
E{TGFT SPEED SEQUEI\TTAL ÐEMODULATOR

BÁ-SED ON SIITF"T REGISTER

SYSTOLIC PRIORITY QUEUE ARCI{TTECT{JRE

by

Hoo Man Ng

A Thesis

Presented to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements for the Degree

Master of Science

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg, Manitoba

@ May, L993

ffiç6ffi NationalLibrary
ffi r'ffi ofCanada

Acquisitions and
Bibliographic Services Branch

395 Wellinoton Street
Ottawa, On-tario
KIA ON4

Bibliothèque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1A ON4

Yout lile Volre élétence

Out lile Nolre rélérence

The author has granted an
irrevocable non-exclus¡ve licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyr¡ght ¡n his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permiss¡on.

ISBN 0-3ls-85931-8

L'auteur a accordé une licence
irrévocable et non exclus¡ve
permettant à la Bibliothèque
nationale du Canada de
reprodu¡re, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qu¡ protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

Canadä

Nome
D;rr"¿ ose select the one subiect which most

neorly describes the content of your dissertotion. Enld the corresponding four-digit code in the spoces provided.

Subiect Colegories

trw& wwM&BüsEE&s &ruæ 5@68&& S€8ffi88€ËS

COffiffiU!{ICATIOI{S AND THE ARÏ5
Architecture 07 29
Art His|orv 0377
Cinemo 0900
Donce 0378
Fine Arts0357
lnformolion Science 07 23
Journolism0391
Librony Science 0399
Moss Communicotìons 0708
Music 041 3
Speech Communicotion0459
Thæter 0¿ó5

PHITOSOPHY, REI.IGION AND
THEOI.OGY
Philosophy 0 A22
Keltqton

Generol 03 I I
Biblicol Studies ...,................ 0321
Llerov ...-............................uJ I v
Hrstory of 0320
rhlf osophy ol,...,...,.... vJ ¿l

Theology .1...:........o469

s0(|Ar sctE!{Gs
Americon Studies 0323
Anthrooolooy

Arihoeðfoqv 0324
Culturol ...i.......................... 032ó
Physicol 0327

Business Administrotion
Generol.............0310
Accountinq,....... 0272
Bonkinq ..l.........0770
Monooémenl 0¿54
Morke'íinq 0338

Conodion Stu-dies 0385
Economics

Generol .,............................ 050 I
Aoricuhurol 0503
Commerce-Business 0505
Finonce0508
History............. .

1OOOT _

....0509

....051 0

....0511I neory
Folklore .1.-................
Geogrophy...............
þefonrorogy
History

uenerot

t-õl-ilrTd U"h,["f
SUBJECf CODE

Ancient -.. O57 I
Medievol 058 l
Modern,..............-., 0582
81ock 0328
Africon 0331
Asio, Austrolio ond Oceonio 0332
Conodion-.. 033¿

.........0525

..,......0535

.........0527

.........071 Á
Secondory,..........,.. 0533
Sociol Scíences 0534
Socioloqy of 03¿0
Speciol 0529
I eocher I rornrnq UJJU
Techno|oov1........................ 07 I 0
Tests ondf,leosuremenfs 0288
Vocof ionol 07 47

LANGUAGE, |.IT[RÂÏURE AND

TINGUISIICS
LOnOUOOe

öeñerol .,.......,... 0ó79
Ancient 0289
Linquistics -...., 0290
Moïern 0291

Lilerofure
Generol ...,.. -.,..................... 0¿0 I
C1ossico1 O29 A
Comporotive O29 5
Medíevol 0297
Modern0298
Africon031 ó
Americon 059,|
Asion,........................ 0305
Conodion lbnolishl ..,........... 0352
Conodion {Fre"nchi 0355
Enqlish0593
Ge-rmonic 03 I I
Lolin Americon 03 I 2
Middle Eostern,....... 03,l 5
Romonce,031 3
Slovic ond Eost Europeon.....0314

Geodesy 0370
Geolçy;. a372
Geophysics 0373
Hvdiolôov0388
Minerolöv............................... 04ì l
Poleobotony 03¿5
Poleoecoloóv 0426
Poleontoloõú 04 ì I
Poleozooloõy......0985
Polvnoloqv-......... O 427
Phvsicol öeoqrophv;..... 03ó8
Physicol Oceõnogrôphy Or'i 5

HEAI.TH AI{D TNVIRONffi INIA|.
sqEN(ES
Environmenlol Sciences-.. 07ó8
Heolth Sciences

Generol 05óó
Audioloqv........................... 0300
Chemotñ'éropy 0992
Denlistry 0 567
Educotiôn ..-........................ 0350
Hosoitol Monooem en1 O7 ó9
Humon Development 0758
lmmunoìoqy 0982
Medicine ãhd Surqery 05ó4
Mentol Heolth:....'............ 0347
Nursinq,. 05ó9
Nukìtio"n -.....,........... 0570
Obsletrics ond Gvnecoloqv ..0380
Occupotionol Heôlth ond'

^rhe¡opr
.-......................... 035¿

Uohtholmolooy 038 1

Pdrholoov ... 11..................... oszl
Phormoïblæv 0¿l 9
Phormocy 0572
Phvsicol Ïheropy 0382
Public Heolth ...'.................... 057 3
Rodio|oov O57 4
Recreotion 0575

Lolin Americon-.
...0335

....033ó

Politicol Science
Generol0óì 5
lnternotionol Low ond

Re|otions,..........,..-... 0ó I ó
Public Admìnistrotion ..,........ 0óì 7

Recreotion 081 4
Sociol Work 0452
Socioloqy

GenËrol 0626
Criminoloov ond Penoloov ... 0ó27
^Y'uemooroohy.......0938

4 t-. t.
Elhnrc ond Rocrol Studres0ó31
lndividuol ond Fomily

Studies:,........,.. 0ó28
Industrìol ond Lobor

Relotions 0ó29
Public ond Sociol Welfore0ó30
Sociol Structure ond

Deve1opment,.. 0700
Theory oàd Methods O3r'r'

ïronsporfotion ...,...................... 0209
Urbon ond Reqionol Plonninq0999
Women's Studies:..... 0153

Enoi neerino
Y

Generol,............,..... 0537
Aerospoce,...........,.... 0538
Aqriculturol,.................. 0539
Aùtomotive 0540
Biomedicoì 0541
Chemicol .,.,.....,......,....,..,... 05¿2
Civil,.,..,...,.................... 0543
Electronics ond ElectricolO5AA
Heot ond Thermodynomìcs... 0348
Hydroulic 05¿5
Inäustriol,.... 05¿ó
Morine,........,.........05A7
Moleriols Science 0794
Mechonico| 0548

.....0282

.....0ó88

.....0275

.....0727

.....05t I

.....0s24

.....0277

..... 051 9

............ . 0358

...............03óó

.,.,...........0351

...............0578

?ffiffi s€8ffieð€ffis &ffim ffiru&gruËffiRBw&

.....................0379

Soeech Potholoov 04ó0
Tàxicoloov:.1................. 0383

Home Econoäics,..... 038ó

PHYSICAT SCIINCES

Pure Sciences
Chemistry

Genéroì 0¿85
4qricu|turo1 07 Ag
Añolyticol 0¿8ó
8iochemisfry 0A87
Inorqonic 0488
Nucleor 0738
Orqonic,......... 0490
Pho-rmoceuticol,...... 0491
Physicol049A
Polymer,..,................... 0495
Rodiotion .. -......................... 07 5 4

Moihemotics,....... 0405
rnysrcs' Generol,.............. 0ó05

Acoustics ...,.......,...,............ 098ó
Astronomy ond

Aslrophysics..............,-..... 0ó0ó
Atmospheiic Science............0ó08
Atomiè -..... 07 Ag
Electronics ond ElectriciV0ó07
Elemenlory Porticles ond

Hioh Enêrqv.......0798
Fluid ond Plosmo 0259
Moleculor-......... 0ó09
Nucleor 0ó I 0
Optics 07 52
Kodrolron U/ J0
Solid Srote,...............0óì ì

Stotistics 0¿ó3

Applied Sciences
Aþþlied Mechonics 034ó
Comnr rtpr Sricnre . 0984

.........................07 a3

................,..,..... 0551

.0552

......................... 05¿9

.........................07 65
Sonito¡y ond Municipol 0554
System Science0790

Geotóchnoloqy 0¿28
Operotions Rëseorch 079 6
Plòstics Technoloov 079 5
Textile Techno|og"y O99 4

0ó21
038¿
0622
0ó20
0623
o624
0625
0989
0349
0632
0¿5 I

11\

Melollurqy
Mining Il.
Nucleor...
Pockooino
retroteum

0329

0¿l 0
0307

...........0a1 6

...........0433

...........0821

...........0778

...........0472

...........078ó

...........0760

PSY(HOIOGY
Generol ...,.........
Behoviorol
Clinicol
Developmenfol
Experimentol
lndustriol
Personoliv..........
Phvsiolooícol
Psúchobioloqv
Psychometriðó
JOC|OI ..-...-..--..-.. .--

HIGH SPEED SEQUENTIAL DEMODULATOR

BASED ON SHIFT REGISTER

SYSTOLIC PRIORITY QUEUE ARCHITECTURE

BY

I{OO MAN NG

A Thesis submitted to the Facully of G¡aduate Studies of the University of Manitoba in partial

fuIfillme¡rt of the requirenents for the degree of

MASTER OF SCIENCE

@ 1993

Pesnission has been gtanted b the LIBRÄRY OF TI{E UNT\ERSITY OF ¡¿.A¡tfOBA to lend or

sell copies of ttris thesis, b the NATTONAL LIBRÁRY OF CåòÍADA to miaofiIm this thesis and

b lend or sell copíes of the ñlm, and UNTVERSITY MICROEILIVÍS to publish a¡r abstract of ftis
thesis.

The author resen¡es other publications rights, a¡rd neithe¡ the thesis nor extensive extracts from it
rtay be printed or otherwise repmduced wiihout the autho/s perrtission-

AESTR.ACT'

The sequential algorithm has been applied to channels with intersymbol interference (ISI).

It is superior to the Viterbi algorithm for channels with long or even infinite intersymbol

interference, since the computation and storage complexity of the sequential algorithm does

not grow exponentially with the length of the channel memory. However the time required

for the complete stackreordering procedure in the conventional sequential stack algorithm

is long and depends on the number of entries in the stack, hence places severe limitations

on the decoding speed and thus the real-time implementation of the algorithm.

In this thesis, the ShiftRegister Systolic Priority Queue is used to substitute the stack of the

conventional sequential stack algorithm to eliminate the complete stackreordering problem.

With the systolic priority queue architecture, complete stack reordering is no longer required

and the path with the largest path meffic is guaranteed to appear at the top of the stack within

a fixed and short interval of time regardless of the number of paths in the stack.

Hardware algorithms for storing the explored paths and evaluating the metrics are developed

in this thesis. A sequential demodulator based on the Shift Register Systolic Priority Queue

architecture and the developed algorithms \ilas implemented. The design is capable of

handling input blocks of 256 bits and a maximum of 9 interference terms. It has a maximum

allowable stack size of 1024. An 8-bit reprosentation is used for the sufficient statistic z¿

and a 16-bit representation for the metric.

ACKNIOWLEDGEMENTS

The author wishes to express his sincere thanks to Professor E. Shwedyk for his supervision

and guidance throughout the course of the research.

Iherebydeclarethatlamthesoleauthorofthisthesis. IauthorizetheUniversityofManitoba

to lend this thesis to other institutions or individuals for the purpose of scholarly research.

Hoo Man Ng

I further authorize the University of Manitoba to reproduce this thesis by photocopying or

by other means, in whole or in part, at the request of other institutions or individuals for the

prupose of scholarly research.

Hoo Man Ng

l11

Tahle of Contents

Chapter tr trntroduction

Chapter 2 Background and Theory

2.I Channel Model and Receiver Sfructure for Intersymbol Interference (ISI)

2.2 Viterbi Algorithm (VA)

2.3 Sequential Atgorithm (SA)

2.3.I Stack Algorithm

2.3.2 Problems with the Practical lmplementation of Stack Algorithm 2l

2.4 Systolic Priority Queue 23

2.4.I Random Access Memory (RAM) Systolic Priority Queue 24

2.4.2 Shift Register (SR) Systolic Friority Queue 35

2.4.3 Concluding Remarks on Systolic Priority Queues 50

Chapter 3 Design of the Sequential Demodulator

3.1 General Description of the Sequential Demodulator

3.2 StorageConfiguration

3.3 Operation of the Sequential Demodulator

3.3.1 Duplication of datain RAMI, RAM2 and RAM3-6

3.3.2 Path extension

3.4 Flardware Desien

3.4.L Systolic Priority Queue-Metric Unit (SPQ-MU) and Systolic Priority

5

5

t4

t6

18

51

51

56

56

58

63

Queue-Address Unit (SPQ-AU) 63

3.4.2 Path Metric Computer (PMC)

3.4.3 Address Confoller (AC)

3.4.4 L-Previous Information Bits Buffer (LPIBB)

3.4.5 Path Length Buffer (PLB)

3.4.6 Explored Path ConÍoller (EPC)

Chapter 4 Test Result and Discussion

4.1 Test Result

4.2 Applicability of the Sequential Demodulator

4.2.L Number of interference tenns in the ISI channel

4.2.2 Length of input to the ISI channel

4.2.3 Stack overflow problem

Chapter 5 Conclusions and Suggestions for Further Study

5.1 Conclusions

5.2 Suggestions for Further Study

REFERENCES

73

74

75

76

77

78

81

81

81

82

83

84

78

83

85

6

11

2.1

2.2

2.3

List of Figures

PAM communication svstem.

Maximum-likelihood sequence estimator.

Whitened matched filter w(- r)

Finite-state machine model.

Equivalent channel model of the finite-state machine model.

A four-state frellis.

Code tree of a finite state machine model for an ISI channel with binary inputs

channel memory of tt = 2 .

2.8 Flowchart of the conventional sequential stack algorithm.

2.9 Basic sfructure of linear systolic priority queue.

2.10 Building unit of the Random Access Memory Systolic kiority Queue. 24

2.lI Flowchart of the insertion of a succeeding path metric in Random Access Memory

Systolic Priority Queue. 26

2.4

2.5

2.6

2.7

2.12 Example of

Queue.

