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Phaseless Antenna Characterization

Abstract

This thesis focuses on the application of electromagnetic inverse source techniques to char-

acterize antennas using phaseless (amplitude-only) near-field (NF) measurement data. Re-

moving the need to measure phase reduces the overall cost of the measurement apparatus

since simple power meters can be used instead of expensive vector network analyzers. It

has also been shown in the literature that a phaseless approach can improve the accuracy of

the calculated far-field (FF) pattern in the presence of probe positioning errors compared

to the amplitude-and-phase approach. A brief discussion on the state-of-the-art methods

for characterizing antennas using phaseless near-field measurement data is presented. Two

general approaches used most often to perform near-field to far-field (NF-FF) transfor-

mations, namely modal expansion and source reconstruction, are explained in detail for

scenarios with and without phase information. A phaseless source reconstruction method

(SRM) is the primary focus of this work. The SRM is an application of an electromagnetic

inverse source technique and therefore, the complexities of solving the associated ill-posed

inverse source problem are discussed. The application of the SRM to spherical and planar

measurement geometries are presented along with the concerns regarding regularization re-

sulting from discretizing the ill-posed system. A multiplicative regularization (MR) scheme

originally developed for inverse scattering is adapted to suit the nonlinear cost functional

for the phaseless planar measurement case and the mathematical framework is derived in

detail. The resulting MR-SRM is fully automated and incorporates adaptive regularization.

The developed algorithms are evaluated using several examples with synthetic phaseless NF

data demonstrating the benefits and limitations of the source reconstruction method and

the multiplicative regularization scheme. The application of the SRM to antenna diagnos-

tics using phaseless NF data is also shown. Finally, the developed planar algorithms are

tested with experimentally collected phaseless measurement data to demonstrate their po-

tential as suitable antenna characterization techniques that can be of interest to the antenna

measurement community.
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Contributions

This thesis includes the following contributions:

• The development of a MATLAB computer code that can perform near-field to far-field

transformations using the source reconstruction method for both planar and spherical

measurement geometries. The code is capable of the following:

– Characterizes antennas using near-field measurement data with or without phase

information

– Provides diagnostic information via the generated equivalent currents

– Generates the normalized far-field radiation pattern

– Produces synthetic near-field measurement data for testing purposes

– Uses adaptive cross approximation to accelerate the SRM for spherical measure-

ments

• The multiplicatively regularized source reconstruction method was proposed and de-

veloped. To this end, a multiplicative regularization scheme originally developed for

inverse scattering was modified and extended to suit the planar source reconstruc-

tion problem for phaseless NF measurements. The mathematical framework for the

regularization scheme was derived and implemented in the developed code.

• The developed algorithms were evaluated using synthetic data, and in the case of the

planar measurement code, using experimental data as well. The developed planar

techniques were also compared with state-of-the-art alternatives that were based on

the concept of modal expansion.
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Chapter 1

Introduction

Wireless technologies have become ubiquitous in the world we live in today. Consequently,

the need for accurate and useful tools for characterizing antennas and their performance

is only increasing. These tools can play a major role in shortening antenna design cycles,

improving the quality of validation, and lowering the cost and time required to perform

antenna measurements. These potential benefits are of utmost importance for companies

looking to gain a competitive edge in the antenna design and manufacturing industries.

Antennas are typically characterized by measuring the produced electromagnetic field and

processing this data to provide valuable performance metrics and information. To this end,

this thesis focuses on the development of such a characterization tool and examines some

of the potential benefits and limitations.

1.1 Motivation

To properly design and use an antenna for a specific application (e.g. telecommunications,

remote sensing, satellite systems), certain properties of the antenna must be known. These

properties include gain, radiation efficiency, sidelobe levels, beamwidth, polarization, and

most importantly, the far-field (FF) radiation pattern. For this reason, antenna measure-
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ments must be performed to determine these quantities, thereby completely characterizing

the antenna.

Antenna measurements are typically performed by measuring either the electric or mag-

netic field produced by an antenna under test (AUT). Measurement techniques are divided

into two broad categories based on where the measurements are acquired in relation to

the AUT: FF antenna measurements and near-field (NF) antenna measurements. With FF

measurement systems, the electric (or equivalently, magnetic) field is sampled at an electri-

cally large distance from the AUT, while NF systems perform measurements at electrically

small distances, e.g. at 3λ from the AUT where λ denotes the wavelength of operation.

In FF measurement systems, the large separation between the measurement probe and

the AUT results in several benefits. The probe is located in the FF or radiation zone of

the AUT, meaning that the electromagnetic field observed consists only of radiating energy.

Therefore, FF measurements taken in this region will directly provide the radiation pattern

of the AUT without the need for extensive post-processing of the measurement data. This

being said, the large separation also results in significant drawbacks, most importantly

the required measurement system size. With either large AUTs and/or low frequency

measurements, the separation required to perform measurements in the FF can become

impractically large. For this reason, NF measurement techniques have been developed and

researched extensively during the past 40 years.

NF measurement systems1 are distinct from FF measurement systems in two ways.

Firstly, field measurements are performed in the radiating NF regions of the AUT [2]. The

NF zone is significantly closer to the AUT than the FF zone, and therefore NF measurement

systems are typically much more compact than their FF counterparts. The compact nature

of NF systems is also well suited to indoor measurements, allowing for a more controllable

1It should be noted that commercial NF systems collect the NF data in three different configurations:
(I) on a plane in front of the AUT; (II) on a cylinder around the AUT; and, (III) on a sphere enclos-
ing the AUT. These configurations are referred to as planar, cylindrical, and spherical near-field antenna
measurements ranges, respectively.
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measurement environment with the use of an anechoic chamber. Secondly, since the radi-

ated field is not measured directly, post-processing is required to determine the FF radiation

pattern from the NF measurements. This post-processing is often referred to as a NF to

FF (NF-FF) transformation. Consequently, the development of these data processing algo-

rithms is what constitutes most of the recent research in the area of antenna measurements.

Last but not least, some NF systems provide a way of keeping the AUT stationary while

performing antenna measurements, which is a requirement for certain types of antennas.

Until recently, NF-FF transformation algorithms have used both the amplitude and

phase of the measured field data to accurately produce the FF radiation pattern; however,

the challenge is that with the recent trend toward antenna operation at higher frequen-

cies, accurately measuring the phase of the field becomes difficult and requires the use of

expensive, specialized equipment [3]. Research has shown that eliminating the need to

measure phase not only increases the cost-effectiveness of the measurement apparatus but

also reduces the detrimental effects of probe positioning errors [4]. The difficulty arises

when trying to produce the FF radiation pattern from the amplitude-only field data, as

the solution to such a problem is not unique [5]. The desire to overcome these challenges

has inspired the development of many phaseless NF-FF transformation techniques, each

with their own set of advantages and limitations. Broadly speaking, to handle the lack of

phase data, phaseless techniques often collect the amplitude-only data on two measurement

domains (e.g. two planes) as opposed to one domain (e.g. one plane) used in the ampli-

tude and phase approach. It can be intuitively understood that the relation between the

amplitude data on the two measurement domains can be implicitly or explicitly used to

reconstruct the phase information. Once the reconstructed phase is found it can be used

with the measured amplitude data to calculate the FF pattern of the AUT.
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1.2 Current Methods

Current NF-FF phaseless transformation algorithms can be classified into two broad cat-

egories: (I) phase retrieval techniques and (II) inverse source techniques. Phase retrieval

techniques attempt to directly recover the phase of the measurement data over one of the

measurement domains in a variety of ways. In general, these techniques make use of the

Fourier transform to propagate the measured field from one domain to another, or to the

FF. The first phase retrieval technique was applied to phaseless NF antenna measurements

in [6], in which the amplitude data on measurement domains was propagated to the FF using

an iterative application of a Fourier transform operator. The problem was further developed

as the minimization of a quadratic cost functional using squared amplitude data [7] using

a finite dimensional representation of the measured NF data. Prior information about the

system dynamic range, AUT aperture, FF pattern shape, and measurement system accu-

racy was utilized to improve the phase retrieval accuracy and stability [8]. A phase retrieval

algorithm, known as the plane-to-plane method or the iterative Fourier technique (IFT),

was developed for bi-polar planar NF antenna measurements2 using an interpolation scheme

for the irregularly sampled field data [10]. Phase retrieval techniques were made more ro-

bust by improving the quality of the initial phase guess [11, 12] and including appropriate

constraints taking into account the aperture shape of the AUT [13]. Although most phase

retrieval development has been for planar NF measurements, the method has been applied

to measurements acquired over cylindrical [3, 14] and spherical [15] domains.

Inverse source techniques approach the problem in a slightly different way: rather than

use the NF measurements to directly determine the FF pattern (by first retrieving the

phase in the phaseless case), these techniques use an intermediate step that first attempts

to find a distribution of electric and/or magnetic surface currents that radiate the exact

2Planar NF antenna measurement systems typically collect the measurement data over the measurement
plane(s) using one of three different grids: (I) rectilinear; (II) polar; and, (III) bi-polar. In addition, a
pendulum-based planar NF antenna measurement system has recently been proposed [9].
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same electromagnetic field as the AUT. The second and final step of these techniques is

to use the equivalent currents to generate the FF pattern of the AUT. This method was

originally referred to as the ‘equivalent current approach’ and was first developed for planar

NF measurements with both amplitude and phase data [16] and then extended to arbitrary

measurement domains [17]. The equivalent currents were then found over arbitrarily-shaped

surfaces [1, 18, 19] and constraints were enforced that resulted in currents that could be

used for antenna diagnostics [20, 21]. Within this framework, the use of phaseless measure-

ment data was first applied to the planar measurement case [22] and later to spherical and

arbitrary measurement geometries [23, 24]. In recent years the underlying framework has

been referred to as the ‘source reconstruction method’ (SRM), since the ‘source’ of radi-

ation, the equivalent currents, is to be reconstructed from the measured data. Once this

source is reconstructed, the FF of the antenna can be calculated. In this thesis, the focus

is on the phaseless SRM.

During the past decade, a phaseless NF-FF transformation technique that shares sim-

ilarities with both phase retrieval and the SRM has been developed [25, 26, 27]. This

technique seeks to optimize a cost functional quantifying the discrepancy between the mea-

sured and simulated phaseless data (similar to the SRM), but the field transformations are

performed using a Fourier transform (as with many phase retrieval techniques). Contrary to

typical SRM the cost functional is not minimized over the equivalent currents, but instead

over the expected AUT aperture field using properly selected basis functions with unknown

coefficients. The choice of basis functions allows for the incorporation of available prior

information about the AUT, which is advantageous when attempting to solve the inverse

problem. While this method can be considered state-of-the-art, it is beyond the scope of

this work and will not be used as a basis for comparison.

Clearly there has been significant research attention directed towards the development

of phaseless NF-FF transformation algorithms. This being said, this is still an active area
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of research. The main challenge is that in order to accurately produce the FF pattern, most

algorithms require prior information about the AUT, which may not always be available.

Additionally, most algorithms also require the user to tune certain parameters that can

vary from one measurement to the next. The desire to overcome these challenges is what

inspired this work.

1.3 Novelties of this Thesis

To address the challenges concerning the prior information requirements and the parameter

tuning, we propose approaching the phaseless NF-FF transformation using the framework

of the SRM. The SRM will be implemented for both planar and spherical NF measurement

geometries and be able to function with either complex (amplitude and phase) or phase-

less NF measurement data. Love’s condition will be enforced with the spherical SRM and

Schelkunoff’s condition will be enforced with the planar SRM to ensure that the recon-

structed equivalent currents are representative of the aperture fields.

To overcome the difficulty of selecting appropriate regularization parameters (regu-

larization weights) for each unique measurement, we propose the novel adaptation of a

multiplicative regularization (MR) scheme originally developed for inverse scattering ap-

plications [28], which results in an automated regularization scheme. We then propose to

utilize this MR in conjunction with the SRM as to have a robust and automated algorithm

which we refer to as the MR-SRM in this thesis. The mathematical framework for the

regularization scheme will be presented in detail along with results from its implementation

with the SRM for planar measurements.
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1.4 Overview

We begin with an explanation and comparison of the modal expansion (ME) and source

reconstruction NF-FF transformation techniques in Chapter 2. The ill-posedness of the

inverse problem and the need for regularization are also discussed in this chapter along

with the effects of enforcing Love’s or Schelkunoff’s equivalence conditions. In Chapter 3

we explain how the methods described in Chapter 2 are modified to suit phaseless NF

measurements and outline the accompanying challenges. Chapter 4 describes the details of

the developed phaseless SRM algorithms for both spherical and planar NF measurements.

The MR scheme is introduced in Chapter 5 and the mathematical framework is derived in

detail. The developed SRM algorithms are evaluated using synthetic and (in the case of

planar measurements) experimental data in Chapter 6. The effect of MR with the planar

SRM is shown and compared with results obtained from an implementation of the IFT.

Lastly, conclusions and possible future work are presented in Chapter 7.

- 7 -



Phaseless Antenna Characterization 2. NF-FF Techniques

Chapter 2

NF-FF Techniques

Most antenna characterization concepts (e.g. gain, beamwidth, directivity, etc.) rely on

the knowledge of the FF pattern. As explained in Section 1.1, directly measuring the

FF produced by an antenna can be cumbersome and expensive. Fortunately, there is a

fundamental electromagnetic principle that allows us to measure the radiated field much

closer to the AUT so as to determine the FF pattern of the antenna. The uniqueness

theorem states: “A field in a lossy region is uniquely specified by the sources within the

region plus the tangential components of ~E over the boundary, or the tangential components

of ~H over the boundary, or the former over part of the boundary and the latter over the

rest of the boundary” [29]. This theorem can also be extended to the lossless case by

considering the fields to be the limit of the corresponding fields in a lossy medium as the

loss goes to zero [29]. In other words, if we know the source and measure the tangential

electric (or equivalently, magnetic) field on a closed surface around it, the field everywhere

is uniquely defined. In the case of NF antenna measurements we do not know the source

(the AUT current distribution), and therefore we cannot uniquely determine the field inside

the measurement surface. However, the measurement surface also bounds the space on the

other side, which happens to be source-free and contain the region that we are interested in
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(FF). Therefore the measured tangential fields uniquely define the fields everywhere outside

the measurement surface independently from the AUT. This is the concept that makes

NF antenna measurements possible. What differentiates various NF-FF transformation

techniques is how the measurement data is used to determine the FF, and these differences

are substantial as explained in what follows.

