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Abstract

The analysis of production systems using queueing techniques has received con-
siderable attention in recent years. Production systems can be represented as queue-
ing networks. Many queueing networks are analysed using simulation. However,
the limitations of simulation have resulted in the development of queuein g methods
which are much faster than simulation and give reasonably good results. The ob-
jective of this thesis is to develop new and improved approximation methods for the
estimation of system performance measures for queueing networks.

Real life systems consist of arbitrary configurations of tandem, split, and merge
queueing networks. The non-exponentiallity of traffic and service processes and
buffer capacity constraints make the analysis of real life systems difficult. Existing
methods work only for specific arbitrary systems. An approximation method, which
can be used to model any type of arbitrary configurations is presented. Existing
approximation methods for the analysis of tandem, split, and merge systems, are
used as components of the proposed approximation. The method was tested in the
modelling of a part of a conveyor system installed in a manufacturing company. It
is shown that the proposed method gives good results for low and moderate traffic.

From this analysis, the limitations of existing methods for the modelling of the
three basic queue configurations (tandem, split, and merge) became evident. New
approximation methods are needed, which will be more accurate, simpler, faster,
and capable of modelling a wider variety of tandem, split, and merge systems, than
the existing methods. In this respect, two approximations are developed.

i) An approximation method for the analysis of exponential tandem networks

is presented. It is shown that it gives improved results when compared with those




obtained by other existing methods. This method provides the joint queue length
probability distributions for triplets of adjacent nodes information which can not be
obtained by other existing methods.

ii) A simple, and quick approximation method for tandem, split, and merge
systems is developed. This is the first method to report results for split, and merge
configurations consisting of more than three nodes (with general arrival and ser-
vice times). This method is a very useful tool when used as part of optimization

procedures for which execution time is very important.

il
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CHAPTER 1

Introduction

1.1 Analysing Production Systems using Queueing Techniques

The importance of analysing production systems using queueing techniques, and

the difficulties encountered in the analysis are discussed in this section.

1.1.1 The Importance of Analysing Production Systems

Production systems constitute the basic components of any industrial activity. The
role of production systems is to process raw material in order to produce finished
items. A production system consists of a set of workstations linked by a material
handling system and a number of storage areas. Items (customers) arrive at the
system from outside, receive service (get processed) at the workstations, and finally
depart from the system.

In this highly competitive global economy, a manufacturing company can only
survive if it is efficient. This thus calls for the optimal design and operation of
its production system. An item can be produced by employing many different
combinations of design parameters (parameters such as workstations configurations,
available storage space, processing rates, etc.). The engineer is then faced with the

following (among other) problems:

e Which is the best system design among a large number of alternatives ?



o What is the effect of a change in the processing rates on the performance of

the system 7

Thus the problem is to find the optimal combination of the design parameters to
minimize the operating cost of the system.

Considering the high costs associated with modern automated production sys-
tems, a slight improvement in efficiency can result in significant reductions in total
costs. Thus, there is the need for the development of techniques which can be used
for the optimal design and control of production systems. We should be able to use
these techniques for: i) estimating the performance of the system and ii) providing
answers to the “what-if” questions (such as what is the effect of a specific system
parameter on the system performance 7). These techniques can then be used as
com])oneﬁts of optimization procedures in order to find the optimal design of the
system.

The objective of this thesis is to develop new and improved methods for pre-
dicting the system performance measures (such as average sojourn time through the
system, average inventory levels, etc). All the models developed in this thesis are of

the analytical types based on queueing theory.

1.1.2 Representation of Production Systems as Queueing Networks

Every production system can be viewed as a queueing network, where machines and
items routes are represented by nodes and arcs, respectively. Queueing networks
consist of a number of nodes/queues linked together to form tandem, split, and
merge configurations where items/customers travel through the network receiving

service at all or some of the service facilities. Processing times at individual nodes




can be constant or can have any type of probability distributions. Each item has its
own route through the network and its own processing times. Buffers with limited or
unlimited capacities for temporary storage of unprocessed items are located behind
each node. Queueing networks are generally classified into two types i) open and i)
closed networks. In open networks items enter the system at some specific points
and after they receive service, they depart from the network at some specific exit
points. In closed networks a fixed and finite number of items are considered to be
in the system and are trapped in the system in the sense that no others may enter
and none of these may leave.

In this research we consider open queueing networks, and assume that each
node is attended by a single server and that all items belong to the same class.
Open queueing networks can be considered as consisting of four classes of queue

configurations. These four classes of networks are:

o Tandem networks. Tandem networks consist of queues in tandem (Figure 1.1).
Buffers (for temporary storage of items) with limited or unlimited capacities
are placed behind each node. Items (from outside) arrive only at the first
node, receive service at all nodes of the system and finally depart from the
last node.

1 i i+1 M
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Figure 1.1: Queues in Tandem

e Split configurations. Queueing networks consisting of a single node (first level)

linked to n parallel single nodes (second level) are called split configurations
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Figure 1.2: Split and Merge Configurations

(Figure 1.2). Items arrive at the first level node and then proceed towards the
second level nodes which are the departing points of the system. Buffers are

placed behind each node and can have limited or unlimited space.

e Merge configurations. Merge configurations consist of n parallel first level
single nodes linked to a single second level node. Items arrive at the first level
nodes and depart from the second level node (Figure 1.2). All buffers can have

limited or unlimited size.



e Arbitrary configurations. Arbitrary configurations are the networks that can
not be classified as pure tandem, split, or merge systems but consist of com-
binations of the first three classes of networks. One arbitrary configuration is

shown in Figure 1.3.

-0

Figure 1.3: Arbitrary Configurations

Queueing networks can further be categorized according to the nature of their
traffic and service processes. Thus, networks with exponential service processes and
Poisson external arrivals are called exponential networks, and networks consisting of
any types of quene configurations with service times and interarrival times following

general distributions are called general networks.

1.1.3 Difficulties Encountered in the Analysis of Queueing Networks

Queueing networks are often very difficult to analyse, especially in those cases where
a large number of nodes are involved and arrival and service processes have general

distributions. To analyse a queueing network one has to consider the following:

o The blocking phenomenon. Blocking occurs when there is an interruption of

the flow of items from one node to the next one as a result of the downstream

ot



buffer being full. Different processing rates at different nodes and limited
storage space at intermediate buffers are the main reasons for the occurence
of blocking. When a node is blocked it can not process any new items. The
two most common types of blocking are: i) manufacturing type of blocking
and ii) communication type of blocking. According to the manufacturing type
definition of blocking, node ¢ (Figure 1.1) gets blocked when an item that has
just completed its service at node ¢ finds the buffer of node 7 + 1 {ull. In this
case, the blocked item is forced to wait in front of node 4, and node ¢ can not
process any new items. In the second type of blocking node 7 gets blocked
when the downstream buffer becomes full. Node : is not allowed to serve new
items for as long as the downstream buffer is full. The detailed differences and
analysis of the different types of blocking mechanisms are well discussed by
Onvural and Perros [39]. As a result of blocking we need to revise the service
times in order to include possible additional delays the items may have to
undergo because of blocking. The procedure of effectively revising the service

times is one of the key aspects in the system modelling of queueing networks.

The selection of appropriate interarrival and service times distributions. Very
often interarrival times and/or service times of items are distributed according
to empirical distributions for which the mathematical formulas that describe
them are not known. To deal with this, probability distributions such as the
Erlang and the Hyperexponential families of distributions are used, or for dis-
tributions with rational Laplace transforms the Coxian family of distributions
can be used. In recent years, the Phase type distributions (which are the gen-

eral form of the above mentioned distributions) have become very popular.



More about Phase type distributions can be found in Neuts [38]. It is obvious
that inapropriate approximations of empirical distributions may lead to poor

approximation of the system performance.

o The nonrenewal nature of most stochastic processes. All existing approxima-
tion methods assume that all stochastic processes (traffic and service processes)
are renewal processes. This assumption is made in order to simplify the anal-
ysis. Nevertheless, often this assumption is not true, and as Patuwo et al. [40]
showed, it usually results in the underestimation of the system performance

measures.

1.2 Techniques used for the Analysis of Queueing Networks

There are two solution approaches used for the analysis of queuecing networks.

These two approaches are:

e Simulation. Simulation has been used for the analysis of queueing networks for
the last three decades. However, the appearance of new simulation packages
with animation capabilities together with the availability of personal comput-
ers versions made the use of simulation very popular in recent years. This
is because animation (with its powerful visual effects) helped managers to

understand and trust the simulation models.

e Analytical methods. These are mathematical models which use formulas or
algorithms, depending on the type of application, for the estimation of the

S)’Stt‘,l}l pel‘fOI‘IllELHCG measures.



Simulation is used primarily for the analysis of complicated networks for which an-
alytical methods can not be employed satisfactorily. Although simulation is a very
useful analysis tool, it is time consuming and hence is not very suitable for inclusion
in optimization procedures. Furthermore, simulation models are susceptible to sam-
pling errors. Nevertheless, as it was noted before, simulation is very suitable for the
analysis of very complicated networks and also for the evaluation of approximation
methods.

Analytical methods can be grouped into two classes. The first class of methods
yields exact results for the system analysed. These methods work for relatively
simple networks (for example two node systems) for which computer memory and
computational time requirements are not very high. The first step of analysis of
the exact methods, is to use an appropriate system state description which will
allow the system to be solved as a markovian system. Then, if we work in discrete
(continuous) time the transition probability matrix P (infinitesimal generator W)
is developed. The system is solved using the known formulas II = I1P for discrete
time and ITW = 0 for continuous time where I1 is the steady state probability vector
and 3>; II; = 1. For more details the reader should refer to Kleinrock (31] and Gross
and Harris [22]. The second class of methods can be further classified into two
subclasses. The methods of the first subclass provide the upper and lower bounds
on system performance measures. The methods of the second subclass do not give
exact results but give estimates (approximations) of the performance measures of the
system. Approximation methods are used in problems where exact analysis is very
difficult. The approximation methods relax the assumptions for some of the system

parameters and decompose the network into individual nodes or pairs of nodes.



The focus of this thesis is in the development of new and improved approximation

methods.

1.3 Major Contributions of this Research

Three approximation methods for the analysis of i) real life systems ii) expo-

nential tandem networks and iii) tandem, split, and merge networks with general

arrival and service processes are presented in this thesis. The major contributions

of this research can be listed as follows:

e For real life systems:

— an approximation method for the analysis of real life systems is developed

and it 1s applied to the modelling of a conveyor system. The method
contains, as its components, existing approximations for tandem, split,

merge, and single node systems.

this method can be used in systems with general traffic and service times
and finite buffers. It provides estimates of the average sojourn time
through the system and the average queue lengths behind ecach work-

station.

the modelling of the conveyor system reveals the limitations and weak-
nesses of existing approximation methods, thus providing directions for

future research.

e For a tandem system with exponential service times, Poisson external arrivals,

and fNnite buffers:




— a new improved approximation method is developed and it is shown that
it gives improved results when compared with those obtained by other

existing methods.

— the method provides the joint queue length probability distributions for
triplets of adjacent nodes information which can not be obtained by other

existing methods.

o For tandem, split, and merge systems with general arrival and service processes

and finite buffers:

— a simple and quick approximation method is developed for tandem, split,
and merge systems. This method is a very useful tool when used as part

of optimization procedures for which execution time is very important.

— the method is the first to present results for split, and merge configura-
tions consisting of more than three nodes (with general arrival and service

times).
— the method has a very simple structure and therefore is very easy to use.

— the method can be used to reduce a large number of alternatives ; then

more accurate methods can be used to find the best alternative.

— there are no limitations on the type of the probability distributions used

for the traffic and service processes.
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1.4 Organization of this Thesis

The rest of this thesis is organized as follows:

Chapter Two is the Literature Review. The most recent works in the area of

analysis of queueing networks are briefly discussed.

Chapter Three presents an approximation method for real life systems. The
method can be used to model arbitrary configurations of queues with finite buffers,
traffic and service processes having general distributions, and blocking. The ap-
proximation was applied to the analysis of a part of a conveyor system installed in

a manufacturing company.

Chapter Four presents an approximation method for queues in tandem. Ser-
vice times and external interarrival times have exponential distributions and finite

buffers are placed in between adjacent nodes. The method is based on the work of

Brandwajn and Jow and it consists of an iterative scheme.
Chapter Five presents a simple, and quick approximation algorithm for the anal-
ysis of tandem, split, and merge configurations with traffic and service processes

having general distributions.

Chapter Six presents the concluding remarks of this thesis, and a brief discus-

sion of this thesis’ topics. Also, possible future research possibilities are given.
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CHAPTER 2

Literature Review

2.1 Introduction

The literature is quite extensive in the area of the analysis of open queueing
networks. Several exact and approximation methods have been developed. Systems
consisting of two nodes are solved exactly, because in most cases the state space is
of reasonable size thus allowing the numerical solution of the system to be feasible.
As the network becomes larger (more than two nodes in the system) approximation
methods become more attractive as exact methods become numerically infeasible. In
this literature review, exact and approximation methods for single server open finite
queueing systems will be discussed. Emphasis will be on the approximation methods.

A brief review of papers for closed queueing networks will also be presented.
2.2 Classification of Open Queueing Networks
The literature is grouped into three parts: i) the first part consists of those
papers that deal with tandem networks ii) in the second part, the methods developed

for split and merge configurations will be reviewed and iii) in the third part methods

developed for arbitrary configurations will be reviewed.
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2.2.1 Tandem Configurations

Hunt [27] was one of the first researchers to explore the effect which the buffer size
has on the efficiency of a production line. A line consisting of two machines/nodes
was considered and the maximum possible utilization was calculated. Service times
are exponentially distributed and external arrivals are Poisson. Four cases were
considered in it: i) buffers with unlimited capacities, ii) no queues allowed with the
exception that the first node may have an infinite queue, iii) buffers with limited
capacity placed between adjacent nodes with the exception that the first node may
have infinite waiting space, and vi) no queues and no vacant facilities allowed with
the exception that the first node may have an infinite queue ; the line moves all at
once as a unit. The results obtained for the four cases were compared with each
other. This work became the basis for research by other people in the years that
followed. In this review, our attention will be focused on the works published during
the last fifteen years.

Gershwin and Berman [19] considered a system that consists of two machines and
one buffer with limited capacity placed between the machines. It is assumed that the
first machine is never starved and the second machine is never blocked. Processing
times, times to breakdowns, and repair times at both machines are exponential
random variables with parameters p;, p; and r;, 2 = 1,2, respectively. Each machine
can be in one of two states: operational or under repair. The binary variable «;
denotes the status of machine ¢. If @; = [, machine 1 is operational and if ¢; = 0,
machine z is under repair. The state of the system is denoted by s = (n, a;, a;) where
n (0 < n < N)is the number of items at the buffer and at machine 2. The states

of the system are distinguished in internal and boundary states. Internal states are

13




the states for which 1 < n < N — 1. The rest are the boundary states. A solution
of the form

P(n,ay,a9) = eX"YMY2, 1<n<N-1 (2.1)

is proposed for the internal states. X,Y), and Y, are parameters to be determined,
and have no physical meaning. It is shown that X, ¥, ¥ must satisfy the following

three nonlinear equations:

;(pil’% —r) =0 (2.2)
(g = 1) = (s = m)(1 4 ) (23)
(X = 1) = (s = r)(1 + 3. (2.4)

Equations (2.2)-(2.4) lead to a fourth degree polynomial in ¥;. This results in four

triples (X, Y15, ¥2;), 7 = 1,2,3,4. Thus (2.1) can be written as :
4
P(n,a1,a2) =) e XIYEY2, 1<n<N-1 (2.5)
3=1

where ¢;,7 = 1,2,3,4 are computed from the boundary equations.

Altiok and Stidham [7] solved a problem similar to the above but they considered
a line with more than two machines. The assumptions are the same as the ones in
[19]. Thus, service times, repair and failure times are exponentially distributed for
all machines. Buffers with limited capacity are placed between machines and it is
assumed that the first server is always busy. The effective service time of node 7 is
expressed in terms of its Laplace transform. It is shown that the Laplace transform
has a rational form. Iu order to transform the system to a Markovian one, the
Coxian-2 distribution is used to express the effective service times of each machine.

It is known that the Coxian distribution is used for the representation of general
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distributions with rational Laplace transform. The states of the system are defined

using a vector of the form

@ = (k1,815 k2,2, 52; k3, na, 835 ... kar, g

where

0 if the ¢th station is idle
ki = q 1 if the server is in fictitious stage 1
2 if the server is in fictitious stage 2 (¢ = 2, ..., M)

1 if the station is blocked

0 otherwise ( =1,...,M — 1)

n; is the number of items at machine s (both in the buffer and in service)i = 1,..., M.
The solution is straightforward. The infinitesimal generator matrix @ is constructed
and the equations Q7p =0, ep = 1 (where p, and e are the steady state probability
column vector, and a row vector with all its elements equal to 1, respectively) needs
to be solved. This method cannot be applied to long lines with many nodes because
the number of states becomes so large that the construction of the generator matrix
becomes cumbersome.

Gershwin and Schick [20] obtained exact solutions for queueing networks with
queues i tandem and blocking. Two networks were considered: i) a two node sys-
tem and ii) a three node system. Their method can be applied to the analysis of
longer lines but the great dimensionality of the resulting Markov chain limits the

applicability of their method. The systems considered consist of machines in tandem




separated by buffers with limited capacity. The following assumptions are made:
The first server always has raw material available for processing, processing times
are constant and equal for all machines, machines fail only when they operate on an
item, and times between succesive failures and repairs are geometrically distributed.

The state of the system at time ¢ is defined as:

s(1) = (na (L), ..o, e (1), 0a(B), ooy cn(2))

where n4_; is the number of items at buffer £ — 1, «; is the state of machine k
(o, = 0,1 if machine £ is under repair or operational, respectively), and ¢ is the time
in machine cycles. The proposed method decreases the number of linear equations
that have to be solved in order to calculate the steady state probability distribution
of the system. It is shown that it is possible to find { vectors that satisfy at least M —I
transition equations (A is the number of the system’s states). The real contribution
of this method is in the reduction of the computations required for the solution of a
system with M linear equations. The solution analysis is conceptually the same one
used in Gershwin and Berman [19]. The system’s transitions equations are grouped
into internal and boundary equations and a solution in product form is found that
satisfies the internal equations. Then, with the use of the boundary equations an
easy and efficient way is found for calculating the steady state probability vector.
The drawback of this method is that the number of computations depends on the
dimensionality of the system. Thus, for long lines and large buffers the method is
inefficient. However, the solutions of the three and two nodes networks can be used

as building blocks for other approximation techniques.
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Altiok [2] considered production lines with Phase-type processing and repair
times, and finite buffers. Machines are in tandem and the time until a breakdown
occurs is exponentially distributed. It is assumed that the first server always has
items available for processing. The system is defined using a rather complicated
description and the steady state probabilities are obtained solving the equations
QTp =0, ep = | (where Q, p, and e are the generator matrix, the steady state
probability column vector, and a row vector with all its elements equal to 1, re-
spectively). The drawback of this approach is that it cannot be used for long lines
because the number of states becomes very large. The method was applied to a two
node, one buffer production system.

All approximation methods can be classified into two categories. In the first
category, the system is decomposed into individual nodes. The arrival and service
processes of individual nodes are modified in order to include the influence of the
other parts of the network on the analysed node. Then, information obtained from
the analysis of the individual node is used in the analysis of the rest of the network.

Altiok [1] developed an approximation method for the analysis of an open net-
work that consists of M servers in tandem. Buffers with limited capacity are placed
between adjacent nodes. Service processes have exponential distributions and ex-
ternal arrivals occur at the first node and have Poisson distribution. Service times
are revised to include the effect of blocking on the time that an item spends at each
node. Each service process is approximated by a Coxian-2 distribution. An item at
node ¢ first receives exponential service with rate p;, and then with probability a4,
it receives an additional exponential service with parameter p;.;. We define ajyy

as the probability that upon service completion at node 7, the queue of node i + 1
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is full. Two assumptions are made: i) the input process to each queue is a Poisson
process and ii) a queue may get blocked only by the immediate successor quene.
The network is decomposed into M/C3/1/N queues and the individual queues are
solved using the embedded Markov chain approach.

Perros and Altiok [41] considered a tandem queueing network where service
times at all queues are exponentially distributed and external arrivals occur at the
first node according to a Poisson distribution. Because of the limited buffer space
between succesive nodes, blocking occurs. Node ¢ may get blocked by any node j,
1 < J <M (M is the last node). In this case, all nodes k (i < k < j) are blocked.
This assumption is an extension to Altiok [1] where it was assumed that node ¢ can
get blocked only by its immediate successor node 7 + 1. An item that starts its
service at node ! will first receive an exponential service with parameter p;. Then
with probability 1 — a; it will receive an additional delay depending on the status
of the dowustream nodes. Let us assun?e that at the moment of service completion
at node 1 , nodes i + 1 to 7 + k are blocked while node ¢ + k + 1 is serving. The
additional delay that the blocked item will undergo is the residual service time of the
¢+ k1 node plus an additional delay in case that this node upon service completion
will get blocked. Thus node ¢ is modelled as an M[Crr—iy1/1/N; + 1 queue. The
proposed algorithm starts analysing the last node of the tandem network as an
M/M[1/Ny + 1 quene. Using information obtained from the analysis of the M¢h
node the algorithm proceeds to the analysis of node M — 1. The analysis proceeds
backwards and stops when it reaches node 1.

