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Heat shock protein 60s (hsp60s) are a family of related proteins which are inducible andlor

constitutively expressed by prokaryotic and eukaryotic cells in response to stressful stimuli and appear

to protect the cell against damage due to stress induced protein misfolding The family of hsp60

proteins has a high degree of amino acid sequence identity (over 40o/o) from over 50 different

prokaryotic and eucaryotic species. Immune response to Chlamydia trachomatis heat shock protein

60 (hsp60) may determine chlamydial disease pathology. Native and recombinant chlamydial hsp60

elicits delayed mononuclear cell inflammation when applied to the conjunctivae of immunologically

primed experimental animals. High-titre antibodies to the chlamydial hsp60 have been consistently

found to be associated with infertility related to tubal occlusion and ectopic pregnancy in women with

chlamydial pelvic inflammatory disease.

ABSTRACT

Our hypothesis is that the autoimmune responses to self hsp60 elicited during infection are possibly

due to the stressful conditions at an inflammatory site inducing expression of hsp6O in both microbial

and host cells. The objective of the present study was to examine the possibility that hsp60 may

induce autoimmunity and determine the mechanism of the autoimmune responses.

Initially I characterized the antibody responses to specific hsp60 peptides with se¡a engendered in

humans by natural infections and in rabbits by immunization with whole C. t7achontatis elementary

bodies (EBs). Thirteen major epitopes in chlamydial hsp60 were identified with the human sera, 10

of which were also detected with rabbit antisera. Seven of the 13 epitopes recognized by human

page A{4



antisera exhibited cross-reactive antibody binding to homologous peptide sequences in human hsp60.

Then using a mouse immunization model I found that mice are normally tolerant to mouse hsp60 and

that immunization with chlamydial hsp60 alone does not induce strong autoimmune responses to

mouse hsp60. Under conditions of concurrent immunization with chlamydial and mouse hsp60,

however, autoimmune B and T cell responses to self hsp60 are readily generated. The ability of

chlamydial hsp60 plus mouse hsp60 to induce autoimmunity critically depended on the amount of

mouse hsp60 and ctrlamydial hsp60 used for immunization. Moreover, tolerance to mouse hsp60 was

found to be mainly due to T cell anergy and was associated with a predominant antigen-specific Th2-

like IL-iO cytokine secretion pattern. Autoimmune responses to self hsp60 induced by co-

immunization with chlamydial and mouse hsp60 were associated with a marked decrease in IL-10

production and an increase in lFN-gamma production in response to mouse hsp60. Finally, at least

two T helper sites located at regions (aal-150, aa268-409) on chlamydial hsp60 were identified as

responsible for high levels of autoantibody induced by the co-immunizationprotocol.

These observations are helpful for understanding the immunologic properties of c¡lamydiallhost

hsp60 and their relationship to disease pathogenesis. Moreover, these observations may ultimately

be useful for antigen-specific immunotherapy in the treatment of autoimmunity induced bv chlamvdial

hsp60.
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T. LITER,ATURE REVIEW

1. 1. 1. Taxonomv

Chlamydiae aÍe a family of obligate intracellular bacterial parasites with a tropism for

columnar epithelial and lymphoid cells. It became clear that chlamydiae had all the requisite

properties of bacteria (Stephens, 1993). Like other bacteria, they (1) possess a cell envelope

similar to that of gram-negative bacteria, (2) contain both DNA and RNA, (3) possess

prokaryotic ribosomes and synthesize their own proteins, nucleic acids, and lipids, and (4) are

susceptible to a wide range of antibiotics.

The genus Chlamydia consists of four species: Chtamydia tachomatis, Chlamydia psittaci

and Chlamydia pneumoniae (Page, 1968; Grayston, 1989) and Chtamydia pecoruiz (Fukushi,

1992). C. Ûachomatis was late¡ subdivided into three biovars: trachoma, lymphogranuloma

venereum (LGV), and mouse (Moulder, 1984). The degree of DNA relatedness between C.

trachomatìs and C. psittaci has been reported to range from less than ITVo to almost 30% (Cox,

1988; Fukushi, 1989; Kingsbury, 1968), and C. pneutnonioe DNA exhibits less than 10%

relatedness to the DNA of the other two species (Cox, 1938). However, the monophyletic origin

of the genus is unquestionable. Molecular evaluation of 165 rRNA sequences confirms that

chlamydiae are eubacteria, but with only very distant relationships to other eubacterial orders

(Weisburg, 1986). The 165 rRNA sequences in C. trachomatis biovar LGV and C. psÌnaci 6BC

differ from each other by only 5 % while at the same time being deeply separated from all other

known eubacterial 165 rRNA sequences (Weisburg, 1989). The 165 rRNA of C. pneumoníae
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closely resembles that of the other two chlamydial species. The 165 rRNA genes of the trachoma

and LGV biovars are closely related, and the corresponding genes in C. trachomatis biovar

mouse and C. psinaci strain guinea pig inclusion conjunctivitis (GPIC) share partial but not

complete nucleotide sequence homology with the C. tachoma.tis biovar LGV gene @almer,

1986). Ali three species have proteins with extensively shared sequences (Campbell, 1990;

Campbell, 1989; Herring, 1989; Zhang, 1989; Zhang, 1990). Of rhe rhree biovars of C.

trachomatis, LGV and trachoma exhibit almost 100% DNA homology, but the DNA relatedness

of the mouse biovar to the other two biovars is 30 to 60% flMeiss, 1970; Fukushi, 19Sg). There

is a very high level of sequence homology between the proteins of the trachoma and LGV

biovars (Hamilton, 1989; Peterson, 1988; Zhang, 1989).

Of the three biovars of C. trachomatís, only biovars of trachoma and LGV have been well

characterized regarding their interactions with host cells in vitro. The two biovars have been

further separated by indirect microimmunofluorescence into 15 often closely related serovars

(Wang, 1982; Vy'ang, 1973; Grayston, 1975). LGV, which infects lymphatic cells to produce the

disease, lymphogranuloma venereum, for which it is named, exists in three serovars, Ll, L2,

and L3. The trachoma biovar is a parasite of the squamocolumnar cells of mucous membranes,

which itinfects by two different modes of transmission (Schachter, I}TB). Serovars A, B, Ba,

and C are associated with trachoma, a follicular conjunctivitis spread by close person-ro-person

contact, whereas serovars D through K are commonly associated with sexually transmitted

infections. Except for genus-specific antigens on the chlamydial lipopolysaccharide (LpS), the

major serovar-, subspecies-, ild species-specific antigenic epitopes are all attributable to a

single, quantitatively predominant, major outer membrane protein (MOMP) (Caldwell, 19g1;
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Stephens, 1982)- There are no nonhuman reservoirs for any of these chlamydial infections.

Compared with the trachoma biovar, LGV has relatively few well-characterized strains. By far

the most frequently used are strains 434L and 440L, isolated from patients with classical LGV

(Schachter,1969). More than a score of trachoma isolates belonging to both the A through C

and the D through K groups of serovars have been employed in cell culture investigations.

Biovars trachoma and LGV often differ sharply in their behaviour in cell culture, but within each

biovar, little variation among the different strains examined has been recorded.

C. psirtaci is genetically (Fukushi, 1989) and phenotypicaily (perez-Martinez, 19g5; Spears,

1979a; Spears, 1979b) more diverse than C. tachomatis. Comparison of 29 strains of C. psittací

growing in mouse fibroblasts (L cells) revealed numerous differences in growth rate and other

characteristics (Spears, I979a). Strains designated as C. psittacihavebeen isolated from humans

and a very large number of avian and mammalian species, in which they produce a broad

spectrum of disease (Schachter,1969; Storz, I97l).

The interaction of chlamydiae with host cells in culture has been studied with only a limited

number of established cell lines and primary cell cultures. For C. psittaci, the L-929 line of

mouse f,rbroblasts (Sanford, 1948) has been by far the most frequently used. For C. trachomatis,

cell lines Hela229 (a line derived from a human cervical carcinoma [Scherer, 1953]), McCoy

(a mouse fibroblast line of uncerüain origin [Gordon, lgTZ]), and BHK-1 (a line of diploid

hamster fibroblasts [stoker, 1964-]) have been widely employed.

Most strains of c. psittaci and the LGv and mouse biovars of c. trachomatis may be titrated

for infectivity by the formation of plaques in L-cell monolayers, but the trachoma biovar can

not, probably because it does not initiate secondary cycles of infection (Furness , 1962)-
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However, the infectivity of chlamydiae, the plaque formers included, is most often titrated in

terms of inclusion-forming units, i.e., the number of inclusions (number of infected cells)

produced under standard conditions (Furness, 1960; Kuo, 1976).It is probable, but not proven,

that one inclusion-forming unit equals one infectious elementary body (EB).

1.L2. Growth cvcle.

The chlamydial infectious cycle is initiated by the EB binding to receptor(s) on the host cell.

Polycations (Kuo, 1973) and divalent cations (Hatch, 1981; Sneddon, 1985) enhance chlamydial

binding to eukaryotic cells, suggesting that electrostatic interactions function in the initial phase

of chlamydial attachment. Subsequent steps in chlamydial attachment likely involve specific

ligand-receptor interactions or other high-affinity binding mechanisms which are saturable. The

adherence of any C. trachomatis strun is competitively inhibited by heterologous strains,

suggesting that this specific binding involves a common host cell receptor (Vretou, 1989).

Chlamydial proteins that bind to host cells have been identified by separating chlamydial

polypeptides by electrophoresis and reacting them with surface-iodinated host cell extracts or

isolated host cell membranes. In one investigation, a number of biovar LGV and trachoma

strains of C. ffachomatis displayed two proteins with apparent molecular masses of 18 and j2

kDa that bound to extracts of HeI-a cells (Wenman, 1986a), whereas two C. psittaci strains had

only a single binding component of 17- to 19-kDa (Hackstadt, 1986). A second study revealed

that single biovar LGV and trachoma strains have 18- and 31-kDa proteins that bind to

membranes from either HeI-a or McCoy cells (Wenman, 1986a) and that one C. psíttaci sfrain
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(MN/Cal 10) has 16- and 30-kDa proteins that are bound by HeLa cells (Wenman, 1986b). The

gene encoding the 31-kDa protein has been cloned and expressed in E. coli (Kaul, I1BT). These

putative chlamydial adhesins have many of the properties to be expected of ligands that attach

chlamydiae to their host cells. They are found in isolated cell wall fractions (Wenman, 19g6a).

Heparin, already identified as an inhibitor of attachment, is also bound by the 1g- and 32-l<Da

proteins (Hackstadt, 1986). A heparin sulfate-like glycosaminoglycans (GAGs) present on the

surface of chlamydia organisms is required for attachment to host cells. Zhang and Stephens

(1992) reported that chlamydiae synthesize a sulfated oligosaccharide that is a molecular mimic

of eukaryotic heparin sulfate and use this for binding to a heparin sulfate receptor (Zhang,

1992). It has also been suggested that the MOMP facilitates a chlamydial attachment by

promoting electrostatic and hydrophobic bonding with host cells (Su, 1990). Anti-MOMp

monoclonal antibodies can eff,rciently inhibit attachment to host cells (Su, 1990). However, to

date there are no direct data implicating MOMP as having a specif,rc role as an adhesin. MOMp

and MOMP peptides have not been shown to competitiveiy inhibit EB attachment, and MOMP

expressed on the surface of E. colì does not induce specific attachment of E. coli recombinants

to host cells (Stephens, 1993). Therefore, neither the chlamydial adhesin nor its host cell

receptor have been definitively identified.

There are two indisputable common cha¡acteristics of the initial interaction of the chlamydial

cell with host cells. First, chlamydiae enter host cells that usually are not actively phagocytic

(nonprofessional phagocytes [Rabinovitch,l968]); and second, entry terminates in the appearance

of the chlamydial cell in a membrane-bound vacuole (inclusion) in the host cell cytoplasm. Even

the incompletely cha¡actenzed chlamydia like organisms that parasitize thecells of invertebrates
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have these hallmarks of chlamydial entry' studies concerning the process of entry have produced
conflicting results' Part of the confusion occurs because chlamydiae may use different modes of
cell entry (stephens' lgg3)' Entry of chlamydiae involves active phagocytosis that is induced by
EB binding to host cells (Byrne, 1978), and it occurs through a microfirament-dependent

mechanism (ward' 19s4)' As well, evidence for entry via receptor-mediated endocytosis has also
been described (Hodinka, 1988). Internalized endocytic vesicles containing EBs do not fuse with
host lysosomes (Friis , 1972). The mechanism by which chlamydiae prevent phagolysosomal

fusion is not known, but it is likely a key virulence property that promotes intracellular survival_
Shortly after internarizatíon, the EB differentiates into a larger (g00 nm) cell type termed the
reticulate body (RB)' DNA, RNA, and protein synthesis is initiated, and the RB multiplies by
binary fission (Becker, 1978). The endocytic vesicle expands dramaticalry to accommodate the
increasing number of RBs, and the resulting intracellular inclusion body displaces much of the
host cell cytoplasm and organelles. chlamydial-specif,rc antigens have not been convincingly
demonstrated in association with the plasma membrane of infected cerls.

chlamydiae reproduce by means of a developmental cycle 1ward, 19gg) that consists of the
alternation of two cell types, EBs and reticulate bodies (RBÐ. EBs never divide. They are
released from infected host cells and enter uninfected ones, where they reorgan ize intoRBs. RBs
never infect new host cells (Tamura, 7967)- Their role is to multiply and eventua'y transform
themselves into a new generation of EBs.

chlamydiae have evolved distinct infectious and reproductive forms in order to meet the often
conflicting demands of extracelluar survival and intracellular multiplication. on entering a host
cell' the chlamydia EB promptly begins to reorganize into an RB. This simple statement
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generates several important questions. What component of the intracellular environment provides

the signal for the EB-RB transformation? How is this signal transmitted to the phagosome-

enclosed EB? What are the first steps in reorganization of an EB into an RB? How are these

events regulated? Presently, none of these questions can be answered completely. It is of interest

that C. trachomatis can inhibit fusion of its inclusion with lysosomes yet promote fusion of its

inclusion with other C. ffachomaf¿s-containing inclusions. C. psittacíinclusions do not fuse with

each other or with inclusions containing C. trachomalls (Matsumoto, 1991). RBs differ from

EBs in many ways, both biologicatly and chemically. The RB has an osmotically and

mechanically fragile cell wall, probably because the MOMP is no longer cross-linked with

disulfide bonds (Hackstadt, 1985), It also has a fibrillar nucleoid in contrast to the highly

compacted nucleoid of the EB (Costerton, 1976); the RB is noninfectious, and metabolically

active. The early biochemical events are the synthesis of protein and reduction of the MOMp

disulf,rde bonds to initiate the EB to RB renrganization (Hatch, 1986; plaunt, 1938). protein

synthesis in RBs depend on the transport of ATP and ADP possibly via the porin channels

provided by reduction of the MOMP (Hatch, 1982; Bavoil, l98a; Peeting and Brunham, 19g9).

Once started, reorganization of EBs into RBs proceeds rapidly via numerous morphologically

intermediate stages. By 8 to 12h after infection almost pure RB populations are seen. The major

outer membrane protein (MOMP) is constitutively expressed throughout the chlamydial growth

cycle and functions as a porin in the metabolically active stage of the chlamydial growth cycle

(Bavoil, 1984). Synthesis and incorporation of monomeric MOMP into oute¡ membrane

complexes is first detected 12 h after infection and continues throughout the developmental cycle

(Hatch, 1986). In contrast, 60-and 12-kD outer-membrane proteins are only expressed late in
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the developmental cycle (Newhall, 1987; Hatch, 1986), and their expression coincides with the

asynchronous differentiation of noninfectious RBs into infectious EBs. This secondary

differentiation process involves (a) disulfide bonding among the three outer-memb¡ane proteins

(60kd' 12kd and MOMP) and O) the reformation of the rigid outer-membrane structure

characteristic of the EB. The growth cycle is completed when the cell lyses or the intact

inclusion is expelled from the host cell, thereby freeing EBs to reinitiate the infectious process

(Todd, 1985). By 48 h, the intracellular chlamydial population consists mainly of EBs with

outer membrane complexes containing MOMP still in the monomeric from. \ù/hen the cells lvse

at 46 h, the MOMP is rapidly cross-linked and infectious EBs are released.

1.1.3. The growth related persistence or latency of chlamydial infection.

Several in vitro models of persistence (Stephens, 1993) have been presented: 1) penicillin-

induced persistence 2) essentiai metabolite (e.g. folic acid) deprivation, 3) interferon-gamma-

mediated persistence, and 4) persistently infected cells selected following inoculation of high

multiplicities of infection. Each is mediated by a partial blockade of chlamydial growth and /or

development. The mechanism of interferon-gamma inhibition of chlamydiat-infected cells differs

depending upon the host cell employed. Using murine cells interferon-gamma induces nitric

oxide production that inhibits chlamydial growth probably by limiting access to iron (Mayer,

1993).In contrast, interferon-gamma treatment of human cell lines inhibits chlamydial growth

by limiting tryptophan availability (fhomas, 1993). In each of the first rhree systems chlamydial

growth results in the ability to detect inclusions in infected cells and the inclusions usuallv
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contain atypical and often large RB-like forms. The potential utility of these models to in vivo

mechanisms depends upon the envisioned duration of the metabolic starvation and whether or

not chlamydia are in a metabolic state that would make them refractory to immune mechanism

for resolution of infection or eradication by antibiotic treatment. Significantly, the proposed

model of IFN-gamma persistence of infection additionally is handicapped in that three serovars

are autotrophic for tryptophan (Ailan, 1983); thus this model does not represent a generalized,

mechanism. If these organisms were metabolically inactive they may be refractory to resolution

by immune mechanisms or antibiotics. It will be of interest to apply modern protein and nucleic

acid detection techniques to decipher the so called "cryptic" state of this model of persistence.

Unfortunately there is little compelling epidemiological or clinical data or in vivo or in situ

biological data, such as the detection of atypical RB-like forms in ultrastructural examinations

of infected tissues, to support the relevance of persistence in vivo. Nothing about the ',cryptic"

state has been defined in biochemical or molecular terms. Thus such fundamental questions

involving the natural history of infection remain open (Stephens, 1993).

1.1.4. Structure and Composition of Chtamydia

Chlamydial cell walls resemble the walls of gram-negative host-independent bacteria which

possess two trilaminar membranes, an outer membrane and an inner cytoplasmic membrane

(Matsumoto, 1988). The lipopolysaccharide in the outer membrane is rough and the cell wall

lacks peptidoglycan. Both chlamydial cell types contain large and approximately equal amounts

of MOMP with an apparent molecular mass of about 40 kDa. EBs also have lesser amounts of
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I2-, 59-, and 62-kDa outer membrane proteins exceptionally rich in cysteine residues and

occurring in much smaller amounts in RBs (Hatch, 1984; Newhall, I9B7; Zhang, 19g7). The

surfaces of chlamydial EBs are hydrophobic and negatively charged at neutrai pH, with

isoelectric points of about pH 5 (Batteiger, 1985; Schiefer, 1982; Soderlund, 19g2). The

MOMPs of both C. trachomatís bíovars have identical isoelectric points (pI : 5.3 to 5.5). EB

surfaces have patches of regularly spaced hemispheric projections that are specializations of the

plasmamembrane (Nichols, 1985; Matsumoto ,7975;Gregory, lgTg).provocative ultrastructural

data suggest that chlamydial surface projections appear to pass through the inclusion membrane,

thereby providing a direct link between the chlamydial and eukaryotic cytoplasmic compartments

(Matsumoto, 1988). Throughout the developmental cycle, chlamydiae remain in a membrane-

bound vesicle within the host cell which include the host membrane, the inclusion membrane ,

and the chlamydial inner and outer membranes. Whether this structure also provides the

opportunity for processing and presentation of chlamydial antigens by endogenous MHC class

I pathways is unknown. If antigen presentation does occur, the immunological consequence

wouid be the opportunity for the host immune system to recognize and kill infected host cells

(Stephens, 1993).

