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ABSTRACT

The sequential algorithm has been applied to channels with intersymbol interference (ISI).
It is superior to the Viterbi algorithm for channels with long or even infinite intersymbol
interference, since the computation and storage complexity of the sequential algorithm does
not grow exponentially with the length of the channel memory. However the time required
for the complete stack reordering procedure in the conventional sequential stack algorithm
is long and depends on the number of entries in the stack, hence places severe limitations

on the decoding speed and thus the real-time implementation of the algorithm.

In this thesis, the Shift Register Systolic Priority Queue is used to substitute the stack of the
conventional sequential stack algorithm to eliminate the complete stack reordering problem.
With the systolic priority queue architecture, complete stack reordering is no longer required
and the path with the largest path metric is guaranteed to appear at the top of the stack within

a fixed and short interval of time regardless of the number of paths in the stack.

Hardware algorithms for storing the explored paths and evaluating the metrics are developed
in this thesis. A sequential demodulator based on the Shift Register Systolic Priority Queue
architecture and the developed algorithms was implemented. The design is capable of
handling input blocks of 256 bits and a maximum of 9 interference terms. It has a maximum

allowable stack size of 1024. An 8-bit representation is used for the sufficient statistic z

and a 16-bit representation for the metric.
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Chapter 1  Introduction

The increasing demand for higher rate digital data transmission makes digital
communication an area of intensive research. Due to physical constraints, communication
channels are bandlimited. One example is the voice-grade—telephone channel that has a
bandwidth of approximately 4,000 Hz despite the fact that modems are transmitting data
over this channel at a rate of approximately 24,000 bits/sec. The bandlimited characteristic
results in intersymbol interference (ISI) [4], a phenomenon where each transmitted pulse
stretches beyond the time interval allocated to that particular pulse and overlaps with pulses
in other time intervals. The occurrence of ISI is caused by the time-dispersive
characteristics of bandlimited channels. The number of pulses interfering with a particular
pulse is called the memory of the channel (¥) or the length of the ISI. In high speed data
transmission over bandlimited channels with high signal-to-noise (SNR) ratios, the

existence of ISI becomes the major obstacle to reliable communication.

Various techniques for combating IST have been studied. In 1928, Nyquist [19], being the
first researcher to develop techniques for combating IS, introduced baseband spectrum
shaping for zero ISI. This eliminates ISI by using an equivalent filter at the receiver to
suppress the ISI terms at any sampling instant. In 1963, Lender [15] introduced the
duobinary signaling technique which allows the existence of one ISI term. Lender’s
technique allows ISIin a controlled manner so that it can be removed at the receiver. In 1966,
Lender [16] and Kretzmer [12, 13] generalized the duobinary signaling technique to partial
response or correlative coding which allows any number of ISI terms. During 1968—1969,
Tomlinson [24] from the United Kingdom and Harashima [10, 11] from Japan invented the
precoding technique [9]. With the assumption that the channel response is known at the
transmitter, the input sequence is coded in a unique way before transmission through the
channel. Equalization techniques were also ihtroduced for combating ISI during the late

1960’s. Channel equalization is performed by the receiver that usually consists of a matched



filter followed by a sampler and an equalizer. There are three main categories of equalization
techniques [9, 22], namely linear equalization (LE), decision—feedback equalization (DFE),
and maximum-likelihood sequence estimation (MLSE). In linear equalization [18], the
present and past outputs of the matched filter are weighted by estimated gains and summed
to produce the output. Decision—feedback equalization [2] is the simplest form of non—linear
equalization. A decision—feedback equalizer improves upon a linear equalizer by passing
the output of a linear equalizer through a second equalizer with feedback. MLSE, a sequence
estimation technique, is considered the optimum equalization structure for communication
channels with finite ISI and is found to have an error performance superior to the
conventional symbol-by—symbol decision receivers mentioned above. In 1972, Forney [7]
showed MLSE can be realized for channels with finite ISI. The maximum-likelihood
sequence estimator consists of a whitened matched filter followed by a Viterbi processor.
The detection task is modelled as a search for the best (maximum-likelihood) path through

a regular structure called a trellis.