Altiok [3] considered a tandem queueing network with phase type service times

and blocking. The first server may always be busy or customers may arrive accord-



ing to a Poisson arrival process. The network is decomposed into individual queues
with revised service times but the assumption that the arrival process at each node
1s a Poisson process is made. Assume that the service time Y at node ¢ has a phase
type distribution characterized by the pair (o, .5) with K phases. If node ¢ gets
blocked then the blocked item at node ¢ will have to wait for the remaining service
time of node ¢ + 1 which is of the phase type. Let us denote by V the period of
time that node ¢ is blocked. Then, the distribution of the variable V is characterized
by a phase type distribution described by the pair (3, B) with order L. Thus, the

effective service time at node ¢ denoted by U is given by:

U Y with probability 1 — =

Y +V  with probability =«

where 7 is the probability that upon service completion at node ¢ the buffer of
node ¢ + 1 is full. Fach queue is analysed in isolation using the matrix-geometric
method of Neuts. The algorithm starts with the last node and proceeds backwards.
This process is repeated several times until it adequately approximates the through-
put of the system. The steady state probability distribution of the number of items
at each node is computed.

Another approximation for tandem queueing network with blocking, was devel-
oped by Jun and Perros [29]. It is assumed that all service processes have Coxian-2
distributions and the arrival processes at each queue, except the first one, is a

Coxian-2 distribution. Buffers with limited capacity are placed between adjacent
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nodes. The approximation algorithm revises the service and arrival processes at
each node in order to accomodate the effects of blocking. Then each queue is anal-
ysed in isolation as a Cy/C,/1/N queue. For the analysis of the single Cy/Cy/1/N
queue the iterative procedure of Yao and Buzacott [55] is used. It was shown that
it gives significantly better results when compared to results obtained by Altiok’s
[3] approximation. Cases with finite or infinite first nodes were considered.

In the second category of approximation methods, the analysis considers cells
that consist of pairs of queues with revised arrival and service processes.

Gershwin [16] extended the work of Gershwin and Schick [20] to include systems
consisting of more than three nodes in series. The assumptions about the modelled
networks characteristics are exactly the same as the ones considered in Gershwin
and Schick {20]. Consider a line L that consists of k£ machines in series and & — 1
bufters (each buffer is placed between a pair of machines). The line L is decomposed
into k& — 1 sublines consisting of two machines each. Denote by L(i) the two node
line that contains a buffer B; which has the same capacity with the buffer B; in the
original line £.. Both machines in the two node lines have a geometric working time
distribution and their repair times are also assumed to be geometrically distributed.
Machine U; (D;) matches the line upstreamn (downstream) the buffer 7 in the original
line L. The rate of flow into the buffer B; in the L(:) approximates that of buffer
B; in line L. The probability of resumption of flow into and out of buffer B; in line
L{7) in a time unit after the period during which it was interrupted is close to the
probability of the corresponding event in L. Let us denote by p,(z), and py() the
parameters of the working time distribution for machines U; and D; respectively.

Also, let r,(2) and rq(?) be the parameters of the repair times for machines U; and
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D;, respectively.

Ml Mg

rL p1 Ni T P2 2 Tk-1 Pk-1 Nk—l ri Pk
Figure 2.1: The line L of K machines in series
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Figure 2.2: The decomposed line L

Then, a system of equations relates these parameters with the corresponding pa-
rameters of neighboring sublines and with the corresponding parameters in the orig-
inal line L. A total of 4(k — 1) equations in 4(k — 1) unknowns r, (), 74(), ps (2), pa(?)
for i = 1,2, ...,k describe the system. The system is solved using an iterative proce-

dure. The two node sublines are evaluated using Gershwin and Schick’s [20] method.
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The algorithm is relatively complicated and in some cases does not converge. How-
ever, for the cases reported, it gave good results.

Choong and Gershwin [13] extended the work of Gershwin [16] to include random
processing times. It is assumed that processing times, failure, and repair times have
exponential distributions. In this work, machines may have different processing
times as well as different mean times to repair and failure. The analysis is similar
to the one in Gershwin [16]. The two node sublines are solved using the method of
Gershwin and Berman [19]. The algorithm yields good results although it does not
always converge.

Dallery, David, and Xie [14] simplified the algorithm proposed by Gershwin
[16] by replacing some of the original equations with equivalent ones. The new
algorithm is much simpler and faster than Gershwin’s, and converges for all the cases
considered. I'rom the experiments performed it was found that the new algorithm
in some cases was ten times faster than the one proposed by Gershwin.

Brandwajn and Jow [11] considered a tandem queueing network where all ser-
vice processes are exponentially distributed. Two cases were considered: i) arrivals
occur at the first node and are Poisson processes and ii) the first server is assumed to
always have raw material available for processing (i.e the first server is never idle).
Buffers are placed between adjacent nodes and have limited capacities. Service rates
are allowed to be state dependent. The approximation method considers subsystems
of two adjacent nodes and it computes equivalent arrival and departure rates for each
subsystem. The system is modelled in continuous time and it is defined by the num-
ber of items at each queue. The approximation method starts with the development

of the balance equations of the system, and then the balance equations are modified
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using conditional probabilities for nodes ¢ and 7 +1. The resulting balance equations
are cousidered to be the balance equations of an equivalent system that consists of
the two finite queues 7 and ¢ 4+ 1. Applying this procedure the line is decomposed
into subsystems consisting of pairs of nodes with revised Poisson arrival processes
and revised exponential service times for the second nodes of each subsystem. The
algorithm starts with the first pair of nodes and it proceeds torwards the last pair.
The steady state probabilities for each subsystem are numerically calculated. Then,
the analysis proceeds to the next pair of nodes and, using information obtained from
the previously analysed pair, the new pair of nodes is solved. The algorithmn stops
when a convergence criterion is satisfied. The method gives good results mainly
because it gives a good representation of the blocking within each pair of nodes. For
a tandem network of N nodes, N — 1 solutions of the two nodes subsystems have
to be solved at each iteration. The approximation method was compared with the
method developed by Perros and Altiok [41] and it was shown that it gives more
accurate results.

Altiok and Ranjan [6] developed an approximation method for a queueing net-
work with queues in tandem using a two-node decomposition approach. Service
times have phase-type distributions and buffers between adjacent nodes have limit-
ed capacity. The first server is assumed to have an unlimited supply of raw material.
The solution approach is very similar to the one in [16]. It was shown that the two
node decomposition approach gives better estimates of the system’s performance
measures (for individual nodes) when compared to estimates obtained by Altiok [3].

Gun and Makowski [24] developed an approximation method for the evaluation

of the performance measures of a tandem queueing network with blocking. Service
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times are allowed to be of the Phase-type and the first server may always be busy or
it can be allowed to generate arrivals according to a Phase-type distribution. The
blocking mechanism considered here is of the communication type, that is the node
¢ gets blocked at a time of service completion if the buffer of the successive node
¢+ 1 becomes full as a result of this service completion. The analysis of the system
is carried out in discrete time and a two node decomposition approach is adopted.
A line that consists of N nodes, is decomposed into N — 1 two node subsystems.
Each subsystem consists of a buffer having the same capacity with the corresponding
buffer in the original line, and an upstream and a downstream node. The upstream
and downstream nodes have revised service times in order to incorporate the effects
of idling and blocking, respectively. To illustrate the method cousider node 7 -+ 1
at service completion time. Node 7 4 1 is either blocked with probability W+! or
with probability 1 — Wit it starts service on a new item. If node 7 + 1 is blocked,
assume that node & (2 +1 < k& < j) is blocked and node j is serving and is in
phase [ (1 <1 < m;) where m; is the number of transient phases of the Phase-type
distribution of the service time of node j. Thus, the effective service time of node
¢+ 1 is the remaining service time of node j and the sum of service completions
at nodes k. Therefore, if node 7 + 1 is blocked, then its service time is initialized
at phase { with probability Wi*1? (where Wit is the probability that all nodes &
with 2 +1 <k < j are blocked) and transitions occur in the set S; (where S is the
set of states of the Phase service distribution for node j ) with matrix Q; (where
the matrix (}; is used for the representation of the Phase type service of node 7)
Upon service completion (at node j), node (5 — 1) initializes service according to

@;-1, thus causing a transition from the set S; to the set .S;_; in the representation
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of the ¢ + 1 node. This procedure is repeated moving upstream from node 7 to node
t + 1. Hence, the effective service time distribution of the second node of the two

nodes subsystem can be represented by the pair (ay(i + 1), Q2(¢ + 1)) where

Qi1 Piti
Pit2Gin Qi—f—? Oﬂjlnz,‘..{_g

@2t +1) = L ,  p(i+1)=
PNON_1 QN U?H';N

where py(2 + 1) is the column vector of absorption probabilities and ay(i + 1) is
given by:

a4 1) = (1 = W)y, WHIH2 Wil

Employing a similar analysis, the effective service time of the first node is derived.
The system is solved using an iterative method. For the analysis of each pair of nodes
the two node analysis of Gun and Makowski [25] is used. Information obtained for
a pair of nodes is used for the analysis of the next one. The algorithm stops when a
convergence criterion is satisfied. Results obtained from this method were compared
with results obtained by the method of Jun and Perros [29]. The two methods seem
to be of about the same accurate but Jun and Perros’s algorithm is 2-3 times faster
than of Gun and Makowski.

Another approximation is that of Gershwin [18]. Gershwin applied Dallery,
David and Xie’s [14] modifications to the work of Choong and Gershwin [13] and

this resulted in a faster and simpler algorithm.



2.2.2 Split and Merge Configurations

Very few papers have appeared dealing with the modelling of split and merge con-
figurations. Boxma and Konheim {9] were the first to develop an approximation
method for the analysis of such systems. This method works for two-node tan-
dem systems, split systems with two second level nodes and for merge systems with
two first level nodes. Service times and external interarrival times have exponential
distributions. Buffers are finite. The authors produced results for a large number
of these three types of networks. An extension of this method was proposed for the
analysis of arbitrary configurations of queues. However, results were provided only
for a three-node tandem system.

The next step in the analysis of split and merge configurations is to consider
networks that consist of more than three nodes. The first paper was published by
Altiok and Perros [4]. All service times are exponentially distributed and external
arrivals occur according to a Poisson fashion. The idea is to find an efficient way to
replace the actual service times with effective service times in order to accomodate
the delays that the items might undergo due to blocking. Then, the system is
decomposed into individual quenes and each queue is studied in isolation. Let us
first consider the split configuration. Items that have completed service at the first
level node join the second level queue 7 with probabilities ¢;. If the buffer of the
second level queue ¢ is full at that time the item has to wait in front of the first level
node. It is assumed that each second level node cannot get blocked. The node is thus
viewed as a M/M/1/N; +1 queue. The first level queue is modelled as a M/PH), /1
queue, and the effective service time has a Phase type distribution. Consider now

the merge configuration. Two or more quenes merge into one queue. When an item
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completes its service at the ith first level queue it may have to undergo an additional
delay due to the fact that the buffer of the second level queue is full. The duration of
the additional delay depends on how many other items are already blocked. Thus,
a blocking line is formed consisting of all the blocked items. A FIFO (first come,
first served) release rule is assumed for the blocking line. The second level queue
does not get blocked and is modelled as a M/M/1/N + n queue. Each first level
queue ¢ can be viewed as a M/PHy, /1 queue. For the analysis of the M/PH,, /1/1
queue the matrix-geometric method of Neuts is employed.

Lee and Pollock [34] developed an algorithm for the analysis of the same merge
configurations considered by Altiok and Perros [4]. Lee and Pollock’s algorithm
approximates the steady state probabilities for each queue of the system. The
method decomposes the network into individual queues which are then analysed as
M/MJ1/N or M/G/1/N queues in isolation. This method is similar to the one
developed by Altiok and Perros but differs in that it describes the state of the
merged queue by considering the sequence (rather than only the number) of blocked
units. This algorithm seems to give better results when compared with the results
obtained by Altick and Perros.

Kerbache and Smith [30] presented an approximation method that can be used
for the approximation of tandem, split, and merge queueing networks. The method
is called Generalized Expansion Method and it is an extension of the Expansion
Method which was developed for exponential networks. The GEM is same in prin-
ciple as the approximation methods proposed by Kuehn [32] and Labetoulle and
Pujolle [33]. The GEM is based on the assumptions that all processes are renew-

al processes and it uses the first two moments for the description of probability
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distributions. The basic idea of the GEM is to place an artificial node between ad-

jacent nodes ¢ and j to collect all items that upon their service completion at node

¢ find the buffer of node j full. The GEM consists of three major stages ; network

reconfiguration, parameter estimation, and feedback elimination.

1.

Network reconfiguration. For each node 7 with limited waiting space, an arti-
ficial node of the type GI/G /oo is placed between nodes 7 and 5 to collect all
blocked items. A blocked item will receive service at the artificial node and
then it will try to join the queue of node j. If the buffer of node j is still full,

the item will receive an additional service at the artificial node.

Parameter estimation. At this stage all parameters are evaluated using existing
techniques. The service time at the artificial node is taken to be the remaining
service time of node j. For the approximation of performance measures of
single queues existing methods for general queues are used. That is, if node j
is of the G/G/1/N type, Labetoulle and Pujolle’s [33] or Yao and Buzacott’s
[54] methods can be used for the estimation of single queue parameters such as
probability that the queue is full. Also, for the approximation of the squared
coefficient of variation of the departure process from nodes of the G/G/1 type,

Marshall’s [37] formula can be used.

Feedback elimination. Because of the repeated visits (feedback) to the artificial
node, there is strong dependence in the arrival processes. In order to eliminate
these dependencies, it is assumed that each item receives all its service during
its first passage. Thus, the service rate and the squared coefficient of variation

are revised.
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A system of simultaneous nonlinear equations needs to be solved for the determi-
nation of the systems parameters. The GEM was tested for the three node split,
three node merge, and two node tandem configurations with Erlang-2 (E,) and
Hyperexponential-2 (H3) service times and Poisson external arrivals. It gives good
approximations for as long as the traffic intensity is less than 0.70. The results

obtained are in the form of the average sojourn time in the system.

2.2.3 Arbitrary Configurations

Kuehn [32] considered open queueing networks with general service and arrival times,
infinite buffers, and feedback. All processes (service and arrival) are considered
to be renewal processes and are represented by their first two moments. Kuehn
provides formulas for the decomposition and superposition of renewal processes and
approximates the mean waiting time at each queue. The arrival process at each
queue is revised in order to accomodate the feedback problem. Finally, the expected
network flow times are calculated.

Labetoulle and Pujolle [33] developed the isolation method for the analysis of
general open queueing networks with finite buffers. As was the case in Kuehn [32],
they considered only the first two moments of each general process and assumed
that all processes are renewal processes. The arrival and service processes were
revised in order to accommodate the phenomenon of blocking. Then, the network
was decomposed into individual queues and each queue was analysed in isolation.
The information necessary for the analysis of the individual queue 7 can be obtained
only through the analysis of the other queues that are connected to queue 7. An

iterative scheme is developed for the calculation of the parameters of the system.
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Their method was tested for a computer network with a particular structure and it
was found that it gives good results.

Takahashi, Miyahara, and Hasegawa {47] considered an open queueing network
with exponential servers, Poisson arrivals and finite buffers. The system was de-
composed into individual queues with revised arrival and service processes. Each
individual queue was analysed as a M/M/1 queue. They assumed that the revised
service process at each queue is still exponentially distributed and that the revised
arrival process to each node is a Poisson process. The desired parameters of the
system are obtained from the solution of a system of simultaneous equations. The
method seems to yield good approximations of quantities such as blocking proba-
bilities and output rates. The method was tested for a network consisting of three
nodes and for a tandem network of four nodes. The amount of calculations increases
only linearly with the number of nodes.

Altiok and Perros [5] studied two arbitrary configurations of exponential quene-
ing networks with blocking. The first configuration is of the triangle type and the
second configuration consists of four nodes. The service times at all nodes for both
configurations are exponentially distributed and the external arrivals occur only at
one node of each configuration and the arrivals occur according to a Poisson distri-
bution. Buffers with limited capacities are placed in between nodes, but the node
which receives external arrivals can have buffer with limited or unlimited size. The
proposed algorithm decomposes the network into individual queues, which are then
analysed in isolation as M/PH/1/K queues. The service times are considered to
be of the phase-type in order to accomodate the effects of blocking. This method

was shown to give good results but its extension to networks with a large number

30



of nodes is a difficult task. This is because the phase-type mechanisms become very
large and thus the repeated analysis of M/PH/1/K queues may require a lot of
computational time. The algorithm gives the marginal queue length distributions
of individual nodes.

Perros and Snyder [42] presented a computationally efficient version of the Al-
tiok and Perros [5] method. Perros and Snyder considered the same arbitrary con-
figuration that Altiok and Perros had examined. The difference between this new
algorithm and the previous one is that the individual nodes (after the network has
been decomposed) are not treated as M/PH/1/K queues but rather as M/C,/1/K
queues. More specifically, once all the parameters of the phase type distributions are
known, the phase type distributions are collapsed to two phase Coxian distributions
with parameters determined by the method of moments. It was shown that this
method had the same accuracy with the method of Altiok and Perros but it was
much faster and now larger networks could be analysed.

Another paper in this area of research is that of Jun and Perros [28]. Jun and
Perros considered the system of Altiok and Perros [5] but with deadlock. Deadlock
may occur as a result of the arbitrary interconnection of nodes. Suppose node ¢
is blocked by node j, and an item in node 7, upon service completion, chooses to
go to node z. If node ¢ is full at that time, a deadlock occurs. It is assumed that
a deadlock is resolved by simultaneously exchanging blocking units between nodes
¢ and j. The algorithm developed decomposes the network into individual queues
with revised service processes. The service processes are characterized by phase type
distributions whose parameters are obtained iteratively. Results were obtained for

two networks consisting of three and five nodes respectively. The results were shown

31



to be good. However, this method requires the construction of very detailed phase
type mechanisims which is time consuming,.

Gershwin [17] analysed tree-structured assembly/disassembly networks with fi-
nite buffers and unreliable machines. This method is an extension of the transfer
line algorithm of Gershwin [16]. Machines are assumed to spend a random amount
of time processing each item due to the failures and repairs of machines. An ap-
proximate decomposition method for the evaluation of the performance measures of
the system is developed and it is shown that gives good results.

Whitt [48] developed a software package called QNA (Queueing Network Ana-
lyzer) to analyse open queueing networks with multiserver nodes with the first-come
first-served discipline and no capacity constraints. Service and external interarrival
times can have general distributions. All stochastic processes are assumed to be
renewal processes. The analysis approach uses only two parameters to characterize
the arrival and service processes. These two parameters describe the rate and the
variability of each of the processes. The nodes are analysed as GI/G/m queunes
each, and approximations of the congestion measures of the system are obtained.
QNA is a very useful tool for the analysis of queueing networks and it was shown
that it gives good results. However, its applications are limited to the networks with
buffers with unlimited capacities.

Pourbabai and Sonderman [45] developed an approximation method for the anal-
ysis of a stochastic recirculation system with randomly accessed multiple heteroge-
neous servers. The items are assigned to one of the servers upon arrival randomly.
All service times are exponentially distributed and there is no waiting space. Items

which find all servers busy, recirculate into the system and form an overflow process.

32




The overflow processes combine with the external arrival process to form the new
input into the system. Two parameters are used to represent traffic processes: the
mean and the squared coeflicient of variation (scv). Fach workstation is treated as
a GI/M/1/1 queneing system and the algorithm provides estimates of the rates and
scvs of all traffic processes of the system.

Pourbabai [43] considered a system similar to the previous conveyor system.
Incoming items enter the system and travel towards the first workstation. If the
workstation is not full, items receive service and then depart from the system. In
case the workstation is full, the items bypass it and arrive at the second workstation.
If the items find the second workstation full, they bypass it and merge with the
external arrival process to form the new input process to the system. The model
can be generalized to include N workstations. Each workstation is modelled as a
GI/M/S/K queue and two performance measures are calculated: the efficiency of
each workstation and the average congestion along each conveyor.

The same analysis approach was applied by Pourbabai [44] to analyse a slightly
different conveyor system. The system consists of L workstations. Items are first
going towards the (¢)th workstation. If the (3)¢h workstation is full, then the item
is routed towards the (¢ 4+ 1)st workstation, for ¢ = 1 to L — 1. It is assumed that
the (L)th workstation has a very large buffer to accomodate all items that were
not processed at the other L — 1 workstations. Each workstation is modelled as a
GI/M/N;/K; queue. Approximations of the server utilization of cach workstation
and the average congestion along every conveyor of the material handling system

are provided.
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2.3 Closed Queueing Networks

Closed queueing networks are networks in which a fixed and finite number of
customers are considered to be in the system. No customers are allowed fo enter
into the network and none of the customers inside is allowed to leave the network.
Closed loop material handling systems (where transportation carriers, rather than
products/items, are viewed as customers), and systems of operating machines-repair
facilities are two examples of closed queueing networks applications.

Gordon and Newell [21] derived the equilibrium distribution of customers in
a closed queueing network with exponential servers and infinite buffers. Let us
consider a network with A nodes and N circulating customers. The state of this
network can be described by the vector n = (n4,ng,...,np) where n; is the number
of customers at the 7th node and Efii n; = N. Denote by p;, and p;; the service
rate at node 2 and the probability a customer will go to the jth node after completes
its service at node 1.

