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Abstract

Spirals based on quadratic Beézier, cubic Bézier, Pythagorean hodogragh (PH) cu-
bic, PH quintic and clothoid curves are suitable for CAD and computer-aided geomet-
ric design (CAGD) applications. The clothoidal spiral segments are widely used in
highway design, railway design and robot trajectories. For CNC machining compared
with polyline approrimations, the suggested arc spline approrimations avoid sudden
changes in the direction of the tool path, decrease the number of segments for approz-
imation and lessen the need to polish objects. In this dissertation an eristing method
is generalized to approzimate a planar spiral segment so that it can be applied to a
large class of spiral segments. The properties of several spiral segments are analyzed

and their approzimations by the proposed method are presented.
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Chapter 1

Introduction

With the influence of automatic control of machines and computer-aided design
(CAD), computer-aided manufacturing (CAM) systems have expanded in manufac-
turing industries during the last two or three decades. Designers use CAD systems
to design parts for visual and theoretical analysis. On the basis of the CAD model.
the numerical control (NC) programmer uses the CAM system to generate a NC tool
path for a computerized numerical control (CNC) machine so that it can produce the
part. Approximating spirals by arc splines plays an important role in CNC machining

for manufacture.

Spirals based on quadratic Bézier, cubic Bézier, Pythagorean hodogragh (PH)
cubic, PH quintic and clothoid curves are suitable for CAD and computer-aided
geometric design (CAGD) applications. PH curves were introduced by Farouki and
Sakkalis [FS90]. Spiral segments, the clothoid in particular, are used in applications

such as highway design [Baa84], railway design [Hic67] and robot trajectories [Sch96].
The term spline is used to describe a composition of curve segments joined in a

1
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[(V]

manner to satisfy given continuity and smoothness criteria. A spline function (or
a spline curve) is a piecewise analytical function. The different pieces are chained
together with continuity requirements imposed on the first few derivatives at the
joints. The pieces are basic curve shapes with adjustable parameters. The parameters
are adjusted so that the chained curve matches the data and continuity requirements.
For example, an arc spline is a spline composed of circular arcs.

A CNC machine is a piece of manufacturing equipment that performs machin-
ing automatically to produce parts. The tool paths of modern CNC manufacturing
machines are controlled by servomotors which allow circular arcs and straight line
segments to be machined to almost mathematical precision. In a CAD environment.
objects are often designed using B-splines or Bézier curves. [t is standard practice
to cut a smooth curve as a polygon that is a very close approximation to the curve.
To manufacture computer-aided designed objects, efficient and effective use of such
machines can be increased by approximating Bézier and B-spline curve segments by

arc splines rather than by straight line segments for the following reasons.

e The continuity of the tangent vector of an arc spline avoids sudden changes in
the direction of the tool path. Sudden changes of direction cause problems such
as overshooting. Such problems lead to wastage of material and time, or shud-
dering of the machine. These problems result in increased maintenance costs
and a shorter lifespan for costly equipment. To avoid overshooting, program-
ming of the feedrate, acceleration and deceleration should be done carefully and

is usually very time-consuming.

e The number of segments in the approximation will be decreased which leads to
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fewer instructions and fewer tool motions required in programming the machine.

e The need to polish objects would be significantly reduced if they were machined

with a continuous tangent cutting path.

1.1 Notation, Conventions and Terminology

In this thesis the concepts of a vector, the norm of a vector and its dot and cross
products are used. The spirals and spiral segments discussed are planar curves, how-
ever it may be necessary to refer to a curve or vector in space. Some of the properties

of vectors are mentioned here. More details are available in [dC76] and [Gugb3].

Norm of a Vector :

The norm of a vector V is denoted as || V ||. If v = (vy, va, v3), then

|V I|= \/;§+v§+u§.

Angle :

The angle from vector U to vector V is a signed quantity; it is positive if

measured counter-clockwise from U to V.

Directed Line Segment :

The directed-line segment from point P; to point P; is indicated as P;P;. The

length (norm) of it is denoted as || P;P; ||.
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Parameterized Curve :
A three dimensional curve is denoted as (z(£), y(t), =(¢)). The quantity ¢ is called
the parameter of the curve. The degree of smoothness of a parameterized curve
depends on how many times it can be differentiated. For planar curves. z(¢) = 0.

Dot Product :

The dot (or inner) product of two vectors, V and W is denoted as V- W. It is
defined by

V-W =|| V||| W || cos¥,

where § is the counter-clockwise angle from vector V to vector W. The following
are some properties of the dot product [dC76]:

1. Assume V and W are two nonzero vectors, the necessary and sufficient

condition for V- W = 0 is that V and W be orthogonal.

2V- W=W.V.

3. MV - W)=V - W=V.\W.

4. U (V+W)=U - V4+U-W.

Let e; = (1,0,0),e2 = (0,1,0) and e3 = (0,0, 1). Using property 1, it is easy to

see that e; - e; = 1 if 7 = j otherwise e; - ¢; = 0. Suppose
U = uye; + uzeq + uszes, V = v1€e1 + vaes + vaes.

From properties 3 and 4, U -V = wuyv; + uv2 + ugvs. If u(t) and v(¢) are

differentiable functions, then the dot product of u(t) and v(t) is a differentiable
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function,
d ' ,
Z(u(t) - v(2) = w() - v(t) + u(t) - v(e).
Arc Length :
According to [dC76] (p. 6), the arc length of a regular parameterized curve
from the point g to ¢ is
t
t) = ‘(¢) || dt,
st = [ 1@
where
1 Q) lI= V((6)? + (y'(1))? + (=(1)?
is the length of the vector Q'(¢).
Unit Tangent Vector :

If the parametric curve Q(¢) is considered to be the path of motion of a point.
the direction of the first derivative vector gives the direction of motion and
speed of the point at any instant. The direction is extracted from a parametric

first derivative by normalizing the vector. The unit tangent vector of a curve

Q(t) is

. Q'(y)
TO=TooT

If T is the unit tangent vector to Q(¢) at ¢, then the orientation of the unit vector
measured 5 counter-clockwisely from T is the unit normal vector, denoted as

N.

Curvature : The curvature of a planar curve Q(¢)(z(¢).y(¢)) [?](p. 153) is

z'(t)y"(t) — y'(t)"(t)
I Q(2) {°
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The radius of curvature is the absolute value of the reciprocal of (1.1). At a
given point P on a parametrically defined curve Q(¢), the circle that passes
through P, and at P has the same unit tangent vector and curvature as the
curve, is called the osculating circle at P. The center and radius of this circle are
called the center of curvature C(¢) and the radius of curvature p(¢), respectively.
at this point. The curvature «(¢) at this point is the reciprocal, 1/p(t). of the
radius of curvature. Here p(t) # 0. Otherwise, the curvature were infinite
which contradicts with that curvature can always be measured in real world.
The curvature vector k has a magnitude equal to the curvature and points from

P towards the center of curvature,

Inflection Point :

An inflection point on a curve is defined as a point. I, where the points imme-
diately before and after it are on opposite sides of the tangent line to the curve

through the point I as in Fig. (1.1).

I

—

Figure 1.1: Inflection Point

G° continuity :

Two curve segments are said to be joined with G°® continuity if one segment

begins where the other segment ends.

G! continuity :
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Two curve segments are said to be joined with G! continuity if they meet with
G?® continuity and the tangent vectors at the joint between two these successive

segments are collinear having the same direction.
G? continuity :

Two curve segments are said to be joined with G? continuity if they meet with

G! continuity and their signed curvatures are continuous across the joint.

Spiral :
Spirals are curves whose curvature is a monotonic function of arc length. In
this thesis only spirals with positive curvature are considered. Results for spi-
rals with negative curvature follow analogously. Consider a spiral Q(t) with
parameter t, which increases strictly monotonically with arc length. The spiral

Q(t) satisfies the following properties.

e The curvature at the first point of the spiral cannot be the same value as

the curvature at the last point of the spiral.

o The spiral is a function of ¢.

Spirals, in which the absolute value of curvature increases, are denoted as wind-
ing spirals. Spirals, in which the absolute value of curvature decreases are

denoted as unwinding spirals.

In this thesis, only continuous arc splines with first derivative continuity will
be considered for approximating spiral segments. The first derivative at any
point of such curves is not zero. The parameter t can range from —oco to

+oo for some spirals, e.g. clothoidal, Archimedean and logarithmic spirals. To
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approximate a spiral with parameter t ranging from —oc to +0o by using the
method illustrated in this thesis, the spiral should be separated into pieces with
finite intervals. Using the same tolerance, different separations usually lead to
different numbers of circular arcs. Only winding spirals are considered. The
results are applicable to unwinding spirals by reversing the direction of the

parameter.

Definition of Bézier curve :

The Bernstein Bézier curve [BBB87], or more briefly Bézier curve. of degree n

is defined by:
Q(t) =D _PiCin(t) for 0<t <1, (1.2)
=0
where
n | .
Cin(t) = £ =)™
!
n
are the Bernstein polynomials, the being the binomial coefficients and
t
P; are the control vertices. Pg, Py, -, P, form the control polygon.

The first derivative is

n-1 n ) ]
Qt)y=n)_ (Pig1 —P)(1 =)™ ', for 0<t<1. (1.3)
=0 )

Some useful properties of Bézier curves are:

@ Convex-hull property:
A Bézier curve lies within the convex hull of its control polygon. The

convex hull of a set of control vertices in the plane can be thought of as
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the region lying inside a rubber band stretched so as to contain the control

vertices and then released so that it snaps tightly against them.

e Endpoint interpolation:
Q(0) =Py Q(1)=P,.

e The tangent vectors at the starting point and ending point are parallel to

the beginning and ending edges of the control polygon, i.e.:
Q'(0) =n(P, = Po) Q'(1) =n(Pr—Pny)

respectively.

e The curvature at the starting point and ending point depend on only the
first three or last three control points because
Q"(0) = n(n - 1)[(P2 — Py) — (P1 — Po)]

Q”(l) = n(n - 1)[(Pn—2 - Pn.—l) - (Pn—l - Pn)]

Spiral Segment :

A spiral segment is a piece of any spiral. Curvature extrema and inflection

points divide divide a general curve into spiral segments.

Arc Spline :

An arc spline is a G! curve composed of circular arcs and straight line segments.
First-order geometric continuity, denoted as G!, refers to a continuous spline
with a continuously varying unit tangent vector. Arc splines are G! continuous,
but not G? continuous, because their unit tangent vectors vary continuously but

their curvature at the joints are not continuous.
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Biarc :

Consider two given arbitrary points Ay and A; and corresponding tangent
directions T and T;. A biarc is a composition of two circular arcs that satisfy

the following:
e One arc starts at Ay with tangent vector Tq at Ag.
e The other arc ends at A; with tangent vector T at A;.
® The two arcs are connected at a joining point, P, at which they have a

common unit tangent vector.

There are two types of biarcs: those that have an inflection point (as shown

in Fig. (1.2) and those that do not have an inflection point (as shown in Fig.

(1.3)).

Figure 1.2: Curve with Inflection Point

To P

T

Figure 1.3: Curve without [nflection Point

PH curve :
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A Pythagorean hodograph (PH) curve is a polynomial parametric curve

Q(t) = (z(t), y(¢))

where z/(t)? + y'(¢)? can be expressed as the square of a polvnomial in t. More

details on PH curves are in Chapter 2.

1.2 Literature Review

In this thesis, all of the spirals discussed are plane curves which are special cases of
space curves. For a space curve in general, denote the unit tangent of a curve Q(¢)
as T(¢) and the normal of Q(¢) as N(t). The osculating plane at t is determined by
these two vectors. The unit vector B(¢) = T(¢) x N(¢) is normal to the osculating
plane (see Fig. (1.4)). The number 7(¢) defined by B’(¢) = 7(¢)N(¢) is called the
torsion of Q at t [dC76]. For a planar curve 7 = 0 and it is possible to give the
curvature a sign when the curvature is compared with the orientation of the plane.
The curvature changes sign when either the orientation of the curve or the orientation

of the plane is changed. This is called signed curvature.

Figure 1.4: General Space Curve

[n [Meh74] on nonlinear splines Mehlum concludes that it is possible to approxi-
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mate any planar curve by a sequence of circular arcs for given accuracy and continuity
requirements. In his paper, Mehlum describes a theory of nonlinear splines arising

from a variational criterion of the type
/(curvature)zds = “as little as possible”

He proves that the curvature varies linearly along some fixed direction in space when
T = (. Based on the special case T = 0, some algorithms for curve fitting are shown.
Mehlum in fact encountered the clothoid and described an arc spline approximation to
it. His arc spline approximation is based on a differential equation that he encountered
and is thus particular to his approximation of a non-linear spline.