The only outer membrane complex (Caldwell, 1981) components defined at the molecular

level are LPS, MOMP, OMP2, and OMP3. Both LPS and MOMP are surface-accessible to

antibodies on RBs, but the immuno accessibility of LPS on EBs appears to be modified. OMp2

and OMP3 are developmental stage-specific cysteine-rich proteins present only in EBs. The

current belief is that MOMP, OMP2 and OMP3 are extensively disulfide cross{inked, mediating

the structural rigidity and osmotic resistance of the EB (stephens, 1993,).
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There are seven major chlamydial antigens re*ognized during natural human infection as seen

by immunoblot analysis of sera from women with C. tachomatis 
1ewical 

infection @runham,

1987). They are two heat shock proteins, hsp60 and hsp70; two membrane proteins, OMp-1 (40

kD, MOMP) and OMP-2 (57 kD, cysteine-rich outer membrane protein); LpS (10 kD); 32 kD

(possibly a histone protein) and 29 kD þossibly the pepridyl cis/trans isomerase) antigens

(Brunham, 1994).

The DNA is compactly organized in a central nucleoid and is a closed circular chromosome

consisting of 1,045-kbase pairs (Stephens, 1993) with a molecular weight of 660 kDa. A

molecule of this size could provide information for about 600 different proteins, which is

approximately one fourth the amount provided by the Escherichia coli genome. Most strains of

C- trachomads also have a 7.4-kbase pair plasmid. It has recently been shown that this plasmid

is not required for C. trachomatis growth or disease as a C. trachomatis strain isolated from a

patient lacks the plasmid (Peterson, 1990). Interestingly, in vitro growth of this strain appears

to be slower and less virulent; however, quantitâtive investigations of its biotogy have not been

conducted (Stephens, l9g3).

I.2. C. tachomatís Diseases

Infections caused by serovars A through K primarily localize to ocular and genital tract

mucosal surfaces, where they commonly produce asymptomatic infections or acute seif-limiting

infections such as uncomplicated conjunctivitis, urethritis, or cervicitis. However, these may

progress to chronic infections that provoke severe inflammatory responses and may lead to
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blindness and infertility. Trachoma, a chronic inflammatory disease of the eye caused by

serovars A, B, Ba, or C, is the leading cause of preventable blindness in the world. It is

estimated that 500 million people in the world have trachoma, T million of whom are blind or

have severely impaired vision (Morrison et al, 1992). Serovars D through K primarily infect the

urogenital tract and are cunently the leading cause of sexually transmitted infections in the

United States and Europe. In women, C. trachomatis infections of the lower genital tract can

ascend to the fallopian tubes, in which the immunopathological responses ultimately result in

chronic inflammation which produces tissues f,rbrosis and organ damage (Grayston, 1985) such

as chronic salpingitis,infertility or ectopic pregnancy. An estimated 200,000 women per year in

the United States develop chronic chlamydial salpingitis, with approximately 20,000 becoming

infertile as a result (Washington, 1987). Serovars LI, L2, and L3 cause lymphogranuloma

venereum (LGV), a systemic chlamydiat infection involving lymphatic tissues. LGV is not

common in the United States, but it constitutes a significant pubtic health problem in Africa and

the Fa¡ East. A new chlamydial agent, TWAR, has recently been characterized as a common

cause of acute respiratory infection (Stephens, L993).

1.2.I. Virulence and Pathogenesis

Virulence differences between biovariants such as LGV and trachoma strain can broadly be

considered from two points of view. First, virulence differences might be mediated at the

interface of the organism and the host ceil at attachment or uptake and inhibition of lysosomal

fusion. Alternatively, this difference might reflect the ability of the LGV biovar to resist
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cellular defense and/or grow more prolifically once inside the host cell. The mechanism is not

clear; the rates of attachment and invasion appear similar, at least at high multiplicity of

inoculum, but LGV is apparently better at resisting host cell defense as it survives better in

macrophages and polymorphonuclear cells (Yong , 1987).It has been observed in vitro that LGV

biovar strains produce earlier and larger inclusions than do trachoma biovar strains. The

molecular basis for this "growth advantage" is unknown, although the trachoma biovars produce

larger inclusions and greater infectious yields by the addition of cycloheximide to cultures. This

fact suggests that the LGV biovar is a more efhcient competitor with the host cell for required

metabolites and raises the likelihood that host range and virulence may be determined by

heterogeneity in biochemical capabilities. Virulence differences are probably not caused by a

single determinant. Nevertheless, we have an inadequate understanding of the fundamental bases

of virulence and host restriction, let alone an understanding of their molecular mechanisms.

On the basis of trachoma vaccine studies in monkeys and humans, Grayston and colleagues

proposed that the host immune response during reinfection or chronic infection was the most

important component in the production of severe inflammatory responses that led to conjunctival

scarring (Grayston, 1985). The current model is that frequent reinfection and/o¡ persistent

infection leads to a cascade of inflammation and consequent scarring, with the signif,rcant

sequelae of blindness, infertility and ectopic pregnancy (Stephens, 1993).

While immune pathogenesis is fundamentaliy the mechanism of chlamydial diseases, it is not

clear if specific antigens and consequent immune responses are responsibie, as in classical

delayed-type hypersensitivity (DTH) responses, or if other inflammatory or immune regulatory

processes such as autoimmunity cause disease (stephens, 1gg3).
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In general our understanding of the immune responses to human chlamydial infections is

limited, and the precise roie of antibodies, T cells, phagocytes, ild other immune effector

mechanisms in host immunity are poorly defined. However, it is clear that both

immunoprotective and immunopathologic responses are provoked by chlamydial infection.

The immune mechanisms primarily responsible for resistance to infection and clearance of

an established infection are probably distinct, and little is understood about them. Monkey

studies and human trials using intact EBs as a vaccine demonstrate that immunity to infection

can be achieved. Significantly, protection in these studies was found to be serovar-specif,rc at

least within the context of the serovars used. The serologically variant antigen that defines the

serovars is the MOMP, as determined by monoclonal antibodies and concordance between the

serological relationships and those derived from MOMP gene (ompl) sequences (yuan, 1990).

Antibodies to surface exposed variant epitopes of MOMP play an important role in immune

protection from infection by human strains of C. trachomatis (Stephens, lgg3). The observation

that this immunity is relatively short-lived suggests further that mucosal IgA is the primary

effector. If sterilizing immunity is not achieved, then antibody-mediated clearance of an

intracellular infection would appear to be a significant challenge for the immune sysrem-even

without considering subversive mechanisms for persistence. A role for MHC class I antigen

presentation and cytotoxic T cell killing of chla.mydia-infectedcells has been reported by several

groups @eatty, 1994; Starnbach, 1994) with fundamental importance to understanding immunity

to chlamydial infections. Besides the role of cytotoxic T lymphocytes (CTL), the control of

15
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infection within the cell also relies on the inhibitory and potential cytotoxic effects of interferon-

gamma or other cytokines suggesting an important role for CD4 lymphocytes in immunity

(Byrne, 1988).

L.2.3. Immunopathogenesis

The chronic inflammatory sequelae that follow Chlamydia infection have been considered

as due to immunopathogenic mechanisms @runham, 1994). Data from animal models of

infection and human epidemiological studies demonstrate that chronic inflammation of trachoma

and chlamydial salpingitis is not part of primary chlamydial infections, and only develops with

reinfection. Repeated infections in monkeys, guinea pigs, or mice cause chronic inflammation,

tissue damage, and scarring of the mucosal epithelium-pathologic changes that are not apparent

in a primary infection (faylor, 1982; Monnickendam, 1980; Patton, 1985; patton, \9g9a;

Patton, 1987; Patton, 1989b; Quinn, 1986; Tuffrey, 1990). The concept that prior sensitization

to chlamydiae causes more severe disease upon reinfection is also supported by results from

early trachoma vaccine trials. Monkeys vaccinated parenterally with C. trachomarls developed

more severe disease upon infection flilang, 1967; Grayston, 1985; Grayston, 1962; Woolridge,

L967; Bell, 1969; Collier, 1967). The histopathological changes observed in these animal models

resemble those of trachoma and chronic salpingitis, with (a) development of follicles whose

germinal centres contain primarily B cells, (b) infiltration of the submucosal epithelium with

macrophages and T cells, and (c) mucosal scarring @atton, 1985; Patton, 1989a; Hogan, 1962;

Moller, 1979; Abu, 1989; Whittum-Hudson, 1986; Burd, 19gg).
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Thus the immune response to chlamydial infection is somewhat paradoxical. prior infection

confers a degree of resistance to reinfection, as demonstrated by decreased shedding of infectious

chlamydiae, but at the same time it sensitizes the host for the development of

im munopathological changes.

A soluble noninfectious detergent extract of chlamydiae elicited severe ocular inflammation

when applied to conjunctivae of previously infected animats (Watkins, 1986; Taylor, 19g7). The

inflammatory response was delayed (peake.d at24 hr), and it was charactenzed by follicular

hyperplasia and a mononuclear macrophage and lymphocytic infiltrate of the submucosal

epithelium. That histopathologic picture is typical of a delayed hypersensitivity @H) response

and resembles that found in conjunctivae from humans with chronic trachoma (Hogan, 1962;

Abu, 1989). Most remarkable a single chlamydial antigen, the 60 kd heat-shock protein (hsp60),

has been shown to be responsible for the delayed hypersensitivity response in previously infected

animals (Morrison, 1989). Human data also suggest that hsp60 may elicit the immunopathologic

responses of chlamydial infection. Thus high-titre antibodies to the chlamydial hsp60 have been

consistently found to be associated with infertility related to tubal occlusion or ectopic

pregnancy in women with chlamydial pelvic inflammatory disease (Morrison, 1989, 1992;

Brunham, 1985; Toye, 1993). Wagar and Stephens (Wagar, 1990) detected strong serological

responses to chlamydial hsp60 in patients with severe pathology, such as ectopic pregnancy

caused by chlamydia, and in trachoma patients. In contrast, in the face of strong serological

responses to other chlamyai* proteins, no serological response to hsp60 was observed from most

chlamydia-infected patients without severe pathology. Using the same patient sera, the reactivity

to hsp60 was confirmed using protein obtained from the chlamydial gene expressed in E. colí
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(Cerrone, 1991). In the presence of purified recombinant C. trachomatis 57-1<Da hsp60,

peripheral blood lymphocytes (PBLs) from 9 of 18 (50%) women with salpingitis, none of 10

women with a lower genital tract cervicitis, and 3 of 42 (7.1%) healthy women proliferated

(Witkin, 1993). Furthermore, it appeared that among the patients with salpingitis, those women

with a previous history of salpingitis or ectopic pregnancy had the highest prevalence of

sensitization to hsp60. The T cell epitopes that PBLs of patients responded to was mapped to

conserved hsp60 epitopes sha¡ed between the C. trachomatis and human hsp60 flMitkin, Ig94).

As hsp60s are highly conserved antigenically between bacteria and humans, eliciting immune

responses to hsp60 in human hosts could precipitate enduring pathological events, even following

resolution of infection by the induction of autoimmunity. Interestingly, other microbial hsp60s

have also been documented to initiate chronic inflammatory diseases and in these diseases,

autoimmune responses to hsp60 are also thought to be central to pathogenesis @lias, 1991; van

Eden, 1988). Thus, study of immune recognition of microbial hsp60 may help to elucidate the

pathogenesis of a variety of chronic inflammatory diseases.

1.3. Heat Shock Protein 60 (hsp60)

Ritossa's early observations of the puffing of the Drosophila chromosomes in response to

elevated temperatures resulted in the quest to charactenze the changes produced in organisms

following the stress of heat shock (Ritossa, 1962). These early observations resulted in the

identification of a specific subset of proteins that were induced after heat shock and conferred

protection to the cell during heat shock. These proteins were first named the heat shock proteins,
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but as their induction to a variety of stress signals has now been well documented, they also are

known synonymously as the stress proteins (Lindquist, 1988). The nomenclature of the hsps has

been designated such that the molecular weight of the hsp identifies it as belonging to a

particular group, with the known groups ranging in size from the 10-kDa family to the 100-kDa

family. Proteins among family groups are highly conserved in species ranging from Escherichia

coli to humans. V/hile cerüain hsps are greatly induced by stress signals, it is now quite clear that

cells have large quantities of hsps constitutively expressed and that these proteins are involved

in all aspects of protein folding and oligomerization. In addition, hsps function in the

intracellular transport to appropriate subcellular destinations of folding intermediates, the

disassembly of oligomeric structures, and the facilitation of the removal of aggregated and/or

improperly folded polypeptides (Gething, 1992). The term "molecular chaperon" also has been

coined to describe proteins involved in these process @liis, 1990), e.g. protein-protein

interactions. Hsp90 interacts with steroid receptors and with the virus encoded transforming

protein, src; hsp70 and related proteins interact with clathrin baskets, DNA replication

complexes, ER proteins , and the cellular tumour antigen p53 (Lindquist, 1988). Thus, hsps are

inducible and/or constitutively expressed by prokaryotic and eukaryotic cells in response to

stressful stimuli and appear to help protect cells from the adverse consequences of stress induced

protein misfolding. (Kaufmann, 1990a; Jindal, 1989; Langer, 1991).

Genes that encode hsp60 have been cloned, sequenced, and expressed from strains of C.

trachomatis, C. psittaci, and C. pneumoniae. (Momson, 1989; 1990; Cerrone, 1991). Sequence

analysis reveals an operon (termed hyp) which contains two open reading frames: hypA encodes
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a polypeptide with a calculated molecular weight of about 11 kD, and hypB encodes a

polypeptide of 58 kD. Comparative amino acid sequence analyses demonstrate that the hyp

operon is an analogue of the Escherichia colí groE operon (Morrison, 1989; Hemmingsen,

1988). The groE genes of E. coli were originally identihed as genes necessary for productive

growth of bacteriophage lambda and T4 (Georgopoulos, 1973). The two genes groEl and groES

comprise an operon under heat shock control (Tilly, 1983) located at93.5 minutes on the E. coli

chromosome (Guest, 1978). They encode abundant proteins: groEl a 58 kd protein and groES

a 15 kd protein. GroEL is a porous cylinder of 14 subunits, each of relative molecular mass

58,000 daltons. The cylinder compose of two heptameric toroids stacked back-to-back with dyad

symmetry as determined by electron microscopy (I-anger, 1992; Chen, 1994). The subunits of

GroEL are folded into three distinct domains (Braig, 1994), the largest being the well-ordered

equatorial domain, containing residues 6-133 and 409-523 which form seven tightly packed cv-

helices. The equatorial domain provides most of the intratoroidal side-to-side contacts and all

the contacts between the two rings. It also contains the ATP-binding site. A small intermediate

domain (residues 134-190 and 377-408) connects the equatoriat with the apical domain through

short antiparallel polypeptide segments, which probably serve as hinges allowing allosteric

domain movement. The intermediate domain also forms a diagonal projection that contacts the

neighbouring apical domain on the right and with its base flanks the ATP-binding site. The

apical domain (residues 19l-376) forms the opening of the central cavity (fig.1). 4 number of

segments from this domain face the central channel and the top surface are structurally ill-

defined (Braig, 1994). Site-specific mutational analysis (Fenton, 1994) shows thar the flexible

regions are involved in the binding of polypeptide substrate and GroES. The same mutations in
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the apical domain of GroEL that abolished polypeptide binding also prevented the association

of the co-chaperoning GroES, a heptameric ring with subunits of molecular mass 10 kD. GroES

binding to one end surface of GroEL reduces the affinity of the opposite end for a second GroES

(Martin, 1993; Langer, 1992; Chen, 1994). GroES is required for the release of tightly bound

polypeptide from its attachments sites at GroEL by coordinating the ATPase activity of the

chaperonin (Hendrick, 1993). Upon ATP-binding or hydrolysis, conformational changes in the

equatorial domains may be conducted by the intermediate segments to the apical domains,

causing them to bury their polypeptide-binding regions (Hartl, I9g4).

The hsp60 family has retained a high degree of amino acid sequence identity with hsp60

protein sequences from more than 50 different bacterial and eucaryotic cells having over 40%

sequence identity (Viale, 1994). As an example , the C. tachomatis hsp60 has 48 % amino acíd

sequence identity with human hsp60 or mouse hsp60 (Iable i). The high degree of amino acid

sequence identity between a prokaryotic pathogen and a mammalian host protein suggests a

structural basis for the initiation of an autoimmune response in which molecular mimicry could

play a dominant role. This immune response to hsp60 may be associated with host chronic

inflammatory disease because of autoimmune reactions that are perpetuated by self hsp60

(Kiessling, 1991; Jones, 1993).
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Figure 1. Architecture of GroEL. Van der Waals space-filling model of the entire 14-mer

shown in grey except for two adjacent subunits in the 'top' ring seen facing into the channel (top

panel) and viewed from the outside (bottom panel). Domains within the left subunit are colour-

coded as follows: equatorial, green; intermediate, gold; and apical, purple; the right subunit's

equatorial, intermediate and apical domains are colour-coded yellow, red and blue, respectively.

c, Drawing depicting diagrammatically the structure in b. E, I and A, equatorial, intermediate

and apical domains, respectively; C, central channel; 'W, external opening of a side window.

Figure is from reference: Brag, K. et a1. 1994.
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Arnino a.cid seq¡-rence identit¡,r for hsp6o proteins frorn<Jifferent so (lrces

C- tracfiornatls
Sero\./a.r L2
Sero\/ar A
l\¡oLrse pneuñlonlt¡s

C- ps¡ttacl
C. Frneurnorrlae
Coxlella burnettl
E. coll
lvlyco þacterl u rrì tu be rcul os I s
Plarìt (Fr(lb BF>)
Hurna.n (HLl Cl-¡a 6c))
l\áouse

Data from reference: Brunham, 1gg4

Percent HSP6O
sequerìce
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1.4. Mechanism of Immunopathogensis

There are several mechanisms by

pathogenesis, resolution of infection.

chlamydial antigens.

1.4.1. Nonspecific tissue damage

The immunopathological consequence of mucosal chlamydial infection is sca¡ formation. The

mechanisms involved in mucosal scarring are not understood, but prolonged stimulation of a

mononuclear inflammatory infiltrate might contribute. Repeated mucosal infection with

chlamydiae, or the prolonged presence of chlamydial antigen in the mucosal epithelium, may be

sources of antigen for chronic inflammation . The accompanying release of soluble factors from

inflammatory cells and constituents (such as enzymes or cytokines) from chlamydial-lysed

epithelial cells may cause fibroblast activation, collagen synthesis and epithelial scarring

(Morrison, 1992).

which chlamydial hsp60 might contribute to disease

and modulation of the immune response to other

25

1.4.2. Moiecula¡ Mimicry

The term "molecular mimicry" was initially used to explain persistent viral infection.

Oldstone suggested that the major histocompatibility complex and viruses, especially

retroviruses, encode similar antigens, which allow the host to regard an infecting virus as ,'self'

and hence forego a protective immune response (Oldstone, 1987). Supportive evidence for the
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hypothesis that molecular mimicry causes autoimmune disease in humans comes from two recent

studies: one on the pathogenesis of celiac disease, the other on the pathogenesis of the

nonrheumatoid arthritis of anþlosing spondylitis (AS) and Reiter's syndrome (RS). AS and RS

appear to be genuine autoimmune diseases. Ninety-five percent of patients with AS and more

than 80% with RS carry the HL1.-827 allele, compared with less thaû 7% of the general

population. Six consecutive amino acids (QTDRED) are identical between the hypervariable

domain of HLA-827 and K. pneumoniae nitrogenase. Sera from a significant proportion of

HLA-B.27 individuals with RS or AS, but not from appropriate controls, react with a synthetic

peptide containing the homologous region of HLA-827.L (Schwimmbeck et à1, Ig87).

Because of the ubiquitous occurrence of hsp60 among prokaryotes and eukaryotes, immune

responses could be elicited that cross-react with host cells, and an autoimmune mechanism of

tissue damage could be evoked. Although there is little evidence that such phenomena participate

in disease pathogenesis of ocular and urogenital chlamydial infections, such a mechanism may

be involved in the pathogenesis of some autoimmune diseases related to other bacterial hsp60.

T cells involved in insulin-dependent diabetes mellitus (IDDM) of non-obese diabetic mice

(NOD) are specific for an epitope shared by mycobacteriai and mammalian hsp60 (Elias, 1990;

1991; Van Eden, 1988). A T-cell response to hsp60 and in particular, to aa337-460 in

mycobacterial hsp60 has also been demonstrated in NOD mice developing diabetes mellitus.

These T cells also respond to the membrane of ß cell sec¡etory granules and hsp60 may be

targeted to these granules. Immunization with the 337-460 peptide was reported also to induce

diabetes mellitus. Hermann et al (1991) found that T cells from the synovial fluid of juvenile

patients suffering from arthritis responded strongly to both mycobacterial and human hsp60.
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These findings imply hsp60 cross-reåctivity could play a role in some autoimmune diseases.

