THE UNIVERSITY OF MANITOBA

A PROTOTYPE DECISION SUPPORT SYSTEM FOR THE

DEVELOPMENT OF STAGE-DISCHARGE RATING CURVES

by

(Glen G. Douglas

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree of Master of Science

DEPARTMENT OF CIVIL ENGINEERING

Winnipeg, Manitoba

© Glen Gordon Douglas, 1992

Bl

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your file Votre référence

Our file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN ©2-315-81730-5

E+R

Canada

Name :
Dissertation Abstracts Infernational is arrangea by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

olsl4ls] UMI

SUBJECT TERM SUBJECT CODE
Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS Psychologycccveviireerivniereens 0525 PHILOSOPHY, RELIGION AND ANCient ..o 0579
Architectureocoeuerueruncrians 0729 Reading ~..... ..0535 THEOLOGY i
Art History . 0377 Religious . 0527 Philosonh
Cinema 0900 Sciences0714 Reli io£ A
Dance ... 0378 Secondary0533 anerd 0
Fine Arfs0357 Social Sciences ..0534 Biblical Siu Asia, Australia and Oceania 0332
Information Science0723 Sociology of0340 Cler Canadiancccccerervnennnnn. 0334
Journglism0391 Special ... 0529 Gy European....... .0335
l;i‘bror)éScience . 8;83 ¥ea§he|[' Training . 8;%38 Philogph); k/c\féré]Anéerican . .0336
ass Communications . echnology iddle Eastern .. .0333
MUSIC0413 Tests ondg K\easurements .0288 Theology .-vevrsvvevsivsies United States0337
? ee'ch Communication 82122 Vocationalvevveeerveeieriierninas 0747 SOCIAL SCIENCES LHistory of Science 8§gg
BAMEE ovoeeerireceerereene e . ; AW oo reneeeeeeese e seenasaens
EDUCATION LANGUAGE, LITERATURE AND Ampricon Stuies e 0323 politca Science
General 0515 LINGUISTICS Archoeof;gy """""""""""" 0324 giﬁiﬁ’ﬁdﬁ&l’ lowand 0815
AdminiStration ..o o514 longuage St e 0326 RElONS .o 0616
ﬁg;’iﬁﬁ:‘:ﬂaﬁbmm”mg - 82}9 f}ncie'nr_ Busi(r_\;ess Ac{minisrraﬁon 0310 Rec‘it:}l?ilg:nAdmlmstruhon 88}Z
“““ inguishics . . ENEFAl vveveviiiin i .
R Py bt SR L B ——— Accounting .. N B M 0452
gusmess b 8392 General ...coeurieriene Management ...0454 ggne;rcll """"" R 86%(7)
Com;nu]mfy OdTg? e g7 Classical Marketing0338 Dnmmo °gy and Fenclogy ‘”083
EUTC(%#E}?“ d nsirucion ... 0518 Comparative . .0295 Canadian Studies 0385 Et?\m'ogmg I{|Sc| """"" 0631
Ef")' " 00G . veveae 0594 Medieval ... 0297 Economics | dm'cdcnl %C‘FC' 'i" 1es ...
F_emen AFY v 0377 Modern0298 General ..o 0501 n slvxdpc and ramily 0628
INAACE ..ooncopnenenness Alfrican0316 Agricultural0503 l dm '.esl TP
Health T 0280 ﬁn}ericcn 838; E_ommerce-Business 8283 n R:T:thlign(:n abor
ealth ..o sion _ nance - lafions ... JRT
H!gher i 8?%8 Canadian (English) .. .0352 History0509 gUb!“:I gnd Social V(:I/e”cre
Home Economics 70278 canadian {French) 0335 Lgbor .. - 0310 Bovelopment
: ' nglish .o eory .. L0511 MEVEIOPTIERN cee e
IS s 032) Gepmanic I 0311 Foldore .. 70358 o Theory and Methods...........034
Axnauczgercn freraiure .. 0280 Latin Americancc.cocco.... 0312 Geography0366 U"%“””a“g“ o '-"ng
MSsicemO 165 o 0599 I’;Aiddle Easternccccoeunc. 83%% S.eron!obgy 0351 \/\;o;rc]er?’rs\ Sme I;no anning a5
USiCo omance ory et B Women's Sudies .o,
Ewgi‘;ffhy of 823% Slavic and East European0314 GZnercﬂ 0578
THE SCIENCES AND ENGINEERING
BIOLOGICAL SCIENCES Geodesyoovirerriieirieniennn 0370 Speech Pathology 0460 Engineerin
Agriculture Geology0372 Toxicology ..0383 Generalocovvnerireennn 0537
general 83;2 Segpl’]xysics . 835733 Home Economics Aerosplcce0538
FONOMY ..cvcesriiceens rology Agricultural . ..0539
el Coliore and Meraloyy . 10411 PHYSICAL SCIENCES Adtomofive . 0540
NUIFHON oo 0475 Paleobotany0345 Pure Sciences Biomedical0541
Animal Pathology 0476 Palececology0426 Chemis Chemica ..0542
Food Science and Paleontology0418 egls 4 | 0485 Civil e0543
Technologycoooviecenee 0359 Paleozoology0985 eneral ... - Electronics and Electrical 0544
Forestry and Wildlife0478 Palynology "........ .0427 Agricultura 0749 Heat and Thermodynamics ... 0348
Plant Culture0479 Physical %g’eogrcphy .0368 énukﬂcd - 8?129 Hydraulic ..eooveernievieiie. 0545
Plant Pathology0480 Physical Oceanography 0415 iochemist Industrial0546
Plant Physiology0817 Iri}or anic .. 8‘}%3 Marine0547
Range Management0777 HEALTH AND ENVIRONMENTAL uctear Materials Science0794
_ Wood Technology 0746 SCIENCES %gron?clacc 833? Mechanical0548
BIO'C(i?ge)nlwercl 0306 E{nviﬁ)\néngntcl Sciences 0768 Physical 0494 mier:?rlng”gy - 8§§?
.............................. ealth Sciences P 0495 .
finatomy 9287 e 0566 Radiciio 0754 Nuclear ... ~03°2
Botany ' 0309 éﬁdlo]c; Y e 838(2) m]othemaﬁcs ..0405 Pefro]egumg b 0765
..... emotherapy cios c .
gcilallogy 8%3 EDsnhS:W 83?3 ygenercﬂ . 88(8)2 g;;g?nréggﬁcf\e/\umcnpcl 8?%
ucation tHes .. 015 7 T S S A SO
E;ntoﬁ;,olc’g)'- - 8323 Hospital Management 0769 A:ﬁ—gfmécr;y 8eofecbnolcagy : ...8438
Lir?]ﬁillgs """ 0793 Human Development0758 Astrophysics...... ..0606 A g;‘f“".‘r’”sh esleorc - 0;92
Microbiolog) 70410 Immunology ... 9982 Aimospheric Scien ~0808 Teile Technology ... 710994
Moleeolar 9y - 0307 Medicine and Surgery0564 Atomic 0748 S A
Neuroscience . 0317 Mental Health ... Electronics and Electrici(?/ 0607 PSYCHOLOGY
Oceanograph; 0416 Hurs.mg ' Elementary Particles an General .. 0621
Physiology0433 pirifion . High Energycoooco. 0798 Behavioral0384
Rediat 0827 Obstefrics ynecolog Fluid and Plasma . ..0759 Clinical 0822
adiation Occupational Health an Moloculgr oo " 0609 inical
Veterinary Science 0778 Developmental 0620
Zoo|ogy7.......A.....:..........::0472 Thelgcfay o -0354 Nuclear ~0610 Ex erigenfcl N 10623
Biophysics Ophthalmo -0381 Opics ... 0752 Industrial ... 0624
General 0786 Pathology .. -0571 Radiation .. -0756 Persondlity ... 0625
Medical .11 0760 Fharmacolog S iold State ~%e1 Physiological ~0989
""""""""""""""" armacy .. . HQtSHES v : ; -
: Psychobrology0349
EARTH SCIENCES s bh f;g‘;';ﬁ‘ﬁh 3382 Applied Sciences Poychomelrics . 70632
G':gfﬁ:m?:;;")’ ------------------------ Oose Radiology . 0574 Applied Mechanics 0346 Social o 0451
"""""""""""""" Recreation .

0575 Computer Sciencec.cce... 0984 @

A PROTOTYPE DECISION SUPPORT SYSTEM FOR THE

DEVELOPMENT OF STAGE-DISCHARGE RATING CURVES

BY

GLEN G. DOUGLAS

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial
fulfillment of the requirements for the degree of

MASTER OF SCIENCE

© 1993

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or
sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and
to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this
thesis.

The author reserves other publications rights, and neither the thesis nor extensive extracts from it

may be printed or otherwise reproduced without the author’s permission.

ABSTRACT

This work presents the development of a prototype computer-based decision
support system for creating and maintaining stage-discharge rating curves. Stage-
discharge analysis deals with the formulation of relationships relating stage and discharge,
for a given flowing body of water. The intent of the prototype system is to experiment
with various computer technologies and explore the problem domain of stage-discharge
analysis, prior to the development of a fully operational system, for the Department of
Environment in Canada.

The difficulties associated with creating relationships between stage and discharge
in natural streams is presented, with respect to section and channel controls, and physical
channel characteristics. ~Computer decision support technology and mathematical
modelling is introduced and applied to the problem of stage-discharge analysis. Graphical
user interface concepts are built into the window environment of the prototype, to
facilitate simple, yet efficient, user input and enhance user comprehension of system
information.

The prototype design was restricted to application in stable channels only, to allow
design emphasis to be placed on developing a logical framework, without expending
limited development time on details. The framework structure allows for easy expansion
to include elaboration into non-stable channel analysis and more sophisticated and
complex modelling techniques. Recommendations and are made for further developments

and additions to the prototype, as well as for a fully operational decision support system.

- ACKNOWLEDGMENTS

I would like to take this opportunity to express my thanks to several individuals,
for their various contributions throughout my studies. First, my thanks to regional offices
of the Department of Environment (DOE) for their financial contribution to this project
and their commitment to its continuation in the future. I am very grateful for the
technical guidance and support provided by Klaus Wiebe and Dr. Henry Hudson, of the
Ottawa and Winnipeg Branches of the DOE, respectively.

Next, my sincere thanks to my advisor, Dr. Slobodan Simonovic, for his advice,
guidance and encouragement throughout my studies. I feel very fortunate to have been
invited, by Dr. Simonovic, to participate in this project, as well as in the early stages of
this promising venture, undertaken by the DOE and the University of Manitoba.

I would also like to thank my colleagues and friends in the FIDS lab (Facility for
Intelligent Decision Support in Water Resources Engineering), for their camaraderie and
encouragement during our many long hours of research and study.

To my parents, I am truly grateful for their years of continuous support and
confidence, which without, I could not have achieved my accomplishments.

Finally, to my new wife Jennifer, I thank you for the strength and inspiration you
have given me, over our long distance separations, during my studies. I will always be
indebted to you for your patience and understanding, which have been invaluable to the
completion of my work, and more importantly, the success of our relationship. Thank

you.

il

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF FIGURES

LIST OF ABBREVIATIONS

1. INTRODUCTION
1.1 Problem Statement

1.2 Scope of Research

2. LITERATURE REVIEW
2.1 Introduction
2.1.1 Procedural Standards
2.1.2 Recent Work
2.1.3 Computer Software

2.2 Decision Support Systems in Water Resources

iii

Page

fi
il

viii

10
10
10
13
15

17

TABLE OF CONTENTS

STAGE-DISCHARGE ANALYSIS
3.1 Introduction
3.1.1 Hydrometric Organizations in Canada
3.2 Current Practice in Canada
3.2.1 Concepts
3.2.2 Collecting Stage-Discharge Data
3.2.3 Establishing a Rating Curve
3.3 Stage-Discharge Relationship Controls
3.3.1 Types of Controls
3.3.2 Effects of Physical Characteristics on Controls
3.4 Stable and Unstable Channels
3.4.1 Stable Channels

3.4,2 Unstable Channels

COMPUTERIZED DECISION SUPPORT TECHNGOLOGY
4.1 The Evolution of Decision Support Systems

4.1.1 Early Information Systems

4.1.2 The Essence of Decision Support Systems

4.1.3 DSS Architectures and Components

iv

19

19

19

20

20

21

22

24

24

27

32

35

37

39

39

39

40

41

TABLE OF CONTENTS

4.2 Intelligent DSS and Expert Systems Technology

4.2.1

4.2.2

A Brief Background of Expert Systems

The Architecture of Expert Systems

4.3 A Proposed Computer System

A PROTOTYPE DECISION SUPPORT SYSTEM

FOR STAGE-DISCHARGE ANALYSIS

5.1 DSS and the Stage-Discharge Analysis Process

5.2 Design Framework

5.2.1

522

5.2.3

Analysis Concept
Operational User Modes

Modelling and Evaluation

5.3 Technology

5.3.1

532

533

534

535

Operating Platform
System Control
Database Management
User Interface

Modelling

43

43

46

48

S1

51

53

53

58

61

65

66

69

72

73

74

TABLE OF CONTENTS

5.4 Operational Structure 76
5.4.1 Main Menu 77
542 Curve Development 78
543 Curve Use 87
5.44 Curve Modification 89

6. CASE STUDY - APPLICATION OF SDDSS TO EDWARDS CREEK 94

6.1 The Study Station 94
6.2 Development of a Rating Curve 97
6.2.1 Selecting Measurements 97
6.2.2 Modelling Selected Data 101

6.2.3 Evaluating The Models 104
6.2.4 Analyzing Outliers 107
6.2.5 Storing A Curve 111

6.3 Using a Rating Curve 111
6.4 Examination of Results 116
7. CONCLUSIONS AND FUTURE RESEARCH 121
7.1 Evaluation of SDDSS Prototype 121

7.2 Future Research Work 122

vi

TABLE OF CONTENTS

REFERENCES _ 127
APPENDIX A - Unix Scripts 134
LRM (Linear Regression Model) 135
GC (Generate Curve) 136
XGR (Xgraph Run) 137
APPENDIX B - Fortran Programs 138
LR2 (Linear Regression 2) 139
GCRV (Generate Curve) 143
APPENDIX C - Nexpert Object Knowledge Bases 145
AO_main.tkb (Definitions) 146
Al_main.tkb (System Operations) 160
A2_main.tkb (Main Menu & Curve Use Modules) 165
A3_main.tkb (Curve Development Module) 179
A4_main.tkb (Outlier Analysis Module) 232

AS5_main.tkb (Curve Modification Module) 255

vii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

Figure 20.

LIST OF FIGURES

Specific Gauge Plots for Edwards Creek.

Structure of IDSS.

SDDSS system architecture.

Hierarchical Data Selection.

SDDSS Workbench.

Nexpert Object organization of SDDSS.

SDDSS Curve Development Process.

SDDSS Curve Use process.

Sample flow table.

SDDSS Curve Modification process.

Example station list.

(a) Map of Edwards Creek area, (b) Sketch of Edwards Creek gauging site.
All measurements selected (phase 1) for Edwards Creek.

Specific measurements selected (phase 2), May to October observations.
Summary of results from Phase 2 selection procedure.

Summary of SDDSS results for 3 models.

Model ML2, shown with May to October measurements.

Session Control Window displaying options for model evaluation.
Dialogue window displaying outlier information.

Example questions used for analysis of outlier deviation.

viii

Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

Figure 27.

Summary of outlier analysis, showing causes of deviations.
Final stored curve, with outliers omitted from modelling.
Sample water level record.

List of curves created for Edwards Creek.

Example of compuied flow table.

Comparison of SDDSS and hand rendered (WSC-90) curves.

Comparison of curves, low flow regime.

ix

Al

CD

CM

CU

DOE

DSS

EC

EES

ES

GUI

IDSS

ISO

KBES

LRM

NOO

CA

PDP

LIST OF ABBREVIATIONS

Artificial Intelligence

Curve Development

Curve Modification

Curve Use

Department of Environment (Canada)
Decision Support System
Environment Canada

Engineering Expert System

Expert System

Graphical User Interface

Intelligent Decision Support System
International Organization of Standards
Inland Waters Directorate
Knowledge-base

Knowledge-base Expert System
Linear Regression Model

Neural Network

Number of Outliers

Outlier Analysis

Parallel Distributed Processing

RDBMS
S-D
SCM
SDA
SDDSS
SEE
SFMAS
SQL
USGS
WRB

WSC

Relational Database Management System
Stage-Discharge

System Control Manager

Stage-Discharge Analysis

Stage-Discharge Decision Support System
Standard Error of Estimate

Streamflow Measurement Advisory System
Structured Query Language

United States Geological Survey

Water Resources Branch

Water Survey of Canada

xi

A PROTOTYPE DECISION SUPPORT SYSTEM FOR THE

DEVELOPMENT OF STAGE-DISCHARGE RATING CURVES

1. Introduction

Rivers and streams are, and always has been, one of mankind’s most valuable and
essential natural resources. The first attempts at understanding the nature of open channel
flow originated in ancient Egypt, Mesopotamia and India for the purpose of irrigation.
However, it was not until the seventeenth and eighteenth centuries that fundamental
principles of hydrodynamics were greatly developed by Sir Isaac Newton, Daniel
Bernoulli, and Leonhard Euler (Robertson and Crowe, 1985).

Over the course of history, streamflow itself has had many uses. For centuries,
civilizations all around the world have depended on streamflow to provide continuous
supplies of water for daily use and irrigation of their crops, as well as a means for
transportation. Today, these basic uses still continue to be primary necessities of our
everyday life. Large scale commercial and industrial processing has also grown to depend
on streamflow, for dilution of waste materials and cooling of thermal power stations, to
name but a few uses. Finally, countries throughout the world have been using the
massive potential energy of streamflow for the production of hydroelectric power.

For these and other reasons, streamflow can be seen as an essential element in civilian
and commercial developments in Canada, as well as around the world. Therefore, the
collection and processing of streamflow data for the production of streamflow records is

of paramount importance in meeting the needs of the many potential users.

1.1 Problem Statement

The collection of hydrometric data in Canadian rivers, streams and lakes originated
more than 80 years ago. Today, over 3400 gauging stations (Environment Canada, 1992)
are in operation throughout the 10 provinces and 2 northern territories. Typical types of
data collected on a regular basis by water survey technicians includes water surface
elevations, streamflows and sediment concentrations. Some stations are also equipped to
collect atmospheric and water quality data.

Since it is impractical to use continuous discharge measurement methods, due to the
high cost and limited use of the equipment, discharge data is generally compiled
indirectly. Corresponding water level and discharge measurements are used to establish
graphical relationships known as Stage-Discharge Curves, or S-D Curves. (These are also
commonly referred to as Stage-Discharge ratings, rating curves, relationships or
relations). Rating curves are then used in conjunction with continuous water level records
to generate desired discharge records.

The preparation, analysis and representation of S-D relationships can be a very
complex and involved process. To begin, the process of collecting and compiling data
into a usable form requires a great amount of time, effort and expertise of water survey
technicians. Knowledge of section and channel controls influencing S-D relationships,
is also an essential part of the data collection and analysis process. Further, establishing
relationships requires experience and intuition from the technician. Data analysis and
curve fitting involves repeated subjective decision-making based on human judgement,

experience and rules-of-thumb. Finally, the nature of changing stream conditions requires

relationships to be continuously updated. Consequently, the processes involved in
establishing rating curves must be repeated frequently, to ensure the relationship is
accurately represented.

Thus, it becomes apparent that the development of rating curves is a problem of
"semi-structured" nature; that is a procedure that consists of a number of sequential tasks,
conditional on subjective input, based on a technicians’ experience, knowledge and
intuition. In response to this problem, it has been suggested that new computer
technologies and techniques may be used to simulate (or model) the problem in one single
framework. Understanding these processes provides the basis for developing a computer
system to create, update and employ S-D relationships, for the generation of streamflow
records.

The main objective of this study, therefore, was to develop a computer decision
support system for the development, maintenance and use of S-D relationships. The
system would explore preliminary design considerations and concepts to be used in the
development of a "full blown" operational system. It is the intention that the development
of this system is to serve as one small component of a much larger modular computer
support system, for surface water quantity data management use by the Department of
Environment (DOE), which has been proposed by Simonovic (1989).

Emphasis on the design of the computer system is directed at creating a "logical
framework", incorporating all essential process elements. A modular architecture is
intended to allow for the future additions and modifications. Technical decision support

is to be provided using Knowledge Base (KB) and Expert System (ES) technology,

capturing the expertise and knowledge of practitioners. Strategies and practices currently
used by the DOE in Canada are to be studied and used as a conceptual model for the
system structure.

In brief, a decision support system (DSS) is a computer program used to assist
decision-makers in the analysis of problems and alternate solutions. Problem types have
been categorized by Simonovic (1992) according to the structure of the elements, (or lack
there of) which define the problem environment and solution space. A well-structured
problem consists of elements which can be clearly identified and quantified in order to
reach a solution. These types of problems are generally solvable using mathematical
and/or statistical models. Unstructured problems are those which contain no quantifiable
elements, thus making modelling practices non-applicable. Human judgement and
experience is required to assess the relevant information, in order to reach a solution. A
semi-structured problem is a relative term, bridging the gap between the two previous
classifications. These problems contain some structure of pattefn, but still rely on human
input to assist in the solution process, (Simonovic, 1992).

Although decision support systems are used to assist in the solution of all three types
of problems, they are particularly well-suited for application to problems requiring some
form of human judgement. They typically employ various computer modelling routines
and incorporate human interaction to include intuition and judgement in the solution
process.

Decision support systems are generally understood to consist of a collection of

discrete components, each responsible for a specific task in the problem-solving process.

These components typically include database management, mathematical (statistical)
modelling, computer graphics and knowledge representation. Typically, these components
are controlled by one central unit, which directs and monitors their execution and oversees
the processing of the system.

The design of the system presented in this work builds on this concept of DSS. The
structure of the DSS is segmented into discrete components, each addressing a specific
task in the overall S-D analysis process.

Processing control and knowledge representation of the DSS is handled using an
Expert System development tool or "shell". These shells are specifically designed to
provide developers with a useful environment for creating applications to perform real-life
problem-solving and reasoning tasks, involving subjective human judgement and intuition.
Many ES shells are equipped with graphical development environments which enable
application developers to formulate applications in a fast and efficient manner, without
having to learn new programming languages. Some software shells are also equipped
with tools to provide the developer with the opportunity of building graphical user
interfaces (GUI) in front of their applications.

Storage and retrieval of data is provided by a Relational Database Management
System (RDBMS). Relational databases are widely accepted because of their ability to
efficiently handle information. Many RDBMSs incorporate the industry standard
Structured Query Language (SQL) for ease of data manipulation between the system and
database.

Computer graphics form an essential role in any DSS. Their main purpose is to

improve the level of comprehensive communication between the application and the user.
The use of windowing environments can provide simultaneous displays of information,
while maintaining a high level of organization. Applications can be made user-friendly
by incorporating menu options and buttons for user input, and by presenting results in
multi-colour graphic display formats. One goal of this research was therefore to explore
the possible applications of computer graphics in the development of the prototype.

Modelling S-D relationships within the DSS was accomplished using statistical
modelling techniques, such as regression analysis, programmed as Fortran routines. This
language was selected because of its proven ability to provide fast computations and
formatted output.

Finally, the issue of communication among the system components and user-interface
was of great concern. For this reason, a workstation platform was selected for
development of the system. Benefits of workstations over conventional desktop personal
computers include greater processing speeds, advanced networking capability and better
multi-task processing for window environments.

The concept of the "engineering expert systems approach” (Simonovic and Savic,
1989) was combined with the classical ES approach in the development of the system.
The engineering expert systems (EES) approach involves training engineering experts of
a specific domain in the use of ES techniques and tools. It has proven to be an efficient
method for the development of decision support systems in water resources engineering
(Simonovic and Savic, 1989). In contrast, the classical ES approach relies on transferring

unique knowledge from an expert to a knowledge engineer; of which the latter is

generally uneducated in the expert’s domain. During the course of this research,
emphasis was directed at understanding the concepts of both S-D analysis and ES

technology.

1.2 Scope of Research

The scope of this research has dealt with the development of a logical framework of
processes to analyze and represent S-D relations within a computer system. Due to the
complex nature of alluvial channels, the system prototype developed in this work is
limited to analysis of stable channels.

A stable channel is generally characterized by a relatively constant S-D relationship,
which experiences infrequent and temporary changes. They generally have bed forms
which do not change dramatically in short periods, but rather experience changes in other
channel characteristics affecting channel roughness and/or geometry. Such characteristics
make up the Aydraulic control of a channel, which if altered, will be manifested in the
stage-discharge relationship. Stable channels are therefore more likely to experience
changes in their stage-discharge relationships due to changes in these other characteristics
rather than due to erosion and deposition of their be material. It should be noted that the
term "stable" is a relative one since all channels experience some degree of changes in
their hydraulic control over long periods, be it associated with bed form, geometry or
roughness.

In contrast, non-stable channels are those subject to continuous changes in their

hydraulic control attributes, thus causing the stage-discharge relations to shift over short

(as well as long) periods. They are alluvial channels which are continuously forming in
the bed material which they transport. Changes in other channel characteristics are
influential as in stable channels, however they are difficult to detect amongst the dramatic
changes that occur in the stream due to movement and deposition of bed material.

Recent advancements and innovations in computer tools and technology are
demonstrated for their usefulness and application to computer decision support. A brief
outline of the thesis organization follows.

A review of literature and research related to the topic of stage-discharge analysis is
presented in Chapter 2. Operational standards developed by various organizations over
the years are discussed. The review also makes note of some recent applications of
decision support systems in water resources engineering, in order to demonstrate the
usefulness they have achieved over the past 10 years.

Chapter 3 presents the concepts of Stage-Discharge Analysis. Current practices and
procedures used throughout Canada by the Department of the Environment, are discussed.
The concepts of station controls are examined and their relative effects on S-D
relationships in stable and unstable channels are discussed.

Chapter 4 deals with the concepts of decision support systems. A brief history of
DSS and its evolution from early information systems is discussed. DSS architectures and
components are covered, as well as an introduction to Expert Systems technology.

Chapter 5 presents the prototype DSS developed in this research work. The first
sections are devoted to the application of DSS technology to Stage-Discharge Analysis

and the subsequent development of the computer system presented in this work. The

design framework is presented followed by a discussion of the operation of the system
components.

Chapter 6 presents a case study involving the development of a stage-discharge
relationship based on data obtained from Edwards Creek in southern Manitoba. A
narrative is included which describes user input required during the curve development
operation of the system. A curve produced using the DSS is compared to a rating curve
prepared manually by the regional office of the Department of Environment in Winnipeg,
Manitoba. The comparison is made with respect to the general curve shapes, examining
the overall accuracy of relationship representation.

To conclude the research, Chapter 7 presents a summation of the research work
accomplished in this study. Additional research and experimentation is expected to
continue on the prototype in the near future. Therefore, further research is recommended

and various additions are encouraged for later development.

2. LITERATURE REVIEW

2.3 Introduction

Stage-discharge relationships are used worldwide to provide a basis from which
streamflow records are estimated. They are functional relationships developed between
water level (stage) and the streamflow (discharge). These relationships are formulated
empirically from data collected in a process termed "stream gauging", which consists of
measuring discharge for various stages in a stream. Once formulated, stage-discharge
relationships are used to convert continuous water level records into discharge estimates.

The science of stream gauging has evolved over many years. Widely accepted
manuals of today, describing stream gauging and computational procedures, are the result
of the collective experiences and innovations gained by practitioners over the years (Rantz
and others, 1982a). Following is a synopsis of some of the most widely accepted material
dealing with gauging procedures and the derivation of S-D relationships. Some recent
research work is also included, along with an introduction to two computer software

products developed for the analysis of hydrometric records.

2.1.1 Procedural Standards

Probably the most widely accepted methods for measuring and compiling streamflow
data are standardized by the International Organization for Standardization (ISO).
National institutions from around the world, concerned with the development of standards,

are brought together to form ISO technical committees. These committees work on

10

developing internationally accepted standards in widely diverse technological fields, such
as science and engineering.

ISO Handbook 16 deals with the "Measurement Of Liquid Flow In Open Channels"
(ISO, 1983). It is a collection of 29 International Standards prepared by the ISO/TC 113
committee in the 1970s and early 1980s. Individual reports, contained in this handbook,
deal with flow measurement techniques and practices using various methods, equipment
and structures under varying flow conditions.

In particular, ISO 1100/1 entitled "Liquid Flow Measurement In Open Channels - Part
1: Establishment and operation of a gauging station" (ISO, 1981) outlines the
considerations and factors involved in the selection of a gauging site and its operation.
The standards are applicable to gauging stage and/or discharge of open water in rivers,
lakes, reservoirs or manmade channels. Unfortunately, gauging sites seldom fulfil the
criteria laid out by ISO. For this reason, the analysis of stage-discharge relations is not
always straight forward.

Standard methods for determining stage-discharge relationships are specified in "Part
2: Determination Of The Stage-Discharge Relation" (ISO, 1982). The report addresses
key issues such as gauge station calibration, relations for stable and unstable channels,
hysteresis and unsteady flow conditions, discharge estimation from curves, testing and
uncertainty of relations and extrapolation for estimation. Computational procedures are
also included, with examples.

Another widely accepted reference on stream gauging in the US and Canada is

entitled "Measurement And Computation Of Streamflow" (Rantz and others, 1982a and

11

1982b), which is produced by the United States Department of the Interior. The two
volume report was first published in 1980 as an up-to-date standardized manual of stream-
gauging procedures. It was a long awaited replacement for the USGS Water Supply
Paper 888 "Stream-Gauging Procedures" published in 1943.

Volume 1, "Measurement Of Stage And Discharge" (Rantz and others, 1982a) deals
with the selection of stream-gauging sites and state-of-the-art procedures for collecting
stage and discharge data. Discussions of instrumentation and measurements are directed
at the field technician commonly performing such duties. Volume 2, "Computation of
Discharge" (Rantz and others, 1982b) deals with the development of discharge ratings
based on simple S-D relations and/or other hydraulic parameters, facilities and conditions.
Computation of daily-discharge records based on derived ratings is also examined.
Finally, the document discusses the presentation and publication of stream-gauging data.

In Canada, the Inlands Water Directorate (IWD), of the federal Department of
Environment (DOE) has contributed to and adopted many of the standards outlined by
ISO and the USGS Water Supply Papers. These standards make up the basis for the
methods and procedures used by the federal and provincial Water Resources Branches,
responsible for the monitoring of gauging stations throughout the provinces and northern
territories of Canada. Over the years, the DOE has published numerous internal reports,
related to particular practices used in Canada for collecting and compiling S-D data. A
career development program has been implemented within the DOE for training its
hydrometric staff. An extensive five volume series documents the entire training

curriculum, to be instructed over a two to three year period. The fundamental purpose

12

of the documents is to train technicians in the practices and procedures used within the
DOE, and maintain a high level of standard and consistency throughout the organization.

The documents deal with basic concepts of stream gauging such as types of gauging
stations, site selection and benchmark datums. Measurement of stage and discharge using
various devices, instrumentation and methods is also discussed. Technicians are trained
in the art of establishing stage-discharge relations and the computation of discharge
records from continuous water level recordings. Fundamental hydrometric and hydraulic
concepts are also covered in the program.

The basic understanding gained from review of this documentation, as well as the
numerous publications of ISO and USGS revealed one underlying principle for this thesis
work. The science of stream gauging and the analysis of stage-discharge relationships is
nothing short of a complex system of activities, requiring technicians to build a strong
knowledge of concepts and theory, and subsequently, years of field practice to develop

their experience.

2.1.2 Recent Work

As old as the study of S-D relationships is, there continues to be interest in the
understanding of relevant variables and parameters. Considerable hydraulic literature has
been published over the years, outlining simple stage-discharge relationships in common
use for open water, as well as more sophisticated relations for varying or specific
conditions. In addition, recent technology has led to the development of new data

collection equipment and methods since the earlier years of hydrometric data collection.

13

Following is a sample of two recent additions to the understanding of stage-discharge
analysis.

A report by Chester (1986) introduces three practical techniques developed and
implemented by the Water Authority of Western Australia "which significantly rationalize
the practices for the development of discharge rating curves while still retaining the
essence of traditional practice”. Each technique provides an increased level of quality to
the analysis and development of discharge ratings. In increasing order, the techniques

25 scale to linearize stage-discharge plots for

include the use of a so-called natural/power
simplifying the drawing of rating curves, a conveyance control parameter for extending
rating curves beyond observed levels and the use of computerized hydraulic modelling
programs for defining stage-discharge relations.

Comparisons of seven methods for extending rating curves are presented by Smith
(1987). A case study involved the Illecillewaet River in British Columbia. Methods
include extension by Log Transformation, dm-Q, Area/Velocity, A/dm, Stevens method,
Slope-Conveyance and Stage-Discharge Equation. He concluded that "rating curve
extension is as much an art as a science". In conclusion, the study recommends the use
of the stage-discharge equation in performing rating curve extensions, where it is
applicable. This decision is based on its ease of application and true representation with
specific knowledge of the stream channel and cross sections and hydrographer
interpretation. Further comparisons of the methods was recommended using other streams

with available data.

Although the topic of curve extension is beyond the scope of this thesis, both

14

publications demonstrate that there is an important need for increased understanding of
stage-discharge relations. There is a great interest and need for techniques which improve
the accuracy and quality of stage-discharge relations, throughout development and during
use. The application of such techniques to a computer system, has been a main focus of

this thesis work.

2.1.3 Computer Software

This section introduces two computer software packages that are operationally used
for managing hydrologic and hydrometric data. Although these systems perform some
similar functions of the system developed and presented in this research work, they were
not specifically designed as decision support systems, but rather customized time-data
management tools. Their inclusion here is to simply introduce the reader to some
software products developed which share some related topics of stage-discharge analysis.

HYDSYS/TS was developed in Australia by HYDSYS Pty Limited. It is based on
the ideas of EDTRACE, a system developed in the early 1960s by the Commonwealth
Scientific and Industrial Research Organization (CSIRO). "HYDSYS is a system for the
storage, editing, retrieval and analysis of time-series data and related information"
(HYDSYS Pty Ltd, 1991), such as streamflow and meteorological parameters. Operating
platforms are limited to PC (DOS) systems and a UNIX V version for use on Sun
Microsystems workstations is also available, either as stand-alone or networked
configurations. Time and non-time dependent data may be stored and analyzed, with time

precision of one second. The system employs a relational database, a graphical mouse-

15

based editor, comprehensive menu and full-screen interactive systems, to list but a few.
Numerous graphical and tabular outputs are available and may be directed to a variety of
supported devices. In addition, the software accepts direct input of raw data from a
number of data loggers and satellite and radio telemetry systems. The New South Wales
Water Resources Department, the Sydney Water Board and the Water Authority of
Western Australia all contributed ideas and funds to develop areas of their particular
interest.

Another computer system, TIDEDA, has been developed for the processing of time
dependent data (Rodgers and Thompson, 1991). The New Zealand Ministry of Works
and Development created the program with years of assistance from several individuals
since the beginning in 1981. Data dealt with by the system includes hydrometric and
climactic data such as stream flows, water levels, rainfall, air temperature and wind speed.
Data associated with electrical power generation is also managed. Features of the system
include data management, graphical and tabular display of data, user-specified data
analysis and a flexible operating environment. The system also interfaces a number of
data entry devices and is operational on IBM compatible personal computers or DEC-Vax
computers.

Review of both systems has proved beneficial to the planning of the system developed
in this thesis. Some important features of these systems which have been considered in
the development of this work include the ability to model stage-discharge relations with
a selection of mathematical functions, multi-domain plots used to display rating curve

related information to the user, and the presentation of graphical user interface.

16

2.2 Decision Support Systems in Water Resources

The development and use of decision support systems (DSS) in water resources
planning, engineering and management has been growing extensively over the past ten
years. Recent attention has been attributed to their ability to assist engineers and
managers with decision-making problems, which are of a less than structured nature.
They allow decision-makers to thoroughly examine a problem and analyze alternate
solutions. DSSs have evolved into systems with a high degree of user-friendliness, due
to advancements in computer graphics tools.

The number of examples of DSS employing Expert Systems (ES) technology has been
increasing over the latter half of the past decade. The evolution of early ES applications
(pre-1980) has dramatically changed the look and feel throughout the 1980s, mainly due
to the advancements of computer hardware and software tools. Numerous computer
software companies continue to develop software products for prototyping and delivering
DSS for countless real-life applications. With improved computing power and graphical
interfaces, today’s computers are now providing excellent environments for the
implementation of operational DSSs. Today, useful expert systems are being developed
by scientific, engineering and technical personnel without specific training in ES
technology. Considering the advancements in software technology and the increasing
speed of new generation computers, developers can build DSS in substantially less time
than before.

Within the discipline of water resources engineering numerous successful applications

of decision support systems have been documented. Following is a sample of several

17

applications which have been documented recently. Soncini-Sessa and others (1991)
developed a prototype DSS for the management of a single-reservoir, multipurpose water
resource system. A computer-based DSS prototype for the management of ground-water
resources was developed by Kao and Liebman (1991). Hypertejo (Camara and others,
1990) is a DSS developed to facilitate water quality management in the Tejo estuary in
Western Europe. The establishment of better policies for land-use and land-management
controls is dealt with in a DSS project planned by Davis and others (1991).

The existence of the numerous, successful examples of decision support systems in
the domain of water resources engineering, is evidence that the there is growing need and
interest for applying this technology to various problems. Likewise, this review has
discovered that there has been very little, if no, work directed at developing a DSS for
addressing the problems associated with developing stage-discharge rating curves. Thus,
due to the success of other DSS examples in the field, and the need for improved ability

to develop accurate rating curves, the work conducted in this thesis is highly justified.

18

3. STAGE-DISCHARGE ANALYSIS

3.1 Introduction

In this chapter, the reader is introduced to the complex process of stage-discharge
analysis. A brief overview of organizations and practices used in Canada are presented
in this first section. Next, a review of stage-discharge analysis procedures, used within
the Department of Environment (DOE) is presented with respect to concept, data
collection and analysis. The final two sections deal with the complex nature of S-D
relationships and the hydraulic controls which govern them. An examination of the
relative physical characteristics of controls is discussed with emphasis on their affects to

S-D relations.

3.1.1 Hydrometric Organizations in Canada

The Inland Waters Directorate (IWD) of the DOE is the primary water agency in
Canada, responsible for all freshwater resources in Canada. Through a series of federal
and provincial agreements, they coordinate and centralize the collection of water quantity
and quality information, across Canada. The IWD also develops and maintains
operational standards and procedures for the collection, processing and distribution of
resulting hydrometric data.

Over 7700 stations, including 3484 active and 4286 discontinued (Environment
Canada, 1992), are operated nationwide, under this joint federal-provincial mandate.

Additional provincial stations are also run by organizations such as forestry and

19

environmental departments of the provincial governments and miscellaneous networks of

stations for research and other purposes.

3.2 Current Practice in Canada

The process of Stage-Discharge Analysis (SDA) refers to the activities associated with
developing S-D relationships. These include the collection of streamflow and related
hydrometric data, the processing and analysis of data, and the plotting and subsequent
curve fitting of data to form graphical relationships. SDA also requires the periodic
monitoring of relationships and identification of changes over time. This section
introduces the current practices and procedures typically used within Canada by the DOE,

for establishing S-D relationships.

3.2.1 Concepts

In essence, a stage-discharge relationship is a mathematical equation or graphical
curve which relates stage and discharge in a flowing body of water, such as a river or
channel. (The terms stage-discharge relation, rating curve and curve are synonymous and
will be used interchangeably throughout this thesis). Generally, these relationships are
based on corresponding measurements of stage and discharge at a fixed cross-section in
a channel; although other parameters such as water slope are sometimes incorporated into
the relationship. Plotted on a linear coordinate graph, with stage as the ordinate and

discharge as the abscissa, these relationships classically exhibit a concave-down shape or

20

"curve". These empirical relationships are typically used to estimate discharge in open
channels from corresponding continuous water Ievel recordings made at established stream

gauging stations.

3.2.2 Collecting Stage-Discharge Data

Determining a rating curve for a stream begins with the selection of an appropriate
site for a gauging station. Once the site is established, the common practice is to make
periodic measurements of the water elevation (stage) and corresponding stream discharge.
In general, a technician visits the gauging site once a month; although this schedule may
be more frequent during particular events such as flooding conditions and river ice freeze
and break-up at a given station.

One ongoing goal of the collection process is to obtain a good coverage of S-D
measurements over the entire range of expected stages in the stream. This task in itself
can pose a problem since many stations are remote and cannot be reached on short notice.
In this case, technicians often try to predict when floods are expected, in order to time
their arrival at the station during the peak of the flood, thus ensuring a high stage (and
flow) measurement.

Once at the site the technician records the stage in the river from an installed water
level recorder (Terzi, 1981) or crest stage plate. The discharge is generally computed
using the velocity-area method; calculated as the product of the water velocity and stream
cross-sectional area (Rantz and others, 1982a). A flow meter (also known as a current

meter) is used for making velocity measurements across the channel at a given cross-

21

section. In general, the discharge is basically computed as the product of the average
velocity and the cross-sectional area of the channel.

In order to make an accurate discharge computation, the stream is divided into vertical
strips of equal widths or equal discharge. The area of each strip is estimated by depth
sounding and velocity is measured at one or more depths with a current meter. The
discharge is then computed by summing the velocity-area products for each vertical. It
should be noted that this is the typical method for measuring discharge in a channel,
although many other methods using other types of equipment, exist. For further
discussion of these methods, the reader is directed to ISO Handbook 16 (ISO, 1983).

Once the discharge is computed for the station, the technician makes one final reading
of the gauging stage. This is done to document the change in stage occurring during the
time of stream gauging. A comparison of the two stage measurements may indicate a
rapidly rising or falling stage condition. This entire procedure is repeated over a range

of stages in the stream, usually several times a year.

3.2.3 Establishing a Rating Curve

When a substantial number of measurements have been recorded, the stage-discharge
measurements or "points" are plotted on linear graph paper, with stage on the ordinate.
Data is often plotted in differing scales to reflect the various ranges of stage in a stream.
This is to provide the degree of accuracy necessary for later computation of a rating table
in all flow regimes.

A smooth curve is then drawn through the points using "french curves". A graphical

22

method is used to determine the zero-flow stage, and complete the "best-fit" curve. Curve
extensions beyond the highest available stage are often performed for new stations with
very few measurements. A logarithmic graphical method is sometimes used to perform
such extensions.

The entire process of establishing a S-D relation can take hours to complete. Once |
the curve is completed, its shape is transformed into a rating table, relating stage
specified in equal increments to corresponding discharge values. A digitizing pad is used
to transfer corresponding S-D points along the curve into a computer interpolation
program, which then interpolates between the points to generate a table of S-D values
representing the curve. Continuous water level recordings may then be applied to the
rating table to generate average daily discharges for the station.

It should also be noted that fitting the so-called "best-fit" curve to a set of S-D
measurements is purely subjective on the part of the technician. The technician must rely
on their judgement, experience and intuition when fitting the curve, as well as consider
the conditions and reliability associated with each individual measurement. However, the
latter aspect is difficult to quantify objectively.

