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Abstract

Abstract

Overhead transmission lines are a vital component in electrical power networks. Overvolt-

age transients that originate in transmission lines due to disturbances such as lightning or

switching can reach other components in a power system and create electrical insulation

breakdown and equipment failure if countermeasures are not sufficiently taken. Therefore,

accurate electromagnetic transient (EMT) modelling of the transmission line network is an

essential requirement in designing and analyzing a power system.

The increasing demand for electrical power and limited availability of land has caused

overhead power transmission lines to be constructed in close proximity to each other. These

close encounters such as nonparallel lines in close proximity, ultra-high voltage (UHV) lines

crossing above lower voltage lines, communication lines or buried pipelines, and disconti-

nuities such as lines undergoing sharp bends are generally nonuniform in nature. Several

researchers have shown that the transient behaviour of transmission lines with such nonuni-

formities is far from what is predicted using conventional transmission line models that as-

sume a uniform cross-sectional structure. Although three dimensional full-wave techniques

can be used to accurately analyze these non-uniform structures, they are often associated

with high computational costs and typically require iterative methods to obtain solutions.

This makes them hardly suitable for circuit-type time-domain simulations.
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This research is focused on developing computationally efficient and EMT-simulator

compatible time-domain models to analyze the transient behavior of nonuniform transmission

problems involving nonparallel conductors. Transient models for both overhead and buried

nonuniform structures have been derived and successfully implemented on an EMT simulator

(PSCAD/EMTDC). Higher computational efficiency has been achieved by developing closed-

form mathematical models which can be solved using lesser number of computations than

full-wave models as well as by using parallel computing techniques. Results have been

compared with those obtained using full-wave solvers and field measurement obtained by

other researchers available in the literature.
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Chapter 1

Introduction

1.1 Background and Motivation

Overhead transmission lines serve as the primary method for transmitting electrical energy

over large distances. Overvoltage transients may originate in transmission lines due to dis-

turbances such as lightning or switching and reach other components in a power system [1–3].

Consequently, electrical insulation breakdown and equipment failure may occur if counter-

measures are not sufficiently taken. Therefore, accurate electromagnetic transient (EMT)

modelling of transmission lines is an essential requirement in designing and analysing power

systems.

With the expansion of power networks and due to spacial constraints, transmission

lines that come into close proximity of each other have become an inevitable occurrence.

Furthermore, lines of higher operating voltages are added to power networks often shar-

ing same transmission corridors with other lower voltage lines [4, 5]. This has resulted in

non-uniformities such as non-parallel lines in close proximity, ultra high voltage (UHV)
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1.2 Problem Definition and Conventional Solutions

lines crossing above lower voltage lines or communication lines, lines crossing above buried

pipelines and lines undergoing sharp bends to be increasingly prevalent in transmission line

networks [6–8]. During these close encounters over-voltage transients on one line have the

possibility to create induced interference on other nearby lines [9–11]. Induced power fre-

quency voltage on high voltage (HV) lines caused by UHV lines crossing above has also

become a growing concern with regard to safety of maintenance workers [12–14]. In the case

of pipelines, this arises the danger of electric shock while induced currents also may affect

corrosion protection mechanisms in the pipeline [6, 15].

1.2 Problem Definition and Conventional Solutions

Conventional transmission line components in electromagnetic transient (EMT) simulators,

which are used to analyze the transient behavior of power networks are based on multi-

conductor transmission line (MTL) theory under the assumption of transverse electromag-

netic (TEM) mode of propagation [16–18]. Frequency dependent ground losses are typically

incorporated into these models using Carson-Pollaczek formula [19,20]. However, these con-

ditions are only applicable to infinitely long uniform transmission lines, which is typically not

fulfilled in physical implementation [16]. Method of moments with surface impedance oper-

ator (MoM-SO) [21] based models have been incorporated into EMT simulators to simulate

non-TEM mode wave propagation in transmission lines in [22,23]. However, since MOM-SO

is based on the circuit theory it cannot be used for finite-length or nonuniform conduc-

tors [24]. In addition, conventional terminal-based uniform transmission line models used

in EMT simulators are not capable of modelling non-uniform soil parameters, line sag and

proximity effects. Therefore, there is a need to incorporate the effects of non-uniformities of
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1.3 Research Objectives and Contributions

finite length transmission lines in EMT simulators in-order to accurately model the transient

behavior of current transmission networks [25, 26].

FDTD algorithms descretize the structure into a finite number of space segments and

calculate the voltage and current of each space segment at each time-step field-to-line cou-

pling [16, 27, 28]. Therefore, modelling transmission lines with non-uniform line parame-

ters [29] and non-uniform external field excitation [27] is straightforward in FDTD algo-

rithms. A disadvantage in FDTD models compared to conventional terminal based models

used for uniform lines is that they require more computations per time-step. Therefore, a

study on efficient parallel computing algorithms suitable for FDTD models will be beneficial

for analysing non-uniform lines.

1.3 Research Objectives and Contributions

1.3.1 Objectives

Objectives of this research are

• To develop a method to simulate non-uniform fields acting upon multi-conductor power

transmission line structures consisting of both overhead and buried conductors in an

EMT simulator.

• To analyze the behaviour of non-uniform transmission line structures during fast power

system transients such as switching and lightning with the presence of other power

system components.

• To develop efficient parallel computing methods suitable for FDTD models which are

used to solve nonuniform transmission line problems.
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1.3 Research Objectives and Contributions

1.3.2 Contributions

• A novel analytical formula for the impedance of non-parallel and bent overhead con-

ductors above frequency-dependent finitely-conducting ground.

• A novel analytical formula for the mutual impedance between non-parallel overhead

and buried conductos in the presence of frequency-dependent finitely-conducting ground.

• A dispersive (frequency-dependent) non-uniform transmission line model, namely dis-

persive scattered field transmission line (DSFTL) model which is suitable for EMT-type

simulators to model multi-conductor nonuniform transmission lines.

• Computationally efficient parallel algorithms for Modified FDTD (MFDTD) based

transmission line models. Parallel implementations using both conventional central

processing units (CPU) as well as graphical processing units (GPU) have been devel-

oped which would be equally beneficial for the analysis of non-uniform lines as well as

uniform lines under non-uniform field-to-line coupling.

Contributions of this work are illustrated graphically in Fig. 1.1.
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1.3 Research Objectives and Contributions

Frequency independent, multi-conductor, non-uniform T-line model 
 

Frequency dependent, multi-conductor, non-uniform T-line model

Overhead Structures

Closed-form electromagnetic formulation 

Time domain implementation with  
MFDTD (with freq. dep. impedance) 

Implementation in EMT simulator 

Inclusion of external field coupling  

Buried and mixed structures 

Closed-form electromagnetic formulation 

Time domain implementation with new 
 MFDTD (with freq. dep. impedance and 

 admittance 

Parallel Computing for MFDTD

CPU based using MPI 

GPU based using CUDA 

Fig. 1.1: A graphical illustration of the contributions of this thesis.
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ground. Closed-form expressions were derived for the per unit length (PUL) impedance
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allel Frequency-Dependent Overhead Multiconductor Transmission Lines Above Lossy

Ground,” IEEE Transactions on Power Delivery (Early Access), 2021.

In this paper, a dispersive, frequency-dependent, nonuniform multiconductor trans-

mission line model based on electromagnetic scattering theory was proposed. A novel

analytical formulation was proposed for PUL parameters of nonparallel overhead lines.

The proposed model was also implemented of a electromagnetic transient simulator

(PSCAD/EMTDC).

5. M. Gunawardana and B. Kordi, “Modelling Transient Response of Nonuniform

Transmission Lines Due to Nearby Lightning Strikes,” 35th International Conference

on Lightning Protection, Virtual Conference, 2021

In this paper a nonuniform lossless transmission line model with external field coupling

generated by a nearby lightning channel was used to analyze the effect of such a strike

on the transient behaviour of two crossing conductors.

• This paper was recognized with the “Young Scientist Award” at the 35th Inter-

national Conference on Lightning Protection, 2021.

6. A. Ng, M. Gunawardana and B. Kordi, “Simulation of Transmission Line Bend

Using a Non-Uniform Transmission Line Model Based on Scattering Theory,” IEEE

Power & Energy Society General Meeting (PESGM), Virtual Conference, 2020

This paper proposed a time-domain model for multi-conductor transmission lines with

a bend nonuniformity. A real world scenario of two 90° transmission line bends in close

proximity to Riel converter station, Winnipeg, Manitoba, Canada was analysed under

lightning transients.
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1.5 Thesis Outline

This thesis is divided in to 7 chapters as defined below:

Chapter 1: Introduction

This chapter includes background information, problem definition and existing solutions,

motivation, objectives, and contributions.

Chapter 2: Literature Review

This chpater provides an overview of classical uniform MTL models in the presence of finitely

conducting ground and their limitations in modelling non-uniform field coupling, currently

available methods in modelling non-uniform structures and their adaptability in EMT mod-

elling.

Chapter 3: Time-Domain Modelling of Nonuniform Overhead Lines

In this chapter a closed-form transmission line model, namely the DSFTL model, based on

electromagnetic scattering theory is proposed for a lossy, frequency-dependent, nonuniform

wire structure over finitely-conducting ground. Implementation of the proposed model in an

EMT simulator is also discussed.

Chapter 4: External Field Coupling to Nonuniform Overhead Lines

In this chapter the DSFTL model is modified to accommodate the external field coupling

generated a by nearby lightning channel and used to analyze the effect of such a strike

on the transient behaviour of two crossing conductors. A case study is also performed to

investigate the transient behaviour of an overhead wire above lossy ground with and without

the presence of a nearby nonparallel wire.

Chapter 5: Nonparallel Overhead and Buried Conductors

This chapter extends the DSFTL model to include the field coupling between nonparallel

overhead and buried conductors using existing coupling methods. A formulation for the
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mutual coupling between overhead and buried conductors in the infinite integral format

is first obtained using the Hertzian vector for the field coupling between two media. The

resulting formulation is then simplified to a closed-form expression to facilitate efficient

computation. A case study is also performed on induced voltages in buried conductors

during direct lightning strikes to the overhead line.

Chapter 6: Parallel Computing Methods for Finite-Difference Time-Domain

This chapter proposes parallel algorithms to increase the computational efficiency of the

DSFTL model based on multi-core CPU and GPU architectures. Accuracy and performance

of each algorithm are analyzed and discussed.

Chapter 7: Conclusions and Future Work

This chapter provides the conclusion of the thesis drawn from the results and suggested

extensions.
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Chapter 2

Literature Review

Classical Telegrapher’s equations used to model multi-conductor transmission lines are given

in the frequency domain by [16]

∂

∂z
V (z, jω) +Z(jω)I(z, jω) = 0 (2.1a)

and

∂

∂z
I(z, jω) + Y (jω)V (z, jω) = 0 (2.1b)

where, V and I are the voltage and current vectors at any location z while Z and Y are

the per-unit-length (PUL) impedance and admittance matrices. For frequency independent

lossless lines (i.e. when Z = jωL and Y = jωC where L and C are PUL inductance

and capacitance matrices) (2.1) has an analytical solution in the time-domain [16]. Based

on this solution a circuit model, namely Bergeron’s model has been developed which is

commonly used in EMT simulators [17, 18] to represent multi-conductor transmission lines.

Beregeron’s model for a single conductor transmission line is shown in Fig. 2.1 where, m
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ik,m(t)

ik(t− τ)

Z0 +
1
4
Rvk(t)

im,k(t)

im(t− τ)

Z0 +
1
4
R vm(t)

Fig. 2.1: Bergeron’s model for a lossy single-conductor transmission line.

and k refer to the two ends, and Z0 =
√

L/C to the characteristic impedance of the line.

Also, conductor losses are generally added to these models using a lumped resistance R.

In order to model multi-conductor transmission lines, the system of equations in (2.1) is

first decoupled using similarity transformations [16] and individual circuit models for each

decoupled mode is solved simultaneously to calculate mode voltages and currents. The mode

voltages and currents are then converted back into phase voltages and currents. In order

to model frequency-dependent transmission lines the ground return impedance is typically

included using Carson’s formula [19]. When the PUL parameters are frequency-dependent

the multiplication between frequency-dependent terms in the frequency-domain convert into

convolutions in the time-domain. This convolution can be performed efficiently using re-

cursive calculations by fitting the propagation constant and the characteristic admittance

parameters into a rational function [30–32]. Most EMT solvers use the universal line model

(ULM) [30] for uniform transmission lines derived using this principle [17, 18].

In these models the terminal voltage and current at one end of the line at a particular

time (t) can be computed using the terminal voltage and current of the other end of the

line and thus are referred to as two-port models [16]. It is evident that two port models are
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2.1 Modelling Non-Uniform Transmission Line Structures

derived on the basis that the structure in-between the two ends has uniform PUL parameters.

Therefore they are incapable of simulating any of the nonuniform structures mentioned in

Section 1 whose cross-section is not constant over their span.

2.1 Modelling Non-Uniform Transmission Line Struc-

tures

A transmission line approach can be developed for non-uniform structures in the frequency

domain as [16]

d

dz
V (z, jω) +Z(z, jω)I(z, jω) = 0 (2.2a)

and

d

dz
I(z, jω) + Y (z, jω)V (z, jω) = 0. (2.2b)

Solving nonconstant-coefficient ordinary differential equations as these is considered to be

very difficult and a common way of handling such cases is to divide the structure into

cascaded uniform sections [16]. Such models have been developed for non-parallel conductors

in [33,34]. However, segmenting the inclined wire is known to change its length and affect its

traveling time if not addressed as a forced delay [33]. Also, since these models are formulated

assuming the currents are parallel at every cross section, they are valid for only small angles

of inclination [34]. Formulas for the mutual impedance between nonparallel overhead and

buried conductors have been obtained in [35]. However, the formula derived in [35] contains

an integral, which does not have an analytical solution. Therefore a numerical integration

algorithm has been suggested.

On the other hand, full-wave models have the capability of modelling nonuniform struc-
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2.1 Modelling Non-Uniform Transmission Line Structures

tures accurately. These models represent the structure to be solved using Maxwell’s equa-

tions [36] which are more electromagnetically detailed than transmission line theory. How-

ever these models are often associated with high computational costs and typically requires

iterative methods to obtain solutions [26, 37, 38]. This makes them not very suitable for

circuit-based time-domain simulations. Efforts in combining method of moments (MoM)

Thin-wire scattering equations are a simplified version of Maxwell’s equations which

define the electric field (referred to as the scattered electric field) generated by a current

flowing through a thin-wire (a wire whose cross-sectional dimensions are much smaller than

the minimum wavelength of interest). The scattered electric field produced by a thin-wire of

length ℓ placed along the z axis in free-space can be expressed in terms of vector and scalar

potentials as [39],

Es = −jωA−∇Φ (2.3)

with

A(r) =
µ

4π

∫ ℓ

0

I(z ′)âzg (r, r
′) dz ′

and,

Φ(r) =
1

4πε

∫ ℓ

0

ρ(z ′)g (r, r ′) dz ′

where z ′ is the length variable along the axis of wire, r = xâx + yây + zâz is the position

vector of the observation point and r ′ is the position vector of the source. I(z ′) and ρ(z ′)

are the current and charge density along the wire. g (r, r ′) is the scalar Green’s function

given by [39]

g (r, r ′) =
e−jβ|r−r ′|

|r − r ′| (2.4)
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Observation	point

𝒓′ 𝑑𝑧′

𝐼 𝑧!𝒓

Origin

|𝒓 !
−
𝒓|

Fig. 2.2: Illustration of the space variable (R) in the Green’s function under thin-wire
approximation.

where β = ω
√
µ0ε0 is the phase constant. The space variable |r−r ′| in the Green’s function

is illustrated graphically in Fig. 2.2. In order to avoid singularity in the Green’s function

observation points (r) are always selected to be on the wire surface or further. Scattering

equations are not uniform in space as Telegrapher’s equations, which makes them applicable

for more general cases that involve non-parallel currents. They are also simpler and less

detailed than Maxwell’s equations which makes them easier to solve compared to full-wave

models.

