. ((3, 6) ∗ (0, 4)) ∗ (6, 1) = O ∗ O = O
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Chapter 5. The Möbius-Kantor Configuration

8. ((5, 6) ∗ (0, 4)) ∗ (3, 1) = O ∗ O = O

9. ((6, 6) ∗ (0, 4)) ∗ (5, 1) = O ∗ O = O

10. ((6, 1) ∗ (5, 1)) ∗ (3, 1) = O ∗ O = O

11. ((5, 6) ∗ (6, 6)) ∗ (3, 6) = O ∗ O = O

12. ((5, 1) ∗ (5, 6)) ∗ O = O ∗ O = O

Now with the result of Jungnickel et al. [20], by removing any point from

the AG(2, 3) and the lines incident with it, an (83) is obtained. For example,

by removing the point labeled ‘8’ from the group realization of AG(2, 3) in

Figure 5.7 leaves a group representation of the (83). The collinearities of the

remaining lines still hold.

(5, 6)

3 7

(6, 6)

32

(0, 3)

0

(3, 1)

6

(5, 1) (6, 1)

5

O
4

(0, 4)

1

Figure 5.7: Group embedding of (83) into Z3 × Z3
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5.3.2 The Möbius-Kantor configuration in the Affine

Plane AG(2, 13)

Using the the cubic curve y2 = x3 +3 mod 13, in this section we give an em-

bedding of the Möbius-Kantor configuration into the affine plane AG(2, 13).

The curve has nine points over GF (13), they are as follows: (1, 2), (3, 2),

(9, 2), (0, 4), (0, 9), (1, 11), (3, 11), (9, 11), and O (the point at infinity). All

of the nine points are inflexion points i.e., P ∗ P = P . The algebra of inci-

dence is given in the following ∗-table (P ∗Q = R if and only if P , Q ,and R

are collinear).

Table 5.3: Group table

∗ O (1, 2) (3, 2) (9, 2) (0, 4) (0, 9) (1, 11) (3, 11) (9, 11)
O O (1,11) (3,11) (9,11) (0,9) (0,4) (1,2) (3,2) (9,2)

(1, 2) (1, 11) (1,2) (9,2) (3,2) (3,11) (9,11) O (0,4) (0,9)
(3, 2) (3,11) (9,2) (3,2) (1,2) (9,11) (1,11) (0,9) O (0,4)
(9, 2) (9,11) (3,2) (1,2) (9,2) (1,11) (3,11) (0,4) (0,9) O
(0, 4) (0,9) (3,11) (9,11) (1,11) (0,4) O (9,2) (1,2) (3,2)
(0, 9) (0,4) (9,11) (1,11) (3,11) O (0,9) (3,2) (9,2) (1,2)
(1, 11) (1,2) O (0,9) (0,4) (9,2) (3,2) (1,11) (9,11) (3,11)
(3, 11) (3,2) (0,4) O (0,9) (1,2) (9,2) (9,11) (3,11) (1,11)
(9, 11) (9,2) (0,9) (0,4) O (3,2) (1,2) (3,11) (1,11) (9,11)
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5

(3, 2)

2

(9, 4)

3

(0, 4)

6

(9, 2)

0

(1, 2)

4

(1, 11)

7

(0, 9)

1

(3, 1)

Figure 5.8: (83) in AG(2, 13)

5.4 Extensions of Möbius-Kantor Configura-

tions

In this section, we define new configurations C3(8 × 3n, 1, 3) that are higher

analogues of the basic Möbius-Kantor configuration and prove that they are

embedabble in the group Z3n+1×Z3n+1 . Since the direct product of two cyclic

groups is always a subgroup of a non-singular cubic curve over the complex

field, it follows that these new extended Möbius-Kantor configurations all

have geometric realizations over the complex projective plane. The classical

Möbius-Kantor configuration C3(8, 1, 3) is a special case with n = 0. To

construct higher analogs of the Möbius-Kantor Configuration, we employ an

algebraic technique which uses analogues of the Singer polynomial associated

75
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with the cyclic difference set {(0, 1, 3) (mod 8)}. The algebraic technique

allows for the construction of the matrices which define our embeddings.

Theorem 5.4.1 gives an alternative group embedding of the Möbius-Kantor

configuration as a cyclic C3(8, 1, 3) which forms the basis for the subsequent

extensions.

Theorem 5.4.1. The cyclic configuration C3(8, 1, 3) has a group realization.

Proof. The cyclic configuration C3(8, 1, 3) is given by the following eight

triples.

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 0

3 4 5 6 7 0 1 2

Let the mapping f : C3(8, 1, 3)→ Z3 × Z3 be given by:

f : i→ Aiv mod 3

where A =

2 1

1 0

, and v =

0

1

. The mapping is injective as can be seen

from the following.
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1 2 3 4 5 6 7 0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓1

0


2

1


2

2


0

2


2

0


1

2


1

1


0

1



To verify that f is indeed a group embedding, consider that

f(0) + f(1) + f(3) = Iv + Av + A3v

≡

0

1

+

1

0

+

2

2


≡

0

0

 mod 3.

More generally,

f(j) + f(j + 1) + f(j + 3) = Ajv + Aj+1v + Aj+3v

= Aj(Iv + Av + A3v)

≡ Aj

0

0

 mod 3

≡

0

0

 mod 3.
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2

Figure 5.9 gives a pictorial representation of the Möbius-Kantor configura-

tion (solid lines and black nodes) along with the group coordinates obtained

from Theorem 5.4.1. Additionally, the natural completion of the Möbius-

Kantor to the AG(2, 3) is depicted as the four additional dashed lines and

the white node in the middle labeled with ‘8’. Since the Möbius-Kantor con-

figuration violates the Sylvester-Gallai theorem, as a super structure, so does

the AG(2, 3). Hence neither are realizable in the real plane.

(2, 2)

3

(0, 0)

8 7

(1, 1)

32

(2, 1)

0
(0, 1)

6
(1, 2) (2, 0)

5

(0, 2)

4

(1, 0)

1

Figure 5.9: Group embedding of the (83) and its completion

It should be noted that the choice to embed the Möbius-Kantor configu-

ration into direct products of Z3 is not without justification.

Lemma 5.4.2. For any group embedding of the Möbius-Kantor configura-

tion, the image of each point has order three in the group.

Proof. Let f be a group embedding of the Möbius-Kantor configuration
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into an abelian group. Using the cyclic {0, 1, 3} description of the Möbius-

Kantor configuration we have that for any point i, the blocks containing i

are given by {i, i + 1, i + 3}, {i, i + 5, i + 6}, {i, i + 2, i + 7} mod 8. The

sum of the images of the blocks is 0; letting j = i+ 1 and k = i+ 2 we have

the following.

−3f(i) = f(i+ 1) + f(i+ 6) + f(i+ 7) + f(i+ 2) + f(i+ 3) + f(i+ 5)

= f(j) + f(j + 5) + f(j + 6) + f(k) + f(k + 1) + f(k + 3)

= 0 + 0

= 0.

2

5.4.1 A New Example

In this section we give an explicit construction of the first extension of the

C3(8, 1, 3), the C3(24, 1, 3), and show that it has a group realization in the

abelian group Z9 × Z9. Analogous to the previous section we construct an

exponential map obtained from the associated Singer polynomial.

Theorem 5.4.3. The cyclic configuration C3(24, 1, 3) has a group realization.

Proof. Let the map f : C3(24, 1, 3)→ Z9 × Z9 be given by:

f : i→ Aiv mod 9
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where A =

2 1

4 0

, and v =

0

1

. It is straightforward to establish that f

is injective. To verify that f is indeed a group embedding, consider that

f(0) + f(1) + f(3) = Iv + Av + A3v

≡

0

1

+

1

0

+

8

8


≡

0

0

 mod 9.

More generally,

f(j) + f(j + 1) + f(j + 3) = Ajv + Aj+1v + Aj+3v

= Aj(Iv + Av + A3v)

≡ Aj

0

0

 mod 9

≡

0

0

 mod 9.

2
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5.5 Generalized Möbius-Kantor Configurations

In this section we provide some technical lemmas necessary to establish the

main result, and provide the motivation and an explicit construction for the

matrices found in Theorem 5.4.1 and Theorem 5.4.3.

The aim is to show that we can “linearize” the value of x2 in our coor-

dinate generating calculations. The calculations to generate our coordinates

are linked to the Singer polynomial x3+x+1, so we assume that x3+x+1 = 0.

We want to show that C3(3
n, 1, 3) is realizable in a group of rank 2. Assum-

ing that we can linearize x2, we have that x2 = ax + b (where a and b are

to be determined). We generate x3 from the linearized form of x2 to get

x3 = ax2 + bx = (a2 + b)x + ab (after substitution). Since x3 = −x − 1 it

follows that a2 + b = −1 and ab = −1. So, b = −a−1, a2 − a−1 = −1, or

a3 + a− 1 = 0. Table 5.4 gives sample calculations of a and b, and provides

the motivation and basis for establishing Lemma 5.5.1.

Table 5.4: Sample calculations

3n x3 + x+ 1 a3 + a− 1 b x2 = ax+ b
3 1 2 1 2x+ 1
9 7 2 4 2x+ 4
27 7 20 4 20x+ 4
81 61 20 4 20x+ 4
243 223 20 85 20x+ 85
729 709 20 328 20x+ 328
2187 1438 749 1057 749x+ 1057
6561 3625 2936 1057 2936x+ 1057
3n s(n) 3n − s(n) −(3n − s(n))−1 (3n − s(n))x− (3n − s(n))−1
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Lemma 5.5.1. The congruence x3 + x − 1 ≡ 0 mod 3n has a solution for

all non-negative integers n.

