
Generalization of Approximation of Planar 
Spiral Segments by Arc Splines 

A thesis 

submitted to the faculty of graduate studies 

in partial fulfillment of the requirements 

for the degree of 

Master of Science 

Department of Computer Science 

University of Manitoba 

Winnipeg, Manitoba, Canada 1998 



National Library I * m  of Canada 
Bibbthéque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services seMces bibliographiques 

395 Wellington Street 395. rue Wellington 
OttawaON K l A W  Ottawa ON K1A ON4 
Canada CaMda 

The author has granted a non- 
exclusive licence allowing the 
National Lîbrary of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts fiom it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distri'buer ou 
vendre des copies de cette thèse sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
électronique. 

L'azteur conserve la propriété du 
droit d'auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de ceUe-ci ne doivent être imprimés 
ou autrement reproduits sans son 
autorisation, 



F A C U L N  OF GRADUATE STZI'DIES 
***** 

COPYRIGHT PER%LISSIOX PAGE 

A ThesidPncticom submitted to the Faculty of Graduate Studies of The University 

of bfmitoba in partial hilfillment of the requirements of the degree 

of 

MASTER OF S C ~ C R  

Permiision has been grnnteà to the Library of The University of Manitoba to lend or seii 
copies of this thesis/practicum, to the National Library of Canada ta microfiIm this thesis 

and to lend or sel1 copia of the fw, and to Dissertations Abstncts International to pubüsh 
an abstract of this thesidpracticum. 

The author reserves other publication righb, and neither this thesiJpracticum nor 
extensive estracts from it may be printed or otherwise reproduced without the author's 

written petmission. 



Abstract 

Spirals based on quadratic Bézier, cubic Bésier, Pythagorean hodogragh (PH)  cu- 

bic. PH quintic and clothoid curves are suitable /or CAD and cornputer-aided geornet- 

ric design (CAGDJ applications. The cfothoidal spiral segments are widely used in 

highwa y design. railwa y design and robot trajecto ries. For CNC machining eompared 

with polyline approximations, the suggested arc spline approximations avoid sudden 

changes in the direction of the tool path, decrease the number of segments for approx- 

imation and lessen the need to polish objects. In this dissertation an existing method 

is generalized to approximate a planar spiral segment so that it can be applied to  a 

large class of spiral segments. The properties of several spiral segments are analyred 

and their approzimations by the proposed method are presented. 
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Chapter 1 

Introduction 

With the  influence of automatic control of machines and cornputer-aided design 

(CAD),  computer-aided manufacturing (CAM) systems have expanded in manufac- 

turing industries during the last two or three decades. Designers use CAD systems 

to design parts for visual and theoretical analysis. On the basis of the CXD model. 

the numerical control (NC) programmer uses the C.Ab1 system to generate a NC tool 

path for a computerized numerical control (CNC) machine so that  it can produce the 

part. Approximating spirals by arc splines plays an important role in CNC machining 

for manufacture. 

Spirals based on quadratic Bézier, cubic Bézier, Pythagorean hodogragh ( P H )  

cubic, PH quintic and clothoid curves are suitable for CAD and computer-aided 

geometric design (CAGD) applications. PH curves were int roduced by Farouki and 

Sakkalis [FSSO]. Spiral segments, the clothoid in particular, a re  used in applications 

such as highway design [Baa84], railway design [Hic671 and robot trajectories [Sch96]. 

The term spline is used to describe a composition of curve segments joined in a 



rnanner to satisfy given continuity and smoothness criteria. A spline function (or 

a spline curve) is a piecewise analytical function. The different pieces are chained 

together with continuity requirernents imposed on the first few derivatives a t  the 

joints. The pieces are basic curve shapes with adjustable parameters. The parameters 

are adjusted so that the  chained curve matches the data and continuity requirements. 

For example, an arc spline is a spline composed of circular arcs. 

A CNC machine is a piece of manufacturing equipment that performs machin- 

ing autornatically to produce parts. The tool paths of modern CNC rnanufacturing 

machines are controlled by servomotors which allow circular arcs and straight line 

segments to be machined to almost mathematical precision. In a CAD environment. 

objects are often designed using B-splines or Bézier curves. It is standard practice 

to cut a srnooth curve as a polygon that  is a very close approximation to the curve. 

To manufacture cornputer-aided designed objects, efficient and effective use of such 

machines can be increased by approximating Bézier and B-spline curve segments by 

arc splines rather t han by straight line segments for t hc following reasons. 

0 The continuity of the tangent vector of an arc spline avoids sudden changes in 

the direction of the tool path. Sudden changes of direction cause problems such 

as overshooting. Such problems lead to  wastage of material and time? or shud- 

dering of the machine. These problems result in increased maintenance costs 

and a shorter lifespan for costly equiprnent. To avoid overshooting, program- 

ming of the feedrate, acceleration and deceleration should be done carefully and 

is usually very time-consuming. 

The nurnber of segments in the approximation will be decreased which leads to 
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fewer instructions and fewer tool motions required in programming the machine. 

The need to polish objects would be significantly reduced if they were machined 

with a continuous tangent cutting path. 

1.1 Notation, Conventions and Terminology 

In this thesis the concepts of a vector. the norm of a vector and its dot and cross 

products are used. The spirals and spiral segments discussed are ~ l a n a r  curves, how- 

ever it may be necessary to refer to a curve or vector in space. Some of the properties 

of vectors are mentioned here. More details are available in [dCi6] and [Gug63]. 

N o m  of a Vector : 

The norm of a vector V is denoted as II V 11. If u = (v,, uz, 0 4 ,  then 

Angle : 

The angle from vector U to vector V is a signed quantity; it is positive if  

measured counter-clockwise from U to V. 

Directed Line Segment : 

The directed-line segment from point Pi  t o  point Pj is indicated as P;Pj. The 

length (norm) of it is denoted as (1  PiPj 11. 



Parameterized Curue : 

A three dimensional curve is denoted as ( x ( t  ), y ( t  ), s ( t ) ) .  The quantity t is called 

the parameter of the curve. The degree of smoothness of a parameterized curve 

depends on how many times it can be differentiated. For planar curves. z( t ) = 0. 

Dot Product : 

The dot (or inner) product of two vectors, V and W is denoted as V -W.  It is 

defined by 

where 0 is the counter-clockwise angle from vector V to vector W. The  following 

are some properties of the dot product [dCi6]: 

1. Assume V and W are two nonzero vectors, the necessary and sufficient 

condition for V W = O is that V and W be orthogonal. 

Let el = (1,0,0),e2 = (0,1,0) and e3 = (0,0,1). Using property 1, it is easy to 

see that ei . ej = 1 if i = j otherwise ei ej = O .  Suppose 

From properties 3 and 4, U . V = ulvl + u2v2 + ~ 3 ~ 3 .  If ~ ( t )  and v(t)  are 

differentiable functions, then the dot product of u( t )  and v(t) is a differentiable 
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funct ion, 

Arc Length : 

According to [dC76] (p .  6), the arc length of a regular parameterized curve 

from the point to to t is 

where 

is the length of the vector QI(!). 

Unit Tangent Vector : 

If the parametric curve Q ( t )  is considered to be the path of motion of a point. 

the direction of the first derivative vector gives the direction of motion and 

speed of the point a t  any instant. The direction is extracted from a parametric 

first derivative by normalizing the vector. The unit tangent vector of a curve 

QU) is 

If T is the unit tangent vector to Q ( t )  at t ,  then the orientation of the unit vector 

measured 5 counter-clockwisely from T is the unit normal vector, denoted as 

N. 

Curvature : The curvature of a planar curve Q ( t ) ( x ( t ) ?  y(t ) )  [?](p. 155) is 
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The radius of curvature is the absolute value of the reciprocal of (1.1). At a 

given point P on a parametrically defined curve Q ( t ) ,  the circle that passes 

through P, and a t  P has the same unit tangent vector and curvature as the 

curve, is called the osculating circle at P. The  center and radius of this circle are 

called the center of curvature C ( t  ) and the radius of curvature p ( t ) ,  respectively. 

at  this point. The curvature ~ ( t )  at  this point is the reciprocal. l / p ( t ) .  of the 

radius of curvature. Here p ( t )  # O. Otherwise, the curvature were infinite 

which contradicts with that curvature can always be measured in real world. 

The curvature vector k has a magnitude equal t o  the curvature and points [rom 

P towards the center of curvature. 

inflection Point : 

An inflection point on a curve is defined as a point. 1, where the points imme- 

diately before and after it are on opposite sides of the tangent line to the  curve 

through the point 1 as in Fig. (1.1). 

Figure 1.1: Inflection Point 

Go continuity : 

Two curve segments are said to be joined with Go continuity if one segment 

begins where the ot her segment ends. 

G' continuity : 
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I 

Tivo curve segments are said to be joined with G1 continuity if they meet with 

Go continuity and the tangent vectors a t  the joint between two t hese successive 

segments are collinear having the same direct ion. 

G2 continuity : 

Two curve segments are said to be joined with GZ cootinuity if they meet with 

G1 continuity and their signed curvatures are continuous across the joint. 

Spiral : 

Spirals are curves whose curvature is a rnonotonic function of arc Length. in 

this thesis only spirals with positive curvature are considered. Results for spi- 

rals wi t h negative curvat ure follow analogously. Consider a spirai Q( t ) wi t h 

parameter t' which increases strictly monotonically with arc length. The spiral 

Q(t  ) satisfies the lollowing properties. 

The curvature at the first point of the spiral cannot be the same value as 

the curvature at the Iast point of the spiral. 

The spiral is a function of t .  

Spirals, in which the absolute vaIue of curvature increases, are denoted as wind- 

ing spirals. Spirals, in which the absolute value of curvature decreases are 

denoted as unwinding spirals. 

In this thesis, only continuous arc splines with first derivative continuity will 

be considered for approximating spiral segments. The first derivative at  any 

point of such curves is not  zero. The parameter t can range from -03 to 

+as for some spirals, e.g. clothoidal, Archimedean and logarithmic spirals. To 
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approximate a spiral with parameter t ranging from -a; to +a, by using the 

met hod illustrated in this thesis, the spiral should be separated into pieces with 

fini t e  intervals. Using the same tolerance, different separat ions usuaily lead t O 

different numbers of circular arcs. Only winding spirals are considered. The 

results are applicable to unwinding spirals by reversing the direction of t h e  

parameter. 

The Bernstein Bézier curve [BBBS?]. or more briefly Bézier curve. of degree n 

is defined by: 

where 

are the Bernstein polynomials, the being the binomial coefficients and 

Pi are the control vertices. Po, P i ,  . , P, forrn the control polygon. 

The first derivative is 

Some useful properties of Bézier curves are: 

Convex-hull property: 

A Bézier curve lies within the convex hull of its control polygon. The  

convex hull of a set of control vertices in the plane can be thought of as 
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the region lying inside a rubber band stretched so as to contain the control 

vertices and then released so that it snaps tightly against thern. 

0 Endpoint interpolation: 

0 The tangent vectors a t  the starting point and ending point are parallel to 

the beginning and ending edges of the control polygon. i.e.: 

respect ively. 

The  curvature at  the  starting point and ending point depend on only the 

first three or last three control points because 

Spiral Segment : 

A spiral segment is a piece of any spiral. Curvature extrema and inflection 

points divide divide a general curve into spiral segments. 

An arc spline is a G1 c u v e  composed of circular arcs and straight line segments. 