2.L3 Flowchart of the deletion

Systolic Priority Queue. .

2.14 Example of

Queue.

2.15 Flowchart

inputs.

2.16 Example of a code tree for an ISI channel with binary inputs.

11

11

15

and a

t7

the insertion operation in the Random Access Memory Systolic Priority

.27

20

23

of the largest path metric in Random Access Memory

the deletion operation in the Random Access Memory Svstolic Priori

of the RAM scheme stack alsorithm for a channel with binarv

29

rty

30

32

vl

JJ

2.17 Array contents of the stack decoding of the ISI tree shown in figure 2.16 with Random

Access Memory Systolic Priority Queue. 34

35

lic

37

2.L8 Building units of the Shift Register Systolic Priority Queue.

2.19 Flowchart of the insertion of a succeeding path menic in Shift Register

2.27 Flowchart of the modifiedversion of the SR. scheme stackalgorithmfor achannel

binary inputs.

Systo

Priority Queue.

2.20 Example of the insertion operation in the Shift Register Systolic Priority Queue. 38

2.21 Flowchart of the deletion operation of the largest path metric in Shift Register Systolic

Priority Queue. 40

2.22 Example of the deletion operation in the Shift Register Systolic Priority Queue. 4I

2.23 Flowchart of the SR scheme stack algorithm for a channel with binary inputs. 43

2.24 Anay contents of the stack decoding of the ISI tee shown in figure 2.16 with Shift

Register Systolic Priority Queue. 44

2.25 Flowchart of simultaneous insertion of a succeeding path metric and deletion of the

largest path metric in SR Systolic hiority Queue.

2.26 Example of the simultaneous insertion and deletion operations in Shift Register

Systolic Priority Queue.

46

47

with

49

vlr

3.1 Block diagram

architecture.

of the sequential demodulator based on a systolic priority queue

54

sample code tree with the systolic priority queue contents and3.2 The relation of a

stack contents.

the

55

3.3 Explored path storage configuration. 57

3.4 The relation of a sample code tree with the systolic priority queue contents and the

stack contents after extending branch (0) of the explored path (010). 6l

3.5 The relation of a sample code tree with the systolic priority queue contents and the

stack contents after extending branch (0) and branch (1) of the explored path

(010). 62

3.6 Basic structure of the SR Systolic Priority Queue for the stack algorithm. 64

3.7 Basic building units of the SR Systolic Priority Queue for the stack algorithm. 66

3.8 Paralleling the building units of the SR Systolic Priority Queue for the stack

algorithm.

3.9 M -bit registers of the SR. Systolic Priority Queue for the stack algorithm

comparator and selector added.

3.10 Basic building units of the address SR Systolic Priority Queue for the

algorithm.

3.11 Paralleling the building units of the address SR Systolic Priority Queue for the

algorithm.

67

with

68

stack

7l

stack

72

t3

74

75

76

3.L2

3.r3

3.r4

3.1s

Block diagram of the Path Metric Computer.

Block diagram of the Address Controller.

Block diagram of the l-Previous Information Bits Buffer.

Block diagram of the Path Length Buffer.

vllI

3.16 Block diagram of the Explored Path Contoller. 77

lx

ï-,ist of Tables

3.1 Truth table for the register A6 and register ,4; in figure3.6. 67

Chapten I Introduction

The increasing demand for higher rate digital data transmission makes digital

communication an area of intensive research. Due to physical constraints, communication

channels are bandlimited. One example is the voice-grade-telephone channel that has a

bandwidth of approximately 4,000 Hz despite the fact that modems are transmitting data

over this channel at arate of approxim ately 24,000 bits/sec. The bandlimited characteristic

results in intersymbol interference (ISf [4], a phenomenon where each ffansmitted pulse

stretches beyond the time interval allocated to that particular pulse and overlaps with pulses

in other time intervals. The occurrence of ISI is caused by the time-dispersive

characteristics of bandlimited channels. The number of pulses interfering with a particular

pulse is called the memory of the channel (z) or the length of the ISI. In high speed data

transmission over bandlimited channels with high signal-to-noise (SNR) ratios, the

existence of ISI becomes the maior obstacle to reliable communication.

Various techniques for combating trSI have been studied. In 1928, Nyquist [19], being the

first researcher to develop techniques for combating ISI, introduced baseband specfrum

shaping for zero ISI. This eliminates ISI by using an equivalent filter at the receiver to

suppress the ISI terms at any sampling instant. In 1963, Lender [15] infoduced the

duobinary signaling technique which allows the existence of one ISI term. Lender's

technique allows ISI in a controlled manner so that it can be removed at the receiver. In 1966,

Lender [16] and Kretzmer U2,I3l generalized the duobinary signaling technique to partial

response or correlative coding which allows any number of ISI terms. During 1968-1969,

Tomlinson l24l from the United Kingdom and Harashima [10, 11] from Japan invented the

precoding technique [9]. With the assumption that the channel response is known at the

transmitter, the input sequence is coded in a unique way before transmission through the

channel. Equalization techniques were also introduced for combating ISI during the late

1960's. Channelequalizationisperformedbythereceiverthatusuallyconsistsofamatched

filter followed by a sampler and an equalizer. There are three main categories of equal ization

techniques L9,221, namely linear equalization (LE), decision-feedback equalization (DFE),

and maximum-likelihood sequence estimation (MLSE). In linear equalization [18], the

present and past outputs of the matched filter are weighted by estimated gains and summed

to produce the ouþut. Decision-feedbackequalization [2] is the simplestform of non-linear

equalization. A decision-feedback equalizer improves upon a linear equalizer by passing

the output of a linear equalizer through a second equalizer with feedback. MLSE, a sequence

estimation technique, is considered the optimum equalization structure for communication

channels with finite ISI and is found to have an error performance superior to the

conventional symbol-by-symbol decision receivers mentioned above. In 1972, Forney [7]

showed MLSE can be realized for channels with finite ISI. The maximum-likelihood

sequence estimator consists of a whitened matched filter followed by a Viterbi processor.

The detection task is modelled as a search for the best (maximum-likelihood) path through

a regular structue called a trellis.

The Viterbi Algorithm [8, 17] was invented by Viterbi in 1967 as a method for decoding

convolutional codes. Since the ISI channel characteristic is equivalent to that of the

convolutional encoder, Forney [7] applied the VA to trSI channels. During the decoding

process, the VA visits all the paths through the úellis in order to find the

maximum-likelihood path. The fixed number of computations and the regular decoding

procedure make the Viterbi processor very easy to implement. However, the computational

complexity and the storage complexity of the VA grow exponentially with the length of the

channel memory. For ISI channels with large or infinite memory, implementation of the

maximum-likelihood sequence estimator using vA becomes impractical.

In order to reduce the computational complexity of the VA, a great deal of effort has been

made to reduce the number of states in the trellis to which the VA is applied. The techniques

used for reducing the number of trellis states are known as RSVA (Reduced-State Viterbi

Algorithm)11,5,6,14,20,21,23,251. Thesetechniquesreducethenumberof trellisstates

either by reducing the number of the most likely paths to be searched or the length of the

channel memory. The RSVA techniques have the advantage of reøining the structure of

MLSE-VA while reducing the computational complexity of MLSE-VA. However, for any

specific technique, gains in computational complexity comes with a loss in detection

performance.

In 1989, Xiong [26] developed the application of the sequential algorithm (SA) t17l to ISI

channels. The sequential algorithm is another technique for decoding convolutional codes.

Since the ISI channel characteristic is equivalent to that of the convolutional encoder, Xiong

applied the SA to ISI channels. Unlike the VA, the SA visits only a small number of paths

through the tree. The computational complexity of the SA is almost independent of the

length of the channel memory and its detection performance is essentially

maximum-likelihood. This property makes the SA applicable to ISI channels with large or

even infinite memory. Compared to the VA for ISI channels, the sequential approach is able

to handle more severe ISI channels (large or infinite memory) and therefore allows data to

be transmitted at higher rates.

Although the sequential approach is superior to the Viterbi approach in its ability to handle

a greater number of interference terms, it involves a very time consuming stack reordering.

Not only is the time required for stack reordering long, but it also varies with the number of

paths in the stack. It is undesirable for the operation time to be dependent upon the number

of paths in the stack since this number increases after each decoding step. Since the only

purpose of stack reordering is to have the best path placed at the top of the stack for the next

decoding step. Chang and Yao [3] proposed the use of a Systolic hiority Queue. Wirh the

systolic priority queue architecture complete stack reordering is not necessary and the best

path is always placed within a fixed and short period of time at the top of the stack for the

next decoding step.

The objective of this thesis is to examine the VLSI implementation of a sequential

demodulator based on the systolic priority queue architecture applicable to ISI channels.

Chapter 2 provides a general background of the ISI channels, followed by a description of

the Viterbi algorithm, sequential algorithm and Systolic Priority Queue. Chapter 3 describes

the details in the development of the sequential demodulator. Chapter 4 presents the testing

result and the discussion of the design. Chapter 5 gives the conclusions and suggestions for

further studv.

Chapter 2 Backgnound and Theory

2.X, Channel Model and Receiver Structure for lntersvmbol [nterference

(TSÐ

Intersymbol interference (ISD arises in all pulse-modulation systems whenever the impulse

response of the channel is longer than one ffansmission time period (f . Pulse amplitude

modulation (PAM) system is the simplest digital communication system that can be used to

illustrate ISI. Figure 2.1 shows a simplified version of the baseband PAM communication

system. The input daø x(t) is modeled as a train of impulses equally spaced at Z -seconds

intervals with specific weights x¿ , where x¡¡ ãre drawn from a discrete finite alphabet

[0, 1, .. .,**ll.

x(t) =

K may be finite or infinite. å(r) is the finite irnpulse response of the channel with a length

of ,L symbolintervals,i.e. L isthesmallestintegersuchthat h(t¡=0 for r > LT. The

impulse response h(t) is assumed to be square-integrable,

k=K

|*oôG-tÐ ,
t,_^

Af- hzçt¡dt<*

(2.r)

(2.2)ll hll'

If h(t) has nonzero values at sampling instants t=to t kT for k=I,z,... l<, then ISI

occtus. The number of nonzero sampling values in å(r) (exceptat t = /6) is called the length

of ISI or the channel memory (z) , where y = L -'1. " The output of the channel impulse

response, which is the convolution sum of x(t) and h(t), is denoted as s(r) .

lnput Sequence

k=K

x(t) = lxþ]t-tct1
&=0

Received Signal

r(t)=s(t)+n(t)k=K

s(/) = lx¡h(t-kT)
t,_^

Figure 2.1: PAM communication system.

Sample
Every Sufficient

StatisticsT sec

Estimated
Input
Sequencq

k=K

2t,¡t,-tn1ltr=
J

r(t)w(t-kI)dt

Fi gure 2.2; Maximum-likelih o od sequence estimator.

s(r) = x(t) * h(t) ,

k=K

=lx¡,h(t-kT)
k=0

(2.3)

The output signal s(/) is corrupted by additive white Gaussian noise n(/) to yield the

received signal r(r).

r(t) = s(t) + n(t) ,

k=K

= | x¡h(t - þI) + n(t) .

,t=0

(2.4)

r(r) is the received signal corrupted by white Gaussian noise and intersymbol interference.

If r(t) is sampled at t = jT , where /0 accounts for the channel delay and sampler phase, then

(2.s)

The ouþut is comrpted by ISI unless å(r) is zeÍo at all sampling instants except at t = t0 .

The first term on the right side is the desired ouþutproduced by the input symbol at t = I ,

the second term is the intersymbol interference and the last term is the additive white

Gaussian noise. The presence of ISI is the primary impediment to reliable high-rate digital

data transmission over high signal-to-noise ratio bandlimited channels such as voice-grade

telephone circuits.

In t972, Forney [7] developed a receiver structure for the maximum-likelihood estimation

of digital sequences in the presence of ISI. The receiver consists of a whitened matched

filter, a symbol-rate sampler and a Viterbi processor as shown in Figure 2.2. Tlne sampled

r(ts + l7) = xjh(tù + \ x¡,h(ts + jr - k7) + n(ts + tT)

îk'j++rll
Desired Output ISI Noise

outputs of the whitened matched filter form a set of sufficient statistics { z¿ } for the

estimation of the input sequence { x¡, }.

Equation (2.3) shows that s(/) can be expressed as a linear combination of a set of

square-integrable basis functions h(t-kT). In the detection of signals that are a linear

combinations of a set of square-integrable basis functions, the outputs of a bank of matched

filters, each matched to a basis function, form a set of sufficient statistics for estimating the

input sequence. Thus the K + 1 quantities

r(t)h(t - kI)dt , 0<k<K (2.6)

{x*},0<k=K,
integral of r(r) and

the channel impulse

By applying the D-transform to the matched-filter output sequence a¡r, equation (2.6) can

be defined as

oo!
I*_

form a set of sufficient statistics for the estimation of the input sequence

where K may be finite or infinite. But a¡a are just the convolution

h(- t) , í.e. ak are the sampled ouþuts of a filter h(t) matched to

response å(r) .

a@¡!

Since

k=K

Z ",,P0 't,_^
(2.7)

,t f *
oo=

)_*r(t)h(t-kT)dt

= f; f*¡na -nh(t - Hr)dt. l* no)h(t - kI)dt
J-v

K 1@

=P.*')-* h(t - r-r)h(t - kT)dt. l* nQ)h(t - HI)d.t

K

= 2rßo-¡ * nk' ,

j=0

the D-transform of a¡, can be expressed as

a(D) = x(D)R(D) + n'(D) .

In equation (2.8),

(2.e)

(2.8)

(2.10)

(2.rr)

n r¡ !,[l-- h(t - t.)h(t - kr)d't

Lo

n1o¡ 4 7 *ooo
k=--+¡

lk-jl < v

lk-jl>v+7

are the pulse autocorrelation coefficients of h(t) . lt follows that

is the D-ffansform of the pulse autocoffelation function or the spectral function of h(t) .