Proof. The proof is by induction on n. Notice that for n = 1, we have that

23 + 2− 1 ≡ 0 mod 3. Let x0 be a solution to the congruence x3 +x− 1 ≡ 0

mod 3n, i.e x30 + x0− 1 = 3nu for some integer u. Define y0 = x0− 3nu, then

y30 + y0 − 1 = (x0 − 3nu)3 + x0 − 3nu− 1

= x30 −
(

3

1

)
3nux20 +

(
3

2

)
32nu2x0 − 33nu3 + x0 − 3nu− 1

≡ (x30 + x0 − 1)− 3nu+ 0 mod 3n+1

≡ 3nu− 3nu mod 3n+1

≡ 0 mod 3n+1.

2

With Lemma 5.5.1 in hand we define the matrices used to give our em-

beddings. For a given positive integer n, let a be a solution to the congruence

x3 + x− 1 ≡ 0 mod 3n, the nth cyclic embedding matrix An is given by

An =

 a 1

−a−1 0


Lemma 5.5.2. The nth cyclic embedding matrix An satisfies A3

n+An+I ≡ 0

mod 3n.
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Proof. Since a3 + a − 1 ≡ 0 mod 3n, and A3
n =

 a3 − 2 a2 − a

−a+ a2 −1

, it

follows that

A3
n + An + I =

 a3 + a− 1 a2 − a−1 + 1

−a+ a−2 − a−1 0


≡

0 0

0 0

 mod 3n.

2

Lemma 5.5.3. The nth cyclic embedding matrix satisfies A8
n ≡ −3An − 2I

mod 3n.

Proof. The proof is a straight forward application of the previous lemma.

2

Lemma 5.5.4 is a variant of a result due to Kummer: it is used to demon-

strate the vanishing binomial coefficients in Lemma 5.5.1

Lemma 5.5.4. (Kummer, 1852,[24]) For integers n and k where n ≥ k ≥ 0,

n
gcd(n,k)

divides
(
n
k

)
.

Lemma 5.5.5. A8×3n−1

n ≡ I mod 3n

Proof. By virtue of the previous lemma we have that
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Chapter 5. The Möbius-Kantor Configuration

A8×3n−1

n = (−(3An + 2I))3
n−1

= −
3n−1∑
j=0

(
3n−1

j

)
(3An)3

n−1−j(2I)j

≡ −23n−1

I mod 3n.

Now, the result follows provided that 23n−1 ≡ −1 mod 3n. Since 2φ(3
n) =

(23n−1
)2 ≡ 1 mod 3n, and 2 is a generator for the entire cyclic group modulo

any positive power of 3 (see [8], page 161) it follows that 23n−1 ≡ −1 mod 3n.

2

The goal is to actually show that each of the binomial coefficients in

the expansion(save the last, of course) is divisible by 3n. It is enough to

show that 3n divides
(
3n−1

j

)
33n−1−j. Notice that provided j ≤ 3n−1 − n, then

3n divides 33n−1−j. For j ≥ 3n−1 − n, we must make up the required 3′s

from the binomial coefficient. To simplify the problem we will rewrite the

bounds on j that we are interested in. These values of j ≥ 3n−1 − 1 are

j = 3n−1− (n−1), 3n−1− (n−2), . . . , 3n−1−1. With respect to 33n−1−j these

correspond to the values 3n−1, 3n−2, . . . , 31. Now because of the symmetry of

the binomial coefficients we have that
(
3n−1

j

)
=
(

3n−1

3n−1−j

)
. Letting k = 3n−1−j,

the values j = 3n−1−(n−1), 3n−1−(n−2), . . . , 3n−1−1 give k = 1, 2, . . . , n−1,

respectively. We can now rephrase the problem. We want to show that 3n

divides
(
3n−1

k

)
3k for k = 1, 2, . . . , n− 1.

Lemma 5.5.5 applied to our particular problem says that 3n−1

gcd(3n−1,k)
divides

(
3n−1

k

)
.
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Notice that

gcd(3n−1, k) ≤ k =⇒ 3n−1

3log3 gcd(3
n−1,k)

≥ 3n−1

3log3 k
.

Now, 3n−1−log3 k3k = 3n−1−log3 k+k, so provided that k ≥ log3 k + 1, the

result holds. Equivalently, the result holds if 3k ≥ 3k, which is easily estab-

lished by induction. Thus we have established the following:

Lemma 5.5.6. 3n divides
(
3n−1

k

)
3k, for k = 1, 2, . . . , n− 1.

Theorem 5.5.7. Every n3 configuration C3(8× 3n, 1, 3) has a group realiza-

tion in the rank 2 group Z3n+1 × Z3n+1.

Proof.

Let An be the nth cyclic embedding matrix, v =

0

1

, and let f : C3(8×

3n, 1, 3)→ Z3n+1 × Z3n+1 be given by f(i) = Ain+1v mod 3n+1. Then

f(i) + f(i+ 1) + f(i+ 3) = (Ain + Ai+1
n + Ai+3

n )v

= (Ain(I + An + A3
n))v

≡

0

0

 mod 3n+1.

2

Corollary 5.5.7.1. The configuration C3(8 × 3n, 13) exists in the complex

projective plane where the blocks are straight lines in the geometric sense as

well.
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Proof. The underlying group structure of a non-singular cubic curve over

the complex field is the torus group S1 × S1 and this contains Z3n+1 × Z3n+1

as a subgroup.

2
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Chapter 6

Infinitude of Geometric

Realizations

In this chapter we prove that there are infinitely many (n3) and (n4) config-

urations having group realizations. In the case of the (n3)
′s, we show that

these group realizations do yield actual geometric realizations over the real

plane. In the case of the (n4)
′s we get circle-realizations, again, over the real

plane. In constructing these geometric models, we employ Hensel’s Lemma

to the corresponding Singer polynomials which define the cyclic configura-

tions. Thus we have a synergy of techniques drawn from polynomial algebra,

number theory, and geometry to arrive at the realizations.
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6.1 Hensel’s Lemma

The version of Hensel’s Lemma we use comes in three parts, only the first of

which is relevant to our work. It is stated without proof for reference only.

Theorem 6.1.1. (Hensel’s Lemma [30, 19]) Let f(x) be a polynomial with

integer coefficients, where p is prime and k is a positive integer. Let x0 be a

solution to the polynomial congruence f(x) ≡ 0 mod pk. Then exactly one

of the following holds:

1. If f ′(x) 6≡ 0 mod p then x0 lifts to exactly one solution x1 to f(x) ≡ 0

mod pk+1. This solution is given by x1 = x0 + tpk, where

t = −f(x0)

pk
(f ′(x0))

−1.

Here t is understood to be reduced modulo p if necessary, and (f ′(x0))
−1

represents the multiplicative inverse of f ′(x0) modulo p.

2. If f ′(x) ≡ 0 mod p and x0 is a solution to f(x) ≡ 0 mod pk+1 then

x0 lifts to x1 = x0 + tpk for all integers 0 ≤ t ≤ p− 1. Thus x0 lifts to

p distinct solutions of f(x) ≡ 0 mod pk+1.

3. Finally, if f ′(x) ≡ 0 mod p but x0 is not a solution of f(x) ≡ 0

mod pk+1, then x0 does not lift to any solutions of f(x) ≡ 0 mod pk+1.

In addition to Hensel’s Lemma we use a result of N. Jolly [19] which

ensures our lifted primitive root solutions are primitive root solutions for the
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new lifted prime powered modulus. It is stated without proof for reference.

Theorem 6.1.2. (N. Jolly [19]) If p is an odd prime, k ≥ 2, and g is a

primitive root of pk, then g + tpk is a primitive root of pk+1 for all 0 ≤ t ≤

p− 1.

6.2 Infinite Embeddings via Hensel Lifting

We will proceed with a simple illustrative example.

Theorem 6.2.1. The cyclic (n3) configuration C3(20, 1, 4) is geometrically

realizable.

Proof. The proof is a simple application of Hensel’s Lemma. For f(x) =

x4 + x + 1 it is routine to show that f(3) ≡ 0 mod 5, and that 3 is a

primitive root modulo 5. With Hensel’s Lemma we lift the solution modulo

5 to a solution modulo 25. f ′(x) = 4x3 + 1, given that f ′(3) = 109, and

(f ′(3))−1 = 4 mod 5, therefore

t = −f(3)

5
((f ′(3))−1)

= −85

5
(4)

= −68 mod 5

= 2.

With the required value of t, we can construct the lifted solution x1 =

3+2 ·5 = 13. Thus 13 is a solution to the congruence x4+x+1 ≡ 0 mod 25,
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moreover 13 is a primitive root modulo 25.

Define the mapping α : C3(20, 1, 4)→ Z25 by α : i→ 13i mod 25. Then,

as 134 + 13 + 1 ≡ 0 mod 25, it follows that for any j that

α(j + 4) + α(j + 1) + α(j) = 13j+4 + 13j+1 + 13j

= 13j(134 + 13 + 1)

≡ 0 mod 25.

Since 13 is a primitive modulo 25 and φ(25) = 25− 5 = 20, the order of

13 modulo 25 is 20. Therefore α is a group embedding.

2

With Hensel’s Lemma, and Jolly’s Theorem we can produce the following

lifted group embeddings.

