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Abstract 

Novel wave phenomena in two- and three-dimensional (2D and 3D) phononic 

crystals were investigated experimentally using ultrasonic techniques.  These ultrasonic 

techniques allow the full wave field to be imaged directly, which is a considerable 

advantage in fundamental studies of wave propagation in periodic media. 

Resonant tunnelling of ultrasonic waves was successfully observed for the first 

time by measuring the transmission of ultrasound pulses through a double barrier 

consisting of two 3D phononic crystals separated by a cavity.  This effect is the classical 

analogue of resonant tunnelling of a quantum mechanical particle through a double 

potential barrier, in which transmission reaches unity at resonant frequencies.  For 

phononic crystals, the tunnelling peak was found to be less than unity, an effect that was 

explained by absorption.  Absorption introduces a small propagating component inside the 

crystals in addition to the dominant evanescent mode at band gap frequencies, and causes 

leakage of the pulse from the cavity.  The dynamics of resonant tunnelling was explored 

by measuring the group velocities of the ultrasonic pulses.  Very slow and very fast 

velocities were found at frequencies close to and at the resonance, respectively.  These 

extreme values are less than the speed of sound in air and greater than the speed of sound 

in any of the crystal’s constituent materials. 

Negative refraction and focusing effects in 2D phononic crystals were also 

observed.  Negative refraction of ultrasound was demonstrated unambiguously in a prism-

shaped 2D crystal at frequencies in the 2nd pass band, where the equifrequency contours 

are circular so that the wave vector and group velocity are antiparallel.  The Multiple 

Scattering Theory and Snell’s law allowed theoretical predictions of the refraction angles.  
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Excellent agreement was found between theory and experiment.  The negative refraction 

experiments revealed a mechanism that can be used to focus ultrasound using a flat 

phononic crystal, and experiments to demonstrate the focusing of ultrasound emitted by 

several point sources were successfully carried out.  The importance of using phononic 

crystals with circular equifrequency contours, as well as matching the size of the contours 

inside and outside the crystal, was established.  Both conditions were satisfied by a flat 

phononic crystal of steel rods, in which the liquid inside the crystal (methanol) was 

different from the outside medium (water).  The possibility of achieving subwavelength 

resolution using this phononic crystal was investigated with a subwavelength line source 

(a miniature strip-shaped transducer, approximately λ/5 wide).  A resolution of 0.55λ was 

found, which is just above the diffraction limit λ/2. 
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1. Introduction 

In this chapter I will provide an overview of the research activities, both past and 

recent, in the field of phononic crystals.  Non-withstanding of my best effort, by no means 

should this account be considered as full and complete.  I hope, however, that it will still 

serve a useful purpose of introducing the subject and setting up a framework within which 

the importance of my own findings, and how they fit in the general picture of the field, 

can be perceived. 



 2

1.1  Phononic crystals: past and modern research directions 

Phononic crystals, which are acoustic or elastic composite structures made of 

periodically arranged inclusions surrounded by a host background material, have attracted 

a lot of attention within the past 15 years from both theoretical and experimental 

communities.  According to the generally accepted convention, one speaks about an 

elastic or acoustic phononic crystal depending on whether the host material can (gas or 

liquid) or cannot (solid) support transversely polarized waves.  The interest in phononic 

crystals is based on the fundamental physics involved in the process of propagation of 

acoustic or elastic waves through the periodic media as well as their potential applications, 

which will be discussed later in this section. 

Although most of the research effort in the field of phononic crystals has been 

concentrated within relatively short period of time (since about 1993), the issue of 

periodic elastic structures was also addressed before this period.  For example, in 1979 

Narayanamurti et al. investigated the propagation of high-frequency phonons through a 

GaAs/AlGaAs superlattice, which can be regarded as a one-dimensional phononic crystal 

[1].  They observed filtering action (selective transmission) by the superlattice when the 

phonons’ wavelength satisfied the Bragg condition, i.e. it was equal to twice the 

superlattice period.  In close analogy with optical dielectric filters, the authors called their 

structure a “dielectric” phonon filter.  In 1987, Achenbach et al. published a theoretical 

work in which they calculated a low-frequency part of a dispersion curve of an infinite 

three-dimensional structure made by stacking parallel planes of solids with a rectangular 

array of spherical voids in each layer [2].  They predicted the existence of a stop band (the 

absence of propagating modes) for a longitudinal plane wave incident normally on the 
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structure.  It was not, however, until the beginning of the 90’s that phononic crystals 

began receiving considerable interest, which has been steadily increasing ever since.  One 

should mention that this interest was partially fuelled by the successes of the rapidly 

growing field of photonic crystals, which are periodic composites of different dielectric 

materials.  They were introduced initially by Yablonovitch in 1987 [3], who suggested 

that three-dimensional (3D) dielectric structures might possess complete band gaps in 

which no optical modes will exist.  The existence of such forbidden frequency regions in 

photonic crystals immediately attracted a wide interest from many researchers in the field 

of photonics, by offering many new exciting possibilities.  With the help of photonic 

crystals one can imagine, for example, constructing perfect dielectric mirrors working at 

the gap frequencies, trapping and guiding light by introducing defects into crystals, or 

even improving the efficiency of a semiconductor laser by inhibiting the spontaneous 

electron-hole recombination in the case when the photonic band gap overlaps with the 

electronic band edge.  Although they are not the main subject of this thesis, some of the 

key developments in the field of photonic crystals will also be mentioned in this overview, 

as many of the ideas proposed initially for photons have made their way into the area of 

phonons. 

Just as in case of photonic crystals, the idea of creating materials with complete 

acoustic or elastic band gaps, i.e., frequency regions in which wave propagation is blocked 

for any direction inside the material, sparked a new interest in periodic elastic materials.  

The phononic crystals with complete band gaps can be potentially used as sound filters 

and noise-proof devices to provide a vibrationless environment for high-precision 

mechanical systems.  From the point of view of the fundamental physics involved, 

phononic crystals are even more challenging than photonic crystals to model theoretically 
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due to a number of additional parameters entering the problem such as density and Lamé 

coefficients as well as an extra polarization of the wave field inside the crystal.  The strong 

coupling between longitudinal and transverse waves is another complicating factor, which 

must also be taken into account.  At the same time, these new parameters can be 

advantageous since they allow greater control of the crystal properties and thus provide an 

easier way to create periodic structures with large full band gaps.  The search for periodic 

composite materials possessing complete elastic and acoustic band gaps was initiated in 

1993 by Kushwaha et al. [4].  The major effort in the field was initially concentrated on 

elucidating the conditions that favor the formation of full band gaps in different types of 

phononic crystals (2D and 3D, solid/solid, liquid/liquid and mixed).  The existence of full 

band gaps was demonstrated both theoretically and experimentally for 2D and 3D 

phononic crystals [5-12].  The formation and width of complete band gaps was found to 

depend on the density contrast as well as differences of the sound velocities and elastic 

constants in the constituent materials, with the density contrast playing the most important 

role [8].  The investigations have also shown that another factor influencing the opening 

of a complete band gap is the geometry of the crystal structure.  For example, Sainidou et 

al. investigated theoretically 3D phononic crystals with different crystal structures made 

of steel spheres in polyester matrix and found that width of a band gap increased with the 

filing ratio of a corresponding crystal lattice [10].  The above authors also pointed out the 

important role played by resonant elastic modes of the individual spheres in the formation 

of large elastic band gaps.  They have shown that in the 3D samples, which they 

investigated, large complete band gaps open as a result of hybridization between narrow 

bands due to weak coupling between rigid-body resonance modes of single spheres and 

the continuum bands corresponding to propagation in an effective homogeneous medium.  
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The importance of the single sphere scattering resonances in band gap formation was also 

addressed in a review paper by Sigalas et al. [11].  It was shown experimentally by Page 

et al. that the width of the band gap increases significantly as one moves from a mixed 

phononic crystal (solid scatterers in a liquid matrix, which does not support transverse 

waves) to the identical crystal structure with a solid matrix [12].  Page et al.’ findings 

provided experimental confirmation of the hybridization mechanism for band formation 

proposed by Sainidou et al. [10]. 

Another way to increase width of the band gap was reported by Caballero et al., 

who found that the full sonic band gap of a 2D periodic structure of rigid rods in air can be 

increased by reducing the symmetry of the structure [13].  Goffaux et al. suggested a 

phononic crystal with a tunable band gap, which was realized with an array of rods of 

square cross-section allowed to rotate around their axis.  The gap width was found to 

change with the change in angle through which all rods were rotated [14].  The ability of 

phononic crystals to block sound waves in the frequency ranges corresponding to the band 

gaps suggests one of their potential applications as noise-proof devices.  The idea of 

creating sonic shields that would provide noise control at audible frequencies has attracted 

attention of several groups [15-17].  The sound attenuation by a periodic structure was 

first demonstrated by Martinez-Sala in the experiments with a sculpture by Spanish artist 

Eusebio Sempere, which consisted of hollow steel cylinders of 29 mm in diameter 

arranged in square lattice with a lattice constant of 100 mm [15].  The researchers found a 

significant sound attenuation around 1.67 kHz frequency.  Vasseur et al. investigated 

sound propagation through a square array (with lattice constant of 30 mm) of hollow 

copper tubes (13 mm in diameter, 450 mm long) in air along the [10] direction and found 

a band gap between 4.0 and 8.8 kHz [16].  Kushwaha et al. proposed a tandem structure 
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made of several phononic crystals (each being a 3-layer array of circular metallic rods) 

stacked in series.  The stacked crystals differed from each other by rod diameter and 

lattice constant, which ranged from 2.0 to 7.6 cm.  They showed that by varying the filling 

ratio of the crystals (i.e. rod diameters and lattice constants) the widths of the band gaps of 

each crystal can be adjusted so that together they would form one ultra-wide stop band 

spanning the frequency range between 2 and 11 kHz [17]. 

The governing mechanism opening full band gaps in phononic crystals described 

in the preceding paragraph is the one due to Bragg reflections ensuing from the crystals’ 

periodicity.  Their potential widespread use as acoustic shields working at audible 

frequencies is, however, severely limited by the large sizes that follow from the 

requirement that the lattice constant and unit scatterer dimensions must be comparable to 

the sound wavelength.  Alternative composite structures, in which full band gaps open due 

to local resonances associated with individual scatterers, were proposed theoretically and 

demonstrated experimentally by Liu et al. [18].  They considered structures in which each 

scattering unit consisted of a high density solid core (1.0 cm-diameter lead balls) coated 

with an elastically soft material (silicon rubber) that was embedded in a matrix made of 

another rigid material (epoxy).  Due to presence of the soft material in between two highly 

rigid materials, low-frequency resonances associated with a single scattering unit arise, 

which are manifested as the motion of its hard core with respect to the surrounding matrix.  

The group investigated sound propagation at audible frequencies (0.2-1.4 kHz) through a 

3D simple cubic sonic crystal (8×8×8 layers with lattice constant of 15.5 mm) made of the 

locally resonant scattering units described above and residing in the epoxy matrix.  They 

found the existence of two wide attenuation bands at around 0.4 and 1.3 kHz [18].  This is 
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a remarkable result considering that sound wavelength in epoxy at 0.4 kHz is about 6.4 m, 

which is about 400 times larger than the crystal’s lattice constant.  By rigorous 

calculations Liu et al. have also shown that, at the frequencies above the resonance 

frequency, real part of the effective mass density becomes negative, which physically 

means that the core spheres oscillate in phase opposition to the applied wave field.  As a 

result, waves propagating through the structure become exponentially attenuated [19].  

This situation is analogous to absorption of the electromagnetic waves by an atom when 

frequency of the incident radiation is around the resonant frequency of the atom.  The 

positions of calculated resonances agreed very well with the observed dips of the 

transmission.  It is also worth noting that the existence of sonic gaps in locally resonant 

materials does not rely on the geometry, in which scattering units are arranged, and 

requires only the density of the scatterers to exceed certain threshold.  Liu et al. verified 

this prediction experimentally by measuring the transmission coefficient through a 

monolayer of the locally resonant scatterers arranged randomly.  Transmission minima 

were observed at about the same positions as in case of a 3D crystal, thus emphasizing the 

crucial role of local resonances played in the formation of sonic gaps in this type of 

materials [18].  The ability of locally resonant materials to effectively attenuate acoustic 

waves of audible frequencies combined with their compact size makes them promising 

candidates in all sorts of practical problems where the necessity of reducing level of 

audible noise exists. 

One can also envision a potential application of phononic crystals as frequency 

filters.  Such a filter ideally should possess a very broad full band gap with a narrow pass 

band in its centre.  There should also exist a convenient and quick way of tuning the 

frequency of a pass band.  The easiest way of creating a pass band at the band gap 
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frequencies is to introduce a defect (or defects) into otherwise perfect phononic crystal 

(recall the existence of the defect states created and occupied by impurity electrons and 

holes in the band gap of doped semiconductors).  James et al. performed studies of the 

sound transmission through a composite structure of alternating layers of water and 

perspex, which can be viewed as a one-dimensional (1D) phononic crystal, and observed 

existence of several band gaps at frequencies between 0.1 and 0.5 MHz.  The transmission 

spectrum of a crystal with a defect (introduced by removing central perplex plate) 

exhibited narrow transmission peaks due to formation of pass bands in the middle of each 

band gap [20].  Defect states leading to the narrow transmission bands within the band gap 

of a periodic waveguide made of alternating segments of cylindrical pipes of two different 

diameters (1D phononic crystal) were investigated by Munday et al. [21].  Psarobas et al. 

studied theoretically the transmission spectra through 3D phononic crystals made of 

spherical scatterers (lead spheres in an epoxy matrix) with the impurity plane, i.e. a planar 

defect introduced by changing the diameter of the spheres, which constituted a particular 

plane (or layer) of the crystal.  They found the existence of the vibrational mode of the 

elastic field, which is localized on the impurity plane and extends to infinity parallel to the 

plane while rapidly decaying in the direction normal to the plane.  This mode showed up 

as a narrow transmission peak at a frequency within the complete band gap.  Interestingly, 

the magnitude of the transmission peak was unity, when the impurity plane was located at 

the centre of the crystal, and rapidly decreased and disappeared altogether when the 

impurity plane was moved progressively to the surface of the crystal.  This behavior was 

considered to be a signature of the resonant tunneling in analogy to the quantum 

mechanical effect of resonant tunneling of an electron through the double potential barrier 

[22]. 
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Khelif et al. showed experimentally the possibility of introducing a defect state in 

a 2D phononic crystal (steel rods in water arranged in a square lattice) by removing single 

rod from the crystal.  The measured transmission spectrum exhibited a transmission peak 

located at frequencies within the complete band gap [23].  In their theoretical paper, by 

employing the Finite Difference Time Domain (FDTD) method, Khelif et al. found that a 

narrow pass band (i.e. the transmission peak) appears at a frequency inside the full band 

gap of a 2D phononic crystal similar to the one considered above, when solid cylinders are 

substituted with hollow (but filled with water) cylinders of the same outer radius [24].  

The frequency of the pass band could be tuned as it depended on the inner radius of the 

cylinders.  In the same paper, the authors also suggested a design of a waveguide formed 

by a row of hollow cylinders (inside a crystal with otherwise solid cylinders) and directed 

along the [10] direction.  By calculating the transmission at the exit of the waveguide, they 

showed that an input pulse incident along the [10] direction would propagate through the 

waveguide within the narrow pass band located inside the band gap of the ideal crystal at 

the frequency controlled by the inner diameter of the waveguide rods [24].  Finally, Khelif 

et al. investigated experimentally the transmission through a straight waveguide formed in 

the 2D crystal considered in [23] by removing one row of cylinders along the [10] 

direction [25].  For the input pulse incident along the direction of the waveguide, they 

found a pass band inside the band gap of the corresponding perfect crystal.  The observed 

pass band, however, was very broad (extending from 260 kHz to 315 kHz and covering 

almost entire range of the full band gap) and thus not very useful in possible applications, 

where filtering and waveguiding properties need to be combined.  The authors also 

successfully demonstrated the bending of the acoustic waves by a one-period wide 
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waveguide with two sharp 90° bends (again formed by removing rods from a perfect 

crystal).  A similar broad pass band was observed. 

Pennec et al. [26] continued the theoretical study of the waveguides considered by 

Khelif et al. (hollow cylinders filled with water).  By using simulations based on the 

FDTD approach, they showed that the frequency of the narrow pass bands of the 

waveguides can be tuned by filling hollow rods with a liquid different from the matrix 

liquid (water) rather than by changing the inner diameters of the cylinders, which allows 

the tuning procedure to be speeded up.  The above authors also found that a straight 

waveguide made of alternating hollow cylinders with two different inner radii can guide 

simultaneously waves of two different frequencies, each corresponding to a waveguide 

made of hollow cylinders of only one radius.  Alternatively, the same result can be 

achieved by using hollow cylinders of the same inner radii but filled with different liquids 

in an alternating pattern.  This allowed them to speculate on a possible sound filtering 

device in which the pass frequency through the waveguide can be quickly changed by 

flushing the appropriate hollow cylinders and filling them with a different liquid that shifts 

the pass band to a different frequency.  Such a waveguide can also be readily blocked 

from transmitting signals by changing the pattern, in which hollow cylinders are filled 

with two different liquids, from an alternating one to the one with two continuous 

segments of cylinders, each segment filled with the liquid of single type only.  Finally, 

Pennec et al. investigated the possibilities of multiplexing and demultiplexing of acoustic 

waves by considering a Y-shaped waveguide capable of transmitting two different 

frequencies.  Such a waveguide consists of an initial single segment with alternating 

hollow cylinders of two types (differing by either inner radii or the filling liquid), which 
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splits at the end into two branches, each supporting the transmission of only one of the 

frequencies, i.e. each branch is made of the hollow cylinders with the same inner radius or 

the same filling liquid.  By performing the FDTD simulations and calculating the 

transmission spectrum at the exit of each branch, they showed that the initial input signal 

containing both frequencies is split and channeled into the corresponding branch [26].  In 

the case when the situation is reversed and the input pulse is incident on the crystal from 

the opposite side, each branch of the Y-shaped waveguide selects its own frequency and 

two signals appear superimposed at the single exit of the waveguide. 

In 1994, Spielmann et al. demonstrated the tunneling of electromagnetic wave 

packets by investigating propagation of optical pulses through the band gap of a one-

dimensional photonic crystal [27].  They found that the measured transit time of the pulses 

was independent of the thickness of the photonic crystal, which is analogous to the 

tunneling of an electron through an opaque barrier as predicted by Hartman [28].  For the 

phononic crystals the fundamental physical question of how acoustic/elastic waves travel 

through the band gaps in the absence of any propagating modes was answered in 2002 by 

Yang et al., who performed experiments with 3D phononic crystals made of tungsten 

carbide spheres assembled in an fcc crystal structure in water [29].  By investigating the 

dynamics of the propagation of ultrasound pulses through 3D phononic crystals with 

different thicknesses, they conclusively demonstrated that at the band gap frequencies 

ultrasound pulses travel via tunneling.  The propagation of acoustic waves through 

phononic crystals at the gap frequencies is therefore a classical analogue of quantum 

mechanical tunneling of a particle through a potential barrier.  As one of the directions of 

my Ph.D. research I investigated a classical analogue of another quantum mechanical 

effect, namely resonant tunneling of a particle through a double potential barrier [30].  
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This was achieved by using two 3D phononic crystals (tungsten carbide spheres in water) 

separated by a uniform medium.  Similar experiments in 1D case of a periodic waveguide 

with a pass band introduced by a defect inside the full band gap were performed by 

Robertson et al. for acoustic pulses at audible frequencies [31]. 

In order to introduce another direction of modern research in the field of phononic 

crystals–a direction in which I was involved myself during my Ph.D. studies–a digression 

into the area of photonics is required.  As early as 1964, Victor Veselago studied 

theoretically the properties of hypothetical materials with both electric permittivity ε and 

magnetic permeability μ simultaneously negative, which he called Left-Handed (LH) 

materials as opposed to regular Right-Handed (RH) materials with both ε and μ positive 

[32].  The main consequence, which follows from the simultaneous flip of signs in ε and 

μ, is that for a plane electromagnetic wave propagating inside the LH material, the 

wavevector k
r

 (indicating direction of the propagation of planes of constant phase) and the 

Poynting vector S
r

 (indicating direction of the energy transport by a plane electromagnetic 

wave) are antiparallel to each other.  This property of LH materials leads to a number of 

unusual properties predicted by Veselago, one of them being negative refraction, which 

occurs when a light ray is refracted on the negative side of the normal to the interface 

between LH and RH materials.  As no LH materials occur naturally, the issue, however, 

remained in the theoretical domain for more than 30 years.  A whole new chapter in the 

field of photonics was opened by Sir John Pendry and his co-authors, who pointed out a 

practical way of realizing LH materials.  This work was published in two theoretical 

papers published in 1996 and 1999 [33, 34].  In short, the LH materials proposed by 

Pendry at el. (also known as metamaterials) are artificial structures made of split-ring 
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resonators and metallic wires.  Pendry et al. showed that a periodic array of thin metallic 

wires mimics the response of electronic plasma in metals and therefore has negative ε in a 

certain frequency range [33].  On the other hand, the response of a periodic structure made 

of split-ring resonators exhibits resonances such that effective μ of the structure is 

negative for a certain range of frequencies around the resonance [34].  It is important to 

emphasize that effective ε and μ can be ascribed to both structures only when the 

wavelength of external radiation is much longer than the size of the elementary building 

unit, in which case they behave as homogeneous materials.  When the frequency ranges of 

negative ε and μ overlap, the combined structure becomes a LH material.  Such 

metamaterials were quickly constructed and negative refraction of electromagnetic waves 

at microwave frequencies was successfully observed in experiment [35].  For extra details 

on metamaterials, the reader is referred to a review paper by Pendry [36]. 

Even greater interest in the photonics community towards LH materials was 

induced by Pendry in 2000, when he published another theoretical work [37], which 

showed that a slab of a LH material must be able to focus radiation of a point source with 

resolution better than the diffraction limit, thus acting effectively as a “superlens”.  It is 

well-known that the diffraction limit is always imposed on conventional lens imaging 

systems, because an evanescent component of the field initially emitted by the object to be 

imaged is not used in the image restoration, due to exponential decay of the evanescent 

waves.  The origin of the unprecedented resolution of a slab of LH materials according to 

Pendry is its ability to amplify evanescent waves via their coupling to surface plasmon 

resonances, so that both evanescent and propagating parts are used in the image 

restoration.  In the same paper he also suggested a practical realization of such a lens with 
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the help of a silver layer.  For more details on the physics of the amplification mechanism, 

the reader is referred to an excellent review paper by Ramakrishna [38].  Although 

initially the idea of super-resolution (better than the diffraction limit) sparked many 

debates [39, 40], Pendry’s predictions are now accepted as correct, and were verified 

experimentally in 2005 by Fang et al., who observed super-resolution of one-sixth of the 

illumination wavelength (365 nm) using a silver layer as a natural superlens [41].  

Amplification of evanescent waves and super-resolution was also observed by Grbic et al. 

[42] with the help of a planar lens made of metallic strips loaded with series capacitors 

and shunt inductors, which is another way of synthesizing a LH metamaterial [43]. 

The idea of negative refraction and the possibility of imaging with resolution not 

limited by the diffraction limit captured the minds of many researchers.  In 2000 Notomi 

published a theoretical work in which he suggested that the effect of negative refraction of 

electromagnetic waves can also be achieved with the help of photonic crystals [44].  

Negative refraction suggested by Notomi is essentially a band structure effect, which 

employs the shape of equifrequency surfaces (in 3D) or contours (in 2D) of the photonic 

crystals to achieve antiparallelism of vectors S
r

 and k
r

.  It is fundamentally different from 

negative refraction exhibited by LH materials, since photonic crystals are made of 

conventional materials and thus both ε and μ are locally positive anywhere inside the 

crystal.  He also suggested the possibility of using photonic crystals in imaging 

applications.  Notomi’s ideas were further developed by Luo et al., who studied 

theoretically the possibility of achieving negative refraction with the help of a 2D 

photonic crystal with square lattice [45].  The mechanism invoked by Luo et al. employed 

convex equifrequency contours located at the corners of the first Brillouin zone (i.e. along 
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the ΓΜ or the [11] directions) in the first (valence) band.  They also introduced the 

concept of All-Angle Negative Refraction (AANR), meaning that a single negatively 

refracted beam is obtained inside the photonic crystal for all incident angles.  With the 

help of the FDTD simulations, Luo et al. showed the possibility of achieving high 

resolution images when working in the regime of AANR.  Experimentally, negative 

refraction of microwaves in 2D photonic crystals made of metallic rods in air was 

demonstrated by Cubukcu et al. [46] and Parimi et al. [47].  In the first case, 

equifrequency contours in the first band of a slab-shaped photonic crystal (square lattice) 

were used and negative refraction was verified by monitoring the displacement of a beam 

transmitted through the crystal (and negatively refracted twice) with respect to the input 

reference beam.  By contrast, Parimi et al. employed equifrequency contours in the second 

band of a prism-shaped photonic crystal with triangular lattice.  The possibility of 

achieving resolution better than diffraction limit while imaging with photonic crystals was 

investigated in another theoretical paper by Luo et al. [48], in which they studied imaging 

properties of 2D slab-shaped photonic crystals.  The authors showed that evanescent 

components of the incident field can be amplified via their resonant coupling to bound 

photon states (guided either by the air/crystal interface or by the crystal as a whole) 

characterized by flat dispersion curves.  Luo et al. also derived upper and lower limits on 

the best achievable resolution and showed that both limits are set by the surface period sa  

of the crystal.  More details on this subject will be provided in Chapter 5, when focusing 

experiments with 2D flat phononic crystals will be described.  Cubukcu et al. observed the 

superlensing effect experimentally with a 2D flat photonic crystal made of a square array 

of dielectric rods in air by imaging a monopole antenna used as a point source [49].  The 
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negative refraction was achieved with the help of convex equifrequency contours in the 

first band, just as was proposed by Luo et al. in [45].  The full width at half maxima of the 

observed intensity peak was measured to be λ21.0  (where λ is the incident radiation 

wavelength) and its full width falls within the resolution limits predicted by Luo et al. in 

the previously discussed paper.  Cubukcu et al. were also able to resolve two incoherent 

point sources separated by a distance equal to 3λ .  It should be noted that the idea of 

super-resolution applies only to near-field imaging, i.e. the source must be positioned 

within a wavelength from the superlens.  This restriction comes from the fact that the 

evanescent component of the field emitted by the source decays exponentially to 

irrecoverably small magnitudes when the superlens is positioned in the far-field of the 

source.  In the imaging experiments by Cubukcu et al. [49], their sources were placed 0.7 

mm or λ03.0  away from the crystal’s surface.  They also observed a decrease of the 

superlensing effect when the distance between the source and the crystal was increased.  

Unfortunately, no quantitative description of this effect was provided by the authors. 

Just as in case of the photonics community, researchers working in the field of 

phononic crystals were fascinated by the idea of observation negative refraction of sound 

waves and possibly superlensing effect with the help of phononic crystals.  The first 

experimental observation of focusing of ultrasound by a 3D phononic crystal (tungsten 

carbide spheres in water assembled in an fcc structure) by negative refraction was done by 

Yang et al. [50].  In their experiments the authors employed certain features of the shape 

of the equifrequency contours in the narrow frequency range of the 3rd band to negatively 

refract sound waves incident obliquely with respect to the [111] direction.  They clearly 

observed a field pattern with a tight (about five wavelength) focal spot, which disappeared 
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with the slight shift of the frequency due to rapid variation of the shape of the 

equifrequency contours.  Zhang et al. [51] demonstrated theoretically the existence of 

negative refraction of acoustic waves in 2D phononic crystals with square lattices by 

employing equifrequency contours of the 1st band along the ΓΜ direction in a manner 

similar to Luo et al. in [45].  They also performed a numerical simulation with the help of 

Multiple Scattering Theory (which is described in some detail in Chapter 2) of the near-

field imaging of a point source by a 2D flat phononic crystal (water cylinders in mercury 

host matrix).  The authors found the existence of an image on the output side of the crystal 

with the full width at half maximum of λ14.0 , which is better than diffraction limit and 

significantly smaller than the lower limit predicted by Luo et al. in [48].  This intriguing 

disagreement indicates the importance of further investigation of focusing by phononic 

crystals.  Qiu et al. performed a theoretical study of the far-field imaging of point sources 

by a 2D flat sonic crystal (steel cylinders in air with the source-to-crystal distance of 

λ9.3 ) by employing equifrequency contours in the 2nd band and found the formation of 

high quality images [52].  Using the Multiple Scattering Theory (MST), Li et al. 

investigated the focusing properties of a 2D three-component phononic crystal made of 

rubber-coated tungsten cylinders immersed in water and assembled in a square lattice [53].  

The focusing was achieved in a similar way by employing equifrequency contours at the 

corner of the first Brillouin zone at the frequencies in the 1st band.  The three-component 

crystal was used instead of two-component one (uncoated rods) because local resonances, 

associated with each scattering unit, allowed to achieve circular shape of the 

equifrequency contours used in imaging.  Good quality images of a point source 

positioned λ3.1  away from the crystal surface were observed, however the size of the 
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focal spot was found to be just above the diffraction limit meaning that super-resolution 

was not achieved. 

To the best of my knowledge, at the moment of writing of this thesis, there exists 

only one paper by Ke et al. (Prof. Zhengyou Liu’s group from Wuhan University, China) 

that reports experimental observation of focusing and negative refraction in a 2D phononic 

crystal made of stainless steel rods arranged in a triangular lattice and immersed in water 

[54].  In this work the authors employed circular equifrequency contours in the 2nd band, 

with all experiments conducted at the frequency range just below 1 MHz.  Negative 

refraction of ultrasound waves was demonstrated by measuring the displacement of the 

outgoing beam transmitted through the slab-shaped crystal with respect to the input beam 

(in analogy to the microwave experiments by Cubukcu et al. [46]).  The same flat crystal 

was employed to image the focal spot of a commercial focusing transducer, which was 

positioned about λ4.3  from the crystal surface.  By measuring field distribution the focal 

pattern on the output side of the crystal was conclusively observed.  Part of my Ph.D. 

research also concentrated on the experimental observation of negative refraction and 

focusing in 2D phononic crystals, which were very similar to those employed by Ke et al. 

in [54].  In contrast to Ke et al.’ work, I used a prism-shaped phononic crystal, which, due 

to its shape, offered a more direct way of verification of negative refraction of sound 

waves, as will be explained in the first part of Chapter 5.  In my focusing experiments, the 

line source was positioned about half a wavelength away from the crystal surface, 

meaning that evanescent components of the field emitted by the source did not decay 

beyond the recovery limit.  On the contrary, experiments by Ke et al. had no chance to 

verify superlensing properties of their 2D crystal, as the source was positioned too far 

from the crystal surface. Recall also that their “point” source was the focal spot produced 
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by a focusing transducer, which is inevitably diffraction limited since the focal length was 

much larger than the wavelength.  Even bringing the focal spot to the very surface of the 

crystal would not help since the focal spot of a focusing transducer occurs at distances far 

greater than a sound wavelength in water at the experiment frequency range.  Therefore, 

my focusing experiments were different in principle to those by Ke et al. by allowing the 

possibility of observation of superlensing effect should my 2D phononic crystals be 

capable of amplifying evanescent waves.  The results of these experiments are reported in 

the second part of Chapter 5. 