This procedure is only one small segment of activities performed by the regional
branches of the DOE. New stage-discharge measurements are continuously recorded and
used to verify curve stability and to make corrections, if necessary. The process is very
time consuming and requires a great deal of technician hours. In addition the procedure
is substantially complex. As will be shown later in this chapter, stage-discharge

measurements rarely form a distinct curve since streams are often under the influence of

23

imperfect conditions. This leads to measurement points which deviate or "shift"
significantly from the general curve shape. Therefore the technician requires an
understanding of the hydraulic and hydrologic parameters controlling stage-discharge

relationships.

3.3 Stage-Discharge Relationship Controls

This section deals with the concept of "station controls" and specifically, their effect
on stage-discharge relations. Various types of station controls and their classifications
will be discussed, followed by an examination of physical characteristics and their specific

influence on controls.

3.3.1 Types of Controls

A station control, or simply control, has been defined as a physical element or
combination of elements that controls the relationship existing between stage and
discharge (Rantz and others, 1982a). This is generally a section or reach of the channel
downstream of the gauging site, which is either a natural part of the channel or an
artificial man-made structure. In order for a control to serve a gauging site satisfactorily,
it should exhibit permanence (stability) and sensitivity.

Permanence refers to ability of a control to retain all its original effective physical
characteristics which ultimately affect the S-D relation. If a control is not stable (ie:

permanent), neither will the relation be stable, and frequent discharge measurements will

24

be required to trace the changes in the relation. A control is said to be sensitive, if small
changes is discharge are reflected by relatively large changes in stage. This feature is
particularly important at low flow conditions, since one would like to be able to notice
a change in discharge without having to measure stage to a fraction of an inch. To
facilitate sensitivity, the width of flow at the control be should be significantly constricted
at low flows. Usually a notched control such as a V-shape or parabolic shape will ensure
that the width of flow decreases as the flow decreases.

Control types are often defined using different classifications (Rantz and others,
1982a). The major classification labels controls as either section or channel controls. The
term section control refers to a single cross-sectional geometry located a short distance
downstream of the gauging site, which tends to constrict the channel. Constrictions may
be a rise in the streambed or a locally reduced effective width, created by natural or man-
made means. Alternately, the term section control may also be used for downward breaks
in the bed slope at a particular cross section, such as the head of a cascade or brink of
a falls.

In contrast, a channel control refers to a much longer reach downstream of a gauging
station where the geometry and roughness characteristics of the channel become the
controlling elements of the S-D relation. Increases in channel discharge will cause an
increase in the amount of reach length which is effective as a control. Likewise, flatter
stream gradients tend to have longer reaches of channel control.

A second classification, already alluded to above, distinguishes controls as either

natural or artificial. This classification is generally used in combination with other

25

classification terms to describe the origin of the control. Examples of natural controls
include physical features such as rock ledges, outcrops or falls in the channel or distinct
streambed features such as riffles. Artificial or man-made controls take many forms and
are generally installed to provide, among other things, a stable and sensitive feature within
the channel, for the purpose of establishing a S-D relation. Typical structures include
weirs, flumes and overflow dams. Bridge piers which generally reduce the natural cross
section of a channel are often referred to as a man-made control, be it intentional or not.

Finally, a third classification is used for delineating the effect of the control
throughout the experienced stage range for a gauging station. Controls which are not
limited by stage in their ability to control a S-D relation are referred to as complete
controls. Such conditions exist for section controls that exhibit significant height which
is not drowned out during high flows. Likewise, channel controls may be complete if no
section control exists to constrict the channel in low flows.

The last condition brings up an interesting point. It is not common that natural
features provide a control which governs the S-D relation throughout the entire range of
flows experienced in a channel. This leads to the term combined controls, which are
made up of several different controls, each governing a particular range of stage (and
discharge) in the stream. A common example of a combined controls was alluded to at
the end of the previous paragraph, where a section control exists and controls the relation
at low stages but is drowned out at high flows. A channel control may then control the
relation. In this case, the two combined controls are also referred to independently as

partial controls, since they do not control the entire S-D relation. With respect to the

26

relation itself, it should be noted that in a combined control, there is a transition period

that exists where both partial controls act together.

3.3.2 Effects of Physical Characteristics on Controls

As can be seen in the previous section, classification terms are usually mixed and
matched to describe the make-up of a station control. Knowledge of these terms is thus
essential in S-D analysis when frying to understand the various effects physical
characteristics have on a S-D relation.

The largest problem that exists in S-D analysis is the phenomenon known as a shifting
control. This concept was discussed briefly in the previous section as stability and
permanence. Essentially, a shifting control results from gradual or abrupt changes in the
physical features that form the control. The main effect of these changes is that of a
change in stage for a given discharge, or conversely, a change in discharge with no
change in stage. It should be noted that, a relation may not necessarily change if the
characteristics of the control are collectively compensating with respect to their effect on
the stage. The following sections discuss common physical features and characteristics
of open channels and their controls, and the individual influence of each on channel

discharge, relative to a fixed stage level.

27

Backwater

Backwater is a common phenomenon resulting from a reduced flow velocity
downstream of a gauging site. Be it apparent to the eye or not, backwater exhibits a
reduced surface water slope in the direction of the streamflow, in comparison to the
surface slope when no backwater exists. Graphically, this translates to a shift to the left
of the normal flow curve.

Reduction in flow velocity may be attributed to conditions such as constricting narrow
reaches of the channel or reaches affected by seasonal conditions such as ice, vegetal
growth, beaver activity and moving sediment deposits. Artificial structures such as dams,
weirs and locks can also induce backwater conditions, at certain times or stages. Streams
may also experience backwater affects due to increased volume and stage levels in
downstream tributaries. Finally, reaches under the influence of tides will, more than
likely, experience backwater.

Depending on the cause of the backwater, varying slopes may or may not exist for
the same stage. Under the former circumstances, discharge is said to be a function of
both stage and water surface slope. In this case, it is common to develop a relation for
stage-fall discharge. This is determined empirically by observing the "fall" of the water
surface in addition to typical stage and discharge parameters. Fall is measured by
observing the difference between the gauging station stage and a stage measured at an

auxiliary gauging site downstream.

28

Channel Modification

Probably the most obvious feature of a station control is its cross sectional and
lIongitudinal geometry. Alterations to either of these features above, below or at the
control usually has an adverse affect on the normal S-D relation at a gauging site.
Depending on the type of modification, the effect may be either a left or right shift of the
curve; that is, the discharge corresponding to a given stage may either decrease or
increase, respectively. Channel modifications can result from natural or human activity
and may be as unsuspected as mowing or brush cutting in the high-flow area of the
channel. Some examples of natural channel modifications include normal scour and fill
of the channel, sloughing or recession of banks and meander cut-offs. Man-made
modifications include channel realignment, dredging, installed rip-rap and dam
emplacements. In addition channel constrictions such as beaver activity, fallen trees and
debris caught on bridge abutments are considered channel modifications. In the case of
these last examples, the resulting increase in stage is often visibly distinguishable on
analog and digital recorders installed at gauging sites. Non-stable streams (see section

3.4) are typically the result of continuous, natural channel modifications.

Rapidly Varying Stage

It has been shown conclusively from actual measurements that discharges for a given
stage will be greater during rising stage than during falling stage (Rantz and others,
1982b). This fact is derived from the fact that rising and falling stages have differing

water surface slopes. At the onset of a flood, the slope is much steeper on the rising limb

29

of the flood wave in comparison to the normal flow conditions. This slope causes a shift
of the rating curve to the right of the curve derived from normal flow conditions. The
reverse effect occurs on the falling limb but to a lesser degree of magnitude. The falling
stage condition is similar to that of a backwater condition as described above; shifting the

rating curve left of the normal flow curve.

Vegetal and Aguatic Growth

Stage-discharge relations are often affected by the growth of aquatic vegetation on
natural controls and channel banks. Growths of these types directly alter a control by
reducing channel capacity and by altering the roughness coefficient of the channel.
During low flow conditions, aquatic growth on a section control causes a decrease in
discharge for a given stage. During higher flows, a reduction in the effective area of the
cross section is experienced in the presence of vegetal growth along the banks of a
channel control.

In general, the cyclic effect of aquatic growth is gradual in the spring and remains
fairly constant throughout the effective period before diminishing rapidly at the onset of
the first subfreezing temperatures. The magnitude of aquatic growth in a particular
channel may differ from one year to the next, depending on how deviant the temperatures
are from the normals for the particular region at a specific time. It should also be noted
that the distinct effects of vegetal growth (ie: backwater) may be reduced or removed
entirely, due to temporary high velocities and/or flows moving through the controlling

reach. Such is the case, when vegetation exhibiting high roughness characteristics is

30

"flattened” or washed away by fast moving water. Flattened vegetation may reduce
channel roughness, ultimately resulting in a right shift of the curve, (i.e. the opposite

affect of backwater).

{ce Formations

The basic effect of all ice formations results in backwater at the station control and
is manifested by a left shift of the rating curve. Three basic formations of ice are frazil,
anchor and surface ice.

Frazil ice is formed at the surface of turbulent water as fine, elongated needles, thin
sheets and/or cubical crystals. Masses of floating slush form from frazil ice which has
moved to slower moving water, where it has the opportunity to consolidate. Neither
floating slush or frazil ice have a direct affect on the stage-discharge relation; however
the use of current meters under these ice conditions is likely to induce significant
measurement €Iror.

Anchor ice refers to spongy ice or slush which adheres to the rocks of a streambed
and continues to grow upward. Ice growth of this nature tends to change the geometry
of the streambed or control where it forms, thus resulting in an increased stage for a given
discharge in comparison to conditions without the formation.

Surface ice is that ice which forms a complete cover of the stream, replacing the
water-air interface of open channel flow. The basic effect on the stage-discharge relation
is again an increase in stage for given discharge. Rantz and others (1982b) explain this

effect 1s a combination of three conditions, resulting from the ice cover.

31

First, the resistance to flow in the channel is increased due to additional area of
friction in contact with flowing water. This resistance to flow may decline over winter
however, as flowing water smooths out the originally rough texture of the under side of
the ice. Second, in particularly thick ice covers, the cross sectional area available for
flow may be reduced to varying degrees. In small channels, this effect may vary over
winter if water levels drop, leaving the ice sheet to hang from the banks, not touching the
water surface. Finally, the increased wetted perimeter of the section reduces the hydraulic
radius of the section.

A final note should be included about ice in channels. Quite often, ice becomes
jammed up on a section control or downstream of a gauging site, causing the typical
backwater effect in the channel. The affect of ice jams, (as well as that of any other type
of debris becoming caught in the section) downstream of the station will result in

backwater, producing a left shift of the stage-discharge curve.

3.4 Stable and Unstable Channels

The relationship between stage and discharge in any given channel is likely to have
some degree of change at one time or another. Changes in a relationship, or shifts as they
are more commonly referred, may be temporary or permanent. This section addresses the
analysis of S-D relations which experience various degrees from shifting.

The previous section discussed general phenomenon which influence hydraulic

controls, governing a stage-discharge relation. Channels are basically distinguished as

32

being either stable or unstable by the pattern or trend of the variability in their
relationship between stage-discharge. These trends of variability, or lack thereof, may be
examined by use of a specific gauge plot. A specific gauge plot of a station, is a plot of
gauge over time, for a constant discharge. In general, three plots are presented for three
different discharges, representing various flow regimes in the channel. Constant discharge
values are usually selected for the plots corresponding to the 2, 5 and 10 year return
floods.

Figure 1 shows three specific gauge plots for Edwards Creek in Manitoba._ The three
plots represent the gauge (stage) in Edwards Creek from 1980 to 1990, for discharge
measurements of 0.40, 0.8 and 2.0 m’/s respectively. The gauge is plotted along the
ordinate in metres and time along the abscissa in years. Trends exhibited in specific
gauge plots are used to indicate whether the stage is changing over time or remaining
essentially, for a constant discharge. A constantly level gauge over time tends to indicate
a stable channel. That is to say that the relationship between the stage and discharge is
not changing over time, for the specific discharge indicated.

In Figure 1, each of the three specific gauge plots displays a corresponding gauge
which is essentially constant, over the 10 year period. Individually, each level trend
indicates that the stream is stable at a specific discharge level. Collectively, the three
level trends indicate that the Edwards Creek is essentially stable, since the gauge does not
change over time, irrespective of the discharge level. This conclusion could be further
verified by generating specific gauge plots for different flow values. The three chosen

in Figure 1 represent the 2, 5 and 10 year return floods in Edwards Creek.

33

Quite often specific gauge plots are not level and may exhibit a varying character over
time, which may be increasing or decreasing in a constant or step-wise pattern. In other
cases, the plot may fluctuate sporadically over time, with no apparent pattern. Regardless
of the pattern, these manifestations of trends which are not level indicate the relationship
is changing, or "unstable", with time. Any of these types of non-level trends will tend

to indicate unstable channel conditions.

EDWARDS CREEK DRAIN BELOW JACKFISH CREEK Specific Guage

guage (m)
0.40 cms

1.40 R

1.20

1.00

0.80

0.60

L T b b L [RO --a

0.40 — e o

0.20

0.00
year

80.00 - 82.00 84.00 86.00 88.00 90.00

Figure 1. Specific Gauge Plots for Edwards Creek.

34

3.4.1 Stable Channels

As was discussed in Chapter 1, the term "stable" is a relative one, when describing
the relation between stage and discharge in a stream. A stable channel will generally
exhibit little or no continuous variability (see section 3.4.2) in its S-D relation over time.
Such an "ideal" relation is often exhibited in channels cut through bed rock and man-
made canals lined of concrete. However, stable channels are not limited to such specific
conditions. Rantz and others (1982b) point out that virtually all natural channel are
subject to occasional changes due to various factors. The key with stable channels is that
the general geometry and form of their cross-section is relatively constant from year to
year.

The previous section showed that relationship variability is directly related to the
station control and physical characteristics associated with the control(s). Stable channels
exhibit temporary changes, generally on an annual basis, which in turn affect the relation.
They are distinguished from unstable channels in that they do not progressively change
over time, but rather experience similar shifts from year to year. The next section,
dealing with unstable channels, will discuss conditions which continue to evolve over
time, thus causing a continuous change in the relationship between stage and discharge.

In the analysis of stable channels, changes are considered to be somewhat repetitive
from year to year. This means that certain shifts are expected at particular times of the
year. However, magnitudes of backwater effects, for example, will translate to differing
magnitudes of a (left) shift in a relation. Primary sources of control shifts in stable

channels include ice; backwater created by beaver activity, weed growth and downstream

35

tributaries (to name but a few); and rapidly rising and falling stage conditions. In
addition, channel modifications such as meander cut-offs, either upstream or downstream
of the gauging site may be seasonal and somewhat repetitive.

A final factor must also be considered when performing analysis of S-D relations.
Winds experienced at gauging sites can significantly affect the accuracy of discharge
measurements, resulting in a perceived shift when plotted. This may be exhibited in a
number of different ways. Strong cross winds may obscure the angle of the current in
the channel. Winds blowing against the streamflow tend to elevate the water level in a
stream, while those blowing in the direction of the streamflow may effectively reduce
friction and impart energy in the stream. Stream gauging may also be subjected to
several sources of significant error due to wind action. Waves resulting from winds may
conceal the true water level during depth sounding and in shallow streams, the velocity
at the 0.2-depth may be influenced, thus distorting the velocity distribution in the
measured vertical.

Whatever the source or sources of the shift are, they must be identified during
analysis to assist in the development of the rating curve. For example, in the case of
temporary backwater, (say from beaver activity), it is common for a water level records
to be adjusted according to the amount of shift associated with the backwater. Once
adjusted, the water level record can then be applied to the normal relation, as if no
backwater condition existed. However, depending on the source of the backwater, surface
slopes may vary thusvrequiring different shifts adjustments to be made based on the type

of the backwater. For these and other reasons, it is of the utmost importance that the

36

observation of relevant conditions should always be noted when collecting hydrometric
data and used to understand deviations from the expected relation.

Although some deviation is always expected, recurring deviations are often expected
in stable channels. These predictable shifts are often established as separate S-D relations
and used in place of singular flow relations, (which is the typical practice in the DOE).
A typical example of this is the condition of rapidly varying stage. S-D relations often
include separate curves for the conditions of rapidly rising and falling stage, known as a
hysteresis loop. One might expect that flood waves of different magnitudes will produce
differing deviations of the loop from the steady flow condition curve. However, this is
only apparent in the case of rapid change in discharge and in channels with a relatively
flat stream slope. Thus, with the exception of fast moving floods, S-D relations should
exhibit one fairly distinct loop. Obviously, the more measurements recorded under

flooding conditions will make this curve more apparent to the technician.

3.4.2 Unstable Channels

In contrast to stable channels, unstable channels are termed as such because they
experience continuous changes in their stage-discharge relations over time. This is most
typical in alluvial channels which, by definition, develop in the bed material which they
transport. Analysis is more complex, since bed formations in alluvial channels are a
function of the flow and the bed material carried by the channel (Rantz and others,
1982b). This means that not only is the flow resisted by the roughness elements, but the

roughness elements are in turn formed by the flow.

37

Analysis of unstable channels involves a much more complex process than of the
process used in the analysis of stable channels. The very nature of alluvial channels is
such that there is a continually changing control with time (Rantz and others, 1982). This
is due to scouring and deposition activity of bed material, braiding and meandering
patterns of the channel, and changes in the bed formation. Resistance to flow caused by
changes in bed formation, (and therefore roughness) influences the form of the stage-
discharge and depth-discharge relation in alluvial streams. Bed formations (and the
associated roughness) are dependant on parameters such as the properties of the bed
material, including size, shape and density; the magnitude of shear stress applied by the
water on the bed; seepage forces; sediment load; and water temperature.

Stage-discharge relations are relatively stable at the high flow condition, if upper
regime bed formations are in effect. The lower end of the relation may very well shift
with time due to bed formation influences in the lower regime. It should also be noted
that, in addition to these continuous changes, all of the same physical characteristics of
section and channel controls listed in section 3.3.2 are applicable to unstable channels as

well, complicating matters further.

38

4. COMPUTERIZED DECISION SUPPORT TECHNOLOGY

This chapter deals with the concept of computerized decision support systems (DSS).
The first section follows the developmental history of DSS technology from early days
of simple management information systems to present day conceptual structures and
components. The next section introduces the concept of developing intelligent decision
support systems with the use of Expert System (ES) technology. The final section
follows, introducing the concept of a modular computer decision support system, for
implementation in the Department of Environment. The design of one module of this

system comprises the major work of this thesis.

41 The Evolution of Decision Support Systems

The intent of this first section is to familiarize the reader with the DSS technology;

its fundamental purpose, history, components, and application.

4.1.1 Early Information Systems

Access to information has always been an essential part to the operation and
management of any company or organization. "During these fast-changing times",
Thierauf (1988) regards information as the "sixth resource” of a typical organization; after
people, machines, money, materials and management. Information regarding a company’s
past performance, current conditions and expected trends in the environment provide a

basis on which managers make planning, control and operational decisions.

39

Early information systems were aimed at producing historical reports which evaluated
past performance. Sometimes referred to as Electronic Data Processing (EDP), these
systems focused on data, storage and processing at the operational level (Simonovic,
1992). Later, EDP principles were integrated with business functions to produce
intelligent data-retrieval systems. These Management Information Systems (MIS) were
developed to assist managers with short-term planning aspects of an organization.
Emphasis was placed on fast retrieval and processing of timely information, to be relayed
to the controlling operations of the environment. Systems of this nature were limited to

operating environments definable in well-structured frameworks.

4.1.2 The Essence of Decision Support Systems

Decision Support Systems (DSS) were developed to operate in environments with less
than structured frameworks. They directly addressed the problems of the decision process
requiring human expertise, judgement and intuition. Depending on the degree of the
problem structure, DSS can incorporate computerized decision-making based on
quantitative modelling techniques.

Simonovic (1992) describes the following characteristics, necessary for a DSS:

- assist managers in the decision making process for
unstructured and semi-structured problems;
- support and enhance managerial judgement;

- improve the effectiveness of decision making;

40

- combine the use of models or analytical techniques with
data access functions;

- exhibit flexibility and adaptability to changes in the
decision process; and

- focus on features which make them easy to be used
interactively.

Thierauf (1988) cites DSSs as having an added dimension in comparison to earlier
information systems. As the name suggests, decision support systems emphasize
decision-making, user support and integration of computer and human abilities in a single
framework. He stresses that DSS must exhibit the following characteristics:

- focus on problem finding and problem solving;
- use of an interactive processing mode; and
- a comprehensive systems approach.

This added dimension has allowed DSS to break into the diverse field of engineering,

allowing the introduction of subjective judgements, trial-and-error procedures, and

intuitive approaches to achieve problem solutions (Simonovic, 1992).

4.1.3 DSS Architectures and Components

Simonovic (1992) outlines three design approaches used to assist the DSS designer
with conceptualizing, evaluating and characterizing a proposed system architecture. The
Junctional approach incorporates a language system for problem formulation, a problem

processing system for elaboration of the problem and a knowledge system for information

41

storage. So-called fool-based architectures conceptualize DSS as an integration of
individual technologies or components. These components include database management,
modelling and dialogue modules. Finally, a combined architecture is based on the two
previous concepts but incorporates a system manager to handle the overall control of the
specific components.

Traditionally, DSSs have also been described as modular systems consisting of three
components. Not surprisingly, these are similar to those of the tool-based and combined
architectures listed above. The remainder of this section provides a brief description of
the three typical components of a DSS, outlining their respective responsibilities and
make-up. Later, in Chapter 5, a prototype DSS will be introduced, which also applies this
concept to the problem of Stage-Discharge Analysis.

Most DSS application problems deal with tremendous amounts of data, which must
be processed in order to render decisions. The database management component of a
DSS is responsible for the storage and maintenance of factual data. It generally consists
of a management system, data dictionary (containing descriptions of the types of data
stored in the system), a querying facility (for isolating and retrieving specific data), and
a facility for accessing external sources of data as well as connecting the DSS with other
systems (Camara and others, 1990).

Next, the modelling component is composed of various mathematical models available
in the system, used for assisting in the problem-solving process. It is responsible for
operation and execution of mathematical models and provides adequate linkage with the

other system components to facilitate the transfer of commands, data and results.

42

Finally, the dialogue component provides a means by which the user may
communicate with the system. All system input and output is handled through the
dialogue component. Depending on the specific architecture of the DSS, this component
may be as simple as a command language used to instruct the system to perform certain
tasks, or a complex input/output (I/O) device connected to a central control unit, which
handles the assignment of tasks. In this latter case, the central control unit, or System
Control Manager (SCM), acts as the main link between all other system components and

provides the main problem-solving mechanism.

4.2 Intelligent DSS and Expert Systems Technology

The rapid progression of DSSs and their underlying technologies has led to the
development of more sophisticated and intelligent computer support systems,
incorporating newer and more advanced concepts in the realm of Arfficial Intelligence
(AI). Thierauf (1988) noted that future advancements in the area of AI will allow the
individual to use new knowledge in order to be even more efficient as a decision-maker.
Thus a fourth component, "knowledge" is acknowledged in Intelligent Decision Support
Systems, (IDSS). The following section describes the concept of Expert System

technology, and its contribution to the development of IDDSs.

4.2.1 A Brief Background of Expert Systems

Recently, the terms Expert System (ES) and Knowledge-Based Expert Systems (KBES)

43

have been receiving "buzz-word" status among professionals since the mid-eighties. The
concept of expert systems stems back over two decades prior to the great interest
recognized in the mid-eighties. They originated as early attempts at developing computer
programs to simulate and reproduce intelligent problem-solving behaviour. Maher and
Allen (1987) explain that this is attributed to the high profile received by several
relatively successful expert systems and the potential for development in diverse
applications. Combined with the rapid acceptance and advancement of the personal
computer throughout the 1980s and development of innovative software, expert system
technology has moved from the once dominated university development environment to
the business community.

Gaschnig and others’(1981) definition of expert systems as "inferactive computer
programs incorporating judgement, experience, rules of thumb, intuition, and other
expertise to provide knowledgeable advice about a variety of tasks" was cited by Maher
and Allen (1987) and is widely accepted. However, Maher and Allen (1987) criticize that
this definition fails to delineate the differences between expert systems and conventional
computer programs, as do most definitions, in their opinion. A true comparison reveals
that expert systems focus on the symbolic processing of knowledge using heuristics, rather
than sequential algorithmic processing of numerical data. This discussion will not indulge
in any further comparisons, although the reader is referred to Maher and Allen (1987).
Suffice is to say that ES technology provides an environment for capturing and
representing human knowledge, experience and expertise in logical computer frameworks.

Some of the earliest success stories in ES technology include a medical diagnosis

44

system for identifying infectious diseases known as MYCIN and PROSPECTOR, a
geological information interpreter (Maher and Allen, 1987). The success of these systems
is attributed to their ability to solve problems in their respective domains at the level of
an expert and communicate efficiently with users.

Several important applications using ES and Knowledge-Base (KB) technology (see
section 4.2.2), in the domain of operational hydrology, were reviewed by Simonovic and
Savic (1989). FLOOD ADVISOR is a computer-based consultant which assists
hydrologists with the selection of a suitable model for flood estimation under five general
situations. Model selection is made on the basis of the type and quantity of data
available. The system incorporates the human expertise and judgement of hydrologists
in its knowledge-base. A second ES application in operational hydrology, HYDRO, deals
with the task of describing the physical characteristics of a watershed. The system was
developed to aid in establishing numerical parameter values, for subsequent use in a
watershed modelling program. The program simulates the physical processes by which
precipitation is distributed through a watershed.

Another expert system called the Stream Flow Management Advisory System
(SFMAS) was developed for aiding managers in the selection of a suitable method for
measuring flow in open channels (Douglas, 1990a; Douglas 1990b; Simonovic, 1990; and
Simonovic, 1991). SEMAS is based on recommendations published by the International
Organization of Standards (ISO). Physical channel characteristics, flow conditions and
available equipment are used in the selection of the most suited method.

ES technology is related to DSS by the simple fact that they are both concerned with

45

assisting in problem-solving tasks. ES provide enhanced problem-solving capability
beyond DSSs because they contain qualitative knowledge of a particular domain.
Knowledge-bases store knowledge within the ES, primarily as symbolic elements rather
than numerical. Problem-solving tasks using Ess are therefore handled in a qualitative
sense, using human expertise and judgement represented in the KB. Thus, DSSs can
benefit greatly from ES technology.

With respect to the domain of stage-discharge analysis, many applications for ES
technology exist. Specific knowledge regarding section and channel controls can be
incorporated into a DSS. Various characteristics and properties, and their effects on S-D
relations, may also be stored as knowledge within an ES. The DSS would be capable of
making inferences on this knowledge, in order to suggest the relative influence on rating
curves. Regression analysis modelling generally requires subjective decision making,
based on human expertise. Such expertise may also be incorporated into a KB, in order

to enhance the modelling procedures of a DSS.

4.2.2 The Architecture of Expert Systems

Expert systems typically consist of 3 main components; a knowledge base, inference
engine and user-interface. Within these components, developers can express expert
knowledge of both a qualitative and a quantitative nature.

The knowledge base (KB), which is analogous to a data base of an information
system, stores information about a specific problem domain. Information may be

obtained by interviewing experts of the specific problem domain or by including

46

heuristics from recorded case studies (Davis and others, 1991). Once obtained,
information is stored in discrete elements known as rules. These logical structures are
based on the same principles as the familiar "if-then" programming structure, often used
in many programming languages.

Each rule stores one elementary piece of information or knowledge, within an "if" and
a "then" clause. The If-clause, premise or condition of the rule (as it is also referred)
defines the conditions of certain problem parameters, that must exist to infer some result
or piece of knowledge that is stored in the Then-clause. The conditions of the If-clause
form a logical expression that evaluates to either a true or false value. If the conditions
evaluate to true, the rule is said to be "fired" and the conclusions, listed in the Then
clause, are established.

The inference engine of the ES provides the methodology for retrieving information
from the knowledge base. KBs are sometimes envisioned as massive solution spaces for
a particular problem domain, made up of qualitative elements. In this sense, ES and
linear programming models, (and other optimization models), are very similar, in that a
solution space is defined by problem constraints and the objective is to search the space
for the best (although sometimes, compromising) solution. The inference engine of the
ES provides a search mechanism for defining the path to an appropriate solution in the
KB, as the Simplex Method does in Linear Programming. So-called backward chaining
and/or forward chaining strategies may be used together or independently to link facts

stored in the knowledge base rules to attain the problem solution.

47

4.3 A Proposed Computer System

The previous two sections have served to introduce the concepts of decision support
systems and expert systems technology. These concepts have been proposed for
application in the development of a computer system for use in the Department of
Environment.

A large, modular system was conceived in a joint venture by Environment Canada and
the University of Manitoba and was introduced in the late 1980s by Simonovic (1989) as
an intelligent decision support system (IDSS) for the management of surface water
quantity data. Formulation of the system structure incorporates;

1) existing databases and practices used within the

Department of Environment;

2) an IDSS for surface water quantity data acquisition; and

3) a set of mathematical models and tools.
Figure 2, shows a conceptualized diagram of the overall IDSS structure, and the relations
among the various elements and operations (Simonovic, 1989). Selection, support, and
integration capabilities were to be provided within the IDSS framework, through the
implementation ES technology. This applicatidn resulted from interest generated by a
study which explored the opportunities of Artificial Intelligence (AI) technologies in
government organizations (Simonovic, 1989). The study cited ES tools (and techniques)
as the most promising Al concept for improving productivity and efficiency in the

Canadian government.

48

COST UNCERTAINTY STATION LEVEL
FOR EXISTING BASIC LEVEL
REAL'i}"E DATAR 4 NETHORK REGIONAL LEVEL |+
DIAGNOSTIC //////i:; QUALITY ASSESSMENT
{ I
HISTORICAL PLANNING HUMAN RESOURCES
DATA FILES MANAGEMENT a) REGIONAL LEVEL b) AREA LEVEL
U DEVELOPMENT OF WORK PLAN
ANNUAL a) ASSIGNMENT (TECHNICIAN-STATICN) MATHEMATICAL
Coig‘s"czg b) SCHEDULING ACTIVITIES OPTIMIZATION
ACREEHE c) PROCEDURES TO FOLLOW (STATION LEVEL) MODELS
1DSS
MAINTENANCE L{REAL TIME OPERATIONS (WATER LEVEL;
REPORTS FLOW MEASUREMENT; MAINTENANCE)
a) EQUIPMENT SELECTION
' {b) SELECTION OF THE METHOD
“lc) PROCEDURES TO FOLLOW
EQUIPHENT
* § ~CALIBRATION
-RELIABILITY
- ACCURACY MATHEMATICAL
ESTIMATION OF MISSING DATA
OPERAT1ONS HODELS
STATION l
ANALYTICAL
CHARACTERISTICS DATA ANALYSIS & PRESENTATION e MODELS
a) AGE DISCHARGE CRAP;ICAL
b) DAILY DATA FILES ANALYSTS
c) STATION INFORMATION
EXPERTISE J

Figure 2. Structure of IDSS, (from: Simonovic, 1989)

Development of the SFMAS discussed in section 4.2.1, was performed at the
University of Manitoba and served as a pilot project, intended for integration with the

modular IDSS. The work of this thesis has developed a second module for inclusion in

the overall IDSS. This module, known as the Stage-Discharge Decision Support System
(SDDSS), provides an alternative to the present, time consuming method of manual

plotting and curve fitting for production of stage-discharge rating curves, discussed in

49

Chapter 3. Using statistical analysis techniques, the system considerably reduces the
subjectivity of the "manual" curve-fitting procedure. This is necessary to provide a basis
for consistent and standard work among technicians, as well as to provide a means to
quantify the "goodness of fit" of the curve to the data. The system also incorporates
specialized expertise, based on knowledge obtained from practising technicians. Existing
data bases, compiled over years of monitoring by the Department of Environment, are
used by the SDDSS for the establishment of rating curves.

The intent of the system development in this thesis, was to examine the concepts of
the SDA problem, and serve as a learning tool, for later development of a fully
operational SDDSS. For this reason the SDDSS will also be referred to as a Prototype

throughout the remainder of this thesis.

50

S. A PROTOTYPE DECISION SUPPORT SYSTEM

FOR STAGE-DISCHARGE ANALYSIS

This chapter discusses the application of DSS technology and concepts to the SDA
process. First, the problems of stage-discharge analysis are outlined and related to the
problem-solving capability of DSS technology. Next, the concept of a prototype DSS for
SDA is introduced and a description of the computer technologies integrated within the
SDDSS prototype. Finally, the operational structure of the SDDSS is presented to the

reader.

3.1 DSS and the Stage-Discharge Analysis Process

Chapter 3 presented the reader with a background of the S-D analysis practices
currently used by the Water Survey of Canada, a branch of the DOE. It described the
dynamic complexities of station controls and their changing physical characteristics.
Finally, the chapter outlined the main difference between stable and unstable channels and
the relevant parameters to consider with respect to the analysis of relations in each.

The main purpose of presenting the material and background in chapter 3 was to
outline the complexities involved in S-D analysis. SDA is not simply a process of
plotting stage and discharge measurements on a graph and fitting the most appropriate
french curve to the data. Nor is it a pure statistical problem of regression analysis. SDA

is an involved process, comprised of several fundamental procedures, reinforced with

51

various levels of human judgement, intuition and decision making. For this reason, a
DSS was consider for assisting in the process of SDA.

Some specific aspects of SDA have been identified, which fit neatly within the
conceptual structure of the "combined" DSS architecture, (see section 4.1.3). To begin,
data is the fundamental element of SDA, on which all other procedures and designs are
based. For this reason, the data management component of a DSS provides a facility for
efficient organization, storage and retrieval of S-D data. Statistical modelling using
regression analysis provide the ability to represent rating curves with mathematical
equations, replacing the need for generating hand-drawn curves and rating tables. Various
mathematical modelling techniques may be stored as routines in the modelbase component
of the DSS.

The interaction between the DSS and the user is extremely important issue in a DSS,
for obvious reasons. Technical knowledge must be transferred to and throughout the
system and results must be relayed back to the user. The dialogue component is typically
responsible for user-interface and the control of information within the system. However,
in the combined approach for conceptualizing a DSS, these tasks are handled by a central
control unit, linking the various components of the system.

A knowledge base was included for the representation of facts and information
regarding the specific problem domain. It is here that specific knowledge with respect

to SDA may be integrated into the development of S-D relationships.

52

5.2 Design Framework

The following section introduces the main design concepts of the Stage-Discharge
Decision Support System (SDDSS). A system architecture is presented, outlining three
distinct user modes. Aspects of the modelling theory and evaluation are also discussed

in the final section.

3.2.1 Analysis Concept

The basic design of the SDDSS was modelled around several main activities
performed by the Water Survey of Canada in the DOE. From these activities, the system
was divided into three main processes: Curve Development; Curve Use; and Curve
Modification. From a programming perspective, these processes were divided into
separate modules, in order to provide a design framework allowing for future additions
and modifications. Within the system, each process is made up of several smaller
procedures, which may be shared among other processes. Thus, the main system is a
modular architecture consisting of three main user-mode components, each linked to a
main menu and user-interface, as shown in Figure 3.

The main objective of SDA is the development of rating curves from S-D
observations, and is modelled within the first user mode, Curve Development. The SDA
concept designed within the system exhibits a hierarchical nature of data selection, as
shown in Figure 4. Developing a rating curve logically begins with the analysis of all
available data. The data is modelled using statistical techniques and represented with a

mathematical equation. The model is then plotted against the data and evaluated for its

53

USER INTERFACE

Main Menu
User Mode | User Mode 2 User Mode 3
Curve Curve
Development [& | Modification Curve Use
User Mode |
Outlier
Analysis

Figure 3. SDDSS Architecture.

54

All Measurements

Phase 1
(All Data)

Phase 2
(Specific Data)

Phase 3
(Outlier Analysis)

Complete Partial No Ice.
lce Cover lce Cover Open Flow
© ©
© ()
© ()
Non. LT
Influenced Inflgenced
LLELTT]
S & S 4
|
D

Figure 4. Hierarchical Data Selection.

55

oV

effectiveness in representing the data. This makes up the highest level of the analysis
hierarchy. Due to the complex graphical nature of most S-D relationships, it is unlikely
that one curve will apply to the entire flow regime of a stream. Only in cases where a
station is governed by some natural or manmade control with weir-like characteristics, is
it possible that a single curve is likely to represent an entire flow regime. Where such
weir-like conditions are not present, it is customary to represent different stage levels
and/or different flow conditions with separate curves.

In order to apply several curves to one stream, the data must be divided into smaller
groups or data sets, representative of particular stage levels or flow conditions. Once the
data sets are established, each is modelled individually in the same manner as the
previous data set containing all available measurements. This ability to segregate data
provides the second level of the analysis hierarchy and is shown as Phase 2 in Figure 4.
It is justified as the next logical step in developing a S-D relationship since measurements
are collected under various conditions, which can dramatically influence the shape of the
rating curve, as was discussed in Chapter 3.

Section 3.3 discussed the concept of section and channel controls and their relative
influence on S-D relationships. The geometry of a particular channel, its flood plain and
the nature of flooding in the stream are some of the basic factors which can determine
the overall relationship between stage and discharge. When presented graphically, the
relationship may display rough transitions between different flow regimes, making
mathematical modelling difficult. ~ Similarly, rising and falling stage under flood

conditions generally display a hysteresis loop, which can not be represented with a simple

56

mathematical function. Therefore, in each of these cases, it is necessary to analyze only
those measurements which are observed under a particular condition or specific water
level range.

Even within the boundaries of specific flow conditions and water level ranges,
measurements may still be influenced by random or unexpected conditions.
Measurements taken in the presence of such parameters may appear as outliers on the
graphical S-D plot. An ideal plot will not contain any outliers since the data modelled
should be those of one particular condition, with all other variables (parameters) held
constant. The presence of such outliers in a S-D relationship is analogous to the
unexplainable error associated with a laboratory experiment performed under less than
perfectly controlled conditions.

In S-D analysis, conditions are impossible to control but the errors however, are quite
often explainable. Therefore, segregating these explainable outliers from measurements
not influenced by physical parameters is likely to produce a smoother curve of
observations, which can be modelled for use under specific "pseudo controlled"
conditions. This segregation of explainable outliers comprises the third level of the
analysis hierarchy. The influenced measurements may be similarly grouped by their
specific conditions and modelled for application under those more specific conditions, as

shown in Figure 4.

57

5.2.2 Operational User Modes

The previous section introduced the concept of a hierarchical analysis scheme, making
up the main SDDSS structure. A general description of each of the three user mode

frameworks will now be presented, followed by a detailed discussion in the next section.

Curve Development, (CD)

The first main component of the SDDSS is the Curve Development (CD) module. It
is responsible for the creation and storage of new curves for various data selection
schemes. CD consists of four main tasks: data selection; data modelling; model
evaluation and outlier analysis. The procedure captured in this module is also accessed
by the curve modification module (discussed later), for use in reanalysing and updating
existing curves.

Data selection involves establishing a selection scheme for retrieving measurements
from the data base for modelling. Initially, the system begins with the selection of all
measurements recorded for the current station, (Phase 1 of Figure 4). However, the user
may skip this general selection scheme, and opt to select measurements on the basis of
specific conditions present during gauging, (Phase 2 of Figure 4). Examples of these
conditions include rapidly rising, falling or stable flow and various ice conditions. Once
the scheme is established, the system retrieves the S-D data, writes it to an external file
and displays it graphically.

The next task, data modelling, deals with the representation of the selected data. A

regression analysis is performed on the data, establishing the mathematical equation or

58

model, for the S-D relationship. In addition, the analysis outputs several statistical
parameters for evaluating the model. The data modelling framework allows multiple
models to be constructed for the data set, which may be compared for the best fit.

Model evaluation involves the comparison of multiple models with respect to the
statistical parameters, generated by the regression analysis. One of three parameters is
used for the comparison of models.

Finally, an outlier analysis is performed on the best fit model. The objective of this
task is to establish the condition(s) which may have caused a measurement to plot as an
outlier. Each outlier is isolated from the data set and information regrading the conditions
under which the measurement was observed, is referenced from the database. If no
information is available, the system prompts the user with a series of questions, trying to
establish the cause of the deviation.

Throughout the CD process, the framework generates these tasks in sequence but
allows the user to revert back to the initial task (data selection) if the system or user feels
the development is not progressing favourably. Generally, viewing the graphical
presentation of the data set will reveal whether or not the data can be represented with
one model. In the event that a data set exhibits a large amount of scatter, the user may
opt to select specific measurements from the database, relating to a specific condition.
Thus, the sequence of tasks may be restarted, beginning with the establishment of a new

data selection scheme.

59

Curve Use

The second component of the SDDSS, Curve Use (CU), is dedicated to the
computation of average daily discharges. Computations are made by applying water level
records to appropriate S-D curves created in the first system component. A table of
average daily flows for each month is displayed on the terminal monitor and is also
available on hard copy.

The procedure begins by having the user select which curve to be used. Next, a file
name is entered in which the water level recordings are stored. The water level records
may represent an entire year of daily water levels or only selected months which may be
specific to a particular curve. For days with active water level fluctuations, the file
format has been designed to allow for multiple water level records for one day. Once the
file name is entered, an external program is then executed by the system to compute the
table of average daily flows. The system displays the table to the user on the terminal

monitor, offers to print a hard copy if so desired.

Curve Modification

The third component of the prototype, Curve Modification (CM), is concerned with
updating curves as additional S-D data becomes available.

Curve modification begins with the selection of a curve and retrieving all S-D
measurements matching the curve definition scope. As measurements are retrieved, old
measurements (those used in the initial creation of the curve) and new measurements are

sorted and stored in two external files for plotting. Upon completion of the retrieval, both

60

sets of measurements are plotted in different colors with the curve. Upon viewing the
new measurements, the user may decide to re-model a new curve based on the addition
of the new measurements. In this case, the sets are combined and the system calls the
curve development system.

In the case that the new measurements are scarce or deviate significantly from the
curve, the user may choose to abort the curve modification procedure. Such action may
be chosen in order to either create an entirely new curve or wait for additional data to be
collected. The latter case may be necessary if a shift in the curve is suspected, with very

little data to substantiate the assumption.

3.2.3 Modelling and Evaluation

The statistical process of curve fitting can be very complex. Therefore, the design of
the SDDSS prototype has tried to organize the fitting process into a series of simple steps,
in order to simplify matters in the early stage of system’s overall development. The
modelling process described below, is contained within the framework of the CD module.

The first step of modelling involves linearizing the S-D data by transforming one or
both of the variables. In the current development state, the SDDSS uses a simple power
transformation of the independent variable, stage. Transformed stages are computed by
raising the measured stage values to the power of a value "T", ranging from 1.0 to 4.0.
This value range is based on experimentation with various rating curves, developed for
Manitoba rivers by the Department of Environment. At the present time, other

transformation methods are not available in the SDDSS. However, the SDDSS

61

framework was developed with an open architecture to the allow for additional inclusion
of different transformation methods. Optional transformation methods were not included
in the current system due to time constraints and due to the fact that the emphasis of this
work was to provide "logical framework", demonstrating the entire stage-discharge
analysis process, (as stated in Chapter 1). Future enhancements to the current
transformation procedure, as well as additional methods of transformation are discussed
in Chapter 7.