The equilibrium distribution of customers in the network is given as:

1 ng I
P, nz, .y ny) = mﬂg(&) ‘ (2.6)
where (Xy, ..., Xa) is a real positive solution to the equations
M
X = Z‘(L{X{pij, 1<;<M (2.7)
i=1

and G(N) is a normalizing constant given as

G(N)= Y T (X)) (2.8)
TLES(N,M)
where
M
S(N, M) = {(n1, ns, ...,nM)]Zni =N and n; >0 Vi} (2.9)
i=1
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The development of an efficient computational algorithm by Buzen [12] for the
calculation of G(N) made Gordon and Newell’s method easy to implement. Baskett,
Chandy, Muntz, and Palacios (8] extended Gordon and Newell’s work to include
closed networks with different classes of customers. They assumed service times
having probability distributions with rational Laplace transforms. They derived the
equilibrium distribution of states of a model which consists of four different types
of service centers and R different classes of customers.

Gordon and Newell’s result was used in the work of other researchers. Two
of theses works are those of Gross, Miller, and Soland [23] and Madu [35]. Gross,
Miller, and Soland studied a multi-echelon system in which a finite number of items
is desired to be operational at any given time, and in which queueing may occur at
the repair facilities when all channels -finite in number- are busy. Their aim was to
determine the optimal spares levels and repair capacities of this system.

Madu used Gordon and Newell’s formula and Buzen’s algorithm to analyse a
maintenance network with loaded-independent servers. The problem is to determine
the maintenance float needed to support an operating system with N circulating
units. When a unit fails, it is sent into the serviece facility for repair. The failure
and repair times distributions are assumed to be exponentially distributed. This
closed system is a special case of a Jacksonian (an exponential network with no
buffer capacity constraints) network. The number of units to maintain in standby
status in order to maximize the system availability is easily obtained using Gordon

and Newell’s formula.



2.4 Conclusions

Open queueing networks have been analysed by a variety of approximation al-
gorithms over the past fifteen years. Most of these approximations are specialised
to work only for specific queueing configurations and cannot be used to solve other
different systems. From the above discussion (Sections 2.2.1, 2.2.2, and 2.2.3) it
can be seen that the majority of the existing methods work for tandem queueing
networks. This is partly, because production lines are modelled as tandem networks
and partly because it is not very difficult to analyse tandem configurations. Al-
though, there are many algorithms designed to work for tandem systems, still there
is room for improvement. The improvement in these methods can come from two
directions: i) to develop methods which are as accurate as the best of the existing
ones but are faster and ii) to develop algorithms which give more accurate results
when compared to results obtained by existing methods.

The progress in the research for the analysis of split and merge systems, as it
was discussed in Section 2.2.2, is far behind when compared with the number of
papers appeared that deal with tandem systems. Approximation methods for split
and merge configurations with general arrival and service processes and consisting
of more than three nodes have not received much attention. We must also add that
for exponential split and merge configurations, only three papers ([9], [4], [34]) have
been published. Therefore, future research in this area should be focused first on
the improvement of the existing methods for exponential networks and secondly in
the development of approximations for networks with general arrival and service
processes.

Most of the algorithms that have been designed to analyse arbitrary configura-
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tions work only for these specific configurations and their generalization to include
a wider variety of systems is difficult. Whitt’s QNA is a method that can be used
for the analysis of any type of network configurations but it requires buffers with
unlimited storage space. Thus, there is the need for the development of methods
which are designed to work for any type of queueing networks without any capacity
or other constraints.

As was mentioned earlier, exact analysis is very diflicult for systems with very
large state spaces because of the large amount, of required computational effort. On
the other hand, approximation methods are much more simpler and faster. Never-
theless, there are cases where approximation methods require a considerable amount
of computer memory and computational time. The use of phase type distributions
to represent the “effective” service times, although it helps for the detailed descrip-
tion of the effects of blocking, it is time consuming. This problem beconmes more
obvious when optimization is involved. Thus, there are times, the engineer would
like to have in his use simple and quick approximation methods. These methods
could be used in optimization procedures and in cases where it 1s desirable to reduce

a large variety of alternatives before more accurate methods could be used.
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CHAPTER 3

An Approximation Method for Real Life Systems

3.1 Introduction

Most real life systems are arbitrary configurations of quenes with general arrival
and service processes and finite buffers. As was pointed out in Chapter 2, such
systems have not received much attention in the literature. Arbitrary configurations
have been studied but the methods developed are designed to work for the specific
systems studied, rather than for any general system. Thus, in this chapter, our
effort is focused on the development of an approximation method which can be
applied to any real life system independent of the configuration. The proposed
method is designed to work for systems with general arrival and service processes
and finite buffers. The approximation method is applied to the modelling of a part
of a conveyor system and the results obtained are compared to simulation results. It
is shown that the approximation performs well for light and moderate traffic. The
algorithm gives estimates of performance measures of the system such as average

sojourn time through the network and average queue lengths at cach workstation.
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3.2 The Approximation Method

3.2.1 Model Assumptions

Let us consider any arbitrary configuration of queues. Service times and external
interarrival times have general distributions, and buffers with finite capacities are
placed behind each node. Bufler capacity constraints lead to blocking. Blocking
occurs when an item that has just completed its service at node ¢ tries to join node
7 and finds the buffer of node j full. The item is forced to wait at node 7 until space

becomes available at node j. Meanwhile node 7 can not process any new items.

3.2.2 The Basic Concepts of the Approximation Method

As was mentioned in Section 3.1 most of the existing methods work for specific
systems (for example tandem, split, merge, exponential etc) and their generalization
to include other systems is very difficult. The approximation method presented in
this chapter deals with this problem. This method can be used to analyse any
type of system. The method is conceptually very simple. We must find a way to
transform the system studied into a new equivalent system which will be easier to
analyse. This new equivalent system will not have buffer capacity constraints, and
the service times of all nodes will be revised in order to include additional delays
the items may have to undergo due to blocking. Hence, the proposed approximation
consists of two passes. In the first pass the effective rates and effective variances of
the service times of all nodes are derived. In the second pass the effective rates and
effective variances are used as rates and variances of the service times of all nodes

and then we assume the network is free of blocking. Finally, using a single node
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approximation method and Little’s result we estimate the performance measures of

the entire system.

3.2.3 'The First Pass

In the first pass we have to use an approximation method to analyse tandem, split,
and merge systems. Kerbache and Smith’s {30] Generalized Expansion Method
(GEM) is the only existing method that can be used to model tandem, split, and
merge systems with general stochastic processes.

The irst Pass consists of two Steps.

o Step 1. The GEM is first applied to the last node(s) of the system. To do
this we must first approximate the arrival process to the last node(s) of the
system. It is assumed that all stochastic processes are renewal processes, and
two parameters (mean and scv) are used to represent probability distributions.
The following formulas (Whitt [48]) give the rate and scv of the traffic process
which results from the superposition of renewal traffic processes. The rate A;
of the arrival process to node j is given as:

n
A = doj + Z AiGi; (3.1)

i=1
where Ag; is the total external arrival rate to node j, ¢;; is the routing prob-
ability from node 7 to node 7, n is the number of streams that merge, and );
is the rate of the ith merging stream. The scv ¢ of the process that results

from the superposition of n streams is given as:

n

Cj - Z(A,/fi /\A)Cf (32)

=1 =
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where );, and ¢ are the rate and scv of the ith merging stream, respectively.

If a traffic process with parameters A and ¢? splits into k streams, with each
being selected independently according to probabilities p;, then the sth stream

obtained from the splitting (Whitt [48]) has rate A; and scv ¢? given by
A= Ap; (3.3)

el =pit +1—p (3.4)

We also need to approximate the scv of the departure process from node i.
Marshall’s [37] formula gives the scv of the interdeparture time ¢ in a G /G//1

queue:

ch=c2+2p%c — 2p(1 — p)uEW (3.5)

where p is the traffic intensity of node 7, ¢? is the scv of service times of node
i, ¢2 is the scv of the arrival process at node i,  is the service rate of node i

and ETW is the mean waiting time in the queue of node i.

In order to approximate the arrival process to the last node(s) of the system,
we do not revise the service times at each of the nodes of the system. We use
formulas (3.1)-(3.4} to approximate the processes that result from the merging
and splitting of traffic processes. To calculate the average waiting time in the
queue (which is needed in Marshall’s formula) we use a G/G/1/N single node
approximation method. We use Marshall’s formula to approximate the scv of
the departure process from GI7/G/1/N quenes. The rate Ay of the departure

process from node 7 is given as

A = do(1— P) (3.6)
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where A, is the rate of the arrival process at node 7, and P is the probability

that node 2 is full.

o Step 2. Having approximated the arrival processes of the last node(s) of
the system, we apply the GEM to calculate the effective service times of the
nodes which are linked to the last nodes of the system. It is assumed that the
last nodes of the system cannot get blocked. Using now the effective service
times as service times for the nodes that were already analysed, the method
applies the GEM to the nodes that are linked to the already analysed nodes.
By the end of the first pass the effective service times of all nodes have been

calculated,.

3.2.4 The Second Pass

In the second pass, it is assumed the network is free of blocking. This is now ecquiv-
alent to a network with no buffer capacity constraints and with service times which
have been replaced by the effective service times calculated at the First Pass. Whit-
t’s formulas are used to approximate the processes that result from the merging and
splitting of traffic processes. Marshall’s formula is used to calculate the scv of the
departure process from each node. The single node approximation method of Krae-
mer and Langenbach-Belz (Whitt [48]) is used to analyse each of the GI/G/1/c0

queues. The mean queue length M N of node ¢ is given from Little’s result as

MN = p; + A MW (3.7)
where
MW = ripi(c2 4+ g /2(1 — p;) (3.8)
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where MW is the mean waiting time in the queue of node ¢ and ¢ is defined as

2(1—pi) (1-cZ)? 2
eX})(———‘_‘-“——av_r), c, <1
g= i cate; (3.9)
1, > 1.

where A,, 2 are the rate and scv of the arrival process, respectively, iy Tis CF are the

traffic intensity, mean, and scv of the service time of node 4, respectively.

3.2.5 The Generalized Expansion Method

The basic idea of the Generalized Expansion Method (GEM) is to add an artificial
node to each capacitated queue to collect any blocked customers (see Figure 3.1).
It should be noted that the GEM uses only the first two moments of the arrival and
service processes for the estimation of all other parameters of the system. In case
that node 7 is full the blocked customer of node ¢ will be routed to the artificial
node with probability Py (where N is the maximum number of customers at node
j ). After the customer receives service at the artificial node he/she tries again to
rejoin node j. There is a probability Py the customer has to stay at the artificial
node for one more service. The artificial node is modelled as (71 /G/co queue. The
probability Py is calculated using the approximation procedure of Labetoulle and
Pujolle [33].

To determine the service rate of the artificial node A the following formula from

Kleinrock [31] (page 173, equation (5.16)) is used

pn = (2p5) /(1 + o) (3.10)

where pi; and o are the service rate and variance of the service time of the blocking

node, respectively.
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Figure 3.1: The GEM for a tandem system

[n order to calculate the C; which is the squared coefficient of variation (scv) of the

departure process from node z, we use the following formula from Marshall [37]

Cai = C2i +2p2C% — 2p:(1 — pi) s Wy (3.11)

di

where CZ, is the scv of the arrival process at node i, p; is the server’s traffic intensity
of node 7, C% is the scv of service time of node 7, p; is the service rate of node 3,
and W,; is the expected waiting time in the queue at node 2.

To determine the squared coefficient of variation C% of the arrival process at
the artificial node £, it is assumed that the departure process from node 7 splits into
two processes. The first process is the arrival process of nonblocked customers at
node 7 and the second process is the arrival process of blocked customers at node

h. The scv Cf, is given from the following formula (Whitt [48])

il
Ch = PnCEi 4+ 1= Py (3.12)

The squared coefficient of variation of the arrival process of nonblocked customers
at node 7 is given by

C; = (1= Pv)Ch + Py (3.13)
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The squared coefficient of variation of the service time of the artificial node % is

determined using the following formula from Kleinrock [31]

m(s™) = [u(s"))/[(n + Duls))] (3.14)

where m(s") is the n-th moment of the remaining service time, and w(s**!) is the
(n+1)th moment of the service time.

In general, most non-negative distributions whose coefficient of variation is less
than one can be approximated by an Erlang distribution, and most non-negative
distributions whose coefficient of variation is greater than 1 can be approximated by
an Hyperexponential distribution. The Erlang-2 (E,) distribution is a special case
of the more general Erlang-k family of probability distributions (see Appendix A).

The third moment of the Erlang-2 distribution is given by

u(s®) = 3(1/pu)? (3.15)

where 1/ is the mean service time,

The third moment of the Hyperexponential-2 (H;) distribution is given by
u(s) = 6(ar /s + az/p}) (3.16)
The scv of the service time of the artificial node is
€2 = [m(s) = (111 () (3.17)

It is assumed that the customer receives only one service at the artificial node. The

revised service rate of the artificial node is given by (Whitt [48])
= (1= Py (3.18)
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and the revised scv of the service time is
C2, = Py + (1 — Py)C? (3.19)
The effective service time at node ¢ that precedes node 7 is
ik, =+ Pupy! (3.20)

A system of nonlinear equations in an equal number of unknowns needs to be solved
to determine the values of the parameters of the system. The number of equations
depends on the type of the queues and on the approximations that are used for the

estimation of some of the parameters of the system.
3.3 Application of the Approximation Method to a Real Life System

The approximation method was applied to the modelling of a real life system.
The system is part of a conveyor installed in a manufacturing company. This con-
veyor system is a typical example of material handling system. Material handling
systems costs in the manufacturing industry constitute about 30% - 80% of typical
operating costs (Hill [26]). Material handling systems (MHS) integrate the pro-
duction system, by moving items/customers through the workstations. Conveyor
systems, are very common MHS in manufacturing and the need for their analysis
arises everyday. The analysis of material handling systems with the intent of ap-
plying methods that optimize the operation of MHS play a key role in the effort to
increase the productivity of the whole production facility. There are many different
types of MHS. The most common ones are: manually driven carts, forklifts, cranes,

AGV’s, robots, and conveyor systems.
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The flow of material through the production line can be studied as a stochastic
process in a network of queues. The output from a specific workstation is the
input of another workstation. The presence of blocking at the nodes and the non-
exponential nature of the distributions of the service times at the nodes make the
analysis difficult. The conveyor system under study, moves/transfers the parts to
be processed through several workstations. There are buffers with limited capacities
between workstations and each workstation has its own service time distribution.
The conveyor system uses carriers for the transportation of the parts through the
line. The whole system is a closed network, if we consider the transportation units-
carriers as customers. Therefore, the whole conveyor system is a closed queueing
network with a fixed number of carriers. The analysis of the conveyor system with
analytical methods is very difficult. For this reason, a part of the system was isolated
and it was examined as an open queueing network. Analysing the isolated network
as an open queueing network, we can make inferences about the same system when
it operates as a part of the closed network. The analysis will give us the average
queue lengths behind workstations and control points and the average sojourn time
through the network. These results will be compared with results obtained from

simulation.

3.3.1 The system

The system to be modelled is part of a larger conveyor system. The whole conveyor
system is a painting line which integrates the production departments with the
assembly line. This painting line (see Figure 3.2) consists of six conveyors which

run through the following areas: i) the loading area ii) the shot blast iii) the washer
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Figure 3.2: Diagrammatic representation of the conveyor system
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iv) the spray booth v) the oven and vi) the unloading area. The loading area
consists of ten loading stations and the unloading area consists of four unloading
stations. There are points in the painting line that are called STOPS which are used
for the loading, unloading and control of the movement of the transportation units
which are called carriers. The transportation units-carriers are loaded with parts and
circulate through the painting line moving from one conveyor to the other and from
one workstation to the next one. The loading and unloading stations are considered
to be workstations and their service times have general distributions. Every STOP
has a limited space for waiting carriers, therefore each STOP is considered as having
a buffer with limited capacity. The six conveyors run independently of each other
and can have different speeds. The whole system is a closed network and the number
of the circulating carriers-customers is fixed. Yannopoulos, Jenness and Hawaleshka
[53] developed a simulation model using the language PCMODEL to analyse this
closed network painting line. Knowing the limitations of simulation models we
attempt here to develop an analytical model for the same problem. The analysis of
the closed system with analytical methods is very difficult because of the complexity
of the system. For this reason we isolated a part of the conveyor system and after
some simplifications we analysed it as an open queueing network with general arrival
and service processes. The input to the system to be modelled is known from the
simulation model of the closed network and the results from the analysis will be
compared with the results obtained from another simulation model of the open
network developed in parallel with the analytical model. The analysis of the isolated
open network will give us estimates of the parameters of the closed network and also

it is possible to make inferences about the behaviour of the same part of the closed
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conveyor system. By solving this isolated part of the larger conveyor system, we
show that it is possible to use queueing techniques to analyse real life systems.
The whole closed system can be analysed by decomposing it into smaller net-
works which will subsequently be modelled as open queueing networks. These small-
er networks will be analysed in isolation by considering the output of one network
to be the input of the next one. The system to be modelled consists of five STOPS
and two conveyors (see Figure 3.3). More specifically in the system to be modelled
there are three STOPS that serve as loading stations (STOPS #3,#4,and #5) and
there are two STOPS (STOPS #1,and #2) that serve as control points. The service
times have general distributions and their empirical distributions are known from
historical data. The system operates under the following rules:
— STOP#1 sends carriers alternately towards STOPS#2, and #£3. If STOP#2
AND STOP#3 are full then STOP#1 gets blocked. In case that one of the two
STOPS is full, then STOP#1 sends carriers towards the STOP which is not full,
We permit seven carriers to accumulate behind STOP#1. In other words, STOP#1
is a control point in the line.
—STOP#2 releases carriers towards STOP#4, when STOP#4 is not full. I
STOP#4 is full, then STOP#2 gets blocked. We permit seven carriers to accu-
mulate behind STOP#2.
—5TOPH#3 is a loading station. After the completion of the service the carrier is
routed towards STOP#5. If STOP#5 is full, STOP#3 gets blocked. We permit
ten carriers to accumulate behind STOP#3.
—STOP#4 is a loading station. After the completion of the loading, the carrier

is released and exits the system. Two carriers are permitted to accumulate behind



STOP#4.

—STOPH#5 is a loading station. After the service, the carrier exits the system. Two
carriers are permitted to accumulate behind STOP#5.

—The distances between adjacent STOPS in the line are known.

—Iixternal arrivals occur only at STOP#1.

STOP #5

) .
N
STCP #4

STOP #2

STOP #1

()
N>

Figure 3.3: The system

3.3.2 The model

The system is modelled as an open queueing network that consists of five servers

(STOPS) with general service times. The arrival process to the system at STOP#1

o1



follows a general distribution and all queues have limited capacity. All stochastic
processes are represented by two parameters: the mean and the squared coefficient
of variation defined as the variance divided by the squared mean. In the first pass of
the approximation method the effective rates and effective variances of the service
times at all nodes are derived using the GEM of Kerbache and Smith. In the second
pass we use the effective rates and effective variances as rates and variances of the
service times at all nodes and then assume that the network is free of blocking. Then
using the approximation method of Kraemer and Langenbach-Belz we estimate the

queueing performance measures of the system.

3.3.3 The System as a Queueing Network

All STOPS are represented by their corresponding nodes (see Figure 3.4). The
STOPS are modelled as follows:

—STOP#1 is modelled as G/G/1/7 queue (Node 1).

—STOP#2 is modelled as G/G/1/7 queue (Node 2).

—STOP#3 is modelled as G/G/1/10 queue (Node 3).

—STOP#4 is modelled as G'/G/1/2 queue (Node 4).

—STOP#5 is modelled as G/G/1/2 queue (Node 5).

Travel times between nodes are estimated as waiting times at some imaginary nodes
that are placed between the two real nodes. These imaginary nodes are modelled
as G/Dfoo queues where their service times are deterministic and equal to the
corresponding travel times. More specifically:

The travel times from STOP#2 to STOP#4, from STOP#3 to STOP#5, from
STOP#1 to POINTI, from POINT1 to STOP#-2, and from POINT1 to STOP#3,



are obtained as the waiting time at the G/D/oco queue type, at nodes 13,14,10,11,

and 12 respectively.

All artificial nodes are modelled as /G /oo queues.

Node ny collects blocked carriers when STOP#2 is full, node h, collects blocked

carriers when STOP#3 is full, node k3 collects blocked carriers when STOP#4 is

full, and node %4 collects blocked carriers when STOP#5 is full. Throughout the

rest of this chapter the following notations will be used

Notation
/\r“ 02

i

/\ia 02

3

)\U,

ATy, 70, 2

/

)
}i,j:

Deseription

arrival rate, and squared coeflicient of variation of the
external arrival process, respectively

rates, and squared coefficients of variation of the processes
that result from the splitiing of the external arrival process,
respectively, 1 = b, ¢

the component of the departure process from node 7 (which
preceeds node j) that goes directly towards node 7,
:=1,2,3,5=2,3,4,5

rate of the arrival process at the artificial node A,
7=1,2,3,4

probability of having ¢ customers at queue 7, 7 =2,7,10

7 =1,2,3,4,5

auxilliary variables

probability a carrier to find the jth queue full having stayed

at the artificial node at least once, 1 =2,7,10 j =1,2,3,4,5



02

ais

o

ahj?