Table 6.1: Ten Hensel-lifted embeddings of C3(4 · 5n, 1, 4)

configuration Group base
C3(100, 1, 4) Z125 88
C3(500, 1, 4) Z625 338
C3(2500, 1, 4) Z3125 1588
C3(12500, 1, 4) Z15625 7838
C3(62500, 1, 4) Z7838 7838
C3(312500, 1, 4) Z390625 320338
C3(1562500, 1, 4) Z1953125 710963
C3(7812500, 1, 4) Z9765625 8523463
C3(1562500, 1, 4) Z1953125 710963
C3(7812500, 1, 4) Z9765625 8523463

Hensel’s Lemma together with the result of Jolly provide the means by
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which to demonstrate the existence of the group embeddability of the cyclic

configurations C3(4 · 5n, 1, 4) into Z5n .

Theorem 6.2.2. C3(4 · 5n−1, 1, 4) has a group embedding into Z5n for all

n ≥ 2.

Proof. Since 13 is a primitive solution to x4 + x + 1 ≡ 0 mod 25, we

can lift to a solution, r, modulo 5n, where n ≥ 2. Moreover, by Jolly’s

result, this lifted solution is also a primitive root modulo 5n. Define the

map α : C3(4 · 5n−1, 1, 4) → Z5n by α(i) = ri mod 5n. Then, we have that

r4 + r + 1 ≡ 0 mod 5n, and in general

α(j + 4) + α(j + 1) + α(j) = rj+4 + rj+1 + rj

= rj(r4 + r + 1)

≡ 0 mod 5n.

Since φ(5n) = 5n− 5n−1 = 4 · 5n−1, the order of r modulo 5n is 4 · 5n−1, as

required for injectivity. Thus α is a group embedding, and the result follows.

2

With the previous result in hand, natural questions about the ability to

generalize the technique presented arise.
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Theorem 6.2.3. Let σ(x) = x4 +x+1 satisfy the following three conditions:

1. σ(r) = p for some prime p, and r ∈ Z+;

2. r is a primitive root modulo p;

3. The first Hensel lifted value of r has order φ(p2) modulo p2 (i.e., r

generates the multiplicative group of units modulo p2).

Then C3((p− 1) · pn−1, 1, 4) is embeddable in Zpn for all n ≥ 1.

Proof. Let r be a primitive root modulo p where σ(r) ≡ 0 mod p. Then

applying Hensel’s Lemma we can lift r to a solution r1 of σ(x) ≡ 0 mod p2,

and by assumption the order of r1 modulo p2 is φ(p2). By Hensel’s Lemma

and Jolly’s result r1 can be lifted to a primitive solution rn−1 modulo pn for

all n ≥ 3. Define the map α : C3((p − 1) · pn−1, 1, 4) → Zpn by α : i → ri

mod pn. Then by assumption we have that r4n−1 + rn−1 +1 ≡ 0 mod pn, and

in general we have that

α(j + 4) + α(j + 1) + α(j) = rj+4
n−1 + rj+1

n−1 + rjn−1

= rj1(r
4
n−1 + rn−1 + 1)

≡ 0 mod pn.

Since the order of rn−1 modulo pn is (p− 1)pn−1, the map is for injective.

Thus α is a group embedding, and the result follows.

2
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Table 6.2: The first nine Hensel-lifted embeddings of the cyclic configuration
C3(18 · 19i, 1, 4).

configuration Group base
C3(18, 1, 4) Z19 2
C3(342, 1, 4) Z361 78
C3(6498, 1, 4) Z6856 2244
C4(123462, 1, 4) Z130321 111988
C3(2345778, 1, 4) Z2476099 633272
C3(44569782, 1, 4) Z47045881 45203054
C3(846825858, 1, 4) Z893871739 515661864
C4(16089691302, 1, 4) Z16983563041 7666635776
C3(305704134738, 1, 4) Z32268767779 143535140104

The previous technique is not limited to the Singer polynomial x4 +x+1.

Indeed, it applies equally well to any cyclically described (n3) configuration ,

or any general cyclic configuration Ck(n, a1, . . . , ak − 1) with Singer polyno-

mial xak−1 + · · ·+ xa1 + 1. The results thus obtained for cyclic (n3)
′s provide

an additional partial answer to the question posed by Grünbaum in [18], page

68, on the existence of cyclic (n3)
′s which are geometrically realizable.

Theorem 6.2.4. Let σ(x) = xak−1 + · · ·+ xa1 + 1 satisfy the following three

conditions:

1. σ(r) = p for some prime p, and r ∈ Z+;

2. r is a primitive root modulo p;

3. The first Hensel lifted value, r1, has order φ(p2) modulo p2.

Then Ck(n, a1, . . . , ak−1) is embeddable in Zpn for all n ≥ 1.
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Proof. Let r be a primitive root modulo p where σ(r) ≡ 0 mod p. Then

applying Hensel’s Lemma we can lift r to a solution r1 of σ(x) ≡ 0 mod p2,

and by assumption the order of r1 modulo p2 is φ(p2). By Hensel’s Lemma

and Jolly’s result r1 can be lifted to a primitive solution rn−1 modulo pn for

all n ≥ 3. Define the map α : Ck(n, a1, . . . , ak−1) → Zpn by α : i → ri

mod pn. Then in general we have

α(j + ak−1) + · · ·+ α(j + a1) + α(j) = r
j+ak−1

n−1 + · · ·+ rj+a1n−1 + rjn−1

= rj1(r
ak−1

n−1 + · · ·+ ra1n−1 + 1)

≡ 0 mod pn.

Since the order of rn−1 modulo pn is (p − 1)pn−1, the map is injective.

Thus α is a group embedding, and the result follows.

2

Table 6.3: The first five Hensel-lifted embeddings of the cyclic configuration
C4(522 · 523i, 1, 3, 9).

configuration Group base
C4(522, 1, 3, 9) Z523 2
C4(273006, 1, 3, 9) Z273529 44980
C4(142782138, 1, 3, 9) Z143055667 318509
C4(7465058174, 1, 3, 9) Z74818113841 69525372671
C4(39055055425002, 1, 3, 9) Z39129873538843 6653519390679
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Table 6.4: The first ten Hensel-lifted embeddings of the cyclic configuration
C3(10 · 11i, 1, 3).

configuration Group base
C3(10, 1, 3) Z11 2
C3(110, 1, 3) Z121 57
C3(1210, 1, 3) Z1331 1267
C3(13310, 1, 3) Z14641 6591
C3(146410, 1, 3) Z161051 153001
C3(161051, 1, 3) Z1771561 475103
C3(17715610, 1, 3) Z19487171 7561347
C3(194871710, 1, 3) Z214358881 182945886
C3(2143588810, 1, 3) Z2357947691 611663648
C3(23579476910, 1, 3) Z25937424601 5327559030

Table 6.5: The first ten Hensel-lifted embeddings of the cyclic configuration
C4(82 · 83i, 1, 4, 6).

configuration Group base
C4(82, 1, 4, 6) Z83 2
C4(6806, 1, 4, 6) Z6889 3737
C4(564898, 1, 4, 6) Z571787 299964
C4(46886534, 1, 4, 6) Z47458321 10592130
C4(3891582322, 1, 4, 6) Z3939040643 1149591834
C4(323001332726, 1, 4, 6) Z326940373369 52357120193
C4(26809110616258, 1, 4, 6) Z27136050989627 18034077655488
C4(2225156181149414, 1, 4, 6) Z2252292232139041 343666689531012
C4(184687963035401362, 1, 4, 6) Z186940255267540403 56650972493007037
C4(15329100931938313046, 1, 4, 6) Z15516041187205853449 3982396333111355500

The existence of primitive roots modulo a prime power is a well-known

result. However, in light of the previous results we can ask whether the Singer

polynomial, σ(x), actually takes on prime values with any sort of regularity,

or at all. The Bunyakovsky conjecture is a well-known conjecture in number
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theory. It conjectures the existence of infinitely many primes of the form

σ(r), as r runs over the positive integers, and is generally believed to be true.

However, the only known case is the famous Dirichlet Theorem on primes in

arithmetic progression. No counter-example is known either. Coupled with

the assumed truth of the Bunyakovsky conjecture, Theorems 6.2.3 and 6.2.4

and the examples given in this chapter suggests that our technique may be

valid infinitely often, and each instance in turn giving infinitely many group

embeddings via lifting.
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Chapter 7

Group Embeddings of Designs

In this chapter we describe several cyclic symmetric (v, k, λ) designs as groups.

In describing these cyclic designs as group we finally employ the field exten-

sion method described in the introduction.

Definition 7.0.1. A Balanced Incomplete Block Design(BIBD) is a pair

(V,B) where the set V has v elements and B is a collection of b subsets of V

called blocks, each with size k. Each element of V is contained in exactly r

blocks and any pair of elements of V is contained in exactly λ. The numbers

v, b, k, λ, r are the parameters of the BIBD. A BIBD with v = b is a

symmetric (v, k, λ) design, or SBIBD.

Definition 7.0.2. Let G be a cyclic abelian group of order v. A k element

subset D of G is a (v, k, λ;n) is a difference set of order n = k − λ if every

non-zero element of G occurs exactly λ times among the differences di − dj,

where di and dj are elements of D. D is called a cyclic difference set.
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We have already seen examples of (v, k, λ;n) difference sets. The Fano

configuration is the (7, 3, 1) SBIBD with cyclic difference set {0, 1, 3}. See

page 16 of chapter 1. Similarly, {0, 1, 3, 9} is a (13, 4, 1; 3) difference set of

order 3.