The humoral response to heat shock proteins (hsp) can be viewed from two aspects: 1) an

antibody response against a foreign protein, for example from a microorganism, and 2) an

antibody response against epitopes crossreactive between bacterium and host. The latter can be

interpreted as the autoimmune response. Both anti-human hsp60 antibody and anti-mycobacterial

hsp65 antibody were demonstrable in patients with ulcerative colitis (Elsaghier, 1gg2),juvenile

chronic arthritis, diabetes mellitus, cystic fibrosis (Graeff-meeder, 7993) and arteriosclerosis

(Xu, 1993). In Crohn's disease and nontuberculous mycobacterial pulmonary disease patients

had high titre of antibody to mycobacterial hsp65 without detectable anti-human hsp60 antibody

(Elsaghier, 1992). After immunization of mice with the mycobacterial hsp65, anti-hsp65

antibodies can cross-react with hsp60 from other prokaryotes (e.g. E. coli GroEL) both in

ELISA and Western blot experiments, but consistentiy tailed to give positive results in V/estern

blot and only showed weak binding to the human hsp60 in ELISA (Barrios, l9g4). The pattern

of specificities of anti-chlamydial hsp60 antibodies has been defined by a panel of monoclonal

antibodies (mAbs). The nine mAbs were chlamydial species specific which reacted with the

hsp60 of all 15 C. trachomatis serovars. Six of the mAbs cross-reacted with hsp60 from other

procaryotes. None of the mAbs reacted with eucaryotic hsp60 (Hela 229 cells) (yuan, 1992).

More examples of immune responses to hsp60 and chronic inflammatory disease are summarized

in table 2. These data suggest that antibodies induced by hsp60 from microorganisms can cross

react with human hsp60 only under selected condition. In general T cell clones with self hsp60

reactivity have also been commonly identified in a variety of chronic inflammatory diseases and

appears to be more commonly detected than self hsp60 reactive antibodies.



Table 2. Association between imrnunity to hsp6o and autoimmune disease

D¡seases ln whlch
mav have a role

Adluvant anhrltls

Streptococcal cell wall-lnduced arlhr¡t¡s

Rheumatold ailhrltls

hspæ

R eadlve anhr¡¡ls

Juvenlle anhrl¡ ls

D labetes mellltus

Specles

Lewls ral

Lewls rat

Human

Resoonse described

-T cêll resporìse lo Mb-hsp66

-T cell clone speclf lc lo{ Mb-hsp65 Induces

anhrlr ls

-T cell respmse ro Mþ-hsp66

-T cell respmse to Mb-hsp66

-amiÞodies agains Mb-hsp65
-expressofi of hsp6o In synovial llssue

Note: Mb-hsp65 represent Mycobacterium bovis hsp65; h-hsp60 stand for human hsp60.

2A

Human

Human

NOD mouse

-withln a panel o{ 15 T cell clofles oþtalned f rom

4 pallênls 12 diff eren¡ anrigenlc spedf¡clrles
tor mycÊbacterlal ætlgens were cbseryed

-T cell resptrìse ro Mb-hsp65 and h-hsp6o

-T cell response to Mb-hsp6. h-hsp6o
-antlbo'dles agalnsr borh Mb-hsp65 æd h-hsp60

-T cell and mtlbody response ro m-hsp6o and

MÞ-hsp6
-T cell dones (e.9. Cg) specific for m-hsp6o

induce dla-be¡es

-antlbody respmse h-hsp60Human



1.4.3. Autoimmunity induced by hsp60

Although T cells or B cells reactive with mycobacterial hsp60 can be demonstrated easily,

evidence is lacking for either crossreactivity with eukaryotic hsp60 or molecular mimicry in

many cases. This suggests that there is another mechanism involved in the induction of

autoimmunity. At all stages of infection, there appears to be an involvement of hsps in both the

pathogen and the host. Thus the response of hsps are involved in infections, both on the part of

the pathogen and the host. Evidence for increased hsp60 expression in autoimmune lesions has

been presented (Jones, 1990; Ka¡lsson-Parra, 1990; Rajagopalan, 1990). Thus, heightened hsp60

levels have been found in the synovial lining and other cells present in rheumatoid arthritis

lesions, oligodendrocytes of multiple sclerosis patients, B lymphocytes of patients with active

lupus nephritis, and pancreatic cells of IDDM patients. It may be that autoimmune responses to

self hsp60 are elicited during infection because the stressful condition of an inflammatory site

induces expression of hsp60 in both microbial and host cells and the responding immune system

is faced with the difficulty of accurately discriminating between two highly homologous proteins.

In a particularly convincingly example, Boog et aJ (1992) demonstrated increased levels of self-

hsp60 in the lining cells of inflamed synovial membranes from humans with juvenile chronic

arthritis, a condition that is also associated with immunopathological response to microbial

hsp60. Peetermans et al (1995) aiso found that it is the human hsp60 that is strongly expressed

in antigen-presenting mononuclear cells in the mucosa of patients with inflammatory bowel

disease and speculated that this could play a role in the initiation or maintenance of the

inflammatory process.
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Break down in the accurate immunological discrimination between highly homologous

proteins one of which is in an invading pathogen and the other of which is a common host

cognate may be a mechanism through which autoimmune pathogenic processes are initiated and

perpetuated. In support of this speculation, Lin et al (1991) reported that when a homoiogous

protein such as cytochrome c is used to induce an immune response, B and T cells can be

induced to respond to self cytochrome c under conditions where the host immune system is

simultaneously challenged with both foreign and self cytochrome c but not under conditions

where the host is challenged with either antigen individuatly. This important observation has

served as the impetus for the majority of my experimental analysis of autoimmune responses to

hsp60.

i.5. Cytokines and Immune Tolerance

The paradigm of CD4 T cell differentiation from naive precursors into type t helper T cells

(Thl) and type 2 helper T cells (Th2) has proven useful in understanding the outcome of host

responses in infection immunity and in autoimmunity (Powrie, 1993a). Th1 cells produce

interleukin 2 (IL-z), tumour necrosis factor-ß (TNF-ß), and interferon-gamma (IFN-gamma).

These cytokines activate macrophages and induce delayed type hypersensitivity (DTH) responses.

Th2 cells produced IL-4,IL-5, and IL-10, stimulate the production of mast cells, eosinophils

and immunogiobulin E (IgE), and down regulate cell-mediated immunity (Mosmann, 1989).

Cytokines are one of the major mechanisms that regulate autoreactive T cells in the
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peripheral immune compartment. For example, autoreactive T cells that induce organ-specific

autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) generally

display a Thi phenotype (Miller, 1994). On the other hand, regulatory T cells that suppress the

development of EAE produce cytokines that correspond to the Th2 prof,rle (I(arpus, 1992; Chen,

1994). These two cell populations cross-regulate one another because their respective cytokines

act antagonistically (Swain, 1993; Street, 1994). For example, IL-10 inhibits the production of

IFN-gamma and other Thl cytokines by interfering with antigen presentation by macrophages

and thereby down regulate Th1 cell function. @aul, I9g4).

The induction of peripheral tolerance to an alloantigen during organ transplantation is

accompanied in many cases by a decrease in the production of cytokines such as IL-2 and IFN-

gamma, while the production of cytokines such as IL-10 and IL-4 is sustained. As well IL-Z is

able to reverse or prevent the induction of T cell tolerance to autoantigens (Jenkins, 1987;

Essery, 1988). This phenomena can be explained by the "two signal model" where by the

engagement of the T cell receptor by an antigen presenting cell in the absence of costimulatory

molecules results in the induction of anergy (schwartz, 1990; umlaue, 1993).

Previous studies have demonstrated expression of a number of cytokines during chlamydial

infection, IL-L,IL-2, IFN-gamma, IL-6, tumour necrosis factor fl¡ff) and colony-stimulating

factors (CSFs) (Igietseme,1993; Starnbach, 1995; Magee, 1991;1992; V/illiams, 1990; Igg3).

More recently, it was reported that intravaginal infection of mouse pneumonitis biovar of C.

tra.chomatis induced a local Th1 response (Cain, 1995). However, the potential relationship

between tolerance versus autoimmunity induced by hsp60 and its relationship to antigen-specific

cytokine expression has not been examined to date.



II. SCOPE OF TT{E PR.FSENT STUDY

To determine whether autoimmune responses are detectable among humans with

immunopathological sequelae of C. trachomat¡s infection we evaluated sera from eight women

with C. trachomatís associated ectopic pregnÍmcy. All eight women had high titre of antibody

to the chlamydial hsp60. Using synthetic peptides to map the major epitopic regions we

determined that all eight women also had antibodies to human hsp60 peptide epitopes. These data

suggested that autoimmune responses to self hsp60 may contribute to chlamydial

immunopathology. To evaluate the condition under which autoimmune responses to hsp60 can

be generated we next compared the immunogenicity of recombinant C. trachomatis and mouse

hsp60 in CBA mice. 'We observed that mice are normally tolerant to mouse hsp60 and that

immunization with chlamydial hsp60 alone does not induce strong autoimmune response to

mouse hsp60. However under conditions of concurrent immunization with chlamydial and mouse

hsp60, self tolerance breala down. Tolerance to self hsp60 appears to be due to peripheral T cell

anergy and is associated with antigen-specific IL-10 secretion. Co-immunization with chlamydia

and mouse hsp60 resulted in reduction of antigen-specific IL-10 secretion and was associated

with the induction of autoimmune responses to mouse hsp60. Chlamydia hsp60 deletion mutants

were used to map the region within chlamydia hsp60 that provided help to break down tolerance

when co-administered with mouse hsp60. Such sites were mapped to chlamydia hsp60 amino

acid sequences I through 150 and 268 through 409. Thus T cell response to these regions of

chlamydia hsp60 may be particularly important in C. trachom¿rls disease pathogenesis.
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L. Growth of Chlamydial Strains and Purifïcation of EBs

The C. trachomar¿s serovars used were B (TW5/0T),C (TW3/0T),and L2 (434lBU) (courtesy

of C-C Kuo, University of V/ashington, Seattle). This process involves the following four steps

which have been standardized by our laboratory and others working with chlamydia.

(1) Hela 229 Cell line growth conditions. Hela 229 cells (American type Culrure Collection,

Baltimore, Maryland) were grown in Eagle's minimum essential medium (MEM) with l0% fetnl

calf serum (GIBCO) and lmM glutamine (GIBCO). When cells becomed confluent, splited

monolayer cell from one into two or three flasks: (i) Discard medium of an established cell

culture flask (Nunc,175cm2, GIBCO), then rinse the cells with GKNP lx, about 5-10m1, 2ml

of 0.1% trypsin solution and add justenough trypsin to cover monolayer (1-2mls for 175 cm2

flask) and incubateat3T"C until the cell layer starts to detach. (ii) Pat the flask and quickly add

10 ml of MEM and pipet vigorously to disperse the cells and split the cell suspension to two or

three flasks, then place about 30 ml of MEM in each flask and incubate at 37"C.

(2) Growing Chlamydia

Chlamydial stocks were grown in Hela 229 cells which were routinely maintained in the

laboratory in Eagle's minimal Essential Medium with l0% fetal calf serum (FCS) and 1mM

glutamate (complete MEM). Each chlamydial strain was inoculated onto 24-hour-old monolayer

cultures of Hela 229 cnlls in 80 or 175 crfi flasks. The monolayers were pretreated with DEAE-

dextran (30 ¡.tglml) (Pharmacia, Dorval, Quebec) for 20 minutes at room temperature. The

inoculum was allowed to adsorb for 2 hours at room temperature. The monolayer was then

rinsed once with Hanks' Balanced Salt Solution (HBSS) and incubated with complete MEM

34
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containing L pglml cycloheximide. C. trachomatis serovars were incubated for 72 hours at 35"C

before harvesting. To harvest the mature infected cultures, the growth medium was discarded

and cells were rolled off the flask with approximately 30 glass beads in 10 ml of cold HBSS.

The flask was rinsed with an additional 10 ml of cold HBSS. The cell suspension was sonicated

on ice at an ouþut of approximately 25 W for 35 seconds and then centrifuged at 5009 for 15

minutes at 4"C. The pellet containing cell debris was discarded. The supernatant containing EBs

and RBs was centrifuged at 30,000 g for 30 minutes at 4"C. The pellet containing chlamydiae

was resuspended in sucrose-phosphate-glutamate buffer (SPG), pIJ7.4, using a blunted spinal

tap needle. This was used as inoculum for infecting more flasks or aliquoted and frozen at-"/0"C

as stock.

(3) Purification of Chlamydia

To purify EBs or RBs from the flask cultures, the same harvesting procedure as previously

described was used until the cell debris was discarded after the first centrifugation. Then the

supernatant containing chlamydial EBs and RBs was layered on top of an 8 ml cushion o135%

Renografin (Renograf,rn 76, Squibb, canada) in HEPES buffer (0.01 M N-2-

hydroxyethylpiperazine-N1-2-ethanesulfonic acid in 0.15 M NaCl) and centrifuged at 43,000 g

at 4"C for 60 minutes in a SW27 rotor in the ultracentrifuge. The pellet containing EBs and RBs

was resupspended in SPG and layered on top of a discontinuous gradient of 40-52% renografin

in Hepes buffer and centrifuged at 45,000 g for 90 minutes at 4"C in a SW27 rotor in the

ultracentrifuge. The EBs form a discrete band at the interface between the 44% and 52Vo

renografin zones while the RBs form a band just below the 40-44% interface. The bands were

harvested by suction with a pasteur pipette, washed twice in HBSS and resuspended in SpG



stored in -70"C.

2. Expression and Purification of Recombinant rreat shock proteins.

Mouse hsp60, chlamydial hsp60, or five deletion mutants of chlamydiat hsp60 (p{l-265,

C611, C86, C53, C6) were all cloned into a pGEx-2T vector and expressed as a fusion protein

with 28 kd glutathione S-transferase (GST) as the fusion partner (Cerrone, 1991 and yi, 1996).

The following procedures were used to purify the hsp60 fusion protein (Smith, 1988). Overnight

cultures of E. coli (DH5a strain)(started with a single clone) transformed with recombinant

pGEx-2Tplasmids were diluted 1:100in 3000 ml of fresh medium (LB with ampicillin 100

p"glml) and grown for 4 hours at37"C (OD600 at 0.6) before adding IPTG (isoprophylrhio-ß-D-

galactoside) (Sigma, Chemical Co.) to 0.1 mM. After a further three to 4 hours of growth, cells

were pelleted and resuspended in 1/50 to 1/100 culture volume of PBS (150 mM NaCl, 16mM

Na2HPO4, 4mM NaH2PO4, PH7.3). Cells were lysed on ice by sonication and after adding

Triton X-100 to l%, and centrifuged at 10,000 xg for 10 minutes at 4"C. The supernarant was

mixed at room temperature in a 50 ml polypropylene tube on a rotation platform with 5 ml50%

glutathione agarose beads (Sulphur linkage, Sigma). After absorption for 30 minutes, beads were

collected by brief centrifugation at 500 xg and washed three times with 45 ml pBS. Fusion

protein was eluted by competition with one bead volume of 50mM Tris.HCl (PH 8.0) containing

5mM reduced glutathione (Sigma) (fresh preparation required). Instead of elution, to cleave

recombinant hsp60 from the GST binding beads, 100 units of thrombin (Sigma) was added,

mixed with the beads in the 10 ml cleavage buffer containing 0.02 mM Tris, pHg.O, 0.15M
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NaCl, O.025 M CaClt for 10 min at room temperature. The cleaved proteins were collected from

supernatant by brief centrifugation. The samples were analyzeÅ by opticat density reading at

595nm, SDS-PAGE gel electrophoresis and immunodetection.

Regeneration of Gel. The glutathione agarose beads can be regenerated after four times

washing with (1) at least 5 column volumes of 0.1 M borate buffer, PH 8.5 containing 0.5 M

sodium chloride, (2) at least 5 column volumes of water, (3) at least 5 column volumes of 0. 1

M acetate buffer, pH4 containing 0.5 M sodium chloride and (a) at least 5 column volumes of

water. Finatly the gel was equilibrated with equilibration buffer (PBS) before use.

3. Protein Concentration Determination

Microassay Procedure. Samples were diluted (1:100) in 800 ¡rl PBS with a protein

concentration between 1 and 20 p.glml. Then 200 ¡rl of Dye Reagent Concentrate (Bio-Rad

protein quantization kit, Bio-Rad l¿boratories, Richmond, CA) were added into the 800 ¡rl

sample and vortexed. Samples were incubated at room temperature for at least 5 minutes but less

than t hour. The OD of samples would be measured at 595 nm. A standard curye was produced

in the same way using bovine serum albumin. Protein concentrations in samples were calculated

with reference to the standard curve.

4. Polyclonal Antibody Froduction

Rabbit antibody production. Female NZV/ rabbit (wight 2-2.5kg, from Roger Tessier, St.
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Pierre-Jolys, Manitoba Canada) were used to raise antibodies against chlamydial antigens. Each

rabbit was intramuscularly immunized with 5 x 108 inclusion forming units (IFU) purified

organisms in equal volume of Freund's incomplete adjuvant (Difco l-aboratories, Detroit, MI).

Three weeks later, two intravenous injections of an aqueous EBs suspension (1 x 10s IFU/each)

were given at 7 day intervals. Ten days after the final intravenous boost, rabbits were bled,

Antisera are aliquoted and stored at -20'C.

Mouse antibody production. The CBA/j(H-2k¡ mice (9) were purchased from Jackson

I-aboratories (Bar Harbor, ME), and used at four to eight weeks of age. Groups of four mice

were immunized subcutaneously with a total of 50 or 100 pg antigens such as hsp60, GST, or

ovalbumin (ova) (Sigma Chemical Co.) per mouse emulsified 1:1 in incomplete Freund,s

adjuvant (Difco) in the base of the tail for antibody detection or foot pad injection for T cell

proliferation. Mice were bled by cutting tail and sera were collected, stored at 4"C.

5. Peptide synthesis.

Overlapping l2-mer peptides of chlamydial hsp60 were synthesized using a commercially

available kit (Cambridge Research Biochemicals, Cambridge, UK). Peptides were synthesized

onto the solid polyethylene pins held by specially moulded polyethylene holders in the format

and spacing of a 96-well microtiter plate using pentafluorophenyl (opfp) active esters of

fluoroenylme-thyloxycarbonyl (F-MOC) protected L-amino acids with t-butyl derivatives as side-

chain protecting groups except for arginine with methoxytrimethylphenyl sulphonyl (mtr) side

chain protecting group (Geysen, 1987, Steward, 1984). The synthesis approach utilized a mild
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baseZ}% freshly distilled piperidine in N,N-dimethylformamide (DMF) purified with molecular

sieve for repetitive N-deprotection starting with the first cleavage of F-MOC protecting group

of beta-alanine residue precoupled to the polyethylene pins. Following the deprotection and DMF

and methanol bath washing, 30 mM of the appropriate preactivated F-MOC-amino acid ester was

dissolved in DMF containing 30 mM l-hydoxybenzotnazole as catalyst and 100 ¡rl aliquots of

the solution is added into each corresponding well of polyethylene micro plates. The coupling

reaction was carried out overnight at room temperature followed by DMF and methanol bath

washing. The deprotection, washing, coupling and washing steps are repeated until l2-mer

peptides were synthesized on all rods. After final deprotection and washing, the terminal amino

groups were acetylated by reaction with DMF: acetic anhydride disopropyletylamine (50:5:1,

vlv/v) for 90 minutes at room temperature and a single acid treatment with trifluoroacetic

acid:phenol:1,2-ethanedithiol (95:25:2.5,vlwlv) forfourhours atroom temperature used as side

chain deprotection followed by neutralization with 5% düsopropylethylamine in distilled

dichloromethane. After wash with a final methanol bath for 18 hours and dried in vacuum over

silica gel for 18 hours the pins with 12-mer peptides were ready to use. Successful synthesis was

insured by the simultaneous synthesis of positive and negative control pins and comparison of

the reactivity test mAbs to pins on which control tetrapeptides had been synthesized and supplied

by the manufacturer. The amino acid sequence of C. trachomatis hsp60 as deduced from the

DNA sequence (Cerrone et al,1991) was used to direct the synthesis of 533 overlappin g l2-mer

peptides covering the entire sequence and overlapping by ail but a single residue (Yi et al,

1e93).



6. sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE).