Next, a simple (linear) regression analysis is performed on the transformed stage and
discharge data. Output from the analysis includes the coefficient of determination (R2
value), the standard error of estimate (SEE) and the number of outliers (NOO). The first
two parameters are defined below, taken from Neter, Wasserman and Kutner (1989).

The coefficient of determination is computed from the standard statistical equation,

R2. SSTO-SSE __SSR
SSTO SSTO [1]

where SSE is the sum of squared variations due to model error, SSR is the sum of
squared variations due to the regression and SSTO is the total squared deviation. These

terms, used in equation [1], are calculated as follows,

SSR=X(¥ - Y)*
[2]

62

SSE-X(Y-Y)

[3]
SSTO-X(Y,-Y)
[4]
and where
- Y
Y- 3
E (n) [5]
Yi=b0+b1Xi
(6]

where X; is the independent variable (transformed stage data) of the regression analysis
and Y; is the dependant variable (discharge data).

The Standard Error of Estimate is calculated as follows,

SSE
(n-2) [7]

SEE-

where n is the sample size of the regression analysis and SSE is defined as above.
Graphically speaking, the Number of Outliers is defined as the number of data points

which lie outside allowable error limits defined for the model. In the current design of

63

the system, the allowable error limit for any particular model is supplied by the user as
a percentage. A default value of 30 percent is provided on the basis of experience with
several stations. Data points are then identified as outliers if the percent error between
the measured discharge and the model estimation of discharge exceeds the allowable error
limit.

These three output parameters are used within the system as a means of measuring
the goodness of fit of the model to the data, and will therefore be referred to as
evaluation parameters. Each is temporarily stored in the system for evaluation later in
the Curve Development process.

Within the curve development framework, the two main steps of modelling, (data
transformation and regression analysis) may be repeated multiple times to allow for curve
fitting using different transformation exponents. The output parameters from each
regression analysis, are all stored within the system with their respective transformation
exponents and a model identification label, for later comparison. Future development of
the system will include an automated routine to perform this iterative process, and more
elaborate methods of modelling, (see Chapter 7).

After performing one or more iterations of the modelling process, with varying
transformation exponents, the next step requires a comparison of the models with respect
to the three evaluation parameters. In the current version of the system, comparison of
models is required to be performed by the user. Depending on the data set and the
transformation exponents used, models may or may not differ significantly with respect

to one or more parameters. For example, the R2 parameter may indicate an insignificant

64

difference between two promising models whereas the NOO values for the two models
may be significantly different. In this case the NOO parameter may be used as the
deciding factor in selecting the "best fit" curve. Similarly, parameters may contradict
each other with respect to comparison of "goodness of fit". It is the responsibility of the
user to compare the relative differences in the parameter values for selection of a "best
fit" curve. Therefore, the user must have a good understanding of the statistical
parameters; their meanings and relative importance. A major goal of future development

of the system will be directed at automating this comparison procedure, (see Chapter 7).

5.3 Technology

Although the concepts of DSS have been around for many years, only in the past
decade has computer technology evolved to the stage where it could challenge the many
imaginations of its users. The design of computers with greater processing speeds and
memory capacity seems to be continuously accelerating. Computer programmers and
application developers have more power on their desktops today, than most companies
or government departments had in their offices only ten years ago. Combined with an
equally fast development of specialized computer software and support devices, today’s
computers are providing numerous possibilities.

One might think that such advanced technology comes at a very high price. This may
be true to a certain extent, in the case of new innovations. However, one dominant

attitude prevails among all computer buyers; no matter how fast and powerful one

65

machine or software is today, there will inevitably be one that is even more so tomorrow.
The reality of this statement, combined with the extremely competitive market, has made
computer hardware and software products evermore affordable for the majority of
consumers.

The following sections will introduce several products used in the development of the
SDDSS prototype. These products have been chosen on the basis of their widely

accepted reputations and capability of integration with other products.

5.3.1 Operating Platform

At the end of section 4.1, the concept of DSS was introduced as an integration of
three main components; a database system, a modelbase, and a system control manager.
The tasks of each of these components may be performed by one or several software
products and/or programming languages. Deciding on a method of integrating different
software and programming languages can be a serious issue for DSS developers.
Generally all software tools and languages use their own specific format for reading and
writing data to and from files. Thus, the problem of making it possible to move data
between several different tools or languages in one application, (known as software
integration) becomes obvious.

In some cases, programmers may choose to avoid integration problems, and develop
their application using one programming language or software tool for all components of
the DSS. A disadvantage to this alternative is that it is usually a lengthy process since

some tasks which may be easily performed by other specialized software tools, must be

66

programmed from scratch in the one unique tool or language selected. This method is
typically used for creating full-blown operational systems from specific detailed plans,
rather than for experimenting in the initial stages of system development.

The obvious alternative to the above method requires the developer to deal with the
problem of integration of several tools or languages. This usually requires the developer
to program customized routines to link the various tools, so that data may be transferred
and shared in the application. Many commercial software is equipped with utlities for
allowing data to be transferred between other well known tools, using standardized or
common data formats. Thus using such highly integratable software is highly
advantageous to a developer, since the amount of customized programming required is
reduced. For this reason, integrating specialized software is a suitable method for early
development of DSS applications.

Due to the amount of experimentation required in the early development stages of the
SDDSS, it was decided that the system should be developed by integrating several
different software and languages, while handling integration problems as they arose. In
order to attain this type of software integration, a workstation platform was selected for
the development of the SDDSS prototype.

The development of the SDDSS was performed on a Sparc 1+ workstation, by Sun
Microsystems. The machine is equipped with a 340 megabyte (MB) hard drive for data
and software storage and 28 MB of random access memory (RAM) for processing. Other
peripheral equipment includes a 150 MB tape drive, a Sparc postscript laser printer and

an Epson LX-810 dot matrix printer. In addition, the workstation is connected to the

67

University of Manitoba’s mainframe Unix system, by means of an Ethernet connection.
The OpenWin 2 (X Windows) graphical windowing environment was used as the
operational platform in the SDDSS, for bringing the various software tools together.

Workstation computing environments, such as the Sparc 1+, possess several benefits
(in comparison to the common desktop personal computer or PC) which facilitate the
integration of multiple software components. To begin with, workstations are
fundamentally equipped with extremely fast and powerful microprocessors than PCs, thus
providing faster and more efficient mechanisms for managing large processing tasks.
They are equipped with sophisticated mechanisms for multi-task processing, enabling
several programs, processes and/or software to run simultaneously. Workstation
platforms, such as the Sparc 1+, are also not as confined as PCs in the amount of random
access memory (RAM) available and are easily expandable to larger amounts. Combined
with user-friendly windowing environments, developers are able to program very
efficiently and produce applications which incorporate the processing of simultaneous
duties.

In addition, workstations generally feature large display monitors with high resolution
screens, enabling windowing environments to utilize their full potential. Applications can
employ several windows of significant sizes simultaneously, allowing users to visually
comprehend information without having to resize or close windows.

Finally, the networking capabilities associated with most workstations are highly
sophisticated, allowing developers to create applications which stretch beyond the

boundary of office walls. Organizations using workstation platforms can link machines

68

from opposite ends of a country with relative ease and also maintain applications from

any remote site,

5.3.2 System Control

Having selected the operational platform for the DSS, the next step of the prototyping
process involves the selection of the various tools, which will be assigned the tasks of the
DSS system. Typically, the main task of a DSS involves the overall control of the
system, performed by a system control manager (SCM). From an operational perspective,
it is the SCM which is responsible for the coordination of specific processing tasks of the
various DSS components and the integration of their information. It is also responsible
for communication between the system and the user, through the use of devices such as
mouse, keyboard, monitors and printers.

From the design perspective, the type of DSS architecture used to conceptualize the
problem domain and the various types of components employed will determine how the
SCM is represented in the overall system. It may be a programming language such as
C or Fortran, capable of integrating various data structures and modelling routines. In
other cases, developers often employ a specialized software product or "tool", which
supports integration with other products. Expert system shells are one type of tool which
have been gaining popularity over recent years with application developers. They
specialize in providing programming environments for the modelling of real-life problems.

One of the largest dilemmas of the software engineering process, and similarly in the

DSS development process, is that there are always inevitable mistakes to be made during

69

the process. Fundamental mistakes are generally the result of misunderstanding between
developers and end users and by poor or incomplete specifications provided by the end
user (Sommerville, 1985). 1t is the occurrence of fundamental mistakes which often
plague and slow down the development process. Mistakes such as these, often require
developers to redesign and reprogram large segments of their systems or in some cases,
restart from scratch. This common dilemma has been termed the "water fall effect” of
software engineering, since the process is directed by an irreversible (gravitational-like)
force.

Expert system shells are particularly useful in the early stages of DSS development.
They provide developers with the ability to perform rapid prototyping of an application,
exploring many facets of the entire problem domain, in a fast and comprehensive manner.
As a result, potential problems can be recognized faster, without the need for exhaustive
hours of programming. Depending on the degree of development problems, in the event
that any exist, and the amount of reprogramming required, the prototype may either
evolve into a finalized operational system, or discarded and used as a model for a new
system, programmed from scratch.

The ES shell, Nexpert Object by Neuron Data Inc. (1991), was selected as an
efficient tool for the development of the SDDSS. This decision was based on its
reputation, availability and its ability to deliver completed applications in different
(computer) usable forms, (ie: DEC-Vax, PC, Maclntosh and Unix). Nexpert provides
several distinct representation mechanisms which allow developers to capture and model

non-algorithmic, decision making problems.

70

In Nexpert Object factual, procedural and descriptive information of an expert’s
domain is modelled using the two basic structures of Nexpert Object: rules and objects.
Rules form one of the basic elements of a knowledge base, which stores the domain
knowledge of specific experts. Nexpert rules are made up of two parts. The first part
or condition block, is made up of boolean expressions or If-clauses which verify a
particular situation. They must be satisfied in order for the inference engine to activate
the second part of the rule, the actions block. This second part of the rule may contain
one or more Do-actions related to the specific conditions of the situation. In addition, all
Nexpert rules are assigned a Aypothesis which is established upon the conclusion of the
condition block. Hypothesis may be used in rule conditions to form logical links between
rules, thus enhancing the knowledge framework.

Descriptive knowledge is stored in the objects of a Nexpert knowledge base. The use
of objects within Nexpert is analogous to that of variables in an algorithm, programmed
in a language such as Fortran. Objects may contain any number of property slots, which
describe the characteristics of a particular object. Nexpert’s classes are used to group
specific objects which share common characteristics or properties. Classes may be used
to transfer knowledge among objects by means of the Nexpert inkeritance mechanism.

The inference engine of Nexpert Object is the main element responsible for the
processing of rules. Information of a problem domain is stored in the knowledge base
as rules, with no particular solution path. It is the responsibility of the inference engine
to determine the strategy and perform a logical search of the problem space, in order to

reach a solution.

71

Creating knowledge-based applications in Nexpert Object may be accomplished by
means of various graphical editing windows. Alternately, developers may program
knowledge-base structures in Nexpert’s proprietary language code. An Application
Programming Interface allows developers to incorporate external routines (programmed
in C, Fortran, Pascal, etc.) within their applications, or alternately, to embed Nexpert
Object knowledge-base frameworks directly into their own object-oriented (C++)
application code.

The design of the SDDSS employed Nexpert Object as the system control manager
of the system framework. Thus, Nexpert provides the integration between the various
elements shown in the system architecture in Figure 3. Each of the three user modes (see
Section 5.2.2) is contained within an individual knowledge-base. The overall control of
these knowledge-bases and external program calls are managed by an additional

knowledge-base and the Nexpert Object inference engine.

3.3.3 Database Management

Developing a DSS for SDA requires the management of considerable amounts of
streamflow data. The Oracle Relational Database Management System (RDBMS) by
Oracle Corporation was selected to provide the database management component in the
SDDSS prototype. This utility was selected on the basis of its widely accepted reputation
as an industry leader in the domain of database systems. In addition, testing of the
SDDSS during development required hydrometric data which was available and provided

in the Oracle format from the Department of Environment.

72

One final reason for selecting Oracle was because it is directly supported by the
Nexpert Object development tool. Data may be easily transferred between Oracle tables
and Nexpert Object property slots, via the Nexpert-Oracle Bridge, provided by Neuron
Data. Nexpert supports the use of SQL commands (discussed below) directly in its rule
structures, to perform necessary read, write and miscellaneous maintenance duties in
Oracle tables. The bridge thus provides an essential integration mechanism within the
SDDSS.

Relational systems, such as Oracle, are made up of one main organizational structure;
the table. Data records are stored in individual rows of a table, and organized by specific
record information in table columns. Oracle uses single relational commands to retrieve,
update and delete records in tables. These commands make up the ANSI standardized
structured query language (SQL, pronounced "sequel") used in all relation database
management systems. Using SQL, users specify what actions are to be performed on data

tables, rather than sow the actions should be performed.

5.3.4 User Interface

Another essential characteristic of a DSS is its ability to communicate with its end
user(s). This characteristic alone may determine the ultimate success or failure of a DSS,
since a system which is difficult to use, most likely won’t be. Therefore, the user-
interface component of a DSS must present information which is easy and simple to
comprehend. Graphical user interfaces (GUI) incorporate computer graphics and colors

to display information to users in logical and visually pleasing formats. GUIs also

73

emphasize the simplification of user input by means of menus with selection items and
buttons. Data and results are presented as pictures to improve user comprehension.

Several of these GUI concepts were incorporated in the SDDSS to demonstrate their
potential application. S-D data and rating curves are displayed visually using an external
graphing utility called XGraph (Harrison, 1986). This program was developed for use on
X Windows Systems. The XGraph window is capable of presenting multiple sets of data
simultaneously, each represented in a different colour.

Two additional windows are provided by Nexpert Object, for the user interface. User
input is handled exclusively by the Session Control window, which is responsible for
prompting the user for input and providing options to be selected whenever possible.
Nexpert Apropos windows provide the second window for displaying processing messages
and numerical results to the user.

The two Nexpert Object windows and Xgraph window make up the basic
"workbench" of the SDDSS prototype, shown in Figure 5. Nexpert Object directly
controls the information displayed in the two windows on the left of the workbench. It
is also responsible for the arrangement of S-D data and curves, and subsequent calling of

the XGraph window for presentation.

5.3.5 Modelling

The final component of the DSS, deserving particular attention is the modelling
facility. As was mentioned previously, the SDDSS represents S-D relations as

mathematical (regression) models. With respect to the prototype design, the modelling

74

SESSION. CONTROL. -

You are at Level 2 (Model Evaluation) of Phase 2.
PROCEED WITH ...

Nselect an option _
Evaluate Models
Generate Another Model

Station - 05L.J047

o NOTKNOUN B

Stage, (m)
APROPDS ~ #2

2.00
1.90 Outhiers
1.80

170
Hodel Transform Rumber
Nome Exponent Outliers S.E.E. R2 160

MODEL SUMMARY SHEET

1.50
1.40
1.30
1.20
1.10
1.00
0.90

0.80
0.0 i

0.60 '/
0.50 ==ty
0.40 —

030
020 —7
0.10 -
000 I

-0.10 Discharge
Close Keep I 000 10.00 20.00 3000 40.00 50.00 6000

HLL 2.30 36 0.443 0.9964

Figure 5. SDDSS Workbench.

procedure is an external process, called from the system control component.
This modelling task is performed by a Unix script and Fortran program. Nexpert
Object is responsible for executing the script with a string of necessary command

parameters. A Unix script is simply a collection of Unix commands, executed

75

sequentially. It is the responsibility of the script to prepare an input file from the
parameter string, execute the regression analysis (Fortran) program, and redirect the
analysis output, for input by Nexpert once the script has terminated. It should be noted
that this technique of combining of Unix scripts and Fortran programs is used repeatedly
throughout the DSS, for other assorted tasks such as message production and formatting

data.

5.4 Operational Structure

The previous sections discussed the framework of processes designed within the
system and the technologies incorporated in the SDDSS. This section will discuss the
various responsibilities of Nexpert Object, Oracle and the other programs in the overall
framework. Each user modes and the main menu is introduced as a separate knowledge-
base controlled by the Nexpert Object system. Two additional knowledge-bases make up
the master system, controlling the loading, unloading and execution of all other
knowledge-bases. This control structure is shown in Figure 6.

One note should be made regarding the following discussion of the system processes.
All references made to processes performed by knowledge-bases are controlled by the

Nexpert Object tool.

76

5.4.1 Main Menu

The main menu knowledge base is automatically loaded when the master system is
started. This KB has two main purposes. First, it is responsible for setting the current
station for study. Second, it marks the starting point of the three user modes. It also

contains the framework for the Curve Use module, which is discussed later in this
chapter.

When started by the master KB, the first task of the main menu KB is to establish the
current study station. The KB performs a sequential query of the Oracle table containing
the list of available stations in the system. As each station is read its identification
number and name are printed to a Unix file. After all stations are printed, the file of
station names is displayed. The user is then prompted to input the identification number
of the station to select as the current study station. A verification of the input is
performed by the KB and if accepted, the current study station is appropriately set.

Setting the current station involves establishing the Oracle table names holding all
data corresponding to the selected station. Each individual station has a group of tables
dedicated to it uniquely. Tables include information such as S-D observations, curve
definitions and observation attributes and usage. One main station list table contains the
available station name, identification numbers and the names of the information tables
associated with each station. When setting the current study station, the KB retrieves the
list of table names into specific system variables. These variables provide the table names
to be queried by the system control manager, when information is required to be

retrieved.

77

AO_main.tkb
Definitions
{ Master Systemn
Al_main.tkb
System
Operation
A2_main.tkb A3_main.tkb Ad_maln.tkb AS_main.tkb
Main Menu & Curve Qutlier Curve
Curve Use Development Analysis Modification

Figure 6. Nexpert Object organization of SDDSS.

5.4.2 Curve Development

The Curve Development (CD) module is comprised of two individual KBs, one for
the modelling process and the other for outlier analysis. Each is loaded and executed
independently from the main system KB. Upon selecting Curve Development from the
main menu, the master system unloads the main menu KB and loads the modelling KB.

Figure 7 shows a diagram of the entire CD process.

78

Modelling

Once loaded, the modelling KB begins with establishing the data selection phase. The
data selection phase refers to one of three data query schemes, indicating the level of the
CD process. Phase 1 and 2 deal with the selection of all data and specific data from the
database, respectively. Data transferred from the outlier analysis back to curve
development is referred to as the third selection phase. CD always begins with either
phase 1 or phase 2 data selection, depending on the user’s preference.

Establishing the phase number informs the modelling KB of what type of SQL query
string to construct. Selecting phase 1 instructs the system to simply select all available
5-D measurements from the database. The phase 2 option instructs the system to
construct a more complex query statement to select specific measurements from the
database, (eg. open water or complete ice cover measurements). In the latter case, the
system prompts the user for details regarding the type of query that is desired. Further
explanation of the types of Phase 2 queries, is discussed in detail in section 6.2.1.

In either case, once the selection phase and query string are determined Nexpert
Object begins a sequential retrieval of data from the Oracle measurement tables. Only
measurements matching the conditions of the query string are retrieved by Nexpert. Each
S-D measurement record is retrieved into a temporary variable in Nexpert and processed
before the next measurement is retrieved. Processing tasks include checking for
maximum and minimum stage and discharge values and writing the stage and discharge
values to a Unix file for plotting and modelling. After all measurements are retrieved,

a summary sheet is displayed and the system calls the plotting utility (XGraph) to display

79

H & l@ 2

Select current
station

Y

Select scope of
data query

Y

Retrieve S-D data

v

View S-D data

v

Figure 7.

I
\u
— - Model data e —
@ + @@ View curve &
View curve & outliers
data »
Y o |
&
Evaluate model(s) [Analyse outliers
(N10) +
L/

Store model
(curve)

Legend of Utilities

(N]OY
\Y[¢/

N=
O=
U=
G=

SDDSS Curve Development Process.

80

Nexpen Object

Oracle RDBMS

Unix / Fortran Programs
Xgraph Utility

the S-D measurements selected. Data selection is thus complete and the user may
continue to the modelling step or choose to re-select a different data set.

A brief introduction at the end of section 5.2 discussed the modelling process
involving a series of three simple steps. In brief, in the first step (transformation), the
system prompts the user for a real number and then checks that it is within the allowable
limits (1.0 - 4.0). Next, the KB activates an external Unix script (LRM) to execute the
linear regression analysis program. A string of input parameters is included when LRM
is called from Nexpert.

LRM is responsible for three distinct tasks. Firstly, it prepares the input file for the
fortran program, LR2, which performs the simple linear regression analysis. The input
file is constructed from several input parameters transferred to LRM when it is called
from Nexpert. The second task is to call LR2, to perform the regression analysis.
Finally, LRM copies the output files of LR2 to filenames listed in the LRM parameter
string.

The Fortran program LR2 has additional tasks, aside from computing the model
parameters. Several evaluation criteria are also computed, including the number of
outliers in the data set. An additional task is to create an "outlier file" of S-D
measurements which do not fall within the allowable error limits of the curve. These
limits are user specified, with a default value of 30 percent, as described in section 5.2.3.
The allowable limit in percent is input to LR2 in its input file prepared by LRM. As
outlying S-D points are identified, they are counted and copied to the outlier file for

plotting later.

81

After the execution of LRM is completed, Nexpert retrieves the output from LRM and
stores it temporarily as a separate model. The outlier file name is additionally stored with
the model. The system then calls a second Unix script called GC, to generate a curve
file, to be used in presenting the curve graphically. A curve file is simply an ASCII text
file of X-Y coordinates, representing the curve equation. This is required since XGraph
cannot plot mathematical equations directly. Nexpert prepares a string of parameters for
GC including the transformation exponent, the model parameters and the maximum stage
of the data set used in generating the model.

Similar to LRM, GC prepares an input file and calls a FORTRAN program (GCRV)
to generate a file of X-Y coordinates based on the model equation. Once GCRV
generates the curve file, GC writes it to an output filename (specified in the GC parameter
string), and returns control to Nexpert. Finally, Nexpert executes XGR, a third Unix
script, to plot the data, outliers, and the curve. In order to do this, the KB first merges
the data set file, the curve file, and the outlier file into one file, with titles for each data
set. Like LRM and GC, XGR receives an input parameter string which it interprets. This
string contains the merged file name, the extreme axis limits and a graph title. XGR
transfers these parameters to Unix system variables to be used as options in the XGraph
command string. When executed, XGraph temporarily suspends input to Nexpert. The
XGraph window must be closed in order for Nexpert to regain control.

As was mentioned in section 5.2, the process of data modelling and plotting may be
repeated multiple times, in order to generate several models for comparison. Therefore,

after each model is stored in Nexpert, the KB prompts the user to either continue with:

82

1) evaluating the models or;

2) generating another model.
Option two obviously restarts the modelling process described above. The first option
exits the modelling process and starts the evaluation process.

The single objective of the evaluation process is to establish which of the multiple
models (assuming more than one was generated) is the "best fit" curve. In order to
compare the models, three evaluation criteria are presented to the user. R2, SEE and
NOO values are displayed for each separate model after each call of the LRM script. A
similar combination Unix script/Fortran program routine performs the formatting of the
regression results in the model summary table. The system will allow the user to specify
by which criteria the models should be judged. As discussed in section 5.2.3, the current
system requires the user to compare the evaluation parameters and selecting one that will
be used as the selection criteria. Once determined, Nexpert compares the curves with
respect to the selected criteria and displays the name of the selected "best fit" curve at the
bottom of the model summary table.

The selection of the "best fit" model marks the end of the modelling process. At this
point in the system framework, the user may select one of three possible actions:

1) re-define the data set;
2) store the "best fit" model or;
3) perform an outlier analysis.
In the case of the first option, the system resets the CD module variables and

automatically restarts in the phase 2 data selection scheme. Option 2 causes the system

83

to store the model as a curve in the Oracle RDBMS using a Nexpert Object "atomic"
write statement. The information stored includes the model parameters, the query
definition, and limitations of the model’s use. Control is then returned to the main system
KB. Option 3 sets the outlier analysis as the next process to be initiated by the main
system. The modelling KB is then exited and control returns to the main system KB.

Once there, the main system KB loads and starts the Outlier Analysis knowledge base.

Outlier Analysis

To begin the Outlier Analysis (OA), the SCM performs the identical sequential query
used in either the phase 1 or 2 data selection schemes of the modelling process. This
time as each measurement is retrieved from the Oracle table, the measurement is analyzed
with respect to the "best fit" model determined previously. To begin, the measurement
is classified as either an "accepted" measurement, that is within allowable error limits, or
an outlier. In the former case, the stage-discharge measurement pair is written to a data
file of "accepted” measurements. If it is recognized as an outlier from the "best curve",
the system tries to establish the cause of the deviation.

A window displays the outlying measurement values for stage and discharge, the date
of the observation, and other related information. The OA system then checks the
measurement information regarding conditions of the observation. If none exist in the
database with measurement records, the user is questioned for the information. The goal
of the questions is to classify the outlier in one of eight possible categories, relating to

a specific cause of deviation. Possible causes of deviation and their respective codes

84

include:

1) beaver activity (BV);

2) meander cut-offs in the channel (CO);

3) debris in the channel (DB);

4) rapidly falling stage (RF);

5) rapidly rising stage (RR);

6) weed growth in the channel (WE);

7) strong wind during measurement (W1);

8) flow from nearby tributaries (TR); and

9) unexplainable error (UX).
Once classified, the measurement is stored in a corresponding data file for plotting later.
Outliers with multiple causes of deviation are coded as MU and stored in a separate file.
It should be noted that other sources of deviation exist, however they were not included
in the current system for simplicity. The system is in no way limited to the addition of
other sources. Future work should consider grouping influences of deviation into
categories such as backwater related, (eg. beaver activity, debris, tributaries, ice jamming,
etc.), slope change related, (eg. meander cut-offs and channel modification) and friction
change related, (eg. weed growth, and wind), for further analysis.

In addition, as each measurement is analyzed, (and categorized if it is an outlier) its

measurement identification number is stored in a separate Oracle table with its
attribute(s). The attributes are used to indicate the cause of the deviation, using the codes

listed above. A curve identification number is also stored with the measurements, to

85

distinguish which curve the measurement was used in developing. These records are
stored for use in future developments of the overall system.

Upon completing the sequential retrieval of all the measurements, the KB presents a
summary of the outliers identified during the previous analysis. The system also displays
all measurements and the curve using XGraph. Assorted outlier categories are shown in
different colours for identification, along with the accepted measurements and the curve
created in the modelling process. The XGR Unix script is used for the plotting of the
various S-D measurements. Nexpert merges the various outlier and accepted measures
files with the curve file into one file for XGraph to read as input.

After viewing the plot, the system allows the user to either abort the curve
development process entirely or continue with remodelling of only the accepted
measurements. In either case, the Outlier Analysis KB is unloaded and control returns
to the master system KB. If the remodelling option is chosen, the OA system sets the
selection scheme to Phase 3, and instructs the master system to re-call the modelling KB.
Once loaded, the modelling KB executes the modelling process loop as described earlier.
The data set used contains only accepted measurements defined in the outlier analysis.

A final note should be made regarding the execution of the modelling process using
Phase 3 data. Once the model evaluation has been completed and a new "best fit" curve
is chosen, the system does not permit another outlier analysis. This restriction was

included to avoid a second or several iterations of modelling and stratification of outliers.

86

5.4.3 Curve Use

The sole purpose of the Curve Use (CU) user mode is to compute average daily flows
from a rating curve, and report them in tabular form. In the current design, the simple
framework of this module was easily incorporated within the main menu KB. Later
development of the system will see this mode as a separate KB as its options become
more diverse.

Computing average daily flows consists of three simple steps. First, the curve to be
used in the computation of discharges is selected. Next, a file name is entered by the
user, containing a series of water level records. Finally, the discharge table is computed
and displayed to the user. A hard copy of the table is also available upon request by the
user.

To begin the process (Figure 8), the KB forms a summary of curves currently stored
for the previously selected study station. The system uses a sequential retrieval to
compile the curve listing. As each curve is retrieved from Oracle, its definition and
attributes are written to an external Unix file. The previous integration method of
combining the use of a Unix script and Fortran program is adopted here to perform this
task. Once the list is compiled it is displayed to the user and the system prompts the user
to select the curve to be used. Within the listing, each curve is catalogued by its curve
identification number. When the user inputs a curve id number, the system verifies it and
then retrieves all relevant curve information into a group of "current curve" variables.

Next, the system continues the process by prompting the user for the file name

containing the water level records. The file format was designed as a preliminary

&7

prototype, proposing a possible structure to be used in the system. Each day in the

records is included on one line in the file, with a maximum of 10 levels allowed per day.

Figure 8.

Select current
stadon

Y

S5,

Select current
curve

Y

Input water level

© B

file name
. Y
v Compute

discharge table

r

View discharge
table

Y

Print discharge
table

Legend of Utilities

SDDSS Curve Use process.

N = Nexpert Object

O = Oracle RDBMS

U = Unix / Fortran Programs
G = Xgraph Utility

Using multiple records in one day allows for the representation of rapidly fluctuating
water levels. Months of records are separated by a single blank line.

Computation of daily flows and the formatted flow table is performed using a Fortran
program. Again, a Unix script is called from the KB with a string of parameters
containing the model parameters and the input file name of the water level records. The
script interprets the input string and formats an input file for the fortran program. It then
executes the fortran program which compiles the formatted table of flows. When
completed, control returns to the KB, which in turn displays the table to the user in a
viewing window. A hard copy is also made available to the user, after the display
window is closed. Printing the table is performed using the Unix "Ipr" command, directly
from the KB. Output is sent to the local default printer. An example of printed table is

shown in Figure 9.

5.4.4 Curve Modification

The Curve Modification (CM) module of the SDDSS is concerned with updating
existing curves with additional S-D observations as they become available. The
processing framework is shown in Figure 10.

Processing begins in the main menu KB, with the selection of a curve from the curve
listing. The procedure for compiling and displaying the curve list, as well as the selection
process is identical to that used in the previous section. Once the curve is selected it is
set as the current curve and control is returned to the master KB.

Next, the master KB loads the Curve Modification KB. The latter is responsible for

3y

26~JUN-92

DAILY DISCHARGE IN CUBIC METERS PER SECONL

DAY JAN FEB MAR APR MAY JUN JUL AUC

1 31.512 20.663
2 38.813 18.745
3 62.776 17.145
4
5

64.332 14.452

6 58.373 12.575
7 55.878 10.118
8 57.129 10.848
9 51.229 8.418
10 46.407 6.092
11 48,218 5.718
12 52.722 4.010
13 55.393 2.639
14 50.681 1.995
15 45.743 2.068
i6 40.518 2.552
17 : 37.244 2.729
18 33.794 2.501
19 33.918 2.056
20 30.634 1.653
21 34.025 1.605
22 38.307 2.356
23 42.464 2.505
24 37.816 2.941
25 34.889 1.889
26 34.283 1.366
27 29.662 2.104
28 26.700 2.134
29 25.465 3.106
30 24.379 4.145
31 22.806
MAX 67.309 20.663
MIN 22.806 1.366
MEAN 42.368 6.255

MAXIMUM Daily Flow
MINIMUM Daily Flow

67.309 cu.m/s
1.366 cu.m/s

]

Figure 9. Sample flow table.

90

B & & &

(€2
1/

N

Select current
station

Y

Select current
curve

Y

Retrieve curve
information

v

Rebuild query
string

Y

Retrieve & sort
S-D data

Y

D

Figure 10.

View curve &
old/new data

-—p Abort Curve

v

Continue with
"Model Data" stage

of Curve

Development Process

Modificaton

Legend of Utilities

. N = Nexpert Object
NIOY * O = Oracle RDBMS
\U[G/ U =Unix/Fortran Programs

G = Xgraph Utility

SDDSS Curve Modification process.

91

the retrieval of S-D measurements for updating the current curve. A query string is
reconstructed from information retrieved with the curve. The reconstructed query is
exactly the same as that used in selecting measurements, which in turn were used in
defining the current curve.

During the retrieval process, the system classifies measurement as either old or new.
Old measurements are defined as those that were used in the development of the current
curve at some earlier date. To distinguish the transition between old and new
measurements, the last old measurement date is stored with the curve information, at the
time of curve development. Any measurements recorded after this date are classified as
new measurements.

Classification is performed during a sequential retrieval of measurements from the
appropriate Oracle table for the current study station. As each measurement is classified,
it is written to one of two Unix files of old and new measurements. In addition, both old
and new measurements are stored in a third file, used later in the modelling phase or the
Curve Development module.

After the retrieval has been completed, a curve file is generated using GCRV (section
5.3.2) for graphical representation of the current curve. This file is merged with the two
Unix measurement files for use as XGraph input. Finally, the system displays the curve
with the old and new measurements shown in different colours.

At this point in the CM framework, the user may continue with the updating process
or abort the system, without changing the current curve. The latter option simply sends

control back to the master KB which ends the session.

92

Continuation of the process, involves implementing the Curve Development KB using
the combined set of old and new measurements as the model data. The CM KB sets the
CD phase number to 4 prior to exiting to the master KB. Setting phase 4 as the selection
scheme indicates to the CD module that the data to be modelled has been transferred from
the CM module. The modelling process within the curve development framework follows
the same procedures as the phases 1 and 2. The only difference is that phase 4 indicates
to the system that an existing curve is being modified rather than created from scratch.
This condition is only relevant in the case where the user decides to store a curve
modelled on the combined data set. In this case, the system performs a SQL "delete"
command to remove the curve from the Oracle tables. The new model is then stored

using the normal CD procedure.

93

6. CASE STUDY

APPLICATION OF SDDSS TO EDWARDS CREEK

The purpose of this chapter is to demonstrate the Curve Development and Curve Use
modes of the system. Data collected from Edwards Creek, located near Dauphin,

Manitoba, was selected for the demonstration of the system components.

6.1 The Study Station

Upon entering the SDDSS, the user is immediately prompted to select a current
station from a list of possible stations. For this study, data collected at three stations was
obtained from the Winnipeg Water Resources Branch of the DOE. A list of these stations
and their respective identification numbers are shown in Figure 11.

The gauging station at Edwards Creek Drain, below Jackfish Creek (No. 05L.J047)
was established in the early 1980s and began producing streamflow data in 1981. Figure
12 shows a sketch of the site, including equipment and benchmarks. It was originally
controlled naturally and later in 1983, a steel sheet pile weir was installed, 50 meters
downstream of the gauge. The station is equipped with a cableway for high flow
conditions, otherwise wading is the typical method for stream gauging. The relation for
the station is categorized as stable, based on the specific gauge plots shown in Figure 1,
(see section 3.4). Approximately 12 measurements are recorded each year; the majority
of which are taken during open flow conditions. Water level records are often adjusted

to compensate for frequent shifts caused by ice and aquatic vegetation. As of 1991, seven

94

curves had been constructed to account for permanent curve shifts experienced, since the

establishment of the station, almost 10 years prior.

APROPOS #2

STATION LIST SUMMARY SHEET

Station
No, Name

05LHO05 WATERHEN RIVER NEAR WATERHEN

05LJ047 EDWARDS CREEK DRAIN BELOW JACKFISH CREEK
05LM006 DAUPHIN RIVER NEAR DAUPHIN RIVER

050E007 JOUBERT CREEK AT ST-PIERRE-JOLYS

05CK004 RED DEER RIVER NEéR BINDLOSS

11AA0O1 NORTH MILK RIVER NEAR INT, BOUNDARY

Close Keep

Figure 11. Example station list.

95

s .
——— Dauphin

Edwards

Creet

N

\g\‘\‘

\\ 8 Sediment Observer
S
- .
~
\
i'/

Figure 12 (a). Map of Edwards Creek area.

148i-2

CABLEVAY

NORTH

R B
) FUNCTIONAL= \—SEDIMENT
ey, 20 VELL SAMPLER

EDWARDS
CREEK

(HOT 10 ScalE)

Figure 12 (b). Sketch of Edwards Creek gauging site.

96

6.2 Development of a Rating Curve

Selecting the Make New Curve option from the main menu starts the curve
development system. An additional KB is loaded and the system presents two options.

Curve development commences with the selection of stage-discharge measurements.

6.2.1 Selecting Measurements

Initially, two options are presented to the user regarding S-D measurement to be
selected. The system allows the user to select either all measurements (Phase 1) from the
database or select specific measurements according to one of several predefined schemes,
(Phase 2). It is recommended that the user begin with the All Measurements option, and
view the entire data set. Later, after the measurements are viewed, the user is given the
opportunity to switch to the Specific Measurements option. Figure 13 is a plot of all
measurements recorded for Edwards Creek, obtained using the former option.

Upon viewing this plot, it becomes apparent that there is considerable scatter. It is
likely to be associated with backwater conditions created by rapidly rising and falling
stages, and/or ice conditions. Terminating the display continues the session with the next
step.

At the current state in the development process the user is prompted to either continue
with the modelling stage or return to the selection stage to Reselect Specific
Measurements. Modelling such scattered data is not likely to produce a meaningful
representation of the true stage-discharge relationship. Therefore, the latter option was

chosen in the case study to reduce the scope of the data selection process.

97

Station - 05L.J047
Stage, (m)
2.00 PHSTDAT
1.90
1.80
1.70
1.60
1.50 ;
1.40 .
1.30
1.20
1.10 —
1.00 > ;
0.90 ;
0.80
0.70 —
0.60 -
0.50
0.40
0.30
0.20
0.10
0.00

Discharge (cms)
0.00 10.00 20.00 30.00 40.00 50.00 60.00

Figure 13. All measurements (Phase 1) selected for Edwards Creek.

98

Several selection schemes are currently supported in the SDDSS for selecting specific
measurements (Phase 2). Each scheme is intended to focus on specific measurement
conditions. The main schemes include:

1) ice conditions;

2) open flow conditions;

3) rapidly changing stage conditions and;
4) time range.

Unfortunately, the remark data and comments obtained from the DOE for this study
were incomplete with respect to information regarding the first three selection schemes.
The time range scheme uses the date of each measurement as delimiting information,
which was included in the data obtained. Therefore, this fourth option was used for
selecting specific measurements. It should be noted that the future success of the SDDSS
will require a more sophisticated coding system for recording specific site conditions by
technicians. Such a restructuring of a coding system for organizations like the
Department of Environment, may cause significant implications within the organization,
but none the less, will be essential to allow the SDDSS to perform the complex analysis
procedures, necessary for accurate rating curves.

The Time Range option requires the user to specify two dates (month and day) in the
calender year representing start and stop dates for the range. All measurements recorded
between the two days (in any year) are selected for the current data set. Figure 14 shows
the reduced data set, based on measurements recorded between the first day in May and

the last day in August. This time range was selected as such to simulate the selection of

99

Station - 05LJ047
Stage, (m)

1.80 PHS2.DAT

1.70
1.60
1.50
1.40 .
1.30 -
1.20
1.10
1.00
0.90
0.80
0.70 .
0.60
0.50
0.40
0.30
0.20
0.10
0.00

ool

RS

Discharge (cms)
0.00 10.00 20.00 30.00 40.00 50.00 60.00

Figure 14. Specific measurements selected, May to August observations.

100

measurements recorded during open flow conditions. In comparison to Figure 13, the
reduced data set displays a more definite shape. A summary of results from the data
selection procedure is shown in Figure 15. The reduced data set shown in Figure 14 was
accepted as the data set to be used in the next modelling stage.

It should be noted that the Open Flow Conditions option is intended to provide this
type of selection scheme. In fact, a more accurate selection of data would be expected,
since the Time Range scheme is based on dates and is therefore likely to erroneously
exclude some open flow measurements recorded outside the time range or include ice
conditions recorded within the time range. On the other hand, the Open Flow Conditions
scheme bases its selection criteria on information codes stored with each measurement.
As was mentioned previously, this coded information was not available at the time of this

case study.

6.2.2 Modelling Selected Data

Continuing with the modelling procedure, the next information required from the user
is an integer value for the allowable error limit. This value integer defines the tolerance,
in discharge percent error, allowed before a measurement is considered an outlier. A
default value of 30 percent is provided, as described in section 5.2.3. After supplying a
value for the allowable error limit, the user must enter a real number between 1.0 and 4.0
(known as the transformation exponent), to be used in transforming the data set for the
regression analysis. Once entered the system relays a modelling message to the user

while it performs a simple regression analysis on the transformed data. When completed,

101

APROPOS —#2

DATA RETRIEVAL SUMMARY
Selection Type = TIME
S-D msrs = 46
zero flow msrs = 1 ..., Excluded from dataset
Close _ Keep

Figure 15. Summary of results from Phase 2 selection procedure.

a summary of the analysis results is displayed in the bottom left window. In addition, the
data is re-displayed using XGraph along with the modelled curve. After viewing the
curve produced by the system, the user may choose to repeat the transformation process

to generate a slightly different curve.

102

Figure 16 shows a regression analysis summary for three models generated using the
procedure described above. The outlier column of the summary reflects the number of
measurements which did not fall within the allowable error limit, previously entered by
the user at the beginning of the modelling stage. Outliers are defined by the absolute

percent error between the true discharge measurement and the model discharge response.

. APROFDS #6

MODEL SUMMARY SHEET

Model Transform Number

Name Exponent Qutliers S.E.E. R2

ML1 2,40 24 0.d33 0,9977

ML2 2.60 24 0,317 0,9987

ML3 2,80 26 0,330 0.9986
Close Keep

Figure 16. Summary of SDDSS results for 3 models.

103

A plot of the second curve in the summary listing (ML2), is shown in Figure 17. It
should be noted that the computer monitor uses different colors to distinguish the curve
and data. Red points are used for discharge measurements that fall within the allowable
error limits of the modelled discharge. Such points are referred to as "accepted”
measurements. Measurements falling outside the allowable error limits (outliers) are
displayed as blue points. Green points are used to represent the fitted curve.

Once the user is satisfied with the models generated, (having attempted several
transformations using a range of exponents), control may be directed to the model

evaluation stage in the process.

6.2.3 Evaluating The Models

To recap, at this stage in the process the system has generated three models for the
current data set, selected on the basis of measurements recorded between May 1 and
October 31. The model summary sheet displayed the regression analysis results for each
model fit to the current data set. At the present stage, the system attempts to choose one
of the models as the "best-fit", according to one of the three analysis parameters listed in
the summary sheet. The current state of the SDDSS prototype prompts the user to specify
by which analysis parameter the models should be judged. These options are displayed
to the user in the session control window, shown in Figure 18 . Once chosen, the
selected model is shown below the summary table and the system continues to the next
task. For the case study, the ML2 model listed in Figure 16 was chosen as the "best-fit"

model according to the Standard Error of Estimate criteria.

104

Stage, (m)

1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

Station - 05L.J047

0.00

Figure 17.

10.00

20.00

30.00

40.00

50.00

60.00

PHS2 DAT

Outliers

Discharge (cms)

Model ML2, shown with May to October measurements.

105

SESSION CONTROL

What method is to be used in determining the BEST MODEL ?

Bselect an optior NG]

Maximum R2 value
Minimum Number of QOutliers
Standard Error of Estimate

NOTKNOUN

Figure 18. Session Control Window displaying options for model evaluation.