First-order geometric cont inuity, denoted as G', refers to a cont inuous spline 

with a continuously varying unit tangent vector. Arc splines are G1 continuous, 

but not G2 continuous, because their unit tangent vectors Vary continuously but 

their curvature a t  the joints are not continuous. 
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Biarc : 

Consider two given arbitrary points A. and Al  and corresponding tangent 

directions To and Tl. A biarc is a composition of two circular arcs that  satisfy 

the following: 

a One arc starts at A. with tangent vector To a t  Ao. 

a The other arc ends at  Al with tangent vector Ti at  Ai.  

The  two arcs are connected at a joining point, P, a t  which they have a 

common unit tangent vector. 

There are two types of biarcs: those that have an inflection point (as shown 

in Fig. (1.2) and those that do not have an inflection point (as shown in Fig. 

(1.:3)). 

Figure 1.2: Curve with Inflection Point 

Figure 1.3: Curve wit hout Inflect ion Point 



1.2. LITERATURE REVIEW 

A Pythagorean hodograph (PH) curve is a polynomial parametric curve 

where ~ ' ( t ) ~  + t~ ' ( t ) '  can be expressed as the square of a polynomial in t. More 

details on PH curves are in Chapter  2. 

1.2 Literature Review 

In this thesis, al1 of the  spirals discussed are plane curves which are special cases of 

space curves. For a space curve in general, denote the  unit tangent of a curve Q ( t )  

as T ( t )  and t h e  normal of Q ( t )  as N ( t ) .  T h e  osculating plane at t is determined by 

these two vectors. T h e  unit vector B(t) = T ( t )  x N ( t )  is normal to  the  osculating 

plane (see Fig. ( 1 . 4 ) )  The number r ( t )  defined by B f ( t )  = r ( t ) N ( t )  is called the 

torsion of Q a t  t [dC76]. For a planar curve r = O and it is possible to give the 

curvature a sign when the curvature is compared with the  orientation of the  plane. 

The curvature changes sign when either the  orientation of t h e  curve or  t h e  orientation 

of the plane is changed. This is called signed curvature. 

Figure 1.4: General Space Curve 

In [Meh74] o n  nonlinear splines Mehlum concludes t h a t  i t  is possible t o  approxi- 



mate any planar curve by a sequence of circular arcs for given accuracy and continuity 

requirements. In his paper. Mehlum describes a theory of nonlinear splines arising 

from a variational criterion of the  type 

/ (curvature)2ds = "as little as possible" 

He proves that  the curvature varies linearly along some fixed direction in space rvhen 

T = O. Based on the special case T = O, some algorithms for curve fitting are shown. 

Mehlum in fact encountered the clothoid and described an arc spline approximation to 

it. His arc spline approximation is based on a differential equat ion tliat he encountered 

and is thus particular to his approximation of a non-linear spline. 

In Walton and Meek's paper [WM94], a simple technique is developed to find 

an arbitrarily close approximation to a quadratic Bézier by a G1 curve consisting of 

circular arcs. A quadratic Bézier is in general not a spiral segment: it may or may not 

have a local curvature maximum. It can have at most one Iocal curvature maximum. 

When it does not have an interior curvature maximum, it is a spiral segment. A 

quadratic Bézier is given by 

where Po, Pl ,  P2 are distinct and non collinear control vertices. Three theorems are 

presented in that  paper. The first theorem is useful in the construction of a biarc 

approximation to  a quadratic Bézier curve. The other two theorems are useful to 

measure the accuracy of the approximation. Theorem 1 of [WM94] states: 

A unique biarc can be constructed which satisfies the folloiuing conditions. 



The biarc is Cshaped and matches the quadratic Bézzer curve in 

position and tangential directions at Po and Pî.  

The tangential direction at the joint of the biarc matches the direction 

of the izne segment which joins Po to P2. 

0 The biarc lies in the conuex hull defined by Po, Pl ,  Pz. 

Theorem 2 of [WM94] gives the corresponding parameter t where the deviation 

reaches the maximum value. In the same article, Theorem 3 finds the maximum 

deviation from the biarc, as constructed in Theorem 1. measured along a radial 

direction of the biarc. An  algorithm is developed to approximate a quadratic Bézier 

wi thin a given tolerance by subdividing i t recursively. 

In Walton and Meek's paper [WM96c], a technique which is sirnilar to the one 

used for a quadratic Bézier segment is applied to a planar cubic Bézier segment and 

two theorems on the deviation of a biarc approximation from a segment of t h e  cubic 

Bézier spiral segment are presented. 

Meek and Walton's paper (MW951 presents an algorithm for finding an arbitrarily 

close arc spline approximation of a smooth curve by examining the farnily of circular 

arcs joining one given point A. to another distinct given point Al.  The two circular 

arcs that match a given unit tangent vector To at  the first point and that match a 

given unit tangent vector Ti at the second point A, are called the bounding circular 

arcs Co and Cl (see Fig. (1.5)).  

Theorem 2 of [MW951 states that any biarc that joins one point to another dis- 

tinct point and matches given unit tangent vectors at the two points lies between the 

bounding circular arcs that are derived from the two points and the two unit tangent 



Figure 1.5: Bounding Circular Arcs 

vectors. Theorem 5 of [MW951 shows that  if a convex spiral segment of positive 

increasing curvature satisfies the enclosing condition, then the bounding circular arcs 

enclose a crescent-shaped region that includes the entire spiral segment. Based on 

these two theorems, Theorern6 of [MW951 is deduced which states the following. 

Let Q ( t ) ,  to  5 s < t l ,  be a smooth spiral segment of positive increasing 

curvature for which the deriued bounding circular arcs have eumatures 

of the sume sign, then the maximum distance between the two bounding 

circular arcs is 0 ( h 3 ) ,  where h = t - to. 

The algorithm used in this method is also a recursive one. Suppose A. and Al 

are the points on the curve to be approximated; if A. and Ai are very close, a 

straight line is returned as part of the arc spline approximation, otherwise check if 

the condition of Theorem 5 is satisfied. If it  is satisfied, a biarc is fitted, otherwise 

the curve is subdivided. Since this method can be used on any spiral segment, it 
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can be called a generalized one. This method causes some unnecessary subdivision. 

In this thesis a more refined method of deviation calculation is used and it requires 

substantially less resources. It cannot be claimed t hat the methods used in t his t hesis 

are optimal. However, they seem to produce a good ratio of maximum deviation 

to specified tolerance. Referring to [WhI96c], for example, using the method of 

[MW951 on a cubic spiral segment produced 16 arcs with a maximumdistance between 

bounding arcs of 0.001632 but a maximum deviation of 0.0001599, and 32 arcs with 

a maximum distance between bounding arcs of 0.0002072 but a maximum deviation 

of 0.00001992. i.e. ratios of 0.0980 and 0.0961, respectively. On the other hand. 

when 0.001632 and 0.0002072 were specified as tolerances, the algorithm discussed 

in [WM96c] produced 10 and 18 arcs with maximum deviations of 0.001431 and 

0.000 1933 for ratios of 0.577 and 0.933, respectively. 

Xnother approximation of spirals by arc splines is discussed in [kf PS4]. In t hat 

paper, Marciniak and Putz develop an algorithm to approximate plane spirals by 

smooth piecewise circular arc splines using the  fewest segments within a given toler- 

ance. The method they provide is for solving the problem of spiral approximation by 

tangent-continuous curves cornposed of circular arcs. It has the Eollowing properties: 

1. The approximation is within a given deviation of the given spiral. measured 

along the normal to the spiral. 

2. The approximation is optimal in the sense that it has the fewest circular arc 

segments among those with a given deviation. 

The method can be described as follows: 

For a spiral I ' ( t ) ,  where t E [to, t k ]  and r is an allowable tolerance, an interna1 spiral 



is defined as l i i ( t ) ,  where t E [to. lit] and an external spiral is defined as I\;(t ),where 

t E [ to ,  t c ] .  The distance from the spiral to  either the internal one or the external 

one. equals T. The approximating curve must lie in an area of tolerance delimited by 

internal and external spirals. The approxirnating curve consists of the  first circular 

arc segment and a numter of sequential circular arc segments. The first circular arc 

has four points in common with the spirals that delimit the tolerance field. Each 

sequential arc has t hree points in common wi t h these lirniting spirals. The  common 

points alternate between the limiting spirals. The  error of approximation. measured 

along the normal to the spiral, attains its maximal value T with alternating sign. 

An algorithm which solves this problern, a ~ d  an eeample of its application for any 

curve is presented in [MP84]. The approximation does not match the beginning and 

ending points and tangential directions oE the spiral segments. If a design involves 

two spirals intended to be joined smoothly, this smooth blend is not incorporated in 

the arc spline approximation. For a corresponding toolpath there may thus be sudden 

changes in the position and direction of the machine tool at the joints. A comparison 

is made in Chapter 3 between the met hod of [MPS4] and the one used in t his thesis. 

1.3 Approximation of Spiral Segments 

Usually general methods are not as efficient as specialized methods. It is interesting 

to know if the specialized methods mentioned in Section (1.2) con be generalized to 

a larger class of spirals while retaining efficiency, e.g. can the same technique used 

for quadratic and cubic Bézier spiral segments be  generalized for other polynomial 

spirals? Can it be applied to other spirals? 
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Since the quadratic and cubic Bézier can be approximated by using that method. 

it is expected that other spirals may be approximated by arc splines using a sim- 

ilar technique. In this thesis, the PH cubic Bézier, PH quintic Bézier, clothoidal. 

Archimedean and logarithmic spirals are examined in order to develop a general al- 

gorithm for their approximation by arc splines. 

In general the spiral segments which are investigated in t his t hesis have the rota- 

tion of the tangent from one end to the other that is smaller than n. For some spiral 

segments this angle can not reach K because of the limitation of the curve itself. e.g. 

the spiral part of a parabola. A spiral segment of the class examined in this thesis lies 

within the triangle formed by its endpoints, and the intersection of the straight lines 

which pass through its endpoints and are parallel to the tangential directions of the  

segment at  its endpoints. A spiral where the rotation of tangent is greater t han or 

equal to a can be approximated by subdividing it into segments and approximating 

each segment separately. 

In Chapter 2 some theoretical background which is relevant to this thesis is intro- 

duced. Spirals which are approximated in this thesis are defined and some properties 

of them are mentioned . In Chapter 3, two main theorems are presented and proved 

to show the idea that any spiral segment with a mathematical expression can be 

approximated by using this method. The main contribution of this thesis is this gen- 

eralization. In Chapter 4, the analysis of deviation for each spiral is done according t o  

Theorem 3.2 in Chapter 3. In Chapter 5, the implementation is shown by providing 

the pseudo-code of the program. In Chapter 6 some tables and figures present results 

of the approximation of some specific spiral segments. Finally Chapter 7 concludes 

the thesis with a general summary of the work accomplished, and points out some 
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interesting results. 



Chapter 2 

Theoret ical Background 

In this chapter. the concept of a Pythagorean hodograph curve is explained and the 

meri t of its algebraic characterization is mentioned. Pyt hagorean hodograph cubic 

and quintic Bézier are analyzed as examples. Biarc and its relevant property is 

introduced. We give definition and properties of quadratic Bézier. cubic Bézier. PH 

cubic. PH quintic Bézier. the clothoidal, the  Archimedeans and the logarit hmic spiral 

segments. 

2.1 Pythagorean Hodograph Curves 

Pythagorean hodograph curves were introduced to the CAD and CAGD community 

by Farouki and Sakkalis. In their paper [FS90], the definition and properties of 

Pythagorean hodograph curves are described clearly. 