An absolutely different type of a 2D acoustic lens capable of focusing the sound 

radiation of an incident plane wave (as opposed to focusing of the fields emitted by point 

sources considered in previous examples) into a focal spot about a wavelength wide was 

demonstrated by Hakansson et al. [55].  The acoustic lens was designed, which consisted 

of rigid cylinders in air with their positions and diameters optimized by a design tool 

(combining the MST and a genetic algorithm), so as to produce sound amplification via 

constructive interference of multiply scattered waves at the focus of the lens.  The position 

of the lens focus was chosen arbitrarily by the investigators.  During the optimization 

procedure, positions of the rods were restricted to the lattice points of a triangular lattice 

and rods were allowed to either occupy a lattice point or leave it empty.  It should be 

emphasized that such a lens operates solely due to multiple scattering of the waves inside 

the lens and does not require negative refraction.  The actual lens was constructed from 

aluminum rods according to the theoretical design and its focusing ability was confirmed 

experimentally with a good agreement found between numerical simulations and the 

experiment.  In addition to focusing, the lens was designed to amplify the sound field and 
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this property was also verified experimentally by observing amplification of 6 dB at the 

focal spot. 

As was mentioned previously, antiparallelism of vectors S
r

 and k
r

 in 

metamaterials arises due to built-in resonances of two types, which provide negative 

response of both ε and μ to an external electromagnetic radiation.  At the end of this 

chapter it is worthwhile discussing the possibility of realizing acoustic analogues of 

metamaterials, i.e. composite structures in which acoustic waves will propagate with 

vectors S
r

 and k
r

 antiparallel.  The question was considered in a theoretical paper by Li 

and Chan [56].  According to these authors, the opposite directions of S
r

 and k
r

 in a 

composite material require negative values of effective density and bulk modulus.  

Physically this means that the composite medium will display an anomalous response at 

some frequencies, such as expanding under compression (because of negative bulk 

modulus) and moving to the left when being pushed to the right (because of negative 

density).  This might sound fantastic, but Li and Chan predicted that this behavior of 

effective density and bulk modulus can exist at a certain frequency range in a system of 

soft rubber spheres suspended in water.  The negative values of both quantities are 

achieved via low-frequency resonances exhibited by spheres.  In the doubly negative 

frequency regime, the two lowest resonances overlap in frequency so that the volume 

dilation of a single sphere will be out of phase with the hydrostatic pressure field, and 

motion of the centre of mass of a sphere will be out of phase with the incident direction of 

the oscillating pressure field.  These resonances are analogues of the resonances created 

by wires and split-ring resonators in electromagnetic metamaterials.  The double-

negativity in this acoustic case originates from the resonances of the same structure, while 
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in electromagnetic case negative values of ε and μ are provided by two different resonant 

mechanisms.  Li and Chan conclude their paper by noting that the double-negative 

acoustic composite must exhibit all the intriguing properties of LH materials such as 

negative refraction and subwavelength focusing.  Their theoretical predictions still await 

experimental verification. 
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1.2  Thesis structure 

The purpose of this section is to provide a concise description of the contents of 

this thesis.  Chapter 2 presents the theory relevant to the experiments reported in the 

subsequent sections.  Section 2.1 starts by briefly reviewing some major concepts from 

solid state physics that are used to describe periodic systems such as atomic crystals.  

These concepts are then applied to the phononic crystals investigated in this thesis.  The 

section finishes with a description of the Multiple Scattering Theory (MST), which is the 

main theory used extensively throughout this thesis to interpret the experimental results.  

In Section 2.2, the role of the phononic crystal band structure in the negative refraction 

and focusing experiments is discussed. 

Chapter 3 presents the details of the experimental apparatus used to collect the data 

and describes the samples (2D and 3D phononic crystals), including the particulars of their 

construction.  The details of the data analysis are also presented in this chapter. 

Chapter 4 describes the experiments on resonant tunnelling of ultrasonic pulses 

through two 3D phononic crystals separated by a cavity.  The experimental findings are 

interpreted using the MST. 

Chapter 5 is split into two sections.  The first section deals with the experiments on 

negative refraction of ultrasound in a 2D prism-shaped phononic crystal, while the second 

section provides a description of the ultrasound focusing experiments with flat 2D 

phononic crystals. 

The conclusions are presented in Chapter 6, while some extra details are given by 

the appendices collected at the end of the thesis. 
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2. Theory 

The purpose of this chapter is to introduce the major theoretical concepts and 

models which lay the foundation for the interpretation of the experimental work I have 

done during the course of my Ph.D. studies.  This chapter is split into two sections.  The 

first section recalls some fundamental notions from the theory of crystalline solids (such 

as reciprocal vectors and lattices, Brillouin zones, etc.) and continues by applying those 

concepts to my phononic crystals.  It also contains a brief discussion of the most important 

points of the Multiple Scattering Theory (MST), whose predictions were extensively used 

throughout my entire thesis.  The second section uses the theoretical results obtained using 

the MST to explain the underlying physics behind such effects as negative refraction and 

focusing of acoustic (ultrasonic in my case) waves propagating through the 2D phononic 

crystals, which I investigated experimentally. 
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2.1  Phononic crystals 

2.1.1  Periodic structures and their properties 

Solids possessing crystalline structure are periodic arrays of atoms.  The starting 

point in the description of the symmetry of any periodic arrangement is the concept of a 

Bravais lattice.  A Bravais lattice is defined as an infinite array of discrete points with 

such an arrangement and orientation that it appears exactly the same from whichever of its 

points the array is viewed [57].  Mathematically, a Bravais lattice in three dimensions is 

defined as a collection of points with position vectors R
r

 of the form: 

 

 321 akamanR rrrr
++=  (2.1) 

 

where 1 2 3, ,a a av v v  are any three vectors not all in the same plane and kmn ,,  are any three 

integer numbers.  Vectors 1 2 3, ,a a av v v  are called primitive vectors of a given Bravais lattice.  

When any of the primitive vectors are zero, the equation (2.1) also defines a two-

dimensional Bravais lattice, one example of which is shown in Figure 2.1.1. 
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Figure 2.1.1:  A 2D triangular Bravais lattice.  Several possible choices of 
the primitive vectors 1ar and 2ar  are indicated. 
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It is also worth mentioning that for any given Bravais lattice the set of primitive 

vectors is not unique, and there are very many different choices, as shown in Figure 2.1.1. 

In three dimensions there exist a total of fourteen different Bravais lattices.  The 

symmetry of any physical crystal is described by one of the Bravais lattices plus a basis.  

The basis consists of identical units (usually made by group of atoms), which are attached 

to every point of the underlying Bravais lattice.  A crystal, whose basis consists of a single 

atom or ion, is said to have a monatomic Bravais lattice. 

Another important concept widely used in the study of crystals is that of a 

primitive cell.  The primitive cell is a volume of space that contains precisely one lattice 

point and can be translated through all the vectors of a Bravais lattice to fill all the space 

without overlapping itself or leaving voids.  Just as in the case of primitive vectors, there 

is no unique way of choosing a primitive cell.  The most common choice, however, is the 

Wigner-Seitz cell, which has the full symmetry of the underlying Bravais lattice.  The 

Wigner-Seitz cell about a lattice point also has a property of being closer to that point than 

to any other lattice point.  It can be constructed by drawing lines connecting a given point 

to nearby lying points, bisecting each line with a plane and taking the smallest polyhedron 

bounded by these planes. 

The Bravais lattice, which is defined in real space, is sometimes referred to as a 

direct lattice.  At the same time, there exist the concepts of a reciprocal space and a 

reciprocal lattice, which play an extremely important role in virtually any study of wave 

propagation, diffraction and other wave phenomena in crystals.  For any Bravais lattice, 

given by a set of vectors R
r

 (see (2.1)), and a plane wave )exp( rki rr
⋅ , the reciprocal lattice 

is defined as a set of all wavevectors G
r

 that yield plane waves with the periodicity of a 
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given Bravais lattice [57].  Mathematically, a wavevector G
r

 belongs to the reciprocal 

lattice of a Bravais lattice with vectors R
r

, if the equation: 

 

 )exp())(exp( rGiRrGi rrrrr
⋅=+⋅  (2.2) 

 

is true for any rr  and R
r

 of the given Bravais lattice.  It follows from equation (2.2) that a 

reciprocal lattice can also be viewed as a set of points, whose positions are given by a set 

of wavevectors G
r

 satisfying the condition: 

 

 1)exp( =⋅ RG
rr
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 in the Bravais lattice.  The reciprocal lattice itself is a Bravais lattice.  The 

primitive vectors 1 2 3, ,b b b
v v v

 of the reciprocal lattice are constructed from the primitive 

vectors 1 2 3, ,a a av v v  of the direct lattice and given in three dimensions by the following 
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As an example, Figure 2.1.2 shows a simple-cubic Bravais lattice with a lattice 

constant a  as well as its reciprocal lattice, which is also a simple-cubic one with a lattice 

constant aπ2  (as follows from relations (2.4)). 

 

 

 

 

 

 

 

 

 

 

 

 

Since the reciprocal lattice is a Bravais lattice, one can also find its Wigner-Seitz 

cell.  The Wigner-Seitz cell of a reciprocal lattice is conventionally called a first Brillouin 

zone.  Planes in k-space, which bisect the lines joining a particular point of a reciprocal 

lattice with all other points, are known as Bragg planes.  Therefore, the first Brillouin zone 

can also be defined as the set of all points in k-space that can be reached from the origin 

without crossing any Bragg plane.  The Brillouin zones of higher orders also exist, with 

the nth Brillouin zone defined as the set of points that can be reached from the origin by 

crossing (n-1) Bragg planes [57].  The first Brillouin zone is of great importance in the 

DIRECT LATTICE 

1ar  

2ar  

3ar  

2b
r

 

1b
r

 

3b
r

 

RECIPROCAL LATTICE 

Figure 2.1.2:  Simple-cubic direct lattice and its reciprocal lattice.  The 
primitive vectors of both lattices are also indicated. 
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theory of solids with periodic structures, since the periodicity of the structure allows the 

description of the properties of the solids within the first Brillouin zone.  Figure 2.1.3 

shows the first three Brillouin zones of the 2D square Bravais lattice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is well known from Quantum Mechanics that the energy of an electron in an 

atom assumes discrete values.  However, when the atomic orbitals overlap as the atoms 

come close together in a solid, the energy levels of the electrons broaden and form 

continuous regions, also known as energy bands.  At the same time, because of the 

periodicity of the crystal structure, the electronic wave functions undergo strong Bragg 

reflections at the boundaries of the Brillouin zones.  The destructive interference of the 
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Figure 2.1.3:  The first three Brillouin zones of a reciprocal lattice of the 2D 
square Bravais lattice.  The dots indicate reciprocal lattice points, the solid lines 
indicate Bragg planes and digits indicate the order of the corresponding Brillouin 
zone. 
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Bragg-scattered wave functions gives rise to the existence of the energy regions, in which 

no electronic energy levels exist.  Since these regions are not accessible by the electrons, 

they are also known as forbidden bands.  If the forbidden band occurs along the particular 

direction inside the crystal, it is conventionally called a stop band.  If it happens to span 

all the directions inside the crystal, the term “complete band gap”, or simply band gap, is 

used instead.  The electronic properties of crystalline solids are conveniently described 

with the help of the band structure plots, which represent energy levels of the electrons of 

the solid as a function of the direction inside the solid. 

The concepts of the direct and reciprocal lattices, Brillouin zones and energy bands 

discussed in this section are of general nature and can be applied to any periodic system 

without being limited to atomic crystals.  These concepts will be illustrated in the next 

section with regard to two- and three-dimensional phononic crystals, which I studied 

experimentally during my Ph.D. work. 
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2.1.2  Two- and three-dimensional phononic crystals 

In general, a phononic crystal is a collection of sound scatterers (solid or liquid), 

which are arranged in a regular pattern and surrounded by a solid or liquid matrix.  In by 

far most of the cases, the regular pattern is chosen to be one of the Bravais lattices and 

each scattering unit is located in one of the points of the lattice.  Therefore, we can say 

that phononic crystals are macroscopic analogues of the natural crystals (with monatomic 

Bravais lattices) with respect to the sound waves.  They can also be regarded as acoustic 

analogues of the photonic crystals (made of periodically arranged units with the dielectric 

constant different from that of the host matrix), which are designed to interact with 

electromagnetic waves. 

One can distinguish between one-, two- and three-dimensional (1D, 2D and 3D) 

phononic crystals.  The simplest type is a 1D crystal, which is simply a periodic array of 

different alternating layers.  The difference between 2D and 3D phononic crystals lies in 

the dimensionality of their corresponding Bravais lattices.  Most frequently, 2D crystals 

employ rods (chiefly of circular cross-section) as scattering units, while 3D crystals are 

regularly realized as arrangements of spheres.  It is very common in theoretical studies of 

the phononic crystals to investigate crystals with scattering units that are simply air voids 

(e.g. empty cylinders) in a matrix.  Although there are many different ways of realizing 

the phononic crystal theoretically and experimentally (by varying material of the 

scattering units and the host matrix), one thing still remains in common: the characteristic 

size of the scattering unit (rod or sphere) and lattice constant should be on the order of the 

wavelength of the incident radiation to ensure that the peculiar crystal features arising 

from its regularity affect the wave propagating through the crystal.  In other words, the 

frequency range of the crystal operation is set by the characteristic dimensions of the 



 31

crystal (i.e. the size of its unit scatterer and its lattice constant).  The exception from this 

rule, however, is resonant sonic materials, which exhibit a profound effect on the 

propagating radiation, whose wavelength can be as much as two orders of magnitude 

larger than the characteristic size of the structure, as was shown by Liu et al. [18]. 

Just as in the case of the atomic crystals and electrons, which were described in the 

previous section, the regularity of the arrangement of scattering units of the phononic 

crystal gives rise to the Bragg reflections of the sound waves multiply scattered inside the 

crystal.  Their constructive or destructive interference creates ranges of frequencies at 

which waves are either allowed to propagate through (pass bands) or effectively blocked 

(stop bands and complete band gaps) by the crystal.  The width of the band gap obviously 

depends on the crystal structure and increases with the increase of density contrast 

between the material of the scattering unit and that of a host matrix.  Switching from the 

liquid matrix to the solid one, e.g. from water to epoxy, which can support both 

longitudinal and transverse polarizations, results in even larger band gaps, as was shown 

by Page et al. [12]. 

My 2D phononic crystals were made out of stainless steel rods, immersed in water 

and assembled in a triangular Bravais lattice, in which points are located at the vertices of 

the equilateral triangles (the detailed description of the practical realization of the crystals 

is provided in Section 3.1.1).  Both the lattice constant a and the rod diameter d were 

chosen to be comparable to the wavelength of sound in water at frequencies around 1 

MHz.  Figure 2.1.4 presents the diagram of the direct and reciprocal lattices with 

corresponding primitive vectors 21 , aa rr  and 21,bb
rr

.  Since aaa == 21
rr , where a is a lattice 

constant, it follows from (2.4) that abb 3421 π==
rr

 (one should formally set za ˆ3 =
r ).  
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By working out components of 1b
r

 and 2b
r

, one can be convinced that the reciprocal lattice 

of a triangular lattice is also a triangular lattice but rotated through 30° with respect to a 

direct lattice.  Both direct and reciprocal lattices possess six-fold symmetry.  The first 

Brillouin zone has a shape of a hexagon with two high symmetry directions, which are 

commonly referred to as ΓΜ and ΓΚ [Figure 2.1.4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 3D crystals were composed of the tungsten carbide spherical beads immersed 

in water.  This choice of the material provided huge density contrast between the scatterers 

and the host matrix, which in its turn ensured that most of the energy of the sound wave 

traveling through the crystal was mostly concentrated in the water and not in the beads.  
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Figure 2.1.4:  The direct and reciprocal lattices of the 2D phononic crystals, 
which were investigated experimentally.  The shaded hexagon indicates the first 
Brillouin zone.  In the actual phononic crystal the rods were positioned at the 
points of the direct lattice (perpendicular to the plane of the figure). 



 33

The beads were assembled in a face-centered cubic (FCC) structure, which is obtained 

from the simple-cubic lattice by adding one bead to the centre of every face of the cubic 

unit cell.  Figure 2.1.5 presents schematically a direct lattice of an FCC structure along 

with the corresponding reciprocal lattice, which turns out to be a body-centered cubic 

(BCC) crystal structure (obtained from the simple-cubic structure by adding one atom in 

the centre of its unit cell).  Also displayed are the sets of primitive vectors 321 ,, aaa rrr  and 

321 ,, bbb
rrr

 of both lattices.  It can be easily seen from Figure 2.1.5 that with this particular 

choice of the primitive vectors of the direct lattice we have 2321 aaaa ===
rrr , and 

then after some calculations it also follows from (2.4) that abbb π32321 ===
rrr

, 

where a is a lattice constant of the direct lattice. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1.5:  The direct (FCC) and reciprocal (BCC) crystal lattices of the 
3D phononic crystals. 
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The crystal layers were stacked along the direction of the body diagonal of the unit 

conventional FCC unit cell, which is indicated as the [111] direction.  The spheres were 

close packed in an ABCABC… sequence, which is shown in Figure 2.1.6.  The spheres 

belonging to the first layer are denoted by the letter A.  The next layer is formed by 

placing the spheres in the interstitials indicated by the letter B, and the third layer is 

formed by placing spheres in the interstitials of the second layer, which are denoted by the 

letter C.  The sequence is then repeated again with the fourth layer beads to occupy 

interstitials in the third layer, which are positioned directly above beads denoted by the 

letter A.  This packing results in the highest filling ratio of 74%. 

 

 

 

 

 

 

 

 

 

 

 

 

The first Brillouin zone of the FCC lattice is called a “truncated octahedron” and 

coincides with Wigner-Seitz cell of the BCC lattice.  It is presented in Figure 2.1.7 along 

with its high symmetry directions.  The investigation of the figure reveals that the [111] 
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Figure 2.1.6:  Schematic diagram explaining the formation of a 3D crystal in a 
ABCABC… sequence. 
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direction is also a high symmetry direction ΓL.  With respect to the coordinate system in 

Figure 2.1.7, the coordinates of the high symmetry points (in units of aπ2 ) are: Γ [000], 

X [100], L [ ½ ; ½ ; ½ ], W [ ½ ; 1; 0], and K [¾; ¾; 0]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

One can expect that, because of the periodic arrangement of the crystal scatterers, 

the propagation of the sound radiation through the phononic crystal should be very 

different from the case of the uniform medium and depend strongly on the direction of 

propagation (much in the same way as the electrons moving inside the solids are affected 

by the periodicity of their crystal structures).  In particular, one can also expect the 

existence of the frequency regions for which sound propagation will be forbidden in one 

(stop band) or in all (complete band gap) directions inside the crystal.  Just like crystalline 
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Figure 2.1.7:  The first Brillouin zone of the FCC lattice and its high symmetry 
points. 
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solids, the phononic crystal properties are most conveniently described with the help of 

the band structure plots, except that in case of phononic crystals the band structure plot 

displays the wavevector dependence of the frequency of the propagating modes inside the 

crystal as a function of the direction of propagation.  In other words, the band structure of 

a phononic crystal is a dispersion relation, which differs from a uniform medium by 

having direction and frequency dependence.  The band structures of my 3D and 2D 

crystals will be presented in Chapters 4 and 5 correspondingly.  For now, it suffices to 

note that, for any progress to be achieved in the studies of the phononic crystals of any 

kind, one needs a reliable theory to allow the calculation of the crystal’s band structure.  

For comparison with experiment, the theory should also be able to calculate some other 

properties of the phononic crystals, such as transmission or reflection coefficients, which 

are measured directly in the experiment.  If one follows the chronological order in which 

different theoretical approaches were employed for the calculation of the phononic 

crystals’ band structures, the plane-wave (PW) method is the first one to be mentioned.  

The PW method is a fast and easy-to-apply method that is based on the expansion of the 

periodic coefficients (e.g. density, velocity) in the wave equation and the periodic wave 

amplitude in Fourier series.  By approximating these infinite series with the finite sums, 

the solution of the wave equation is reduced to the solution of a finite matrix eigenvalue 

equation.  With the help of this method, extensive band structure calculations were 

performed [4, 5, 7, 8, 58] for acoustic or elastic waves propagating in 2D and 3D phononic 

crystals, where both scatterers and matrix were either fluids or solids.  However, the PW 

method is known to have convergence problems when dealing with mixed crystals, such as 

solid scatterers in a liquid matrix, due the existence of the transverse modes inside the 

scatterers.  These modes, although of non-propagating character, are strongly coupled to 
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the longitudinal modes both inside and outside the scatterers.  The PW method also fails 

when treating systems of either very high or very low filling ratios.  Another drawback of 

the PW method is that it calculates the band structure of infinitely long periodic systems 

and therefore its results can only be indirectly compared with the transmission 

measurements in a finite system. 

The other two theoretical methods used in studies of phononic crystals are the 

Multiple Scattering Theory (MST) and the Finite-Difference Time-Domain (FDTD) 

method.  With the help of the FDTD method, in which the elastic wave equations are 

discretized in both the spatial and the time domains with proper boundary conditions, one 

is able to calculate both the band structure and the transmission coefficients through the 

phononic crystal.  This method was applied to a mixed phononic crystal [59] and showed 

no convergence problems that limited the usefulness of the PW method.  FDTD also 

allows monitoring of the time evolution of the elastic field as it propagates through the 

crystal.  However, the FDTD method is rather time consuming, especially for accurate 

calculations in 3D systems since it requires a fine grid of points. 

The last approach, which was employed for the interpretation of all my 

experimental results, is the MST.  The next section outlines the basic ideas of the MST, 

with the goal of conveying the essential physics of the theory without obscuring it with the 

mathematical details, which can be found in the papers by Liu et al. [61], Kafesaki et al. 

[60] and Psarobas et al. [62]. 

2.1.3  Multiple Scattering Theory 

The Multiple Scattering Theory was introduced for 3D phononic crystals by three 

different groups at about the same time [60-62] and its 2D version was developed three 

years later by Prof. Liu’s group in the theoretical work by Mei et al. [63].  The MST is 
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essentially an extension of the Korringa-Kohn-Rostocker (KKR) theory (which is a well-

known method used by the solid-state community for electronic band structure 

calculations) to the case of elastic/acoustic waves.  The MST is ideally suited for my 

phononic crystals (both 2D and 3D) since it is designed for problems in which scattering 

units have simple symmetries, such as spheres or cylinders.  It is also a quickly 

converging method that takes into account the full vector character of the elastic field and 

is able to deal with the phononic crystals of any type (e.g. liquid/solid crystals, for which 

the PW method fails).  Since it was introduced, theoretical predictions of the MST have 

been used in the interpretation of the results of many experiments [29, 30, 50, 54, 67], 

including the experiments reported in this thesis.  In all cases an excellent agreement 

between the theory and experiments was observed, allowing the MST to be 

experimentally validated for these types of phononic crystals.  Below I will briefly 

summarize the main points of the MST in case of the 3D phononic crystals by following 

the steps along which it was developed by Liu et al. in [61]. 

In a homogeneous medium, the elastic wave equation may be written as 

 0)()2( 2 =+×∇×∇−⋅∇∇+ uuu rrrrrrr
ρωμμλ  (2.5) 

where ρ is the density of the medium and λ, μ are its Lamé constants and ur  is the 

displacement field.  Because of the spherical symmetry of the scatterers, it is natural to 

work with the general solution of (2.5) expressed in the spherical coordinates: 

 ∑ +=
σ

σσσσ
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lmlmlmlm rHbrJaru )]()([)( rrrrrr  (2.6) 

where )(),( rHrJ lmlm
rrrr

σσ  are defined as: 
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where )2( μλρωα += , μρωβ = , )(xjl  is the spherical Bessel function, )(xhl  is 

the spherical Hankel function of the 1st kind and )ˆ(rYlm  is the usual spherical harmonic 

with r̂  denoting angular coordinates ),( φθ  of rr  in spherical coordinate system.  In 

equation (2.6) index σ assumes values from 1 to 3, where 1=σ  indicates the longitudinal 

wave and 3,2=σ  indicates two transverse waves of different polarizations.  In the case 

when the coefficients σlmb  in (2.6) are equal zero, )(ru rr  represents an incident wave, and 

in the case of 0=σlma , )(ru rr  represents a scattered wave.  Therefore, the wave incident 

on an ith scatterer is expressed as 
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i
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i rJaru )()( rrrr  (2.9) 

where ir
r  indicates some point in space as measured from the center of the ith scatterer.  

The wave scattered by scatterer i can be expressed as 
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The first key point of MST is the idea that the wave (2.9) incident on a given 

scatterer i can be viewed as a sum of the externally incident wave )()0(
ii ru rr  expressed as 

 ∑=
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i
i
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i
lmii rJaru )()( )0()0( rrrr  (2.11) 

and all other scattered waves except the one scattered by the ith scatterer, which can be 

expressed as 
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so that (2.9) can also be written as 
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Here ir
r  and jrr  refer to the position of the same point in space and are measured from the 

centers of scatterers i and j respectively. 

Another crucial point of MST is that for a given scatterer, the scattered field is 

completely determined from the incident field with the help of the scattering matrix T.  In 

other words, the expansion coefficients }{ j
lmaA σ=  and }{ j

lmbB σ=  are related through 

}{ σσ ′′′= mllmtT  as follows 

 TAB =  

or more explicitly 

 ∑
′′′

′′′′′′=
σ

σσσσ
ml

j
mlmllm

j
lm atb  (2.14) 

For objects of simple geometry, such as spheres or cylinders, the calculation of the 

scattering matrix T is an exactly solvable boundary-value problem and this is the origin of 

MST’s reliability and precision when handling arrangements of scatterers of spherical 

symmetry.  In short, the coefficients σσ ′′′mllmt  are found by applying the boundary 
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conditions that require the continuity of the normal components of both the displacement 

and the stress vectors at the scatterer/matrix interface.  The explicit expressions of the T 

matrix coefficients for an elastic sphere can be found in [60] (liquid matrix) and in [62] 

(elastic matrix), and in [63] for an elastic cylinder in an elastic matrix. 

The final MST equation is obtained by substituting (2.9), (2.11), (2.12) and (2.14) 

into (2.13) and reads 
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where σσ ′′′mllmG  is the so-called vector structure constant, which relates )( j
j

lm rH rr
σ  in (2.12) 

and )( i
i
lm rJ rr

σ  through the relation: 
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(more details can be found in [61]).  The normal modes of the system may be obtained by 

solving the secular equation that follows from (2.15) in the absence of an external incident 

wave (i.e., when all )0(i
lma σ  are zero): 

 0det =− ∑
′′′′′′

′′′′′′′′′′′′′′′′′′
σ

σσσσσσδδδδ
ml

ij
lmml

j
mlmlmmllij Gt  (2.16) 

In case of the periodic system, σσ ′′′mllmG  is modified to take into account the symmetry of 

the structure.  The solutions of (2.16) give the band structure of an elastic periodic system.  

The band structures calculated with the MST for my 2D and 3D phononic crystals are 

presented in Chapters 4 and 5 respectively. 

To facilitate the direct comparison with the real samples, a successful theory must 

also be able to calculate the quantities that one measures in a typical experiment, e.g. 
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transmission and reflection coefficients.  This is accomplished in the framework of the 

layer MST, which allows one to calculate the transmission of an elastic wave through a 

finite slab (with an arbitrary number of layers) of periodically arranged scatterers.  The 

approach starts by calculating the field of the elastic wave scattered (or transmitted) by a 

single layer of scatterers.  Let us assume that the layer of scatterers (elastic spheres) lies 

completely in the x-y plane and that positions of the scatterers are given by vectors }{ nR
r

 

of a 2D Bravais lattice, which is generated by two primitive vectors 21 ,aa rr , i.e. 

 2211 ananRn
rrr

+=  (2.17) 

where 21 , nn  are integers.  The positive direction of the z-axis is chosen to be to the left of 

the layer as explained by Figure 2.1.8. 

 

 

 

 

 

 

 

 

 

 

 

 

A plane elastic wave )(ru in rr  incident on the layer can be expressed in general as 
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Figure 2.1.8:  Geometry of the layer MST.  Vectors 21 ,aa rr  are the primitive 
vectors of the corresponding 2D Bravais lattice. 
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where −+=s  indicates waves incident from the left (positive z) and from the right 

(negative z) respectively, while 1=α  and 3,2=β  are identical to index σ in (2.6) and 

distinguish between the longitudinal and the transverse (with two polarizations) waves 

[Figure 2.1.7].  Each term in (2.18) can be expressed in terms of the primitive vectors 

21 ,bb
rv

 of the 2D reciprocal lattice as follows 
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where wavevectors ±
gkα

r
 and ±

gkβ

r
 are given by the expressions 
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Here gr  is the 2D reciprocal lattice vector ( 2211 bmbmg
rvr

+= , where 21 , mm  are integers), 

and ||k
r

 is a reduced wavevector in the first Brillouin zone of the reciprocal lattice.  In 

equations (2.20a) and (2.20b) )( || gk rr
+  simply represents components of wavevectors ±

gkα

r
 

and ±
gkβ

r
 that are parallel to the layer of scatterers.  These expressions are chosen to 

simplify subsequent calculations.  The constants α and β are defined in (2.7) and (2.8). 

Much in the same way, the wave )(ru sc rr  scattered by the layer can be expressed as 

follows 



 44

 ∑∑∑∑ ⋅+⋅=+=
gs

s
g

ssc
g

gs

s
g

ssc
g

s

ssc

s

sscsc rkiUrkiUrururu
rr

rrrrrrrrrrrr

,

,

,

,,, )exp()exp()()()( ββααβα  (2.21) 

Indices α and β have the same meaning as in case of incident wave (2.18).  The index 

−+=s , however, reverses its meaning and now indicates the scattered waves 

propagating away from the layer on its right (negative z) and on its left (positive z) 

correspondingly (see Figure 2.1.8). 