In the terminology of design theory the analogue of the Singer polyno-

mial is often referred to as the Hall polynomial. The Hall polynomial of a

difference set D = {d1, . . . , dk} is given by h(x) = xdk + · · · + xd1 . We will

use the two names interchangeably in what follows.

Definition 7.0.3. Let D be a (v, k, λ;n) difference set over a group G. The

set of all distinct sets g + D, where g ∈ G is called the development of D.

The development of D is denoted Dev(D).

7.1 Finite Projective Planes as Groups

Perhaps the best known of the (v, k, 1) SBIBD′s are the finite projective

planes. Here v = p2 + p+ 1, k = p+ 1, and as already stated λ = 1. In this

section we present a table of group embeddings of several finite projective

planes. We leave the explanation of the Type 2 embeddings used to generate

the embeddings in this section until the next section on biplanes. All em-

beddings in this chapter were generated as Type 2 embeddings using a crude

method in MAPLE.
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Table 7.1: The first nine finite projective planes as groups given by the design
parameters (p2k + pk + 1, pk + 1, 1).

Design Singer Exponents Resultant Group
(7, 3, 1) 0, 1, 3 8 (Z2)

3

(13, 4, 1) 0, 1, 3, 9 36 (Z3)
3

(21, 5, 1) 3, 6, 7, 12, 14 212 (Z2)
6

(31, 6, 1) 0, 1, 3, 8, 12, 18 515 (Z5)
3

(57, 8, 1) 1, 5, 6, 8, 18, 37, 41, 48 78 (Z7)
3

(73, 9, 1) 1, 2, 4, 6, 16, 32, 37, 55, 64 2108 (Z2)
9

(91, 10, 1) 0, 1, 3, 9, 27, 49, 56, 61, 77, 81 372 (Z3)
6

(133, 12, 1) 0, 10, 15, 39, 40, 42, 51, 1154 (Z11)
3

59, 73, 77, 120, 127
(183, 14, 1) 0, 1, 3, 16, 23, 28, 42, 76, 1360 (Z13)

3

82, 86, 119, 137, 154, 175

7.2 Group Realizations of some Biplanes

Interpreted as a design, a biplane is a (v, k, 2) design. Although trivial, it

is worth noting that the (4, 3, 2) biplane cannot be represented as a group.

Consider the following representation of the (4, 3, 2) biplane given in Figure

7.1.

0 1

23

Figure 7.1: (4, 3, 2) Biplane
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To embed the (4, 3, 2) biplane in a group, the sum of the images of the

points on any line must be the group identity. In particular, we must have

that f(0) + f(1) + (2) = e = f(0) + f(1) + f(3). But then by cancellation

we must have f(2) = f(3).

It is also worth noting that the (4, 3, 2) biplane can be represented by

a cyclic difference set modulo 4. It is routine to verify that Dev{0, 1, 2}

modulo 4 describes the (4, 3, 2) biplane. Thus we have an example of a

biplane realizable as a cyclic difference set, but not realizable as a group.

7.3 The (7,4,2) Biplane (The Fano Biplane)

The classical construction for the (7,4,2) biplane is by complementing the

Fano plane. The point set for the (7,4,2) biplane remains the same as that

of the Fano plane, but the lines are the complements of the lines of the Fano

plane with respect to the point set. A few observations about embedding the

Fano biplane into a group follow.

Lemma 7.3.1. If f is a group embedding of the Fano biplane into an abelian

group G, then 4
∑

i∈P f(i) = e.

Proof. The proof is simple: sum over the group images of each line.

The sum of images over any line is e, and each element appears four times

amongst the lines. Thus,
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4
∑
i∈P

f(i) = e.

2

Theorem 7.3.2. Let f be a group embedding of the Fano biplane into an

abelian group G. Then for all i ∈ P , 4f(i) = e.

Proof. Fix some i in the configuration, and sum over the images of only

the lines containing i, and we have

2f(i) = −2
∑
i∈P

f(i) = e.

Coupled with the previous lemma, it follows that 4f(i) = e.

2

Corollary 7.3.2.1. In any group embedding of the Fano biplane, the group

order of each embedded element is 2 or 4.

Without the aid of the resultant the previous results suggest that the

smallest possible group embedding of the Fano biplane is Z2 × Z2 × Z2. It’s

well known that the quadratic non-residues of GF (7) form a cyclic difference

set for the (7,4,2) biplane with points P = {0, 1, 2, 3, 4, 5, 6} whose blocks

are given by Dev{0, 3, 5, 6}. We employ the Field Extension technique: a

factorization of the Hall polynomial p(x) = x6 + x5 + x3 + 1 modulo 2 gives:

p(x) = (x+ 1)(x3 +x+ 1). Calculating the powers of xi in Z2[x]/(x3 +x+ 1)
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gives a natural association, φ, between the Fano biplane and Z2 × Z2 × Z2.

The results of these calculations and the explicit mapping for φ are given in

Table 7.2.

Table 7.2: Group embedding of the Fano biplane.

Point Power Polynomial 3− tuple
0 x0 1 φ(0) = (0, 0, 1)
1 x1 x φ(1) = (0, 1, 0)
2 x2 x2 φ(2) = (1, 0, 0)
3 x3 x+ 1 φ(3) = (0, 1, 1)
4 x4 x2 + x φ(4) = (1, 1, 0)
5 x5 x2 + x+ 1 φ(5) = (1, 1, 1)
6 x6 x2 + 1 φ(6) = (1, 0, 1)

The calculations verifying that φ is indeed a group embedding of the Fano

biplane into Z2 × Z2 × Z2 are given in Table 7.3. The calculations for the

Fano biplane are simple enough to complete by hand, and are included only

to be illustrative of the basic technique. The complete verifications for the

(11,5,2), and (37,9,2) biplanes are omitted, but were carried out by a simple

routine in MAPLE.

Figure 7.2 gives a classical depiction of the Fano plane with a depiction

of the Fano biplane beside it. The seven lines of the Fano biplane are given

by six circles, and one tetrahedral star (the line {0, 3, 5, 6}).
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Table 7.3: Line-sum calculations for the Fano plane embedding.

Line Sum of the images of the points

{0, 3, 5, 6}
φ(0) + φ(3) + φ(5) + φ(6) = (0, 0, 1) + (0, 1, 1) + (1, 1, 1) + (1, 0, 1)

= (0, 0, 0)

{1, 4, 6, 0}
φ(1) + φ(4) + φ(6) + φ(0) = (0, 1, 0) + (1, 1, 0) + (1, 0, 1) + (0, 0, 1)

= (0, 0, 0)

{2, 5, 0, 1}
φ(2) + φ(5) + φ(0) + φ(1) = (1, 0, 0) + (1, 1, 1) + (0, 0, 1) + (0, 1, 0)

= (0, 0, 0)

{3, 6, 1, 2}
φ(3) + φ(6) + φ(1) + φ(2) = (0, 1, 1) + (1, 0, 1) + (0, 1, 0) + (1, 0, 0)

= (0, 0, 0)

{4, 0, 2, 3}
φ(4) + φ(0) + φ(2) + φ(3) = (1, 1, 0) + (0, 0, 1) + (1, 0, 0) + (0, 1, 1)

= (0, 0, 0)

{5, 1, 3, 4}
φ(5) + φ(1) + φ(3) + φ(4) = (1, 1, 1) + (0, 1, 0) + (0, 1, 1) + (1, 1, 0)

= (0, 0, 0)

{6, 2, 4, 5}
φ(6) + φ(2) + φ(4) + φ(5) = (1, 0, 1) + (0, 1, 0) + (1, 1, 0) + (1, 1, 1)

= (0, 0, 0)
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Figure 7.2: The Fano plane and the Fano biplane
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7.4 The (11, 5, 2) Biplane

In this section we will exhibit a group embedding of the (11, 5, 2) biplane into

Z5
3 using the field extension technique. To this end we generalize Theorem

7.3.2, and use it as a guide to find minimal embeddings.

Theorem 7.4.1. If D is a (v, k, λ) SBIBD, and f is a group embedding of

D into an abelian group G, then there exists an element g ∈ G such that for

all elements d in the design D (k − λ)f(d) = g.

Proof. Fix some i in D, and sum over the images of only the lines con-

taining i, and we have

(k − λ)f(i) = −λ
∑
d∈D

f(d),

where g = −λ
∑

d∈D f(d).

2

Without the aid of the resultant, Theorem 7.4.1 is a powerful tool in

identifying potential minimal embeddings. To find embeddings that minimize

the order of the embedded elements, and the size of the group we set g = e

in Theorem 7.4.1. Applied to the (11, 5, 2) biplane it suggests that we should

try to embed into direct products of Z3. To generate the embedding of the

(11,5,2) biplane into Z5
3 we argue analogously to the embedding of the (7,4,2).

It is well known that {8, 4, 3, 2, 0} is a cyclic difference set modulo 11 for the
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(11,5,2) biplane. Factoring the Singer polynomial s(x) = x8+x4+x3+x2+1

over GF (3) gives: s(x) = x8 + x4 + x3 + x2 + 1 = (x+ 1)(x2 + 2x+ 2)(x5 +

2x3 + x2 + 2x + 2). Reducing the powers xi for i = 0, . . . , 11 modulo x5 +

2x3 +x2 + 2x+ 2 gives the embedding. The embedding is given in Table 7.4.