19 
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2.1.1 Introduction of Pyt hagorean Hodogragh 

Pararnetric polynomial curves are an efficient and systematic form. and are widely 

used to represent curves and surfaces in CAD. For a plane curve segment. a polynomial 

curve can be  defined as Q ( t )  = x ( t ) T o  + y ( t )No  where x ( t )  and y ( t )  are polynomials 

in t ,  such as. 

~ ( t )  = C a d k ,  y ( t )  = C h t k ,  for t E [O, 11 

and To. No are the  beginning unit tangent and normal vectors. 

The computation of the polynomial curves is relatively easy for example the  op- 

erations of addition and multiplication are easy. Polynomial curves form a subset of 

rational curves on which graphics packages are usually based. But a polynomial curve 

still has some significant shortcomings which hinder its overall usage in practical de- 

sign application. If it is not a straight line. the points are usually not distributed 

uniformly along the curve when it is evaluated by evenly spaced parameter values 

ti. To overcome t his shortcoming, the lunct ional relationship between the arc lengt h 

along the curve and the parameter t is required. This function is an integral in gen- 

eral. Approximation of this integral may require a lot of computation and introduce 

errors. Another important deficiency is related to its "offset" curve. In applications. 

such as textile industry, shoe industry, car body industry and CNC machining, the 

curve Q o ( t )  = Q ( t )  + mn(t ) is widely used, i.e. Qo(t ) is a curve a t  rn units away from 

a givea curve Q ( t )  in the direction n ( t ) ,  where n(t)  is the unit normal of Q ( t ) .  In 

general if Q(t  ) is a polynomial curve, Qo(t  ) is not a polynomial curve and not even 

a rational curve. 

PH curves overcome these two disadvantages by virtue of the  following properties: 
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a Their arclength is evpressible in closed-form as polynomial functions. 

Their offsets are representable by rational curves of relatively Iow degree. 

Since rat ional curves facili tate processings such as subdivision. transformation. in- 

tersection. etc.. the second property gives PH curves an important role in geornetric 

modeling systems. 

2.1.2 Fundamentals of Pyt hagorean Hodographs 

The following t heorern is rephrased from [FS90]: 

Theorem 2.1 Three real polynomials a ( t  ), b ( t )  and c(t  ), where the bigger degree 

between a and b  is equal to the degree of c. satisfy the Pythagorean condition a2 ( t  ) + 
bZ(t ) G c2( t  ) if and only i f  they can be expressed in terms of real polynomials u(  t ). c(  t ) 

and w ( t )  in the form: 

" ( t )  = w ( t ) [ u 2 ( t )  - u 2 ( t ) ] ,  

b ( t )  = 2 w ( t ) u ( t ) v ( t ) ,  

c ( t )  = w ( t ) [ u 2 ( 0  + ~ u 2 ( t ) ] ,  

where u ( t )  and v ( t )  are relatively prime and w ( t )  is the common factor of a ( t ) .  b(t ) 

and c ( t ) .  

In order to simplify computation, w ( t )  = 1 can be supposed in this thesis. 

The following lemma is rephrased €rom [FS90]: 

Lemma 2.1 Given a parametric c u v e  Q ( t )  = x ( t ) T o  + & ) N o ,  the polynomial 

curve corresponding to the Pythagorean hodograph is given by setting 
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So that Q( t  ) is of degree n = 2 p  + 1. where p = max(deg(u), deg(v)). 

Notice that n = 2p + l while deg(w)=O. To ensure that Q ( t )  is indeed a PH curve. 

define xt(t)  and yt(t) as xt( t )  = u2(t) - v 2 ( t )  and yt(t)  = 2u( t )v ( t )  as polynornials 

[FSSO]. The curvature of a PH curve is (Far941 

and the d e r i ~ t i v e  of its curvature is [Far941 

where the dependence on t is not shown for sake of readability 

2.1.3 Pyt hagorean Hodograph Cubic Bézier 

A PH cubic, Q( t ) ,  (also known as Tschirnhausen's cubic [FS90 

Pyt hagorean hodograph curve of degree greater than 1. It has n = 

It can be obtained by defining u ( t )  and v ( t )  as 

1)  is the simplest 

3 and 

and 

v ( t )  = vo( l  - t )  + v l t  

In this thesis it is assumed without loss of generality that vo = O for both the cubic 

and quintic PH curves [WM96b]. This forces Q r ( 0 )  to be parallel to To. Hence, 
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Substitution of w ( t ) , u ( t )  and v ( t )  from Eqn. (2.4), (2.5) and (2.6) into Eqn. (2.1) 

gi ves : 

Q'( t )  = z 1 ( t ) T o  + y'(t)No (2 .7)  

where 

and 

An interesting geometric interpretation of the  restrictions on t h e  control polygon 

of a cubic Bézier curve t o  make the curve a PH cubic curve is t h e  following. .A PH 

curve is formed if and only if the  following two conditions are met(see [FS90]): 

L2 = d a  and 01 = 02, 

where L i ,  L2 and L3 are t h e  lengths of the control-polygon legs which are defined as 

Li =II Pi - P i - I  11, and B i ,  B2 are the interior angles a t  vertices Pl and Pz. 

Another geometric property of PH cubics is tha t  they have no real inflection 

points. T h e  condition = O2 makes the control polygon of a PH cubic convex so it 

is impossible to  have a n  inflection point when t  E [O, 11. 

2.1.4 Pyt hagorean Hodograph Quint ic Bézier 

PH Cubics are not sufficiently flexible to interpolate discrete d a t a  sampled from a 

curvature continuous curve in which inflections are  present. According to  Farouki 

and Sakkalis [FS90], PH quintics can be categorized as cuspidal or non-cuspidal. 

T h e  sign of the  curvature changes a t  the inflection point in a cuspidal PH quintic. 
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In this thesis, only those PH quintic segments which are  without cusps are dis- 

cussed. According to  [FS90], when the curvature of a PH quintic increase monoton- 

ically without changing sign, the  control vertices form a convex shape. 

A PH quintic Q ( t )  is obtained by defining u ( t )  and u ( t )  as [FS90] 

and 

or with vo = O. as is the  convention in this thesis. 

From the formula we can tell that  using PH quintics to  fit a curvature continuous 

curve to discrete points is not as easy as with PH cubics. 

2.2 Biarc 

Let A. and Al be two successive da ta  points that an  interpolating curve is supposed 

to pass through, and let To and Ti be the  tangential direction a t  these two points 

(as shown in Fig. ( 2 )  The point A2 is the intersection of lines through A. and 

Ai parallel to  To and T l .  G is somewhere in AAoA1A2 where the two arcs join. 

From the conditions tha t  the two arcs match the tangents To and TI a t  A. and 

Ai respectively and their tangents match a t  the joint, the location of G can not be 

determineci uniquely. Let s be the  length of the chord AoAi , 2a be the counter- 

clockwise angle from AoAl t o  AoA2, Sb be the counter-clockwise angle from AzAl 



to AoAl and 2c be the counter-clockwise angle from AoAi to the tangent ial direction 

at  G.  The curvature of the  two arcs can be expressed in terms of the angles ?a. 2 b . k  

and the chord s which is equal to II AoAi II according to [Sabi'i] (p. 45). 

Figure 2.1: Biarc 

t he  curvature of the first arc AoG is - 2 sin(b-a) s in(a-c)  
3 sin(b+c) ' 

the curvature of the  second arc GAI is - 2 sin(b-a) sin(b-c) 
s sin(a+c) . 

Actually when c = 0. the tangent direction at point G is parallel to AoAl and G 

is the incentre of the triangle AoAlA2. 

2.3 Quadrat ic Bézier Spiral 

Lemma 2.3 Given a beginning point, Po, beginning and ending unit tangent vectors. 

To and TI, respectively, Eqn (1.2) defines a quadratic Bézier segment when n = 2, 
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for a > O. b > O. as illustrated in Fig. (2.2). Suppose 8 is the counter-clockwise angle 

from To to Ti and let the ending curvature value, c > O be an extrema at t = 1. The 

Bézier segment is a spiral segment wheo 

tan 0 
a = 

2c cos 6' 

and 

tan 0 b =  -- 
2c 

Figure 2.3: Quadratic Bézier Spiral Segment 

Proof: 

Denote No as the normal vector at Po. Substitute Pi ,  Pz from Eqns.(i?. 11) into Eqn. 

(2.10) to obtain 

Q( t )  = Po + %Tot + (bTi - a ~ ~ ) t ~  

Then take the derivative to obtain 

and 



So it follows that Q"(t ) = O. Since TI = (cos B)To + (sin $)No. Eqn.(Z. 15) and (2.16) 

can be rewritten as: 

Q" = 2 ( b  cos 0 - a)To + 2 b  sin ONo. ( L I S )  

The signed curvature is defined by Eqn. (1.1). 

[2a(l - t )  + 26t cos 613bsin 8 + 2bt sin û(2a - 2bcos 6) 
k(t)  = 

(&la( 1 - t ) + 2bt cos 812 + (3bt sin 0 ) 2 ) ~  

- - 4ab sin 8 

(Jw(I - t ) 2  + (SabcosO)t(l - t )  + 4b2t213' 

The first derivative of (1.1 ), using Qt"(t) = O, yields 

To force the curvature extremum to occur at the ending point, kt( 1) = O is required. 

Applying Eqns. (2.17), (2.18) to Eqn. (2.20) at t = 1, with ~ ' ( 1 )  = O leads to 

The curvature at the ending is c, which means ~ ( 1 )  = c. Using Eqn.(2.19) gives 

2b2c 
a = -  

sin û 

From Eqn.(%.21) and (3.22), it follows that (2.12) holds. Eqn.(%.l3) follows from 

(2.12) and (2.31). 0 

Using Eqn.(%. lS), the curvature at t = O is equal to 
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Applying Eqn.(".'l), it produces 

Since a > O and a = -, it follows that s ine  > O, so O < 6' < ir/? for a 

quadrat ic spiral segment. 

This spiral segment has the following properties: 

Its curvature is equal to by at t = 0. 

Its curvature is increasing monotonically. 

Its curvature has a local maximum at t = 1. 

From Eqn.(9.10), it is known that a quadratic Bézier curve is a segment of a 

parabola. It has a curvature extremum at [CVM94] : 

a(a - b cos O )  
t =  

a2 + b 2  -2abcos8'  

The curvature extremum is obtained by letting the first derivative of d ( t )  equal 

to zero. In this case. Eqns.(.'.lô) and (2.18) are applied to Eqr~(2.20) and then 

d ( t )  = O gives the solution to the curvature extremum. Notice that if t = 1. it 

deduces Eqn.(2.21). 

2.4 Cubic Bézier Spiral 

Eqn(l.2) defines a cubic Bézier segment wheo n = 3. 

Q ( t )  = P o ( l  - t ) 3  + 3Pi(l - t )2 t  + 3P2(l - t ) t 2  + pst3. 
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where 

.As shown in Fig. (2.3).  Po, PI ,  Pz, PJ Form the control polygon of the spiral 

segment and To. TI are the unit tangent vectors at the beginning and ending points. 

respectively; Po' Pi and P2 are collinear and PI is at the middle of the line segment 

PIPÎ. d is the counter-clockwise angle from POPl to PzP3. 

Suppose O is the counter-clockwise angle from POPi to Pz& and c is the ending 

curvature at t = 1, The cubic Bézier segment is a spiral segment when 

25 tan O 
a = 

54c cos 8 

and 

5 tan O 
b=-. 