After lengthy and complicated calculations, one can show (see Liu et al. [61]) that 

amplitudes ±,sc
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′κκM  ( −+=′ss,  and βακκ ,, =′ ) 

as follows 
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 (2.22) 

In the above equations ±,sc
κU  and ±,in

κU  are column vectors defined as 

 Trsc
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NN
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−

= κκκκ UUUUU  (2.23b) 

where the Tr superscript denotes the operation of transposing.  The explicit expressions 

for the elements of the matrices ss ′
′κκM  are given by Liu et al. [61].  Being very complicated 

mathematical objects, matrices ss ′
′κκM  nevertheless have simple physical meaning.  They 

are transmission and reflection matrices for incident waves ±,in
αU  and ±,in

βU .  For example, 

by expanding first line in the first matrix equation in (2.22) one obtains: 
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 −−+−−++++++++ +++= ,,,,, ininininsc
βαβαααβαβαααα UMUMUMUMU  

Figure 2.1.9 shows a schematic diagram explaining the physical meaning of matrices 

ss ′
′κκM  contained in the above equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Having found transmission and reflection matrices through the single layer, one 

needs to find a way to calculate similar matrices for a phononic crystal with an arbitrary 

number of layers.  This is accomplished by calculating matrices ss ′
′κκQ  for each of two 

single layers that are displaced with respect to the x-y plane by vectors 23ar  and 23ar− , 

where 3ar  is a third primitive vector of the Bravais lattice of the phononic crystal.  In other 

words 3ar  is a vector by which a single 2D layer of scatterers should be repeated to form 

+,in
αU  

+,in
βU  

−,in
αU  

−,in
βU  

++
ααM  

++
αβM  

−+
ααM  

−+
αβM  

Figure 2.1.9:  Schematic illustration of the physical significance of the matrices ss ′
′κκM . 
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the 3D phononic crystal.  Matrices ss ′
′κκQ  have the same physical meaning as ss ′

′κκM  and are 

connected with matrices ss ′
′κκM  by another translation matrix s

κφ , whose elements are 

explicitly expressed in [61].  The transmission and reflection matrices for the pair of two 

successive layers (denoted by N and N+1) are obtained by combining corresponding 

matrices )(Nss ′
′κκQ  and )1( +′

′ Nss
κκQ .  The essential physics here is that two sets of matrices 

are combined by taking into account all multiple reflections that the incident wave 

undergoes between two layers as it propagates through the two-layer system [62].  By 

repeating this procedure the transmission and reflection matrices through the slab 

consisting of n2  layers can be found.  The corresponding matrices for the crystal with an 

arbitrary number of layers can be obtained by combining matrices for the slab with even 

number of layers and one extra layer. 

It also should be noted that in addition to the band structure, which displays 

normal modes of the system along high symmetry directions, the MST also allows 

calculation of the modes along any direction inside the crystal.  The geometrical set of all 

points belonging to a particular mode (which is characterized by a certain frequency) is 

referred to as an Equifrequency Surface or Equifrequency Contour (EQC) for 3D or 2D 

structures correspondingly.  The information on the equifrequency contours for my 2D 

crystals obtained with the MST plays a very important role in the interpretation of the 

results of the experiments on negative refraction and focusing of ultrasound as will be 

seen in the next section. 
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2.2  Band structure effects in 2D phononic crystals 

This section lays the theoretical basis for the experiments conducted on 2D 

phononic crystals that are described in Chapter 5.  It starts by explaining the major ideas 

behind the negative refraction effect observed with my prism-shaped 2D crystal and 

continues by discussing the sound focusing properties of the flat rectangular-shaped 

crystal.  It will be shown that both phenomena are essentially band structure effects. 

2.2.1  Negative refraction in phononic crystals 

It is well known that reflection and refraction of waves of any nature (acoustic, 

elastic or electromagnetic) occurring at the interface between two different media are 

governed by Snell’s law.  According to Snell’s law, the wavevector’s component 

tangential to the interface must be conserved as the wave propagates from one medium to 

another.  Let us consider, for example, the simple case of a plane wave obliquely incident 

from a liquid with Lamé coefficients 1λ  and 01 =μ  on an isotropic solid characterized by 

Lamé coefficients 2λ  and 2μ  [Figure 2.2.1].  As a result of the wave interaction with the 

boundary, part of the energy of the incident wave is reflected back into the liquid in the 

form of a reflected wave, which propagates with the phase velocity ρλ11 =c .  The rest 

of the incident wave is transmitted into the solid and generates two outgoing waves, 

longitudinal and transverse, which propagate with phase velocities ρμλ )2( 222 +=c  

and ρμ22 =b  respectively.  Snell’s law requires that parallel (to the interface) 

components of the wavevectors of the incident wave, 11 ck ω= , and of both refracted 

waves, 22 ck ω=  and 22 bk t ω=  be equal (note that 1k  lies in the x-z plane and so do 2k  

and tk2 ).  Mathematically, this means that the following conditions must be satisfied: 
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 222211 sinsinsin γθθ tkkk ==  (2.24) 

where angles 21 ,θθ  and 2γ  are indicated in Figure 2.2.1.  By introducing the notion of the 

index of refraction n and n′ , where 12 kkn =  and 12 kkn t=′ , Snell’s law is frequently 

written in the following form: 
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With the help of Snell’s law (2.24), one can easily calculate the refraction angles 

2θ  and 2γ when the parameters of the two media and the angle of incidence 1θ  are known 

(it is clear from Snell’s law that the angle of reflection must be equal to the angle of 

incidence).  There is no point in deriving equations (2.24) in this thesis, as the derivation 

of Snell’s law is done for different kinds of waves in numerous textbooks on optics and 

acoustics (see, for example, [64] and [65] for the case of elastic waves).  Physically, 

Figure 2.2.1:  Reflection and refraction of a plane wave incident obliquely 
on the liquid/solid interface from the liquid.  Note the conservation of the 
wavevector component ||k . 

1θ  1θ  

2θ  

2γ  

1k
r

 1k
r

 

2k
r

 

tk2

r
 

||k  

||k  

LIQUID 

SOLID 

z 

x 



 49

Snell’s law implies that refraction and reflection occur in the same way at any point of the 

interface between two media (i.e. independent of the x coordinate in Figure 2.2.1). 

The refraction of the wave from one medium to another can be conveniently 

visualized with the help of the equifrequency surfaces (or contours in case of 2D systems).  

Equifrequency surfaces are formed in k-space by all points whose wavevectors correspond 

to plane waves of the same frequency ω .  Physically, they display the magnitude of the 

wavevector k
r

 of a plane wave propagating in the given medium as a function of the 

direction of propagation.  For any isotropic medium the equifrequency surfaces are perfect 

spheres (circles in 2D), since the magnitude of the wavevector is independent of the 

direction of propagation, as illustrated in Figure 2.2.2. 
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Figure 2.2.2:  Equifrequency surface of an isotropic medium. 
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Another extremely important property of equifrequency surfaces is that at its every 

point the direction of the group velocity gυ
r  (or equivalently the direction of the energy 

transport) in the medium at a given frequency coincides with the direction of the normal to 

the equifrequency surface (pointing towards the increase of ω ).  In other words, gυ
r

 is 

given by the gradient of ω  as a function of the wavevector k
r

: 

 )(kkg

rrr
rωυ ∇=  (2.26) 

On the other hand, the direction of the phase velocity pυ
r

 (or the direction of the 

propagation of constant phase) is set by the direction of the wavevector k
r

.  As shown in 

Figure 2.2.2, in an isotropic medium both phase and group velocities point in the same 

direction.  This is however not the case in an anisotropic medium (e.g. GaAs or CdS), in 

which magnitude of the wavevector is direction dependent and thus equifrequency 

surfaces will not be perfect spheres anymore.  Another example of anisotropic systems are 

phononic crystals since the magnitude of the wavevector is strongly modulated by their 

periodicity. 

Having introduced the notion of the equifrequency surfaces/contours, let us use 

them to illustrate the refraction of a plane wave in Figure 2.2.1.  This is accomplished by 

drawing the equifrequency contours (since all wavevectors lie in the x-z plane) for each 

medium on the scale that would correctly represent the relative magnitudes of the 

wavevectors of the incident and refracted waves.  By projecting the parallel component of 

the incident wavevector 1k
r

 (which must be conserved according to Snell’s law) on the 

contours of the solid, one is able to find the direction of propagation (i.e. refraction angles) 

of both waves in the solid [Figure 2.2.3].  As was explained in the preceding paragraph, 
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group velocities gυ
r  and wavevectors k

r
 are parallel to each other (because of the 

spherical shape of the equifrequency contours) and also point in the same direction, since 

ω  increases as the magnitude of the wavevector increases, meaning that )(kk

rr
rω∇  points 

along the outward normal to the equifrequency contour.  The significance of the last 

observation will become apparent when the refraction in 2D phononic crystals will be 

discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.3:  Refraction of a plane wave in Figure 2.2.1 is illustrated with the 
help of the equifrequency contours (the same diagram holds for the transverse 
wave, which is omitted for simplicity). 
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The periodicity of the phononic crystal makes it an anisotropic medium, in which 

the magnitude of the wavevector depends on the direction inside the crystal and 

equifrequency contours are, in general, not circular.  However, the frequency ranges still 

might exist where the equifrequency are indeed perfect circles.  In the case of my 2D 

crystals (stainless steel rods in water), the MST predicts the existence of circular 

equifrequency contours in the 2nd band for the frequencies that are far enough from the 

Brillouin zone edges (ranging from 0.75 MHz to 1.04 MHz, which is the top frequency of 

the 2nd band).  The equifrequency contours for the several frequencies are presented in 

Figure 2.2.4. 
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Figure 2.2.4: Equifrequency contours predicted by MST for the several frequencies 
in the 2nd band of the 2D phononic crystal made stainless steel rods in water 
(Calculations courtesy of Dr. Zhengyou Liu). 
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Note that in this frequency range the wavevector crk
r

 and the group velocity gυ
r  

(which defines the direction of the energy transport inside the crystal) are antiparallel to 

each other, i.e. they point in opposite directions.  This is the consequence of the fact that 

ω  increases with the decreasing magnitude of the wavevector, meaning that )(kk

rr
rω∇  

points along the inward normal to the equifrequency contour, as explained in Figure 2.2.5.  

It is also obvious that, because of the circular shape of the equifrequency contours in the 

2nd band, crk
r

 and gυ
r  are antiparallel irrespective of the direction inside the crystal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.5:  Refraction of a plane wave at the water/crystal interface.  The choice 
of the upward direction of the wavevector crk

r
 provides a wave propagating inside the 

crystal. 
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Let us investigate the consequence of this fact by considering the refraction into 

the 2D phononic crystal of a plane wave at some frequency in the 2nd band of the crystal, 

when the wave is incident on the liquid/crystal interface from the liquid (water) [Figure 

2.2.6].  Of course, the parallel component of the wavevector in both media must be 

conserved just as it was in the case displayed in Figure 2.2.3.  What is different however is 

that the wavevector inside the crystal and the direction of the wave propagation inside the 

crystal are now opposite to each other.  As a result, both incident and refracted rays stay 

on the same side of the normal to the water/crystal interface as shown in Figure 2.2.6 

(compare with Figure 2.2.3 in which incident wave crosses the plane though the normal as 

it refracts into the lower medium). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.6:  Negative refraction of a plane wave incident obliquely on the 
water/crystal interface.  Note the conservation of the wavevector component ||k . 
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Since the refracted wave happens to be on the negative side of the normal, this 

unusual refraction can also be described by assigning an effective negative index of 

refraction to the crystal.  In this case we say that the incident wave is negatively refracted 

into the crystal and use the term “negative refraction” to indicate this phenomenon.  

Before we proceed further with discussion of the sound waves refraction in the phononic 

crystals, it is definitely worth recalling the origin of this term.  The term “negative 

refraction” was first introduced for electromagnetic waves by Viktor G. Veselago in 1964 

[32], who investigated theoretically the properties of materials with negative values of 

both electric permittivity ε and magnetic permeability μ.  It follows from Maxwell’s 

equations that vectors HE
rr

,  and k
r

 of electromagnetic wave propagating in such materials 

will form a left-handed set.  These materials were named left-handed (LH) as opposed to 

the regular right-handed (RH) materials, in which vectors HE
rr

,  and k
r

 form a right-

handed set.  As a result, the direction of the wavevector k
r

 of the electromagnetic wave 

propagating in a LH material is reversed with respect to the wave in a RH material.  

However, the direction of the Poynting vector S
r

, which gives the direction of the energy 

transport in an electromagnetic wave, is unchanged in materials of both kinds, meaning 

that in LH materials vectors S
r

 and k
r

 are antiparallel to each other.  This fact leads to a 

number of unusual properties exhibited by LH materials (e.g. reversed Doppler and 

Vavilov-Cherenkov effects) and one of them is negative refraction, which happens when 

an electromagnetic wave propagates through the boundary between RH and LH materials 

and refracts on the negative side of the normal to the boundary in the same way as shown 

in Figure 2.2.6 for the sound wave.  Although both phenomena look similar, there is a 

major difference between negative refraction in LH materials and phononic crystals.  The 
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first one is brought about by the negative values of the local parameters of the medium (ε 

and μ) whereas it is a band structure effect in case of phononic crystals. 

Let us now move to the question of the experimental observation of negative 

refraction of sound waves.  First, it should be mentioned, that the same effect must occur 

when the direction of the wave in Figure 2.2.6 is reversed, i.e. when the wave is incident 

on the crystal/water interface from the crystal.  One might contemplate an experiment in 

which a plane wave would be incident obliquely on a flat phononic crystal with parallel 

sides.  According to the previous discussion, it should be refracted negatively twice before 

it finally appears on the output side of the crystal, as shown in Figure 2.2.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.7:  Propagation of the sound wave through a flat crystal with parallel 
surfaces.  Both negatively and positively refracted waves leave the crystal’s surface 
in the same direction.  Also indicated are distances pd  and nd  by which positively 
and negatively refracted beams are displaced with respect to the input beam. 
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This type of experiment, however, is not able to provide conclusive evidence of 

the negative refraction, as the direction of the propagation of the output wave will be the 

same whether it refracts negatively inside the phononic crystal or positively in a slab of a 

regular isotropic material [Figure 2.2.7].  Of course, in case of an input beam of finite 

width, one can try to obtain evidence of either negative or positive refraction inside the 

slab by measuring the position of the output beam with respect to the input beam and 

comparing it to the predicted value.  Another type of experiment, which is able to provide 

the direct verification of whether positive or negative refraction takes place, employs the 

prism-shaped phononic crystal [Figure 2.2.8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.8:  Negative refraction experiment with the prism-shaped phononic crystal.  
(a) Equifrequency contours in water and in the crystal.  In (b), the directions of positive 
and negative refraction at the output face of the prism crystal are shown.  The thick 
arrow indicates the direction of wave propagation inside the crystal. 
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For the prism-shaped crystal the input plane wave is incident normally on the 

shortest side of the crystal and propagates into the crystal without any change in its 

original direction, just as it would do in the case of a prism made out of a regular material 

(see Figure 2.2.8(a)).  Recall that the ensuing wave inside the crystal will have its 

wavevector k
r

 opposite to the direction of its propagation.  This wave, however, will be 

incident obliquely on the output side of the crystal and must undergo negative refraction 

upon crossing the crystal/water interface [Figure 2.2.8(b)], whereas in the case of a prism 

of a regular material the output wave will be positively refracted.  Therefore, by recording 

on which side of the normal the outgoing wave appears as it leaves the crystal, one is able 

to directly observe negative refraction of the sound waves.  From the predictions of the 

MST, one would expect the outgoing wave to emerge on the negative side of the normal.  

This prediction was tested in the experimental configuration considered in Figure 2.2.8 

and results of these experiments are reported in the first section of Chapter 5. 

2.2.2  Focusing properties of 2D phononic crystals 

Veselago also pointed out that a slab of LH material must have the ability to focus 

electromagnetic radiation of a point source [32], which comes as a direct consequence of 

each incident ray being negatively refracted twice as it propagates through the slab [Figure 

2.2.9].  In other words, a flat slab of LH material would act like a lens and is frequently 

referred to as “Veselago lens” in the literature.  The optical system based on such 

negatively refracting lens would have certain advantages over the conventional optical 

systems.  First, it will be much easier to manufacture, since it takes much less effort to 

produce a slab with parallel sides than the curved surface of a conventional lens.  Second, 
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a Veselago lens is void of the optical axis, meaning that the displacement of the source 

along the slab surface would be followed by the same displacement of an image. 

 

 

 

 

 

 

 

 

 

 

 

 

Much in the same way, the similar focusing property can be expected to be 

exhibited by my 2D flat phononic crystals for the sound field emitted by a point source in 

the frequency range corresponding to the 2nd band.  The experimental demonstration of 

this effect might open the future possibilities of constructing sound imaging systems based 

on flat phononic crystals, which would have the same advantages over conventional sound 

focusing systems (e.g. ultrasound focusing transducers) as those discussed above for a 

Veselago lens.  Before embarking on the experimental work however, it is also useful to 

analyze theoretically the possible outcomes of the experiment, e.g. under which conditions 

such an imaging system might exhibit the best focusing. 

SOURCE 
IMAGE 

11 =n  11 =n  12 −=n  

Figure 2.2.9:  Focusing of the point source radiation by a slab of LH 
material.  Note that rays incident at different angles to the surface of the 
slab are brought to the same focal spot. 
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In his paper Veselago contemplated focusing of electromagnetic radiation of a 

point source incident from vacuum ( 11 =n ) by a slab of LH material with the refraction 

index 12 −=n  [Figure 2.2.9].  Such system is able to provide a perfect focus for the point 

source in the sense that each pair of rays emitted by a source will be brought to the same 

spatial point on the output side of the slab.  This will also be true for any LH material 

whose refraction index has the same absolute value (but opposite sign) as the one of the 

surrounding medium.  In the general case when 21 nn ≠ , it is clear from the ray diagram 

(see Figure 2.2.10) that the source/slab and slab/image distances 1L  and 2L  are related to 

the thickness of the slab d by the following equation: 
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where inθ  and rθ  are the corresponding angles of incidence and refraction. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2.10:  Focusing by a slab of LH in case of 21 nn ≠ . 
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With the help of Snell’s law, the factor multiplying the thickness of the slab d can 

be expressed as 
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implying that position of the focal point 2L  depends on the angle of incidence inθ  ( 1n  and 

2n  are refraction indices of the surrounding medium and LH slab respectively).  In this 

case the focal spot is expected to be elongated along the axis connecting the source and 

the image.  Only when the condition || 21 nn =  is satisfied, all the rays are brought to the 

same focal spot independent of inθ  ( =2L const).  For phononic crystals, the condition for 

a perfect focus 

 1
)tan(
)tan(

=
in

r

θ
θ  (2.29) 

implies that equifrequency contours of the surrounding medium (water) and those of the 

crystal must match (i.e. have the same radius), as shown in Figure 2.2.11.  The results of 

the experiments aimed at observing the focusing of ultrasound waves by flat 2D phononic 

crystals are presented in the second part of Chapter 5. 
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Figure 2.2.11:  The condition crwat kk =  for matching of equifrequency 
contours implies the condition 21 θθ = . 
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3. Experiment 

The following chapter describes the apparatus, the samples and the experiments 

presented in this thesis. In the first section, the samples (2D and 3D phononic crystals) are 

described in detail along with information on how they were assembled. The second 

section gives a brief overview of the mechanical part of the experimental set-up. The third 

and fourth sections deal with the electronics and ultrasound transducers, which were 

employed to generate, detect, process and record ultrasonic signals. The final two sections 

provide a description of the different types of experiments performed and explain in detail 

the data analysis procedure for each experiment. 
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3.1  Sample preparation 

3.1.1  2D phononic crystals 

For the experiments on the negative refraction of ultrasound waves and sound 

focusing, two types of 2D phononic crystals, differing in their shape, were constructed.  A 

prism-shaped 2D crystal was used in negative refraction experiments whereas a 

rectangular shaped crystal was used to investigate the focusing of ultrasound.  Both 

crystals were made out of stainless steel rods 1.02 mm in diameter and assembled in a 

triangular (also known as hexagonal) 2D crystal lattice with a lattice constant of 1.27 mm 

[Figure 3.1.1]. 

 

 

 

 

 

 

 

 

 

 

The rectangular-shaped crystal had 6 layers each consisting of 60 rods and stacked 

along the ΓΜ direction [Figure 3.1.2(a)].  The prism-shaped crystal had 58 layers, with its 

sides forming angles of 30°, 60° and 90° and being perpendicular to the ΓΜ (shortest and 

longest sides) and the ΓK directions [Figure 3.1.2(b)]. 

Figure 3.1.1:  Unit cell of a 2D phononic crystal. 
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The filling ratio for the 2D crystals was 58.4%.  The particular details of crystal 

design depended on the type of liquid, which filled the space between the rods.  For the 

crystals immersed in and filled with water, the rods were kept in place by two parallel 

polycarbonate plates in which a number of holes were drilled, forming a triangular crystal 

lattice in the shape of the crystal in question.  The diameter of the holes was carefully 

chosen to allow a snug fit once each rod was slid into the corresponding top and bottom 

holes [Figure 3.1.3(a)-(b)].  The rectangular crystal was 14 cm high while the prism-

shaped crystal height was 9 cm.  The water used in all the experiments was purified by a 

reverse osmosis procedure. 

 

Figure 3.1.2:  Geometry of the 2D crystals. (a) Rectangular crystal. 
(b) Prism-shaped crystal 
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A second rectangular-shaped crystal (with all the parameters identical to those of 

the first crystal) was constructed to enable the liquid surrounding the rods to be different 

to the medium outside the crystal.  The design was much more complicated since it was 

important to prevent mixing of the liquid inside (methanol) and the liquid outside (water).  

First of all, this time PVC plastic was used because of its excellent resistance to the 

alcohols and to methanol in particular.  To separate methanol from water, the crystal was 

wrapped in a very thin (0.01 mm) plastic film produced commercially and conventionally 

available as a food wrap.  Finally, the cell was specifically designed both to keep the rods 

in a triangular crystal lattice and to seal the inside of the crystal from surrounding water by 

utilizing two rubber O-rings.  Two holes drilled in the cell allowed the cell to be 

conveniently filled and drained before and after experiments [Figure 3.1.4]. 

Figure 3.1.3:  Pictures of the 2D crystals, which were filled with and immersed in water 
during the experiments: (a) rectangular crystal, (b) prism-shaped crystal. 

(a) (b) 



 67

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fill hole Fill hole

Rubber 
O-ring 14 cm 
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Front view 
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0.66 cm

Side view 

1.8 cm

Figure 3.1.4:  Methanol-filled 2D crystal cell design. 
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Finally, it is worth mentioning that the choice of materials for the scatterers (rods) 

and matrix (water or methanol) provided high density and velocity contrast, thus ensuring 

that most of the sound energy was scattered by scatterers and concentrated in the host 

matrix.  Table 3.1.1 provides values of the densities and sound velocities for the 

constituent materials of the 2D crystals. 

 
Material Density (g/cm3) Longitudinal 

velocity (mm/μs) 
Shear velocity 

(mm/μs) 

Stainless steel 7.89 5.80 3.10 

Water 1.00 1.49 - 

Methanol 0.79 1.10 - 
 
 

 

 

3.1.2  3D phononic crystals 

In the experiments on the tunneling of ultrasound pulses, the samples consisted of 

two 3D phononic crystals with the same number of layers separated by an aluminum plate.  

For brevity, these samples will be referred to as double 3D crystals.  Phononic crystals 

were made out of very monodisperse tungsten carbide beads, 0.800 mm in diameter, that 

were surrounded by reverse osmosis water.  The beads were manually assembled in a face 

centered cubic (FCC) structure, with triangular layers stacked along the cube body 

diagonal (also known as the [111] direction) in an ABCABC… sequence.  To ensure the 

absence of air bubbles trapped between the beads, the whole process of assembling 

crystals was conducted in water.  To support the beads in the required structure, acrylic 

Table 3.1.1:  Comparison of the properties of the constituent materials used for 2D 
phononic crystals [83]. 
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templates were used.  The template consisted of a thick substrate with plastic walls 

attached to it [Figure 3.1.5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

One can show that in order to keep beads in an FCC crystal lattice two kinds of 

walls should be used with sides inclined at angles α ≈ 54.74° and β ≈ 70.33° above the 

horizontal, and with inner side lengths LA and LB.  The values of LA and LB depend on the 

number of beads n along each side of the first crystal layer and the bead diameter d.  They 

can be shown to be given by the following expressions: 
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Figure 3.1.5:  Template for 3D phononic crystal (top view) with side views 
of walls A and B. Note that 2tan =α  and 22tan =β . 
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With 49 beads on each side of the bottom layer, (3.1) gives LA = 38.814 mm and LB = 

38.552 mm. 

As was already mentioned, the crystals were assembled manually with the beads 

being immersed in water all the time.  After the lower crystal was assembled an aluminum 

spacer was carefully placed onto it without disturbing beads of the crystal.  The upper 

crystal was then assembled on top of the spacer.  Spacer edges were machined at angles 

matching the angles of the walls of the template.  Also, the thickness of the spacer was 

calculated such that it replaced precisely an integer number of layers of the single crystal.  

This ensured that the beads resting on the spacer filled the entire available surface without 

leaving any gaps, forming a high quality first layer, on which the quality of the whole 

upper crystal critically depended.  In most of the experiments, the thickness of the spacer 

was chosen to be 7.05 ± 0.01 mm. 

The base of the template was made fairly thick (84.45 mm) to allow temporal 

separation between the ultrasonic pulse that was directly transmitted through the crystal, 

and all of its subsequent multiple reflections inside the substrate.  At the initial stage of 

experiments, the substrate was made of acrylic.  Later on, acrylic was replaced by 

polyethylene.  The main reason for the change was the higher sound attenuation properties 

of polyethylene, which helped prevent multiple reflections inside the substrate from 

overlapping with the directly transmitted pulse.  The overlap was not an issue in the 

transmission experiments with single 3D crystals, but became important in the resonant 

tunneling experiments with double crystals, since in this case the transmitted pulses 

extended for times much longer than the round-trip time of multiply reflected echoes 

inside the substrate.  An additional advantage of using polyethylene over acrylic was a 
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reduction of the reflection coefficient at the water/substrate interface, since the acoustic 

impedance of polyethylene is closer to that of water (speed of sound in polyethylene is 

lower than that in acrylic).  The density and velocity mismatch in the case of 3D crystals 

was even larger than for 2D crystals, as tungsten carbide has density of 13.8 g/cm3, 

longitudinal velocity of 6.6 mm/μs and shear velocity of 3.2 mm/μs.  The actual sample 

(single 3D crystal) is shown in Figure 3.1.6, while the close-up of its surface is presented 

in Figure 3.1.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.6:  3D single phononic crystal. 
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Figure 3.1.7:  Close-up view of the surface of the crystal, which is 
shown in Figure 3.1.6. 
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3.2  Mechanical apparatus 

3.2.1  Apparatus for the experiments with 3D phononic crystals 

All of the experiments described in this thesis were conducted with samples and 

ultrasonic transducers immersed in a tank filled with reverse osmosis water.  Water was a 

natural choice of surrounding medium for our samples since most of my phononic crystals 

had solid scatterers in a water matrix and also because water is a convenient (readily 

available, low attenuation) media for sound propagation at the frequencies used in the 

experiments. 

Two water tanks of different dimensions were used in the course of the 

experiments.  The ultrasound resonant tunneling experiments were performed in a larger 

tank made of reinforced fiberglass measuring 120 x 120 cm in its base and 100 cm deep, 

since this tank allowed achieving a larger separation between the sample and the 

generating and receiving transducers.  The significance of this will be explained in the 

Section 4.2.3.  For these experiments a special support stage was designed, which 

consisted of a stainless steel plate with four threaded rods screwed to it and two plastic 

plates that were allowed to slide along rods and were secured in a given position by nuts.  

The generating transducer was mounted on the metal base, the middle plate supported the 

sample whereas the upper plate had a receiving transducer attached to it.  This 

configuration allowed the distances between the sample and transducers to be quickly 

changed and greatly facilitated the parallel alignment of the transducers and sample.  To 

eliminate any stray signals, all three plates were wrapped in Teflon tape, which has been 

shown by previous experiments in our laboratory to be an excellent sound absorber.  
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Figure 3.2.1 gives a schematic diagram of the experimental set-up along with a picture of 

the stage sitting in the tank with the sample in place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1:  Experimental set-up for resonant tunneling experiments: (a) Large 
tank and supporting stage geometry, (b) Picture of the stage with mounted 
transducers and sample in place (Teflon tape was added later on). 
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3.2.2  Apparatus for the experiments with 2D phononic crystals 

For the negative refraction and focusing experiments a glass aquarium was used 

with base dimensions of 122×60 cm and a depth of 62 cm.  Walls of the tank were lined 

with Styrofoam to absorb incident sound waves.  To break up remaining reflections into 

many directions vertical Styrofoam strips were glued around the tank at about 10-15 cm 

intervals.  A metal frame was built around the tank to mount the sample as well as the 

generating and receiving transducers [Figure 3.2.2].  Many of the experiments with 2D 

phononic crystals involved scanning of the output field with the hydrophone in a 

controlled grid.  This was achieved with the help of the 3D motorized stage, which also 

was mounted on the metal frame.  The motorized stage was controlled directly from the 

computer using custom written MATLAB codes (courtesy of Matthew Hasselfield). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.2:  Geometry of the experiments conducted in the small water tank. 
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3.3  Electronics 

3.3.1  Generating electronics 

In all our experiments radio frequency (RF) pulses were used to drive generating 

and receiving transducers.  To produce RF pulses, three different setups were employed. 

In the first setup, the tone-bursts were generated with the help of a MATEC pulse 

modulator & receiver model 6600 with an R.F. plug-in model 755, which covered a 

frequency range of 1 MHz to 20 MHz.  The width of the tone-bursts was controlled by an 

external custom-built pulse generator.  The output of the MATEC generator was 

connected to two fixed value attenuators totalling 13 dB to reduce the magnitude of the 

output pulse to the level of the transducer’s optimal response.  The attenuated pulse was 

then sent to the generating transducer. 

The second set-up used a Fluke digital RF synthesizer model 6060B as a generator.  

This system is characterized by an outstanding stability due to its internal 10 MHz crystal 

oscillator, which is kept in a temperature-controlled oven.  The device can generate 

continuous waves in a wide frequency range from 0.01 MHz to 1050MHz, and in an 

amplitude range from –127 dBm to +13 dBm.  To produce square pulses, a Stanford 

digital delay generator DG535 was used.  The generator had four adjustable output 

channels, A to D.  With individual channels set appropriately, the XOR output signal of a 

square shape could be produced.  The Stanford generator used the output CW wave from 

the Fluke as an external trigger, which ensured no phase drift between the CW signal and 

the envelope.  To produce this trigger signal for the Stanford generator, the output CW 

wave was split by a power splitter (Merrimac PDM-20-250, with 50 Ω input and output 

impedances).  One part of the split signal was used as a trigger signal for the Stanford 
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generator, which then produced a square envelope.  The output signal from the Stanford 

generator along with the second part of the split CW signal were sent into mixers, which 

performed the actual shaping of the CW wave into a square pulse.  Three Mini-Circuits 

ZAY-3 mixers, connected in series to minimize leakage of the CW signal, were used.  To 

fully excite the generating transducer, the square pulse was amplified by the Amplifier 

Research model 250L power amplifier.  In continuous mode its power output was 250 

watts over a wide frequency range from 0.01 to 220 MHz. 