The discontinuous buffer system (I-aemmli, 1973) was used with all reagents being of

electrophoresis purity grade @io-Rad). The unit was a Mini Protein II (Bio-Rad) with gel

dimensions of 8 cm x 10 cm x 0.75 cm. On a given run, 2-5 ¡rg protein was loaded per well

after solublization. The gels were run in 0.025 M Tris/0. 192 M glycine/0.1 % SDS at 100 volts

until the tracking dye reached the bottom of the gel. Estimation of molecular weights was done

using the molecular weight standards. The gels were then either silver stained to visualize

protein bands or electro-btotted to transfer the protein bands to a nitrocellulose membrane

followed by staining with 0.l% proteindye amido black (Bio-Rad I^aboratories, Richmond, CA)

in solution (Methanol:HAc:dl{rO :9:2:9).

Silver staining of polyacrylamide gels. The procedure used to stain the gels for visualization

of the protein bands was after the method of Morrissey (1981). Special care was taken to prevent

dirt or grease from touching the gels which were handled only with disposable latex gloves.

Following a PAGE run, the proteins were fixed by incubating the gel for 4-12 hours at room

temperature with gentle shaking in at least 5 gel volumes of a solution of ethanol:glacial acetic

acid:water (30:10:60). The fixing solution was discarded and the gel was incubated with at least

5 gel volumes of 30% ethanol for 30 min at room temperature with gentle shaking and repeat

once. After the fixing solution was removed, 10 gel volumes of deionized water was added to

the gel and the gel was incubated for 10 minutes at room temperature with gentle shaking and

repeat twice. The gel swelled slightly during rehydration. After the last of water washing, 5 gel

volumes of a 0.1% solution of AgNQ (freshly diluted from a 20 % stock, stored in a tightly

40
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closed, brown glass bottle at room temperature) was added and incubated for 30 minutes at room

temperature with gentle shaking. The AgNO, solution was discarded, and both sides of the gel

were washed (20 seconds each) under a stream of deionized water.(Do not allow the surface of

the gel to dry, otherwise staining artifacts will ensue). Then the gel was incubated with 5 gel

volumes of a freshly made aqueous solution of 2.5Vo sodium carbonate, 0.02% formaldehyde

at room temperature with gentle agitation. The gel was watched carefully. Stained bands of

protein appeared within a few minutes. Continue incubation was needed until the desired contrast

was obtained. The reaction was quenched by washing the gel in 1% acetic acid for a few

minutes. Then the gel was washed several times with deionized water (10 minutes per wash).

The gel was preserved by drying on f,rlter paper.

7. Western Blotting

The procedure involves the transfer of proteins separated by SDS-PAGE onto a nitrocellulose

membrane (NCM) allowing them to be reacted with immune sera or mAbs which is not possible

when they are in gel matrix. A variation on the original method of Towbin et aJ (1979) was used

in our laboratory.

Following the PAGE run, the gel would be immersed in transfer buffer (25 mM Tnsl192

mM glycine/methanol, PH 8.3). The NCM (Bio-Rad) was used for electroblotting. The NCM

was cut to fit the gel and presoaked in transfer buffer. A TRANS BLOT apparatus @io-Rad)

was used for electroblotting. The NCM was placed on wetted 3 mm chromatography paper and

the gel piece laid on top of it, making sure to exclude any air bubbles. Another piece of wet 3
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mm paper was laid on top and this sandwich placed in between two pieces of pads and placed

in a TRANS-BLOT holder such that the gel side was towards the cathode. The apparatus was

filled to the top with transfer buffer. It was found that the best transfer of protein to the NCM

was obtained with overnight blotting using 20 volts. The NCM with bound protein was

immersed in a blocking buffer (2Vo BSA -PBS, PIJi7.4) for 90 minutes at37"C with shaking.

This was done to prevent non-specific binding of immunoglobulin to areas on the NCM where

no protein had been attached. The antibody was diluted in 2% BSA-PBS-0.05% Tween 20

solution. Tween 20 is a detergent used to prevent nonspecific sticking of antibody to the NCM.

The amount of antibody added to the NCM depended upon the titre of the immune sera or mAb,

incubated at 31"C for one hour. The NCM was then washed three times over 30 minutes in

wash buffer @BS plus 0.02% Tween 20) and then the second antibody is added which was

tagged with horse radish peroxidase (HRP) and was used at a dilution of 1:2000 in a 2% BSA-

PBS-0.05 Vo Tween buffer. The blot was developed with the substrate 4-chloro-1-naphthol

(SIGMA Chemical) and HrOr. Full development of the coloration was allowed and then the

NCM would be washed three times with dH,O and blotted drv.

8. Standard ELISA

Microtiter plates (Corning, New Yorþ were coated with 100 ¡rl of hsp60 (2 p.g/ml) in 0.1

M NaHCO3 buffer (PH 8.4). The microtiter plates were sealed and incubated overnight at 4'C.

'Wells were emptied and washed three times with PBS containing 0.}S%o-'lween20 (pBS-Tween)

and then incubated with 200 ¡.rl blocking buffer (PBS-Tween containin g 2% bovine serum
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albumin) for 2h at 37"C. The plates were washed once in PBS-Tween, and then 100 p.L of

sample antibodies diluted in blocking buffer was added to appropriate wells and then incubated

for 90 minutes at37"C. Theplates were washed three times with PBS-Tween, and a 1:3000

dilution of horseradish peroxidase conjugated rabbit anti-mouse immunoglobulin G or Goat anti-

rabbit IgG (PIERCE) in 100 ¡rl of blocking buffer was added to rhe wells and rhe plates

incubated for th at31'C. After washing three times, 100 ¡rl of substrate (2,2-azino-bis-[3-ethyl-

benzthiazoline-6 sulfonatel, ABTS, in citrate buffer, PH 4.0) was added, ild the plates

incubated for 30 minutes at room temperature. Optical density was read at 405nm (Microplate

reader, Bio-Rad Model 3550). Endpoint titrations were the highest dilutions of sera giving the

optical density unit (0.3) which is at least four times higher than the control reading at 405nm.

9. Peptide.ELISA

The imrnobilized peptides were assayed by enzyme-linked immunosorbent assay (ELISA)

according to the instructions of the manufacture, using polyclonal antisera or monoclonal

antibodies (mAbs) raised against chlamydial antigens as first antibodies and goat anti-rabbit

immunoglobuiins (Cappel 3212-0213), or rabbit anti-mouse immunoglobulin G (Cappel)

conjugated to horseradish peroxidase as second antibodies at a dilution of 1:1000. The colour

was developed with ABTS (Sigma Chemical Co.) in the dark and read at 405nm, using a

microplate reader @L308; Bio-Tek Instruments, Inc.). The first antibodies were diluted in

blocking buffer (1:250). The results were expressed in opticat density (OD) values. The solid-

phase peptides were reused after the bound antibodies we¡e dissociated by ultrasonification for



30 minutes at 60"C in

mercaptoethanol, and 0.1 M

10. Lymphocyte Proliferation Assays

10 days after immunization with hsp60 in IFA in the foot pad of CBA mice, lymph nodes

were collected aseptically and single cell suspensions were prepared and lymph node cells

(LNCs) were washed and resuspended in RPMI 1640 medium (GIBCO, Grand Island, NY)

containing 15% FCS. LNCs (5x105/well) were cultured with and without antigen in flat-

bottomed 96-we11 microculture plates (Costar 3596, Costar, Cambridge, MA). The plates were

incubated at3'7"C in a 5 % CO2,95% ur humidified incubator for 5 days. I pCi [3H] thymidine

(ICN Biomedicals, Inc., CA) was added to each well in 20 p.I of RPMI 1640 18 hours before

harvesting. The cultures were harvested using a phD cell harvester (Cambridge Technology Inc.,

MD, USA) and the incorporation of TdR into DNA was measured by liquid scintillation counter

(Beckman Ls 5000 CE, Fullerton,CA). Results of representative experiments are presented as

mean experimental DPM (Disintegrations Per Minute).

a solution containing 1% sodium dodecyl sulfate, O.L%

sodium phosphate (PH 7 .2).
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11" Spleen cell culture

Preparation of spleen cell suspensions. Mice were killed at various times following

immunization. Mouse spleens were removed aseptically, and single cell suspensions were

prepared. Debris was removed by passing the cell suspensions through nytex filters into
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centrifuge tubes. Cells were spun down at 400 g for 10 min and washed once with serum free

RPMI 1640 medium (no supplements). Cell pellets were resuspended in complete culture

medium. The number and percentage of viable cells was determined by staining cell preparations

with trypan blue and counting. Spleen cell suspensions were cultured at 1 x Iú/mI (2 ml/well)

alone or with different antigens (chlamydial hsp60, mouse hsp60, ovalbumin, 100 pglml),

concanavalin A (Con A) at 37'C in complete medium. Duplicate cultures were established from

the spleen cells of individual mice in each group. Culture supernatants were harvested at

different time intervals ( at 40 hours for IFN-gamma and at 72 hours for IL-10) as described

(Chen et al, 1994) and stored at -70'C until cytokine production was analyzeÅ.

12. Cytokine Determination

Murine lFN-gamma, IL-10, IL-2 and IL-4 were measured by a two mAb sandwich ELISA

purchased from Pharmingen (San Diego, CA). e.g. IFN-gamma ELISA was carried out using

xMG 1.2 as detection and R4-642 as capture antibody. IL-10 ELISA used JESS-2A5 andSXC-l

as capture and detection antibody respectively. 96 well plates (Corning, New York 14831) were

coated with capture mAb at 2 p"glml in coating buffer (0.1 M NaHCO3, PH 8.6). After

overnight incubation at 4"C, the plates were blocked with 4% BSA PBS buffer for 2 hours at

room temperature and washed extensively. Culture supernatant and cytokine standards

(Pharmingen) were serially diluted and added to the plates. The plates were incubated at 4"C
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overnight, and then washed four times. Biotinylated anti-cytokine detecting mAb Q. pglml) was

added for 40 min at room temperature. The plates were washed four times and incubated with

streptavidin-peroxidase at room temperature for 30 min. The plates were extensively washed and

ABTS substrate was added and develop at room temp. The plates were read at 405 nm.

The quantikine TGF-ßI immunoassay based on the "QuantikinerM" kit (R&D SySTEMS,Inc.

Minmeapolis) was used by following the instruction of the manufacture. This assay employs the

quantitative "sandwich" enzyme immunoassay technique. TGF-ß soluble receptor type II which

binds TGF-ßI has been coated onto the microtiter plate provided in the kit. Standards and

samples were pþtted into the wells and any TGF-ßI present was bound by the immobilized

receptor. After washing away any unbound proteins, an enzymelinked polyclonal antibody

specific for TGF-ßI was added to the wells to "sandwich" the TGF-ßI immunobilized during

the f,rrst incubation. Foilowing a wash to remove any unbound antibody-enzyme reagent, a

substrate solution was added to the wells and color develops in proportion to the amount of the

TGF-ßI bound in the initial step. The coior development was stopped and the intensity of the

color was measured by reading OD.

L3" Preparation of T lymphocyte subpopulations and adoptive transfer of immune cells

Spleen cells from immunized or normal mice were enriched for T cells by panning with

afftnity purified sheep anti-mouse Ig coated plates to remove B lymphocytes. A 100 x 15 mm

sterile tissue culture flask was coated with 5 ml sheep anti-mouse Ig (50 p.glml) (Kirkegaard &

Perry I-aboratories Inc., Gaithersburg, MD) at4"C overnight. After t hour blocking with 10
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ml l0% FCS-PBS at room temperature and subsequent washing, lxlff spleen cells in a volume

of 5 ml were applied to the flask. The flask was incubated for 60 min at37"C. The nonadherent

population, harvested with a pasteur pipette after gently rocking the flask, was predominantly

T cell. These cells were further purifred by passing through a nylon wool column (Nylon Fibre

Column Wako Purechemical industries, LTD) twice as described (Julius, 1973). Briefly, the

spleen cell suspension was loaded to the column which was previously equilibrated by running

25 to 50 ml of 37"C complete RPMI 1640 through the column and incubated in an upright

position for more than 45 min at 37"C,5% C}zhumidified incubator and the cells were drained

completely, then let cells stayed in the column for arother 45 min in an upright position. The

column was filled with 37'C complete RPMI1640 and the first 15 ml of the nonadherent,

effluent cells (T cells) were collected. 1 x 108 purif,red immune T cells ( at least 90% punty of

T cells identified by antibody against Thyl.2 Ag) or unpurif,red spleen cells were adoptively

transferred into recipient mice by intraperitoneal injection. At the same time the mice were

injected in the base of the tail with 100 ¡rg mouse hsp60 in IFA. Blood samples were collected

at day 30 after immunization.

14. Bacterial Culture Media

(1) Luria-Bertåni(LB) broth (one liter) contained 10 g bacto-tryptone (Difco), 5 g bacto-yeast

extract and 10 g NaCl. The solution was adjusted to pH 7.0 and autoclaved.

(2) Luria-Bertani(LB) agar was made by adding i5 g Difco agar per liter to LB broth and

was poured into 10 or 15-cm disposable dishes (approx.3O or 90 ml/dish) after autoclaving.



when needed, ampicillin (f,rnal concentration: 100 ¡rglml) was added.

(3) SOC medium contained in one liter 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 0.2 g

KCI' 10 ml of 1 M MgClz and 20 mt of 1 M glucose and was adjusted to pH7.0. Medium

containing no MgCl, and glucose was autoclaved. 1 M MgCL and 1 M glucose solutions were

prepared separately, filter-sterilized, and added into the autoclaved medium at final

concentration of 10 mM MgClr 20 mM glucose.

15. Cloning Vectors (Fig. 2)

pUC18 plasmids (Sambrook, 1989) obtained from GIBCO lack the rop gene which normally

is located close to the origin of DNA replication and is involved in the control of copy number.

As a result, these plasmids replicate to a much higher copy number than do other plasmids that

carry a pMBl (or ColEl) origin. The most important is that pUC18 vectors express the amino-

terminal fragment of the lacz geneproduct (ß-galactosidase) and display a-complementation in

appropriate hosts. The recombinants containing inserts of interest can therefore be identified bv

histochemical screening.

pGEX-2T plasmid (Toye, 1990) features the glutathione S-transferase gene from Schistosoma

iaponicum, which forms an affinity tail on the protein products of genes inserted into the

multiple cloning site. Expression is under the control of a tac promoter which enables inducible,

high-level production of fusion proteins. The vectors contain the lac Iq gene, so they can be used

in any E. coli strain. Intracellula¡ fusion proteins are easily recovered from bacterial lysates by

affinity chromatography using Glutathione Sepharose 48. Bound proteins are released from the

matrix under mild, nondenaturing conditions (5 mM glutathione). This helps preserve

48
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antigenicity and functional activity of the recombinant proteins. Recovery of the protein is

completed by using a site specific protease to cleave GST from its fusion partner (thrombin for

pGEX-2T). The protease recognition sequences are located between the GST gene and the

multiple cloning site.

L6. Oligo primer design and polymerase chain reaction (pCR)

All primers used in my studies are based on published sequence data (Cerrone, 1991 and

Venner, 1990). Primers were synthesized on an oligonucleotide synthesizer (Oligo 1000 DNA

synthesizer, BECKMAN INSTRUMENTS INC. Fullerton, CA).

Ml: 5'GTT CCG CGT GGA TCC GCC AAA GAT GTA AAA TTT GGT GCG 3'

MR1.6:5'TT-r rcc ccc ccA TCC T'tA cAA cAT ccc ccc TCC cAT ACC 3'

P25O: 5'GT GGA TCC ATA GCA GAA GAC ATT GTA GGC 3,

P38O: 5'GT GGA TCC CGC GTT GGA GCT GCA ACA GAG 3'

P545: 5'GT GGA TCC TTA ATA GTC CAT TCC TGC GCC 3,

P1: 5'CCG GGA AT.T CAT ATG GTC GCT AAA AAC ATT AAA 3'

P15O: 5,CG ATG AAT TCC AAT TGT TGC AAC TTG AGC AAT 3'
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Figure 2. Maps of PUC 18 and the gene fusion vector pGEX-2T showing multiple cloning sites

and genealogy.

51



52

The PCR cycling protocol was 25 cycles, each for 2 minute at 94"C, 2 min at 55"C and

2 min at72"C. Each PCR reaction contained 50 pmol of each primer, 0.2mM dNTPs, 1.5 mM

MgClr, 10 mM Tris-HCl (pH8.3), and 50 mM KCI and 0.5 unir of Taq polymerase

(GIBCO/BRL) in a final volume of 100 ¡rl.

L7. Preparation of Plasmid

The alkaline lysis procedure was used for the isolation of small quantities of plasmid DNA

from bacterial cells (minipreps), according to the method of Sambrook (1989). The large scale

plasmid DNA preparation followed instruction of plasmid Maxi kit (QIAGEN, Chatsworth,CA)

18. RT-PCR cloning mouse hsp60 gene

Total mouse L cell mRNA purification, cDNA preparation and PCR amplification were

performed following the manufacture's instructions (micro fast-track kit, cDNA cycle kit, In

vitrogene San Diego, USA). Briefly, 5 x 1ff mouse L cells were washed by 4"C PBS, petleted

down and lysed with 1 ml of Micro-FastTrackrM lysis buffer and passed through a sterile 21

gauge needle ) 3 times and further incubated at 45"C for 15 minutes. 63 p.l of the 5M NaCl

stock solution were added to each 1 ml lysate and mixed thoroughly by passing through 2l gauge

needle, Then one Oligo (dT) Cellulose tablet was added to the lysate and the tube was rocked

gently at room temperature for 15 to 20 minutes. The oligo (dT) cellulose was pelleted down

at room temperature at 2000 x g and washed by binding buffer for at least 3 times (ODruo of the
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"flow-through" should be < 0.05). The non-polyadenylated RNA was washed off by adding 200

¡rl of low salt wash buffer 3 times and mRNA was collected with 200 ¡Ä of elution buffer. The

PolyA+ RNA was precipitated by adding 10 ¡rl of glycogen (2 mg/ml), 30 ¡A of 2 M sodium

acetate and 600 ¡Ã of l00Vo ethanol and centrifuged at maximum speed (16,000 x g) for 15 min

and the RNA pellet was resuspended in 71.5 ¡A of sterile water ( ) 10 ng). cDNA was

synthesized from RNA by priming this mRNA at 42"C for I hour in a final volume of 20 p.l

containing Oligo dT primer or random primers (1¡rl) at a fînal concentration of 0.5-1.0 ¡rM, 1.0

¡rl RNase inhibitor, 4.0 p"l 5x RT buffer, 1.0 ¡rl 100 mM dNTPs, 1.0 ¡r1 80 mM sodium

pyrophosphate, 0.5 ¡rl AMV reverse transcriptase. The solution was mixed by lightly tapping

the tube, then spin it briefly. To remove the secondary structure, the vial containing only mRNA

and primers was heated in a 65"C water bath for 10 minutes, then placeed at room temperature

for 2 minutes before other reagents were added. The RNA-cDNA hybrids were denatured by

95"C for 2 minutes and spun and quickly placed on ice. This product was ready for any PCR

reaction. Second-strand synthesis is not required or recommended. Mouse hsp60 specific

oligonucleotides as primers (Mi and MR1.6) which locate at 5-' and 3'- primer end of mouse

hsp60 gene (Venner et al, 1990) were designed with 5'- and 3'- BamHl restriction endonuclease

sites to allow cloning easily. The desired DNA insert verif,red by partial sequencing with known

primer (Ml and MR1.6). The insert was isolated by gel electrophoresis. In order to reduce

background, BamHl cleaved vector DNA was treated with calf intestinal alkaline phosphatase

(CIP). The concentration of insert DNA was relatively high (the molar ratio of insert to vector

is 3 to 1) or equal (the ratio is 1 to 1) in order to facilitate ligation to vectors. The amount of

DNA in a 20 ¡rl ligation mixture was 0.1 ¡.rg. The products of the ligation were introduced into
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competent E. coli @H5a), and recombinant containing the gene for ampicillin resistance were

selected directly on ampicillin (100 ¡rglml) containing plates (LB agar). Through an inrermediate

puc 18 plasmid, the mouse hsp60 gene fragment (full size 1.6 kbp) was then subcloned into

expression vector pGEx-2T with correct reading frame by electroporation in a Bio-Rad Gene

Pulser with a mode of 2.5 kV/resistance high voltege, resistance of 200 O, charging voltage of

1.8 kV, desired field strength of 12.25 kV/cm and desired pulse length of 4-5 msec. The

competent E. coli cells were prepared for electro-transformation by the method of Dower et al

(1988). The complete mouse hsp60 express a glutathione S-transferase (GST) fusion protein

induced by isopropyl-ß-D-thiogalactopyranoside (IPTG) induction. The positive clone was

identified by western blot probed with mAb LKl (Sigma Chemical Co.) which has unique

specificity for mammalian hsp60 and the recombinant DNA insert was fully sequenced.