Next, three options are presented to the user after the selection of the "best fit" model.
Option 1, Identify Outliers, begins an analysis of the outliers relative to the "best fit"
model. This procedure is discussed later in this section. If the user is not satisfied with
the results of the modelling procedure, the second option may be chosen to Select a
Different Dataser. This option returns the user to the data selection stage, to specify a

different selection scheme. All models generated and the current data set are cleared from

106

the system, in this case. The third option, Store Model, may be selected if the user is
satisfied with the best fit model. This option simply instructs the system to store the
model in the data base. The SDDSS is then exited automatically.

To demonstrate the outlier analysis procedure, the first option was selected in the case

study session.

6.2.4 Analyzing Outliers

The outlier analysis is a somewhat automated process. As was discussed in Chapter
5, the analysis considers each outlier individually and tries to establish the cause of its
deviation, from the best-fit curve selected. The system accesses measurement information
for each outlier as it is encountered. In the absence of the necessary information, the
system resorts to user input to establish the cause of the outlier’s deviation.

In order to establish the cause of an outlier deviation, via user input, the system
directs a series of questions to the user in the session control window. First, the date of
the measurement and the type (either a left or right shift from the curve) of outlier
encountered are displayed in the dialogue window as shown in Figure 19. Next, questions
and possible responses are displayed in the session control window. An example question
used in the analysis of outlier deviation is shown in Figure 20. Once all responses to the
question series are completed, the system continues to flag outliers and repeat the question
process until all measurements have been considered. Upon completion of the analysis,
a report is displayed in the dialogue window, summarizing the classification of the

outliers. A summary of the 24 outliers classified in the analysis, is shown in Figure 21.

107

APROPOS, - #5 % 4

STAGE-DISCHARGE MEASUREMENT OUTLIER
Qutlier # 3 of 24 plots ABOVE curve,
Date: 26-AUG-80

Stage: 0,32
Discharge: 0,07 Model response: 0,12

Refer to field notes and answer questions displayed in the
SESSION CONTROL window ...

Close l Keep

Figure 19. Dialogue window displaying outlier information.

fﬂsESS;U“'CQNTRUL?};;L_;ﬁ%;ﬁ'~ o

UAS THE MEASUREMENT TAKEN DURING Rapidly Falling Stage
CONDITIONS ?

B HOTKNOUN s

Figure 20. Example questions used for analysis of outlier deviation.

108

L e T APROPOS . 85

MERSUREMENT ATTRIBUTE SUMMARY FOR CURRENT CURVE

1 measurements influenced by BEAVER ACTIVITY,
6 measurements influenced by WEED GROWTH.

2 measurements influenced by WIND ARCTIVITY.

2 measurements with UNEXPLAINED influence.

3 measurements with MULTIPLE influences.

Close I Keep

Figure 21. Summary of outlier analysis, showing causes of deviations.

The system then offers to re-plot the current data set with the outliers stratified into
categories, corresponding to their cause of error. Three options are presented in the
Nexpert session control window. If either option 1 or 2 is selected, the XGraph window
is displayed. Measurements are shown in various colours corresponding to their
classification. The legend in the top right comer of the XGraph window explains the
colour coding. Selecting option 1 causes the current curve to be displayed with the
measurements. Option 3 disregards plotting and continues to the next menu. A figure
depicting this stratification has not been included here, as a color rendering was not
available at the time of this publication’s printing.

Three final options are displayed after the outlier plot has been closed. The main

109

intent of the system at this point is to allow a new model to be fit to the accepted
measurements only, (Option 2). The other options allow the user to abort all processing
(Options 1) or review the stratified data plot (Option 3).

Continuing with the remodelling option repeats the modelling procedure discussed
earlier in section 6.2.2. It should be noted however that the data set to be modelled here
only contains those measurements which were not considered outliers to the previous
"best-fit" curve. The previous curve is thrown away at this point and the accepted
measures are remodelled. Again, several models may be generated for the accepted data
set.

In this case, there are 24 outliers and 22 accepted measurements. This large
proportion of outliers is due to the fact that the smooth parabolic curve cannot
accommodate the sharp "bend" in the data, which occurs in the low flow regime. This
indicates the need for representation of the stage-discharge relationship with multiple
curve segments. From a statistical standpoint, there is little reason to continue with
modelling, since more data would be removed than would remain. However, in order to
exemplify the outlier analysis system, the modelling of accepted measurements will be
continued. It is acknowledged that this method is tending to fit the data to the curve
rather than the curve to the data. Reference to this problem will be made in section 6.4.

Continuing with the case study analysis, the outlier analysis identified 24 deviant
measurements. The system was then instructed to return to the curve development
procedure and remodel only the accepted measurements.

The remodelling procedure behaves exactly the same as that of phase 1 and 2

110

schemes. However, upon completing the modelling and the evaluation of the "best fit"
curve, the system does not permit another outlier analysis. Instead, the user is only

allowed to either abort the system or store the final curve.

6.2.5 Storing a Curve

Figure 22 shows the final curve produced from the remodelling procedure performed
on the accepted measurements separated in the outlier analysis. This curve is based on
the same data set used prior with the exclusion of the 24 outliers identified. The model
was stored in the data base for future use in computing average daily discharges. It
should be noted that the time range selection scheme was stored with the curve.
Therefore, the curve should only be used to apply to water level records obtained for the

specified period between May and October.

6.3 Using a Rating Curve

The "Compute Daily Discharge" option of the SDDSS system requires three simple
steps. First, an input file of water level records must be prepared for use in the
computation of daily flows. The format of the "water level file" was explained briefly
in Chapter 5, and is intended to represent the format of data produced by digitizing a
continuous water level record. A sample file has been included in Figure 23 for
reference. It is assumed here that the user has prepared such a file, prior to entering the

system and is now ready to begin the computation procedure. For the case study, the

111

Stage, (m)

1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

Figure 22.

Station - 05L.J047

040000e,

0.00

10.00

20.00

30.00

40.00

50.00

60.00

ACCEPTED

Outliers

Discharge (cms)

Final stored curve, with outliers omitted from modelling.

112

26—JUN-92 05LJ047

1992

M5

1 1.18
2 1.21
3 1.50
4 1.6
5 1.58
6 1.55
7 1.51
8 1.51
9 1.50
10 1.40
11 1.42
12 1.44
13 1.49
14 1.48
15 1.36
16 1.40
17 1.31
18 1.25
19 1.24
20 1.19
21 1.22
22 1.24
23 1.36
24 1.35
25 1.26
26 1.265
27 1.25
28 1.14
29 1.13
30 1.10
31 1.09
0

Figure 23.

PR RREPRRERERPRRRRRR RS e

.21
.24
.55
.63
.57
.54
.50
.53
.44
.36
.43
.46
.51
.47
.39
.35
.32
.24
.26
.21
.24
.28
.35
.32
.26
.24
.22
.14
.11
.09
.075

P

o el

N

R e e

-

.24
.32
.59

.58
.52

.54
.43
.42
.42
.47

.44
.42
.30
.29

.24
.20
.26
.31
.36
.28

.25
.18

.095
.06

[S

.22

.35 1.42 1.49
.60 1.62

.61

.51

.49

.45 1.46 1.425
.43

.50 1.49 1.51
.41

.41

.31 1.30 1.31
.275 1.26 1.24
.25 1.27

.33 1.36

.28 1.25

.15 1.11 1.13
.115 1.110

Sample water level record.

113

1.56

1.53

1.135

input file shown in Figure 23 contains artificial water level records for the months of May
and June.

The second step involves selecting a curve to be used with the water level records.
A list of curves is compiled for the current station and displayed to the user. Each curve
is displayed with a unique curve id number and its relative attributes. Figure 24 displays
the curve list summary for the Edwards Creek station. Model ML2 was developed
previously in section 6.2 of this chapter is shown in the list as curve 3. The user is

prompted to enter the "id" number of the corresponding curve to be used.

APROPOS #8
CURVE LIST SUMMARY SHEET
Curve Date of Curve STAGE DISCHARGE
Id, Last Msr, Type o Min Max Min Max
1 8~MAY-89 TIME: 91 to 151 0.32 1.41 0,10 47.10
2 22-JUN-89 TIME: 121 to 181 0.28 1.41 0.00 47.10
3 29-AUG~-89 TIME: 121 to 243 0.19 1.41 0.00 47.10
Close Keep

Figure 24. List of curves created for Edwards Creek.

114

The final step requires the user to enter the file name of the water level records. A
table of average daily discharges is computed and displayed to the user in a large window
filling the entire working surface of the monitor. Once displayed, the user may use the
scroll bar of the window to view the entire table. A portion of this table is shown in

Figure 25, showing discharges computed from the water level records of May and June

shown in Figure 23.

APROPOS - wi1

DAILY DISCHARGE IN CUBIC METERS PER SECOND FOR 1992
DAy JRN FEB HAR RPR HAY JUN Jul AUG SEP oCcT NOV DEC
1 31.512 20,663
2 38.813 18.745
3 62.776 17,145
4 £7.309 16.53%
S 64,332 14,452
[58,373 12,575
7 55,878 10,118
2] 67.129 10.848
9 51.229 8.418
10 46.407 6,092
11 468.218 5.718
12 52,722 4,010
13 55,393 2.63%
14 50,681 1.995
15 45,743 2,068
16 40,518 2,552
17 37.244 2.729
18 33.794 2.501
19 33.918 2.056
20 30.634 1.653
21 34,025 1.605
22 38,307 2,356
23 42.464 2,508
24 37.816 2.941
25 34,889 1.889
26 34,263 1.366
27 29,662 2,104
28 26,700 2,134
29 25,465 3.106
30 24,379 4,145
31 22.806
MAX 67.309 20,6863
MIN 22.806 1.366
HERAN 42,368 6.255
MAXIMM Daily Flow = 67.309 cu.m/s
MINIMUM Daily Flow = 1.366 cu.m/s
Close Keep | Continue

Figure 25. Example of computed flow table.

115

6.4 Examination of Results

The purpose of this section is to make a critical assessment of the ability of the
SDDSS to accurately model S-D relationships. The discussion will focus on comparing
the relative shape of the curve produced in section 6.2 with one produced by the Water
Survey of Canada (WSC) office in Winnipeg.

Figure 26 presents a visual comparison of the two rating curves. A spreadsheet tool
was used to plot the curves as corresponding S-D points. Each curve was produced by
the same stage values, using one centimetre increments. A rating table prepared by the
Water Resources Branch in Winnipeg was used for the WSC curve. The table itself was
created from a manually drawn curve, which was computer digitized into a S-D rating
table. The SDDSS curve is based on the mathematical model formulated earlier in

section 6.2,

8
D=-1.2+20.0%8%6 L8]

where D is the discharge in m’/s and S is stage in meters.

Upon first glance the curves seem very closely matched. The SDDSS curve tends to
over estimate flows, with the exception of the extremely low flow regime. Two reasons
for the discrepancy come to mind. Firstly, the SDDSS system is not capable of producing

complex rating curves. Such relationships are typical where river controls create distinct

116

EDWARDS CREEK (05LJ047)
Rating Curve - 1990

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00 LANL L L R TR B N S B S A N S B B L Y USRS N S B S B

0.00 10.00 20.00 30.00 40.00 50.00 60.00

q“*auxno()ﬂﬂq x
T %

Y il

Stage, (m)

jnplpapabnngebaganpenebarggleriadagagdrenafeqey

Discharge, (cms)

° WSC-90 * SDDSS

Figure 26. Comparison of SDDSS and hand rendered (WSC-90) curves.

transitions between different flow regimes. They are manifested in rating curves by
rapidly changing slopes connected by a distinct bend. The manual method of using

french curves to draw S-D relations can easily represent data which exhibits such

117

relations. However, these bends are difficult to reproduce with one mathematical equation
in the prototype system. This is because the current SDDSS is only capable of producing
smooth parabolic curves. These smooth curves are inappropriate for modelling such
abrupt transitions. As a compromise, regions of the curve will tend to over- and under-
compensate the relation, in comparison to a complex curve.

Figure 27 shows a close-up comparison of the two curves for the low flow regime.
A distinct transition in the slope of the WSC curve is visible at a flow of 0.10 m®/s. The
smooth parabolic curve generated by the SDDSS was not able represent this phenomena.
However, if the SDDSS was applied to only measurements observed in this extremely low
flow regime, (below 0.32 m of stage), a smooth parabola could be fit to this shape,
providing the data itself exhibits such a shape.

The second reason for the discrepancy is that the SDDSS does not discriminate
between the date of particular measurements. Regardless of the date of the observation,
each measurement is given equal weight. However, it was pointed out in Chapter 3 that
all rivers are subject to at least some small degree of shifting. The manual nature of the
WSC procedure, allows technicians to observe visual shifts in a relationship and
subsequently shift a curve up or down graphically, while retaining its basic shape of the
curve. Again, such shifting procedures are generally based on the most recent
observations, while those from years past are given significantly less (subjective) weight.

Therefore, from this comparison, it becomes apparent that the system requires
improvement in its ability to accurately model S-D relations. The overall SDA process

modelled in the DSS should facilitate the representation of complex rating curves, and

118

EDWARDS CREEK (05LJ047)
Rating Curve - 1990

Low Flow Regime ONLY
0.60
: o] x
— 0.50 7] e
E . . o] o, x
gl 0.40 R
S n 9 °x ®
o a0
0.30 39
O.zo—llllIIIIIIIIIIIIIIIIIIII
0.00 0.50 1.00 1.50 2.00 2.50 3.00
Discharge, (cms)

° WSC-90 * SDDSS

Figure 27. Comparison of curves, low flow regime.

guide the user into discerning the appropriate flow and/or stage for transitions between

curves. The computer system HYDSYS, discussed in section 2.3, is capable of modelling

rating curves with multiple curve segments, based on the cross-sectional geometry of the

119

channel. Transition points are distinguished and justified by plotting the channel cross
sectional shape with the stage-discharge measurements. A similar utility is thus
recommended for inclusion into the SDDSS in future development. In addition, the
system should be capable of modelling specific years of data, to account for recent shifts

in the relationships.

120

7. CONCLUSIONS AND FUTURE RESEARCH

7.1 Evaluation of SDDSS Prototype

The research work presented in this thesis has introduced the development of a
prototype computer-based decision support system (SDDSS) for stage-discharge analysis.
In the development of this system, several related topics were studied in detail.

First, the study of stage-discharge analysis and specifically the procedures used within
the Department of Environment in Canada exhibited a strong potential for the application
of DSS technology. A semi-structured problem was defined and used to conceptualize
the system. The prototype system was designed as a framework of procedures,
encompassing the activities performed by the Water Resources Branches of the DOE,
throughout Canada. It has been intended to explore and experiment with the concepts of
SDA process within a computer environment and pave the way for a fully operational
system. A much larger intelligent decision support system for the management of surface
water quantity data has been proposed, and shall include a fully developed SDDSS, as it
is developed over the next several years.

Mathematical modelling is recognized as an effective representation of S-D
relationships. The SDDSS is currently a prototype system but the framework design
allows for future advancements of the SDDSS to facilitate the modelling of relationships
with complex curves and more sophisticated and comprehensive analysis techniques.

Nexpert Object has proven to be a successful tool for prototyping DSSs to deal with

121

problem-solving and reasoning. Nexpert is not necessarily efficient for structured
problems which follow a discrete executional path to solve a problem. Conventional
programming languages such as C, are better suited for this type of programming.
However, in the prototype stage of this research, Nexpert did provide a good environment
for modelling the semi-structured nature of SDA. It also allowed for easy and efficient
database integration with Oracle tables. Later development of a fully operational SDDSS
system is recommended to be programmed in object-oriented C++ code. This will allow
for integration among all elements of the DSS including knowledge base structures

modelled in Nexpert.

7.2 Future Research Work

The development of the SDDSS has experienced several iterations of planning,
designing and programming in order to completely define the entire problem. In light of
these numerous iterations, the resulting work has managed to focus on specific details of
Stage-Discharge analysis. As mentioned earlier, the current system design presents a
logical framework for S-D analysis, lending itself to future additions. Further
development of the SDDSS prototype is recommended, in order to further examine the
SDA problem domain, before developing a fully operational system. The following

sections present some plans for future work and experimentation in the SDDSS prototype.

122

Automated Modelling

Section 5.2 described the modelling procedure as an iterative process requiring the
user to provide input; specifically transformation exponents for modelling. One future
advancement in the area of modelling should include an automated process for selecting
the optimal exponent for stage transformation. A routine would generate a series of
models based a range of transformation exponent values, increment in small steps.

In attempt to be more intelligent, the routine would step through the range in an
efficient manner, trying to converge upon the optimal value with the least number of
iterations. Decision support would also be incorporated for selecting the best model based
on all three evaluation parameters. The system would analyze the data, with respect to
all three analysis parameters and recommend the best transformation to the user.
Graphical displays of the evaluation parameters would be presented to the user, allowing
them to override the system recommendation.

The intent of such a routine is to remove from the user, the burdens of arbitrarily
choosing exponents and having to specify one single evaluation criteria. Other
transformation functions such as logarithmic and exponential, and methods such as
transformation of the dependant variable (discharge) or both, should be included in the
modelling process, as well as attention to statistical analysis of regression residuals for
evaluating model validity. The system should also contain specific knowledge of statistics
and regression analysis which may be used in the selection process or which the user may

consult in order to obtain a preferred model.

123

Curve Segmentation

Presently, the system does not include the ability to handle complex curves. To recap,
complex curves refer to relationships which are can not be represented with one smooth
parabolic curve. Such curves are indicative of S-D relationships which are governed by
several station controls for different flow regimes. Complex curves may graphically
display one or more inflection points occurring at the point in the relation where two
controls are governing the relation simultaneously; ie: a combined control.

Representing an entire flow regime of this type with one curve is inappropriate. This
is especially true if one control is shifting at a greater rate than an adjacent one, resulting
in a more pronounced transition point over time. Variable shifting between two controls
is likely to occur since different characteristics define different controls.

Future development of the system should incorporate the ability to deal with the issue
of complex curves. This would be achieved by allowing curve data to be segmented by
flow or stage ranges and modelled separately. A mechanism would also be included, to
provided smooth transitions between adjacent curve segments. Decision support could
be provided to assist in the selection of appropriate flow level values, for defining
transitions. The plotting utility and database should be further developed to allow channel
cross-sectional geometry to be plotted with the stage-discharge measurements to assist in
the identification of transition in different flow regimes, as adopted in the HYDSYS
computer system (HYDSYS Pty Ltd, 1991).

The above development recommendations raise a critical issue which must be

addressed in the near future by organizations such as the Department of Environment.

124

The ability of the SDDSS to evolve into a sophisticated tool, requires a rigorous and
organized program for the collection and documentation of site data to accompany each
stage-discharge measurement. A coding system for documenting conditions at the site
and surrounding areas, should be defined, standardized and adopted which allows for
descriptions by technicians, without allowing variation between different individuals.
Introducing such a program is of paramount importance to the development of the

SDDSS, as well as the quality and accuracy of rating curves produced.

Decision Support for Unstable Channels

Further development of the system is expected to include special analysis techniques
for developing S-D relationships in unstable channels. The basic design framework of
the system will be used for curve development. Additional knowledge-bases will address
the identification of unstable conditions and incorporate the use of physical and

morphological parameters of the channel into the development process.

Intellicent Interface

Due to the rapid pace of the prototyping stage of the SDDSS development, only minor
attention was directed at providing a sophisticated user interface. As was mentioned in
section 5.3, graphical user interfaces play a key role in the ultimate success of a DSS.
For this reason, further development of the SDDSS should experiment with the topic of
efficient GUL. Improvements on the current prototype could include more elaborate

messages and instructions for the user, better graphical presentation of relationships and

125

data, using continuous lines (rather than discrete points) for curves, and a more extensive
user input system, utilizing menus, selection items and buttons. An on-line help and

instruction manual is also recommended for consideration in future work.

126

References

Bedient, P.B. and Huber, W.C., (1988). "Hydrology and Floodplain Analysis", Addison-

Wesley Publishing Company, Reading, Massachusetts, USA.

Camara, A.S., Cardoso da Silva, M., Rodrigues, A.C. Remédio, J.M., Castro, P.P., Soares
de Oliveira, M.J. and Fernandes, T.F., (1990). "Decision Support System for Estuarine
Water-Quality Management", Journal of Water Resources Planning and Management,

Vol.116, No.3, pp.417-432.

Chester, B.L., (1986). "Stage Discharge Relationships - Overview and Theory", Water

Authority of Western Australia, Australia.

Davis, J.R., Nanninga, P.M., Biggins, J. and Laut, P., (1991). "Prototype Decision
Support System for Analyzing Impact of Catchment Policies", Journal of Water Resources

Planning and Management, ASCE, New York, USA, pp.399-414.

Douglas, G.G., (1990a). "An Expert System for the Selection of a Flow Measurement

Method", Bachelor’'s Graduate Thesis, University of Manitoba, Department of Civil

Engineering, Winnipeg, Manitoba, Canada.

127

Douglas, G.G., (1990b). "Development of an Advisor System for the Selection of a Flow
Measurement Method", Water Resources Research Report, No.16, University of Manitoba,

Department of Civil Engineering, Winnipeg, Manitoba, Canada.

Douglas, G.G. and Simonovic, S.P., (1992). "The Design of a Computer-System for

Developing Stage-Discharge Rating Curves in Stable Channels", from Proceeding of the

Canadian Hydrology Symposium, No. 19, Winnipeg, Canada.

Environment Canada, (1992). HYDEX data base. Environment Canada, Ottawa.

Fenves, S.J., (1986). "What is an Expert System", from Expert Systems in Civil

Engineering, ed.by C.N. Kostem and M.L. Maher, ASCE, New York, USA, pp.1-6.

Gaschnig, J., Reboh, R. and Reiter, J., (1981). "Development of a Knowledge-Based

System for Water Resources Problems", Technical Report SRI Project 1619, SRI

International.

Harrison, D., (1989). "XGraph", Version 11.3.2. University of California, Berkeley, USA.

Hydsys Pty Limited, (1991). "Reference Manual" for HYDSYS/TS Time Series Data

Management, HYDSYS Pty Ltd, Weston Creek, Australia.

128

ISO, (1981). "Liquid flow measurement in open channels - Part 1: Establishment and
operation of a gauging station", ISO Standard 1100/1-1981 from Measurement of Liquid
Flow in Open Channels - ISO Standards Handbook 16, International Organization of

Standards, Geneve, Switzerland, pp.133-153.

ISO, (1982). "Liquid flow measurement in open channels - Part 2: Determination of the
stage-discharge relationship”, ISO Standard 1100/2-1982 from Measurement of Liquid
Flow in Open Channels - ISO Standards Handbook 16, "Measurement of Liquid Flow in
Open Channels", ISO Standards Handbook 16, International Organization of Standards,

Geneve, Switzerland, pp.154-186.

ISO, (1983). "Measurement of Liquid Flow in Open Channels", ISO Standards Handbook

16, International Organization of Standards, Genéve, Switzerland.

Kao, J. and Liebman, J.C., (1991). "Computer-Aided System for Ground-Water

Resources Management”, Journal of Computing in Civil Engineering, Vol.5, No.3,

pp.251-266.

Lavender, S.T., (1984). "Winter Rating Curves and Ice Volume Limited Water Levels",

from A Workshop on the Hydraulics of River Ice, Fredericton, Canada, pp.279-295.

129

Maher, M.L., (1986). "Problem Solving using Expert System Technology", from Expert
Systems in Civil Engineering, Ed.by C.N. Kostem and M.L. Maher, ASCE, New York,

USA, pp.7-17.

Maher, M.L. and Allen, R., (1987). "Expert Systems Components", from Expert Systems
Jor Civil Engineers - Technology and Application, Ed.by M.L. Maher, American Society

of Civil Engineers, New York, USA, pp.3-14.

Neter, J., Wasserman, W. and Kutner, M.H., (1989). "Applied Linear Regression

Models", 2nd Ed., Richard D. Irwin Inc., Homewood, Illinois, USA.

Neuron Data Inc., (1991). "Introduction Manual" for Nexpert Object - Version 2.0, Palo

Alto, California, USA.

Rantz, S.E. and others. (1982a). "Measurement and Computation of Streamflow: Volume
I. Measurement of Stage and Discharge": United States Geological Survey Water-Supply

Paper 2175, Washington, D.C., USA.

Rantz, S.E. and others. (1982b). "Measurement and Computation of Streamflow: Volume

II. Computation of Discharge": United States Geological Survey Water-Supply Paper

2175, Washington, D.C., USA.

130

Robertson, J.A. and Crowe, C.T., (1985). "Engineering Fluid Mechanics", 3rd Ed.,

Houghton-Mifflin Company, Boston, USA.

Rodgers, M.W. and Thompson, S.M., (1991). "Tideda Reference Manual”, Publication

No. 24, Hydrology Centre, DSIR Marine and Freshwater, Christchurch, New Zealand.

Savic, D.A., (1989). "REZES: The Intelligent Decision Support System for Reservoir
Analysis", Water Resources Research Report, No.13, University of Manitoba, Department

of Civil Engineering, Winnipeg, Manitoba, Canada.

Simonovic, S.P. and Savic, D.A., (1989). "Intelligent Decision Support and Reservoir
Management and Operations", Journal of Computing in Civil Engineering, Vol.3, No.4,

pp.367-385.

Simonovic, S.P., (1989). "Expert System Design of an Intelligent Decision Support for
Surface Water Quantity Data Management", from Computational Modelling and
Experimental Methods in Hydraulics (HYDROCOMP ’89), Ed.by C. Maksimonvi¢, and

M. Radojkovi¢, Elsevier Science Publishers Ltd., New York, USA., pp.383-393.

Simonovic, S.P., (1990). "An Expert System for the Selection of a Suitable Method for

Flow Measurement in Open Channels", Journal of Hydrology, Vol.112, pp.237-256.

131

Simonovic, S.P., (1991). "Knowledge-Based Systems and Operational Hydrology", from

Canadian Journal of Civil Engineering, Vol.18, No.1, pp.1-11.

Simonovic, S.P., (1992). "Lecture Notes" for course 23.729, Intelligent Decision Support

in Water Resources, University of Manitoba, Winnipeg, Manitoba, Canada.

Smith, A.G., (1987). "Comparison of Methods of Extending Rating Curves", Internal
Report, Planning and Studies Section of Water Resources Branch, Environment Canada,

Vancouver, British Columbia, Canada.

Sommerville, I, (1985). "Software Engineering", 2nd Edition., Addison-Wesley Publishers

Company Inc., Wokingham, England.

Soncini-Sess, R., Nardini, A., Gandolfi, C. and Kraszewski, A., (1991). "Computer-Aided
Water Reservoir Management: A Prototype Two-Level DSS", from Decision Support
Systems - Water Resources Planning, Ed.by D.P. Loucks, and J.R. da Costa, NATO ASI

Series, Vol. G 26, Springer-Verlag, Berlin, Germany, pp.527-574.

Terzi, R.A., (1981). "Hydrometric Field Manual - Measurement of Streamflow",

Environment Canada, Inland Waters Directorate, Ottawa, Canada.

132

Thierauf, R.J., (1988). "User-Oriented Decision Support Systems - Accent on Problem

Finding", Prentice Hall Inc, Englewood Cliffs, New Jersey, USA.

133

APPENDIX A - Unix Scripts

The following list contains the names of the Unix program scripts referenced in
Chapter 5 of this thesis. LRM is used to format an input string for the fortran program
LR2, from a string of command line parameters. Output from LR2 is also re-formatted
by LRM into Nexpert data format. GC is used in a similar manner with the fortran
program GCRYV to format input and output. XGR is used to call the XGraph plotting
utility with preset options. Programming code for each script begins on the page number

indicated below.

Page
LRM (Linear Regression Model) 135
GC (Generate Curve) 136
XGR (Xgraph Run) 137

134

ok ko kR ok sk kR sk ko sk koo o skt et sk ok kol ok okl sk otk sk ok o
#* Unix Script: LRM $1 $2 $3 $4 *

Fokkokokokokokokokdeokokokokokokok sk ke sk sl sk skt ke ste e ke she sk sk ke she sk she sk sheske sk sk sheske sk sk sk e e sk e sk she ke s sfesfe sk sk sk ok skesk sk sk skok

H* *
#* Parameters: $1 = input file containing s/d data *
#E format: D S (one line per "D S" pair) *
#* *
#* $2 = exponent for Stage data transformation (Float) *
ok $3 = output file listing (fields: b0, b1, corr, *
#* ss_error) in NXPDB format, (eg: MD_1.NXP) *
#* $4 = outfile listing model report (eg: MD_1.txt) *
H* *
#* Note: LRM creates a generic LRMOD.in input file from $1 and *
#* $2, calls LRMOD fortran program and then copies the *
#* output file LRMOD.outl & ...out2 to $3 and $4 file- *
#* names respectively. *
#* *
#* Example use: *
#* > LRM SDL1.in 2.5 SDI.NXP SD1.txt *
H* k

hkesksdeskoskok ke sk siokokok seskeokokok ok skoskosk sk ke sl skeokeok ket sk skokosk e sk ok ok sk sk ook sk stk sk sk e slesteokok sk ok skeok skl e seskoskske sk ok

Construct LRMOD input file; *
echo $2 > LRMOD.in
cat $1 >> LRMOD.in

Model data in LRMOD.in; *
LR2
*** Move LRMOD.out data into output file, $3; *

cp LRMOD.outi $3

*** Move LRMOD.out2 data into output filec $4; *
cp LRMOD.out2 $4

*** Remove LRMOD.in file *
rm -f LRMOD.in

Fpkkddcioksdkekekdoiolokok dekokokokkek skokok ok skokokok ek tokokskok ok stokokokok soiokok sk sk sk sk sk sk skokok sk sk skoskok sk ko

#* End of LRM script. *

Fhkokokokokokokokokokokokokeskeokeoe e e e e ke sk s sk sk sk sk sk sk sk stk sk ok sk ok ok sk ok sk ok ok sk ok sk sk skosk skok ok ok ok ok sk ok skok sk skoskok skok ok

135

Ftokkadokskdoskokakkokskstoksk ok deokokdokokdodok ook ok sk dokok deokok sk stok e deokosk ok ok ek sk deok ok

#* Unix Script: GC $1 $2 $3 $4 $5 *

Fokokokokokokokskkokookokokokeokokokokokokokskskokokoeodeskokokokokokokokokokok sk sk sk ke e e e sl sl sk sk st skt stk sk sk skeosk skokok sk okok

e *
#* Parameters: $1 = BO model parameter *
¥ $2 = B1 model parameter *
#* $3 = Exponent used in Y (stage) transformation *
#* $4 = Upperbound of Y (stage) defining curve *
#* $5 = Output file for generated curve. *
e *

Fkeokskokokokokokokoksheok sk skok ek skokokokokokokokokokokoskokokokokokokokokok ok sk s e e e e sfe e she sk sieskeske sk skeokesk okok sk ook okokokokok

#**¥* Create GENCRV.in input file ... *
echo $1 > GCRV.in
echo $2 >> GCRV.in
echo $3 >> GCRV.in
echo $4 >> GCRV.in

#*** Run GCRYV program to generate points *
GCRV

#*** Transfer generate curve points (GCRV.out 1&2) to *

#*** output files with file extensions *

cat GCRV.outl >> $5.mdl
cat GCRV.out2 >> $5.c1

#*¥** Clean up files *
rm -f GCRV.in
rm -f GCRV.outl
rm -f GCRV.out2

Fkskekoskokokskeskokskokokesdesdeokokok skt steokoskokok ok skesteokokok sk stk sheke deoskeoleokok sekolokokdeokoskokoskdeskokokok sesketolokkok ok

#* End of GC script. *

Feskoskskokokesk kokokosk sk sk sdokskokok etk sk e sk sdesiokokok sk koo sekolorskok kokokok sk ok sk sk okokosk ek ok kR sk ok

136

Rk deckokoksokdeokok ok ok ok ok dekokokk ok ko sk kokokok kel sokok sk ok sorskok sk sk sk ook okosk sk sk ook

#* Unix Script: XGR $1 $2 $3 $4 *

Fkdekotokokkek etk kokok sk kokokok sk skorokokskokokokokskoko ko sksk ok skok sk kokokskok sk sk koo skok sk ok stk ok sk ok sk skokeok ok

H#* *
#* This script calls xgraph program to plot a set (or sets) of data. *
H#* %k
#* Parameters: $1 = station name for xgraph main title *
#* $2 = filename of data set(s) to be plotted in xgraph *
#* $3 = upper limit of Y axis *
#* $4 = upper limit of X axis *
H#* *
#* Note: The $2 filename is an xgraph data file of one (or more) *
#* data sets, each with a legend title preceeding it. *
#* Data sets are separated by a blank line. *
F#* *
#* Example: "legendl *
#* XY *
#* *
#* *
#* "legend2 *
#* XY *
H* *
#* *

ks etk stokokek kst sk skokolokeok dokogokse sk skokok kel kokokskesk kokokoskskok skokokok sk stk sk skok skeokok skokok sk e sfesteokok

xgraph -nl -P -M -ly 0,$3 -1x -0.5,$4 -m -t "Station - $1"
-x "Discharge (cms)" -y "Stage, (m)" =600x585+530+280 $2

xgraph -nl -P -bb -M -ly 0,$3 -1x -0.5,$4 -m -t "Station - $1"
-x "Discharge (cms)" -y "Stage, (m)" =605x575+535+285
-display $DISPLAY $2

Fhkskokokokokokokok sokokokdoksiokokokokokokokokskokskokoksk ke sk sk sk sk s sk sk sk skesk sk st sk sk sk skeske sk sk sk sk sk ok e ke sk sk sk skokeskok ok

#* End of XGR script. *

Fkkokskokokoskokok ik skoksiolokdokokokokoskoskokskokskokoskokeslokskok sk sk sk sk sk sk sk s sk sk ke sk s sk sk sk e skeok sk sk ok skok ok sk skokoskok

137

APPENDIX B - Fortran Programs

The following list contains the names of the Fortran programs referenced in
Chapter 5 of this thesis. LR2 is used to perform a linear regression analysis. GCRV is
used to generate a set of data points representing a curve, for plotting in the XGraph

utility. Programming code begins on the page number indicated below.

Page
LR2 (Linear Regression 2) 139
GCRYV (Generate Curve) 143

138

QO 0O O 0000600060600 060g

shesk steoke stk shesfeske skeoke sk skeoke skt sk sl sk stk skeok sk sk skeok sheok skeok sk skok skok sk ok sesk sk sk st sk ke sk sk skl sk sk skl sk sk ok ok

* Fortran Program: LR2 *
sksksk ek skeokeok sk skook ok sk ok sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk o sk sk sk sk skeok ok s s sk skeske sk sk sk ok sk skeske sk ke ke sk sheok

Reads X,Y data from a file "LR.in", transforms the
X data (X’=X"pow) and creates a linear regression
models of the X’)Y data. Several output files
store the results of the modelling.

Formats of the program parametes are as follows:

LR.in: tpow (X-axis transformation exponent)
err (error allowance for rejects)
Y X (X-Y coordinate point)
Y X

cos

¥ K X K K ¥ K K X K % K ¥
X K K % K K K ¥ X ¥ ¥ X ¥

sfeske sk sheok sk sk skeske sk ok sk sk skl skt skl sk sk sk sk ok sk sk sk sk sk sk sl sk sk skeske skeske sk sk sk sk ok ksl sk sk sk

#%* Main Program: LR2 *

REAL*4 tpow, alwerr, p_err
DIMENSION ydat(200), xdat(200)

ook sk ok e ke sfe stk ok sheok skok shok skl skt skt skt she sk skl skeosk skl skeok skok skeok skok skok skok skok shok skok sk skeokesk ok

* Read Transformation power and error allowance (LR.in) *
sesfe seshe sheske sk she ok sk sk sk ke sk sk sk sk skok sheok skeok sk skeok skesk sk sk sk sk shesk ke sk ke sk ke sk sk sk sk sfe sk ke sk skeosk ke ok

OPEN(3,FILE="LR.in’)
READ(3,’(F4.1)’) tpow
READ(3,’(F4.1)’) alwerr

seskok sk ek sk ok sk sheok sk ckok e skeok sheskeok sheskeok ook sk sk skeoke sk skesk ok e sk ok sk skeok sl sk sk seskeoske skeskok sk sk ke sk ok ek ok

* Calculate Regression parameters *
sestotsfes kit skok ook ok otk ok ook otk sk koo sk ok ook okl ke ok
i=1

xsum = 0

ysum =

xysum = 0

ymax =

xmax = 0

139

e}

[¢]

10

160

DO WHILE (i .LT. 200)
READ(3,*, END=10) ydat(i), xdat(i)
txdat = xdat(i)**tpow
ysum = ysum + ydat(i)
xsum = xsum + ixdat
Xxysum = Xysum + txdat * ydat(i)
x2sum = x2sum + txdat**2.0
y2sum = y2sum + ydat(i)**2.0
IF (ydat(i) .GT. ymax) ymax = ydat(i)
IF (xdat(i) .GT. xmax) xmax = xdat(i)
i=i+1
END DO
nobs = i-1
xmean = xsum / nobs
ymean = ysum / nobs
bl = ((xysum)-(xsum*ysum)/ nobs) / (x2sum - xsum**2/nobs)
b0 = ymean - bl*xmean
CLOSE®3)

ko sk sheokeok sk ek ok sk sk sk skeskeok seskeske skt sk she sk sk e sfeske s sfeske s sheske sk stk sk sk sk sk sk sk sk ke skeske sk skeokeok sk sk sk sk sk sk sk ok

* Print Regression parameters *
et sk shoskeskeokeokook sheske sk sk skeskoskeoke ke sk sk sk sk sk sk sk s ke s ske sk ke sfe ke ok sk sk sk sk skt sk ks sk sk sk st shesk sk ek sk sk sk sk ke ok sk ke ok

WRITE(*,160) b0, bl
FORMAT(BO0=", F6.3, 5X, Bl =", F6.3)

Seskesk s sfeske sk sheskeok sk skeok ok sk ok sheoke she sfeske sk sheske e skeske sk sk sk e skeske e skeoke sk skeok sk sheoke sk sk stk skskeoke sk sk ko sk ke sk s sk

* Calculate SSE and R2 values and perform reject check. *
otk kb ok ok ok ok ok ok ok ook ok sk ks sk ko sk ok sk ok skoksk ok ok ko ke sk ok ek ek ok ek

OPEN(4,FILE="LR.ol1")

sse = (.0
ssr = 0.0
numol =0

DO 100 j = 1, nobs, 1

**% Calculate response of "ymod". *
txdat = xdat(j)**tpow
ymod = b0 + bl * txdat

*** Calc. Sqrd. dev. of model from reg.line. *

edev = ymod-ydat(j)
sse = sse + edev¥edev

140

100

110

210

220

240

O

310

*%% Calc. Sqrd. Dev. of reg.line. from mean *
sst = sst + (ymod-ymean) * (ymod-ymean)

¥ Flag current pair as rejected if % error of "edev" *
*%% is larger than Error Allowance "alwerr" *
p_err = ABS(edev / ymod) * 100
IF (p_err .GT. alwerr) THEN
WRITE4,110) ydat(j), xdat(j)
numol = numol + 1
ENDIF

CONTINUE

*** Calculate R2 and STDEE values *
stdee = (sse/(nobs-2))**0.5

12 = ssr / (Sse+ssr)

FORMAT(F8.3, ’ ’, F8.3)
CLOSE#4)

sk ok sk sk skeskeokeoske sk e skoke sk sk ok sk sk skeskeok st skoke e sk ok sk st sheoke sk ek sk sk sk skok skeskesk sk sk sk sk skok sk skok

* Write b0, bl, corr, sse, numol "LR.outl". *
e ke sk sfe koo ok sk ok ok e sk ok ke ske ok sk sk sk sk ke o e sk o ok sk sk sk s sfe she sk ke sk s sk o ok sfe sk ok sk sk sk sk sk ok sk st ok sk ok sk sk sk ke e sk sk ok
OPEN(4,FILE="LR.outl’)

WRITE(@4,210)

FORMAT(b0l bll corrl stderestl’,

> numoll’)

WRITE4,220)

FORMAT(51(C*"))

WRITE(4,240) b0,b1,r2,stdee,numol

FORMAT(3(F10.4,’"), F10.3, ’P, 16,’I")

WRITE(4,220)

CLOSE@4)

Feske sk skokok o sk sl sckeokokokosk ok sk sk sk sk sk sk sk skeok ok sk sk skok skl sl sk sk sk sk sk sk sk sk ok ok ke skokosk sk sk ke sk sk sk skok

* Write Results for display text file (LR.out2). *
ke sk sheofeokeosfeoeoeoleoseok ek e ke ok sk sk sk sk sk sk sk sk ke sheoke ke ke sk sk e ke ok ke she stk sheste sk sk sk sk sk sk sl ke sfe sk sfe sk siesie sk
OPEN(S,FILE="LR.out2’)

WRITE(S,*)

WRITE(S,*)

WRITE(5,310) tpow

FORMAT(Model Name: LRM_’, F4.2)

WRITE(5,320) bl, tpow, b0

141

320

FORMAT(Eqn: D=(CF72,)*S~(,

+ F3.1,)+(C,F1.2,7))

330

340

350

355

360
+

«

WRITE(S,330) 12

FORMAT(R2: ’,F6.4)
WRITE(5,340) sse

FORMAT(SEE: ’, F8.3)
WRITE(S,*)

WRITE(S,350) xmax

FORMAT(Max Stage = ’°, F8.3)

WRITE(S,355) ymax

FORMAT(C Max Discharge =, F8.3)

WRITEC(S,*)

WRITE(5,360) numol, nobs, alwerr

FORMAT(C ’, 13, of ’, I3, ’ observations were NOT ’ ,
’within allowable limits of +/- ’, F4.1, ° %.”)
WRITE(S,*)

CLOSE(5)

STOP
END

seske skeoke skesfe sheske she sk skl she sk sk skok ok skl skok sk sk skok skok skok skok sk skok sk skeokeskolokok skokoskok sk skeok skok skok ok

* End of program LR2. *

sk skesk sheok steok sk skok sk ek sheoke skl skt skl skt skok sk sk sk sk sk sk sk skeskosk sk skokoskok sk skokeskok skok skok skok ko skok sk

142

QO Q00000600 a6aoaa0a00o0a0a0oaonto0aa66a00

skeokokeskoksdeskokodeokokokeokok skokok sk skok ke skokok seokok sk skok ok skeokok sk ok ok ok sk sk skeok sk sk ke sk ok sheok ke sk ek ok sk okok ok

* Fortran Program: GCRV

*

ook sheoke sheofe ohe sheofe sfeoke sheske ek she ke sheoke sheoke sheoke sk sk sk skeoke ook sheok sk sk sk skeok skeok skok skesk skeske sk ke sk ok skoke sk ke ke skeok ke sk ok

Accepts parametes b0, bl, and pow and generates a
set of 100 X,Y points. The generated 100 points are
stored in an ouput file. The X data is generated
from Y values from 0 to 1.00 according to the fol-
lowing formula:

X =b0 + bl1*(Y**pow)

The input and output data are stored in GCRV.in
GCRV.out respectively, as follows:

GCRV.in: b0 (x-intercept)
bl (inv slope = x/y)
pow (transformation exponent)
ymax (max y axis used in generation)

GCRV.out; XY
. 100 lines

Tk % % % % % % % ¥ ¥ ¥ 2 x x % % % ¥

R K XK R X K X X X K K X XK KX X X ¥

Heskokeskeokoke ok sdeckok skokok sk sheok ok sheokok skeokesk sk skesk ok sk skeok sk sk ok ok ok skeok ok sk sk sk sk sk ke okok skskok ok ke sk ok

#¥* Main Program: GCRV

**% Read input from "GCRV.in"
OPEN(2,FILE="GCRV.in")
READ(2, ’(F8.5)’) b0

READ(2, *(F8.5)’) bl

READ(2, *(F4.1)’) pow
READ(2, ’(F7.2)’) ymax
CLOSE(2)

*** Generate X points from Y points and write to file.
OPEN(3,FILE="GCRV.outl’)
yincr = ymax/100
ypoint = 0
DO 100 i =0, 100

xpoint = b0 + bl1*(ypoint)**(pow)

WRITEQ3,’(F8.3, X, F8.3)’) xpoint, ypoint
ypoint = ypoint + yincr

143

Q

100

150

CONTINUE
CLOSEQ@3)

*** Generate allowance limits, +/- 2.5% of model response *

OPEN4,FILE="GCRV.oui2’)
ypoint = 0
DO 1501 =0, 100
xpt_pos = 1.025 * (b0 + b1*(ypoint)**(pow))
xpt_neg = 0.975 * (b0 + bl*(ypoint)**(pow))
WRITE(4,’(F8.3, X, F8.3)’) xpt_neg, ypoint
WRITE(4,’(F8.3, X, F8.3)’) xpt_pos, ypoint
ypoint = ypoint + yincr
CONTINUE
CLOSE®@4)

STOP
END

sksfeskesfe stk sk skeske sk skeoke sk skoske sk skskesk stk skl sk sk sk sheskeoke sk sheske ke sk sk ek sk stk sk ke sk sk sk sk sk e sk skl sk kol sk ok

* End of program GCRYV. *

stk sk ke sk ok ek ok ok ok skeokok oo ok skeokeok sk skotok sk ko sk ke skl sk skeskeok skekeok sk st sk ook skekeok sk ki skokok ko

144

APPENDIX C - Nexpert Object Knowledge Bases

The following list contains the names of the Nexpert Object knowledge bases
referenced in Chapters 5 and 6 of this thesis. Programming code begins on the page

number indicated below.