The last generating set-up used an Agilent 33220A arbitrary waveform generator 

(AWG) to produce input pulses.  This generator was capable of generating pulses of 

different shapes (e.g. sine, square, triangle, etc.) in different modes (continuous, burst) 

over a wide span of frequencies from 1 μHz to 20 MHz, with peak-to-peak magnitude 

ranging from 10 mV to 10 V.  The AWG also had a GPIB remote interface, which 

allowed programming the generator to produce pulses of any desired shape in addition to 

the above mentioned built-in pulse shapes.  In my experiments, the AWG was 

programmed to produce a narrow (in the time domain) Gaussian pulse with a specified 

carrier frequency.  The pulse was then amplified by the Amplifier Research amplifier and 

sent to the generating transducer. Schematic diagrams of all three generating electronics 

set-ups are shown in Figure 3.3.1. 
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Figure 3.3.1:  Three configurations of generating electronics set-ups. 
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3.3.2  Receiving electronics 

The main goal of the receiving setup is to detect, process if necessary, and record 

output signals.  The transmitted signals were detected by ultrasound transducers or a 

hydrophone, depending on the experiment.  These devices will be described in detail in 

the next section.  Processing of the signal chiefly required its amplification and sometimes 

filtering.  Recording the signal ensured that the waveform was saved in a form usable for 

future analysis. 

Before the signal detected by the receiving transducer could be amplified, the 

signal’s magnitude had to be adjusted to avoid saturating the amplifier.  This was achieved 

by inserting a low power, precision Telonic attenuator model 8143S between the 

transducer and the amplifier, which could be adjusted from 0 to 110 dB in steps of 1dB. 

The amplification of the adjusted signals was carried out by three-stage Matec 

Receiver amplifier model 605, usable in the frequency range from 100 kHz to 25 MHz.  

At the first stage, a 20 dB broadband (100 kHz – 30 MHz) preamplifier model 253 was 

used.  The second stage adjustable gain (10 to 60 dB) amplifier was not used in the 

experiments.  The final amplification stage provided fixed gain of 24 dB magnitude and 

was preferred over the adjustable amplifier because of its better noise characteristics. 

When needed, high- and/or low-pass Butterworth LC filters were used.  For 

example, a 1.5 MHz low-pass filter was used repeatedly in experiments involving the 

hydrophone (described in Section 3.4.2) as a detector to remove the high-frequency noise. 

After amplification and filtering, the signal was sent to the Tektronics digital 

oscilloscope model 544A, which is an 8 bit, 1 Giga-sample per second digitizing 

oscilloscope.  The maximum record length is 50,000 points.  The scope also has an 

averaging mode enabling averaging of up to 10,000 consecutive acquired signals.  The 
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GPIB interface of the Tektronics oscilloscope allowed a computer to control the 

oscilloscope and download waveforms from it.  The programs to perform these operations 

were written in Visual C++ and in MATLAB.  Figure 3.3.2 presents a schematic diagram 

of the receiving electronics configuration. 
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Figure 3.3.2:  Receiving electronics set-up. 
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3.4  Ultrasound generators and detectors 

3.4.1  Plane wave immersion transducers 

The operation of all ultrasound transducers used in my experiments is based on the 

well-known piezoelectric effect exhibited by the material from which the transducer is 

made.  When a sound wave is incident on such a material, its crystal lattice is deformed by 

the oscillatory pressure fluctuations, producing a periodic electric field inside the material, 

which is proportional to the average pressure field across the face of the piezoelectric 

crystal.  The reverse also holds true, i.e. the crystal lattice is deformed when an electric 

field is applied to a piezoelectric material.  Thus, transducers can be used both to detect 

and generate acoustic waves. 

In most of the experiments, incident plane ultrasound waves were created by flat 

circular immersion transducers produced by Panametrics INC, which had PZT (lead 

zirconium titanate) as the piezoelectric material.  The basic design of such a transducer is 

explained in Figure 3.4.1.  The main part of the transducer is a thin disk of PZT, which is 

responsible for generation and detection of ultrasound waves.  Upon application of the 

electrical field, PZT generates ultrasound vibrations that propagate in all directions away 

from the disk.  The thickness of the disk is chosen to be half the wavelength of ultrasound 

at the central operating frequency of the transducer, since this condition ensures 

constructive interference of multiple echoes inside the PZT.  However, due to high 

impedance mismatch between the piezoelectric material and the surrounding medium, one 

cannot use it effectively by simply immersing it into water, as strong reflections of 

generated ultrasound would occur at the PZT-water interfaces.  Also, since PZT is not a 

highly attenuating material, multiple reflections inside the disk will significantly increase 
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the length of the pulse in time.  This effect is known as ringing of the transducer.  To 

remove this problem a highly attenuative material with impedance comparable to the 

piezoelectric material is glued on the rear side of the active layer.  This backing material 

absorbs the ultrasound waves transmitted through its interface with the PZT disk, thus 

significantly reducing its ringing.  The problem of strong reflection due to impedance 

mismatch at the front face of the PZT layer is solved by introducing a matching layer.  Its 

impedance is between that of the active element and water and its thickness is chosen to 

be a quarter of a wavelength.  Because there is a π phase shift acquired upon reflection at 

the interface with the active layer, and no phase shift at the interface with water, multiple 

reflections inside the matching layer interfere constructively and enhance the coupling 

between the transducer and the water. 

 

 

 

 

 

 

 

 

 

The spatial pattern of the transducer field can be calculated with the well-known 

Rayleigh integral [78].  For the purposes of the calculation, the transducer is approximated 

as a thin disk radiator of radius a, immersed in liquid (water in our case) and oscillating 

Figure 3.4.1:  Diagram showing plane wave transducer design. 
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uniformly with the speed )exp(0 tiU ω  directed along the normal to the surface of the disk.  

Figure 3.4.2 shows the geometry used in the calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

The magnitude of the pressure on the axis of the disk (i.e. along the z-axis) is given 

by the following expression [80]: 
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where ρ0 is the density, c is the phase velocity of sound and k is the wavevector in water.  

The ratio ( )002/ cUP ρ  is plotted in Figure 3.4.3 for a half-inch diameter transducer at 1 

MHz. 

 

Figure 3.4.2:  Geometry used for calculation of the field produced by a 
circular piston oscillating uniformly in the x-y plane. 
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In the near-field (Fresnel zone) the pressure is rapidly oscillating due to strong 

interference of the waves emitted from different points on the disk.  In the far-field 

(Fraunhofer zone) the behaviour changes to a smooth curve slowly decreasing with the 

distance.  The near-field distance Fz  is defined as the position of the last maximum in the 

pressure and is given by the expression: 
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which reduces to: 
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when λ>>a .  Because of these rapid field fluctuations, samples were always positioned 

in the far-field of the transducers. 

Figure 3.4.3:  Thin disk radiator pressure along the z-direction. 
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In the far-field ( Fzz > ) the off-axis intensity of the transducer field is represented 

by a spherical wave modulated by a directivity factor, which is represented by the ratio of 

the Bessel function of order one )(1 xJ  to its argument [80]: 
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The shape of the directivity factor in (3.4) closely resembles the one of the sinc function 

[Figure 3.4.4], which is appropriate for a line source. 

 

 

 

 

 

 

 

 

 

 

 

With the help of (3.4), a -6 dB beam divergence angle θD (corresponding to the angle at 

which the intensity drops to half its maximum value at θ = 0) can be defined: 
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xx)sin(  is also shown for comparison. 
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as explained in Figure 3.4.5. 

 

 

 

 

 

 

 

 

3.4.2  Hydrophone 

In some of the measurements a hydrophone produced by Specialty Engineering 

was used to detect the ultrasound waves instead of Panametrics transducers.  The 

hydrophone is essentially a miniature transducer with the PZT element diameter of 400 

μm, which is comparable to the wavelength of the sound wave in water for a frequency of 

about 4 MHz.  Because the active element was so small, the magnitude of the signal 

produced by the hydrophone is also very small so it was never used for generation of 

ultrasound.  However, for the same reason of small size, the hydrophone was the best 

candidate to detect ultrasound waves in negative refraction and focussing experiments, 

which involved mapping of the sound field emerging from the phononic crystals in a 

rectangular grid pattern.  These experiments were conducted in the frequency range from 

0.50 to 1.0 MHz with the wavelength in water ranging from 3 to 1.5 mm.  At such 

frequencies the size of the hydrophone’s detecting element (0.4 mm) allowed imaging of 

the individual ripples in the outgoing pulses.  This would be impossible to achieve with 

Transducer 
-6 dB Beam line

4zF

θD 

Figure 3.4.5:  Transducer beam pattern. 
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regular plane wave Panametrics transducers, the smallest active element of which was 

12.7 mm (half an inch) in diameter in this frequency range.  Phase and amplitude 

cancellations of the average field measured by the large diameter transducer would lead to 

the loss of the fine details of the sound field.  Since the PZT element of the hydrophone 

was very thin, the resonant frequency of the hydrophone was much higher than the 

frequency of interest in my experiments resulting in a weak but very broad band response 

to the incident waves.  To amplify the detected signal amplitude a 15 dB preamplifier was 

always used with the hydrophone. 

3.4.3  Pinducer 

A pinducer is a circular transducer with its active element’s diameter larger than 

the one of the hydrophone but significantly smaller than any of the Panametrics 

transducers.  The pinducer used in my experiments was made by Valpey Fisher.  The PZT 

element of the pinducer was secured inside metal tubing, which had an outer diameter of 

2.4 mm.  The precise diameter of the pinducer’s active element was not known, but from 

the analysis of the field produced by the pinducer its effective diameter was estimated to 

be about 2.2 mm.  The details of this analysis are presented in Appendix A.  As the 

effective size of the pinducer was found to be about equal to or even smaller than the 

wavelength of sound in water at frequencies up to 1 MHz, it served as a good 

approximation to the point source and was used in some of the experiments on imaging by 

the rectangular-shaped phononic crystal. 

3.4.5  Line source transducer 

It will be explained later in Chapter 5 that during the experiments on the imaging 

of point sources with the rectangular-shaped 2D crystal the need arose to use a sound 

source of even smaller size than the pinducer.  To this end I have built several transducers 
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in the shape of the narrow strips.  This choice of a shape is dictated by the idea of 

obtaining a line source, which is essentially a 2D point source and thus particularly well 

suited to experiments on sound focussing by 2D phononic crystals.  As a material for the 

transducer, polyvinylidene fluoride (PVDF) polymer was used. This material is known to 

exhibit the piezoelectric effect.  The polymer, supplied by Pennwalt Corporation, Kynar 

Piezo Film Department, was cast in sheets with gold film evaporated on both surfaces.  

The thickness of each sheet was only 110 μm, which made it very easy to cut into pieces 

of any desired shape. As the resonant frequency of a single sheet was around 10 MHz, five 

PVDF strips were glued together with a tiny amount of low viscosity epoxy, which 

lowered resonant frequency of the whole piece to the required value of about 0.5 – 0.6 

MHz.  The best transducer built in this way and used in focussing experiments with a 

methanol filled 2D crystal was 35 mm long, 0.58 mm thick and 0.55 mm wide, which is 

about 20 % of the sound wavelength in water (2.7 mm at 0.55 MHz).  Once all pieces 

were glued together, both surfaces of the strip were covered with a thin layer of epoxy to 

waterproof the conducting surfaces, leaving two clean spots at the ends of each surface of 

the strip for electrical contacts to be attached.  Because the irradiating area was so small, 

one of the greatest challenges was to obtain an appreciable magnitude signal from the 

transducer.  The problem was aggravated by the impedance mismatch between the 

transducer and the amplifier, which prevented all the power to be delivered to the 

transducer.  The impedance mismatch problem was solved by building an impedance 

matching transformer, which basically consisted of two coils wound on the same 

commercially available circular-shaped core made of ferrite.  One coil was connected to 

the strip transducer while the other one was connected to the amplifier.  The amount of 
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turns in transducer coil was 100 while the coil connected to the amplifier had 15 turns.  

The particular numbers of turns in each coil were found by the method of trial and error 

and produced the largest amplitude signals.  Figure 3.4.6 shows schematic design of the 

strip transducer and the impedance matching transformer.  Figure 3.4.7 is a picture of the 

strip transducer sitting in a specially designed holder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4.6:  PVDF transducer: (a) Basic design and actual dimensions. 
(b) Schematic diagram of an impedance matching transformer. 
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Figure 3.4.7:  PVDF transducer holder with the transducer in place. 
(a) General view. (b) Close-up. 
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3.5  Measurements 

All the experiments described in this thesis, independent of the samples probed, 

are similar to each other as they all consisted of three basic steps, namely: the generation 

of an ultrasound pulse, its propagation through the sample and the investigation of an 

outgoing pulse or, more generally, of the sound field after the input pulse has emerged on 

the output side of the sample.  The differences between experiments came from the way 

the first and last steps were realized.  Generally speaking, all experiments could be divided 

into two major types: transmission experiments and experiments on the mapping of the 

entire sound field emerging from the sample.  This section describes both types of 

experiments.  It also explains how the acquired data were analyzed and what information 

could be extracted from each measurement technique. 

3.5.1  Transmission experiments 

In all transmission experiments I have measured ballistic pulses emerging from the 

output side of the sample after a short Gaussian pulse was normally incident on the other 

side of the sample.  I have used flat circular immersion Panametrics transducers for 

generation as well as detection of ultrasound pulses.  To ensure the best possible 

approximation of the incident pulse by a plane wave, samples were placed in the far-field 

of both generating and receiving transducers.  One of the most important parts of any 

ultrasonic experiment is a proper alignment of the transducers and the sample with respect 

to one another.  Extra care was taken before beginning measurements to establish 

parallelism between surfaces of each transducer and the sample, which guaranteed normal 

incidence of the input pulse on the sample surface.  In addition to the parallelism, the 

alignment of the transducers with respect to each other was also checked.  The geometries 
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of the actual experiments with 3D and 2D crystals were already discussed in Sections 

3.2.1 and 3.2.2.  In the course of the experiments, several waveforms were recorded as the 

sample was moved slightly with respect to fixed transducers, allowing for pulses 

propagating through different parts of the sample to be recorded.  The acquired pulses 

were then averaged to reduce the influence of the imperfections unavoidably present in 

any of my phononic crystals. 

To analyze recorded sample pulses properly one also needs a reference pulse. In 

my case the reference pulse was obtained by recording a pulse with the sample removed 

from the experimental set-up.  For 2D crystals the reference pulse propagated through just 

plain water, while for 3D crystals the sample was substituted by an acrylic or polyethylene 

block of thickness identical to the thickness of the base of the template supporting the 

crystal beads (see Section 3.1.2).  The recorded pulse was not exactly the same as the 

input pulse, but as all my samples were very thin (1.5 cm at most), the attenuation of the 

pulse in water could be neglected, and the input pulse was obtained by time shifting the 

reference pulse by an amount watLt υΔ = , where L is the sample thickness and watυ  is the 

speed of sound in water.  Figure 3.5.1 shows typical input and transmitted pulses for a 

double 3D crystal, each crystal having 4 layers of beads.  Because the central frequency of 

the input pulse was chosen to lie in the range of frequencies corresponding to the complete 

band gap of the single crystals, the amplitude of the transmitted pulse is reduced by as 

much as three orders of magnitude compared to the input pulse.  For representation 

purposes the input pulse was normalized to unity and the transmitted pulse was 

normalized by the same scale factor.  The sample pulse also extends much longer in time 

due to multiple reflections inside the cavity (aluminum spacer) between the two crystals. 
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There are several physical quantities that I was able to measure by analyzing the 

transmission experiments.  As suggested by the very name of the experiment, a 

transmission experiment provides information on the transmission coefficient through the 

sample.  Since any pulse is actually a collection of single frequency plane waves with 

properly chosen magnitudes and phase shifts, one can obtain the transmission coefficient 

as a function of frequency.  To this end, the Discrete Fourier transforms (DFTs) of the 

input and sample pulses were first calculated in IGOR data analyzing software.  To 

calculate DFT, IGOR uses a Fast Fourier Transform (FFT) technique based on a prime 

factor decomposition algorithm.  In order to increase frequency resolution of the resulting 

DFTs and to speed up the calculations, the original waveforms were padded with extra 

zeros to bring the total number of points to the integral power of 2 ( n2 ).  The typical total 

Figure 3.5.1:  Input and transmitted pulses through a 3D double phononic crystal, 
each crystal having 3 layers.  The vertical scales for the input and transmitted pulses 
are on the left and on the right respectively. 
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number of points in the waveform after zero padding was 122 , but in some cases as many 

as 142  points were used.  The amplitude transmission coefficient for each frequency is 

given by the ratio of the magnitudes of DFTs of the sample and input pulses: 

 
)(
)(

)(
fA
fA

fT
ref

trans=  (3.6) 

Of course, meaningful results are obtained only in the frequency range 

corresponding to the bandwidth of the input pulse.  FT amplitudes of the input and 

transmitted pulses from Figure 3.5.1 are shown in Figure 3.5.2, while the corresponding 

amplitude transmission coefficient, which was calculated according to expression (3.6), is 

presented in Figure 3.5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5.2:  Fourier Transform magnitudes of the input and transmitted 
pulses shown in Figure 3.5.1. 
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The drop in transmission from about 0.70 MHz to 1.3 MHz is brought about by the 

single crystal’s band gap.  Transmission coefficient also exhibits a peak in the middle of 

the band gap at about 0.94 MHz, which is due to the resonant tunnelling of the incident 

pulse through the double crystal.  Position of the peak is basically determined by the 

thickness of the aluminum spacer, as the resonant tunnelling occurs when cavity thickness 

equals an integer number of half the wavelength of the sound wave inside the cavity.  This 

effect will be described in detail in Chapter 4.  It is also worthwhile noting the excellent 

signal-to-noise ratio that is evident in Figure 3.5.3.  Noise reduction was achieved by 

signal averaging many consecutive pulses using the “Average Mode” of the Tektronix 

oscilloscope.  For example, the signal displayed in Figure 3.5.3 was obtained by averaging 

a maximum number of 10,000 consecutive waveforms.  The minimum signal recorded in 

this figure is significantly larger than the minimum sensitivity of the equipment, which has 

enabled amplitude transmission coefficients as small as 10-7 to be measured [69]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5.3: Transmission coefficient through the 3D double phononic crystal 
obtained by analyzing the input and transmitted pulses shown in Figure 3.5.1. 
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In addition to the transmission coefficient, ballistic pulse measurements can also 

provide information on the phase velocity phaseυ  of sound in the sample and eventually 

allow the dispersion curve to be obtained.  This is achieved by analyzing the cumulative 

phase difference φΔ  between sample and input pulses.  This phase difference is given by: 

 fLkL
phaseυ
πφΔ 2

==  (3.7) 

where L is the sample thickness.  From (3.7) it is possible to obtain phase velocity as 

function of frequency.  The ambiguity of 2π can be eliminated by making measurements 

at sufficiently low frequencies, since the phase difference must approach zero as 

frequency goes to zero.  Expression (3.7) also allows the dependence of the circular 

frequency ω on the wavevector k, conventionally known as the dispersion curve, to be 

determined. 

The last quantity to be obtained from transmission measurements is the group 

velocity.  By its definition the group velocity is a velocity with which a wave packet 

travels as a whole.  Since the transmitted pulse may get distorted from its original 

Gaussian shape as it passes through the sample, especially if the pulse bandwidth is wide, 

the group velocity may lose its meaning in this case [66].  Since I performed my 

experiments with the pulses of very wide bandwidths, the group velocity could not be 

generally determined from the sample pulse directly.  However, it is still possible to 

recover two essentially Gaussian pulses by digitally filtering input and output pulses with 

a narrow Gaussian bandwidth centred at the frequency of interest.  The group velocity at 

that frequency is then found by the ratio of the sample thickness L to the time delay Δtg 

between two filtered pulses: 
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 gg tL Δυ =  (3.8) 

 

This procedure is illustrated by Figure 3.5.4, which shows pulses from Figure 3.5.1 

filtered at the central frequency of 0.60 MHz with the bandwidth of 0.01 MHz.  The delay 

time is also indicated.  Obviously, by repeating the procedure for different frequencies, the 

frequency dependence of the group velocity can be found. 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.2  Field mapping experiments 

As was already mentioned, in all of the transmission experiments a flat circular 

Panametrics transducer was used as a receiver.  The diameter of the transducer (usually 1 

inch) was much larger than the ultrasound wavelength in water, so that recorded field was, 

in fact, the average field across the face of the transducer’s PZT element.  In this way one 
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Figure 3.5.4:  Group velocity calculation from the time delay measured 
between filtered input and transmitted pulses. 
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loses some details of the field, when it is not uniform spatially.  It is not a problem in the 

transmission experiments in which one is interested in the coherent field, i.e. the field that 

is spatially uniform in a plane parallel to the sample faces.  Another benefit of such 

averaging is a reduction of the noise in the signal.  However, in the negative refraction and 

sound focusing experiments, the exact spatial distribution of the emerging field is what 

was of interest.  For this reason, large diameter transducers could not be used in those 

experiments.  To resolve subwavelength details and map the field accurately one needs to 

resort to a sound detector with physical dimensions less than a wavelength.  A hydrophone 

with an active element diameter of 0.4 mm clearly satisfied this condition (since in all 

experiments involving mapping of the outgoing field sound wavelength in water ranged 

from 1.5 to 3.0 mm) and was exclusively used as a detector.  Depending on the 

experiment, a flat Panametrics transducer, the pinducer, or the line source transducer were 

used as generators of input pulses. 

In actual mapping experiments, the sound field was measured at every point of a 

rectangular grid, which involved mounting the hydrophone in a 3D motorized translation 

stage (see Section 3.2.2).  The plane of the grid was perpendicular to the rods, intersecting 

them in their mid-points.  To resolve all the essential features of the field, the distance 

between grid points was set at either 0.5 mm or 1.0 mm. 

The net result of the experiment is a large number of data files, one file for each 

grid point.  These files were later used to create image plots of the fields.  The analysis of 

the acquired waveforms was done in either the time or frequency domain. 

In the time domain type of analysis, the value of the field at each grid point was 

read at some particular time and then used to create an image plot, which was essentially a 

snapshot of the field.  By creating several image plots for different times, one can also 
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investigate a time evolution of the transmitted pulses.  In other words, it is possible to 

visualize the pulse from the moment it emerges from the sample’s output surface till the 

time it leaves an area covered by the grid.  This visualization is very helpful, as image 

plots can immediately tell if the outgoing pulse was refracted negatively or positively.  

Image plots also allow the direct measurement of the refraction angle since, by 

reconstructing the spatial distribution of the wave field, the wave fronts are clearly 

displayed.  Since the refraction angle was expected to be strongly frequency dependent, its 

frequency dependence was investigated by initial digital filtering of each waveform with a 

narrow (usually 0.05 MHz) Gaussian bandwidth centred at the frequency of interest (see 

Section 3.5.1), which gives long (in the time domain) Gaussian pulses.  These filtered 

pulses were then used to create image plots. 

In the frequency domain picture, the analysis procedure was similar to the previous 

one except that first the Fast Fourier transforms of the acquired waveforms were 

calculated.  After that, magnitudes of each FT were read at a single frequency and their 

values were used to make the image plot.  The image plot in this case represented an 

amplitude map (proportional to the square root of intensity), which would be obtained 

from the field plot if continuous monochromatic wave were used as an input signal instead 

of a pulse. 

To finish the discussion of the analysis part, two sample image plots are presented.  

The image plot in Figure 3.5.6 is obtained while analyzing one of the experiments on 

negative refraction with the prism-shaped 2D crystal.  A typical picture produced in the 

focusing experiment with rectangular-shaped 2D crystal is shown in Figure 3.5.7.  Since 

the hydrophone sensitivity is uncalibrated, the colour scales of both image plots are in 

arbitrary units, which correspond to the voltage measured on the oscilloscope.
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Figure 3.5.5:  Sample image plot of the outgoing pulse in the negative refraction 
experiment with the prism-shaped 2D crystal.  Original waveforms were filtered 
with the Gaussian bandwidth of 0.05 MHz centered at 0.85 MHz.  The crystal is also 
shown. 
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Figure 3.5.6:  Sample image plot showing field amplitude distribution at 
the frequency of 0.54 MHz produced in the focusing experiment with the 
rectangular-shaped 2D crystal.  The crystal is also indicated. 

-10

-5

0

5

10

y 
(m

m
)

20 15 10 5
x (mm)

0.0030.0020.0010
a.u.



 102

4. Experiments with 3D phononic crystals 

This chapter is devoted to the experiments with 3D phononic crystals.  (Section 

3.1.2 provides a detailed description of the samples used in the experiments).  The main 

purpose of this chapter is to present the results of the resonant tunnelling experiments 

through a double barrier consisting of two 3D phononic crystals separated by a cavity, 

which for brevity will be referred to as a double phononic crystal later on (as opposed to a 

regular single phononic crystal).  The chapter starts by describing experiments to 

investigate the properties of single 3D phononic crystals and continues with the 

subsequent description of the resonant tunnelling experiments. 
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4.1  Properties of single 3D phononic crystals 

This section provides a brief description of the transmission experiments through 

the single 3D phononic crystals.  These experiments let me verify some of their major 

properties such as the existence of the spectral band gaps and the linear increase of the 

group velocity with the sample thickness for the pulses transmitted through the crystal at 

the band gap frequencies. 

4.1.1  Transmission spectra of single 3D phononic crystals 

To better understand results of the resonant tunnelling experiments with double 

phononic crystals, it is worthwhile to review briefly the properties of single crystals, 

which were already extensively studied by Suxia Yang et al. [29].  The main purpose for 

the experiments described below was to ensure that single crystals, which comprise a 

double crystal, exhibit behaviour consistent with that reported by Yang at al. and were of 

good quality. 

As was already explained in Section 3.1.2, my 3D phononic crystals were made of 

very monodisperse tungsten carbide spheres (0.800 mm in diameter) immersed in water.  

Spheres were assembled in an FCC crystal lattice so that the normal to the crystal surface 

was along the [111] direction.  According to the band structure calculated with the help of 

the Multiple Scattering Theory (MST), which was described in Section 2.1.3, a complete 

band gap exists for the range of frequencies between 0.98 and 1.20 MHz, which is 

indicated on the plot by a shaded area [Figure 4.1.1].  The widest part of the band gap is 

along the [111] (or the ΓL) direction and extends from 0.80 MHz to 1.20 MHz. 
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The predictions of the MST have previously been shown [29] to give an excellent 

description of the band structure and transmission coefficient for this phononic crystal.  

Figure 4.1.2 presents the transmission coefficient as a function of frequency for 2-, 3- and 

4-layer 3D phononic crystals.  The frequency at the minimum in the transmission 

coefficient agrees well with the central frequency of the stop band along the ΓL direction, 

as displayed in Figure 4.1.1.  However, the edges of the stop band seen in the transmission 

coefficient (Figure 4.1.2) do not agree exactly with those predicted by the MST band 

structure (Figure 4.1.1), a result that is not surprising since the band structure is calculated 
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Figure 4.1.1:  Band structure of the 3D phononic crystal made of tungsten 
carbide spheres immersed in water and assembled in an fcc crystal lattice. 
Reduced frequency is given in units of 2πυw/a, where υw is the speed of sound in 
water and a is the lattice constant; note that 2da = , where d is the diameter of 
a single sphere. (Calculations courtesy of Dr. Zhengyou Liu). 
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for an infinite crystal, while the samples have a finite number of layers.  As expected, the 

drop in the transmission caused by the band gap becomes deeper with increasing thickness 

of the crystal. 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2  Tunnelling of ultrasound pulses through single 3D phononic crystals 

Yang et al. [29] also demonstrated that for frequencies corresponding to the 

complete band gap ultrasound pulses propagate through phononic crystals via tunnelling, 

an effect analogous to the tunnelling of a quantum mechanical particle through a potential 

barrier.  This conclusion was based on the fact that in their experiments the group velocity 

was found to increase linearly with the thickness of the crystal, which also means that the 

pulse transit time (or group time) remained essentially constant for all samples.  This 

behaviour is in analogy to the prediction by Hartman [28], who showed that the group 

time of the electron through a potential barrier is independent of the barrier thickness. 
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The group velocity dependence on the sample thickness observed in my 

experiments is very similar to the previous findings of Yang et al. (see Section 3.5.1 for 

the details on how the group velocity was determined).  Figure 4.1.3 displays group 

velocity as a function of frequency for 2-, 3- and 4-layer samples. 

 

 

 

 

 

 

 

 

 

 

 

 

The group velocity dependence on the sample thickness at 0.95 MHz is presented 

in Figure 4.1.4.  Group velocity increases linearly with crystal thickness and the inverse 

slope of the linear fit provides the value of the group time, which was found to be 0.68 μs.  

Independence of the pulse transit time on the crystal thickness is a clear indication that 

tunnelling is involved at the frequency region corresponding to the band gap.  It is also 

interesting to compare the values of group velocities observed in my experiments with 

those measured by Yang et al. [29].  This comparison is done in Figure 4.1.4, which 
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Figure 4.1.3:  Group velocity of an ultrasonic pulse propagating through 2-, 3- and 
4-layer single 3D phononic crystals as a function of frequency. 
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displays their data points for 3- and 4-layer single crystals (since Yang et al. did not 

investigate 2-layer single crystals). 

 

 

 

 

 

 

 

 

 

 

 

While the values of the group velocity for 3-layer sample are virtually identical, 

the group velocity for the 4-layer sample measured by Yang et al. falls below of the one 

observed by me.  This might indicate that my 4-layer crystal was of better quality (e.g. 

better regularity, fewer crystal defects) as compared to the one employed by Yang et al. in 

their experiments.  Another interesting fact is that the straight line obtained by fitting my 

data points passes through the origin of the coordinate system within the uncertainty 

associated with the fit (see inset in Figure 4.1.4), which certainly makes sense as the group 

time through a zero thickness sample should also be zero.  In the case of the data obtained 

by Yang et al., however, a straight line fit (for sample thicknesses up to 12 layers) did not 

extrapolate to zero but to some finite value of the group velocity, suggesting that their 

values were reduced by imperfections of the sample.  Therefore, the comparison between 

Figure 4.1.4:  Group velocity as a function of crystal thickness at 0.95 MHz.  The 
inset, which shows the extrapolation of group velocity to zero thickness, has the 
same axis labels as the main figure. 
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my results and those of Yang et al. signifies the high degree of regularity of my 3D 

phononic crystals and provides a good starting point for subsequent experiments with the 

double phononic crystals. 

It is also of interest to investigate the dependence of the transmission coefficient 

through the phononic crystal as a function of the crystal thickness for the range of 

frequencies corresponding to the band gap.  This is done in Figure 4.1.5, which presents 

the values of the transmission coefficient through 2-, 3- and 4-layer single crystals 

measured at two different frequencies of 0.880 MHz and 0.949 MHz. 