Table 7.4: Group embedding of the (11, 5, 2) biplane.

Point Power Polynomial 5− tuple
0 x0 1 φ(0) = (0, 0, 0, 0, 1)
1 x1 x φ(1) = (0, 0, 0, 1, 0)
2 x2 x2 φ(2) = (0, 0, 1, 0, 0)
3 x3 x3 φ(3) = (0, 1, 0, 0, 0)
4 x4 x4 φ(4) = (1, 0, 0, 0, 0)
5 x5 1x3 + 2x2 + 1x+ 1 φ(5) = (0, 1, 2, 1, 1)
6 x6 x4 + 2x3 + x2 + x φ(6) = (1, 2, 1, 1, 0)
7 x7 2x4 + 2x3 + x+ 1 φ(7) = (2, 2, 0, 1, 1)
8 x8 2x4 + 2x3 + 2x2 + 2 φ(8) = (2, 2, 2, 0, 2)
9 x9 2x4 + x3 + x2 + x+ 2 φ(9) = (2, 1, 1, 1, 2)
X x10 x4 + 2x2 + x+ 2 φ(X) = (1, 0, 2, 1, 2)

Now, Dev{0, 2, 3, 4, 8} describes the lines of the (11, 5, 2) biplane. As

a sample calculation that the given embedding is indeed a group embed-

ding consider the line {2, 4, 5, 6, X}: φ(2) + φ(4) + φ(5) + φ(6) + φ(X) =

(0, 0, 1, 0, 0)+(1, 0, 0, 0, 0)+(0, 1, 2, 1, 1)+(1, 2, 1, 1, 0)+(1, 0, 2, 1, 2) = (0, 0, 0, 0, 0).
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7.5 The (37,9,2) Biplanes

In this section we exhibit two different group embeddings of the (37,9,2)

biplane into Z9
7.

To generate the group embeddings we begin with the cyclic difference set

{33, 32, 25, 15, 11, 9, 8, 6, 1} and form the Singer polynomial σ(x) = x33 +

x32 + x25 + x15 + x11 + x9 + x8 + x6 + 1, and factor it over GF (7). This gives

σ(x) = x33 +x32 +x25 +x15 +x11 +x9 +x8 +x6 + 1 = (x3 +x2 + 6x+ 5)(x4 +

x3 + 6x2 + 2)(x8 + 6x7 + 2x6 + x4 + 6x3 + 5x2 + 3x + 5)(x9 + 3x6 + 4x5 +

4x4 + 2x3 + 2x2 + 5x+ 6)(x9 + x7 + 2x6 + 2x5 + 2x4 + 6x3 + 3x2 + x+ 6).

In the factorization we get two irreducibles of degree nine, and each gives

an embedding into Z9
7. Table 7.5 is the embedding corresponding to the

polynomial x9+3x6+4x5+4x4+2x3+2x2+5x+6, and Table 7.6 corresponds to

the polynomial x9+x7+2x6+2x5+2x4+6x3+3x2+x+6. Analogously the lines

of both of the (37, 9, 2) biplanes are given by Dev{33, 32, 25, 15, 11, 9, 8, 6, 1}.
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Table 7.5: Group embedding of the (37, 9, 2) biplane.

Point Power 9− tuple
0 x0 (0, 0, 0, 0, 0, 0, 0, 0, 1)
1 x1 (0, 0, 0, 0, 0, 0, 0, 1, 0)
2 x2 (0, 0, 0, 0, 0, 0, 1, 0, 0)
3 x3 (0, 0, 0, 0, 0, 1, 0, 0, 0)
4 x4 (0, 0, 0, 0, 1, 0, 0, 0, 0)
5 x5 (0, 0, 0, 1, 0, 0, 0, 0, 0)
6 x6 (0, 0, 1, 0, 0, 0, 0, 0, 0)
7 x7 (0, 1, 0, 0, 0, 0, 0, 0, 0)
8 x8 (1, 0, 0, 0, 0, 0, 0, 0, 0)
9 x9 (0, 0, 4, 3, 3, 5, 5, 2, 1)
10 x10 (0, 4, 3, 3, 5, 5, 2, 1, 0)
11 x11 (4, 3, 3, 5, 5, 2, 1, 0, 0)
12 x12 (3, 3, 0, 3, 0, 0, 6, 1, 4)
13 x13 (3, 0, 1, 2, 2, 0, 2, 3, 3)
14 x14 (0, 1, 0, 4, 2, 3, 4, 2, 3)
15 x15 (1, 0, 4, 2, 3, 4, 2, 3, 0)
16 x16 (0, 4, 6, 6, 0, 0, 1, 2, 1)
17 x17 (4, 6, 6, 0, 0, 1, 2, 1, 0)
18 x18 (1, 6, 2, 5, 6, 1, 0, 1, 4)
19 x19 (6, 2, 1, 3, 5, 2, 3, 2, 6)
20 x20 (1, 1, 6, 2, 6, 5, 4, 4, 6)
21 x21 (1, 6, 3, 5, 4, 0, 0, 3, 2)
22 x22 (6, 3, 2, 0, 3, 5, 2, 4, 1)
23 x23 (3, 2, 3, 0, 2, 3, 6, 6, 6)
24 x24 (2, 3, 5, 4, 5, 0, 0, 5, 3)
25 x25 (3, 5, 5, 4, 6, 3, 1, 0, 1)
26 x26 (5, 5, 2, 1, 5, 2, 1, 1, 3)
27 x27 (5, 2, 0, 6, 3, 5, 5, 6, 5)
28 x28 (2, 0, 5, 4, 6, 2, 3, 1, 5)
29 x29 (0, 5, 5, 5, 1, 6, 4, 2, 2)
30 x30 (5, 5, 5, 1, 6, 4, 2, 2, 0)
31 x31 (5, 5, 0, 0, 5, 6, 6, 3, 5)
32 x32 (5, 0, 6, 6, 0, 3, 0, 1, 5)
33 x33 (0, 6, 5, 1, 4, 4, 5, 1, 5)
34 x34 (6, 5, 1, 4, 5, 4, 1, 5, 0)
35 x35 (5, 1, 0, 1, 2, 3, 0, 5, 6)
36 x36 (1, 0, 0, 3, 4, 4, 2, 2, 5)
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Table 7.6: Group embedding of the (37, 9, 2) biplane.

Point Power 9− tuple
0 x0 (0, 0, 0, 0, 0, 0, 0, 0, 1)
1 x1 (0, 0, 0, 0, 0, 0, 0, 1, 0)
2 x2 (0, 0, 0, 0, 0, 0, 1, 0, 0)
3 x3 (0, 0, 0, 0, 0, 1, 0, 0, 0)
4 x4 (0, 0, 0, 0, 1, 0, 0, 0, 0)
5 x5 (0, 0, 0, 1, 0, 0, 0, 0, 0)
6 x6 (0, 0, 1, 0, 0, 0, 0, 0, 0)
7 x7 (0, 1, 0, 0, 0, 0, 0, 0, 0)
8 x8 (1, 0, 0, 0, 0, 0, 0, 0, 0)
9 x9 (0, 6, 5, 5, 5, 1, 4, 6, 1)
10 x10 (6, 5, 5, 5, 1, 4, 6, 1, 0)
11 x11 (5, 6, 0, 3, 6, 5, 4, 1, 6)
12 x12 (6, 2, 0, 3, 2, 2, 0, 1, 5)
13 x13 (2, 1, 5, 4, 6, 0, 4, 6, 6)
14 x14 (1, 3, 0, 0, 2, 6, 0, 4, 2)
15 x15 (3, 6, 5, 0, 4, 1, 1, 1, 1)
16 x16 (6, 2, 1, 5, 2, 4, 6, 5, 3)
17 x17 (2, 2, 0, 4, 6, 5, 1, 4, 6)
18 x18 (2, 5, 0, 2, 1, 3, 5, 4, 2)
19 x19 (5, 5, 5, 4, 6, 0, 5, 0, 2)
20 x20 (5, 0, 1, 3, 4, 3, 6, 4, 5)
21 x21 (0, 3, 0, 1, 0, 4, 3, 0, 5)
22 x22 (3, 0, 1, 0, 4, 3, 0, 5, 0)
23 x23 (0, 5, 1, 5, 4, 3, 3, 4, 3)
24 x24 (5, 1, 5, 4, 3, 3, 4, 3, 0)
25 x25 (1, 0, 1, 0, 0, 2, 2, 2, 5)
26 x26 (0, 0, 5, 5, 0, 3, 6, 4, 1)
27 x27 (0, 5, 5, 0, 3, 6, 4, 1, 0)
28 x28 (5, 5, 0, 3, 6, 4, 1, 0, 0)
29 x29 (5, 2, 0, 3, 1, 6, 6, 2, 5)
30 x30 (2, 2, 0, 5, 3, 4, 1, 0, 5)
31 x31 (2, 5, 1, 6, 0, 3, 1, 3, 2)
32 x32 (5, 6, 2, 3, 6, 3, 4, 0, 2)
33 x33 (6, 4, 0, 3, 0, 2, 6, 4, 5)
34 x34 (4, 1, 5, 2, 4, 5, 0, 6, 6)
35 x35 (1, 1, 1, 3, 4, 4, 1, 2, 4)
36 x36 (1, 0, 1, 2, 2, 2, 6, 3, 1)
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Table 7.7: The first four Biplanes as groups.