9c 

Eqns.(2.24) and (2.25) are derived in [WM96a]. 

The expressions of the function, first and second derivatives can be obtained from 

the above formulae. Substituting Q r ( t )  and Qr'(t) in Eqn. (1.1), 

11 6ct cos3 0 
~ ( t )  = 

{25 + 10t2(6 cosZ O - 5 )  + t"25 - -4 cos2 O)} a 
As proved in [WMSGa], this spiral segment has following properties: 

Its curvature is zero at  t = 0. 

Its curvature has no extreme values and does not change sign for O < t < 1. 

Its curvature has a local maximum a t  t = 1. 
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Figure 2.3: Regular Cubic Bézier Spiral Segment 

2.5 PH Cubic Spiral 

When n = 3. Eqn.(l.3) can be written as: 

Comparing the coefficients of the terms ( 1  - t )2,  ( 1  - t ) t  and t 2  to the corresporid- 

ing ones in Eqn.(2.6) and (2.7), the relationshi~s among the  PH cubic vertices are 

obtained [FS90] as follows. 

For O < B < K. a PH cubic segment is given by 

To and Tl are the unit tangent vector a t  the beginning and ending point respectively. 

Unit vector No is the normal vector a t  Po. 

Given O ,  the counter-clockwise angle from To to TI and c, the extremum ending 

curvature at t = 1, the segment is a spiral segment if 
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and 

w here 

sin 8 
X = > O? 

1 + cos0 

.As illustrated in Fig. (2.4). 

Figure 3.1: PH Cubic Spiral Segment 

To verify Eqns.(2.28) to (2.30), observe that the relationships among uoo uiand V I  

are deduced by setting the initial conditions. Since Q'(0) is forced to be parallel to 

To , 

tan6 = Q'(1). 

Applying the condition t = 1 into Ecp(2.6) and Eqn.(2.7), Q'(1) is given by: 

These relationships are illustrated in Fig. (2.5). Expressions for sin 0 and cos O can be 

obtained from Fig. (2.5). Note that the restriction on 0 causes ul # O. Substitution 
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Figure 2.5: PH Cubic Tangent at t = 1 

of the expressions for s in9  and cos 8 into Eqn.(2.31) gives. 

So. Eqn.(2.30) holds. The first and  second derivatives of Eqn.(2.4) and (2.5) are: 

Replace uf( t) .  vf(t) ,  uf'(t) and vtf(t)  from above and u(t),  v( t )  [rom Eqn.(2.5) and 

(2.6) into Eqn.(2.2) and (2.3) t o  obtain. 

To make the ending curvature a n  extremum, the  first derivative of the curvature a t  

the ending point is set equal t o  zero. Therefore, d ( 1 )  = O which implies 
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From Eq~(2 .30 ) .  

Hence. 

which verifies Eqn.(2.29). Eqn.(2.28) can be obtained by substituting the  given ending 

curvature c for the Ieft hand side of Eqn.(2.:32): 

Using Eqn.(2.39) and Eqa(2.30) to eliminate ui and vl, 

So, Eqn.(XS) holds. 

When t = O? ~ ( t )  = 3. Applying Eqn.(2.24)' (2.25) and (2.26) gives 

,-. 

From Eqn.(2.33), since ~ ' ( t )  only changes sign at one place. i.e. where ~ ' ( t )  = O. 

it follows that n f ( t )  # O in [O, 1). 

This spiral segments has the following properties: 

Its curvature is ( i+ , \2f  ' at  = 0. 

Its curvature hâs no extreme values and does not change sign for O ( t < 1. 

2.6 PH Quintic Spiral 

According to [WM96b], a PH quintic spiral segment is given by 

1 
Pl = Po + - U ~ T ~  

5 



where 

and 

where 

sin 0 
A =  

1 + C O S ~ '  

for O < 0 < n. The unit tangent vector a t  s tart ing and ending point are To and Tl.  

respectively. The unit normal vector of To is No. 0 is the counter-clockwise angle 

from To to TI, as shown in Fig. ( 6 )  Throughout this section it is assumed that  

the centre of the circle of curvature at  P5 is to the  left of the  directed line through 

P5 in the direction of Tl, i. e. , c > O. The opposite case, i. e. c < O . can be defined 

analogous ly. 

It is shown in [WM96b] that  the PH quintic Bézier defined in this way has the  

folloiving propert ies. 

It is tangent to  To and Tl at t = O and  1, respectively. 

0 It has zero curvature a t  t = 0. 
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Its curvature has no extreme values and does not change sign for O < t < 1. 

Its curvature has a Local maximum at t = 1. 

Figure 2.6: PH Quintic Spiral Segment 

2.7 Clothoidal Spiral 

2.7.1 Definition 

The clothoid or Cornu spiral with scaling factor a is defined parametrically as 

x(t) = a C ( t ) ,  y ( t )  = a S ( t ) ,  (2.:37) 

where C(t )  and S ( t )  are the Fresnel integrals 

C ( t )  = J f  C O S ( T O ~ / ? ) ~ C T  
O 

and 

respectively, as shown in Fig. (2.7). The clothoid parameter t goes from negative 

infinity to positive infinity. It approaches the limiting point ($a, ;a)  as t approaches 

infini ty. 
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2.7.2 Properties 

According to [MW891 some formulae for the clothoid are: 

Angle of tangent: 

ds = adt. (7.:39) 

Xotice tha t  an  important property of the Cornu spiral is that its curvature varies 

lineariy with its arclength. 

The following equation shows t h e  relationship among the constant a. t h e  curva- 

ture, ic and t h e  arclength s for clothoidai spirals. So if the  arclength instead of t he  

curvature of the ending 

Eqn.(2.37) and (2.38), 

So, if the arclength is se 

and 

point is known. the algorithm can still be applied. From 

at t = te ,  where t ,  is the ending point, and c = ~ ( t , ) .  
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which follocvs from Eqn.(2.38). Fig.(S.'i) shows a clothoidal spiral with: 

Figure 2.7: Clothoidal Spiral 

2.7.3 Usage 

The clothoid spiral is used for both highway and railway design. The clothoid tran- 

sition can improve the stability of a vehicle when it traverses a curved roadway at a 

constant speed [Baa84]. 

The following are three types of road turnings. The cornparison shows that using 

a clothoid as a transitional curve lessens sudden force and ensures the stability of 

the vehicle. In Fig.(2.8), Fig(2.9) and Fig.(2. IO), the following annotations are used. 

TS denotes point of change from tangent to spiral, SC denotes point of change from 

spiral to circular arc, CC denotes point of change from one circular arc to another. 

TC denotes point of change from tangent to circular arc and CT denotes point of 
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Figure 2.8: Circular Arc without Transition 

change from circular arc to tangent. It is well known that a centripetal force is in 

direct proportion to the centri petal acceleration [Ada69] (p. 149), a ,  where 

Therefore, the more r changes gradually, the less the sudden force is. In another 

words, a continuous instead of abrupt change of the curvature is expected to avoid 

the sudden force. 

(i)  As shown in Fig.(2.8), a vehicle encounters a sudden change in centripedal ac- 

celeration when it rnoves from a straight line to a circular arc or moves frorn a 

circular arc to a straight way. Part a shows acceleration changes from O to $ 
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Figure 2.9: Compound Circular Arc 

and frorn 5 to O at point TC and CT. respectively. Part b is the route of t h e  

vehicle. 

(ii) When the road turning is composed of several circular arcs (as illustrated in Fig. 

(2.9)), the centripedal acceleration increases and decreases like a staircase. In 

v2 2 part a, the acceleration changes as such O - 3 -t - R -t - - O, at TC. 2R 

CC,  CC and CT, respectively. Part b shows the route of the vehicle and the 

radius of the arcs at those points. It is a better than the first case, because the 

discontinuity forces on those points are less than the ones in the first case. 

(iii) The ideal design is to have cont inuously increasing or decreasing cent ri pedal 
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(b) 

Figure 2.10: Circular Arc with Spiral Transition 

acceleration, as shown in Fig.('2.10). In Part a, the centripedal acceleration 

changes continuously frorn O to $ in the interval [TS, SC], and it changes frorn - to O in the interval [CS, ST]. Part b shows the joint of tangent lines, transition R 

curves and the circular arc. 

The following is the analysis of case(iii) in the interval [TS, SC]. 

In this case the acceleration rate is a linear function of its arc length. Referring to 

Fig(Z.1 l ) ,  denote s as the arclength of the curve when the tangent direction changes 

as much as 0 counter-clockwise from TS, r as its corresponding radius and L as the 
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Figure 2.1 1: Transition Curve 

total length of the curve from T S  to SC. Therefore. 

eliminat ing L. yields 

R and L are constant in a given condition. Suppose RL = A2. where 4 is a constant. 

t hen 

rs = ii2, ('2.40) 

When ds, the differential sector, is infinitesirnally small. it follows for the oscuiat ing 

circle that 

as shown in F ig . (Ul ) .  Notice that $ can also be taken as the definition of curvature 

K. Substitution of r from Eqr~(2.40) gives 
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After integrating, it becomes 

When ds is infinitesimally small, 

dx = cos 8ds 

dy = sin Bds. (2.42) 

Substitution of s frorn Eqn.(S.?l) and integration of the above two equations gives: 

Replacing the variable 0 with $ produces 

Comparing Eqn.(2.42) and (2.43) with Eqn.(2.37), the  transition curve is actually the 

clothoid with - 

To join a circle and a line, a clothoid can be uniquely determined. The scale factor 

can be calculated by letting the curvature of the spiral equal to  the reciprocal of the 

radius of the circle. To join two circles with a compound S curve (reverse curve) 

mat ching the curvat ure somewhere around t wo separate circles, t wo reverse clot hoids 
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that meet with zero curvature c m  be found. To join two circles with a compound 

C curve(broken-back curve), two clothoids can be found [MWSS]. To facilitate the 

drawing of the clothoid arc, templates with scales are commonly used [Baa84]. 

2.7.4 Highway Spiral and the Clothoid 

The highway spiral is defined in [Hic67]. It is actually the  same spiral as m ent ioned 

in the  last section. Using the same notation as in section ( Z . i . 3 ) ,  the formula in 

[Hic671 (p. 171) is 

AS we know, 

sds 
do = - 

' 

After taking the integral of both sides. it becomes 

Using the  assumption RL = A ~ ,  Eqn.(2.47) follows. 

Observe the first derivative of the two spirals: 

rt2 7 t 2  For a clothoidal spiral, because $ = a from E q ~ ( 2 . 3 9 )  and (%,%) = ( a  cos T .  a sin ?). 

hence 
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where j t 2  is the angle of tangent at point t. For a highway spiral defined by [Hic671 

or from Eqns.(2.42), 

ds -- - 1 
dz cos 8 '  
ds 1 -= -  
dy s ine?  

where 0 is the angle of tangent. From Eqn.(2.46), 0 = 3t2 which means the first 

derivative or the hodograph of the highway spiral and the clothoid is actually the 

sarne. 

1 3  So the angle of tangent of highway spiral is :af2 which is equal to ,na,. 

Cornparing O in highway spiral and the angle of tangent defined in the clothoid, 

Hence, 

where L = -RBL. This equation gives us a one to one relationship between the initial 

parameters of the clot hoid and the highway spiral. 