Since R(D) is finite with 2tt + I nonzero terms, it has ?-v complex roots. Furthermore,

since R(D) = R(D-l) , the inverse B-r of any root B is also a root of A(D) . Thus, the 2v

complex roots of R(D) may be grouped into y inverse pairs. If f ' (D) is any polynomial

of degree y whose roots consist of one root from each of the y inverse pairs of R(D) , then

R(D) has the specfral factorization

R(D) =¡' (D)f ' @-\ . (2.12)

By letting Í(D) = D"f ' (D) for any integer delay n, equation (2.12) can further be

generalized to

R(D) =f(D)f(D-') (2.r3)

n'(D) in equation (2.9) is the zero-mean colored Gaussian noise with autocorrelation

function ozn(n), since

E{nr,'nil = rJ__

o2Ruj

E[nØ n(Òlh7 - ttT) h(r - ir) dt dr

(2.r4)

where oz is the spectral density of the white noise n(/) and E{nQ)n@)l = oz6r, -", .

If n(D) is the zero-mean white Gaussian noise with autocorrelation function 02 .then the

colored Gaussian noise n '(D) can be expressed as

n'(D) = n(D)f(D-r) (2.rs)

since n'(D) has the autocorrelation function o2¡çn-L¡¡çq = azR(D). The aurocorrelation

function entirely specifies the zero-mean Gaussian noise.

By combining equations (2.9), (2.13) and (2.15), the D-transform of the ou@ut sequence of

the matched-filter h(-t) can be expressed as

a(D) = x(D)f(D)f(D-r) + n(D)f(D-r)

If

(2.16)

(2.r7)zQ¡!#i,

then

z(D)=x(D)f(D)+n(D) (2.18)

where n(D) isthezero-meanwhiteGaussiannoiseand z(D) isdefinedastheD-ftansform

of the sampled output sequence {z¡rl of the cascade of a matched filter h(-t) with a

transversal filter l/f(D-l; as shown in figure 2.3. The cascade in figure 2.3 is called a

whitened matched filter w(- /) since the noise component n(D) of the output sequence is

whitened with a constant spectal density of ø2 .

10

Sample
Every
T sec

Figure 2.3: Whitened matched filter w(- t) .

Figure 2.4: Finite-state machine model.

Sample
Every
T sec

Sufficient
Statistics

,o=
Irfl)w(t-kT)dt

Figure 2.5: Equivalent channel model of the finite-state machine model.

11

w(D,t)!fi;rro,t>

is well defined and its time revers al w(- t)

the sampled ouþuts z¡ of w(- t)

More generally, for any spectral factorization

w(r) with a chip D-transform

of the form rR(D) = f(D)f(D-') , the filter

(2.re)

can be used as a whitened matched filter. Hence

(2.20)

sufficient statistics for the

) in the presence of ISI and zero

(2.2r)

a f -
to=-

J__r(t)w(t-kr)dt

satisfy equation (2.18) and thus form a set of

maximum-likelihood estimation of the input sequence { x¡,

mean white Gaussian noise .

y(D) â x@)f(D)

However for an arbitrary spectral factorization of R(D) , the causality of the whitening filter

1/f(D-\ is not guaranteed. To actually reahze w(- t), the factori zationof R(D) has to be

such ttrat the whitening filter | /f@-\ is stable and causal, and preferably real.

In equation (2.18), the signal sequence

is the convolution of the input sequence x(D) with the finite channel impulse respons e f(D) ,

and thereceived sequence z(D) is the sum of the signal sequence y(D) and a white Gaussian

noise sequence n(D). Thus, the relationship in equation (2.1S) can be modeled as a

finite-state machine (FSM) as shown in figure 2.4. Anequivalent communication channel

model is depicted in figure 2.5. The finite-state machine may be imagined as having a shift

registerofvmemoryelementsthatstoretherrmostrecentinputsxk_i,l<i<v.The

t2

signal lp may be taken as the weighted sum of the y most recent inputs and the weighted

current input x¿.

In the time domain the outputs of the finite-state machine can be expressed as

zk = yk* tlk ,

where n¡, is a zero mean white Gaussian noise with spectral density 02 , and

.i4Av.^
!t<= /Iix*-i ,

(2.22)

(2.23)

where f¡ , i = 0, 1, ... ,v aÍe the coefficients of /(D) . Note that equation (2.23) reflects the

effect of ISI on the output signal.

The n¡, are statistically independent zero mean Gaussian random variable with varian ce 02 .

Consequently, for a given input sequence { x* }, zk is (conditionally) statistically

independent Gaussian random variable with mean !¡, andvariance o2 since z¡, is alinear

combination of y¿ and n¡, "

Based on the FSM model and the statistical properties of x¡, !¡ç, àr1d z¡r, Forney l7l

introduced the application of the Viterbi algorithm to produce the maximum-likelihood

estimate of the input sequence { x¿ } in the presence of ISI.

t3

2.2 Yiterbi Algorithrn (VA)

The Viterbi algorithm [8, 17] was first introduced as a decoding method for convolutional

codes. It is equivalent to a dynamic programming solution to the problem of finding the

shortest path through a weighted graph. The Viterbi algorithm searches through a structure

called trellis for the code word that gives the largest value of a log-likelihood function called

path metric. The output of the Viterbi-decoder is always the code word that gives the largest

path metric, thus it is in fact a maximum-likelihood decoding algorithm. Since the channel

memory in an ISI channel is analogous to the encoder memory in a convolutional code the

Viterbi algorithm can be used to produce the maximum-likelihood estimate of the sequence

transmitted over an ISI channel.

On the basis of the finite-state machine model as depicted in figure 2.4, the one-to-{ne

mapping relationship between the input sequence { x¿ } and the signal sequence { y¿ } in

equation 223 can be described by a rellis. A trellis contains information of all the possible

state sequences. Each node corresponds to a distinct state at a given time, and each branch

represents a state transition at the next instant of time. For any ISI channel, the channel

memory v determines the number of states that exist in the trellis. Each possible state

sequence in the trellis corresponds to a possible input sequence transmitted over the ISI

channel and is represented by a unique path through the trellis. In the general case of a finite

ISI channel with z interference terms and m input alphabets, there are n/ states in the

trellis and m branches entering and leaving each state/node. The trellis of an ISI channel

with binary input and a channel memory of v :2 is shown in figure 2.6 as an example.

Associated with each branch is a branch mefric which determines the likelihood of the

occturence of the state transitionrepresented by the branch. The accumulation of the branch

mefrics of a particular path forms the path metric which determines the likelihood of the

occurrence of the input sequence represented by the path. At the terminal node of the nellis,

the path with the largest path metric is the maximum-likelihood path. Thus, to find the

t4

maximum-likelihood path through the trellis, the Viterbi algorithm has to visit all the

possible paths in order to compute and compare the path metrics.

During the decoding process, the Viterbi algorithm computes and compares the metrics of

the m paths entering each of the nf states at each decoding step. The path with the largest

path metric at each state is called the survivor. The fixed number of computations and the

regular decoding procedure make a Viterbi processor very easy to implement. However, the

number of states is mv andthus the computational complexity grows exponentialty with the

length of the channel memory / . For ISI channels with large or infinite memory, the

implementation of the maximum-likelihood sequence estimator using the Viterbi approach

becomes impractical.

UTE-
x*-t xtc¿

00

k=0 k=7 L-ntu-L k=3 k=4

01

10

Figure 2.6: A four-state úellis.

k=K_2 k=K_I k=K

V
,/ ,/oJ.l o

,4o/ o o

o/oo

15

2.3 Sequential Algonithrn (SA)

The sequential algorithm [17] was infroduced by Wozencraft as the first practical decoding

method for convolutional codes. Fano introduced a new version of sequential decoding,

subsequently referred to as the Fano algorithm [17]. Latel Ziganguov and Jelinek

discovered independently another version of sequential decoding initially called, ZJ

algorithm but now commonly known as the søck algorithm [17]. In 1989, Xiong [26]

developed the application of the sequential algorithm to the sequence estimation for ISI

channels.

In the sequential decoding, the input and output relationship of the finite-state machine

model is represented as paths through a code tree. Figure 2.7 shows an example of a code

tree for an ISI channel with binary inputs and a channel memory of y = 2 . Eachnode in the

code ffee represents a path through part of the tree, and each possible input sequence { x* }

transmitted over the ISI channel is represented by a unique path through the code free. The

pu{pose of a sequential decoding algorithm is to search through the nodes of the code tree

in an efficient way so as to find the maximum-likelihood path. As in the Viterbi algorithm,

whether or not aparticular path is likety to be part of the maximum-likelihood path depends

on the metric value associated with that path.

The most important difference between the Viterbi algorithm and the sequential decoding

algorithms is that during the decoding process the Viterbi algorithm examines all the nodes

in the trellis while the sequential decoding algorithms examine only a number of the nodes

in the code tree. Thus, the computational complexity of the sequential algorithms does not

grow exponentially with the channel memory rr as for the case of the Viterbi algorithm, but

is essentially independent of the channel memory t. This property makes sequential

decoding algorithms applicabte to ISI channels with large or even infinite memory. The

number of nodes visited by the sequential decoding algorithms is determined by the noise

levelofthelSlchannel. Moreover,foragivenlslchanneltheerrorprobability ofsequential

16

y(l,0,0)

y(0,0,0)

y(1,1,0)

y(0, 1,0

y(l,0,0)

y(0,0,0

3T

y(1, 1, I

y(0, 1, 1)

y(1,0, 1)

y(0,0, 1

4T

y(l,1,1)

y(0, 1, 1)

y(1,0, 1)

y(0,0, 1)

y(1,1,0)

y(0, 1,0)

y(1,0,0)

xk= 1

I

xk= 0

2TT

y(0,0,0)

y(1, 1,0)

y(0, 1,0)

y(1,0,0

y(0,0,0

y(l,1,1)

y(0,1, 1)

y(1,0, 1)

y(0,0, 1)

y(l,1,0)

y(0, 1,0)

y(I,0,0)

y(0,0,0)

Figtxe 2.7: Code tree of a finite state machine model for an ISI channel with binary inputs

and a channel memory of y = 2 . Note: yt = y(x*,xk_t,xk_2) .

17

decoding is essentially the same as for Viterbi decoding.

In this reseatch, only the stack algorithm is considered. A very time consuming step known

as the complete stack reordering in the conventional sequential stack algorithm is shown to

be not fully needed. The stackreordering procedure of the stack algorithm is then modified

so that the stack can be efficiently implemented by a very special type of systolic array called

the systolic priority queue as proposed by Chang and Yao [3]. The details of systolic priority

queue will be discussed in the next section. The Fano algorithm is not considered in this

research since it has an irregular decoding structure which makes the Fano decoder

unsuitable for the parallel and pipeline processing characteristics of the systoliÇ aîray

implementation.

2.3.1 Stack Algorithm

In the stack algorithm, a memory structure called the stack is required to store the previously

examined paths of the code tree. Each stack entry holds a path along with its associated

metric. The path with the largest metric is placed at the top of stack while the others are

placed in a descending order of their associated metrics. The basic idea of the stack

algorithm is to move forward along the path with the largest metric until the end of the code

tree is reached. Each decoding step consists of extending the path at the top of the stack by

computing the branch metrics of its m succeeding branches, and then adding these m

branch mefrics to the metric of the top path to form the m path metrics for the rt successors

of the top path. The top path is then deleted from the stack and the r¿ succeeding paths are

inserted into the stack. All of the paths in the stack are then rearranged in a descending order

of their associated metric values so that the path with the largest metric is at the top of the

list. The decoding steps ate repeated until the top path reaches the end of the code tree. The

top path is then taken as the decoded path and the algorithm terminates. The stack algorithm

is summarized as follows.

18

The stack algorithm:

Step 1) Load the stack with the origin node in the code free, whose menic is taken to be zero.

Step 2) Compute the metric of the rz, successors of the top path in the stack.

Step 3) Delete the top path from the stack.

Step 4) Insertthe m newpathsinthestack,andrearrangethestackinaorderofdescending

metric values.

Step 5) If the top path in the stack reaches the end of the code tree, stop. Otherwise, return

to step 2.

A complete flowchart for the stack algorithm is shown in figure 2.8.

T9

of successors
of top path

Delete top path
from stack

Insert successors
into stack

Reorder paths
in stack in

Top path
at end

.of tree?.

Output top path

Figure 2.8: Flowchart of the conventional sequential stack algorithm.

2.3.2 Problems with the Practical rmplementation of stack Algorithrn

There are three practical problems associated with the implementation of the stack

algorithm. The first problem is input buffer overflow which results in a loss of data, or an

erasure. A sequential stack decoder has to search for the maximum-likelihood path by

tracing back and forth from node to node through the code Íee, an input buffer must be

present to store the incoming received data while they are waiting to be processed. In the

case of a very noisy channel, the decoder may have to perform long searches so as to find

the current best path without using any received data held in the input buffer. Under such

a circumstance, the received data in the input buffer will accumulate which eventually leads

to an overflow of the input buffer. When an input buffer overflows, incoming received data

will force undecoded received data to be shifted out of the buffer. These bits are then lost

which results in an erasure.

The second problem with the stack algorithm is stack overflow. In any practical

implementation of the stack algorithm, the number of entries in the stack has to be finite.

For a channel with m inptt alphabets, m paths are inserted into the stack while only one

path is deleted from the stack in each decoding step. There is always some probability that

the stack will fill up before decoding is completed, especially for the case of a noisy channel"

The most common way of handling this problem is to allow the path at the bottom of the stack

to be pushed out of the stack on the next decoding step. If the stack size is large enough, the

probability that a path at the bottom of the stack would recover to reach the top of the stack

and be extended is very small and the loss in performance due to stack overflow is negligible.

The third problem with the stack algorithm is the complete stack reordering of the paths in

a descending order of their associated metric values after each decoding step. The complete

reordering of the stack is not only time consuming but also dependent upon the number of

paths exists in the stack. It is undesirable for the decoding time to be dependent upon the

number of paths in the stack since this number increases by m - 1 after each decoding step.

2T

The complete stack reordering can become quite time consuming as the number of paths in

the stack becomes large, and places severe limitations on the decoding speed that can be

achieved with the basic aleorithm.