Tkachenko et al. have used thin-wire scattering equations to model single-conductor

transmission lines of finite length and single-conductor bent lines above perfectly conduct-

ing (PEC) ground in the frequency-domain in [40] and [41] respectively. In these models,

transmission-line-like equations have been obtained based on the assumption that the scat-

tered electric field lies only on the transverse plane to the conductor which can be written

as,

âz ·Es = 0 (2.5)

where âz the unit vector in z direction (direction of propagation), and Es is the scattered
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2.1 Modelling Non-Uniform Transmission Line Structures

electric field. Transmission-line-like equations for a finite length wire of length ℓ has then

been obtained as [40]

dV (z)

dz
+ jω

µ

4π

∫ ℓ

0

g (z, z ′) I(z ′)dz ′ = Ee
z(h, z) (2.6a)

d

dz

∫ ℓ

0

g (z, z ′) I(z ′)dz ′ + jω4πεV (z) = 0. (2.6b)

In (2.6), Ee
z(h, z) is the incident electric field at the height of the wire h. When conductors

are above PEC ground Green’s function can be obtained using image theory by replacing

the ground with an image conductor placed at a depth equal to the height of the original

conductor. Green’s function for this case is given by [39]

g(z, z ′) =

(

e−jβRs

Rs

− e−jβRi

Ri

)

(2.7)

where Rs and Ri are the distances to an observation point z from the current element

and the image current element at a source point z ′, respectively. Since the purpose of the

research in [40] has been on analyzing field coupling at high frequencies, (2.6) has not been

simplified from their original form. Since, the integral terms in (2.6) do not have a closed-

form analytical solution, an iterative method based on the perturbation theory has been

used to arrive at solutions in the frequency-domain.

In [29], an EMT-compatible simulation model for lossless, crossing single-conductor (i.e.

nonuniform) overhead transmission lines of finite length has been proposed based on electro-

magnetic scattering theory. This model has been later extended to a lossless multiconductor

structure over PEC ground in [42]. In both [29, 42], conductors and ground have been

assumed to be lossless. The initial mathematical modelling has been developed using elec-
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tromagnetic scattering equations. For a case of two single-conductor lines (say i and j)

crossing each other at an angle of α, the vector and scalar potentials of the scattered electric

field acting upon line i can be written as

Azi(zi) =
µ

4π

∫ ℓi

0

g (zi, z
′
i ) Ii(z

′
i )dz

′
i + cosα

µ

4π

∫ ℓj

0

g (zi, zj, α) Ij(zj)dzj (2.8a)

and,

Φ(zi) =
1

4πε

∫ ℓi

0

g (zi, z
′
i ) ρi(z

′
i )dz

′
i +

1

4πε

∫ ℓj

0

g (zi, zj, α) ρj(zj)dzj. (2.8b)

In (2.8) ℓi and ℓj are the lengths of conductors i and j. Ii and Ij are the currents and ρi

and ρj are the electric charge densities at a field point on the surface of the wires i and

j, respectively. Then they have been simplified into a closed-form transmission-line-like

form considering the geometrical characteristics and frequencies of interest in typical power

transmission lines. For the case of power transmission lines where the maximum cross-

sectional dimension of the structure h is very small compared to the minimum wavelength

of interest (i.e., h ≪ λ), the exponential terms in (2.7) can be approximated as unity [39]

which simplifies the integral terms in (3.2) as [39]

∫

g(z, z ′)I(z ′)dz ′ =

∫ (

e−jβRs

Rs

− e−jβRi

Ri

)

I(z ′)dz ′

≃
∫ (

1

Rs

− 1

Ri

)

dz ′I(z).

(2.9)

This simplification enables to derive closed form transmission line equations in the form

of [29]

d

dz







V (z, jω)

I(z, jω)






= −jω







L(z) 0

0 C(z)













V (z, jω)

I(z, jω)






(2.10)
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where the space-dependent PUL inductance L and capacitance C matrices are given by

L(z) =
µ

4π







ξii(z) cosαξij(z)

cosαξji(z) ξjj(z)






(2.11a)

C(z) =
4πε

ξii(z)ξjj(z)− ξij(z)ξji(z)







ξjj(z) −ξij(z)

−ξji(z) ξii(z)






(2.11b)

The functions ξii(z) and ξij(z) used for the calculation of L(z) and C(z) in (2.11) are

determined using [29]

ξii(z) = sinh−1

(

ℓi − z

ai

)

− sinh−1

(−z

ai

)

− sinh−1

(

ℓi − z

2hi

)

+ sinh−1

(−z

2hi

)

(2.12a)

ξij(z) = sinh−1





ℓj − cj + (ci − z) cosα
√

((ci − z) sin(α))2 + (hi − hj)
2





− sinh−1





−cj + (ci − z) cosα
√

((ci − z) sin(α))2 + (hi − hj)
2





− sinh−1





ℓj − cj + (ci − z) cosα
√

((ci − z) sin(α))2 + (hi + hj)
2





+ sinh−1





−cj + (ci − z) cosα
√

((ci − z) sin(α))2 + (hi + hj)
2





(2.12b)

Since lines are assumed to be frequency-independent, (2.10) can be conveniently converted

into the time-domain as
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∂

∂z







V (z, t)

I(z, t)






= − ∂

∂t







L(z) 0

0 C(z)













V (z, t)

I(z, t)






(2.13)

and solved using a single dimensional FDTD (1D-FDTD) algorithm [16].

2.2 Inclusion of Frequency-Dependent Losses

A real power transmission line inherits both frequency-dependent conductor and ground

losses. The well-known formula for the frequency-dependent PUL conductor loss which

accounts for the skin effect is given by [43],

Zcond =
ρcond ×m

2πa
coth (0.777×m× a) +

0.356ρcond
πa2

(2.14a)

where,

m =

√

jωµo

ρcond
(2.14b)

ρcond is the resistivity of the conductor, µo is the permittivity of free space and a is the

radius of the conductor. The self-impedance of a conductor consists of Zcond and the ground

return impedance. Since the clearance between ground and other conductors is much larger

than conductor radii in overhead lines, the current distribution inside a wire is not expected

to change due to proximity effect. Therefore, eq. (2.14) can be assumed to be valid for

non-uniform structures discussed in Section 1 as well.
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2.2.1 Overhead wires above lossy ground

When the ground is lossy (finitely conducting) the transmission line structure is consid-

ered as a lossy half-space problem [19]. In a finitely conducting ground the electromagnetic

fields generated by the conductor penetrates into the ground with a penetration depth that

depends on the frequency. This in other words means that the PUL impedance and ad-

mittance (referred to as the earth return impedance and admittance) of the wire structure

is now frequency-dependent. For overhead lines the frequency dependency of the earth re-

turn admittance does not play a significant role compared to the impedance and therefore

is neglected [25]. The ground return impedance of uniform (i.e. parallel to each other and

have constant radii) overhead wires placed at (xi, yi) and (xj, yj) on the transverse plane is

calculated using the well-known Carson’s formula [19] given by

Zij =
jωµ0

2π



ln

(

Dij

dij

)

+ 2

∫ ∞

0

e−α cos(θij) cos (α sin (θij))

α +
√

α2 + jr2ij

dα



 (2.15a)

where,

Dij =
√

(xi − xj)2 + (yi + yj)2

dij =
√

(xi − xj)2 + (yi − yj)2

θij = tan−1

(

xi − xj

yi + yj

)

rij = Dij
√
ωµ0σg

σg is the conductivity of ground. For self impedance consider i = j and dij = ai, where ai is

the radius of conductor i. The integral term in (2.15) does not have a analytical solution and

therefore has to be calculated numerically. Deri et al. developed a method to approximate
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this integral for low frequencies using so-called complex image theory where the finitely

conducting ground is replaced with a PEC ground at a complex depth as shown in Fig.

2.3 [44]. With this representation a simplified closed-form formula is obtained as [44]

Zij =
jωµ0

2π
ln

(

D ′
ij

dij

)

(2.16a)

where,

D ′
ij =

√

(yi + yj + 2p)2 + (xi − xj)2

and

p =
1

√

jωµ0σg

.

Complex image theory provides a simple graphical approach for modelling conductors

over finitely conducting ground. As it was discussed in Section 2.1, when using scattering

equations, Green’s functions for nonuniform conductors above PEC ground is obtained using

image theory. Similarly, complex image theory stands as a suitable candidate for obtaining

Green’s functions of nonuniform conductors above finitely conducting ground. In [45–47]

Ametani et al. have calculated frequency-dependent ground return impedance and admit-

tance for lines of finite length and demonstrated the difference with Carson’s ground return

impedance. In [34], the per-unit-length (PUL) parameters for lossy and nonuniform mul-

ticonductor transmission lines have been formulated assuming the currents are parallel at

every cross section, and therefore, the model is valid for only small angles of inclination.

Further research regarding PUL parameters of non-uniform frequency-dependent lines has

been performed and presented in this thesis.
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PEC Ground

(c)(a) (b)

Fig. 2.3: Illustration of complex image theory: (a) Overhead lines above lossy ground. (b)
Lossy ground replaced with a PEC ground at a complex depth. (c) PEC ground replaced
with image conductors.

2.2.2 Buried wires in lossy ground

When a transmission line is built crossing a buried pipeline transients and power-frequency

voltages can be induced on the pipeline [14]. In contrast to overhead conductors, buried

conductors creates a more complex electromagnetic problem since the wires are now placed

inside the lossy half-space, The mutual earth return impedance of two uniform conductors

buried in lossy ground at (xi, di) and (xj, dj) on the transverse plane (di and dj are burial

epths) is calculated using Pollaczek’s formula [20] given by

Zburied,ij =
jωµ0

2π

[

K0(kr)−K0(kR) + 2

∫ ∞

0

e−D
√
λ2+k2 cos (λx)

λ+
√
λ2 + k2

dλ

]

(2.17a)
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where,

x = |xi − xj|

D = (di + dj)

r =
√

(xi − xj)2 + (di − dj)2

R =
√

(xi − xj)2 + (di + dj)2

k =
√

jωµ0σg

K0 denotes the modified Bessel function of zeroth order [20]. Similar to Carson’s impedance,

Pollaczek’s impedance formula is ill-conditioned (does not possess an analytical solution) and

has to be calculated numerically. Closed-form approximations of Pollaczek’s impedance for

bare and shielded conductors have been derived by many researchers as listed in [28]. Once

the ground return impedance of buried wires is calculated, the ground return admittance is

obtained using [28]

Yburied =
γ2
g

Zburied

(2.18)

where γg =
√

jωµ0(σg + jωεg) is the propagation constant in the ground. Unlike in overhead

wires the admittance of underground wires tend to be highly frequency-dependent [25] and

has to be considered when formulating the transmission line problem.

Image models for buried wires and their validity are discussed in [48–50]. In contrast

to complex image theory for overhead wires where the earth half-space is replaced with air

and image conductors are placed at complex a depth, here the air half-space is replaced

with earth and image conductors are seen to be placed equidistant to the earth-air interface.

Fields generated from the image are then multiplied by a suitable reflection coefficient called
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the Fresnel reflection coefficient [48]. The Green’s function will now read as [49]

g(z, z ′) =

(

e−jβRs

Rs

− Γref
0

e−jβRi

Ri

)

(2.19a)

where Γref
0 is the Fresnel reflection coefficient due to earth-to-air interface given by [48]

Γref
0 =

εeff − ε0
εeff + ε0

. (2.19b)

In (2.19b), εeff is the complex permittivity of earth given by

εeff = εg +
σg

jω
. (2.20)

It should be noted that the complex image depth for overhead wires is in fact a different

representation of the air-to-earth Fresnel reflection coefficient [51]. An iterative solution for

the electromagnetic field coupling to buried wires has been suggested in [52].

In the case of buried pipelines nearby overhead transmission lines, conductors are present

in both air and earth of the half-wave problem. Pollaczek developed expressions for self

impedance of buried conductors and the mutual impedance between parallel overhead and

buried conductors in the form of infinite integrals [53]. The infinite integral format of the

mutual impedance between an overhead at a height h and buried wire at a depth d placed

parallel to each other along the z direction with a horizontal gap of a is given by [54]

Zob =
jωµ0

2π

∫ ∞

0

2e−λhe−d
√

λ2−k2e cos(λa)

λ+
√

λ2 − k2
e

dλ (2.21a)
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2.2 Inclusion of Frequency-Dependent Losses

where,

k2
e = −jωµ0σg. (2.21b)

Pollaczek’s integral does not have an analytical solution and is highly unstable during

numerical integration [53, 55]. Therefore, several researchers have developed closed-form

approximate formulas for Pollaczek’s formula among which, Lucca’s formulation in [54] is

considered as the most accurate [55]. Lucca’s formula provides a simple closed-form expres-

sion for the mutual coupling between parallel overhead and buried conductors as

jωµ0

2π

[

ln
R̄12

R12

+
2H̄12

3γ3

H̄2
12 − 3a2

R̄6
12

]

(2.22a)

where,

γ = jke (2.22b)

H12 = h+ d (2.22c)

H̄12 = h+ d+
2

γ
(2.22d)

R12 =
√

H2
12 + a2 (2.22e)

and

R̄12 =
√

H̄2
12 + a2 (2.22f)

based on the approximation that for typical frequencies and ground conductivity values in

power lines,

e−d
√

λ2−k2e ≈ e−dλ. (2.23)

Lucca’s method of simplification in [54] appears to be easily adaptable for nonparallel con-
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2.3 Time-Domain Implementation of Non-Uniform Transmission Lines

ductors as well. Mutual impedance formulation for two inclined conductors placed in the

same medium is given in [56] while the same for two nonparallel conductors placed in two

media is given in [57]. The formulations in both [56] and [57] are in the form of infinite

integrals with no analytical solutions.

2.3 Time-Domain Implementation of Non-Uniform Trans-

mission Lines

Time-domain implementation of frequency-independent transmission line is straight forward

as discussed in Section 2.1. However, when an equation with frequency-dependent PUL

parameters like (2.2) is converted into the time-domain, multiplications between frequency

dependent terms get converted into convolutions. Convolution terms can be handled using

recursive calculations by fitting the frequency dependent parameters into a rational function

[31,32].

A time-domain model for multiconductor frequency-independent non-uniform lines utiliz-

ing finite-element-method (FEM) has been introduced in [58]. However, this model involves

a numerical integration at each time step. A frequency-dependent non-uniform model based

on an iterative and adaptive perturbation technique is proposed in [59]. One dimensional

finite-difference methods (1D FDTD), where the wave propagation is considered only along

the conductor, have been used to model lossy nonuniform transmission lines in [60–62].

In these models losses are assumed to be frequency-independent and the nonuniformity is

conductors being exponentially and linearly tapered or twisted which is not the case with

overhead lines. However, this suggests that finite-difference methods are a suitable can-

didate for solving nonuniform structures in general. The FDTD algorithms discretize the
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2.3 Time-Domain Implementation of Non-Uniform Transmission Lines

transmission line structure into a finite number of space segments and calculate the voltage

and current of each space segment at every time step. The time step ∆t and space step ∆x

should be chosen such that

∆x

∆t
≥ v (2.24)

where v is the speed of propagation, in order to ensure stability.

An approach for modelling uniform frequency-dependent single-conductor overhead trans-

mission lines using a modified finite-difference time-domain (MFDTD) algorithm within a

circuit simulator has been developed in [27]. In [27] the frequency-dependent PUL impedance

matrix is first fitted into a rational function using a sum of first-order poles with correspond-

ing residues, a proportional term, and a constant term [32] as.