Design Singer Exponents Resultant Group
(7, 4, 2) 2, 4, 5, 6 8 (Z2)

3

(11, 5, 2) 0, 2, 3, 4, 8 35 (Z3)
5

(16, 6, 2) 0, 2, 3, 5, 15, 17 22 · 17 Z17

(37, 9, 2) 0, 6, 8, 9, 11, 15, 25, 32, 33 712 (Z7)
9

7.6 Miscellaneous Cyclic Designs as Groups

This section tabulates some embeddings of cyclic designs. All embeddings

were derived using the field extension technique (Type 2 embedding) in

MAPLE.

Table 7.8: Miscellaneous Cyclic Designs taken from Handbook of Combina-
torial Designs. [10]

Design Singer Exponents Resultant Group
(11, 6, 3) 0, 2, 6, 7, 8, 10 35 (Z3)

5

(15, 7, 3) 0, 1, 2, 4, 5, 8, 10 28 (Z2)
4

(19, 9, 4) 1, 3, 4, 5, 6, 8, 10, 15, 16 59 (Z5)
9

(23, 11, 5) 0, 1, 2, 3, 5, 7, 8, 11, 12, 15, 17 211 · 311 (Z2)
12

(23, 11, 5) 0, 1, 2, 3, 5, 7, 8, 11, 12, 15, 17 211 · 311 (Z3)
11

(35, 17, 8) 0, 1, 3, 4, 7, 9, 11, 12, 13, 324 (Z3)
12

14, 16, 17, 21, 27, 28, 29, 33
(40, 13, 4) 1, 2, 3, 9, 17, 19, 24, 26, 30, 35, 39 316 (Z3)

4

(47, 23, 11) 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 17, 246 · 323 (Z2)
23

18, 21, 24, 25, 27, 28, 32, 34, 36, 37, 42
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Chapter 8

Properties Forced by Group

Embeddings

A group structure imposed on a configuration C influences its geometric struc-

ture in a profound way. For example as early as 1985 Metelka [29] discovered

the appearance of extra collinearities when he tried to inscribe a given con-

figuration on an elliptic curve. The additional collinearities, troublesome as

they were for Metelka, are in fact a natural consequence of the group law

present in every non-singular cubic curve. This group structure is what adds

the additional properties to the combinatorially defined configuration. In

principle, this is similar to the concept of almost a theorem of Kocay [23].

Let us make this phenomenon a little bit more precise. Suppose C is a

point-line configuration and let P be a property expressible in the language

of concurrency, collinearity, and equality of points. We will say C �G P (in
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words, C implies P in groups) if whenever C is realized in a group, then the

property P is valid for the embedded image of C, even though P may not

be valid in the original configuration C. This gives a sort of constraint that

must be valid for group realizable configurations. In this chapter we give

some examples of this phenomenon. In fact, such properties enable us to

find actual group realizations of point-line configurations.

Theorem 8.0.1. {C3(10, 1, 3) mod 10} �G [i, i+ 5] concurrent for all i.

Proof. Recall the incidence relations defining the configuration C3(10, 1, 3),

they are given as follows.

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 0

3 4 5 6 7 8 9 0 1 2

Assuming f is a group embedding, we have

f(0) + f(5) = −f(1)− f(3)− f(4)− f(7) (lines: {0, 1, 3} & {4, 5, 7})

= −f(1)− f(4)− f(3)− f(7) (commutativity)

= f(2)− f(3)− f(7) ({1, 2, 4} is a line)

= −f(9)− f(0)− f(3)− f(7) ({0, 2, 9} is a line)

= −(f(9) + f(7))− (f(0) + f(3)) (commutativity)

= f(6) + f(1) (lines: {6, 7, 9} & {0, 1, 3}).
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Since adding 1 modulo 10 preserves incidence, we have that

f(0) + f(5) = f(1) + f(6)

= f(2) + f(7)

= f(3) + f(8)

= f(4) + f(9).

Therefore, all five lines [0, 5], [1, 6], [2, 7], [3, 8], and [4, 9] are concurrent.

2

Note: the additional lines are not concurrent in C, but only in the group

image. The following illustration from [27] is a depiction of the previous

result.

Figure 8.1: By letting f(∞) = 0 in the group we have a depiction of the
forced collinearities of the configuration.

112



Chapter 8. Properties Forced by Group Embeddings

Lemma 5.4.2 establishes that in any group embedding of the Möbius-

Kantor configuration each element has order 3 in the group, thus we have

the following corollary.

Corollary 8.0.1.1. C3(8, 1, 3) �G 3g = 0 for all g in G.

Figure 5.9 suggests that the inverse pairs in the group embedding of the

Möbius-Kantor configuration must also be collinear. We demonstrate this

fact in the following theorem.

Theorem 8.0.2. {C3(8, 1, 3) mod 8} �G AG(2, 3).

Proof. Recall the incidence relations for C3(8, 1, 3).

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 0

3 4 5 6 7 0 1 2

Assuming that f is a group embedding of C3(8, 1, 3), we have the following:

f(0) + f(4) = −f(1)− f(3)− f(5)− f(7)

= f(2) + f(6).

We also have,

f(0) + f(4) = −f(5)− f(6)− f(1)− f(2)

= f(3) + f(7)

and also,
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f(0) + f(4) = −f(2)− f(7)− f(3)− f(6)

= f(5) + f(1).

Therefore, the lines [0, 4], [1, 5], [2, 6], and [3, 7] are all concurrent.

2

Lemma 8.0.3. C3(13, 1, 4) �G 3f(x) = e for all x in C3(13, 1, 4).

Proof. Let f be a group embedding of C3(13, 1, 4), then

e = e+ e

= (f(0) + f(1) + f(4)) + (f(1) + f(2) + f(5))

= (f(1) + f(1)) + (f(2) + f(0)) + (f(4) + f(5))

= (f(1) + f(1)) + (f(2) + f(0)) + (f(9) + f(12))

= (f(1) + f(1)) + (f(2) + f(12)) + (f(0) + f(9))

= (f(1) + f(1))− f(11)− f(10)

= f(1) + f(1) + f(1).

Thus 3f(1) = e, and since adding 1 modulo 13 is an automorphism 3f(x) = e

for all x in C3(13, 1, 4).

2

As all of the elements of any embedding must be of order 3 in the target

group, and as there are 13 elements to embed, Z3×Z3×Z3 would represent
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a minimal group for our purposes. This suggests that Z3 × Z3 × Z3 is the

most natural embedding for C3(13, 1, 4). Indeed we have the following.

Theorem 8.0.4. C3(13, 1, 4) group embeddable in Z3 × Z3 × Z3.

8.1 Fano-Like Configurations

Definition 8.1.1. A configuration C is called Fano-like if C �G C3(7, 1, 3),

the Fano configuration. That is to say, there exists a Fano plane as a sub-

configuration in every group image of C.

Theorem 8.1.2. The (143) configuration C3(14, 1, 3) is Fano-like.

Proof. The C3(14, 1, 3) configuration is given by the following 14 triples.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 0

3 4 5 6 7 8 9 10 11 12 13 0 1 2

Let f be a group embedding of the configuration into an abelian group

G. Let S be the subset of G given by

S = {f(i) + f(i+ 7) : i ∈ Z14}.

We claim that this subset S of G forms an image of the Fano plane as shown

in the following figure. Let f(i) = i, for each i ∈ C3(14, 1, 3).
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f(1) + f(8)
f(4) + f(11)

f(5) + f(12)

f(6) + f(13)

f(2) + f(9)

f(7) + f(0)

f(3) + f(10)

Figure 8.2: An image of the Fano plane

Now let us formally verify that the group sum over each line in the con-

figuration is indeed zero in the group G.

1 + 8 + 2 + 9 + 4 + 11 = 1 + 2 + 4 + 8 + 9 + 11

= e+ e

= e.
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1 + 8 + 3 + 10 + 7 + 0 = 0 + 1 + 3 + 7 + 8 + 10

= e+ e

= e.

1 + 8 + 6 + 13 + 5 + 12 = 5 + 6 + 8 + 12 + 3 + 1

= e+ e

= e.

2 + 9 + 3 + 10 + 5 + 12 = 2 + 3 + 5 + 9 + 10 + 12

= e+ e

= e.

4 + 11 + 7 + 0 + 5 + 12 = 4 + 5 + 7 + 11 + 12 + 0

= e+ e

= e.

4 + 11 + 3 + 10 + 6 + 13 = 3 + 4 + 6 + 10 + 11 + 13

= e+ e

= e.

2 + 9 + 7 + 0 + 6 + 13 = 6 + 7 + 9 + 13 + 0 + 2

= e+ e

= e.
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Thus we have an image of the 7− point Fano plane in G. That is to say,

C3(14, 1, 3) �G C3(7, 1, 3). Thus the configuration C3(14, 1, 3) is Fano-like.

2

This “group consequence” suggests that the minimal group rank for any

group embedding of C3(14, 1, 3) is three. Here we show that this configuration

can be realized in Z4×Z4×Z4. Indeed, this 64 element group is packed with

four copies of C3(14, 1, 3), and along with one copy of the Fano plane, as well

as the identity element. This was first observed by N.S. Mendelsohn in 1987,

and is implicit in Theorem 2.2 of [27]. Note that the induced Fano plane

occurs only in the group in which the C3(14, 1, 3) is embedded. We thank

Dr. W. Kocay for pointing this out.

Theorem 8.1.3. The non-zero elements of Z4×Z4×Z4 can be packed with

four copies of C3(14, 1, 3) and one copy of C3(7, 1, 3)

Proof. We exhibit the explicit mappings in Table 8.1 and Table 8.2.
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Table 8.1: Mappings of (0, 1, 3) mod 14.