L9. Construction of deletion mutants of chlamydial hsp60

Deletion mutant clones of chlamydial hsp60 (p{l-265, C6lI, Cg6, C53, C6) were

constructed from piasmid pGEx-2T containing full length chlamydial hsp60 gene (Cerrone,

1991). PAI-265 resulted from chlamydial hsp60 gene fragment religation afrer delerion of

fragment (amino acid position266-545) cleavaged with EcoRI and expressed chlamydial hsp60

residues l-265. Another fragment from EcoRI digestion was purif,red by agarose gel and

religated with pGEx-2T (resulting in plasmid C86 gene expressing residues 268-409).

The plasmid C611, C53, C6 were obtained by Taq-polymerase-facilitated amplification of

the corresponding DNA sequence using primers @1 and P150 for C611, p250 and p545 for
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C53, P380 and P545 for C6) containing restriction sites to allow cloning of the fragments into

expression vector pGEx-2T. All constructs were checked by sequencing.

20. DNA Sequencing

Sequencing of cloned recombinant plasmids was done based on the protocols supplied with

the dsDNA cycle sequencing kit purchased from BRL Life Technologies Inc. (Gaithersburg,

MD). It is based on the chain termination DNA sequencing method (Sambrook, 1989) which

includes labelling primer, cycle sequencing, gel electrophoresis (6.5% acrylamide:bis-acrylamide

f29:1, w/wl). The labelled chains of various length were visualized after exposing to X-Omat

AR film overnight at -70"C.

Comparison of the obtained sequence and known hsp60 gene and other analysis of hsp60 gene

sequence data were done by using a PC/GENE software purchased from IntelliGenetics, Inc

(Mountain View, California).
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Part I. INTRODUCTION OF ANTIGENS USED IN TIIE STUDY.

The intention of the present study was to examine the host immune response to chlamydial

hsp60 and mouse hsp60 in an animal model. A large amount of hsp60 was needed. Considering

the limit¿tions in purification of native hsp60 from either C. trachomatis or host cells, we

decided to use an alternative approach to clone mouse hsp60 gene or chlamydial hsp60 gene

fragments. Genes were expressed in E. colí via GST gene fusion system which combines

innovations in vector design and purification to provide excellent performance in protein

expression and recovery. The clone of recombinant chlamydial hsp60 fusion protein was a

generous gift from R.S. Stephens (University of California, San Francisco). Since high

expression systems often cause insoluble formation of recombinant protein (inclusion body), we

initially made efforts to optimize technique conditions such as host strain, temperature, urea

denaturation, detergent, times of sonification and so on for purification of a large amount of

soluble hsp60.

1. 1. Purity of recombinant hsp60

57

One of our major concerns was that E. coli proteins may co-purify with the GST fusion

protein system since hsp60 has a physiological role as a chaperonin protein that binds nascent

polypetides. A number of methods have been developed to stain polypeptides after separation

by SDS-gel electrophoresis. A common reagent for staining proteins is Coomassie Brilliant Blue

binding basic amino groups on proteins. Approximately 0.1 microgram (pg) of protein can be

detected on a polyacrylamide gel. The most sensitive staining procedure for fixed proteins on
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gels or blots involves silver staining , which can detect less than a nanogram (10-n g) of protein.

Thus, silver staining is the easiest and more practical way to check our products (hsp60)

(Sambrook, 1989).

Fig.3 shows a silver stained SDS-GEL loaded with trvo purified recombinant chlamydial

hsp60 samples lane 1 (1 pg loading), lane 2 (0.5 pg loading ) and control protein samples of

GST loading lanes 3,4 (2 ¡rgllane). There was a major band with molecular weight about 80

kD representing the fusion protein chlamydia hsp60 (GST-Chsp60) and no other protein can be

found above them (lane 1,2,5,6,7). A degraded small band (ca. 52 kD) of chlamydia hsp60 was

observed which can also be recognized by polyclonal antibody from rabbits immunized with

chlamydial EB (Fig.3, Iane 5,6,7). GST protein purified from E.coli containing only the vector

itself (pGEX-2T) without an insert showed as a single band with molecular weight 27 kÐ

without detectable contamination of other E coli protein or chlamydial protein on the silver

stained gel (lane 3,4). Therefore the GST hsp60 fusion system offer high purity recombinant

proteins which were used in our study as antigens.

ELISA also can be used to check the purity of the recombinant hsp60 to determine whether

contamination with GST, thrombin, or other hsp60 has occured. The ELISA plates were coated

with GST, thrombin, mouse hsp60, or chlamydia hsp60 respectively. They were then incubated

with normal mouse serum, mAb G57-i9 (specifîc for chlamydia hsp60, see 1.3) and LKl

(speciftc for eukaryotic hsp60) and following standard ELISA protocol (Tabte 3). The polyclonal

antibodies that were raised with purified chlamydial or mouse hsp60 did not bind to GST or

thrombin (OD < 0.00) which suggested that GST or thrombin contamination is negligible in our

purified immunogens (chlamydia hsp60 or mouse hsp60). LKl recognize mouse hsp60 with high
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Figure 3. Purity of chlamydial hsp60 checked by silver staining and western blot. Purified fusion

protein (lane 1, 2, 5, 6, 7) and GST (lane 3, 4,) were subjected to 12% SDs-polyacrymide gel

separation and divided into two parts: part I (lane 1-4) was analyzed by silver staining, part II

(lane 5, 6, 7) were transfer¡ed to nitrocellulose membrane for western blotting probed by rabbit

immune serum against chlamydial EB at a dilution 1:200.
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Table 3. ELTSA check purity of hsp6O

Antibodies (1:1oo)

Normal sera

mAbs

Gs7-19

LK1

lmrnune sera against

Chsp60

M hs p60

Ag coating

GST

0.0001*¡

:¡< -Fr,i. is a rnean OD(aOSnrn) reading

Chsp6O and Mhsp6O correspond to
respectively.

Thrombin

0.000

0.009

0.000

6L

0.004

0.000

M hs p60

0.001

0.000

0.002

Chsp60

0.003

0.000

0.000

0.604

wafue frorn a standard

chlamydial hsp6O and

0.000

o.242

0.315

ñ qln

0.000

ELISA protocol.

rnouse h sp6O

0.676

0.125
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OD value (0.604) but no binding to chlamydia hsp60 whereas G57-Ig showed high OD value

(0.510) to chlamydia hsp60 and 0.000 to mouse hsp60. These data suggested that there was no

detectable contamination between mouse hsp60 and chlamydia hsp60 samples. These resuits also

showed that our ELISA system offer high specificity with very low background.

I.2.1. Cloning the mouse hsp60 gene

Since the nucleotide se4uence of mouse hsp60 and chlamydia hsp60 are known from

published data (Venner et a1, 1990 and Cerrone et al, 1991), specific primer based PCR cloning

was used to clone the mouse hsp60 gene and the chlamydiai hsp60 partial gene fragments.

Mouse hsp60 specific primers (Ml, MRl.6) were used to amplify mouse hsp60 as a fuli length

gene (i.6 kb) (Fig.a) from two mouse cDNA samples (cDNA2 reverse transcribed by poly T,

cDNA3 made by 6 bp random primer) and also to screen recombinant E.coli clones (iane 1 to

lane 12). Most E.coli clones did not contain the specific mouse hsp60 gene insert. One clone had

correctly sized amplified product detected by PCR (lane 6, a band of 1.6 kb size).

Construction of deletion mutants of chlamydia hsp60 based on pGEX-2T containing

chlamydia hsp60 gene. There are 3 EcoRi sites located in the chlamydial hsp60 gene (Fig.5).

The plasmid PA l-265 resulted from religation of chlamydia hsp60 plasmid digested with

EcoRl. The other EcoRl fragment (PA267-409, PA means protein amino acid position) was

purified from agarose gel and ligated with EcoRi treated pGEX-2T (resulting in clone C86). The

rest of clones were obtained from specific primers amplified PCRproducts. C611 came from

primer Pl and P150, C53 came from P250 and P545, C6 from P380 and P545. Ampiified

products were then cloned into pGEX-2T.
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Figure 4. Amplification and screening mouse hsp60 gene with PCR. DNA samples

electrophoresis in a0.8% agarose gel. I-ane 0, only sample buffer loading. I-ane2T2, positive

control sample of chlamydial hsp60 gene (1.6 kb). I^ane 2T8, negative control in which pGEX-

2T used as template. I-ane cDNA2 and cDNA3 template are two mouse cDNA samples

transcribed by either poly T primer (cDNA2) or 6bp random primer (cDNA3). I-ane I-12,

different plasmids purified from E. coli clones which may contain mouse hsp60 gene were used

as template in PCR.
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Figure 5. Strategy for construction 5 deletion mutants of chlamydial hsp60.

GST-chlamydial-hsp60 fusion protein (the centre line) was treated with EcoRl to produce two

small chlamydial hsp60 fragments including C86 and vector contain GST-PA1-265 with EcoRl

sites at 3' and 5' primer end. The chlamydial hsp60 gene fragments (C611, C53, C6) came from

PCR amplification with specifrc primers (Pl, P150, P250, P380, P545).
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1.2.2. Expression hsp60 polypeptides

All deletion mutants of chlamydia hsp60 that were highly expressed in E.colí were seen on

SDS-page gel stained by amido black (Fig.6). The major bands (about 30% of totzJ E.coli

proteins) are fusion proteins of chlamydial hsp60 deletion mutants with molecular weights

between 57 kD to 4l kD (lane 1-5). These bands could be identified by western-blot with

specific mAbs. For example, C6 clone expressing the C-terminal portion of chlamydia hsp60

(residues position 380-545, 43.5 kD) was recognizúby mAb GP57-19 (lane 6-7).

I.2.3. Cleaved hsp60 from fusion proteins

All fusion proteins contained the N-terminus of the GST protein can be cleaved by the

specific enzyme thrombin. Fig.7 shows a western blot probed with mAb LKl and demonstrates

that mouse hsp60 (60 kD) is released in a time dependent manner from the GST-mouse-hsp60

fusion protein (84 kD) after binding to glutathione agarose. This allowed us to isolate enough

cleaved mouse hsp60 and chlamydial hsp60 with the glutathione affinity column method.
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Figure 6. Total E. coli. proteins containing different chlamydial hsp60 fragments (tane 1, pA1-

265 clone.lane2, C611clone. lane 3,C53 clone. lane4, C86clone. lane5,6,7, C6clone) were

separated on SDS-page gel and transferred to NC membrane. Then lane 1-5 was stained by

amido black and the lane 6,7 was analyzed by western blot with mAb G57-19.
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Figure 7. Western-Blot analysis of thrombin cleaved mouse hsp60. GST-mouse-hsp60 fusion

protein was treated with thrombin for different time (10, 30, 60, 120 minutes) to remove GST

and then loaded to SDS-PAGE gel. The NC membrane was probed by mAb LKl.
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1.3. B cell linear epitopes mapping with mAbs

I synthesised 533 peptides encompassing the entire sequence of chlamydia hsp60 overlapping

each other by a single amino acid residue. Yuan et aI (1992) produced a panel of anti-chlamydial

hsp60 monoclonal antibodies (mAbs) and defined their epitope location on the primary amino

acid sequence of chlamydia hsp60 by immunoblotting against recombinant amino-terminal

truncated hsp60 fusion polypeptides and overlapping synthetic peptides. For example, mAb Arr-

Eo reacted with sequence residues 117-722 a¡d another mAb GP57-19 recognized amino acid

residue 517-522. In order to check our pin peptides and screen the expression library of

chlamydia hsp60 deletion mutants (see 1 .2.2), we mapped the epitopes recognized by these two

mAbs. Table 4 shows the result. The 457-E4 bound to peptide (Il8-122) in which the core

sequence is amino acid residues 118-122 and the epitope recognized by GP57-19 is peptide 516-

522- These data which a¡e consistent with Yuan's data suggested that our peptide synthesis was

successful.
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Table 4- Pepticle rnapp¡ng vvith rnAbs

rnAbs na.rr¡e

GP57-19

A.57--E-4

* Position of epitopes represent the position
chlamydiat hsp6O

Po sit ion
Epito pe

516--522

1 1A-122

of
(*)
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PATt II. MAPPII'{G CONTINUOUS B-CELL EPITOPES IN CHLAMYDIAL TISP6O

2.1. Peptide epitope mapping with rabbit, human immune sera

Figure 8 shows the peptide epitope pattern in hsp60 recognized by the 13 rabbits immunized

with EBs of serovar 8,L2, and C respectively. A pattern of common epitopes among all rabbits

was consistently observed, although individual heterogeneity was also apparent. No marked

difference in epitope patterns \,vas apparent among the three different serovars for immunized

rabbits, consistent with the known conservation of hsp60 among all members of the genus

Chlatnydia (Morrison et al, 1990). Although epitopes are distributed throughout the enrire

sequence, the region from amino acid (aa) 283 to 409 was consistently immunorecessive. When

both binding titers and reactive frequencies of all 13 rabbit serum samples were considered, five

distinct immunogenic regions (aa94 to 111,147 to 163, 188 to205,258 to 294, and 410 to

491) were resolved within the linear sequence (Fig. 8B). Region 5, located toward the C

terminus, is the most complex and is composed of multiple epitopic peaks. The other four

regions have a single predominant or, at most, two epitopic peaks. Ten epitopes characterized

by high response frequency (greater than or equal to seven rabbits) and high titers of binding

(>0.2 optical density [oD] units) are located within the five regions.

Serum samples from eight women with C. trachomatis-associated ectopic pregnancies were

next evaluated for the epitope specificity of the hsp60 antibodies in these sera by the pepscan

assay and for comparison with the epitope map using rabbit antisera. Al1 women had antibodies

with high titers to the recombinant chalmydial hsp60 (Yi et aJ, 1gg3). Epitope scanning revealed
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Figure 8. Antigenicity of 533 overlapping l2-mer peptides encompassing the entire hsp60

sequence of C. trachomatis. (A) Antisera were raised in 13 rabbits immunized with EBs of C.

trachomatis serovars B (four rabbits), L2 (two rabbits), and C (six rabbits) as indicated. Bar

codes signify reactive peptides. @) Composite binding pattern averaged among the individual

antiserum samples and expressed as mean OD units are shown. Sera were tested at a dilution

of 1:250. The bracketed regions 1 to 5 indicate the five immunogenic regions.
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a pattern of immunogenic regions similar to that observed with antisera of rabbits immunized

with chlamydial EBs. In addition to the 10 epitopic peaks identihed with the rabbit antisera,

three new epitopes (H,, Hz, and H, in Fig. 9) were detected with the human sera. The major

new immunogenic region is aa226 to 249,labelled epitope Hr. Two minor epitopes a¡e located

at aa 29 to 41., labelled H,, and at aa 446 to 46I, labeled Hr.

Two serum samples in which one came from a healthy woman without C. trachomatis

infection and another from an unprimed rabbit were also tested by the pepscan assay. No

peptides were bound with an oD of > 0.1 with either sera (Figure 10.)

2.2. Search for cross-reactive epitopes

lùy'e next compared the chlamydial hsp60 amino acid sequences for the 13 major epitopes

recognized by sera from humans with the homologous sequences in the human mitochondrial

chaperonin 60 protein (Jindal et al, 1989) (Iable 5). None of the epitopes showed 100% amino

acid sequence identity between the two proteins. To determine if the homologous region in the

human hsp60 sequence represented an autoantigen we synthesized l}-mer peptides for each

epitope. Pin-bound peptides were then tested by the pepscan assay with the eight human serum

samples (Fig. 1i) and with mouse sera raised to the recombinant chlamydial hsp60 (Fig.12). In

Fig' 11 the immunologic cross-reactivity was determined by comparing relative antibody binding

to peptides of chlamydial hsp60 with binding to homologous peptides of human hsp60. The data

show that six epitopes (Er, 4, F,s,I{r, Er, and Er) are relatively specific to the chlamydial

sequence, with the human antisera binding to the chlamydial peptide sequence at a significantly

(P<0.05) higher OD than it does to the human peptide sequence. In particular, epitope ft is
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Figure 9. Serum samples from eight women with C. trachomatis-associated ectopic pregnancies

were assayed for peptide binding (B and C). Pepscan results for the eight human serum samples

(tested at a dilution of 1:400) were displayed in the format described in the legend to Fig. 8. Hl,

IJ2, and H3 represent three new epitopes identified only with human sera. El through E10

represent the identical peptide epitopes as identified with rabbit antisera.

79



O
D

 u
ni

ts
 (

4O
5 

nm
)

0

-U 0 'il =
¡.

1.
) 0 z f'r

I N

N 0 0

(,
)

(,
r 0 0

0

0

0 0 0

O
D

 u
ni

ts
 (

4O
s 

nm
)

99
99

JN
O

}
9

o o



Figure 10. Serum samples from one healthy women without C. trachomatis infætion (panel A)

and one unprimed rabbit (panel B) were used as a control and assayed for peptide binding (tested

at a dilution of 1:250). No peptides were bound with an OD of > 0.1 by either serum samples.
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Table 5' Cornparison of amino acid core sequence of C. trachomalis hsp60peptide epitopes with that of human mitochondriat chaperonin 60 protein.

l:nir,rn¡"

tl
¡rl . - . - -2gVTLGPKGRITWT

2" + r,]¡,[ +, * xr, *f *]r,
IrLANAIYTBGLIìI:Ll

t:
ra9***Q*(*r,a,af1

.--]8BDV\IDGìINFNRGY

l)c¡rti<jc scqucncc"

o Er. to Ero signify epitopes defined r¿ithantjsera, and Hr. Ur- represent epitopesantisera.

a2

u Top sequences are from c. trachonatis GroEL hsp6o (cerrone et al,1991) and bottom homologous sequences are from human mitochondrialchaperonin 60 protein 1Íinaaf èt af, 1989) -

46761*qg*g[Ir+**
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Figure 11. Thirteen major peptide epitopes from chlamydial hsp60 were used to detect

homologous sequences in human mitochondrial hsp60. 12-mer peptides were synthesized in the

pepscan format and tested with the eight serum samples from women with C. trachomatis-

associated ectopic pregnancies (each sample was tested at a dilution of 1:200). Closed circles

represent binding to the C. trachomalzi sequences, and open circles represent binding to the

homologous human sequences. Antibody binding was signif,rcantly (P<0.05) greater to the

chlamydial peptide than to the human peptide for $, 82, Es, Hr, Ea, and B. No human peptide

bound antibody better than the chlamydial peptide, and H,, h, Hz, F-o, F,u, Ez, and Ero were

cross-reactive.
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absolutely specific to the chlamydial sequence, The remaining seven epitopes (H1, E3, H2,

8u,4, and Ero) were cross-reactive between the chlamydial and human hsp60 sequences.

The goai of this phase of the study was to determine whether the antibodies that are

induced to chlamydial hsp60 are cross-reactive between human and chlamydial hsp60. The above

data are consistent with the hypothesis that chlamydial disease sequelae may be due to

autoimmunity to hsp60. To further address this hypothesis we next decided to map these

autoantigen epitopes using highly immunized mouse sera raised against recombinant chlamydial

hsp60. The data are shown in Fig.12. The white bar represent antibody binding to chlamydial

hsp60 sequence and filled bar stands for mean OD to homologous peptide of human hsp60. Most

epitopes (H1, 81, Fj3, EA, E5, E6, 87, E10) showed low affinity and partial cross reactivity

to human hsp60 peptides. One epitope, F,2, was strongly cross-reactive showing very high

binding OD (1.313 and 1.046) to both the chlamydial hsp60 pepride and human hsp60 pepride.