2.1 Modal Expansion Techniques

The most established techniques for performing NF-FF transformations rely on the concept

of modal expansion (ME): any monochromatic electromagnetic field can be represented by a

summation of orthogonal ‘modes’ in the coordinate system of interest [2]. In the planar case,

the orthogonal modes are plane waves with different amplitudes and travelling in different

directions. In cylindrical and spherical coordinate systems, the fields can be represented by

the superposition of cylindrical and spherical waves, respectively.

The goal of a ME technique is to use the NF measurement data to determine the mode

coefficients that represent the field produced by the AUT. This approach has been previously

implemented for planar, cylindrical, and spherical NF measurement systems. The planar

case is the simplest of the three, and in this case the electric field ~E radiated by the AUT

can be expanded as the following superposition of plane waves

~E (x, y, z) =
1

4π2

∞∫

−∞

∞∫

−∞

~F (kx, ky) e
−j~k·~rdkxdky (2.1)

where ~F (kx, ky) is the ‘plane wave spectrum’ (PWS) [2] of the field defined as

~F (kx, ky) = x̂fx (kx, ky) + ŷfy (kx, ky) + ẑfz (kx, ky) (2.2)

where x̂, ŷ, and ẑ are the Cartesian unit vectors. The function ~F (kx, ky) can also be thought
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of as the vector amplitude of each plane wave in the summation. The term ~r is a position

vector defined as

~r = x̂x+ ŷy + ẑz (2.3)

and ~k is the propagation factor given by

~k = x̂kx + ŷky + ẑkz (2.4)

and the magnitude of ~k is k0, the wavenumber in free space. It can be shown that the x and

y components of the PWS, fx and fy, are related to the x and y components (respectively)

of the electric field over an infinite plane at z = 0 through the Fourier transforms [2]

fx (kx, ky) =

∞∫

−∞

∞∫

−∞

Ex
(
x′, y′, z′ = 0

)
ej(kxx

′+kyy′)dx′dy′ (2.5)

fy (kx, ky) =

∞∫

−∞

∞∫

−∞

Ey
(
x′, y′, z′ = 0

)
ej(kxx

′+kyy′)dx′dy′ (2.6)

In other words, if we can measure the x and y components of the electric field over an

infinite plane, we can compute the x and y components of the PWS for the field. Obviously

we cannot measure the field over an infinite plane, but since we are typically dealing with

directive antennas with planar measurement systems, we can truncate the measurement

plane and assume the field outside the truncated portion is negligible. This simplifies (2.7)

and (2.8) to

fx (kx, ky) ≈
a/2∫

−a/2

b/2∫

−b/2

Ex
(
x′, y′, z′ = 0

)
ej(kxx

′+kyy′)dx′dy′ (2.7)

fy (kx, ky) ≈
a/2∫

−a/2

b/2∫

−b/2

Ey
(
x′, y′, z′ = 0

)
ej(kxx

′+kyy′)dx′dy′ (2.8)
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where a and b are the x and y dimensions of the measurement plane, respectively. Once

the x and y components of the PWS are found, they can be related to the electric field in

the FF region using the following expressions [2]

Er (r, θ, ϕ) ' 0 (2.9)

Eθ (r, θ, ϕ) ' j k0e
−jk0r

2πr
(fx cosϕ+ fy sinϕ) (2.10)

Eϕ (r, θ, ϕ) ' j k0e
−jk0r

2πr
cos θ (−fx sinϕ+ fy cosϕ) (2.11)

The expressions in (2.9) through (2.11) are not exact and include approximations that are

only accurate for the FF region. More complex expressions can be used to produce the field

at locations that are not in the FF, but we do not consider these herein [2].

The same steps can be followed to perform the NF-FF transformation from measure-

ments obtained over a spherical or cylindrical domain [30]. The only difference is in the

analytical relationships between the spectrum functions and the field.

2.2 The Source Reconstruction Method

The source reconstruction method (SRM) differs from PWS-based techniques by adding an

intermediate step in the NF-FF transformation process. Instead of directly computing the

FF pattern from the NF measurements, a set of equivalent currents are found that represent

the AUT. The FF radiation pattern can then be computed analytically from these currents.

The differences in the two techniques are indicated in Figure 2.1.

The SRM is based on the electromagnetic equivalence principle. More specifically,

we use the surface equivalence principle originally introduced in [31]. To illustrate this

principle, we begin with an AUT enclosed by a fictitious surface that we denote as D,

typically referred to as the ‘reconstruction surface’, as shown in Figure 2.2 (a). Note that

this surface is not the same as the measurement surface S, and generally D is enclosed by
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Inverse Source
Method

Modal Expansion or
Iterative Fourier Technique

Direct Radiation Problem

Near-Field
Measurement Surface

Far-Field
Surface

Current Reconstruction
Surface (Enclosing AUT)

Fig. 2.1: The most common NF-FF transformation techniques. Modal expansion (or PWS)
techniques directly compute the FF from the NF measurement data while inverse source
(or SRM) techniques add the intermediary step of computing equivalent currents. Figure
based on [1].

~E1, ~H1

AUT

D

~n

(a)

~E1, ~H1

D

~n
~J = ~n ⇥

⇣
~H1 � ~H2

⌘

~M = �~n ⇥
⇣
~E1 � ~E2

⌘

~E2, ~H2

(b)

Fig. 2.2: The electromagnetic equivalence principle. The original sources in (a), i.e. the

AUT, have been replaced by a set of equivalent surface currents ~J and ~M in (b) that
produce the exact same fields outside of D.
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S. The fields produced by the AUT everywhere in space are denoted as ~E1 and ~H1. The

surface equivalence principle states that we can construct an equivalent scenario in which

the fields outside the surface are the same ( ~E1 and ~H1), but with different fields inside the

surface, which we call ~E2 and ~H2. To support the discontinuity introduced between the

two different fields, sources are required on the surface to satisfy the well-known boundary

conditions. This relationship is shown in Figure 2.2 (b). The sources are surface currents ( ~J

for electric current and ~M for magnetic current) that are related to the difference between

the tangential fields on either side of the boundary and are given by

~J = ~n×
(
~H1 − ~H2

)
(2.12)

~M = −~n×
(
~E1 − ~E2

)
(2.13)

where ~n is an outward unit normal vector to D. These surface currents (equivalent currents)

will radiate in free space and produce the fields ~E1 and ~H1 outside D and ~E2 and ~H2 inside

D.

In the context of NF antenna measurements, we are able to measure the electric field

~E1 on a surface outside D. From this, the SRM attempts to find the surface currents ~J

and ~M on D that produce the measured field ~E1 on S. Since we are trying to find the

cause from an observed effect, this is an inverse problem. It should be noted that, at this

point, we are not constraining what the field inside D should be. Therefore any field ~E2

and ~H2 produced by the surface currents is acceptable as long as the same surface currents

produce the observed field on S. From this it is clear that there is not a unique solution to

the inverse problem and hence the inverse problem is ill-posed [32]. Since in this thesis the

SRM will be used to characterize the AUT using phaseless NF data, we now briefly describe

some aspects of this algorithm for amplitude and phase NF data. Later in the thesis we

will present how the SRM will be used for phaseless NF data.
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2.2.1 Forward Problem

In order to solve the inverse problem associated with the SRM we need to model the

relationship between the surface currents and the electric field that the currents produce,

i.e. the forward problem. The relationships between the electric and magnetic currents and

the produced electric field are given by the electric field integral equations (EFIE)

~EJ(~r) = −jηk0

∫

D

[
~J(~r ′) +

1

k2
0

∇∇′D · ~J(~r ′)

]
g0(~r, ~r ′)d~r ′ (2.14)

~EM (~r) = −∇×
∫

D

~M(~r ′) g0(~r, ~r ′)d~r ′, (2.15)

where ~EJ and ~EM are the electric fields produced by the surface currents ~J and ~M , respec-

tively. The integral is performed over the domain D where the currents are located, k0 is

the free space wave number, η is the intrinsic impedance of free space, and g0(~r, ~r ′) is the

free space Green’s function given by

g0(~r, ~r ′) =
e−jk0|~r−~r

′|

4π|~r − ~r ′| . (2.16)

In these formulations ~r represents the locations where the field is observed and ~r ′ ∈ D

represents the source locations of the equivalent currents confined to the reconstruction

surface. Additionally, dual integral equation expressions exist for the magnetic field and

can be used equivalently.

The total electric field is simply a sum of the fields produced by the electric and magnetic

currents

~E(~r) = ~EJ(~r) + ~EM (~r), (2.17)

which we can write as

~E(~r) = A
(
~J
(
~r ′
)
, ~M

(
~r ′
))
, (2.18)
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where A is a linear operator representing the two integral equations (2.14) and (2.15). If

we denote the currents ~J (~r ′) and ~M (~r ′) collectively as x (~r ′), then we can further simplify

the expression to

~E(~r) = A
(
x
(
~r ′
) )
. (2.19)

The forward problem can then be expressed as follows: for a given x, find ~E; however, in

the SRM we know ~E, and we would like to find x, which is the inverse problem. To solve

the inverse problem, we still need to solve the forward problem to evaluate how well the

fields associated with a predicted x match the measured data. We now focus on the inverse

problem in the next section.

2.2.2 Inverse Problem

Now that we have a mathematical model for the forward problem we can begin to analyze

the complexities of solving the inverse problem. The integral equations shown in (2.14)

and (2.15) are both Fredholm integral equations of the first kind [33]. A linear inverse

problem where the operator is a discretized form of this type of integral equation has been

shown to be ill-posed in the sense of Hadamard [34]. An ill-posed problem is defined as one

that does not satisfy one or more of the following criteria

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data (system is stable).

In our case, we must sample the electric field at a finite number of observation points over

the measurement domain. Because of this, current distributions may exist that produce zero

field at the measurement locations, leading to an infinite number of possible solutions and

violating the criterion of uniqueness. Evanescent fields may also be produced that cannot

be observed at the measurement locations. Additionally, the discretized representation of
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the current distributions will not be able to exactly produce all possible fields, violating the

criterion of existence. Lastly, while the solution to our problem may depend continuously

on the data, the operator is typically highly ill-conditioned due to the smoothness of the

kernel (Green’s function) of the integral equations. The ill-conditioned nature becomes a

problem when attempting to solve the system numerically, and impacts the stability from

a practical standpoint.

The smoothness of the Green’s function is important enough to warrant further discus-

sion. As you move further away from the source (or equivalently the AUT), the Green’s func-

tion acts as a low-pass filter and ‘smooths’ out any high spatial variations in the field [34].

This means that the Green’s function causes a loss of information about the source, and

thus solving the inverse problem (trying to recover the source from the measured data)

becomes difficult. Furthermore, since the inverse problem involves the reverse process of

the Green’s function operator, any high variation components in the measured data will

be amplified when finding a solution. Conversely, the smoothness of the Green’s function

is beneficial when computing the FF radiation pattern once the equivalent currents are

found. Any noise of an oscillatory nature (high variation) that is present in the solution

will produce fields that will be filtered during the NF-FF transformation. This filtering is

more prevalent than that present in the NF operator since the FF pattern is computed at

observation locations that are much further away from the source.

The conclusion of the previous discussion is that the SRM problem is inherently ill-

posed. We have also noted that the Green’s function will ‘amplify’ any noise present in the

measurement data during the inversion process, leading to an unphysical solution. To solve

the problem in a stable manner, we must introduce the concept of regularization. The term

regularization refers to incorporating added information or constraints in order to select an

appropriate, stable solution from a set of infinitely many solutions.
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There are numerous ways to regularize an ill-posed inverse problem, and the most

common way involves balancing the following two L2-norms

‖A (x)− E‖2S (2.20)

‖x‖2D (2.21)

where E is defined as the ‘concatenation’ of the two measured tangential field components

Et1 and Et2 (i.e. Eθ (~r) and Eϕ (~r) for spherical NF measurements) and the spatial depen-

dencies are implied for notational simplicity. The norms in (2.20) and (2.21) are defined

as

‖E‖S = 〈E,E〉1/2S and 〈E1, E2〉S = 〈E1,t1, E2,t1〉S + 〈E1,t2, E2,t2〉S (2.22)

‖x‖D = 〈x, x〉1/2D and 〈x1, x2〉D = 〈 ~J1, ~J2〉D + 〈 ~M1, ~M2〉D. (2.23)

The inner products in (2.22) and (2.23) are defined as

〈E1,t1, E2,t1〉S =

∫

S

E1,t1 (~r)E∗2,t1 (~r) d~r (2.24)

〈 ~J1, ~J2〉D =

∫

D

~J1 (~r) · ~J∗2 (~r) d~r, (2.25)

where ∗ denotes the complex conjugate. The first functional, shown in (2.20), quantifies

the error between the field observed on S and the field produced on S by the predicted

equivalent currents. By minimizing this functional we can find a set of equivalent currents

that produce the field that is observed by the measurement system. The second functional,

shown in (2.21), is a measure of the ‘size’ of the solution on the reconstruction domain

D. Typically a large solution size is indicative of a non-physical solution due to the in-

version of measurement noise, and so finding a solution that minimizes (2.20) while also
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keeping (2.21) small is the goal. Tikhonov regularization is performed by minimizing a

weighted combination of these two norms

∥∥∥A (x)− ~E
∥∥∥

2

S
+ γ2 ‖x‖2D , (2.26)

where γ is a regularization parameter that controls the balance between the two norms [34].

If γ is small, we are searching for a solution that satisfies the original problem constraints

without placing much emphasis on the physical quality of the solution. If γ is large then

we are placing more emphasis on achieving a physically meaningful solution, although in

this case the solution may not satisfy the original problem constraints as strictly, or at all.

There is a tradeoff that must be made between the two desired outcomes. The optimal

value for γ is generally problem specific and finding a suitable value for γ is one of the main

reasons that makes solving an ill-posed problem so difficult.

Although there are other regularization techniques, in principle they are all similar to

the concepts presented for Tikhonov regularization. One other common technique is the

truncated conjugate gradient (CG) procedure, an iterative minimization process in which

the number of iterations corresponds to the regularization parameter. Another commonly

used regularization technique is a truncated singular value decomposition (SVD) of the op-

erator. Both truncated SVD and CG methods will be discussed in more detail in Chapter 4.