Point Map1 Map2 Map3 Map4
0 (1, 0, 0) (3, 0, 0) (1, 1, 1) (3, 3, 3)
1 (0, 1, 0) (0, 3, 0) (3, 0, 1) (1, 0, 3)
2 (0, 0, 1) (0, 0, 3) (3, 2, 0) (1, 2, 0)
3 (3, 3, 0) (1, 1, 0) (0, 3, 2) (0, 1, 2)
4 (0, 3, 3) (0, 1, 1) (2, 2, 3) (2, 2, 1)
5 (1, 1, 3) (3, 3, 1) (1, 3, 2) (3, 1, 2)
6 (1, 2, 1) (3, 2, 3) (2, 3, 3) (2, 1, 1)
7 (3, 0, 2) (1, 0, 2) (1, 3, 3) (3, 1, 1)
8 (2, 1, 0) (2, 3, 0) (1, 2, 3) (3, 2, 1)
9 (0, 2, 1) (0, 2, 3) (1, 2, 2) (3, 2, 2)
10 (3, 3, 2) (1, 1, 2) (2, 3, 2) (2, 1, 2)
11 (2, 1, 3) (2, 3, 1) (2, 0, 3) (2, 0, 1)
12 (1, 3, 1) (3, 1, 3) (1, 3, 0) (3, 1, 0)
13 (3, 0, 3) (1, 0, 1) (0, 1, 3) (0, 3, 1)

Table 8.2: Mappings of (0, 1, 3) mod 7.

Point Map
0 (2, 0, 0)
1 (0, 2, 0)
2 (0, 0, 2)
3 (2, 2, 0)
4 (0, 2, 2)
5 (2, 2, 2)
6 (2, 0, 2)

2
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2G

(2x+ 1)G3G (2x+ 3)GG

{e}

Figure 8.3: A coset partition of the factor ring Z4[x]/(x3 + x + 1) by the
group G =< x >. The group G is easily verified to be the triples of Map1 in
table 8.1 where the polynomial x is naturally the triple (0, 1, 0). The group
G is isomorphic to the cyclic group Z14.

8.2 Metelka’s Observation

In 1985 V. Metelka [29] was able to construct a geometric realization of the

(124, 163)(12 points each contained in 4 lines, and 16 lines each containing 3

points) given in figure 8.4 taken from [18].
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Figure 8.4: Metelka’s configuration.

Metelka used a cubic curve to construct his realization, and to his dismay

he discovered that his realization had 3 extra collinearities. In this section we

show that these extra three collinearities are a group consequence. Metelka

observed that in addition to the collinearities observed in Figure 8.4, that

{N, T, U}, {O,R,W}, and {M,S, V } were all collinear in his construction.

Assuming that the labeling given in Figure 8.4 are the group elements of a

group embedding, we have the following.

N = −Q− P

= (V +X) + (O + S)

= (V +O) + (X + S)

= −U − T.

Thus, N,U, and T are collinear. The two other demonstrations are as

follows.
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O = −S − T

= (P +X) + (Q+M)

= (X +Q) + (P +M)

= −R−W.

M = −R− U

= (Q+X) + (O + P )

= (Q+O) + (X + P )

= −V − S.

This implies that O,R, and W are collinear, and also that M,V, and S

are collinear, thus we have the following.

Theorem 8.2.1. The 16 collinearities of Metelka’s configuration(as defined

in figure) �G each set {N,U, T}, {O,R,W}, {M,V, S} is a line.
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Miscellaneous Examples

A geometric realization of the triangle-free configuration (173), taken from

[1].

Figure 9.1: Non group realizable (173).
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The triangle-free configuration (173) has lines given by the following

triples:

1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 10

2 4 6 8 10 12 14 8 10 9 11 9 14 11 15 16 13

3 5 7 9 11 13 15 12 14 15 16 13 16 12 17 17 17

Theorem 9.0.1. The (173) above has no group realization.

Proof. Let f be a group embedding of the (173) into an abelian group G.

We have

f(1) = −f(2)− f(3)

= −f(2) + (f(12) + f(13))

= −f(2) + (f(12)− (f(17) + f(10)))

= −f(17) + (f(12)− (f(2) + f(10)))

= −f(17) + (f(12) + f(11))

= −f(12)− f(7)

= f(15).

Therefore in any group embedding of this (173), the two points 1, and

15 will be mapped onto the same group element and hence will not be an

embedding.

2
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9.1 Group Realizable (n5)
′s

The body of literature on (n5) configurations is sparse. It has been shown

by Gropp [16] that {0, 1, 4, 9, 11} is a basis for a cyclic configuration for all

n ≥ 23. Additionally, Gropp [15] has noted that {0, 3, 4, 9, 11} is a cyclic

basis for all n ≥ 23, and for n = 21. We begin by finding a group embedding

of the cyclic configuration C5(24, 1, 4, 9, 11).

The resultant of x11 +x9 +x4 +x+ 1 and the 24th cyclotomic polynomial

is 625 = 54. This suggests that an embedding into the group of units of

Z5×Z5 may be possible, provided a suitable irreducible quadratic exists. An

examination of the factorizations of the Singer polynomial and the cyclotomic

polynomial modulo 5 gives that x2 + 2x + 3 is an irreducible factor of both

polynomials modulo 5.

Then, letting x2 + 2x + 3 ≡ 0 mod 5, we have that x2 = 3x + 2. So,

letting xn = anx+ bn we have

xn+1 = anx
2 + bnx

= an(3x+ 2) + bnx

= (3an + bn)x+ 2an.

Therefore,

an+1

bn+1

 =

3 1

2 0


an
bn

 .
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Let A =

3 1

2 0

, which is invertible modulo 5. Then it is straightforward

to verify that

A12 =

4 0

0 4


= −I mod 5

and,

A24 =

16 0

0 16


= I mod 5.

Note also that both A2+2A+3I ≡ 0 mod 5, and A11+A9+A4+A+I ≡ 0

mod 5. It follows that the mapping f : C5(24, 1, 4, 9, 11)→ Z5×Z5 given by

f : i→ Ai

0

1

 is a group embedding, and we have the following result.

Theorem 9.1.1. The cyclic (n5) configuration C5(24, 1, 4, 9, 11) is group re-

alizable in Z5 × Z5.

With an analogous set of arguments the following results are established.

Notice that Resultant(x11 + x9 + x4 + x3 + 1, c24(x)) = 22 · 112. Since 24

divides 120, Z11×Z11 is a possible group for an embedding. Factoring x11 +

x9+x4+x3+1 modulo 11 furnishes us with a suitable irreducible polynomial
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to construct the embedding. The companion matrix of x11 +x9 +x4 +x3 + 1

is given by:

A =

0 1

1 2

 .

The matrix A defines the group embedding we seek, and we have the

following result.

Theorem 9.1.2. The cyclic (n5) configuration C5(24, 3, 4, 9, 11) is group re-

alizable in Z11 × Z11.

Applying the algorithm 3.4.3 to the Singer polynomial x11+x9+x4+x+1

and n = 23 gives a group Z47 and base 17 for an embedding, and establishes

the following result.

Theorem 9.1.3. The cyclic (n6) configuration C6(23, 1, 4, 9, 11) is group re-

alizable in Z47.

Theorem 9.1.4. The cyclic (n5) configuration C5(21, 1, 4, 9, 11) is group re-

alizable in Z2 × Z2 × Z2 × Z2 × Z2 × Z2.

Proof. The embedding matrix, A, is found by computing the companion

matrix of x6+x4+x2+x+1 modulo 2 (an irreducible factor of the associated

Singer polynomial modulo 2).
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A =



0 0 0 0 0 1

1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 1

0 0 0 0 1 0


2

Figure 9.2: MAPLE calculations for the previous result.
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9.2 Orchards as Groups

A (p, t) − arrangement consists of p points and t (straight) lines in the

euclidean (or in the real projective) plane chosen so that each line has exactly

3 points on it. The orchard problem is to find an arrangement with the

greatest t for each given value of p. See [7].

9.2.1 The Orchard(7, 6) as a Group

In this section we give a group representation of the Orchard(7, 6) using cubic

curves.

Figure 9.3: The cubic curve y2 = x3 + 5x2 + 4x. The coordinates in
the real plane are given by: A = (−4, 0), B = (−1, 0), C = (−2, 2), D =
(−2,−2), F = (2, 6), G = (2,−6), and E = (0, 1, 0) being the point at infin-
ity.
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With the coordinatization in Figure 9.3 and testing the group order of

each point we determine that the group formed by the points on the cubic

is Z2 × Z4. One representation of Orchard(7, 6) as Z2 × Z4 is given in the

following figure.

Figure 9.4: The Orchard (7, 6) embedded in the group Z2 ×Z4. The coordi-
nates shown are group labels.

• A+ C + F = (1, 2) + (0, 3) + (1, 3) = (0, 0)

• A+D +G = (1, 2) + (1, 1) + (0, 1) = (0, 0)

• B + C +G = (1, 0) + (1, 3) + (0, 1) = (0, 0)

• B +D + F = (1, 0) + (1, 1) + (0, 3) = (0, 0)

• C +D + E = (1, 3) + (1, 1) + (0, 0) = (0, 0)

• E + F +G = (0, 0) + (0, 3) + (0, 1) = (0, 0)
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9.2.2 The Pappus Orchard as a Group

Figure 9.5 gives a realization of the Pappus Orchard(9, 10) with 9 points

and 10 lines realized in the cyclic group Z9. Three points P , Q, and R are

collinear then P +Q+R = 0 in the group Z9.