Epitopes (E8, E9) representing the C-terminus of chlamydial hsp60 were relativeiy specific to

chlamydial hsp60 sequence without cross-reactive binding (Fig.11). Selected mouse sera were

absorbed with GsT-chlamydial-hsp60 fusion protein linked with agarose in order to remove

antibodies against chlamydial hsp60. After absorption most epitope binding OD values were

reduced by more than50%, especially theE2 epitope. The OD value (0.188 for chlamydial

hsp60 and 0-042 for human hsp60) (Fig.13) is 10 times lower than that before absorprion (1.313

for chlamydial hsp60 and 1.046 for human hsp60). The sequence of E2 is highly homologous

between chlamydia hsp60 and human hsp60 with oniy 3 amino acid residue substitutions in this

lZ-mer peptide (Table 5). These data suggest that anti-chlamydial-hsp6g antibody can cross-react

with human hsp60 at selected antigenic regions although the number of
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Figure 12.Mapping cross-reactive epitopes before abso¡ption. Both sets of 11 epitopes (listed

in the Table 5) for chlamydial and human hsp60 have been synthesised and tested by the pepscan

assay with mouse sen¡m (1:500) raised with recombinant chlamydial hsp60. The white column

represent antibody binding to the chlamydial hsp60 epitopes and filled column stand for antibodv

binding to homologous human peptides.
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Figure 13. Mapping cross-reactive epitopes after absorption. The same mouse serum used in the

figure 12 was incubated with GST-chlamydial-hsp60 fusion protein linked with agarose at 4.C

overnight beforepepscan test. Open columns represent antibody binding OD to chlamydial-hsp6g

epitopes and fîlled columns stand for antibody binding to human peptides.
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cross-reactive epitopes may be limited (7 epitoptes in human sera and I in mouse sera).

2.3. Relationship between the crystallographically def,rned structural domains of hsp60 and

antigenic domains of chlamydial hsp60

Based on the pepscan data there are five antigenic domains (or immunogenic regions) on

chlamydia hsp60. They are domain 1 containingaag4-111, domain 2 (n 147-163), domain 3

(188-205), domain 4 (aa258-294), domain 5 (aa 410-491). When we compared the location of

these domains with the known structural and functional features of the crystallized E. coli

GroEL/Hsp60 chaperonin (equatorial domain, intermediate domain, apical domain, see

Introduction paft 1.3.) (Fig.1a), two interesting observations were made. (1) Most of the

antigenic domains were located on the boundary regions between structural domains. e.g.

antigenic domain 1 and 5 are located on the C-terminal of the first segment of equatorial domain

(aa 6-133) and N-terminal of the second segment of equatorial domain (409-523). Antigenic

domain 2 is located in the first segment of intermediate domain (n 134-190). Antigenic domain

3 represents the N-terminal of the apical domain (n 19l-376), and (2) most antigenic domains

(domain I, 2, 4,5) contained a-helices as their major secondary structural component. The

exception is domain 3 which contains only ß-strands and extended strands. This information

may be useful for the design of site-directed mutants of chlamydial hsp60 and in predication of

immunogenic regions.
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Figure 14. Amino-acid sequence and structural components of a subunit of GroEL/Hsp60.

Secondary structural elements (def,rned by visual inspection), indicated by arrows (ß-strands) or

sine wave in rectangles (a-helices), and extended strands. Colour-coding corresponds to the

domain sequence segment; here, equatorial is green, intermediate blue, apical red.

The figure is from reference: Brag, K, et al. 1994.

92



PaTt III" IMMTINE TOLERANCE TO IISP6O AND AUTOIMMUNITY

3.1. C. ffachomarls hsp60 and mouse hsp60 have different immunogenicity when used as

individual immunogens.

To understand this phenomenon more precisely we next immunized two groups of mice (4

CBA mice/group) with either chlamydial hsp60 or mouse hsp60 (100 ¡rglmouse). Sera were

collected at 5 day intervals from day 5 to day 40. ELISA plates were coated with recombinant

chlamydial hsp60 or mouse hsp60 and were used to measure the titre of hsp60 antibody. At day

5, CBA mice lacked detectable antibody to either C. trachomatis or mouse hsp60 (figure 15).

The antibody titre gradually rose from day 10 onward and the highest titres were observed at

day 35 for both mouse hsp60 and chlamydial hsp60 immunization. When CBA mice were

immunized with chlamydial hsp60 alone, the antibody titre increased starting at day 10 reaching

a maximum titre of between 1:10,000 and 100,000 between day 20 and day 30 (figure 158).

Antibodies generated by immunization with the chlamydial hsp60 reacted to higher titre \'/ith the

chlamydial hsp60 antigen as compared with the mouse hsp60 suggesting that antibodies

preferentially recognized chlamydial specif,rc epitopes. V/hen mice were immunized with mouse

hsp60 they generated low antibody titre (less than 1:1000) to either chlamydial hsp60 or mouse

hsp60 (Fig' 15A). These results suggest that while chlamydial hsp60 is strongly immunogenic

in cBA mice, cBA mice are relatively toierant to their own hsp60.

Similar patterns were also observed at the T ceil level (figure 16). Day 10 after
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immunization with recombinant mouse hsp60, lymph node cells (LNC) were cultured with mouse

hsp60, chlamydial hsp60 or ovalbumin at varying concentrations from I p"g to 100 ¡rglml (Fig

164). Neither mouse hsp60 nor chlamydia hsp60 stimulated T cell proliferation above

background levels in immunologically naive mice although ConA (2.5 pglml) elicited

proliferation in these cultures (77500 DPM, data not shown).

When CBA mice were immunized with chlamydia hsp60, LNCs strongly proliferated in

response to chlamydial hsp60 in a concentration dependent manner (Fig. 168). These levels of

proliferation were 20 and 35 fold higher than in response to ovalbumin. Importantly when

chlamydial hsp60 primed LNCs were cultured with mouse hsp60, intermediate levels of T cell

proliferation occurred (17,000 DPM at l0 p.glml, 20,000 DPM at 100 p"glml) suggesting that

greater cross-reactivity may be occurring at the T cell than the B cell level.

These data suggested that CBA mice are strongly tolerant to mouse hsp60 at the T cell

Ievel. Chlamydial hsp60, despite its high sequence similarity to mouse hsp60, exhibited marked

immunogenicity. As was observed at the B cell level, chlamydia hsp60 elicited T cell responses

which appear to be preferentially directed to foreign sequences in chlamydial hsp60 but which

also exhibited some cross reactivity with mouse hsp60. Based on these data we conclude that

chlamydial hsp60 alone does not induce high level autoimmune responses and that CBA mice

are relatively tolerant to self hsp60 at both the B cell and T cell levels. Tolerance to self hsp60

appears to be similar at both the T cell and the B cell level, while immunization with chlamydial

hsp60 induces greater cross-reactivity at the T cerl than B cell level.
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Figure 15. Shown are the log,o antibody titre (mean value + SD) to purified recombinant

chlamydial hsp60 (r) or to purified recombinant mouse hsp60 (*) at different days post

immunization with either mouse hsp60 (panel A) or chlamydial hsp60 þanel B). Low level auto-

antibodies were produced following immunization with mouse hsp60 or chlamydial hsp60

whereas high titres of chlamydial hsp60 specific antibodies were produced following

immunization with chlamydial hsp60.

96



=
=208s

1 10 100
Ant¡g€n oonoentrat¡on (.1ug,/lml)

44

97

A

x2C-
o_
O

10

1 10

Antigen concentration (gglml)
100



Figure 16. fHl thymidine incorporation by lymph node cells (LNC) collected from CBA mice

immunized with mouse hsp60 þanel A) or chlamydial hsp60 (panel B) and stimulared for 5 days

in vitro with mouse hsp60 (t), chlamydial hsp60 (e) or ovalbumin (f). LNCs collecred from

mouse hsp60 immunized mice failed to respond to stimulation with mouse hsp60, chlamydial

hsp60 and ova while responding to ConA Q5 pglml) wittr 77.5 x 103 DpM. LNCs collected

from chlamydial hsp60 immunized mice responded to both chlamydial hsp60 and mouse hsp60

but not to ovalbumin.
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3.2. Autoimmunity is readily generated under conditions of concurrent immunization with

chlamydial hsp60 and mouse hsp60.

Most autoimmune disease are charactenzed by high levels of high aff,rnity autoantibody

and/or increased numbers of autoreactive T cells. The results observed by immunizing with

chlamydial hsp60 alone show that chlamydia hsp60 would be unlikely to induce a pathological

autoimmune response by itself. However, during the stressed conditions of infection it may be

that the immune system will be faced with both self and pathogen hsp60 in high concentration.

A third immunization protocol was therefore designed to mimic this condition. CBA mice were

immunized with equal amounts of chlamydial hsp60 and mouse hsp60 (50 pg each). Figure 17

shows the antibody and T cell responses to immunization with both mouse hsp60 and chlamydial

hsp60 given concurrently. The data show that immunization with both antigens induced high titre

antibody and T cell responses against both chlamydial hsp60 and mouse hsp60. The autoantibody

titre reached 1:10,000 at day 35 after immunization (Fig. 174) and autoreactive T cell response

to mouse hsp60 (28,000 DPM at l0 p.glml) is even higher than T cell proliferation to chlamydia

hsp60 (19'000 DPM at 10 ¡.tglml) (Fig. 178). To determine if mouse hsp60 contains cryptic

determinants which are not generated under physiological conditions by antigen presenting cells

and thereby fails to induce immune response, mice were immunized with different doses of

mouse hsp60 (0, 3.1,6.2, 12.5,25,50 pg per mouse) plus 50 or 100 p.g chlamydia hsp60

respectively. Figure 18 shows the comparison of antibody titre for mouse hsp60 at day 40 post

immunization. The autoantibody titre increased when a larger amount of mouse hsp60 were
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given. The data suggests that a quantitative change in mouse hsp60 peptide processing may be

involved in breaking tolerance to mouse hsp60 suggesting that high levels of cryptic mouse

hsp60 epitopes may be generated and presented to mouse immune system when mice are

immunized with a high dose of mouse hsp60.

To determine if the shared sequence between chlamydia hsp60 and mouse hsp60 were

necessary for the induction of self hsp60 autoimmunity or whether any concuffent antigen could

elicit this response, we repeated the experiment replacing chlamydia hsp60 with ovalbumin

(ova,50 ¡rg) together with mouse hsp60 in the immunization protocol. Figure 19 shows that the

poor immunogenicity of mouse hsp60 is unchanged when compared with mouse hsp60 alone

(figure 15) and mouse hsp60 plus ova. The antibody titre to mouse hsp60 remains low (less than

1:1000) @ig. 194) and T cell response to mouse hsp60 remained at background levels (< 1000

DPM) (Fig. 198) although a strong immune response to ova are observed at either B cell or T

cell level.
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Figure 17. Groups of CBA mice were immunized with purified recombinant mouse hsp60 (50

f¿g) and chlamydial hsp60 (50 pg) subcutaneously in incomplete Freund's adjuvant. Sera were

collected at five day intervals post immunization and tested at varying dilutions in an ELISA

þanel A) for binding to mouse hsp60 (a) or chlamydial hsp60 (.).Lymph node cells were

collected 10 days after immunization and tested in a lymphocyte proliferation assay (panel B)

for [3H TdR] thymidine incorporation in response to varying concentrations of mouse hsp60 (a),

chlamydial hsp60 (') or ovalbumin $). Immunization with both mouse hsp60 and chlamydial

hsp60 elicited strong B and T cell response to both antigens.
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Figure 18. Groups of mice were immunized with 100 ¡rg chlamydial hsp60 alone or 50 ¡^rg

chlamydial hsp60 plus different dosage of mouse hsp60 (3.1,6.2, 12.5,25,50 pg per mouse

respectively). Serum samples were tested for antibody binding titre to mouse hsp60 40 days after

immunization. A large dose of mouse hsp60 are required to elicit high level of autoantibody.
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Figure 19. CBA mice were immunized with purified recombinant mouse hsp60 (50 ¡rg) and

ovalbumin (50 pg) subcutaneously in incomplete Freund's adjuvant. Sera we¡e collected at 10

day intervals post immunization and tested at varying dilutions in an ELISA (panel A) for

binding to mouse hsp60 (a) or ovalbumin (Ð. Lymph node cells were collected 10 days after

immunization and tested in a lymphocyte proliferation assay (panel B) in response to varying

concentrations of mouse hsp60 (a) or ovalbumin (f). Immunization with both mouse hsp60 and

ovalbumin elicited strong T and B celi responses to ova but weak B cell and absent T cell

response to mouse hsp60.
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Fart XY. MECI{ANISMS OF THE IMMUNE TOLERANCE MOÐE[,

4.I.I. T cell tolerance to mouse hsp60 is controlled through peripheral anergy

To determine if peripheral anergy rather than clonal deletion accounts for tolerance to self

hsp60, we repeated the lymphocyte proliferation assays using LNC from mouse hsp60

immunized animals after adding recombinant IL-z. If peripheral anergy accounts for T cell

tolerance to mouse hsp60 we hypothesized that added IL-2 should overcome the anergic state

as this has been been frequently observed in other experimental system (Schwartz 1990, and

Umlaue et al, 1993). Cultures stimulated with mouse hsp60 (20 pglml) alone failed to respond

whereas the cultures responded strongly if supplemented with IL-2 (either at 10 or 100 units/ml)

(f,tgure 20). IL-4,IL-10 and IFN-gamma (100 units/ml) provided poor or negligible co-

stimulation for mouse hsp60 induced T cell proliferation (figure 21). Control LNCs without

mouse hsp60 stimulation exhibited low level proliferation to IL-Z only at the highest IL-z

concentration (100 u/ml) tested (Figure 20). These results clearly show that T cells reactive to

self hsp60 are found in the periphery apparently escaping thymic deletion and thus are availabie

for activation under appropriate conditions.
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Figure 20

Lymph node cells (LNCs) were collected from CBA mice immunized with mouse hsp60 10 days

eariier and cultured in vitro with varying concentration of IL-2 alone (0, 10, 100 units/ml), or

mouse hsp60 (20 ¡tglml) plus IL-2 (a). LNCs proliferated in response to mouse hsp60 when

supplemented with IL-2.
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Figure 21

Comparison of anergic T cell proliferation to cytokines. LNCs were collected f¡om mice

immunized with mouse hsp60 and cultured in vitro with or without mouse hsp60 (20 ¡tglml) and,

mouse hsp60 plus different cytokines (100 units/ml, IL-2,IIA,IFN-gamma, IL-10). Only the

culture supplemented with IL-2 strongly respond to mouse hsp60.
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4.1.2. Cytokines induced by hsp60.

To investigate whether a unique cytokine pattern charactenzed hsp60 anergic T cells we next

determined cytokine production by spleen cells collected from mouse or chlamydial hsp60

immunized mice after in vitro stimulation with mouse or chlamydial hsp60 or non relevant

control antigens (ovalbumin, cytochrome c). The cytokine production (IFN-gamm a, rL-Z,IL-4,

IL10, TGF-ß) was examined by ELISA assay. Tabie 6 shows the results. When immune spleen

cells were stimulated with ovalbumin, cytochrome c, or without antigen, the cytokine production

was undectable or low level except for TGF-ß production. Substantial amounts of TGF-ß were

detected in all tested samples. We also tailed to detect significant levels IL-2 or IL-4 production

in hsp60 stimulated samples and the¡efore the difference among samples was slight. We think

that the "fresh" iymphocytes we examined directly ex vivo may have failed to produce IL-4 upon

short-term culture and that the secreted IL-2 may have been quickly taken up by T cells through

an autocrine or papracrine mechanism. The consensus from several groups is that T cells with

the potential to becomelL-4 secretors exist in vivo in the form of precursors which require 4-12

days of culture and one or more cycles of rest and restimulation with mitogen or antigen before

they become detectable as lymphokine-secreting cells (Swain, 1988; powers, 19gg; Hayakawa,

1989; Fox, 1989; Powell, 1990; Weinberg, 1990; Rocken, 19gl).

The remaining two cytokines, IFN-gamma and IL-10, had differential secretion patterns

which depended on the antigen used for immunization and during in vitro stimulation (Table 7).

Chlamydia hsp60 induced a high level of IFN-gamma production and low levels of IL-10

production. Mouse hsp60 induced low level IFN-gamma and high levels of IL-10.
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Table 7

Group lmmunization

Comparison of cytokine production and immune response

I

o

4

5

Hhsp60

Mhsp60

Chs$0

Chs$0

M+C

M+C

ln vilro

stimulation

Mhsp60

Chs$0

ChsS0

Mhsp60

Chs$0

Mhsp60

IFN I
(Ps1ml)

Note: Sixgroup mice (4 mice/group) were immunized with mouse hsp60 (Mhsp60),
chlamydia hsp60 (Chsp60), mouse hsp60 plus chlamydia hsp60 (M+C)
respectivety. lmmune spleen cells and [J.{Cs were isolated at day 1 O after
immunization and were stim(tlated with Mhsp6o or Chsp6O in vito. C)ítokine
production wer€ measured from spleen cell supernatants and T cell proliferation
data (q9$4 x1O0O) come from LNC cuttures. Serum sampleswere collected 30
dayd{ater post)mmunization and tested in ELISA plates coated with Mhsp60
(group--T;4;6fand Chsp60 (group 2.3,5) for antibody litres represented as -{og,o
(dilution) -
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Importantll'IL-10 production elicited by mouse hsp60 (either in vivo or in vitro) was markedly

reduced in mice co-immunized with both chlamydia hsp60 and mouse hsp60. The IFN-

gamma/Il-10 ratio was best correlated with the autoimmune response induced by hsp60. When

the ratio was greater than one, a high level autoimmune response to mouse hsp60 was observed

at both the B a¡d T cell level. When the ratio was less than one, autoimmune responses to self

hsp60 was not detectable.

We next investigated the effect of IL-10 on IL-2 reversal of T cell responses to mouse

hsp60. We reasoned that if IL-10 production in vivo maintains T cell anergy to mouse hsp60 in

vivo, IL-10 should prevent IL-2 from reversing T cell tolerance in vitro. Figure 22 shows the

result. LNCs primed with mouse hsp60 that were cultured with mouse hsp60 (20 pglml)and IL-

2 (50 units/ml) proliferate strongly (11,800 dpm) again showing that IL-2 easily reverses T cell

anergy to mouse hsp60. IL-10 suppressed IL-2 reversion of T cell anergy in a dose dependent

manner between 5 and 50 nglml. Thus IL-10 appears to be a key cytokine maintaining tolerance

to mouse hsp60 .
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Figure 22

Lymph node cells (LNCs) were collected from mice immunized with mouse hsp60 and cultured

in vitro with mouse hsp60 (20 p.glml) (¿ without IL-2 added) or mouse hsp60 plus varying

concentration of IL-2 (line -a-,at 5,50 units/mi). L-10 (line -*-¡ with varying concentrations

(5, 50 nglnrl) were added to the IL-2 cultures containing mouse hsp60 (20 !"g/ml) and IL-2 (50

units/ml). L-10 inhibited the proliferation induced bv rL-2 cultures.
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4.2.1. T helper function for mouse hsp60 can be bypassed by a foreign carrier protein

To determine if the absence of a B cell response to mouse hsp60 was due to the absence

of T cell help, antibody response to mouse hsp60 was compared among groups of CBA mice

immunized with mouse hsp60 alone or with mouse hsp60 as a fusion protein containing the N-

terminal2S0 amino acids from Schistosome japonicwnglutathione-S-transferase (GST). Antibody

titres at day 30 after immunization were compared (figure23).Immunization with mouse hsp60

fusion protein or mouse hsp60 plus chlamydia hsp60 induced high antibody responses ro mouse

hsp60 whereas immunization with mouse hsp60 alone or mouse hsp60 plus soluble GST did not

elicit high titers of antibodies to mouse hsp60. These results suggest that self-reactive B cells for

mouse hsp60 require T cell help from a foreign epitope sequence in order to induce high titres

of antibodies to mouse hsp60.

4-2.2. T cells primed by immunization with chlamydial hsp60 adoptively transfer T cell help

for autoimmune response to mouse hsp60

1L8

Since chlamydia hsp60 also contains foreign epitope sequences we hypothesised that

immune T cells induced by chlamydial hsp60 may also help mouse hsp60 break tolerance. To

test this hypothesis, immune T cells primed in vivo with chlamydia hsp60 were adoptively

transferred into naive CBA mice followed by immunization with mouse hsp60 and autoantibody

titers to mouse hsp60 were assayed 30 days after immunization (Table 8). The control groups

of mice that received immune serum (Group 5) or spleen cells primed with mouse hsp60 (Group
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4) had low log,o titre (2.0 md 2.5 respectively) of antibody to mouse hsp60 at day 30 after

immunization with mouse hsp60. Mice that were adoptively transferred with immune spleen cells

or T cells previously primed in vivo with chlamydial hsp60 (Group l, 2) had high titres of

mouse hsp60 antibody (4.1 and 3.7 respectively). The data suggest that chlamydia hsp60 specif,rc

T cells can provide helper T cells to mouse specific B cells. In aggregate with these data as

shown in figure 204, the induction of high titre of mouse hsp60 antibodies requires that mouse

hsp60 be co-administered with chlamydia hsp60 and does not occur after immunization with

chlamydial hsp60 alone.