2.2.3 Internal Field Restriction

As discussed in Section 2.2.2, the solution to the inverse problem as posed in (2.19) is not

unique. Any combination of sources that produce a null field at the observation points (i.e.

that is in the null space of the operator) can be added to the solution. In addition, we have

not placed any restrictions on the field inside D. Therefore our present formulation allows

for the solution to contain sources that radiate zero field external to D and any field inside

D that satisfies Maxwell’s equations in a source-free homogenous region. Theoretically, a
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solution found using this formulation would still result in a suitable NF-FF transformation;

however, restricting the field internal to D results in several favorable outcomes. We will

discuss the two common restrictions that are used to specify the internal field: Love’s

equivalence condition or Schelkunoff’s equivalence condition.

Love’s Equivalence Condition

The most commonly used restriction is to enforce the internal fields to be zero, which is

known as Love’s equivalence condition [35]. Enforcing the internal field to be zero (i.e. the

null field) simplifies the boundary conditions defining the equivalent currents to

~J = ~n× ~H1 (2.27)

~M = −~n× ~E1. (2.28)

With this condition enforced, the equivalent currents are directly related to the tangential

fields ~E1 and ~H1 produced by the original AUT. This is a significant property because ~E1

and ~H1 are not known on D, and the knowledge of the fields in close proximity to the AUT

can provide valuable information. Measurement anomalies, defects, interference, and any

other measurement issues can quickly be identified if the tangential fields, or equivalently

the reconstructed currents, are not as expected. Additionally, enforcing Love’s condition

has the added benefit of reducing the ill-posedness of the inverse problem by improving the

conditioning of the system [36].

Schelkunoff’s Equivalence Condition

The second type of internal field restriction is known as Schelkunoff’s equivalence condi-

tion [31]. This equivalence condition arises from allowing the inner region to be either a

perfect electric conductor (PEC) or perfect magnetic conductor (PMC). If the inner region

is a PEC, then the electric field in the inner region ( ~E2) will be zero. Therefore the bound-
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ary condition relating the magnetic current to the electric field is the same as in (2.28). As

can be shown using the Lorentz reciprocity theorem [37], any electric surface current on D

will not radiate due to the PEC, and thus only ~M must be considered. Similarly, if the

inner region is a PMC then the magnetic field in the inner region ( ~H2) will be zero, and

the boundary condition for ~J will be the same as (2.27). It can also be shown that any

magnetic current tangential to a PMC will not radiate, and therefore in this case only ~J

must be considered.

In both variations of Schelkunoff’s equivalence condition (either PEC or PMC), the

corresponding surface current (either ~M or ~J , respectively) will radiate in the presence of

the conductor. This is typically problematic since the Green’s function needed to compute

the forward operators is no longer the Green’s function of free space. In general, this

new Green’s function is not known analytically and would be extremely computationally

expensive to compute. This being said, when the measurement and reconstruction surfaces

are planar this limitation can be avoided entirely using image theory. The theory behind

this simplification and its implementation with the planar SRM will be discussed in more

detail in Section 4.3.

It is important to note that the equivalent currents in both variations of Schelkunoff’s

equivalence condition are also directly related to the fields just outside of the reconstruction

surface. This indicates that the currents resulting from Schelkunoff’s condition also have the

advantageous property of providing information that can be used for antenna diagnostics.

2.3 NF-FF Method Comparison

While both ME and SRM are able to perform NF-FF transformations, there are some

important differences between the two methods. First of all, the SRM adds the intermediary

step of finding the equivalent currents while the ME methods directly compute the FF

pattern from the NF data. In general, this results in the SRM requiring more computational
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time than ME to compute the same NF-FF transformation [38]. This being said, taking

the time to generate the equivalent currents does have benefits. If Love’s or Schelkunoff’s

conditions are enforced, the equivalent currents are directly related to the fields on the

reconstruction surface. The currents can then be examined and provide information that is

extremely useful for antenna diagnostics and the detection of defects.

ME methods also rely on the use of the Fourier transform. While these methods do not

require measurements to be acquired over a canonical domain, they do require interpolation

schemes that can produce a set of NF data over a uniform set of points [26]. On the other

hand, the SRM can work with arbitrary measurement geometries, without the need for

interpolation. The measurement domain does not need to be fully closed (i.e. partial

sphere) and the measurement of the different tangential field components do not need to be

co-located. Additionally, the reconstruction surfaces used in SRM can also be of arbitrary

shape, and can be made conformal to the AUT [1]. A conformal reconstruction surface

would result in equivalent currents that nearly represent the physical currents on the actual

AUT, and would be very useful for antenna design as well as the design of feeding structures

and radomes [39].

Lastly, ME methods need to assume field values at locations on the canonical surfaces

where measurement data are not available (e.g. assuming the field is zero outside of the

finite measurement plane for planar NF measurements). These assumptions necessarily

introduce a source of error into the NF-FF transformation process, the degree of which

depends on the accuracy of the assumption. This is in contrast to the SRM that does not

require any such assumptions of the unknown field values.
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Chapter 3

Phaseless NF-FF Techniques

Historically, NF-FF transformation methods have required accurate amplitude and phase

measurements of the NF electric field in order to produce a reliable FF radiation pattern.

However, the phase information can become difficult (and expensive) to measure at high

frequencies, and these measurements can also be corrupted by probe positioning errors1

and phase drift [4]. For these reasons there is an interest in the development of new NF-FF

transformation techniques that only require phaseless (amplitude-only) measurement data.

3.1 Phase Retrieval Methods

The first class of phaseless NF-FF transformation techniques are based on some form of

phase retrieval. This involves attempting to directly produce the phase of the measured

data from amplitude-only measurements over one or more measurement domains. Once

the phase information is recovered, standard NF-FF transformation techniques can be used

with the amplitude data and recovered phase to produce the FF radiation pattern. This

class of techniques is quite broad, but in this work we focus on the most established phase

1Probe positioning errors are defined as the difference between the expected and actual location of the
measurement probe, typically caused by uncertainties and tolerances in the mechanical positioning system.
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retrieval method for comparison with the SRM algorithms being developed. This method

is commonly referred to as the iterative Fourier technique (IFT) or the plane-to-plane

method [10]. In general, this method is based on an iterative application of the ME technique

outlined in Section 2.1.

More specifically, the IFT is a technique in which the phase of the measured electric

field is recovered in an iterative fashion. This method requires at least two measurement

domains of phaseless electric field data, and an initial guess for the phase distribution over

one of the domains. Then, using the ME procedures described in Section 2.1, the field, along

with the phase guess, is propagated to the second measurement domain. The amplitude

of the propagated field is replaced with the amplitude that was measured on the second

domain while keeping the calculated phase, and then the field is propagated back to the

first measurement domain. If the amplitude of the propagated field is close enough to the

measured amplitude on the first plane, the iterative procedure is stopped. Otherwise, the

phase of the propagated field is used as the new guess and the entire procedure is repeated.

Typically two measurement domains are needed to accurately recover the phase, although

one measurement domain can be used if two different probes are used to perform the

measurements [40]. Regardless, two non-redundant sets of measurement data are required.

The main challenge with the IFT is finding a suitable initial phase estimate that allows

for the iterative process to converge to a physical solution. Overcoming this challenge

typically requires some prior knowledge about the AUT, such as the shape of the aperture

and the direction of the main beam. One of the most recent developments on this technique

finds an initial phase estimate by employing the differential evolution algorithm, a global

optimization technique [12]. Most IFT methods also enforce constraints on the aperture

field distribution, based on knowledge of the expected aperture fields [10].

As with any method that relies on the use of the Fourier transform, the IFT requires

interpolation of the measured data if not acquired uniformly over canonical measurement
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surfaces. The IFT is especially suitable for planar NF measurements, since the plane-to-

plane propagation can take advantage of the discrete fast Fourier transform (FFT) and

the implementation becomes very computationally efficient [13]. The IFT has also recently

been applied to spherical NF phaseless measurements [15].

3.2 Source Reconstruction Methods

Phaseless NF-FF techniques based on the SRM are formulated in nearly the same way as

their amplitude-and-phase counterparts. Since we are now working with amplitude-only

measurement data, the cost functional in (2.20) is no longer suitable. For this reason, we

must modify the functional to relate the difference in the electric field amplitudes measured

and produced by the equivalent currents on the measurement domain. Moreover, using the

difference between the squared amplitudes is preferred for two reasons:

1. The squared amplitude is directly related to the power of the electromagnetic field

and can be easily measured using inexpensive equipment such as a power meter.

2. Using the squared amplitude leads to a quadratic cost functional while using the

amplitude itself leads to more highly nonlinear operators that are more difficult to

invert [7].

The modified cost functional becomes

∥∥∥|A (x)|2 − |E|2
∥∥∥

2

S
, (3.1)

where | · | denotes taking the amplitude of each tangential component of the complex-valued

fields (not to be confused with the spatial magnitude found by combining the separate field

components). To overcome the loss of information from the lack of phase data, phaseless

SRM methods typically use two sets of measured amplitude-only data, similar to approach
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used with phase retrieval techniques. This results in two cost functionals

∥∥∥|A1 (x)|2 − |E1|2
∥∥∥

2

S
(3.2)

∥∥∥|A2 (x)|2 − |E2|2
∥∥∥

2

S
(3.3)

that are simultaneously minimized to solve for the unknown currents x (~r ′) (S and S

denote the two measurement domains). These cost functionals are nonlinear (as opposed to

the linear functional in the case of amplitude-and-phase SRM as shown in (2.20)), and the

way these functionals are minimized differs from method to method. In the simplest case

the sum of (3.2) and (3.3) is minimized using the conjugate gradient method, as shown in

Section 4.2 with the spherical phaseless SRM implementation. A more advanced method is

discussed in Chapter 5.

Recently a phaseless SRM technique has been developed that differs from the general

framework described above. The technique iteratively applies the amplitude-and-phase

SRM in an iterative fashion with the goal of improving a phase estimate at each step [24].

This method is completely analogous to the IFT, except that the SRM is used to perform

the plane-to-plane propagation instead of ME. To the best of our knowledge the method

has not been evaluated with added noise or with scanned beam antennas.

As with the amplitude-and-phase SRM, appropriate regularization schemes must be

employed and can often present a challenge. Most developed SRM methods require the

ad-hoc selection of certain regularization parameters that strongly depend on the specifics

of problem at hand [23, 24]. This will result in not having an automated phaseless NF-FF

transformation algorithm.
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3.3 Phaseless NF-FF Challenges

While there has been a great deal of research towards developing accurate and efficient

phaseless NF-FF transformation algorithms, there are still many practical challenges that

have yet to be fully overcome. Limitations of the phase retrieval methods include a heavy

reliance on the quality of the initial phase guess and the requirement of interpolation for

non-uniform/non-canonical measurements. The quality of the initial phase guess becomes

even more important when considering scanned beam antennas [41]. With the SRM, the

choice of regularization scheme and the associated regularization parameters are the main

limitations offsetting the advantages gained by obtaining the equivalent currents.

For these reasons the aim of this work is to develop a phaseless SRM technique that

overcomes the problem of regularization parameter selection and removes the guesswork for

the user.
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Chapter 4

Development of a Phaseless SRM

Algorithm

In this section the discretization procedure and numerical considerations are described for

implementing the SRM for both spherical and planar measurement geometries. We de-

scribe the SRM for spherical measurements first because of its generality, followed by the

planar case which uses some simplifications. In both cases we first describe the appropriate

SRM formulation as applied to amplitude and phase data, followed by an extension to the

phaseless case.

4.1 Spherical Measurements

In a spherical NF antenna measurement system, the electric field is sampled, rather obvi-

ously, over a spherical surface. These systems measure the θ and ϕ components of ~E at a

finite number of locations over the measurement domain, hence discretizing the measure-

ment surface S. The required sampling resolution for spherical NF antenna measurements

is provided in [42].

The reconstruction surface D is then discretized into triangular surface elements, or a
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surface mesh. The size of the triangular elements are constrained so that no edge is longer

than λ/10, which is common in source reconstruction implementations [18, 36]. Next, we

must select appropriate basis functions that will be used to expand the equivalent current

distributions ~J (~r ′) and ~M (~r ′) over each triangular element. The two most commonly used

basis functions are pulse and Rao-Wilton-Glisson (RWG). While a pulse basis is simpler and

more easily implemented, it does not enforce continuity in the surface current from element

to element. On the other hand, the RWG basis was specifically created with continuity in

mind. The tangential fields (represented by the surface currents) on D should be continuous,

hence the RWG basis enables us to limit the possible solutions to those that exhibit the

desired continuity across element boundaries.

The equivalent currents can be expanded using the piece-wise linear RWG basis [43] as

~J(~r ′) =
N∑

n=1

xJn
~fn(~r ′) ~M(~r ′) =

N∑

n=1

xMn
~fn(~r ′) (4.1)

where xJn and xMn are complex expansion coefficients corresponding to the nth unique edge of

the surface (2D) mesh. An edge is defined as one of the three lines bounding each triangular

element. Edges that are only part of one element are known as boundary edges, and the

presence of such edges indicates that the mesh is not closed1. The non-boundary edges will

be shared by two elements, and a mesh with X elements will have at most 3X/2 unique

non-boundary edges. In (4.1) N is the number of non-boundary edges, and therefore this

basis does not allow current to travel over a boundary edge and violate continuity. The

1The framework developed does function for meshes that are not closed, but an analysis on the use of
such reconstruction surfaces with the SRM for spherical NF measurements is beyond the scope of this work.
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RWG vector basis function ~fn(~r ′) is defined for each edge as

~fn(~r ′) =





ln
2A+

n
~ρ+
n , ~r ′ in T+

n

ln
2A−n

~ρ−n , ~r ′ in T−n

0, otherwise

(4.2)

where where ln is the length of the nth edge, A±n is the area of the positive/negative el-

ement, and T±n refers to the positive/negative element associated with each edge. Each

non-boundary edge will separate two elements, one of which is arbitrarily referred to as

the ‘positive’ element and the other is referred to as the ‘negative’ element. The position

vector ~ρ+
n or ~ρ−n determines the direction of the basis function based on whether ~r ′ is in

the positive or negative element associated with the nth edge. The vector ~ρ+
n is defined as

the vector from the free vertex (opposite the edge) to ~r ′, while ~ρ−n is defined as the vector

from ~r ′ to the free vertex. With this basis, it can easily be shown that continuity of the

normal component (with respect to each edge) of the current is required. In other words,

the basis only supports distributions in which the current leaving an element is the same as

the current entering the adjacent elements. A further discussion on the use of RWG basis

functions can be found in [18].