Z (jω) = R + jωL+ Z ′ (jω) (2.25a)

where

Z ′ (jω) =
M
∑

k=1

ak
jω − αk

. (2.25b)

In (2.25) ak is the residue corresponding to each pole αk. Converting transmission line

equations with fitted PUL impedance into time-domain gives

∂

∂z
V (z, t) = −RI(z, t)− L

∂

∂t
I(z, t)− Z ′(t) ∗ I(z, t) (2.26a)

and

∂

∂z
I(z, t) = −C

∂

∂t
V (z, t). (2.26b)

The MFDTD algorithm then solves (2.26) while calculating the convolution term in (2.26a)
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Fig. 2.4: Illustration of the calculation of voltage and current of space segment k at time-
step n in the MFDTD algorithm in [27].

using current (I) values of three past time-steps (i.e. using recursive convolutions). FDTD

algorithms calculate voltages and currents at interleaved nodes along the span of the line [16]

as shown in Fig. 2.4. In order to facilitate the implementation on a circuit simulator,

MFDTD algorithm calculates both current and voltage at the terminal nodes. The updating

equation for the current at a space-segment k and a time iteration n is given by [27]

I
n+ 1

2

k+ 1

2

= Z−1
2

[

Z1I
n− 1

2

k+ 1

2

+∆z(ξ + χ)I
n− 3

2

k+ 1

2

− (V n
k+1 − V n

k+1)−∆zΨn
]

(2.27a)
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where

Z1 = ∆z

(

L

∆t
− R

2
+

Γ

2
− 2ξ − χ

)

(2.27b)

Z2 = ∆z

(

L

∆t
+

R

2
− Γ

2
− ξ

)

(2.27c)

ξ =
M
∑

i=1

ai
αi

[

1

αi∆t

(

1 +
1

αi∆t
− eαi∆t

αi∆t

)]

(2.27d)

χ =
M
∑

i=1

ai
αi

[

1

αi∆t

(

eαi∆t − 1
)

]

(2.27e)

Γ =
M
∑

i=1

ai
αi

(2.27f)

Ψn =
M
∑

i=1

ai
αi

Ψn
i (2.27g)

Ψn
i

eαi∆t

αi∆t

(

1 +
1

αi∆t
− eαi∆t

αi∆t

)

(

2I
n− 3

2

k+ 1

2

− I
n+ 5

2

k+ 1

2

− I
n− 1

2

k+ 1

2

)

+
eαi∆t

αi∆t

(

eαi∆t − 1
)

(

I
n− 3

2

k+ 1

2

− I
n− 5

2

k+ 1

2

)

+ eαi(z)∆tΨn−1
i . (2.27h)

In (2.27), ∆z is the space step and ∆t is the time step which has to be selected based on

the stability criteria.: The voltage updating equation is given by [27]

V n+1
k = Y −1

2

[

Y1V
n
k − (I

n+ 1

2

k+ 1

2

− I
n+ 1

2

k− 1

2

)
]

(2.28a)

where

Y1 = ∆z

(

C

∆t
− G

2

)

(2.28b)
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Y2 = ∆z

(

C

∆t
+

G

2

)

. (2.28c)

Currents at the terminal nodes are obtained using [27]

(2.29)In+1
0 = −In0 − Y1V

n
0 + Y2V

n+1
0 + 2In+

1

2

(2.30)In+1
NS

= −InNS
− Y1V

n
NS

+ Y2V
n+1
NS

+ 2In+
1

2 .

The calculation process of the MFDTD algorithm is graphically illustrated in Fig. 2.4.

Theethayi et al. have used a similar FDTD algorithm to solve the transmission line

problem of a single buried conductor in [28]. Since both impedance and admittance are

frequency dependent in buried conductors, both current and voltage calculations involve

recursive convolutions. The model in [28] has not been intended for circuit simulators and

therefore, only the voltage is calculated at the terminal nodes. In addition to modelling

non-uniform wires MFDTD algorithm has the potential to model non-uniform field-to-line

coupling such as from nearby lightning strikes [27]. Current transmission line models in EMT

simulators do not have the capability to incorporate external field coupling to transmission

lines [17, 18].

2.4 External Field Coupling to Non-Uniform Trans-

mission Lines

Lightning is a major factor contributing to overvoltage transients in overhead power lines

which ultimately lead to power outages [63,64]. A lightning incidence can be a direct strike

to a phase conductor or a nearby strike to the earth’s surface [65]. Direct lightning strikes

can be modelled as a current injection [66,67]. On the other hand, the effect due to a nearby
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Fig. 2.5: Radiated electromagnetic fields by an infinitesimal current element of a monopole
antenna.

lightning strike to ground has to be modelled as an external nonuniform field coupling to the

transmission line [68]. In [68], the lightning return stroke channel is modelled as a vertical

monopole antenna that radiates electromagnetic fields. For a monopole antenna above PEC

ground as shown in Fig. 2.5, the radiated electric and magnetic fields at a location (r, z, φ)
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2.4 External Field Coupling to Non-Uniform Transmission Lines

and a time t can be calculated as [69]

EPEC
r (r, z, φ, t) =

1

4πε0

∫ H

0

[

3r(z − z ′)

R5

∫ t

0

i(z ′, τ −R/c)dτ

+
3r(z − z ′)

cR4
i(z ′, τ −R/c)

+
r(z − z ′)

c2R3

∂i(z ′, τ −R/c)

∂t

]

dz ′

(2.31a)

EPEC
z (r, z, φ, t) =

1

4πε0

∫ H

0

[

2(z − z ′)2 − r2

R5

∫ t

0

i(z ′, τ −R/c)dτ

+
2(z − z ′)2 − r2

cR4
i(z ′, τ −R/c)

− r2

c2R3

∂i(z ′, τ −R/c)

∂t

]

dz ′

(2.31b)

and

HPEC
φ (r, z, φ, t) =

1

4π

∫ H

0

[

r

R3
i(z ′, τ −R/c) +

r

cR2

∂i(z ′, τ −R/c)

∂t

]

dz ′ (2.31c)

where c is the speed of light in free space, ε0 is the permittivity of free space, and R =
√

r2 + (z − z ′)2. The three terms in the electric field equations are generally referred to as

the static, induction and radiation components respectively [70].

There are several ways to model the current distribution (i(z ′, t)) along the lightning

channel among which the so-called ‘engineering models’ are the simplest. They have also been

successful in predicting the features of lightning electromagnetic fields in close agreement with

experimental data [71,72]. Two well known engineering models are the modified transmission

line linear (MTLL) and modified transmission line exponential (MTLE) where i(z ′, t) is
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calculated respectively using

i(z ′, t) = i(0, t− z ′

v
)

(

1− z ′

H

)

(2.32a)

and

i(z ′, t) = i(0, t− z ′

v
)ez

′/λ. (2.32b)

In (2.32), v is the propagation speed of the current pulse along the lightning channel while

λ represents the attenuation of the current amplitude as it travels along the channel. The

channel base current (i(0, t)) is generally calculated using Heidler formulation given by [73]

i(0, t) =
I0
η

(t/τ1)
n

1 + (t/τ1)n
e−t/τ2 . (2.33)

Values for I0, η, τ1, τ2 and n for different current shapes can be found in [74]. Thus calculated

lightning fields that propagate through the air and reach the cross section of the line are

then considered as an external excitation acting upon the transmission line. Three popular

formulations used to incorporate external nonuniform field coupling to transmission lines are

Taylor et al.’s formulation [75], Agrawal et al.’s formulation [76] and Rachidi’s formulation

[77]. These three formulations will be referred to as Taylor model, Agrawal model and

Rachidi model herein. Transmission line equations with external field coupling according to

Taylor model in the frequency domain is given by [75]

dV (z)

dz
+ZI(z) = −jω

∫ h

0

Binc
y (z, x)dx. (2.34a)
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Fig. 2.6: Equivalent circuit of the Taylor model [75] for external field coupling.

and

dI(z)

dz
+ Y V (z) = −jωC

∫ h

0

Einc
x (z, x)dx. (2.34b)

where Einc and Binc are the vectors containing the incident electric and magnetic field

respectively on each line. The equivalent circuit of the Taylor model for a single conductor

transmission line along with terminal connections is shown in Fig. 2.6.

Similarly, according to Agrawal model external fields are incorporated in to transmission

line equations as [76]

d

dz
V s(z) +ZI(z) = Einc

z (z, h)−Einc
z (z, 0) (2.35a)

and

d

dz
I(z) + Y V s(z) = 0 (2.35b)

where V s is the scattered voltage vector [76]. When transmission line equations are repre-

sented with scattered voltage the terminal equations should be adjusted accordingly which
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Fig. 2.7: Equivalent circuit of the Agrawal model [76] for external field coupling.

will be discussed in a later section. The equivalent circuit of the Agrawal model is shown in

Fig. 2.7.

Transmission line equations with external field coupling included according to Rachidi

model are [77]

dV (z)

dz
+ZIs(z) = 0 (2.36a)

and

dI(z)

dz
+ Y V (z) = − C

µ0ε0

∫ h

0

[

∂Binc
x (z, x)

∂z
− ∂Binc

z (z, x)

∂y

]

dx. (2.36b)

where Is is the scattered current vector. The equivalent circuit of the Rachidi model is

shown in Fig. 2.8.

It is seen that while the Taylor model requires both external electric and magnetic field to

incorporate the field-to-line coupling, Agrawal and Rachidi models require only the electric

field and the magnetic field respectively. While theoretically all three methods are equivalent,

Taylor model provides a simpler connection with the external circuit compared to the other
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Fig. 2.8: Equivalent circuit of the Rachidi model [77] for external field coupling.

two methods. Agrawal and Rachidi models are beneficial when either one of electric field or

magnetic field measurement data respectively, is available at a particular transmission line

which needs to be analysed using transmission line theory.

Time-domain models to simulate lightning induced voltages on lossy uniform transmis-

sion lines have been introduced in [78, 79]. EMT simulator compatible models to analyze

transients on uniform transmission lines due to nearby lightning strikes have been proposed

in [27,80]. In these works, Cooray-Rubinstien (CR) approximation [70] has been the widely

used method to calculate the horizontal electric field distribution over lossy ground due to

lightning required for the implementation of Agrawal model. In the CR method the the

horizontal field at ground level is obtained from the magnetic field using the expression for

the surface impedance as [81]

Er(r, z = 0, φ, jω) ≈ −HPEC
φ (r, z = 0, φ, jω)

√
µ0

√

εg + σg/jω
(2.37)

where εg and σg are the permittivity and conductivity of ground. The horizontal electric

field at a given height is then obtained by adding the horizontal electric field calculated at
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that height assuming the ground to be a perfect conductor to this surface field as [81]

Er(r, z = h, φ, jω) ≈ Er(r, z = 0, φ, jω) + EPEC
r (r, z = h, φ, jω). (2.38)

To improve the accuracy of the CR formulation, a simple modification is suggested in [70].

When calculating EPEC
r in (2.38) different weights are given to the static, induction and

radiation components as

EPEC
r = EPEC

r,static + EPEC
r,induction + 0.4EPEC

r,radiation. (2.39)

Time domain fields can be calculated using the inverse Fourier transform [70]. Vertical

electric fields hardly change in the case of lossy ground compared to PEC ground [78].

Therefore, the formulation given in (2.31b) for the vertical electric field above PEC ground

can be used for the case of lossy ground as well.

2.5 Parallel Implementation of FDTD Algorithms

Distributed transmission line models (such as FDTD) are capable of determining the volt-

age and current distribution along the line and also are a suitable candidate for modelling

nonuniform lines as discussed previously. However, a drawback of FDTD models compared

to terminal-based models is that they require more computations per time-step. Therefore,

an implementation of the FDTD models using parallel computation will be beneficial. A

noteworthy observation on FDTD algorithms based on Fig. 2.4 is that there are no inter-

dependencies within the calculations of a single time-step (i.e within a single row in Fig.

2.4). All data required for the calculation of a voltage or current at a particular space seg-
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ment, at a particular time-step, are past values of the same segment and the two adjacent

segments (see Fig. 2.4). This makes FDTD algorithms easily parallelizable.

The two popular methods of parallel computing currently available are using conventional

multi-core central processing units (CPU) and using graphical processing units (GPU) [82].

Existing CPUs can pack only a small number of processor cores on the same die in order

to operate within power and thermal constraints [82]. Therefore, the level of parallelism

attainable using CPUs is limited to a small number. GPUs, on the other hand, are designed

for rendering and other graphics applications [82]. Therefore, they have the capability of ex-

ecuting thousands of threads simultaneously. That being said, a GPU is a separate hardware

devices that is initialized and executed by a program running on a CPU [83]. Therefore,

there is an additional hardware cost associated with GPUs compared to multi-core CPUs.

High level programming tools are available for parallel programming of CPUs as well as

GPUs [84]. The popular standard for CPU parallelization is the message passing interface

(MPI) which can be used with programming languages C/C++, Python and Fortran [85].

Various implementations of MPI are available such as OpenMPI, MPICH, MS-MPI, etc. [85].

An MPI based three dimensional parallel FDTD algorithm has been developed in [86] to

simulate frequency-independent transmission lines in a cavity excited by an ambient wave.

A popular tool for GPU programming is “compute unified device architecture” (CUDA)

developed by the GPU manufacturer NVIDIA [84] that is employed in this work. A CUDA-

based 2D and 3D FDTD or finite element method (FEM) simulation of electromagnetic

problems using parallel computing are proposed in [87,88]. A massive-thread electromagnetic

transient (EMT) program (MT-EMTP) based on GPU programming with massive-thread

parallel modules for linear passive elements, the universal line model (terminal based T-line

model), and the universal machine model has already been developed in CUDA [89].
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Efficiency of parallel algorithms are generally determined using ‘speed up factor’ (S(p))

which is calculated using [90]

S(p) =
Time for serial execution

Time for parallel execution.
(2.40)

A linear speed up (i.e. program executes p times faster by using p processors) might be

achievable if the executed program is 100% parallelizable. However, in reality any program

will have a portion that has to be executed serially. For example declaration of variables,

initialization of processors to be used for parallel operation, etc, has to be executed in

series. In addition, depending on the amount of data that has to be transferred among

processors the parallel algorithm will introduce a ‘parallel overhead’ to the execution time.

Parallel overhead refers to the additional instructions that has to be executed than in a serial

algorithm to make the process parallel. Therefore, in practical implementation any program

will have a speed up less than a linear speedup.

This is explained in Amdhal’s law which states that if a portion of a program, f , can be

improved by a factor p (p can be considered as the number of processors if the portion f is

divided equally among all processors), and the other portion cannot be improved and has to

be executed serially, then then the maximum parallel processing speedup (Sm(p)) achievable

would be [90]

Sm(p) =
1

(1− f) + f
p

. (2.41)

An illustration of Amdhal’s law is given in Fig. 2.9. As seen form Fig. 2.9 as the parallelism

of the portion f increases the speedup drops. This is because the execution time required

for the portion f will reduce when p increases while the time required for the serial portion

(1− f) will remain the same. Therefore, as p increases the contribution from the execution
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Fig. 2.9: Illustration of speedup limit according to Amdhal’s law as a function of number
of parallel processors (p) for different values of parallel portions (f).

time of the serial portion to the total execution time will increase. When the execution

time of the parallel portion reaches a small value compared to that of the serial portion the

speedup will not be improved by further increasing the number of processors.
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Chapter 3

Time-Domain Modelling of

Nonuniform Overhead Lines

This chapter proposes a closed-form transmission line model, namely the DSFTL model,

based on electromagnetic scattering theory for a lossy, frequency-dependent, nonuniform

wire structure over finitely-conducting ground. For clarity the derivation is performed on

two single-conductor lines crossing each other. Extension of the single-conductor formulation

to multi-conductor cases and other nonuniform structures containing non-parallel wires is

then explained. Time-domain implementation of the DSFTL model has been achieved using

a modified FDTD algorithm [27] originally introduced for uniform lines which handles the

frequency dependency using recursive convolution. The developed model has been imple-

mented in EMTDC/PSCAD (an EMT simulator). The results obtained for transients using

the DSFTL model have been compared with those calculated using a commercial full-wave

electromagnetic solver. Power frequency results have been compared with field measurements

of induced voltages at a power transmission line crossing obtained by other researchers [12].
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A case study has also been performed to analyze the effects of typical power line faults and

breaker operations on other lines which cross paths with the faulty line.

3.1 Dispersive Scattered Field Transmission Line Model

for Nonparallel Overhead Wires

Let’s consider two single-conductor transmission lines crossing each other at an angle of

α over a finitely-conducting ground, as shown in Fig. 3.1a. The constitutive parameters

of the ground are µ0, εg, and σg, where µ0, εg and σg are the permeability of free space,

permittivity, and conductivity of the ground, respectively. Electromagnetic field distribution

of such structures is commonly determined using complex image theory [51] as shown in Fig.

3.1b where

p =
1

√

jωµ0 (σg + jωεg)
. (3.1)

The scattered electric field Es generated by this structure as explained in [25] can be

expressed in the frequency-domain as

Es = −jωA−∇Φ (3.2a)

where, A and Φ are the magnetic vector potential and electric scalar potential, respectively.

For a field point on the conductor i in the geometry shown in Fig. 3.1

Azi(zi, jω) =
µ0

4π

∫ ℓi

0

g (zi, z
′
i ) Ii(z

′
i , jω)dz

′
i + cosα

µ0

4π

∫ ℓj

0

g (zi, zj) Ij(zj, jω)dzj (3.2b)
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Fig. 3.1: Single-conductor transmission lines crossing each other above (a) finitely-
conducting ground and (b) complex image representation of conductors above ground.