4.2.3. Mapping T helper sires from chlamydial hsp60

Since chlamydial hsp60 can induce T cells involved in autoantibody production against

mouse hsp60, we reasoned that chlamydial hsp60 should contain one or more T cell sites

capable of providing help for autoreactive B cells. We constructed five deletion mutants of

chlamydia hsp60 in order to map T helper autoantigenic sites. Each deletion fragment was used

to co-immunize with mouse hsp60 and antibody titres to mouse hsp60 were measured 30 days

later (Table 9). Among the deletion fragments only C6 (amino acids 380 to 545) failed to induce

autoreactive B and T cell response to mouse hsp60 after co-administration with mouse hsp60.

Since the four other fragments were able to induce autoimmune responses to mouse hsp60, these

data suggest that multiple T helper cell sites are located in the N terminal two-thirds of the

protein.



lmmunization with

Mouse hsp60

GST*mouse hsp6o

GST-mouse hsp60
fusion protein

Ghlamydia plus
mouse hsp6O

Antíbody titre to mouse hsp6O

12A

57
Thousands (1/dilution)



Figure 23.

Four groups of CBA mice (four mice/group) were immunized with 100 ¿rg purified recombinant

mouse hsp60, mouse hsp60 fusion protein in which the N-terminal of mouse hsp60 was fused

to glutathione S-transferase (GST), mouse hsp60 plus GST, or mouse hsp60 plus chlamydial

hsp60 subcutaneously in incomplete Freund's adjuvant. Sera were collected at day 30 post

immunization and tested at varying dilution in ELISA for binding to mouse hsp60. Immunization

with GST-mouse hsp60 fusion protein elicited strong B cell response to mouse hsp60.
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Table B. Autoimrnune response to mouse hsp60 is dependent on

chlamydial hsp60 specific T cells

lmrnunization
urou0' 01 d0n0r mtce

1

¿

ó

4

5

Chlamydia hsp60

Chlarnydia hsp60

Chlamydia hsp60

Mouse hsp60

Chlamydia hsp60

Adoptive

transfer

Sera,spleen cells, or purified T cells (see material and rnethods) were collected from

donor mice primed with either chlamydia hsp60 (group 1,2,3,5) or mouse hsp60 (group

4) and adoptively tansferred to recipient mice fdlowed by irnmunization wift mouse

hsp60 (group 1,2,4,5) or ovalbumin (group 3). Antibody binding to mouse hsp60 was

tested by ELISA at day 30 post immunization and is shown as -log,{dilution).

spleen cells

T cells

spleen cells

spleen cells

sera

lmmunization of

recipient mice

Mouse hsp60

Mouse hsp60

0valbumin

Mouse hsp60

Mouse hspôO

L22

Antibody titre (-loq,)

for mouse hsp60

4,110.19

3.710.17

1.4t0.10

2.5 r 0. 15
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Table 9.

lmmunization with Mhsp6o plus
Chsp60 and deletion fragments

Mapping helper sites of chlamydia hsp6O

150

?T__
268 409

THço

Notes: Antibody titres shown in the table as -log (dilution) were measured 3o
days after irnmunization.
cBA mice were imrnunized with equal arnount (50 uglmouse) of mouse hsp60
(Mhsp60) and chlamydia hsp6O(Chsp6o) or deletion mutants. LNCs were
stimulated with either chsp60 (1o ug/rnl) or Mhsp6o (1o uglml) in vitro. T cell
proliferation represent as disintegration per rninute (dprn x 1O0O). The
background in the proliferation assays were between 7OO to 3OOO dpm.

PA1-265 4.310.20

for ChsS0

wtl
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4.9r0. 17

2.3!i.É
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It is well known that C. trachomatís infections can cause infertility and adverse pregnancy

outcome. In an in vitro fallopian tube organ culture, addition of C. trachomatis induced littte

damage to the integrity of the fallopian tube epithelial cells (Hutchinson, 1979). Similarly in

vivo, primary infection of C. trachomatis into the fallopian tubes of nonhuman primates resulted

in only a self-limited infection with no long-lasting damage (Patton, 1990). Repeated infections,

however, led to permanent fallopian tube scarring (Patton, 1990). Analogous to the better

elucidated mechanism of immune-mediated damage in trachoma, a chlamydial eye infection

(Taylor, 1984), it appears that an immune response to C. trachomatis infection also play a

prominent role in causing fallopian tube pathology. A remarkable gradient in seroprevalence to

the chlamydial hsp60 is observed among women with different manifestations of chlamydial

infection. Sixteen percent to twenty-five percent of fertile microimmunofluorescent antibody-

positive women, in contrast 36%-44% of women with C. trachomatis cervicitis, 48%-60% of

women with C. ffachomatis pelvic inflammatory disease (PID), and 81 %-90% of women with

C. trachom¿f¿s-associated fallopian tube obstruction manifesting as ectopic pregnancy or tubal

infertility have chlamydial hsp60 antibody (Brunham, 1994). Furthermore, among women with

laparoscopially visualized chlamydial PID, those with the highest antibody titres to chlamydial

hsp60 have significantly more severe inflammatory manifestations (Stamm, 1gg4).

The strong correlation observed between the prevalence of antibody responses to chlamydial

hsp60 and the severity of chlamydial disease raises a central issue about immunopathological

responses to the chlamydial hsp60. How does the immune system mount such strong response

to such highly conserved protein (chlamydial hsp60) without risking autoimmunity? The goal of
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this thesis was to look for those answers. The work presented in this thesis estabiish several facts

regarding the immunology of hsp60 (both chlamydial and mouse hsp60). (1) Autoantibodies to

human hsp60 peptides are present in the sera of women with C. tachomatis associated ectopic

pregnancy. (2) Chlamydial hsp60 itself fails to induce high levels of autoimmune responses. (3)

Strong autoimmune response to host hsp60 occurs under specific immunization conditions; for

instance, when mice were coimmunized with chlamydial hsp60 and mouse hsp60. (4) The

shared amino acid sequence between chlamydial hsp60 and mouse hsp60 as well as high

concentrations of self hsp60 are essential to induce autoimmunity. (5) Tolerance to mouse hsp60

is due to T cell anergy and active cellular suppression mediated by antigen-specific IL-10

secretion. (6) At least two T helper autoantigenic sites are located at regions (aa1-150, aa26g-

409) on the chlamydial hsp60 and are responsible for high levels of autoantibody induced bv the

co-im m uni zation protocol.

I. chlamydial hsp60 and mouse hsp60 have different immunogenicity.

Heat shock protein 60 (hsp60) are among the most abundant and most conserved

polypeptides in the biosphere (Kaufmann, l99l). The omnipresence of hsp60 in the microbial

world means that the chance that the vertebrate immune system wiil frequently come into contact

with them is extraordinarily high. Interestingly many microbial hsp60 including chlamydial

hsp60 are also dominant tffgets of immune responses. Kaufmann (1937) showed that about2¡%

of Mycobacteria-reactive T cells from mice immune to M. tuberculosis responded to hsp60.
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Importantly, the existence of hsp60 in mammalian cells requires that immune tolerance be

established in order to avoid self-attack. Because hsp60 are such highly conserved proteins, these

unique features pose central problems for the immune system. The high degree of homology

between microbial and mammatian hsp cognates requires that the immune system needs to decide

whether to accept hsp60 as a dominant microbial antigen, or as a harmful self-antigen. It appears

that the immune system tries to do justice to either possibility. Often, this is achieved

suqprisingly well; sometimes, however, failures seem to be unavoidable and such failures may

be associated with the induction of autoimmune diseases. Reactivity against the mycobacterial

65-kDa hsp has been described in various forms of arthritis (Res, 1988; Gaston, tggg,1990)

and synovial fluid-derived Yersinia-reactive T cells responding to human 65-kDa heat-shock

protein and heat-stressed antigen-presenting cells have been reported (Hermann, 1991). Thus a

commonly held postulate regarding the immunopathogenesis of hsp60 related diseases is that of

autoimmunity triggered by antigenic mimicry.

\ü/e found that C- trachomatis hsp60 and mouse hsp60 have different immunogenicity when

used as individual immunogens. When CBA mice were immunized with chlamydia hsp60 alone,

the antibody titre reached 1:100,000 between day30 and day40 (Fig. i5B). Lymph node cells

(LNC) strongly proliferated in response to chlamydia hsp60 which was 20 and 35 fold higher

than background proliferation (Fig. 168). The cross-reactivity to mouse hsp60 elicited by

immunization with chlamydial hsp60 was quite low at either the antibody (Fig. l5B,less than

1:500 for mouse hsp60) or T cell level (Fig. 16B, 3 to 4 fold higher than background). Thus

chlamydial hsp60 alone does not induce high level autoimmune responses although chlamydial
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hsp60 is a dominant antigen with strong immunogenicity. When mice were immunized with

mouse hsp60 they generated low antibody titres (Fig. 154) and only background levels of T cell

proliferation to either mouse or chlamydial hsp60 (Fig. 164). CBA mice had relative tolerance

to self hsp60.

Although CBA mice were relatively tolerant to self hsp60 at the B cell level, the production

of autoantibodies to self hsp60 was not entirely prevented (Fig.15 ). An example of partial

"bteakage" of B cell tolerance has also been observed in mice that express hen egg lysozyme

(HEL) as a transgene-encoded self antigen (Goodnow, 1938). In this model system incomplete

tolerance in the B cell repertoire was shown to be due to the failure to induce tolerance among

low affinity B cells (Goodnow, 1990). In physiological terms, the failure to induce tolerance in

low-affinity anti-self B cells to many self antigens (Goodnow, 1990; Benjamin, 1984) appears

to pose little risk of autoimmune disease in most cases, presumably because the titres and affinity

of such antibodies a¡e normally below those needed to initiate tissue destruction or to interfere

with biological functions.

II. The induction and maintenance of anergy to mouse hsp60.

2.I. General mechanism of immune tolerance

The establishment and maintenance of tolerance is based on multiple events that occur in

the thymus and the periphery and that result in either deletion of self-reactive T cells or the
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induction of nonresponsiveness. The repertoire of mature T cells found in the blood and

peripheral lymphoid organs is selected by MHC molecules and self-antigens expressed in the

thymus. Immature thymocytes that express a TCR with the "appropriate" affinity for MHC-self-

peptide complexes preferentially emigrate from the thymus into the periphery (positive

selection), whereas autoreactive thymocytes that recognize self-antigen-MHc complexes with

a high affinity are deleted (negative selection). Self-tolerance due to central mechanisms is

established in large part through negative selection.

For autoreactive T cells that escape thymic selection peripheral mechanisms such as anergy

induction, downregulation of TCR, or active suppression also exist to maintain tolerance

(Kappler, 1987; Kisielow, 1988; Sha, 1988; Nikolic-zugic, 1990; Rocha, l99l; I-o, 1991;

Schonrich, 1991; Takahama, 1992; Simpson, 1993). Under normal conditions, anergy to self

proteins is probably most effectively maintained at the T cell level as compared to the B cell

level. It has been shown that at very low concentrations of self-antigen (below 10-10 M) self-

reactive T cells berome tolerant; B ceil tolerance however requires 10 to 100 times higher

antigen concentration for induction. In addition tolerized B cells remain able to make high-

affinity antibody only when given appropriate T cell help (Adelstein, 1991). The distinct levels

ofanergy are charactenzeÅ by the phenotypic appearance of tolerant T cells and their resistance

to activation in vitro; they range from cells without phenotypic change, a relatively mild form

of tolerance, to cells with complete downregulation of T cell receptor and accessory molecules,

the most stringent level of anergy (Arnold, 1993).



2.2. T cell tolerance to mouse hsp60 is controlled through peripheral anergy.

Immunization with chlamydial hsp60, a protein that shares 48 % amino acid sequence

identity with mouse hsp60, generates mainly B and T cell responses to chlamydial specifrc

epitopes. Tole¡ance to mouse hsp60 appeared to be due to T cell anergy since it could be

overcome by exogenous IL-2 as this has been identified as a marker of peripheral T cell anergy

in other antigen systems (Fig. 20, Fig. 21). Mature peripheral T cells can be silenced by

incubating T cells with a high concentration of peptide in the absence of antigen-presenting cells

(APC) preventing the cells from responding to a subsequent challenge with antigen-pulsed ApC.

They are said to have become "anergic" (Lamb, 1983). Furthermore, interleuÞ,tn-2 (IL-2), but

not interferon-gamma or IL-l, inhibited tolerance induction and the addition of IL-2 reversed

established tolerance (Essery, 19SS). Similar in vitro experiments with T-cell clones showed that

anergic T cells were unable to produce their own growth factor IL-2, following restimulation

(Schwartz, 1990). In general, more in vivo works including our data support the two-signal

modei of Bretscher & Cohn (1970). They proposed that the distinction between immunity and

tolerance depends on whether the immunocompetent cell receives a "second" or costimulator

signal in addition to the antigenic epitope presented by the MHC.

It is possible that mouse hsp60 naturally exist in vivo at very low concentration and only can

be presented by resting B cells or other APCs that lack costimulator molecules such as B7

(Freeman, 1989; Hathcock, 1993). Foreign hsp60 such as chlamydial hsp60, however, do not

usually confront the immune system as a soluble protein antigen (mouse hsp60). It is likely that

foreign antigens such as microbial hsp60 appear in a multi-valence display, as a part of
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infectious organisms rather than as a soluble protein, and enter the body at sites (e.g., skin,

mucosal membrane and lungs) where potent APCs such as dendritic cells and macrophages with

costimulator molecules pick them up. In addition, many microbial subs[ances (e.g.,

lipopolysaccharide) are excellent inducers of costimulatory activity in ApC, ensuring that T cells

activation will occur when these APC present antigen. There is also evidence that the induction

of anergy in vivo to foreign antigens can occur if they follow presentation conditions similar to

self proteins. For instance, T cells chronically exposed to high circulating levels of

Mycobacterium lepra antigens in patients with lepromatous leprosy appear to be unresponsive

to antigen (Gayl-ord, 1987). This may also explain the anergic state induced in vivo following

intravenous injection of anti-CD3 antibody (Hirsch, 1988), high doses of soluble antigen @ixon,

1955), or superantigens (Webb, 1990; Kawabe, 1991).

The critical change characteristic of anergic T cells is their inabitity to produce the autocrine

growth factor rL-2- They are unable to proliferate in response to antigen and normal ApCs

because of this fundamental defect. Northern blot analysis showed that anergic T cells stimulated

by anti-cD3 plus anti-cD28 antibodies do not produce detectable IL-2 mRNA (Johnson , 1gg4),

IFN-gamma and IL-3 mRNA production are detectable though greatly reduced (Jenkins, 1991)

The molecular changes in anergic T cells responsible for the defect in rL-2production are

not yet clear. Mueller and colleagues (Jenkins, 1991; Mueller, 1989) reported that signal

transduction in a¡ anergic murine T cell clone was unaffected at the level of inositol phosphate

generation and concluded that the TCR on anergic cells appeared to be coupled to normal

intracellular signalling pathways. Gajewski et al (Gajewski, Igg4), however, reported multiple

TCR-associated signaliing defects in anergic T cell clones, including elevated basal levels of
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intracellular caicium and altered tyrosine phosphorylation patterns. Although the TCR can be

transiently down-modulated following receptor occupancy, TCR/CD3 expression returns to

normal in anergic cells (Quill, 1987; Jenkins, 1990; Blackman, 1990; Kang, lgg2). Anergic

cells also express normal levels of high affinity IL-Zreceptor, cD4, LFA-I, ICAM-I, and cD2g

(Jonhnson, 1994) on their surfaces. In one report of cloned human T cells, however,

Staphylococcus enterotoxin-induced anergy was associated with a down-modulation of the TCR

and CD28 (O'Hehir, 1990). The anergic T cell clones which constitutively express the high

affinity lL-2 reneptor are still able to proliferate in response to exogenous IL-2 (Geenen, lgg3)

and are rescued from their anergic state by exogenous IL-2 (Desilva, 1991; Beverly, Igg2).

Recently Li et al (1996) reported that the analysis of CD3- and CD28-induced signal transduction

revealed reduced ERK (extracelluar signal-regulated protein kinases) and JNK enzyme (c-Jun

NHr-terminal kinases) activities in murine anergic T cells. Both of these kinases are thought to

play key roles in the signal transmission from the outside of the T cell to Ap-l-binding DNA

sequence inside the nucleus. The amounts of ERK and JNK proteins were unchanged, and the

kinases could be fully activated in the presence of phorbol myristate acetate. Dephosphorylation

of the calcineurin substrate NFATp þrexisting nuclear factor of activated T cells) also remained

inducible' These results suggest that a specifrc block in the activation of ERK and JNK

contributes to the defective IL-2 production that characterizes clonal T cell anergy.

2.3.IL-10 is a key cytokine for active suppression.

It has been my interest to investigate the possibility that cytokines may play an important
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role in tolerance to mouse hsp60, by investigating which cytokines are associated with the

induction or reversion of T cell anergy to self hsp60.

In vitro proliferative responses to measure the presence of T cell immune response to a

particular antigen have been extensively used. When the central role of cytokines in the immune

response was elucidated, measurement of proliferation was said to be too complicated a system

that did not correlate with resistance in many model of infectious diseases. Cytokine levels,

however, were shown in many instances to correlate well with resistance or disease susceptibility

(Belosevic, 1988, Liew, 1989). T cell proliferation is, however, a measurement of a culmination

of multiple processes and networks of cytokine production, utilization and interactions.

Proliferative assays may still be useful in elucidating some of the relevant cytokines that may

be essential for one of the fundamental facets of the immune system (ApC processing and

presentation of antigen and TCR recognition of antigen that leads to proliferation of antigen-

specific T cells).

Direct measurement of cytokines in vitro were performed by analyses of secreted cytokines

in culture supernatants collected from "fresh" spleen cells directly ex vivo in response to antigen

specific stimulation (Yang, 1993a). We detected significant levels of antigen-specific lFN-gamma

and IL10 production in our system. However, we failed to detect significant amounts of IL-2

and IIA production' Autocrine IL-2 consumption occurring simultaneously with production in

the bulk culture system may be a reâson. This or other reasons may also be responsible for the

absence of detectable IL-4 production by freshly derived T cells. Other reasons could include

(1) inhibitory effects of Thl-derived cytokines (Powell, 1990), (2) lL-4 secreting cells require

additional differentiative steps before detectable IL-4 is produced (Swain, 1988; powers, 19gg;
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Powell, 1990) or (3) IL-4 inhibitory activity of the adjuvant used in the immunization

(Kishimoto, 1982, Y*g, 1993b).

Active cellular suppression of immune responses has been studied extensiveiy over the

years and has rernained illdefined due to difhculties in cloning suppressor cells and defining their

mechanism of action. More recently, it appears that one of the primary mechanisms of active

cellular suppression is via the secretion of suppressive cytokines such as transforming growth

factor (TGF-ß), 1L-4, and IL-10 after antigen-specific triggering of T cells (Weiner, 1994).

TGF-ß-secreting myelin basic protein (MBP)-specific CD4+ T cell clones from the mesenteric

lymph nodes of SJL mice (Chen , 1994) were structurally identical to Thl disease-inducing clones

in T-cell receptor usage, major histocompatibility complex (MHC) restriction, and epitope

recognition but suppressed rather than induced experimental autoimmune encephalomyelitis

(EAE). Because of this finding we examined the production of TGF-ß induced by mouse hsp60

here. However, TGF-ß was produced in similar amounts by T cells from all mice irrespective

of different stimulation protocols either in vivo or in vitro, which argues against a central role

for this cytokine in the process we are studying. Rather our data show that tolerance to mouse

hsp60 is directly correlated with the net secretion of IL-10 and inversely correlated with the ratio

of IFN-gamma/IL-10 net secretion (Iable 7).

L-10 was originaliy identified as a product of CD4+ Th2 cells that inhibited proliferation

of CD* Thl cells via down-regulation of lFN-gamma and IL-2 production (Fiorentino, 1989;

Fernandez-Botran, 1988). IL-10 is well known to de-activate macrophages and downregulate Thl

immune responses (Moore, 1993).In several model systems, IL-10 has been demonstrated to

be a critical cytokine in the regulation of T cell differentiation in terms of cytokine phenotype
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and function (Mosmann, 1989, 1994). The production of IL-10 often correlates with strong Th2

responses and inhibition of cell-mediated Thl responses (Li, 1994; Mosmann, 1989; 1994). In

addition, IL-10 prevents the infiltration of mononuclea¡ cells into inflammatory sites (Powrie,

1e93b).