2

Fhgy
s
Pis

Wi,

squared coefficient of variation of the arrival process at
node 7,2 =2,3,4,5

squared coefficient of variation of the arrival process at the
artificial node %;, 7 = 1,2,3,4

the squared coeflicient of variation of the component of the
departure process from node 7 (which precedes node j) that
arrives directly with probability 1 — Py at node j,
1=1,2,3 7=2,3,4,5

the squared coefficient of variation of the departure process
from the artificial node %;, 7=1,2,3,4

traffic intensity of artificial node h;, 1 =1,2,3,4

auxilliary variables, ¢=1,2,3,4,5

revised service rate of artificial node h;, 7 =1,2,3,4

scv of the service time of the artificial node hi,

1=1,2,3,4

revised scv of the service time of artificial node h;,
1=1,2,3,4

scv of the service time of node 7, i =1,2,3,4,5

service rate of the artificial node by, 2 =1,2,3,4

service rate of node ¢, 2 =1,2,3,4,5

traffic intensity of node 7, 7 =1,2,3,4,5

mean waiting time in the queue at node 7, 7=1,2,3,4,5
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W; mean waiting time at node 7, 1 =1,23.4.5
1 3 » Yy i
Aai, C3 rate, and scv of the departure process from node z,

diy

respectively, 1 = 1,2,3,4,5

o?, vartance of the service time of node 7, 7 =1,2,3,4,5
Miegg effective service rate of node 7, 7 =1,2,3,4,5
cr;-‘)‘e . Ci . effective variance, and effective scv of the service time

of node 2, respectively, 7 = 1,2,3,4,5

3.3.4 The Analysis

We will show the application of the approximation method at the part of the line
that consists of the nodes 1,10,12,42,3,14, h4 and 5. The analysis of the part of
the line that consists of the nodes 1,10,11,21,2,13, A3 and 4 is carried out in the
same manner.

First Pass

We will apply the GEM starting from the last nodes of the network (nodes 4 and
5) and then the analysis will move backwards. The aim is to estimate the effective
service rates and effective variances of the service times of all nodes.

Step 1. In this step we calculate the departure process from node 3. We assume
that nodes 1, and 3 do not get blocked and also that all traffic processes are renewal
processes. The service time of node 1 is zero. The arrival process described by A,, C?
to node 1 is known and because of the zero service time the departure process from
node 1 has the same A,, C2. The queueing nodes of the type /D /oo do not affect
the traffic processes. Point 1 is a splitting point for the process described by A,, C2.

The component processes that result from the splitting have parameters that arve
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given from the following formulas

Mo = 0.5X, (3.21)
Ae = 0.5X, (3.22)
CP=05C2+1-05 (3.23)
C2=05C*+1-10.5 (3.24)

The above equations (3.23) and (3.24) are valid when the splitting of the pro-
cess described by A, C? is done randomly. When carriers are split alternately, the
squared coefficients of the component processes are 0.5 of the squared coefficient of
the Ay, C2 process. In our problem, the carriers are split alternately only when both
buffers of nodes 3 and 2 are not full. When one of the two buffers is full, the carriers
are not split alternately but are routed towards the node which is not full. Thus,
we assume that our splitting process is closer to a random process than an alternate
process as traffic intensity increases.

The GEM has not been applied yet, therefore, node Al does not exist yet. The
process with rate A, and scv C? reaches node 3 which is modelled as a GI/G/1/10
queue. The diffusion approximation of Yao and Buzacott [54] together with Mar-
shall’s formula are used to approximate the departure process from node 3. Using
the diffusion approximation we obtain the probability Pros and the mean queue

length. The rate of the departure process is
Az = A1 — Pros) (3.25)

Knowing the mean queue length, the mean waiting time in the queue can be obtained

from the formulas

Ws = J/A, (3.26)
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Figure 3.4: The reconfigured network
where J is the mean queue length and
I’Vq;g = T/Vg - 1/,&3 (327)

The squared coeflicient of variation of the departure process is given by
Cig = Cj + 2(/\c/#3)2032 - 2(/\{:/#3)(1 - )\c/ug)pgqu (328)

Having obtained the rate and the scv of the departure process from node 3 we are

ready to apply the GEM to node 5.
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Step 2. We now apply the GEM to node 5 (see Figure 3.4). The service rate
and the scv of the service time of node 5 are known. The service rate of the artificial
node hy is given by

#ny = (205)/(1 + pio?) (3.29)

The traffic intensity of node 5 is
ps = Aaz/ s (3.30)

In order to estimate the squared coefficient of variation C?, of the service time of
the artificial node hy we approximate the service times distribution of node 5 as
E, or Hy depending on the value of C2. To calculate the values of the rest of the

parameters we have to solve the following system of nonlinear equations

Adz = Ass + An, (3.31)
Azs = Aas(l — Pys) (3.32)
A= dgs — A (1= Pyg) (3.33)

s = (s + )/ (a)) = (M3 = 13) = (r2 = 1)} (uny (03 = 13) = (3 = v2))]

(3.34)

z= (A4 2u,)* — 4\, (3.35)

reo= (A4 2u, — 22/ (2u1,) (3.36)

ry = (A4 2, + 20/ (2pn,) (3.37)
P = [ps(1 — ps)l/ (5" — p5) (3.38)

ps = exp{~2(1 — ps)/(psCis + CF)} (3.39)
Cl, = PsCh+1— Pag (3.40)

r
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C§5 - (i - P2,5)C'fs + P2}5 (341)

CZ = (MasC35 + Ay, Cip, )/ (Nas + Any) (3.42)
Ch, = C2,, +20%,C1 (3.43)

ity = (1= Py, (3.44)

Ch, = Pys+ (1~ P)CE (3.45)

Phy = Aiy [ fhn, (3.46)

Solving the simultaneuos system of the nonlinear equations (3.31)-(3.46) we obtain
P2,5,P;,5,/,L}H and C%,. It is now possible to calculate the effective service time and

effective variance of node 3 using the following expressions

”5:;,« =tz + P'z,s#;u (3.47)
U'geff = O—g + P22,5O—62‘h4 (3.48)

where
Tony = Con iy’ (3.49)

To solve the simultaneous system of nonlinear equations, we used the multi-
variable Newton method [49] (see Appendix B). Using the effective service rate and
the effective variance for node 3 the analysis moves back one node and applies the
GEM to node 3. Following exactly the same approach we can determine the effec-
tive service rate and effective variance of node 1. By the end of the first pass we
have estimated all effective service times and effective variances of the nodes of the

system.



Second Pass

In the second pass, we assume that no blocking is taking place, therefore we
consider the effective service rates and the effective variances as service rates and
varlances for the nodes of the system. This is now equivalent to a system consisting
of infinite capacity queues. The revised network (see Figure 3.5) is a queueing
network that consists of infinite capacity queues with general service times and
general external arrival process. To calculate the mean queue lengths, we apply
the approximation method of Kraemer and Langenbach-Belz. It is assumed that all

traffic processes are renewal processes.

GIL/G/1/o GI/G/1/w

: () :
J N

GIL/G/1/c

() :
N
GIL/G/1l/w

GI/G/1l/®

O,
Figure 3.5: System configuration at the second pass
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The external arrival process described by A,, C? and the first two moments of
the service times distribution of node 1 are known. To find the mean queue length
of node 1 we apply the following formulas based on the approximation method of

Kraemer and Langenbach-Belz
EW = 1ipn(C2 + C2)g/2(1 — py) (3.50)

where EW is the mean waiting time at the queue and g is defined as

2(1—py) (1-CZ2)? 2
exp(—(—Bfﬁwa), Cz <1

g = (3.51)
1, 2> 1.

The mean number of carriers at node I, EN is obtained from Little’s formula
EN=p + A EW (3.52)

The rate of the departure process from node 1 is A,. To calculate the squared
coefficient of variation of the departure process we use Marshall’s formula. Point
1 is a splitting point for the departure process from node 1. Applying the above
analysis we are able to approximate the mean queue lengths of all the queues of the

network.

3.3.5 Numerical results

The number of carviers that circulate through the real system (closed queuneing
network) can be varied. The relationship between the throughput of the system and
the number of carriers is of the hysteresis type, i.e the throughput of the system
increases as the number of carriers increases but past a point the throughput starts to

decrease as the number of carriers increases. We selected eight sets of data that were
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Table 3.1; External Arrival Process

Case 1 | Case 2 | Case 3| Case 4 | Case 5 | Case 6 | Case 7 | Case 8

Ao | 0.144 | 0.248 | 0.510 | 0.623 | 0.720 | 0.760 | 0.770 | 0.770

CZ1 0.627 | 0.536 | 0.420 { 0.213 | 0.194 | 0.100 | 0.135 | 0.180

collected when the closed system was operating with 105,110,120,125,130,135,140
and 150 carriers, referred to as Cases 1,2,3,4,5,6,7, and 8, respectively. It should be
noted that the real closed system is set up to run with a minimum of 103 carriers.
The external arrival times distributions and service times distributions for nodes
3,4, and 5 are given in Tables 3.1 and 3.2 respectively. The rate of the arrival
process A, is expressed in carriers/min and the mean service times are expressed in
minutes.

Two performance measures are calculated. These are the average sojourn time
through the network and the average queue lengths at each node. Both these perfor-
mance measures are very important in the efficient design of the system. Knowing
the average sojourn time, the designer is able to select the combination of the sys-
tem design parameters that improves the system efficiency ; the second performance
measure indicates the work-in process levels, information that can be used to prevent
high inventory costs and to reduce the congestion along the couveyor. The results
obtained from the method are then compared with those obtained by simulation.
For the comparisons we use the midpoints of 95% confidence intervals obtained from

five simulation runs (for each case).
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Table 3.2: Mean and Variance of Service Times

Node 1 Node 2 Node 3 Node 4 Node 5

Mean | Var | Mean | Var | Mean | Var | Mean | Var | Mean | Var
Case 1 0 0 0 0 2.15 | 1.43 | 1.100 | 0.700 0 0
Case 2 0 0 0 0 2.15 | 1.43 | 1.100 | 0.700 0 0
Case 3 0 0 0 0 2.15 | 1.43 | 1.390 | 0.890 | 0.425 | 0.330
Case 4 0 0 0 0 2.15 | 1.43 | 1.580 | 0.970 | 0.660 | 0.453
Case 5 0 0 0 0 2.15 | 1.43 | 1.884 | 1.110 | 1.060 | 0.610
(Gase 6 0 0 0 0 2.15 | 1.43 | 2.030 | 1.110 | 1.200 | 0.593
Case 7 0 0 0 0 2.15 | 1.43 | 2.210 | 1.150 | 1.530 | 0.515
Case 8 0 0 0 0 2.15 | 1.43 { 2.230 | 1.040 | 1.600 | 0.486
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Average Sojourn Times

The proposed algorithm gives good estimates of the average sojourn time for the
first six cases and poor estimates for the last two cases when the system operates
under heavy traffic. Average sojourn time is defined as the average time a carrier
spends in the system. For each of the eight cases considered, two average sojourn
times are calculated ; one for the carriers that travel through Part I of the system
and one for the carriers that travel through Part II of the system. Part I consists
of nodes 1,3, and 5 and Part I consists of nodes 1,2, and 4. Both the sojourn
times (5T) and “non-travel sojourn times” (NTST) are calculated. The sojourn
time calculated is the actual time it takes for a carrier to travel through the system.
The non-travel sojourn time is the actual sojourn time minus the travel delays due
to the conveyors (the time it takes for a carrier to travel from one node to the next
one). This was done as a result of our introduction of the /D /oo type of queues
(which model the travel times on the conveyor). It gives exact results for the part
of the sojourn time that consists of the travel delays on the conveyor. Therefore,
we felt that we should provide estimations for the times that the carriers spend
waiting at the queues plus the service time at the nodes i.e the “non-travel sojourn
times”. Thus, the actual sojourn time consists of the travel delays plus the time
spent waiting to receive service at each node plus the service time at each node.
Tables 3.3 and 3.4 illustrate the average sojourn times (in minutes) obtained from
the approximation and from simulation for Part I, and Part II, respectively. All
percent relative errors (% RE) are absolute relative errors.

As observed in Tables 3.3, and 3.4 the approximation provides good estimates

for the actual ST and for the NTST for the first six cases and poor estimates for the
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Table 3.3: Average Sojourn Times (Part I)

Approx. Simulation

Case | ST | % RE | NTST | % RE ST NTST
11002 21 | 235 | 98 | 9.8140.10 | 2.14 +0.10
2 11020 | 3.0 | 253 | 135 | 9.90£0.08 | 2.23 4 0.08
3 (1166 7.0 | 3.99 | 235 |10.9040.11 | 3.23+0.11
4 11268 | 84 | 501 | 24.3 | 11.70 £0.08 | 4.03 +0.08
5 114.90 | 52 | 723 | 101 | 1571 +1.06 | 8.04 = 1.06
6 |16.15| 205 | 848 | 33.0 |20.32+ 1.68 | 12.65 = 1.68
7 |17.10| 387 | 9.43 | 53.4 | 27.90 4 3.59 | 20.33 + 3.59
8 | 1746 445 | 979 | 58.8 |31.444+2.08 | 23.77 +2.08




Table 3.4: Average Sojourn Times (Part I1)

Approx. Simulation
Case | ST | % RE | NTST | % RE ST NTST
1 7.21 3.2 1.15 17.2 | 7.45+0.08 | 1.39 £ 0.08
2 7.26 3.6 1.20 18.4 | 7.53+£0.07 | 1.4740.07
3 7.88 | 0.1 1.82 0.5 7.89 +£0.04 | 1.8340.04
44 | 8.35 2.0 2.29 7.5 8.194+0.03 | 2.13£0.03
5 9.54 4.8 3.48 14.5 | 9104+ 0.06 | 3.04 £ 0.06
6 10.35 | 0.7 4.29 1.6 | 10.4240.21 | 4.36 £0.21
7 12.10 | 424 6.04 59.5 | 20.99 +4.64 | 14.93 £+ 4.64
8 11238 | 463 | 6.32 | 62.8 | 23.06 £2.87 | 174287
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Table 3.5: Average Queue Lengths of Nodes 3 and 2

Node 3 Node 2

Case | Approx. | % RE | Simulation | Approx. | % RE | Simulation

1 0.17 13.3 | 0.15£0.02 0 0
2 0.31 3.3 10.304£0.02 0 0
3 0.90 23.3 | 0.73 4 0.06 0.01 0

4 1.33 18.8 | 1.12+0.07 0.03 200 | 0.01 +0.01

5 2.14 26.2 | 2.90 £0.40 0.07 22.2 | 0.09 +0.02

6 2.66 47.5 5.07+1 0.11 78.4 | 0.51 £0.16

7 2.84 63.5 | 7.79 £ 1.18 0.16 96.5 | 4.59 +1.64

8 2.93 67.1 | 8.89 4 0.46 0.16 97.2 | 5.64 +0.74

last two cases. The quality of the approximation is similar for Part 1 and Part I1.
The reason for the poor performance of the algorithm in the last two cases is that

the system operates under heavy traflic (see Table 3.7).
Average Queue Lengths

Now we compare the average queue lengths at the nodes as obtained by the approx-
imation method and by simulation. Table 3.5 illustrates the average queue lengths
for nodes 3 and 2 and Table 3.6 illustrates the average queue lengths for nodes 4
and 5.

We observe that the results from our algorithm for nodes 3 and 2 match those

from simulation for the first three cases when the network operates under light traffic
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Table 3.6: Average Queue Lengths of Nodes 4 and 5

Node 4 Node 5

Case | Approx. | % RE | Simulation | Approx. | % RE | Simulation
1 0.08 0 0.08 £+ 0.02 0 0
2 0.15 6.25 | 0.16 £ 0.02 0 0
3 0.46 15 0.40 £ 0.02 0.12 143 | 0.14 +0.01
4 0.69 13.1 | 0.61 £0.03 0.23 14.8 | 0.27 £ 0.02
5 1.18 19.2 | 0.99 £ 0.03 0.46 20.7 | 0.58 £0.08
6 1.52 18.8 | 1.28 4= 0.03 0.57 6.6 | 0.61 £0.03
7 217 29.9 1 1.67+0.07 0.79 8.1 [0.86£0.02
8 2.27 34.3 | 1.69£0.03 0.84 3.4 | 0.87£0.03
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(see Table 3.7). As the number of carriers in the system is increased and the traffic
intensity increases (cases 4 to 8) the algorithm tends to underestimate the queue
lengths (as compared with the simulation results). More specifically, for node 3, the
algorithm deteriorates as we go from case 1 to case 8. In general, the algorithm gives
very good estimates while the traffic intensities of nodes 3 and 5 are not greater than
0.55 and 0.11 respectively, and poor estimates as the traffic intensities of nodes 3
and 5 start to exceed 0.83 and 0.59 respectively. This same behaviour is observed for
node 2. The algorithm gives good results as long as the traffic intensity of node 4 is
less than 0.68. As the traffic intensity tends towards the value of 0.86 the algorithm
fails to give acceptable results.

As we can see from Table 3.6, the algorithm gives good estimates for the average
queue length behind node 5 and good estimates for the average queue length behind
node 4 for the first four cases and it overestimates the average queue length for node
4 in the last four cases. The underestimation of the queue length for node 2 is partly
due to the fact that the algorithm overestimates the queue length for node 4 (in the
last four cases). There are many reasons for the algorithm’s poor performance under

heavy traffic. They are as follows:
o The assumption that all traffic processes are renewal processes is not realistic.

e The use of only two parameters (mean and squared coefficient of variation) for
the description of general distributions is an oversimplification. It is known
that it is possible for two completely different probability distributions to
have the same mean and scv. Therefore, using only two parameters we lose
some of the distribution’s characteristics which may cause deviations from our

estimations.
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Table 3.7: Traffic Intensity

Case | Node 3 | Node 4 | Node 5

1 0.16 0.08 0

2 0.27 0.14 0

3 0.55 0.35 0.11

4 0.67 0.49 0.21

it 0.77 0.68 0.38

6 0.82 0.77 0.46

7 0.83 0.85 0.59

3 0.83 0.86 0.61

o The behaviour of the GEM itself under heavy traffic is another factor. Ker-
bache and Smith tested the GEM for three topologies (serial queues, merging
queues, and splitting queues) and used two types of service times distributions
(Ey and H;). They also, assumed that the arrival process to the first node
is Poisson distributed. Their results indicate that the GEM underestimates
the simulation results as the traffic intensity of the second node increases to-
wards unity (large deviations from simulation results are observed when the
traffic intensity becomes greater than 0.70). In our application, all the arrival
processes have general distributions and the service times have also general

distributions. The network operates under heavy traffic in cases 5-8.

e The approximations that have been used have produced errors that accumu-
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late. More specifically:

Marshall’s formula estimates the scv of the departure process from a
GI/G /1[0 type quene. In our application Marshall’s formula is used for the
estimation of the scv of the departure process from a GI/G/1/N type queue.
The use of Whitt’s formula for the approximation of the scvs of the processes
that result from the splitting of a renewal process, also adds some errors to

the already assumption that all the traffic processes are renewal processes.

e The model assumes that node [ sends alternately carriers towards nodes 2 and
3. But in reality this is not the case, because only when both nodes 2 and 3
are not full node 1 sends alternately carriers towards nodes 2 and 3. When
one of the nodes 2 and 3 is full, node 1 sends carriers towards the node which

1s not full.

o Approximating the general service time distributions with £, or H; also con-

tributes errors to the analysis.

The time required for the execution of the approximation method cannot be
compared to the simulation run time because of the different types of computers
used. The program of the approximation method was run on a Sun workstation and

the simulation program was run on a PC 386 computer.

3.4 Summary

In this Chapter an approximation method for the analysis of real life system-
s was presented. This method can be used to model arbitrary configurations of

queues with general stochastic processes and finite buffers. The method transforms
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the examined system into a new equivalent system. The new system is assumed
to be free of blocking and the service times of all nodes are revised to incorporate
additional delays the items may have to undergo due to blocking. The method was
applied to the modelling of a real problem. A conveyor system with general traffic
and service processes, limited buffer capacities and splitting of the traffic process
was considered. The approximation method developed seems to yield good results
when the performance measure of interest is the average sojourn time through the
system. On the other hand the method does not seem to yield as accurate results
when the performance measure of interest is the average queue lengths. Thus, this
algorithm can be very useful for systems that operate under light and moderate
traffic (traffic intensity < 0.70) and when a good estimation of the sojourn time is
more important than the accurate estimation of the average queune lengths. More-
over, by developing a method for real life systems, we provide a solution approach
that can be employed in the analysis of any arbitrary system. It is also expected
that by improving the approximation methods that were used as components of the
algorithm, the performance of the whole algorithm will improve. It should be noted
that this approximation method is the first to appear that was tested for a real life
system. The results of this Chapter were submitted for publication to the Journal
of Manufacturing Systems (Yannopoulos and Alfa [50]).

We now proceed to develop improved models for subsystems of general configu-
rations i.e. tandem, split, and merge. Because tandem is the most common system,

we attach more effort to that.
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CHAPTER 4

An Approximation Method for Queues in Tandem with

Blocking

4.1 Introduction

Queneing networks with queues in tandem appear frequently in manufacturing
and in communication networks. The analysis of queues in tandem is not an easy
task when there is blocking. Blocking occurs when there is an interruption of the
flow of items from one node to the next node. Different processing rates at different
nodes and limited storage space at intermediate buffers are the main reasons for the
appearance of blocking. When a node is blocked then it can not process any new
items.