- 42 -



3.1 Dispersive Scattered Field Transmission Line Model

and,

Φ(zi, jω) =
1

4πε0

∫ ℓi

0

g (zi, z
′
i ) ρi(z

′
i , jω)dz

′
i +

1

4πε0

∫ ℓj

0

g (zi, zj) ρj(zj, jω)dzj. (3.2c)

where α is the crossing angle, ℓi and ℓj are the lengths of the conductors, Ii and Ij are the

currents, ρi and ρj are the electric charge densities at a field point on the surface of the wires

i and j, and ω is the angular frequency, respectively. The Green’s function which defines the

distribution of the scattered field is given by [39]

g(z, z ′) =

(

e−jβRs

Rs

− e−jβRi

Ri

)

(3.3)

where Rs and Ri are the distances to an observation point z from the current element and

the image current element at a source point z ′, respectively, and β = ω
√
µ0ε0 is the phase

constant. Equation (3.2) looks similar to the scattered electric field of a wire structure

above PEC ground given in [29]. However, the Green’s functions are quite different from

the lossless case since they are now frequency dependent. In [40], it is explained that for

lossless structures (i.e., real Rs and Ri), when the maximum cross-sectional dimension of the

structure h is very small compared to the smallest wavelength of interest (i.e., h ≪ λmin),

the exponential terms in (3.3) can be approximated as unity. For finitely-conducting ground,

Ri in (3.3) is frequency-dependent and complex.

The variation of e−jβRi in the Green’s function g (zi, z
′
i ) under different ground resistivi-

ties as a function of frequency is shown in Fig. 3.2 for two heights (h = 10 and 30 m). It can

be seen that e−jβRi for a lossy ground can also be approximated as 1 upto a certain frequency

which depends on the cross-sectional dimensions and resistivity of the ground. For example,

for a 10 m high line above a ground with a resistivity of 100 Ωm this approximation is valid
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Fig. 3.2: (a) Magnitude and (b) phase of g (zi, z
′
i ) vs frequency.

up to around 100 kHz and so would be the proposed model for such a line. Also, for typical

power line frequencies since σg ≫ ωεg, the complex depth p in (3.1) can be approximated as

p ≈ 1
√

jωµ0σg

. (3.4)

Assuming the exponential terms are approximately equal to 1 and h ≪ λmin, closed-form
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expression can be obtained for the integral terms of (3.2) as

∫ ℓ

0

(

e−jβRs

Rs

− e−jβRi

Ri

)

I(z ′, jω)dz ′ =

∫ ℓ

0

(

1

Rs

− 1

Ri

)

dz ′I(z, jω)

= ξ(z, jω)I(z, jω)

(3.5)

where ξ is the analytical solution for the integral term. This result is important as it elim-

inates the need of performing a numerical integration at each time step of the upcoming

time-domain implementation. Assuming a transverse field structure and a thin-wire geome-

try, (3.2) can be rearranged into two closed-form transmission-line-like equations as explained

in [29] as

dV (zi, jω)

dzi
= −ZcI(zi, jω)−

jωµ0

4π

[

ξii(zi, jω)Ii(zi, jω) + cosαξij(zi, jω)Ij(zj, jω)

]

(3.6a)

and,

V (zi, jω) = − 1

jω4πε0

[

ξ ′
ii(zi)

dIi(zi, jω)

dzi
+ ξ ′

ij(zi)
dIj(zj, jω)

dzj

]

. (3.6b)

Closed-form expressions for the integral terms are represented using ξ in (3.6) which are

explained further in (3.7).

ξii = ln

(

ℓi +

√

(ℓi − zi)
2 + a2i − zi

)

− ln

(

√

(ℓi − zi)
2 + a2i − zi

)

− ln

(

ℓi +

√

(ℓi − zi)
2 + (2hi + 2p)2 − zi

)

+ ln

(
√

(ℓi − zi)
2 + (2hi + 2p)2 − zi

)

(3.7a)
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and,

ξij =

ln

(

ℓj+

√

[(ℓj − cj) + (zi − ci) cosα]
2 + [(zi − ci) sinα]

2 + (hi − hj)
2−cj+(zi−ci) cosα

)

−ln

(

√

[(ℓj − cj) + (zi − ci) cosα]
2 + [(zi − ci) sinα]

2 + (hi − hj)
2−cj+(zi−ci) cosα

)

+ ln

(

ℓj +

√

[ℓj − cj + (zi − ci) cosα]
2 + [(zi − ci) sinα]

2 +H2 − cj + (zi − ci) cosα

)

+ ln

(

√

[(ℓj − cj) + (zi − ci) cosα]
2 + [(zi − ci) sinα]

2 +H2 − cj + (zi − ci) cosα

)

(3.7b)

where

H = hi + hj + 2p

Zc is the conductor resistive loss including skin effect. Since capacitance is considered to

be frequency independent in overhead lines [25] and the conductance of air is negligible, ξ ′

terms in the current equation (3.6b) can be assumed to be those of a frequency-independent

line given by [29].

ξ ′
ii = sinh−1

(

ℓi − zi
ai

)

− sinh−1

(−zi
ai

)

− sinh−1

(

ℓi − zi
2hi

)

+ sinh−1

(−zi
2hi

)

(3.8a)

- 46 -



3.1 Dispersive Scattered Field Transmission Line Model

ξ ′
ij = sinh−1





ℓj − cj + (ci − zi) cosα
√

((ci − zi) sin(α))
2 + (hi − hj)

2





− sinh−1





−cj + (ci − zi) cosα
√

((ci − zi) sin(α))
2 + (hi − hj)

2





− sinh−1





ℓj − cj + (ci − zi) cosα
√

((ci − zi) sin(α))
2 + (hi + hj)

2





+ sinh−1





−cj + (ci − zi) cosα
√

((ci − zi) sin(α))
2 + (hi + hj)

2





(3.8b)

Similar equations can be derived for the other conductor (j) and the system of equations

can be rearranged into the classical transmission line format of as

d

dz







V (z, jω)

I(z, jω)






= −







0 Z(z, jω)

Y (z, jω) 0













V (z, jω)

I(z, jω)






(3.9a)

where

Z(z, jω) =













Zc +
jωµ0

4π
ξii(z, jω)

jωµ0 cos(α)
4π

ξij(z, jω)

jωµ0 cos(α)
4π

ξij(z, jω) Zc +
jωµ0

4π
ξjj(z, jω)













(3.9b)

and

Y (z, jω) = 4πε0jω













ξ ′
ii(z) ξ ′

ij(z)

ξ ′
ji(z) ξ ′

jj(z)













−1

. (3.9c)

This concept can be conveniently extended into multi-conductor lines and other nonuniform

geometries such as bends as explained in [42]. When multi-conductor lines cross each other

coupling from each individual conductor should be considered. If a transmission line i
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consisting of N conductors crosses with another line j consisting of M conductors, the

magnetic vector potential and scalar potential of a conductor in line i can be calculated

using

Azi(zi) =
µ

4π

{

N
∑

k=1

[∫ ℓi

0

g (zi, zi
′) Ik(zi

′)dzi
′
]

+ cosα
N+M
∑

k=N+1

[∫ ℓj

0

g (zi, zj, α) Ik(zj)dzj

]

}

(3.10a)

and,

Φ(zi) =
1

4πε

{

N
∑

k=1

[∫ ℓi

0

g (zi, zi
′) ρk(zi

′)dzi
′
]

+
N+M
∑

k=N+1

[∫ ℓj

0

g (zi, zj, α) ρk(zj)dzj

]

}

.

(3.10b)

Rest of the derivation in identical to the single conductor case.

3.2 Time-Domain Implementation

When (3.9) is converted into time-domain, multiplications between frequency dependent

terms get converted into convolutions. Therefore time-domain implementation is not as

straight forward as for lossless lines in [29]. A method to solve single-conductor uniform

dispersive transmission lines has been introduced in [27] and explained in Section 2.3 which

is extended to non-uniform multi-conductor structures in this work. Consider the series

impedance matrix (Z(z, jω)) of one of the space segments (z). It can be fitted into a matrix

function of the format

Z(z, jω) = R(z) + jωL(z) +Z ′(z, jω) (3.11a)
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where

Z ′(z, jω) =
M
∑

k=1

az,k

jω − αz,k

. (3.11b)

In (3.11) az,k is the residue matrix corresponding to each pole αz,k. Note that the set of

poles has to be common for all elements of az,k. In contrast to uniform MTL systems which

involves a fitted function for all space segments, a nonuniform system will require unique

fitted functions for each space segment in the FDTD algorithm. Substituting (3.9) with

fitted PUL impedance and converting it to time-domain gives

(3.12a)
∂

∂z
V (z, t) = −R(z)I(z, t)−L(z)

∂

∂t
I(z, t)−Z ′(z, t) ∗ I(z, t)

and

∂

∂z
I(z, t) = −C

∂

∂t
V (z, t). (3.12b)

Equations in (3.12) are solved using the modified finite-difference time-domain (MFDTD)

algorithm introduced in [27]. The proposed model is implemented in a commercial power

system EMT simulator (EMTDC/PSCAD) and the ability to simulate non-uniform struc-

tures along with other power system elements including non-linear elements is demonstrated

in the results section.

3.3 Implementation of DSFTL on PSCAD/EMTDC

When modelling a power network which consists of transmission lines that cross each other,

the components of the network other than the area of crossing can be modelled as in a typical

simulation using inbuilt components. To simulate the field coupling in the crossing area,

MFDTD algorithm of the DSFTL model is introduced as an external component to update

a set of dependent current sources (ISHi and ILHi) in the PSCAD model as shown in Fig.
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Fig. 3.3: Illustration of the implementation of DSFTL model on PSCAD/EMTDC.

3.3. At each time-step the MFDTD algorithm will accept voltage and current measurements

(Vsi,Vli,Isi and Ili) from the PSCAD model, solve the finite-difference problem and update

the dependent current sources. In order to avoid any false reflections at the DSFTL-EMT

interface, the PUL parameters of the bordering space segments of the DSFTL model should

be equal to those of the corresponding transmission line components of the EMT simulator.

Also, the mutual coupling between the two lines should be negligible at the bordering space

segments of the DSFTL model.

- 50 -



3.4 Results and Discussion

3.4 Results and Discussion

Results obtained using the DSFTL model for two single conductor transmission lines crossing

at an angle of α are compared against those obtained from a commercial thin-wire full-wave

solver, Numerical Electromagnetic Code (NEC4). Induced voltages at power-frequency on

an AC transmission line crossing under a UHV AC line are also compared with measurements

obtained by other researchers. A case study on the effect from power system fault currents

on nearby lines is also presented.

3.4.1 Verification of the DSFTL model using a full-wave solver

Two conductors crossing each other at a variable angle α are modelled. The dimensions of

the lines (see Fig. 3.1) are ℓ1 = ℓ2 = 10 km, c1 = c2 = 4 km, h1 = 10 m, h2 = 12 m, and

a1 = a2 = 20 mm. Ground resistivity is taken as 100 Ωm. A derivative of a Gaussian pulse

with a full-width at half maximum (FWHM) of 22 kHz as shown in Fig. 3.4 is used to excite

conductor 1 at the sending end. An excitation which does not contain a DC component is

purposely used here since the full-wave solver (NEC4) used to generate reference waveforms

doesn’t compute DC response [91]. All terminals of the transmission line structure are

connected to 100 Ω resistive loads. Since NEC4 is a frequency-domain solver, FFT-IFFT

method is used to obtain time-domain results. It is worth noting that the DSFTL method,

being inherently a time-domain method, does not have the limitation of approaches that

employ the FFT-IFFT methods.

The current waveform generated in the excited conductor is shown in Fig. 3.5 and the

current induced in the victim conductor for different crossing angles are shown in Fig. 3.6

compared with those obtained using NEC4. It can be seen that the DSFTL model has been
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Time [s]

V
s [

V
]

Fig. 3.4: Derivative of a Gaussian waveform applied on conductor i.

able to produce the same results as the full-wave technique. Current waveforms under a

lossless approximation [29] is plotted in the same figure to demonstrate the wave distortion

occurring due to frequency-dependent losses.

Figure 3.6 also suggests that when the crossing angle increases the magnitude of the

induced current on the victim conductor decreases. It is interesting to see that even at an

orthogonal crossing (i.e. α = 90◦), a current is still induced in the victim line. This is

because when the crossing angle is 90◦, even though the mutual inductive coupling in (3.9b)

becomes zero, the mutual capacitive coupling in (3.9c) still remains. Computer memory

requirement for a full-wave simulation of this geometry is a few giga-bytes (GB), whereas

the same of the DSFTL model is in the order of a few Mega-bytes (MB).

3.4.2 Verification of the DSFTL model using power frequency

measurements

In [12], field measurement data is provided for induced voltage on a 110 kV HVAC line

passing under a double circuit 1000 kV UHVAC line at a crossing angle of 60◦. Conductor
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Fig. 3.5: Current generated at the sending end in the excited conductor.

arrangments on the two lines are shown in Fig. 3.7. The two circuits of the UHVAC

line are supplying loads of 275 MW, 416 MVar and 271 MW, 21 MVar respectively. Field

measurements from [12] of the induced voltage on the victim line at the point of crossing

when its terminals are ungrounded and grounded are given in Tables 3.1 and 3.2, respectively.

The same structure is modelled using the DSFTL in PSCAD/EMTDC with similar

energization and loading. Lines are modelled up to 1 km along each direction from the

crossing to be consistent with [12]. The following parameters have to be assumed as they

are not mentioned in [12]. Conductor radius is assumed to be 20 mm [92]. Power frequency

and ground resistivity are assumed as 50 Hz and 100 Ωm based on the location where field

measurements were obtained [93]. When obtaining voltages on a grounded line, grounding

impedance is a key factor. Since no information on the value of the grounding resistance

is provided in [12], grounding resistance values in the range of 1 - 25Ω, as recommended

in [94], as well as higher values of 35 and 50Ω are used to simulate the grounded LV case.

For the MFDTD calculation in the DSFTL model a time step of 0.5µs and a corresponding

space step of 153.85 m is used.
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Fig. 3.6: Sending end current on the victim conductor for crossing angles of (a) 30◦ (b)
60◦ and (c) 90◦.

- 54 -



3.4 Results and Discussion

Table 3.1: Measurement data from [12] and simulated results using DSFTL model of
induced voltages (peak) on the ungrounded LV line when the HV line is energized with a
50 Hz voltage of 816.5 kV (peak).

Phase
Measured

Voltage (V)

Simulated

Voltage (V)
% Difference

1 17.45 17.00 2.6

2 14.91 14.04 5.8

3 12.49 11.50 7.9

Table 3.2: Measurement data from [12] and simulated results using DSFTL model of
induced voltages (peak) on the grounded LV line when the HV line is energized with a
50 Hz voltage of 816.5 kV (peak).

Phase
Measured

Voltage (V)

Simulated Voltage (V) for different Zg

1Ω 5Ω 10Ω 25Ω 35Ω 50Ω

1 3.3 1.6 2.0 2.2 2.6 2.9 3.3

2 3.1 1.5 1.8 1.9 2.2 2.3 2.6

3 3.1 1.3 1.6 1.7 1.9 2.1 2.2

Voltage waveforms at the point of crossing on the energized line and the victim line

under the grounded and ungrounded conditions are shown in Fig. 3.8, and their peak values

are presented in Tables 3.1 and 3.2, respectively. By comparing measured and simulated

voltage values given in Table 3.1, it can be seen that for the case where the LV line is

ungrounded the voltage values match closely. For the case of grounded LV line (see Table

3.2) the induced voltages are very small in magnitude (below 5 V) and are seen to be in the

same order. By aforementioned comparisons with results from full-wave techniques and field
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Fig. 3.7: Conductor arrangements of (a) 1000 kV UHVAC line and (b) 110 kV HVAC
line [12].

measurement data both the transient and power-frequency performance of DSFTL method

have been demonstrated.

3.4.3 Case study on the effect of faults on nearby lines

A case study is performed to analyze the transient behavior of the lower voltage line due to

a fault in the high voltage line simulated in Section 3.4.2. The schematic of the simulated

circuit is shown in Fig. 3.9. From an EMT simulator perspective, the simulation model

consists of three cascaded multiport networks of which the middle one is the DSFTL model

for the region of the crossing and the other two are conventional models for the rest of the

transmission line. A fault can be applied at any terminal of the multiport networks. Faults
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Fig. 3.8: Voltage waveforms at the crossing points of (a) energized 1000 kV line (b)
110 kV line with ungrounded ends and (c) 110 kV line with grounded ends obtained using
DSFTL model on PSCAD/EMTDC.
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Fig. 3.9: Schematic of double circuit 1000 kV and 110 kV transmission lines along with
locations where faults were applied.

are created at the farthest (location 1○) and closest (location 2○) nodes to the point of

crossing towards the load side on one of the circuits in the UHV AC line as shown in Fig.

3.9. However, a fault can be applied at any arbitrary location on the transmission line as

long as it is divided into cascaded multiport network sections and the fault is applied to the

terminal of the multiport network. Loads connected to the 1000 kV line is kept the same as

in Section 3.4.2 and the induced voltage in the 110 kV is analysed under both energized and

grounded conditions.