This research concentrates only on solving the complete stack reordering problem of the

stack algorithm. The complete stack reordering is not fully required in the stack algorithm.

The only purpose of complete stack reordering is to have the cur¡ent best path placed on the

top of the stack so that it is ready to be extended in the next decoding step. To achieve the

goal of having the current best path placed on the top enfry of the stack, it is not necessary

to have all the paths arranged in a descending order. On the basis of the operational

characteristics ofa special type of systolic array called the systolic priority queue, the stack

reordering procedure of the conventional stack algorithm is modified in such a way that the

best path is placed on the top entry of the stack without having the rest of the paths arranged

in a descending order of their associated metric values. No matter how many paths are in

the stack, the systolic array is always able to complete its task within a fixed and short interval

of time.

22

2.4 Sysfolic Friority Queues

As described in the stack algorithm, there is an associated path metric stored with each path

in the stack/array. Since the location of a particular path in the array depends on the

magnitude of its associated path metric, the operations of the different systolic priority

queues are explained in terms of the magnitudes of the path m eric m¡r. Thus in the examples

illustrated in this section, each entry A¡ in the array is denoted by only a number m¡

representing the path metric of a particular path .

The requirement for the systolic array is that it be able to place the largest meffic at the top

of the array so that it can be extended in the next decoding step. Extending the largest/best

metrics involves the deletion of the curent best metric and the insertion of m new

succeeding metrics. In particular, the time involved for the above three operations must be

fixed, short and independent of the number of metric values in the array and the size of the

array. This type of systolic array is known as the systolic priority queue. Two general types

of linear systolic priority queues are discussed. They share the linear array sftucture shown

in figure 2.9, where A¡ is a sequence of registers used to store the path metric s mk .

A¡-t I A¡

Figure 2.9: Basic sfiucture of linear systolic priority queue.

As A1 A2 A3 Aa A5

23

The two types are called the Random Access Memory Sysrolic hiority Queue and the Shift

Register Systolic Priority Queue. The primary difference between them is in the method for

rearranging the order of the metrics. By implementing the stack in the stack algorithm with

either one of the two linear systolic priority queues named above, the stack reordering can

be carried out in parallel rather than sequentially as imposed by the conventional complete

stack reordering procedure. Thus, the best path is always placed at the top of the array within

a fixed and short interval of time. The Shift Register Systolic Priority Queue is used in this

research for the final VLSI implementation of a sequential demodulator.

2.4.1 Random Access Memory Systolic Priority Queue (RAM-Spe)

Figure 2.9 shows the basic structure of the RAM-SPQ, where A¡, i. =0,1,2, ..., is a

sequence of registers for storing the metric values. Figure 2.10 shows the building unit A¡

of the RAM-SPQ. Each register A¡ can exchange data with its two adjacent neighbors

inside the anay and an external device as shown in figure 2.10.

extemal communication

neighbor
communication

neighbor
communication

Figure 2.10: Building unit of the Random Access Memory Systolic Priority Queue.

u

In the random access memory scheme, each register is initialized to a path metric value of

positive infinity (in practice a large positive number). A global confol signal PT which

serves as a pointer to locate a particular register in the array is initialized to zeÍo (PT is

pointing at register As).

Insertion and deletion of path metric values in this type of systolic priority queue are very

similar to the push and pop operations of a stack. After each insertion or deletion, the path

metric values in the queue are rearranged in a unique pairwise manner so as to ensure that

the best metric is located at register Apr-t (analogous to the top of the stack), where Apy

is the next available register. Since the mefrics are reordered in pairs of two, reordering of

the entire array proceeds in a parallel manner. The insertion operation takes place according

to the procedure described below.

Insertion of a succeeding path metric m¡, in RAM-SPQ:

1) Insert the succeeding path metric m¡, into register Apr , Apr + t??.¡.

2) Increment PT by one after insertion of m¡, PT + PT + I .

3) If i satisfies (r-PÐ mod 2=0,for i > 0,thenrearrangethemetricvaluesinA¿ and

A;a1 such that the metric value in A¡.,1 is greater than or equal to the metric value in A¡ ,

A¡a1 2 A¡.

A flowchart for the insertion operation is shown in figure 2.1 1. An example of the insertion

operation in the Random Access Memory Systolic Priority Queue is shown ínfigve2.72.

25

lnsert new metric
in Apr

PT+PT+1

(i - PT) mod 2

No change
Rea:range metrics in

array such that
A¡¡1 2 A¡

Figure 2.11: Flowchart of the insertion of a succeeding path metric in Random Access

Memory Systolic Priority Queue.

Insert 8 into Aa.

Beþre ínsertíon,
PT=4.

After insertion,
beþre stack reordering,
PT=PT*1=5.

([.-PT) mod 2 = 0 ?

After stack reordering.

No Yes No Yes

PT=5

No Yes No Yes

Figure 2.72: Example of the insertion operation in the Randorn Access Memory Systolic

Priority Queue.

As A1 A2 A3 Aa A5 A6 A7

PT=4

PT=5

27

The deletion operation takes place according to the procedure described below.

Deletion of the largest path metric m¡, in RAM-SPQ:

1) Decrement PT by one, PT + PT - l.

2) Empty Apy , which contains the largest path mefric m¡, .

3) If i satisfies (i -PÐ mod 2 =0,fori > 0,thenrearrangethemetricvaluesinA¡ and

A¿a1 such that the mefric value in A¡a1 is greater than or equal to the metric value in A¡ ,

A¡*t > A¡.

Figure 2.13 shows a flowchart for the deletion operation. Figure 2.14 shows an example of

the deletion operation in the Random Access Memory Systolic Priority Queue.

28

Delete metric in
Apr

(í - PT) mod 2

No change
eanange metrics in

array such that
A¡*t > A¡

Figure 2. 1 3 : Flowchart of the deletion of the largest path meftic in Random Access Memory

Systolic Priority Queue.

Delete 14.

Before deletion,
PT=5.

PT=PT-I=4,
delete 74 ín At.

After deletíon,
beþre stack reorderíng.

(i-PT) mod 2=0 ?

After støck reordering.

Yes No Yes

PT=4

No Yes No Yes

Figure 2.14: Example of the deletion operation in the Random Access Memory Systolic

Priority Queue. Note: The path metric inside the parenthesis 0 is overwritten

by the path metric in the next insertion step.

No

As A1 A2 A3 A¿ A5 A6 A7

PT=5

PT=4

PT=4

30

The examples shown in figure 2.72 and figure 2.14 illusnate the following properties of the

Random Access Memory Systolic Priority Queue.

1). Only one control signal PT is required. PT is either incremented by one (PZ + 1) to

locate the next available register for insertion of a new metric or decremented by one

(Pf - 1) to locate the register which holds the largest metric value for deletion.

2). After each insertion or deletion, the order of metric values in the array are reordered in

pairs of two adjacent registers and the stack reordering can be done in a parallel or

pipeline manner. Thus, the array reordering procedure can be done in a fixed and short

interval of time and the time required is independent of the number of metric values in

the array.

3). After each array reordering, although the path metric values are only in a partly

descending order, Aprt will always contain the largest path mefic value ready for the

next deletion and Ap7 is always the next available register ready for insertion of a new

metric.

With a basic understanding in the insertion, deletion and array reordering procedure of the

RAM-SPQ, the application of this particular type of systolic priority queue in the stack

algorithm is demonsfrated by an example. Figure 2.15 shows the flowchart of the RAM

scheme stack algorithm. Figure 2.16 shows an ISI tree to which the RAM scheme stack

algorithm is applied. The number labeled at each node is the path metric of the path

represented by that particular node. Several steps in decoding the ISI code tree shown in

figure 2.16 is considered. The contents of the RAM-SPQ at each decoding step is shown

infigtxe2.l7.

3T

of successors
of top path

Delete largest
metric and

reorder array by
RAM scheme

Insert metric (0)
into arrav and

reorder a;íray by
RAM scheme

Insert metric (1)
into array and

reorder array by
RAM scheme

Top path
at end

Figure 2.15: Flowchart of the RAM scheme stack algorithm for a channel with binarv

inputs.

32

7T5T4T3TT

Figure 2.76: Example of a code tree for an ISI channel with binary inputs.

JJ

Step Operation

insert 27

ínsert 2l

delete 27

ínsert 24

insert 18

delete 24

insert 2l
insert 15

delete

ínsert

insert

delete 2l
ínsert 6

insert 24

delete 24

ínsert 9

insert 27

delete 27

insert 30

ínsert 12

8 delete 30

Figwe 2.17:

21

l2

18

.

Array contents of the stack decoding of the ISI ûee shown in figure 2.16 with

Random Access Memory Systolic Priority Queue. Note: The path metic

inside the parenthesis 0 is overwitten by the path metric in the next insertion

step.

Ao At A2 A3 Aa As A6 A7 As

+@ +00 +æ +co +co +@ +æ +@ +æ

27 +æ +æ +æ +@ +æ +ao +æ +æ

27 2I +æ +æ +æ +æ +æ +ao +oo

2l (27) +co +æ +æ +00 +æ +00 +00

2T 24 +oo +co +æ +æ +00 +ø +@

2l 24 18 +æ +00 +00 +æ +00 +æ

21 18 (24) +00 +æ +@ +00 +æ +co

18 2T 2l +æ +æ +æ +æ +oo +æ
18 2T 21 15 +@ +æ +æ +æ +æ

18 2l l5 (2r) +æ +00 +æ +@ +æ
18 15 2l t2 +oo +æ +æ +co +æ
15 18 T2 2l 18 +@ +6 +co +æ

15 T2 18 18 (2r) +æ +æ +co +æ
12 t5 18 18 6 +ao +00 +@ +co

12 15 18 6 18 24 +oo +æ +co

T2 15 6 18 18 (24\ +0p +00 +æ
T2 o 15 18 18 9 +oo +@ +æ
6 12 15 18 9 18 27 +æ +æ

6 12 15 9 18 18 (27) +æ +æ
6 t2 9 15 18 18 30 +æ +æ
6 9 12 15 18 18 30 T2 +@

6 9 L2 15 18 18 t2 (30) +æ

34

Refer to figure 2.17, the number of metric values in the array increases by one after each

decoding step and the largest metric is always at the PT - | position after each insertion or

deletion. Most important of all, the sÍucture of the systolic priority queue allows the parallel

processing of data, and hence the array reordering procedure can be completed in a fixed and

short interval of time independent of the number of metric values in the array. This feature

greatly enhances the decoding speed and applicability of the stack algorithm.

2.4.2 Shift Register Systolic Priority Queue (SR-Spe)

Figure 2.9 shows the basic structure of the SR-SPQ, where As serves as an input/outputport

and A¡, i= 1,2,3, -.,isasequenceofregistersforstoringthemetricvalues. Figure2.l8

showsthebuildingunits Ae and A¡ of theSR-SPQ. As canexchangedatawithanextemal

device and its adjacent neighbor, and each register A¡ cãn exchange data with its two

neighbors inside the array as shown in figure 2.18.

external
communication

neighbor
communication

neighbor
communication

neighbor
communication

Figure 2.18: Building units of the shift Regisrer systolic priority eueue.

J)

In the shift registet scheme, each register A; (for i= 1,2,3, ...) is initialized to a path

meffic value of negative infinity (in practice alarge negative number). Two global conÍol

signals are required to control the shift right and shift left operations of the path metric values

in the arÍay. At the end of this sub-section, a modified version of the insertion and deletion

operations shows that only one global confrol signal is required to confiol shift right

operation of the path mefric values in the ar.ray. Insertion and deletion operations can only

take place at As since register As serves as an inpulouþut device.

After each insertion or deletion, the path metric values in the anay are rearranged in a unique

pairwise manner so as to ensure that the largest path metric is located at register A1

(analogous to the top of the stack). As in the Random Access Memory Systolic Priority

Queue, the pairwise rearrangement of metrics allows reordering of the entire array to

proceed in a parallel manner. The procedure for the insertion operation in the Shift Register

Systolic Priority Queue is described below.

Insertion of a succeeding path metric m¡ in SR-Spe:

1) Insert the succeeding path metric mp into register Ao, Ao + mk
"

2) Shift all the path metric values m¡, in the array one position to the li,ght, A¡*1 * Ai.

3) Rearrange the metric values in A2¡a1 and A2¡*2, for i 2 0 , such that the metric value

in A2¡a1 is greater than or equal to the metric value in A2¡¡2 , Azi*r 2 Az¡*2"

A flowchart for the insertion operation is illustrated in figure 2.19. An example of the

insertion operation in the Shift Register Systolic Priority Queue is shown infigne2.20.

36

Shift all metrics in
array one position

to the right
A¡*t n A¡

Az¡*t > Az¡*z

Rearrange metrics in
array such that
Az¡*t > Az¡*z

No change

Figure 2.79: Flowchart of the insertion

Systolic Priority Queue.

of a succeeding path merric in Shift Register

3t

[nsert 8 ínto As.

Before ínsertion.

After insertíon.

Shifted ríght,
before stack reordering.

After stack reordering.

Figure 2.20: Example of the insertion operation in the ShiftRegister Systolic Priority eueue.

As A1 A2 A3 Aa A5 A6 At

t4 10 5 3 -æ -co -æ

8 t4 10 5 -J _co
-@

_co

8 t4 10 5 õJ -æ -æ

T4 8 10 5
õ
J -æ -æ

38

The procedure for the deletion operation in the Shift Register Systolic Priority Queue is

described below.

Deletion of the largest path metric m¡¡ in SR-SPQ:

1) Shift all the path metric values m¡, in the array one position to the Ieft, A¡ * Ai+t .

2) Empty ,4s , which contains the largest path mefric.

3) Rearrange the metric values in A2¡a1 and A2¡a2, for i > 0 , such that the metric value

in A2¡a1 is greater than or equal to the metric value in A2¡a2, A2i*t 2 Az¡*2.

A flowchart for the deletion operation is illusfrated in figure 2.21 . Anexample of the deletion

operation in the Shift Register Systolic Priority Queue is shown in figwe 2.22.

39

Delete metric in

As

Az¡*t > Az¡*z

earTange mefflcs m
array such that
Az¡*t > Az¡*z

No change

Figure 2.2I: Flowchart of the deletion of the largest path metric in Shift Register Systolic

Priority Queue.