[n Walton and Meek’s paper [WM94], a simple technique is developed to find
an arbitrarily close approximation to a quadratic Bézier by a G! curve consisting of
circular arcs. A quadratic Bézier is in general not a spiral segment; it may or may not
have a local curvature maximum. It can have at most one local curvature maximum.
When it does not have an interior curvature maximum, it is a spiral segment. A

quadratic Bézier is given by
Q(t)=Po(l —t)2 +2P, (1 =)t + P,t?, 0<t <1, (1.4)

where Py, P, P, are distinct and non collinear control vertices. Three theorems are
presented in that paper. The first theorem is useful in the construction of a biarc
approximation to a quadratic Bézier curve. The other two theorems are useful to

measure the accuracy of the approximation. Theorem 1 of [WMO94] states:

A unique biarc can be constructed which satisfies the following conditions.
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e The biarc is C-shaped and matches the quadratic Bézier curve in

position and tangential directions at Py and P,.

o The tangential direction at the joint of the biarc matches the direction

of the line segment which joins Pq to Ps.

o The biarc lies in the convex hull defined by Pq, Py, Pa.

Theorem 2 of [WM94] gives the corresponding parameter ¢ where the deviation
reaches the maximum value. In the same article, Theorem 3 finds the maximum
deviation from the biarc, as constructed in Theorem |. measured along a radial
direction of the biarc. An algorithm is developed to approximate a quadratic Bézier
within a given tolerance by subdividing it recursively.

In Walton and Meek’s paper [WM96¢|, a technique which is similar to the one
used for a quadratic Bézier segment is applied to a planar cubic Bézier segment and
two theorems on the deviation of a biarc approximation from a segment of the cubic
Bézier spiral segment are presented.

Meek and Walton’s paper [MW95] presents an algorithm for finding an arbitrarily
close arc spline approximation of a smooth curve by examining the family of circular
arcs joining one given point Ag to another distinct given point A;. The two circular
arcs that match a given unit tangent vector Ty at the first point and that match a
given unit tangent vector T, at the second point A, are called the bounding circular
arcs Cy and C, (see Fig. (1.5)).

Theorem 2 of [MW93] states that any biarc that joins one point to another dis-
tinct point and matches given unit tangent vectors at the two points lies between the

bounding circular arcs that are derived from the two points and the two unit tangent
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Figure 1.5: Bounding Circular Arcs

vectors. Theorem 5 of [MWB95] shows that if a convex spiral segment of positive
increasing curvature satisfies the enclosing condition, then the bounding circular arcs
enclose a crescent-shaped region that includes the entire spiral segment. Based on

these two theorems, Theorem 6 of [MW95] is deduced which states the following.

Let Q(t), to < s < ty, be a smooth spiral segment of positive increasing
curvature for which the derived bounding circular arcs have curvatures
of the same sign, then the mazimum distance between the two bounding

circular arcs is O(h3), where h = ¢, — to.

The algorithm used in this method is also a recursive one. Suppose Ay and A,
are the points on the curve to be approximated; if Ay and A, are very close, a
straight line is returned as part of the arc spline approximation, otherwise check if
the condition of Theorem 5 is satisfied. If it is satisfied, a biarc is fitted, otherwise

the curve is subdivided. Since this method can be used on any spiral segment, it
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can be called a generalized one. This method causes some unnecessary subdivision.
[n this thesis a more refined method of deviation calculation is used and it requires
substantially less resources. [t cannot be claimed that the methods used in this thesis
are optimal. However, they seem to produce a good ratio of maximum deviation
to specified tolerance. Referring to [WM96¢|, for example, using the method of
[MW95] on a cubic spiral segment produced 16 arcs with a maximum distance between
bounding arcs of 0.001632 but a maximum deviation of 0.0001599, and 32 arcs with
a maximum distance between bounding arcs of 0.0002072 but a maximum deviation
of 0.00001992. i.e. ratios of 0.0980 and 0.0961, respectively. On the other hand.
when 0.001632 and 0.0002072 were specified as tolerances, the algorithm discussed
in [WMO96¢] produced 10 and 18 arcs with maximum deviations of 0.001431 and
0.0001933 for ratios of 0.877 and 0.933, respectively.

Another approximation of spirals by arc splines is discussed in [MP84]. In that
paper, Marciniak and Putz develop an algorithm to approximate plane spirals by
smooth piecewise circular arc splines using the fewest segments within a given toler-
ance. The method they provide is for solving the problem of spiral approximation by

tangent-continuous curves composed of circular arcs. [t has the following properties:

1. The approximation is within a given deviation of the given spiral, measured

along the normal to the spiral.

[
.

The approximation is optimal in the sense that it has the fewest circular arc

segments among those with a given deviation.

The method can be described as follows:

For a spiral K(t), where t € [to, k] and T is an allowable tolerance, an internal spiral
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is defined as A;(t), where t € [to, tk] and an external spiral is defined as A.(t),where
t € [to,tx]. The distance from the spiral to either the internal one or the external
one, equals 7. The approximating curve must lie in an area of tolerance delimited by
internal and external spirals. The approximating curve consists of the first circular
arc segment and a number of sequential circular arc segments. The first circular arc
has four points in common with the spirals that delimit the tolerance field. Each
sequential arc has three points in common with these limiting spirals. The common
points alternate between the limiting spirals. The error of approximation. measured
along the normal to the spiral, attains its maximal value  with alternating sign.
An algorithm which solves this problem, and an example of its application for any
curve is presented in [MP84|. The approximation does not match the beginning and
ending points and tangential directions of the spiral segments. I[f a design involves
two spirals intended to be joined smoothly, this smooth blend is not incorporated in
the arc spline approximation. For a corresponding toolpath there may thus be sudden
changes in the position and direction of the machine tool at the joints. A comparison

is made in Chapter 3 between the method of [MP84] and the one used in this thesis.

1.3 Approximation of Spiral Segments

Usually general methods are not as efficient as specialized methods. It is interesting
to know if the specialized methods mentioned in Section (1.2) can be generalized to
a larger class of spirals while retaining efficiency, e.g. can the same technique used
for quadratic and cubic Bézier spiral segments be generalized for other polynomial

spirals? Can it be applied to other spirals?
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Since the quadratic and cubic Bézier can be approximated by using that method.
it is expected that other spirals may be approximated by arc splines using a sim-
tlar technique. In this thesis, the PH cubic Bézier, PH quintic Bézier, clothoidal.
Archimedean and logarithmic spirals are examined in order to develop a general al-
gorithm for their approximation by arc splines.

[n general the spiral segments which are investigated in this thesis have the rota-
tion of the tangent from one end to the other that is smaller than 7. For some spiral
segments this angle can not reach = because of the limitation of the curve itself. e.g.
the spiral part of a parabola. A spiral segment of the class examined in this thesis lies
within the triangle formed by its endpoints, and the intersection of the straight lines
which pass through its endpoints and are parallel to the tangential directions of the
segment at its endpoints. A spiral where the rotation of tangent is greater than or
equal to  can be approximated by subdividing it into segments and approximating
each segment separately.

In Chapter 2 some theoretical background which is relevant to this thesis is intro-
duced. Spirals which are approximated in this thesis are defined and some properties
of them are mentioned . In Chapter 3, two main theorems are presented and proved
to show the idea that any spiral segment with a mathematical expression can be
approximated by using this method. The main contribution of this thesis is this gen-
eralization. In Chapter 4, the analysis of deviation for each spiral is done according to
Theorem 3.2 in Chapter 3. In Chapter 5, the implementation is shown by providing
the pseudo-code of the program. In Chapter 6 some tables and figures present results
of the approximation of some specific spiral segments. Finally Chapter 7 concludes

the thesis with a general summary of the work accomplished, and points out some
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interesting results.



Chapter 2

Theoretical Background

In this chapter, the concept of a Pythagorean hodograph curve is explained and the
merit of its algebraic characterization is mentioned. Pythagorean hodograph cubic
and quintic Bézier are analyzed as examples. Biarc and its relevant property is
introduced. We give definition and properties of quadratic Bézier, cubic Bézier. PH

cubic, PH quintic Bézier, the clothoidal, the Archimedeans and the logarithmic spiral

segments.

2.1 Pythagorean Hodograph Curves

Pythagorean hodograph curves were introduced to the CAD and CAGD community
by Farouki and Sakkalis. In their paper [FS90], the definition and properties of

Pythagorean hodograph curves are described clearly.

19
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2.1.1 Introduction of Pythagorean Hodogragh

Parametric polynomial curves are an efficient and systematic form. and are widely
used to represent curves and surfaces in CAD. For a plane curve segment. a polynomial
curve can be defined as Q(t) = z(¢)To + y(t)No where x(t) and y(t) are polynomials

in t, such as.

z(t) = Zn: artt, y(t) = i bitk, for t€(0,1]
k=0

k=0
and Ty, Ng are the beginning unit tangent and normal vectors.

The computation of the polynomial curves is relatively easy for example the op-
erations of addition and multiplication are easy. Polynomial curves form a subset of
rational curves on which graphics packages are usually based. But a polynomial curve
still has some significant shortcomings which hinder its overall usage in practical de-
sign application. If it is not a straight line, the points are usually not distributed
uniformly along the curve when it is evaluated by evenly spaced parameter values
tr. To overcome this shortcoming, the functional relationship between the arc length
along the curve and the parameter t is required. This function is an integral in gen-
eral. Approximation of this integral may require a lot of computation and introduce
errors. Another important deficiency is related to its “offset” curve. In applications.
such as textile industry, shoe industry, car body industry and CNC machining, the
curve Qo(t) = Q(t) + mn(t) is widely used, i.e. Qq(t) is a curve at m units away from
a given curve Q(t) in the direction n(t¢), where n(¢) is the unit normal of Q(¢). In
general if Q(t) is a polynomial curve, Qg(t) is not a polynomial curve and not even
a rational curve.

PH curves overcome these two disadvantages by virtue of the following properties:
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e Their arclength is expressible in closed-form as polynomial functions.
o Their offsets are representable by rational curves of relatively low degree.

Since rational curves facilitate processings such as subdivision, transformation. in-
tersection. etc.. the second property gives PH curves an important role in geometric

modeling systems.

2.1.2 Fundamentals of Pythagorean Hodographs

The following theorem is rephrased from [FS90}:

Theorem 2.1 Three real polynomials a(t), b(t) and ¢(t), where the bigger degree
between a and b is equal to the degree of c. satisfy the Pythagorean condition a?(¢) +
b*(t) = c*(¢) if and only if they can be expressed in terms of real polynomials u(t). v(t)
and w(t) in the form:

a(t) = w(t)[u’(t) — (1)),
b(t) = 2w(t)u(t)v(t),
e(t) = w(t)[u(t) + v*(t)],
where u(t) and v(¢) are relatively prime and w(¢) is the common factor of a(t), b(¢)
and c¢(t).
In order to simplify computation, w(t) = 1 can be supposed in this thesis.
The following lemma is rephrased from [FS90]:

Lemma 2.1 Given a parametric curve Q(t) = z(t)Tq + y(¢)No, the polynomial

curve corresponding to the Pythagorean hodograph is given by setting

2/(t) = ud(t) — v2(t),  y'(t) = 2u(t)v(t). (2.1)
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So that Q(t) is of degree n = 2u + 1. where p = max(deg(u), deg(v)).
Notice that n = 2u+1 while deg(w)=0. To ensure that Q(t) is indeed a PH curve.
define z'(t) and y'(t) as z'(t) = u®(¢) — v?(¢) and y'(¢t) = 2u(t)v(t) as polynomials

[FS90]. The curvature of a PH curve is {Far94]

_ 2u(@)v'(t) — u'(t)v(?)) g
"0 =" + ey 22
and the derivative of its curvature is [Far94]

o — 2(uv” —u"v)  8(uv’ — u'v)(uu’ + vi') (2.3)
- (u2 + v2)2 (u? + 02)3 s

where the dependence on t is not shown for sake of readability.

2.1.3 Pythagorean Hodograph Cubic Bézier

A PH cubic, Q(t), (also known as Tschirnhausen’s cubic [FS90]) is the simplest

Pythagorean hodograph curve of degree greater than 1. [t has n = 3 and
w(t) = 1. (2.4)
It can be obtained by defining u(t) and v(t) as
u(t) = ug(l — t) + urt (2.5)

and

v(t) = vo(l — t) + vyt

In this thesis it is assumed without loss of generality that vp = 0 for both the cubic

and quintic PH curves [WM96b]. This forces Q’(0) to be parallel to To. Hence,

v(t) = vit. (2.6)
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Substitution of w(t),u(t) and v(¢) from Eqn. (2.4), (2.3) and (2.6) into Eqn. (2.1)

gives:
Q'(t) = 2'(¢)To + y'()No (2.7)
where
'(t) = uj(l — )% + 2upu; (1 — )t + ult? — vit?
and

y’(t) = 2uovlt(1 - t) + 2u101t2.