First, transient behavior of the energized 110 kV line is studied when a three phase (L-L-

L) fault occurs in one of the circuits of the 1000 kV line at the load end (location 1○ in Fig.

3.9). Voltage drop in the faulty phases is given a fall-time of 250µs in accordance with the

standard switching impulse waveform [95]. Each fault is followed by a breaker operation at

locations B1 or B2 triggered by an over-current relay to isolate the fault. Voltage waveforms

on both lines at the point of crossing are shown in Fig. 3.10. As evident from the figure, the

disturbance in the 1000 kV line does not create a significant interference in the 110 kV line.

Faults occurring at other locations shown in Fig. 3.9 produced similar results. Therefore it

can be concluded that the set clearances between lines in this case study are sufficient to

- 58 -



3.4 Results and Discussion

Time [s]

V
o

lt
ag

e 
[k

V
]

Circuit 1 - Phase A
Circuit 1 - Phase B
Circuit 1 - Phase C

(a)

Time [s]

V
o

lt
ag

e 
[k

V
]

Phase 1
Phase 2
Phase 3

(b)

Fig. 3.10: Voltage waveforms at the point of crossing on (a) energized 1000 kV line
having a 3-phase fault and (b) energized 110 kV line obtained using DSFTL model on
PSCAD/EMTDC.

avoid interference under normal operation.

Next, a situation where a fault occurs in the 1000 kV line while the 110 kV line is

grounded, simulating the line maintenance procedure, is studied. The voltage induced in

the point of crossing under different fault configurations is shown in Fig. 3.11. Before the

occurrence of a fault, the induced voltage in the 110 kV line is around 2 ∼ 3 V. However,

when a fault occurs at the load end of the energized line a transient of around 1 kV is
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generated in the grounded line. The power-frequency induced voltage which follows is also

much higher than the safe voltage for humans according to [96] which states that voltages

as low as 50 V can cause fibrillation. If a failure happens in the protection system of the

1000 kV line, this voltage will remain until the fault is cleared. When the fault happens

closer to the crossing the induced voltages are higher as shown in Fig. 3.11b. When a three-

phase fault occurs at the load end the induced voltage as shown in Fig. 3.11c is much less

than that induced during an unbalanced fault.

Magnitude of the transients in the victim line is proportional to the rate of change of

the original transients in the energized (faulty) line. Therefore, the magnitude of the initial

high-frequency transient is highly dependent on the fall-time of the voltage in the faulty

line. Results shown in Fig. 3.11 are for a fall-time of 250µs in accordance with the standard

switching waveform. Faster fall-times can produce transients with higher magnitudes in the

victim line. The magnitude of the power-frequency transient, which is induced during the

time between the occurrence of the fault and the operation of the breaker, is not expected

to change with the fall-time of the fault and is contributed mainly by the unbalance be-

tween phases in the faulty line which remains until breakers operate. This explains why the

magnitude of the transients during a L-G fault is much larger compared to that of a L-L-L

fault.

3.4.4 DSFTL for modelling bent conductors

A time-domain analysis has been performed on a three-conductor transmission line having

two orthogonal bends in close proximity as shown in Fig. 3.12. The dimensions are obtained

from [97] for a typical 230 kV line where the line clearance to ground is assumed to be 10 m,

the gap between conductors to be 3 m, and the radius of conductors to be 20 mm. The bends
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Fig. 3.11: Voltage waveforms at the crossing point of the grounded 110 kV line when the
1000 kV line undergoes a (a) L-G fault at load end (location 1○) cleared by breaker B2,
(b) L-G fault at location 2○ cleared by breaker B1, and (c) L-L-L fault at load end cleared
by breaker B2 obtained using DSFTL model incorporated in PSCAD/EMTDC.
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Fig. 3.12: A transmission line bend near Riel converter station, Winnipeg, Manitoba,
Canada.

are assumed to be 200 m apart. A standard 1.2/50µs lightning impulse chopped after 5µs

with a chopping time of 0.1µs is injected at a distance of 200 m prior to the first bend. Since

the modelled line segments are shorter than 1 km, the ground is assumed to be PEC [80].

Figure 3.13 shows the recorded sending end voltages using the SFTL model, a classical

MTL model which assumes the line has a uniform cross-section throughout its span and a

commercial full-wave solver (COMSOL multiphysics). As the figure depicts, MTL is unable

to simulate the voltage spikes which are generated due to the bend and propagate backwards

along the line while the proposed DSFTL model has been able to simulate them in close

agreement with full-wave results. It should also be mentioned that the reflections occurring

at the bend are less significant in magnitude compared to the original transient. Therefore,

classical MTL model can be considered to be providing a satisfactory representation. How-

ever, in the event of faster transients occurring in power systems, DSFTL will provide a
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better representation of the wave propagation.

3.5 Summary

This chapter proposed an approach, namely dispersive scattered field transmission line (DS-

FTL) model, to simulate nonuniformities, such as crossing, in frequency-dependent trans-

mission lines above lossy, frequency-dependent ground. The initial mathematical model was

developed using electromagnetic scattering equations under the thin-wire approximation.

Then it was simplified into a transmission-line-like form considering the geometrical charac-

teristics and frequencies of interest in typical power transmission lines. Resulting nonuniform

transmission line equations were solved using a modified FDTD algorithm. The proposed

model was successfully implemented in a power system EMT simulator and used to model a

real world scenario of two transmission lines crossing each other. The accuracy of the tran-

sient waveforms obtained using the DSFTL model were verified with those calculated using

a commercial full-wave electromagnetic solver. The comparison demonstrated that DSFTL

can correctly model the transient behavior at a transmission line crossing. The DSFTL

model was also able to regenerate power-frequency measurements of induced voltages ob-

tained by other researchers. A case study on induced transients on power lines passing under

faulty higher voltage lines was also performed with non-linear and time-dependent elements

included in the circuit. Based on these results, it is advisable to use temporary grounding

during maintenance of such structures. It can be concluded that this work demonstrates the

capabilities of DSFTL model as a suitable candidate for a nonuniform frequency-dependent

transmission line model for power system EMT simulators.
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Fig. 3.13: Sending end voltages (normalized to the excited conductor) of the (a) excited
conductor and (b) and (c) victim conductors for an excitation of a standard 1.2/50µs
lightning impulse chopped after 5µs with a chopping time of 0.1µs obtained using SFTL
model and classical MTL theory.
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Chapter 4

External Field Coupling to

Nonuniform Overhead Lines

In this chapter the DSFTL model is modified to accommodate the external field coupling

generated by a nearby lightning channel. The effect of such a strike on the transient behaviour

of two crossing conductors is analysed. Results obtained using the proposed model for

conductors above PEC ground are compared to those obtained using full-wave simulations.

In order to confirm the external field coupling in the presence of lossy gorund is modelled

accurately, the voltage induced on a uniform transmission line above lossy ground obtained

using the proposed approach is compared to data available in the literature. A case study

is performed to investigate the transient behaviour of an overhead wire above lossy ground

with and without the presence of a nearby nonparallel wire. Results indicate a nearby

transmission line can intensify transients occurring on a wire that cannot be calculated

using the conventional uniform transmission line approaches.
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Fig. 4.1: A schematic of a lightning return stroke channel nearby two transmission lines
crossing at an angle of α.

4.1 Inclusion of External Fields in Transmission Lines

Over Perfectly Conducting Ground

Transmission line equations with field-to-transmission line coupling for a non-uniform wire

structure, as shown in Fig. 4.1, are given by [16,39]

∂

∂z
V (z, t) +R(z)I(z, t) +L(z)

∂

∂t
I(z, t) = Ve(z, t) (4.1a)

∂

∂z
I(z, t) +G(z)V (z, t) +C(z)

∂

∂t
V (z, t) = Ie(z, t) (4.1b)
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where, V and I are the voltage and current vectors at any location z at time t, and R, L, G

and C are the per-unit-length (PUL) resistance, inductance, conductance, and capacitance

matrices at any location z. Vectors Ve(z, t) and Ie(z, t) are the exciting voltage and current

terms due to the electromagnetic fields generated by the lightning return stroke channel.

In [29], non-uniform transmission line equations without external field coupling are solved

using a 1D FDTD algorithm. As detailed in [29], for the FDTD algorithm to work, the

structure is assumed to be symmetrical on either sides of the crossing (i.e. ci = cj and

ℓi = ℓj) and the variable z is the common variable used for the FDTD algorithm assuming

ẑ = ẑi = ẑj. Transmission lines of different lengths can be connected to the terminals of the

non-uniform model if needed [29]. In the present work, R is assumed to be constant for all z

and frequency independent. Since conductance of air is negligible [1] (pp. 23), G is assumed

to be zero for overhead wires. Space-dependent L(z) and C(z) for crossing conductors are

given by [29].

L(z) =
µ

4π













ξii(z) cosαξij(z)

cosαξji(z) ξjj(z)













(4.2a)

C(z) =
4πε

ξii(z)ξjj(z)− ξij(z)ξji(z)













ξjj(z) −ξij(z)

−ξji(z) ξii(z)













(4.2b)

where ξ(z) were given in Section 2.1. Expressions for L(z) and C(z) are closed-from and

can be pre-calculated before execution of the FDTD algorithm. The excitation terms can be
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obtained using Taylor model [75] as

Ve(z, t) =
∂

∂t















∫ hi

0

BNi(zi, x
′
i , t)dx

′
i

∫ hj

0

BNj(zj, x
′
j, t)dx

′
j















(4.3a)

Ie(z, t) = −C(z)
∂

∂t















∫ hi

0

ET i(zi, x
′
i , t)dx

′
i

∫ hj

0

ETj(zj, x
′
j, t)dx

′
j















(4.3b)

where BNi and ET i are the normal magnetic field and transverse electric field on line i created

by the lightning return stroke channel, respectively.

It is common to assume that the incident fields created by a nearby lightning channel are

constant over the cross section of the transmission line and are equal to the value calculated

at the ground level [98]. Under this assumption, (4.3) simplifies into

Ve(z, t) =
∂

∂t













hiBNi(zi,−hi, t)

hjBNj(zj,−hj, t)













(4.4a)

and

Ie(z, t) = −C(z)
∂

∂t













hiET i(zi,−hi, t)

hjETj(zj,−hj, t)













. (4.4b)

Following the space-time discretization convention used for currents and voltages in FDTD
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algorithms given in [16], the excitation terms for a space segment k and a time step n can

be written as

V n
e,(k+ 1

2
) =







h ·Bn+ 1

2

N,(k+ 1

2
)
− h ·Bn− 1

2

N,(k+ 1

2
)

∆t






(4.5a)

I
n+ 1

2

e,k = −Ck

(

h ·En+1
T,k − h ·En

T,k

∆t

)

(4.5b)

where

h =







hi

hj






.

In (4.5), ET and BN are vectors consisting of transverse electric field and normal magnetic

field incident on each line at ground level.

Since engineering models are considered reasonably accurate, in this work, modified

transmission line linear (MTLL) model [99] is used to model the return stroke channel.

Channel base current Ib is generated using Heidler formulation [73]. Electric and magnetic

fields generated by the lightning return stroke at the cross-section of each line at a time t is

calculated using the formulation proposed in [69] and presented in Section 2.4.

4.2 Inclusion of External Fields in Transmission Lines

Over Lossy Ground

External fields can be coupled into transmission line equations according to Agrawal’s model

[76] as

∂

∂z
V s(z, jω) +Z(z, jω)I(z, jω) = Einc

z (z, jω) (4.6a)
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∂

∂z
I(z, jω) + Y (z, jω)V s(z, jω) = 0 (4.6b)

where V s is the scattered voltage vector and Einc
z is the vector containing the horizontal

electric field along each conductor given by

Einc
z (z, jω) =













E inc
zi

(zi, jω, hi)− E inc
zi

(zi, jω, 0)

E inc
zj

(zj, jω, hj)− E inc
zj

(zj, jω, 0)













. (4.7)

When using Agrawal’s model since the Telegrapher’s equations are solved using the the

scattered voltage, terminal equations are adjusted as

V s(0) = VS −ZSI(0) +

∫ h

0

Einc
x (0, jω)dz (4.8a)

and

V s(ℓ) = ZLI(ℓ) +

∫ h

0

Einc
x (ℓ, jω)dz (4.8b)

where Vs is the source voltage vector, ZS and ZL are the sending and receiving end

impedances respectively and Einc
x is the vector containing the vertical electric field. A mod-

ified finite-difference time-domain (MFDTD) algorithm has been introduced in [27] to solve

single conductor frequency dependent transmission lines by fitting the frequency-dependent

impedance to a set of poles and residues using vector fitting [32]. This method was been ex-

tended into non-parallel multiconductor transmission lines in Section 3.1 In order to include

the external fields the current updating equation of the MFDTD algorithm is modified as
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I
n+ 1

2

k+ 1

2

= Z−1
2

[

Z1I
n− 1

2

k+ 1

2

+∆z(ξ + χ)I
n− 3

2

k+ 1

2

− (V s,n
k+1 − V

s,n
k+1)−∆zΨn +∆zEinc,n

z,k+ 1

2

]

(4.9a)

where

Z1 = ∆z

(

Lk+ 1

2

∆t
−

Rk+ 1

2

2
+

Γ

2
− 2ξ − χ

)

(4.9b)

Z2 = ∆z

(

L

∆t
+

R

2
− Γ

2
− ξ

)

(4.9c)

ξ =
M
∑

i=1

az,i

αz,i

[

1

αz,i∆t

(

1 +
1

αz,i∆t
− eαz,i∆t

αz,i∆t

)]

(4.9d)

χ =
M
∑

i=1

az,i

αz,i

[

1

αz,i∆t

(

eαz,i∆t − 1
)

]

(4.9e)

χ =
M
∑

i=1

ai

αi

(4.9f)

Ψn =
M
∑

i=1

az,i

αz,i

Ψn
i (4.9g)

Ψn
i =

eαz,i∆t

αz,i∆t

(

1 +
1

αz,i∆t
− eαz,i∆t

αz,i∆t

)

(

2I
n− 3

2

k+ 1

2

− I
n+ 5

2

k+ 1

2

− I
n− 1

2

k+ 1

2

)

+
eαz,i∆t

αz,i∆t

(

eαz,i∆t − 1
)

(

I
n− 3

2

k+ 1

2

− I
n− 5

2

k+ 1

2

)

+ eαz,i∆tΨn−1
i . (4.9h)

In (4.9), az,i are the residue matrices corresponding to each pole αz,i at any location z. M

is the number of poles. For terminal equations the integral of the vertical electric field at
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z = 0 and z = ℓ is approximated as [98]

∫ h

0

Einc
x (0, jω)dz =













hiE
inc,n
xi

(xi = 0, z)

hjE
inc,n
xj

(xj = 0, z)













. (4.10)

Horizontal external electric field vector, Einc
z is calculated using the Cooray-Rubinstein

approximation [70] for lossy ground while the vertical external electric field vectors Einc
x are

calculated under the PEC ground assumption [78].

4.3 Results and Discussion

In this section the scenario shown in Fig. 4.2 where a lightning strike occurs nearby two

crossed transmission lines is modelled using the proposed method. Line heights are taken

as h1 = 10 m and h2 = 12 m. A standard lightning waveform of 1.2/50 µs with a peak

value of 20 kA is chosen as the channel base current of the lightning strike generated using

Heidler function for the first stroke of lightning with η = 0.9496, τ1 = 2.2717 µs and

τ2 = 68.526 µs [74]. Channel base current is shown in Fig. 4.3 Results obtained from the

developed model for the case of PEC ground are compared with those obtained from a full-

wave electromagnetic solver. Results obtained for a single conductor above lossy ground are

compared with those obtained by other researchers in . A case study is also performed on

the transient behaviour of the wire structure shown in Figure 4.2 above lossy ground.
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Fig. 4.3: 20 kA 1.2/50 µs base current of the lightning channel generated using Heidler
formulation for the first stroke.
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Fig. 4.4: Terminal current at the far end of the crossing on the carrier line when termina-
tions of each line are matched to its corresponding characteristic impedance.

4.3.1 Comparison with full-wave results

The wire structure shown in Fig. 4.2 is modeled over PEC ground with x0 = 1 km and

y0 = 50 m. Conductors are assumed to be lossless and terminals of line 1 and line 2

connected to resistors of 414 Ω and 425 Ω (i.e. characteristic impedance of each line )

respectively. Currents at the far end from the crossing obtained using the proposed DSFTL

method and a full-wave thin-wire electromagnetic solver are shown in Fig. 4.4 and 4.5 for

the carrier line and victim line respectively. It is seen that the results obtained using the

proposed technique agree well with full-wave results.