 

 

 

 

 

 

 

 

 

 

 

At these frequencies the modes inside the crystal are purely evanescent and 

therefore the transmitted amplitude must decrease exponentially with the crystal thickness, 

i.e. )exp( LT κ−∝ , where L is the crystal thickness and κ is the frequency-dependent 

wavevector of the evanescent mode.  One can find the evanescent wavevector κ by 

Figure 4.1.5:  Transmitted amplitude as a function of the crystal thickness 
compared with the exponentially decaying function )exp( Lκ− . 
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plotting the transmission coefficient versus crystal thickness and comparing the data with 

a function of the form )exp( LA κ− , which can be seen from Figure 4.1.5 to give an 

excellent description of the data over the limited range of available thicknesses.  The value 

of κ at 0.880 MHz frequency was found to be (0.8±0.1) mm-1 and (0.98±0.02) mm-1 at 

0.949 MHz frequency.  The uncertainty in κ at 0.88 MHz is larger, because this frequency 

is close to the band gap edge, which itself depends somewhat on the number of layers for 

thin crystals.  At this frequency the exponential decay with thickness could be measured 

for the double crystals [Figure 4.1.5], giving an effective κ approximately twice as large 

when an amplitude is plotted versus individual crystal thickness. 

The above experiments with single 3D crystals convincingly demonstrate that for 

sound waves at frequencies corresponding to the spectral gap a phononic crystal acts as an 

acoustic analogue of a potential barrier for a quantum mechanical particle of energy less 

than the barrier height.  Quantum Mechanics also predicts that the transmission coefficient 

of a particle incident on a double potential barrier will exhibit narrow peaks of unit 

magnitude, an effect known as resonant tunnelling (which will be dealt with in more detail 

in the next section).  Therefore, for frequencies in the band gap one would expect that the 

structure consisting of two phononic crystals separated by a cavity, which supports free 

propagation of sound waves, will act as an acoustic analogue of the quantum mechanical 

double potential barrier.  With the goal of observing resonant tunnelling of acoustic 

pulses, I have performed a series of experiments on double phononic crystals, which are 

described in Section 4.2.2.  The results of these experiments are summarized in a joint 

paper [67], in which resonant tunnelling of ultrasound through both 2D and 3D phononic 

crystals is investigated. 
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4.2  Resonant tunnelling of ultrasound pulses 

This section presents the experimental evidence of the resonant tunnelling of 

ultrasound pulses, which was observed in the transmission experiments through 3D double 

phononic crystals.  The resonant tunnelling of a quantum mechanical particle through a 

double potential barrier is described first, and the experimental results follow. 

4.2.1  Resonant tunnelling through a double potential barrier 

Before considering the experimental results on the resonant tunnelling of acoustic 

waves through double phononic crystals, it is worth reviewing the major predictions of 

Quantum Mechanics for the resonant tunnelling of a particle incident on a double potential 

barrier.  Consider two identical rectangular potential barriers of height 0V  and width L, 

which are separated by the distance d [Figure 4.2.1]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.1:  Double potential barrier of Quantum Mechanics. 
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Suppose a particle of energy E (E < V0) is incident on the double barrier from 

either left or right.  The wave function of the particle can be written as follows: 

 

 )exp()exp()( ikxBikxAx −+=ψ  for x < 2L−  

 )exp()exp()( ikxGikxFx −+=ψ  for 2L < x < 2Ld +  

 )exp()exp()( ikxQikxPx −+=ψ  for x > 23Ld +  

 

where k is the particle wavevector given by the usual expression hmEk 2= . 

It was shown in Appendix B that coefficients A and B are related to coefficients F 

and G by the transfer matrix M, which describes the transmission of the particle through a 

single potential barrier: 
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With the help of a translation operator T, represented by the following matrix: 
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the same matrix M also connects coefficients F and G to coefficients P and Q provided we 

first translate them by the distance dL + : 
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Combining equations (4.1) and (4.2) and setting 1=A  and 0=Q  (the particle is 

incident from the left), we obtain the following matrix equation describing transmission of 

the particle through the double barrier: 
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from which the transmission coefficient t can be expressed as follows: 

 

 
]2exp[)4/1()4/1(1

)2exp(
2222 ikdSSCiS

ikLt
εεε +++−+

−
=  (4.4) 

 

where )sinh( LS κ= , )cosh( LC κ= , κκε // kk −=  and h)(2 0 EVm −=κ  is the 

imaginary wavevector of the evanescent waves inside the potential barriers.  When the 

incident energy E matches one of the energy levels of the potential well formed between 

the barriers, resonant tunnelling occurs and 1=t .  A typical transmission curve is 

presented in Figure 4.2.2, where the absolute value of the transmission coefficient t given 

by (4.4) is plotted as a function of energy of the incident particle. 
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For opaque barriers ( Lκ >>1), the transmission coefficient (4.4) exhibits maxima when: 
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From (4.5) one obtains the following resonance condition: 
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where 1)( =εδ  when 2<ε , and zero otherwise.  When the incident energy is half the 

barrier height, 0=ε  and condition (4.6) reduces to: 
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which resembles the classical Fabry-Pérot resonance condition except that n is replaced by 

(n + 2
1 ) due to the non-negligible barrier penetration depth. 

In case of 20VE =  and 1>>Lκ , we can obtain the following simplified 

expression for t from (4.4): 
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Let us find the expansion of (4.7) around the resonance in powers of ∗−=Δ kkk , 

where ∗k  is the wavevector at resonance.  The expression for t becomes: 
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 (4.8) 

 

It follows from (4.7) that at resonance 1)2exp( −=∗dik , and from (4.8) the 

absolute value of the transmission coefficient 2tT = can be found as follows: 
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4
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κΔ+
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By setting 2
1=T  in the above expression, we can find the expression for the width 

of the resonant peak kΔ : 
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 )2exp(2 L
d

k κ−≈Δ   (4.10) 

from which it is clear that the resonance peak becomes exponentially narrow as the width 

of the barriers L increases.  With the help of (4.10) we can also find the expression for the 

delay time gt  associated with the resonance: 

 

 )2exp(
2

1 Ld
dk
d

d
dt

gg
g κ

υ
φ

υω
φ

≈==   (4.11) 

 

where φ  is the transmitted phase1.  It follows from (4.11), that in Quantum Mechanics the 

transit time through a double potential barrier at resonance is inversely proportional to the 

tunnelling probability through a single barrier and becomes exponentially long compared 

with the travel time gd υ  between the barriers.  I will return to this prediction of 

Quantum Mechanics later, when the experimental results of the resonant tunnelling of 

classical sound waves will be presented and discussed. 

4.2.2  Resonant tunnelling of ultrasonic waves: Transmission 

As was already mentioned in Section 4.1.2, in the range of frequencies 

corresponding to the band gap, a sample made of two phononic crystals separated by a 

cavity, which supports free propagation of sound waves, might act as an acoustic analogue 

of the quantum mechanical double potential barrier, thus enabling the observation of the 

resonant tunnelling of classical acoustic waves.  To observe and investigate this effect, I 

have conducted a series of experiments on the transmission of ultrasonic pulses through 

                                                 
1 When E≠V0/2, the prefactors are more complicated, but the exponential dependence on Lκ still dominates 
the behaviour of both kΔ  and gt . 
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double phononic crystals.  For these experiments I have constructed 3 double phononic 

crystals, each being composed of a pair of identical single crystals separated by an 

aluminum spacer.  The choice of aluminum as a material for the spacer was dictated by its 

very low attenuation characteristics.  The double crystals differed from one another by the 

number of layers in the corresponding constituent single crystals (2, 3 and 4 layers) and 

will be referred from now on simply as 2-, 3- and 4-layer double crystals.  The input pulse, 

generated by a flat circular Panametrics immersion transducer, was incident normally on 

the crystal surface along the [111] direction and the transmitted pulse was recorded on the 

other side of the crystal with another Panametrics transducer.  The geometry of these 

experiments is schematically depicted in Figure 4.2.3. 
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Figure 4.2.3:  Schematic representation of the transmission experiments with 
3D double phononic crystals. 
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Figure 4.2.4 shows representative input and transmitted pulses.  The short input 

pulse undergoes many multiple reflections inside the cavity (which can be easily seen 

from the inset on the right panel) as it travels through the double crystal, which is the 

reason why the transmitted pulse extends over such a long time range. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.5 summarizes results of the transmission experiments with all three 

different double crystals.  The transmission coefficient through each double crystal is 

compared with the transmission coefficient through the corresponding single crystal of the 

same number of layers.  It can be seen that the doubling of the number of layers by 

moving from the single to the double crystal makes the drop in transmission (due to the 

band gap) more and more pronounced.  Also, according to our expectations, the resonant 

tunnelling peak in transmission is indeed observed in the middle of the frequency range 

corresponding to the band gap. 

Figure 4.2.4:  Input and transmitted pulses through a 3D double phononic crystal, with 
each crystal having 3 layers.  The inset, which has the same axis labels as the main 
figure, magnifies a small part of the transmitted pulse at long times to demonstrate 
multiple reverberations of the transmitted pulse inside the cavity (spacer). 
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The frequency at which the peak occurs is very close to (within less than 5% of) 

the frequency at which the spacer width is equal to the wavelength of a longitudinal sound 

wave in aluminum.  At this frequency, all multiple reflections inside the cavity interfere 

constructively, giving a rise to a resonant peak in the transmission in analogy with the 

resonant tunnelling of a quantum particle through the double potential barrier.  The main 

difference between quantum mechanical and classical resonant tunnelling is in the 

magnitude of the transmission peak, which in the case of these classical waves is far from 

being unity (compare Figures 4.2.2 and 4.2.5).  The non-unit magnitude of the resonant 

peak can be explained by absorption, which is inevitably present in any classical system 

and has no counterpart in Quantum Mechanics.  However, the situation with my double 

crystals is additionally complicated by the fact that there are several mechanisms 

contributing to the overall absorption of the system.  Probably the major source of energy 

dissipation in the phononic crystals occurs due to the viscous losses at the interfaces 

between water and beads.  As explained in [68], the viscosity of the fluid leads to the 

dissipation of the energy of the sound wave reflected/scattered by a rigid body without 

actually penetrating it, meaning that the velocity of the body’s surface and the nearest 

liquid layer attached to it is zero (note that treating the beads as rigid bodies is an excellent 

approximation for my samples as the ultrasonic energy density inside the spheres is less 

than 1% of the energy density in water at frequencies inside the band gap [29]).  Since the 

velocity of the fluid particles away from the interface is non-zero, this creates a large 

tangential velocity gradient, which in turn results in a viscous dissipation of the wave 

energy [68].  Another possible mechanism of absorption, as pointed out by Page et al. 

[69], arises from the relative motion of the spheres as the sound wave propagates through 

the crystal.  This leads to frictional losses, since spheres rub against one another.  Another 
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contributing factor is corrosion of the aluminum spacer surface, which gradually increased 

over time due to aluminum’s reactivity with water and any impurities that might be 

present in the reverse osmosis water used [84].  The corrosive layer, which formed on the 

spacer surface, decreased the amplitude of the pulse as it was undergoing multiple 

reflections inside the spacer.  This corrosion of the spacer however had an insignificant 

contribution to the overall absorption at the beginning of the experiments on each newly 

assembled sample due to the slow speed of the corrosive process, which took more than 

one week to have an appreciable effect on the ultrasonic experiments2.  As will be 

discussed later, these three energy dissipation mechanisms dominate the bulk absorptions 

of any of the crystal constituent materials (water, tungsten carbide and aluminum).  Also, 

since the previous experiments with single crystals demonstrated the high quality of my 

samples, crystal imperfections are not expected to appreciably contribute to the overall 

losses in the double crystals. 

The qualitative discussion of the role played by the absorption in reducing the 

magnitude of the resonant peak can be verified quantitatively using the MST by 

calculating the transmission through the double phononic crystal with and without 

absorption present in the system.  However, the diversity of the absorption mechanisms 

makes it impossible to incorporate all of them into the MST on a microscopic level.  Thus, 

the net energy dissipation in the system was taken into account by introducing an effective 

dissipation parameter absκ  and assigning complex longitudinal moduli β~  to both water 

                                                 
2  This slow reaction rate was checked by independent experiments in which aluminum spacer and some 
beads were immersed in reverse osmosis water and the state of the aluminum surface was monitored 
visually. 
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(filling the space between the spheres) and aluminum.  This results in the following 

expression for the longitudinal modulus β~  of each material: 

 )21(~ 2 ωκυρυβ absll i−=   (4.12) 

where ρ is the density and lυ  is the longitudinal velocity of the sound in the 

corresponding material (water or aluminum).  Note that β~  was taken to be independent of 

frequency, which means that absκ  had a linear dependence on the frequency: 

 αωκ =abs   (4.13) 

Figure 4.2.6 presents the results of the MST calculations compared with the 

measured transmission through the 4-layer double crystal. 
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One can see that in case of no absorption present in the system, the calculated 

transmission coefficient indeed reaches unit magnitude at the resonant frequency3.  

However, with absorption included in the model, the transmission peak magnitude is 

reduced and can be made to match the magnitude of the experimentally observed peak (by 

adjusting the amount of absorption introduced).  It is also important to note that the losses 

arising from the previously discussed mechanisms occur at the interfaces (between beads 

and water, beads and beads or spacer surface and water), and therefore the overall 

absorption inside the system is spatially non-uniform.  The field distribution inside the 

double crystal is of course also spatially non-uniform (Bloch states) and depends on the 

frequency of the propagating wave.  The spatial non-uniformity of the absorption, 

combined with the spatial non-uniformity of the field and its frequency dependence, can 

explain why the effects of absorption are different at different frequencies.  (If, for 

example, at some particular frequency the field is zero at the bead/water interfaces, then 

there will be no losses due to the first mechanism at this frequency).  This can be seen 

from Figure 4.2.6, where MST fitted with absorption taken into account (which is 

assumed to be distributed uniformly throughout the system) agrees quite well with the 

experiment in the frequency region corresponding to the resonant tunnelling peak and the 

band gap, but does not agree with the data as well in the other frequency regions. 

Table 4.2.1 contains values of the absorption coefficients absκ  found from the best 

fits at the resonant frequency of the MST predictions for both the transmission and group 

time (see next section) to the experimental data. 

                                                 
3 The magnitude of the resonant peak (0.92) in Figure 4.2.6 is slightly smaller than unity due to the plastic 
substrate being taken into account during MST calculations. When no substrate is present, MST predicts unit 
magnitude of the resonant tunnelling peak. 
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The examination of the table reveals that good agreement between theory and 

experiment is obtained when the value of the absorption coefficient in the aluminum 

spacer is significantly smaller than the absorption inside the crystals.  Thus, the dissipation 

mechanism introduced by the corrosion of the spacer surface was relatively unimportant at 

the time these measurements were performed.  The variation of the spacer’s absκ  for 

different crystals can be explained by the fact that the state of the spacer on the day of 

measurements varied from crystal to crystal, since the amount of time, which elapsed 

between the moment the double crystal was assembled and the time the transmission 

experiments were performed, varied from sample to sample.  Naturally, the amount of the 

deposit due to corrosion on the spacer surface depended on how long the spacer was in 

contact with water, and this fact is reflected in Table 4.2.1 by the different values of the 

absorption coefficients ascribed to the spacer.  From Table 4.2.1, it is also clear that 

viscous and frictional losses in the phononic crystals are the major factors responsible for 

absκ  (1/mm) 
3D double crystal 

Spacer Crystal (water) 

2-layer 5×10-3 7×10-2 

3-layer 2×10-3 9×10-2 

4-layer 2×10-3 4×10-2 

Table 4.2.1:  The values of the absorption coefficients found from the best MST fits to 
the measured transmission and group times over the entire frequency range from 0.6 to 
1.4 MHz.  The values of absκ  are given to only one significant figure because of 
correlations in the fitted values of spacerκ  and crystκ .  Despite the relatively large 
uncertainties in these parameters, it is clear that spacerκ  is more than an order of 
magnitude smaller than crystκ . 
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the non-unit magnitude of the resonant peak.  It is interesting to note that the crystal absκ  

for the 4-layer double crystal is smaller than that of the 2-layer one.  This difference might 

be explained by a reduction of the frictional losses in the thicker crystal due to the overall 

decrease in the mobility of the beads relative to each other, which were pressed more 

tightly together by the increased combined weight of the upper beads.  It also should be 

noticed that values of absκ  inside my phononic crystals are consistent with the value found 

in the experiments with similar single crystals [69]. 

The way in which absorption in the phononic crystals reduces the magnitude of the 

resonant tunnelling peak can be understood in terms of the two modes model, which was 

introduced by Yang et al. [29].  In their transmission experiments with single phononic 

crystals they found that although the group velocity with which pulses tunnelled through 

the crystals increased with the crystal thickness, it increased less rapidly than predicted by 

the MST with no absorption.  They explained this behaviour by the presence of 

absorption.  Absorption cuts off the long scattering paths of multiply scattered Bragg 

waves and makes their destructive interference, which is responsible for the appearance of 

the spectral gaps, incomplete.  The net effect is that, in addition to the dominant tunnelling 

evanescent mode (characterized by the constant tunnelling time through the crystal’s band 

gap), absorption introduces a small propagating mode travelling through the crystal with 

roughly constant speed, which is slower than the group velocity of the tunnelling mode.  It 

is because of this weak propagating mode that the average group time of the transmitted 

pulses becomes longer, and the rate of increase of the group velocity with sample 

thickness is reduced. 
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In the case of the double phononic crystal the transmitted pulse also travels 

through each individual crystal by tunnelling.  However, at the resonant frequency the 

pulse reverberates many times inside the cavity, creating a substantial build-up of the field 

because of the constructive interference of all multiple echoes, and this field build-up 

manifests itself as a transmission peak.  In the case when no absorption is present, the 

pulse is trapped inside the cavity for a very long time, which according to the MST 

increases exponentially with the thickness of an individual crystal (more details will be 

presented in the next section), in analogy with the predictions of Quantum Mechanics in 

equation (4.11).  On the other hand, the absorption creates a leakage of the pulse from the 

cavity (via the propagating mode) and reduces the time that the pulse spends inside the 

cavity.  As a result, the field inside the cavity does not reach as large a magnitude as it 

would do in the case of zero absorption, leading to a decrease in the magnitude of the 

resonant tunnelling peak. 

4.2.3  Resonant tunnelling of ultrasonic waves: Group time 

The ultrasonic pulsed technique also allowed the investigation of the dynamics of 

the resonant tunnelling by measuring the frequency dependence of the group time of the 

pulses transmitted through the double crystals.  The details on how the group time can be 

derived from the transmission experiments were already given in Section 3.5.1.  Figure 

4.2.7 presents a summary of the experimental results for the group time along with the 

group velocity as a function of frequency for all three double crystals.  One can see that at 

resonance the group time has a sharp peak, which is clear evidence of the pulse being 

trapped inside the cavity at the resonant frequency.  At the same time, the group velocity  
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Figure 4.2.7:  Frequency dependence of the group time and group velocity of the pulses 
transmitted through the (a) 2-, (b) 3- and (c) 4-layer double crystals. 

50

40

30

20

10

0

G
R

O
U

P 
TI

M
E 

(μ
s)

1.41.21.00.80.6
FREQUENCY (MHz)

 (c.1) 

1

10

G
R

O
U

P 
V

EL
O

C
IT

Y
 (m

m
/μ

s)

1.41.21.00.80.6
FREQUENCY (MHz)

 (c.2) 
 TUNGSTEN 
 CARBIDE

 WATER 

 AIR 



 127

exhibits a significant drop in its value (which is no surprise, since gg tdL /)2( +=υ , 

where L and d are the thicknesses of the individual crystals and spacer, respectively).  As 

the number of layers in an individual crystal increases, waves travel progressively faster at 

off-resonance frequencies and slower at the resonant frequency.  The very large range of 

observed group velocities is emphasized in Figure 4.2.7(c.2). 

Off-resonance and inside the band gap, the group velocity becomes larger than the 

speeds of sound in any of the constituent materials (1.49 mm/μs in water and 6.6 mm/μs 

in tungsten carbide).  At the same time, on resonance, the ultrasound pulse is dramatically 

slowed down and propagates with a group velocity lower than the speed of sound in air! 

In addition to the transmission coefficient, the MST also enables one to calculate 

the group time (which can be obtained by differentiating the cumulative phase of the 

transmission coefficient with respect to frequency, since dfdtg φπ )21(= .  Thus, 

variation of the group time with the thickness of the double crystal can be investigated 

theoretically, also allowing the effect of the absorption on the group time at resonance to 

be identified.  It was found that the group time decreases as the magnitude of the 

absorption coefficient is increased.  Figures 4.2.8(a)-(b) present the experimental group 

velocity and group time for the 4-layer double crystal along with the predictions of the 

MST, in which absorption is included in the calculations (see Table 4.2.1).  Although the 

best fit of the MST to both the transmission coefficient and group time overestimates the 

magnitude of the group time at resonance by about 6%, the physics is still very well 

captured by the theory.  The effect of the absorption on the group time can again be 

understood in terms of the two modes model.  In the presence of absorption, the dwell 

time of the pulse, which is trapped inside the cavity at the resonant frequency, is decreased 
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because of the leakage of the signal, which is introduced by the small propagating mode.  

It was already emphasized in the previous section that, because of many multiple 

reflections inside the cavity, the transmitted pulse extends over a very long range of times 

as compared to the input pulse [see Figure 4.2.4]. 
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Figure 4.2.8:  Comparison of the measured (a) group velocity and (b) 
group time for 4-layer double crystal with the predictions of the MST 
(absorption included). 
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The transmission coefficient (and correspondingly the group time) can be 

accurately measured from the transmitted pulse once all of the multiple reflections are 

recorded.  However, in case of the two thickest samples (3- and 4-layer double crystals) 

the transmitted pulse was so long that it overlapped with its own echoes [see Figure 4.2.9] 

before all the multiple reflections inside the cavity were reduced to a magnitude 

comparable to the noise level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because of this overlap, for the purpose of the analysis the main pulse had to be 

truncated at some point before the beginning of the overlapping echo.  This procedure is 

Figure 4.2.9:  Schematic diagram of the transmission experiment with 3D 
double phononic crystals, which shows the origin of the echoes created by the 
partial reflections of the transmitted pulse at water/substrate, crystal/water and 
water/transducer interfaces. 
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illustrated in Figure 4.2.10 for the pulses transmitted through 3- and 4-layer double 

crystals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of this early pulse truncation introduces an artificial reduction of both 

the magnitude of the resonant tunnelling peak in the transmission spectra and the value of 

the measured group time.  One way to overcome this difficulty is to increase the distance 

between the sample and the transducers.  It turned out, however, that there was a certain 

Figure 4.2.10:  The main pulses transmitted through (a) 3-layer and (b) 4-layer 
double crystals along with the overlapping echoes.  The insets magnify small parts 
of the main pulses at long times to illustrate the overlap between echoes and 
multiple reverberations of the transmitted pulses inside the cavity.  The axis labels 
of both insets are the same as those in the corresponding main figures. 
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limit beyond which the distance between the generating transducer and the sample could 

not be increased without running into the difficulty of the subsidiary transmission peaks, 

which appeared to accompany the main resonant tunnelling peak (this issue will be 

discussed later in this section).  The other way was to correct for the artificial reduction, 

which was done by analyzing dependence of the magnitude of the group time at the 

resonant frequency as a function of the transmitted pulse truncation time.  The group time 

was found to approach a maximum value as the truncation time increased (i.e. with more 

and more of the transmitted pulse being taken into account when calculating the group 

time).  The obtained values of the group times were subsequently fit by the empirical, 

exponentially saturating, function of the form: 

 )/exp( τtAtt sat
gg −−=  (4.14) 

Here sat
gt  is the extrapolated value of the group time, which corresponds to the 

transmission of the entire pulse (without truncation due to overlapping echoes).  The 

parameters A and τ are positive constants, which describe the rate at which pulse 

truncation reduces the measured group time.  (The parameter τ  is related to the dwell time 

of the pulse inside the cavity.)  Table 4.2.2 compares the measured and saturated group 

times. 

 

 

Parameters (μs) Group time (μs) 3D double crystal A τ Measured Saturated 
2-layer  –   –  25.0  –  
3-layer 70 ± 10 43 ± 3 33.6 33.8 ± 0.2 
4-layer 90 ± 10 53 ± 6 48.7 50.5 ± 0.8 

Table 4.2.2:  Comparison of group times measured at the largest truncation time and 
determined from the extrapolation procedure given by equation (4.14).  For the 2-layer 
double crystal, the transmitted pulse was shorter and became smaller than the noise level 
before the overlap could occur. 
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From the correlation matrix, the parameters A and τ were found to be strongly correlated, 

a consequence of the exponential function fit to the data.  Despite these correlations, these 

fits enable us to extract accurate values of “true” group time.  Figure 4.2.11 displays the 

evolution of the group times as a function of the truncation time for the pulses shown in 

Figure 4.2.10. 
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In case of the resonant tunnelling of a quantum mechanical particle through a 

double potential barrier, the transit (or group) time is predicted to increase exponentially 

with the thickness of the individual barrier (see equation (4.11)).  It is also interesting to 

explore whether a similar dependence exists in case of the resonant tunnelling of the 

ultrasound pulses and how it is modified by the presence of absorption.  The case of no 

absorption present in the system was investigated theoretically using the MST by 

calculating group times through several double crystals, ranging from 2 to 5 layers, with 

the absorption coefficients inside both the cavity and the crystals set to zero.  As can be 

seen from Figure 4.2.12, the group time at resonance (which occurs at 0.949 MHz) indeed 

increases exponentially as the thickness of the individual crystal increases. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.12:  The evolution of the group time at the resonant frequency of 
0.949 MHz as a function of the individual crystal thickness as predicted by the 
MST with no absorption.  These calculations are compared with an exponential 
function (solid line) as described in the text. 
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By comparing the MST calculations with an exponential function of the form of 

)2exp( LA κ , with A and κ as adjustable parameters, the wavevector κ of evanescent waves 

inside each crystal was found to be 0.99 mm-1, which is in an excellent agreement with the 

value of κ (0.98 mm-1) derived from the transmission experiments through the single 

crystals (see Section 4.1.2).  However, when the absorption is taken into account, the 

group time dependence on the individual crystal thickness is significantly modified.  The 

group time slowly increases with the thickness of the crystal and quickly reaches a 

saturation value for thickest samples as seen from Figure 4.2.13, which presents resonant 

group times calculated by the MST for constant values of absorption absκ  inside the 

crystal (6.55×10-2 mm-1) and the spacer (0.18×10-2 mm-1).  These values are intermediate 

to the ones shown in Table 4.2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.13:  The comparison of the measured group times at resonance with 
those predicted by the MST in case of the absorption present in the system.  The 
interpolated cubic spline is presented as a guide for the eye. 
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The measured group times, also shown in Figure 4.2.13, are scattered around the 

theoretical curve predicted by the MST.  However, this scatter can be expected, as the 

theoretical curve was calculated with the same value of absκ  for all individual crystal 

thicknesses, while in the actual experiments the magnitude of absκ  varied from sample to 

sample, as is shown in Table 4.2.1.  Overall, the experimental data exhibit behaviour that 

agrees with the one predicted by the theory, namely the saturation of the group times as a 

function of the individual crystal thickness.  This agreement also serves as a positive 

indication of the validity of the MST model. 

At the end of this section it is worth mentioning one of the major experimental 

difficulties encountered during resonant tunnelling experiments.  In addition to the overlap 

between the echoes and the transmitted pulse, considerable complications arose from the 

appearance of the subsidiary peaks accompanying the resonant tunnelling peak in the 

transmission spectra of many sample pulses.  The corresponding group times also 

exhibited the existence of the subsidiary peaks [Figure 4.2.14]. 

Since there was no confidence that group times measured for the pulses exhibiting 

subsidiary peaks were not compromised by their presence, it was important to find a way 

to eliminate or at least minimize the presence of the subsidiary peaks.  Although the 

mechanisms for the appearance of the subsidiary peaks were not clearly established, it was 

found experimentally that their magnitude could be significantly reduced by decreasing 

the angular spread of the sound beam produced by the generating transducer, as well as by 

reducing the area of the sample illuminated by the beam.  More details on this analysis can 

be found in the Appendix C.  To minimize the presence of the subsidiary peaks, the input 

ultrasound pulses were generated by the largest diameter (1.5-inch) transducer
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because it had the smallest angular spread (see Section 3.4.1, equation (3.5)).  Since the 

area illuminated by the generating transducer increases with the distance from the 

transducer, it was also important to find the optimal distance between the transducer and a 
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Figure 4.2.14:  Representative data illustrating the problem of subsidiary peaks in 
(a) transmission coefficient and (b) corresponding group time measured for one of 
the 3-layer double crystals.  The insets magnify small range of frequencies to better 
illustrate the problem of subsidiary peaks (the axis labels of both insets are the 
same as in the corresponding main figures). 
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sample for which no subsidiary peaks would be observed, while at the same time the 

overlap between an echo and a transmitted pulse would occur at as late a time as possible.  

Unfortunately the importance of simultaneously taking into account all of the above 

considerations, as well as reducing the degree of corrosion of the spacer by minimizing the 

time of its exposure to the water, was not realized during the initial series of experiments 

from which the group times presented in Figure 4.2.13 were found.  Therefore, although 

these experiments unambiguously provided a qualitative demonstration of the resonant 

tunnelling of ultrasound pulses, they were not all conducted under ideal conditions.  With 

the goal of obtaining the data that were not tainted by any of the complications discussed 

above, I completed another set of measurements with a new 3-layer double crystal.  While 

assembling the new crystal I made every possible effort to minimize the time between the 

moment of the spacer’s exposure to the water (which happened when the spacer was 

placed on top of the bottom crystal) and the transmission measurements through the 

sample.  The fast construction of the crystal was greatly facilitated by the skills that I 

acquired and improved in the course of assembling the previous samples.  To suppress the 

appearance of the subsidiary peaks, the 1.5-inch diameter transducer was used as a 

generator during the measurements and the distance between the transducer and the crystal 

was carefully adjusted according to the prescriptions described above.  Also, to minimize 

any possible complications due to the finite size of the sample (edge effects), the new 3-

layer crystal had an area roughly twice as large as the area of the previous double crystals.  