40

Delete 14 in Æ.

Beþre deletion.

Shifted left,
As contains best metríc.

ffier deletion,
before stack reordering.

After stack reorderíng.

Figure 2.22: Example of the deletion operation in the Shift Register Systolic Priority

Queue. Note: The path metric inside the parenthesis 0 is overwitten by the

path metric in the next insertion step.

As A1 A2 A3 Aa A5 A6 A7

T4 8 10 5 J -co _00

I4 8 10 5 õJ -æ -00 -æ

(14) 8 10 5 J -co -æ -æ

(r4) 10 8 5 a
J -æ -co -æ

41

The examples shown in figure 2.20 andfigure 2.Z}llhusnate the following properties of the

Shift Register Systolic Priority Queue.

1). A right shift global signal is required to shift the contents of the array one position to

the right after each insertion. A left shift global signal is required to shift the contents

of the array one position to the left before each deletion so as to place the largest metric

in register As for deletion.

2). The insertion and deletion operations are followed by pairwise reorderings of the path

mefric values in the array. Thepairwisereorderings are to shuffle thepath metric values

in A2¡a1 and A2¡a2 so that the values in A2¡¡1 are greater than or equal to the values

in A2¡a2, for i = 0, 1,2, Since the reordering procedure occurs in pairs of two

adjacentregistersinthe 2i+l and2í+2 positions,thereorderingofthemetricvalues

in the entfue array can take place in a parallel manner (in the same time interval).

3). After each array reordering, although the path metric values are only in a partly

descending order, the largest path metric value is always located at register A1 .

The application of the SR-SPQ in the stack algorithm is demonstrated through rhe same

example, i.e., the ISI code tree of figure 2.16. Figure 2.23 shows the flowchart of the SR

scheme stack algorithm. Figure 2.24 shows the contents of the SR-SPQ at each decoding

steps.

/la

Delete largest
metric and

reorder array by
SR scheme

Insert meric (0)
into array and

reorder array by
SR scheme

Insert metric (1)
into array and

reorder array by
SR scheme

Top path
at end

.of tree?.

Figure 2.23: Flowchart of the SR scheme stack algorithm for a channel with binary inputs.

Step Operation

insert 27

ínsert 2l

delete 27

ínsert 24

insert 18

delete 24

insert 2I

ìnsert 15

delete 2l
ínsert 12

insert 78

delete 2l

insert 6

insert 24

delete 24

insert 9

insert 27

delete 27

insert 30

ínsert 12

delete 30

:

Figure 2.24: Array contents of the stack decoding of the ISI tree shown in figure 2.16 with

Shift Register Systolic Priority Queue. Note: The path mefric inside the

parenthesis 0 is overwritten by the path metric in the next insertion step.

v

As A1 At Az A4 A5 A6 A7 As

-æ -æ -@ -æ -@ -æ -00 -æ
2l -00 -æ -00 -æ -@ -oo -@ -@

2l 27 -æ -oo -co -00 -æ -æ -æ

(27) 21 -æ -æ _oo -æ -æ -æ -æ
24 21 -æ -æ -00 -co -æ -æ -æ
18 24 2l -æ -æ -00 _00 -æ -æ

(24) 18 21 -æ -co -co -@ -æ -00
2l 2l 18 -@ -æ -æ -æ -@ -00
15 2l 2l 18 -@ -æ -00 -æ -@

(21) 15 21 18 _co -æ -æ -æ -co
t2 2l 15 18 -00 -æ -@ -æ -00
18 2l t2 18 15 -00 -æ -æ -æ

(2r) 18 18 12 15 -co -oo -æ -co
6 18 18 15 T2 -00 -æ -æ -co
24 18 6 18 15 L2 -00 _co -co

(24) 18 18 6 15 T2 -Ø -æ -æ
9 18 18 15 6 L2 -æ -00 -@

27 18 9 18 15 12 6 -æ -@

(27) 18 18 9 15 T2 6 -æ -00
30 18 18 15 9 12 6 -æ -@

t2 30 18 18 15 12 9 6 -@

(30) T2 18 18 15 12 9 6 -00

44

Refer to figure 2.24, the largest metric is always placed at register A1 afær each insertion

or deletion and the number of metric values in the array increases by one after each decoding

step. As in the Random Access Memory Systolic Priority Queue, the array reordering

procedure only takes a fixed and short interval of time regardless of the number of values

in the array since the sffucture of the systolic priority queue allows the parallel processing

of data. Compared to the conventional stack algorithm, the time saved in the array/stack

reordering procedure by using the SR Systolic Priority Queue greatly enhances the decoding

speed and applicability of the stack algorithm. The decoding speed of the SR scheme stack

algorithm can be further improved as outlined by the following discussion.

In the stack algorithm, the deletion of the largest metric always proceeds after the insertion

of the last succeeding path metric in the previous decoding step. A faster operational speed

is achieved by combining the two operations mentioned above. The structure of the SR

Systolic Priority Queue allows the insertion and deletion operations to take place

simultaneously. The procedure for performing insertion and deletion simultaneously is

described as follows"

Insertion of a succeeding path metric m¡ and deletion of the largest path metric m¡, rn the

SR Systolic Priority Queue:

1) Insert the succeeding path metric m¡ into register Ao, Ao * mj .

2) Rearrange the metric values in A2¡ and A2¡¡1, for i à 0 , such that the metric value in

A2¡ is greater than or equal to the metric value in A2¡¡1, Az¡ 2 Az¡*t.

3) Empty 46, which contains the largest path metric.

4) Rearrange the metric values in A2¡a1 and A2¡a2, for i > 0 , such that the mefric value

in A2¡a1 is greater than or equal to the metric value in A2¡a2, A2ì*l 2 Az¡*2.

Figure 2.25 shows the flowchart where insertion and deletion operations are performed

simultaneously. Figure2.26 shows an example for the above combined operations.

45

m2i > m2i+r

Rearrange metrics
such that

m2¡ 2 m2¡a1

No change

Delete metric in

Ao

+

m2i+1 > rflzi+2

Rearrange metrics
such that

m2i+t 2 m2i+2

No change

Figure 2.25: Flowchart of simultaneous insertion of a succeeding path meftic and deletion

of the largest path metric in SR Systolic priority eueue.

Insert 8 and delete 14.

Before insertion,
or deletion.

After insertion,
before stack reordering.

After stack reordering,
Az¡ 2 Az¡*t.

After deletion,
beþre stack reorderíng.

After stack reorderíng,
Az¡*t 2 Az¡*2.

(r4) 10 8 5 a
J -co -æ -æ

Figure 2.26: Example of the simultaneous insertion and deletion operations in Shift

Register Systolic Priority Queue. Note: Thepath metic inside theparenthesis

0 is overwritten by the path mehic in the next insertion step.

As A1 A2 A3 A4 A5 A6 A7

t4 10 5 -J -@ _00
-@

8 14 10 5 a
J -æ -æ -æ

I4 8 10 5 -J -æ -æ _00

(14) 8 10 5 J -æ -æ -co

47

In the practical implementation of the stack algorithm, the actual removal of the largest path

metric from the top of the stack is not required. In all the discussions concerning the deletion

operation of the two types of systolic priority queues mentioned before, a step for emptying

the register holding the largest metric is only included for the easier understanding of the

deletion operation. When the insertion of the first succeeding path metric takes place in the

next decoding step, the content of the top søck will simply be written over by the newly

inserted values. Thus, the only important fact is to have the current largest path metric placed

on top ofthe stack at the end ofeach decoding step.

Based on the fact mentioned above, the simultaneous insertion and deletion operation of the

SR Systolic Priority Queue can be used in the stack algorithm for inserting the last

succeeding path metric in each decoding step so that the largest path metric is ready for

deletion in the next decoding step. For a channel with binary inputs, one deletion operation

and two insertion operations are required in each decoding step. By using the simultaneous

insertion and deletion operation described above, only one more insertion operation is

required for a channel with binary inputs. Since the time unit required for the simultaneous

operation is the same as the time unitrequired for the insertion operation, thus the time units

required for the deletion operation is completely eliminated.

Finally, since the left shift control signal is only required in the deletion operation,

elimination of the deletion operation means the elimination of the left shift control signal.

Thus, only one control signal is required for the Shift Register Systolic Priority Queue.

Figure 2.27 shows the flowchart of the modified version of the Shift Register stack

algorithm. This modified version is used in the design and development of the sequential

demodulator described in Chapter 3.

48

ongm r
top stac

of successors
of top path

Insert mefric (0)
into arrav and

reorder anay by
SR scheme

Insert metric (1)

bv SR scheme

Top path
at end

Ouþut top path

Figure 2.27: Flowchart of the modified version of the SR scheme stack algorithm for a

channel with binary inputs.

49

2.4.3 Concluding Remarks on Systolic Priority Queues

The implementation of the stack algorithm by systolic priority queues alleviates the stack

reordering problem in the conventional stack algorithm. By using the systolic priority

queue, the stack reordering procedure can be completed in a fixed and short time

independent of the number of path metric values in the stack. Both of the RAM and SR

Systolic Priority Queues have a very satisfactory speed in performing the required

operations.

In the RAM Systolic Priority Queue, each register needs an external input/ouþut

connection. While in the SR Systolic Priority Queue, only the register As at the leftmost

end needs an external input/output connection. From the hardware implementation point of

view, a lot more circuitry is required in the RAM Systolic Priority Queue to locate the desired

register to do the inpulouþut operation at each decoding step. In the SR Systolic Priority

Queue, the inpuloutput operation only takes place atregister As and thus no extra circuitry

is required to determine the location of the desire register. Moreover, with the simultaneous

operation in the SR scheme, the number of global control signals in the SR scheme is reduced

to one which is the same as in the RAM scheme.

On the basis of the above, the SR Systolic Priority Queue is superior to the RAM Systolic

Priority Queue for the hardware implementation of a sequential demodulator.

50

Chapter 3 Ðesign of the SequentÍal Ðernodulator

3.tr- General Ðescription of the Sequential Demodulator

The receiver structure for the maximum-likelihood estimation of digital sequences in the

presence of ISI consists of a whitened matched filter, a symbol-rate sampler, an

analog-to-digital (A/D) convertor and a sequential demodulator. To generate the sufficient

statistics required for maximum-likelihood estimation, the ouq)ut from an ISI channel is

first filtered by the whitened matched filter and then sampled by the symbol-rate sampler.

The sample is quantized by an A/D convertor to a level suitable for input to the sequential

demodulator.

This research concenhates only on the design of the sequential demodulator. The circuity

of the whitened matched filter, the symbol-rate sampler and the analog-to-digital (A/D)

conveftor is assumed to exist. In this chapter, the storage configuration, operation and design

of a sequential demodulator applicable to ISI channels is discussed in some detail. The

design of the sequential demodulator is based on a Shift Register Systolic Priority Queue

architecture. The overall block diagram of the sequential demodulator is shown in figure

3.1. It consists of seven custom-made ASIC VLSI chips and eight standard memory ICs.

Figure 3.1 depicts the connections between blocks of the demodulator and direction of signal

flow.

General design parameters for the demodulator are that it can handle a block length of 256

bits and a maximum of 9 interference terms. The maximum allowable stack size of the

design is 1024. An 8-bit representation is used for the sufficient søtistic z¡ aîd a 16-bit

representation for the metric.

Details of the sequential demodulator are discussed in the subsequent sections. Section 3.2

describes the input and output storage configuration of the design. Section 3.3 demonsfrates

51

the operation of the design through a specific example. Section 3.4 discusses the details of

the hardware design.

3.2 Storage Configuration

In this section, the storage format of the sequential demodulator's input and output are

discussed. The input consists of a sufficient statistic look-up table and a branch metric

look-up table. The ouþut consists of path metric values, associated addresses, 9-previous

information bits, path lengths and explored paths. Figure 3.1 shows the storage locations

of the corresponding input and out¡lut. The storage format of the input look-up tables is first

described. Then the ouq)ut storage format is illusfrated through an example.

In the design, the sufficient statistic z¿ is assumed to be available as a form of data stored

in memory. The ouþut of the whitened matched filter is sampled every Z seconds and the

sampled output is then quantized to one of 256 different levels using an 8-bit

analog-to-digital (A/D) converter. The quantized values are stored in chronological order

as 8-bit numbers in RAM7. RAI\47 thus acts as a sufficient statistic look-up table. In

general, address add¡ ofRAMT holds sufficient statistic zi+L received attime (i + 1)Z . For

example, if the number of symbols in the explored path (011) is three, then, to extend the

path, the sufficient st¿tistic 24 received at time 4T is required. The above shows that the

path length or the number of symbols in the explored path can be used as an address to

retrieve the desired sufficient statistic from RAM7.

The second input to the sequential demodulator is the branch metric look-up t¿ble. Since

the sufficient statistic z¿ is represented by an 8-bit number then for any ISI channel with

rr interferencetems, thereareonly 2¿*8, where L=v + 1, possiblecombinations of the

L-previous information bits and the sufficient statistic z¿. To each combination of the

Z+8 bits,thereisaparticularvalueforthebranchmetric. Allofthe 2¿+8 possiblebranch

mefic values of a particular ISI channel are precalculated and the values are stored in a

52

EPROM. The corresponding values of the bit patterns (zL+e possible combinations) are

used as addresses for the branch metric values in the EPROM. The EPROM thus acts as a

look-up table for the branch metric calculation as shown in figure 3.1.

The output storage format of the sequential demodulator is illustraæd through the specific

example shown in figure 3.2. Figure 3.2 shows the relationship between a sample code fee

and the contents of SPQ-MU, SPQ-AU, RAMI, RAM2 and RAM3-6. To each path metric

stored in the SPQ-MU, there is a associated address stored in the corresponding location in

the SPQ-AU. The associated address provides the locations of the 9-previous information

bits, the path lengths and the explored paths in corresponding RAMs. For example, m5 is

the current largest path metric and add2 is its associated address since they are located in

the register As of the SPQ-MU and SPQ-AU respectively.