4.3.2 Comparison of results in the presence of frequency-dependent

ground

In order to confirm that the developed model is accurate for cases involving frequency-

dependent ground, the single conductor case presented in [78] is modelled. Here, a lightning
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Fig. 4.5: Terminal current at the far end of the crossing on the victim line for crossing
angles of (b) 30°, (c) 60°, and (d) 90°, when terminations of each line are matched to its
corresponding characteristic impedance.
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Fig. 4.6: Voltage induced at a terminal of a 1 km long line due to a lightning strike at
a lateral distance of 50 m from its midpoint obtained using the proposed DSFTL model
compared with results found in [78].

strike occurs at a lateral distance of 50 m from the midpoint of a 1 km long transmission

line. The line height is 8 m and the ground conductivity is 0.01 S/m. Lightning channel

parameters are set as specified in [78]. Line ends are matched to its characteristic impedance.

The voltage obtained at a terminal of the line using the proposed DSFTL model is shown

along with the same obtained by the authors of [78] in Figure 4.6. It is seen that results

obtained using proposed model agrees with those provided in [78].

4.3.3 Lightning near crossing conductors above perfectly conduct-

ing ground

In this section, a scenario where a lightning strike occurs in the vicinity of two transmission

lines crossing each other as shown in Fig. 4.2 is analyzed with x0 = 50 m and y0 = 50 m.

Lightning strike is assumed to be closer to one line referred to as the carrier line here in. The

second line, referred to as the victim line herein, experiences electromagnetic fields generated
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Fig. 4.7: Voltage at the point of crossing on the carrier line when terminations of each
line are matched to its corresponding characteristic impedance.

by the lightning channel which travel directly through air as well as along the carrier line.

For comparison the second line is also modelled individually. A time-step of 0.1 µs and a

space-step of 36 m is chosen such that the stability criterion [27] of FDTD calculations is

satisfied.

First, the structure is analyzed when the ends of each transmission line are terminated

using resistive loads equal to their respective characteristic impedance. This ensures that

no reflections occur at the line ends. Fig. 4.7 shows the voltage at the point of crossing on

the carrier line and fig. 4.8 shows the same on the victim line for different crossing angles

(α). Induced voltage due to the direct coupling through air can be seen from the single line

case (in the absence of the carrier line) plotted using a dotted line. The combined effect

of coupling through air and the carrier line is shown by the solid line. When the induced

transient travels along the carrier line it is seen to create additional spikes in the induced

voltage of the victim line. The spike due to the coupling between the two lines coincides

with the peak of the induced voltage due to direct coupling to create a larger voltage than
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Fig. 4.8: Voltage at the point of crossing on the victim line for crossing angles of (a)
30°, (b) 60°, and (c) 90°, when terminations of each line are matched to its corresponding
characteristic impedance.
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Fig. 4.9: Voltage at the point of crossing on the carrier line when the carrier line has
matched ends and the victim line is grounded.

expected. Another observation is that the magnitude of the induced voltage on the victim

line due to direct coupling is decreasing as the crossing angle increases. This is expected

because when α in Fig. 4.2 increases, the shortest distance from the lightning channel to the

victim line increases which weakens the direct coupling. However, the voltage spike induced

by the transient travelling along the carrier line drops at a lower rate than the direct coupling.

Next the victim line is grounded while the carrier line is terminated with matched loads

similar to a condition during maintenance. Fig. 4.9 and Fig. 4.10 shows the induced voltages

on the career line and victim line respectively.

It is clearly visible that the voltage spikes induced by the transient on the carrier line

increases the total voltage peak of the victim line. Also, to note is that the grounded

terminals of the victim line cause transients to reflect at the terminals. The back-and-forth

travelling allows them to prevail for a longer period than with matched terminations.

Voltage waveforms of a situation where both carrier and victim lines are grounded are

shown in Figs. 4.11 and 4.12. In this case, the effect due to the coupling between the lines
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Fig. 4.10: Voltage at the point of crossing on the victim line for crossing angles of (a)
30°, (b) 60°, and (c) 90°, when the carrier line has matched ends and the victim line is
grounded.
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Fig. 4.11: Voltage at the point of crossing on the carrier line when both lines are grounded.

is more adverse since the transients on the carrier line also keep reflecting between the two

ends. Magnitude of the induced spike keeps increasing since the geometry considered here

is symmetric and each time the transient reaches the point of crossing it adds up to the

already existing spike. Transients in both lines are expected to decay very slowly since only

the resistance of the lines contributes to the decay of the waves.

4.3.4 Lightning near crossing conductors above finitely-conducting

ground

The wire structure shown in Fig. 4.2 is modeled with x0 = y0 = 50 m. For comparison

the victim line is modelled alone in the vicinity of the lightning strike at the same location.

Currents at the far end from crossing on the victim line for different ground conductivity

values are shown in Fig. 4.13. It is seen that for high conductive ground the current induced

is close to that for PEC ground shown in Fig. 4.5. However, when the ground conductivity

is lower, the induced currents are larger in magnitude and also are dispersed in shape.
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Fig. 4.12: Voltage at the point of crossing on the victim line for crossing angles of (b) 30°,
(c) 60°, and (d) 90°, when both lines are grounded.
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Fig. 4.13: Terminal current at the far end of the crossing on the victim line for a crossing
angles of 60°and ground conductivity of (a) 0.1 S/m, (b) 0.01 S/m and (c) 0.001 S/m
when terminations of each line are matched to its corresponding characteristic impedance.
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Fig. 4.14: Voltage at the point of crossing on the carrier line when terminations of each
line are matched to their corresponding characteristic impedance.

Next the effect of the crossing angle is analyzed with the ground conductivity set at

0.001 S/m. Voltage at the point of crossing on the carrier line and victim line is shown in

Figs 4.14 and 4.15 respectively. Voltage on the carrier line has decayed and dispersed when

it reached the point of crossing compared to the lossless case. Therefore, voltage obtained

on the victim line with the presence of the carrier line differs only slightly compared to that

obtained without the carrier line.

Voltages at the point of crossing on the carrier line and victim line when both lines are

grounded is shown in Figs. 4.16 and 4.17 respectively. The ground conductivity is set at

0.001 S/m. In contrast to the previous case where line ends were matched, the voltage on

the victim line with the presence of the carrier line consists of additional voltage spikes and

higher peaks than the same in the absence of the carrier line.
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Fig. 4.15: Voltage at the point of crossing on the victim line for crossing angles of (a) 30°,
(b) 90°, and (c) 150°, when terminations of each line are matched to their corresponding
characteristic impedance.
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Fig. 4.16: Voltage at the point of crossing on the carrier line when terminals of both line
are grounded

4.4 Summary

In this chapter a transmission line models with field-to-transmission line coupling was devel-

oped for both, frequency-independent and frequency-dependent nonuniform structures. The

transient behavior of a non-uniform transmission line structure due to a nearby lightning

strike was analyzed under different ground conductivity, crossing angles and terminating

conditions. It was seen that the transients induced in the line closer to the lightning strike

travel along the line to generate additional spikes in the second line which is farther away

from the lightning channel. Conventional transmission line models that assume a uniform

cross-section are not capable of modelling these additional transients. Therefore, there is a

possibility of underestimating the effects due to lightning surges which can result in inade-

quate design of protection schemes.
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Fig. 4.17: Voltage at the point of crossing on the victim line for crossing angles of (a)
30°, (b) 90°, and (c) 150°, when terminals of both line are grounded
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Chapter 5

Nonparallel Overhead and Buried

Conductors

In this chapter, the DSFTL model introduced in Section 3.1 is extended for nonparallel over-

head and buried conductors. Self coupling of overhead and buried conductors is formulated

using thin-wire scattering theory [39] and complex image theory [51]. A formulation for

the mutual coupling between overhead and buried wires is first obtained using the Hertzian

vector for the field coupling between two media and following the derivation procedure given

in [56] to calculate the mutual impedance between two inclined conductors in air. The result-

ing formulation is then simplified to a closed-form expression using the procedure introduced

by Lucca for parallel wires in [54]. Results obtained using the proposed model are compared

with those calculated using a commercial full-wave electromagnetic solver for different values

of the crossing angle, ground conductivity, conductor radius and burial depth. A case study

is also performed on induced voltages in the buried conductor during direct lightning strikes

to the overhead line.
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Fig. 5.1: Single-conductor over head transmission line crossing above a bare conductor
buried in finitely-conducting ground.

5.1 DSFTL Model for Overhead and Buried Conduc-

tors

Transmission line equations for a nonuniform wire structure in the frequency domain can be

given as [16]

∂

∂z
V (z, jω) +Z(z, jω)I(z, jω) = 0 (5.1a)

∂

∂z
I(z, jω) + Y (z, jω)V (z, jω) = 0 (5.1b)

where, V and I are the voltage and current vectors and Z and Y are the PUL impedance

and admittance matrices at any location z. For a wire structure as shown in Fig. 5.1 where

both overhead and underground conductors are present, elements of Z and Y can be written

as
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Z =







Zo Zob

Zob Zb






(5.2a)

and

Y =







Yo Yob

Yob Yb






(5.2b)

where, subscript “o” stands for overhead wires, “b” for buried wires, and “ob” for the mutual

coupling between overhead and buried wires. Zo of a overhead line of finite length ℓi at any

location z can be obtained as explained in Section 3.1 as

Zo =
jωµ0

4π
ξ (5.3a)

where,

ξ = ln

(

ℓ+

√

(ℓ− zi)
2 + a2i − zi

)

− ln

(

√

(ℓ− zi)
2 + a2i − zi

)

− ln

(

ℓ+

√

(ℓ− zi)
2 + (2h+ 2p)2 − zi

)

+ ln

(
√

(ℓ− zi)
2 + (2h+ 2p)2 − zi

)

.

(5.3b)

In (5.3b), p is the complex image depth [51] given by

p =
1

√

jωµ0 (σg + jωεg)
. (5.4)

µ0, εg and σg are the permeability of free space, permittivity, and conductivity of the ground,

respectively. Yo of a overhead line of finite length ℓi can be obtained using [100]

Yo = 4πε0jωξ
′ (5.5a)
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where,

ξ ′ = sinh−1

(

ℓ− zi
ai

)

− sinh−1

(−zi
ai

)

− sinh−1

(

ℓ− zi
2hi

)

+ sinh−1

(−zi
2hi

)

. (5.5b)

According to the complex image theory explained in [51] for a overhead conductor at

height h, the ground half-space is replaced with air and an image of the conductor is placed

at a complex depth of h + 2p. Similarly for a buried conductor at a burial depth d the air

half-space can be replaced with ground and an image of the conductor be placed at a complex

height d + 2p [51]. Therefore, following the procedure presented in [100] for overhead lines,

the self impedance of a buried conductor (Zb) of finite length ℓj can be written as

Zb =
jωµ0

4π
χ (5.6a)

where,

χ = ln

(

ℓ+
√

(ℓ− zj)
2 + a2j − zj

)

− ln

(

√

(ℓ− zj)
2 + a2j − zj

)

− ln

(

ℓ+

√

(ℓ− zj)
2 + (2d+ 2p)2 − zj

)

+ ln

(

√

(ℓ− zj)
2 + (2d+ 2p)2 − zj

)

.

(5.6b)

The self admittance Yb can be obtained using [101]

Yo = j4πω(ε0εg +
σg

jω
)χ−1. (5.7)

If the buried conductor is insulated, the sheath capacitance needs to added to the admittance,
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and the total admittance can be obtained as [101]

Yo,tot = jω
CsYo

jωCs + Yo

(5.8a)

where Cs is the capacitance of the insulation sheath given by

Cs =
2πεs

ln
bj
aj

(5.8b)

where εs, aj and bj are the relative permittivity, inner radius and outer radius of the sheath,

respectively.

To obtain a closed-form formulation for the mutual impedance between a overhead and

buried conductor placed at an angle of α to each other one has to consider the field created

in ground by a horizontal electric dipole (HED) in air. The z component of the Hertzian

vector of the electric field in ground at a depth d and a horizontal distance r due to a HED

of length ds placed in air at a height h carrying current I given by [56],

Π1,z =
jωµ0Ids

4πγ2
1

∫ ∞

0

2ue−α0he−α1d

α0 + α1

J0(ru)du (5.9a)

where

α0 =
√

u2 + γ2
0 (5.9b)

and

α1 =
√

u2 + γ2
1 . (5.9c)

In (5.9), γ0 is the propagation constant of air given by γ0 = jω
√
µ0ε0 while γ1 is the prop-

agation constant of ground given by γ1 =
√

jωµ0(σg + jωεg). J0 is the zeroth order Bessel
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function of the first kind. As explained in [56] the mutual impedance of between the overhead

conductor (i) and the buried conductor (j) can be obtained using

Zob =
jωµ0 cosα

2π

∫ ℓ

0

∫ ∞

0

ue−α0he−α1d

α0 + α1

J0(ru)du dz
′
i (5.10)

In [29] it was shown that for two crossing transmission lines of finite length the mutual

impedance and admittance near line ends are negligible compared to those in areas near the

crossing. Also, in [39] it is explained that if the location (z) of an observation point on a

transmission line is sufficiently far from its ends (i.e. by a distance greater than twice the

maximum cross-sectional dimension), then it can be considered as a point on an infinitely

long transmission line. Since a crossing between an overhead line and a buried pipeline

generally occurs sufficiently far from its ends Zob in (5.10) can be approximated as

Zob =
jωµ0 cosα

2π

∫ ∞

−∞

∫ ∞

0

ue−α0he−α1d

α0 + α1

J0(ru)du dz
′
i . (5.11)

This approximations allows the simplification of Zob into a closed-form expression using well

known mathematical identities. For overhead wires [54]

α0 ≈ u (5.12)

and γ2
g ≈ jωµ0σg =

1
p2

[54] which gives

α1 ≈
√

u2 +
1

p2
(5.13)
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Substituting (5.12) and (5.13) in (5.11) an rearranging further gives

Zob =
jωµ0 cosα

2π

∫ ∞

0

∫ ∞

0

2ue−hue
−d

√

u2+ 1

p2

u+
√

u2 + 1
p2

J0(ru)du dz
′
i . (5.14)

In [54] it shown that an integral of the above format can be rearranged into

Zob =
jωµ0 cosα

2π

[∫ ∞

0

∫ ∞

0

u
e−u(h+d) − e−u(h+d+2p)

u
J0(ru) du dz

′
i + C

]

(5.15a)

where

C =
1

γ3
g

∂2Q

∂ȳ2ij
+

3

20γ5
g

∂4Q

∂ȳ4ij
+ ..... (5.15b)

In (5.15b), ȳ2 is the shortest horizontal distance from a point zi on the overhead line to the

buried line that can be written as

ȳij = (c− zi) sinα (5.16)

and

Q =
H̄ij

R̄2
ij

(5.17a)

where He is given by [54]

H̄ij = h+ d+ 2p (5.17b)

and

R̄ij =
√

H̄2
ij + ȳ2ij. (5.17c)

For typical power line and pipeline scenarios approximating C using the first term of the

series expansion in (5.15b) is sufficient [54]. Therefore, using (5.15b), (5.16) and (5.17), C
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can be written as

C =
2H̄ij

3γ3
g

H̄2
ij − 3ȳ2ij
R̄6

ij

. (5.18)

The expression for C in (5.18) is identical by format to that obtained by Lucca in [54] for

a parallel overhead and buried wire. However, H̄ij, ȳij and H̄ij terms are dependent on

location (zi) at which it is calculated and the crossing angle (α).

Also, using the Sommerfield Identity [48] the integral in (5.15a) can be rewritten as

(5.19a)

∫ ∞

0

∫ ∞

0

2u
e−u(h+d) − e−u(h+d+2p)

u
J0(ru) du dz

′
i

=

∫ ∞

0

2

(

e−γgR12

R12

− e−γgR̄12

R̄12

)

dz ′
i .

where,

Rij =
√

(h+ d)2 + ȳ2ij. (5.19b)

Substituting (5.18) and (5.19a) in (5.15a) gives

Zob =
jωµ0 cosα

2π

[

∫ ∞

0

(

e−γgR12

R12

− e−γgR̄12

R̄12

)

dz ′
i +

2H̄ij

3γ3
g

H̄2
ij − 3ȳ2ij
R̄6

ij

]

. (5.20)

The infinite length assumption can be reversed for the integration term in (5.20) as

Zob =
jωµ0 cosα

2π

[

1

2

∫ ℓ

0

(

e−γgR12

R12

− e−γgR̄12

R̄12

)

dz ′
i +

2H̄ij

3γ3
g

H̄2
ij − 3ȳ2ij
R̄6

ij

]

. (5.21)

By substituting the analytical formula derived in [100] for integrals of this format, an ex-
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pression for the mutual impedance between overhead and buried wires can be obtained as

Zob =
jωµ0 cosα

4π

[

ln

(

ℓ+

√

[(ℓ− c) + (zi − c) cosα]2 + [(zi − c) sinα]2 + (h+ d)2 − c+ (zi − c) cosα

)

− ln

(
√

[(ℓ− c) + (zi − c) cosα]2 + [(zi − c) sinα]2 + (h+ d)2 − c+ (zi − c) cosα

)

− ln

(

ℓ+

√

[ℓ− c+ (zi − c) cosα]2 + [(zi − c) sinα]2 + (h+ d+ 2p)2 − c+ (zi − c) cosα

)

+ ln

(
√

[(ℓ− c) + (zi − c) cosα]2 + [(zi − c) sinα]2 + (h+ d+ 2p)2 − c+ (zi − c) cosα

)

+
4H̄ij

3γ3
g

H̄2
ij − 3ȳ2ij
R̄6

ij

]

(5.22)

Mutual admittance between overhead and buried conductors (Yob) is generally assumed to

be zero [102].