Now that we have a method of discretely representing the current distributions, we need

a way to evaluate the integral equations in (2.14) and (2.15). The divergence, gradient,

and curl operators can all be computed analytically via the dyadic Green’s function [44].

The integration is performed numerically by using openly available symmetric Gaussian

quadrature rules for triangular elements [45]. We typically employ a 5th order, 7-point rule,

although the developed code can support higher order rules if more accuracy is desired.

An adaptive integration scheme could also be implemented to minimize the numerical in-

tegration error as well. Now we are able to construct the discrete matrix representation of
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the forward problem which allows us to compute the electric field at the observation points

produced by the current distribution. Our current distributions are now uniquely repre-

sented by two sets, or vectors, of complex expansion coefficients xJ and xM . The θ and ϕ

components of the produced electric field at the observation locations are represented as the

vectors Eθ and Eϕ, which are concatenated into the vector E. The relationship between the

expansion coefficients and the field is directly provided through the use of the RWG basis

functions and the numerical integration of (2.14) and (2.15). This allows us to compute

operators that map the expansion coefficients to the field produced at the measurement

locations as
[
AJ,S AM,S

]



xJ

xM


 =

[
E

]
. (4.3)

We now enforce Love’s equivalence condition to ensure that the reconstructed surface

currents are directly related to the true fields on D. We generate a surface that is a slightly

recessed copy of D and we denote this new surface as S′ and the volume bounded by it as

V ′. The uniqueness theorem can be used to show that [29]

~n× ~E(~r) = 0, ~r ∈ S′ =⇒ ~E(~r) = ~H(~r) = 0, ~r ∈ V ′. (4.4)

Therefore if we enforce that the tangential electric field produced by the equivalent currents

is zero on S′, then the fields in V ′ will necessarily be zero as well. We can achieve this

approximately by generating operators, similar to those in (4.3), that produce the tangential

~E on S′ from the equivalent currents at a finite number of points. We will denote these

operators as AJ,S′ and AM,S′ , and we can write

AJ,S′x
J + AM,S′x

M = 0. (4.5)
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Combining (4.3) and (4.5) we get




AJ,S AM,S

AJ,S′ AM,S′







xJ

xM


 =




E

0


 . (4.6)

This is the inverse problem that will be solved in the case of spherical measurements. To

simplify the notation, we will combine the S and S′ operators resulting in

[
AJ AM

]



xJ

xM


 =

[
E′
]

(4.7)

where E′ is the concatenation of E and 0. The length of the zero vector 0 is 2N ′ (the factor

of two is because the tangential field must be represented by two components), where N ′ is

the number of points at which the electric field is enforced to be zero on S′. In general we

oversample and ensure that N ′ > N because of the point-matching method employed [20].

Since the electric and magnetic currents contribute to the radiated electric field in

different ways (see (2.14) and (2.15)), the operator in (4.7) will be poorly scaled. This is

overcome by normalizing each of the two matrices AJ and AM using the procedure first

described in [1]. The two operators are scaled as

AJ =
1

RMS (AJ)
AJ (4.8)

AM =
1

RMS (AM )
AM , (4.9)

where the RMS value of an m by n complex matrix P is defined as:

RMS =

√√√√√
m∑
i=1

n∑
j=1
|P(i, j)|2

mn
. (4.10)
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The RMS value of AJ will typically be about 377 times larger than the RMS value of AM ,

and this ratio can generally be approximated by the intrinsic impedance of free space η.

Although this approximation becomes worse as the distance between S and D decreases,

many SRM implementations avoid calculating the RMS values and use η as the scaling

factor [36, 24]. In our case, we now formulate the normalized inverse problem as

[
AJ AM

]



xJ

xM


 =

[
E′
]
, (4.11)

where xJ and xM indicate that the unknowns found from this equation will differ from the

unknowns in (4.7) because of the scaling factors. Once the problem is solved, the scaling

factors must be factored out of the solution to produce xJ and xM . We further simplify

the notation by letting

A =

[
AJ AM

]
, x =




xJ

xM


 , f =

[
E′
]

(4.12)

and finally we can write

Ax = f . (4.13)

Given that f and A are known quantities, we would like to invert A to find the solution

of expansion coefficients x. Direct inversion of A is not possible because: (i) A is typically

either over- or under-determined; and (II) A is highly ill-conditioned and therefore non-

invertible. Finding a solution to (4.13) is generally not straightforward and requires some

consideration in selecting an appropriate method.
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4.1.1 Operator Characteristics

We will now take a deeper look at the characteristics of the discrete operator A from (4.13)

using an economic singular value decomposition (SVD). We can decompose the rectangular

matrix A into

A = UΣVH , (4.14)

where U and V are matrices of left and right singular (column) vectors, respectively, Σ

is a diagonal matrix with the singular values of A on the diagonal, and the superscript H

denotes the Hermitian operator. Since this is an economic SVD, Σ is a square matrix with

dimensions equal to the smallest dimension of A, which we will denote as P. Thus, we have

P singular values σi of A where i = {1, 2, · · · , P}. Substituting (4.14) into (4.13) produces

UΣVHx = f . (4.15)

Since U is a unitary matrix, we have

ΣVHx = UHf . (4.16)

Since Σ is a diagonal matrix (with singular values guaranteed to be non-zero [34]) and V

is also unitary, we can write

x = V diag

(
1

σi

)
UHf , (4.17)

where diag
(

1
σi

)
is a diagonal matrix with a diagonal elements equal to 1

σi
. If we denote

the ith columns of U and V as ui and vi, respectively, we can instead write the product

in (4.17) as a summation

x =

P∑

i

uHi f

σi
vi. (4.18)
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It is now evident that the desired solution x will be a summation of right singular vectors

with coefficients equal to

βi =
uHi f

σi
. (4.19)

In this formulation we will assume that the summation is ordered such that as i increases,

σi decreases monotonically.

We now expand the measured data vector f into

f = f + e, (4.20)

where f is the exact measured data and e represents the error present in the measurement

data (noise, interference, etc.). We can now rewrite (4.18) as

x =
P∑

i

[
uHi f

σi
vi +

uHi e

σi
vi

]
. (4.21)

Since we are dealing with an operator formed from discretizing a Fredholm integral equation

of the first kind, the singular values will decay gradually to zero [34]. In (4.21), we have two

terms with σi in the denominator that must be analyzed. The first term contains the exact

measured data f , and the discrete Picard condition states that the magnitude of uHi f will

decay at a faster rate than the singular values σi [46] and therefore this term does not pose

a problem. The problem arises in the second term, where the numerator is not guaranteed

to decay faster than the singular values. This causes this term to become extremely large

as i increases and results in a non-physical solution.

To overcome this problem we need to introduce some form of regularization, as men-

tioned earlier in Section 2.2.2. The obvious choice would be to use a truncated SVD expan-

sion of A, in which the solution is computed using (4.18) with the summation truncated

once the singular values fall below a certain threshold [47]. This regularization technique
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has been used in SRM applications [18], but the process of computing the SVD of A is very

computationally expensive and becomes impractical for larger problems.

4.1.2 Conjugate Gradient Method

In this work we will use the conjugate gradient (CG) method for least-squares problems,

which is a Krylov subspace regularization technique [48]. CG is an iterative method that

uses derivative based optimization to repeatedly update a solution until some convergence

criterion is met. It has been shown that the solution iterate at the kth CG iteration belongs

to an approximation of the subspace formed by the first k singular vectors, and therefore

truncating the CG iterations has the same regularizing effect as using a truncated SVD

procedure [34]. The main benefits of using CG Krylov subspace regularization as compared

to the truncated SVD are: (I) its significantly less computational complexity; and, (II) the

fact that it does not require explicit storage of the matrix operator. We apply the CG

method to solve the least-squares problem

AHAx = AHf , (4.22)

or equivalently the minimization of the functional [48]

C (x) =
∥∥Ax− f

∥∥2

S
. (4.23)

The steps of the CG technique will now be described as shown in [48]. We begin with an

initial guess for the solution which we denote as x(0). We denote the residual at the kth

iteration as

r(k) = Ax(k) − f . (4.24)
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The initial search direction is defined as

d(0) = AHr(0). (4.25)

At each iteration, the step length in the search direction is found as

α(k) =
dH(k)d(k)

(Ad(k))HAd(k)
. (4.26)

The solution is then updated according to

x(k+1) = x(k) + α(k)d(k), (4.27)

and the residual is updated as well, given by

r(k+1) = r(k) − α(k)Ad(k). (4.28)

We then check if the stopping criterion is met, specified as

if

∥∥x(k+1) − xk
∥∥
D

‖xk+1‖D
< tol, then stop. (4.29)

This stopping criterion ends the iterative process once the solution begins to ‘stagnate’, i.e.

not change significantly between two iterations. If the criterion is not met, compute the

new search direction vector as

d(k+1) = AHr(k+1) + β(k+1)d(k), (4.30)
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where β(k+1) is the Polak-Ribière weighting factor [49] defined as

β(k+1) =

(
AHr(k+1) −AHr(k)

)H
AHr(k+1)(

AHr(k)

)H
AHr(k)

. (4.31)

Other options for the search direction at each iteration are available, such as the Fletcher-

Reeves formulation [50], but in our experience the Polak-Ribière choice has resulted in the

most stability. Using the new search direction in (4.30) the process is repeated until the

condition in (4.29) is reached or a maximum number of iterations have been completed.

Regularization Parameter Selection

In general, selecting an appropriate tolerance value is difficult and requires some knowledge

of the problem. In addition, the residual error shown in (4.24) does not always indicate the

quality of the solution. The CG process causes the residual error to decrease monotonically,

but similar to truncated SVD regularization, in later iterations the system noise may begin

to contribute significantly to the reconstruction. During these iterations, CG finds a solution

that can more accurately produce the field and the noise on the measurement domain.

Since the noise typically contains high spatial frequency components, the solution begins to

develop extremely high variations of an unphysical nature in order to be able to produce

the measurement noise. This causes the residual error to decrease at the expense of the

solution quality and FF accuracy. This phenomenon can be observed by plotting how the

size of the solution (given by ‖x‖D) changes with respect to the residual error over the CG

iterations. This type of plot is known as an L-curve, and a visual example can be found

in [51].

As the residual error decreases, the solution size increases. After a certain point, known

as the ‘knee point’ of the curve, the solution size increases massively with relatively little

decrease in the residual error. This is the area of under-regularized solutions which we would
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like to avoid, and thus the goal is to truncate the iterations prior to this point; however,

early truncation leads to an over-regularized solution which we would also like to avoid.

In this work we have observed that the stopping criterion in (4.29) performs well with a

tolerance on the order of 10−3 to 10−4, but in general a method such as the L-curve should

be used to ensure robustness.

4.1.3 FF Computation

A solution found using CG results in a set of complex RWG edge coefficients. These

coefficients define the electric and magnetic currents on the reconstruction surface through

the relation defined in (4.1). Since we enforced Love’s condition, these currents are directly

related to the tangential fields on the reconstruction surface and can be used for diagnostic

purposes.

Additionally, we want to produce the FF radiation pattern from the equivalent currents.

To accomplish this we build another matrix operator AFF that maps the edge coefficients

to the electric (or magnetic, or both) field at the desired FF observation locations. This

operator is built in exactly the same way as the NF operator, except Love’s condition is

excluded. Once the operator is computed, the FF pattern can be computed using a simple

matrix-vector product (or forward solve)

fFF = AFFx. (4.32)

In fact, an operator can be constructed that produces the fields at any locations outside of

the reconstruction surface if desired.
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4.2 Phaseless Spherical Measurements

In the phaseless case, we will have two sets of amplitude-only measurement data acquired

over spherical surfaces. We will denote these two measurement domains as S and S. Two

NF operators are built in the same way as the operator in (4.13), resulting in a system

of two matrix equations that relates surface currents in x to field measurements f1 and f2

(both amplitude and phase) on the two surfaces respectively

A1x = f1 (4.33)

A2x = f2. (4.34)

We only measure the amplitude of f1 and f2, and thus we construct the cost functional for

the phaseless problem as

C (x) = C1 (x) + C2 (x) , (4.35)

where C1 (x) and C2 (x) represent the normalized error in the squared field amplitude on

each of the two measurement domains, calculated as

C1 (x) = η1

∥∥∥|A1x|2 − |f1|2
∥∥∥

2

S
(4.36)

C2 (x) = η2

∥∥∥|A2x|2 − |f2|2
∥∥∥

2

S
, (4.37)

where the | · |2 operator represents taking the squared amplitude in an element-wise fashion

of the discrete vector. The terms η1 and η2 are normalization factors introduced to equalize

the contributions of C1 (x) and C2 (x) to the overall cost functional. The normalization
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factors can be computed using

η1 =
∥∥∥|f1|2

∥∥∥
−2

S
(4.38)

η2 =
∥∥∥|f2|2

∥∥∥
−2

S
. (4.39)

To minimize the nonlinear functional in (4.35) with respect to x, we again use the conjugate

gradient method. Since we have modified the cost functional, the gradient of (4.35) must

be derived.

4.2.1 Phaseless Spherical Gradient Derivation

The derivation of the gradient of (4.35) will be performed in the continuous domain and

then the considerations for the discrete case will be explained. The norm and inner products

over D are defined in (2.23) and the norm and inner products over the measurement surfaces

are defined in (2.22). In the continuous domain the cost functional is

C (x) = C1 (x) + C2 (x) , (4.40)

where the data error terms C1 (x) and C2 (x) are given as

C1 (x) = η1

∥∥∥|A1x|2 − |E1|2
∥∥∥

2

S
(4.41)

C2 (x) = η2

∥∥∥|A2x|2 − |E2|2
∥∥∥

2

S
(4.42)

and are completely analogous to their discrete counterparts in (4.35) to (4.37). Our goal is

to optimize C (x) over x, but this means optimizing a real-valued functional over a complex

quantity. The challenge arises from the fact that any real-valued functional is not analytic

in the complex domain, and therefore is not complex differentiable [52]. To deal with this

difficulty we can treat the complex function x and its complex conjugate x∗ as indepen-
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dent quantities over which the minimization is performed. This method has been used in

similar applications including microwave tomography [53, 54], and makes use of Wirtinger

calculus [55].

We will start by finding the first variation of C1 (x), i.e. the derivative of C1 (x) with

respect to x when x is slightly varied by some function ψ (which has the same form as x).