An interesting geometric interpretation of the restrictions on the control polygon
of a cubic Bézier curve to make the curve a PH cubic curve is the following. A PH
curve is formed if and only if the following two conditions are met(see [FS90]):

L, =L,L3 and 6, = 0,,
where L, L, and L3 are the lengths of the control-polygon legs which are defined as
L; =|| P; — Pi—{ ||, and 8., 8, are the interior angles at vertices P, and P,.

Another geometric property of PH cubics is that they have no real inflection

points. The condition #; = #; makes the control polygon of a PH cubic convex so it

is impossible to have an inflection point when t € [0, 1].

2.1.4 Pythagorean Hodograph Quintic Bézier

PH Cubics are not sufficiently flexible to interpolate discrete data sampled from a
curvature continuous curve in which inflections are present. According to Farouki
and Sakkalis [FS90], PH quintics can be categorized as cuspidal or non-cuspidal.

The sign of the curvature changes at the inflection point in a cuspidal PH quintic.
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In this thesis, only those PH quintic segments which are without cusps are dis-
cussed. According to [FS90], when the curvature of a PH quintic increase monoton-
ically without changing sign, the control vertices form a convex shape.

A PH quintic Q(t) is obtained by defining u(t) and v(¢) as [FS90]

u(t) = ug(l — )% + 2u (1 — )t + uyt? (2.8)
and
v(t) = vo(1 — t)2 4 2uy (1 — )t + vqt?
or with vg = 0. as is the convention in this thesis,
v(t) = 2u(1 — t)t + vyt? (2.9)

From the formula we can tell that using PH quintics to fit a curvature continuous

curve to discrete points is not as easy as with PH cubics.

2.2 Biarc

Let Ag and A, be two successive data points that an interpolating curve is supposed
to pass through, and let To and T, be the tangential direction at these two points
(as shown in Fig. (2.1)). The point A; is the intersection of lines through Ay and
A, parallel to To and T,. G is somewhere in AAyA A, where the two arcs join.
From the conditions that the two arcs match the tangents To and T, at Ay and
A, respectively and their tangents match at the joint, the location of G can not be
determined uniquely. Let s be the length of the chord AgA; , 2a be the counter-

clockwise angle from AgA,; to AgA;, 2b be the counter-clockwise angle from A,A,
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o
Ut

to AgA; and 2c¢ be the counter-clockwise angle from AgA, to the tangential direction
at G. The curvature of the two arcs can be expressed in terms of the angles 2a.2b.2c

and the chord s which is equal to || AgA, || according to [SabT77] (p. 45).

Figure 2.1: Biarc

2sin{b—a) sin(a—c)
ssin(b+c) ’

the curvature of the first arc AgG is —

2sin(b—a)sin(b—c)

the curvature of the second arc GA; is — -
ssin(a+c)

Actually when ¢ = 0. the tangent direction at point G is parallel to AgA, and G

is the incentre of the triangle AgA;A,.

2.3 Quadratic Bézier Spiral

Lemma 2.3 Given a beginning point, Py, beginning and ending unit tangent vectors.

Ty and T, respectively, Eqn (1.2) defines a quadratic Bézier segment when n = 2,
Q(t) = Po(l — t)? + 2Py (1 — t)t + Pat?. (2.10)

where

P, = Pg + aT,
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P; =P, + 0T, (2.11)
fora > 0. b > 0. as illustrated in Fig. (2.2). Suppose § is the counter-clockwise angle

from To to T, and let the ending curvature value, ¢ > Q be an extrema at ¢t = 1. The

Bézier segment is a spiral segment when

tan @
= 2.12
2ccos § ( )
and
tan 6
b= — (2.13)
2c
Figure 2.2: Quadratic Bézier Spiral Segment
Proof:

Denote Ny as the normal vector at Py. Substitute Py, P, from Eqns.(2.11) into Eqn.
(2.10) to obtain

Q(t) = Py + 2aTot + (bT; — aTo)t? (2.14)
Then take the derivative to obtain

Q'(¢) = 2(1 — t)aTo + 2btT, (2.15)

and

Q"(t) = —2aTo + 26T, (2.16)
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So it follows that Q"(¢) = 0. Since Ty = (cos )Ty + (sinf)Ng, Eqn.(2.13) and (2.16)

can be rewritten as:

Q'(t) = [2a(l — t) + 2bt cos 9] Ty + 2bt sin 6Ny,

" = 2(bcos§ — a)Tqy + 2bsin INg. (2.138)
The signed curvature is defined by Eqn. (1.1).
K(t) = [2a(1l — t) + 2bt cos 8]2bsin 8 + 2bt sin 8(2a — 2bcos §)
(y/[2a(1 — t) + 2bt cos 8]2 + (26t sin §)2)°
dabsin g
= (2.19)

(\/4a?(1 — )2 + (8abcos O)t(1 — 1) + 4b622)°
The first derivative of (1.1), using Q"(¢) = 0, yields

-30Q’ "
v = SR W) ) (2.20)

To force the curvature extremum to occur at the ending point, £’(1) = 0 is required.
Applying Eqns. (2.17), (2.18) to Eqn. (2.20) at ¢t = 1, with &'(1) = 0 leads to

b=aTo-T, =acosh. (2.21)

The curvature at the ending is ¢, which means (1) = ¢. Using Eqn.(2.19) gives

4absinéd
(25

=cC

9 2
20 (2.22)
sin §

a =

From Eqn.(2.21) and (2.22), it follows that (2.12) holds. Eqn.(2.13) follows from

(2.12) and (2.21). O
Using Eqn.(2.19), the curvature at ¢ = 0 is equal to

4absin 0 _ bsin§
8a3 ~  2a2.
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Applying Eqn.(2.21), it produces

sin 20
x(0) = Ta
Since @ > 0 and ¢ = =88 it follows that sinf > 0,s0 0 < 8 < 7/2 for a

2ccos? §°

quadratic spiral segment.

This spiral segment has the following properties:
e [ts curvature is equal to ﬁ% at £t =0.

e [ts curvature is increasing monotonically.

o [ts curvature has a local maximum at ¢ = 1.

From Eqn.(2.10), it is known that a quadratic Bézier curve is a segment of a

parabola. It has a curvature extremum at [WM94] :

a(a — bcos )

t = .
a? + b% — 2abcos 8

The curvature extremum is obtained by letting the first derivative of «’(t) equal
to zero. In this case, Eqns.(2.16) and (2.18) are applied to Eqn.(2.20) and then
&’(t) = 0 gives the solution to the curvature extremum. Notice that if £ = . it

deduces Eqn.(2.21).

2.4 Cubic Bézier Spiral

Eqn(1.2) defines a cubic Bézier segment when n = 3.

Q(t) = Po(1 — t)® + 3P, (1 — )% + 3P2(1 — ¢)t* + P3t. (2.23)
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where

P, =Po + aTy,
Pg = P1 + aTo, (224)
P; =P, + 4T;.

As shown in Fig. (2.3), Po, Py, P2, P; form the control polygon of the spiral
segment and Ty, T are the unit tangent vectors at the beginning and ending points.
respectively; Po, P and P, are collinear and P, is at the middle of the line segment
P,P,. § is the counter-clockwise angle from PyP, to P;P;.

Suppose 8 is the counter-clockwise angle from PoP; to P,P; and c is the ending

curvature at ¢ = 1, The cubic Bézier segment is a spiral segment when

_ 25tan 8
= 54ccos §
and
3tand
b= 2.25
9¢ (2.25)

Eqns.(2.24) and (2.25) are derived in [WM96a).
The expressions of the function, first and second derivatives can be obtained from

the above formulae. Substituting Q’(t) and Q”(t) in Eqn. (1.1),

_ 216¢t cos> 6
{25 + 102(6 cos? 6 — 5) + t4(25 — 24 cos? )} 3

K(t)
As proved in [WM96a], this spiral segment has following properties:

e [ts curvature is zero at ¢ = 0.
® Its curvature has no extreme values and does not change sign for 0 < ¢ < 1.

® [ts curvature has a local maximum at ¢t = 1.
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Figure 2.3: Regular Cubic Bézier Spiral Segment

2.5 PH Cubic Spiral

When n = 3, Eqn.(1.3) can be written as:
Q'(t) = 3[(P1 — Po)t? + 2(Py — Py)(1 — t)t + (P3 — P2)(1 — ¢t)?]

Comparing the coefficients of the terms (1 — ¢)2,(1 — )¢ and ¢? to the correspond-
ing ones in Eqn.(2.6) and (2.7), the relationships among the PH cubic vertices are
obtained [FS90] as follows.

For 0 < @ < 7. a PH cubic segment is given by

1
P, = Pg-{-gugTO

1
P, = P+ §(‘Uou1To + uov1 No) (2.

[R%]
[0
-1

1
P3 = Pg + §[(uf - Uf)TO + 2U1’U1N0].

Ty and T, are the unit tangent vector at the beginning and ending point respectively.
Unit vector Ny is the normal vector at Pjg.
Given 0, the counter-clockwise angle from Ty to T} and ¢, the extremum ending

curvature at ¢ = 1, the segment is a spiral segment if

(L + A2
o = __(CL_) (2.28)
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u = 1J‘:°A2 (2.29)
and
v = Auy. (2.30)
where
A= -l—iir:—fsg>0, (2.31)

As illustrated in Fig. (2.4).

Figure 2.4: PH Cubic Spiral Segment

To verify Eqns.(2.28) to (2.30), observe that the relationships among ug, ujand v,
are deduced by setting the initial conditions. Since Q’(0) is forced to be parallel to
TOv

tan§ = Q’(1).
Applying the condition ¢ = 1 into Eqn.(2.6) and Eqn.(2.7), Q'(1) is given by:
Q'(1) = (u® — v?)To + 2u, v, No.

These relationships are illustrated in Fig. (2.5). Expressions for sin § and cos# can be

obtained from Fig. (2.5). Note that the restriction on 8 causes u; # 0. Substitution
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Figure 2.5: PH Cubic Tangent at ¢t = 1

of the expressions for sin@ and cos § into Eqn.(2.31) gives,

2uy v
uf4v U1
/\ = ——1 lu2l_u2 = -u——
H 1
+ uy +vj

So, Eqn.(2.30) holds. The first and second derivatives of Eqn.(2.4) and (2.3) are:

U’(t] = U; — ugy,

Replace u/(t), v'(¢t), u”(¢t) and v”(t) from above and u(t), v(¢) from Eqn.(2.5) and

(2.6) into Eqn.(2.2) and (2.3) to obtain,

k(t) = 2uquy (232)
[ug(l - t)2 + 2’!10‘!11(1 —_ t)t + (u% + .v%’)tglg 2.2
w(1) = — v {uo(uy — o) + [(u1 — uo)” + vi]t} (2.33)

" [ud(1 — )2 + 2uoui (1 — t)t + (uF + v})t?R
To make the ending curvature an extremum, the first derivative of the curvature at

the ending point is set equal to zero. Therefore, £’(1) = 0 which implies
ugu; — ud + uf — 2uouy +uf + v =0

S0,

24 .2 =
ui + vy — uou; =0
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From Eqn.(2.30).
uf(l + ,\2) — ugu; =0
Hence.

Ugp

1+ A2
which verifies Eqn.(2.29). Eqn.(2.28) can be obtained by substituting the given ending

Uy =

curvature ¢ for the left hand side of Eqn.(2.32):

2ugtn

c=k(l) = ———=
RO

Using Eqn.(2.29) and Eqn.(2.30) to eliminate u, and vy,

o 2up 3% 201+ \?)
- u 2 2
{(1+\2 +(ﬁfi)2} o

So, Eqn.(2.28) holds.
When ¢t =0, x(t) = i—;’% Applying Eqn.(2.24), (2.23) and (2.26) gives

C . B
x(0) = T (2.34)

From Eqn.(2.33), since £’(¢) only changes sign at one place, i.e. where «’(t) = 0.
it follows that «’(¢) # 0 in {0, ).

This spiral segments has the following properties:
o [ts curvature is —55— at t = 0.

(14+22)

e Its curvature has no extreme values and does not change sign for 0 < ¢ < 1.

2.6 PH Quintic Spiral

According to [WM96b], a PH quintic spiral segment is given by

1
P, = Po+gugTo
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1
P, = P1+§U3To

l 1

P3 = P2 + 1_5‘(211(2] + UQUZ)TQ + EUOU‘ZNO (233)
1 1

P, = P;+ g‘uougTo + gUoUgNu

1 2
P; = P.+ g(ug - U%)TQ + gUgvgNo

where

and
Uy = /\‘Uz,
where

_ siné
" 14 cosf’

A
for 0 < @ < m. The unit tangent vector at starting and ending point are Tq and T.
respectively. The unit normal vector of Tq is Ng. 8 is the counter-clockwise angle
from Ty to T, as shown in Fig. (2.6). Throughout this section it is assumed that
the centre of the circle of curvature at Ps is to the left of the directed line through
Ps in the direction of T, i. e. , ¢ > 0. The opposite case, 1. e. ¢ < 0 . can be defined
analogously.