More recently IL-10 has been implicated in T cell tolerance. Enk et aI (1994) reported that

in vivo application of IL-10 before allergen treatment induced antigen-specific tolerance in mice.

They suggested IL-10 might act via inhibition of proinflammatory cytokines because injection

of IL-10 into mice significantly impeded the induction of proinflammatory cytokines IL-lß,

tumour necrosis factor a and IL-la. It was also demonstrated that IL-10 inhibits the induction

of proliferation of Thl cell clones by freshly cultured I-angerhans cells (LC). This effect was

independent of Ag-processing and shown to be mediated via inhibition of a costimulatory signal

on LC (Enk, 1993). Current evidence favours the idea that IL-10 inhibits production or function

of costimulator molecules such as B7/BB1 (Linsley, 1991; Freedman, 1991), as the absence of

costimulation in the presence of antigen-presentation leads to T cell anergy (Schwartz, 19S9).

Complete activation of T cells requires two signalling events, one through the antigen-specific

receptor and the other through the receptor for costimualtory molecules. In the absence of the

latter signal, the T celi makes only a partial response and, more importantly, enters an

unresponsive state know as clonal anergy in which the T cell is incapable of producing

interleukin-2 upon restimulation (Schwartz, 1990). This model can explain our observations.

Mouse hsp60 induced high IL-10 production which directly correlated with tolerance to mouse

hsp60. Autoimmunity to mouse hsp60 was correlated with reduced levels of IL-10 production

and high levels of lFN-gamma (table 7). In vitto IL-2 reversed mouse hsp60 specific T ceil
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anergy presumably because exogenous IL-2 bypasses the requirement for the second signal

costimulation that is controlled by IL-10 (Fig. 20, Fig. 22).In other system it has also been

reported that the inhibitory effect of IL-10 was at least signif,rcantly, if not completely, overcome

by exogenous IL-2 (Fiorentino,1989; Ding, 1992).In aggregate these results suggest that IL-10

maintains antigen specihc T cell tolerance via inhibition of IL-2 production by impeding

costimulatory signal expression at the APC level. The net effect of IL-10 appears to depend on

the precise balance between IL-10 and IL-Z. The result shown in figure 22 illustrates that

exogenous IL-10 (at 5 ng/ml) can inhibitlL-2 (50 units/ml) reversion of T cell anergy to mouse

hsp60. IL-iO is known to down regulate expression of class II MHC or costimulatory B7 on

monocyte/macrophage and IL-2R on T cells (de Waal-Malefyt, 1991). All of the molecules

(MHC class II, F7, IL-2R) are essential for T cell proliferation, thereby IL-10 act

antagonistically againstlL-2 function by interfering with antigen presentation,lL-2 production

and IL-2 autocrine binding to IL-2R. Therefore, we conclude that two mechanisms by which

tolerance to mouse hsp60 is mediated are via the generation of active cellular suppression and

by cional anergy.

ttl. The induction of autoimmunitv.

3. 1. The role of ThIlThz regulatory cells.

Our data (table 7, 8, 9; frg. 20, 21, 22) suggest that mouse specific B cells are in an

immunoignorance state and that autoimmunity is controlled by the balance of Thl and Th2 cells.
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Th1 cells, producing IL-2 and lFN-gamma, mainly mediate cellular immune reactions to

chlamydial hsp60. High levels of autoimmunity inversely correlated with Th2 typecytokine IL-

10 production. We hypothesize that the chlamydial specific T regulatory cells interact with

mouse hsp60 specific B cells and anergic T cells through cross-priming (molecule mimicry, Fig.

168) and paracrine secretion of IL-2 or IFN-gamma. This Th1 type cytokine can inhibit IL-10

production and furthermore may cause antigen-presenting cells to alter the pattern of protein

processing that generates differential protein cleavage patterns, leading to the expression of

cryptic epitopes and presentation to autoreactive T cells and thereby stimulating autoimmune

disease. We also propose that this effect can be counteracted by Th2-associated cytokines that

modulate APC function (Elson, 1995).

3.2. Cryptic epitopes of mouse hsp60

The importance of coimmunization in the induction of autoimmune responses to a self

antigen highlights the importance of high concentrations of self antigen and homologous foreign

antigen being present at the immunizing site. High concentrations of the self antigen (mouse

hsp60) plus homologous microbiai antigen (chlamydial hsp60) appeared to be required to break

tolerance (Fig. 18).

Through what potential mechanisms can an ubiquitously expressed antigen such as hsp60

produce an organ-specific disease? One explanation could involve a localized induction of the

heat shock response. Histochemicai studies of the brains from patients with multiple sclerosis

(MS) or with gliomas reported expression of hsp60 in only some but not all astrocytes.
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oligodendrocytes and reactive macrophages (Georgopoulos, 1993). Human hsp60 is strongly

expressed by mononuclear inflammatory cells in colon and ileum tissue sections from patients

with Crohn's disease and ulcerative colitis but not in biopsy specimens from patients with acute

self-limited colitis and controls. As well hsp60 is expressed by giant cells and mononuclear cells

present in the granulomas of patients with Crohn's disease @eetermans, 1995).

Autoiogous APC have been reported to stimulate hsp6O-specific T cells following heat shock

(Hermann, i991) or interferon-gamma treatment (Koga, 1989), indicating that endogenous hsp60

can be processed and presented on MHC. These f,rndings raise the interesting possibility that

under certain circumstances, possibly infection, some cell populations may constitutivety exhibit

enhanced levels of protein mis-sorting leading to the appearance of hsp60 in unexpected

locations.

Evidence for increased hsp 60 expression in autoimmune lesions has also been presented

(Jones, 1990; Karlsson-parra, 1990; Rajagopalan, 1990; Selmaj, 1991). Thus, heightened hsp60

leveis have been found in the synovial lining and other cells present in rheumatoid arthritis

lesions, oligodendrocytes of multiple sclerosis, and pancreatic cells of IDDM patients. An

inflamed infection site likeiy presents stressed conditions to both pathogen and host cells and

there is evidence to suggest that inflammation results in up-regulation of hsps. As well T cell

clones that are specifrc for self hsp60 can be isolated from local inflammatory sites in mice and

humans (Polla, 1989; Anderton, I9g3).

T cell tolerance depends on the presentation of self-proteins to T cells and therefore can

only be established to those self-determinants which, under steady-state conditions, are generated

in sufficient amounts to be recognized by T cells undergoing deletion in thymus or anergy in the
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periphery. Thus, there is large number of self-determinants that are cryptic because they are not

generated at all or are generated at subthreshold levels. T cells specific for these cryptic epitopes

are present in the normal repertoire and might become activated and autoaggressive if the

epitopes are presented at higher concentrations. This concept, which had been originally

proposed by Sercarz and colleagues, represents today one of the major hypothesis for the

pathogenesis of autoimmune diseases (Sercarz, 1993)

There appeffs to be two functional sets of self-determinants within the mouse hsp60

molecule. Those that a¡e easily processed and presented, readily tolerizing developing T cells

and comprising the dominant self antigen, and those that are more difficult to present and

apparently do not tolerize, thus comprising the cryptic self antigen. Up-regulation of the

synthesis of host hsp60 may occur under inflammation or immune-mediated circumstances and

thus present the immune system with high concentrations of self hsp60 epitopes by increasing

antigen delivery to the processing compartment, modulation of antigen processing, or by

increasing expression of adhesion and costimulatory molecules on antigen presenting cells

(I-anzav er,chia, 1 995) .

It is remarkable therefore that immunization with chlamydial hsp60 itself does not generate

strong self reactive antibody to mouse hsp60 (fig. 15). This is probably due to the fact that under

these condition little mouse hsp60 is present in vivo and most activated B cells are specific to

determinants unique to chlamydiai hsp60. Our data indicate that the autoantibody titre for mouse

hsp60 depends on the concentration of mouse hsp60 co-immunized with chlamydial

hsp60(f,rg.18).



3.3. Molecular mimicrv and the carrier effect

Tolerance to mouse hsp60 is not a single immunologic event. As previously reported by

Lin et al (1991) autoimmune response are relatively easily induced when two homologous

antigens, one of which is a self antigen, are administrated concurrently. We observed that co-

immunization with mouse hsp60 and chlamydia hsp60 induced strong B and T cell responses to

mouse hsp60 (Fig. 17). The induction of autoimmune responses depended on the shared amino

acid sequences between mouse and chlamydia hsp60 since it was not observed when

nonhomologous but highly immunogenic proteins such as ovalbumin Sig. 19) or glutathione-S-

transferase (Fig. 23) were co-administered with mouse hsp60. The impor[ance of shared

sequences implicates cross-reaction between the antigen recognition structures on T and/or B

cells in the autoimmune response rather than bystander activation due to nonspecific cytokine

release. Clearly these observation implicate molecular mimicry as the basis for autoimmune

induction by hsp60, at least under the circumstrances examined in these experiments.

Many other murine models of human autoimmune disease implicate Th cells as a central

component in driving autoantibody responses (Steinberg, 1980; Santoro, 1988; Wofsy, 1987).

These T cells presumably have not been deleted from the peripheral repertoire and may await

induction by the appropriated seif or cross-reactive foreign antigen (molecular mimics).

Transgenic mice carrying a gene construct encoding hen egg lysozyme (HEL) under

transcriptional control of the mouse albumin promoter (Goodnow, 1990) express lysozyme as

a self antigen, resulting in tolerance to lysozyme within the T cell compartment (Goodnow,

1988). The functional absence of lysozyme-specif,rc helper T cells can be circumvented by
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challenging mice with a conjugate of lysozyme coupled to foreign (sheep) red blood cells

(SRBC), creating a situation where lysozyme-specific B cells can collaborate with SRBC-specific

helper T cells (Goodnow, 1990).

Since antigen-specific B cells need to collaborate with antigen-specific T cells in order to

mount efficient antibody responses to foreign antigens (Claman, 1966; Vitetta, 1989), the failure

to produce high-affinity autoantibodies to mouse hsp60 could merely reflect T cell clonal anergy

rather than any change in the B cells themselves.

It is easy to understand the mechanism by which helper T cells recognizing foreign epitopes

on GST may stimulate autoreactive B cells (specifrc for mouse hsp60) if the foreign epitopes are

linked to a self protein as a GST-mouse hsp60 fusion protein, because mouse hsp60 reactive B

cells recognize and bind mouse hsp60 through their slg, then process it and present the linked

GST epitopes on the surface as a MHC class II complex which are recognized by activated T

cell (specihc for GST). We think that the co-immunization with mouse and chlamydial hsp60

also allows the chiamydiai hsp60 specific Th cells to interact with mouse hsp60 specifrc T/B

ceils through a similar cross-priming process. For example, when chlamydial hsp60 primed

LNCs were cultured with mouse hsp60, intermediate levels of T cell proliferation occurred (Fig.

168).

Therefore, high levels of autoantibody can be induced by providing T cell help through the

incorporation of a foreign T cell site in mouse hsp60 by creating a self plus foreign fusion

protein (Fig. 23). Adoptive transfer of immune T cells from mice immunized with chlamydia

hsp60 also demonstrated that chlamydial hsp60 contains T cell sites which activate cross-reactive

T helper cells to help autoreactive (mouse hsp60 specif,rc) B cells (Table 8).



3.4. Epitope mapping.

Since chlamydial hsp60 can induce T cells involved in autoantibody production against

mouse hsp60 (Fig.23, Table 8), I reasoned thatchlamydial hsp60 should contain one or more

T cell sites capable of providing help for autoreactive B cells. All previously mapping studies

on hsp60 focused on defining the cross-reactive epitopes that may be involved in autoimmunity.

Numerous studies have identified T-cell responses to hsp60, for example adjuvant arthritis

can be induced in the rat with an epitope of mycobacterial hsp60 (aa180-188), and the disease

can be transferred with t cells specific for this epitope (Van Eden, 1988). T cell recognition

of epitopes conserved between mycobacterial and mammalian hsp60 has also been reported

previously. Murine gamma/ô T cell hybridomas generated against PPD and specific for residues

180-196 of mycobacterial hsp65 responded to the homologous region of human hsp60. (Born,

1990). Following bulk stimulation of PBL from healthy donors with killed M. tuberculosis,

MHC class ll-restricted CTL were generated that lysed autologous target cells pulsed with

synthetic peptides of human hsp60 (Munk, 1989). In another study, T cell lines from ascitic fluid

of a tuberculosis patient which were specific for residues 195-219 and 390-412 of mycobacterial

hsp65 also responded to whole human hsp60 (I-amb, 1989). A T cell response to hsp60 and,

in particular, to aa337-460 has aiso been demonstrated in NOD mice developing diabetes

mellitus (DM). These T cells also respond to the membrane of insulin secretory granules and

hsp60 may be targeted to these granules (Eiias, 1991). Cross-reactive T cell recognition of hsp65

and rat hsp60 was limited to a single epitope (aa 256-265), recognized after hsp65 immunization
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which protects rats against adjuvant arthritis (Anderton, lgg4\.

Epitope mapping studies show that sera from patients with C. trachomatís induced pelvic

inflammatory disease or ectopic pregnancy have antibodies that preferential react to the carboxyl-

terminal half of the chlamydial hsp60 (residue position:274-545) (cerrone, 1gg1). Arno (1gg5)

further mapped antibodies to amino acids 201 to 300 of chtamydial hsp60 in women with tubal

infertility. V/e previously mapped several B cell peptide epitopes to this region and identified

that they cross-reacted with homologous peptide epitopes from human hsp60 (yi, 1gg3). To test

whether chlamydial salpingitis induced sensitization to conserved epitopes, patients,pBls were

tested for their ability to respond to five synthetic peptides corresponding to regions of identity

or near identity between the C. trachomati.r and human hsp (Witkin, 1994). Since hsp functions

as a molecular chaperon and readily binds other proteins, the use of synthetic peptides in these

investigations assured that no false-positive responses occurred as a result of stimulation by a

contaminating native or recombinant peptide. PBLs from 4 of 10 (40%) women with recurrent

salpingitis, but none of 9 women with a first episode of salpingitis and none of 32 women with

no evidence of salpingitis, responded to a peptide corresponding to amino acid,s 275-2g3 in the

chlamydial hsp.

I constructed five deletion muüants of chlamydial hsp60 in order to map in vivo T help sites

capable of providing help for autoreactive B cells (Table 9). Two helper T cell sites in

chlamydial hsp60 (amino acid residue: 268-409, 1-150) were identified that can induce

autoimmune responses if they were co-immunized with mouse hsp60. But it is not clear whether

these fragments induce a specif,rc T regulatory cells releasing unique cytokines or by cross-

priming self-reactive anergic T cells and B cells. An exciting result has been reported recently
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(Brocke, 1996). The T cell clone Ll0C1 recognizes the myelin basic protein (MBp) epitope pg7-

99 and causes severe experimental encephalomyelitis (EAE). Administration of the altered

peptide ligand (APL, 96P*A), in which a phenylalanine at residue 96 was repiaced by alanine,

prevented EAE or reversed paralysis. This peptide bound poorly to MHC class II molecules and

induced a lower proliferative response in L10C1 than original peptide P87-99. The reversal of

EAE with APL depend on the availability of the Th2 cytokine IL-4. Neutralizing monoclonal

antibody directed against IL-4 block the therapeutic effect of ApL.

Therefore future studies will be certainly needed to map more precisely the immunodominant

T cell epitopes within these two regions. The epitope may be useful as a marker for chlamydia

associated immunopathology or designing altered peptide ligand for treatment of autoimmunity

induced by chlamydia hsp60.

f,V. Conclusions and Speculations

The data available thus far show that the immune system does indeed attempt to produce a

compromise in the face of the problem noted at the beginning of the discussion. That is. the

immune system has decided to accept chlamydial hsp60 as a dominant microbial antigen and to

keep cross-reactivity at low levels for the shared epitopes in order to reduce the risk of

autoimmunity. The immune system relies on regulatory mechanisms inducing periphery anergy

and active suppression, which can be overcome in vivo if the responding lymphocytes encounter

both mouse hsp60 and chlamydial hsp60 in sufficient amounts. The danger of immunopathogenic

effects following chlamydial infection may prevail under such circumstances.
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The role that IL-10 production by hsp60 stimulated T cells could play in C. trachomatis

infection is uncerlain. In ll-l0-deficient mice, generated by gene targeting, iymphocyte

development and antibody response are normal, but most animals are growth retarded and

anaemic and suffer from chronic autoimmune enterocolitis that appears to be triggered by

intestinal bacteria- Alterations in the intestine include extensive mucosal hyperplasia mononuclear

inflammatory reactions, and aberrant expression of major histocompatibility complex class II

molecules on epithelia. When IL-10 deficient mice a¡e kept under specific pathogen-free

conditions they develop only a focal inflammation limited to the proximal colon. These results

indicate that bowel inflammation in the IL-10 knock out mutants originates from uncontrolled

immune responses stimulated by enteric bacterial antigens and that IL-10 is an essential

immunoregulator in the intestinal tract (Kühn , lgg3).It is very interesting to wonder whether

GroEL fron-r E col'i is involved in the chronic enterocolitis in this IL-10 deficient mouse strain

or what would happen if mutant mice were immunized with mouse hsp60.

The effects of lFN-gamma on chlamydial growth are clearly concentration-dependent and

can lead to either cornplete inhibition of chlamydial growth (2.0 nglml) or to persistence (0.2

nglml) (Beatty, 1993). However, the reported concentration of IFN-gamma in cervical secretions

and serum of women with chlamydial cervicitis and pelvic inflammatory disease is much higher

than that required for persistent chlamydial infection (Arno, 1990; Grifo, 1989). Therefore,

secretion of lFN-ganlma at local sites of infection could reach concentrations that would

completely inhibit chlamydial growth and resolve infection. Accumulating evidence does show

that IFN-gamma is the key cytokine involved in host defence against C. trachomatis infection

(Yang, 1996; Williams, 1993; Beatty, 1993). Unfortunately, this is not the case in vivo. Data
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from animal infection models and human epidemiological studies demonstrate that the pathologic

changes such as chronic inflammation, tissue damage, and scarring of mucosal epithelium are

quite common after repeated infections (Morrison, 1992). C. trachomatis like other intraceilular

infection may upregulate host cell expression of self hsp60. Our data suggest that the self-hsp60

could activate anergic T cells to secrete high level IL-10. L-10 could then down-regulate T cell

production of IFN-gamma, thereby providing a prolonged antigenic stimulation that promotes

chronic chlarnydial inflammation and immune-mediated disease. We hypothesize that chronic,

repeated or persistent infection which appears essential to the immunopathological response that

charactertze chlamydia inflammatory disease may be controlled by the balance of the ratio of

IFN-gammalIL-ß among responding antigen specif,rc lymphocytes.

Could immune responses to stress proteins have a role in protection against infection? One

view is that they do not, since infection by any one pathogen generally does not protect an

individual against infèction by another. An alternative view is the model of immune surveillance

in which self-reactive T cells provide a first line of defense against infection by recognizing and

helping to eliminate stressed autologous cells, such as cells infected with chlamydia. During

everyday life the host will frequently encounter microbes, most of which are nonpathogenic, but

which may survive for a limited time period. Although such microbes will be eliminated before

they cause clinical disease, hsp synthesis may be induced. Therefore, the host's immune system

may be frequently boosted by microbial hsp derived from various microorganisms. In this way,

constant T cell stimulation may occur, and T cells specific for epitopes of hsp shared among

various microbes could provide an early defence mechanism against pathogenic microbes

(Kaufmann, 1990a).
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The present study supports a model of molecular mimicry for the induction of autoimmune

responses. Hsp60 rnakes an appealing model of foreign/autoantigen immunologic discrimination

since the arnino acid sequences from more than 50 species are known to show a high degree of

evolutionary conservation. As well, the structural characteristics of GroEL have been described

by crystallograplty' the immunobiology of foreign hsp60 has been well studied, and the mouse

hsp60 nrolecule l'tas 9'7% homology at the amino acid level with the human hsp60 (Elias, 1991).

The animal nlodel system for induction of autoimmunity to hsp60 that we have described will

be useful to evalttate for accelerated pathology following primary chlamydial infection.
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