Figure 9.5: Orchard(8, 7) � Orchard(9, 10) (the Pappus Orchard)

From the figure above (taken from [12]), it can be seen that the Orchard(8, 7)

is a subconfiguration of the Pappus Orchard(9, 10). The deletion of the point

labeled 7, and the dotted lines gives the Orchard(8, 7).

Theorem 9.2.1. Orchard(8, 7) �G Orchard(9, 10).

Proof. Using the binary star operation we see that,

6 ∗ 5 = (4 ∗ 8) ∗ (3 ∗ 1)

= (4 ∗ 3) ∗ (8 ∗ 1)

= 2 ∗ 0
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and also,

3 ∗ 8 = (1 ∗ 5) ∗ (6 ∗ 4)

= (1 ∗ 6) ∗ (5 ∗ 4)

= 2 ∗ 0.

Therefore, the the three lines [6, 5], [3, 8], and [2, 0] are concurrent in any

group realization of Orchard(8, 7). Alternatively, the Pappus Orchard(9, 10)

is the minimal group completion of the Orchard(8, 7). Hence both the Pappus

Orchard(9, 10) and Orchard(8, 7) are group realizable in Z9. See [7] page 398,

figure 1, images (f) and (g).

2

9.2.3 A non-Group-Realizable Orchard

The Orchard(11, 16) provides an example of a non-group-realizable orchard.

Figure 9.6 is taken from [7].

Figure 9.6: The non-group-realizable Orchard(11, 16).
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Theorem 9.2.2. The Orchard(11, 16) is not group realizable.

Proof. Using Figure 9.6 as a guide, and employing the binary star oper-

ation we have the following.

4 = 1 ∗ 10

= (2 ∗ 3) ∗ (7 ∗ 5)

= (2 ∗ 7) ∗ (3 ∗ 5)

= 6 ∗ 9

= 8.

Therefore 4 = 8 in any group embedding of Orchard(11, 16), and thus

cannot be embedded in any group.

2

9.3 The Desargues configuration as a Group

The Desargues configuration(D(103)) is one of the ten (103) configurations.

It is non-cyclic, and as such the techniques from the previous chapters are

not applicable. Instead we employ some basic algebra to derive an iden-

tity(similar to Theorem 7.4.1) which will point us in the right direction to

find an appropriate group.

Theorem 9.3.1. In any group embedding, f , of D(103), 2f(X) = 2f(Y ) for

any two images f(X), and f(Y ).
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Proof. Let triangle ABC, and triangle PQR be centrally perspective from

a point O(as shown in figure 9.7). Then,

f(A) + f(A) = −f(B)− f(W )− f(C)− f(V )

= −f(B)− f(C)− f(W )− f(V )

= f(U) + f(U).

Similarly,

f(A) + f(A) = −f(O)− f(P )− f(B)− f(W )

= −f(O)− f(B)− f(P )− f(W )

= f(Q) + f(Q).

Also,

f(O) + f(O) = −f(A)− f(P )− f(B)− f(Q)

= −f(A)− f(B)− f(P )− f(Q)

= f(W ) + f(W ).

Thus by symmetry, we have 2f(X) = 2f(Y ) for all ten points. To mini-

mize the order of the embedded elements, set 2f(X) = e, so that an abelian

group with ten elements of order 2 would be a possible group to embed

in. The labeling in Figure 9.7 (taken from [12]) provides an example of an

embedding of D(103) into Z4
2.

2
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Figure 9.7: A group embedding of the Desargues configuration into Z4
2
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9.4 The Cremona-Richmond Configuration

The Cremona-Richmond configuration(CRC(153)) is a (153) configuration

(see e.g. p. 329, the Book for a geometric realization in R2). Since 15 =
(
6
2

)
,

one fixes a 6-element set of labels, say {a, b, c, d, e, f} and name the 15 points

as ab, ac, bd etc. Here we show that this purely combinatorial description of

the Cremona-Richmond configuration leads naturally to a group realization.

Let us take a typical line labelled by, say (ab), (cd), (ef) where the six

labels are to be chosen as natural numbers. Rename the three points on a

typical line {ab, cd, ef} as {a+b, c+d, e+f}. Now the sum of the three points

is a + b + c + d + e + f = k, say. Another line with labels {(ad), (be), (cf)}

gets the label {a + d, b + e, c + f} and the line-sum a + d + b + e + c + f is

still the same k. This is the idea. Now we need to choose proper values for

the six elements (so that no name gets repeated) and convert this into an

abelian group, and there are several ways. In what follows, we present one

such group realization in the cyclic group Z30. Consistent with our theme,

we use the group law on the cubic curve y2z = x3 + 17z3 mod 29 to get a

group realization of this configuration.

The homogenous coordinates of the 15 points show that all these points lie

on the cubic curve y2z = x3 + 17z3 mod 29. For example, 23 + 17 = 25 = 52
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Table 9.1: Group embedding of the CRC(153).

Points Homog. Coord. Blocks Homog Linear equns.
in CRC in PG(2, 29) in CRC of the Blocks

1 (2, 5, 1) [1, 8, 21] 3x+ 4y + 3z = 0
6 (4, 20, 1) [1, 9, 20] 22x+ 13y + 7z = 0
8 (18, 22, 1) [1, 11, 18] x+ 26y + 13z = 0
9 (15, 12, 1) [6, 18, 16] 27x+ 14y + 18z = 0
11 (28, 4, 1) [6, 9, 15] 8x+ 11y + 9z = 0
13 (20, 19, 1) [6, 11, 13] 16x+ 24y + 7z = 0
15 (17, 0, 1) [8, 25, 27] 19x+ 9y + 11z = 0
16 (23, 2, 1) [9, 25, 26] 9x+ 12y + 11z = 0
18 (12, 18, 1) [11, 24, 25] 24x+ 5y + 4z = 0
20 (8, 6, 1) [13, 20, 27] 13x+ 17y + 26z = 0
21 (15, 17, 1) [13, 21, 26] 2x+ 24y + 26z = 0
24 (4, 9, 1) [15, 18, 27] 11x+ 24y + 16z = 0
25 (27, 3, 1) [15, 21, 24] 12x+ 27y + 28z = 0
26 (22, 14, 1) [16, 8, 26] 13x+ 18y + 13z = 0
27 (6, 28, 1) (16, 20, 24) 25x+ 14y + 6z = 0
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and hence the point 1 lies on the curve. Also the three points 1, 8, 21 are

collinear since they satisfy the homogenous linear equation 3x+ 4y+ 3z = 0

mod 29. Since the three points lying on the cubic curve are collinear, their

sum is zero under the group law i.e. 1+8+21 = 0 mod 30. Notice that this

“+” is not the usual addition of integers, it is the group law on the cubic.

However, we have chosen the notation in such a way that it agrees with the

natural addition. That explains the non-standard naming of the points in

the first column of the table. In fact, if we want just a group realization,

then we can ignore the cubic curve aspect and the notation already gives the

desired group embedding into the cyclic group Z30.

Figure 9.8: A group embedding of the Cremona-Richmond configuration
CRC(153) (taken from [18]), where {P,Q,R} is a block in CRC(153) =⇒
P +Q+R ≡ 0 mod 30.
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Further Works

Several additional unanswered questions naturally arose from the work done

in this thesis. One such question(which was also pointed out by W. Kocay) is

that of generating the geometric embedding of the group realizations of (n3)

configurations we obtained. Presently, we are not sure how to proceed from

a group realization to a geometric realization, except that their existence in

the plane is well-known.

The Sylvester-Gallai theorem states that given a finite number of points in

the Euclidean plane, either all the points lie on a single line; or there is a line

which contains exactly two of the points. The Möbius-Kantor configuration

is an example of a configuration which violates the Sylvester-Gallai theorem.

Indeed, the line joining any two points of the Möbius-Kantor configuration

contain a third point of the configuration. The Sylvester-Gallai theorem

can be seen as an obstruction to geometric realizability. In this thesis we
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conjecture that if the minimal group realizing a cyclic (n3) configuration is

a direct product of more that two copies of Zp, for some prime p ≥ 2, then

the configuration cannot be realized over the real plane.

Based upon the results from chapter 4, we conjecture that for n ≥ 15, the

cyclic configuration C(n, 1, 4, 6) is group realizable in a single cyclic group,

and hence is geometrically realizable as ellipse-circle models. The proof may

depend upon the validity of the Bunyakovski conjecture, which is widely

believed to be true.

Additionally, in chapter 4 we show prove that if PG(2, 3) exists in PG(2, k)

for some field GF (k), then 3 = 0 in GF (k). This is of course a parallel of the

folklore result for the Fano plane. We conjecture that if PG(2, n) exists in

PG(2, k) for some field GF (k), then n = 0 in GF (k). Notice this is not true

in affine planes: in this thesis we have shown that AG(2, 3) exists in both

PG(2, 7), and in PG(2, 13).

In chapter 6 we proved theorems 6.2.3, and 6.2.4 which establish condi-

tions for the embeddability of cyclic configurations into single cyclic groups of

prime power order. Interestingly, it appears that the third assumption that

the first Hensel lifted value, r1, have order φ(p2) modulo p2 is redundant. In

each example we have generated the first Hensel lifted root turns out to be

a primitive root modulo p2.
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