Numerous papers have dealt with the problem of analysing tandem queueing
networks with blocking. Exact analysis is possible only for small configurations (2-3
nodes). For larger networks, the state space becomes very large, and computation-
ally unmanageable. This thus calls for the development of approximation methods
that estimate the performance measures of the system. All existing approximation
techniques have limitations in the amount of information that they provide and in
the accuracy of their results. For instance, most of the approximations give us es-
timates of the performance measures of individual nodes, but they do not give the

steady state information about groups of nodes (2-3 or more nodes). In addition,
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most of the approximations perform very well for lines that have a moderate num-
ber of queunes (3-6) and low probability of blocking. However, in real life there are
cases where lines with queues in manufacturing or communication may consist of a
large number of nodes (10-20) with low or high probabilities of blocking combined
with large buffer sizes. The goal in this chapter, is to provide information about
the steady state of groups of nodes (groups of three nodes) and at the same time
to give better estimates of the performance measures of queues that belong to long
lines or belong to lines with high blocking probabilities and with large buffer sizes.
The price that we pay, however, is an increase in the computational effort. Thus,
there is a trade off between computational effort and information obtained.

In this research, we deal with a tandem queueing network. Buffers with limited
storage space are located between adjacent nodes. External arrivals occur only at
the first node and follow a Poisson distribution. Service times at all nodes are of
the exponential type. The analysis is based on the work done by Brandwajn and
Jow [11]. Brandwajn and Jow’s method is built upon the ideas of equivalence and
decomposition, the two steps involved in the analysis of queueing systems (Brand-
wajn [10]). At the first step (equivalence) the state equations for a chosen marginal
probability are obtained and at the second step (decomposition) the conditional
probabilities introduced through the equivalence are computed. More specifically,
Brandwajn and Jow obtained the state equations for the marginal joint probabilities
of the queue lengths of all possible pairs of adjacent nodes and they approximated
the conditional probabilities introduced through the equivalence. These pairs of
nodes are used as building blocks in the analysis, and their solutions (numerically

or with the use of other computing techniques) generate information that is sub-
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sequently used in the analysis of the next pair of nodes. Their method provides
estimates of the performance measures of individual nodes and approximations of
the joint queue length probability distribution for pairs of neighboring nodes.

Their method seems to yield good estimates of the performance measures of the
system when compared with other approximations and simulation. The objective of
this study is to develop a method based on the work of Brandwajn and Jow, which
will give more accurate results and more information about the joint steady state
probability distributions of the queue lengths.

We consider cells that consist of three nodes with revised arrival and service
processes. We provide the joint queue length probability distributions for triplets
of adjacent nodes and we compare our results to those obtained by Brandwajn and
Jow and those obtained by simulation. Each cell of three nodes at each step of the
recursive scheme developed is solved numerically. This method allows the service
rates to be state dependent (dependent on the number of customers at each node).
In our analysis we have assumed communication type of blocking, however, the

method can be modified to include manufacturing type of blocking.

4.2 Equivalence and Decomposition

Many of the techniques developed for the analysis of queueing networks consist
of two main steps: 1) equivalence and ii) decomposition. What these techniques have
in common is the replacement of the solution of a single system by the solutions of
simpler subsystems and then to combine these solutions of the subsystems to solve
the whole system.

Brandwajn [10] tried to put the solution methods of these techniques under one




unified approach. This unified approach consists of two steps: The first step is re-
ferred to as equivalence. In this step, the original state description is replaced by
a suitably chosen marginal probability. In the second step referred to as decompo-
sition, the conditional probabilities introduced in the first step are computed. The

two steps in more details are presented in the following two subsections.

4.2.1 Equivalence

Suppose that we have developed the state equations for our system using the state
description s = (sq,...,8;,...,8¢). The next step is to consider a marginal state
description s* = (s1,...,s;) which contains a subset of 5. Let § = (s;44,...,5:). The
equations for the reduced state s* can be obtained by summing the original state

equations over all values of s:

p(s) = p(s™)p(s]s™)

and
p(s) = p(s")p(3]s7)
so that
p(s) = Xnls)
and

Zy)(éis*) = Zp(.s[.s*) =1

If a(s) is the coefficient of p(s) in the original state equations, it will be replaced by

Za(s)p(s

8

s%)
as a corresponding coefficient for p(s*) in the reduced set of equations.
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4.2.2 Decomposition

Brandwajn used the term decomposition to refer to all those techniques that are used
to determine simpler (decomposed) systems from the original single complex sys-
tem. Brandwajn proposes to view these decomposition methods as ways to evaluate
approximately the conditional probabilities p(8]s*). Some of these decomposition
methods are discussed in Brandwajn [10]. These methods differ in the way that

approximate the conditional probabilities p(§]s*).

4.3 The proposed method

Let us consider the queueing network that appears in Figure 4.1. The queueing
network consists of K queues in tandem with buffers of limited space placed between
adjacent nodes. Denote by M; the maximum number of items (including the one in

service) that can be stored in the buffer of node s.

HI-OAMHO- MO

Figure 4.1: Queues in Tandem

Arrivals occur at the first node of the network according to the Poisson process
with rate A(n;) which depends on the number of items currently at the first node.
When the first node is full the source that generates arrivals shuts down and it

starts again as soon as the number of items at the first node drops below M;. Thus,
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Alng) = 0 if ny = M;. The service times at all nodes have exponential distributions
with rates p;(n;,7:51). The service rate at node 7 depends on the number of items
currently at node ¢ and ¢ + 1. In this study we employ the communication type
of blocking, that is g;(n;,n;41) = 0 if nyoy = My, where n; denotes the current
number of items at node 2. Also, y;(ni,nipq) = 0if n; = 0.

The system is completely characterized by its steady state probability distribu-
tion p(nq,ng, ...,nz) of the number of items at each node. The balance equations for
this network are as follows:

{A(n1) + Ef‘:“f il nigr) + () (e, oo 0y Rigr, Rigz, oy 1g) =
Mra=1)p(na—1, .m0, g1, Rigzy oo ) F (i 1p(00, o0y 2, Mgty Rigns oo net+1)+
S (g + Ly — Dp(na, oy ni + 1 nigr — 1 nigs, o ny)

Let us consider the three nodes 4,4 1,742 and let us denote by p(rn;, niy1, nip2)
the steady state probability distribution of the number of items at each of these three
nodes. We can express this probability in terms of the joint probability distribution
of the number of items at each of the nodes by writing
P, g1, Riga) = 2ot ig1ig2 Zﬁf’;g Py ey iy Mg 1, P2y ooy L)

The joint steady state probability distribution of the number of items at each node
can be written as:

Py i) = Pridna, . nic, niga, o nelns, Ripn, Rapa Jp(04, i, nigs)

Performing the summation

D i Zﬁj{:o

on the balance equations, we get

M; M;
[ Z Z A(na ) Pridng, ..., nglng, nipr, nige -+ Z Z
JFL 42 0y =0 FEiA1 i+ v =0
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A

pi(na, ne) Pring, . omplng, niga, nie b+ > > pa(na, ns)
JFL T, I42 ny;=0

M,
Pri{ng, ..,ngng,nig, niee b+ .+ Z Z i1 (1o, 1)

JFLF1,i4+2 1y =0
M;

Pri{ny, .., neni, nipr, nige b+ z Z pi(ni, i)
JFL+1i42 ny =0

M;
Pri{ng, .,ng|ni, ni, niga b + Z Z fir1{nip1, niga)

J#4,i+1,i42 ny=0
My
Pring,.onglni,nipn e} + Y. D pipa(nire, niya)

F#4,i4-1,i42 n;=0
A
Pri{ng, ..nin,nip, nise b + Z Z fiva(niys, nigg)

L1422 ny =0
M,
Pri{ny,..,npn;,nip, nie ) + ...+ Z Z pe(ng)

JELIALi42 =0

Prdng, .o, nelni, g, nige Hp(ng, nia, nige) =

M;
Z Z Alng — 1) Pri{ny — 1, ..., ng|ni, napr, niga p(ne, nigr, nige )+
JELIF1,i 42 ny=0

M;
Z Z pr(na + 1,ne — D) Pr{ng + 1,ny — 1, ey T T2, Pi1y g )

JELIFL 42 ny=0
M
g)(?‘bi,?zi+1,7zz-+2) + ...+ Z Z pimz(ni—g + 1,n; 1 — 1)
JFLI+1, 2 n, =0
Pring, . .,nip+ Liniy — 1, o nelng, nip, nipe Jp(ng, nigr, nige )+
M;
Z Z i1 (ic1 + 1,0 — ) Pre{ng, onicg + 1, e mgng — 1, g, nige )

FFLH1LE2 ;=0
M;
Pl — Lnga, nige) + Z Z pi(ni + 1, — 1)

FFEL 1,42 n;=0

Pri{ng,..,nglni + 1,001 — Linga }p(ni + 1ynipr — 1ngg)+
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M;
Z Z fivr (Ripr + Lnigs — 1) Pr{ng, . nglng, i + gy — 1)
LI+ 142 ny=0
M;
p(ni, g + Lnge — 1) + Z Z fipa(niss + 1,005 — 1)
JFLI+H1L2 ny=0
Pr{ni,..,nias — 1, nglng, nia, nige + 1)+
M;

> 2 dis(nisa + Liniga — 1)

i i+2 1 =0
Pr{ny, .., nigs+ 1, s — 1, o, mplng, nig, i b0, Rigr, i) + o4

M

Z Z (e + D)Prdng, ., + Lng nig, nige }p(0, nig, niga)

F#Li+1,i42 =0

The above expression can be written as
[@i(ns, nigrs i) + pri(n, mign) & pign (Rign, Rive) + Uspa (R, Rigr, niga )
(i, nigas nige) = @i(ng — 1 niga, niga)p(ng — 1ngg, nigs) 4 (g 4 1, iy — 1)

Pl -+ L — L) + papr(rips + L ngge — Dp(g, nags + 1, nips — 1)+

wigz (P, Mgt Rige + D)p(ni, nigr, nias + 1)

where
D it ,i42 Eﬁ?:a pic1 (i1, ;)
@i(1, g1, Niga) = Pr{ny, ...ngngni, ni b, i =2,., -2
Alng), 1=1
and
zg'¢1‘,z’+1,z‘+2 Zij;o #i+2(ni+2; ”z’+3)
Uipa (N4, g1, Nigz) = Pr{nq,...,ng|n, Tip1y Rig2 s r=1,.., -3
| (), i=K
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The conditional probability Pr{n;,...ngjn, nii1,ni00)} can be written as

Pr{ny, .., ngng,nigq,niga} =

Pr{dnit|ng, nigr, nip FPridng, ., nelniy, na, nigr, iy b
Pr{ny,..,ngng nig, nipe } =

Pridnga|ng, nip, niga FPr{ng, <, nglng, nig, nigs, s}

Substituting the above expressions into ¢; and u; ., we get

Mi_
En,‘!_]l:l Hi-1 (nf—l)

ai(Miy iy i) = Prin,_i1|ni,nig1,nis), 1=2,.,K -2

Alng), =1
n; =0, ,M;—1; nigq =0,..., My ipe = 0, ..., Migo

( Mira—1
271,';;;3:0 ru“i-l-‘Z(ni-I—‘Z)
Uip2 (M, i1, Niga) = Pringsing nicy,nis}, i=1,., K -3
#i(ni), i=K

ng =0, , M nip = 0,0, Migq; nis =1, ..., My

The cell that consists of the three nodes é,7 + 1,7 + 2 behaves as the tandem
system in Figure 4.2 where the external arrival process has a state dependent rate
ai(niy niy1, nirz) and the service rate of the third node is wit2 (14, Nig1, Nipa). The
capacities of the buffers placed between the three nodes in the cell are the same with
the ones in the original system. If we know the equivalent rates ai(ni, Nig1, Nigo)
and uip2(ni, nip1, nigz), we are able to solve the tandem system of Figure 4.2 using

a numerical method. Once we have solved the three node system we can compute
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the joint steady state probability p(n:, niy1, niy2). So far, the approach that we have
followed is an exact solution without any approximations. The approximation el-
ement is now entering our analysis. We have to approximate the equivalent rates
and to do so we assume that

Prini_t|ngnig1, nige} = Prinig|ngnaa},  i=2,.,K -1 and

Pringslng nia, nige} = Pri{ngsfnig, nige},  i=1,.,K 3

a i(ni’ ni+1’ ni+2) !J“i !“l‘i-l-] ui+2(n 4 ni+1 ? n’i+2 )

M, M

i i+1

M

+2

Figure 4.2: Equivalent three node cell

Using the above approximations the equivalent rates now become

Mi_
En,‘l_ll=1 Hi—1 (ni—l )

ai(ng, Nigr, Nigz) = al(ng, Nip1) = Prin;_1|ninig1}, =2, K -2 (4.1)

’\(ni)v =1

g =0y, My —1; nypr =0, .., Mipy 5 nipe =0, ..., Moy
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Mipa—1
Zn;;;a:{} #H‘Z(”HJ )

Uppz (s Rig1, Miga) & Wiy (Rigr, Riga) = Pri{nislni,nipet, i=1,.., K —3

pr(ne ), p=K
(4.2)

;= 0,,11/[1, ip1 = D,..., ﬂ/ji—i-l y Niga = 1,...,1’\/[{_1_2

The solution cell (the cell that consists of nodes 7,7+ 1,7 4 2 with revised arrival
and service processes) in Figure 4.2 is now being transformed to the cell that is
illustrated in Figure 4.3. The proposed method begins the analysis of the queneing
network from the first triplet of nodes and proceeds to the next cell of three nodes
until it reaches the last cell. The analysis consists of successive iterations through
the network. Each iteration starts at the first cell of nodes and ends at the last cell
of nodes. At each iteration the arrival and service processes of each cell are revised
using the updated information. At each iteration of the algorithm K — 2 cells
have to be solved numerically. The updated information about the joint probability
distribution of the queue lengths of the nodes of a cell is used as an input to the
analysis of the next cell. The resulting joint probability distribution of a triplet of
nodes is used for the evaluation of conditional probabilities that are then used in

the analysis of neighboring cells.
4.4 The Algorithm

Consider a network with /' nodes in series. The steps of the algorithm can be

described as follows:
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Figure 4.3: The solution cell

STEP 1.
a. Initialize the joint probabilities p®(n;, nip1, nige ) for i = 1,..., K — 2,
such that Eﬁ'{iﬂ ﬂﬁt;o ﬁf:;’io pe(n.;, ngﬂ,ngﬂ) =1.
b, Using the above joint probabilities compute the conditional probabilities
PP (nige|ni,niq) fori =2,..., K — 2.
c. Setj=1.
STEP 2.
At iteration j, starting from the first three nodes of the system, solve
K — 2 triplets of adjacent nodes (n;,niy1,ni42) for i = 1,..., K — 2.
For the triplet consisting of nodes 7,7 + 1,7 + 2
a. Calculate the rate of the arrival process af(n;,n:1) at node ¢, using
Equation (4.1). The conditional probabilities p?(n;_1|n;,n:41) involved
in Equation (4.1) computed from the joint probabilities pj(n;_l,n.g,n{ﬁ).

b.  Calculate the rate of the service process of the node 7 + 2 using

84



Equation (4.2). The conditional probabilities p? = (n;y5|n:41, niga)
involved in Iiquation (4.2) are computed from the joint probabilities
P (Mg, g, igs).
c.  Solve the triplet of nodes numerically or by using some other computing
method. The solution provides the joint probabilities p? (ng, iy, nig2).
d. Compute the conditional probabilities p?(n;|ni11, nir2) and
i (nig2]ni, nig1) (which will be used in the solution of other
triplets of nodes) from the joint probabilities p’ (n;, Tit1, iz )
STEP 3.
If the convergence criterion (a difference between steady state
probabilities of each node calculated at successive iterations less
than a prespecified value) is not satisfied, set 7 = 7 4 1 and go to
STEP 2, otherwise go to STEP 4.
STEP 4.

Provide the performance measures of the system (for example average

queue lengths).

All the examples run using this algorithm seem to converge and the required com-
putational effort depends on the number of nodes, the buffer sizes, and the service
rates. The algorithm stops when the difference between the steady state probabili-

ties of each node calculated at successive iterations is less than 1075,



4.5 Numerical results

The proposed algorithm was tested for different combinations of number of
nodes, buffer sizes, and service rates. The results were compared to those obtained
by using the two-node approach developed by Brandwajn and Jow [11]. We use
the average queue lengths to compare our algorithm’s performance against discrete
simulation. Five simulation runs were performed for each experiment and the 95%
confidence intervals were calculated. For each simulation run 35,000 items were
used. The service rate y; of node ¢ is considered to be independent of the number of
items at node 7. The proposed algorithm gives improved results when compared to
the ones obtained by Brandwajn and Jow [11] especially in cases with large systems
(10 nodes or more) and in cases where there is a combination of large buffer sizes
and large changes in service rates between adjacent nodes. More specifically, we
examined networks consisting of 5,6,10 and 15 nodes with various service rates and
buffer sizes. In all the experiments we calculate the total error which is the sum of
the absolute values of the errors for the average queue lengths with respect to the
simulation results. For the calculation of the errors, the midpoints of the confidence

intervals were used.

4.5.1 Small systems

In this section, we perform a set of experiments for systems consisting of a small
number of nodes and small buffer sizes.

Experiment 1
We consider five nodes in tandem, and their buffer sizes are M; = 4, M, =5, M5 =

5, My =4, My = 3 with service rates pq = 2.5,y = 0.3, 13 = 2, g = 1, pi5 = 0.5 and
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Table 4.1: Exp 1. Average Queue Lengths

Queue | Approximate | Error BJ Error Simulation
1 3.6699 0.0124 | 3.6692 | 0.0117 | 3.6575 £ 0.0053
2 4.8623 0.0027 | 4.8621 ; 0.0025 | 4.8596 £ 0.0005
3 0.2560 -0.0344 | 0.2359 | -0.0545 | 0.2904 + 0.0069
4 0.7720 -0.1786 | 0.7564 | -0.1942 | 0.9506 4 0.0161
5 1.1110 -0.1302 | 1.1080 | -0.1332 | 1.2412 &+ 0.0065

Total

Error 0.3583 0.3961

arrival rate A = 1.2, Table 4.1 illustrates the results of Experiment 1. The total
error from our algorithm is 0.3583. This is less than the total error of Brandwajn
and Jow’s method which is 0.3961. BJ stands for Brandwajn and Jow’s method.
Experiment 2
In the second experiment we consider five nodes with buffer sizes M; = M, = M; =
My = Ms = 3 and with service rates p11 = 1.7, 00 = 2, 13 = 1.5, 24 = 1.7, 5 = 0.8
and with arrival rate A = 1.2. We observe from Table 4.2 that the total error of our
algorithm is 0.1811 while Brandwajn and Jow’s method error is 0.2382.
Experiment 3
We counsider five nodes with buffer sizes My = 4, M, =5, M3 = 5, My =4, M5 = 3
and service rates g1 = 2.1,y = 1.5, 43 = 0.9, gy = 0.55, 5 = 0.7 and arrival rate
A = 2. In this example BJ’s method yields a total error of 0.0966 and our algorithm

yields a total error of 0.1057 (Table 4.3). Thus, BJ’s method for this experiment
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Table 4.2: Iixp 2. Average Queue Lengths

Queue | Approximate | Error BJ Error Simulation
1 1.8882 0.0323 | 1.8888 | 0.0329 | 1.8559 £ 0.0227
2 2.0531 0.0451 | 2.0673 | 0.0593 | 2.0080 £ 0.0153
3 2.2939 0.0501 | 2.3112 | 0.0674 | 2.2438 + 0.0266
4 2.1001 0.0326 | 2.1173 | 0.0498 | 2.0675 £ 0.0357
5 2.1902 0.0210 | 2.1980 | 0.0288 | 2.1692 4 0.0264

Total

Error 0.1811 0.2382

gave better results than our algorithm but the difference is very small.

In experiments four and five we considered six nodes in tandem. In both cases
our algorithm and BJ’s method give fairly similar results. More specifically, our
algorithm seems to perform better in the fourth experiment and BJ’s method seems
to perform better in the fifth experiment. But in both cases the differences between
the total errors of the two methods are very small.

Experiment 4
In this experiment the buffer sizes of the six nodes are My = My = M3y = M, =
Ms = Mg = 4 and the service rates are pq = 2.5, 09 = 2,3 = 1.5, uq = 0.8, pts =
1.25, ug = 0.5 and the arrival rate A = 2. Our algorithm’s total error is 0.0989 and
BJ’s method total error is 0.1017 (Table 4.4).