∂C1 = lim
ε→0

C1 (x+ εψ)− C1 (x)

ε

= lim
ε→0

η1

∥∥∥|A1 (x+ εψ)|2 − |E1|2
∥∥∥

2

S
− η1

∥∥∥|A1x|2 − |E1|2
∥∥∥

2

S

ε
. (4.43)

If we denote the residual for each measurement domain as

Ri = |Aix|2 − |Ei|2 , i = {1, 2}, (4.44)

then (4.43) simplifies to2

∂C1 = lim
ε→0

η1

∥∥∥|A1 (x+ εψ)|2 − |E1|2
∥∥∥

2

S
− η1 ‖R1‖2S

ε

= lim
ε→0

η1

∥∥∥(A1x+ εA1ψ) (A1x+ εA1ψ)∗ − |E1|2
∥∥∥

2

S
− η1 ‖R1‖2S

ε

= lim
ε→0

η1

∥∥∥|A1x|2 − |E1|2 + ε2 |A1ψ|2 + 2εRe
[

(A1ψ) (A1x)∗
]∥∥∥

2

S
− η1 ‖R1‖2S

ε

= lim
ε→0

η1

∥∥∥R1 + ε2 |A1ψ|2 + 2εRe
[

(A1ψ) (A1x)∗
]∥∥∥

2

S
− η1 ‖R1‖2S

ε
. (4.45)

2Computing the term (A1ψ) (A1x)∗ (and similar products) requires some clarification concerning the
notation. Multiplication of two terms of the same ‘concatenated’ form as E1 or E2 is performed as follows:
multiply the individual tangential components (i.e. E1,t1 or E1,t2) together separately, and then concatenate
the results such that the product is of the same form as the two factors.
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Using the definition of the norm and inner product in (2.22), we can expand (4.45) as

∂C1 = lim
ε→0

1

ε

[
η1〈R1 + ε2 |A1ψ|2 + 2εRe

[
(A1ψ) (A1x)∗

]
, R1

+ ε2 |A1ψ|2 + 2εRe
[

(A1ψ) (A1x)∗
]
〉S − η1 ‖R1‖2S

]

= lim
ε→0

η1

ε

[
‖R1‖2S +

∥∥∥ε2 |A1ψ|2 + 2εRe
[

(A1ψ) (A1x)∗
]∥∥∥

2

S

+ 2Re〈R1, ε
2 |A1ψ|2 + 2εRe

[
(A1ψ) (A1x)∗

]
〉S − ‖R1‖2S

]

= lim
ε→0

η1

ε

[∥∥∥ε2 |A1ψ|2 + 2εRe
[

(A1ψ) (A1x)∗
]∥∥∥

2

S

+ 2Re〈R1, ε
2 |A1ψ|2 + 2εRe

[
(A1ψ) (A1x)∗

]
〉S

]
. (4.46)

Evaluating the limit results in

∂C1 = 2η1Re〈R1, 2Re
[

(A1ψ) (A1x)∗
]
〉S

= 4η1Re〈R1, (A1ψ) (A1x)∗〉S

= 4η1Re〈R1A1x,A1ψ〉S

= 4η1Re〈Aa1R1A1x, ψ〉D

= 2η1Re〈Aa1R1A1x, ψ〉D, (4.47)

and this expression can be expanded to

∂C1 = 〈[2η1Aa1R1A1x]∗ , ψ∗〉D + 〈2η1Aa1R1A1x, ψ〉D. (4.48)

At this point we consider the cost functional C̃1 (x, x∗) such that C̃1 (x, x∗) = C1 (x). Using
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Wirtinger calculus, we can write the first variation of C1 as

∂C1 =
∂C̃1

∂x
(ψ) +

∂C̃1

∂x∗
(ψ∗) , (4.49)

where the following equality holds

∂C̃1

∂x
(ψ) =

[
∂C̃1

∂x∗
(ψ∗)

]∗
. (4.50)

From (4.48), (4.49), and (4.50), we can see that

∂C̃1

∂x
(ψ) = 〈[2η1Aa1R1A1x]∗ , ψ∗〉D (4.51)

∂C̃1

∂x∗
(ψ∗) = 〈2η1Aa1R1A1x, ψ〉D, (4.52)

and therefore the discretized gradient operator [56, 57] (evaluated at x(k)) that we desire

will be of the form

g1 = 2η1A
H
1 r1,(k) �A1x(k). (4.53)

Similarly, the gradient operator for C2 is

g2 = 2η2A
H
2 r2,(k) �A2x(k), (4.54)

where � denotes a Hadamard (elementwise) product and the residuals r1,(k) and r2,(k) are

defined as

r1,(k) =
∣∣A1x(k)

∣∣2 − |f1|2 (4.55)

r2,(k) =
∣∣A2x(k)

∣∣2 − |f2|2 . (4.56)
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Therefore the gradient of C (x) evaluated at x(k) is given by

g(k) = 2η1A
H
1

(
r1,(k) �

(
A1x(k)

) )
+ 2η2A

H
2

(
r2,(k) �

(
A2x(k)

) )
. (4.57)

The search direction d(k) at each iteration is a combination of the gradient at the

current and previous iterations, given by the Polak-Ribière expression

d(k) = g(k) +

(
g(k) − g(k−1)

)H
g(k)

gH(k−1)g(k−1)

. (4.58)

4.2.2 Finding the Step Length

Once the search direction is computed, the step length α(k) is found by minimizing

C
(
x(k) + α(k)d(k)

)
(4.59)

with respect to α(k). In other words, α(k) is explicitly equal to

α(k) = arg min
α

C
(
x(k) + α(k)d(k)

)
. (4.60)

To accomplish this we start with an expression for C
(
x(k) + α(k)d(k)

)

C (x + αd) = C1 (x + αd) + C2 (x + αd) (4.61)
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where the (k) subscripts have been dropped for simplicity. We first expand C1 (x + αd) as

C1 (x + αd) =
∥∥∥|A1 (x + αd)|2 − |f |2

∥∥∥
2

S

=
∥∥∥(A1x + αA1d)� (A1x + αA1d)∗ − |f |2

∥∥∥
2

S

=
∥∥∥|A1x|2 + α2 |A1d|2 + α

[
(A1x)� (A1d)∗ + (A1x)∗ � (A1d)

]
− |f |2

∥∥∥
2

S

=
∥∥∥r1 + α2 |A1d|2 + 2αRe

[
(A1x)� (A1d)∗

]∥∥∥
2

S
. (4.62)

To simplify (4.62) further, we use the following

‖p + q + s‖2 = 〈p + q + s,p + q + s〉

= ‖p‖2 + ‖q‖2 + ‖s‖2 + 2Re〈p,q〉+ 2Re〈q, s〉+ 2Re〈p, s〉. (4.63)

The expression in (4.62) then becomes a fourth-degree polynomial in alpha

C1 (x + αd) = α4
∥∥∥|A1d|2

∥∥∥
2

S
+ 4α3Re〈|A1d|2 , (A1x)� (A1d)∗〉S

+ 2α2
[
Re〈r1, |A1d|2〉S +

∥∥Re
(

(A1x)� (A1d)∗
)∥∥2

S

]

+ 4αRe〈r1, (A1x)� (A1d)∗〉S + ‖r1‖2S . (4.64)

In a similar fashion, C2 (x + αd) can be written as

C2 (x + αd) = α4
∥∥∥|A2d|2

∥∥∥
2

S
+ 4α3Re〈|A2d|2 , (A2x)� (A2d)∗〉S

+ 2α2
[
Re〈r2, |A2d|2〉S +

∥∥Re
(

(A2x)� (A2d)∗
)∥∥2

S

]

+ 4αRe〈r2, (A2x)� (A2d)∗〉S + ‖r2‖2S . (4.65)

Adding (4.64) and (4.65) and differentiating results in a third-degree polynomial in α.

The roots of this polynomial expression are found numerically, resulting in a pair of complex
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conjugate roots and one real root. The step length is then taken to be the real root. Once

the step length is determined, the solution is updated in the same way as the amplitude-

and-phase case using (4.27). The iterations are truncated once the condition in (4.29) is

reached or the maximum number of iterations have been completed.

4.3 Planar Measurements

In a planar measurement system, the electric field is measured over a planar grid, typically

with uniformly spaced points and rectangular in shape. A simple schematic of a typical

planar measurement setup is shown in Figure 4.1. The two measurement planes S and

x
y

z

S1 S2

D

AUT

Fig. 4.1: A typical planar NF measurement setup. The x and y components of the
electric (or magnetic) field are sampled over a uniform planar domains S and S. The
reconstruction surface is denoted as D.

S shown are only necessary for phaseless measurements, which will be described in more

detail in Section 4.3.1. For amplitude-and-phase measurements, only one measurement

plane is required for an accurate NF-FF transformation. On these measurement planes the
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tangential electric field is measured, i.e. Ex and Ey.

With the planar measurement configurations, a few simplifications can be introduced.

We first let the reconstruction surface D be an infinite plane slightly in front of the aperture

of the AUT, as shown in Figure 4.2. This infinite plane divides the space into two regions:

AUT

S2S1

D

z

y +1

�1

Free space Free space

~J

~M

Fig. 4.2: The reconstruction surface D and measurement surfaces S and S in relation
to the AUT. Note that the surface currents ~J and ~M are equivalent to the AUT in terms
of their radiation to the right of the infinite plane.

one that contains the AUT (the ‘inner’ region) and one that contains the measurement

planes (the ‘outer’ region). The aim is to find a set of equivalent currents that radiate

the same field as the AUT in the outer region, and for this reason we can impose any

restriction on the field in the inner region. Instead of enforcing Love’s condition, we enforce
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that the inner region should behave as a PEC, i.e. Schelkunoff’s equivalence condition.

Using the reciprocity theorem it can be shown that any electric current next to a PEC will

not radiate [29], and therefore we are left with only the equivalent magnetic current ~M

as shown in Figure 4.3. Currently ~M would radiate next to a PEC into the outer region

consisting of free space. In this state we would need to find the Green’s function for this

configuration, but this can be avoided by employing another simplification. Image theory

states that ~M radiating next to an infinite PEC is equivalent to 2 ~M radiating in free space

when we are only concerned about the outer (free space) region [29]. This allows us to use

the well-known free space Green’s function to compute the radiation integrals needed to

model the forward problem. It is important to note that although we have made several

simplifications thus far, we have not made any approximations. Until this point, each step

has been equivalent to the initial problem in Figure 4.2.

With these simplifications in place, the electric field integral equations shown in (2.14)

and (2.15) become

~E(~r) = −2∇×
∫

D

~M(~r ′) g0(~r, ~r ′)d~r ′. (4.66)

Since we are not concerned with any z components of ~E or ~M , (4.66) can be decoupled into

two scalar equations

Ex(~r) = 2

∫

D

My(~r
′)
∂g0(~r, ~r ′)

∂z′
d~r ′ (4.67)

Ey(~r) = −2

∫

D

Mx(~r ′)
∂g0(~r, ~r ′)

∂z′
d~r ′. (4.68)

In the present state D is infinite plane, which is not possible to realize physically. To

overcome this practical limitation we truncateD so that it is slightly larger than the aperture

of the AUT. Since planar measurement systems are typically used for directive antennas,

the electric field, and therefore equivalent magnetic current, on the truncated portion of

the plane will be negligible. For this reason the excluded part of the integrals in (4.67)
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AUT

S2S1

z

y +1

�1

Free spacePEC

D

~M

Fig. 4.3: A scenario equivalent to Figure 4.2. The effect of the electric equivalent current
has been negated by the presence of the PEC.
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and (4.68) result in minimal error. These equations represent the forward problem and are

what we discretize to create an operator that relates the equivalent current to the measured

electric field.

The reconstruction surface D is discretized into uniform square elements of side length

λ/10. To represent the x and y components of the equivalent current on the reconstruction

surface we use pulse basis functions

~M(~r ′) =
N∑

n=1

(
xMn,xx̂+ xMn,yŷ

)
fn(~r ′), (4.69)

where xMn,x and xMn,y are complex expansion coefficients corresponding to the x and y compo-

nents of the magnetic current, respectively, and fn(~r ′) is the pulse basis function associated

with the nth element, defined as

fn(~r ′) =





1, ~r ′ in Tn

0, otherwise

(4.70)

where Tn refers to the nth element. Although the pulse basis does not enforce continuity,

it is used for the planar SRM to facilitate the addition of multiplicative regularization that

will be discussed in Chapter 5. Discretizing equations (4.67) and (4.68), we are able to

write the linear integral equations as a matrix equation




Ayx 0

0 Axy







xMx

xMy


 =




Ey

Ex


 . (4.71)

The submatrices Ayx and Axy are the discrete forms of (4.68) and (4.67), respectively.

The vectors Ex and Ey contain the measured electric field as sampled on the measurement
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plane. This matrix equation can then be written in a simpler form as

Ax = f . (4.72)

It is important to note that because of the decoupled nature of the integral equations, half of

the elements in A will be zero. Any operations that involve A (i.e. matrix-vector products,

Hadamard products, Hermitian, etc.) have been implemented in an efficient way to take

advantage of this property. This system is then solved using the CG scheme outlined in

detail in Section 4.1.2. Once the inverse problem is solved, the pulse basis coefficients can

then be used to generate the FF using a matrix operator produced in a similar way to A.

4.3.1 Phaseless Planar Measurements

When phase information is not available, a NF-FF transformation can still be performed if

amplitude measurements over two (or more) measurement planes is available. Two operators

are formed in the same way as that in (4.72), resulting in

A1x = f1 (4.73)

A2x = f2. (4.74)

In this case we use the same cost functional as the spherical case (4.35), and the minimization

is also performed in the same way.
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Chapter 5

Multiplicatively Regularized SRM

As mentioned in Section 4.1.2, selecting an appropriate regularization constant, or equiv-

alently the number of CG iterations, typically requires some knowledge of the problem

and can be difficult. Some common methods used for selecting an appropriate amount

of regularization include the previously mentioned L-curve method and generalized cross-

validation [58], but these methods can become computationally expensive for some prob-

lems. Such methods have also been designed to be used with linear ill-posed problems, and

are not necessarily appropriate for nonlinear ill-posed problems such as the use of phaseless

NF antenna measurements to reconstruct equivalent currents [59]. To avoid this limita-

tion, we adapt a multiplicative regularization (MR) scheme originally developed for inverse

scattering [28] and image deblurring [60] to the source reconstruction problem. The mod-

ified scheme is developed for planar NF measurements only due to the complexity of the

implementation for other measurement geometries, but to the best of our knowledge the

scheme could be extended to other geometries in the future. As will be seen, the three main

advantages of the utilized MR are as follows: (I) it provides an automated way to deter-

mine the regularization weight during the inversion process; (II) it provides the so-called

adaptive regularization which is beneficial for nonlinear ill-posed problems [59]; and, (III) it
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simultaneously provides Laplacian regularization, which is useful for suppressing spurious

oscillations in the reconstructed current, and edge preserving regularization, which is useful

for the detection of defects in the AUT.