Before widespread accessibility of computers, it was very cumbersome to calculate 

Fresnel integrals. People used to simplify the computation of the highway spiral by us- 

ing power series with high order terms ornitted. Hickerson presents an approximation 

for the highway spiral as follows. 

After expanding the sine function and integrating Eqn.(2.37), it follows that: 

Application of E q ~ ( 2 . 4 7 )  gives an approximation using only the first term. 

s3 
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It shows t hat the highway spiral is very similar to a cubic polynomial. 

2.8 Archimedean Spiral 

Referring to [vS90] (p.  1%) an Archimedean spiral is defined as 

(a2 + y2)y - a m a r c t a n ( y / s )  = O 

where a and m are constants. 

It can also be defined parametrically as 

s ( t )  = u t 5  cos t 

y ( t )  = a t k  sin t 

An Archimedean spiral with a = 0.35, rn = 2 and t E [0.01,20] is shown in Fig.(2.12). 

2.9 Logarit hmic Spiral 

2.9.1 Definit ion and Equiangular Property 

Referring to [BF97] a logarithmic spiral is defined as 

r = roe ke 
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Figure 2.12: Archimedean spiral with m = 2 

where k is a constant and ro is the beginning radius of curvature (a constant). 

I t  can aiso be defined parametrically as 

kt z ( t )  = roe cost 

y ( t )  = roekt sin t 

respectively. Fig. (2.13) shows a logarit hmic spiral with: 

ro = 0.1, k = 0.15 t E [O, 201. 

Coosider a ray drawn from the origin to a point (x,  y )  on the logarithmic spiral. 

Let 4 be the angle made by the ray and the unit tangent to the spiral at (z, y).  Now 

COS 4 = ( w )  ("'7 Y') 
11 ( 5 9  Y II Il ( ~ ' 7  Y') Il ' 

The first derivative of the parameter form of the logarithmic spiral is 

d ( t )  = rokekt cos t - roekt sin t ,  



Figure 2.13: Logarit hmic Spiral 

y ' ( t )  = rokekt sin t + roekt cos t .  

11 (z', IJ') I l 2  = r;k2e2" cos2 t + rie2kt sin2 t - 2r;keZkt sin t  cos t 

+rik2e2kt sin2 t  + rie2kt cos2 t  + 2r; ke2" sin t  cos t 

- - r,e 2 2yk2  + 1) 

Use of Eqn.(2.54), (2.56) and (2.5'7) in (2.55) yields 

ri ke2kt cos2 t - rie2kt sin t cos t + r: keZkt sin2 t + rie2" sin t cos t 
COS q5 = 

2 2kt Jm 
'0 = 

- - k 
Jm 

Since k is a constant, it thus follows that the angle made by the unit tangent and 
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the ray is a constant a t  the intersection of the  ray and the  logarit hmic spiral. So. the 

logarithmic spiral is ais0 called the equiangular spiral. 

2.9.2 Transforrnat ion 

Suppose i.j are the unit vectors of direction x(t) and y( t )  respectively. then 

Q ( t )  = s ( t ) i  + y( t ) j  

and 

Observe that -$& and -$& Eorm an orthogonal pair, and that  

Q1(0) = r&i + j), 

i.e. and ,fi are the beginning unit tangent and normal vectors respectively 

1 of the logarithmic spiral. Denote them respectively as To and No, replace ro by 

and scale the spiral so that 

b 

Q1(t) = -(cos t T o  + sin tNo) ,  O < t < 8.  
Co 

Integration of Eqn.(2.58) 

Q( t )  = 

gi ves 

1 
Po + { [ e k t ( k  cos t + sin t )  - k]To 

co(k2 + 1) 

+ [ e k t ( k s i n  t - cos t )  + IlNo), O 5 t $ B. 

From Eqn.(2.58), II Q1(t) I I =  $, and 

ekt 
Ql1(t) = -[(k cos t - sin t ) T o  + (ksin t + cos t)No], 

Co 



,2kt 

Qr(t )  x Q"(t) = -(kcostsint +cos2t - kcos t s in t  +sin2 t )  
4 

e2kt 
- - - 

4 

Substitute the results into Eqn.( l . l )  to obtain 

Observe that the curvature a t  the  beginning is Q when t = O. Let the ending curvat ure 

be c when t = 8. hence, 

2.9.3 Relat ionship between Logarit hmic Spiral and Archimedean 

Spiral 

The following is stated in [Yat5%] (p. 211). 

The orthographie projection of a Conical HelP on a plane perpendicufar to 

ils axis is a Spiral of Archimedes. The devefopment ofthis Helix, howeuer. 

is an Equiangular spiral. 

This statement is illustrated in Fig(2.14). It shows a conical Helix ( a (  l- e) cos 8, a( 1 - 

e -) sin O,%b) with a=O.S b=l  .S. "A" denotes the Archimedean spiral, "L" denotes 27r 
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logarithmic spiral and "Cn denotes the base of the cone. The Archimedean spi- 

ral is obtained by ignoring the variance in the h direction. The function of it is 

(a(1 - $) cos B,a(l - &)sin  6). When the surface of the cone is opened along the 

edge where 0 = 0. the curve in the  fan thus formed is a logarithmic spiral. T h e  angle 

of the fan is 7- since the circle of the base is equal to the arclength of t h e  fan 

The  points evenly lying on B E [O, 2n] are  distributed evenly in the interval [O. *, 
and the points can be located according to its distance to the top of the  cone. 

Figure 2.14: Logari t hmic and Archimedean Spiral 
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2.9.4 Applications of Logarit hmic Spiral and Archimedean 

Spiral 

The Logarithmic spiral occurs often in nature. Some creatures build logarithmic spirals 

during their growths. such as the septa of the Nautilus, the arrangement of seeds in 

the sunflower and the formation of pine cones. 

The loxodromic spiral, also called loxodrome [iLI0r92](~. 1351), is any curve on a 

given surface of revolution that intersects each meridians of the curve at some constant 

angle which is not equal to ninety degrees. For example. when a train moves toward 

a fixed direction, it intersects the meridian at some constant angle. the projection of 

its route on the equator plane is an equiangular spiral. 

The Archimedean spiral with parameter n = 1 is used as a Cam to produce linear 

motion. The Cam is pivoted at  the pole and rotated with constant angular velocity. 

The piston, kept in contact with a spring device, has uniform reciprocating motion. 





Chapter 3 

Generalizat ion 

3.1 Generalized Theorem 

From the approximation of quadratic and cubic spirals. a general way may be found 

to approximate other spirals. The algorithm used to generate the curve of the ap- 

proximation problem is based on the theorems outlined below. In this chapter. two 

theorems are presented to generalize the approximation of any spiral. The basic idea 

of this approximation is to construct a control triangle determined by t he  starting 

point, the  ending point and their tangent directions. A biarc, whose joint is nt the 

incentre of the triangle, can be fitted through the starting and the ending points such 

that  it is tangent to the  triangle at these two points. Theorem 3.1 gives the  radial 

deviation of the  spiral from the joint of the biarc. Since the maximum deviation is 

highly dependent on the  individual spiral, Theorem 3.2 gives a general result of where 

local extrema in the  deviation of a spirai from an approximating biarc may occur. 

From that  the maximum deviation can be deterrnined. 

53 
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The following lemma is used in Theorem 3.1. 

Lemma 3.1 Given a winding spiral segment whose tangent rotates by less t han 

ir. It starts from Po. with non-zero curvature and unit tangent vector To. and ends 

a t  P2 with unit tangent vector Tl. Then O < fl < K. where 0 is the angle from To to 

Ti, the angle from To to the Line segment joining Po to Pz is less than ~ / 3 .  

Proof: 

Denote LP2PoPl as a, LPoP2Pi as 4, as shown in Fig. ( 3 . 1  Vogt's theorem 

[Gug63](p. 49) says a is smaller than P in a ivinding spiral. Since B is the sum of 

t hose two angles, a is less than !. Now O < 0 < A, so 

Figure 3.1: Spiral Triangle 

The theorems that will be used for applying a biarc approximation are now pre- 

sented. 

Theorem 3.1 Given a spiral segment Q ( t ) ,  to < t < t l ,  with beginning and 

ending points A. = Q(to) and Ai = Q(tl),  respectively. Let V be the intersection 
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- biarc 

------ spiral 

Figure 3.2: Biarc Approximation of Spiral Segment 

of the straight lines parallel to Qf(to) and Q f ( t l )  through A. and Al respectively. 

as illustrated in Fig. (3.2). Let the triangle Ao,V and Al define a biarc where t he  

two arcs are G1 continuous a t  the joint which is the incentre of the triangle. Let H 

and M be the unit tangent and normal vectors, respectively, of the  biarc at its joint, 

G. The deviation of the spiral from the joint of the  biarc, measured along the radial 

direction of the  biarc is given by 

where rl is the unique value that satisfies 

Proof. 

It suffices to find d and r )  that satisfy 
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Taking the dot product of (3.2) with K yields 

Since G is the incentre of the triangle with vertices Q(to).V and Q(t l )  it follows 

that H is approxirnately paralle1 to, and has the same orientation as the directed line 

segment Q(to)Q(tl) (Refer to [Sabiï] p. 45). Also by Lemma 3.1, the angle from 

Q(to) - G to H is larger than 7r/2 and less than K ;  the angle from Q(tl)  - G to H 

is less than 7r/2 and larger than zero. Hence, 

and 

The direction of Q'(7) varies monotonically from the direction To to Tl. Any ray 

from a point on the line segment Q(to)Q(tl) can intersect the spiral segment at most 

once. Therefore, the line through G parallel to M intersects the spiral only once at 

unique t = 11. Hence, the theorem follows. O 

The Newton-Raphson method should work well in solving Eqn. (3.1) because f ( q )  

is monotone for to 5 9 5 t i ,  but if it does not, the bisection rnethod will always work. 

Note that numerical root-finding methods are not necessary for the quadratic spiral 

segment. 

Theorem 3.2 Given a spiral segment, Q(t)  as defined for Theoren  3.1. Let 

A. = Q(to), Al  = Q(tl) ,  and V be as for Theorem 3.1. Let the triangle Ao,V and 

Al  define a biarc where the two arcs are G1 continuous at  the  joint, which is the 

incentre of the triangle. Let Ci and ri be the centre and radius, respectively, of that 



3.1. GENERALIZED THEOREM -- 
3 1 

arc of the biarc that passes through Q ( t i )  and let Hi  and M i  be the unit tangent 

and normal vectors, respectively, of the biarc at Q ( t i ) .  Let q be as determined by 

Theorem 3.1. The deviation of the spiral from the biarc, measured along a radial 

direction of the biarc, has a t  most one local extremum for to < t 5 q and at most 

one local extremum for g < t  5 t i .  These local extrema, if one or more of them exist. 

occur at values of t  that satisfy 

Proof. 

It follows from the definition of the biarc that 

Ci  = Q ( t i )  + riMi, i = 0,1 .  