The results of the experiments with the new 3 layer double crystal are shown in Figure 

4.2.15.  No subsidiary peaks (at least of magnitude comparable to the main peak) are 

present around the resonance in both the transmission coefficient and the group time, 
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which proves the importance of minimizing both the angular spread of the input beam and 

the area of the crystal illuminated by the transducer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should also be noted that the magnitude of the resonant tunnelling peak was 

found to be about two times larger than that shown in Figure 4.2.5(b.2).  The magnitude of 
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Figure 4.2.15:  Measured (a) transmission coefficient and (b) group time for 
the new 3-layer double crystal with insets demonstrating the absence of the 
subsidiary peaks. 
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the peak group time also increased significantly as compared to the value shown in Figure 

4.2.7(b.1) (see also Table 4.2.2) and was measured to be 48.9 μs.  This increase is the 

direct result of the improvements that were made in this final experiment. 
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Figure 4.2.16:  Comparison of the measured (a) transmission and (b) group 
time through the new 3-layer double crystal with the calculations by the 
MST. 
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Figure 4.2.16 presents the results of the transmission experiments (transmission 

coefficient and the group time) through the new 3-layer double crystal along with the fits 

by the MST.  The best agreement between the experiment and the theory was obtained 

with the absorption coefficients absκ  equal to 4×10-2 mm-1 (the crystal) and 2×10-3 mm-1 

(the spacer).  The value of absκ  inside the crystal is approximately half the value found for 

the initial 3-layer crystal (Table 4.2.1), quantifying the improvements that were made. 

I would like to conclude at this point by summarizing the experimental and 

theoretical findings reported in this chapter.  The main result is the actual observation of 

resonant tunnelling of ultrasound pulses through the double phononic crystals.  Also, the 

dynamics of the effect was investigated by analyzing the group time of the transmitted 

pulses.  It was found that at off-resonance frequencies inside the band gap the sound 

pulses travel very fast (with a group velocity larger than speed of sound in any of the 

crystal constituent materials), while on resonance they are dramatically slowed down and 

travel through the crystal with a group velocity smaller than speed of sound in air.  The 

effect of the absorption on the magnitude of the resonant tunnelling peak was investigated 

using the MST and explained in terms of the two-modes model.  The method of correcting 

the measured group times for the effect of pulse truncation was also demonstrated.  

Finally, some experimental difficulties were discussed.  It was shown that in order to 

observe resonant tunnelling reliably it is particularly important to ensure that the input 

pulses approximate plane waves as closely as possible (by minimizing the angular spread 

of the transducer beam) as well as to reduce the area of the crystal illuminated by the 

generating transducer.  At the same time, it is also important to minimize the dissipation 

losses inside the crystal. 



 141

5. Experiments with 2D phononic crystals 

This chapter states and discusses the experimental results that were obtained in the 

course of the experimental work done with 2D phononic crystals (for a detailed 

description of the samples, see Section 3.1.1).  The first part of this chapter gives an 

account of the experiments on negative refraction of ultrasound pulses propagating 

through 2D phononic crystals, while the second part presents major findings of the 

experiments in which the focusing properties of 2D phononic crystals were investigated. 
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5.1  Negative refraction of ultrasound 

The main goal of this part of the thesis is to present experimental evidence for the 

negative refraction of ultrasound waves observed in the prism-shaped 2D phononic 

crystal.  All the experiments described in this section were performed with 2D phononic 

crystals immersed in and filled with water.  The section starts with the description of the 

transmission experiments on the rectangular-shaped crystal, which allowed its band 

structure to be determined experimentally.  The rest of the section is devoted to the results 

of various experiments on negative refraction along with their interpretation in the light of 

the theory reported previously in Chapter 2. 

5.1.1  Transmission coefficient and band structure 

As was already mentioned in Section 2.2.1, negative refraction of sound waves in 

2D phononic crystals is a band structure effect.  Therefore the main reason for the 

possibility of achieving it lies in the regular arrangement of the crystals’ scattering units 

and subsequent Bragg scattering of the waves inside the crystal.  It was also pointed out 

that the effects introduced by the crystal’s regularity are conveniently described by band 

structure plots, which essentially represent the propagating modes inside the crystal as a 

function of the direction of propagation.  As the degree of regularity of the crystal has an 

immediate impact on wave propagation inside the crystal, the quality of the sample is a 

crucial factor for the negative refraction experiments to succeed.  A convenient check of 

the quality of my crystals was obtained by comparing transmission and band structure 

curves, determined experimentally, with those predicted by rigorous theory for a perfect 

crystal. 
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To measure both the transmission coefficient and dispersion curve along the ΓΜ 

direction, I have performed several transmission experiments with the 6-layer rectangular-

shaped crystal [Figure 3.1.2(a) and Figure 3.1.3(a)], using an input ultrasound pulse 

incident normally on the crystal surface along the ΓΜ direction.  However, the crystal 

geometry did not allow performing similar measurements along the ΓK direction.  To 

investigate crystal properties along this direction, a new 12-layer crystal was constructed 

by removing the required number of rods from the prism-shaped crystal.  The resulting 

crystal [Figure 5.1.1] made it possible to make the transmission experiment with an input 

pulse incident along the ΓK direction.  Unfortunately, the lateral extent of this crystal was 

smaller than the one for the crystal used in measurement along the ΓΜ direction (53 mm 

wide and 90 mm high as opposed to 76 mm and 140 mm), which made the role of edge 

effects potentially more important in the final result of the ΓK experiment. 

 

 

 

 

 

 

 

To explore different frequency regions, several pairs of flat circular Panametrics 

transducers with central frequencies of 0.10, 0.25, 0.50 and 1.00 MHz were used as 

generators and receivers of ultrasound.  The resulting curves were then combined to 

produce one net curve to cover all probed frequencies.  It was already described in Section 
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Figure 5.1.1:  12-layer rectangular-shaped 2D phononic crystal obtained 
from the prism-shaped one by removing the required number of rods. 
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3.5.1 how the transmission coefficient and dispersion curve can be extracted from the data 

acquired in the transmission experiment.  In case of phononic crystals, the dispersion 

curve can also be viewed as part of the band structure displayed in the extended-zone 

scheme.  The reduced-zone scheme is obtained from the dispersion curve by translating 

pieces lying outside the first Brillouin zone back into the first zone by the required integer 

number of reciprocal vectors. 

Figure 5.1.2 shows the band structure for our crystals (lattice constant 

27.1=a mm, rod diameter 02.1=d mm), calculated with the help of the MST.  The 

theory predicts the existence of a stop band along the ΓM direction extending from 0.52 

MHz to 0.68 MHz, as well as a complete band gap in the range of frequencies between 

1.04 MHz and 1.18 MHz. 
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Figure 5.1.2:  Band structure of the 2D phononic crystal calculated using the 
MST.  The first Brillouin zone, with the main symmetry directions, is also 
indicated (Calculations courtesy of Dr. Zhengyou Liu). 
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The experimentally determined transmission curve along the ΓM direction is 

shown in Figure 5.1.3.  As expected, a dip in transmission is found for frequencies ranging 

from about 0.49 MHz to 0.69 MHz, in good agreement with the predictions of the band 

structure calculations.  The MST also allows calculation of the transmission coefficient 

through the crystal.  The calculated transmission curve is also presented in Figure 5.1.3.  

A very good agreement between theory and experiment is observed in terms of both the 

position and depth of the transmission dip, indicating the reliability of the theory and the 

good quality of the crystal.  The oscillations in transmission observed at the frequencies 

lying outside the band gap are due to interference of the waves multiply reflected inside 

the crystal from the crystal boundaries, with the peaks representing the standing-wave 

modes of the structure. 
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It is also of interest to look at the agreement between the band structure using the 

MST and the one derived from the phase information obtained in the transmission 

experiment.  Figure 5.1.4 displays measured dispersion curve in the extended zone-

scheme, the experimental band-structure in the reduced zone-scheme (which is derived 

from the dispersion curve by translating its various pieces into the 1st Brillouin zone by the 

required number of reciprocal wavevectors 1b ) and the theoretical band structure predicted 

by the MST (solid line). 
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The agreement between theory and experiment is remarkably good suggesting a high 

degree of regularity of the phononic crystal. 

As was already mentioned, a similar transmission experiment was performed with 

the phononic crystal shown in Figure 5.1.1 to investigate crystal properties along the ΓK 

direction.  The predicted and measured transmitted amplitudes along this direction are 

compared in Figure 5.1.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 5.1.5 one can observe that a significant drop in transmission exists in 

between 0.65 MHz and 1.20 MHz.  According to the band structure [Figure 5.1.2], this 

frequency range covers both the second band in the ΓK direction and the complete band 
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Figure 5.1.5:  Experimental and theoretical transmission curves for 2D phononic 
crystal along the ΓK direction.  The experiment was performed on a 12-layer crystal. 
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gap.  While the drop in the transmission at the frequency range corresponding to the 

complete gap (from 1.04 MHz to 1.18 MHz) is completely predictable from the band 

structure, the sharp plunge in the transmission at frequencies corresponding to the 2nd band 

(from 0.60 MHz to 1.04 MHz) was not initially expected.  Additional information, which 

is helpful for understanding the origin of this transmission drop, is obtained by observing 

Figure 5.1.6, which compares the calculated band structure and the dispersion curve.  The 

experimental dispersion curve lines up perfectly with the calculated band structure within 

the 1st Brillouin zone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.6:  Experimental and theoretical band structure curves for a 12-
layer 2D phononic crystal along the ΓK direction. 
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Beyond the 1st Brillouin zone boundary, different behaviour is observed.  From 

Figure 5.1.6, one can see that just outside of the 1st zone the data follow the theory along 

the edge between two Brillouin zones in the KM direction (see the inset in Figure 5.1.6), 

implying that there is coupling to these KM modes instead of modes in the 2nd band along 

the ΓK direction.  No coupling of the incident wave to the modes in the 2nd band along the 

ΓK direction is consistent with the observed drop in transmission [Figure 5.1.5].  For the 

experimental configuration used in these experiments (see Section 3.5.1), the comparison 

of the cumulative phases of the sample and reference pulses (which is how the dispersion 

curve is extracted) has meaning only when the output pulse is propagating in the same 

direction as the input pulse, i.e. normal to the crystal surface.  This condition may not be 

met when the incident field cannot couple to the modes of the crystal along the ΓK 

direction.  The brief explanation for this behaviour along the ΓΚ direction is that the 2nd 

band modes and incident plane wave have different symmetries, which are inconsistent 

with each other.  This question will be addressed in more depth and detail in the next 

section while presenting results of different experiments on negative refraction of the 

ultrasound waves. 

The agreement between theoretical and experimental transmission curves in the 

case of the ΓK direction is not as good as in the ΓM direction.  Some of the sharp peaks in 

transmission predicted by the theory are not observed in the experiment [Figure 5.1.5], 

most likely due to absorption, which was not taken into account in the calculations and is 

always present in real samples.  But in general, there is a good agreement between theory 

and experiment in both symmetry directions for my system.  This overall agreement 

establishes the MST as a theory capable of providing an accurate description of wave 
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propagation in 2D phononic crystals.  Another extremely important outcome of the 

transmission experiments reported in this section is that they enabled me to delineate the 

appropriate frequency range for negative refraction experiments. 

5.1.2  Negative refraction experiments with the 2D prism-shaped crystal 

This section reports the results of the various negative refraction experiments 

conducted with the 2D prism-shaped phononic crystal.  Since all the experiments were 

conducted in water, it was important to ensure before the experiment that no air bubbles 

were trapped between the crystal’s rods.  This was achieved by slowly immersing the 

crystal into the water and by lightly tapping the rods (while underwater) to drive out any 

remaining air bubbles from the crystal.  The ultrasound pulses were generated by a flat 

circular Panametrics transducer, 1.0 inch in diameter, with a central frequency of 1.0 

MHz.  The distance between the transducer and the sample was always set at 12.5 cm, 

which ensured that the crystal was placed in the far-field of the generator.  The field 

emerging from the output side of the prism was mapped using the hydrophone, as was 

already explained in Section 3.5.2. 

In the first negative refraction experiment, the input pulse was incident normally 

on the shortest side of the prism along the ΓM direction.  The centre of the transducer face 

was aligned with the central point of the crystal surface.  Two masks, made out of thin 

rectangular-shaped plastic sheets, were attached to the outer edges of the crystal input face 

to prevent any stray sound from reaching the hydrophone.  The plastic pieces were 

wrapped with several layers of Teflon tape to increase absorption of incident sound.  The 

field was scanned in a rectangular grid lying in the x-z plane.  For the best resolution, grid 

points were separated by a distance of 0.5 mm along both the x and z-axis.  The closest 
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line of the grid was about 1 mm away from the crystal output surface.  Figure 5.1.7 shows 

the geometry of the experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the ultrasound pulse arrives normal to the water/crystal interface (i.e., input 

side of the prism), we can expect it to penetrate into and continue propagating inside the 

crystal without any change of its original direction (see Section 2.2.1).  The question 

under study is the following: how will the pulse behave upon crossing the crystal/water 

interface as it leaves the crystal, or, more specifically, will it be refracted positively or 
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negatively (see Fig. 5.1.7)?  According to the theory presented in Section 2.2.1, the 

outgoing pulse is expected to refract on the negative side of the normal to the interface. 

Figure 5.1.8(a) represents a snap-shot of the outgoing pulse obtained from the 

scanned field after digitally filtering it with a Gaussian bandwidth centred at a frequency 

lying at about middle of the 2nd band (0.85 MHz), while Figure 5.1.8(b) displays the same 

field filtered at a lower frequency (0.75 MHz). 
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From Figure 5.1.8(a), it can be seen that the outgoing pulse with the central 

frequency of 0.85 MHz is indeed refracted negatively, in complete agreement with our 

expectations based on the theoretical predictions.  However, analysis of the field at 0.75 

MHz [Figure 5.1.8(b)] reveals a somewhat unexpected result: the existence of both 

negatively and positively refracted outgoing pulses! 

To understand the latter result qualitatively, we have to take into account that once 

the input pulse has entered the crystal, it no longer can be represented by a simple plane 

wave.  Instead, it is transformed into a Bloch wave, which is a very complicated field 

pattern inside the crystal, and can be viewed as a superposition of many plane waves.  In 

the particular case of the input pulse incident along the ΓM direction, the Bloch wave 

consists of many plane waves, with each plane wave characterized by its own wave vector 

and with all these wave vectors differing from one another by an integer number of the 

reciprocal wavevectors 1b
r

 and 2b
r

.  We can also think of these plane waves as all modes in 

the repeated-zone scheme corresponding to one frequency.  All such modes can be 

obtained from one another by adding the required number of reciprocal wavevectors.  Let 

us consider just two dominant modes characterized by wave vectors redk
r

 and 

1bkk redext

rrr
+= , where redk

r
 corresponds to the mode in the reduced-zone scheme and is 

antiparallel to the group velocity gυ
r , while extk

r
 corresponds to the mode lying in the 

extended-zone scheme and points in the same direction as gυ
r  [Figure 5.1.9].  Note that 

the disturbances created by both modes inside the crystal still propagate in the same 

direction, as the direction of gυ
r  is the same in both cases (recall that the direction of gυ

r , 
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or equivalently the direction of energy propagation inside the crystal, is given by the 

direction of the gradient of frequency ω as a function of a wave vector k). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the Bloch wave reaches the crystal/water interface, the two dominant modes redk
r

 

and extk
r

 are refracted according to Snell’s law, which requires the parallel component of 

the wave vector to be conserved when a plane wave propagates through a boundary 

separating two different media.  It is obvious from Figure 5.1.10 that we have to observe 

two types of refraction simultaneously: the mode with redk
r

 will be refracted negatively, 

while the mode characterized by extk
r

 will be refracted positively. 

 

Figure 5.1.9:  Experimentally measured band structure displayed in the reduced-
zone (solid symbols) and extended-zone (open symbols) schemes.  The wide short 
arrows indicate the direction of the group velocity, while the narrower arrows 
represent the wavevectors. 
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This qualitative explanation can also be confirmed by a quantitative analysis.  

From the 2nd band equifrequency contours calculated by the MST, we can obtain the 

values of both redk
r

 and extk
r

.  As the angle of incidence is the same (60°) for both modes, 

we can calculate the refraction angle α for positively and negatively refracted waves with 

Snell’s law: 

 )60sin()sin( °= crystwat kk α  (5.1) 

where crystk  denotes the magnitude of either redk
r

 or extk
r

 and watk  is the magnitude of the 

wave vector in water.  The calculated refraction angle is then compared with the one 

observed in the experiment (as measured from Figure 5.1.8).  At 0.75 MHz, expression 

Figure 5.1.10:  Negative (a) and positive (b) refraction at the crystal/water 
interface.  Note that the parallel component of the wavevector k|| is conserved in 
both cases. 
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(5.1) predicts the angle α to be 34° and 82° for negatively and positively refracted waves, 

respectively (here redk = 2.1 mm-1 and extk = 3.6 mm-1).  The refraction angles measured 

from Figure 5.1.8(b) give 34°±1° for the negatively refracted wave and 81°±1° for the 

positively refracted one, which is in excellent agreement with the angles predicted by the 

theory. 

An immediate question to be asked is: why is there no positively refracted wave at 

the frequency 0.85 MHz?  When the corresponding values are substituted into (5.1), one 

finds that 
wat

ext

k
k )60sin( °

 > 1 (with extk = 4.1 mm-1 and watk = 3.5 mm-1).  The formal 

explanation then is that the wave corresponding to the mode with the extended-zone wave 

vector extk
r

 undergoes the effect known as total internal reflection.  At this frequency (and 

at all other higher frequencies in the 2nd band) the mode with extk
r

 cannot couple to the 

outside medium.  Table 5.1.1 provides the predicted magnitudes of redk
r

and extk
r

 for 

different frequencies, while Table 5.1.2 summarizes the results obtained in the experiment 

with the 2D prism-shaped phononic crystal.  The experimental results are in perfect 

agreement with the predictions of the MST. 

 
FREQUENCY (MHz) kred (mm-1) kext (mm-1) 

0.75 2.1 3.6 

0.85 1.4 4.3 

0.90 1.1 4.6 

0.95 0.82 4.9 

1.00 0.49 5.2 
 
 

 
Table 5.1.1:  The predicted magnitudes of redk

r
and extk

r
 for some frequencies. 
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Negative refraction angle Positive refraction angle FREQUENCY (MHz) 

Predicted Measured Predicted Measured 

0.75 34.0° 34°±1° 81.0° 82°±1° 

0.85 20.4° 21°±1° - - 

0.90 15.0° 16°±1° - - 

0.95 10.2° 10.5°±1° - - 

1.00 6.0° 6°±1° - - 
 

 

 

 

As was just mentioned, the absence of the positively refracted pulses at 

frequencies higher 0.75 MHz can be formally explained by total internal reflection, which 

the component of the Bloch wave with wavevector extk
r

 undergoes at the crystal/water 

interface.  In order to see if this explanation is correct, I performed another mapping 

experiment analogous to the one shown in Figure 5.1.7, but this time the opposite side of 

the prism crystal was scanned, as shown in Figure 5.1.11.  If the extk
r

 component of the 

Bloch wave is indeed reflected inside the crystal at the crystal/water interface, it should 

travel to the opposite side of the prism and refract positively into the outside medium 

(water).  As can be seen from the simple ray diagram depicted in Figure 5.1.12, the extk
r

 

component should be incident at the angle of 30º at the normal to the interface.  Therefore, 

the angle of refraction β into the water can be easily calculated with Snell’s law using 

values from Table 5.1.1 and then compared with the experimentally observed angle. 

 

 

Table 5.1.2:  Comparison between experimentally measured and theoretically 
calculated angles of refraction. 
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Figure 5.1.11:  The scan of the opposite side of the prism-shaped crystal. 
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Figure 5.1.12:  Ray diagram of the experiment considered in Figure 5.1.11. 
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The images of the field emerging on the opposite side of the prism crystal are 

shown in Figures 5.1.13(a)-(b) for frequencies 0.85 and 0.95 MHz.  A positively refracted 

beam can be seen leaving the crystal surface for both frequencies.  Excellent agreement is 

observed between measured and calculated refraction angles β.  At 0.85 MHz one 

measures from Figure 5.1.13(a) the refraction angle of 36.5°±1°, while Snell’s law 

predicts the value of 36.6°.  At 0.95 MHz the measured and predicted angles are 37.5°±1° 

and 37.6°, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.13:  Images of the emerging field at (a) 0.85 MHz and (b) 0.95 MHz 
frequency. 
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Yet another intriguing result can be derived from Figure 5.1.13(b): a presence of 

the second weaker beam, which is refracted negatively!  The average angle of refraction γ 

of the second beam was measured to be 53.5°±1°.  To understand the origin of the 

negatively refracted beam in this case, one should take into account the periodicity of the 

crystal’s surface.  Due to this periodicity, the component of the wavevector parallel to the 

crystal surface ||k
r

 can assume any values differing from each other by an integer number 

of surface reciprocal vectors sgr , i.e. 

 sgnk rr
+||  (5.3) 

where n is an integer number and ss ag π2=
r  with sa  equal to the surface period (see, 

for example, Every et al. [70]).  Different parallel components ||k
r

 (given by (5.3)) will 

then produce beams in water refracted at different angles provided that the condition 

watkk
rr

≤|| holds, since otherwise no coupling to water occurs.  Let us first illustrate this 

idea to explain the presence of the positively refracted beam observed at 0.75 MHz 

[Figure 5.1.8(b)].  As follows from (5.1) and Figure 5.1.9 

 

 ( ) )60sin()60sin()sin( 1 °−=°= redcrystwat kbkk
r

α  

 

Taking into account that ab 341 π=
r

 (see Section 2.1.2), the above expression assumes 

the following form: 

 

 ||)60sin(2)sin( kgkak redwat −=°−= ΓΜπα  (5.4) 



 161

where ΓΜg  denotes a reciprocal vector along the crystal surface perpendicular to the ΓΜ 

direction.  One can see that the description of the refraction through the crystal/water 

interface with the help of reciprocal vectors along the surface is equivalent to the one in 

which extk  is used instead.  Note also that the combination of ΓΜgr  and ||k
r

 given by (5.4) 

is the only one that allows coupling to the water, as all other combinations produce 

wavevectors exceeding the magnitude of the wavevector in water at 0.75 MHz frequency.  

The idea leading to equation (5.4) is illustrated in Figure 5.1.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.14:  The positively refracted beam at the crystal/water interface 
originates from the parallel component of the wavevector k|| modified by the 
reciprocal surface vector ΓΜg . 
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In much the same way, the results of the experiment involving the scan of the other 

side of the prism-shaped crystal can be explained.  For example, the appearance of the 

positively refracted beams at both 0.85 MHz and 0.95 MHz frequencies is due to 

subtraction of ||k  from the reciprocal vector ΓΚg  along the surface perpendicular to the 

ΓΚ direction, as can be easily verified: 

 

 ||)30sin(32)30sin()sin( kgkakk redredwat −=°−=°= ΓΚπβ  (5.5) 

 

since the surface period in the direction perpendicular to the ΓΚ direction is a3 .  

Similarly, one finds that the refraction angle γ observed for the negatively refracted beam 

at 0.95 MHz is in excellent agreement with the one predicted by the following expression: 

 

 ||)30sin(32)sin( kgkak redwat +=°+= ΓΚπγ  (5.6) 

 

From (5.6), one finds for the angle γ the value of 54.5°, whereas the measured value is 

53.5°±1°.  In case of 0.85 MHz, equation (5.6) predicts the value of 88° meaning that 

||kg +ΓΚ  is very close to not being able to couple to the water because of total internal 

reflection, and this is probably the reason why it is not observed in the experiment.  A 

schematic diagram visualizing expressions (5.5) and (5.6) is given in Figure 5.1.15.  For 

the sake of clarity, the picture zooms in on a small part of the crystal surface. 
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Positively and negatively refracted beams, observed while scanning the opposite 

side of the prism-shaped crystal, originate from the parallel component of the wavevector 

modified by addition or subtraction of the reciprocal surface vector ΓΚg .  However, in the 

Figure 5.1.15:  Negatively and positively refracted beams at the crystal/water 
interface perpendicular to the ΓΚ direction.  Note that the negatively refracted 
beam, which originates from the unmodified component ||k  (indicated by a 
dashed arrow), is not observed in the experiment. 
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same experiment one would expect to observe another negatively refracted beam 

originating from the unmodified parallel component ||k .  This beam is indicated by a 

dashed arrow in Figure 5.1.15.  From Snell’s law one finds the corresponding angle of 

refraction α to be 11.6° at 0.85 MHz and 5.9° at 0.95 MHz, i.e. the third beam is expected 

to emerge almost normally from the crystal surface.  The reason for the absence of the 

second negatively refracted beam will be discussed later in this section. 

It is always desirable to check our understanding of any physical phenomenon in 

as many different experiments as possible.  One of the possible checks in our case would 

be performing a variation of the previous experiment in which input pulse is centred at 

lower frequency and couples to the mode lying in the 1st band of the crystal.  The principal 

difference of this experiment from the first one is that, for any mode in the 1st band, the 

corresponding wave vector k will be parallel to the gradient of ω(k) [Figure 5.1.16]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1.16:  1st band of the 2D phononic crystal.  For any mode in the 1st band, 
the corresponding wave vector kcryst coincides with the direction of vg. 
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If our understanding and explanation of the first experiment are correct, upon 

crossing the crystal/water interface the Bloch wave must transform into a positively 

refracted outgoing pulse, as shown in Figure 5.1.10(b).  The geometry of the experiment at 

lower frequencies was identical to the first experiment (see Figure 5.1.7).  As a generating 

transducer I used a flat circular Panametrics transducer, 1.5-inch in diameter, with a 

central frequency of 0.25 MHz, which lies approximately in the middle of the 1st band.  

Figure 5.1.17 presents a snapshot of the field observed at some particular moment of time.  

The outgoing pulse is indeed refracted positively, in complete agreement with our 

expectations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.17:  Snapshot of the outgoing pulse in the experiment probing the 
behaviour at frequencies lying in the 1st band.  The picture was obtained by filtering 
the original field with a Gaussian bandpass filter centered at 0.25 MHz and 0.05 MHz 
wide.  As in Figure 5.1.8, the colour scale is in arbitrary units, with wave crests and 
troughs indicated with red and blue correspondingly and green corresponding to zero 
amplitude. 
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The quantitative agreement between theory and experiment is also good.  

According to the calculated band structure [Figure 5.1.2], the magnitude of the wave 

vector kcryst corresponding to the 0.25 MHz mode is 1.14 mm-1.  With the wave vector in 

water at this frequency being 1.05 mm-1, expression (5.1) predicts the refraction angle to 

be 69.5°. There is some ambiguity associated with measuring the angle of refraction from 

Figure 5.1.17, as the edges of the outgoing pulse are slightly curved, but the measured 

angle falls in the range of 72°±2°, which is in good agreement with the calculated value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experiments with the input pulse incident on the smallest side of the prism-

shaped crystal along the ΓM direction convincingly demonstrated the negative refraction 

Figure 5.1.18:  Geometry of the inverse experiment. 
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effect at frequencies of 0.75 MHz and 0.85 MHz, and the lower frequency experiment at 

0.25 MHz further confirmed the validity of the interpretation of the observed phenomena.  

However, in the above experiments the input pulse was incident normal to the crystal 

surface.  For the sake of completeness, it would also be desirable to demonstrate the 

negative refraction of ultrasound waves with the input pulse incident at an angle other than 

90° to the crystal surface.  To achieve this, I have conducted an experiment inverse to the 

previous one, with the ultrasound generator and receiver switched and the input pulse 

incident at an angle on the longest side of the crystal.  The geometry of the new 

experiment is shown in Figure 5.1.18. 

As was already mentioned in Section 2.2.1, calculations using the MST predict a 

circular shape for the equifrequency contours in the 2nd band, implying that, in this 

frequency range, the wavevector and the direction of energy propagation (or vg) are 

antiparallel irrespective of the direction inside the crystal.  This fact plays a crucial role in 

understanding what happens in the experiment pictured in Figure 5.1.18 after the input 

pulse couples to the modes in the 2nd band.  Because of the circular shape of the 

equifrequency contours, the incident pulse will refract negatively as it crosses 

water/crystal interface.  The ensuing disturbance will then propagate through the crystal 

with the associated wavevector kcryst being antiparallel to the direction of its propagation 

(given by vg) and refract negatively one more time as it emerges on the side scanned by 

the hydrophone.  The process of the negative refraction of the input pulse through the 

crystal/water interface is also explained in Figure 5.1.19, while Figure 5.1.20 provides a 

ray diagram of the inverse experiment showing that a propagating pulse is expected to 

undergo the negative refraction twice. 
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Figure 5.1.20:  Ray diagram of the inverse experiment. 

Figure 5.1.19:  1st Brillouin zone, water and crystal equifrequency contours.  Note that 
negative refraction of the incident wave, as well as opposite directions of the 
wavevector kcryst and vg, is ensured by the circular shape of the crystal equifrequency 
contour. 
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In the actual experiment, the magnitude of the angle of incidence α was chosen to 

be 20°, which was very close to the refraction angle measured in the first negative 

refraction experiment for the outgoing pulse at a frequency of 0.85 MHz.  With this 

particular angle of incidence, the input pulse with a central frequency of 0.85 MHz should 

refract negatively into the crystal at angle β = 60°, propagate through the crystal and 

emerge normally from the output side.  At 0.85 MHz, the new experiment is the inverse of 

the first one in the sense that the input pulse follows an inverse path as compared to the 

path of the input pulse in the first experiment.  Angles of refraction β and θ at some other 

frequencies can be found with the help of Snell’s law and the values of the corresponding 

wavevectors inside the crystal kcryst calculated by the MST. 

Figures 5.1.21 and 5.1.22 present two snapshots of the outgoing pulses in the 

inverse experiment obtained by filtering the recorded field at frequencies of 0.85 MHz and 

0.75 MHz, respectively.  It is clear that at 0.85 MHz [Figure 5.1.21] the outgoing pulse 

emerges perpendicular to the crystal surface in complete agreement with our expectations.  

From Figure 5.1.22 one measures the angle of refraction of 19.5°±1°, while simple 

calculations based on Snell’s law (see Figure 5.1.20) predict the value of 18.5° for the 

magnitude of the refraction angle θ at 0.75 MHz.  Once again, the agreement between 

theory and experiment is quite good. 
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Figure 5.1.21:  Snapshot of the outgoing pulse in the inverse experiment obtained 
by filtering the original field with the Gaussian bandwidth of 0.05 MHz centered 
at 0.85 MHz.  The colour scale is in arbitrary units. 

Figure 5.1.22:  Snapshot of the outgoing pulse in the inverse experiment obtained 
by filtering the original field with the Gaussian bandwidth of 0.05 MHz centered 
at 0.75 MHz.  The colour scale is in arbitrary units. 
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In the two experiments presented so far, negative refraction of ultrasound was 

demonstrated with the input pulses incident both along, and at some angle to, the ΓM 

direction.  The picture would be incomplete without investigating another direction of 

high symmetry, namely the ΓΚ direction.  This investigation was done in another 

experiment, with the input pulse incident normally on the prism’s second longest side, 

which runs perpendicular to the ΓΚ direction.  Figure 5.1.23 explains geometry of this 

experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the behaviour were similar to the results for the experiment along the ΓΜ 

direction, one would expect the input pulse to enter the crystal without a change in its 

original direction.  At the same time, circular equifrequency contours must ensure that the 

Figure 5.1.23:  Geometry of the experiment with the input pulse 
incident along the ΓΚ direction. 
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dominant wavevector kred associated with the disturbance propagating through the crystal 

is antiparallel to the direction of propagation.  As a result, the outgoing pulse would be 

expected to emerge on the negative side of the normal to the output surface of the crystal 

as the disturbance crosses crystal/water interface.  One would anticipate the entire 

experiment along the ΓΚ direction to be quite similar to the one along the ΓΜ direction.  