5.1 Modified Cost Functional

Multiplicative regularization is introduced by modifying the cost-functional shown in (4.35)

to include a term referred to as a multiplicative regularizer. The formulation presented

here has been modified from that presented in [60] and extended in [61]. The modified cost

functional is

C (x) =
(
C1 (x) + C2 (x)

)
CMR (x) , (5.1)

where CMR (x) is the multiplicative regularizer defined as a weighted L2-norm

CMR (x) =

∫

D

b2(~r ′)
(∣∣∇x

(
~r ′
)∣∣2 + δ2

)
d~r ′. (5.2)

The purpose of the multiplicative regularizer is to penalize solutions that are undesirable—

what exactly is meant by ‘undesirable’ will be discussed shortly—thereby favouring a certain

set of appropriate solutions. In (5.2), b(~r ′) is a positive weighting function and δ is a positive

steering parameter. The exact form of these terms will be shown in detail in the following

section.

Before discussing the minimization of (5.1), it is important to emphasize the reason for

introducing a multiplicative constraint. While an additive regularizer (such as the Tikhonov

regularizer in (2.26)) requires an additional regularization weighting parameter, the multi-

plicative regularizer is weighted by the sum of the error terms C1 (x) and C2 (x). If the data

error is large, the regularization term is weighted more heavily by definition. As the solution

estimate becomes closer to the true solution, the data error decreases and the amount of
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regularization is decreased automatically. As noted above, this inherent ability is known as

adaptive regularization [62, 63], which is provided here in an automated fashion, thus re-

moving the difficult task of selecting an appropriate regularization weight at each step of the

iterative minimization process. As an added benefit, the multiplicative regularizer in (5.2)

has been shown to have ‘edge-preserving’ characteristics as well as Laplacian regularization

characteristics that should result in an improved equivalent current reconstruction [64].

5.2 Conjugate Gradient Minimization

As with the previous methods, we use the CG method to minimize the cost functional

in (5.1). This method requires us to find an update x(n+1) from the previous estimate of

the solution x(n) during the nth CG iteration. To formulate the update expression, we need

to compute the gradient g(n) of (5.1) required during the nth CG iteration, evaluated at

x(n). To accomplish this we need the gradients of each of the three terms in (5.1).

5.2.1 Finding the Gradient of the Cost Functional

We begin by finding the gradient of CMR (x) evaluated at x(n), which we denote as gMR,(n).

Since we need the gradient evaluated at x(n), we start with an expression for CMR (x)

evaluated at x(n)

CMR

(
x(n)

)
=

∫

D

b2
(n)(~r

′)
(∣∣∇x(n)

(
~r ′
)∣∣2 + δ2

(n)

)
d~r ′. (5.3)

We now define b(n)(~r
′) explicitly as

b(n)(~r
′) = A−

1
2

(∣∣∇x(n)

(
~r ′
)∣∣2 + δ2

(n)

)− 1
2
, (5.4)
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where A is the total area of the reconstruction plane D. At this point, it is important to

notice that this specific choice for b(n)(~r
′) results in CMR

(
x(n)

)
≡ 1. This is beneficial

because it removes the need to compute CMR

(
x(n)

)
during each CG iteration. We then

define the steering parameter δ2
(n) as

δ2
(n) =

C1

(
x(n)

)
+ C2

(
x(n)

)

2∆x∆y
, (5.5)

where ∆x and ∆y are the dimensions of each square element on D. The gradient of (5.3)

can be derived as [53]

gMR,(n) = −∇ ·
(
b2

(n)∇x(n)

)
. (5.6)

From this expression we can rationalize the chosen form of δ(n) given in (5.5). When the

solution estimate x(n) is far from the true solution, C1

(
x(n)

)
and C2

(
x(n)

)
will be (relatively)

large, which will cause the steering parameter δ(n) to be large as well. This results in the

weighting function b(n) becoming approximately equal to A−
1
2

∣∣δ(n)

∣∣−1
. Since b(n) is no

longer a function of spatial coordinates, gMR,(n) ≈ −b2
(n)∇2 x(n). The presence of the

Laplacian operator introduces smoothing properties that are favorable while the solution

estimate is far from the true solution, such as in early iterations of the CG procedure.

On the contrary, when x(n) is close to the true solution, causing C1

(
x(n)

)
, C2

(
x(n)

)
, and

δ(n) to be small, resulting in b(n) becoming approximately equal to A−
1
2

∣∣∇x(n)

∣∣−1
. In

this case, gMR,(n) takes the form of a weighted Laplacian operator that has edge-preserving

characteristics [65] which are beneficial when the estimate is close to the true solution.

The gradients of C1 (x) and C2 (x) evaluated at x(n) are given in (4.53) and (4.54). A

detailed derivation of these gradients can be found in Section 4.2.1. The complete gradient

of C (x) evaluated at x(n) is given by

g(n) = CMR

(
x(n)

) (
g1,(n) + g2,(n)

)
+
(
C1

(
x(n)

)
+ C2

(
x(n)

) )
gMR,(n), (5.7)
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but since CMR

(
x(n)

)
≡ 1, we have

g(n) = g1,(n) + g2,(n) +
(
C1

(
x(n)

)
+ C2

(
x(n)

) )
gMR,(n). (5.8)

Note that the weight of gMR,(n) in the above equation changes automatically and adap-

tively, thus resulting in an automated adaptive regularization scheme. Using the expressions

in (4.54), (4.53), and (5.6) we get

g(n) = 2η1A
H
1 r1,(n) �A1x(n) + 2η2A

H
2 r2,(n) �A2x(n)

+
(
C1

(
x(n)

)
+ C2

(
x(n)

) )[
−∇ ·

(
b2

(n)∇x(n)

) ]
. (5.9)

Now that we have the gradient operator, we can explain the formulation of the CG proce-

dure. During the nth CG iteration, the update equation for the solution estimate is

x(n+1) = x(n) + α(n)d(n), (5.10)

where d(n) is the search direction and α(n) is a real-valued step length in the search direc-

tion. In CG methods the search direction is typically a combination of the gradient at the

current iteration and the previous search direction. In this work the search direction d(n)

is computed as

d(n) = g(n) + β(n)d(n−1), (5.11)

where β(n) is a weighting parameter. Again, we use the Polak-Ribiére weighting factor given

by [49]

β(n) =
gH(n)

(
g(n) − g(n−1)

)
∥∥g(n−1)

∥∥2

D

. (5.12)
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5.2.2 Finding the Step Length

The step length α(n) is found by analytically minimizing C (x) along the direction d(n), in

the same manner as discussed for the phaseless spherical case in Section 4.2.1. In this case

the expression for C
(
x(n) + α(n)d(n)

)
includes the MR term and is given by

C (x + αd) =
(
C1 (x + αd) + C2 (x + αd)

)
CMR (x + αd) , (5.13)

where the (n) subscripts have again been excluded for simplicity. The terms C1 (x + αd) and

C2 (x + αd) have been derived in Section 4.2.1 and are given in (4.64) and (4.65). We now

need to find an expression for CMR (x + αd). We begin by using the following relationship

CMR (x) =

∫

D

b2(~r ′)
(∣∣∇x

(
~r ′
)∣∣2 + δ2

)
d~r ′ = ‖b∇x‖2D + δ2 ‖b‖2D , (5.14)

and thus we can write

CMR (x + αd) = ‖b�∇ (x + αd)‖2D + δ2 ‖b‖2D

= 〈b�∇ (x + αd) ,b�∇ (x + αd)〉D + δ2 ‖b‖2D

= α2 ‖b�∇d‖2D + 2αRe〈b�∇x,b�∇d〉D + ‖b�∇x‖2D + δ2 ‖b‖2D ,

(5.15)

showing that CMR (x + αd) is a second-degree polynomial in α as shown in [60].

Using (4.64), (4.65), and (5.15), the expression in (5.13) becomes a sixth-degree polyno-

mial in α, and differentiation leads to a fifth-degree polynomial. The roots of the fifth-degree

polynomial are found numerically, resulting in two pairs of complex conjugate roots and

one real root. The step length is then taken to be the real root.

Once the solution update x(n+1) is found, we then check if the convergence criterion

in (4.29) is met. Otherwise the process continues until the condition is satisfied or a preset
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maximum number of iterations has occurred.

5.2.3 Finding the Initial Guess

One important aspect that has not yet been discussed is the initial guess for the unknowns

x(0). In this work we demonstrate the robustness of the methods and because of this we use

a simplistic initial guess based on back propagation. The initial back propagation estimation

is found according to

xBP = AH
1 |f1| . (5.16)

We use the closest measurement plane (S) for this estimation because more information

about the evanescent radiation is captured when compared to the farther plane. The in-

creased information quality results in a more accurate initial guess which in turn leads to

improved convergence and stability. We then find the real value ζ such that C (ζxBP) is a

minimum with respect to ζ, and the initial guess for the solution becomes

x(0) = ζxBP. (5.17)

This concludes the presentation of the proposed MR-SRM. In the next chapter, the

advantages of using MR in conjunction with the SRM will be presented.
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Chapter 6

Results

The SRM algorithms developed for planar and spherical systems were tested with synthetic

NF measurement data for verification and evaluation, and the planar algorithms were tested

with experimental data as well. All of the tests were performed on a 2013 iMac with a 2.9

GHz quad-core Intel i5 processor equipped with 16 GB of RAM.

6.1 Error Metrics

To evaluate the performance of the various SRM algorithms, a set of error metrics is re-

quired. The first error metric that is used is the FF error, defined as

FF error =

∥∥∣∣Etrue
FF

∣∣−
∣∣ESRM

FF

∣∣∥∥
∥∥∣∣Etrue

FF

∣∣∥∥ × 100%, (6.1)

where Etrue
FF is the true FF electric field and ESRM

FF is the FF electric field produced by

the SRM. Additionally, sometimes the true FF is not available, such as the case during

experimental tests. In these cases, a similar expression to (6.1) is used to evaluate the
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discrepancy between two FF patterns, given by

FF discrepancy =

∥∥|EFF | −
∣∣ESRM

FF

∣∣∥∥
‖|EFF |‖

× 100%, (6.2)

where EFF is the FF produced by the alternative method, such as the IFT or ME. It

is important to note that this metric does not give any indication of the error in the FF

pattern produced by the SRM, it simply quantifies how different the result is from the result

produced by a different technique.

Secondly, it is useful to quantify how well the optimization process was able to ‘fit’ the

measured data. To this end we take note of the C1 and potentially C2 terms of the cost

functional after the final CG iteration. Expressed as a percentage, these values represent

how accurately the equivalent currents are able to produce the NF data, although this

accuracy does not directly correlate to accuracy of the corresponding FF pattern.

In addition, the convergence behaviour of the SRM during the CG minimization process

is observed for each test. The memory and time requirements are also recorded to evaluate

the practical limitations of each method.

6.2 Synthetic Tests

The initial tests of the SRM algorithms were performed on synthetically-generated NF

measurement data. The ‘AUT’ for many of these tests consisted of an array of elementary,

(i.e. Hertzian), dipoles. The use of such dipoles allowed for generation of the electric field

in both the NF and FF regions analytically. The EFIE in (2.14) can be used to compute the

electric field from an arbitrarily positioned infinitesimal dipole. The EFIE is evaluated by

considering each infinitesimal dipole as an ‘impulse’ function of electric current and through

the use of the dyadic Green’s function. More specifically, the electric field can be computed
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as

~E (~r) = −jηk0G
(
~r, ~r ′

)
· ~J
(
~r ′
)
, (6.3)

where ~J (~r ′) is a unit vector in the direction of the elementary dipole (we arbitrarily assign

a magnitude of one) and G (~r, ~r ′) is the dyadic Green’s function computed analytically as

G
(
~r, ~r ′

)
=

[
1 +

1

k2
0

∇∇′D ·
]
g0I, (6.4)

with I being the unit dyad. The expression in (6.3) is used to compute the field from each

elementary dipole and the total field can then be found using superposition.

Noise is also added to the synthetic measurement data to analyze the performance of

the various algorithms under non-ideal conditions. The measurement noise for each data

point i is generated according to

fnoise
i = Υiρ |fmax| ejΨi , (6.5)

where Υi is a random number between -1 and 1 (uniformly distributed), Ψi is a random

number between 0 and 2π (also uniformly distributed), and ρ is a positive parameter that

controls the amount of noise added. A value of 0.01 for ρ results in the noise having a

potential maximum value equal to 1% of the maximum measured electric field magnitude.

Once generated, the noise vector is added to the synthetic measurement data prior to

inversion.

6.2.1 Spherical SRM Tests

The synthetic test with the developed SRM for spherical NF measurements is performed on

an array consisting of five y-directed elementary dipoles, as shown in Figure 6.1. The dipoles

are arranged in a ‘plus sign’ configuration with a spacing of λ/2 and excited with uniform
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magnitude and phase. The expression in (6.3) is used to generate the electric field produced

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

x [λ]

y 
[λ

]
Array of elementary dipoles

Fig. 6.1: The synthetic AUT formed by five elementary dipoles.

by the dipoles on two spherical measurement domains with radii of 3λ and 6.3λ. Since the

maximum radial extent (MRE) of the AUT is half a wavelength, a sampling resolution of

three degrees over both θ and ϕ is sufficient [42] and a realistic measurement scenario. This

sampling resolution results in 7381 measurement locations, and therefore 14762 complex

(amplitude and phase) data points (Eθ and Eϕ) on each measurement domain. Note that

only the measurement data from the first domain is used for the amplitude and phase SRM.

The generated synthetic data are shown in Figure 6.2, displaying the magnitude and

phase of the θ and ϕ components of the measured electric field on the first measurement

domain, including the 1% added noise.