The deviation Ihi(t) - ri 1 has an extremum at the same place as the square of the 

deviation. It is required to show that the square of the radial deviation, 

e i ( t )  = { h i ( t )  - r i ) 2 ,  

has at most one local maximum for each of i = O and i = 1. Define 

so h i ( t )  > O and 

hT( t )  = { Q ( t )  - C i }  . { Q ( t )  - C i }  > 0. (3.5) 

Now e: ( t )  = 2 { h i ( t )  - r i )  h : ( t ) ,  and e r ( t )  will be zero at both maximal and minimal 

values of e i ( t ) .  e : ( t )  = O when hi(t) - ri = O or h: ( t )  = 0. e i ( t )  is minimized for 

h i ( t )  - ri = 0; hence, the necessary condition for e i ( t )  to have a local maximum 

is h j ( t )  = O. From Eqn.(3.4), assurning h i ( t )  # O, this condition is equivalent to 

E q ~ ( 3 . 3 ) .  
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The arc centered at  Ci has a point of contact (i. e. matching in position and 

tangential direction) with the spiral at t = t ; .  A result of Vogt[ [Gug63j, p. 531. 

states that a circle and a convex spiral c m  have at  most three points of intersection. 

or one point of contact and one non-contact intersection. Tt thus follows that between 

the point of contact and the point of intersection the tangential direction of Q( t )  at  

some point. t, is parallel to the tangential direction of the circle centred at Ci at 

which the circle and the normal vector at t, intersect. Hence, the arc centred at Ci 

can have at most one point other than Q ( t i )  for which (3.3) is satisfied and for which 

t lies between t ;  and 7. 

Hence the theorem follows. O 

When comparing these results to the optimal method of [MPS4], observe that 

the biarc approximation matches the beginning and ending points and tangential 

directions of the spiral segment which make the tangential directions continuous at  

the joints when a spiral is approxirnated segment by segment. The given tangential 

directions and positions of the spiral at the beginning are not matched when using the 

method in [MP84]. That method works well when a spiral is approxirnated by one 

whole piece because of fewest piecewise arcs and the maximum deviation is reached 

according to the algorithm. However, t his approximation might cause sudden changes 

in the position and direction of the machine tool at points on the object where the 

design involves two spiral segments intended to be joined smoot hly. Furt hermore, the 

method of [MP84] is based on nonlinear optimization which could be computationally 

complex and may not be straightforward to implement. 
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3.2 Location of Local Maxima 

3.2.1 Polynomial Spiral Segment 

For a specific i, Eqn(3.3) is in general a nonlinear equation with a t  most two solu- 

tions including the one at t = t i .  When applying oumerical root-finding methods, 

it is desirable that the equation have a unique solution to avoid convergence to the 

wrong solution. When Q(t ) is a parametric polynomial spirai segment, Eqn. (3.3) 

is polynomial in which case the solution at t = ti c m  be hctored out resulting in a 

polynomial equation of lower degree and with a t  most one solution. In this case the 

bisection method caa be used to check if a solution does exist. If a solution exists, 

the bisection method can be used in combination with the Newton-Raphson method 

to find the solution. Solution of (3.3) is not as straightforward in general when Q ( t )  

is not a polynomial spiral segment; solution of (3.3) for some non-polynomial spiral 

segments are considered in the next section. 

For a polynornial spiral segment of degree n, Eqn. (3.3) is equivalent to 

where p is a constant, 

rn = 2n - 1, and aij, j = O, - - - , m depend on Q(t ). Expressions for the ai,, 'S are 

derived in Chapter 4 for some polynomial spiral segments. Since (3.5) is satisfied for 

t = ti, gi(t) it follows that 



Subtraction of (3.6) from (3.5) yields 

or. factoring differences of powers of t ,  

hence. 

where 

which is the same as. 

Regrouping the terrns according to the nominal of t and rewriting them by increasing 

which can be written as, 

Eqn. (3.3) can be solved by applying numerical techniques to q; ( t )  = O where q i ( t )  is 

given in Eq~(3 .7 ) .  Note that it does not contain ai .0.  
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3.2.2 Other Spiral Segments 

The problem here is how to  factor ti out because it is a solution but not the one 

which is sought. Since the clothoid, logarithmic and .i\rchimedean spirals are not 

polynomial, it is difficult to factor t; out. 

Considering that gi(t) = P { Q ( ~ )  - Ci} Qf( t )  has a t  le& one solution but no 

more than two solutions in [to, 7] or [q, t l ] ,  there is a t  most one solution in (to. 7)  or 

( i )?  t l )  since ti ( i  = 0 , l )  satisfies gi ( t )  = O. Fig. (3.3) and Fig. (3.4) show the only 

two possible ways of the solution: it appears in the interval or not. Observe that to  is 

the beginning point of one interval containing a possible solution and t l  is the ending 

point of another interval containing a possible solution; Q(q )  is the point on the spiral 

where the normal vector of the biarc a t  its joint intersects the spiral. Since the sign of 

g i ( t )  depends on whether the counter-clockwise angle from vector Q( t  ) - Ci to vector 

Qr( t )  is bigger than lr/9 or not, there are two curves in each diagram t o  represent 

these two different cases. Fig.(3.3) shows the case when t = to or tl is the only value 

that satisfies that gi(t) = O when t E [to, 7) or t E (q, t 1 ]  Fig(3.4)  shows the  case 

when another solution is included in that  range. 

In order to  check if the solution is in the interval ( to ,  7) or (7, t l ) ,  test the sign of 

gl(to)gi(rI) or d ( t 1  )gi(i))- 

0 In the interval t E ( t o ,  7): 

Suppose gi(s) = O, as in Fig. (3.3) (a) or Fig. (3.4) (a) .  If s is net in (to,i)) 

then g#o)g(q) > O and i f s  E ( t o ,  q)  then gi(t~)g(r])  < 0. 

In the interval t E (7, ti): 

Suppose gi(s) = O, as in Fig. (3.3) (b) or Fig. (3.4) (b). If s is not in (t),tl) 
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e,w 
t 

Figure 3.3: 

(a) (b) 

Figure 3.1: Plot of g i ( t )  

then g : ( t l ) g ( q )  < O and if  s E ( r ) ,  t l )  then g : ( t , ) g ( ~ )  > 0. 

In case g;( to)  or g : ( t i )  is zero, the second derivative c m  be used to judge the tendency 

of g i ( t i ) .  If a solution is known to  be between r] and t i  (i = 0 ,  l), the bisection method 

can be used to locate the solution. If there is no solution between r )  and t i ,  then the 

maximum deviation occun at t  = 7. Notice that even if g i ( t )  is bumpy as in Fig. 

( 3 4 ,  the check is still applicable, since there is a t  most one solution. 

Theoretically, one may omit t i  easily, but when using a numerical method, it is 
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not easy to decide on which range bisection should be applied. It is known that q 

is one of the end points, but how close to  ti should the other end point be'? If it is 

known that there is a solution other than t = t ;  ( 2  = 0.1) in [ to,  q] or [v. t l ] ,  then 

tecursive subdivision can be used to find an  interval in which it is certain that the  

solution is contained. In practice, subdividing only once usually works. 

Figure 3.5: Bumps Appear. 





Chapter 4 

Spirals 

In Chapter 3 ,  a spiral segment that is expressed by a mathematical formula is ap- 

proximated by a biarc. A general idea was presented to approximate a spiral segment 

given by a mathematical expression. Since the approximating biarc is determined 

only by the given beginning point, the ending point and tangential direction at these 

points, the formula for maximum deviation between a spiral and the corresponding 

biarc varies from spiral to spiral and one free parameter. It does not seem possible 

to find a general mathematical expression for the deviation that can be evaluated 

econornically in practice. In this chapter, the deviation will be examined for individ- 

ual spirals such as PH cubic, PH quintic, clothoidal, Archimedean and logarithrnic. 

The deviation results of quadratic and cubic Bézier are available in the literature, 

but will be restated for cornparison. A practical method will be developed to solve 

the equations. Numericd methods are used to solve polynornid and other non-linear 

equat ions. 
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4.1 Quadrat ic Bézier Spiral 

CHAPTER 4. SPIRALS 

In Walton and Meek's paper [WM94], three theorerns are stated. The first one proves 

that a unique biarc can be constmcted given the control vertices by choosing the 

joint at  the incentre of the control triangle according to the method suggested by 

Sabin. The other two theorems are presented to determine the maximum deviation 

from the spiral to the corresponding biarc. In the second theorem, the coordinate 

system Is adjusted by setting the origin at  G ,  the joint of two arcs. The y-axis is 

along the normal direction at G .  Under the  new coordination system, the curve has 

expression ( x ( t ) ,  y ( t ) ) ,  The deviation at the  joint is equal to y ( t )  when x ( t  ) = O. The 

other theorern is applied to determine the local extreme deviation for a specific arc 

of the two circular arcs. The maximum deviation is determined by comparing these 

extrema. 

Actually, the method mentioned in chapter 3 can be applied in this case and it will 

lead to the result in [WM94] with a more generalized form. Notice that the interval 

of t in a11 Bézier curves analyzed here is from O to 1 due to its definition. Frorn Eqn. 

(2.14) and (2.15), the quadratic Bézier spiral segment and its first derivative can be 

written as 

Q ( t )  = Pa + 2aTot + (bTi - aTo)t2 (4.1) 

and 

respect i vely. 

Substitution of Eqn. (4.1) and (4.2) into Eqn. (3.3) gives 

{PO - Ci + SaTot + (bT1 - a ~ o ) t * )  { a ~ o  + (bT1 - a ~ o ) t }  = O 



4.2. CUBfC BÉZIER SPIRAL 

The above equation can be put in the form of Eqn. (3.7) where, 

rn = 3, 

%,O =  PO - Ci) - TOT 

Qi.1 = 2a2 + (Po - Ci) (bTl - aTo) ,  

ai.2 = 3a(bTo Ti - a )  

ai.3 = (a2 -ZabTa.T1 + b 2 ) -  

4.2 Cubic Bézier Spiral 

Results for the cubic spiral segment are available in Walton and Meek's paper [ W M ~ ~ C ] .  

The  results are summarized below. 

and 

Q1(t) = 3aT0 + 3(bTi - aTo) t2 ,  O 5 t 9 1, (4.5) 

where a and b are defined in Eqn.(2.12). After applying E q ~ ( 4 . 4 )  and (4-5),  (3.3) 

can be put in the form of Eqn.(3.7) where, 



4.3 PH Cubic Spiral 

Expanding Eqn. (2.23) in power forrn gives 

Since Pl,  Pz, PJ can be expressed in terms of Po, uo, ul,  vo, ol from Eqn.(2.27), the 

above can also be written as 

Substitutions of Eqns. (4.7) and (4.8) into function gi ( t  ) (Eqn. (3.3)) gives 
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or after expansion and re-arrangement. it can be adjusted to the form of Eqn. ( :3 -7 ) .  

with 

m = .j 

4.4 PH Quintic Spiral 

Expanding Eqn.(l.2) with n = 5 in power form gives 

Since Pi ,  Pz, P3, P4, P5 can be expressed in terms of Po, uo, ul, vo, vl from Eqn.(2.35), 

the above can also be written as 



From (2.2) and (2.3) t h e  function gi(t)may be wri t ten as 

or after expansion and re-arrangement, it can be regrouped into t h e  form of Eqn. 

(3.7), with 

a i . 4  = (PO - Ci)  . { [ ( ~ 2  - U O ) ~  - v;]TO + 2v2(u2 - u O ) N O )  (4.12) 



4.5. CLOTHOID 

4.5 Clothoid 

The clothoidal spiral (or Cornu Spiral) can be expressed as 

where a is a constant. The first derivative of this function is: 

7rt2 xt2 
Q t ( t )  = a cos -To + a  sin -No 

2 2 

To approximate a piece of the clothoidal spiral segment with t E [ to,  tl], a triangle 

can be built by  Q(to) ,  Q ( t l ) ,  Q t ( t o )  and Q'(ti) .  Suppose the incentre of the  triangle is 

G where the two arcs join and the centre of the two arcs are Ci (i = 0.1). Replacing 

Q ( t )  and Q ' ( t )  in Eqn. (3.3), the function g i ( t )  may be written as 

7rt2 7rt2 
g i ( t )  = (PO - Ci + a C ( t ) T o  + a ~ ( t ) ~ o )  ( a  cos -To 2 + a sin -NO). (4.15) 

n 
3 n 

Simplification of Eqn.(4.15) using To . No = O gives 

7r 7r 
g i ( t )  = [(Po - C i )  To + a C ( t ) ] a  COS ?t2  + [(Po - Ci) . No + a S ( t ) ] a  sin ,t2 ( 4 . 1 6 )  

L - 
The solution t o  equation gi( t )  = O is the  local maxima of the  deviation. 