It is shown in [WM96b] that the PH quintic Bézier defined in this way has the

following properties.
@ It is tangent to Ty and T, at t =0 and 1, respectively.

e [t has zero curvature at ¢t = 0.
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® [ts curvature has no extreme values and does not change sign for 0 < ¢ < 1.

® Its curvature has a local maximum at ¢ = 1.

Figure 2.6: PH Quintic Spiral Segment

2.7 Clothoidal Spiral

2.7.1 Definition
The clothoid or Cornu spiral with scaling factor a is defined parametrically as
(8) =aC(t),  y(t) = aS(t), (2.37)
where C(t) and S(t) are the Fresnel integrals
t
t) = 2/2)d
C(t) /Ocos(7r0'/ )do

and
t
S(t) = / sin(ro?/2)do,
0
respectively, as shown in Fig. (2.7). The clothoid parameter ¢ goes from negative
infinity to positive infinity. It approaches the limiting point (1a, %a) as ¢ approaches

infinity.
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2.7.2 Properties

According to [MWB89] some formulae for the clothoid are:

Angle of tangent:

L
§‘ﬂ't .
Curvature:
k(t) = wt/ea. (2.338)
Arclength:
ds = adt. (2.39)

Notice that an important property of the Cornu spiral is that its curvature varies
linearly with its arclength.

The following equation shows the relationship among the constant a. the curva-
ture, £ and the arclength s for clothoidal spirals. So if the arclength instead of the
curvature of the ending point is known. the algorithm can still be applied. From

Eqn.(2.37) and (2.38),

So, if the arclength is s, at ¢ = t., where {,. is the ending point, and ¢ = &(¢.).

TSe
C =
a2
and
mi,
a= ’
c
SO
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which follows from Eqn.(2.38). Fig.(2.7) shows a clothoidal spiral with:

a=2 te[-7.7}

Figure 2.7: Clothoidal Spiral

2.7.3 Usage

The clothoid spiral is used for both highway and railway design. The clothoid tran-
sition can improve the stability of a vehicle when it traverses a curved roadway at a
constant speed [Baa84].

The following are three types of road turnings. The comparison shows that using
a clothoid as a transitional curve lessens sudden force and ensures the stability of
the vehicle. In Fig.(2.8), Fig.(2.9) and Fig.(2.10), the following annotations are used.
T'S denotes point of change from tangent to spiral, SC denotes point of change from
spiral to circular arc, CC denotes point of change from one circular arc to another.

TC denotes point of change from tangent to circular arc and C7T denotes point of
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? a(nv/sec”)
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Figure 2.8: Circular Arc without Transition

change from circular arc to tangent. It is well known that a centripetal force is in

direct proportion to the centripetal acceleration [Ada69] (p. 149), a, where
v2
a=—.
r

Therefore, the more r changes gradually, the less the sudden force is. In another
words, a continuous instead of abrupt change of the curvature is expected to avoid

the sudden force.

(i) As shown in Fig.(2.8), a vehicle encounters a sudden change in centripedal ac-
celeration when it moves from a straight line to a circular arc or moves from a

v

circular arc to a straight way. Part a shows acceleration changes from 0 to %
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? a(m/sec°)
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(b)

Figure 2.9: Compound Circular Arc

ul

and from % to 0 at point TC and CT. respectively. Part b is the route of the

vehicle.

(i1) When the road turning is composed of several circular arcs (as illustrated in Fig.
(2.9)), the centripedal acceleration increases and decreases like a staircase. In
part a, the acceleration changes as such 0 — % — % — 5”—;; — 0, at TC.
CC, CC and CT, respectively. Part b shows the route of the vehicle and the

radius of the arcs at those points. It is a better than the first case, because the

discontinuity forces on those points are less than the ones in the first case.

(iii) The ideal design is to have continuously increasing or decreasing centripedal



10 CHAPTER 2. THEORETICAL BACKGROUND

a(mssec”)

nle
A

TS i
—H sC (o ST ¢

C

SC

ST

()]

Figure 2.10: Circular Arc with Spiral Transition

acceleration, as shown in Fig.(2.10). In Part a, the centripedal acceleration
changes continuously from 0 to % in the interval [T'S, SC], and it changes from
% to 0 in the interval [C'S, ST). Part b shows the joint of tangent lines, transition

curves and the circular arc.

The following is the analysis of case(iii) in the interval [T'S, SC].
In this case the acceleration rate is a linear function of its arc length. Referring to
Fig.(2.11), denote s as the arclength of the curve when the tangent direction changes

as much as 0 counter-clockwise from T'S, r as its corresponding radius and L as the
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o
™

Figure 2.11: Transition Curve

total length of the curve from T'S to SC. Therefore.

£_s

L
eliminating v yields

rs = RL.

R and L are constant in a given condition. Suppose RL = A?. where A is a constant.
then

rs = A2, (2.40)
When ds, the differential sector, is infinitesimally small. it follows for the osculating

circle that

d
o = =,
r

as shown in Fig.(2.11). Notice that % can also be taken as the definition of curvature

k. Substitution of r from Eqn.(2.40) gives

1
do = —A_ZSdS'
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After integrating, it becomes

s = A\/‘Z_9. (2.41)
When ds is infinitesimally small,
dr = cos 8ds
dy = sin 0ds. (2.42)

Substitution of s from Eqn.(2.41) and integration of the above two equations gives:

A cosodg

LI

A [fsind
= — dé. 2.43
7ih (2:43)

ro?
2

Replacing the variable § with

T = \/_/\/— co;s/_o- d(jrr2 A\/T_r./o\/gcos(rra?/'Z)da. (2.44)

Similarly,
y= A\/—/ sin(ro?/2)do. (2.43)

Comparing Eqn.(2.42) and (2.43) with Eqn.(2.37), the transition curve is actually the
clothoid with
a=\/TA, t= %. (2.46)

T

To join a circle and a line, a clothoid can be uniquely determined. The scale factor
can be calculated by letting the curvature of the spiral equal to the reciprocal of the
radius of the circle. To join two circles with a compound S curve (reverse curve)

matching the curvature somewhere around two separate circles, two reverse clothoids
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that meet with zero curvature can be found. To join two circles with a compound
C curve(broken-back curve), two clothoids can be found [MWS89]. To facilitate the

drawing of the clothoid arc, templates with scales are commonly used [Baa34].

2.7.4 Highway Spiral and the Clothoid

The highway spiral is defined in [Hic67]. [t is actually the same spiral as mentioned
in the last section. Using the same notation as in section (2.7.3), the formula in

[Hic67] (p. 171} is

=577 (2.47)
As we know,
d
do = 34;‘. (2.48)
After taking the integral of both sides. it becomes
.2
6= _); - (2.49)
Using the assumption RL = A2, Eqn.(2.47) follows.
Observe the first derivative of the two spirals:
For a clothoidal spiral, because ‘fi—f = a from Eqn.(2.39) and (%’ %) = (a cos '%2 asin 'T‘z)
hence
ds _ds dt 1

dz _ dt dr cos(Zt?)’

ds _ds dt 1
dy — dt dy  sin(%t?)’
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where Z#? is the angle of tangent at point t. For a highway spiral defined by [Hic67]

or from Eqns.(2.42),

s _ 1 (2.50)
dr cos@’ -
ds _ 1 (2.51)
dy sin#

where @ is the angle of tangent. From Eqn.(2.46), # = %t which means the first
derivative or the hodograph of the highway spiral and the clothoid is actually the
same.

So the angle of tangent of highway spiral is 37t which is equal to %r:—z

Comparing 6 in highway spiral and the angle of tangent defined in the clothoid,

Hence,

a=VrRL.

where L = 2Rf;,. This equation gives us a one to one relationship between the initial
parameters of the clothoid and the highway spiral.

Before widespread accessibility of computers, it was very cumbersome to calculate
Fresnel integrals. People used to simplify the computation of the highway spiral by us-
ing power series with high order terms omitted. Hickerson presents an approximation
for the highway spiral as follows.

After expanding the sine function and integrating Eqn.(2.37), it follows that:

s
= 10530 — ...
y 100[058 ]

Application of Eqn.(2.47) gives an approximation using only the first term.

33

Y= 6RL
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[t shows that the highway spiral is very similar to a cubic polynomial.

2.8 Archimedean Spiral

Referring to [vS90] (p.124) an Archimedean spiral is defined as
r=afm

or

(z* +yH)7 — a™arctan(y/z) =0

where a and m are constants.

It can also be defined parametrically as

r(t) = atm cost

—
[ )
'
Ut
(M)

-—

y(t) = at™ sin t

An Archimedean spiral with a = 0.35, m = 2 and ¢ € [0.01, 20] is shown in Fig.(2.12).

2.9 Logarithmic Spiral

2.9.1 Definition and Equiangular Property

Referring to [BF97] a logarithmic spiral is defined as

r= roeko (2.5:

N
[$]}
[N
S

or

In[(z® + y*)/r2]/2 — k - arctan(y/z) =0
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D

NP

Figure 2.12: Archimedean spiral with m = 2

where & is a constant and rg is the beginning radius of curvature (a constant).

[t can also be defined parametrically as

k

r(t) = roe** cost

y(t) = roe*sint (2.54)

respectively. Fig.(2.13) shows a logarithmic spiral with:
ro=0.1, k=0.15 ¢te&]0,20].
Consider a ray drawn from the origin to a point (z,y) on the logarithmic spiral.

Let ¢ be the angle made by the ray and the unit tangent to the spiral at (z,y). Now

(z,9) . (=) '
I ()1 Nl ()1l

The first derivative of the parameter form of the logarithmic spiral is

cos ¢ =

o
i
ot
~—

k

z'(t) = roke* cos t — roe*'sint,
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N

%

Figure 2.13: Logarithmic Spiral

k

P
8V
(1]
(@]

~—

y'(t) = roke* sint + roe** cos t.

So,

| (2, y") |2 = rik*e®**cos?t + rle®*sin®t — 2rZke®**sint cost
l 0 o ]
+r2k%e®*tsin? t 4 r2e?** cos® t + 2rike*'sint cost

= rae’™(k* + 1)

[
(1]
-]
~—

| (z',y") ll= roe® VE? + 1 (2.
Use of Eqn.(2.54), (2.56) and (2.57) in (2.55) yields
cosd = r2ke?*t cos?t — rie*tsint cost + rike?* sin®t + r2e?**sin t cos t
rie?kt k2 + 1
k
vkr+1

Since k is a constant, it thus follows that the angle made by the unit tangent and
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the ray is a constant at the intersection of the ray and the logarithmic spiral. So. the

logarithmic spiral is also called the equiangular spiral.

2.9.2 Transformation

Suppose i.] are the unit vectors of direction z(¢) and y(t) respectively. then

Q(t) = z(¢)i + y(¢)]
and

Q'(t) = roe*(ki+j)cost + roe*(kj —i)sint.
ki+j kj—1 .
= roVk? + lef'{——===rcost + ———=sint
Ve Tt T
Observe that ﬁ'%% and % form an orthogonal pair, and that
Q'(0) = ro(ki +j),

ki+j kj—1i
ie. = and

are the beginning unit tangent and normal vectors respectively
of the logarithmic spiral. Denote them respectively as T¢ and Ny, replace rg by i

and scale the spiral so that

kt

Q'(t) = e—(cos tTo +sintNg), 0<t <. (2.58)
Co
Integration of Eqn.(2.38) gives

1
t) = Po+ —{[e*(kcost+sint) — k
Q(¢) 0+c0(k2+1){[e (kcost + sint) 1T
+[e"'(ksint —cost)+ 1]Ng}, 0<t<6. (2.59)
From Eqn.(2.58), || Q'(¢) ||—— , and

kt

Q"(t) = e;[(k cost — sint)Tq + (ksint + cos t)Ng), (2.60)
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SO

2kt
Q'(t) x Q"(t) = -e—z-(kcos tsint + cos’t — kcostsint +sin®¢)
Co
o2kt

<

Substitute the results into Eqn.(1.1) to obtain

Observe that the curvature at the beginning is co when ¢ = 0. Let the ending curvature

be ¢ when ¢t = 6. hence,

SO

k=2ln(=2). (2.61)

2.9.3 Relationship between Logarithmic Spiral and Archimedean
Spiral
The following is stated in [Yat32] (p. 211),

The orthographic projection of a Conical Heliz on a plane perpendicular to
its azis is a Spiral of Archimedes. The development of this Heliz, however.

is an Equiangular spiral.