As can be seen from the code tree shown in figure 3.2, the explored path which corresponds

to the node labeled ms is (010). With the assumption that all the previous inputs are '0',

the 9-previous information bits of the exploredpath (010) is (000000010). Moreover, since

there are three symbols in the path (010), the path length is equal to three or (00000011) in

an 8-bit binary representation. Figure 3.2 shows that the 9-previous information bits

@00Q80010), the path length (00000011) and the explored path (010) are stored in add2 of

RAMI, RAM2 and RAM3-6 respectively. Finally, note that the 9-previous information bits

andthepathlengthof anexploredpatharestoredasonewordinaddress ødd; ofRAMI and

RAM2 respectively while the explored path is stored as eight consecutive words in address

block add¡ ofRAM3-6.

Based on this basic understanding of the general features and storage structure of the

sequential demodulator, the details of the design are discussed in the next section.

53

Svstolic Prioriw Oueue- Metric Uñit-
(SPO_MU)
' lc3MB128',

Svstolic Prioriw Oueue-
Address Unit-
(SPO_AU)
' lc3NlB126'

Svstolic Prioritv (- Meric Unit
(SPO_MU)
'lc3MB128'

Svstolic P¡ioritv Oueue' Address UniÈ
(SPO_AU)'lcSMB126'

Current Extended
Branch (0/1)

Path Length
1OZWORDS x 8 BITS

RAM2

y -PreviousInformation Bits
IO?AWORDSx9BITS

RAMl
Explored Path

8192WORDS x 8 BITS

RAM3

Explored Path
8192WORDS x 8 BITS

RAM4

Path Leneth
Buffer-
æI.B)

tcBMBl2s
I-Previous Information

Bits Buffer
(LPIBB)
lc3MB123 Explored Path

8192'WORDS x 8 BITS

RAM5S ufficiFnt S tøfqlic (z¿)
Look-Up Table '

256WORDSxSBITS

RAMT Explored Path
8192WORDS x 8 BITS

RAM6

Branch Metric
Look-Up Table

256kWORDS x 16 BITS

EPROM
Current Extended

Branch (0/1)

Figure 3.1: Block diagram of the sequential demodulator based on a systolic priority queue

architecture. Note: The number on the side of each arrow indicates the number

of data lines represented by that particular ¿urow.

54

SPQ_MU

SPQ_AU

add.o

ad.d1

add2

add3

adda

rr -Previous Information Bits
RAMl

n

1

fì1n

rì11

next available address

Explored Path
RAM3 RAM4

Path Length
RAM2

00000010
00000001
00000011
00000011

noxt available address

addo

ad.d.t

add2

add3

add+

RAM5 RAM6

addo

addl

add2

addz

adda

00
I

010
011

next available address

Figure 3.2: The relation of a sample code free with the systolic priority queue contents and

the stack contents. Note: Each add ; in RAM3-6 is an address block of 8'words

and oach word consists of 32 bits.

m5 m6 m3 m2 -æ -æ _co -æ
addz add3 addo addt 0 0 0 0

55

3"3 Operation of the Sequential Demodulator

This section explains the extension of an explored path by the sequential demodulator

implementation. After outlining the general steps, the details of each step are illusfrated

through a specific example, namely, that of extending the explored path (010) in the code

tree of figure 3.2.

There are seven steps involved in extending an explored path in the binary code tree. The

first step sets up the RAMs. Steps 24 extendthe path associated with branch (0) while steps

5-7 extend the path associated with branch (1). The steps are:

1). Duplicate data in the associated address (of the current largest path metric) to the next

available address of RAMI, RAM2 and RAM3-6.

2). Calculate the metic of the extended path associated with branch (0).

3). Insert the path metric and the address of the extended path associated with branch (0)

into the systolic priority queues.

4). Store the extended path, its 9-previous information bits and its path length in RAM3-6,

RAM1 and RAM2 respectiveþ

5) to 7). Repeat 2) to 4) for the exrended path associated with branch (1).

To explain these steps in detail, consider figure 3.2. Metic m5 , corresponding to explored

path (010), is the current largest path metric with associated address add2. The next

available address in the RAMs is ødd.+. The first step in extending an explored path is that

of duplication of data from address add¡ (i.e. associated address of the largest path metric)

to address adù (i.e. the next available address) of RAMI, RAM2 and RAM3-6.

3.3.1 Duplication of data in RAMI, RAM2 and RAM3{

Before considering the details of the duplication process, the memory a:rangement of

RAM3-6 and the address control of RAþïl, RAM2 and RAM34 arc described.

)o

RAM3-6 can be viewed as one RAM with a3}-bit data bus and a 13-bit address bus. Since

a maximum path length of 256 bits is chosen in the design, RAM3-6 are partitioned into

blocks of eight words where each word contains 32bits. The maximum available stack size

is thus 1024. Figure 3.3 shows the storage arrangement of an explored path within a block

in RAM3-6.

10 MSB RAM3
One Block

RAM4 RAM5 RAM6

000

001

010

011

100

101

110

111

bir [1,8] bir [9,16] bitÍ17,241 bilt125,321

bit [33,40] bit [41,48] bir [49,56] bitl57,64l
bilt165,721 bit [73,80] bir [81,88] bit [89,96]
bitÍ97,1041 bir [105,112] bir [113,120] bitlI2L,L28l

bitLL29,I36I bitl137,l44l bitl745,t52l bit [153,160]
bir [161,168] bitlI69,L76l bitlL77,t84l bir [185,192]

bir [193,200] bir [201,209] bitl209,2t6l bitlzt7,224l
bit1225,232l bitL233,240l bitl24l,24gl bit 1249,256l

32 bit word
<_J

Figure 3.3: Exploredpathstorageconfiguration. Note:.......... represenrstheblock

address add¡ andis controlled by Busl of the Address Contoller. The 3 LSB

a¡e controlled by the Path Length Buffer.

The address of each 32-bit word is specified by a unique l3-bitpattern. The ten MSB (add¡)

determine the block location within RAM3-6 and the three LSB (000 to 111) deærmine the

word location within the block.

The addresses of RAMI, RAM2 and RAM3-6 are controlled by two ASIC's, the Address

Contoller and the Path Length Buffer. RAM3-6 addresses are controlled by Busl of the

Address Connoller and the three MSB from the Path Length Buffe¡. Within the path Length

Buffer, there is a 3-bit counter which controls its three most significant ouq)ut lines during

the duplication process. The ouþut of the 3-bit counter (000 to 111) is held while Busl

output changes ftom add¡ to add¡ allowing each of the eight consecutiv e 32-bitwords of

57

an explored path to be duplicated. Once a word is duplicated, Busl goes back to ødù . This

is repeated eight times. Simila¡ to Busl, RAM1 and RAM2 address lines are controlled by

Bus2 of the Address Controller. Bus2 changes from add¡ to add¡ to duplicate the

9-previous information bits and the path length of an explored path. However, since only

one word needs to be duplicated, Bus2 only switches once.

Having described how the addresses of the RAMs are conftolled, the actual duplication

process is illustrated through an example of extending the explored path (010) in the code

hee of frgure3.2. T\e datain address ødd2 ofF.AMl andRAM2 areread and thenwritten

into addres s adda of RAM1 and RAM2 by the l-Previous Information Bits Buffer and Path

Length Buffer respectively. At the same instant, each of the eight consecutive words in block

add2 isread and then written into block adda ofRAM3-6 by the Explored Path Controller.

As soon as the duplication process in RAM1 and RAM2 is completed, the Address

Controller switches Bus2 back to add2. Then the sequential demodulator uses the dat¿ in

øddz of RAMI and RAM2 to calculate the path metric of the extended path (0100).

3.3.2 Fath extension

Continuing the example, the next step is to extend path (010) to (0100) and (0101). Refer

to figure 3.4. Path metric m7 for the extended path (0100) is calculated by retrieving the

branch metric of branch (0) from the EPROM and adding it to path mefric m5 .

To refrieve the branch metric, the 9-previous information bits (000000010) of the explored

path (010) are obtained from add.2 of RAM1 and combined with the extended branch (0)

to form the 10-bit sequenco (0000000100). This 10-bit sequence is used to confrol the ten

most significant address lines of the EPROM. The eight least significant address lines of the

EPROM are determined by the appropriate suffi.cient statistic z¿ which is determined by the

depth in the free or the path length. Thus the Path Length Buffer retrieves the path lengrh

(00000011) of the explored path from ødd2 of RAM2 and uses it as an address to retrieve

58

z¡, . The 16-bit branch metric from the EPROM is then passed to the Path Menic Computer

for the calculation of m7 for the extended path (0100). In the Path Metric Computer, the

16-bit adder adds the branch metric from the EPROM to the path mefric m5 fromregister

,áo of the metric systolic priority queue.

Having determined the path metric mt , all data relevant to the extended path (0100) have

to be sto¡ed. The data consist of m7, the associated address add2, the extended path, the

9-previous information bits and the path length of the extended path.

Path metric m7 arLdits associated address add2 of theextended path (0100) are inserted into

register .4s of the metric systolic priority queue and the address systolic priority queue

respectively by the procedurelnsertion of a succeedíng pathmetric in SR Systolic Priority

Queue (pp. 36-38). Since add2 is now the associated address of m7, the data in address

add2 ofRAMl, RAM2 and RAIvT3-6 have to be updated so that they are in correspondence

tom7.

The extended path (0100) is stored in RAM3-6 prior to updating the parh lengrh of the

exploredpath(010). Todothis,thetenMsB ofRAM3-6addressa.resetto add2. Thethree

LSB, since dataduplication has been completed, arenow addressed by the threeMSB of the

8-bitpath length of the exploredpath (010). This determines the address of the word within

the block. The Explored Path Confroller then uses the five LSB of the 8-bitpath length of

the explored path (010) to determine the bit location within the 32-bit'word for inserting the

extended branch (0) into RAM3-6. Thus the extended path is stored as (0100) in address

add2 ofRAM3-6.

The new 9-previous information bits (000000100) is stored in address add2 ofRIrMl. The

I-Previous Information Bits Buffer shifts out the most previous bit of the sequence

(0000000100) to form the new sequence (000000100) which is the 9-previous informarion

bits corresponding to the extended parh (0010).

59

Finally the length of the extended path is updated by having the Path Length Buffe¡

incrementthepathlength(00000011)oftheexploredpath(010)byone. Thenewpathlength

(00000100) is stored in address add2 of P.All.dZ.

Extension of branch (0) of the explored path (010) is now complete. Figure 3.4 shows the

contents of the code tree, SPQ-MU, SPQ-AU, RAM I , RAM2 and RAM3 4 after the above

operations with the assumption that m7 1ms. The Address Controller switches Busl and

Bus2 to adda inorder to extend branch (1). RAMI, RAM2, and RAM3-6 are now addressed

by adda until the beginning of the next extension step.

The extension procedures for branch (1) of the explored path (010) are simila¡ to those fo¡

branch (0). The differences are: 1) data in address adda of RAMI, RAM2 and RAM3-6

are used and updated,2) pathmefric mB arLd address add4 arc inserted into register ,40 of

the SPQ-MU and the SPQ-AU respectively, note that, by a different procedure. It is

described on (pp. 4547) under the heading Insertion of a succeedíng path metric and

deletion of the largest pathmetríc ín the SR Systolic Príority Queue.

Figure 3.5 shows the contents of the code ffee, SPQ-MU, spQ-AU, RAMI, RAM2 and

RAM3-6 after a complete step of extending the explored path (010). The descrþtion of the

7 steps involved in extending an explored path is complete. For example, if the extension

of the code free is to be continued, with the assumption that m7 1m5 and mB < m6, then the

explored path (0 1 1) is extended. The seven described steps are repeated. In the next section,

a discussion of the details in the hardware design of the sequential demodulator is given.

60

xk= 1

I

+
xk= 0

SPQ_MU

SPQ_AU

addo

addl

add2

addz

adda

add5

adds

addl

add2

ødd.3

add.a

add.5

Y -P¡evious Information Bits
RAMl

^

--0100
n11

nln

next available address

Explored Path
RAM3 RAM4

Path Length
RAM2

addo

addt

add2

addz

adda

add5

RAM5 RAM6

00
I

0100
011
010

next available address

Figure 3.4: The relation of a sample code tree with the systolic priority queue contents and

the stack contents after extending branch (0) of the explored path (010). Note:

Each add¡ in RAM3-6 is an address block of 8 words and each word consists

of 32 bits.

m6 m7 m3 m2 -æ -æ -æ
addt addz a.ddo addl 0 0 0

00000010
00000001
00000100
00000011
00000011

next available address

6T

m6 m8 m'| m3 mz -æ -æ -æ
addz addq addz addo add,t 0 0 0

SPQ_MU

SPQ_AU

v -Previous Information Bits
RAMl

nn

1

--0100
011

--0101
next available address

Explored Path
RAM3 RAM4

Path Length
RAM2

addo

addt

addz

addt

add+

adds

adds

addt

addz

add3

add¿

ødd5

RAM5 RAM6

addo

add.t

addz

addt

adda

add5

00
1

0100
011
0101

next available address

Figure 3.5: The relation of a sample code troe with the systolic priority queue contents and

the stack contents after extending branch (0) and branch (1) of the explored

path (010). Note: Each add; in RAM3-6 is a address block of 8 words and

each word consists of 32 bits"

00000010
00000001
00000100
00000011
00000100

next available address

62

1)

3.4 t{ardware Design

In this section, the hardware design of the seven ASIC's shown in fi.gure 3.1 is described.

Details of the design of the Systolic Priority Queue-Metric Unit and the Systolic Priority

Queue-Address Unit are given first followed by a brief description of the other 5 ASIC's.

3.4.1 Systolic Friority Queue-Metric Unit (SPQ-MU) and Systolic Priority

Queue-Address Unit (SPQ-AU)

The hardware configuration of the SR Systolic Priority Queue architecture for the stack

algorithm is based on the steps given below.

Check for overflow of path metric values in the stack. If overflow occtus, then adjust

all the path metric values, else the contents of the registers are held. (adjust or hold).

Insert the path metric corresponding to branch (0), (insert data into register Ae).

Shift all the path metric values in the queue one position to the right, (shift right).

Rea:range the path metric values in A2¡ay and A2¡a2, so that Az¡*t 2 A2¡a2, (if

Az¡*t 1A2i*2, then exchange the data in A2¡¡1 and Az¡*z).