For the first example we enclose the elementary dipoles with a spherical reconstruction

surface of radius 0.75λ. We set the maximum edge length of the triangular mesh elements

(generated using the open-source software GMSH [66]) to be λ/10. Further refinement

of the mesh did not result in any significant reduction in the reconstruction error. This
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Fig. 6.2: The synthetically generated NF data from the five-dipole array on the measure-
ment domain located 3λ away from the AUT. Both the (a,b) θ and (c,d) ϕ components of
the measured electric field are shown including the 1% added noise.
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discretization resulted in 1722 triangular elements, and thus 2583 RWG basis functions (one

for each edge of the mesh). Since we must reconstruct both electric and magnetic currents

in the spherical case, this problem results in 5166 unknowns and thus an operator size

(for each measurement domain) of 14762 × 5166. Although these operators are dense they

are never explicitly constructed in their entirety, but rather are efficiently approximated,

as explained in what follows. The discretization of the problem leads to operators that

are numerically rank-deficient, i.e. the operators contain many equations that contain

very similar (redundant) information. For this reason we use adaptive cross approximation

(ACA) [67] to build and store compressed operators that are approximately equal to their

dense counterparts, reducing both time and memory requirements. In order to enforce

Love’s condition we add ‘virtual’ measurement data (E = 0) at points located on a spherical

surface that is of a radius λ/10 smaller than the radius of the reconstruction surface. For

this example enforcing Love’s condition results in 2668 added data points, and since we

enforce that the tangential electric field is zero at these points (two components) the size

of each operator is increased to 20138 × 5166.

The equivalent electric and magnetic current distributions are generated by applying

the SRM to both the phaseless measurement data and the data including both amplitude

and phase. The equivalent currents are then used to produce the FF pattern over a spherical

region of radius 1000λ. The true FF pattern is produced analytically over the same region

and is used for comparison. Figure 6.3 shows a comparison of the produced FF magnitude

patterns. To further clarify the difference between the reconstructed and true FF patterns,

Figure 6.3 also shows plots of the residual FF pattern (i.e. the absolute difference between

the normalized true FF pattern and the normalized FF pattern using the SRM) for each

case.

The magnitude and direction of the produced equivalent surface currents are shown in

Figure 6.4. The current distributions exist over the complete spherical surface but only one
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Fig. 6.3: A comparison of the FF patterns for the five-dipole array. The true FF pattern
(a) is compared to the FF patterns produced using (b) SRM with both amplitude and phase
data and (d) SRM with phaseless data. Residual plots are also shown in (c) and (e) for the
amplitude-and-phase and phaseless cases, respectively.
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half (z > 0) of the surface is shown for simplicity. Enforcing Love’s condition forces the

currents to relate to the fields on the reconstruction surface according to (2.27) and (2.28).

To verify this we plot the actual tangential electric field on the reconstruction surface and

qualitatively observe the relationship. Figure 6.5 shows the tangential electric field produced

by the AUT on the reconstruction surface compared with the reconstructed magnetic current

distributions. The point of view for these plots is from the positive z for clarity. Note that

the directions of the currents and fields will be perpendicular to each other as a result

of the cross-products in the boundary conditions. With this in mind, we can see that the

reconstructed magnetic current distribution has the same relative magnitude distribution as

the true tangential electric field and the correct direction in the case when phase information

is used. Without phase information the magnitude accuracy degrades slightly. Keep in mind

that the reconstructed currents are attempted solutions to an ill-posed inverse problem, and

we cannot expect excellent agreement with the true fields.

The FF error, CG times, and memory requirements are shown in Table 6.1. The time

Table 6.1: Five-Dipole Array SRM Results - With Love’s Condition

SRM (w/phase) SRM (phaseless)

FF error 1.20% 6.59%

Iterations 34 500

CG Time 6.37 s 2 min 32 s

Memory 673 MB 795 MB

required to build the operators is 34 minutes and 50 seconds when phase information is used

and increases to 44 minutes and 54 seconds in the phaseless case. The FF operator required

20 minutes and 13 seconds to build, but this is highly dependent on the desired resolution

of the FF pattern. It should be noted that the condition number of the operator matrices

is approximately 1019 when Love’s condition is not enforced and decreases to 107 when

Love’s condition is enforced. The improvement in conditioning reduces the ill-posedness of
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Fig. 6.4: The produced equivalent currents on the spherical reconstruction surface of radius
0.75λ using Love’s condition. The electric and magnetic currents generated from the SRM
applied to complex (amplitude and phase) data are shown in (a) and (b), while the currents
produced using SRM with phaseless data are shown in (c) and (d).
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Fig. 6.5: The true tangential electric field on the reconstruction surface (a) compared with
the reconstructed magnetic current distributions produced by the SRM using complex (b)
and phaseless data (c).
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the system and increases the stability of the solution process. The agreement between the

FF patterns produced by SRM and the true FF pattern is very good, and the decrease in

accuracy when phase information is removed is expected. The time requirements for these

algorithms are dominated by the time taken to build the matrix operators, and is the main

limitation of the SRM. The other limitation of this implementation is the large memory

requirement that may become impractical if a larger reconstruction surface is needed for a

larger antenna.

Please note that in the developed implementation it is not a requirement that the

reconstruction surface be spherical in shape. In fact, the reconstruction surface can be any

closed surface that completely surrounds the AUT. This feature can be taken advantage of

to reduce the number of unknowns by using a surface that is conformal to the AUT.

6.2.2 Planar SRM Tests

Elliptical Array

The first synthetic test is performed on a uniformly-spaced array of elementary dipoles,

all oriented in the y direction. The elements are uniformly spaced at λ/2 intervals and

span 8λ along the x axis and 4λ along the y axis, as shown in Figure 6.6. The excitation

magnitude and phase of the array elements is uniform in this first example. The expression

in (6.3) is used to generate the field produced by the array on two measurement planes,

located 3λ and 5.3λ away from the array, in the direction of the positive z axis. The

electric field is computed at λ/2 intervals over the measurement planes, each having x

and y dimensions of 30λ × 30λ. This results in 7442 pieces of measurement data (Ex and

Ey) on each measurement plane. Just as in the spherical examples, only the first plane

of measurement data is used for the amplitude-and-phase SRM. The amplitude and phase

of the NF measurement data is shown in Figure 6.7 for reference, with 2% noise added

according to (6.5). Note that for this example the antenna is linearly polarized in the y
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Fig. 6.6: The synthetic AUT consisting of a uniformly-spaced array of elementary dipoles.

direction, thus, the ‘measured’ Ex is very small compared to Ey and not shown here.

In this example, the reconstruction surface D is a planar surface of dimensions 8.5λ×

4.5λ (slightly larger than the AUT), discretized into uniform square elements of side length

λ/10, and placed a distance of λ/20 in front of the array. This discretization leads to 3956

elements, and therefore 7912 unknowns (Mx and My). This results in each operator having

a size of 7442×7912, although half of the elements are zero because of the decoupled nature

of the integral equations, as explained in Section 4.3. The parts of the operator that are zero

are not computed, stored, or used during the computation of any matrix-vector products.

The equivalent currents are produced from the phaseless NF data using MR-SRM as

well as basic SRM (without MR) for comparison. Once the equivalent magnetic currents

are found, the FF is computed on a spherical surface with a radius of 1000λ. The results

generated from applying SRM to the measurement data with both amplitude and phase

information are included as well. The FF pattern from the true sources as well as the FF

produced using ME (amplitude and phase data) and the IFT (phaseless data) are generated

for comparison. The IFT method used is explained in further detail in [41]. It should be
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Fig. 6.7: The synthetically generated NF data (Ey) on the measurement planes located
(a) 3λ and (b) 5.3λ away from the AUT.
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noted that the initial guess for the IFT takes into account the shape of the AUT aperture

as well as the direction of the main beam, while the SRM and MR-SRM do not have any

information regarding the beam direction. For these tests a tolerance value of 10−3 is used

to determine when the iterative procedures should be stopped.

The results of applying the various NF-FF transformation methods are shown in Fig-

ure 6.8, which compares the performance of the amplitude-and-phase algorithms, and Fig-

ure 6.9, which compares the performance of the phaseless algorithms. It should be noted

that the displayed FF patterns are truncated at θ = ±65◦, consistent with the critical angle

for planar measurements determined by the size and location of the farthest measurement

plane [68].

Additionally, a second synthetic test was performed on the same setup as above, with

the exception of the excitation amplitudes of the dipole elements. In this case, the elements

are excited in a cosine-tapered manner along the x-axis, with a maximum of one in the

center and decreasing to zero at the right and left edges of the array. The resulting FF

patterns are shown in Figure 6.10, for the amplitude and phase data, and Figure 6.11 for

the phaseless data.

The FF error levels for the uniform and tapered array tests are shown along with

the number of CG iterations, minimization time, and memory requirements in Tables 6.2

and 6.3. As can be seen from the FF plots and the tabulated results, the FF patterns

produced by the SRM-based techniques agree quite well with the true FF pattern, and the

inclusion of MR for the phaseless test resulted in a slight improvement in the FF accuracy

compared to basic SRM. The main disadvantage exhibited by the SRM in comparison to

ME-based methods are the time and memory requirements. For this example, the IFT and

ME transformations were performed almost in real time and required negligible amounts of

memory. On the other hand, the SRM FF patterns were consistently more accurate than

those produced by ME and the IFT, especially when considering the sidelobes. We speculate
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Fig. 6.8: A comparison of the uniform array FF pattern produced using NF data with both
amplitude and phase at two different cuts: ϕ = 0◦ and ϕ = 90◦. Results are shown for
the true FF computed analytically (blue solid line) and the FF produced by: (i) SRM (red
dashed line) and (ii) ME (green dash-dotted line).
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Fig. 6.9: A comparison of the uniform array FF pattern produced using phaseless NF data
at two different cuts: ϕ = 0◦ and ϕ = 90◦. Results are shown for the true FF computed
analytically (blue solid line) and the FF produced by: (i) SRM without MR (red dashed
line); (ii) MR-SRM (black dash-dotted line); and, (iii) IFT (magenta dotted line).

- 74 -



Phaseless Antenna Characterization 6.2 Synthetic Tests

−40 0 40
−50

−40

−30

−20

−10

0

θ [◦] ϕ = 0◦

A
m

p
lit

u
d

e
 [

d
B

]

 

 

True FF

SRM

ME

(a)

−40 0 40
−50

−40

−30

−20

−10

0

θ [◦] ϕ = 90◦

A
m

p
lit

u
d

e
 [

d
B

]

 

 

True FF

SRM

ME

(b)

Fig. 6.10: A comparison of the tapered array FF pattern produced using NF data with
amplitude and phase at two different cuts: ϕ = 0◦ and ϕ = 90◦. Results are shown for
the true FF computed analytically (blue solid line) and the FF produced by: (i) SRM (red
dashed line) and (ii) ME (green dash-dotted line).

- 75 -



Phaseless Antenna Characterization 6.2 Synthetic Tests

−40 0 40
−50

−40

−30

−20

−10

0

θ [◦] ϕ = 0◦

A
m

p
lit

u
d

e
 [

d
B

]

 

 

True FF

SRM

MR−SRM

IFT

(a)

−40 0 40
−50

−40

−30

−20

−10

0

θ [◦] ϕ = 90◦

A
m

p
lit

u
d

e
 [

d
B

]

 

 

True FF

SRM

MR−SRM

IFT

(b)

Fig. 6.11: A comparison of the tapered array FF pattern produced using phaseless NF data
at two different cuts: ϕ = 0◦ and ϕ = 90◦. Results are shown for the true FF computed
analytically (blue solid line) and the FF produced by: (i) SRM without MR (red dashed
line); (ii) MR-SRM (black dash-dotted line); and, (iii) IFT (magenta dotted line).
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that this enhanced accuracy might be due to the fact that the ME-based algorithms assume

that the NF data outside the measurement plane is zero whereas the SRM-based methods

make no such assumptions.

Table 6.2: Uniform Excitation Results

SRM (w/phase) ME (w/phase) MR-SRM SRM IFT

FF error 0.68% 2.60% 2.48% 3.44% 6.06%

Iterations 11 N/A 282 338 62

Min. Time 4.47 s N/A 3 min 51 s 4 min 37 s 5.47 s

Memory 641 MB 669 KB 1091 MB 1091 MB 4.94 MB

Table 6.3: Tapered Excitation Results

SRM (w/phase) ME (w/phase) MR-SRM SRM IFT

FF error 0.71% 2.66% 3.80% 4.29% 5.36%

Iterations 13 N/A 346 347 39

Min. Time 6.56 s N/A 4 min 44 s 4 min 45 s 5.36 s

Memory 641 MB 669 KB 1091 MB 1091 MB 4.94 MB

Although the phaseless FF patterns produced by MR-SRM were slightly more accurate

than those produced by basic SRM (phaseless), the benefit of MR is more pronounced in

the reconstructed equivalent currents. The equivalent current distributions (Mx) produced

by both methods applied to phaseless NF data are shown in Figures 6.12 and 6.13. The

currents produced by MR-SRM accurately represent the AUT aperture field, while the

currents produced by SRM exhibit unrepresentative variations (spurious oscillations). The

reason that such spurious oscillations are suppressed in the MR-SRM is mainly due to the

Laplacian regularizer associated with MR. The edge-preserving characteristics of MR will

be demonstrated in the next example when there is a defect in the AUT. It is also important

to note that the IFT cannot directly produce the equivalent current information.

The convergence behaviour of the MR-SRM and SRM as applied to the phaseless NF
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Fig. 6.12: A comparison of the equivalent magnetic current distribution produced by (a)
SRM without MR and (b) MR-SRM for the uniformly excited dipole array using phaseless
NF data.
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Fig. 6.13: A comparison of the equivalent magnetic current distribution produced by (a)
SRM without MR and (b) MR-SRM for the tapered excitation dipole array using phaseless
NF data.
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data is shown in Figure 6.14 for the uniform and tapered array tests. Initially, the magnitude

errors C1

(
x(n)

)
and C2

(
x(n)

)
are minimized by both methods at the same rate. After 30-40

iterations, the difference between the two methods becomes clear. Although SRM is able

to minimize the terms C1 and C2 to a greater extend than MR-SRM, this does not result in

a more accurate solution in terms of the equivalent currents and the FF radiation pattern.

The lack of MR allows the CG procedure to further minimize C1 and C2 at the expense of

solution quality. This can also be better understood by noting the shape of a standard L-

curve plot and that an appropriate solution (the corner of the L-curve) does not necessarily

correspond to the smallest data misfit.