Page
AQ0_main.tkb (Definitions) 146
Al _main.tkb (System Operations) 160
A2_main.tkb (Main Menu & Curve Use Modules) 165
A3_main.tkb (Curve Development Module) 179
A4_main.tkb (Outlier Analysis Module) 232
AS5_main.tkb (Curve Modification Module) 255

145

Hkskekeokokokokeksdeskokoskoksksdek kokok sk skeokok ksl ok e ok ko sk sdeokok sk skosiokskok e ke deskeskokokokek e ok skokok sk ok koskok sk

#* Nexpert Object KB Code: AD_main.tkb *
#**
#* DEFINITIONS - Master System *

Fokokokokokokokokokokokskekeskokokoskokok sk sk ok stesk e sk st sfesfesfe e ke o sk oskeokokokokokokokskololokokokskokokskodeokokoskolok skokokok ook

(@VERSION=020)

(@PROPERTY= Atr_Tbl @TYPE=String;)

(@PROPERTY= BO @TYPE=Float; @FORMAT="1.0000";)
(@PROPERTY= Bi @TYPE=Float; @FORMAT="u.0000";)
(@PROPERTY= Crv_Id @TYPE=Integer;)

(@PROPERTY= Crv_Tbl @TYPE=String;)

(@PROPERTY= Crv_Type @TYPE=String;)

(@PROPERTY= Current @TYPE=Boolean;)

(@PROPERTY= Cursor @TYPE=Integer;)

(@PROPERTY= Dai_Tbl @TYPE=String;)

(@PROPERTY= Datemade @TYPE=Date;@FORMAT="d\"-\"MMM\"\"yy";)
(@PROPERTY= Description @TYPE=Siring;)

(@PROPERTY= Discharge @TYPE=Float; @FORMAT="u.0000";)
(@PROPERTY= F Day @TYPE=Integer;)

(@PROPERTY= Filename @TYPE=String;)

(@PROPERTY= FN_Conlim @TYPE=String;)

(@PROPERTY= FN_Curve @TYPE=String;)

(@PROPERTY= EN_Data @TYPE=String;)

(@PROPERTY= FN_Outliers @TYPE=String;)

{@PROPERTY= FN_Results @TYPE=String;)

(@PROPERTY= Index @TYPE=Integer;)

(@PROPERTY= L_Day @TYPE=Integer;)

(@PROPERTY= Last_Msr @TYPE=Date;@FORMAT="d\"-\"MMM\"\"yy";)
(@PROPERTY= Max_D @TYPE=Float;@FORMAT="u.0000";)
(@PROPERTY= Max_S @TYPE=Float; @FORMAT="u.0000";)
(@PROPERTY= Min_D @TYPE=Float; @FORMAT="u.0000";)
(@PROPERTY= Min_S @TYPE=Float; @FORMAT="u.0000";)
(@PROPERTY= Msr_Date @TYPE=Date;@FORMAT="d\"\"MMM\"\"yy";)
(@PROPERTY= Msr_Id @TYPE=Inieger;)

(@PROPERTY= Msrs_to_date ~ @TYPE=Integer;)

(@PROPERTY= No_Flow_Stg @TYPE=Float;@FORMAT="u.0000";)
(@PROPERTY= Num_Msrs @TYPE=Integer;)

(@PROPERTY= Num_obj @TYPE=Integer;)

(@PROPERTY= Num_OL @ TYPE=Integer;)

(@PROPERTY= Obj_names @TYPE=String;)

(@PROPERTY= Plot @TYPE=Boolean;)

(@PROPERTY= Query @TYPE=String;)

(@PROPERTY= R2 @TYPE=Float;@FORMAT="u.0000";)
(@PROPERTY= Set @TYPE=String;)

(@PROPERTY= Stage @TYPE=Float;@FORMAT="u.0000";)
(@PROPERTY= StdEE @TYPE=Float; @FORMAT="u.0000";)
(@PROPERTY= Stn_Id @TYPE=String;)

146

(@PROPERTY=
(@PROPERTY=
(@PROPERTY=
(@PROPERTY=
(@PROPERTY=

(@CLASS=

Stn_Name
Title

X

Type
ZEF_Count

Best_models

(@PROPERTIES=

)
(@CLASS=

BO

B1

F_Day
FN_Conlim
FN_Curve
FN_Data
FN_Outliers
FN_Results
L_Day
Num_OL
Plot

R2

StdEE

Title

X

Curves

(@PROPERTIES=

)
(@CLASS=

BO

B1
Crv_Type
Datemade
F_Day
FN_Curve
L_Day
Last_Msr
Max_D
Max_S
Min_D
Min_S
Value @TYPE=Integer;

Datasets

(@PROPERTIES=

Current
Description
FN_Data
Last_Msr

@TYPE=String;)

@TYPE=String;)
@TYPE=Float;@FORMAT="u.00";)
@TYPE=String;)

@TYPE=Integer;)

147

Max_D
Max_S
Min_D
Min_S
No_Flow_Stg
Num_Msrs
Plot

Query
Title

Type
ZF_Count

)

(@CLASS= Models
(@PROPERTIES=

BO
B1
Crv_Id
Crv_Type
F_Day
FN_Conlim
FN_Curve
FN_Data
FN_OQutliers
FN_Results
L_Day
Num_OL
Piot
R2
StdEE
Title
TX

(@OBJECT= A_Begin
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= A_Begin_Sys0
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBIJECT= Allow_err

148

(@PROPERTIES=

Value @TYPE=Float;

)
)

(@OBJECT= answer
(@PROPERTIES=

Value @TYPE=Integer;

)
)

(@OBJECT= BEST_Model

(@PROPERTIES=
BO
B1
Crv_id
Crv_Type
F_Day

FN_Conlim

FN_Curve
FN_Data

FIN_OQutliers

FN_Results
L_Day
Num_OL
Plot

R2

StdEE
Title

X

)

(@OBJECT= Bool_Answer

(@PROPERTIES=

Value @TYPE=Boolean;

)
)

(@OBJECT= C_Crv

(@CLASSES=
Curves

)

(@PROPERTIES=
BO
B1
Crv_Id
Crv_Type
Datemade
F_Day
FN_Curve

149

L_Day

Last_Msr

Max_D

Max_S

Min_D

Min_S

X

Value @TYPE=Integer;

)

(@OBJECT= C_Stn
(@PROPERTIES=
Atr_Tbl
Crv_Tbl
Dat_Tbl
Msrs_to_date
Stn_Id
Stn_Name
Value @TYPE=String;

)

(@OBJECT= Cnst_timel
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Cnst_time2
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Control_Next
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Control_Return
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Count
(@PROPERTIES=
Value @TYPE=Integer;

)

150

)

(@OBJECT= Counter
(@PROPERTIES=
Value @TYPE=Integer:
)
)

(@OBJECT= Crv_Entry
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= CrvDev_Call
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= CrvDev_Control
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvMod_Call
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= CrvMod_Control
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Cursor
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= CurveDevelopment_Open
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CurveDevelopment_Start

151

(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CurveModify_Open
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CurveModify_Retumn
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CurveModify_Start
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= db_access
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= dummy_string
(@PROPERTIES=
Value @TYPE=String;
)
)

(@QOBJECT= dummy_params
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Lock_CrvDev
(@PROPERTIES=
Value @TYPE=Sfring;
)
)

(@OBJECT= Lock_CrvMod
(@PROPERTIES=
Value @TYPE=String;
)

152

)

(@OBJECT= Lock_MainMenu
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Lock_OutAnal
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= MainMenu_Control
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= MainMenu_Open
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= MainMenu_Start
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= New_msr
(@PROPERTIES=
Discharge
Msr_Date
Msr_Id
Set
Stage

)

(@OBJECT= OutAnal_Call
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= OutAnal_Control

(@PROPERTIES=
Value @TYPE=Boolean;

153

)

(@OBJECT= OutlierAnalysis_Open
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBIJECT= OQutlierAnalysis_Return
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBIJECT= OutlierAnalysis_Start
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Phase
(@PROPERTIES=
Value @TYPE=Integer;
)

(@OBJECT= Phsl

(@CLASSES=
Datasets

)

{@PROPERTIES=
Current
Description
FIN_Data
Last_Msr
Max_D
Max_S
Min_D
Min_S
Num_Msrs
Plot
Query
Title
Type

)

(@OBJECT= Phs2
(@CLASSES=

154

Datasets

)

(@PROPERTIES=
Current
Description
FN_Data
Last Msr
Max_D
Max_S
Min_D
Min_S
Num_Msrs
Plot
Query
Title

Type
)

(@OBJECT= Phs3

(@CLASSES=
Datasets

)

(@PROPERTIES=
Current
Description
FN_Data
Last_Msr
Max_D
Max_S
Min_D
Min_S
Num_Msrs
Plot
Query
Title

Type

(@OBJECT= Phs5

(@CLASSES=
Datasets

)

(@PROPERTIES=
Current
Description
FN_Data
Last_Msr
Max_D

155

Max_S
Min_D
Min_S
Num_Msrs
Plot

Query
Title

Type

(@OBJECT= Plot_Info
(@PROPERTIES=

Filename
Index
Max_D
Max_S
Num_obj
Obj_names
Title

)

(@OBJECT= Qry_Str_Prefix
(@PROPERTIES=
Value @TYPE=String;
)
)

{(@OBJECT= Query_String
(@PROPERTIES=
Value @TYPE=Siring;
)
)

(@OBJECT= Start_day
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= Stop_day
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= System_Call
(@PROPERTIES=

156

Value @TYPE=String;

)

(@OBJECT= System_Control
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= System_Return
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Temp_Crv

(@CLASSES=
Curves

)

(@PROPERTIES=
BO
Bl
Crv_Type
Datemade
F_Day
FN_Curve
L_Day
Last_Msr
Max_D
Max_S
Min_D
Min_S
Value @TYPE=Integer;

)

(@SLOT= Datasets.Max_D
(@INITVAL= ()
)

(@SLOT= Datasets.Max_S
(@INITVAL= ()
)

(@SLOT= Datasets.Min_D
(@INITVAL= 1000000)

)

(@SLOT= Datasets.Min_S
(@INITVAL= 1000000)

157

)

(@SLOT= Datasets.Num_Msrs
(@INITVAL= 0)
)

(@SLOT= Datasets.Plot
(@INITVAL= TRUE)

)

(@SLOT= Allow_err
(@INITVAL= 30.0)

)

(@SLOT= Cnsi_timel

@COMMENTS="See Get_PhsZ_A hypothesis";

(@INITVAL= " (TO_NUMBER(TO_CHAR(date_of_msr\
'DDD?)) >= @V (Start_day) AND TO_NUMBER(TO_CHAR(date_of_msr)\
'DDD)) <= @V (Stop_day)) ")

)

(@SLOT= Cnst_time2

@COMMENTS="See Get_Phs2_A hypothesis";

(@INITVAL= " (TO_NUMBER(TO_CHAR(date_of_msr\
'DDD")) >= @V (Start_day) OR TO_NUMBER(TO_CHAR(date_of_msr\
'DDD”)) <= @V (Stop_day)) ")

)

(@SLOT= db_access
@INFCAT=20;
(@INITVAL= "glen/mac")

)

(@SLOT= Start_day
(@INITVAL= 0)
)

(@SLOT= Stop_day
(@INITVAL= ()
)

(@GLOBALS=
@INHVALUP=FALSE;
@INHVALDOWN=TRUE;
@INHOBJUP=FALSE;
@INHOBJDOWN=FALSE;
@INHCLASSUP=FALSE;
@INHCLASSDOWN=TRUE;
@INHBREADTH=TRUE;
@INHPARENT=FALSE;
@PWTRUE=TRUE;

158

@PWFALSE=TRUE;
@PWNOTKNOWN=TRUE;
@EXHBWRD=TRUE;
@PTGATES=TRUE;
@PFACTIONS=TRUE;
@SOURCESON=TRUE;
@CACTIONSON=TRUE;
@SUGLIST=A_Begin;

Rk dekokokokok ek skookokesk e e skofokskdokokokok ko kok sk deolokok sk soioksksk sk ook ook sk ke kok ko sk sk sk ok okok ok

#* End of KB Code: A0 main.tkb *

#*********************i&***

159

Fpteckedtokesdeodst seokskokesiokadokdoksdoksk skkskok skokokokokod skeok skook sk sksleoske ok sokok ok skokslolsdokok sokskokslololokolokodok

#* Nexpert Object KB Code: Al main.tkb *
Fpieskokskeskokokteokokdeokokdokokskoskoksokok ok sk ok sk ok skskokdokskskokok stk sk ok skokok sk ok sk kokok ko ek ko ok ok
#* SYSTEM OPERATION - Master System *

#**

(@VERSION=020)

(@OBJECT= System_Resets
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@SLOT= System_Resets
(@CACTIONS=

(Reset (CurveDevelopment_Open))
(Reset (CurveDevelopment_Start))
(Reset (CurveModify_Open))
(Reset (CurveModify_Start))
(Reset (CurveModify_Return))
(Reset (MainMenu_Open))
(Reset (MainMenu_Start))
(Reset (OutlierAnalysis_Open))
(Reset (OutlierAnalysis_Start))
(Reset (OutlierAnalysis_Return))
(Reset (System_Resets))

(@RULE= Ri1

(@LHS=
) = (1) ay
(@HYPO= A_Begin)
(@RHS=
(Strategy (@EXHBWRD=FALSE;))
(Do ("MainMenu_Start") (System_Call))
(Do (System_Control) (System_Return))
)
)
(@RULE= R2
(@LHS=
= 1) ay

160

)

(@HYPO= CurveDevelopment_Open)
(@RHS=
(Show ("msg_20.txt") (@KEEP=FALSE;@WAIT=FALSE;@RECT=5,400,650\
400:))
(LoadKB ("A3_main.tkb") (@LEVEL=ENABLE;))
(Show ("msg_23.txt") (@KEEP=FALSE;@WAIT=FALSE;))
)
(@RULE= R3
(@LHS=
= 1) 1)
)
(@HYPO= CurveDevelopment_Start)
(@RHS=
(Reset (CurveDevelopment_Open))
(Do (CurveDevelopment_Open) (CurveDevelopment_Open))
(Do ("ON") (Lock_CrvDev))
(Do (C_Stn.Dat_Tbl) (Qry_Str_Prefix))
(Do ¢)) (Phase))
(Do ("CrvDev_Ct_0") (CrvDev_Call))
[Reset (CrvDev_Control))
(Do (CrvDev_Control) {CrvDev_Conirol))
(UnloadKB ("A3_main.tkkb") (@LEVEL=WIPEOUT}))
)
)
(@RULE= Ri1
(@LHS=
= 1) 1)
)
(@HYPO= CurveModify_Open)
(@RHS=
(Show ("msg_40.txt") (@KEEP=FALSE;@WAIT=FALSE;@RECT=5,400,650,\
400;))
(LoadKB ("A5_main.tkkb") (@LEVEL=ENABLE;))
(Show ("msg_41.txt") (@KEEP=FALSE;@WAIT=FALSE;))
S)
(@RULE= R13
(@LHS=
= 6y 1))
)
(@HYPO= CurveModify_Start)
(@RHS=

(Reset (CurveModify_Open))

(Do (CurveModify_Open) (CurveModify_Open))
(Do ("CrvMod_Ctl_2") (CrvMod_Call))

(Do ("ON") (Lock_CrvMod))

161

(Reset (CrvMod_Control))
(Do (CrvMod_Control) (CrvMod_Control))
(UnloadKB ("A5_main.tkb") (@LEVEL=WIPEOUT?))

(@RULE= R20

@COMMENTS="This rule is run after returning from Curve Modification, if the modelling
procedure was required. It continues by re-calling Curve Development with Phase=5. This starts a specific
set of actions within Curve Development to model the newly combined OLD & NEW datasets. These are
stored in ds.OLD_NEW.";

(@LHS=
) (= ¢y 1)
(@HYPO= CurveModify_Return)
(@RHS=
(Reset (CurveDevelopment_Open))
(Do (CurveDevelopment_Open) (CurveDevelopment_Open))

(Do ("ON") (Lock_CrvDev))
(Do o) (Phase))

Do ("CrvDev_Ct_0") (CrvDev_Call))
(Reset (CrvDev_Control))
(Do (CrvDev_Control) {CrvDev_Control))

(UnloadKB ("A3_main.tkb") (@LEVEL=WIPEOUT;))

{(@RULE= R4

(@LHS=

) = 1 €3)
(@HYPO= MainMenu_Open)
(@RHS=

(Show ("Txtftitle.txt") (@KEEP=FALSE;@WAIT=TRUE;@RECT=0,0,600,400)\
),

400;))

(Show ("msg_S.xt") (@KEEP=FALSE;@WAIT=FALSE;@RECT=5,400,650)\
(LoadKB ("A2_main.tkb") (@LEVEL=ENABLE;))

)

(@RULE= R5

(@LHS=
= (1 (1)
)
(@HYPO= MainMenu_Start)
(@RHS=
(Do (MainMenu_Open) (System_Return))

162

Do ("Conirol_3") (Control_Next))

(Do ("ON") (Lock_MainMenu))

(Reset (MainMenu_Control))

(Do (MainMenu_Control) (MainMenu_Control))
(UnloadKB ("A2_main.tkb") (@LEVEL=WIPEOUT;))

)
)
(@RULE= R6
(@LHS=
= (€Y €))]
)
(@HYPO= OutlierAnalysis_Open)
(@RHS=
(Show ("msg_30.txt") (@KEEP=FALSE;@W AIT=FALSE;@RECT=5,400,650\
400;))
(LoadKB ("A4_main.tkb") (@LEVEL=ENABLE;))
(Show ("msg_31.xt") (@KEEP=FALSE;@WAIT=FALSE;))
)
)
(@RULE= R7

@COMMENTS="This rule is run after returning from Outlier Analysis. It continues by re-calling
Curve Development with Phase=3. This starts a specific set of actions within Curve Development to model
the non-outlier measurements filtered out in the Outlier Analysis";

{@LHS=
= ® 1)
)
(@HYPO= OutlierAnalysis_Return)
(@RHS=
(Reset (CurveDevelopment_Open))
(Do (CurveDevelopment_Open) (CurveDevelopment_Open))

(Do ("ON™) (Lock_CrvDev))
(Do 3) (Phase))

(Do ("CrvDev_Cd_0") (CrvDev_Call))
(Reset (CrvDev_Control))
(Do (CrvDev_Control) (CrvDev_Control))
(UnloadKB ("A3_main.tkb") (@LEVEL=WIPEQUT?))
)
)
(@RULE= R8
(@LHS=
= 1) (1))
)
(@HYPO= OutlierAnalysis_Start)
(@RHS=

(Reset (OutlierAnalysis_Open))

Do (OutlierAnalysis_Open) (OutlierAnalysis_Open))
Do ("OutAnai_Cti_0") (OutAnal_Call))

(Do ("ON") (Lock_OutAnal))

163

(Show ("pointer.txt") (@KEEP=FALSE;@WAIT=FALSE;@RECT=5,400,650\

400;))
(Reset (OutAnal_Control))
(Do (OutAnal_Control) (OutAnal_Control))
(UnloadKB ("A4_main.tkb") (@LEVEL=WIPEOUT;))
)
)
(@RULE= R10
(@LHS=
(Is (System_Call) ("EndSession"))
)
(@HYPO= System_Control)
(@RHS=
(Show ("msg_7.xt") (@KEEP=FALSE;@WAIT=FALSE;))
(Execute ("ConirolSession") (@STRING="@RESTART";))
)
)
(@RULE= R9
(@LHS=
(IsNot (System_Call) ("EndSession”))
)
(@HYPO= System_Control)
(@RHS=
(Do (\System_Call\ Value) (System_Return))
(Do (TRUE) (System_Resets))
(Reset (System_Control))
)
)

#**

#* End of KB Code: Al_main.tkb *

#**

164

Fkkkckdockokdokokekdokokokekk ook skkok kokokskek ok sk ok kokokokek skekok ok okokskok ok sk sk ok skokok sk sk skok

#* Nexpert Object KB Code: A2_main.tkb *
#**
#* Main Menu & Curve Use Modules *

Fpokok sk ok ok s sk st s ok sk sk sk sk s e s e ek ko oskokskskokskokok sk s skl sk ke sl sk sl e sk sk skeokesleoske ke stk sk skosk sk sk sk skokokskok sk sk ok ok

(@VERSION=020)

(@OBJECT= Control_20
(@PROPERTIES=
Value @TYPE=Boolean;

)
)
(@OBJECT= Control_3
(@PROPERTIES=
Value @TYPE=Boolean;
)
)
(@OBJECT= Conirol_30
(@PROPERTIES=
Value @TYPE=Boolean;
)
)
(@OBJECT= Controi_4
(@PROPERTIES=
Value @TYPE=Boolean;
)
)
(@OBJECT= Control_7
(@PROPERTIES=
Value @TYPE=Boolean;
)
)
(@OBJECT= Control_8
(@PROPERTIES=
Value @TYPE=Boolean;
)
)
{(@OBJECT= Control_Complete
(@PROPERTIES=
Value @TYPE=Boolean;
)

165

)

(@OBJECT= Control_Resets
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Crv_Check
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Crv_Duties
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Crv_Exist
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Crv_Logl
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Crv_Log2
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Crv_Log3
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= DDTBL _File
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= dum_bool

166

(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Get_DDTBL_File
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Main_Process
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= P1
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Prini_DDTBL
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Print_Prompt_1
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Seq_Ret_Curves
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Seq_Ret_Stations
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Show_Stn
(@PROPERTIES=
Value @TYPE=Boolean;
)

167

)

(@OBJECT= Stn_Check
(@PROPERTIES:==
Value @TYPE=Boolean;
)
)

(@OBJECT= Stn_Duties
{@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Stn_Entry
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Stn_Logi
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Stn_Log2
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBIJECT= Stn_Log3
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@SLOT= Control_Resets
(@CACTIONS=

(Reset (Control_3))
(Reset (Control_4))
(Reset (Control_20))
(Reset (Control_30))
(Reset (Control_7)}
(Reset (Control_8))
(Reset (Control_Resets))

)

@SLOT= Crv_Entry

168

@PROMPT="ENTER Curve Id. NUMBER TO SELECT AN \"ACTIVE CURVE\" ...";
)

(@SLOT= Crv_Logl
(@CACTIONS=
(Execute ("cat clsum.hd > clsum.tx¢") (@TYPE=EXE;))

(Reset (Crv_Logl))

)

(@SLOT= Crv_Log2
(@CACTIONS=
(Execute ("echo @V{(Temp_Crv.Value) > clsum.IN") (@TYPE=EXE;))
(Execute ("echo @V(Temp_Crv.Last_Msr) >> clsum.IN") (@TYPE=EXE;))

(Do (STRCAT(Temp_Crv.Crv_Type,STRCAT(":
" STRCAT(INT2STR(Temp_Crv.F_Day)\
STRCAT(" to ",INT2STR(Temp_Crv.L_Day)))))) (dummy_string))

(Execute ("echo @V(dummy_string) >> clsum.IN") (@TYPE=EXE;))
(Execute ("echo @V (Temp_Crv.Min_S) >> clsum.IN") (@TYPE=EXE;))
(Execute ("echo @V(Temp_Crv.Max_S) >> clsum.IN") (@TYPE=EXE;))
(Execute ("echo @V(Temp_Crv.Min_D) >> clsum.IN") (@TYPE=EXE)))
(Execute ("echo @V(Temp_Crv.Max_D) >> clsum.IN") (@TYPE=EXE;))
(Execute ("cisum") (@TYPE=EXE)))

(Execute ("cat clsum.OUT >> cisum.txt") (@TYPE=EXE;))

(Reset (Crv_log2))

)

(@SLOT= Crv_Log3
(@CACTIONS=
(Execute ("cat clsum.ft >> clsum.txt") (@TYPE=EXE;))

(Reset (Crv_Log3))

)

(@SLOT= DDTBL_File
@PROMPT="Enter File Name containing water level records ...";

)

(@SLOT= Main_Process
@PROMPT="WHAT WOULD YOU LIKE TO DO NEXT ...";

)

(@SLOT= P1

@COMMENTS="Prepare DDTAB input files and execute.";

(@CACTIONS=
(Execute ("cat @ V(DDTBL_File.Value) > ddtbl.IN2") (@TYPE=EXE;))
(Execute ("echo @V(C_Crv.TX) > ddtbL.IN1") (@TYPE=EXE)))
(Execute ("echo @V(C_Crv.B0) >> ddtbl.IN1™) (@TYPE=EXE;))
(Execute ("echo @V(C_Crv.B1) >> ddtbl.IN1") (@TYPE=EXE;))
(Execute ("ddtb1") (@TYPE=EXE;))

169

(Execute ("cat ddtbL.OUT") {(@TYPE=EXE;))

(Execute ("cat ddtbl.OUT > ddtbl.txt") (@TYPE=EXE:))
[Reset (P1))
)
)
(@SLOT= Print_Prompt_1
@PROMPT="WOULD YOU LIKE A HARD COPY OF THE DISCHARGE TABLE ?";
)
(@SLOT= Show_Stn
(@CACTIONS=
(Do (STRCAT(""",STRCAT(C_Stn.Stn_Name,"’"))) (dummy_string))
(Execute ("mgl @V(C_Stn.Stn_Id) @ V(dummy_string)") (@TYPE=EXE;))
(Show ("msg_l.xt") (@KEEP=FALSE;@WAIT=FALSE;))
(Reset (Show_Stn))
)
)
{@SLOT= Stn_Entry
@PROMPT="ENTER Station Id. TO SELECT AN \"ACTIVE STATION\" ...";
)
(@SLOT= Stn_Log1
(@CACTIONS=
(Execute ("cat sinist.hd > stnlst.txt") (@TYPE=EXE;))
(Reset (Stn_Logl))
)
)
(@SLOT= Stn_Log2
{@CACTIONS=
(Execute ("echo @V(C_Stm.Stn_Id) > stnist.IN") (@TYPE=EXE;))
(Execute ("echo @ V(C_Stm.Stn_Name) >> stnlst.IN") (@TYPE=EXE;))
(Execute ("stnlst") (@TYPE=EXE)))
{Execute ("cat smist.OUT >> stnlst.txt") (@TYPE=EXE;))
(Reset (Stn_Log2))
)
)
(@SLOT= Stn_Log3
(@CACTIONS=
(Execute ("cat stnist.ft >> stnist.txt") (@TYPE=EXE,))
(Reset (Stn_Log3))
)
)
(@RULE= Modify_Curve_Partl
(@LHS=
ds (Main_Process) ("Modify an Existing Curve"))
)

170

(@HYPO= Control_20)
(@RHS=
(Do ("Control_7") (Conitrol_Next))
)
)

(@RULE= Make_New_Curve_Partl
@COMMENTS="Signals to MainMenu_Control to exit from main menu and Start the Curve
Development Module”;
(@LHS=
(s (Main_Process) ("Make New Curve"))
)

(@HYPO= Control_20)
(@RHS=
(Do ("CurveDevelopment_Start") (System_Call))
Do ("OFF") (Lock_MainMenu))
)
)
(@RULE= Exit_System

@COMMENTS="Signals to MainMenu_Control to exit from main menu and End the system
session";
(@LHS=
(s (Main_Process) ("Exit System"))

)
(@HYPO= Control_20)
(@RHS=
(Do ("EndSession”) (System_Cail))
(Do ("OFEF") (Lock_MainMenu))
)
)
(@RULE= Compute_Dishcharge_Table_Partl
(@LHS=
(s (Main_Process) ("Compute Daily Discharges"))
)
(@HYPO= Control_20)
(@RHS=
(Do ("Control_7") (Control_Next))
)
)
(@RULE= Retrv_Station_List
(@LHS=
(= 1) 1)
)
(@HYPO= Control_3)
(@RHS=

(Show ("msg 9.xt") (@KEEP=FALSE;@WAIT=FALSE;))
(Do © (Counter))
(Do 0) (Cursor))

171

(Do (TRUE) (Stn_Log1))

(Do (Seq_Ret_Stations) (Seq_Rei_Stations))
(Reset (Seq_Ret_Stations))
Do (TRUE) (Stn_Log3))
(Show (“"stnlst.ixt") {(@KEEP=FALSE;@WAIT=FALSE;@RECT=5.,400,650\
400;))
(Do ("Control_4") (Control_Next))
)
)
(@RULE= Modify_Curve_Part2
(@LHS=
(Is (Main_Process) ("Modify an Existing Curve"))
)
(@HYPO= Control_30)
(@RHS=
(Do ("CurveModify_Start") (System_Call))
(Do ("OFF") (Lock_MainMenu))

)

(@RULE= Compute_Dishcharge_Table_Part2
(@LHS=
(s (Main_Process) ("Compute Daily Discharges"))
)

(@HYPO= Control_30)

(@RHS=
(Do (Get_DDTBL._File) (Get_DDTBL_File))
(Do (TRUE) P1)

(Show ("msg_6.txt") (@KEEP=FALSE;@WAIT=TRUE;))

(Show ("ddtblL.txt") (@KEEP=FALSE;@WAIT=TRUE;@RECT=5,5,1150,820:\
)]

(Show ("msg_6.txt") (@KEEP=FALSE;@WAIT=TRUE;))

(Reset (Print_DDTBL))

(Do (Print_DDTBL) (Prini_DDTBL))

(Reset (DDTBL_File))

(Reset (Main_Process))

(Do ("Control_20") (Control_Next))

(Do ("ON") (Lock_MainMenu))

)

(@RULE= Assign_Station
(@LHS=
= @ 1)
)

(@HYPO= Control_4)

(@RHS=
(Reset (Stn_Entry))
(Do (STRUPPER(Stn_Entry)) (Stn_Entry))
(Reset (Cursor))

172

(Retrieve ("@V{(db_access)")
(@TYPE=ORACLE;@END="RELEASE";@SLOTS=C_Stn.Stn_Id\
@FIELDS="STN_ID";@QUERY="STN_LIST where STN_ID = '@ V(Stn_Entry)’":\
@CURSOR=Cursor;))

(Reset (Stn_Check))

(Do (Stn_Check) (Stn_Check))

)

(@RULE= Retrv_Curve_List

(@LHS=

(= 1) 1)
)
(@HYPO= Control_7)
(@RHS=

(Show ("msg_12.txt") (@KEEP=FALSE;@WAIT=FALSE;))
(Do ()] (Counter))
(Do () (Cursor))

(Do (TRUE) (Crv_Logl))

(Do (Seq_Ret_Curves) (Seg_Ret_Curves))
(Reset (Seq_Ret_Curves))

(Do (TRUE) (Crv_Log3))

(Reset (Crv_Exist))
(Do (Crv_Exist) (Crv_Exist))

)

(@RULE= Get_Current_Curve

(@LHS=

= ¢3) ¢9))
)
(@HYPO= Control_8)
(@RHS=

(Reset (Crv_Entry))

(Do (Crv_Entry) (Crv_Eniry))

(Reset (Cursor))

(Retrieve ("@V(db_access)")
(@TYPE=ORACLE;@END="RELEASE";@SLOTS=C_Crv.Value:\
@FIELDS="COUNT(CRV_ID)";@QUERY="@V(C_Stn.Crv_Tbl) where CRV_ID = @ V(Crv_Entry)"\
@CURSOR=Cursor;))

(Reset (Crv_Check))

(Do (Crv_Check) (Crv_Check))

)
(@RULE= Valid_Curve

@INFCAT=10;
@COMMENTS="Sets the CURRENT CURVE ...";
(@LHS=

= (Cursor) ()

)

173

(@HYPO= Crv_Check)
(@RHS=

(Reset (Cursor))

(Retrieve ("@V(db_access)")
(@TYPE=ORACLE;@END="RELEASE";@SLOTS=C_Crv.Crv_Id,C_Crv.Last_Msr,
C_Crv.Crv_Type,C_Crv.B0,C_Crv.B1,C_Crv.F_Day,C_Crv.L_Day,
C_Crv.Min_S,C_Crv.Max_S,C_Crv.Min_D,C_Crv.Maz_D,

C_Crv.Datemade,C_Crv. TX;@FIELDS="CRV_ID","LAST_MSR",
"TYPE","B0","B1","F_DAY","L_DAY","MIN_S",
"MAX_S","MIN_D","MAX_D","DATEMADE","TX";@QUERY="@ V(C_Stn.Crv_Tbl) where CRV_ID
@V(Crv_Entry)";@CURSOR=Cursor;))
(Do ("Control_30") (Control_Next))
)
)

(@RULE= Invalid_Curve

@INFCAT=5;
(@LHS=
(< (Cursor))
> (C_Crv) (V)
)
(@HYPO= Crv_Check)
(@RHS=
(Show ("msg_l1.txt") (@KEEP=FALSE;@WAIT=TRUE;@RECT=5,400,500,\
300;)
(Show ("clsum.ixt") (@KEEP=FALSE;@WAIT=FALSE;))
(Do ("Control_8") (Control_Next))
)

)

(@RULE= Curve_Write_Check

(@LHS=
(>= (Cursor) ©)
IS (Temp_Crv) (0))

.)
S (@HYPO= Crv_Duties)

{(@RHS=
(Do (TRUE) (Crv_Log2))

)

)

(@RULE= No_Curves_Exist_chk
@COMMENTS="Checks for at least one curve stored";

(@LHS=
""" (<= (Counter) (1)
)
(@HYPO= Crv_Exist)
(@RHS=

(Show ("msg_13.txt") (@KEEP=FALSE;@WAIT=FALSE;))
(Reset (Main_Process))

174

(Do

)

(@RULE=

("Control_20") (Control_Next))

Curve_Exist_check

@COMMENTS="Checks for at least one curve stored";

(@LHS=
(63

)

(@HYPO=

(@RHS=
(Show
(Do

)

(@RULE= R116
@INFCAT=5;
(@LHS=

(Counter))]
Crv_Exist)

(@KEEP=FALSE;@WAIT=FALSE;))
(Control_Next))

("clsum.txt")
("Control_8")

(Name (DDTBL_File) (DDTBL_File))

(Execute

("FileExist")

(@STRING="@FILE=@ V(DDTBL_File.Value),@RETURN=dum_bool"\

),
(Yes

)
(@HYPO=

)

(@RULE= R115
(@LHS=
(No
)

(@HYPO=

(@RHS=
(Show
(Reset
(Reset

)

(@RULE= R118
(@LHS=
(Is
)
(@HYPO=

)

(@RULE= R117
@INFCAT=5;
(@LHS=

(Is

(dum_bool))

Get_DDTBL_File)

(dum_bool))
Get_DDTBL_File)
("badfile™)

(DDTBL_File))
(Get_DDTBL_File))

(@KEEP=FALSE;@WAIT=FALSE;))

(Lock_MainMenu) ("OFF")
MainMenu_Control)
(Lock_MainMenu) ("ON")

175

(@HYPO= MainMenu_Control)

(@RHS=
(Do (\Control_Nexi\Value) (Control_Compleie))
(Do (TRUE) (Control_Resets))
(Reset (MainMenu_Control))

)

(@RULE= R120

(@LHS=
(s (Prini_Prompt_1) ("YES")
)
(@HYPO= Print_DDTBL)
(@RHS=
(Execute ("Ipr -Psparc -h ddtbl.OUT") (@TYPE=EXE;))

(Reset (Print_Prompt_1))

)

(@RULE= R119

(@LHS=
(s (Print_Prompt_1) ("NO")
)
(@HYPO= Print DDTBL)
)
(@RULE= R121
(@LHS=
= (Cursor) ()]
)
(@HYPO= Seq_Ret_Curves)
(@RHS=
(Do (Counter+1) (Counter))
(Retrieve ("@V(db_access)")

(@TYPE=ORACLE;@END="RELEASE";@SLOTS=Temp_Crv.Value\
Temp_Crv.Crv_Type,Temp_Crv.F_Day,Temp_Crv.L_Day\
Temp_Crv.Datemade, Temp_Crv.Min_S,Temp_Crv.Max_S)\
Temp_Crv.Min_D,Temp_Crv.Max_D,Temp_Crv.Last_Msr\
@FIELDS="CRV_ID","TYPE","F_DAY","L_DAY","DATEMADE"\
"MIN_S","MAX_S","MIN_D","MAX_D","LAST_MSR"\
@QUERY="@V(C_Stm.Crv_Tbl)";@ CURSOR=Cursor:\

),
(Do (Crv_Duties) (Crv_Duties))
(Reset (Crv_Duties))
(Reset (Seq_Ret_Curves))
)
)
(@RULE= R122

(@LHS=

176

= (Cursor) ©y»
)

(@HYPO= Seq_Ret_Stations)
(@RHS=
(Do (Counter+1) {Counter))
(Retrieve ("@V(db_access)")

(@TYPE=ORACLE;@FWRD=TRUE;@END="RELEASE"\
@SLOTS=C_Stn.Stn_Id,C_Stn.Stn_Name;@FIELDS="STN_ID"\
"NAME";@QUERY="STN_LIST";@CURSOR=Cursor;))

(Do {Stn_Duties) (Stn_Duties))

(Reset (Stn_Duties))

(Reset (Seq_Ret_Stations))

)

(@RULE= Valid_Station

@INFCAT=10;
@COMMENTS="Sets the CURRENT CURVE ...";
(@LHS=
= (Cursor))
)
(@HYPO= Stn_Check)
(@RHS=
(Reset (Cursor))
(Retrieve ("@V(db_access)")

(@TYPE=ORACLE;@END="RELEASE";@SLOTS=C_Stn.Stn_Name\
C_Stn.Dat_Tbl,C_Stn.Crv_Tbl,C_Stn.Atr_TbI\
@FIELDS="NAME","NXP_VIEW","LRM_TAB","ATR_TAB"\
@QUERY="STN_LIST where STN_ID = "@V(C_Stn.Stn_Id)’"\
@CURSOR=Cursor;))

(Do (TRUE) (Show_Stn))

(Do ("Controi_20") (Control_Next))

)

(@RULE= Invalid_Station
@INFCAT=S;
(@LHS=
(< (Cursor) 0)
)
(@HYPO= Stn_Check)
(@RHS=
(Show ("msg_10.txt") (@KEEP=FALSE;@WAIT=TRUE;@RECT=5,400,500\
300;))
(Show ("stnlst.txt™) (@KEEP=FALSE;@WAIT=FALSE;))
(Do ("Control_4") (Control_Next))

)

(@RULE= Station_Write_Check
(@LHS=

177

(>= (Cursor))]

)
(@HYPO= Stn_Duties)
(@RHS=
(Do (TRUE) (Stn_Log2))
) .