Experiment 5

'The buffer sizes of the six nodes are My = M, = Ms = My = My = M; = 4 and
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Table 4.3: Exp 3. Average Queue Lengths

Queue | Approximate | Error BJ Error Simulation
1 3.7150 0.0244 | 3.7119 | 0.0213 | 3.6906 4: 0.0076
2 4.7319 0.0100 | 4.7287 | 0.0068 | 4.7219 4 0.0052
3 4.5885 0.0313 | 4.5852 | 0.0280 | 4.5572 & 0.0059
4 3.1463 -0.0178 | 3.1458 | -0.0183 | 3.1641 £ 0.0148
5 1.1715 -0.0222 | 1.1715 | -0.0222 | 1.1937 £ 0.0334
Total
Error 0.1057 0.0966
Table 4.4: Exp 4. Average Queue Lengths
Queue | Approximate | Error BlJ Error Simulation
1 3.6837 0.0182 | 3.6826 | 0.0171 | 3.6655 £ 0.0090
2 3.7601 0.0084 | 3.7594 | 0.0077 | 3.7517 £ 0.0040
3 3.6848 0.0139 | 3.6843 | 0.0134 | 3.6709 4 0.0156
4 3.5368 0.0171 | 3.5383 | 0.0186 | 3.5197 £ 0.0186
5 2.7383 0.0259 | 2.7410 | 0.0286 | 2.7124 £ 0.0913
6 3.2251 0.0154 | 3.2260 | 0.0163 | 3.2097 £ 0.0390
Total
Error 4.0989 0.1017




Table 4.5: Exp 5. Average Queue Lengths

Queue | Approximate | Error BJ Error Simulation
1 3.7322 0.0219 | 3.7308 | 0.0205 | 3.7103 & 0.0040
2 3.7959 0.0061 | 3.7949 | 0.0051 | 3.7898 + 0.0045
3 3.7337 0.0068 | 3.7329 | 0.0060 | 3.7269 4 0.0022
4 3.5060 0.0052 | 3.5075 | 0.0067 | 3.5008 £ 0.0116
5 1.5912 -0.0668 | 1.5959 | 0.0599 | 1.6580 £ 0.0706
6 2.3723 -0.0507 | 2.3746 | 0.0484 | 2.4230 4 0.0464

Total

Error 0.1575 0.1466

the service rates are p1 = 2.5,y = 2, 103 = 1.25, 114 = 0.5, pt5 = 1, g = 0.5 and the
arrival rate is A = 2. B.J’s method gives better results than our algorithm and the
total error of BJ’ method is 0.1466 and the total error of our algorithm is 0.1575

(Table 4.5).

4.5.2 Large systems

In the next three experiments we consider longer lines. We consider ten and fifteen
nodes in tandem. Our algorithm seems to perform consistently better than BJ's
method although the computational effort required is two to three times the effort
required by BJ’s method.

Experiment 6

In experiment six we consider ten nodes with buffer sizes M; = 3, M, = 4, M5 =

90



Table 4.6: Exp 6. Average Queue Lengths

Queue | Approximate | Error BJ Error Stmulation
1 2.6849 0.0108 | 2.6757 | 0.0016 | 2.6741 % 0.0051
2 3.6996 0.0049 | 3.6888 | -0.0059 | 3.6947 4+ 0.0020
3 2.5563 0.0062 | 2.5508 | 0.0007 | 2.5501 4 0.0122
4 1.1968 -0.0172 | 1.1872 | -0.0268 | 1.2140 + 0.0142
5 1.4862 -0.0709 | 1.4732 | -0.0839 | 1.5571 £ 0.0313
6 1.2780 -0.0308 | 1.3185 | 0.0097 | 1.3088 4 0.0267
7 1.7753 0.0227 | 1.8540 | 0.1014 | 1.7526 & 0.0322
8 2.8102 0.0798 | 2.9261 | 0.1957 | 2.7304 4+ 0.0573
9 1.8968 0.0623 | 1.9502 | 0.1157 | 1.8345 4+ 0.0218
10 1.2179 0.0182 | 1.2356 | 0.0359 | 1.1997 £+ 0.0197

Total

Error 0.3238 0.5773

3, My =2, Ms =4, Mg =3, M; =3, Ms = 4, My = 3, M1y = 2, and service rates
p1 = 20,9 = 1.5, 3 = 0.9, 014 = 0.75, 5 = 1,6 = 1.5, 7 = 1.2, g = 0.9, 19 =
1.1, 10 = 0.65 and the arrival rate A = 2. From Table 4.6 we see that our algorithm
performs much better than B.J’s algorithm and the total error of our algorithm is
0.3238 while BJ’s method total error is 0.5773.

Experiment 7

We cousider fifteen nodes in series with buffer sizes My = My = Ms = My = M; =
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Mg =M; = Mg = Mg = Myg = My, = My, = Mz = Mys = Mis = 3 and service
rates jip = 2.1, 0 = 1.5, p3 = 0.9, 004 = 0.65, 55 = 1.5, 506 = 1.5, 7 = 1.2, 5 =
0.9 19 = 1.1, 010 = 0.4, 111 = 1,010 = 1,13 = 1,94 = 1, 15 = 1 and the arrival
rate A = 2. As we see in Table 4.7 our algorithm’s total error is 0.1162 and BJ’s
method total error is 0.1990.
Experiment 8

In this experiment we consider fifteen nodes with buffer sizes M, = M, = M; =
My =My = Mg = M; = Mg = Mg = Myg= My = Myy = Mys = My = M5 =3
and service rates 1 = 2.5, 4y = 2,p3 = 1.2,y = 19,05 = 2,46 = 0.9, 47 =
L3, ps = 1.7, po = 1.1, pr1o = 2, pt11 = 0.95, jta2 = 1, pr13 = 1.5, pt14 = 2, jt45 = 0.8 and
the arrival rate A = 2. As we see (Table 4.8) our algorithm gives better results than
BJ’s ones and more specifically the total error of our algorithm is 0.1327 and the

total error of BJ’s method is 0.2216.

4.5.3 Systems with high blocking probabilities and large buffer sizes

Brandwajn and Jow’s method tends not to perform well in cases where there is a
large difference between the service rates of adjacent nodes there by leading to high
blocking probabilities and the first node has a relatively large buffer size. Thus, in
the next six experiments we consider lines consisting of five nodes with the first node
having a large buffer size and service rates that result in high blocking probabilities.
Experiment 9
In this experiment, we consider five nodes in tandem with buffer sizes M; = 8, M, =
3, Mz = 6, My = 3, Ms = 3 and service rates uy = 1.5, = 0.7, 013 = 1,14 =

0.5, 45 = 1, respectively. The external arrival rate is A = 0.4. The results are
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Table 4.7: Exp 7. Average Queue Lengths

QQueue | Approximate | Error BJ Error Simulation
1 2.7758 0.0126 | 2.7747 | 0.0115 | 2.7632 £ 0.0074
2 2.7871 0.0077 | 2.7863 | 0.0069 | 2.7794 4= 0.0030
3 2.6813 0.0051 | 2.6817 | 0.0055 | 2.6762 4 0.0031
4 2.3674 0.0036 | 2.3721 | 0.0083 | 2.3638 4-0.0217
5 1.8629 0.0071 | 1.8844 | 0.0286 | 1.8558 & 0.0274
6 2.4257 0.0037 | 2.4528 | 0.0308 | 2.4220 4 0.0169
7 2.6084 0.0188 | 2.6302 | 0.0406 | 2.5896 + 0.0093
8 2.5549 0.0108 | 2.5642 | 0.0201 | 2.5441 4 0.0108
9 2.3509 0.0104 | 2.3529 | 0.0124 | 2.3405 % 0.0086
10 2.4769 0.0098 | 2.4739 | 0.0068 | 2.4671 +0.0118
11 0.5777 -0.0032 | 0.5796 | -0.0013 | 0.5809 = 0.0100
12 0.5852 -0.0034 | 0.5860 | -0.0026 | 0.5886 4 0.0071
13 0.5868 -0.0038 | 0.5860 | -0.0057 | 0.5917 4+ 0.0131
14 0.5798 -0.0108 | 0.5786 | -0.0120 | 0.5906 £ 0.0231
15 0.5405 -0.0054 | 0.5400 | -0.0059 | 0.5459 4+ 0.0121

Total

Error 0.1162 0.1990
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Table 4.8: Exp 8. Average Queue Lengths

Queue | Approximate | Error BJ Error Simulation
1 2.5508 0.0174 | 2.5422 | 0.0088 | 2.5334 4 0.0138
2 2.6470 0.0013 | 2.6391 | -0.0066 | 2.6457 + 0.0056
3 2.5449 -0.0026 | 2.5381 | -0.0094 | 2.5475 4+ 0.0090
4 2.0422 -0.0105 | 2.0262 | -0.0265 | 2.0527 4+ 0.0209
5 2.3615 0.0026 | 2.3423 | -0.0166 | 2.3589 4 0.0204
6 2.5017 -0.0045 | 2.4897 | -0.0165 | 2.5062 + 0.0094
7 1.5125 -0.0159 | 1.4950 | -0.0334 | 1.5284 4 0.0356
8 1.5782 -0.0042 | 1.5726 | -0.0048 | 1.5824 + 0.0381
9 1.9829 -0.0028 | 1.9911 | 0.0054 | 1.9857 £ 0.0292
10 1.6104 -0.0066 | 1.6311 | 0.0141 | 1.6170 £ 0.0314
11 2.1884 0.0022 | 2.1939 | 0.0077 | 2.1862 £ 0.0212
12 1.5005 -0.0061 | 1.5016 | -0.0050 | 1.5066 4= 0.0143
13 1.0202 -0.0291 | 1.0239 | -0.0254 | 1.0493 £+ 0.0379
14 1.1887 -0.0101 | 1.2178 | 0.0190 | 1.1988 £ 0.0410
15 1.7817 -0.0168 | 1.8159 | 0.0174 | 1.7985 &+ 0.0285

Total

Error 0.1327 0.2216
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Table 4.9: Exp 9. Average Queue Lengths

Queue | Approximate | Error BJ Error Simulation
1 1.3172 -0.1216 | 0.9854 | -0.4534 | 1.4388 £ 0.0479
2 1.4056 -0.0077 | 1.2851 | -0.1282 | 1.4133 £ 0.0180
3 2.4651 -0.0245 | 2.2681 | -0.2215 | 2.4896 4 0.0252
4 1.8207 -0.0046 | 1.8230 | -0.0023 | 1.8253 &£ 0.0040
5 0.5761 -0.0112 | 0.5790 | -0.0083 | 0.5873 £ 0.0015

Total

Error 0.1696 0.8137

illustrated in Table 4.9. We observe that our method performs much better than
B.J’s method for the first three nodes. The total error of our method is 0.1696 while
the total error of BJ’s method is 0.8137.

Experiment 10
We now consider the same line of Experiment 9 but with arrival rate A = 0.6. As
can be seen in Table 4.10, our method still performs better than BJ’s method but
the difference between the total errors is now less than the difference of the total
errors in Experiment 9.

Experiment 11
In this experiment, we consider the same line of Experiments 9 and 10 but with
arrival rate A = 1.2. We observe (Table 4.11) that the total error of our method is
still less than the total error of BJ’s method.

Next, we consider a line with five nodes with the first node having a buffer size



Table 4.10: Exp 10. Average Queue Lengths

Queue | Approximate | Error BJ Error Simulation
1 5.6318 -0.0843 | 5.5888 | -0.1273 | 5.7161 + 0.0258
2 2.5343 0.0163 | 2.5312 | 0.0132 | 2.5180 + 0.0052
3 4.4145 0.0167 | 4.4041 { 0.0063 | 4.3978 +0.0174
4 2.2686 0.0293 | 2.2669 | 0.0276 | 2.2393 + 0.0060
5 0.6770 -0.0212 | 0.6768 | -0.0214 | 0.6982 + 0.0040

Total

Error 0.1678 0.1958

Table 4.11: Exp 11. Average Queue Lengths

Queue | Approximate | Error BJ Error Simulation
1 7.4332 0.0595 | 7.4268 | 0.0531 | 7.3737 4+ 0.0076
2 2.6026 0.0239 | 2.6014 | 0.0227 | 2.5787 £ 0.0078
3 4.4805 -0.0063 | 4.4563 | -0.0305 | 4.4868 4+ 0.0153
4 2.2764 0.0434 | 2.2712 | 0.0432 | 2.2280 4 0.0210
5 0.6785 -0.0160 | 0.6776 | -0.0169 | 0.6945 4+ 0.0154

Total

Error 0.1541 0.1664
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Table 4.12: Exp [2. Average Queue Lengths

Queue | Approximate | Error BJ Error Simulation
1 0.9831 0.1224 | 0.7895 | -0.0712 1 0.8607 4 0.0215
2 0.5017 0.0111 { 0.3624 | -0.1282 | 0.4906 4 0.0135
3 1.9293 -0.0596 | 1.8108 | -0.1781 | 1.9889 + 0.0189
4 0.6754 -0.0110 | 0.6644 | -0.0220 | 0.6864 + 0.0038
5 0.5988 0.0089 | 0.5971 | 0.0072 | 0.5899 -+ 0.0026

Total

Error 0.2130 0.4067

of 10.

Experiment 12
The buffer sizes and service rates of the five nodes are M; = 10, M, = 3, M5 =
4, My =2,Ms =2 and p; = 1,5 = 5, p3 = 0.7, 14 = 1, us = 0.9 respectively. The
external arrival rate is A = 0.4. As can be seen in Table 4.12, the proposed method
performs better than BJ’s method.

Experiment 13
In this experiment, we use the system of Experiment 12 but with arrival rate A = 0.6.
The results are illustrated in Table 4.13. We observe that the proposed method
performs better than BJ’s method and the total error of our method is 0.3246 while
BJ’s method total error is 0.4484.

Experiment 14

In this last experiment we change the arrival rate of the system of Experiment 12
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Table 4.13: Exp 13. Average Queue Lengths

Queue | Approximate | Error BlJ Error Simulation
I 6.6702 -0.3078 | 6.5903 | -0.3877 | 6.9780 4= 0.0272
2 2.1167 0.0006 | 2.0774 | -0.0387 | 2.1161 +£ 0.0034
3 3.7901 0.0008 | 3.7859 | -0.0034 | 3.7893 4- 0.0034
4 0.9291 0.0078 | 0.9312 | 0.0099 | 0.9213 £ 0.0022
5 0.7644 0.0076 | 0.7655 | 0.0087 | 0.7568 4= 0.0006

Total

Error 0.3246 0.4484

to A = 0.8. As we see in Table 4.14 the total error of the proposed method is 0.1073

while the total error of BJ’s method is 0.1987.

4.6 Summary

From the experiments performed, we conclude that the proposed method yields
results that show improvement over the ones obtained by B.J’s method. The two
methods appear to be equally good as long as the network examined is of small size
(5-6 nodes) with low or moderate probabilities of blocking and small buffer sizes, but
our method requires more computational effort. For larger lines (10 nodes or more)
and for lines with large buffer sizes and high blocking probabilities the proposed
method seems to perform better than BJ’s method. This is understandable since,

as the line becomes larger (more nodes in the system), the interdependencies between
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Table 4.14: Exp 14. Average Queue Lengths

Queue | Approximate | Error | BJ | Eror |  Simulation
1 8.5646 | -0.0134 | 8.5323 | -0.0457 | 8.5780 4 0.0089
2 22169 | -0.0605 | 2.1770 | -0.1004 | 2.2774 + 0.0114
3 3.8407 [ -0.0209 | 3.8215 | -0.0401 | 3.8616 + 0.0034
4 0.9323 | -0.0094 | 0.9323 | -0.0094 | 0.9417 - 0.0027
5 0.7662 | -0.0031 | 0.7662 | -0.0031 | 0.7974 + 0.0053

Total

Error 0.1073 0.1987

the nodes increase (dependencies that result from the blocking process) resulting in
the arrival-service processes to individual nodes not being of the exponential type.
Because the proposed method considers cells consisting of three nodes instead of
two, these deviations from the exponential assumptions are well accounted for. As
was pointed out earlier the improvement in the accuracy that we obtained with our
method, is paid for by an increase in the computational effort. As can be seen in
Table 4.15 our algorithm requires in most of the cases 1.5 - 3 times more iterations
than BJ’s method. Moreover, because our algorithm solves cells consisting of three
instead of two nodes, the time required to solve a cell is 1.5 times the time required
by BJ’s method. On the other hand, for a system with K nodes, K — 2 (K — 1)
cells are solved at each iteration of our algorithm (B.J’s method). Thus, there is a
trade oftf between accuracy and computational effort. We should also mention that

another advantage of our method is that it provides the joint steady state probability

99



distribution of the number of items at each node for triplets of nodes, information
that can not be obtained by other approximation methods. Simulation programs
were run on PC 386 computers and the programs of the approximation methods
were run on Sun workstations. Thus, comparisons of run times required by the
simulation and by the approximation methods cannot be made. The results of this

Chapter were submitted for publication to Performance Evaluation (Yannopoulos

and Alfa [51]).
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Table 4.15: Number of Iterations

Approximation | BJ
Experiment 1 35 31
Experiment 2 57 25
Experiment 3 15 6
Experiment 4 11 10
Experiment 5 43 28
Experiment 6 283 132
Experiment 7 52 13
Experiment 8 194 79
Experiment 9 277 114
Experiment 10 144 41
Experiment 11 28 19
Experiment 12 399 64
Experiment 13 233 68
Experiment 14 83 33
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CHAPTER 5

A Simple and Quick Approximation Algorithm for

Tandem, Split, and Merge Queueing Networks

5.1 Introduction

Most of the existing approximation methods are not very easy to use. Im-
plementing most of these approximation algorithms is very involved and requires
considerable computational effort and computer memory. Some of the algorithms
consist of iterative procedures, with each iteration involving the solution of one or
two node systems. Other algorithms involve solving systems of nonlinear equations.
Computational time requirements can sometimes be excessive depending on the
examined system and the approximation technique used. For example, the develop-
ment of phase-type distributions for lines with many nodes/machines leads to higher
dimensional phase-type distributions. This could require prohibitive computational
time. Very often, an approximation method for evaluating the performance mea-
sures of a queueing system is used as an integral part of an optimization procedure.
The efficiency and effectiveness of an approximation method, in terms of computa-
tional requirements and quality of estimation of performance measures, will affect
the overall performance of the optimization procedure itself.

Also, most of the existing methods are designed to work only for specific queue

configurations (for example tandem, split or merge) or for specific probability dis-
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tributions. Thus, a different method must be used, each time a different system is
examined. As was pointed out in Section 2.2.2, ouly very few papers have appeared
that deal with split, and merge configurations. Moreover, results for split, and merge
configurations consisting of more than three nodes with general processes have not
been reported yet.

Thus, there are times the analyst would like to have a method which would be
simple, and fast, with good accuracy, which could be used for the analysis of a wide
variety of queneing networks. The aim of this research is to present an approximation
algorithm which is very simple, very fast, and provides reasonably accurate results.
The method is designed to be used for the analysis of tandem, split, and merge
configurations with general service and arrival processes and blocking. We show that
the relative errors are in most of the cases within 10% (20%) for moderate (heavy)
traffic when compared to simulation results. The examples used to demonstrate the
quality of the approximation cousist of cases with external interarrival and service
times having Exponential, Erlang-2, Erlang-4, and Coxian-2 distributions. This is
the first study to report results for split, and merge configurations consisting of more
than three nodes with general stochastic processes and blocking. The algorithm

provides estimates of the average sojourn time through the network.

5.2 The Basic Concept of the Approximation Method

The approximation method proposed in this Chapter applies a decomposition
approach. It decomposes the system into several single-node cells with revised arrival
and service processes. Once the system is decomposed, single-node approximations

are used for the analysis of the individual single node-cells. To develop a method
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which is simple and at the same time fast, we have to find an efficient way of revising
the traflic and service processes of the individual nodes. Let us cousider the two
node system in Figure 5.1. The departure process from node  (which is the arrival
process of node 7 + 1) contains information about the status of node ¢ + 1. This
information has to do with the saturation of node ¢ 4 1 which may lead to the
blocking of node 2. The blocked items at node 7 in a loss system would be lost
customers, but in a delay system (like ours) the blocked items wait at node 2 until
node ¢ 4 1 becomes unsaturated. The fact that the departure process from node ¢
is not a renewal process affects the average queue length of node i + 1 (Patuwo et
al. [40]). To deal with this problem, we introduce an equivalent loss node 7 4 1 with
revised arrival process having a rate greater than the real one. More specifically, for
this two-node system we assume that the arrival rate at node 7 + 1 is equal to the
external arrival rate and node 741 is now treated as a loss node rather than a delay

node.

i i+l

Figure 5.1: A two-node system

The next step is the revision of the service processes of individual nodes. Using
information obtained from the analysis of node 741 we revise the mean and variance
of the service times of node 7. This is in order to include possible additional delays
for the item cwrrently in node ¢ that could result if upon completion of its (the
item’s) service at node 7, node ¢ + 1 is full.

The method begins from the last node(s) of the network and proceeds towards
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the first(s) nodes decomposing the network, revising the arrival and service processes
of each node at each stage using information obtained from the analysis of the last
examined node. We now show how to use this approach for the analysis of networks

with queues in series, split, and merge configurations.

5.3 Tandem Configurations

5.3.1 Model Assumptions

Consider the tandem network shown in Figure 1.1. External arrivals occur only
at the first node. These arrivals have general distributions with rate and squared
coefficient of variation A, and ¢2, respectively. Service times at all nodes have general
distributions. Let w;, Vi, ¢, and N; be the service rate, the service time variance,
the service time squared coefficient of variation, and queue capacity (including the
one in service) for node ¢, where 7 = 1,2, ..., M. Departures from the system occur
only at the last node (node /). Items finding the first node full upon their arrival
are considered to be lost. An item that completed its service at node i proceeds
towards node 2 + 1. If at time of service completion at node z, node 7 + 1 is full, then
the item is forced to remain at node ¢ until space becomes available at the buffer of
node z 4 1. During the time when node 1 is occupied by the blocked item, it cannot

process any new items. We assume node M cannot get blocked.

5.3.2 The Approximation Algorithm for Tandem Configurations

Consider the tandem system shown in Figure 1.1. The method starts with the last

node M and then proceeds towards the first node. Node M does not get blocked



50 its service process is not revised. We distinguish two cases: (i) ¢2 < 1 and (ii)
¢ > 1. In case (i) the arrival process at node 7, (i = 2,..., M) is considered to
be Poisson. In case (i) the scv of the arrival process at node 7, (i = 2,..., M)
is assumed to be equal to ¢2. Node M is treated as a loss system and analysed
using a single-node approximation method. For more information about single-node
approximations see Springel and Makens [46]. In this study we use two single node
approximation methods, and compare how each one of them affects the performance
of our algorithm. The two single node approximations used in this study are: i)
Yao and Buzacott’s [54] and ii) Gelenbe’s [15]. These approximation methods are
presented in Appendix C .