Array With Scanned Beam

To further evaluate the performance of the developed planar SRM algorithms we introduce

a scanned beam antenna as our AUT. The setup for this test is the same as the elliptical

array in Section 6.2.2 with the uniform excitation magnitude, except that we now add a

linear phase shift to the array elements along the x-axis to direct the main beam in the

θ = 20◦ direction, similar to an example presented in [13]. In this test we also decrease the

tolerance factor to 10−4 to allow the methods to converge to a proper solution.

It should be noted that the initial back propagation guesses for the equivalent currents

used by the various SRM methods are not able to approximately estimate the direction of

the main beam. A more advanced guess could be employed, such as the one used in the IFT

method, but for the purposes of this test the simple guess will demonstrate the robustness

of our proposed method. The FF patterns produced by the various methods are shown in

Figures 6.15 and 6.16, using complex and phaseless NF data, respectively.

The performance metrics and error information for the scanned beam tests are shown in

Table 6.4. As an initial observation, it is clear that again the SRM-based techniques resulted

in an improved FF pattern accuracy compared to ME and the IFT. In the phaseless case,
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Fig. 6.14: The convergence behaviour of the MR-SRM and SRM for the (a) uniform and
(b) tapered excitation of the dipole array. The progression of the data error on each plane,
i.e. C1

(
x(n)

)
and C2

(
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)
, is shown as a function of the CG iterations.
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Fig. 6.15: A comparison of the scanned beam FF pattern produced using NF data with
both amplitude and phase at two different cuts: ϕ = 0◦ and ϕ = 90◦. Results are shown
for the true FF computed analytically (blue solid line) and the FF produced by: (i) SRM
(red dashed line) and (ii) ME (green dash-dotted line).
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Fig. 6.16: A comparison of the scanned beam FF pattern produced using phaseless NF
data at two different cuts: ϕ = 0◦ and ϕ = 90◦. Results are shown for the true FF
computed analytically (blue solid line) and the FF produced by: (i) SRM without MR (red
dashed line); (ii) MR-SRM (black dash-dotted line); and, (iii) IFT (magenta dotted line).
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Fig. 6.17: The convergence behaviour of the MR-SRM and SRM for the scanned beam
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)
, is

shown as a function of the CG iterations.

the agreement between MR-SRM and the true FF pattern was significantly better than

both SRM and the IFT. Furthermore, both SRM methods seem to be more robust in the

presence of noise compared to ME and the IFT as indicated by the reconstruction of the

FF sidelobes. In this example, the unfavorable time requirements of the MR-SRM and the

SRM are further accentuated, although the time may be reduced if the beam direction is

taken into account with the initial guess.

Table 6.4: Scanned Beam Results

SRM (w/phase) ME (w/phase) MR-SRM SRM IFT

FF error 0.91% 2.11% 3.32% 12.22% 13.45%

Iterations 12 N/A 4026 5000 1019

Min. Time 5.91 s N/A 50 min 30 s 62 min 11 s 10.58 s

Memory 641 MB 669 KB 1091 MB 1091 MB 4.94 MB

The convergence behaviour of MR-SRM and SRM is shown in Figure 6.17. The same

conclusions about the convergence can be drawn as those based on the uniform and tapered

array examples.
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Fig. 6.18: The array of elementary dipoles at a 45◦ angle with one element deactivated.

Diagnostics

The equivalent currents are not only byproducts during the generation of the FF pattern,

but in fact they can provide very useful information on their own. Since the currents are

directly related to the tangential fields on the reconstruction surface, any irregularities or

defects can be identified visually. The same cannot be said for ME or the IFT, since the

equivalent currents and/or aperture fields are not directly produced. To demonstrate this

advantage, we will use the same uniform elementary dipole array as in Section 6.2.2 with a

few changes. First, we will rotate all of the dipoles in the x-y plane by 45◦ to demonstrate

that anomalies in both x and y directed current distributions can be detected accurately.

Secondly, we deactivate one element in the array, as shown in Figure 6.18. Both the MR-

SRM and SRM are used to perform the NF-FF transformation, and the produced equivalent

current distributions are shown in Figures 6.19 and 6.20. The deactivated array element

can be easily identified using the current distribution produced by MR-SRM, but cannot be

clearly identified from the current distribution produced by SRM. Also of note, the rest of

the aperture field of the AUT was reconstructed accurately by the MR-SRM. This is because

the added MR provides both a Laplacian regularizer and an edge-preserving regularizer. The

Laplacian regularizer is responsible for suppressing any ‘spurious’ variations in the current
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Fig. 6.19: The equivalent magnetic current reconstructed by MR-SRM for the uniform
dipole array with one deactivated element using phaseless NF data. Mx is shown in (a)
and My in (b).
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Fig. 6.20: The equivalent magnetic current reconstructed by SRM for the uniform dipole
array with one deactivated element using phaseless NF data. Mx is shown in (a) and My

in (b).
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distribution and the edge-preserving regularizer is responsible for clearly identifying the

deactivated array element.

6.3 Experimental Tests

To further evaluate the developed planar SRM algorithms, we collected a set of NF mea-

surement data using the planar near-field range (PNFR) at the University of Manitoba

(manufactured by Nearfield Systems Inc.). This test will examine the performance of the

algorithms in the presence of potential measurement errors including alignment errors, probe

positioning errors, multiple reflections, and interference. The AUT used was a dual-ridged

pyramidal horn antenna that is linearly polarized. The horn antenna is shown for reference

in Figure 6.21. The aperture size of the horn is approximately 12.5 cm × 7 cm and the mea-

Fig. 6.21: The dual-ridged pyramidal horn antenna used for experimental verification with
the PNFR. The horn antenna is linearly polarized along the y-axis. Image courtesy of X.
Li.

surements were taken at a frequency of 9 GHz. The probe used to collect the measurement

data was a WR-90 open-ended waveguide (OEW) antenna, operating in the X-band (8.2
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to 12.4 GHz). This probe also has tapered ends for the purpose of minimizing diffraction

effects. The tangential electric field was measured over a rectilinear grids of size 0.68 m ×

0.68 m at distances of 4.68λ and 6.51λ from the AUT, with a sampling resolution of approx-

imately 1.17 cm. Although both the amplitude and phase of the electric field was measured,

the phase information was discarded when applying the phaseless NF-FF transformation

techniques. The reconstruction surface D has a size of 12.5 cm × 7 cm with uniform square

cells of size 2.5 mm × 2.5 mm, and is placed in front of the horn antenna at a distance of

λ/20.

The amplitude and phase of the measured NF data is shown in Figure 6.22. The SRM

was applied to the experimental NF measurements with phase and the obtained FF pattern

is compared to that obtained by ME in Figure 6.23. For reference, the ‘true FF’ has been

produced by the NSI software (which uses an algorithm based on ME). It should be noted

that the FF produced by the NSI software includes probe compensation1 (or correction),

and the other produced FF patterns do not. For this reason the discrepancies between the

calculated FF patterns and the ‘true’ FF will be less if probe correction is implemented in

the algorithms. In addition, the FF patterns shown are truncated according to the critical

angle of 52◦ corresponding to the second measurement plane.

The FF patterns produced using the SRM, MR-SRM, and the IFT with the phaseless

measurement data are shown in Figure 6.24. In addition to the FF plots, the FF discrep-

ancy (relative to the pattern provided by the NSI software) and other performance metrics

are shown in Table 6.5. As can be seen from the FF plots and the tables, the SRM re-

sulted in a slight improvement in terms of the FF discrepancy compared with ME when

phase information was used. Without phase information, the inclusion of MR resulted in a

significantly lower FF discrepancy than both the SRM and the IFT. One other important

observation is that the SRM methods (both with and without MR) produced FF radiation

1Probe compensation attempts to take into account and remove the effect of the probe pattern in per-
forming NF antenna measurements.
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(c) Measured Ex, 2nd plane
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Fig. 6.22: The experimentally collected NF data on the measurement planes located 4.68λ
[(a) and (b), Ex and Ey] and 6.51λ [(c) and (d), Ex and Ey] away from the AUT.
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Fig. 6.23: A comparison of the dual-ridged horn FF produced from the measured NF data
with both amplitude and phase at two different cuts: ϕ = 0◦ and ϕ = 90◦. Results are
shown for the FF provided by the NSI software (blue solid line; denoted as ‘True FF’) and
the FF produced by: (i) SRM (red dashed line) and (ii) ME (green dash-dotted line).

- 91 -



Phaseless Antenna Characterization 6.3 Experimental Tests

−40 0 40
−35

−30

−25

−20

−15

−10

−5

0

θ [◦] ϕ = 0◦

A
m

p
lit

u
d

e
 [

d
B

]

 

 

True FF

SRM

MR−SRM

IFT

(a)

−40 0 40
−35

−30

−25

−20

−15

−10

−5

0

θ [◦] ϕ = 90◦

A
m

p
lit

u
d

e
 [

d
B

]

 

 

True FF

SRM

MR−SRM

IFT

(b)

Fig. 6.24: A comparison of the dual-ridged horn FF produced from the measured NF data
without phase information. Results are shown for the FF provided by the NSI software
(blue solid line; denoted as ‘True FF’) and the FF produced by: (i) SRM without MR (red
dashed line); (ii) MR-SRM (black dash-dotted line); and, (iii) IFT (magenta dotted line).
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Table 6.5: Dual-ridged Horn Results

SRM (w/phase) ME (w/phase) MR-SRM SRM IFT

FF discrepancy 9.82% 10.1% 12.1% 23.4% 19.4%

Iterations 66 N/A 38 194 2000

Min. Time 7.38 s N/A 13.79 s 1 min 10 s 7.86 s

Memory 310 MB 8.06 MB 416 MB 416 MB 20.10 MB

patterns that did not exhibit the ‘ripples’ that can be found in the FF patterns produced by

the IFT and (to a lesser degree) ME and the NSI software. These ‘ripples’ are most likely

due to unwanted interference and multiple reflections in the anechoic chamber and these

results show that the SRM is able to naturally filter out these effects. In the phaseless test

MR-SRM did not require many iterations before the stopping criterion was met, and this

resulted in a computational time that is comparable with the time required by the IFT.

The reconstructed equivalent currents produced by SRM and MR-SRM using the phase-

less measurement data are shown in Figures 6.25 and 6.26. Although we do not have the

true aperture fields of the AUT for comparison, intuitively the current distribution produced

using MR-SRM is more realistic than that produced by SRM. Without MR the magnitude

of the magnetic current is large around the edges of the aperture, but we know this is not

possible since the tangential electric field must be zero on the surface of a PEC (the edge

of the horn aperture).
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Fig. 6.25: A comparison of the x-directed equivalent magnetic current distribution pro-
duced by (a) SRM without MR and (b) MR-SRM for the dual-ridged horn antenna using
phaseless NF data.
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Fig. 6.26: A comparison of the y-directed equivalent magnetic current distribution pro-
duced by (a) SRM without MR and (b) MR-SRM for the dual-ridged horn antenna using
phaseless NF data.
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Chapter 7

Conclusions and Future Work

In this thesis we analyzed the problem of characterizing antennas using phaseless (amplitude-

only) near-field measurement data. To this end, we developed an understanding of the the-

ory behind near-field measurements when phase data are available, particularly the concept

of modal expansion (ME) and the source reconstruction method (SRM). We then sum-

marized how these methods can be extended to the case when phase information is not

available/reliable, and discussed the challenges pertaining to each class of methods.

We initially described the details of a numerical implementation of the SRM for spher-

ical NF measurements. An explanation of the challenges arising from the ill-posed nature

of the problem were presented along with an overview of the truncated singular value de-

composition and conjugate gradient procedures that can be used to seek solutions. The

mathematical framework required to extend the SRM to the phaseless measurement case

was derived fully, along with the expressions required to minimize the phaseless cost func-

tional using the conjugate gradient method. Secondly, the details of the implementation for

planar NF measurements were presented along with a description of several practical simpli-

fications resulting from the planar geometry. In order to overcome the difficulty of selecting

a regularization parameter, a multiplicative regularization (MR) scheme was introduced.
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The MR scheme was adapted from inverse scattering and image deblurring problems to suit

the nonlinear cost functional for phaseless NF measurements and incorporates adaptive

regularization and edge-preserving characteristics.

The spherical SRM was evaluated using several synthetic examples demonstrating the

performance of the SRM in the presence of noise. Examples using synthetic data were

presented to evaluate the planar SRM (with and without phase data) and the developed

MR-SRM. The developed methods were compared with the state-of-the-art ME method and

the iterative Fourier technique (IFT), and the SRM-based methods consistently produced

more accurate FF patterns. The inclusion of MR further improved the accuracy of the

FF pattern and resulted in equivalent current distributions that can be used for antenna

diagnostics. MR-SRM was also able to reasonably reconstruct the FF pattern of a scanned

beam antenna without any prior knowledge of the beam direction. Lastly, conclusions drawn

from the synthetic tests were strengthened by another comparison using experimentally

collected NF data with the planar algorithms.

The results and analysis presented in this thesis show that the SRM and the newly

developed MR-SRM have several benefits over ME and the IFT including the improved FF

accuracy, the ability to provide antenna diagnostic information via the equivalent currents,

and the potential advantage of being able to naturally filter out the effects multiple reflec-

tions and interference. This being said, the developed SRM and MR-SRM are not without

limitations. In many cases, the time and memory required to perform the NF-FF trans-

formations can become significantly larger than ME and the IFT, and may even become

impractical for larger antennas and higher frequencies. In conclusion, we believe the SRM

and MR-SRM both have the potential to be viable choices for performing antenna char-

acterization using phaseless NF measurement data. In particular, the proposed MR-SRM

is advantageous since it is automated and therefore the user does not need to adjust any

parameters including the initial guess or regularization parameters.
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There are several possible extensions of this work that should be investigated. First of

all, the developed SRM algorithm could be extended to arbitrary measurement geometries,

resulting in a unified, general method that would be suitable for any antenna measurement

system. Next, the developed MR framework could be extended to measurement geometries

beyond the planar case, and its advantages and disadvantages could then be studied in

more detail. Also, instead of using a reconstruction surface of standard shape (sphere,

box, plane, etc.), creating a reconstruction surface that conforms to the antenna under test

would allow for more useful diagnostic information and analysis. To make the developed

SRM and MR-SRM algorithms more suitable for commercial use, the use of appropriate

acceleration and compression techniques should be further studied. Lastly, the inclusion

of probe compensation is necessary for the developed SRM techniques to be practically

useful.
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