Fekeskskeokokokoksksdeoskoskokske ke sdeokok ke deoskokok sk ok sk ok skdeokokok e dokokosk s desteokokok sk et tokofokok ek dokofok sk sk sk ok kok sk ok

#* End of KB Code: A2 main.tkb *

Fhkkskskokokokokokokok ok sk skok sk sk skokok sk sk ok sk e ste e e steste sk sl sk sk sk ok e ok sk ok skeoke sk sk sk sk ke sie st st sie st ke st ke sleske ke sk e e e ke

178

Fpkskeckecstoskokskeskosteokkok e skoskokok skt sk skokoksk sk ok okok skok ok sk stk skosk sk sk sk sieskok sk e st skeokskok sk sk stk s sl e sk sk sk sl s sheske s

#* Nexpert Object KB Code: A3 _main.tkb *
#**
#* Curve Development Module *

Fhkkkokokokokokokskeok ook kol sl e sk sk ke sk sl sk ke ke sleste e ek e ke s ek sk sk ok sk sk sk sk ok sk sk ok sk sk ok skok sk sk seokesfe e ke sk ke sk skeok

(@VERSION=

(@PROPERTY=
(@PROPERTY=
(@PROPERTY=
(@PROPERTY=
(@PROPERTY=
(@PROPERTY=
(@PROPERTY=
(@PROPERTY=
(@PROPERTY=
(@PROPERTY=
(@PROPERTY=
(@PROPERTY=
(@PROPERTY=

020)

(@OBJECT=

Date_Made @TYPE=Date;)
FD @TYPE=Integer;)

FM @TYPE=Integer;)

LD @TYPE=Integer;)

Level 1 @TYPE=Integer;)
Level 2 @TYPE=Integer;)
LM @TYPE=Integer;)

Opt_pl @TYPE=String;)

Opt_p2 @TYPE=String;)

Opt_p3 @TYPE=String;)

Opt_p5 @TYPE=String;)
Start_Day @TYPE=Integer;)
Stop_Day @TYPE=Integer;)

Alter_Progress

(@PROPERTIES=

Value

)
)

(@OBJECT=

@TYPE=Boolean;

Another_model

(@PROPERTIES=

Value

)
)

(@OBIECT=

@TYPE=String;

Best_Model_Crit

(@PROPERTIES=

Value

)
)

(@OBIECT=

@TYPE=String;

Best NOL

(@PROPERTIES=

Value

)
)

(@OBIECT=

Best R2

@TYPE=Integer;

179

(@PROPERTIES=
Value @TYPE=Float;
)
)

(@OBJECT= Best_StdEE
(@PROPERTIES=
Value @TYPE=Float;
)
)

(@OBJECT= Best_Xitras
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Chk_Exponent
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Choose_best
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Clear_Files
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Created_New_Curve
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvDev_Cti_0
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvDev_Ctl_1
{(@PROPERTIES=
Value @TYPE=Boolean;

)

180

)

(@OBJECT= CrvDev_Ctl_2
(@PROPERTIES:=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvDev_Ctl_3
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvDev_Cil_4
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvDev_Ctl.M
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvDev_Ctl_OL_Load
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvDev_Ctl_R
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvDev_Ctl_Resets
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvDev_Cil_SBM
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvDev_Ci_SW2

181

(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Cul 0
(@PROPERTIES=
Opt_pl
Opt_p2

)

(@OBJECT= Ctrd_1
(@PROPERTIES=
Opt_pl
Opt_p2
Opt_p3

)

(@OBJECT= Ctrl 2
(@PROPERTIES=
Opt_pl
Opt_p2
Opt_p3
Opt_p5

)

(@OBJECT= Cul_3
(@PROPERTIES=
Opt_p1
Opt_p2
Opt_p3

)

(@OBJECT= ctrl_inits
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Current_DS
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Cursor2
(@PROPERTIES=

182

Value @TYPE=Integer;

)

{(@OBJECT= Deactivate_plots
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Do_Next_Task
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= DS_Create
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= DS_Name
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= DS_num
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= DS_Remove
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= DS_Reset
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

{@OBJECT= dummy_file
(@PROPERTIES=
Value @TYPE=String;
)

183

(@OBJECT= dummy_float
(@PROPERTIES=
Value @TYPE=Float;
)
)

(@OBJECT= dummy_infile
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= dummy_integer
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= dummy_obj
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= dummy_outfile
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= dummy_title
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= File_FErase 1
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Find_best
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Find_best R2_AD
(@PROPERTIES=
Value @TYPE=Boolean;

184

)

(@OBJECT= Find_best_R2_SD
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Find_best_SSE_AD
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Find_best_SSE_SD
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= First_day
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= First_month
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= Gen_Models
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Get_Seq_Data
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Init_Culs
(@PROPERTIES=
Value @TYPE=Boolean;

)

185

(@OBJECT= Inpui_Exp
(@PROPERTIES=
Value @TYPE=Float;
)
)

(@OBJECT= Input_TimeRange
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Last_day
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= Last_month
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= Level_1
(@PROPERTIES=

Type
Value @TYPE=Integer;

)

(@OBJECT= List_curve_A
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= List curve_B
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBIECT= List_data_A
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= List_data B
(@PROPERTIES=

186

Value @TYPE=Boolean;

)

(@OBJECT= Loop_1
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= MakeNewCurve
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= MD_Name
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Misc_duties
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= ML _Create
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= ML _Name
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= ML_Remove
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= ML_Remove_All
(@PROPERTIES=
Value @TYPE=Boolean;
)

187

(@OBJECT= Model
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Model_Count
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= Model_inc
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= Model_response
(@PROPERTIES=
Value @TYPE=Float;
)
)

(@OBJECT= neg_limit
(@PROPERTIES=
Value @TYPE=Float;
)
)

(@OBJECT= New_Task2
(@PROPERTIES=
Value @TYPE=Boolean
)
)

(@OBJECT= Next_Crvid
(@PROPERTIES=
Value @TYPE=Boolean
)
)

(@OBJECT= Next_DS
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= Next MD
(@PROPERTIES=
Value @TYPE=Integer;

188

)

(@OBJECT= No_Accepted_Model
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Num_models
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= OL_Report
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Out_side
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Outlier_count
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= P2_Ice
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= P2_Stage
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= P2_Time
(@PROPERTIES=
¥D
EM
1D
LM

189

)

(@OBJECT= Phase_1_junk
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Phase_2_route
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@QOBJECT= Phs2_A
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Plot_Settings
(@PROPERTIES=
Value @TYPE=Boolean;

)

(@OBJECT= Prepare_For_Evaluation
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Print_Record
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Qry_Str_Suffix
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Query_Prefix
(@PROPERTIES=
Value @TYPE=String;
)

190

(@OBJECT= Query_Suffix
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Run_Xgraph
(@PROPERTIES:=
Value @TYPE=Boolean;
)
)

(@OBJECT= Reset_Datasets
(@PROPERTIES=
Value @TYPE=Boolean;
)
)
(@OBJECT= Seq_ML_Remove
{(@PROPERTIES=
Value @TYPE=Boolean;

)
)

(@OBJECT= Set_Axis
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Set_Qry_Suffix
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Show_Phase_Title
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Start_Progress
{(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Station_Entry
(@PROPERTIES=
Value @TYPE=String;
)

191

)

(@OBJECT= Store_Outlier
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Stored
(@PROPERTIES=

BO
B1
Crv_Id
Crv_Type
Date_Made
F_Day
L_Day
Last_Msr
Max_D
Max_S
Min_D
Min_S
No_Flow_Stg
X

)

(@OBJECT= Sub_Data
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Ti
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= TI10
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= TI11 A
(@PROPERTIES=
Value @TYPE=Boolean;

)

192

(@OBJECT= Gei_Zero_Flow
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= TI12
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= TI13
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Ti15
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= T20
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= T21
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= T22
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= T23
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= T24
(@PROPERTIES=
Value @TYPE=Boolean;

193

)

(@OBJECT= T3
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= T40
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= T41
{@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= T42
(@PROPERTIES=
Value @TYPE=Boolean;
)
)
(@OBJECT= T8
(@PROPERTIES=
Value @TYPE=Boolean;

)
)

(@OBJECT= T9
{@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Tmp_String
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Total_OLs
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= Trib_High_DS

194

(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Trib_High_US
(@PROPERTIES=
Value @TYPE=Boolean;
)

)

(@OBJECT= Trib_Low_DS
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Trib_Low_US
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Tributary_g1
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= tweetie
(@PROPERTIES=
Value @TYPE=Inieger;
)
)

(@OBJECT= Weed
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Wind
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Wind_direction
{(@PROPERTIES=
Value @TYPE=String;
)

195

)

(@OBJECT= XG_put_curve
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= XG_put_data
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= XG_put_outliers
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Zero_count
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@SLOT= Another_model
@PROMPT="Would your like to run another model?";

)

(@SLOT= Best_Model_Crit

@PROMPT="What method is to be used in determining the BEST MODEL ?";

)

(@SLOT= Besi_R2
@FORMAT="u.0000";

)

(@SLOT= Best_StdEE
@FORMAT="u.0000";
)

(@SLOT= Best_Xtras

@COMMENTS="This slot renames the UNIX filenames of the BEST model files. All model files

(ML?.*) are removed when this KB is unloaded.";

(@CACTIONS=
(Execute ("mv @V(BEST_Model. FN_Curve) bML.mdl")
(Execute ("mv @V(BEST_Model. FN_Qutliers) bML.ol")
(Execute ("mv @V(BEST_Model. FN_Conlim) bML.cl")
(Execute ("mv @V(BEST_Model. FN_Results) bML.txt")

(Do ("bML.mdl") (BEST_Model. FN_Curve))

196

(@TYPE=EXE;))
(@TYPE=EXE;))
(@TYPE=EXE;))
(@TYPE=EXE;))

Do ("bML..ol")

(Do ("bML.c1")

Do ("bML.xt")

(Reset (Cursor))

(Retrieve ("@V(db_access)")
(@TYPE=ORACLE;@END="release";@SLOTS=BEST_Model.Crv_Id\
@FIELDS="max(crv_id) + 1";@QUERY="@V(C_Sm.Crv_Tbl)"\
@CURSOR=Cursor;))

(Do (\DS_Name\.Type) (BEST_Model.Crv_Type))

(Do ("BEST") (\DS_Name\.Title))

(Reset (Best_Xitras))

(BEST_Model.FN_Outliers))
(BEST_Model.FN_Conlim))
(BEST_Model. FN_Results))

)

(@SLOT= Choose_best
(@CACTIONS=
(Do (Find_best_SSE_AD)
(Reset (Find_best SSE_AD))
(DeleieObject (<IModelsl>)
(Reset (Choose_best))

(Find_best_SSE_AD))

(Modelsl))

)

(@SLOT= Clear_Files
(@CACTIONS=

(Execute
(Execute
(Execute

("rm -f P1.dat")
("rm -f P2.dat")
("rm -f xg.dat")

(@TYPE=EXE;))
(@TYPE=EXE;))
(@TYPE=EXE;))

(Execute ("rm -f OL_*") (@TYPE=EXE;))
(Execute "tm -f AD_*") (@TYPE=EXE;))
(Execute ("mm -f SD_*"} (@TYPE=EXE;))

(Reset (Clear_Files))

)

(@SLOT= CrvDev_Ctl_Resets
(@CACTIONS=

(Reset (CrvDev_Ctl_0))
(Reset (CrvDev_Cii_1))
(Reset (CrvDev_Cil_2))
(Reset (CrvDev_Cti_3))
(Reset (CrvDev_Ctli_4))
(Reset (CrvDev_Ctl_M))
(Reset (CrvDev_Cti_R))
(Reset (CrvDev_Cti_SW2))
(Reset (CrvDev_Ctl_SBM))
(Reset (CrvDev_Cti_Resets))

)

(@SLOT= Ctl_0.0pt_pl

197

@PROMPT="You are at Level 0 (Data Selection) of Phase 1. PROCEED WITH ...":
)

(@SLOT= Ctrl_1.0pt_pl
@PROMPT="You are at Level 1 (Modelling) of Phase 1. PROCEED WITH ..";
)

(@SLOT= Ctrl_1.0pt_p2
@PROMPT="You are at Level 1 (Modelling) of Phase 2. PROCEED WITH ...";

)

(@SLOT= Ctrl_1.0pt_p3
@PROMPT="You are at Level 1 (Modelling) of Phase 3. PROCEED WITH ...";
)

(@SLOT= Ctrl_2.0pi_pl
@PROMPT="You are at Level 2 (Model Evaluation) of Phase 1. PROCEED WITH ...";
)

(@SL.OT= Ctrl_2.0pt_p2
@PROMPT="You are at Level 2 (Model Evaluation) of Phase 2. PROCEED WITH ...":
)

(@SLOT= Ctrl_2.0pt_p3
@PROMPT="You are at Level 2 (Model Evaluation) of Phase 3. PROCEED WITH ...";
)

(@SLOT= Ctrl_2.0pt_p5
@PROMPT="You are at Level 2 (Model Evaluation) of Phase 5. PROCEED WITH ...";
)

(@SLOT= Ctr1_3.0pt_pl
@PROMPT="You are at Level 3 (Model Processing) of Phase 1. PROCEED WITH ...";
)

(@SLOT= Ctrl_3.0pt_p2
@PROMPT="You are at Level 3 (Model Processing) of Phase 2. PROCEED WITH ...":
)

(@SLOT= Ctrl_3.0pt_p3
@PROMPT="You are at Level 3 (Model Processing) of Phase 3. PROCEED WITH ...":
)

(@SLOT= Deactivate_plots
(@CACTIONS=
(Do (FALSE) (\Current_DS\.Plot))
Let (<iModelsl>.Plot) (FALSE))

(Reset (Deactivate_plots))

198

(@SLOT= DS_Create

(@CACTIONS=
(Do (STRCAT(DS_Name," *")) (dummy_string))
(Execute ("rm -f @ V(dummy_string)") (@TYPE=EXE;))
(Reset (DS_Create))
)
)
______ (@SLOT= DS_Remove
(@CACTIONS=
(Execute ("ResetFrame") (@ATOMID=\DS_Name.value\;))
(Do (STRCAT(DS_Name," *")) (dummy_string))
(Execute ("mm -f @V(dummy_siring)") (@TYPE=EXE)))
®o O (Start_day))
Do (O (Stop_day))
(Reset (DS_Remove))
)
)
{@SLOT= DS_Reset
(@CACTIONS=
(Execute ("ResetFrame"”) (@ ATOMID=\DS_Name.value\;))
(Do (STRCAT(DS_Name,".dat")) (dummy_string))
(Execute ("rm -f @V(dummy_string)") (@TYPE=EXE;))
(Reset (DS_Reset))
)
)
(@SLOT= dummy_float
@FORMAT="u.0000";
)
(@SLOT= File_Erase_1
(@CACTIONS=
(Execute "tm -f xgdat") (@TYPE=EXE;))
{Reset (File_Erase_1))
)
)
(@SLOT= First_day
@PROMPT="\"Enter DAY of First Day in the time range (value = 1..31) ...";
)
(@SLOT= First_month
@PROMPT="\"Enter MONTH of First Day in the time range (value = 1..12) ...";
)
(@SLOT= Init_Ctrls
@COMMENTS="This Slot is used to Rest ali Control option values.";
(@CACTIONS=

(Reset (Ctrl_0.0pt_p1))

199

(Reset (Ctrl_0.0pt_p2))
(Reset (Curl_1.0pt_p1))
(Reset (Ctrl_1.0pt_p2))
(Reset (Ctrl_1.0pt_p3))
(Reset (Cul_2.0pt_p1))
(Reset (Ctrl_2.0pt_p2))
(Reset (Ctrl_2.0pt_p3))
(Reset (Ctl_2.0pt_p5))
(Reset (Ctrl _3.0pi_p1))
(Reset (Ctrl_3.0pt_p2))
(Reset (Cul_3.0pi_p3))
Reset (Init_Curls))

)

(@SLOT= Input_Exp
@PROMPT="Please enter a REAL number for the Transformation Exponent (TX), in the box
provided ...";

)

(@SLOT= Input_TimeRange
(@CACTIONS=
(Execute ("resetframe™) (@ATOMID=P2_Time;))

(Do (P2_TimeFM) (P2_Time.FM))
(Do (P2_TimeFD) (P2_Time.FD))
(Do (P2_Time.LM) (P2_TimeLM))
(Do (P2_TimeLD) (P2_Time.LD))

Do (STRCAT("1900,", INT2STR(P2_Time.FM))) (Tmp_String))

(Do (STRCAT(Tmp_String,",")) (Tmp_String))

Do (STRCAT(Tmp_String,INT2STR(P2_Time.FD))) (Tmp_String))

(Do (YEARDAY(STR2DATE(Tmp_String,"yyyy,m,d"))) (Start_day))
(Do (STRCAT("1900," INT2STR(P2_Time.LM))) (Tmp_String))

Do (STRCAT(Tmp_String,",")) (Tmp_String))

(Do (STRCAT(Tmp_String, INT2STR(P2_Time.LLD))) (Tmp_String))

(Do (YEARDAY(STR2ZDATE(Tmp_String,"yyyy,m,d"))) (Stop_day))

(Reset (Input_TimeRange))

)

(@SLOT= Last_day
@PROMPT="\"Enter DAY of Last Day in the time range (value = 1..31) ...";
)

(@SLOT= Last_month
@PROMPT="\"Enter MONTH of Last Day in the time range (value = 1..12) ...";
)

(@SLOT= ML _Create
(@CACTIONS=
(CreateObject _Name\) (IModelsl))
(Do (STRCAT(ML_Name,".*")) (dummy_string))

200

(Execute ("rm -f @V(dummy_string)") (@TYPE=EXE;))
(Do (Start_day) (\ML_Name\F_Day))

(Do (Stop_day) _Name\L_Day))

(Reset (ML_Create))

)
)
(@SLOT= ML _Remove
@COMMENTS="Deletes Object and Unix files named by ML._Name ";
(@CACTIONS=
(DeleteObject . Name\))
Do (STRCAT(ML_Name,".*")) (dummy_string))
(Execute ("rm -f @V (dummy_string)") (@TYPE=EXE;))
(Reset (ML_Remove))
)
)
(@SLOT= ML_Remove_All
(@CACTIONS=
(Do 0)) {Counter))
(Do (Seq_ML_Remove) (Seq_ML_Remove))
(Reset (Seq_ML_Remove))
(Reset (ML_Remove_All))
)
)
(@SLOT= Next_DS
(@INITVAL= 1)
)
(@SLOT= Next_MD
(@INITVAL= 1)
)
(@SLOT= Num_models
@PROMPT="How many Linear Regression models would you like to fit to the data?";
)
(@SLOT= P2_Ice
@PROMPT="Data should be stratified under one of the following conditions. Select ONE ...":
)
(@SLOT= P2_Stage
@PROMPT="Data should be stratified under one of the following conditions. Select ONE ...":
)
(@SLOT= P2_TimeFD
@PROMPT="\"Enter DAY of First Day in the time range (value = 1..31) ...";
)
(@SLOT= P2_Time. FM

201

@PROMPT="\"Enter MONTH of First Day in the time range (valiue =1.12) .";

)
(@SLOT= P2_TimeLD
@PROMPT="\"Enter DAY of Last Day in the time range (value = 1..31) ...";
)
(@SLOT= P2_TimelM
@PROMPT="\"Enter MONTH of Last Day in the time range (value = 1..12) ...";
)
(@SLOT= Phase.Type
@PROMPT="How should the data be stratified, specifically? By ...";
)
(@SLOT= Phase
(@INITVAL= 1)
)
(@SLOT= Phs2_A
@PROMPT="How should the data be stratified? By ...";
)
(@SLOT= Plot_Info.Filename
(@INITVAL= "xg.dat")
)
(@SLOT= Prepare_For_Evaluation
(@CACTIONS=
(Execute ("cat mmsum.foot >> mmsum.txt") (@TYPE=EXE;))
(Show ("mmsum.txt") (@KEEP=FALSE;@WAIT=FALSE;))
(Reset (Best_Model_Crit))
(Reset (Prepare_For_Evaluation))
)
)
(@SLOT= Run_Xgraph

(@CACTIONS=

(Do (C_Sm.Stn_Id) (Plot_Info.Title))

Do (Set_Axis) (Set_Axis))

(Reset (Set_Axis))

(Do (STRCAT(FLOAT2STR(Plot_Info.Max_S$*1.25),STRCAT(" "\
FLOAT2STR(Plot_Info.Max_D*1.25)))) (dummy_string))

(Execute ("XGR @V(Plot_Info.Title) @v(Plot_Info.Filename)
@ V(dummy_string)") (@TYPE=EXE;))

(Reset (Run_Xgraph))

)

)

(@SLOT= Reset_Datasets
(@CACTIONS=

202

(Do 0)) (count))

(Reset (Plot_Settings))

(Do (Plot_Settings) (Ploi_Settings))
(Reset (Reset_Datasets))

)
)
(@SLOT= Start_Progress
(@CACTIONS=
(Execute ("cat mmsum.head > mmsum.txt") (@TYPE=EXE)))
(Reset (Start_Progress))
)
)
(@SLOT= Stored.Date_Made
@FORMAT="d\"-\"MMM\"\"yy":
)
(@SLOT= Stored.F_Day
(@INITVAL= 0)
)
(@SLOT= Stored.L._Day
(@INITVAL= 0)
)
(@SLOT= Sub_Data
@PROMPT="What data set would you like to model next?";
)
(@SLOT= T10
@COMMENTS="Retreives data according to QUERY_STRING.";
(@CACTIONS=
(Do ("xgdat") (Plot_Info Filename))
(Execute ("rm -f @V(Plot_Info.Filename)") (@ TYPE=EXE;))
(Execute ("rmm -f mmsum.txt") (@TYPE=EXE;))
(Do (TRUE) (DS_Create))
(Do ()] {(Model_Count))
(Do (TRUE) (Start_Progress))
(Reset (T10))
)
)
(@SLOT= T1i_A

@COMMENTS="Object dummy_file stores the UNIX filename into which the extrated
measurements are copied.";
(@CACTIONS=
(Show ("msg_8.txt") (@KEEP=FALSE;@WAIT=FALSE;))
Do (STRCAT(DS_Name,".dat")) (\DS_Name\FN_Data))
Do (\DS_Name\FN_Data) (dummy_file))
Do (Phase.Type) (\DS_Name\.Type))

203

(Do (STRUPPER(\DS_Name\FN_Data)) (\DS_Name\.Title))
(Do (TRUE) (\DS_Name\ Plot))

(Do (0.0) (\DS_Name\No_Flow_Stg))

(Reset (Get_Zero_Flow))

(Do (Get_Zero_Flow) (Get_Zero_Flow))
(Reset (Cursor))
(Retrieve ("@V(db_access)")

(@TYPE=ORACLE;@SLOTS=\DS_Name\Max_D\DS_Name\Max_S,
\DS_Name\Num_Msrs\DS_Name\Min_S\DS_Name\Min_D,
\DS_Name\Last Msr;@FIELDS="MAX(DISCHARGE)",
"MAX(STAGE)","COUNT(DATE_OF_MSR)","MIN(STAGE)",
"MIN(DISCHARGE)","MAX(DATE_OF_MSR)";@QUERY="@V(Query_String)";
@CURSOR=Cursor;))

(Do ()] (Cursor))

(Do) (Count))

(Reset (Get_Seq_Data))

(Do (Get_Seq_Data) (Get_Seq_Data))

(Reset (T11_A))

)

(@SLOT= Ti2
@COMMENTS="Prepare Datasets for XGRAPH plotting”;
(@CACTIONS=
(Do (List_data_A) (List_data A))
(Reset (List_data_A))
(Do (STRCAT(INT2STR(\DS_Name\.Num_Msrs),STRCAT(("
", STRCAT(INT2STR(Zero_count), STRCAT(" ",Phase.Type))))) (dummy_params))

(Execute ("mg2 @V(dummy_params)") (@TYPE=EXE;))
(Show ("mg_2.txt") (@KEEP=FALSE;@WAIT=FALSE;))
(Do (TRUE) (Run_Xgraph))

(Reset (T12))

)

(@SLOT= Ti3
@COMMENTS="Special slot for creating the Phase 3 data set. Its routine is similar to slots T10,
T11_A, and T12 executed in sequence from CrvDev_Cti_R rule.™;

(@CACTIONS=

Do (1)) (Model_Count))

(Do (TRUE) (Start_Progress))

(Do (TRUE) (Phs3.Plot))

(Do (Phs3.FN_Data) (dummy_file))

(Do (STRCAT("\"",Phs3.Title)) (dummy_title))

(Execute ("echo @V(dummy_title) > @ V(Plot_Info.Filename)")
(@TYPE=EXE;))

(Execute ("cat @V (dummy_file) >> @V (Plot_Info.Filename)")
(@TYPE=EXE;))

Do (TRUE) (Run_Xgraph))

Reset (T13))

204

{@SLOT= T15

@COMMENTS="Special slot for readying the Phase 5 data set, created from OLD_NEW in
CrvMod module. Its routine is similar to slots T10, T11_A, and T12 executed in sequence from
CrvDev_Ctl_R rule.”;

(@CACTIONS=
(Do {0) (Model_Count))
(Do (TRUE) (Start_Progress))
(Do (TRUE) (\DS_Name\.Plot))
(Reset (T15)
)
)
(@SLOT= T20
(@CACTIONS=
(Do (STRCAT(MIL._Name," *")) (dummy_string})
{Execute ("rm @V (dummy_string)") {@TYPE=EXE;))

{(Show ("Txt/inpexp.txt")
(@KEEP=FALSE;@WAIT=FALSE;@RECT=5,390,500\
350:))

(Reset (Input_Exp))

(Do (Chk_Exponent) (Chk_Exponent))

(Reset (Chk_Exponent))

{Do (Input_Exp) _Name\TX)}

(Show ("msg_4.xt") (@KEEP=FALSE;@WAIT=FALSE;))

(Do (\DS_Name\FN_Data) (\WML_Name\FN_Data))

(Do (STRCAT(ML_Name, STRCAT("_",FLOAT2STR(Input_Exp))))

_Name\ Title})

(Do (\ML_Name\FN_Data) (dummy_infile))

(Do (STRCAT(ML_Name," txt")) (\ML_Name\FN_Results))

{Do (STRCAT(ML_Name,".0l")) (ML_Name\FN_Outliers))

(Do (STRCATOML_Name\FN_Data,STRCAT(" ", STRCAT(ML_Name\
STRCAT(" ", STRCAT(FLOAT2STROME_Name\TX),\

STRCAT(" ", FLOAT2STR(Allow_ert))N))) (dummy_params))
{Exccute ("LRM2 @ V(dummy_params)") (@TYPE=EXE;))
(Do (TRUE) (\ML,_Name\Plot))
(Reset (T20))
)
)
{(@SLOT= T21
{@CACTIONS=

(Do (8] (Cursor2))

(Do (STRCAT(ML_Name,"NXP")) (dummy_outfile))

(Retrieve ("LRZ_a.NXP")
(@TYPE=NXPDB;@SLOTS=\ML_Name\BONML_Name\B1\
ML _Name\R2 \WL_Name\StdEE XML _Name\Num_OL:\
@FIELDS="b0","b1","cort","stderest","numol":\

205

@CURSOR=Cursor2;))
(Reset (T21))

)
)
(@SLOT= T22
@COMMENTS="Adds new model to PROGRESS LISTING and Displays LISTING";
(@CACTIONS=
(Do (Alter_Progress) (Alter_Progress))
(Reset (Alter_Progress))
(Show ("mmsum.xt") (@KEEP=FALSE;@WAIT=FALSE;))
(Reset (T22))
)
)
(@SLOT= T23
@COMMENTS="Generate Curve Points for Plotting, based on Model Parameters Generated.™:
(@CACTIONS=

(Do (STRCAT(FLOAT2STR(A\ML_Name\.B0),STRCAT(" ",
STRCAT(FLOAT2STR(\ML_Name\B1)," "))) (dummy_params))

Do (STRCAT(dummy_params,STRCAT(FLOAT2STR(\ML_Name\TX), STRCAT("
", STRCAT(FLOAT2STR(\DS_Name\Max_S), STRCAT(" ",ML_Name)))))) (dummy_params))

(Execute ("GC @V (dummy_params)") (@TYPE=EXE;))
(Do (STRCAT(ML_Name,".mdl")) _Name\FN_Curve))
(Do (STRCAT(ML_Name,".cl") . Name\FN_Conlim))

(Reset (T23))

)

(@SLOT= T24
@COMMENTS="Display Current Model, Dataset and Outliers";
(@CACTIONS=
(Do (TRUE) {(XG_put_data))
(Do (TRUE) {(XG_put_curve))
(Do (TRUE) (XG_put_outliers))
(Do (TRUE) (Run_Xgraph))
(Reset (T24))
)
)
(@SLOT= T3
@COMMENTS="Prepare Query String Specification”;
(@CACTIONS=
(Reset (Set_Qry_Suffix))
(Do (Set_Qry_Suffix) (Set_Qry_Suffix))

(Do (STRCAT(Query_Prefix,Query_Suffix)) (Query_String))

206

(@SLOT= T40

(@CACTIONS=
(Do (STRCAT(" Model ... "ML _Name)) (dummy_string))
(Execute ("echo @V (dummy_string) >> mmsum.txt") (@TYPE=EXE;))
(Execute ("echo Selected as BEST CURVE by @V(Best_Model _Crit) >>

mmsum.xt") (@TYPE=EXE;))
(Show ("mmsum.txt") (@KEEP=FALSE;@WAIT=FALSE;))
(Reset (T40))

)

)

(@SLOT= T41
(@CACTIONS=

(Show ("msg_3.xt") (@KEEP=FALSE;@WAIT=FALSE;))
Do (Start_day) (Stored.F_Day))
(Do (Stop_day) (Stored.L_Day))

(Do (BEST_Model.BO) (Stored.B0))
(Do (BEST_Model.B1) (Stored.B1))
(Do (BEST_Model. TX) (Stored. TX))

(Do (\DS_Name\Max_D) (Stored.Max_D))
(Do (\DS_Name\Max_S) (Stored.Max_S))
(Do (DS_Name\Min_D) (Stored.Min_D))
(Do (\DS_Name\Min_S) (Stored.Min_S))
(Do (\DS_Name\Last_Msr) (Stored.Last_Msr))

(Do (\DS_Name\No_Flow_Stg) (Stored.No_Flow_Stg))
Do (BEST_Model.Crv_Type) (Stored.Crv_Type))
(Do (BEST_Model.Crv_Id) (Stored.Crv_Id))

(Do INOW() (Stored.Date_Made))

(Write ("@V(db_access)")
(@TYPE=ORACLE;@FILL=ADD;@END="commit";@NAME="lcrv_id!";
@PROPS=Crv_Id,Crv_Type,B0,B1,Max_D,Max_S,No_Flow_Stg,

F Day,l,_DayMin_DMin_S,Date_Made,TX,Last_Msr;
@FIELDS="CRV_ID","TYPE","B0","B1","MAX_D",
"MAX_S","NO_FLOW_STG","F_DAY","L_DAY","MIN_D","MIN_S","DATEMADE",
"TX","LAST _MSR";@QUERY="@ V(C_Stn.Crv_Tbl)";
@ATOMS=Stored;))
(Reset (T41))

)

)

(@SLOT= T42
@COMMENTS="This Slot performs an Oracle SQL DELETE of the current curve from the
CRV_TBL table, to be replaced by the new updated curve (see RULE: Phase5_Store_Curve).";
(@CACTIONS=
(Retrieve ("db_access") (@TYPE=ORACLE;@BEGIN="DELETE FROM
@V(C_Stn.Crv_Tbl) WHERE CRV_ID = @ V(C_Crv.Crv_Id)";@END="COMMIT;RELEASE";))
(Reset (T42))
)
)

(@SLOT= T8

207

(@CACTIONS=
(Reset (Do_Nexi_Task))
(Do {Do_Nexi_Task) (Do_Nexi_Task))

)
)
(@SLOT= tweetie
@INFCAT=500;
)
(@SLOT= XG_put_curve
(@CACTIONS:=
(Do . Name\FN_Curve) (dummy_file))
(Do (STRCAT("™\"" \ML_Name\ Title)) (dummy_title))
(Execute ("echo @ V(dummy_title) >> @V(Ploi_Info.Filename)")
(@TYPE=EXE;))
(Execute ("cat @V (dummy_file) >> @ V(Plot_Info.Filename)")

(@TYPE=EXE;))

(Do &) (dummy_string))

(Execute ("echo @V(dummy_string) >> @V (Plot_Info.Filename)")
(@TYPE=EXE;))

{Reset (XG_put_curve))

)
)
(@SLOT= XG_put_data
(@CACTIONS=
(Do (\DS_Name\FN_Data) (dummy_file))
(Do (STRCAT("\""\DS_Name\.Title)) (dummy_title))
(Execute ("echo @V (dummy_title) > @ V(Plot_Info.Filename)")
(@TYPE=EXE;))
(Execute ("cat @V (dummy_file) >> @V(Plot_Info.Filename)")

(@TYPE=EXE;))

(Do ") {(dummy_siring))

(Execute ("echo @V(dummy_string) >> @ V(Plot_Info.Filename)")
(@TYPE=EXE;))

(Reset (XG_put_data))

)
)
(@SLOT= XG_put_outliers
{(@CACTIONS=
Do _Name\FN_Outliers) (dummy_file))
(Do ("™\'Outliers™ (dummy_title))
(Execute ("echo @V (dummy_title) >> @ V(Plot_Info.Filename)")
(@TYPE=EXE;))
(Execute ("cat @V (dummy_file) >> @V(Plot_Info.Filename)™)

(@TYPE=EXE;))
(Do " (dummy_string))
(Execute ("echo @V(dummy_string) >> @V (Plot_Info.Filename)") @NEEH
(Reset (XG_put_outliers))

208

)

(@RULE= RI15

)

@COMMENTS="Adds each model successively to the MODEL SUMMARY LIST":
(@LHS=
= (Model_Count-Counter) (0))

)

(@HYPO= Alter_Progress)

(@RHS=
(Do (STRCAT("ML",INT2STR(Counter))) (ML_Name))
(Execute ("echo @ V(ML_Name) > mmsum.in") (@TYPE=EXE;))
(Do (ML_Name\TX) (dummy_float))
(Execute ("echo @V(dummy_float) >> mmsum.in") (@TYPE=EXE;))
(Do (ML_Name\Num_OL) (dummy_integer))
(Execute ("echo @V(dummy_integer) >> mmsum.in") (@TYPE=EXE;))
(Do . Name\ StdEE) (dummy_float))
(Execute ("echo @V(dummy_float) >> mmsum.in") (@ TYPE=EXE;))
(Do (\ML_Name\R2) (dummy_float))
(Execute ("echo @V(dummy_float) >> mmsum.in") (@ TYPE=EXE;))
(Execute ("mmsum") (@TYPE=EXE;))
(Execute ("cat mmsum.out >> mmsum.mid") (@TYPE=EXE;))
(Do (Counter+1) (Counter))
(Reset (Alter_Progress))

)

(@RULE= R14

)

@COMMENTS="Adds model to MODEL SUMMARY LIST";
(@LHS=
(s (CrvDev_Call) ("CrvDev_Ctl_M"))

)

(@HYPO= Alter_Progress)

(@RHS=
(Execute ("echo @V(ML_Name) > mmsum.in") (@TYPE=EXE;))
(Do (\ML_Name\TX) (dummy_float))
(Execute ("echo @V(dummy_float) >> mmsum.in") (@ TYPE=EXE;))
(Do (\ML_Name\Num_OL) (dummy_integer))
(Execute ("echo @V(dummy_integer) >> mmsum.in") (@TYPE=EXE;))
(Do (\ML_Name\.StdEE) (dummy_float))
(Execute ("echo @V(dummy_float) >> mmsum.in") (@TYPE=EXE;))
(Do (\ML_Name\R2) (dummy_float))
(Execute ("echo @V(dummy_float) >> mmsum.in") (@TYPE=EXE;))
(Execute ("mmsum" (@TYPE=EXE;))
(Execute ("cat mmsum.out >> mmsum.txt") (@TYPE=EXE;))

(@RULE= R17

(@LHS=
< (Input_Exp) (1.5)

209

)
(@HYPO= Chk_Exponent)

(@RHS=
(Execute ("message™) (@STRING="@TEXT=A transformation exponent Iess
than 1.5 is not permitted! Pres\
s OK and re-entered a value between 1.5 and 3.5 ...\

@OK"))
(Reset (Input_Exp))
(Reset (Chk_Exponent))
)
)
(@RULE= R16
(@LHS=
= (Input_Exp) (3.5))
)
(@HYPO= Chk_Exponent)
(@RHS=

(Execute ("message") (@STRING="@TEXT=A transformation exponent
greater than 3.5 is not permitted! P\
ress OK and re-entered a value between 1.5 and 3.5 ...\
@OK";))

(Reset (Inpui_Exp))

(Reset (Chk_Exponent))

)

(@RULE= CrvDev_System_Control
@COMMENTS="This rule transfers returns control back to the main system.";
(@LHS=
(s (Lock_CrvDev) ("OFF"))

)
(@HYPO= CrvDev_Control)
(@RHS=
(Execute ("rm -f ML2.01") (@TYPE=EXE;))
(Execute "tm -f ML?.mdl") (@TYPE=EXE;))
(Execute ("rm -f ML?.xt") (@TYPE=EXE;))
(Execute ("rm -f ML2.c1") (@ TYPE=EXE;))
)
)
(@RULE= CrvDev_System_Control
@COMMENTS="This rule controls the next control call.";
(@LHS=
(s (Lock_CrvDev) ("ON"))
ST (@HYPO= CrvDev_Control)
(@RHS=
(Do (\CrvDev_Call\Value) (Control_Return))
(Do (TRUE) (CrvDev_Cti_Resets))

(Reset (CrvDev_Control))

210

)

(@RULE=
(@LHS=

=
)

(@HYPO=

(@RHS=
(Do
Do
(Do
(Do

)

(@RULE=
(@LHS=
(=
)

(@HYPO=

(@RHS=
(Do
(Do
(Do
(Do

)

(@RULE=

(@LHS=
(=
(Is
(Yes

)

(@HYPO=

(@RHS=
(Do
(Do
(Do
(Do
(Do

)

(@RULE=
(@LHS=
(=
(Is
)
(@HYPO=

Phase5_Start_Modelling

(Phase) (5))

CrvDev_Cil_0)

("Phs5") (DS_Name))
(TRUE) (Resei_Datasets))
(TRUE) (T15))

("CrvDev_Cd_1") (CrvDev_Call))

Phase3_Start_Modelling

(Phase) (3)

CrvDev_Cd_0)

("Phs3") (DS_Name))
(TRUE) (Reset_Datasets))
(TRUE) (T13))

("CrvDev_Cd_1") (CrvDev_Call))

Phase2_Set_Qry_Suffix

(Phase) (2))
(Ctrl_0.0Opt_p2) ("Select"))
(Set_Qry_Suffix))

CrvDev_Ctl_0)

(STRCAT(" WHERE " Qry_Str_Suffix))
(STRCAT(Qry_Str_Prefix,Qry_Str_Suffix))
("Phs2") (DS_Name))

(TRUE) (Reset_Datasets))
("CrvDev_Ctl_R") (CrvDev_Call))

(Qry_Str_Suffix))
(Query_String))

Phase2_Exit_System

(Phase) (2))

(Ctrl_0.0pt_p2) ("Exit"))

CrvDev_Cti_0)

211

(@RHS=
(Do
Do

)

("EndSession") (System_Call))
("OFF") (Lock_CrvDev))

{@RULE= Phasel_Start_Modelling

(@LHS=
(=
(s
)
(@HYPO=
(@RHS=
(Do
(Do
(Do
(Do
(Do

)

(Phase) (1))
(Ctrl_0.0Opi_pl) ("All S-D Measurements"))

CrvDev_Cil_0)

(Qry_Str_Prefix) (Query_String))
("ALL") (Phase.Type))

("Phsi™) (DS_Name))

(TRUE) (Reset_Datasets))
("CrvDev_Cil_R") (CrvDev_Call))

(@RULE= Phasel_Set_Qry_Suffix

(@LHS=
(= (Phase) (1))
(s (Ctrl_0.0Opt_pl1) ("Select Specific Measurements"))
)
(@HYPO= CrvDev_Ctl_0)
(@RHS=
(Do (TRUE) (ctrl_inits))
(Do 2) (Phase))
(Do ("Select™) (Ctrl_0.0Opt_p2))
Do ("CrvDev_Ct_0") (CrvDev_Call))
)
)
(@RULE= Phase5_Begin_Modelling
(@LHS=
= (Phase) (5))
)
(@HYPO= CrvDev_Ctl_1)
(@RHS=
(Do (Model_Count+1) (Model_Count))
(Do (STRCAT("ML",INT2STR(Model_Count))) (ML_Name))
(Do (TRUE) (ML _Create))
Do ("CrvDev_Ctl_M") (CrvDev_Call))
)
)
(@RULE= Phase3_Begin_Modelling
(@LHS=
= (Phase) (3))

212

)

(@HYPO= CrvDev_Ctl_1)
(@RHS=
(Do (Model_Count+1) (Model_Count))
(Do (STRCAT("ML",INT2STR(Model_Count))) (ML_Name))
(Do (TRUE) (ML _Create))
Do ("CrvDev_Cil_M") (CrvDev_Call))
)
)
(@RULE= Phase2_Restart_Phase_2
(@LHS=
(= (Phase) (2))
(Is (Cul_1.0pi_p2) ("Redefine measurement selection™))
)
(@HYPO= CrvDev_Ctl_1)
(@RHS=
(Do (TRUE) (DS_Remove))
(Do ("CrvDev_Ctl_SW2") (CrvDev_Call))
)
)
(@RULE= Phase2_Exit_System
(@LHS=
= (Phase) (2))
(s (Curl_1.0pt_p2) ("Exit Curve Dev."))
)
(@HYPO= CrvDev_Ct_1)
(@RHS=
(Do ("EndSession") (System_Call))
(Do ("OFF") (Lock_CrvDev))
)
)
(@RULE= Phase2_Begin_Modelling
(@LHS=
= (Phase) (2))
s (Ctrl_1.0pt_p2) ("Model Data"))
)
(@HYPO= CrvDev_Ct_1)
(@RHS=
Do (Model_Count+1) (Model_Count))
Do (STRCAT("ML",INT2STR(Model_Count))) (ML_Name))
(Do (TRUE) (ML _Create))
(Do ("CrvDev_Ctl_M") (CrvDev_Call))
)
)
(@RULE= Phasel_Goto_Phase_2
(@LHS=

(=

(Phase) (1))

213

)

(Is (Cul_1.0pt_pl) ("Select Specific Measurments"))
)
(@HYPO= CrvDev_Ctl_1)
(@RHS=

Do (TRUE) (DS_Remove))

Do ("CrvDev_Cti_SW2") (CrvDev_Call)

(@RULE= Phasel_Exit_System

(@LHS=

(= (Phase) (1))

(Is (Cul_1.0pt_pl) ("Exit Curve Dev"))
)

(@HYPO= CrvDev_Ctl_1)
(@RHS=
(Do ("EndSession™) (System_Call))
(Do ("OFEF") (Lock_CrvDev))
)
)
(@RULE= Phasel_Begin_Modelling
(@LHS=
(= (Phase) (1))
(s (Ctrl_1.0pt_p1) ("Model Data"))
)
(@HYPO= CrvDev_Cd_1)
(@RHS=
(Do (Model_Count+1) (Model_Count))
(Do (STRCAT("ML",INT2STR(Model_Count)))
(Do (TRUE) (ML_Create))
(Do ("CrvDev_Ctd_M") (CrvDev_Call))

)

(@RULE= Phase3_Evaluate_Model

)

(@LHS=
(= (Phase) (5))
(Is (Ctrl_2.0pt_p5) ("Evaluate Models"))
)
(@HYPO= CrvDev_Ctl_2)
(@RHS=
(Do (TRUE) {(Prepare_For_Evaluation))

Do ("CrvDev_CU_SBM") (CrvDev_Call))

(@RULE= Phase5_Another_Model

(@LHS=
= (Phase) (5))
(Is (Ctrl_2.0pt_p5) ("Generate Another Model"))

214

(ML_Name))

)
(@HYPO= CrvDev_Cd_2)
(@RHS=
(Reset (Ctrl_2.0pt_p5))
Do ("CrvDev_Ctl_1") (CrvDev_Call))

)

(@RULE= Phase3_Evaluate_Model

(@LHS=
= (Phase) (3))
(s (Ctrl_2.0pi_p3) ("Evaluate Models"))
)
(@HYPO= CrvDev_Ctl_2)
(@RHS=
(Do (TRUE) (Prepare_For_Evaluation))
(Do ("CrvDev_Ctl_SBM") (CrvDev_Call))
)
)
(@RULE= Phase3_Another_Model
(@LHS=
= (Phase) (3))
(s (Curl_2.0pt_p3) ("Generate Another Model"))
)
(@HYPO= CrvDev_Cti_2)
(@RHS=
(Reset (Ctrl_2.0pt_p3))
(Do ("CrvDev_Ctl_1") (CrvDev_Call))
)

)

(@RULE= Phase2_Evaluate_Model

(@LHS=
= (Phase) (2))
s (Cul_2.0pt_p2) ("Evaluate Models™)
)
(@HYPO= CrvDev_Cti_2)
(@RHS=

(Do (TRUE) (Prepare_For_Evaluation))
(Do ("CrvDev_Ctl_SBM") (CrvDev_Call))

)

(@RULE= Phase2_Another_Model

(@LHS=
= (Phase) (2))
(s (Ctrl_2.0pt_p2) ("Generate Another Model"))
)
(@HYPO= CrvDev_Cti_2)
(@RHS=