The contents of the registers are held, (hold).

Insert the path metric corresponding to branch (1), (insert daø into register .4s).

Rearrange the path metric values in A2¡ and A2r*L , so that Az¡ 2 Azi*L , (tf Az¡ 1 A2ì*L ,

then exchange the data in A2¡ and Az¡*t).

Repeat 4).

The above shows that only 5 distinct operations are needed to be performed by the queue,

namely, that of adjust hold, insert data, exchange data in A2¡a1 and A2¡¡2 and exchange data

in A2¡ and A2¡¡1. Figure 3.6 shows the circuitry of the hardware to perform the 5 required

operations. Table 3.1 shows the logic table for the register As and register A¡, for

í = 1,2,3,4, -. , of figure 3.6.

2)

))

4)

5)

6)

7)

8)

63

*ir

Q)
P
.9
Qrì
q)

É.

r)

Q)

.q
crl
U
É.

c!

L
q)

.9

É.

o)

.v
qJ

É.

ñ

Q)

,Ø

Q)
É.

?îi.sEsJ.L!
===
Ååå

Basic hardware structrue of the SR Systolic Priority Queue for the stack

algorithm. Note: Register As just serves as an inpuloutput poft. It is not part

of either the SPQ-MU ASIC or the SPQ-AU ASIC.

Figure 3.6:

Downshift-en' S1 S0 Register Ae Register A¡

0 00 Adjust Adjust

0 01 Adjust Adjust

0 10 Adjust Adjust

0 11 Adjust Adjust

1 00 Insert data Hold

1 01 Hold Shift all data right

1 10 Hold Exchange data in A2ia1 and Azi*z

r 11 Exchange data in A9 and A1 Exchange data in A2i and 42i..1

Table 3.1: Logic table for the register .46 and register A¡ infigure 3.6.

Except for register ,49 , the remaining registers should be considered in pairs of A2¡a1 and

A2i*2 , i.e. (,41 , A2) is one pair, (At , A+) is another pair identical to (Á1 , Az), etc. Thus

register As and the register palr (A2¡a1 , A2ioz) are the 2 building units of the SR Systolic

Priority Queue as shown in figure 3.7. The circuits in figure 3.6 and figure 3.7 really only

deal with 1 bit of an M -bit path metric. The building blocks of an M -bit SR Systolic

Priority Queue are constructed simply by connectirLg M of the units inparallel as shown in

figure 3.8.

To complete the above building blocks, comparators to compare adjacent path metrics and

selectors to control hold, shift and exchange of the shift register contents, need to be added.

This is shown in figure 3.9. Having illustrated the basic hardware sûucture of the SR Systolic

Priority Queue for the stack algorithm, the hardware design of the Systolic Priority

Queue-Menic Unit ASIC and the Systolic Priority Queue-Address UnitASIC is described

below.

65

Doto-ln
Out-ø

a). Register .46 . Note: It is not part of either the SPQ-MU ASIC or rhe SPQ-AU ASIC.

Downsfiift-on'

Downehlft-ln-21+ t 0owñEh¡ft-ln-21+2

ln-2i+ |
Out-21+l

Out-2í+2
ln-2i+2

qt cr

äñ
ll
ñE

++
tl
ñ8

b). Register palr (A2¡¡1, Az¡*z).

Figure 3.7: Basic building units of the SR Systolic Priority Queue for the stack algorithm.

N
X
l
E

c
c

a). Register .4e . Note: It is not part of either the SPQ-MU ASIC or the SPQ-AU ASIC.

¿+E+

z+z-ta

I+E-E

¡+g-¡s

b). Register pur (Az¡*t, Az¡*z).

Figure 3.8: Paralleling the building units of the SR Systolic Priority Queue for the stack

algorithm. Note: M -bitbuilding blocks.

:fl

+årI
t

ß
É

tilL r-
i¡l{iað3*¿

+å¡
E

tf
?rï$!3õ3id

67

?+i1+r
ãÈå

4N-666@d

Eq
Ê<

?TER

¡u.-uB64oo Ê-ø-tno ç-ø-ul z4-vto z-ø-út t-ø-¡no t_{_st ø_ø_t o ø_ø_ul

lJ.r.t9+o¡Ju9Áo o€T?rnb¡ s-øs
s-ts

ç-ø-l¡O Z-ut-D¡oO Z-ø-$O l-ul-oloo t-g-lno ø-

Figure 3.9a: M -bitregister .46 of the SR Systolic Priority Queue for the stack algorithm

with comparator and selector added. Note: It is not part of either the SPQ-MU

ASIC or the SPQ-AU ASIC.

f-¿+E-q z-¿+E-Fo z-a+E-q F¿na-þo r-a+l¿-q 0-¿+lz-yo bz
z+f¿-es

q0TMõ5 ¿+f¿-ts
r{z-6
l+tz-ls

+:¿-F0 z-l+E-uf z-tq¿-Fo t-l{¿-q t-!+t¿-Fo t-!

Figure 3.9b: M -bit register pa|r (A2¡a1 , A2i*z) of the SR Systolic priorþ eueue for the

stack algorithm with comparator and selector added. Note: M -bitbuilding
block of the SPQ-MU ASIC.

The Systolic Priority Queue-Metric Unit ASIC is a 16-bit version with figure 3.9b used as

the building block. It consists of a cascade of four blocks. The Systolic Priority

Queue--Address Unit ASIC is different from the SPQ-MU ASIC in the following ways. It

is simply used to store the associated addresses of the path metric values in the SPQ-MU

ASIC, thus neither overflow-checking nor magnifude comparing capability is required.

Moreover, no extra control circuitry is required since the location of the associated addresses

changes together with the their corresponding path metrics. Therefore, the 2-to-1 line

multþlexers, the comparators and the selectors in the circuits shown in figure 3.7, figure 3.8

and figure 3.9 are not required. The circuits in the figures are simplified to obtain the

building units of the SR Systolic Priority Queue for storing the associated addresses. The

simplified circuits are shown in figure 3.10 and figure 3.11. Since a stack size of 1024 is

chosen in the final design of the sequential demodulator, a 10-bit version of figure 3.llb is

used as the building block of the SPQ-AU ASIC. The final SPQ-AU ASIC is consfructed

by cascading 4 of the 10-bit building block.

This completes the design description of the SPQ-MU and the SPQ-AU. In the following

5 sub-sections, the hardware designs of the other 5 ASIC's are briefly described. For each

of the 5 ASIC's, a top level block diagram and the function of each component block are

given.

70

õ3us=s

Out-Ø
ln-Ø

a). Register As . Note: It is not part of either the SPQ-MU ASIC or the SPQ-AU ASIC.

eñtl
õE

tn-2i+1
Out-2i+ 1

Out-2i+2
ln-2i+2

++
NN

ñE

NO{.tt
NNtl
ñE

b). Register pah (Az¡*r , Az¡*z).

Figure 3.10: Basic building units of the address SR Systolic hiority Queue for the søck

õEps=sõEns=s

algorithm.

7l

È??
I ¿C

€d

il
'Ì -!
Éo

a). Register A6 . Note: It is not part of either the SPQ-MU ASIC or rhe SPQ-AU ASIC.

b). Register patr (A2¡¡1 , Azi*z). Note: M -bitbuilding block of the SPQ-AU ASIC.

Figure 3. 11: Faralteling the building units of the address SR Systolic Priority Queue for the

stack algorithm.

72

3.4.2 Path Metric Computer (PMC)

The Path Metric Computer calculates the path metric of an extended path, provides an

inpuloutput port for the Systolic hiority Queue-Metric Unit and determines the operation

modesofthesystolicpriorityqueues. Itshardwareconfigurationisillustratedinfigure3.l2.

It consists of a 16-bit Adder, Register ,4s of the metric systolic priority queue, and a 3-bit

Counter.

Branch Metric
Look-Up Table

SPQ_MU

Address
Controller

SPQ_MU
sPQ-MU

Figure 3.12: Block diagram of the Path Metric Computer.

The 16-bit Adder calculates the path mefric of an extended path. It adds the branch mefüc

obtained from the tsranch MeEic Look-up Table to the current largest path metic from the

Register .4e of the metric systolic priority queue.

Register A6 functions as an input/output port for the Systolic Priority Queue-Metric Unit.

It consists of a 16-bit version of figure 3.8a connected to a comparator and a selector. The

ouþut of the selector is connected to the Address Confroller for controlling the multiplexers

in Register .4s of the address systolic priority queue. At the beginning of each extension

step, Register As outputs the current largest metric to the 16-bit adder. At the end of the

each branch extension, the path mefric of the extended path is input into Register ,4s .

73

The 3-bit Counter determines the eight operation modes/steps of the stack algorithm (p. 59).

Its output, together with the output of the comparator, control the selectors and thus the

multiplexers in Register As. The ouþut of the 3-bit Counter also apply to the Systolic

Priority Queue-Menic Unit. It combines with the ouþuts from the two adjacent

comparators of each register in the Systolic Priority Queue-Metric Unit. The result controls

the multiplexers in each register of the Systolic Priority Queue-Metric Unit and the Systolic

Priority Queue-Address Unit.

3.4.3 Address Controller (AC)

The Address Connoller keeps track of the next available address in RAM1-6, provides an

inpuloutput port for the Systolic Priority Queue-Address Unit and controls the addresses

of RAM1-6. Its hardware configuration is illusnated in figure 3.13. It consisrs of a 10-bit

Counter, Register As of the address systolic priority queue, Multþlexerl and Multiplexer2.

Address Lines Busl
lAz,Anf

of RAM3-6

Address Li Bus2
of RAM1-2

SPQ_AU
SPQ-AU

PMC

Figure 3.13: Block diagram of the Address Controller.

The 10-bit Counter keeps tack of the next available address location in RAM1-6. At the

end of each extension step, it up--counts its current value by one to locate the next available

address in RAM1-6 for the next extension step"

Multþlexer2

Register,4s
of address SPQ

74

Register A6 functions as an input/ouþutportfor the Systolic Priority Queue-Address Unit.

ItconsistsofalO-bitversionoffigure3.lla. TheoperationoftheRegisterAs iscontrolled

through the selector ouq)ut from the Path Metric Computer. At the beginning of each

extension step, Register Ag oulputs the associated address of the curent largest metric to

the two multiplexers. At the end of the first branch extension, Multiplexer2 inputs the

associated address into Register A6 . After the second branch extension, Multiplexer2 inputs

the value of the 10-bit Counter into Register Ae .

Multiplexerl and Multþlexer2 control the addresses of RAM1-6. Each multþlexer is

constructed from 10 2-to-I line multþlexers. They accept the associated address of the

current largest path mefric from Register As and the next available address from the 10-bit

Counter as input, then output the appropriate address to RAM3-6 and RAM1-2 respectively.

3.4.4 L,-Previous fnformation Bits Euf'fer (LPIBB)

The I-Previous Information Bits Buffer duplicates the data in RAMI, controls the address

lines [.4,3,417] of the Branch Metric Look-Up Table and updates the 9-previous

information bits of an extended path. Its hardware configuration is depicted in figure 3.14.

It is a 10-bit Shift Register which consists of ten D-flip-flops and ten 3-to-1 line

multþlexers. Refer to section 3.3 for details.

lDt,Dgl
Data Bus
of RAM1

Current Extended
Branch (0/1)

Address Lines
of Branch Metric
Look-Up Table

lAs,Anl

Figure 3.14: Block diagram of the I-Previous Information Bits Buffer.

1O-bit
Shift Register

IJ

3.4.5 Path Length Buffer (PLts)

The Path Length Buffer duplicates the data in RAM2, controls the address lines [As, A2] of

RAM3-6, controls the address lines of the Sufficient Statistic Look-Up Table, controls the

input of the Extended Path Controller for updating an extended path in RAM3-6, and

updates the path length of an extended path. Figure 3.15 shows the hardware configuration.

It consists of an 8-bit Counter, a 3-bit Counter and a Multiplexer Unit. Refer to section

3.3 for details.

IDs,Dì

Address bus
of RAM3-6

lAo,Azl

Data Bus
of RAM2

lDo,D+l tended Path
Controller

Address Bus of
ufficient Statistic
Look-Up Table

Figure 3.15: Block diagram of the Path Length Buffer.

76

3.4.6 Explored Path Controller (EPC)

TheExploredPath Connollerconftols theupdating of anexploredpathinRAM3-6. Figure

3.16 shows the hardware configuration of the EPC. It consists a Multþlexer Unit, a

D-flip-flop unit and a 5x32 Decoder. Refer to section 3.3 for details.

lDo,D¿l [so, s:r]
from Path Lensth
of Explored Pãth

Current Extended
Branch (0/1)

Data Bus
of RAM3-ó

IDo,Dttl

Figure 3.16: Block diagram of the Explored Path Confroller.

Having described the hardware design of the seven ASIC's, the testing result of the ASIC's

and a discussion of the sequential demodulator are given in the next chapter.

5x32 Decoder

D-Flip-Flop
Unit

77

Chapter 4 Test Result and Ðiscussion

In this chapter, the test result of the seven ASIC's is fust presented. Then a discussion of

the sequential demodulator based on its applicability is given.

4.1 Test R.esult

The ASIC'S were designed using the CAD tool Cadenceru (also known as EDGE, SDA, or

CDS) which uses a design methodology called schematic capture. In this environmen! the

schematic of each ASIC is drawn, with the placing and routing of standard cells done

automatically from the schematic. In other words, silicon level representations of the

ASIC's are derived from very simple circuit sketches.

Before sending the designs for fabrication, the schematics were simulated under the SILOS

simulator for verification of design logic. SILOS is executed within Cadence using a netlist

generated from Cadence. The ouþut of the simulation is viewed by the Waveform Display

package provided in the Cadence environment. Since no design errors were found in the

simulation, the layouts (i.e. the silicon representations) were translated to the Caltech

Intermediaúe Form (CIF) files and submitted to the Canadian Microelecftonics Corporation

(CMC) whe¡e they were fabricated with the three micron CMOS process.