5.2 Time-Domain Implementation

Equation (5.1) in the time-domain gives

∂

∂z
V (z, t) +Z(z, t) ∗ I(z, t) = 0 (5.23a)

∂

∂z
I(z, t) + Y (z, t) ∗ V (z, t) = 0 (5.23b)

where “∗” denotes convolution. Since the admittance is also frequency dependent, the

MFDTD algorithm introduced in [27] and then extended to nonparallel overhead lines in

Section 3.2 is modified to accommodate frequency dependent admittance. In this case the
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admittance matrices is also fitted into a matrix function of the format [32]

Y (z, jω) = G(z) + jωC(z) + Y ′(z, jω) (5.24a)

where

Y ′(z, jω) =
M
∑

k=1

a ′
k(z)

jω − α ′
k(z)

. (5.24b)

In (5.24), a ′
k(z) is the residue matrices corresponding to each pole α ′

k(z) respectively at any

location z. M is the number of poles. With this approximation (5.23) can be re-written as

(5.25a)
∂

∂z
V (z, t) = −R(z)I(z, t)−L(z)

∂

∂t
I(z, t)−Z ′(z, t) ∗ I(z, t)

∂

∂z
I(z, t) = −G(z)V (z, t)−C(z)

∂

∂t
V (z, t)− Y ′(z, t) ∗ V (z, t). (5.25b)

It should be noted that an FDTD algorithm to solve a single conductor transmission line

with both frequency dependent impedance and admittance has been introduced in [101].

However, in [101] only the voltage is calculated at the terminal nodes. Since, in the MFDTD

algorithm both the current and voltage is calculated at the terminal loads it is more suitable

for implementation on EMT-simulators. Therefore it has been chosen to be extended to

buried structures in this paper.

Following the space-time discretization convention used for currents and voltages in

FDTD algorithms [16, 27] shown in Fig. 5.2, the updating equation for the current at a

space-segment k and a time iteration n can be written as

I
n+ 1

2

k+ 1

2

= Z−1
2

[

Z1I
n− 1

2

k+ 1

2

+∆z(ξ + χ)I
n− 3

2

k+ 1

2

− (V n
k+1 − V n

k+1)−∆zΨn
]

(5.26a)
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Fig. 5.2: Illustration of the space-time descretization and the update procedure of voltage
and current vectors of space segment k at time-step n in the MFDTD algorithm.

- 98 -



5.2 Time-Domain Implementation

where

Z1 = ∆z

(

L(z)

∆t
− R(z)

2
+

Γ

2
− 2ξ − χ

)

(5.26b)

Z2 = ∆z

(

L(z)

∆t
+

R(z)

2
− Γ

2
− ξ

)

(5.26c)

ξ =
M
∑

i=1

ai(z)

αi(z)

[

1

αi(z)∆t

(

1 +
1

αi(z)∆t
− eαi(z)∆t

αi(z)∆t

)]

(5.26d)

χ =
M
∑

i=1

ai(z)

αi(z)

[

1

αi(z)∆t

(

eαi(z)∆t − 1
)

]

(5.26e)

Ψn =
M
∑

i=1

ai(z)

αi(z)
Ψn

i (5.26f)

Ψn
i =

eαi(z)∆t

αi(z)∆t

(

1 +
1

αi(z)∆t
− eαi(z)∆t

αi(z)∆t

)

(

2I
n− 3

2

k+ 1

2

− I
n+ 5

2

k+ 1

2

− I
n− 1

2

k+ 1

2

)

+
eαi(z)∆t

αi(z)∆t

(

eαi(z)∆t − 1
)

(

I
n− 3

2

k+ 1

2

− I
n− 5

2

k+ 1

2

)

+ eαi(z)∆tΨn−1
i . (5.26g)

In (5.26), ∆z is the space step and ∆t is the time step. Similarly, for a transmission line

system with frequency dependent admittance, the voltage equation can be written as

V n+1
k = Y −1

2

[

Y1V
n
k +∆z(ξ ′ + χ ′)V n−1

k − (I
n+ 1

2

k+ 1

2

− I
n+ 1

2

k− 1

2

)−∆zΨ ′n
]

(5.27a)

where

Y1 = ∆z

(

C(z)

∆t
− G(z)

2
+

Γ ′

2
− 2ξ ′ − χ ′

)

(5.27b)

Y2 = ∆z

(

C(z)

∆t
+

G(z)

2
− Γ ′

2
− ξ ′

)

(5.27c)

and ξ ′, χ ′ and Ψ ′ are analogous to ξ, χ and Ψ respectively in the current equation. In order
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to integrate MFDTD into EMT simulators, both the current and voltage are calculated at

the terminal loads as seen in Fig. 5.2. While terminal voltage vectors (V n+1
0 and V n+1

NS
)

are updated by the EMT simulator, terminal current vectors are calculated by descretizing

the half-space-segment (∆z/2) at the two ends of the line [27]. Using (5.27a), the voltage

equation at the starting node can be written as

V n+1
0 = Y −1

2

[

Y1V
n
0 +

∆z

2
(ξ ′ + χ ′)V n−1

0 −
(

I
n+ 1

2

1

2

− In+1
0 + In

0

2

)

− ∆z

2
Ψ ′n

]

. (5.28)

Equation (5.28) can be rearranged to obtain the current vector at the starting node as

(5.29)In+1
0 = −In

0 − Y1V
n
0 + Y2V

n+1
0 −∆z(ξ ′ + χ ′)V n−1

0 + 2In+ 1

2 +∆zΨ ′n.

Similarly, at the ending node

(5.30)In+1
NS

= −In
NS

− Y1V
n
NS

+ Y2V
n+1
NS

−∆z(ξ ′ + χ ′)V n−1
NS

+ 2In+ 1

2 +∆zΨ ′n.

The updating procedure for current and voltage vectors is shown in Fig. 5.2.

5.3 Results and Discussion

First the validity of the MFDTD algorithm extended to accommodate frequency-dependent

admittance is checked by comparing results those obtained from a thin-wire, full-wave using

a thin-wire full-wave electromagnetic solver (Numerical Electromagnetic Code - NEC4) [91].

A buried bare conductor placed at a depth of 1 m and a 10 m high overhead conductor

placed parallel to each other at a horizontal distance of 2 m are modelled. Radius of both

conductors is taken as 20 mm. A derivative of a Gaussian pulse with a full-width at half

maximum (FWHM) of 150 kHz as shown in Fig. 5.3 is used to excite the overhead conductor

at the sending end. Both ends of the overhead conductor is grounded with 100 Ω resistors.
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Time [ s]

V
s [

V
]

Fig. 5.3: Derivative of a Gaussian waveform applied on the overhead conductor.

The finitely conducting ground is assumed to have a conductivity of 0.01 S/m and a relative

permittivity of 15.

Elements of PUL impedance and admittance matrices are calculated using formulas de-

rived by other researchers for uniform wire structures and are shown in Fig 5.4. The self

impedance of the overhead line determined by Deri’s closed-form approximation [44] for the

well known Carson’s formula [19]. Admittance is generally considered frequency indepen-

dent for overhead lines and calculated as jωC where C is the DC capacitance. Impedance

and admittance of the buried bare conductor are calculated using closed-form formulas given

in [101]. Lucca’s formulation is used to calculate the mutual impedance between the over-

head wire and buried wire. Mutual admittance between overhead and buried conductors

is generally assumed to be zero [102]. As seen by Fig. 5.4 both Z and Y are frequency

dependent.

For the MFDTD algorithm, a time-step of 0.2 µs is used. A space-step of 72 m is chosen

in order to satisfy the stability criterion for FDTD simulations [27]. Sending end currents

on the overhead wire and the ground wire are shown in Fig. 5.5 along with those obtained
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Fig. 5.4: Elements of PUL (a) impedance and (b) admittance matrices of the wire structure.
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Fig. 5.5: Sending end currents of (a) the overhead conductor and (b) the buried conductor
obtained using MFDTD method and a thin-wire full-wave solver.

using NEC. As evident from the current waveforms the transmission line approach along

with the MFDTD algorithm is capable of modelling the wave propagation in both overhead

and buried wires accurately.

Then, a wire structure where and overhead line crosses a nuried conductor (similar to

Fig. 5.1 is simulated with ℓ = 1 km, c = 0.4 k)m, h = 10 m, and ai = 20 mm. The

buried conductor is assumed to be a bare pipeline since the frequency dependency of the
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admittance of buried bare conductors is more significant than insulated conductors. The

relative permittivity of the ground is taken as εg = 10. Results under varying crossing angle

(α), ground conductivity (σg), pipeline radius (aj) and burial depth (d) are compared with

those obtained obtained using Numerical Electromagnetic Code - (NEC4), a thin-wire full-

wave electromagnetic solver [91]. The overhead line is terminated using 100Ω resistor loads

which are grounded using 1-m long vertical electrodes with 20 mm radius to be consistent

with the full-wave simulator. For the values of ground conductivity and the electrode length

used in this work, the impedance of the grounding electrodes is resistive. The value of the

resistive grounding impedance is in the range of 68 Ω to 6.8 kΩ when the ground conductivity

varies from σg = 0.01 to σg = 0.0001 S/m [103]. The overhead line is excited using the same

derivative of a Gaussian pulse used in the previous study and shown in Fig. 5.3.

In NEC4, to properly model the buried conductor and verify the accuracy of the thin-wire

approximation employed in the proposed DSFTL model, the buried conductor is modelled as

a cylinder made of 8 straight conductors each having a radius of 20 mm and short circuited

using rings at every 100 m as shown in Fig. 5.6. The current in the buried conductor is

calculated by adding the currents in all straight wires together.

The current in the overhead wire at the point of crossing, assuming σg = 0.001 S/m,

d = 1 m , aj = 25 cm and a crossing angle (α) of 30°, is shown in Fig. 3.5, and the current

in the buried wire at z = dz
2
, z = c and z = ℓ − dz

2
(where dz = 25 m is the segment size

used for the MFDTD algorithm and the NEC4 simulation), are shown in Fig. 3.6. Note

that from a transmission line perspective, at z = 0 and z = ℓ the current on the buried wire

is zero since the ends are open circuited. It is seen that the currents induced in the buried

conductor by the overhead wire calculated by the proposed DSFTL model agree with those

obtained using full-wave techniques. The peak current induced in the buried wire is close to
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overhead	conductor	

buried	conductor	

short	circuiting	rings	

grounding	electrode

Air

Lossy	ground

100	Ω

𝑉!
100	Ω

Fig. 5.6: A wire model of the geometry implemented in the fullwave solver (NEC4) used
to validate the proposed DSFTL model. The buried conductor is modeled as 8 straight,
parallel wires that allow simulating a conductor with an arbitrary diameter.

Time [ s]

DSFTL
Full-wave lossy ground

Fig. 5.7: Current at the point of crossing in the overhead wire.
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1/3 of the current in the overhead wire. Another noticeable fact is that the current in the

buried conductor toward its ends are negligibly small compared to that induced at the point

of crossing. This is due to the fact the current dissipates quickly to the ground due to its

finite conductivity. This case is referred to as the base case herein.

5.3.1 Effect of the crossing angle

The base case explained above is simulated with two other crossing angle (α) values, 60°and

90°and the current induced in the buried conductor at the point of crossing is shown in Fig.

5.9 The magnitude of the induced current in the buried wire decreases as the crossing angle

increases. At a crossing angle of 90°, since Yob was assumed to be zero and Zob = 0 when

α = 90°, the DSFTL model will calculate a zero current in the buried wire. In reality there

is a small current induced in the buried wire due to capacitive coupling (i.e. the existance

of a small Yob) as seen by the full-wave results in Fig. 3.6c. However, this current is seen to

be negligibly small compared to the induced current at smaller angles. Therefore, it can be

concluded that the assumption of Yob = 0 is adequate for engineering purposes.

5.3.2 Effect of the ground conductivity

The base case is simulated with two other ground conductivity (σg) values, 0.01 S/m and

0.0001 S/m based on the typical ground conductivity values given in [93]. The current

induced in the buried conductor at the point of crossing is shown in Fig. 5.10. It is seen that

results obtained using the proposed model and the full-wave solver agree for typical ground

conductivity values. For larger ground conductivity values, the impedance of grounding

electrodes will deviate from the purely resistive nature at lower frequencies [103]. Since, the

effect of grounding electrodes are incorporated a resistor in the DSFTL model, there can be
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Fig. 5.8: Current at (a) z = dz
2 , (b) z = c and (c) z = ℓ− dz

2 in the buried conductor.
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Fig. 5.9: Current at the point of crossing in the buried conductor for crossing angles of
(a) 60°(b) 90°.

discrepancies with the full-wave results as seen in Fig. 5.10b. However, a high-frequency

model of the grounding electrodes can be incorporated when implementing the DSFTL model

in EMT simulators as explained in [100].
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Time [ s]

DSFTL
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Fig. 5.10: Current at the point of crossing in the buried conductor for ground conductivity
values of (a) 0.01 S/m and (b) 0.0001 S/m.

5.3.3 Effect of the radius of the buried conductor

The base case is simulated for buried conductor radii of 0.5 m and 0.99 m (in the latter, the

buried conductor is close to the ground surface). Thin-wire approximation can be expected

to hold for radii smaller than 0.25 m. The current induced in the buried conductor at the

point of crossing is shown in Fig. 5.11. A slight increase is seen with increasing radii in both

DSFTL and full-wave results which can be attributed to the fact that the gap between the

- 109 -



5.3 Results and Discussion

Time [ s]

DSFTL
Full-wave lossy ground

(a)

Time [ s]

DSFTL
Full-wave lossy ground

(b)

Fig. 5.11: Current at the point of crossing in the buried conductor for conductor radii of
(a) 0.5 m and (b) 0.99 m.

overhead and buried conductors reduces when the buried conductor radius increases.

5.3.4 Effect of the burial depth

The base case is simulated with the underground conductor buried at depths (d) of 5 m

and 10 m. The current induced in the buried conductor at the point of crossing is shown in

Fig. 5.12. A slight reduction in amplitude is seen in results obtained using both the DSFTL
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Fig. 5.12: Current at the point of crossing in the buried conductor for burial depths of (a)
5 m and (b) 10 m.

model and the full-wave solver when the burial depth increases.

5.3.5 Case study of lightning induced voltages

The base case is simulated with the ends of the overhead line matched to its characteristic

impedance and z = 0 excited with (a) a standard lightning impulse waveform of 1.2/50µs

and (b) a standard lightning impulse of 1.2/50µs chopped after 5µs [104]. The voltage is

- 111 -



5.4 Summary

set to reach zero during chopping in 0.5µs. The magnitude of the excitation waveforms

is chosen such that the voltage in the overhead line at the point of crossing has a peak

magnitude of unity. Voltages obtained at the location of the crossing on the overhead and

buried conductors are shown in Fig. 5.13. It is seen that the peak voltage on the buried

conductor is around 0.05% ∼ 0.3% of the voltage on the overhead line. According to [105],

a direct lightning strike to a 138 kV line above a ground with a conductivity of 0.001 S/m

can can cause a lightning voltage of around 500 kV. This means that the induced voltage

peak in the buried conductor will be a few hundred volts. According to [96] voltages as low

as 50 V are dangerous for humans.

5.4 Summary

This chapter proposed a nonuniform transmission line formulation to model a system of

nonparallel overhead and buried conductors in the presence of finitely conducting ground.