215

(Reset (Curi_2.0pt_p2))
Do ("CrvDev_Ct_1") (CrvDev_Call))

)

(@RULE= Phasel_Evaluate_Model

(@LHS=
= (Phase) (1))
(s (Cul_2.0pt_pl) ("Evaluate Models"))
)
(@HYPO= CrvDev_Ctl_2)
(@RHS=

(Do (TRUE) (Prepare_For_Evaluation))
(Do ("CrvDev_Cil_SBM"} (CrvDev_Call))

)
(@RULE= Phasel_Another_Model

(@LHS=
(= (Phase) (1))
(s (Crl_2.0pt_p1) ("Generate Another Model"))
)
(@HYPO= CrvDev_Ct_2)
(@RHS=
(Reset (Ctrl_2.0pt_pl))
(Do ("CrvDev_Ctl_1") (CrvDev_Call))
)
)
(@RULE= Phase5_Store_Curve
(@LHS=
= (Phase) (5))
)
(@HYPO= CrvDev_Cil_3)
(@RHS=
(Do (TRUE) (T42))
(Do (TRUE) (T41))
(Do (TRUE) (DS_Remove))
(Do (TRUE) (ML_Remove_All))
(Do ("EndSession") (System_Call))
Do ("OFF") (Lock_CrvDev))
)
)
(@RULE= Phase3_Store_Curve
(@LHS=
= (Phase) (3))
(s (Ctrl_3.0pt_p3) ("Store Model"))
)
(@HYPO= CrvDev_Ct_3)
(@RHS=

216

(Do
(Do
(Do
(Do

)

(TRUE) (T41))

(TRUE) (DS_Remove))
(TRUE) _Remove_All)
("EndSession") (System_Call))
("OFF") (Lock_CrvDev))

(@RULE= Phase3_Exit_Abort_System

@COMMENTS="This rule aborts the Phase 3 modelling procedure and returns to the main

system.";
(@LHS=
= (Phase) (3))
(Is (Cul_3.0pt_p3) ("Abort Modelling"))
)
(@HYPO= CrvDev_Ctl_3)
(@RHS=
(Do (TRUE) (DS_Remove))
(Do (TRUE) {ML_Remove_All))
(Do ("EndSession") (System_Cail))
(Do ("OFF") (Lock_CrvDev))
)
)
(@RULE= Phase2_Store_Curve
(@LHS=
= (Phase) (2))
(s (Ctrl_3.0pi_p2) ("Store Model"))
)
(@HYPO= CrvDev_Ct_3)
{@RHS=
(Do (TRUE) (T41))
(Do (TRUE) (DS_Remove))
(Do (TRUE) (ML_Remove_All))
(Do ("EndSession") (System_Call))
Do ("OFF") (Lock_CrvDev))
)
)
(@RULE= Phase2_Repeat_Phase_2
(@LHS=
(= (Phase) (2))
(Is (Ctrl_3.0pt_p2) ("Select a Different Dataset"))
)
(@HYPO= CrvDev_Ct_3)
(@RHS=
(Do (TRUE) (DS_Remove))
(Do (TRUE) (ML_Remove_All)
(Do ("CrvDev_Ctl_SW2") (CrvDev_Call))

217

(@RULE=

(@LHS=
(=
(Is

)

(@HYPO=

(@RHS=
(Do
Do
(Do
(Do

)

(@RULE=
(@LHS=
(=
(s
)

(@HYPO=
(@RHS=
Do
)
)

(@RULE=
(@LHS=
(=
ds
)
(@HYPO=
(@RHS=
(Do
(Do
(Do
(Do
(Do

)

(@RULE=
(@LHS=
(=
s
)
(@HYPO=
(@RHS=
(Do
(Do
(Do

Phase2_Goto_Phased

(Phase) (2))
(Crl_3.0pt_p2) ("Segment Curve *"))

CrvDev_Cil_3)

(TRUE) (DS_Remove))
(TRUE) (ML_Remove_All))
("EndSession") (System_Call))
("OFF") (Lock_CrvDev))

Phase2_Goto_Phase3

(Phase) (2))
(Ctrl_3.0pt_p2) ("Identify Outliers "))

CrvDev_Cti_3)

("CrvDev_Cti_OL_Load") (CrvDev_Call))

Phasel_Store_Curve

(Phase) (1))
(Ctrl _3.0pt_p1) ("Store Model"))

CrvDev_Ctl_3)
(TRUE) (T41))
(TRUE) (DS_Remove))

(TRUE) (ML_Remove_All))
("EndSession”) (System_Call))
("OFF") (Lock_CrvDev))

Phasel_Goto_Phase_2

(Phase) (1))
(Cul_3.0pt_pl) ("Re-select Specific Measurements"))

CrvDev_Ctl_3)
(TRUE)

(TRUE)
("CrvDev_Ct_SW2")

(DS_Remove))
(ML_Remove_All))
(CrvDev_Call))

218

)
(@RULE= Phasel_Goto_Phase4

(@LHS=
(= (Phase) (1))
(s (Ctl_3.0pt_pl) ("Segment Curve *"))
)
(@HYPO= CrvDev_Ctl_3)
(@RHS=
(Do (TRUE) (DS_Remove))
(Do (TRUE) (ML_Remove_All))
(Do ("EndSession") (System_Calil))
(Do ("OFF") (Lock_CrvDev))
)

)

(@RULE= Phasel_Goto_Phase3
(@LHS=
(= (Phase) (1))
(s (Ctui_3.0pt_pl1) ("Identify Outliers "))
)

(@HYPO= CrvDev_Ctl_3)
(@RHS=
(Do ("CrvDev_Ctl_OL_Load") (CrvDev_Call))
)
)
(@RULE= Execute_Modeling_Tasks
(@LHS=
= 1 1))
)
(@HYPO= CrvDev_Cti_M)
{(@RHS=
(Do (TRUE) (T20))
(Do (TRUE) (T21))
(Do (TRUE) (T22))
(Do (TRUE) (T23))
(Do (TRUE) (T24))
(Do ("CrvDev_Cil_2") (CrvDev_Call))

)

(@RULE= R57

{(@LHS=

) = 1) ¢)

(@HYPO= CrvDev_Ctl_OL_Load)

(@RHS=
(Do ("OutlierAnalysis_Start™) (System_Call))
(Do ("OFF") (Lock_CrvDev))

(Show ("msg_30.txt") (@KEEP=FALSE;@WAIT=FALSE;))

219

)

(@RULE= Execute_Data_Selection_Tasks

(@LHS=
) = 1) 1))
(@HYPO= CrvDev_Cti_R)
(@RHS=
(Do (TRUE) (T10))
(Do (TRUE) (T11_A))
(Do (TRUE) (T12))
(Do ("CrvDev_Cti_1") (CrvDev_Call))
)

)

(@RULE= Select_model_with_ MIN_STDEE
@COMMENTS="Select Best Model using SSE and copy to BEST (model) object.";

(@LHS=

(s (Best_Model_Crit) ("Standard Error of Estimate"))

(Name (MIN(<IModelst>.StdEE)) (Best_StdEE))

(= (Best_StdEE-<IModeisi>.StdEE) (0))

)
(@HYPO= CrvDev_Ctl_SBM)
(@RHS=

(Reset (ML_Name))

(Execute ("AtomNameValue")
(@ATOMID=<Models!>;@STRING="@RETURN=ML_Name.value\
@NAMES";))

(Execute ("CopyFrame"}
(@ATOMID=<Modelsl>,BEST_Model;@STRING="@STRAT=SET":\

)

(Do (TRUE) (Best_Xiras))

(Do (TRUE) (BEST_Model.Plot))

(Do (TRUE) (T40))

(Do ("CrvDev_Ctl_3") (CrvDev_Call))

)

(@RULE= Select_model_with_ MIN_OUTLIERS
@COMMENTS="Select Best Model using OUTLIERS and copy to BEST (model) object.";

(@LHS=
(s (Best_Model_Crit) ("Minimum Number of Outliers"))
(Name (MIN(<IModelst>.Num_OL)) (Best_NOL))
(= (Best_NOL-<IModelsl>.Num_OL) (0))
)
(@HYPO= CrvDev_Cti_SBM)
(@RHS=
(Reset (ML_Name))
(Execute ("AtomNameValue")

(@ATOMID=<IModelsl>;@STRING="@RETURN=ML_Name.Value\

220

@NAMES";))

(Execute ("CopyFrame™)
(@ATOMID=<IModelsl>BEST Model;@STRING="@STRAT=SET"\
)

(Do (TRUE) (Best_Xitras))

(Do (TRUE) (BEST_Model.Plot))

(Do (TRUE) (T40))

(Do ("CrvDev_Cti_3") (CrvDev_Call))

)

(@RULE= Select_model_with_Max_R2
@COMMENTS="Select Best Model using OUTLIERS and copy to BEST (model) object.";

(@LHS=

(s (Best_Model_Crit) ("Maximum R2 value"))

(Name (MIN(<IModeisi>.R2)) (Best_R2))

(= (Best_R2-<iModelsl>.R2) (0))

)
(@HYPO= CrvDev_Cti_SBM)
(@RHS=

(Reset (ML_Name))

(Execute ("AtomNameValue")
(@ATOMID=<IModelsl>;@STRING="@RETURN=ML_Name.value,\
@NAMES";))

(Execute ("CopyFrame")
(@ATOMID=<IModelsl>,BEST_Model; @ STRING="@STRAT=SET"\
)

(Do (TRUE) (Best_Xtras))

(Do (TRUE) (BEST_Model.Plot))

(Do (TRUE) (T40))

(Do ("CrvDev_Cti_3") (CrvDev_Call))

)

)

(@RULE= Phase2_Repeat_Phase_2
(@LHS=
) = (Phase) (2))
(@HYPO= CrvDev_Cti_SW2)
(@RHS=

(Show ("msg_24.txt") (@KEEP=FALSE;@WAIT=FALSE,))

(Reset (Phase.Type))

(Reset (Query_String))

(Reset (Set_Qry_Suffix))

(Do (TRUE) (Init_Ctrls))

(Do ("Select") (Cul_0.0pt_p2))

(Do ("CrvDev_Ctl_0") (CrvDev_Call))

)
)
(@RULE= Phasel_Change_to_Phase_2

221

(@LHS=
= (Phase) (1))
)
(@HYPO= CrvDev_Cti_SW2)
(@RHS=
(Show ("msg_24.txt") (@KEEP=FALSE;@WAIT=FALSE;))
(Reset (Phase.Type))
(Reset (Set_Qry_Suffix))

(Do (TRUE) (Init_Culs))

Do ("Select") (Cirl_0.0Opt_p2))

(Do 2) (Phase))

Do ("CrvDev_Cd_0") (CrvDev_Call))

)

(@RULE= R65

{(@LHS=
(s (Another_model) ("Yes")
)
(@HYPO= Gen_Models)
(@RHS=
(Do (Model_Couni+1) (Model_Count))
(Do (TRUE) (T20))
Do (TRUE) (T21))
(Do (TRUE) (T22))
(Do (TRUE) (T23))
(Do (TRUE) (T24))

(Reset (Another_model))
(Reset (Gen_Models))

)

(@RULE= R64
(@LHS=
(Is (Another_model) ("No™)
)
{@HYPO= Gen_Models)

)
(@RULE= Get_ModelData

(@LHS=
= (Cursor))
)
(@HYPO= Get_Seq_Data)
(@RHS=
(Retrieve ("@V(db_access)")

(@TYPE=ORACLE;@SLOTS=New_msr.Stage,New_msr.Discharge\
New_msr.Msr_Id,New_msr.Msr_Date;@FIELDS="stage"\
"discharge”,"msr_id","date_of_msr";@QUERY="@ V(Query_String)";\
@CURSOR=Cursor;))

(Reset (Misc_duties))

222

®o (Misc_duties) (Misc_duties))
(Reset (Get_Seq_Data))

)

(@RULE= Get_Zero_FlLow_Stage A

@COMMENTS="Retreives the ZERO FLOW STAGE for the data retrieved according to
QUERY_STRING.";

(@LHS=

(

)

(@HYPO= Get_Zero_Flow)

(@RHS=

(Reset (Cursor))

(Retrieve ("@V{(db_access)")
(@TYPE=ORACLE;@SLOTS=\DS_Name\ No_Flow_Stg;
@FIELDS="MAX(STAGE)";@QUERY="@ V(Query_String) WHERE DISCHARGE = 0";
@CURSOR=Cursor;@END="RELEASE";))

Do) {Zero_count))

(Phase) (1))

)
)

(@RULE= Get_Zero_FLow_Stage B
@COMMENTS="Retreives the ZERO FLOW STAGE for the data retrieved according to
QUERY_STRING.";
(@LHS=
& (Phase) (1))
)
(@HYPO= Get_Zero_Flow)
(@RHS=
(Reset (Cursor))
(Retrieve ("@V(db_access)")
(@TYPE=ORACLE;@ SLOTS=\DS_Name\No_Flow_Stg;
@FIELDS="MAX(STAGE)";@QUERY="@ V(Query_String) AND DISCHARGE = 0";
@CURSOR=Cursor;@END="RELEASE";))
Do 0) (Zero_count))

)

(@RULE= R67
(@LHS=
(s (<IModels!>.Plot) (TRUE))
)
(@HYPO= List_curve_A)
(@RHS=
(Execute ("AtomNameValue")
(@ATOMID=<IModelsl>;@STRING="@RETURN=Plot_Info.Obj_names\
@NAMES";))

(Execute ("GetMultiValue")

223

(@ATOMID=Plot_Info.Obj_names;@STRING="@RETURN=Plot_Info.Num_obj\
@LENGTH")))

(Do ¢y (Plot_Info.Index))

(Do (List_curve_B) (List_curve_B))

(Reset (List_curve_B))

)

{(@RULE= R68
(@LHS=
= (Plot_Info.Num_obj-Plot_Info.Index) ()]
)
(@HYPO= List_curve_B)
(@RHS=
(Execute ("GetMultiValue")
(@ATOMID=Plot_Info.Obj_names,dummy_obj.Value\
@STRING="@INDEX=@ V(Plot_Info.Index)";))
(Do (\dummy_obj\FN_Curve) (dummy_file))
(Do (STRCAT(™\"" \dummy_obj\.Title)) (dummy_title))
(Execute ("echo @V(dummy_title) >> @ V(Plot_Info.Filename)")
(@TYPE=EXE,))
(Execute ("cat @V(dummy_file) >> @ V(Plot_Info.Filename)")
(@TYPE=EXE;))
(Do -1 -1 (dummy_string))
(Execute ("echo @V(dummy_string) >> @V (Plot_Info.Filename")
(@TYPE=EXE;))
(Do ™" (dummy_siring))
(Execute ("echo @V(dummy_string) >> @V (Plot_Info.Filename)")
(@TYPE=EXE;))
(Do (Plot_Info.Index+1) (Plot_Info.Index))
(Reset (List_curve_B))

)
)
(@RULE= R69
(@LHS=
(Is (<IDatasetsl>.Plot) (TRUE))
)
(@HYPO= List_data_A)
(@RHS=
(Execute ("AtomNameValue")

(@ATOMID=<IDatasets!>;@STRING="@RETURN=Plot_Info.Obj_names\
@NAMES™))

(Execute ("GetMultiValue")
(@ATOMID=PIot_Info.Obj_names;@STRING="@RETURN=Plot_Info.Num_obj\
@LENGTH";))

(Do €)) (Plot_Info.Index))

(Execute "rm -f @V (Plot_Info.Filename)") (@ TYPE=EXE;))

(Reset (List_data_B))

(Do (List_data_B) (List_data_B))

224

)
(@RULE= R70

(@LHS=
= (Ploi_Info.Num_obj-Plot_Info.Index) ()
)
(@HYPO= List_data_B)
(@RHS=
(Execute ("GetMultiValue") s

(@ATOMID=Plot_Info.Obj_names,dummy_obj.Value; @STRING="@INDEX=@ V(Plot_Info.Index)";))
(Do (\dummy_obj\FN_Data) (dummy_file))

(Do (STRCAT("\""\dummy_obj\.Title)) (dummy_title))

(Execute ("echo @V(dummy_title) >> @V (Plot_Info.Filename)")
(@TYPE=EXE;))

(Execute ("cat @V(dummy_file) >> @V (Plot_Info.Filename)")
(@TYPE=EXE;))

(Do "-1-1" {(dummy_string))

(Execute ("echo @V(dummy_string) >> @V (Plot_Info.filename)")
(@TYPE=EXE;))

(Do) (dummy_string))

(Execute ("echo @V(dummy_string) >> @V (Plot_Info.Filename)")
{(@TYPE=EXE;))

(Do (Plot_Info.Index+1)

(Reset (List_data_B))

(Plot_Info.Index))

)
)
(@RULE= R71
(@LHS=
(<= (Phase) (2))
= (Phase) (1))
)
(@HYPO= Misc_duties)
(@RHS=
(Do (Print_Record) (Print_Record))
(Reset (Print_Record))
)
)
(@RULE= R72
(@LHS=
= (1) (1))
)
(@HYPO= Next_Crvid)
(@RHS=
(Reset (Cursor))
(Retrieve ("@V(db_access)")

(@TYPE=ORACLE;@END="release";@SLOTS=dummy_integer.Value;@FIELDS="max(crv_id)+1";@
QUERY="Ir_lj047";@CURSOR=Cursor;))
(Do {(dummy_integer) (\ML_Name\.Crv_Id))

)

225

(@RULE= Plot_TRUE_Current_Phase_Data

(@LHS=
(<= (count) (5))
(= (Phase-count) (0))
)
(@HYPO= Plot_Settings)
{@RHS=
(Do (STRCAT("Phs" INT2STR(count))) (dummy_string))
(Do (TRUE) (\dummy_string\.Plot))
(Do (count+1) (count))

(Reset (Plot_Settings))

)
(@RULE= Plot_FALSE_Non_Current_Phase_Data
(@LHS=
(<= (count) (5))
(<> (Phase-count) (0))
)
(@HYPO= Plot_Settings)
(@RHS=
(Do (STRCAT("Phs" ,INT2STR(count))) (dummy_string))
(Do (FALSE) (\dummy_string\.Plot))
(Do (count+1) (count))
(Reset (Plot_Settings))
)
)
(@RULE= Print_S_D_to_Unix_A
@INFCAT=20;

@COMMENTS="Filter out measurements with zero flow stages less than NO_FLOW_STG. Count
of zero flow msrs and subtract from total number of msrs for dataset.";

(@LHS=
= (Cursor) ()]
= (New_msr.Discharge) (0.000))
{NotEqual (\DS_Name\.No_Flow_Stg) (New_msr.Stage))
)
(@HYPO= Prini_Record)
(@RHS=
(Do (Zero_count+1) (Zero_count))
(Do (\DS_Name\Num_Msrs-1) (\DS_Name\Num_Msrs))
)
)
(@RULE= Print_S_D_to_Unix_B
@INFCAT=5;
@COMMENTS="Print $/D measurement to UNIX file";
(@LHS=

226

= (Cursor) 0
(<> {New_msr.Discharge))
)
(@HYPO= Print_Record)
(@RHS=
(Do (STRCAT(DS_Name,".dat")) (dummy_file))
(Do (STRCAT(FLOAT2STR(New_msr.Discharge,"u.000"),STRCAT("
" FLOAT2STR(New_msr.Stage,"u.000")))) (New_msr.Set))
(Execute ("echo @V(New_msr.Set) >> @V(dummy_file)") (@TYPE=EXE;))
)

(@RULE= Print_S_D_to_Unix_C

@INFCAT=5;
@COMMENTS="Print S/D measurement to UNIX file";
(@LHS=
= (Cursor) ()]
(= (New_msr.Discharge))
(Equal (\DS_Name\No_Flow_Stg) (New_msr.Stage))
)
(@HYPO= Print_Record)
(@RHS=

(Do (STRCAT(DS_Name,".dat")) (dummy_file))
(Do (STRCAT(FLOAT2STR(New_msr.Discharge,"u.000"),STRCAT("
" FLOAT2STR(New_msr.Stage,"u.000")))) (New_msr.Set))

(Execute ("echo @V(New_msr.Set) >> @V(dummy_file)") (@TYPE=EXE;))
)
)
{(@RULE= R77
@INFCAT=5;
@COMMENTS="Remove each model from MODELS CLASS and all related system files.";

(@LHS=
(No (Bool_Answer))
)
(@HYPO= Seq_ML_Remove)
)

(@RULE= R76
@INFCAT=10;
@COMMENTS="Remove each model from MODELS CLASS and all related system files.";
(@LHS=
(Name (STRCAT("ML",INT2STR(Counter))) (ML_Name))
(Execute ("AtomExist")
(@STRING="@NAME=@ V(ML _Name), @RETURN=Bool_Answer.Value":\
)
(Yes (Bool_Answer))

)
(@HYPO= Seq_ML_Remove)

227

(@RHS=

(Do (TRUE) (ML_Remove))

Do (Counter+1) (Counter))
(Reset (Seq_ML_Remove))

)
) .
(@RULE= R78
@INFCAT=100;
(@LHS=
(Yes (<IDatasetsl>.Piot))
)
(@HYPO= Set_Axis)
(@RHS=
(Do (MAX(<IDatasetsl>.Max_S))
(Do (MAX(<IDatasetsl>.Max_D))
)
)

(@RULE= Query_Time_Range_Cased
@COMMENTS="Same First and Last Dates";

(Plot_Info.Max_S))
(Plot_Info.Max_D))

(@LHS=
{Is (Phase.Type) ("TIME"))
(= (P2_Time.LM-P2_Time.FM) ()]
(= (P2_Time.LD-P2_Time.FD))
)
(@HYPO= Set_Qry_Suffix)
(@RHS=
(Reset (Set_Qry_Suffix))
)

)

(@RULE= Query_Time_Range_Case3_B
@COMMENTS="Same Month, Range crosses years";
(@LHS=

(s (Phase.Type) ("TIME"))
(= (P2_Time. FM-P2_Time.LM))
(63 (P2_Time FD-P2_Time.LD))
)
(@HYPO= Set_Qry_Suffix)
(@RHS=
(Do (Cnst_time2) (Qry_Str_Suffix))
)
)

{(@RULE= Query_Time_Range_Case3_A

@COMMENTS="Same Month, Range within single year";

(@LHS=
(s (Phase.Type) ("TIME"))
(= (P2_Time.LM-P2_Time.FM)
¢ (P2_Time.LD-P2_Time.FD)

228

()
)

)
(@HYPO= Set_Qry_Suffix)
(@RHS=
(Do (Cnst_timel) (Qry_Str_Suffix))
)
)

(@RULE= Query_Time_Range_Case2
@COMMENTS="First Month is later in year than Last Month";
{(@LHS=
(Is (Phase.Type) ("TIME™))
&3 (P2_Time FM-P2_Time.LM) (1))
)
(@HYPO= Set_Qry_Suffix)
(@RHS= ;
(Do (Cnst_time2) (Qry_Str_Suffix)) L
) N
) RN

(@RULE= Query_Time_Range_Casel

@INFCAT=5;
@COMMENTS="First Month is earlier in year than Last Month";
(@LHS=
s (Phase.Type) ("TIME"))
(Name (TRUE) (Input_TimeRange))
(62 (P2_Time LM-P2_Time.FM))
)
(@HYPO= Set_Qry_Suffix)
(@RHS=

(Do (Cnst_timel) (Qry_Str_Suffix))

)
)

(@RULE= Query_Rapid_Rising_Stage_Conditions

(@LHS=
(s (Phase.Type) ("STAGE VARIATION™)
(s (P2_Stage) ("RAPIDLY RISING STAGE™)

)

(@HYPO= Set_Qry_Suffix)

(@RHS=
(Do (STRCAT(Qry_Str_Prefix," and REMARK_A = ’8") (Query_String))
(Do ("STG_RR") (Phase.Type))

)

(@RULE= Query_Open_Flow
@COMMENTS="Query Open Flow Conditions";
(@LHS=
(s (Phase.Type) ("OPEN FLOW")

)
(@HYPO= Set_Qry_Suffix)

229

(@RHS=
(Do
(Do
(Reset

(Retrieve

("OPN_FLW") (\DS_Name\Type))
(\DS_Name\.Type) (dummy_string))
(Cursor))

("@V(db_access)")

(@TYPE=ORACLE;@END="release";@SLOTS=Qry_Str_Suffix.Value)\
@FIELDS="qry_string";@QUERY="qry_types where type = *@V(dummy_string)";\

@CURSOR=Cursor;))
)
)

(@RULE=

Query_Ice_Open_Flow

@COMMENTS="Query Open Flow Conditions";

(@LHS=
(Is
s
)
(@HYPO=
(@RHS=
(Do

(Phase.Type)
(P2_Ice)

("ICE CONDITIONS"))
("COMPLETE COVER"))

Set_Qry_Suffix)

(STRCAT(Query_String," and NOT(REMARK_B IN (°9’\

’A,’ ,B,, ,C,, ,D,, ,E’, ,F,, ’G’, ’J’) n)) (Query_stl’ing))

)
)

(@RULE= R89
(@LHS=

=
)

(@HYPO=
(@RHS=
(Show
300;)

)

(@RULE= R88
(@LHS=

(=
)

(@HYPO=
(@RHS=
(Show
300;))

)

(@RULE= R87
(@LHS=
(
)
(@HYPO=

(Level 1) 3)»
Show_Phase_Title)

("Txt/P3txt") (@KEEP=FALSE;@WAIT=TRUE;@RECT=5,380,527\

(Level_1) »n
Show_Phase_Title)

("Txt/P2t.xt") (@KEEP=FALSE;@WAIT=TRUE;@RECT=5,380,527\

(Level_1) (1)

Show_Phase_Title)

230

(@RHS=
(Show ("Txt/Pltixt") (@KEEP=FALSE;@WAIT=TRUE;@RECT=5,380,527,\
300;)

Fkkkkokokokekdeoskoskokokok ke skosk skokok skl s skok sk sesfeosfeokok ok sfeskeoskeok s e sk sk stk s ok sk ok sk sk skok sk sk e sk sk okok sk sk sk ok ok sk ok ok

#* End of KB Code: A3 _main.tkb *

Fokskestesteokokokokok ke steoskoosk kst sk stokok sk sk ok st sk sk ok st sk ook sk sk s ofesfe s sk sk sfe sk sk skl sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok skeok sk ok

231

sk skokoskok ke sdeskokokok skl stokok sk sokokok ok g sioleok skekokokokek deokolokok sk deolokok sk ok kokoskok sk kokokok sk ko skok okok

#* Nexpert Object KB Code: A4 main.tkb *
Fhokskokskokokskokokokokokokokokokokokokokokokok koo ok sk ke sde e she sk st s s sfe s sk sk sfe sk sk sfe sk shesheshe sk sheske e ske e sk s e sk sk sk sk sk ko ok
#* Qutlier Analysis Module *

Fpkkokokokskokokok skokskskokokskokokokokokokokokokekokokokokskok kol ke ke sl e sl ke sleslesfesle e e e e she e ek sk skeoskokeok sk sk sk sk ke ok

(@VERSION=020)

(@PROPERTY= BV @TYPE=Boolean;)
(@PROPERTY= CO @TYPE=Boolean;)
(@PROPERTY= DB @TYPE=Boolean;)
(@PROPERTY= Id @TYPE=String;)
(@PROPERTY= MU @TYPE=Boolean;)
(@PROPERTY= OK @TYPE=Boolean;)
(@PROPERTY= Rem_A @TYPE=Integer;)
(@PROPERTY= Rem_B @TYPE=Inieger;)
(@PROPERTY= Rem_C @TYPE=Integer;)
(@PROPERTY= RF @TYPE=Boolean;)
(@PROPERTY= RR @TYPE=Boolean;)
(@PROPERTY= TR @TYPE=Boolean;)
(@PROPERTY= Trans_Exp @TYPE=Float;)
(@PROPERTY= Type_Set @TYPE=String;)
(@PROPERTY= UX @TYPE=Boolean;)
(@PROPERTY= WE @TYPE=Boolean;)
(@PROPERTY= WN @TYPE=Boolean;)

(@OBJECT= Attrib_Count
(@PROPERTIES=
Value @TYPE=Inieger;
)
)

(@OBJECT= Beaver
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Begin_Analysis
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Calc_limits

(@PROPERTIES=
Value @TYPE=Boolean;

232

)

(@OBJECT= Cat_outlier
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Check_Outlier
(@PROPERTIES=
Value @TYPE=Boolean;

)

(@OBJECT= Current_DS
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Ctrl_1_Next
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Current_MD
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Cursorl
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= Cuioff
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Debris
(@PROPERTIES=
Value @TYPE=String;
)

233

(@OBJECT= DS_name
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= DS_num
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= dummy_file
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= dummy_obj
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= dummy_title
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Falling
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= EN_Data
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= List_curve_A
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= List_curve_ B
(@PROPERTIES=
Value @TYPE=Boolean;

234

)

(@OBJECT= List_data_A
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= List_data B
(@PROPERTIES=
Value @TYPE=Boolean;
)

)

(@OBJECT= Make OL_DS
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= ML _Name
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Model_response
(@PROPERTIES=
Value @TYPE=Float;
)
)

(@OBJECT= Msr_Attribs
(@PROPERTIES=
BV
Co
DB
MU
OK

)

(@OBJECT= neg_limit
(@PROPERTIES=

235

Value @TYPE=Float;

)

(@OBJECT= Qut_side
(@PROPERTIES=
Value @TYPE=Siring;
)
)

(@OBJECT= OutAnal_Cil 0
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= OutAnal Cil_1
(@PROPERTIES=
Value @TYPE=Boolean;
)

)

(@OBJECT= OutAnal_Ctl_Resets
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Outlier_count
(@PROPERTIES=
Value @TYPE=Integer;
)
)

(@OBJECT= Perc_ermr
(@PROPERTIES=
Value @TYPE=Float;
)

(@OBJECT= Plot_Elements
(@PROPERTIES=
Value @TYPE=Boolean;
)

)

(@OBJECT= Plot_What
(@PROPERTIES:=
Value @TYPE=String;

236

)

(@OBJECT= pos_limit
(@PROPERTIES=
Value @TYPE=Float;
)
)

(@OBJECT= Print_Record
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Re_set_physical
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Record Msr
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Rising
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Run_Xgraph
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Seq_Ret_Outliers
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Show_Analysis_Results
(@PROPERTIES:=
Value @TYPE=Boolean;
)

237

(@OBIJECT= Temp_Msr

(@PROPERTIES=
Discharge
Msr_Date
Msr_Id
Rem_A
Rem_B
Rem_C
Stage
Type_Set

)

(@OBJECT= Trib
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= Weed
(@PROPERTIES=
Value @TYPE=Siring;
)
)

(@OBJECT= Wind
(@PROPERTIES=
Value @TYPE=String;
)
)

(@SLOT= Beaver
@PROMPT="WAS THERE Beaver Activity NEAR THE SITE DURING THE MEASUREMENT
?!l;
)
(@SLOT= Begin_Analysis
@COMMENTS="Initiates the Outlier Analysis loop";
(@CACTIONS=
(Do ©) (Outlier_count))
Do (0) (Cursor))

(Execute ("rm -f atrrec. IN") (@TYPE=EXE;))

(Reset (Seq_Ret_Outliers))

(Do (Seq_Ret_Outliers) (Seq_Ret_Outliers))

(Execute ("cat eof_mark1.:xt >> atrrec.IN") (@ TYPE=EXE;))
(Execute ("atrrec™) (@TYPE=EXE;))

(Execute ("cat atrrec.OUT3 > Phs3.dat") (@ TYPE=EXE;))

(Reset (Begin_Analysis))

238

(@SLOT= Calc_limits

@INFCAT=400;
(@CACTIONS=
(Reset (Model_response))
(Reset (neg_limit))
(Reset (pos_limit))
Do ((BEST_Model. BO+(BEST_Model. BI*POW(Temp_Msr.Stage \
BEST Model. TX))) (Model_response))
(Do ((Model_response-Temp_Msr.Discharge)/Model_response
*100) (Perc_err))
Do (Model_response*(1-Allow_err/100)) (neg_limit))
(Do (Model_response*(1+Allow_err/100)) (pos_limit))
(Reset (Calc_limits))
)
)
(@SLOT= Ctri_1_Next
@PROMPT=" ‘What Next ? "
)
(@SLOT= Cutoff
@PROMPT="HAVE THERE BEEN ANY RECENT Meandering Cut-Offs NEAR THE SITE
DAL
)
(@SLOT= Debris
@PROMPT="WAS THERE ANY TRAPPED Debris AFFECTING THE MEASUREMENT 7";
)
(@SLOT= Falling

@PROMPT="WAS THE MEASUREMENT TAKEN DURING Rapidly Falling Stage

CONDITIONS 7
)

(@SLOT= Model_response

@INFCAT=110;

@FORMAT="u.000";

)

(@SLOT= neg_limit

@INFCAT=100;

@FORMAT="u.000";

)

(@SLOT= OutAnal_Ctl_Resets
(@CACTIONS=
(Reset (OutAnal_Ctl_0))
(Reset (OutAnal_Ctl_1))
(Reset (OutAnal_Ctl_Resets))

239

)

(@SLOT= Perc_err
@INFCAT=100;
@FORMAT="u.000";

)

(@SLOT= Plot_What
@PROMPT="Would you like the stratified outlier data ?™;

)

(@SLOT= pos_limit
@INFCAT=100;
@FORMAT="u.000";

)

(@SLOT= Re_set_physical
(@CACTIONS=

(Reset (Rising))
(Reset (Falling))
(Reset (Beaver))
(Reset (Debris))
(Reset (Trib))
(Reset (Weed))
(Reset (Wind))
(Reset (Re_set_physical))
)
)
(@SLOT= Rising

@PROMPT="WAS THE MEASUREMENT TAKEN DURING Rapidly Rising Stage
CONDITIONS 7"
)

(@SLOT= Run_Xgraph
(@CACTIONS=
Do (C_Sm.Stn_Id) (Ploi_Info.Title))
(Do (STRCAT(FLOAT2STR(Plot_Info.Max_$*1.25),STRCAT(" "\
FLOAT2STR(Plot_Info.Max_D*1.25)))) (dummy_string))
(Execute ("XGR @V (Plot_Info.Title) @v(Plot_Info.Filename)
@ V(dummy_string)") (@TYPE=EXE;))
(Reset (Run_Xgraph))
)
)

(@SLOT= Show_Analysis_Results

@COMMENTS="Displays Outlier Report and calls plotting routine.";
(@CACTIONS=

240

(Execute ("mv atrrec.OUT2 atrrec.txt") (@TYPE=EXE;))
(Show ("atrrec.txt") (@KEEP=FALSE;@WAIT=FALSE;))
(Reset (Plot_Elements))

(Do (Plot_Elements) (Plot_Elements))

(Execute ("ControlSession") (@STRING="@STOP";}))
(Reset (Show_Analysis_Results))

)

(@SLOT= Trib
@PROMPT="DURING THE MEASUREMENT, WERE THERE ANY NEARBY TRIBUTARIES

WITH ..";

)

(@SLOT= Weed

@PROMPT="WAS THERE SUBSTATIAL Weed Growth IN THE MEASUREMENT
CROSS-SECTION 77;
)

(@SLOT= Wind
@PROMPT="WAS THERE ANY Wind AT THE SITE DURING MEASUREMENT ?";
)

(@RULE= R200

@INFCAT=-25;

(@LHS=
Is (Out_side) ("BELOW™)
(No (Msr_Attribs.BV))
(No (Msr_Attribs.CO))
(No (Msr_Attribs.DB))
No (Msr_Attribs RF))
No (Msr_Attribs.RR))
No (Msr_Attribs. TR))
(No (Msr_Attribs, WE))
(No (Msr_Attribs, WN))

)

(@HYPO= Cat_outlier)
(@RHS=
(Do (TRUE) (Msr_Attribs,UX))
(Do ("UX") (Temp_Msr.Type_Set))
(Do (Attrib_Count+1) (Attrib_Count))

)

(@RULE= R199
@INFCAT=-25;
(@LHS=
(s (Out_side) ("ABOVE"))
(No (Msr_Attribs.BV))
(No (Msr_Attribs.CO))
(No (Msr_Attribs.DB))

241

(No (Msr_Attribs.RF))
No (Msr_Attribs.RR))
(No (Msr_Attribs. TR))
(No (Msr_Aittribs. WE))
(No (Msr_Attribs,. WN))

)
(@HYPO= Cat_outlier)
(@RHS=
(Do (TRUE) (Msr_Attribs, UX))
(Do ("UX") (Temp_Msr.Type_Set))
(Do (Attrib_Count+1) (Attrib_Count))
)

)

(@RULE= Impossible_Negative_Responses

@INFCAT=-50;
@COMMENTS="This rule is used ONLY to present Negativeresponse choices for the Outlier
Questions.";
(@LHS=
G ©) 1)
s (Rising) ("NO")
ds (Falling) ("NO")
(s (Beaver) ("Nil"))
(s (Wind) ("Nil")}
(s (Debris) ("None"))
(s (Weed) ("None™))
(s (Trib) ("All Tributaries: Normal Flow"))
ds (Cutoff) ("None"))
)
(@HYPO= Cat_outlier)
)
(@RULE= R197
@INFCAT=-100;
(@LHS=
& (Attrib_Count) (1))
)
(@HYPO= Cat_outlier)
(@RHS=
(Do (TRUE) (Msr_Attribs.MU))
(Do ("MU") (Temp_Msr.Type_Set))
)
)
(@RULE= R196
@INFCAT=50;
(@LHS=
(s {Out_side) ("ABOVE"))
s (Falling) ("YES")
)
(@HYPO= Cat_outlier)

242

)

(@RHS=
(Do
(Do
(Do

(@RULE= R195

)

@INFCAT=40;
(@LHS=

(s

(Is
)

(@HYPO=

(@RHS=
(Do
(Do
(Do

(@RULE= R194

)

@INFCAT=25;
(@LHS=
(s
(Is
)
(@HYPO=
(@RHS=
(Do
(Do
(Do

(@RULE= R193

)

@INFCAT=30;
(@LHS=
(s
(Is
)
(@HYPO=
(@RHS=
(Do
(Do
Do

(@RULE= R192

@INFCAT=40;

(TRUE) (Msr_Attribs.RF))
("RF") (Temp_Msr. Type_Set))
(Attrib_Count+1) (Attrib_Count))

(Out_side) ("BELOW"))
(Beaver) ("Up Stream™))

Cat_outlier)
(TRUE) (Msr_Aitribs.BV))

("BV") (Temp_Msr.Type_Set))
(Attrib_Count+1) (Attrib_Count))

(Out_side) ("BELOW"))
(Wind) ("DOWN STREAM"))

Cat_outlier)
(TRUE) (Msr_Aitribs. WN))

("WN") (Temp_Msr.Type_Set))
(Attrib_Count+1) (Attrib_Count))

(Out_side) ("ABOVE")
(Wind) ("UP STREAM"))

Cat_outlier)
(TRUE) (Msr_Attribs. WIN))

("WN") (Temp_Msr.Type_Set))
(Attrib_Count+1) (Attrib_Count))

243

)

(@RULE=

)

(@RULE=

)

(@RULE=

(@LHS=
(Is
(Is

(@HYPO=

(@RHS=
(Do
(Do
(Do

R191
@INFCAT=35;
(@LHS=
(s
(s
)
{@HYPO=
(@RHS=
(Do
(Do
(Do

R190
@INFCAT=35;
(@LHS=
(s
(s
)
(@HYPO=
(@RHS=
(Do
(Do
(Do

R189
@INFCAT=15;
(@LHS=
(Is
(Is
)
(@HYPO=
(@RHS=
(Do
Do
(Do

(Out_side)
(Beaver)

("ABOVE"))
("Down Stream"))

Cat_outlier)
(TRUE) (Msr_Atiribs.BV))

("BV") (Temp_Msr.Type_Set))
(Attrib_Count+1) (Attrib_Count))

(Out_side)
(Debris)

("ABOVE"))
("Down Stream of Gauge™))

Cat_outlier)
(TRUE) (Msr_Atiribs.DB))

("DB") (Temp_Msr.Type_Set))
(Attrib_Count+1) (Attrib_Count))

(Out_side)
(Debris)

("BELOW"))
("Up Stream of Gauge™))

Cat_outlier)
(TRUE) (Msr_Attribs.DB))

("DB"} (Temp_Msr.Type_Set))
(Attrib_Count+1) (Attrib_Count))

(Out_side)
(Weed) ("Yes"))

("BELOW"))

Cat_outlier)
(TRUE) (Msr_Attribs. WE))

("WE™) (Temp_Msr.Type_Set))
(Atrib_Count+1) (Attrib_Count))

244

)

(@RULE=

)

(@RULE=

)

(@RULE=

)

(@RULE=

RI88
@INFCAT=15;
(@LHS=
(s
(Is
)
{(@HYPO=
(@RHS=
(Do
(Do
(Do

R187
@INFCAT=50;
(@LHS=
(Is
(Is
)
(@HYPO=
(@RHS=
(Do
(Do
(Do

R186
@INFCAT=35;
(@LHS=

{Is

s
)
(@HYPO=

- (@RHS=

(Do
(Do
(Do

R185
@INFCAT=35;
(@LHS=

(s

(s

(Out_side) ("ABOVE")
(Weed) ("YES"))

Cat_outlier)
(TRUE) (Msr_Attribs.WE))

("WE") (Temp_Msr.Type_Set))
(Attrib_Couni+1) (Aitrib_Count))

(Out_side)
(Rising)

("BELOW"))
("YES")

Cat_outlier)
(TRUE) (Msr_Attribs.RR))

("RR") (Temp_Msr.Type_Set))
(Attrib_Count+1) (Attrib_Count))

(Out_side)
(Cutoff)

("ABOVE"))
("Up Stream of Gauge"))

Cat_outlier)
(TRUE) (Msr_Atiribs.CO))

("CO™ (Temp_Msr.Type_Set))
(Attrib_Count+1) (Attrib_Count))

(Out_side)
(Cutoff)

("BELOW"))

245

("Down Stream of Gauge"))

(@HYPO=

(@RHS=
(Do
(Do
(Do

)

(@RULE=
@INFCAT=30;
(@LHS=

(s
(Is
(Yes
)
(@HYPO=
(@RHS=
(Do
(Do

)

(@RULE=
@INFCAT=31;
(@LHS=

(Is

(s

(No
)

{(@HYPO=

(@RHS=
(Do
(Do
(Do

)

(@RULE=
@INFCAT=32;
(@LHS=

(Is
(Is
)
(@HYPO=
(@RHS=
(Do
(Do
(Do

Cat_outlier)

(TRUE) _Attribs.CO))
("CO") (Temp_Msr. Type_Set))
(Attrib_Count+1) (Attrib_Count))

Below_Trib_No2_B

(Oui_side) ("BELOW™"))
(Trib) ("U/S: Higher than Normal Flow"))
(Msr_Attribs.TR))

Cat_outlier)

(TRUE) (Msr_Attribs. TR))
("TR") (Temp_Msr.Type_Set))

Below_Trib_No2_A

(Out_side) ("BELOW"))
(Trib) ("U/S: Higher than Normal Flow"))
(Msr_Atiribs.TR))