However, the field measured in the experiment along  the ΓK direction turned out to be 

quite different from the picture observed along the ΓM direction (compare Figures 5.1.24 

and 5.1.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.24:  Snapshot of the field emerging from the output side of the prism-shaped 
crystal when the input pulse is incident along the ΓΚ direction.  The original field is 
filtered with a Gaussian bandpass filter centered at 0.85 MHz and 0.05 MHz wide. 
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The most drastic difference between the two experiments is that the magnitude of 

the outgoing pulse in the second experiment is more than 10 times smaller than the one 

measured in the first experiment (Figure 5.1.8).  Also, although the outgoing pulse still 

seems to be refracted negatively, the value of the refraction angle is in complete 

disagreement with the one obtained from calculations based on the band structure.  

Finally, the pulse shape is very irregular and never resembles the well-defined beam-like 

shape of the negatively refracted pulses in the experiments along the ΓM direction. 

These results can be understood in conjunction with the results of the transmission 

experiment along the ΓΚ direction through the crystal shown in Figure 5.1.1.  Recall that 

the transmission experiment revealed the existence of a gap in the frequency range 

corresponding to the modes in the 2nd band [Figure 5.1.5].  The dispersion curve derived 

from the same experiment showed that the incident pulse was not able to use, or “couple 

to”, the 2nd band modes for ballistic propagation through the crystal [Figure 5.1.6].  It is 

worth mentioning at this point that the existence of such non-coupling bands was also 

demonstrated experimentally in case of photonic crystals.  Robertson et al. [71, 72] found 

several non-coupling bands while investigating the transmission of plane electromagnetic 

waves through a 2D square array of aluminum-ceramic rods along both the [10] and the 

[11] directions.  Krauss et al. analyzed the transmission of plane electromagnetic waves 

through a photonic crystal made of a 2D triangular array of columns etched in a 

waveguide [73].  In case of a TM input wave (with E-field parallel to the etched columns) 

incident along the ΓΚ direction, they also found the 2nd band to be a non-coupling band 

(i.e., a similar result to the one that I obtained along the same direction for ultrasound 

waves).  The properties of the non-coupling bands were also studied theoretically by 
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Sakoda [74, 75] with the help of group theory.  The major reason for these bands to be 

non-coupling was found to be the difference between the symmetries of the band modes 

and an input plane wave.  Figure 5.1.25(a) displays one possible example of the field 

distribution inside the crystal, which would correspond to the coupling band.  The 

alternating regions of high and low amplitude are symmetric upon mirror reflection with 

respect to the y-z plane, just as the incoming plane wave is.  One of the possible field 

distributions in case of a non-coupling band is shown in Figure 5.1.25(b), which is anti-

symmetric upon reflection with respect to the same plane.  It is exactly this difference in 

symmetry between an input plane wave and modes of the particular band that prevents the 

incoming radiation from coupling to and propagating through the crystal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.25:  The possible field distributions inside the crystal corresponding to (a) 
coupling band and (b) non-coupling band.  The incoming plane wave propagating in a 
positive direction of y-axis is also indicated.  The colour scale is in arbitrary units, 
with wave crests/troughs corresponding to red/blue and zero amplitude indicated by 
green(For detailed calculations of the field pattern for a non-coupling band in a 
photonic crystal case see Krauss et al. [73]). 
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In case of phononic crystals, the bands, which feature symmetries inconsistent 

with the symmetry of a plane wave, are also known as “deaf” bands.  For example, 

Sánchez-Pérez et al. observed the existence of such bands for sound waves propagating 

through a square array of stainless steel cylinders in air [76].  Based on the experimental 

evidence, it can be concluded that the second band along the ΓK direction in my 2D 

crystals is a “deaf” band.  This statement can be verified by the MST, which allows one to 

simulate propagation of a plane wave through the phononic crystal.  Such a simulation 

was performed by Dr. Zhengyou Liu for the case of a finite beam incident along the ΓK 

direction on a 12-layer 2D phononic crystal of infinite lateral extent [Figure 5.1.26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.26:  Field calculated with the help of MST for the case of a plane wave 
beam incident on a 12-layer 2D phononic crystal along the ΓΚ direction.  The labels of 
both axis are given in units of the lattice constant a.  The colour scale is in arbitrary 
units. (Calculations courtesy of Dr. Zhengyou Liu). 
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The frequency of the input wave was chosen to be 0.90 MHz, which lies well 

inside the 2nd band.  As can be seen from Figure 5.1.26, the incident wave is not able to 

couple to the 2nd band mode, which is evidenced by the zero amplitude of the field in the 

central region inside the crystal.  This explains the drop in transmission observed in the 

experiment.  However, some very weak disturbances, with a magnitude of about 0.25 % of 

the incident wave, are observed on both sides of the central region where the field is zero.  

This is shown in Figure 5.1.27, which displays the image in Figure 5.1.26 plotted at 

smaller colour scale (the number in the upper right corner is a factor by which its colour 

scale should be increased to bring it to the level of Figure 5.1.26). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.27:  The image plot in Figure 5.1.26 displayed on a smaller colour scale, in 
order to visualize the part of the incident wave that propagated through the crystal.  All 
the magnitudes with the values larger/smaller than the largest/smallest values of the 
colour scale are represented by the red/blue colour. 
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Presumably, these fields are excited by the edges of the incident beam (because the 

transverse confinement of the beam means that its Fourier spectrum must contain the 

wavevectors with non-normal angles of incidence).  The portion of the field pattern inside 

the crystal (located to the left of the region where field amplitude is zero) is shown more 

closely in Fig. 5.1.28.  One can see that the field distribution is anti-symmetric with 

respect to the y-z plane, which probably reflects the fact that this field pattern is a 

combination of different modes in the 2nd band (each of them being anti-symmetric itself). 

 

 

 

 

 

 

 

 

 

 

 

 

The most interesting fact however is that transmission, calculated by the MST, still 

predicts that a very small part of the energy of the incident wave passes through the 

crystal.  Each of the edge field regions excited on either side of the central region couples 

to the outside medium in such a way that two plane waves are produced (four in total), 

each propagating away from the crystal at some angle with respect to the normal to the 

Figure 5.1.28:  Left portion of the field pattern inside the crystal displayed in Figure 
5.1.27.  Note the sign reversal asymmetry with respect to the y-z plane.  The colour 
scale is the same as in Figure 5.1.27. 
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crystal surface.  It is interesting to note that these angles are not equal.  For example, the 

field to the left of the central area produces left propagating wave at an angle of 51° (with 

respect to the normal) and the right propagating wave at a 46.5° angle [Figure 5.1.29].  

However, since field patterns are mirror-like images of each other with respect to the y-z 

plane, this relation is reversed for the waves produced by the field on the right of the 

central area, so that the total transverse wavevector (parallel to x-axis) on the input and 

output sides of the crystal is conserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To experimentally investigate the nature of the transmitted patterns, I have 

conducted a field mapping experiment with the flat 12-layer 2D crystal [Figure 5.1.1], in 

Figure 5.1.29:  The outgoing part of the field displayed in Figure 5.1.26.  The total 
transverse wavevector of the field transmitted through the crystal adds up to zero 
and obviously equals the total wavevector of the input (truncated plane wave).  The 
colour scale is the same as in figure 5.1.27. 
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which the incoming pulse was incident normally on the crystal surface and the field on the 

output side of the crystal was scanned with the help of the hydrophone.  The input pulse 

was centred at 1.0 MHz but had a bandwidth wide enough to cover an appreciable 

frequency range, including the frequency of 0.90 MHz.  Figure 5.1.30 presents a time 

snapshot of the sound field after filtering the original recorded field by a Gaussian 

bandpass filter centred at 0.90 MHz and 0.005 MHz wide.  The experimentally measured 

field certainly bears similarity with the calculated pattern in Figure 5.1.29.  One can easily 

identify two major beams propagating to the left and to the right from the crystal surface.  

The angles at which beams leave crystal surface are measured from the figure and found 

to be almost the same: 46°±1° for the left propagating beam and 45°±1° for the right 

propagating one.  The whole field pattern is shifted towards the left side of the picture, 

most likely due to the centre of the transducer not being coincident with the middle point 

of the crystal. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.30:  Snapshot of the experimentally measured field emerging from the 
output side of the 12-layer 2D crystal with the input pulse incident along the ΓK 
direction.  The geometry of the experiment is identical to the one shown in Figure 
5.1.26.  Colour scale is in arbitrary units. 
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The other two beams, which are predicted by the theory and seen in Figure 5.1.29, 

are not observed conclusively in the experiment, possibly due to the difference between 

the profiles of the input beam used in the calculations and the input beam produced by the 

transducer in the actual experiment shown in Figure 5.1.30.  These two profiles are 

compared in Figure 5.1.31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experimental input beam profile was obtained by measuring the field of the 

transducer in the mapping experiment (using the motorized stage and the hydrophone) and 

plotting the field amplitude along a line that is perpendicular to its axis and is located at 

the same distance from the transducer as the position of the crystal during the experiment 

shown in Figure 5.1.30.  The beam profile used in the calculations was obtained by 

Figure 5.1.31: Comparison of the input beam profile used in the calculations 
of the field pattern [Figure 5.1.26] with the one produced by the transducer in 
the field mapping experiment with the input pulse incident along the ΓΚ 
direction. 
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reading the field amplitudes from Figure 5.1.26 along the line 4.9−=y cm.  It can be seen 

from Figure 5.1.31 that the experimental input beam is broader than the one used in 

calculations, and has a different shape, which might be responsible for some disagreement 

between the experiment and theory.  However, in general there is a good qualitative 

agreement between the experiment and the calculations by the MST for the case of input 

pulse incident along the ΓΚ direction. 

The question of why the observed output pattern looks the way it does cannot be 

addressed using the band structure alone.  Instead, a more sophisticated model is needed 

that would be able to explain how the field inside the crystal couples to the input and 

output beams, which likely involves a higher order mechanisms.  The main message, 

which follows from the calculations and experiments with the flat crystal along the ΓK 

direction, is the prediction and experimental proof that the 2nd band along this direction is 

a “deaf” band, and a plane wave incident normally to the crystal surface along the ΓK 

direction cannot couple to the 2nd band modes. 

This conclusion helps us understand why results of the experiment with the prism-

shaped crystal in the case of input pulse incident along the ΓΚ direction [Figure 5.1.23] 

are in a disagreement with the simple band structure predictions.  The significantly smaller 

magnitude of the transmitted pulse is explained again by the fact that the 2nd band along 

the direction of incidence is a “deaf” band and the incident pulse does not couple to any 

mode inside the prism-shaped crystal.  However, since the width of the input beam is 

finite, some crystal modes are still excited by the edges of the input pulse, and those 

modes are responsible for the field on the output side of the crystal that is observed 

experimentally. 
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The same argument of a “deaf” band along the ΓΚ direction can explain why, in 

the experiment depicted in Figure 5.1.11, no negatively refracted beam was observed 

corresponding to the parallel component of the reduced wavevector that was not modified 

by a reciprocal surface vector (see the dashed line in Figure 5.1.15).  Recall that Snell’s 

law predicted this negatively refracted beam to emerge nearly normal to the crystal 

surface or, equivalently, to the ΓΚ direction.  This situation is the reverse of the 

experiment with the input pulse incident normally on the crystal from water along the ΓΚ 

direction [Figure 5.1.23].  It is reasonable to assume that, similar to the experiment along 

the ΓΚ direction, the field inside the crystal could not couple to the outside medium, due 

to the difference in symmetries between the corresponding modes inside the crystal and a 

plane wave outside. 

This brings to an end the section on negative refraction of ultrasound observed 

with the help of the prism-shaped 2D phononic crystal.  The main conclusion is that the 

negative refraction of ultrasound pulses incident along the ΓΜ direction was successfully 

demonstrated experimentally.  In my case, negative refraction is a band structure effect 

and is observed in the frequency range where the group velocity and wavevector are 

antiparallel.  A very good agreement is found between the refraction angles measured in 

the experiment and those calculated by the MST.  The experiments also revealed that 2nd 

band along the ΓK direction is a “deaf” band and coupling between plane waves and 

modes of the 2nd band is prohibited due to the difference in their symmetries.  Part of this 

work on negative refraction has already been published in a peer-reviewed publication 

[77]. 
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5.2  Near-field imaging with flat 2D phononic crystals 

As was explained in Section 2.2.2, the effect of negative refraction must enable a 

flat phononic crystal to focus sound fields of point sources, since each emitted ray should 

refract negatively twice while traveling through the crystal.  Section 5.2 presents 

experimental evidence that supports this prediction.  This section contains the results of 

the experiments, which led to the observation of focusing of ultrasound waves and 

allowed me to investigate the question: what is the best achievable resolution when 

imaging with the phononic crystal?  The section starts by describing focussing 

experiments with the flat 2D phononic crystal filled with the same liquid as the 

surrounding medium, which is water in our case, and continues by discussing similar 

experiments performed with crystals immersed in water but filled with methanol. 

5.2.1  Imaging experiments with 2D flat crystal filled with water 

The first near-field imaging experiment was conducted with the rectangular-shaped 

6-layer crystal [Fig. 3.1.2(a)] in the small water tank [Figure 3.2.2].  As a point source, I 

have utilized a pinducer, the detailed description of which is given in Section 3.4.3.  In 

most of the experiments, the pinducer was positioned about 2.5 mm away from the crystal 

surface.  A narrow Gaussian pulse centred at 0.75 MHz was generated by an Arbitrary 

Waveform Generator (AWG), amplified by the Amplifier Research power amplifier 

(Section 3.3.1) and sent into the pinducer.  The field on the opposite side of the crystal (as 

in the experiments on negative refraction) was scanned with the hydrophone in a 

rectangular grid perpendicular to the crystal rods.  The separation between adjacent grid 

points was chosen to be 0.5 mm.  The pinducer and the hydrophone were positioned in the 
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same plane, with the central point of the grid lying on the pinducer axis.  Figure 5.2.1 

shows the geometry of the experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2.1:  Geometry of the near-field imaging experiment with the rectangular-
shaped phononic crystal: (a) top view and (b) side view. 

(b) 

Hydrophone Pinducer 

x z 

x 

z 

Hydrophone’s 
path 

Hydrophone 

Γ 

K 

M 

1 mm 

Pinducer 

2.5 mm 

(a) 

0 



 185

By calculating Fast Fourier Transforms (FFTs) of each acquired waveform, 2D 

image plots were created displaying wave amplitude ( 0>A ) at a certain frequency as a 

function of the hydrophone position in the x-z plane (see Section 3.5.2).  Equifrequency 

contours for selected frequencies in the 2nd band (0.75 MHz, 0.85MHz and 0.95 MHz) 

were calculated by the MST and have been found to have a nearly circular shape (see 

Figure 2.2.4).  It will be shown later that there is a very wide range of the 2nd band 

frequencies for which equifrequency contours are almost circular.  The focusing ability of 

the 2D flat phononic crystal is illustrated by the image plot in Figure 5.2.2, which displays 

the focal pattern observed at a frequency of 0.75 MHz.  The pinducer field is clearly 

focused in both longitudinal and lateral extent, as shown by the overall focal pattern in 

Figure 5.2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2.2:  2D image plot of wave amplitude at 0.75 MHz obtained in the 
experiment on pinducer field imaging.  The colour scale is in arbitrary units. 
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The lateral and longitudinal confinement of the focus can be better seen from 

Figures 5.2.3(a)-(b), which represent measured wave amplitudes along the x-axis and z-

axis (as read from image plot in Figure 5.2.2).  The focal spot is much more extended 

along the z-axis than along the x-axis, which is expected when equifrequency contours in 

water and inside the crystal do not match, which is the case for my crystal at 0.75 MHz 

(see Section 2.2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2.3:  Wave field amplitude as a function of position obtained from 
Figure 5.2.2 by plotting along: (a) x-axis at z = 4.5 mm, (b) z-axis at x = 0 mm. 
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The central issue in any imaging application is the best possible resolution that can 

be achieved with the system used for imaging.  According to Lord Rayleigh, two 

incoherent point sources of equal intensity are just resolved when maximum of the 

intensity peak produced by one of the sources falls at the first minima of the intensity peak 

due to the second source (Rayleigh criterion).  By adopting this definition of resolution, 

the resolution provided by the crystal is simply half of the full width of the amplitude peak 

produced by imaging the pinducer [Figure 5.2.3(a)].  To determine the resolution, the 

width of the peak was estimated by fitting the data points by the sinc function 

axax)sin( , where the fitting parameter a is related to the width of the peak Δ by the 

expression Δ= aπ2 .  The resolution therefore is given by Δ/2.  The sinc function is 

known from diffraction theory to represent the shape of the amplitude of the peak due to 

diffraction of a plane wave on a single slit (which can be viewed as a line source) in the 

2D case and therefore can be expected to provide a good approximation to the data peak.  

The experimentally observed amplitude peak [Figure 5.2.3(a)] and the fitted sinc function 

are shown in Figure 5.2.4.  For the focal spot at 0.75 MHz, from the fit the value of the 

peak width Δ was found to be 02.002.5 ± mm with the corresponding resolution of 2.51 

mm or 1.26λ, where λ is the ultrasound wavelength in water. 
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The imaging experiments described above demonstrated in principle the ability of 

the flat 2D phononic crystal to bring a point-source field to a focus in the x-z plane.  The 

shape of the focal spot, however, is far from ideal.  Although the focal spot is confined in 

lateral extent, it obviously lacks the same degree of confinement along the axis 

perpendicular to the crystal.  The focal spot along the z-axis is very broad and has a large 

focal depth (the maximum field amplitude along z-direction is only about 10% higher than 

the field amplitude at the crystal surface) [Figure 5.2.3(b)].  As was already explained in 

Section 2.2.2, this shape of the focal spot is expected due to mismatch between the 

equifrequency contours in water and those inside the crystal.  In other words, the 

mismatch creates an effective refractive index of the crystal that depends on the angle of 

incidence.  This dependence can be removed by making the size of the equifrequency 

Figure 5.2.4:  Focal spot amplitude at 0.75 MHz and fit of the absolute value of 
the sinc function.  Width of the peak, Δ, is also indicated. 
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contours match, which effectively would mean that the refractive index of the crystal 

would be 1− . 

The question of the equifrequency contour mismatch should also be solved if one 

wants to improve the resolution of the image.  Because of this mismatch, a certain cut-off 

angle cutθ  exists, such that, for any angle of incidence larger than the cut-off angle, 

incident waves cannot couple to any mode inside the crystal and therefore are not used in 

the image restoration on the output side of the crystal [Figure 5.2.5]. 

 

 

 

 

 

 

 

 

 

 

 

 

The loss of some propagating part of the incident field broadens the lateral size of the 

focal spot and thus decreases the resolution of the image.  We therefore see that both the 

focal depth and resolution are expected to improve if the crystal used for imaging will 

have its equifrequency contour matching the water contour.  One also refers to the 

Figure 5.2.5:  Diagram explaining the origin of the cut-off angle θcut in the imaging 
experiment at 0.75 MHz.  The solid circle denotes the equifrequency contour inside 
crystal, and the dashed circle indicates corresponding contour in water. 
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situation of matching equifrequency contours as the regime of All Angle Negative 

Refraction (AANR), which means that every incident ray is negatively refracted and 

transferred to the output face of the crystal. 

One can easily verify that, at the frequency 0.75 MHz, the cut-off angle cutθ  is 

about 42°.  It is obvious from Figure 5.2.5, that in order to increase cutθ  and improve the 

resolution of the water filled crystal, one needs to image at a frequency lower than 0.75 

MHz.  At the same time, this frequency cannot be too close to the stop band along the ΓM 

direction, since equifrequency contours will deviate from circular shape in the proximity 

of the edge of the Brillouin zone.  The lowest frequency with a circular equifrequency 

contour can be estimated from the band structure (Figure 5.1.2) by calculating the 

percentage deviation between the wavevector along the ΓK direction and the wavevector 

along the ΓM direction.  This deviation is shown in Figure 5.2.6. 
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Figure 5.2.6:  Percentage deviation of the wavevector along the ΓK 
direction with respect to the wavevector along the ΓM direction. 
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It can be seen from Figure 5.2.6 that the equifrequency contours are virtually 

circular (difference is less or equal to 1%) for a wide frequency range in the 2nd band.  The 

lowest frequency with a nearly circular equifrequency contour (about 1% difference) is 

found to be 0.69 MHz.  The corresponding image plot is shown in Figure 5.2.7, while the 

cross-sections of the focal spot along the x- and z-directions are presented in Figure 

5.2.8(a)-(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From fitting the data curve in Figure 5.2.8(a) by a sinc function, the peak width Δ 

was estimated to be 4.6 mm with a corresponding resolution of 1.1λ, which is an 

improvement as compared to the resolution obtained at 0.75 MHz. 

Figure 5.2.7:  2D image plot of wave amplitude at 0.69 MHz obtained in 
the experiment on pinducer field imaging. 
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The importance of the circular shape of the equifrequency contours used for 

imaging can be illustrated by the focal pattern produced at a frequency of 0.67 MHz, 

which corresponds to the equifrequency contour that deviates the most from a circular 

Figure 5.2.8:  Wave field amplitude as a function of position obtained from Figure 
5.2.7 by plotting along: (a) x-direction at z = 2.9 mm, (b) z-direction at x = 0 mm. 
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shape (see Figure 5.2.6).  At this frequency, the equifrequency contours in water and in the 

crystal almost match each other along the ΓM direction (the exact match occurs at 0.66 

MHz, which falls in the stop band along the ΓM direction and thus is not available for 

imaging).  The deviations from the circular shape are responsible for significant 

distortions of the final image, as evidenced by the image plot of the wave amplitude at 

0.67 MHz [Figure 5.2.9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image distortion can be seen even more clearly from the profiles of the focal spot 

along x- and z-directions, which are shown in Figure 5.2.10.  As can be seen from Figure 

Figure 5.2.9:  2D image plot of wave amplitude at 0.67 MHz obtained in the 
experiment on pinducer field imaging.  The colour scale is in arbitrary units and 
similar to Figure 5.2.7, with blue and red corresponding to zero and the largest 
amplitude respectively. 
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5.2.10(a), the field profile along x-direction became distorted by two side lobes of 

irregular shape at the base of the amplitude peak. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, switching from a circular to non-circular equifrequency contour significantly 

degraded the overall quality of the image and rendered it less useful from the point of 

Figure 5.2.10:  Wave field amplitude as a function of position obtained from Figure 
5.2.9 by plotting along: (a) x-direction at z = 1.8 mm, (b) z-direction at x = 0 mm.
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view of future imaging applications.  This example illustrates the importance of the 

circular shape of the equifrequency contour in achieving high quality images.  The next 

section explains how the problem of the equifrequency contour mismatch was overcome 

by designing a new phononic crystal.  The results of the imaging experiments with such a 

crystal will also be presented. 

It is also worthwhile investigating the applicability of the formula (2.27), which 

was initially introduced in Section 2.2.2 when imaging by a slab of a Left Handed (LH) 

material was discussed.  In case of a flat phononic crystal with circular equifrequency 

contours, equation (2.27) assumes the following form: 
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where watk  and crk  are the magnitudes of the wavevectors in water and in the crystal, 

respectively.  The meaning of the remaining quantities entering (5.7) is explained in 

Figure 2.2.10.  It is clear from (5.7) that only in the case of matching equifrequency 

contours ( crwat kk = ) will all incident rays, irrespective of their angle of incidence inθ , be 

brought to the same focal spot, which will be located a distance 12 LdL −=  away from 

the crystal’s surface.  In the following analysis, I will assume that crwat kk >  and 1Ld > , 

which is the case for my water-filled crystal.  Because of the non-matching equifrequency 

contours, the distance 2L , at which each pair of incident rays will intersect on the output 

side of the crystal, becomes dependent on the angle of incidence inθ .  As a result, the focal 

spot is elongated along the direction perpendicular to the crystal surface.  The elongation 

of the focal spot can be estimated by plotting the distance 2L  as a function of the angle of 
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incidence inθ  for several frequencies (or effectively for different ratios crwat kk ).  This is 

done in Figure 5.2.11 for three different frequencies 0.69 MHz, 0.75 MHz and 0.80 MHz, 

with the values 1L  and d corresponding to their values in the actual experiment (Figure 

5.2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the above graph, one can see that the elongation of the focal spot 

progressively increases with the increase of the imaging frequency, since flat parts of the 

curves become shorter with increasing frequency.  Also, the onset of the focal spot should 

move away from the crystal surface for higher frequencies.  Both results are in qualitative 
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Figure 5.2.11:  Distance 2L  as a function of the angle of incidence calculated 
according to equation (5.2) for three different frequencies with 52.6=d mm and 

5.21 =L mm.  Intersection with the vertical axis indicates the distance of the onset of 
the focal spot.  As the flat parts of the curves become wider (extend to larger inθ ), the 
focal spot becomes less elongated along the z-direction, since larger range of incident 
angles is brought to same focal spot.



 197

agreement with the experimental observations, as evidenced by Figure 5.2.12.  The focal 

profiles along the perpendicular direction become flatter (more elongated) and also tend to 

move away from the crystal as the frequency increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The quantitative agreement, however, is poor.  The main disagreement between 

equation (5.7) and experimental observations is that, for any frequency, the focal spot 

must be clearly separated from the crystal surface as can be seen from Figure 5.2.11 (the 

smallest separation 12 LdL −=  is achieved when equifrequency contours are matching).  

For example, the focal spot at 0.69 MHz should be centred 4.85 mm away from crystal’s 

surface (as found from the intersection between the curve and vertical axis in Figure 

Figure 5.2.12:  Measured focal profiles along the perpendicular direction for 
three different frequencies.  As the frequency increases field profiles both 
become elongated and shift away from crystal’s surface. 
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5.2.11) and is expected to be elongated in the perpendicular direction away from the 

crystal.  In Figure 5.2.12 one observes a very broad focus, which starts at the crystal’s 

surface, in disagreement with the predictions of (5.7).  Similar disagreement is observed at 

the frequency of 0.75 MHz, where the centre of the focal spot is located 4.5 mm away 

from the crystal whereas (5.7) predicts a separation of 7.3 mm.  One can conclude that the 

position of the focal spot only qualitatively exhibits the dependence predicted by the 

equation (5.7), which is based on a simple ray-tracing approach of geometrical optics.  My 

findings also disagree with the experimental results of Ke et al. [54], who also 

investigated focusing of ultrasound by a 2D flat phononic crystal similar to mine except 

for minor difference in some crystal parameters (lattice constant 5.1=a mm, rod diameter 

0.1=d mm).  According to Ke et al., good agreement is observed between predictions of 

(5.7) and the measured position of the centre of the focal spot along the perpendicular 

direction.  The reasons of this disagreement are unclear at the moment, but may reflect the 

fact that Ke at al. used a focusing transducer to create the “point” source rather than a 

small diameter disk-shaped transducer, such as the pinducer.  Their focusing transducer 

likely has a rather large focal depth. 
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5.2.2  Imaging experiments with 2D flat crystal filled with methanol 

The difficulty with the mismatch of equifrequency contours was overcome by 

designing a new phononic crystal, which allowed the liquid inside the crystal to be 

different from the outside medium (water in our case).  The details of the design are 

discussed in Section 3.1.1.  Here I would just note that it was important to make sure that 

the presence of the thin plastic film, which was stretched over the surface of the crystal in 

order to keep the liquid inside the crystal separated from water, could be ignored during 

the imaging experiments.  The evidence of the negligible influence of the plastic film on 

transmission through the crystal is presented in Appendix D.  This result is expected 

though, as the film thickness (0.01 mm) was 2 orders of magnitude smaller than the sound 

wavelength in water.  The new crystal was then filled with methanol, which has speed of 

sound lower than that in water (1.1 mm/μs versus 1.49 mm/μs).  Qualitatively, one 

expects that the change of liquid matrix inside the phononic crystal would simply either 

stretch or shrink the original band structure along the frequency axis by a factor equal to 

the ratio of the speed of sound in the liquids filling the crystal.  This qualitative picture 

was verified by MST calculations and by transmission experiments through the methanol 

filled crystal, from which the dispersion curve and crystal band structure were extracted.  

As in the case of the water matrix crystal, a very good agreement was found between 

theory and experiment [Figure 5.2.13].  
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Because the band structure of the methanol matrix crystal was shrunk along the 

frequency axis as compared to the one of the water matrix crystal, the position of the 

matching frequency moved away from the Brillouin zone edge and was found to be 0.55 

MHz as indicated in Figure 5.2.13.  Although rigorous MST calculations of the shape of 

this equifrequency contour were not done, it is reasonable to assume that its shape is either 

circular or deviates very little from a circle, since the corresponding wavevector along the 

ΓM direction (2.31 mm-1) is only 10% larger than the wavevector along the same direction 

for the 0.75 MHz contour in the water-filled crystal (2.10 mm-1), and this contour is 

known from the MST to be “perfectly” circular. 

Figure 5.2.13:  Comparison of the band structure calculated by the MST and 
measured experimentally for the 2D rectangular-shaped 6-layer crystal filled 
with methanol.  The intersection of the dispersion curves for water and the 
crystal indicates the matching frequency. 
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The geometry of the imaging experiment with the methanol matrix crystal was 

identical to the one shown in Figure 5.2.1, except that the distance between the pinducer 

and the crystal was reduced to 2 mm.  The input pulse was centred at 0.50 MHz and had a 

sufficiently broad bandwidth to cover the matching frequency of 0.55 MHz.  The 2D 

image plot of wave amplitude at 0.55 MHz is shown in Figure 5.2.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dramatic improvement of the focal spot shape due to matching equifrequency 

contours is clear when compared to the focal pattern obtained with the water matrix 

crystal [Figure 5.2.2].  Figure 5.2.15(a)-(b) provides further evidence that the focal spot is 

now confined longitudinally (along the z-direction) as well as laterally (along the x-

direction). 

 

Figure 5.2.14:  2D image plot of wave amplitude at 0.55 MHz obtained in the 
experiment on imaging pinducer field with the methanol matrix crystal. 
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The improvement in the shape of the focal spot along z-axis is especially 

impressive when compared to the broad field profile in Figure 5.2.8(b) obtained with 

water matrix crystal.  The extent of the –6 dB region around the focal spot (i.e. the region 

Figure 5.2.15:  Wave field amplitude at 0.55 MHz read from the image plot 
shown in Figure 5.2.14 by plotting along: (a) the x-direction at z = 2.9 mm and 
(b) the z-direction at x = 0 mm. 
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at whose edges field amplitude drops down by half as compared to its maximum value) 

along z-axis in case of the methanol-filled crystal is only 4.2 mm.  Thus, by utilizing 

matching equifrequency contours, the depth resolution was significantly improved. 