Closed-form expressions was derived for the PUL impedance and admittance matrices of

a system of nonparallel overhead and buried wires. The MFDTD algorithm was modified

further to accommodate a frequency dependent PUL admittance matrix. Results obtained

using the proposed model were compared with those calculated using a commercial full-wave

electromagnetic solver under varying crossing angle, ground conductivity, buried conductor

radius and burial depth. Results produced by the proposed model agreed with full-wave

results
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Fig. 5.13: Voltage at the crossing in the overhead line and buried conductor when the
overhead line is excited with (a) a standard 1.2/50µs lightning impulse and (b) a standard
1.2/50µs lightning impulse chopped after 5µs with a chopping time of 0.5µs.
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Chapter 6

Parallel Computing Methods for

Finite-Difference Time-Domain

Parallel algorithms to increase the computational efficiency of the MFDTD method are

proposed. As discussed in Section 2.5, since multi-core CPU and GPU architectures have

their own advantages and disadvantages two parallel algorithms that utilize each of the

architectures are proposed. Accuracy and performance of both algorithms are analyzed and

discussed.

6.1 Parallel MFDTD Using multicore CPU

The basic concept of the proposed algorithm is to share the computations of the space-

segments of the MFDTD model equally among the processor cores as shown in Fig. 6.1.

When a serial algorithm is converted into parallel, additional commands needed for op-

erations such as initialization of processors and data sharing gets added to the program.

Processing time required for these additional commands is commonly referred to as the par-
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allel overhead. These additional commands require additional processing time compared

to serial programs. Work allocation to processors shown in Fig 6.1 is chosen such that

the computational load is distributed equally among processors using a minimum parallel

overhead. The leap-frog calculation of the MFDTD algorithm that was performed for one

space-segment at a time is can now performed simultaneously at p segments where p is the

number of processor cores available. Computations allocated to a particular core are exe-

cuted serially. In Fig. 6.1 bold arrows represent information that has to be shared between

processors. It is seen that at each time-step the last space segment of each processor except

for processor p needs the voltage vector of the first space-segment of the adjacent processor

from the previous time-step to compute its current vector. Similarly the first space segment

of each processor except for processor 1 needs the newly calculated current vector of the last

space-segment of the adjacent processor to compute its voltage vector.

This exchange of data can be conveniently performed using an “MPI SEND” (to send

data) and an “MPI RECV” (to receive data) command among specified processor. Here the

processor that is sending out data should call “MPI SEND” command specifying to which

processor it is sending data. The receiving processor should call “MPI RECV” command

specifying which processor it is expecting data from in order to complete the data exchange.

A unique ID assigned to each data transfer assures that the data exchange happens only

among the intended processors. Apart from the exchange of data this procedure keep the

MFDTD algorithm synchronized making sure one processor would not perform a compu-

tation before other processors calculate the data needed for that particular calculation. It

should be noted that for shared-memory architectures data sharing among processors is not

needed. However, a synchronizing mechanism is still essential. Therefore, it is advisable to

use the “MPI SEND” + “MPI RECV” mechanism even inside shared-memory architectures.
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Fig. 6.1: Proposed parallel algorithm for MFDTD using multicore CPU architecture.

6.2 Parallel MFDTD Using GPU

A ‘host code’ running in the CPU performs the pre-calculations required and copies relevant

data to the global memory of the GPU. The MFDTD algorithm is saved in the ‘device code’

which will be executed on the GPU on all GPU cores simultaneously when the kernel is

called. The host code calls the GPU using a ”device kernel” as shown in Fig. 6.2 in order to

perform the MFDTD calculation. The device code is organized such that each space-segment

of the MFDTD problem is allocated to a single core in the GPU. Therefore, unlike in the
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Fig. 6.2: Proposed parallel algorithm for MFDTD using GPU architecture.

CPU parallel algorithm explained in Section 6.1 all nodes will be calculated simultaneously

enabling a massive speedup. Since all threads will be reading and writing from the global

memory manual data transfer is not necessary. A synchronizing command is run after each

current calculation and voltage calculation as shown in Fig. 6.2 forcing individual threads

to wait until all threads finish the calculations related to the current time-step. This ensures

that a thread would not advance to the next time-step until relevant past-data is available

in the global memory.
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6.3 Results and Discussion

A buried bare conductor and an overhead conductor parallel to each other are modelled.

Cross-sectional dimensions of the structure (see Fig. 5.1) are h = 10 m, d = 2 m, b = 1 m

and a1 = a2 = 20 mm. A derivative of a Gaussian pulse with a full-width at half maximum

(FWHM) of 150 kHz is used to excite the overhead conductor at the sending end. Both ends

of the overhead conductor is grounded with 100 Ω resistors. The finitely conducting ground

is assumed to have a conductivity of 0.01 S/m and a relative permittivity of 15. Speed-up

of the computational process achieved using the proposed parallel algorithms on CPU and

GPU architectures are also discussed.

6.3.1 Performance of the parallel CPU algorithm

The mixed wire structure of overhead and buried wires is implemented using the parallel al-

gorithm proposed for multicore CPU architecture in Section 6.1. The structure is discretized

into 138 space segments. Fig. 6.3 shows the sending end currents of the overhead and buried

wires obtained by distributing the work among different number of processors. It is seen that

the parallel algorithm is able to produce the same result for each case. Execution time for

vs the number of time-steps and the number of processors is shown in Table 6.1. Efficiency

of parallel algorithms are generally calculated using ‘speed up factor’ (S(p)) given by [90]

S(p) =
Time for serial execution

Time for parallel execution
(6.1)

is shown in Fig. 6.4. It is clearly seen that the efficiency of the proposed algorithm increases

and becomes closer to linear speedup when the number of time iterations increases. Behavior

of the speed up factor agrees with Amdhal’s which states that if only a portion of a program
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Table 6.1: Execution time of the MFDTD algorithm using different number of processors.

Execution time (s) for no. of processors (p)

No. of time-steps 1 2 3 4 5 6 7 8

1001 0.680 0.464 0.366 0.311 0.294 0.258 0.251 0.242

10001 6.231 3.406 2.324 1.837 1.586 1.436 1.276 1.213

100001 61.150 32.434 21.796 17.181 14.436 11.863 11.614 10.743

can be paralleled, when the level of parallelism of that portion increases the time taken

for the execution of the serial portion will start to dominate the total execution time [90].

This explains why the curves tend to saturate when the number of processors increase. On

the other hand, when the number of time-steps increases the parallelable portion of the

program increases which allows for speed-up factors closer to linear speed-up. Changing the

number of space-segments in the structure does not have an effect on the speed-up factor

since the number of calculations in every section of the program will change proportionately.

For example if the number of space-segments are doubled, the number of pre-calculations

(which are performed serially) as well as the number of MFDTD calculations allocated to

each processor (which are performed parallely) will be doubled, causing both the serial and

parallel portions of the program to consume twice the time as before.

6.3.2 Performance of the parellel GPU algorithm

The mixed wire structure of overhead and buried wires simulated is implemented using an

NVIDIA GeForce GTX-1080 GPU which has approximately 2500 CUDA cores. Execution

times compared to a serial programming approach is given in Table 6.2. Sending end currents
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Fig. 6.3: Sending end currents of (a) the overhead conductor and (b) the buried conductor
obtained by distributing the computations among different number of processors.

of the overhead conductor obtained using the proposed GPU based parallel algorithm with

those obtained from a conventional serial program in Fig. 6.5 for two scenarios of space-steps

and time-steps. Results indicate that the thread-synchronizing mechanism in the proposed

parallel algorithm operates correctly. A notable fact from Table 6.2 is that for increasing

number of space-segments the execution time of the GPU program has stayed constant. This

happens because the number of space-segments is less than the available number of CUDA
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Fig. 6.4: Speed up factor obtained using algorithm Vs. the number of processors in CPU
for varying number of time-steps.

cores. Therefore, each thread is guaranteed a dedicated core to itself. Also, the GPU parallel

algorithm is seen to have lower execution times compared to the CPU parallel algorithm for

the same number of space-segments.

Speed-up obtained under different number of space-segments and time-steps is shown in

Fig. 6.6. It be seen that for a constant number of time-steps, the speed-up increases linearly

with the number of space-segments. This is expected since the execution time of the serial

program increases linearly with respect to the number of space-segments while the execution

time in the GPU algorithm remains constant as discussed earlier. This is an advantage of the

GPU parallel algorithm compared to the CPU parallel algorithm whose speed-up remained

constant with varying space-segments as previously discussed in Section 6.3.1. The speed

up of the GPU algorithm is expected to reach a peak and then drop due to the saturation

of processing resources if the number of space-steps increased further. However, based on

the typical number of space-segments in power line simulations, the speed up is expected to

remain in the linear region shown in Fig. 6.6.
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Fig. 6.5: Sending end currents of the overhead wire obtained using a serial program and
the proposed parallel algorithm for simulations of (a) 138 space-steps and 1001 time-steps
and (b) 255 space-steps and 10001 time-steps.
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Table 6.2: Comparison of the execution time of the MFDTD algorithm using serial program-
ming and GPU programming.

Number of space segments

138 255 1000

Time

Steps

Serial

(s)

GPU

(s)
S(p)

Serial

(s)

GPU

(s)
S(p)

Serial

(s)

GPU

(s)
S(p)

1001 0.68 0.21 3.23 1.28 0.21 6.10 5.14 0.22 23.36

10001 6.23 0.81 7.69 11.41 0.82 13.91 45.15 0.81 55.74

100001 61.15 6.56 9.32 125.75 6.54 19.22 494.34 6.52 61.16
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Fig. 6.6: Speed up factor obtained using the GPU algorithm Vs. the number of Space-
segments for varying number of time-steps.
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6.4 Summary

The disadvantage of FDTD based models are that they involve more calculations per time-

step than terminal based models. This chapter proposed parallel computing techniques in

order to increase the computational efficiency of the modified finite-difference time-domain

(MFDTD) based multi-conductor transmission line models. Potential parallel computing

algorithms were proposed were proposed for both conventional multi-core CPU and GPU

architectures. Accuracy and performance of these algorithms were discussed. The proposed

model is also expected to be a suitable candidate for modelling systems of overhead and

buried transmission lines in massively parallel EMT simulation methods developed by other

researchers.
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Conclusions and Future Work

7.1 Conclusions

With the expansion of power networks more transmission lines have to be constructed in a

limited space often causing them to be placed in close proximity with each other or have dis-

continuities such as sharp bends along their span. Furthermore, lines with higher operating

voltages are designed and constructed in-order to achieve higher power carrying capabilities.

Induced interference from higher voltage lines to lower voltage lines, communication lines

and buried pipelines during these close encounters has become a growing concern. Classical

transmission line theory developed for uniform transmission lines is only applicable to paral-

lel wires which typically is not fulfilled in such situations. Therefore, time-domain methods

with the ability to solve non-uniform structures have to be developed.

This work proposed an approach, namely dispersive scattered field transmission line

(DSFTL) model to simulate non-uniformities in dispersive transmission lines. A closed-form

analytical formula was developed to determine the PUL parameter matrices of a system of
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non-parallel wires above finitely-conducting ground. THe resulting non-uniform transmission

line equations consisting of space-dependent PUL parameters can be solved using a modified

1D-FDTD (MFDTD) algorithm. The proposed model was successfully implemented on

a power system transient simulator. Results obtained for transient waveforms using the

DSFTL model were compared with those from a full-wave electromagnetic solver. The

comparison demonstrated that DSFTL can correctly model the transient behavior at such

a non-uniformity. DSFTL was also able to regenerate power-frequency measurements of

induced voltages obtained by other researchers at a real transmission line crossing. A case

study on induced transients on power lines passing under faulty higher voltage lines was

performed to demonstrate the capabilities of DSFTL model as a suitable candidate for a

non-uniform transmission line model for power system EMT simulators.

External fields were coupled to the DSFTL model to simulate the effect of a nearby

lightning strike.The developed model was used to analyze the effect of a nearby lightning

strike on the transient behaviour of two crossing conductors in the presence of perfectly

conducting and finitely conducting ground. Results obtained using the proposed model for

conductors above PEC ground were compared to those obtained using full-wave simulations.

In order to confirm the external field coupling in the presence of lossy gorund is modelled

accurately, the voltage induced on a uniform transmission line above lossy ground obtained

using the proposed approach was compared to data available in the literature. A case study

was also performed to investigate the transient behaviour of an overhead wire above lossy

ground with and without the presence of a nearby nonparallel wire. Results indicated a

nearby transmission line can intensify transients occurring on a overhead wire that cannot

be calculated using the conventional uniform transmission line approaches.

Since buried pipelines coming into close proximity with overhead power transmission lines
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and creating a nonparallel conductor structure is a common occurrence, the DSFTL model

was extended to include buried conductors. Closed-form analytical expressions were derived

for the PUL impedance and admittance matrices of a system of nonparallel overhead and

buried conductors. The MFDTD algorithm was also modified further to include frequency-

dependent admittance. Results obtained using the proposed model were compared with

those calculated using a commercial full-wave electromagnetic solver under varying crossing

angle, ground conductivity, buried conductor radius and burial depth. Results produced by

the proposed model agreed with full-wave results.

Finite-difference time-domain (FDTD) based transmission line models require more com-

putations per time-step compared to terminal based models that are used for uniform trans-

mission lines. Therefore, to increase the computational efficiency of the modified FDTD

(MFDTD) method which is used as the solving technique of the proposed DSFTL model,

two parallel algorithms were proposed based on conventional multi-core CPU and GPU ar-

chitectures. Accuracy and performance of these algorithms were discussed. It was seen that

massive speedups compared to serial processing are possible by parallel implantation using

GPUs. The proposed model is also expected to be a suitable candidate for modelling systems

of overhead and buried transmission lines in GPU based massively parallel EMT simulation

methods developed by other researchers.

7.2 Future Work

At its current state, the DSFTL model implemented in an EMT simulator operates consid-

ering an equal time step to that in the EMT simulation. This might in some cases cause the

simulation to be less efficient with regards to execution time. Therefore the possibility to co-
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simulate the DSFTL model and its corresponding EMT simulation with different time steps

should be investigated. Also, nonlinear components such as lightning arresters are common

in power networks and thus, in EMT simulations. Currently nonlinear components can be

added to the EMT environment, outside the DSFTL model. The possibility of inclusion of

nonlinear components inside the DSFTL model (i.e. within the nonuniform region of the

transmission line) should be investigated.

In conventional models for overhead transmission lines, conductor are assumed to be

horizontal and their height is assumed to be constant throughout the span of the line and

equal to the tower height. However, in physical structures the conductors tend to sag due to

their weight which results in a drop in height mid-span. Since the conductors are inclined to

the ground rather than being horizontal, the currents flowing in them will also be inclined.

Also, in mountainous areas the air-ground interface can be inclined. The approach proposed

in this thesis is currently derived assuming horizontal conductors and a horizontal air-ground

interface. Therefore, an extension of this formulation for inclined conductors and air-ground

interface and validation using full-wave simulations is also suggested. An initial mathematical

model can be written using thin-wire electromagnetic scattering equations. The possibility

of arriving at a closed-form formula should be studied.

Transmission line models are used for the transient analysis of a wide range of structures

from high-speed interconnects in electronic chips to power transmission lines. The methods

proposed in this work for nonuniformities in power transmission lines are theoretically ex-

tendable for these structures as well. Especially, in electronic chips and printed circuits the

types of nonuniformities addressed in this work (i.e. bends, nonparallel wires and crossings)

are a common occurrence. However, before being applied to other structures a study on the

applicable frequency ranges is suggested.
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In circuit interconnects tunable components are added to the conventional structure in

order to compensate for the dispersion of pulses. Tunable features are typaclly included by

introducing nonlinearities such as periodic loading or distributed doping within the substrate

to the transmission line geometry. Therefore, another suggested extension for this work is

to incorporate such features into the formulation.
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[74] D. Lovrić, S. Vujević, and T. Modrić, “On the estimation of heidler function parameters
for reproduction of various standardized and recorded lightning current waveshapes,”
International Transactions on Electrical Energy Systems, vol. 23, no. 2, pp. 290–300,
2011.

- 136 -



References

[75] C. Taylor, R. Satterwhite, and C. Harrison, “The response of a terminated two-wire
transmission line excited by a nonuniform electromagnetic field,” IEEE Transactions
on Antennas and Propagation, vol. 13, no. 6, pp. 987–989, November 1965.

[76] K. Agarwal, D. Sylvester, and D. Blaauw, “Modeling and analysis of crosstalk noise
in coupled rlc interconnects,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 25, no. 5, pp. 892–901, May 2006.

[77] F. Rachidi, “Formulation of the field-to-transmission line coupling equations in terms
of magnetic excitation field,” IEEE Transactions on Electromagnetic Compatibility,
vol. vol. 35, no. 5, pp. pp. 404–407, 1993.
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