Cat_outlier)
(TRUE) (Msr_Attribs. TR))

("TR") (Temp_Msr.Type_Set))
(Attrib_Count+1) (Attrib_Count))

Below_Trib_Noi

(Out_side) ("BELOW"))
(Trib) ("D/S: Lower than Normal Flow"))

Cat_outlier)
(TRUE) (Msr_Attribs. TR))

("TR") (Temp_Msr.Type_Set))
(Attrib_Count+1) (Attrib_Count))

246

(@RULE=

(@LHS=
(Is
(Is
(Yes
)
(@HYPO=
(@RHS=
(Do
(Do

)
(@RULE=

(@LHS=
(Is
(Is
(No
)

(@HYPO=

(@RHS=
(Do
Do
(Do

)
(@RULE=

{@LHS=
(Is
(s
)
(@HYPO=
(@RHS=
(Do
Do
(Do

)
(@RULE=

(@LHS=
(=
(<
¢

)

(@HYPO=

Above_Trib_No2_B
@INFCAT=30;

{Out_side) ("ABOVE"))
(Trib) ("U/S: Lower than Normal Flow™))
(Msr_Attribs. TR))

Cai_outlier)

(TRUE) (Msr_Attribs. TR))
("TR") (Temp_Misr.Type_Set))

Above_Trib_No2_A
@INFCAT=31;

(Out_side) ("ABOVE")
(Trib) ("U/S: Lower than Normal Flow"))
(Msr_Attribs. TR))

Cat_outlier)
(TRUE) (Msr_Attribs. TR))

("TR") (Temp_Msr.Type_Set))
(Attrib_Count+1) (Attrib_Count))

Above_Trib_Nol
@INFCAT=32;

(Out_side) ("ABOVE"))
(Trib) ("D/S: Higher than Normal Flow"))

Cat_outlier)
(TRUE) (Msr_Attribs. TR))

("TR") (Temp_Msr.Type_Set))
(Attrib_Count+1) (Attrib_Count))

Reject_below_curve
@INFCAT=45;

(Cursor))
(Perc_err) (0.000))

(ABS(Perc_err)-Allow_err) (0.000))

Check_Outlier)

247

(@RHS=
(Do (Outlier_couni+1) (Outlier_count))
(Do (STRCAT(INT2STR(Outlier_count),STRCAT(" "\
STRCAT(INT2STR(BEST_Model.Num_OL),STRCAT(" "\

FLOAT2STR(Model_response)))))) {dummy_string))
(Do ("BELOW") (Out_side))
(Execute ("shw_1 @V(Temp_Msr.Msr_Date) @ V(Temp_Msr.Stage)

@ V(Temp_Msr.Discharge) @ V(dummy_\
string) @V(Out_side)") (@TYPE=EXE;))
(Show ("ol_set.txt") (@KEEP=FALSE;@WAIT=FALSE))
(Strategy (@EXHBWRD=TRUE;))
(Do ©) (Attrib_Count))
(Reset (Cat_outlier))
(Do (Cat_outlier) (Cat_ouitlier))

(Strategy (@QEXHBWRD=FALSE)))
(Do (TRUE) (Re_set_physical))
)
)
(@RULE= Reject_above_curve
@INFCAT=45;
(@LHS=
= {Cursor))
¢ (Perc_err) (0.000))
¢ (ABS(Perc_err)-Allow_err) (0.000))
)
(@HYPO= Check_Outlier)
(@RHS=
(Do (Outlier_count+1) (Outlier_count))

(Do (STRCAT(INT2STR(Outlier_count),STRCAT(" "\
STRCAT(INT2STR(BEST_ Model.Num_OL),STRCAT(" "\

FLOAT2STR(Model_response)))))) (dummy_string))
(Do ("ABOVE") (Oui_side))
(Execute ("shw_1 @V(Temp_Msr.Msr_Date) @V (Temp_Msr.Stage)

@V(Temp_Msr.Discharge) @ V(dummy_\
string) @V (Out_side)") (@TYPE=EXE;))
(Show ("ol_set.txt") (@KEEP=FALSE;@WAIT=FALSE;))
(Strategy (@EXHBWRD=TRUE)))
(Do 0) (Attrib_Count))
(Reset (Cat_outlier))
Do (Cat_outlier) (Cat_outlier))

(Strategy (@EXHBWRD=FALSE;))
Do (TRUE) (Re_set_physical))
)
)
(@RULE= Accept_SD_set
@INFCAT=50;
@COMMENTS="Accept S-D measure, assign OK attribute";
(@LHS=
= (Cursor) oy

248

(<= (ABS(Perc_err)-Allow_err) (0.000))

)
(@HYPO= Check_Outlier)
(@RHS=
(Do (TRUE) (Msr_Attribs.CK))
(Do ("OK"™) (Temp_Msr.Type_Set))
{Do (TRUE) (Re_set_physical))
)
)
(@RULE= R205
(@LHS=
(s (<IModelsl>.Plot) (TRUE))
)
(@HYPO= List_curve_A)
(@RHS=
(Execute ("AtomNameValue")

(@ATOMID=<Modelsl>;@STRING="@RETURN=Plot_Info.Obj_names\
@NAMES"}))

(Execute ("GetMuitiValue")
(@ATOMID=Plot_Info.Obj_names;@STRING="@RETURN=Plot_Info.Num_obj\
@LENGTH™))

Do) (Plot_Info.Index))

(Do (List_curve_B) (List_curve_B))

(Reset (List_curve_B))

)
)
(@RULE= R206
(@LHS=
= (Plot_Info.Num_obj-Plot_Info.Index))
)
(@HYPO= List_curve_B)
(@RHS=
(Execute ("GetMultiValue™)

(@ATOMID=Plot_Info.Obj_names,dummy_obj.Value;\
@STRING="@INDEX=@ V(Plot_Info.Index)";))

Do (\dummy_obj\FN_Curve) (dummy_file))

(Do (STRCAT("™\"" \dummy_obj\.Title)) (dummy_tiile))

(Execute ("echo @V (dummy_title) >> @V(Plot_Info.Filename)")
(@TYPE=EXE;))

(Execute ("cat @V(dummy_file) >> @ V(Plot_Info.Filename)")
(@TYPE=EXE;))

(Do "-1-1" (dummy_string))

(Execute ("echo @V(dummy_string) >> @ V(Plot_Info.Filename")
(@TYPE=EXE;))

(Do) (dummy_string))

(Execute ("echo @V (dummy_string) >> @V (Plot_Info.Filename)")
(@TYPE=EXE;))

Do (Plot_Info.Index+1) (Plot_Info.Index))

249

(Reset (List_curve_B))

)
)
(@RULE= R207
(@LHS=
(Is (<IDatasetsl>.Plot) (TRUE))
)
(@HYPO= List_data_A)
(@RHS=
(Execute ("AtomNameValue")

(@ATOMID=<IDatasetst>;@S TRING="@RETURN=PIot_Info.Obj_names\
@NAMES";))

(Execute ("GetMultiValue")
(@ATOMID=Plot_Info.Obj_names;@STRING="@RETURN=Plot_Info.Num_obj\
@LENGTH"))

(Do (D (Plot_Info.Index))

(Do (List_data_B) (List_data_B))

(Reset (List_data_B))

)
)
(@RULE= R208
{(@LHS=
= (Plot_Info.Num_obj-Plot_Info.Index))
)
(@HYPO= List_data_B)
(@RHS=
(Execute ("GetMulti Value")

(@ATOMID=PIlot_Info.Obj_names,dummy_cbj.Value;\
@STRING="@INDEX=@ V(Plot_Info.Index)";))

(Do (\dummy_obj\FN_Data) (dummy_file))

(Do (STRCAT("\"" \dummy_obj\.Title)) (dummy_title))

(Execute ("echo @V (dummy_title) >> @V(Plot_Info.Filename)")
(@TYPE=EXE;))

(Execute ("cat @V(dummy_file) >> @ V(Plot_Info.Filename)")
(@TYPE=EXE;))

(Do ¢-1-1" {(dummy_string))

(Execute ("echo @ V(dummy_string) >> @V (Plot_Info.filename)")
(@TYPE=EXE;))

(Do) (dummy_string))

(Execute ("echo @V(dummy_string) >> @V (Plot_Info.Filename)")
(@TYPE=EXE;))

(Do (Plot_Info.Index+1) (Plot_Info.Index))

(Reset (List_data_B))

)
(@RULE= R209

(@LHS=
(<= (DS_num) (5))

250

)
(@HYPO= Make_OL_DS)
(@RHS=

(Do (STRCAT("DS_"INT2STR(DS_num))) (Current_DS))

(DeleteObject (\Current_DS\))
(CreateObject (\Current_DS\) (IDatasetsl))

(Do (STRCAT(Current_DS,".dat")) (\Current_DS\FN_Data))

Do (TRUE) (\Current_DS\.Plot))

(Do (STRCAT("OL_type" INT2STR(DS_num)))
(Do (DS_num+1) (DS_num))

(Reset (Make_OL_DS))

)

(@RULE= Start_System_Controls
(@LHS=
(s (Lock_OutAnal) ("ON")
)

(@HYPO= OutAnal_Conirol)

(@RHS=
(Do (\OutAnal_Cal\Value) (Control_Return))
(Do (TRUE) {OutAnal_Ctl_Resets))

(Reset (OutAnal_Control))

)

(@RULE= Return_to_Main_System
(@LHS=
(Execute ("tm -f bML.*") (@TYPE=EXE:))
(s (Lock_OutAnal) ("OFF"))
)
(@HYPO= OutAnal_Control)
)
(@RULE= Begin_Outlier_Analysis
(@LHS=
) = (1 63))
(@HYPO= OutAnal_Ctl_0)
(@RHS=
(Do ©) (Cursor))
(Do (TRUE) (Begin_Analysis))
(Do (TRUE) (Show_Analysis_Results))
(Do ("OutAnal_Ctl_1") (OutAnal_Call))
)
)

(@RULE= Review_Plot_Display
@COMMENTS=".";
(@LHS=

251

(\Current_DS\.Title))

)

ds (Cul_1 Next) ("Re-View Plot"))
)
(@HYPO= OutAnal_Ctl_1)
(@RHS=
: (Do (TRUE) - (Run_Xgraph))
(Reset (Ctrl_1_Next))
(Reset (OutAnal_Ctl_1))

(@RULE= Continue_To_Model_as_Phase3

@COMMENTS=".";

(@LHS=
(s (Ctul_1_Next) ("Continue...Model ACCEPTED Data"))
)
(@HYPO= OutAnal_Cti_1)
(@RHS=

(Execute ("CopyFrame")

(@ ATOMID=Phs2 Phs3;@STRING="@STRAT=SET";))

)

(Execute "rm -f Phs2.dat") (@TYPE=EXE;))

(Do (Phs2.Num_Msrs-BEST_Model.Num_OL) (Phs3.Num_Msrs))

(Do ("Phs3.dat") (Phs3.FN_Data))
(Do ("ACCEPTED") (Phs3.Title))

(Do ("OutlierAnalysis_Return") (System_Call))
(Execute ("rm -f Phs1.dat") (@TYPE=EXE;))
(Execute ("rm -f Phs2.dat") (@TYPE=EXE;))
Do ("OFF") (Lock_OutAnal))

(@RULE= Abort_Curve_Modification

@COMMENTS=".";
(@LHS=
(s (Ctrl_1_Next) ("Abort -> Exit System"))

)
(@HYPO= OutAnal_Ctl_1)
(@RHS=
(Do ("EndSession") (System_Call))
(Do ("OFF") (Lock_OutAnal))
(Execute ("tm -f Phsl.dat") (@TYPE=EXE;))
{Execute ("rm -f Phs2.dat") (@TYPE=EXE;))
(Execute ("rm -f Phs3.dat") (@TYPE=EXE;))
)
)
(@RULE= R215
(@LHS=
(s (Plot_What) ("Data, Outliers with Curve"))
)

252

(@HYPO= Plot_Elements)

(@RHS=
(Execute ("mm -f xgdat") (@TYPE=EXE)))
(Do ("xgdat") (Plot_Info.Filename))
(Execute ("cat atrrec.,QUT1 > @ V(Plot_Info.Filename)") (@TYPE=EXE;))
(Do ("\"Model") (dummy_string))
(Execute ("echo @ V(dummy_string) >> @V (Plot_Info.Filename)")
(@TYPE=EXE;))
(Execute ("cat @V(BEST_Model.FN_Curve) >>
@V (Plot_Info.Filename)") (@TYPE=EXE;))
(Do (TRUE) (Run_Xgraph))
)

)

(@RULE= R215
(@LHS=
(s (Plot_What) ("Data and Outliers ONLY™"))

)
(@HYPO= Plot_Elements)
(@RHS=
(Execute ("mm -f xgdat") (@TYPE=EXE;))
Do ("xgdat") (Plot_Info.Filename))
(Execute ("cat atrrec.OUT1 > @ V(Plot_Info.Filename)") (@TYPE=EXE;))
Do (TRUE) (Run_Xgraph))
)
)
(@RULE= R214
(@LHS=
(Is (Plot_What) ("Exit Plotting™))
)
(@HYPO= Plot_Elements)
)
(@RULE= Output_Data_to_ OLORG_Input_File

@COMMENTS="Write ATTRIBUTE CODE, DISCHARGE, and STAGE to the atrrec.IN file and
then reset the Msr_Attribute properties and Type_Set";

(@LHS=

= (Cursor) ()
)
(@HYPO= Record_Msr)
(@RHS=

(Do (STRCAT(Temp_Msr.Type_Set,STRCAT("
" STRCAT(FLOAT2STR(Temp_Msr.Discharge),\
STRCAT(" ",FLOAT2STR(Temp_MSsr.Stage)))))) (Temp_Msr. Type_Set))
(Execute ("echo @V(Temp_Msr.Type_Set) >> atrrec.IN") (@ TYPE=EXE;))
(Execute ("SetValue")
(@ATOMID=Msr_Attribs;@STRING="@ VALUE=False\
@STRAT=SET";))
(Reset (Temp_Msr. Type_Set))
)

253

)

(@RULE= Retrv_Each_Msr_in_Sequence

(@LHS=

(>= (Cursor) Y
)
(@HYPO= Seq_Ret_Outliers)
(@RHS=

(Show ("msg_33.txt") (@KEEP=FALSE;@WAIT=FALSE;@RECT=5,400,650\
400:))

(Retrieve ("@V(db_access)")
(@TYPE=ORACLE;@SLOTS=Temp_Msr.Stage, Temp_Msr.Discharge\
Temp_Msr.Msr_Id, Temp_Msr.Msr_Date, Temp_Msr.Rem_A\
Temp_Msr.Rem_B,Temp_MsrRem_C;@FIELDS="STAGE"\
"DISCHARGE","MSR_ID","DATE_OF_MSR","REM_A"\
"REM_B","REM_C";@QUERY="@ V(Query_Sitring)";\
@CURSOR=Cursor;))

(Do (TRUE) (Calc_limits))

(Reset (Check_Outlier))

(Do {Check_Outlier) (Check_Outlier))

(Reset (Record_Msr))

(Do (Record_Msr) (Record Msr))

(Reset (Seq_Ret_Outliers))

Ftokskdokokdokokdokokdokosk dokokok ko ok ek ok koo sk dokok ok dokok ok sk sdokok ok sk ok sk ok sk ok ok sk ok

#* End of KB Code: A4_main.tkb *

Fiokskdoksketokdedokskskok ok skok sk ko etk sketok ko sk dok koo sk ek sk ok sk skdok sk ok ok stk sk ke kok

254

Fhkskokokokokokokakokokskokokokskokokokskokokokok ok ok sk sk ok sk skok ok sk sk sk sk sk sk sk ke e e sk ok sk sl sk sk e ke ke skt sk sk sk s sk e ke sk sk ok

#%* Nexpert Object KB Code: A5 main.tkb *
Fhksksdetokokok ke ko skoksk ke ko kokskok ok stokokoke s sk stk sk sk s st sk ok sk ok sk sk sk ol sl st skl sk sk sk skoskok sk sk sk stk sk sk skl skeoskok ok
#* Curve Modification Module *

Fpokskoskeskeok ko sk ok skl sl e sk sk sk skeoskoske skosk sk sk skeskok sk sk skok sk sk sk ok sk skok sk ko e sk sk e e e e ke ke sk sle sk sk skok sk ok sk sk sk sk sk ok

(@VERSION= 020)

(@OBJECT= Build_Query
{@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Chg_ Max_D
(@PROPERTIES=
Value @TYPE=Boolean;

)
)
(@OBJECT= Chg_Max_S
(@PROPERTIES=
Value @TYPE=Boolean;
)
)
(@OBJECT= Chg_Min_D
(@PROPERTIES=
Value @TYPE=Boolean;
)
)
(@OBJECT= Chg_Min_S
(@PROPERTIES=
Value @TYPE=Boolean;
)
)
(@OBJECT= Crv_Generate
(@PROPERTIES=
Value @TYPE=Boolean;
)
)
(@OBJECT= CrvMod_Ctl 2
(@PROPERTIES=

Value @TYPE=Boolean;

255

)

(@OBJECT= CrvMod_Ctl_3
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvMod_Cil 4
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvMod_Ctl_5
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvMod_Cil_6
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvMod_Ctl_7
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvMod_Cti_8
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvMod_Ctl 9
{(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= CrvMod_Ctl_Resets
(@PROPERTIES=
Value @TYPE=Boolean;

)

256

(@OBIJECT=

Ctrl_8_Next

(@PROPERTIES=

)
)

(@OBJECT=

Value @TYPE=String;

CV_NEW

(@CLASSES=

)

Curves

(@PROPERTIES=

)

(@OBJECT=

BO

B1
Crv_Type
Datemade
F_Day
FN_Curve
L_Day
Last_Msr
Max_D
Max_S
Min_D
Min_S
X

Value @TYPE=Integer;

Cv_OLD

(@CLASSES=

)

Curves

(@PROPERTIES=

)
(@OBIECT=

BO

B1
Crv_Type
Datemade
F_Day
FN_Curve
L_Day
Last_Msr
Max_D
Max_S
Min_D
Min_S
X

Value @TYPE=Integer;

Data_Xtras

257

)

(@OBIJECT=
(@PROPERTIES=

)

(@OBIJECT=
(@CLASSES=

)

(@OBIECT=
(@CLASSES=

(@PROPERTIES=

Value @TYPE=Boolean;

DS_Name

Value @TYPE=String;

DS_NEW

Datasets

(@PROPERTIES=

Current
Description
EN_Data
Last_Msr
Max_D
Max_S
Min_D
Min_S
No_Flow_Stg
Num_Msrs
Piot

Query
Title

Type
ZE_Count

DS_OLD

Datasets

(@PROPERTIES=

BO

B1
Crv_Type
Current
Description

Last_Msr
Max_D
Max_S
Min_D

258

Min_S
No_Flow_Stg
Num_Msrs
Plot

Query

Title

Type
ZF_Count

)

(@OBJECT= DS_OLD_NEW

(@CLASSES=
Datasets

)

(@PROPERTIES=
Current
Description
FN_Data
Last Msr
Max_D
Max_S
Min_D
Min_S
No_Flow_Stg
Num_Msrs
Plot
Query
Title
Type
ZF_Count

)

(@OBJECT= dummy_file
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= dummy_obj
(@PROPERTIES=
Value @TYPE=String;
)
)

(@OBJECT= dummy_title
(@PROPERTIES=
Value @TYPE=String;
)

259

(@OBJECT= Get_Zero_Flow
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Label Msr
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= List_curve
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= List_data A
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= List_data_ B
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Put_Msr_ NEW
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Put_Msr_OLD
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Qry_Str_Suffix
(@PROPERTIES=
Value @TYPE=String:
)
)

(@OBJECT= Run_Xgraph
(@PROPERTIES=
Value @TYPE=Boolean;

260

)

(@OBJECT= Seq_Ret Data
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Setup_Plot
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@OBJECT= Store_Msr
(@PROPERTIES=
Value @TYPE=Boolean;
)
)

(@SL.OT= Crv_Generate
@COMMENTS="Generate Curve Points for Plotting, based on Model Parameters Generated.";
(@CACTIONS=
(Do (STRCAT(FLOAT2STR(C_Crv.BO),STRCAT("
" STRCATFLOAT2STR(C_Crv.B)\
""))) (dummy_params))
(Do (STRCAT(dummy_params,STRCAT(FLOAT2STR(C_Crv.TX)\
STRCAT(" ",STRCAT(FLOAT2STR(C_Crv.Max_S)\
" 0Old_Crv"))))) (dummy_params))
(Execute ("GC @V(dummy_params)") (@TYPE=EXE;))
(Do ("Old_Crv.mdl") (C_Crv.FN_Curve))
(Reset (Crv_Generate))

)

(@SLOT= CrvMod_Ctl_Resets
(@CACTIONS=
(Reset (CrvMod_Cd_2))
(Reset (CrvMod_Ctl_3))
(Reset (CrvMod_Cti_4))
(Reset (CrvMod_Ctl_5))
(Reset (CrvMod_Ctl_6))
(Reset (CrvMod_Ctl_7))
(Reset (CrvMod_Ctl_8))
(Reset (CrvMod_Ctl_9))
(Reset (CrvMod_Ctl_Resets))

)

(@SLOT= DS_NEW.FN_Data

261

(@INITYAL= "ds.NEW")
)

(@SLOT= DS_OLD.FN_Data
(@INITVAL= "ds.OLD")

)

(@SLOT= DS_OLD_NEW.FN_Data
(@INITVAL= "ds.OLD_NEW")

)

(@SLOT= Run_Xgraph

(@CACTIONS=:
(Do (C_Stn.St_Id) (Plot_Info.Title))
Do (STRCATFLOAT2STR(Plot_Info.Max_S$*1.25),STRCAT(" "\
FLOAT2STR(Plot_Info.Max_D*1.25)))) (dummy_string))
(Execute ("XGR @V(Plot_Info.Title) @V (Plot_Info.Filename)
@ V(dummy_string)") (@TYPE=EXE;))
(Reset (Run_Xgraph))
)
)

(@SLOT= Sewp_Plot
(@CACTIONS=
(Do (FALSE) (<IDatasetsl>.Plot))
(Do (TRUE) (DS_OLD.Plot))
(Do (TRUE) (DS_NEW. Piot))

(Reset (Setup_Plot))

)

(@RULE= Construct_Time_B_Query
@COMMENTS="First Day in time range is later in year than Last Day";

(@LHS=
(s (C_Crv.Crv_Type) ("TIME"))
3 (C_Crv.F_Day-C_Crv.L_Day))
)
(@HYPO= Build_Query)
(@RHS=

(Do (" WHERE ") (Qry_Str_Suffix))

(Do (STRCAT(Qry_Sur_Suffix,Cnst_time2)) (Qry_Str_Suffix))
(Do (C_Crv.F_Day) (Start_day))

(Do (C_Crv.L_Day) (Stop_day))

)

(@RULE= Construct_Time_A_Query
@COMMENTS="First Day in time range is before Last Day in time range";
(@LHS=
(Is (C_Crv.Crv_Type) ("TIME"))

o3 (C_Crv.L_Day-C_Crv.F_Day) ()

262

)

)
(@HYPO= Build_Query)
(@RHS=
(Do (" WHERE ") (Qry_Str_Suffix))
(Do (STRCAT(Qry_Str_Suffix,Cnst_timel)) (Qry_Str_Suffix))
(Do (C_Crv.F_Day) (Start_day))
(Do (C_Crv.L_Day) (Stop_day))

{(@RULE= Construct_ALL_Query

)

@COMMENTS="Query String selects ALL data, no restrictions.";
(@LHS=
dIs (C_Crv.Crv_Type) ("ALL")
)
(@HYPO= Build_Query)
(@RHS=
(Do "™ (Qry_Str_Suffix))
)

(@RULE= Check_Max_D
(@LHS=
¢ (New_msr.Discharge-\DS_Name\.Max_D) (0))
)
(@HYPO= Chg_Max_D)
(@RHS=

)

(Do (New_msr.Discharge) (\DS_Nameé\.Max_D))
)

(@RULE= Check_Max_S
(@LHS=
($3 (New_msr.Stage-\DS_Name\Max_S) 0)
)
(@HYPO= Chg_Max_S)
(@RHS=
(Do (New_msr.Stage) (\DS_Name\Max_S))

)

)

{@RULE= Check_Min_D

(@LHS=
(< (New_msr.Discharge-\DS_Name\Min_D) (0))
)
(@HYPO= Chg_Min_D)
(@RHS=

(Do (New_msr.Discharge) (\DS_Name\Min_D))
)

263

(@RULE= Check_Min_S

(@LHS=
(< (New_msr.Stage-\DS_Name\Min_S) (1))
)
(@HYPO= Chg_Min_S)
(@RHS=
(Do (New_msr.Stage) (\DS_Name\.Min_S))

)
)

(@RULE= CrvMod_System_Conirol
@COMMENTS="This rule transfers returns control back to the main system.";
(@LHS=
(Is (Lock_CrvMod) ("OFF"))
)
(@HYPO= CrvMod_Control)
)

(@RULE= CrvMod_System_Control

@COMMENTS="This rule controls the next control call.";

(@LHS=
(s (Lock_CrvMod) ("ON"))

)

(@HYPO= CrvMod_Controlj

(@RHS=
(Do (\CrvMod_Call\.Value) (Control_Return))
Do (TRUE) {CrvMod_Ctl_Resets))
(Reset (CrvMod_Control))

)

(@RULE= Make_Old_New_Objects
@COMMENTS="make dynamic ovjects for old and new curves.";
(@LHS=

= 6 (1)
)

(@HYPO= CrvMod _Ctl_2)
(@RHS=
(Do ("CrvMod_Ct1_3") (CrvMod_Call))
)
)

(@RULE= Retrieve_ OLD_Curve
@COMMENTS="Retrieve OLD curve from database, according to Curve Entry selected by user.";
{@LHS=
: = @ 63))

(@HYPO= CrvMod_Ctl_3)
(@RHS=

(Reset (Cursor))

(Retrieve ("db_access")

264

(@TYPE=ORACLE;@END="RELEASE";@SLOTS=DS_OLD.Crv_Type\
DS_OLD.B0,DS_OLD.B1,DS_OLD.F_Day,DS_OLD.L,_Day,\
DS_OLD.Last_Msr,DS_OLD.Max_D,DS_OLD.Max_S\
DS_OLD.Min_D,DS_OLD.Min_S,DS_OLD.No_Flow_Stg\
@FIELDS="TYPE","B0","B1","F_DAY","L_DAY"\
"LAST_MSR","MAX_D","MAX_S","MIN_D" "MIN_S"\
"NO_FLOW_STG";@QUERY="@ V(C_Sm.Crv_Tbl) where CRV_ID = @V(Curve_Entry)";\
@CURSOR=Cursor;))

(Do (TRUE) (Setup_Plot))

(Do ("CrvMod_Cil_4") (CrvMod_Call))

)

(@RULE= Make_Query_String
@COMMENTS="Construct the Query String based on the OLD curve.";

(@LHS=
= 1) 1)

)

(@HYPO= CrvMod_Ctl_4)

(@RHS=

(Do (C_Stn.Dat_Tbl) (Qry_Str_Prefix))
(Do "™ (Qry_Str_Suffix))

(Reset (Build_Query))
Do (Build_Query) (Build_Query))

(Do (STRCAT(Qry_Str_Prefix,Qry_Str_Suffix)) (Query_String))
(Do ("CrvMod_Ctl_5") (CrvMod_Call))
)
)
(@RULE= Make_Datasets

@COMMENTS="Initiates the sequential retrieve of measurements according to Query String. As
each measurements is retrieved, it is copied to the appropriate UNIX file, depending on the date_of_msr
and Last_Msr dates.”;

(@LHS=
= 1) 1)

)

(@HYPO= CrvMod_Ctl_5)

(@RHS=
(Execute ("tm -f ds.NEW") (@TYPE=EXE;))
(Execute ("rm -f ds.OLD") (@TYPE=EXE;))
(Execute ("mm -f ds.OLD_NEW") (@TYPE=EXE;))
(Execute ("mm -f Old_Crv.*") (@TYPE=EXE;))
(Execute ("rm -f xgdat") (@TYPE=EXE;))
(Show ("msg_42.txt") (@KEEP=FALSE;@WAIT=FALSE;))
(Do ("xgdat") (Plot_Info Filename))

(Do ("ds.NEW") (DS_NEW.FN_Data))

(Do ("ds.OLD") (DS_OLD.FN_Data))

(Do ("ds.OLD_NEW") (DS_OLD_NEW.FN_Data))
(Do () (DS_OLD_NEW.No_Flow_Stg))

(Reset (Get_Zero_Flow))

(Do (Get_Zero_Flow) (Get_Zero_Flow))

265

(Do (V)] (Cursor))

(Reset (Seq_Ret_Data))

(Do (Seq_Ret_Data) (Seq_Ret _Data))

(Reset (Cursor))

(Retrieve ("@V(db_access)")
(@TYPE=ORACLE;@END="RELEASE";@SLOTS=DS_OLD_NEW.Last_Msr;
@FIELDS="MAX(DATE_OF_MSR)"; @QUERY="@ V(Query_String)";@CURSOR=Cursor;))

(Do ("CrvMod_Ctl_6") (CrvMod_Call))
)
)
(@RULE= Make_Datasets_Xtras
@COMMENTS=".";
(@LHS=
= 1) 1)
)
(@HYPO= CrvMod_Ctl_6)
(@RHS=

(Do (STRCAT(DATE2STR(C_Crv.Last_Msr,"d-MMM-yyyy"), STRCAT("
", STRCAT(INT2STR(DS_OLD .Num_Msrs),STRCAT(" *,
INT2STR(DS_NEW .Num_Msrs)))))) {(dummy_params))

(Do (STRCAT(dummy _params,STRCAT("
", STRCAT(FLOAT2STR(DS_OLD_NEW .No_Flow_Stg),
STRCAT(" ",STRCAT(INT2STR(DS_OLD.ZF_Count),
STRCAT(" ",INT2STR(DS_NEW.ZF_Count)))))))) (dummy_params))

(Execute ("mg3 @V(dummy_params)") (@TYPE=EXE;))
(Show ("mg_3.txt") (@KEEP=FALSE;@WAIT=FALSE;))

Do ("OLD") (DS_OLD.Title))

Do ("NEW") (DS_NEW.Title))

(Do ("OLD/NEW") (DS_OLD_NEW.Title))

(Do (DS_OLD_NEW.Max_D*1.25) (Plot_Info.Max_D))
(Do (DS_OLD_NEW.Max_S*1.25) (Plot_Info.Max_S))
(Reset (Lisi_data_A))

Do (List_data_A) (List_data_A))

(Reset (List_curve))

(Do (List_curve) (List_curve))

(Do ("CrvMod_Ctl_7") (CrvMod_Call))
)
)
(@RULE= Display_Data_and_Curve
@COMMENTS=".";
(@LHS=
(= (1) €9);
)
(@HYPO= CrvMod_Ctl_7)
(@RHS=
(Do (TRUE) (Run_Xgraph))
(Reset (Ctrl_8_Next))
Do ("CrvMod_Ctl_8") (CrvMod_Call))

266

)

(@RULE= Review_Plot_Display

@COMMENTS=".";
(@LHS=
(s (Cul_8_Next) ("Re-View Plot"))
)
(@HYPO= CrvMod_Cti_8)
(@RHS=
(Do ("CrvMod_Cti_7") {CrvMod_Call))
)
)
(@RULE= Continue_To_Model
@COMMENTS=".";
(@LHS=
(Is (Ctrl_8_Next) ("Continue...Model New Data"))
)
(@HYPO= CrvMod_Ctl_8)
(@RHS=
(Reset (Cursor))
(Retrieve ("db_access")

(@TYPE=ORACLE;@END="RELEASE";@SLOTS=DS_OLD_NEW.Type;\
@FIELDS="TYPE";@QUERY="@ V(C_Stn.Crv_Tbl) where CRV_ID = @ V(Crv_Entry)";\
@CURSOR=Cursor;))

(Reset (Cursor))

(Retrieve ("db_access™)
(@TYPE=ORACLE;@END="RELEASE";@SLOTS=DS_OLD_NEW .Last_Msr:\
@FIELDS="MAX(DATE_OF_MSR)";@QUERY="@V(C_St.Crv_Tbl) where CRV_ID= @V(Crv_Entry\
)";@CURSOR=Cursor;))

(Execute ("CopyFrame™)
(@ATOMID=DS_OLD_NEW Phs5;@STRING="@STRAT=SET"\
)

(Execute ("cp ds.OLD_NEW Phs5.dat") (@TYPE=EXE;))

(Do (C_Crv.Crv_Type) (Phs5.Type))

(Do ("Phs5.dat"™) (Phs5.FN_Data))

(Do ("CurveModify_Return") (System_Call))

(Do ("CrvMod_Ctl_9") (CrvMod_Call))

)
)
(@RULE= Abort_Curve_Modification
@COMMENTS=".";
(@LHS=
(s (Curl_8_Next) ("Abort -> Main Menu"))
)
(@HYPO= CrvMod_Ctl_8)
(@RHS=
(Do ("MainMenu_Start") (System_Call))
Do ("CrvMod_Ct1_9") (CrvMod_Call))

267

)

(@RULE= Prepare_to_Exit_CrvMod
@COMMENTS="This rule removes any Unix Files from the Operating System that were created
during the CrvMod Procedure...Before exitiing.”;

(@LHS=
= 1) 1)

)

(@HYPO= CrvMod_Ct1_9)

(@RHS=
(Execute ("tm -f ds.NEW") (@TYPE=EXE;))
(Execute ("rm -f ds.OLD") (@TYPE=EXE;))
(Execute ("rm -f ds.OLD_NEW") (@TYPE=EXE;))
(Execute ("mm -f Old_Crv.*") (@TYPE=EXE;))
(Execute ("mm -f xg.dat") (@TYPE=EXE;))
Do ("OFF") (Lock_CrvMod))

)

)
(@RULE= Check_Max_Min_Values

(@LHS=
= @ 1
)
(@HYPO= Data_Xtras)
(@RHS=
(Do (\DS_Name\EN_Data) (dummy_string))
(Execute ("echo @V (New_msr.Set) >> @ V(dummy_string)")
(@TYPE=EXE;))
(Do (\DS_Name\Num_Msrs+1) (\DS_Name\Num_Msrs))

(Reset (Chg_Max_D))
(Do (Chg_Max_D) (Chg_Max_D))
(Reset (Chg_Max_S))
(Do (Chg_Max_S) (Chg_Max_8S))
(Reset (Chg_Min_D))
(Do (Chg_Min_D) (Chg_Min_D))
(Reset (Chg_Min_S))
Do (Chg_Min_S) (Chg_Min_D))

)

(@RULE= Get_Zero_FLow_Stage B
@COMMENTS="This rule is used fro retreiving the ZERO FLOW STAGE for the data retrieved
according to QUERY_STRING, for ALL data type. If no ZERO FLOWs are found, the NO_FLOW_STG
has been preset to zero in the CrvMod_Ctl_5 rule. Store in OLD_NEW dataset.":
(@LHS=
(s (C_Crv.Crv_Type) ("ALL"))
)
(@HYPO= Get_Zero_Fiow)
(@RHS=
(Reset (Cursor))
(Retrieve ("@V(db_access)")

268

(@TYPE=ORACLE;@END="RELEASE";@SLOTS=DS_OLD_NEW.No_Flow_Stg;
@FIELDS="MAX(STAGE)";@QUERY="@ V(Query_String) WHERE DISCHARGE = 0";
@CURSOR=Cursor;))
(Do © (<IDatasetsi>.ZF_Count))
)
)

(@RULE= Get_Zero_FLow_Stage_A

@COMMENTS="This rule is used fro retreiving the ZERO FLOW STAGE for the data retrieved
according to QUERY_STRING, for TIME data type. If no ZERO FLOWs are found, the NO_FLOW_STG
has been preset to zero in the CrvMod_Ctl_5 rule. Store in OLD_NEW dataset.":

(@LHS=

(s (C_Crv.Crv_Type) ("TIME"))

)

(@HYPO= Get_Zero_Flow)

{@RHS=

(Reset (Cursor))

(Retrieve ("@V(db_access)")
(@TYPE=ORACLE;@END="RELEASE";@SLOTS=DS_OLD_NEW.No_Flow_Stg;
@FIELDS="MAX(STAGE)";@QUERY="@ V(Query_String) AND DISCHARGE = 0";
@CURSOR=Cursor;))

(Do () (<IDatasetsi>.ZF_Count))

)
)

(@RULE= Label_Type_OLD
@COMMENTS="The msr is identified as OLD.";

(@LHS=
= (Cursor))
= ((DATE2FLOAT(C_Crv.Last_Msr))-(DATE2FLOAT(New_msr.Msr_Date))) (0))
)
(@HYPO= Label_Msr)
(@RHS=

(Do ("DS_OLD") (DS_Name))
(Reset (Store_Msr))
(Do (Store_Msr) (Store_Msr))

)

(@RULE= Label_Type NEW
@COMMENTS="The msr is identificd as NEW.":

(@LHS=
(>= (Cursor) (V)
(6 ((DATE2FLOAT(New_msr.Msr_Date))-(DATE2FLOAT(C_Crv.Last_Msr))) (0))
)
(@HYPO= Label_Msr)
(@RHS=

Do ("DS_NEW") (DS_Name))
(Reset (Store_Msr))
(Do (Store_Msr) (Store_Msr))

269

)
(@RULE= " Plot_Prep_Curve

(@LHS=
: = €y 1)
(@HYPO= List_curve)
(@RHS=
(Do (TRUE) (Crv_Generate))
(Do (C_Crv.FN_Curve) (dummy_file))
(Do (STRCAT(™\"","OLD_CURVE")) (dummy_title))
(Execute ("echo @V(dummy_title) >> @ V(Plot_Info.Filename)")
(@TYPE=EXE;))
(Execute ("cat @V (dummy_file) >> @V(Plot_Info.Filename)")
(@TYPE=EXE;))
(Do ("-1 -1 (dummy_string))
(Execute ("echo @V(dummy_string) >> @V (Plot_Info.Filename")

{(@TYPE=EXE;))
(Do "M (dummy_string))

(Execute ("echo @V(dummy_string) >> @V (Plot_Info.Filename)")
(@TYPE=EXE;))
)
)
(@RULE= Plot_Prep_Data_Part1
(@LHS=
(s (<IDatasetsl>.Plot) (TRUE))
)
(@HYPO= List_data_A)
(@RHS=
(Execute ("AtomNameValue")

(@ATOMID=<IDatasetsl>;@STRING="@RETURN=Plot_Info.0Obj_names,
@NAMES";))

(Execute ("GetMultiValue")
(@ ATOMID=Plot_Info.Obj_names;@STRING="@RETURN=Plot_Info.Num_obj,
@LENGTH"))

(Do)] (Plot_Info.Index))

(Do (List_data_ B) (List_data_B))

(Reset (List_data_B))

)
)
(@RULE= Plot_Prep_Data_Part2
(@LHS=
= (Plot_Info.Num_obj-Plot_Info.Index) ()]
)
(@HYPO= List_data_B)
(@RHS=
(Execute ("GetMultiValue")

(@ ATOMID=Plot_Info.Obj_names,dummy_obj.Value;
@STRING="@INDEX=@ V(Plot_Info.Index)";))

270

(Do (\dummy_obj\FN_Data) (dummy_file))

(Do (STRCAT("\"" \dummy_obj\.Title)) (dummy_titie))

(Execute ("echo @V(dummy_title) >> @V (Plot_Info.Filename)")
(@TYPE=EXE;))

(Execute ("cat @V(dummy_file) >> @V (Plot_Info.Filename)")
(@TYPE=EXE;))

(Do "-1-1") (dummy_string))

(Execute ("echo @V{(dummy_string) >> @ V(Plot_Info.filename)")
(@TYPE=EXE;))

(Do " (dummy_string))

(Execute ("echo @V (dummy_string) >> @V (Plot_Info Filename)")
(@TYPE=EXE;))

(Do (Plot_Info.Index+1} (Plot_Info.Index))

(Reset (List_data_B))

)
)
(@RULE= Seq_Ret_of Measurements
(@LHS=
(>= (Cursor) ()]
)
(@HYPO= Seq_Ret_Data)
(@RHS=
(Retrieve ("@V(db_access)")

(@TYPE=ORACLE;@END="RELEASE";@SLOTS=New_msr.Stage,
New_msr.Discharge,New_msr.Msr_Id,New_msr.Msr_Date;
@FIELDS="stage","discharge","msr_id","date_of_msr";
@QUERY="@V(Query_String)";@CURSOR=Cursor;))

(Do (STRCAT(FLOAT2STR(New_msr.Discharge), STRCAT("
" FLOAT2STR(New_msr.Stage)))) {(New_msr.Set))

(Reset (Label_Msr))

(Do (Label_Msr) (Label_Msn))

(Reset (Seq_Ret_Data))

)

)

(@RULE= Print_S_D_to_Unix_A
@INFCAT=20;

@COMMENTS="DO NOT Print measurements with zero flow stages less than NO_FLOW_STG.
Count # of zero flow msrs and subtract from total number of msrs for dataset.”;

(@LHS=
= (Cursor))
= (New_msr.Discharge) 0.0)
(NotEqual (DS_OLD_NEW .No_Flow_Stg) (New_msr.Stage))
)
(@HYPO= Store_Msr)
(@RHS=
(Do (\DS_Name\.ZF_Count+1) (\DS_Name\.ZF_Count))
)

271

(@RULE= Print_S_D_to_Unix_B

@INFCAT=5;

@COMMENTS="Print S/D measurement to UNIX file. DS_Name has been previously set in
Label_Msr rule. Also Store in DS_OLD_NEW dataset.”;

(@LHS=
(>= (Cursor))
<> (New_msr.Discharge) (0))
)
(@HYPO= Store_Msr)
(@RHS=
(Reset (Data_Xiras))
(Do (Data_Xtras) (Data_Xitras))
(Do ("DS_OLD_NEW") (DS_Name))
(Reset (Data_Xtras))
(Do (Data_Xiras) (Data_Xtras))
)
)
(@RULE= Print_S_D_to_Unix_C
@INFCAT=5;

@COMMENTS="Print S/D measurement to UNIX file. DS_Name has been previously set in
Label_Msr rule. Also Store in DS_OLD_NEW dataset.”;

(@LHS=
(= (Cursor))
(= (New_msr.Discharge))
(Equal (DS_OLD_NEW.No_Flow_Stg) (New_msr.Stage))
)
(@HYPO= Store_Msr)
(@RHS=
(Reset (Data_Xtras))
(Do (Data_Xtras) (Data_Xiras))
(Do ("DS_OLD_NEW") (DS_Name))
(Reset (Data_Xtras))
(Do (Data_Xitras) (Data_Xtras))
)

kR kokokskokodokokok koo ook skokokolokokokokokok ke ke ke ek sk sk sk sk ek skesk sk ok sk sk sk sk ke sk sk sk ke ke sk skok ok

#* End of KB Code: A5 _main.tkb *

Fhkoksdeskokoskokoskekdedekokokkekekokokok sk dokok sk skekosiokoksk skokokokok skokokok ko sokok sk skoskoskoksk sk e e skesteokok e e sk skeoke sk

272