Because the regime of AANR was realized, a major improvement of the lateral 

resolution of the image was also achieved.  The width of the amplitude peak displayed in 

Figure 5.2.15(a) was estimated to be 03.016.3 ± mm and the corresponding resolution was 

found to be 0.58λ, which is two times narrower than the resolution observed when 

imaging with water matrix crystal [Figure 5.2.16]. 

 

 

 

 

 

 

 

 

 

 

 

 

We can see that by using a crystal with equifrequency contours matching those in 

water, much better depth and lateral resolution of the focal spot was obtained.  Therefore, 

Figure 5.2.16:  Amplitude peak at 0.55 MHz along with fitted sinc 
function.  Width of the peak Δ found to be 3.16 mm. 
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one can conclude that it is extremely important to work in the regime of AANR to obtain 

optimal results while imaging with flat 2D phononic crystals. 

Although the resolution was significantly improved by moving from the water 

matrix to the methanol matrix crystal (and thus reaching the AANR regime), the question 

about the best possible resolution provided by the system was not resolved by these 

experiments.  Apart from the fundamental resolution limits, which will be discussed later 

in this section, one obvious limitation would be the source size, or pinducer diameter in 

this case.  Recall that by analyzing the pinducer field, its diameter was found to be 2.2 mm 

(see Section 3.4.3).  On the other hand, the Full Width at Half Maximum (FWHM) of the 

amplitude peak in Figure 5.2.16 was measured to be about 2.0 mm, which is comparable 

to the pinducer’s size.  The conclusion here is that in order to investigate the true 

resolution limit, a smaller size source must be used in the imaging experiments. 

With this goal in mind, I performed another experiment with the methanol matrix 

crystal in which the line source transducer was imaged.  The description of this transducer 

was provided in Section 3.4.5.  The geometry of this experiment was identical to the one 

depicted in Figure 5.2.1.  The transducer element was aligned to be parallel with crystal 

rods and positioned approximately 1.6 mm from the crystal surface.  A pulse, generated 

by the AWG and sent into the transducer, had a central frequency of 0.62 MHz, which was 

found to be the frequency of the best response of the transducer.  That was not a problem 

though, as the bandwidth of the input pulse generated by the transducer was large enough 

so that its FT had an appreciable magnitude at the matching frequency of 0.55 MHz. 

A 2D image plot of the field at the output side of the crystal is shown in Figure 

5.2.17.  A good quality focal pattern was obtained with the focal spot clearly seen and 

confined in both perpendicular and parallel directions to the crystal surface. 
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Field profiles read along lines 0.3=z mm and 0=x mm in Figure 5.2.17 are also 

shown in Figures 5.2.18(a) and 5.2.18(b) respectively.  From Figure 5.2.18(b) the extent 

of the –6 dB region around the focal spot along z-axis was found to be about 3.8 mm, 

which is slightly better than the depth resolution observed when imaging the pinducer 

with the same crystal [Figure 5.2.15(b)]. 

 

 

 

 

Figure 5.2.17:  2D image plot of wave amplitude at 0.55 MHz obtained in the 
experiment on imaging the line source transducer with the methanol matrix crystal.  
The colour scale is in arbitrary units. 
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It is worthwhile noting once again that the position of the focal spot is in 

disagreement with the one predicted by equation (5.7), which in case of matching 

equifrequency contours is reduced to simple relation 12 LdL −= .  This equation predicts 

the focal spot to occur 4.9 mm away from the crystal surface, while the measurements 

provide the value of 3 mm. 

Figure 5.2.18:  Wave field amplitude at 0.55 MHz read from image plot in Figure 
5.2.17 by plotting along: (a) x-direction at z = 3.0 mm and (b) z-direction at x = 0 mm. 
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Just as in the previous cases, the width of the intensity peak displayed in Figure 

5.2.18(a) was measured by fitting a sinc function; in this case the width was found to be 

02.000.3 ± mm [Figure 5.2.19], with a corresponding resolution of 0.55λ.  The observed 

resolution differs by only 10% from the ultimate resolution limit λ/2 of any conventional 

imaging system as predicted by diffraction theory.  This difference can be explained by 

losses inside the crystal, which are inevitably present in any real system.  Therefore, the 

2D flat phononic crystal with equifrequency contours matched to those of the outside 

medium is capable of producing images with an excellent resolution approaching the 

diffraction limit. 

 

 

 

 

 

 

 

 

 

 

 

 

It is worthwhile discussing now the possibility of achieving super-resolution 

(better than the diffraction limit) when imaging with a flat phononic crystal.  The 
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Figure 5.2.19:  Amplitude peak at 0.55 MHz along with fitted sinc function. 
The width of the peak Δ was found to be 3.00 mm. 



 208

underlying reason for the existence of the diffraction limit is that evanescent waves, which 

along with the propagating waves comprise the original field emitted by the source, are 

not used in the image restoration, as their magnitudes decay exponentially with the 

distance away from the source and are usually negligibly small.  Thus, to produce images 

with resolution better than the diffraction limit, the crystal must be able to amplify 

evanescent waves.  In their theoretical work Luo et al. [48] have shown that a 2D photonic 

crystal with a certain band structure (see below) is able to amplify evanescent waves so 

that a resolution better than 2λ  can be achieved.  Physically, the amplification of 

evanescent waves occurs via their resonant coupling to either surface or bulk bound 

(guided) photon states and the resulting growth of these states during transmission.  Luo et 

al. consider predominantly the amplification of evanescent waves by surface bound 

photon states, which are surface modes spatially confined to the crystal’s surface and 

decaying exponentially with the increasing distance both inside and outside the crystal 

[82].  For amplification to occur, the surface band structure must feature a sufficiently flat 

dispersion curve of the bound states )(kω , so that quantity )(0 kωω − , where 0ω  is the 

frequency of operation, remains small for all incident evanescent waves with wavevectors 

ck 0ω> .  Ideally, all evanescent waves would couple to the corresponding surface state 

and be amplified just to the right degree required to negate their exponential decay outside 

the crystal, resulting in a perfect image on the output side.  This ideal situation is, of 

course, very difficult to realize in practice.  Luo et al. showed, however, that one can 

always design a crystal, which will operate sufficiently close to the ideal situation, and 

good quality images still can be obtained.  It remains an open question whether or not 

similar mechanisms for super-resolution exist in phononic crystals, as to the best of my 
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knowledge no theoretical analysis analogous to Luo et al.’s has been done for the case of 

phononic crystals.  If we assume that phononic crystals with certain band structures can 

indeed amplify evanescent waves, another consideration should also be taken into account.  

In the same paper, Luo et al. also showed that the resolution 2Δ  of a photonic crystal, 

which is defined as half the transverse size of an image intensity peak due to a line source, 

is limited by crystal’s surface periodicity.  By using a simplified model, which assumes 

perfect total transmission for all waves with transverse wavevector Mkk <  and zero 

transmission for Mkk > , the intensity profile in the image plane is given by the inverse 

Fourier transform [48]: 

 2

2
2

)(sin4)exp()(
x

xkdkikxxI M
k

k

M

M

== ∫
−

 (5.8) 

where the x-axis is parallel to the crystal’s surface.  The resolution is half the distance 

between the first zeros around the peak, i.e., MkπΔ 2= , and is inversely related to the 

maximum transverse wavevector Mk  transmitted by the crystal.  For a conventional 

optical imaging system λπ2=Mk , with a corresponding resolution limited to 2λ .  By 

contrast, the perfect lens proposed by Pendry in [37] has ∞=Mk  and unlimited 

resolution.  Luo et al. showed that Mk  in a photonic crystal can exceed the diffraction 

limited value λπ2 , but is always finite because of the periodicity of the crystal’s surface.  

From the limits imposed on Mk  they derived the upper and lower bounds of the best 

achievable resolution when imaging with a 2D photonic crystal, which are given by the 

following inequality: 
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 (5.9) 

where sa  is the surface period and λ  is the operation wavelength.  The upper bound in 

(5.9) is obtained on the assumption that all Fourier components of the incident field with 

parallel wavevectors lying inside the first surface Brillouin zone, i.e. sakc πω <<0 , 

couple to the surface modes ( sM ak π= ).  This is a conservative estimate since it ignores 

the wavevectors that originally extend past the Brillouin zone edge and are Bragg-

scattered back into the first Brillouin zone outside the light cone.  These wavevectors lie in 

the range between the first Brillouin zone edge and the light cone line, i.e. 

caka ss 02 ωππ −<<  and cak sM 02 ωπ −= .  The wavevectors, which are Bragg-

scattered inside the light cone, i.e. kcas <− 02 ωπ , couple to the leaky photon modes, 

and are shown by Luo et al. not to produce significant amplification of evanescent waves 

(see [48] for more details).  When the Bragg-scattered wavevectors are taken into account, 

the lower bound is obtained.  From (5.9) it is clear that the resolution Δ/2 is limited by the 

surface period as of the crystal and can overcome the diffraction limit when the surface 

period as of the crystal is less than 2λ .  To estimate the possible limit on the best 

achievable resolution with my phononic crystal I will use only the upper bound on Δ in 

(5.9).  In my case 27.1=sa mm, which implies the best achievable resolution of 0.47λ.  

Although the resolution observed in my experiments is close to the limit derived following 

Luo et al., it is still larger than the diffraction limit.  From this we can conclude that 

evanescent waves were not amplified by the crystal during the experiment and only 

propagating components of the field participated in image restoration.  This conclusion is 

also supported by the focusing pattern displayed in Figure 5.2.18(b).  If the evanescent 
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waves were resonantly amplified, one would expect to see a sound field of large 

magnitude right at the output surface of the crystal, which would decay exponentially with 

the distance away from the crystal.  This behaviour was observed by Grbic et al., who 

observed subwavelength resolution smaller than the diffraction limit by investigating 

focusing of electromagnetic waves emitted by a point source with an artificial Left-

Handed material made of 2D transmission line grids loaded with capacitors and shunt 

inductors [42].  However, in my experiments the focal spot is confined in the direction 

perpendicular to the crystal surface implying that no evanescent field amplification occurs.  

This, however, does not rule out the possibility of achieving subwavelength resolution 

while imaging with phononic crystals with a different structure.  A serious theoretical 

analysis is required to establish whether flat bound surface modes, similar to those 

considered by Luo et al. in case of electromagnetic waves, can exist in phononic crystals. 

In conclusion, using the water-filled 2D flat phononic crystal, the effect of 

focusing of the sound field emitted by a point source was demonstrated.  However, due to 

mismatch between equifrequency contours in water and in the crystal, the focal spot was 

not well confined along direction perpendicular to the crystal surface.  A significant 

improvement in the quality of the focusing pattern was achieved by imaging with the new 

methanol crystal, which had an equifrequency contour matching that in water at the 

frequency 0.55 MHz.  The observed focal spot was confined in both parallel and 

perpendicular directions to the crystal surface.  By using a generating transducer, whose 

width was much smaller than the wavelength in water (about λ/5), the limit on the 

resolution achievable with the crystal was investigated.  The resolution limit of 0.55λ was 

observed.  No evidence of the amplification of the evanescent waves was found. 
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6. Conclusions 

In this chapter I would like to summarize the major experimental findings and 

achievements reported in this thesis. 

The first part of my Ph.D. work concentrated on the experiments with 3D 

phononic crystals made of small tungsten carbide spheres assembled in an fcc crystal 

structure and immersed in water.  Resonant tunnelling of ultrasound pulses through the 

double barrier consisting of two such crystals separated by a cavity (an aluminum spacer) 

was successfully observed for the first time.  This effect is a classical analogue of resonant 

tunnelling of a quantum mechanical particle through a double potential barrier.  In the case 

of ultrasound pulses, the potential barrier was represented by a phononic crystal at the 

frequency range corresponding to the complete band gap.  The effect manifested itself by 

a narrow peak in the transmission inside the band gap, which occurs due to constructive 

interference of all the multiple reflections of an ultrasound pulse reverberating for a long 

time inside the cavity.  The resonant condition is satisfied when width of the cavity 

approximately equals an integer number of half-wavelengths of ultrasound in aluminum.  

The dynamics of resonant tunnelling was also investigated by measuring the group time 

and group velocity of the transmitted pulses.  It was found that at frequencies away from 

resonance the transmitted pulses travelled very fast with a group velocity larger than the 

speed of sound in any of the crystal constituent materials.  At the same time, very slow 

group velocities (slower than the speed of sound in air) were observed at the resonant 

frequency.  In contrast to resonant tunnelling of Quantum Mechanics, the magnitude of 

the observed resonant tunnelling peak was significantly less than unity.  This reduction in 

peak magnitude was explained by the effect of absorption, which has no counterpart in 



 213

Quantum Mechanics.  The absorption introduces a small propagating component inside 

the crystal in addition to the dominant evanescent mode at the band gap frequencies.  As a 

result, there exists a leakage of the pulse from the cavity, thus limiting the build-up of the 

field inside the cavity.  The propagating component also reduces the group time by 

reducing the time spent by the pulse inside the cavity. 

The second part of my thesis concentrated on band structure effects in 2D 

phononic crystals made of stainless steel rods assembled in a triangular crystal lattice and 

immersed in water.  By employing circular equifrequency contours in the 2nd band, I was 

able to demonstrate negative refraction of ultrasound waves upon their propagation 

through the crystal/water interface.  The unambiguous demonstration of this effect was 

secured by the use of a prism-shaped 2D crystal.  The study of negative refraction was 

facilitated by the experimental technique, which allowed visualization of the outgoing 

wave field by creating image plots.  Quantitative analysis of the image plots showed that 

the predictions of the Multiple Scattering Theory are remarkably accurate. 

The same idea of bending sound negatively was used in focusing experiments.  In 

these experiments I used flat 2D crystals to focus the sound field emitted by different 

point-like sources.  The possibility of sound focusing by a flat phononic crystal was 

demonstrated in experiments with a flat phononic crystal filled with and immersed in 

water.  In these experiments a small circular transducer (a pinducer) with diameter slightly 

larger than a wavelength of sound in water was used.  During these experiments two 

important factors crucial to achieving high-quality images were established.  First, it is 

desirable to use equifrequency contours of circular shape to avoid distortions of the image.  

Second, the resolution of the observed images is influenced by the degree of mismatch 

between sizes of the equifrequency contours in the crystal and surrounding medium (water 
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in my case).  Since it was impossible to satisfy both conditions with the water-filled 

phononic crystal, a new flat crystal was designed, which allowed a liquid inside the crystal 

to be different from the outside medium (water).  The new crystal was filled with 

methanol, which resulted in matching circular equifrequency contours at 0.55 MHz.  In 

other words, at the matching frequency the new crystal had an effective refraction index 

1−=n  (with respect to water).  A significant improvement in the quality of the image was 

observed while imaging the pinducer.  The lateral resolution 0.58λ was found to be just 

above the diffraction limit. 

In order to investigate the possibility of achieving the subwavelength resolution 

while imaging with phononic crystals, a new subwavelength line source was constructed.  

The new source was a miniature transducer in the shape of a thin strip (approximately 5λ  

wide at the matching frequency).  By measuring the width of the focal spot observed while 

imaging the line source, a resolution of 0.55λ was found, which is even closer to, but still 

just above, the diffraction limit 2λ .  A resolution better than the diffraction limit implies 

the ability of the crystal to amplify an evanescent component of the incident field.  The 

above result indicates that no amplification of the evanescent waves occurred in the 

imaging experiments with the 2D phononic crystals considered in my thesis. 

At the end of this section it is worthwhile considering possible directions of future 

research in the field of phononic crystals and acoustic doubly-negative metamaterials.  

One obvious direction is the design of the practical devices based on phononic crystals, 

such as acoustic filters, mirrors and waveguides.  Taking into account the large size of 

acoustic phononic crystals for audible sound, as dictated by the wavelength of sound in 

air, it is very possible that future devices will employ phononic crystals in which 
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individual elements will have internal structure with built-in local resonances.  This would 

allow a significant reduction of the size of the phononic crystals for devices working with 

sound waves in air. 

Doubly-negative acoustic metamaterials comprise another area in which a lot of 

activities, both theoretical and experimental, are expected.  Recently the possibility of 

achieving the subwavelength resolution, while imaging with a slab of an acoustic 

metamaterial, was shown theoretically by Ambati et al. [81].  Just as in the case of 

Pendry’s proposal [37], super-resolution is predicted by the amplification of the 

evanescent waves with the help of surface resonant states, which are excited on the surface 

of the slab with simultaneously negative values of both dynamic effective density and 

bulk modulus.  In case where the thickness of the slab is much smaller than the 

wavelength, Ambati et al. also showed that negative effective density alone is sufficient to 

amplify evanescent waves.  Future research will probably concentrate on overcoming the 

experimental challenges of realizing doubly-negative acoustic metamaterials and 

observing negative refraction and imaging with subwavelength resolution using these 

novel materials. 
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Appendices 

Appendix A.  Determination of the effective diameter of the pinducer 

During the experiments on sound focusing with the rectangular-shaped phononic 

crystal, the need arose to know the size of the pinducer active element.  As shown in 

Figure A.1, the active element, which had a circular shape, was mounted in thin metal 

tubing with outside diameter of 2.40 mm.  This made it impossible to measure the 

pinducer element diameter directly. 

 

 

 

 

 

 

 

 

 

 

 

To estimate the size of the pinducer element, I have calculated the pinducer field at 

some distance away from the pinducer for different pinducer diameters, and compared 

theoretical curves with the pinducer field profiles measured with the hydrophone in 

scanning experiments.  The calculations of the pinducer field were done according to the 

Figure A.1:  The top view of the pinducer. 

2.4 mm 

metal tubing active element 
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well-known method from Fourier acoustics (as well as Fourier optics).  It begins by 

creating the initial field distribution at the plane of the pinducer ( 0=z ).  For the initial 

field I used the simplest model of the pinducer approximated by a disk of diameter d 

uniformly oscillating with frequency ω along the normal to its surface [Figure A.2].  2D 

FFT of this field distribution was taken and then propagated distance z′  away from the 

pinducer by multiplying each component of the FFT having corresponding wavevectors 

),( yx kk  by the phase factor ])(exp[ 21222
yx kkkzi −−′ , where υω=k is the wavevector, 

which is defined by the frequency of the pinducer oscillation ω and the phase velocity υ in 

the medium (water).  Finally, the field distribution in the plane at zz ′=  was found by 

taking the inverse 2D FFT.  More details on this approach can be found, for example, in 

monographs by Williams [78] or by Goodman [79]. 
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Figure A.2:  Initial field distribution amplitude A (at 0=z ) used in calculations of 
the pinducer field, displayed as a function of position in x-y plane. 
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As was already mentioned, experimental field profiles were measured by scanning 

the field of the pinducer with the hydrophone.  The geometry of the experiment was 

identical to the one shown in Figure 5.3.1 but with the crystal removed.  A 2D image plot 

of the pinducer field amplitude is presented in Figure A.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

By comparing the calculated and measured field profiles, the effective diameter of 

the pinducer was estimated to be about 2.2 mm.  Theoretical and experimental curves are 

compared in Figure A.4(a)-(b), in which theory and experiment are overlaid for two 

different distances away from the pinducer.  Good agreement is observed in both cases. 
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Figure A.3:  2D image plot obtained by scanning the pinducer field with the 
hydrophone in the x-z plane.  The pinducer position is schematically indicated. 
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Figure A.4:  Comparison of calculated and measured pinducer field profiles at 
(a) =z 12.5 mm and (b) =z 20 mm away from the pinducer. 
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Appendix B.  Transfer matrix through a single potential barrier 

This Appendix provides the derivation of the transfer matrix M through a single 

rectangular potential barrier of height V0 and width a [Figure B.1] for an incident particle 

of energy 0VE < . 

 

 

 

 

 

 

 

 

 

 

The wave function of the particle can be written in the following way: 

 

 )exp()exp()( ikxBikxAx −+=ψ  for x < 2a−  

 )exp()exp()( xDxCx κκψ +−=  for 2a− < x < 2a  

 )exp()exp()( ikxGikxFx −+=ψ  for x > 2a  

 

where hmEk 2=  and h)(2 0 EVm −=κ  are wavevectors outside and inside the 

potential barrier respectively, m being a mass of the particle. 

Figure B.1:  A single rectangular potential barrier. 
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Using the fact that both wave function and its first derivative must be continuous at 

2ax −=  and 2ax =  one can obtain the system of four equations, which relate all six 

coefficients: 
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The above equations allow one to obtain expressions for coefficients A and B in 

terms of F and G : 
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where κκε kk −=  and κκη kk += .  Equations (B.1) and (B.2) can be written in a 

matrix form: 
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where M is the transfer matrix through a potential barrier with coefficients: 
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Appendix C.  Subsidiary peaks observed in transmission spectra of the 

resonant tunnelling experiments 

As was already mentioned at the end of Section 4.2.3, in many of the experiments 

on resonant tunnelling through double phononic crystals, the transmission spectra 

exhibited the presence of subsidiary peaks, which accompanied the main resonant 

tunnelling peak.  Because there was no confidence that the sets of data exhibiting 

subsidiary peaks were not compromised by their presence, it was extremely important to 

find ways to eliminate this complication or at least minimize the impact of the effect.  

Although no explanation of how exactly the effect arises will be provided by the following 

discussion, the experimentally found prescriptions on how to avoid the complications of 

the subsidiary peaks may still serve to guide future modelling. 

An example of a transmission curve affected by the presence of the subsidiary 

peak is presented in Figure C.1. 
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Figure C.1:  Transmission spectrum through one of the 3-layer double crystals.  The 
inset magnifies narrow range of frequencies around the resonant tunnelling peak to 
demonstrate how bad the subsidiary peak problem can be.  The inset has the same 
axis labels as the main figure. 
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Note the huge size of the effect, as the magnitude of the subsidiary peak is only slightly 

smaller than that of the main peak.  It is clear that these data cannot be used in any type of 

analysis of the resonant tunnelling effect. 

Dealing with the subsidiary peak problem was somewhat facilitated by the fact that 

it manifested itself not only in the transmission spectra, but also in the shape of the 

transmitted pulse.  As an example, the transmitted pulse, from which the transmission 

coefficient in Figure C.1 was derived, is shown in Figure C.2. 

 

 

 

 

 

 

 

 

 

 

 

 

As the transmitted pulse extends in time, the overall shape of the pulse has a 

pattern similar to the one displayed by two interfering harmonic waves of slightly 

different frequencies 0ω  and ωω Δ+0 , which also known as “beating”.  This is even more 
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Figure C.2:  The transmitted pulse through 3-layer double crystal, from 
which the transmission coefficient shown in Figure C.1 was found.  The 
overall amplitude modulations are self-evident. 
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evident if one examines the shape of the envelope of the transmitted pulse, which is shown 

in Figure C.3 along with the smoothed curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

By measuring the time between beats (e.g. between two amplitude minima), one is 

able to estimate the magnitude of ωΔ , which then can be compared with the frequency 

difference between main and subsidiary peaks.  From the pulse envelope shown in Figure 

C.3, the period of beats beatT  was found to be 236 μs giving ωΔ  of 8.5 kHz, while the 

frequency separation fΔ  between main and subsidiary peaks in Figure C.1 is 9.5 kHz.  

The close correspondence between these two values suggests that subsidiary peaks are 

brought about by some interference phenomena of waves of slightly different frequencies. 
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Figure C.3:  The envelope of the pulse shown in Figure C.2 along with the 
smoothed curve. 
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Having established this, there is still a need to obtain data that are free from these 

complications.  With this goal in mind, I have measured the transmission coefficient 

through the same 3-layer double crystal using three generating transducers, which differed 

by the diameter of their active elements (0.5, 1.0 and 1.5 inches) but had the same central 

frequency of 1.0 MHz.  The distances between the generating transducer and a sample, 

and between the receiving transducer and a sample, were kept the same for all three 

rounds of measurements.  The transmission curves are compared in Figure C.4, while 

Figure C.5 displays corresponding transmitted pulses. 
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Figure C.4:  Comparison of the resonant tunnelling peaks for three generating 
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subsidiary peak as the diameter of the transducer increases. 
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Figure C.5:  The waveforms transmitted through the 3-layer double crystal 
in case of (a) 0.5 inch, (b) 1.0 inch and (c) 1.5 inch-diameter generating 
transducers. 
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It is obvious from Figure C.4 that the magnitude of the subsidiary transmission 

peak decreases as the generating transducer diameter is increased.  This improvement is 

also reflected in the shape of the corresponding transmitted pulse, as the cancellations due 

to beats become almost invisible in the pulse produced by the generating transducer of the 

largest diameter [Figure C.5(c)]. 

What changes as one moves from the smaller to larger transducer diameter?  

Recall, that in the far-field the intensity of the field produced by a circular transducer is 

represented by a spherical wave modulated by a directivity factor, which involves ratio of 

a Bessel function of the first order to its argument (see Section 3.4.1): 
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and whose role is to limit outgoing spherical wave to a certain angular range.  The angular 

spread of the beam produced by a flat circular transducer is characterized by the angle Dθ  

[Figure 3.4.3], which defines the -6 dB line (i.e. the line along which magnitude of the 

intensity level falls half of the one on the transducer axis) and is inversely proportional to 

the diameter of the transducer d (see equation (3.5)): 

 )514.0(sin 1

dD
λθ −=  (C.2) 

By decreasing/increasing Dθ  one decreases/increases the curvature of the wave 

fronts incident on the sample surface.  In other words, the experiment shows that the 

magnitude of the subsidiary peak seems to depend on how well the incident pulse 

approximates the plane wave.  However, I found that the angular spread of the transducer 

field was not the only factor that influenced the magnitude of the subsidiary peaks.  After 
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completing the experimental check, whose results are shown in Figure C.4, I repeated the 

transmission measurements with 1.5 inch-diameter generating transducer through the 

same 3-layer double crystal but with the distance between the generating transducer and 

the sample reduced by 5 cm.  The two transmission curves are compared in Figure C.6.  In 

case of the smaller separation between the generating transducer and the sample the 

magnitude of the subsidiary peak was reduced even more to the degree when its effect on 

the main resonant tunnelling peak could be neglected.  
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It is clear that this time the improvement is not due to the change in the angular 

spread of the transducer, which remained the same in both sets of measurements.  

However, by changing the distance between the generating transducer and the sample, one 

changes the area of the sample surface illuminated by the transducer.  The decrease in the 

illuminated area caused a substantial decrease of the magnitude of the subsidiary peak.  

Therefore, based on the experimental evidence one can conclude that the area of the 

sample covered by an incident beam is another factor, which has a strong influence on the 

magnitude of the subsidiary peaks.  One possible explanation of the observed dependence 

might be based on the assumption that the ultrasound waves, which undergo multiple 

reflections inside the cavity because of being trapped there at frequencies on and around 

the resonance, come out of phase and interfere destructively with each other.  The 

dephasing, which leads to the destructive interference, might be caused by the non-

parallelism of the spacer top and bottom surfaces.  The maximum deviation of the values 

of the spacer thickness measured in different spots was found to be about 0.05 mm.  

Although this degree of the non-parallelism might seem to be extremely small, one should 

not forget that the pulse is trapped inside the spacer for very long times.  Under these 

circumstances, it still might be possible that even small deviations from the ideal uniform 

thickness of the spacer produce the effect exhibiting itself as the subsidiary peaks in the 

transmission spectra.  It is reasonable to assume that thickness of the spacer varies 

smoothly along its surface.  Thus, by narrowing the incident beam, one might decrease the 

area of the spacer in which sound field is excited and make the spacer look “more” 

parallel to the multiply reflected waves. 

In summary, the experimental findings presented in this Appendix show that the 

presence of the subsidiary peaks in the transmission seems is caused by the angular spread 
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of the incident beam as well the area of the sample degree illuminated by the transducer.  

When attempting to reduce the magnitude of the subsidiary peaks, it might be helpful to 

employ the generating transducers of larger diameters (to decrease the spread angle) and 

decrease the separation between the generating transducer and the sample (to decrease the 

area of the sample covered by the input beam).  The latter however comes at the cost of 

the artificial reduction of the resonant tunnelling peak, because the larger part of the 

transmitted pulse has to be truncated due to its overlap with the echo, which happens at 

earlier times with the decrease of the separation.  This is exactly the reason for the 

resonant tunnelling peak at smaller separation to be lower than the one measured with 

higher separation between the generator and the sample [Figure C.6].  Therefore, it is 

important to find a value of the separating distance that would present a compromise 

between the opposite goals of eliminating subsidiary peaks and keeping the high 

magnitude of the resonant tunnelling peak (and correspondingly the group time). 
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Appendix D.  The investigation of the effect of a plastic film used to 

separate methanol and water in 2D phononic crystal 

The design of the methanol-filled 2D crystal was presented in Section 3.1.1, in 

which it was explained that the inner liquid (methanol) was separated from the outside 

liquid (water) by a 0.01 mm thick plastic film (a commercially produced food wrap).  

Although it is quite reasonable to assume that the effect of the film on sound waves 

propagating through the crystal should be next to negligible due to its extremely small 

thickness (as compared to the sound wavelength in water at the frequency of experiment), 

it was still desirable to verify this assumption experimentally.  The assumption was tested 

by comparing the transmission curves obtained in transmission experiments through the 

same 2D crystal with and without the plastic film in place.  In the case when the plastic 

film was present, the crystal was filled with water.  The input ultrasound pulses were 

incident normally on the crystal surface along the ΓΜ direction. 

As can be seen from Figure D.1, the two transmission curves are practically 

identical.  Of particular importance for the focusing experiments is the fact that above the 

stop band (as well as below it), the plastic wrap had essentially no effect on the observed 

transmission coefficient.  In case of no plastic film present the stop band is slightly (by 

3%) deeper than in the case of the crystal wrapped in the film and filled with water.  This 

minor difference can be explained by the same argument used in Section 4.2.2, when 

explaining non-unity of the resonant tunnelling peak in the transmission experiments 

through the double 3D phononic crystals.  The effect of the plastic film is to introduce a 

very small (but non-negligible) amount of absorption, which cuts the long multiple paths 

of the Bragg scattered waves, thus making their destructive interference incomplete.  It is 
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this interference, which gives a rise to the existence of a band gap (or a stop band).  It also 

affects the depth of the band gap.  This is why, in the case when there is no plastic film 

wrapped around the crystal, the observed band gap is slightly deeper.  However, even with 

this 3% loss in the depth of the band gap, the significant improvement in terms of the 

quality of the focal pattern as well as the resolution was achieved by employing the 2D 

crystal surrounded by the plastic film and filled with methanol (Section 5.2.2). 
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Figure D1:  Comparison of the transmission spectra measured in the 
transmission experiments along the ΓΜ direction through the 2D phononic 
crystal immersed in and filled with water with and without plastic film 
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