After we finish analysing node M we proceed to node M — 1. The rate and

variance of service time of node M — 1 are revised using the following formulas

—L )new - (

HAr-1 M -1

Jotd + Pr E{Yar}

and

(V}\*f—i)new = (‘/J\J—I)o!d + PI%‘{VRN[

where Py is the probability that the buffer at node A is full, E{Yap} and V Ry are
the mean and variance of the residual time of the service time at node M respectively.
‘The nth moment of the residual time is given as (Kleinrock Vol 1, page 173 [31])

E{ X"

E{Yu} = (n+ DE{ X}

where E{X}} is the nth moment of the service time of node M and E{Xy} =

1/,&;\4 . Thus
E{X}

BV} = 5 3
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The variance of the residual time V Ry is given as
VRy = E{Yj} — (B{Y})?

where
By = AKX}

ML TS Vs
r}E{AJ\/j}

Node M — 1 is analysed using a single-node approximation with arrival process
having rate A and squared coefficient of variation equal to ¢? if ¢2 > 1, or equal to
1if ¢ < 1. Node M — 2 is then analysed using the same idea. This procedure is
continued up to node 2. The last node to be considered will be the first node of the
system. The arrival process of the first node is not revised. After we have computed

the performance measures of the first node, we then calculate the effective arrival

rate to the network using the formula
Aesg =M1 — By)

where P is the probability that node 1 is full. To find the average sojourn time
through the network we carry out another approximation using Little’s formula as

follows
i+ Lo+ .+ Ly

JS‘T =
Aefs

where ST’ and L; are the average sojourn time through the network and the average

queue length of the node i respectively.
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The Algorithm
Consider a network with M (> 1) nodes in series. The algorithm cousists of the

following steps:

STEP 1.
Analyse the last node M of the system using a single-node approximation
assuming the arrival process having rate A and squared coefficient
of variation equal to ¢2 if ¢Z > 1 or equal to 1 if ¢2 < 1.
Store the blocking probability Py and the average queue length Ljy.
STEP 2.
Seti=M—1
STEP 3.
a. Revise the service process of node 7 to take into account the blocking

phenomenon. For the revision of y; and V; use the following formulas:

(}‘)?zew = (i)ola’ + Pi—{—IE{Y;-i-l}

I

and
(Vi)uew = (Vi)ata + P2V Ripr
where Fiyq is the probability node 7 + 1 is full, E{Y;;;} and V R,
are the mean and variance of the residnal time of the service time of
node ¢+ 1.

b.  Analyse node 7 using a single-node approximation assuming

the arrival process having rate A and squared coefficient
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C.

d.

of variation equal to ¢2 if ¢Z > 1 or equal to 1 if ¢2 < 1.
Store P; and L;.

If : =2 go to STEP 4 otherwise set i =7 — 1 and go to STEP 3(a).

STEP 4.

d.

Revise the service process of node 1 to take into account the blocking

phenomenon. For the revision of y; and V; use the following formulas:

('l—_)nf:w = (:}T)ojd -+ PzE{}/Z}

K1

and

(VDnew = (V)ota + PV R,

Analyse node 1 using a G/G/1/N single-node approximation
without revising the arrival process.

Store P and L.

Use the formula Ay = A(1 — P;) to calculate the effective

arrival rate at the first node.

Compute the average sojourn time through the network using the

following formula

jS‘T — L]+L§++Lﬂ£
Aeff
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5.4 Split Configurations

5.4.1 Model Assumptions

A split configuration cousists of a single node (first level) linked to two or more (n)
nodes (second level) as shown in Figure 1.2. Let p;, Vi, ¢?, and N; be the service
rate, the service time variance, the service time squared coefficient of variation, and
queue capacity (including the one in service) for node ¢ where i = 0,1,2,...,n and
¢t = 0 denotes the first level node. External arrivals with rate, and scv g, and 2,
respectively, occur only at the first level node and the interarrival times have general
distributions. Service times at all nodes have general distributions. The departure
process from the first level node splits into streams which now become the arrival
processes of the second level nodes. Buffers with finite capacities are placed behind
each node and an item that has just completed its service at the first level node
gets blocked if all second level nodes are full at this instance. The blocked item
is forced to wait at the first level node (oceupying it} until one of the second level
nodes becomes not full. During this time the first level node cannot process any
new items. It is assumed that the departure process from the first level node is
equally split into n streams and that all second level nodes have equal service rates
and buffer sizes. Thus the application of this model is limited to the cases where

the second level consists of machines/service facilities that are of the same type.

5.4.2 The Approximation Algorithm for the Split Configuration

Consider the split configuration shown in Figure 1.2. The method analyses the

network starting from the n second level nodes and then proceeds to the first level
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node. More specifically, the second level nodes are treated as loss systems with
arrival processes having rates A, = Ao/n. We distinguish two cases: (i) ¢ < 1 and
(i) ¢2 > 1. In case (i) the arrival process at the second level node 7, (¢ = 1,...,n)
is considered to be Poisson. In case (i1) the scv of the arrival process at the second
level node 2, (2 = 1,...,n) is assumed to be equal to ¢?. It is assumed that the second
level nodes cannot get blocked so their service processes are not revised. Each of the
n second level nodes is solved using a single node approximation method. The rate

and variance of the first level node’s service times are revised using the following

formulas:
I i r P
— Jnew = {— Joid + “iEK
(#O) (#O)H ;n {Yi}
and
7 P2
I/(),new = Vb,ofd + Z —EI/RI'
7==1 n

where F; is the probability node 7 is full (z = 0,1,...,n), E{Y;}, and VR; are the
mean, and variance of the residual time of the service time of the second level node
2, respectively. The arrival process of the first level node is not revised and we use a
G/G/1/N approximation to analyze the first level node. Then, the effective arrival
rate to the network is computed using the formula A.s; = A(1 — F) and finally
the average sojourn time for each of the n branches of the network are calculated
using the formula ST; = (LofAess) + LifAe where A, = Aj/n, ST;, and L; are
the average sojourn time for the ¢th branch of the network (¢ = 1,2,...,n), and the
average queue length of node ¢ (: = 0,1, ..., n), respectively.

The Algorithm

Consider a split configuration with n second level nodes. The algorithm consists

of the following steps:
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STEP 1.

b.

d.

Set 1 =1

Analyse the ith second level node using a single node approximation
assuming the arrival process having rate A; = Ag/n and squared
coefficient of variation equal to ¢ if ¢2 > 1 or equal to 1 if ¢Z < 1.
Store P; and L;.

If i = n go to STEP 2, otherwise set 7 = ¢ + 1 and go back to

STEP 1 (b).

STEP 2.

a.

Revise the service process of the first level node using the following

formulas

('I_)new - (“Lo)old + :L1 %E{K}

Ho
and

/. /. n P2
1O,new = 7{{},01({ + 25:1 T VR:

Analyse the first level node as a G/G/1/N queue without revising its

arrival process.

STEP 3.

h.

Compute the effective arrival rate to the network using the formula
Aeff = Ao{l — Pp)

Set ¢ =1

Calculate the average sojourn time through the network for the sth

branch using the formula
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ST = (Lo/Aeys) + Lif Ae where A, = Aj5/n

d. 1l =n go next, otherwise set ¢ = i + 1 and go to STEP 3(c).

5.5 Merge Configurations

5.5.1 Model Assumptions

Merge configurations (see Figure 1.2) consist of n parallel nodes (first level) linked to
a single node (second level). Let A;, s, Vi, ¢, and N; be the arrival rate, the service
rate, the service time variance, the service time squared coefficient of variation,
and queue capacity (including the one in service) for node 7, respectively, where
1 =0,1,2,...,n and ¢ = 0 denotes the second level node. External arrivals occur
only at the first level nodes and the interarrival times have general distributions.
Service times at all nodes have general distributions. The arrival process at the
second level node consists of the superposition of the n departure processes from
the first level nodes. All buffers are of limited size and this leads to blocking. An
item that just finished its service at one of the first level nodes will get blocked if
the second level node is full at that time. If there are more than one blocked items
at the same time, a blocking queue is formed and the “first blocked first released”
rule applies. During the time of blocking the blocked node cannot serve new items.
Buffer sizes, service rates and scvs, and external arrival rates can be different for

different nodes in the system.
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5.5.2 The Approximation Algorithm for the Merge Configuration

Let us consider the merge configuration shown in Figure 1.2. The analysis of the
system starts from the second level node and then proceeds to the n first level
nodes. The second level node is treated as a loss system with arrival process having
rate Ao = - A, Once more we distinguish two cases: (i) all the scvs of the
external arrival processes are <1 and (ii) the scvs of the external arrival processes
are assumed to be equal and > 1. In case (i) the arrival process at the second level
node is considered to be Poisson. In case (ii) the scv of the arrival process at the
second level node is assumed to be equal to the scv of the external arrival processes.
It is assumed that the second level node does not get blocked so its service process
is not revised. Using information obtained from the analysis of the second level
node we revise the service processes of the first level nodes to take into account the
blocking effect. Having revised the service processes of the first level nodes we then
use the results of G/G/1/N approximations to get the performance measures of the
individual nodes. Next, the effective arrival rates are computed using the formula
Aessi = Ai(1 — F;) and then the average sojourn times for each of the n branches of
the network are obtained using the formula
n
ST = (Lifdessi) + Lof (30 Xy i)
i=1

where F; is the probability that node 7 is full, and L; is the average queue length of
node ¢ (2 =0,1,...,n).
The Algorithm

Consider a merge configuration with n first level nodes. The algorithm consists

of the following steps:
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STEP 1.

.

b.

Analyse the second level node as a loss system with arrival process having
rate Ag = 3°7, A; and scv equal to 1 if the scvs of the external arrival
processes are < 1. If the scv of the external processes is greater than 1,
then the scv of the arrival process at the second level node is equal to

the scv of the external processes.

Store the values of Lg and Fy.

STEP 2.

d.

e.

Set ¢ =1
Revise the service process of the ith first level node and then solve this
single node system using a G/G/1/N approximation. To revise the

service process of the 7th node use the following formulas

(Duew = (L)ota + PoB{Y)
(Vidnew = (Vi)ota + F§V Ro

where £{Yy} and V Ry are the mean and variance of the residual

time of the service time of node 0.

Store the values of L; and F.

Compute the effective arrival rate to node 7 using the following formula
Aesri = Ai(l = B)

If : =n go to STEP 3, otherwise set ¢ = ¢ + 1 and go to STEP 2(b).

STEP 3.

d.

Set =1



b.  Calculate the average sojourn time through the network for the ith

. : . L Lo
branch using the formula ST} = v, T S S
c. Ifi=mn gonext, otherwise set s =74 1 and go to STEP 3(b).

d.  Output the results.
5.6 Numerical Results

To test the performance of the approximation algorithm, we considered many
different types of network configurations, buffer sizes, and arrival and service pro-
cesses. The results obtained from the algorithm are compared with those obtained
by discrete simulation. For each point four simulation runs totalling 60,000 items
were performed. We constructed 95% confidence intervals and the midpoints of
these intervals were used in our results. The range of the [(confidence interval
width)/{midpoint)]x100 of all constructed confidence intervals is 0.06%-16%. The
algorithm provides estimates of the average sojourn time through the network. It is
shown that the approximation gives good results for all types of networks examined.
The relative errors were within 10% (20%) of the simulation results for most the
experiments with light to moderate traffic (heavy traffic). Three types of networks
were considered: tandem, split, and merge configurations. We used Coxian-2 prob-
ability distributions to represent distributions with squared coefficients of variation
> 0.50. The Erlang-2 and Exponential distributions are special cases of the Coxian-2
distribution. The formulas that give the first three moments of the Coxian-2 dis-
tribution are presented in Appendix A. We use Marie’s formulas (Appendix A) to

approximate the revised distributions of the service times as Coxian-2 distributions.
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In all experiments the two single node approximation methods of Yao-Buzacott and
Gelenbe are used. All average relative errors (ARE) mentioned in the following
sections are absolute average relative errors. Denote by Ap-YB and Ap-G the ap-
proximation algorithm using Yao-Buzacott’s and Gelenbe’s methods, respectively.

The following notations are used in the next tables:

Ex: example number

Exp: exponential

Ex. In.: external interarrival

(Cy)i(za): service times of node ¢ have Coxian-2 distribution with scv = z2
(Eq)i: service times of node : have Erlang-2 distribution

(Ey)i: service times of node ¢ have Erlang-4 distribution

So(za): external interarrival times have Coxian-2 distribution with sev = zz
Esy: external interarrival times have Erlang-2 distribution

£y external interarrival times have Erlang-4 distribution

The scvs of the Exponential, Erlang-2, and Erlang-4 distributions are 1, 0.5, and

0.25, respectively.

5.6.1 Tandem Configurations

We present ten Examples of tandem configurations. The descriptions of the ten
systems and the average relative errors (ARE) are shown in Tables 5.1, and 5.2. The
results for Examples 1 to 10 are illustrated in Figures 5.2 to 5.11, respectively. We
observe that the algorithm gives good estimates of the average sojourn time through

the network in most cases. The results are very good for low and moderate values
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of traffic intensity. As traffic increases both Ap-YB and Ap-G seem to overestimate
simulation results. The method was also tested for systems with processes with low
scvs (Examples 5, 6). As can be seen in Figures 5.6 and 5.7, the method still gives
good results. The algorithim does not perform well in systems with high variability
in service and arrival processes and in systems with big differences in the values of
service rates of succesive nodes. These limitations are illustrated in the results of the
Examples 9, and 10. We observe that for Example 9 (Figures 5.10), the algorithm
gives poor results for even low traffic. For the system of Example 10, the results are
good for low traffic (p; < 0.30). More numerical results are presented in Appendix

D.



Table 5.1: Tandem configurations

Ex. Service times Ex. In. | Buffers ARE

Rates Distribution | Times Ap-YB | Ap-G

1 i1 = pg = 0.3 (Eq): Exp. N; =8
=12 i=1,2 | 10.8% | 18.7%

2 | p1 =025 p =02 (£); Exp. N; =2,

3 =03, 04 =025 1=11t04 t=1,3

N; =3,
1= 2,4 74% | 18.4%

3 pi = 0.3 (Ea); Exp N, =4
:=1to6 t=1to6 i=1to6| 9.6% | 12.7%

4 j = 0.13443751 (C2)1(1.5), E, N; =4
1=1,2 (F3)s i=1,2 | 11.2% | 3.9%

5 i = 0.2 (E4), Fy Ny =5
1=1,2 (E2)2 1=1,2 3.5% | 10.7%

6 j; = 0.2 (Es); By N, =5
1=1,2 1 =1,2 1=1,2 5% 6.1%
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Table 5.2: Tandem configurations

Ex. Service times Ex. In. | Buffers ARE

Rates Distribution | Times Ap-YB | Ap-G

T | g1 = 0.13443751 | (Coli(1.5) | Co(1.5) | Ny =2
po = 0.1 i =1,2 1=1,2| 6.6% |11.1%

8 | w1 =0.1086672 (Cy):(2) Cy(2) | Ni=4
e = 0.08693376 r=1,2 1=1,2 | 10.2% | 12.7%

9 pi = 0.125 (C3):(5) Ch(2) | Ni=2
r=1,2 1=1,2 e=1,21 101% | 43.5%

10 ji = 0.2 (E5); FE, N;=5
pa = 0.1 1=1,2 t=1,21 24.2% | 22.9%
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Figure 5.2: Results for a two-node tandem system
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Figure 5.3: Results for a four-node tandem system
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Figure 5.4: Results for a six-node tandem system
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Figure 5.5: Results for a two-node tandem system
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Figure 5.6: Results for a two-node tandem system
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Figure 5.7: Results for a two-node tandem system
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Figure 5.8: Results for a two-node tandem system
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Iigure 5.9: Results for a two-node tandem system
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Figure 5.10: Results for a two-node tandem system
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5.6.2 Split Configurations

We present seven Examples of split configurations. The descriptions of the seven
systems and the average relative errors (ARE) are shown in Table 5.3. The results
for Examples 11 to 17 are illustrated in Figures 5.12 to 5.18, respectively. We
observe the algorithm gives good results for most of the Examples. As can be seen
in Figures 5.12-5.18, the algorithm performs better for low and moderate traffic. It
was observed that this method does not perform well in systems with high variability
in their service and arrival processes (Example 17). This algorithm works for split
systems that consist of second level nodes that are of the same type (which results
in the equally splitting of the departure process from node 0 into n streams). Also,
we have assumed that a blocked item at node 0 is forced to wait at node 0 until one
of the second level nodes becomes not full. A more general approach would be to
assign each item to a particular second level node. Thus, the blocked item would
have to wait at node 0 until that particular second level node becomes not full.
This is another limitation of this algorithm. Only one paper (Altiok and Perros [4])
has appeared dealing with split systems consisting of more than two second level
nodes. Altiok and Perros assume that all service and external interarrival times
have exponential distributions. They also assign a second level node to each item
thus forcing a blocked item to wait at node 0 until its assigned second level node
becomes not full. Thus their split system is slightly different than ours and thus a
comparison between the two algorithms is not possible. More numerical results for

split configurations are presented in Appendix D.
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Table 5.3: Split configurations

Ex. Service times Ex. In. | Buffers ARE

Rates Distribution | Times Ap-YB | Ap-G

11 to = 0.25 (Es); Exp. N; =3
= i = 0.1 i=0,1,2 i=0,1,2 | 7.7% |13.9%

12 fo = 0.25 (F2); Exp. N; =8
(1= pig = 0.1 i=10,1,2 i=0,1,2| 6.9% | 9.8%

13 fo = 0.5 (Ey)i Exp. N; =3
i =01,2=1toh i=0tob t=0tob | 17.9% | 27.9%

14 p: = 0.2 (F2); Exp. N; =6
i=0toh i=0to5 1=0tod | 3.7% | 10.6%

15 | g =0.13443751 | (Cy)e(1.5) Ey | Ni=3
i =005, =1,2 | (Ey)ie=1,2 t=0,1,2| 7.9% | 6.9%

16 | 1o =0.13443751 | (Co)i(L5) | Cu(1.5) | Ni=4

= 0.067218755, | i=10,1,2 1 =0,1,2

1=1,2 16.5% | 27.9%

17 o = 0.125 (Co)i(5) | Cu(2) | Ni=2
= 0.0625,6 = 1,2 | i=0,1,2 i=0,1,2 | 211% | 101%
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Figure 5.12: Results for a split system with two second level nodes
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Figure 5.13: Results for a split system with two second level nodes
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Figure 5.14: Results for a split system with five second level nodes
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Figure 5.15: Results for a split system with five second level nodes
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Figure 5.17: Results for a split system with two second level nodes
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Figure 5.18: Results for a split system with two second level nodes
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5.6.3 Merge Configurations

We first present seven Examples of merge configurations. The descriptions of the

4

seven systems and the average relative errors (ARE) are shown in Table 5.4. The
results for Examples 18 to 24 are illustrated in Figures 5.19 to 5.25, respectively. As
can be seen, the algorithm gives good approximations of the average sojourn time
for most Examples. In some cases (Examples 21, 23), the average relative errors
are small for even heavy traffic. Once more, we observe that the method does not
perform well in systems with high variability in their arrival and service processes
(Example 24).

Only two papers (Altiok and Perros {4], and Lee and Pollock [34]) have ap-
peared in the literature that deal with merge configurations that consist of more than
two first level nodes. Both these papers assume exponential service and external
interarrival times. Our goal is to introduce a simple, and quick approximation algo-
rithm which can work with general distributions and give good results. Exponential
networks is only a class of problems that our algorithm can handle. Nevertheless,
the performance of our algorithim will be tested against these two other methods
in order to see how close our results are to those obtained by other more complex
methods. For this, three Examples taken from Altiok and Perros will be used.

First consider a merge system with two first level nodes. The service rates,
arrival rates, and buffer sizes are 3 = 5,00 = 3,00 = 7, My = 4, X = 2, and
Ny =4, N, = 2, Ny = 4, respectively. The estimates for the average sojourn time
through each branch are shown in Table 5.5. Ap-Y, Ap-G, AP, and LP stand for
our algorithm with Yao-Buzacott’s method, our algorithm with Gelenbe’s method,

Altiok and Perros method, and Lee and Pollock method, respectively. We see that
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our algorithm gives results that are not too far from the ones obtained by the other
two methods, even though our method is simpler and faster to implement and in
addition able to handle more than exponential distributions.

Next we consider a merge system with four first level nodes. The service rates,
arrival rates, and buffer sizes are g1 = 4,12 = 5,3 = 6,04 = T, 0 = 20, A =
2,0 =3, A3 =4, =5, and Ny = Ny = N3 = Ny = 3, Ng = 5, respectively. The
results are shown in Table 5.6. We see that our algorithm gives results that are
very close to the results of the other two methods.