This statement is illustrated in Fig.(2.14). It shows a conical Helix (a( 1—-29;) cosf,a(l—-

f;)sin 0, f;r-b) with a=0.8 b=1.8. “A” denotes the Archimedean spiral, “L” denotes
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logarithmic spiral and “C” denotes the base of the cone. The Archimedean spi-
ral is obtained by ignoring the variance in the h direction. The function of it is
(a(l — %)cos 8,a(1 - %)sin #). When the surface of the cone is opened along the
edge where § = 0. the curve in the fan thus formed is a logarithmic spiral. The angle
of the fan is 7:'2—:_',1—2 since the circle of the base is equal to the arclength of the fan.

20|

The points evenly lying on 8 € [0, 27} are distributed evenly in the interval [0. T

and the points can be located according to its distance to the top of the cone.

Figure 2.14: Logarithmic and Archimedean Spiral
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2.9.4 Applications of Logarithmic Spiral and Archimedean
Spiral

The logarithmic spiral occurs often in nature. Some creatures build logarithmic spirals
during their growths, such as the septa of the Nautilus, the arrangement of seeds in
the sunflower and the formation of pine cones.

The loxodromic spiral, also called loxodrome [Mor92](p. 1351), is any curve on a
given surface of revolution that intersects each meridians of the curve at some constant
angle which is not equal to ninety degrees. For example, when a train moves toward
a fixed direction, it intersects the meridian at some constant angle. the projection of
its route on the equator plane is an equiangular spiral.

The Archimedean spiral with parameter m = 1 is used as a cam to produce linear
motion. The cam is pivoted at the pole and rotated with constant angular velocity.

The piston, kept in contact with a spring device, has uniform reciprocating motion.
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Chapter 3

Generalization

3.1 Generalized Theorem

From the approximation of quadratic and cubic spirals, a general way may be found
to approximate other spirals. The algorithm used to generate the curve of the ap-
proximation problem is based on the theorems outlined below. In this chapter. two
theorems are presented to generalize the approximation of any spiral. The basic idea
of this approximation is to construct a control triangle determined by the starting
point, the ending point and their tangent directions. A biarc, whose joint is at the
incentre of the triangle, can be fitted through the starting and the ending points such
that it is tangent to the triangle at these two points. Theorem 3.1 gives the radial
deviation of the spiral from the joint of the biarc. Since the maximum deviation is
highly dependent on the individual spiral, T heorem 3.2 gives a general result of where
local extrema in the deviation of a spiral from an approximating biarc may occur.

From that the maximum deviation can be determined.

53
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The following lemma is used in Theorem 3.1.

Lemma 3.1 Given a winding spiral segment whose tangent rotates by less than
m. It starts from Pg, with non-zero curvature and unit tangent vector Ty, and ends
at P, with unit tangent vector T;. Then 0 < 8 < =, where 8 is the angle from T, to
T, the angle from Ty to the line segment joining Py to P, is less than = /2.
Proof:

Denote {P;PoP, as «a, (PoP,P, as 3, as shown in Fig. (3.1}). Vogt’s theorem
[Gugb63](p- 49) says a is smaller than @ in a winding spiral. Since # is the sum of

those two angles, « is less than g. Now 0 < @ <, so

0 AP
<Q<§'<5.
T1
P2
-—
pO TO P‘!

Figure 3.1: Spiral Triangle

The theorems that will be used for applying a biarc approximation are now pre-
sented.
Theorem 3.1 Given a spiral segment Q(t),tq < t < t;, with beginning and

ending points Ag = Q(¢p) and A, = Q(¢;), respectively. Let V be the intersection
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Figure 3.2: Biarc Approximation of Spiral Segment

of the straight lines parallel to Q’(¢y) and Q’(¢;) through A, and A, respectively,
as illustrated in Fig. (3.2). Let the triangle Ag,V and A, define a biarc where the
two arcs are G! continuous at the joint which is the incentre of the triangle. Let H
and M be the unit tangent and normal vectors, respectively, of the biarc at its joint,

G. The deviation of the spiral from the joint of the biarc, measured along the radial

direction of the biarc is given by

d={Q(n)-G}-M
where 7 is the unique value that satisfies
Q) -G}-H=0, to<n<t. (3.1)

Proof.

It suffices to find d and 7 that satisfy

G+dM =Q(7n), to<n <t

or

Q7)-G=dM, t1<np<t (3.2)
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Taking the dot product of (3.2) with H yields

f(n)={Q(n) -G} -H=0. (3.3)

Since G is the incentre of the triangle with vertices Q(¢p). V and Q(t;) it follows
that H is approximately parallel to, and has the same orientation as the directed line
segment Q(¢0)Q(¢;) (Refer to [Sab77] p. 45). Also by Lemma 3.1, the angle from
Q(to) — G to H is larger than 7/2 and less than =; the angle from Q(¢{;) — G to H

is less than 7 /2 and larger than zero. Hence,

f(to) = {Q(t) -G} -H<O0

and
f(t)={Q(t)) -G} - H>0

The direction of Q’(n) varies monotonically from the direction Tq to T;. Any ray
from a point on the line segment Q(%,)Q(¢;) can intersect the spiral segment at most
once. Therefore, the line through G parallel to M intersects the spiral only once at
unique ¢ = 5. Hence, the theorem follows. O

The Newton-Raphson method should work well in solving Eqn. (3.1) because f(n)
is monotone for tqg < 7 < ¢y, but if it does not, the bisection method will always work.
Note that numerical root-finding methods are not necessary for the quadratic spiral
segment.

Theorem 3.2 Given a spiral segment, Q(t) as defined for Theorem 3.1. Let
Ao = Q(tg), A1 = Q(t1), and V be as for Theorem 3.1. Let the triangle Ag,V and
A, define a biarc where the two arcs are G! continuous at the joint, which is the

incentre of the triangle. Let C; and r; be the centre and radius, respectively, of that
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arc of the biarc that passes through Q(¢;) and let H; and M; be the unit tangent
and normal vectors, respectively, of the biarc at Q(¢;). Let n be as determined by
Theorem 3.1. The deviation of the spiral from the biarc, measured along a radial
direction of the biarc, has at most one local extremum for ¢, < t < 1 and at most
one local extremum for n < ¢ < t;. These local extrema, if one or more of them exist.

occur at values of ¢ that satisfy
gi(t) = {Q(t) - C;}-Q'(¢) = 0. (3.4)

Proof.
[t follows from the definition of the biarc that
C:=Q(t;))+rM;, :=0,1.
The deviation |hi(t) — r;| has an extremum at the same place as the square of the
deviation. [t is required to show that the square of the radial deviation,
ei(t) = {hi(t) — ri}?,

has at most one local maximum for each of : = 0 and ¢ = 1. Define

hi(t) =|| Q(¢) = C |,

so hi(t) > 0 and

B2(t) = {Q(t) — Ci} - {Q(t) - Ci} > 0. (3.5)

14

(t) = 2{hi(t) — r: }hi(t), and €’(t) will be zero at both maximal and minimal

Now e

values of e;(t). ei(¢) = 0 when hi(t) — r; = 0 or Al(t) = 0. e;(t) is minimized for
hi(t) — ri = 0; hence, the necessary condition for e;(¢) to have a local maximum
is h;(t) = 0. From Eqn.(3.4), assuming h;(t) # 0, this condition is equivalent to

Eqn.(3.3).
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The arc centered at C; has a point of contact (i. e. matching in position and
tangential direction) with the spiral at ¢ = ¢;. A result of Vogt[ [Gug63], p. 33].
states that a circle and a convex spiral can have at most three points of intersection,
or one point of contact and one non-contact intersection. [t thus follows that between
the point of contact and the point of intersection the tangential direction of Q(t) at
some point, ¢, is parallel to the tangential direction of the circle centred at C; at
which the circle and the normal vector at ¢, intersect. Hence, the arc centred at C;
can have at most one point other than Q(¢;) for which (3.3) is satisfied and for which
t lies between ¢; and 7.

Hence the theorem follows. O

When comparing these results to the optimal method of [MP84], observe that
the biarc approximation matches the beginning and ending points and tangential
directions of the spiral segment which make the tangential directions continuous at
the joints when a spiral is approximated segment by segment. The given tangential
directions and positions of the spiral at the beginning are not matched when using the
method in [MP84]. That method works well when a spiral is approximated by one
whole piece because of fewest piecewise arcs and the maximum deviation is reached
according to the algorithm. However, this approximation might cause sudden changes
in the position and direction of the machine tool at points on the object where the
design involves two spiral segments intended to be joined smoothly. Furthermore, the
method of [MP84] is based on nonlinear optimization which could be computationally

complex and may not be straightforward to implement.
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3.2 Location of Local Maxima

3.2.1 Polynomial Spiral Segment

For a specific i, Eqn(3.3) is in general a nonlinear equation with at most two solu-
tions including the one at ¢ = t;. When applying numerical root-finding methods,
it is desirable that the equation have a unique solution to avoid convergence to the
wrong solution. When Q(t) is a parametric polynomial spiral segment, Eqn. (3.3)
is polynomial in which case the solution at ¢ = ¢; can be factored out resulting in a
polynomial equation of lower degree and with at most one solution. In this case the
bisection method can be used to check if a solution does exist. If a solution exists,
the bisection method can be used in combination with the Newton-Raphson method
to find the solution. Solution of (3.3) is not as straightforward in general when Q(t)
1s not a polynomial spiral segment; solution of (3.3) for some non-polynomial spiral
segments are considered in the next section.

For a polynomial spiral segment of degree n, Eqn. (3.3} is equivalent to
,Ug:(t)=01 220, 11
where p is a constant,

gi(t) = Za;'jtj, min(t;,n) <t < maz(ti,n), (3.6)

=0
m = 2n — 1, and «;;,7 = 0,---,m depend on Q(t). Expressions for the a;; s are
derived in Chapter 4 for some polynomial spiral segments. Since (3.5) is satisfied for

t = t;,g:i(t) it follows that

0= a;;tl. (3.7)

=0
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Subtraction of (3.6) from (3.5) yields
gGi(t) =air(t—t) +aia(t2 =t + - A (™=t + @i (T — )
or, factoring differences of powers of t,
gi(t) = (t—tauy + (¢t —t)esa(t + &) + (t — t)ois(t® + i+ £]) + -
+(t —t)aim(E™T TR - 4T,
hence,
gi(t) = (¢t — ti)qi(t),
where
qi(t) = i+ aia(t+8) +aa(®+tti+th)+---
+ Qimo (T o T e (BT T - ).

which is the same as,
m j-1

qi(t) =303 aigti ek

=1 k=0

Regrouping the terms according to the nominal of t and rewriting them by increasing

order of t,
G(t) = g+ aigti + aigtl + - + @imt]!
+t(aiz + qigti+ -+ Faimtl ) + o
+ "™ aim-1 + Cimti) + 7 Qi

which can be written as,

m-1 m .
gty =3 3 aptiTF ek (3.8)
k=0 j=k+1

Egn. (3.3) can be solved by applying numerical techniques to gi(¢) = 0 where ¢;(2) is

given in Eqn.(3.7). Note that it does not contain ¢; .
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3.2.2 Other Spiral Segments

The problem here is how to factor #; out because it is a solution but not the one
which is sought. Since the clothoid, logarithmic and Archimedean spirals are not
polynomial, it is difficult to factor ¢; out.

Considering that g¢;(¢) = p{Q(¢) — Ci} - Q'(¢) has at least one solution but no
more than two solutions in [¢e, 7] or [7,¢,], there is at most one solution in (¢o.7) or
(n,t1) since ¢; (2 = 0,1) satisfies g;(¢£) = 0. Fig. (3.3) and Fig. (3.4) show the only
two possible ways of the solution: it appears in the interval or not. Observe that ¢ is
the beginning point of one interval containing a possible solution and ¢, is the ending
point of another interval containing a possible solution; Q(7) is the point on the spiral
where the normal vector of the biarc at its joint intersects the spiral. Since the sign of
gi(t) depends on whether the counter-clockwise angle from vector Q(t) — C; to vector
Q’(t) is bigger than 7/2 or not, there are two curves in each diagram to represent
these two different cases. Fig.(3.3) shows the case when ¢ = ¢y or ¢; is the only value
that satisfies that g;(¢) = 0 when t € [to,n) or t € (n,¢,]. Fig.(3.4) shows the case
when another solution is included in that range.

In order to check if the solution is in the interval (¢,7) or (n,¢,), test the sign of

9:(ta)gi(n) or gi(t1)gi(n).

e In the interval ¢t € (¢g,7):
Suppose gi(s) = 0, as in Fig. (3.3) (a) or Fig. (3.4) (a). If s is not in (fo,7n)

then g!(¢0)g(n) > 0 and if s € (¢0,7) then g/(¢o)g(n) < 0.

e In the interval t € (7,¢;):

Suppose g¢i(s) = 0, as in Fig. (3.3) (b) or Fig. (3.4) (b). If s is not in (n,t,)
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g g
!