For the clothoid spiral, the first derivative of g;( t )  can be obtained from Eqn.(-L. 16) 

7r ?ri2 
S i ( t )  = a { a C f ( t  ) cos ,t2 - [ ( P o  - C i )  To + a C ( t  )]nt sin - + - 3 " 

7r 2 7rt2 a s l ( t )  sin + [(Po - Ci) No + a S ( t ) ] n t  cos -} 
3 

Note that C f ( t )  cos ;t2 + S f ( t )  sin 5 t 2  = 1. So, 

7rt2 
gi( t)  = -rat  { [ ( P o  - C i )  To + aC(t)] sin - - 

2 
7rt2 

[ (Po - Ci) - No + a S ( t ) ]  COS + a2 
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4.6 Archimedean Spiral 

Referring to Eqn. (2.54), the Archimedean spiral can be expressed as 

1 

Q(t)  = Po + a t k  cos tTo  + atm sin tNo (4.1s) 

where a and m are constants. The first derivative of the Archimedean spiral function 

a a 1 

Qt( t )  = (-tk-' cos t - a t k  sin t )To  + ( - t ~ - ' s i n  t + a t k  cos t )No  (4.19) 
rn m 

To approximate Archimedean spiral segment with t E [to, tl], a triangle can b e  built 

by Q(to), Q(t l ) ,  Qf(to) and Qf(t l) .  Suppose the incentre of the triangle is G where 

the two arcs join and the centre of the two arcs are Ci (i = 0 , l ) .  Replacing Q ( t )  

and Q'(t) in Eqn. (3.3), the function gi(t) may be written as 

gi(t)  = [po - Ci + a t k  cos t ~ o  + ut& sin t ~ o ]  . 
Simplification of Eqn. (4.20) using To No = O gives 

u2 z a r - t r l  + (Pa - Ci) T o ( - t ~ - '  COS t - al$ sin t )  siw = m 
a 1 1 + ( P o  - Ci) IVo(-t~- '  sin t + a t z  COS t )  (4.21 ) 
m 

The  local maxima of the deviation are given by the solution to gi(t) = O. The method 

for solving non-polynomial equations introduced in section (3.2.2) can be applied here. 

The derivative of gi ( t)  is useful in solving the  equation, 

a* 1 1 - r n  2 
&t)  = -(2 - m)t$-2 + (Po - C i )  ToatZ(- cos t - - s int  - cost) 

m 2  m2t2 mt 
1 1 - m  + ( P o  - Ci) Noatr(- 

2 
s in t  + -cost - s in t )  

m2t * mt 



4.7. LOGARITHMIC SPIRAL 

4.7 Logarit hmic Spiral 

As shown in Eqn. (2.*59), the logarithmic spiral can be expressed as 

where co is the curvature of 

Q ( t )  is: 

QfW = 

+[ekt(ksin t - cos t )  + IlNo}, O 5 t  5 8. ( 4 X )  

1 
l n 3  the starting point and k = 7. The  first derivative of 

ekt 
-(cos tTo + sin t N o ) ,  O $ t 5 O. (4.24) 
C o  

To approximate logarithmic spiral segment with t  E [ to ,  t l] ,  a triangle can be built by 

Q ( t o ) ,  Q ( t l ) ,  Q ' ( t o )  and Q f ( t l ) .  Suppose the  incentre of the triangle is G where the  

two arcs join and t he  centre of the two arcs are C i  (i = 0 , l ) .  Replacing Q ( t )  and 

Q f ( t )  into Eqn. (3.3), the function g i ( t )  may be written as 

Simplification of Eqn. (4.25) using To . N o  = O yields 

ekt ekt 
g i ( t )  = - ( P o  - Ci) [(cos t ) T o  + (sin t ) N o ]  + (kek t  - k cos t + sin t )  (4.26) 

Co 4(k2 + 1) 

The solutions to g i ( t )  = O give the local maxima of the deviation. The  method 

mentioned in section (3.2.2) can be applied to solve the equation. The derivative of 

g i ( t )  is useful in solving the equation, 

ekt kekf 
g,!(t) = - ( P o  - Ci) (- s intTo + COS t N o )  + - ( P o  - C i )  - (COS t T o  + sin t N o )  

Co Co 
kekt 

( t e k t  - k cos t  + sin t )  + ekt 
+ 4 ( k 2  + 1 )  4 ( k 2  + 1) 

(k2ek' + k sin t  + cos t )  
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ekt 
= - (Po-Ci) .  CO [ ( k c o s t - s i n t ) ~ ~ + ( k s i n t - c o s t ) ~ ~ ]  

ekt + 
4(k2 + 1) 

k k 2 e k t  + (1 - k2) COS t + 2k sin t ]  



Chapter 5 

Algorit hms 

In this chapter, some geornetry formulae are introduced for the couvenience of gen- 

erating algorithms. Pseudo-code of the algorithms which are based on the  t heorems 

illustrated in Chapter 3 and Chapter 4 is preseoted. 

It uses the well-known geometric facts that: 

Given three points A, B and C, II AB II=II BC Il= 6 ,  11 AC II= cl as shown in Fig. 

(5.1). 

Fact5.i A unique circle can be found, so that it goes through A, C and is tangent 

at these two points to AB and BC, respectively. 

Fact5.2 The radius of the  circle is r = &. 

To facilitate the computation of the incentre of a triangle by vectors, Lemma 5.1 

gives the ratio of II AoWo II and II AoAl 11 in terms of cosines of the angles of the 

triangle as shown in Fig.(5.2). The result can thus be expressed using inner products. 

Lemma 5.1 Given a AAoAiA2 as shown in Fig.(5.2), where G is the incentre 

of the triangle. Suppose LAIAOA2 = Q and LAOAIAÎ = /3 Through G draw a line 
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Figure 5.1 : Circle Determined by an Isosceles Triangle 

WoWl which is parallel to AoAl, then 

Figure 5.2: Incentre of Triangle 

Proof: 

Equations (a) are obvious since GAo bisects a and WoWl II AoAI; these con- 

ditions lead to LGAoWo = LAoGWo; so AAoGWo is an isosceles trimgle with 

II AoWo II=I( GWo II- Similarly II GWi II=II A m i  II. 



Suppose the radius of the inscribed circle is r. From Fig. (5.2), 

and 

1 1 --- A tan: tana - - 
1 t II AoAi II ,,+ 

I t  is known that tan = -, hence 

I 1 --- tan II AoWo II - t a :  tana 1 - & - - 
1 - 

- - 
(1 +cosa ) s inp  +sincr(l +cos@) 

- - sin a 
O 

sin(a + ,8) + sin 0 + sin cr 

5.1 Algorit hm 

The algorithm is based on recursive subdivision of a spiral segment until each subpart 

of the segment may be approximated by a biarc within a given tolerance T .  Subdivi- 

sion occurs at the point of maximum deviation of the spiral from the approximating 

biarc. The  deviation is rneasured along a radial direction of the biarc. The algorithm 

is presented in pseudocode. 

The parameter Po is the beginning point of a given spiral segment and To is 

the unit tangent of the spiral at this point. Parameter c is the ending curvature. 
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The quantity O is the angle between To and the unit tangent of the ending point of 

the spiral segment. For polynomial and clothoidal spiral segments, a unique spiral 

segment can be determined given Po, To, O and c. For Archimedean spiral segment 

parameter Po,  To,  to and t are to be specified. For logarithmic spiral segment Po. 

To. 0 . c and the initial curvature co should be given. The algorithm is described in 

terms of ten modules called procedures. 

Procedure InitPaxameter initializes the parameter for each spiral segment by gen- 

erating spra ldata .  Procedures EvalQ and EvalDQ are used to evaluate the spiral 

and its first derivative respectively at  a point. Function FindBiArcTri is used to con- 

struct a triangle defined by two points, Ao, Ai on the  spiral and its corresponding 

unit tangent vectors Ho, Hi a t  those points, as shown in Fig. (5.3). FitBiArc is 

called to find the location of Wo, G and W, (Fig 5.3) using L e m m a  5.1. Findhrc 

is called to determine two arcs given Ao, Wo, G and G ,  W,, Al by using Fact 5.1 

and 5.2. DevAtJoint is called to  compute the radial deviation at the joint. MaxDevP 

and MaxDevNP are called for polynomial equat ions and non polynomial equat ions 

respectively to compute the possible local maxima on either one of the arcs. The 

bisection met hod is used to find the solution if the local maxima appear. In t hese 

two procedures ti (i = 0 , l )  is the parameter a t  the beginning or ending point of' the 

current spiral segment and r)  is the parameter where the  radial direction a t  the joint 

of the biarc iotersects with the spiral segment. Procedure ApproxSpiral is used to  

approximate a single segment. 

Procedure InitParameter(Po, To, c, Q, 0, to ,  t l )  

Switch (spiral) { 

case quadrat ic: 



Figure 5.3: Triangle Construction 

C'se Eqn. (2.12), (2.13) and t varies from O to 1; 

case cubic: 

Use Eqns. (2.25) and t varies from O to 1; 

case PH cubic: 

Use Eqns. from (2.28) to (2.31) and t varies from O to 1; 

case PH quintic: 

Use Eqns. (2.36) and t varies from O to 1; 

case clot hoidal: 

Use Eqn. (2.46) to generate t i ,  to = 0: 

Use Eqn. (2.38) to generate parameter a; 

case Archimedean: 

Input to, t l ,  a, m; 

case Logari t hrnic: 

Use Eqn. (2.62) to generate parameter k and t varies frorn O to O ;  

Procedure EvalQ(t, spiral-data) 



Switch (spiral) { 

case quadratic: 

Use Eqn. (4.1) to evaluate it: 

case cubic: 

Use Eqn. (4.4) to evaluate it; 

case PH cubic: 

Use Eqn. (4.7) to evaluate it; 

case PH quintic: 

Use Eqn. (4.10) to evaluate it; 

case clot hoidal: 

Use Eqn. (4.13) to evaluate it; 

case Archimedean: 

Use Eqn. (4.18) to evaluate it; 

case Logari t hmic: 

Use Eqn. (4.23) to evaluate it: 

Procedure EvalDQ(t , spiral-dat a )  

Switch (spiral) { 

case quadratic: 

Use Eqn. (4.2) to evaluate it; 

case cubic: 

Use Eqn. (4.5) to evaluate it; 

case PH cubic: 

Use Eqn. (4.8) to evaluate it; 



case PH quintic: 

Use Eqn. (4.11) to evaluate it; 

case d o t  hoidal: 

Use Eqn. (4.14) to evaluate it; 

case Archimedean: 

Use Eqo. (4.19) to evaluate it; 

case Logari t hmic: 

Use Eqn. (4.24) to evaluate it; 

Procedure FindBi ArcTri (to,  t l ,  spiraldata) 

1. A. t EvalQ(to,spzraLdata); Al - EvalQ(t i .  spiraldata): 

-. . *' Ho - EvalDQ(to, spiraldata);  Hl t EvalDQ(ti ,  spiraldata); 

Norrnalize Ho, Hl; 

4. M - (H HI)Hi - H; 

Normalize M; (Refer to Fig. 5.3) 

H-M 5 .  Az c Ao + -Ho- 

6. return Go, Ar, A*, Ho, HI, H. 