The third merge system consists of four first level nodes. The service rates,
arrival rates, and buffer sizes ave gy = p3 = 3,20 = py = 2,00 = 8, Ay = A3 =
2, y = Ay = 1, and Ny = Ny = N3 = Ny = Ny = 5, respectively. The results are
illustrated in Table 5.7. We observe that our algorithin gives better estimates for

branches 2 and 4 than the other two methods.
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Table 5.4: Merge configurations

Fx. Service times Ex. In. | DBuffers ARE
Rates Distribution | Times Ap-YB | Ap-G
18 o = 0.3 (Es); Exp. N; =17
;o =0.1,1=1,2,3 t=0to3 :=0to3 | 7.6% | 12.3%
19 po = 0.5 (Es); Exp. N; =35
i =01,2=1tod| ¢=0to4 i=0tod{ 12.2% | 10.6%
20 fto = 0.4 (C2)o(1.5), E, N;=3
i =02,0=1,2 | (Ey);1=1,2 :=0,1,2| 74% | 6.2%
21 o = 0.22 (C2)i(1.5) | Ca(1.5) | N;=6
e = 0.13443751, 1=0,1,2 t=10,1,2
1=1,2 3.2% 10%
22 o = 0.35 (Ch)i(1.5) | Cy(1.5) ] N; =2
pi = 0.13443751, t=0to3 1 =0to3
t=1,2,3 3.9% | 4.1%
23 jo = 0.25, (C2)i(1.5) | Cx(1.5) | N; =2
pi = 0.05, t=0to4d t=0to4d
1=1to4d 2% 5.6%
24 po = 0.25 (C2):(5) C(2) N, =2
gy = 0.125 1=10,1,2 1 =0,1,2
1=1,2 78.3% | 28.9%
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Table 5.5: Average sojourn time

Average sojourn time

Branch | Ap-YB | Ap-G | AP | LP | Exact
1 0.83 0.84 | 0.87 | 0.86| 0.88
2 0.80 0.83 | 0.83 | 0.85| 0.87

Table 5.6: Average sojourn time

Average sojourn time
Branch | Ap-YB | Ap-G | AP | LP | Simulation
0.44 0.51 | 0.51 7 0.52 0.52
0.46 0.46 | 0.46 | 0.46 0.47
0.41 0.41 | 0.41 ] 0.41 0.41
0.38 0.38 | 0.38 ] 0.38 0.38
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Table 5.7: Average sojourn time

Average sojourn time

Branch | Ap-YB | Ap-G | AP | LP | Simulation
1 1.14 1.06 | 1.15 | 1.51 1.17
2 1.22 1.22 | 1.29 | 1.67 1.24
3 1.14 1.06 | 1.15 | 1.51 1.17
2 1.22 1.22 | 1.29 | 1.67 1.24
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Figure 5.19: Results for a merge system with three first level nodes
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Figure 5.20: Results for a merge system with four first level nodes
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Figure 5.21: Results for a merge system with two first level nodes
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Figure 5.22: Results for a merge system with two first level nodes
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Figure 5.24: Results for a merge system with four first level nodes

139



50 |-

40 -

Average sojourn time

10 |

0 i ] | | | 1

0 02 0.4 0.6 0.8 1 1.2
Traffic intensity at the first level nodes

Figure 5.25: Results for a merge system with two first level nodes
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5.6.4 The Effect of the Two Single Node Approximation Methods on

the Performance of the Algorithm

As has been shown through many examples the performance of the proposed al-
gorithm depends on the single node approximation method used. Let us focus on
three cases: (i) All scvs of all processes are less than 1. It was seen that for low
traffic (p1 < 0.5) the results obtained by the algorithm using the two single node
approximations are very close. However, as traffic increases the performance of the
algorithm seems to depend on which single node approximation is used. More specif-
ically, when Yao-Buzacott’s method is used, the algorithm seems to give reasonably
good results. On the other hand when Gelenbe’s method is used the algorithm
seems to overestimate the average sojourn time when compared to simulation re-
sults. Thus, we suggest the use of Yao-Buzacott’s method when all scvs are less
than 1. (ii) All scvs are < 2. In this case it was observed that in some experiments
Ap-YB performed better than Ap-G and in some experiments Ap-G gave better
results. However, the results obtained by Ap-YB and Ap-G were close to each oth-
er for low and moderate traffic. (iii) Some or all scvs are greater than 2. In this
case both Ap-YB and Ap-G do not give good results and overestimate simulation
results. Yao and Buzacott in their paper stated that their method does not give
good results in systems with high variability in their arrival and service processes.
We observed that although Ap-G overestimated simulation results it gave better

results than Ap-YDB in these cases.
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5.7 Summary

A simple, and quick approximation method for the analysis of tandem, split, and
merge configurations with general processes was presented in this Chapter. As was
stated earlier, the motivation for the development of this method is to help the ana-
lyst to deal with some of the weaknesses (i.e high computational time and computer
memory requirements, complex structure) of the existing approximation methods.
The proposed algorithm was tested for many combinations of probability distribu-
tions, buffer sizes, and queue configurations. The advantages of the algorithm can

be summarized as follows:

e The proposed method yields good estimates of the average sojourn time
through the network and the relative errors are within 10% (20%) of the sim-

ulation results for moderate (heavy) traffic.

o It is very fast. Usually the computational time required by other existing
approximation methods increases with the increase in the number of nodes in
the system. However, the size of the system does not seem to affect the speed
of our algorithm. For all examples considered, the required CPU time was less
than 0.1 seconds. The programs are written in FORTRAN 77 and were run

on Sun workstations.
o It can be used for the analysis of tandem, split, and merge systems.
e T'here are no limitations on the types of probability distributions involved.

e It is the first method to present results for split, and merge systems consisting

of more than three nodes with general stochastic processes.
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The results of this Chapter have been submitted for publication to INFOR

(Yannopoulos and Alfa [52]).
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CHAPTER 6

Discussion and Future Research

6.1 Discussion and Conclusions

In this thesis, the research has focused on the analysis of open queueing networks.
Open queueing networks are used to represent many industrial and service activities
(for example production systems). Exact analysis is only possible for small, and
simple networks. For large, and complicated systems, approximation methods are
employed. Most of the existing approximations work only for simplified versions of
the actual queueing systems. The reason is that finite buffers, general probability
distributions, and blocking make the analysis very difficult. In this thesis three
approximation methods were presented, and some of the concluding points are listed

below:

e Real life systems are combinations of tandem, split, and merge networks with
finite bufters and general probability distributions. One would expect to find
an approximation method which could be used for the analysis of any type of
real life systems. But this is not the case. Most of the existing approximations
are designed to work only for specific types of networks (for example tandem).
Furthermore, the types of systems that have been considered are simplified
networks with convenient assumptions about the nature of the traffic and

service processes. Real life problems have not been analysed yet. Thus, in
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Chapter 3, an approximation method designed to work for the analysis of
any real life problem was proposed. The proposed method transforms the
actual system into an equivalent system with no buffer capacity constraints
and with revised service times. This method was applied to the modelling of a
part of a conveyor system installed in a large manufacturing company. It was
shown that the results obtained by the approximation were good for light, and
moderate traffic. However, for heavy traffic, the method gave poor estimates

of the system performance measures.

Numerous methods have been published dealing with queues in tandem. These
methods differ in the types of tandem systems considered and in the accuracy
of their results. In todays highly competitive world, a slight improvement in
efficiency can result in significant reduction in operating costs. Thus, there is
the need for the development of new methods which are more accurate and give
more information for the system examined. The Brandwajn and Jow’ (BJ)
approximation seems to yield the most accurate results for exponential tandem
networks. In Chapter 4, BJ’” method is extended by considering solution cells
that consist of triplets instead of pairs of adjacent nodes. This new method
seems to give improved results when compared to the ones obtained by BJ’s
method. Another advantage of the proposed method is that it provides the
joint steady state probability distributions of the number of items at each node
for triplets of adjacent nodes, information that can not be obtained by other

approximation methods.

Most of the existing approximation methods are time consuming, have com-

plicated structures, and require considerable computer memory space. These
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disadvantages become obvious when these methods are involved in optimiza-
tion procedures for which execution time is very important. Also, as was
noted earlier, most of the existing methods deal only with specific networks
configurations, and probability distributions. Furthermore, results for split,
and merge systems consisting of more than three nodes with general processes
have not been reported yet. Thus in Chapter 5, an approximation algorithm
is proposed, which is simple, quick, and can be used for the analysis of tan-
dem, split, and merge configurations with general processes. As was shown in
Chapter 5, the results for most of the experiments are reasonably good. This
is the first time that results for split, and merge configurations with more than

three nodes and with general processes are reported.

6.2 Future Research

The three approximation methods presented in this thesis can be extended to

give improved results and or to include more types of networks. More specifically:

e As was discussed in Chapter 3, the performance of the approximation
method developed for real life systems, depends on the performance of sub-
approximations (i.e GEM, single-node approximations) that were used as
components of the method. It is expected that by including improved
sub-approximations as components of the method, the whole approximation
method will give better results. Another possible future development, would

be the modification of the method to give good results for heavy traffic.
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e [Further improvement of the approximation method of Chapter 4 is difficult.
This method could be possibly improved by considering cells that consist of
four adjacent nodes instead of three. This could lead to improved results, but it
would also lead to excessive computational time requirements. This is because,
at each step of each iteration, a system of four nodes could have to be solved.
However, a possible extension of this method, could be the development of an
approximation for split, and merge systems. A three node solution approach
could be easily used (for example for a merge system, a three node cell could

consist of two first level nodes and the second level node).

e The approximation method presented in Chapter 5 could be modified: i) to
give improved results for cases with probability distributions having large val-
ues of squared coeflicients of variation (sev > 2) ii) to give improved results
for cases with heavy traffic iii) to give improved results in cases where there is
a big difference in the service rates of successive nodes iv) in order to be used
in the analysis of a wider variety of queueing networks (for example arbitrary
queue configurations) v) to be used in the analysis of multi-server systems and

closed networks.
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APPENDIX A

Erlang-k, Hyperexponential-k, and Coxian-k Distributions

The Erlang-k (E:) probability distribution can be viewed as the sum of k ex-
ponential distributions. Figure A.1 illustrates an Erlang distribution with k stages,
with each stage being an exponential distribution with parameter ku. The density

function of the Erlang-k distribution is given by the formula:

ky(kum)k_le"k“w
(k—1)!

b(z) =

The squared coefficients of variation of all Erlang distributions are less than 1. The

squared coefficient of variation of the Exponential distribution is equal to 1.

i k

Figure A.1: A k stage Erlang distribution

A family of distributions with squared coefficients of variation greater than 1 is
the Hyperexponential-k (/) family. The Hyperexponential-k distribution can be
viewed as a parallel arrangement of k stages each having an exponential distribution

(Figure A.2). The density function of the H} distribution is given by the formula:

ba) = arpa ™% + o+ aipse ™ 4 L+ ap et
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Figure A.2: A k stage Hyperexponential distribution

The Coxian-k distribution (C}) consists of k exponential stages with parameters
P1, -y fip. AN item receives service at the ith stage and then with probability ¢; re-
ceives a new service at the (¢4 1)th stage. The Coxian-2 distribution is illustrated in
Figure A.3. An item first receives service at the first stage and then with probability

p receives service at the second stage.

Figure A.3: The Coxian-2 distribution



The first three moments my,my,ms of the Cy distribution are as follows (Yao

and Buzacott [55]):

1 2
my = — + —
1o f2
2 2
ma = 2 4 Pl +2#2)
Hi Hafty

and
my = 6/p3 + 6p(pd + gz + 23)/ (13 13)
The mean () and variance (V') of the C; distribution are given as:

1
o=t
H1 f2

and V = my — m? which can be written as:

1 1
V=—=+p2-p)

2
1% 13
The squared coefficient of variation ¢? of the Cy is given below:

2 1+ p(2—p)pd

(2 + ppa)?
and
2 _ 14 p(2 — p)r?
(+p)?
where
potn
2

Marie’s approximation
To approximate a general distribution (when only the mean and scv are known)

by a Coxian-2 distribution, Marie [36] proposed the following formulas:
p=2u, p=05/ck, py=pmp
where g and ¢? are the mean and scv of the general distribution.
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APPENDIX B

The Multivariable Newton Method

Let us suppose that we want to solve the following system of simultaneous

nonlinear equations (see Yakowitz and Szidarovszky [49]):

filze,on2,) =0, (1=1,2,...,n)

Let us introduce the Jacobian matrix J(x), the (Z,7)th element of which is
defined to be
P
Jij(X) = 'é;;ﬂ(il]l,:l?z, ciey IL‘R)

Define J* = J(x*)) to be the Jacobian matrix of (fi(x), ..., fu(x)), evaluated at

the kth iteration estimate x*), and introduce the vector

i e -

Fu ()

Then according to the multivariable Newton method we have:
(k1) S (K) _ (J(k))—lf(k)

and

— —f®)

g(k)(x(kH) — X(k))

which is solved by Gauss elimination methods,



APPENDIX C

The Single Node Approximation methods of Yao-Buzacott

and Gelenbe

The two single node approximation methods of Yao-Buzacott and Gelenbe are
presented. The formulas are taken from Springer and Makens [46]. Denote by
k, X, c2, p and ¢? the buffer size (including the one in service), arrival rate, scv of the

arrival process, service rate, and scv of the service process respectively. Define

p=Ap

B=\—yu
a = Ae? + pc?

v =2f8]a

The method of Yao and Buzacott

The approximation of the probability po of the system being empty is given as:

(1=p)(2+1)
=A@ et (@ ra-ay P71
Po =
1 —
1+62=+1_|_ 4(k—1) (P - 1)
241 (241)(cE4cE)

The approximation of the probability p; the system is full is given as:

_ ot I(e + 1)
B c2+1

Pk
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The approximation of the mean number I, of customers in the system is given as:

2ppo(2~1%) 2 (k=L ~3)

(p—1){c2+1) + (p—l)(cé+]) + ])];I(C (JO # l);

2h{k—1)+h(E +2)2+1) .
TRV D) (A tI+2) (p=1)

The method of Gelenbe

The approximation of the probability pg is given below:

Po =

1 —
e (P =1

The approximation of py is given as:

e = pp@e’f(k“‘i}

The approximation of L; is given as:

pop(L—3)+mi(h—1 %)

otk (p# 1)

[ &2
Feo
o~
ey
I
—
—
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APPENDIX D

Additional Numerical Results

Additional numerical results for the simple and quick approximation algorithm,

presented in Chapter 5, are displayed in this appendix.

D.1 Tandem Configurations

We present eleven more Examples for tandem configurations. The descriptions
of these systems are shown in Tables D.1 and D.2. The results for Examples 1 to

11 are llustrated in IMigures D.1 to D.11.



Table D.1: Tandem configurations

Ex. Service times Ex. In. | Buffers ARE

Rates Distribution | Times Ap-YB | Ap-G

1 f1 = piz = 0.3 (£5); Exp. N; =3
i=1,2 i=1,2 | 12.8% | 12.7%

2 i = 0.2 (F2); Exp. N, =5
i=1to4 i=1to4 i=1tod| 91% | 13.1%

3 i = 0.2 (Fa)1, Exp. N, =4
1=1,2 (C2)2(1.5) i=1,2 6.3% | 11.1%

4 pi = 0.2 (E2)1, Fs Ny=4
1=1,2 (Cy)2(1.5) 1=1,2 9.6% 10%

5 | pi = 0.13443751 | (Cy)(1.5), Exp. N; =4
t=1,2 (E2)2 1=1,2 4% 5.6%

6 | g =0.13443751 | (Co):(1.5) | Ca(1.5) | N;=T
pr = 0.1 :=1,2 1=1,2 10.6% | 11.4%

1

6




Table D.2: Tandem configurations

Ex. Service times Ex. In. Buffers ARE

Rates Distribution | Times Ap-YB | Ap-G

7| pe= 013443751 | (Co)i(1.5) | Ca(1.5) Ny =2
e=1,3, =01 ¢=1,2,3 i=1,3,N, =4 | 84% |24.3%

8 | pe = 0.13443751 (C2):(1.5) 72(1.5) N; =2
1 =1to6 1=11t06 1=1to6 10% 12.1%

9 | = 013443751 | (C2)1(1.5) | Ca(1.5) N, =4
1=1,2 (F2)s 1 =1,2 10.5% | 8.5%

10 i = 0.2 (B, C,(1.5) N; =4
r=1,2 (C2)2(1.5) 1=1,2 11.7% | 13.6%

11 pi = 0.125 (Cs):(5) Uy (2) Ny=2
1=1,2,3 1 =1,2,3 t=1,2,3 80% | 47.1%
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Figure D.1: Results for a two-node tandem system
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Table D.3: Split configurations

Fix. Service times Ex. In. | Buffers ARE

Rates Distribution Times Ap-YB | Ap-G

12 fo = 0.2 (E2); Exp. N, =3
f1 = jip = 0.1 1=0,1,2 i=0,1,2| 7.5% |241%

13 | po = 0.13443751 (C3)o(1.5) Exp. N; =3
pi = 0.05,2 = 1,2 ()i =1,2 t=0,1,2 3% 9.1%

14 to = 0.3 (E2)o Exp. N;=3
i =0.125,2 =1,2 | (Cy);(1.5),1 = 1,2 i=0,1,2 | 21.1% | 20%

15 o = 0.3 (F2)o By N; =3
p = 01250 =1,2 | (C9);(1.5),¢ = 1,2 :=0,1,2 | 24.9% | 18.4%

D.2 Split Configurations

We present eight more Examples for split configurations. The descriptions of
these systems are shown in Tables D.3 and D.4 . The results for Examples 12 to

19 are illustrated in Figures D.12 to D.19.
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Table D.4: Split configurations

Ix. Service times Ex. In. | Bulfers ARE
Rates Distribution Times Ap-YB | Ap-G
16 to = 0.45 (Fy); Exp. N; =3
pi=0.1,i=11t04 i=0to4 i=0to4 | 10.6% | 2%
17 1 po = 0.13443751 (C3):(1.5) Cy(1.5) ] N;=2
pi = 0.055,2 = 1,2 t=10,1,2 1=0,1,2 | 18.6% | 35.6%
18 | o = 0.13443751 (C3)o(1.5) Cx(1.3) | N;=3
i =0.05,2=1,2 (Es)iyt=1,2 :=0,1,2 | 81% | 14.5%
19 fo = 0.3 (£22)o Cy(t5) | N;=3
pi = 0.125,2 = 1,2 | (C2)i(1.5),e =1,2 t=0,1,2 1 13.6% | 27.1%
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Figure D.15: Results for a split system with two second level nodes
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Figure D.16: Results for a split system with four second level nodes

90 T ] T I T
80 Sim -6— —
Ap-YB —+--
70 - Ap-G -EF- .- -
60 |- ]

50 -

30 -

Average sojourn time

20 -
10 |- -
0 | I i i 1

0 0.2 0.4 0.6 0.3 1
Traffic intensity at the first level node

Figure D.17: Results for a split system with two second level nodes
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Figure D.19: Results for a split system with two second level nodes
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D.3 Merge Configurations

We present ten more Examples for merge configurations. The descriptions of
these systems are shown in Tables D.5 and D.6 . The results for Examples 20 to

29 are illustrated in Figures D.20 to D.29.
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Table D.5: Merge configurations

Ex. Service times IEx. In. | DBuffers ARE
Rates Distribution | Times Ap-YB | Ap-G
20 po = 0.3 (Ea); Exp. N;=3
i = 0.12 1=10,1,2 :=10,1,2
2 = 0.1 10.1% | 9.5%
21 jo = 0.6 (F2); Exp. N; =5
1 =037 =1,2 :=0,1,2 e=10,1,2 | 9.7% | 8.5%
29 jo = 0.5 (£2)i Exp. No =7
i =0.2,2=1,2,3 1 =0to3 N; =3,
i=1,2,3 | 13.9% | 23.6%
23 | po=04,5y =0.1 (£2); Exp. No=5
fo = 0.15, pt3 = 0.2 t=0to3 N; =2,
i=1t03 | 9.1% |21.9%
24 po = 0.4 (C2)o(1.5), Exp. N; =3
pi=020=1,2 | (Ey)i=1,2 :=10,1,2 | 6.9% 5%
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Table D.6: Merge configurations

Ex. Service times Ex. In. | Buffers ARE
Rates Distribution | Times Ap-YB | Ap-G
25 | po = 0.26887502 (F2)a Exp. N; =3
pi = 0.13443751 | (C4):(1.5), v=0,1,2
1=1,2 1=1,2 7.8% | 2.7%
26 | po = 0.26887502 (E2)o E, N; =3
pi = 0.13443751 | (Cy);(1.5), 1=0,1,2
1=1,2 1=1,2 21.1% | 5%
27 po = 0.16 (C2):(1.5) | Cx(1.5) | Ny =2
pi = 0.05, t=0to4 t=0to4
1=1to4 9.1% | 4.9%
28 jto = 0.4 (Ca)o(1.5) | Co(1.5) | N;=3
i = 0.2 (E2):, t=10,1,2
1 =1,2 1=1,2 15.4% 5%
29 | po = 0.26887502 (Es)o Co(15) | Ny=3
pi = 0.13443751 | (C):(1.5), 1 =10,1,2
1=1,2 t=1,2 41% | 5.4%
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Figure D.20: Results for a merge system with two first level nodes
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Figure D.21: Results for a merge system with two first level nodes
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Figure D.22: Results for a merge system with three first level nodes
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Figure D.23: Results for a merge system with three first level nodes
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Figure D.24: Results for a merge system with two first level nodes
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Figure D.25: Results for a merge system with two first level nodes
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Figure D.26: Results for a merge system with two first level nodes
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Figure D.27: Results for a merge system with four first level nodes
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Figure D.28: Results for a merge system with two first level nodes
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