=t = t =n =t

(a) (b)

Figure 3.3: Plot of g;(t)

2. g@m

(@) (b)
Figure 3.4: Plot of g:(t)

then gi(t1)g(n) <0 and if s € (7, 1) then gi(t1)g(n) > 0.

In case g!(to) or gi(t;) is zero, the second derivative can be used to judge the tendency
of gi(t:;). If a solution is known to be between 5 and ¢; (2 = 0, 1), the bisection method
can be used to locate the solution. If there is no solution between 7 and ¢;, then the
maximum deviation occurs at ¢ = 7. Notice that even if g;(t) is bumpy as in Fig.
(3.5), the check is still applicable, since there is at most one solution.

Theoretically, one may omit ¢; easily, but when using a numerical method, it is
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not easy to decide on which range bisection should be applied. It is known that
is one of the end points, but how close to ¢; should the other end point be? If it is
known that there is a solution other than ¢ = ¢; (i = 0,1) in [to,n] or [7.t], then
recursive subdivision can be used to find an interval in which it is certain that the

solution is contained. In practice, subdividing only once usually works.

£.(1)

!

[

Figure 3.5: Bumps Appear.
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Chapter 4

Spirals

In Chapter 3, a spiral segment that is expressed by a mathematical formula is ap-
proximated by a biarc. A general idea was presented to approximate a spiral segment
given by a mathematical expression. Since the approximating biarc is determined
only by the given beginning point, the ending point and tangential direction at these
points, the formula for maximum deviation between a spiral and the corresponding
biarc varies from spiral to spiral and one free parameter. It does not seem possible
to find a general mathematical expression for the deviation that can be evaluated
economically in practice. In this chapter, the deviation will be examined for individ-
ual spirals such as PH cubic, PH quintic, clothoidal, Archimedean and logarithmic.
The deviation results of quadratic and cubic Bézier are available in the literature,
but will be restated for comparison. A practical method will be developed to solve
the equations. Numerical methods are used to solve polynomial and other non-linear

equations.

65
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4.1 Quadratic Bézier Spiral

In Walton and Meek’s paper [WM94], three theorems are stated. The first one proves
that a unique biarc can be constructed given the control vertices by choosing the
joint at the incentre of the control triangle according to the method suggested by
Sabin. The other two theorems are presented to determine the maximum deviation
from the spiral to the corresponding biarc. In the second theorem, the coordinate
system is adjusted by setting the origin at G, the joint of two arcs. The y-axis is
along the normal direction at G. Under the new coordination system, the curve has
expression (z(t),y(t)), The deviation at the joint is equal to y(¢) when z(¢) = 0. The
other theorem is applied to determine the local extreme deviation for a specific arc
of the two circular arcs. The maximum deviation is determined by comparing these
extrema.

Actually, the method mentioned in chapter 3 can be applied in this case and it will
lead to the result in [WM94] with a more generalized form. Notice that the interval
of ¢ in all Bézier curves analyzed here is from 0 to 1 due to its definition. From Eqn.

(2.14) and (2.15), the quadratic Bézier spiral segment and its first derivative can be

written as
Q(t) = Py + 2aTot + (bT, — aTy)t? (4.1)
and
Q'(t) =2{aTo + (bT, — aTo)t} (4.2)
respectively.

Substitution of Eqn. (4.1) and (4.2) into Eqn. (3.3) gives

{Po — C: +2aTot + (6T1 — aTo)t?} o {aTo + (bT1 — aTo)t} =0
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The above equation can be put in the form of Eqn. (3.7) where,

m = 3,
aio = a(Po—C;)- Ty,
ain = 2a*+(Py—C;) (6T —aTy), (4.3)
a;i2 = 3a(bTy-T; —a)

Qi3 = (a2 - QabTo . T1 + bz).

4.2 Cubic Bézier Spiral

Results for the cubic spiral segment are available in Walton and Meek’s paper [WM96¢].

The results are summarized below.
Q(t) = P() + 3(1T0t + (bT1 - (lTo)t3 (44)

and

Q'(t) = 3aTo + 3(bT, — aTo)t?, 0<t <1, (1.5)

where a and b are defined in Eqn.(2.12). After applying Eqn.(4.4) and (4.5), (3.3)

can be put in the form of Eqn.(3.7) where,

m = 3J,
aip = 3aTy-(Po - Ci),
oy = 3a?,
ai2 = (Po-C;): (0T, — a'Ly), (4.6)

Qi3 = 4a(bT0 . T1 - a)
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aiqg = 0

a5 = a® — 2ab Ty - Ty + b2

4.3 PH Cubic Spiral

Expanding Eqn. (2.23) in power form gives

Q(t) = Po+ (P;—3Po)t + (P2 — 2P, +3Pg)t?

+(P3 — Py + P, — Py)t2.

Since P, Py, P3 can be expressed in terms of P, ug,u1,v0,v; from Eqn.(2.27), the

above can also be written as

Q(t) = Po+ udTot + [uo(ur — uo)To + uovi Nyt

+;§—{[(u1 — ug)? — v}]To + 2v1(u; — ug)No}£> (4.7)

Q'(t) = udTo+ 2up[(u1 — up)To + v1No)t

+{[(U1 - UQ)2 - U«IZ_]TO + 2’01(’&1 - Uo)No}t2 (4.8)
Substitutions of Eqns. (4.7) and (4.8) into function g;(t)(Eqn.(3.3)) gives

gi(t) = {Po — C; + udTot + [uo(u1 — uo)To + uovy No|t?
1
+§{[(U1 — ug)? = v} To + 2v1(u; — uo)No}t3} .
{ugTo + 2‘!10[(‘(11 -_ Uo)To + ’UlNo]t

H{[( = wo)? — v3]To + 2v1 (w1 — wa)Na}t’}
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or after expansion and re-arrangement, it can be adjusted to the form of Eqn. (3.7).

with

Gip = llg(Po - C;)-To
a;, = ug + ?.UQ(PQ - C,) . [(u1 — UQ)TQ + leQ]

;2 = (Po - C‘) . {[(u1 fd UO)2 - Uf]To + 2U1(U1 d UQ)NQ} + 3ug(u1 - uo)

2

a3 = §US[5(u1 — ug)? + v (4.9)
3

Qg4 = §Uo(u1 — uo)[(u1 — uo) 24 vl]
1

ais = g[(ul — ug)? + vi]?

4.4 PH Quintic Spiral
Expanding Eqn.(1.2) with n = 5 in power form gives

Q(t) = P+ (4P, — 5Pg)t + (6P2 — 16P; + 10P,)t?
+(P3 — 18P; + 24P, — 10P,)¢°
+(Py — 2P3 + 18P, — 16P; + 5P¢)t*

+(Ps — P4 + P3 — 6P, + 4P, — Py)¢t*

Since P, P,, P3,P,, P;5 can be expressed in terms of Py, uo, 11, vg, v; from Eqn.(2.35),

the above can also be written as

2
Q(t) = Po+ujTot+ —Uo[(uz — uq)Tq + v2Ng|t?

+= {[(uz — ug)? — v3]To + 2v2(uz — ug)No}t® (4.10)
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Q'(t) = uSTo + 2110[(112 -— uo)To + UzNo]t2

+{{(u2 — uo)? — v2|To + 2vz(uz — ug)Ng}t* (4.11)
From (2.2) and (2.3) the function g;(t)may be written as

2
g,(t) = {PO — C,’ -+ ugTot -+ 5‘1[0[(?12 - UQ)TQ + U')Nolts
1
+g{[(uz —ug)? — U%]To + 2va(uz — Uo)No}ts} [
{ugTo + 2ug[(uz ~ ug)To + v2No)t?

#{{(v2 = 0)? ~ u3ITo + 2u(u2 ~ uo)No}1*}

or after expansion and re-arrangement, it can be regrouped into the form of Eqn.

(3.7), with

2
Q,’vg = uo(Po - C,) . To
4

aiz = 2up(Po — C;) - [(uz — ug)To + v, Ny}

Qi3 = gug(uz — Uug)

oy = (Po—-C;)- {[(ug - u0)2 — v%]To + 2va(ugy — uO)NO} (4.12)
2

ais = Bug[lg(uz — uq)? + v]]

Qi = 0
16 2 2

a;; = Euo("z — ug)[(u2 — uo)® + vl

Q,"g = 0

1
aig = g[(uz — ug)? + V2%
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4.5 Clothoid

The clothoidal spiral (or Cornu Spiral) can be expressed as

Q(t) = Po 4+ aC(t)To+ aS(t)No (4.13)
where a is a constant. The first derivative of this function is:

Q'(t) = acos ngt—zTo+asin %ﬁNo (4.14)

To approximate a piece of the clothoidal spiral segment with ¢ € [to. ¢;], a triangle
can be built by Q(%q), Q(t,), Q'(to) and Q’(¢;). Suppose the incentre of the triangle is
G where the two arcs join and the centre of the two arcs are C; (¢ = 0, 1). Replacing
Q(t) and Q'(t) in Eqn. (3.3), the function g;(t) may be written as

gi(t) = (Po —C; +aC(t)To + aS(t)No) ° (a cos E;To + asin lr-.)t—zNg). (4.15)
Simplification of Eqn.(4.15) using To - Ng = 0 gives

gi(t) = [(Pog — C;) - Tg + aC(t)]a cosgt2 + [(Po — C;) - Ng + aS(t)]asin gtz (4.16)

The solution to equation g;(¢) = 0 is the local maxima of the deviation.

For the clothoid spiral, the first derivative of g;(¢) can be obtained from Eqn.(4.16)

71'2

gi(t) = a{aC’(t)cos 2t — [(Po — Ci) - To + aC(t)]rtsin = +

2
aS'(t)sin gtz + [(Po — C;) - Ng + aS(t)]xt cos Zr—;—}

Note that C’(t) cos £t* + S(t) sin 2t = 1. So,
wt?

2
[(Po — C;) - No + aS(t)] cos %tz} + a? (4.17)

gi(t) = —wat{[(Po— C;)*To+ aC(t)]sin
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4.6 Archimedean Spiral

Referring to Eqn. (2.54), the Archimedean spiral can be expressed as
Q(t) = Py + at= cos tTo + at= sin tNg (4.18)
where a and m are constants. The first derivative of the Archimedean spiral function
is
Q'(t) = (-T%tlﬁ'1 cost — atm sint)To + (;c:l—t#‘l sint + at= cos t)No (4.19)

To approximate Archimedean spiral segment with ¢ € [to,¢,], a triangle can be built
by Q(¢0), Q(t1), Q'(to) and Q'(¢;). Suppose the incentre of the triangle is G where
the two arcs join and the centre of the two arcs are C; (¢ = 0,1). Replacing Q(t)

and Q’(¢) in Eqn. (3.3), the function g;(t) may be written as

gi(t) = [Po -C; + at= cos tTo + atm sin tNo] .

[( -;an-t%r?"l cost — at™ sin t)To + (it#‘l sint + at™ cos t)No] (4.20)
m

Simplification of Eqn. (4.20) using Ty - Ng = 0 gives

2
gi(t) = ZtFV 4 (P —C;)- To(—t# " cost — at sint)
m m
+ (PO-C;)-NO(—%t#"sint-}-at# cos t) (4.21)

The local maxima of the deviation are given by the solution to g;(¢) = 0. The method
for solving non-polynomial equations introduced in section (3.2.2) can be applied here.