Procedure FitBiArc(Ho, Hi, H) 
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9. return Ao, Wo, G ,  Wl, Al .  

Procedure FindArc(A, W,G) 

3. The radius of the arc r: r = .A. 

4. N i-- the unit normal of AW. 

5. The centre of the circle C +- A + rN. 

A-C x G-C 6. Degree of the arc - arctan 
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Procedure DevAtJoint ( H ) 

2. Use bisection method to solve f(t) = 0. 

Procedure MaxDevP 

1. Define g : g( t  ) t Eqn. (3.7), where a depends on spirals: 

Switch (spiral) { 

case quadrat ic: 

Use Eqn. (4.3); 

case cubic: 

Use Eqn. (4.6): 

case PH cubic: 

Use Eqn. (4.9) ; 

case PH quintic: 

Use Eqn. (4.12); 

2. if g(ui) * g ( 7 )  < O then 

use bisection to solve g(t ) = O. 

else 

no local maxima. 

Procedure MaxDevNP 

1. Define g : g(t) - {Q(t) - Ci} Q'( t ) ,  where Q(t) and Q'(t) depend on spirals: 

Switch (spirai) { 



case dot hoid: 

Use Eqn. ( 4 . 1 3 )  and (4.14); 

case Arcimedian: 

Use Eqn. (4.18) and ( 4 . 1 9 ) :  

case logari t hmic: 

Use Eqn. (4.23) and (4.24); 

2. Befine g' 

Switch (spiral) { 

case dot  hoid: 

Use Eqn. (4.17); 

case Archimedean: 

Use Eqn. (4.22); 

case logari t hmic: 

Use Eqn. (4.27); 

3- if ( ( t i  < O) AND g t ( t i ) g ( ~ )  c O )  O R  ( ( t i  > v )  A N D  g 1 ( t i ) g ( 7 )  > O )  then 

use bisection to solve g ( t )  = 0. 

else 

no local maxima. 

Procedure ApproxSpiral ( P o ,  To, c, di toi h, T )  

STEP 1 

Initialize parameter to generate spiralda t a .  



5.1 .  AL GORITHM 

{Invoke InitParameter (Po. Ta. c, q, 8, to, t ~ ) . }  

STEP 2 

Invoke EvalQ, EvalDQ to compute A. = Q(to),A1 = Q(t1). 

Ho = Q'(to) and Hl = Qt(t1). 

STEP 3 

Determine A2 a s  the intersection of the straight lines parallel to Ho 

and HI at A. and A l ,  respectively. 

{Invoke FindBiarcTri (to,t *, spiraldata) } 

STEP 4 

Find the incentre, G ,  of the triangle with vertices Ao, A2 and Al .  

{Invoke FitBiarc ( Ho, Hl, H) } 

STEP 5 

Find the centres, Ci and radii, r i ,  of the biarc, joined at  G ,  and 

defined by the triangle wi th vertices Ao, A2 and Ai.  

{Invoke FindArc ( Ao, Wo, G ) and FindArc ( Al ,  W,, G ) }  

STEP 6 

Use Theol-ems 3.1 and 3.2 to determine the maximum deviation, 6. 

of the biarc from the spiral along a radial direction of the biarc, and 

the value, q ,  of t for which it occurs. 

{Invoke DevAtJoint to calculate the deviation at joint and MaxDevP. 

MaxDevNP to calculate the extrema if it appears in the interval.) 
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STEP 7 

CHAPTER 5. AL GORITHMS 

If 6 < T ,  then store the biarc, 

ot herwise 

invoke ApproxSpiral ( P o ,  T O T  c, col 0. to ,  q ,  T )  

and ApproxSpiral (Pa, T o ,  c, CO, O.  7: t l ,  T )  



Chapter 6 

Examples 

The algorithm was tested on many examples. The  results presented in this chapter 

are based on the following initial conditions. The beginning curvature is zero for 

cubic, PH cubic. PH quintic, clothoidal spiral segments. For the quadratic and cubic 

Bézier spiral segments, Po = (0, O), T o  = (1, O), 0 = 51.34*, c = 0.41574. For PH 

cubic, PH quintic and clothoid spiral segment. Po = (0,O): To = (1.0). 0 = 135". 

the ending curvat ures are 4,s and 1.5 respectively. For Archimedean spiral segment, 

Po = (0, O), a = 10, rn = 2, to = 0.01, t l  = 0.2. The parameter of logarithmic 

spiral segment is: Po = (0, O), To = (1, O), û = 135", co = 0.25, c = 4. 

Table (6.1) to (6.7) show the number of arcs needed for each spiral segment given 

a tolerance ranging from 0.1 to 0.00001 decreasing by a factor of 0.1. 

The arc spline approximations using a specified tolerance of 0.001 are illustrated 

in Fig. (6.1) to (6.7). Scales indicate the units. The arc spline approximations are 

visudly indistinguishable from the corresponding spird segments. 

Table (6.8) to (6.14) show the  radii of the arcs needed for each spiral when the 



tolerance is equal to 0.001. Observe that they form a monotone decreasing sequence 

for each spiral segment. 

Fig. (6.8) to Fig. (6.14) show the relationship between number of arcs and tolet- 

ance. The solid lines show the nurnber of arcs for a given tolerance. The dotted lines 

show the actual deviation for the number of arcs used. So the solid line is always 

above the dotted line. 



Table 6.1: Results of Approximation of Quadratic Bézier Spiral Segment 

Specified tolerance, r Xumber of arcs Maximum deviation 

Table 6.2: Results of Approximation of Cubic Bézier Spiral Segment 

Specified tolerance, r Number of arcs Maximum deviat ion 



Table 6.3: Results of Approximation of PH Cubic Spiral Segment 

Specified tolerance. T Number of arcs Maximum deviation 

Table 6.4: Results of Approximation of PH Quintic Bézier Spiral 

Specified tolerance, T Number of arcs Maximum deviation 

Table 6.5: Results of Approximation of Clothoid Spiral Segment 

Specified tolerance, r Number of arcs Maximum deviation 



Table 6.6: Results of Approximation of Archimedean Spiral Segment 

Specified tolerance. r Number of arcs Maximum deviation 

Table 6.7: Results of Approximation of Logarithmic Spiral Segment 

Specified tolerance, T Number of arcs Maximum deviation 



Figure 6.1: Arc Spline .4pproximation of Quadrat ic Bh ier  Spiral Segment 

Figure 6.2: Arc Spline Approximation of Cubic Bézier Spiral Segment 

Figure 6.3: Arc Spline Approximation of PH Cubic Spiral Segment 



Figure 6.4: Arc Spline Approximation of PH Quintic Spiral Segment 

Figure 6.5: Arc Spline Approximation of Clothoid Segment 

Figure 6.6: Arc Spline Approximation of Archimedean Segment 



Figure 6.7: -4rc Spline Approximation of Logarithmic Spiral Segment 



Table 6.8: Radius of Approximation of Quadratic Bézier Spiral Segment by Arc Spline 

sequence of biarcs radius of Left arc radius of right arc 

Table 6.9: Radius of Approximation of Cubic Bézier Spiral Segment by Arc Spline 

sequence of biarcs radius of left arc radius of right arc 
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Table 6.10: Radius of Approximation of PH Cubic Spiral Segment by Arc Spline 

sequence of biarcs radius of left arc radius of right arc 

Table 6.11: Radius of Approximation of PH Quintic Spiral Segment by Arc Spline 

sequence of biarcs radius of left arc radius of right arc 



Table 6.12: Radius of Approximation of Clothoid Spiral Segment by Arc Spline 

sequence of biarcs radius of left arc radius of right arc 

Table 6.13: Radius of Approximation of Logarithmic Spiral Segment by Arc Spline 

sequence of biarcs radius of left arc radius of right arc 
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Table 6.14: Radius of Approximation of Archimedean Spiral Segment by Arc Spline 

sequence of biarcs radius of left arc radius of right arc 



O f  . f I . ~ ~ I ~ , ~ I .  1 

O 5 10 15 20 25 30 35 40 45 50 
Tolerance or Deviation (xlCJ3) 

Figure 6.8: Quadratic Bézier Spiral 

O !  ~ l l T , T ~ r l ~ l T l ~ ~ r ~ r ~  

O 5 10 15 20 25 30 35 40 45 50 
Tolerance or Deviation (XI a3) 

Figure 6.9: Cubic Bézier Spiral 
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O 5 10 15 20 25 30 35 40 45 50 
Tolerance or Deviation (XI a3) 

Figure 6.10: PH Cubic Bézier Spiral 

Figure 6.1 1: PH Quintic Bézier Spiral 



O 5 10 15 20 25 30 35 40 45 50 
Tolerance or Deviation (xm3) 

Figure 6.12: Clothoidal Spiral 

~ ~ l q l r l r l ' l ' ~ l ~ T ~ l l  

O 5 10 15 20 25 30 35 40 45 50 
Tolerance or Deviation (XI 03) 

Figure 6.13: Logarithmic Spiral 
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O 5 10 15 20 25 30 35 40 45 50 
Tolerance or Oeviation (XI@) 

Figure 6.14: Archimedean Spiral 



Chapter 7 

Conclusions 

In this thesis, a method for approximating spiral segments is proposed. To approxi- 

mate al1 kinds of spirals, this method can be applied by approximating each subpart 

separately after subdividing the spiral to subparts appropriately. Seven kinds of spi- 

ral segment nameiy quadratic Bézier, cubic Bézier, P H  cubic, PH quintic, clothoid. 

Archimedean, logarithmic were examined. Accuracy can be achieved by designating 

a specific tolerance. The method were tested on al1 of these spirals. Following are 

some concluding observations. 

7.1 Tendency of the Radius 

For tolerance 0.001, observe the radii of arc spiines using the same parameters and 

the results are recorded in Tables (6.8) to (6.14). The arcs are listed in the order of 

increasing pararneter t. The "left" arc is the one which approximates a part of the 

spiral with smdler curvature in a triangle construction while the "right" arc is the 

other arc. From the radii traced, it seems that radii get smaller when a winding spiral 
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segment is approximated by using this biarc method. 

7.2 Relationship between Number of Arcs and 

Tolerance 

Fig.(7.1) shows a logarithmic plot of deviation versus nurnber of arcs for a spline 

approximation of various spiral segments. For the y-axis, y = Log,,(deviatim). for 

the x-axis, x = log,,(number of arcs).  The plots are close to a straight line whose 

slope is -3. Suppose d denotes the deviatioo. n denotes the number of arcs and C is 

a constant. From Fig. (7.1), 

logd z -3logn + C 

log d 1 0 ~ ( ~ n - ~ )  

d =: Cne3 

In ênother word, the error of approximation seems to be ~ ( n - ~ )  which is consistent 

with the result of [MW95]. 



7.2. RELATIONSHIP BETWEEN NUMBER OF ARCS AND TULERANCE IO5 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 
log (No. of Arcs) 

Figure 7.1: Logarithmic Pact of Deviation vs. No. of Arcs 
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