Upon receþt of the ASIC's, they were tested with an ASIX-2 tester. A static test was

performed on each ASIC. During the test, input test vectors were applied to an ASIC and

the ouþuts were compared with the designated output test vectors. None of the ASIC's

passed the static test. In all the ASIC's, there are inputs and ouþuts that a¡e stuck at'I' .

Further investigation was done to find out the cause of the stuck at '1' problem. Each ASIC

was inspected under the microscope. The inspection revealed unconnected pads which

corresponded to the inputs and out¡luts that exhibited the stuck at '1' problem in the st¿tic

test. In order to determine whether the routing errors are in the fabrication or in Cadence,

layouts of the ASIC's were examined. This examination confirmed that the unconnected

78

pads are due to the layouts generated by Cadence. The unconnected pads resulted in four

ASIC's which could not be tested, the other three were only partially tested.

The four ASIC's that were unable to be tested are the Systolic Priority Queue-Metric Unit,

the Systolic Priority Queue-Address Unig the Path Metric Computer and the L-Previous

Information Bits Buffer. The Systolic Priority Queue-Metric Unit and the Systolic Priority

Queue-Address Unit have fourteen and six unconnected pads respectively, however the

crucial pad that makes the two ASIC's nottestable is theinputpadCK,which drives the clock

signal. The Path Metric Computer has ten unconnected pads. It was unable to be tested

because the two input pads SET and RESEZ which drive the set and reset signals of the ASIC

are not connected. The I-Previous Information Bits has two unconnected pads, however

the reason for test failure was not caused by the unconnected pads. The ASIC was unable

to be powered up. It is suspected that there exists a short between power and ground.

Unfortunately, the fault in this ASIC could not be located.

During the test of the Address Controller, malfunction of the 10-bit Counter and the output

A7 were observed. The malfunction was caused by two unconnected pads, CE :AC and A7 ,

which appeared as stuck at '1' faults. The counting operation of the 10-bit Counter could

not be disabled since the count enable inpat CE_AC of the 10-bit Counter is stuck at'l' .

Similarþ, the counting operation of the 8-bit Counter in the Path Length Buffer could not

be disabled because its count enable input PL_UP _COUNT_EN is stuck at '1'. In addition,

the outputs DPL3, DPL7, A3 and A7 of the 8-bit Counter are not connected and all appear

as stuck at'1'faults. Finally, the 5x32 Decoder in the Explored Path Confroller did not

perform properþ. One input, AZI , of the 5x32 Decoder is not connected and stuck at' I' .

Thus whenever the input to AZI was'0', the decoder gave aî incorrect ouq)ut.

To summarize, the main problem of the ASIC's is the unconnected pads originated from the

layouts. All the unconnected pads appeared as stuck at'l' faults in the test. The problem

was caused when the layouts were generated using the router in Cadence. The Detail

79

Routing stage was proceeded before all nets were routed in the Global Routing stage. This

resulted in unconnected pads. In the Global Routing stage, there is no guarantee that all nets

are completely routed by just one frial regardless of the conshaints imposed on the locations

of the I/O and standard cells. If some of the nets are reported partially routed, then the global

routing has to be undone and the Global Routing stage needs to be repeated. The above is

repeated until all nets are completely routed. If all nets are completeþ routed, then the Detail

Routing stage can proceed. The layouts of the seven ASIC's are regenerated in Cadence.

With several nials in the Global Routing stâge for each layouf layouts with all pads

connected are obtained.

80

4.2 Applicability of the Sequential Demodulator

The applicability of the sequential demodulator is discussed in terms of the number of

interference terms in the ISI channel, the length of the input to the ISI channel and the size

of the stack required.

4.2.L Number of interference terms in the ISI channel

The sequential demodulator shown in figure 3.1 is designed to handle ISI channels with at

most nine interference terms. If the ISI channel has exactly nine interference terms, no

modification to the design shown in figure 3.1 has to be made. Specific branch metic

look-up tables have to be prepared and used for different ISI channels. However if the

number of interference terms changes, the design has to be modified accordingly.

If there are less than nine interference terms, only the l-Previous Information Bit Buffer and

the Branch Metric Look-Up Table need to be modified. If there aÍe n < 9 interference

terms, then the 9 - z most significant ouþut lines of the I-Previous Information Bit Buffer,

and therefore the 9 - n most significant address lines of the table, are not required. They

should hardwired to either '0' or '1'. If they are hardwired to '0', then only the first 28+n+l

addresses of the look-up table are used, else the last 28+n+l addresses of the look-up table

are used. The table has to be programmed accordingly or can be substituted by a smaller

dimension memory IC.

4.2.2 Length of input to the ISI channel

The sequential demodulator is designed to decode a block of 256 bits. If the sequence length

of the input is just one block, then the decoding proceeds as described in chapter 3. However,

if the length of input is longer than one block, then the following assumption has to be made.

The node with the largest path mefic from the previous block is assumed to be the root node

of the crurent input block. That is, the path conesponding to that particular node is assumed

to be the desired path for that block. The last nine symbols of the decoded path from the

81

previous block is assumed to be the 9-previous information bits corresponding to the first

symbol in the current input block. To continue the decoding, the 9-previous information bits

is input into the address (0000000000) of RAM1 and the rest of the system is reset to the

initial state. Then the decoding of the current blockproceeds as described in chapter 3. The

final decoded path is obøined by concatenating the results obtained from the input blocks.

4.2.3 Stack overflow problem

The sequential demodulator is designed to have a stack size of 1024. If stack overflow

oscurs, an overflow flag signifies the occurrence of overflow. If the decoding continues, the

result becomes meaningless. 'When overflow occurs, the value of the 10-bit Counter in the

Address Confroller goes back to (0000000000) which is the location of the next available

address in RAM1-6. Due to the storage scheme of the design, address (0000000000) of

RAM1-6 might contain data for the most likely path. A better storage scheme has to be

developed to handle the stack overflow problem.

82

Chapter 5 Conclusions and Suggestions for F urther Study

S"tr Conclusions

In this thesis the VLSI implementation of a sequential demodulator based on the Shift

Register Systolic Priority Queue architecture applicable to ISI channels is developed and

performed. The sequential demodulator consists of eight standard memory IC's and seven

ASIC's that are fabricated with the three micron CMOS process. The design is capable of

handling input blocks of 256 bits and a maximum of 9 interference tems. It has a maximum

allowable stack size of L024. An 8-bit representation is used for the input sufficient statistic

z¡ aîd a 16-bit representation for the metric.

The idea of Chang and Yao [2] in using the Shift Register Systolic Priority Queue to

substitute the stack in the conventional sequential stack algorithm is used for the VLSI

implementation of the sequential demodulator. The proposed algorithm is investigated and

implemented into hardware. Two Shift Register Systolic Priority Queues applicable to the

stack algorithm are implemented for manipulating the path metrics and their associated

addresses. The Shift Register Systolic Priority Queue architecture is used to eliminate the

time consuming and number--of--entries dependent stack reordering problem in the

conventional stack algorithm. With the systolic priority queue architecture, complete stack

reordering is no longer required and the largest path metric is guaranteed to appear at the top

of the stack within a fixed and short interval of time resa.rdless of the number of metrics in

the stack.

To complete the design of the sequential demodulator, algorithms for storing the explored

paths and evaluating the mefics are developed and hardware implemented. The input

sufficient statistic z¡, and all possible branch metic values are available as two look-up

tables. The output explored paths are stored in a RAM. To facilitate the storage of explored

paths and the evaluation of branch meftics, the path lengths and the 9-previous information

83

bitsoftheexploredpathsarealsostored. Thetechniqueofindirectaddressingisusedtostore

and locate the path length, the 9-previous information bits and the explored path of a

particular path mefric. Associated with each path metric in the metric systolic priority queue,

there is a value in the corresponding position in a second systolic priority queue that

ropresents the address of the above three data in the RAMs. The knowledge of the path length

is used to locate the specific position for storing the extended path and retrieve the specific

sufficient statistic z¡r. The retieved sufficient statistic zk arld the 9-previous information

bits are then used as the address to rehieve theexpected branchmefric fromthe branchmetic

look-up table.

5.2 Suggestions for Further Study

The arearequirement of the design is quite large and thus limits thefeasibility of the design.

Further investigation needs to be done to overcome this problem. The 16-bit metric

representation and the 10-bit associated address of each path metric are the two main factors

contributing to the area requirement of the design. Since a 16-bit representafion is chosen

for the metic, only eight entries can be accommodated in the Systolic Priority Queue_Menic

Unit. Thus a total of 128 Systolic Priority Queue-Metic Unit ASIC's are required to

construct a stack size of 1024. More research is definitely needed to establish a new metic

representation that requires fewer bits and provides satisfactory error perforrnance.

Similarly, 128 Systolic Priority Queue-Address Unit ASIC's are required to construct the

stack of size 1024 for storing the associated addresses. The 10-bit associated address is

required because of the indirect addressing technique used in the design. New algorithms

for storing the explored paths and evaluating the mefrics need to be developed in order to

eliminate the requirement of the 10-bit associated address. Also, modification of the design

to handle the stack overflow problem and multþle stack decoding are two other possible

extensions to the work presented in this thesis.

84

REF'ER.ENCES

tll J. B. Anderson and C. F. Lin, "M-AlgorithmDecoding of Channel Codes," Proc. I3th

Btennial Symp.onCommun., Queen's Uníversíty, Kíngston, Canada,pp.43.1-43.4,

June24,1986.

LTl M. E. Austin, "Decision-Feedback Equalization for Digital Communication over

Dispersive Channels," M I .7. Lincoln Lab., Lexíngton, Mass ., Tech. Rep. 437, August

1967.

t3l C. Y. Chang and K. Yao, "Systolic Array Architecture for the Sequential Stack

Decoding Algorithm," SPIE Conf., San Diego, U.S.A., pp.196203, 1986.

t4l L. Vf. Couch, Dígital and Analog Communícatíon Systems, Macmillan, New York,

1990.

t5l A. Duel and C. Heegard, "Delayed Decision Feedback Sequence Estimation," 23rd

Annuøl Allertor Conference on Communicatíon, Control, and Computíng, pp.

878-887, 1995.

t6l M. V. Eyuboglu and S. U. Qureshi, "Reduced-State Sequence Estimation with Set

Partitioning and Decision Feedback," IEEE Trans. Commun., vol. COM-36, pp.

13-20, January 1988.

Ul G. D. Forney, Jr., "Maximum-Likelihood Sequence Estimation of Digital Sequences

in the Presence of Intersymbol Interference," IEEETrans.Inform.Theory, vol. 18, pp.

363-378,May 1972.

t8l G. D. Forney,h., "The Viterbi Algorithm," Proc.IEEE,vol. 61, pp.268-27 8, March

I973.

t9l G. D. Forney, Jr., and M. V. Eyuboglu, "Combined Equalization and Coding Using

Precoding," IEEE Commun. Mog.,pp" 25-34, December 1991.

85

t10l H. Harashima and H. Miyakawa, "d Method of Code Conversion for a Digital

Communication Channel with Intersymbol Interference," Trans. Inst. Electron.

Commun. Eng.,Iapan, vol. 52-4,pp.272273, June 1969.

tlll H. Harashima and H. Miyakawa, "Matched-Transmission Technique for Channels

with Intersymbol Interference," IEEE Trans. Commun., vol. COM-20, pp. 774-780,

August 1972.

llzl E. R. Kretzmer, "Binary Data Communication by Partial Response Transmission,"

C o nfere nc e Re c o rd, I EEE Annual C ommun. C o nv e ntio n, pp. 45 1455, 1 965.

t13l E. R. Kreømer, "Generalization of a Technique for Binary Data Communication,"

IEEE Trans. Commun. Tech., vol. COM-I ,pp. 6748, February 1966.

IL4l W. U. Lee and F. S. Hill, "A Maximum-Likelihood Sequence Estimator with

Decision-Feedback Equalization," IEEE Trans. Commun., vol. COM-25, pp.

97 I-97 9, September 1 977.

t15] A. Lender, "Correlative Digital Communication Techniqaes," IEEETrans. Commun.

Tech., vol. COM-I2, pp. I28-I35, December 1 964.

t16l A. Lender, "Correlative Level Coding for Binary-Data Transmission," IEEE

Spectrum, vol. 3, no.2,pp. 104-115, February 1966.

LLTI S. Lin and D. f. Costello, Error Control Codíng: Fundamentals and Applicatíons.

Prentice-Hall, Englewood Cliffs, N. J., 1983.

t18l R. W. Lucky, J. Salz, and E. J. 'Weldon, h., Princíples of Data Communícation.

McGraw-Hill, Inc., New York, N.Y." 1968.

t19l H. Nyquist, "certain Topics in Telegraph Transmission Theory," Trans. AIEE

(C ommun. and El e c tro ní c s), v ol. 47, pp. 617 4M, April lg2g.

86

[20] A. Polydoros and D. Kazakos, "Maximum Likelihood Sequence Estimation in the

Pre sence of Infinite Inter symbol lnterferen ce," P ro c . I C C' 7 9, B o s t o n, M A, I une I97 9 .

Ízfl S. Qureshi and E. Newhall, "An Adaptive Receiver for Data Transmission over

Time-Dispersive Channels," IEEETrans.Inform.Theory, vol. 19, pp.448457, June

1973.

l22l S. Qureshi, "Adaptive Equalization," IEEE Commun. Mag., pp. 9-16, March 1982.

l23l N. Seshadri and J. B. Anderson, "An M-Algorithm Receiver for Severe Infinite

Intersymbollnterference Channels," Abstract of Papers,International Symposiu.mon

InformationTheory, Kobe, Japan, pp" 68, June 1986.

l24l M. Tomlinson, "New Automatic Equalizer Employing Modulo Arithemetic,"

Ele ctron. Lett., v ol. 7, pp. 1 38-139, March 1 97 1.

l25l G. Ungerboeck, "Channel Coding with Multi-LevelÆhase Signals," IEEE Trans.

Inform.Theory, vol. 28, pp. 5547, January 1982.

Í261 F. Xiong, A.7,enk, and E. Shwedyk, "Sequential Sequence Estimation for Channels

with Intersymbol Interference of Finite or Infinite Length," IEEE Trans. Commun.,

vol. COM-38, pp. 795-804, June 1990.

87