The derivative of g;(t) is useful in solving the equation,

a? 2_ 1, l—m 2 .
gi(t) = E;(Q—m)i"‘ 2+(P°_C‘)'T°atm(WC°St—,—n_tS'nt"COSt)

l-m 2 i
+(Po—-Cy)- Ngat?]n'(m sint + %cost —sin t) (4.22)
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4.7 Logarithmic Spiral
As shown in Eqn. (2.59), the logarithmic spiral can be expressed as

Q(t) = Po+CO(TI_*_I—)—{[ek'(kcost-{—sint)—k]To

+[e*(ksint — cost) + 1]Np}, 0<t<é. (4.23)

. . Q .
where ¢p is the curvature of the starting point and k = %—L. The first derivative of

Q(t) is:
ekt
Q'(t) = —(costTo+sintNg), 0<t<4. (4.24)
Co

To approximate logarithmic spiral segment with ¢ € [to,t,], a triangle can be built by
Q(t0), Q(t1), Q'(to) and Q'(t;). Suppose the incentre of the triangle is G where the
two arcs join and the centre of the two arcs are C; (i = 0,1). Replacing Q(¢) and
Q’(t) into Eqn. (3.3), the function g;(¢) may be written as

1

ktyg. .
g;(t) = {Po—ci-i'm{[e t(kcost-}-smt)—k]To

+[e*(ksint — cost) + 1]No}} o {e—kt[(cos £)To + (sint)No]} (4.25)
Co

Simplification of Eqn. (4.25) using Ty - No = 0 yields

k kt

gi(t) = %(PQ — C;) ~[(cos t)To + (sint)No] + 2 +1)

(ke® — k cost +sint) (4.26)

The solutions to g;(f) = 0 give the local maxima of the deviation. The method
mentioned in section (3.2.2) can be applied to solve the equation. The derivative of

gi(t) is useful in solving the equation,

kt kt
git) = %(Po — C;) ~(—sintTo + cos tNg) + E;—(Po — C;) - (costTy + sintNp)

k ekt kt

k . € 2k .
+m(ke ‘—kcost-{-smt)-}-m(k e + ksint + cost)
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t
—(Po — C:) - [(kcost —sint)To + (ksin ¢ — cos ¢)No]

ekt

(k2 +1) [kaekt + (I —k*)cost + ?.ksint}

SPIRALS



Chapter 5

Algorithms

In this chapter, some geometry formulae are introduced for the convenience of gen-
erating algorithms. Pseudo-code of the algorithms which are based on the theorems
illustrated in Chapter 3 and Chapter 4 is presented.

[t uses the well-known geometric facts that:
Given three points A, B and C, || AB ||=|| BC |{|= b, || AC ||= ¢, as shown in Fig.

(5.1),

Fact5.1 A unique circle can be found, so that it goes through A, C and is tangent

at these two points to AB and BC, respectively.

Fact5.2 The radius of the circleis r = 72:;7.

To facilitate the computation of the incentre of a triangle by vectors, Lemma 5.1
gives the ratio of || AoWy || and || AgA; || in terms of cosines of the angles of the
triangle as shown in Fig.(5.2). The result can thus be expressed using inner products.

Lemma 5.1 Given a AAgA;A; as shown in Fig.(5.2), where G is the incentre

of the triangle. Suppose LA;ApA; = o and LAgA A, = 3 Through G draw a line
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Figure 5.1: Circle Determined by an Isosceles Triangle
WoW, which is parallel to AgA,, then
(a) || AoWo [|l=|| GWo ||, || GW1 ||=|| AW, ] .

(b) UAcWoll _ cos( £ ~)
IFAALll ~ cos(Z-a-B)+cos(E—3)+cos(3—a)

Figure 5.2: Incentre of Triangle

Proof:
Equations (a) are obvious since GA, bisects a and WoW, || ApA,;; these con-
ditions lead to ZGAWo = LAGWy; so AAGWj is an isosceles triangle with

| AoWo ||=|| GWo ||. Similarly || GW, ||=|| A;W, ||
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Suppose the radius of the inscribed circle is 7. From Fig. (5.2),

r r
AgA, ||=
and
r r
AW,y |I= - ]
I AoWo |l tan% tan a
So,
1 1
” A()Wo “ _ tan § T tane
lAcA:ll @z +imz
It is known that tan § = lﬁu_’ hence
+cosa
~ 1 tan &
| AocWo || _ fnf " tana _ l—in;gl
1 1 tan =
I| AoA. || ant + E,‘,i 1 + ;g
1 — sina cosa

l+cosa sina

1+ sina _ l4+cos(

l4cosa sing
(1 + cos @ — cos a) sin
(1 + cosa)sin 8 + sin a1l + cos 3)
sin 3
sinla + 3) +sin3 +sina

5.1 Algorithm

The algorithm is based on recursive subdivision of a spiral segment until each subpart
of the segment may be approximated by a biarc within a given tolerance 7. Subdivi-
sion occurs at the point of maximum deviation of the spiral from the approximating
biarc. The deviation is measured along a radial direction of the biarc. The algorithm
is presented in pseudocode.

The parameter Py is the beginning point of a given spiral segment and To is

the unit tangent of the spiral at this point. Parameter c is the ending curvature.
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The quantity 8 is the angle between Tg and the unit tangent of the ending point of
the spiral segment. For polynomial and clothoidal spiral segments, a unique spiral
segment can be determined given Pg, To, § and c. For Archimedean spiral segment
parameter Py, Ty, to and ¢, are to be specified. For logarithmic spiral segment Py,
To. 0 . ¢ and the initial curvature ¢p should be given. The algorithm is described in
terms of ten modules called procedures.

Procedure InitParameter initializes the parameter for each spiral segment by gen-
erating spiral_data. Procedures EvalQ) and EvalDQ are used to evaluate the spiral
and its first derivative respectively at a point. Function FindBiArcTri is used to con-
struct a triangle defined by two points, Ag, A; on the spiral and its corresponding
unit tangent vectors Hy, H, at those points, as shown in Fig. (5.3). FitBiArc is
called to find the location of Wy, G and W, (Fig 5.3) using Lemma 5.1. FindArc
is called to determine two arcs given Ag, Wy, G and G, W, A, by using Fact 5.1
and 5.2. DevAtJoint is called to compute the radial deviation at the joint. MaxDevP
and MaxDevNP are called for polynomial equations and non polynomial equations
respectively to compute the possible local maxima on either one of the arcs. The
bisection method is used to find the solution if the local maxima appear. In these
two procedures ¢; (¢ = 0,1) is the parameter at the beginning or ending point of the
current spiral segment and 7n is the parameter where the radial direction at the joint
of the biarc intersects with the spiral segment. Procedure ApproxSpiral is used to
approximate a single segment.

Procedure InitParameter(Py, Ty, ¢, co, 8, to, t1)

Switch (spiral) {

case quadratic:
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Figure 5.3: Triangle Construction

Use Eqn. (2.12), (2.13) and t varies from 0 to 1;
case cubic:

Use Eqns. (2.25) and t varies from 0 to 1;
case PH cubic:

Use Eqns. from (2.28) to (2.31) and t varies from 0 to I;
case PH quintic:

Use Eqns. (2.36) and t varies from 0 to 1;
case clothoidal:

Use Eqn. (2.46) to generate ¢, to = 0,

Use Eqn. (2.38) to generate parameter a;
case Archimedean:

Input &g, t1, a, m;
case Logarithmic:

Use Eqn. (2.62) to generate parameter k and t varies from 0 to 6;

Procedure EvalQ(t, spiral_data)
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Switch (spiral) {

case quadratic:

Use Eqn. (4.1) to evaluate it;
case cubic:

Use Eqn. (4.4) to evaluate it;
case PH cubic:

Use Eqn. (4.7) to evaluate it;
case PH quintic:

Use Eqn. (4.10) to evaluate it;
case clothoidal:

Use Eqn. (4.13) to evaluate it;
case Archimedean:

Use Eqn. (4.18) to evaluate it;
case Logarithmic:

Use Eqn. (4.23) to evaluate it;

Procedure EvalDQ(t, spiral_data)
Switch (spiral) {
case quadratic:
Use Eqn. (4.2) to evaluate it;
case cubic:
Use Eqn. (4.5) to evaluate it;
case PH cubic:

Use Eqn. (4.8) to evaluate it;

ALGORITHMS
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case PH quintic:

Use Eqn. (4.11) to evaluate it;
case clothoidal:

Use Eqn. (4.14) to evaluate it;
case Archimedean:

Use Eqn. (4.19) to evaluate it;
case Logarithmic:

Use Eqn. (4.24) to evaluate it;

Procedure FindBiArcTri (to, ¢, spiral_data)

—

. Ay «— FEvalQ(to, spiral_data);

2. Hy «— EvalDQ(to, spiral_data);

Normalize Ho, Hy;
3. H— A, — AO?

4. M — (H "Hl)Hl - H;

Normalize M; (Refer to Fig. 5.3)
5. Ay — Ao + g Ho.
6. return Ag, A, A,, Ho, H,, H.
Procedure FitBiArc(Hy, H;, H)
1. normalize H.

2. sina «— Ho x H.

A, «— FEvalQ(t,, spiral_data);

H, «— FEvalDQ(t, spiral_data);



(¢4]
[SV]

3. sind — H x H,.

4. According to Lemma 5.1,

sin(8)
sin(a + 3) + sin(3) + sin(a)

A —

(1]

sin{a)
sin(a + 8) + sin(3) + sin(a)

6. Wo — Ao + /\HO

7. G — Wy + AH.

8. Wl — A] —_ [[Hl

9. return Ag, Wo, G, W, A,

Procedure FindArc(A,W ,G}

(o)

Lhe— || W-A|.
2Z.e—||G-A|.
3. The radius of the arcr: r = Wb%"_—c;.

4. N «—— the unit normal of AW.

The centre of the circle C «— A + rN.

v

6. Degree of the arc «— arctan L._&:Cél)f((g_—g)z

CHAPTER 5.

ALGORITHMS
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Procedure DevAtJoint ( H )

L. f(t) — {Q(t) - G} - H;

2. Use bisection method to solve f(¢) = 0.
Procedure MaxDevP

1. Define g : g(t) «— Eqn. (3.7), where a depends on spirals:
Switch (spiral) {
case quadratic:
Use Eqn. (4.3);
case cubic:
Use Eqn. (4.6):;
case PH cubic:
Use Eqn. (4.9) ;
case PH quintic:

Use Eqn. (4.12);

2. if g(u;) * g(n) < O then
use bisection to solve g(t) = 0.
else

no local maxima.
Procedure MaxDevNP

1. Define g : g(t) «— {Q(t) — C;}-Q/(t), where Q(t) and Q’(¢) depend on spirals:
Switch (spiral) {
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case clothoid:

Use Eqn. (4.13) and (4.14);
case Arcimedian:

Use Eqn. (4.18) and (4.19);
case logarithmic:

Use Eqn. (4.23) and (4.24);

2. Define ¢’
Switch (spiral) {
case clothoid:
Use Eqn. (4.17);
case Archimedean:
Use Eqn. (4.22);
case logarithmic:

Use Eqn. (4.27);

3. if (¢ < n) AND g'(t:)g(n) < 0) OR ((t: > n) AND g'(t:)g(n) > 0) then
use bisection to solve g(¢) = 0.
else
no local maxima.
Procedure ApproxSpiral (P, T, ¢, cob, to, t1,7)

STEP 1

Initialize parameter to generate spiral_data.
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{Invoke InitParameter (Pg, To, ¢, cg, 8, to, t1).}
STEP 2

[nvoke EvalQ, EvalDQ to compute Ag = Q(ts), A, = Q(¢,).
Ho = Q,(to) and H1 = Q’(tl)-

STEP 3

Determine A, as the intersection of the straight lines parallel to Hy
and H, at Ay and A, respectively.

{Invoke FindBiarcTri (t9.1, spiral_data) }
STEP 4

Find the incentre, G, of the triangle with vertices Ag, A and A;.

{Invoke FitBiarc ( Ho, H;, H) }
STEP 5

Find the centres, C; and radii, r;, of the biarc, joined at G, anrd
defined by the triangle with vertices Ag, A; and A,.

{Invoke FindArc ( Ag, Wy, G ) and FindArc ( A;, W,;, G )}
STEP 6

Use Theorems 3.1 and 3.2 to determine the maximum deviation, 6.
of the biarc from the spiral along a radial direction of the biarc, and
the value, 7, of ¢ for which it occurs.

{Invoke DevAtJoint to calculate the deviation at joint and MaxDevP,

MaxDevNP to calculate the extrema if it appears in the interval.}
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STEP 7

If § < 7, then store the biarc,
otherwise
invoke ApproxSpiral (Pg, To,c¢, co,0.t0,7.7)

and ApproxSpiral (Pg, To, ¢, co,0.7,t;,7)

ALGORITHMS
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Examples

The algorithm was tested on many examples. The results presented in this chapter
are based on the following initial conditions. The beginning curvature is zero for
cubic, PH cubic, PH quintic, clothoidal spiral segments. For the quadratic and cubic
Bézier spiral segments, Po = (0,0), To = (1,0), 8 = 51.34°, ¢ = 0.41574. For PH
cubic, PH quintic and clothoid spiral segment. Py = (0,0). To = (1,0). § = 135°.
the ending curvatures are 4,5 and 1.3 respectively. For Archimedean spiral segment,
Py =(0,0), a=10, m =2, t;, = 0.01, t; = 0.2. The parameter of logarithmic
spiral segment is: Pg = (0,0), To = (1,0), 8 = 135°, co = 0.25, c = 4.

Table (6.1) to (6.7) show the number of arcs needed for each spiral segment given

a tolerance ranging from 0.1 to 0.00001 decreasing by a factor of 0.1.

The arc spline approximations using a specified tolerance of 0.001 are illustrated
in Fig. (6.1) to (6.7). Scales indicate the units. The arc spline approximations are
visually indistinguishable from the corresponding spiral segments.

Table (6.8) to (6.14) show the radii of the arcs needed for each spiral when the
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tolerance is equal to 0.001. Observe that they form a monotone decreasing sequence

for each spiral segment.
Fig. (6.8) to Fig. (6.14) show the relationship between number of arcs and toler-
ance. The solid lines show the number of arcs for a given tolerance. The dotted lines

show the actual deviation for the number of arcs used. So the solid line is always

above the dotted line.



Table 6.1: Results of Approximation of Quadratic Bézier Spiral Segment

Specified tolerance, T

Number of arcs

Maximum deviation

0.1
0.01
0.001
0.0001

0.00001

2
4
8
16

36

0.0274124

0.00573994
0.00097705
0.00008590

0.00000984

Table 6.2: Results of Approximation of Cubic Bézier Spiral Segment

Specified tolerance, T

Number of arcs

Maximum deviation

0.1
0.01
0.001
0.0001

0.00001

0.01395
0.002306
0.0009584
0.00009716
0.00000785

39
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Table 6.3: Results of Approximation of PH Cubic Spiral Segment

Specified tolerance. 7 Number of arcs Maximum deviation

0.1 2 0.09257040
0.01 6 0.00641293
0.001 14 0.00095476
0.0001 28 0.00008077
0.00001 60 0.00000985

Table 6.4: Results of Approximation of PH Quintic Bézier Spiral

Specified tolerance, 7 Number of arcs Maximum deviation

0.1 2 0.03537248
0.01 10 0.00517404
0.001 20 0.00059789
0.0001 36 0.00009287

Table 6.5: Results of Approximation of Clothoid Spiral Segment

Specified tolerance, 7 Number of arcs Maximum deviation

0.1 4 0.01833951
0.01 8 0.00229056
0.001 14 0.00051891
0.0001 26 0.00009777

0.00001 74 0.00000969




Table 6.6: Results of Approximation of Archimedean Spiral Segment

Specified tolerance, 7 Number of arcs Maximum deviation

0.1 2 0.01965815
0.01 4 0.00186291
0.001 8 0.00027817
0.0001 12 0.00009493
0.00001 28 0.00000998

Table 6.7: Results of Approximation of Logarithmic Spiral Segment

Specified tolerance, 7 Number of arcs Maximum deviation

0.1 4 0.01541348
0.01 6 0.00623577
0.001 12 0.00075185
0.0001 26 0.00007173

0.00001 56 0.00000972
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Figure 6.1: Arc Spline Approximation of Quadratic Bézier Spiral Segment
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Figure 6.2: Arc Spline Approximation of Cubic Bézier Spiral Segment
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Figure 6.3: Arc Spline Approximation of PH Cubic Spiral Segment
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Figure 6.4: Arc Spline Approximation of PH Quintic Spiral Segment
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Figure 6.6: Arc Spline Approximation of Archimedean Segment
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Figure 6.7: Arc Spline Approximation of Logarithmic Spiral Segment



Table 6.3: Radius of Approximation of Quadratic Bézier Spiral Segment by Arc Spline

sequence of biarcs radius of left arc radius of right arc

L 9.439 7.921
2 6.966 5.040
3 4.343 3.359
4 2.908 2.408

Table 6.9: Radius of Approximation of Cubic Bézier Spiral Segment by Arc Spline

sequence of biarcs radius of left arc radius of right arc

1 176.193 43.273
2 35.427 21.506
3 15.793 8.261
4 6.442 4.156
3 3.601 2.993

6 2.717 2.406
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Table 6.10: Radius of Approximation of PH Cubic Spiral Segment by Arc Spline

sequence of biarcs radius of left arc radius of right arc

1 10.505 6.728
2 5.620 4.364
3 3.698 2.429
4 1.838 0.910
b} 0.684 0.458
6 0.395 0.323
7 0.289 0.250

Table 6.11: Radius of Approximation of PH Quintic Spiral Segment by Arc Spline

sequence of biarcs radius of left arc radius of right arc

l 211.099 51.473
2 41.828 24.789
3 20.708 15.014
4 12.268 7.592
5) 3.900 3.369
6 2.729 2.051
7 1.617 0.824
8 0.619 0.397
9 0.336 0.268

10 0.236 0.200




97

Table 6.12: Radius of Approximation of Clothoid Spiral Segment by Arc Spline

sequence of biarcs radius of left arc radius of right arc

1 21.681 5.429
2 4.517 2.895
3 2.530 2.020
4 1.796 1.417
5 1.259 1.003
6 0.933 0.844
7 0.792 0.687

Table 6.13: Radius of Approximation of Logarithmic Spiral Segment by Arc Spline

sequence of biarcs radius of left arc radius of right arc

1 3.741 2.773
2 2.440 2.017
3 1.769 1.223
4 1.023 0.734
) 0.636 0.512

6 0.440 0.284
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Table 6.14: Radius of Approximation of Archimedean Spiral Segment by Arc Spline

sequence of biarcs radius of left arc radius of right arc

l 14.777 10.593
2 9.089 6.387
3 6,268 5.415

4 5.034 4.483
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Chapter 7

Conclusions

In this thesis, a method for approximating spiral segments is proposed. To approxi-
mate all kinds of spirals, this method can be applied by approximating each subpart
separately after subdividing the spiral to subparts appropriately. Seven kinds of spi-
ral segment namely quadratic Bézier, cubic Bézier, PH cubic, PH quintic, clothoid.
Archimedean, logarithmic were examined. Accuracy can be achieved by designating
a specific tolerance. The method were tested on all of these spirals. Following are

some concluding observations.

7.1 Tendency of the Radius

For tolerance 0.001, observe the radii of arc splines using the same parameters and
the results are recorded in Tables (6.8) to (6.14). The arcs are listed in the order of
increasing parameter t. The “left” arc is the one which approximates a part of the
spiral with smaller curvature in a triangle construction while the “right” arc is the

other arc. From the radii traced, it seems that radii get smaller when a winding spiral
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segment is approximated by using this biarc method.

7.2 Relationship between Number of Arcs and

Tolerance

Fig.(7.1) shows a logarithmic plot of deviation versus number of arcs for a spline
approximation of various spiral segments. For the y-axis, y = log;o(deviation). for
the x-axis, = log,o(number of arcs). The plots are close to a straight line whose

slope is —3. Suppose d denotes the deviation, n denotes the number of arcs and C is

a constant. From Fig. (7.1),
logd = ~3logn + C

log d =~ log(Cn™°)

In another word, the error of approximation seems to be O(n~3) which is consistent

with the result of [MW95].



7.2. RELATIONSHIP BETWEEN NUMBER OF ARCS AND TOLERANCE 105

-1 =

-2
3
9 -3
I
> b
@
k=)
D4
°
-5
]
-6 ¥ M 1 M T v 11 T 1 T T M T T | T v H A
62 04 06 08 1 12 14 1.6 1.8 2 22

log (No. of Arcs)

Figure 7.1: Logarithmic Pact of Deviation vs. No. of Arcs



106 CHAPTER 7. CONCLUSIONS



Bibliography

[Ada69]

[Baa84|

[BBBS7]

(BF97)

[Boe60]

[Bol75]

[Cox42]

[Cox61]

R.K. Adair. Concepts in Physics. Academic Press, New York, 1969.

K.G. Baass. The Use of Clothoid Templates in Highway Design. Trans-

portation Forum, (1-3):47-52, 1984.

R.H. Bartel, J.C. Beatty, and B.A. Barsky. An Introduction to Splines for
Use in Computer Graphics and Geometric Modelling. Morgan Kaufmann,

Los Altos.CA. 1987.

C. Baumgarten and G. Farin. Approximation of Logarithmic Spirals. Com-

puter Aided Geometric Design, (14):515-532, 1997.

J. Boersma. Computation of Fresnel Integrals. Mathematics of Computa-

tzon, 14:380, 1960.
K.M. Bolton. Biarc Curves. Computer-Aided Design, 7:89-92, 1975.

H.S.M. Coxeter. Non-euclidean Geometry. The University of Toronto Press,

Toronto, Canada, 1942.

H.S.M. Coxeter. Introduction to Geometry. Johm Wiley and Sons, Inc.,

New York, London, 1961.

107



108

[dCT6]

[Far93]

[Far94]

[FS90]

[Gug63]

[Hea85)

[Hic67)

[HL93]

[Meh74]

BIBLIOGRAPHY

Manfredo P. do Carmo. Differential geometry of curves and surfaces. 1976.

G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A

Practical Guide. Academic Press. San Diego, 1993. Third Edition.

R.T. Farouki. The conformal map z — z%. Computer Aided Geometric

Destign, 11:363-390, 1994.

R.T. Farouki and T. Sakkalis. Pythagorean Hodograph. /BM J. Res. and

Develop., 34:736-752, 1990.

H.W. Guggenheimer. Differential Geometry. McGraw-Hill, New York.

1963.

M. A. Heald. Rational Approximations for the Fresnel Integrals. Mathe-

matics of Computation, 44(170):459-461, April,1985.

T.F. Hickerson. Route Location and Design. McGraw-Hill Book Company,

U.S. A, 1967.

J. Hoschek and D. Lasser. Foudamentals of Computer Aided Geometric De-
sign. A K Peters, Wellesley,Massachusetts, 1993. Translated from German

by L.L. Schumaker.

E. Mehlum. Nonlinear Splines, in: R.E. Barnhill and R.F.Reisenfeld, Eds.
Computer Aided Geometric Design(Academic Press, London), pages 173-

205, 1974.



BIBLIOGRAPHY 109

[Mor92]

[MP84]

[MWS9]

MW95]

[Pie86]

[Sab77]

[Sch96]

[vS90]

Christopher Morris. Academic Press Dictionary of Science and Technol-
ogy. Harcourt Brace Jovanovich Publishers, New York, London, San Diego.

Boston, 1992.

K. Marciniak and B. Putz. Approximation of Spirals by Piecewise Curves
of Fewest Circular Arc Segments. Computer-Aided Design, 16(2):837-90.

1984.

D.S. Meek and D.J. Walton. The Use of Cornu Spirals in Drawing Planar
Curves of Controlled Curvature. Journal of Computational and Applied

Mathematics, 25:69-78, 1989.

D.S. Meek and D.J. Walton. Approximation Smooth Planar Curves by Arc
Splines. Journal of Computational and Applied Mathematics, 59:221-231,

1995.

L. Piegl. Curve Fitting Algorithm for Rough Cutting. Computer-Aided

Design, 18:79-82, 1986.

M.A. Sabin. The Use of Piecewise Forms for the Numerical Representation
of Shape. Technical Report 60, Comput. Automation Inst., Hungarian

Acad. Sci., 1977.

P.R. Schmitt. Reactive Path Shaping: Local Path Planning for Au-

tonomous Mobile Robots in Aisles, 1996.

D.H. von Seggern. CRC Handbook of Mathematical Curves and Surfaces.

CRC Press, Inc., Boca Raton, Florida, 1990.



110

[WM]

[WMO94]

[WMO96a]

[WM96b]

[WM96¢]

[WX91]

[Yat52]

[YW94]

BIBLIOGRAPHY

D.J. Walton and D.S. Meek. G? Curves Composed of Planar Cubic and
Pythagorean Hodograph Quintic Spirals. Computer Aided Geometric De-

stgn. 1n press.

D.J. Walton and D.S. Meek. Approximation of Quadratic Bézier Spiral by
Arc Splines. Journal of Computational and Applied Mathematics, (54):107~

120, 1994.

D.J. Walton and D.S. Meek. A Planar Cubic Bézier Spiral. Journal of

Computational and Applied Mathematics, (72):85-100, 1996.

D.J. Walton and D.S. Meek. A Pythagorean Hodograph Quintic Spiral.

Computer-Aided Design, (28):943-950, 1996.

D.J. Walton and D.S. Meek. Approximation of a Planar Cubic Bézier Spiral
by Circular Arcs. Journal of Computational and Applied Mathematics,

(75):47-56, 1996.

D.J. Walton and R. Xu. Turning Point preserving Planar Interpolation.

ACM Transactions on Graphics, 10(3):297-311, 1991.

R.C. Yates. Curves and Their Properties. The National Council of Teachers

of Mathematics, U. S. A., 1952.

M.K. Yeung and D.J. Walton. Curve Fitting with Arc Splines for NC Tool

Path Generation. Computer-Aided Design, 26(11):845-849, 1994.



VI
Y.V
V&

//\\
37
>3
3
wis

2.5

8

SR EE
S B EE

w—ﬂum_um_num

2

I

I

14

125

—
e ——

4 H
Emmmw ]
Rii52 &
£ >33k ?
al”® A g
o =§= ;
?
m o