The Viterbi Algorithm [8, 17] was invented by Viterbi in 1967 as a method for decoding
convolutional codes. Since the ISI channel characteristic is equivalent to that of the
convolutional encoder, Forney [7] applied the VA to ISI channels. During the decoding
process, the VA visits all the paths thfough the trellis in order to find the
maximum-likelihood path. The fixed number of computations and the regular decoding
procedure make the Viterbi processor very easy to implement. However, the computational
complexity and the storage complexity of the VA grow exponentially with the length of the
channel memory. For ISI channels with large or infinite memory, implementation of the

maximum-likelihood sequence estimator using VA becomes impractical.

In order to reduce the computational complexity of the VA, a great deal of effort has been
made to reduce the number of states in the trellis to which the VA is applied. The techniques
used for reducing the number of trellis states are known as RSVA (Reduced—State Viterbi

Algorithm) [1, 5, 6, 14, 20, 21, 23, 25]. These techniques reduce the number of trellis states



either by reducing the number of the most likely paths to be searched or the length of the
channel memory. The RSVA techniques have the advantage of retaining the structure of
MLSE-VA while reducing the computational complexity of MLSE-VA. However, for any
specific technique, gains in computational complexity comes with a loss in detection

performance.

In 1989, Xiong [26] developed the application of the sequential algorithm (SA) [17] to ISI
channels. The sequential algorithm is another technique for decoding convolutional codes.
Since the ISI channel characteristic is equivalent to that of the convolutional encoder, Xiong
applied the SA to ISI channels. Unlike the VA, the SA visits only a small number of paths
through the tree. The computational complexity of the SA is almost independent of the
length of the channel memory and its detection performance is essentially
maximum-likelihood. This property makes the SA applicable to ISI channels with large or
even infinite memory. Compared to the VA for ISI channels, the sequential approach is able
to handle more severe ISI channels (large or iﬁfmitc memory) and therefore allows data to

be transmitted at higher rates.

Although the sequential approach is superior to the Viterbi approach in its ability to handle
a greater number of interference terms, it involves a very time consuming stack reordering.
Not only is the time required for stack reorderihg long, but it also varies with the number of
paths in the stack. It is undesirable for the operation time to be dependent upon the number
of paths in the stack since this number increases after each decoding step. Since the only
purpose of stack reordering is to have the best path placed at the top of the stack for the next
decoding step. Chang and Yao [3] proposed the use of a Systolic Priority Queue. With the
systolic priority queue architecture complete stack reordering is not necessary and the best
path is always placed within a fixed and short period of time at the top of the stack for the

next decoding step.



The objective of this thesis is to examine the VLSI implementation of a sequential
demodulator based on the systolic priority queue architecture applicable to ISI channels.
Chapter 2 provides a general background of the ISI channels, followed by a description of
the Viterbi algorithm, sequential algorithm and Systolic Priority Queue. Chapter 3 describes
the details in the development of the sequential demodulator. Chapter 4 presents the testing
result and the discussion of the design. Chapter 5 gives the conclusions and suggestions for

further study.



Chapter 2  Background and Theory

2.1 Channel Model and Receiver Structure for Intersymbol Interference

(IST)

Intersymbol interference (ISI) arises in all pulse-modulation systems whenever the impulse
response of the channel is longer than one transmission time period (7). Pulse amplitude
modulation (PAM) system is the simplest digital communication system that can be used to
illustrate ISI. Figure 2.1 shows a simplified version of the baseband PAM communication
system. The inputdata x(#) is modeled as a train of impulses equally spaced at T —seconds

intervals with specific weights x;, where x; are drawn from a discrete finite alphabet

0,1, . ,m—1}.
k=K
x@) = D, ad(—kT) 2.1)
k=0

K may be finite or infinite. A(f) is the finite impulse response of the channel with a Iength

of L symbol intervals, i.e. L is the smallest integer such that A(f) =0 for t = LT . The
impulse response A(#) is assumed to be square—integrable,

i f Kot < . 2.2)

If A(f) has nonzero values at sampling instants ¢ = fg + kT for k=1,2,... K, then ISI
occurs. The number of nonzero sampling valuesin A(f) (exceptat ¢ = fy ) iscalled the length
of IST or the channel memory (v), where ¥ =L —1. The output of the channel impulse

response, which is the convolution sum of x(f) and A(?), is denoted as s() .



Noise

n(t)
Input Sequence ps| Channel Signal Received Signal
k=K h(t) k=K (O = s(t) + n(f)
x(®) = > x0F—kT) s(t) = > xph(t—KkT)
k=0 k=0

Figure 2.1: PAM communication system.

Sample Estimated
. Every Sufficient : 1 Input
Whitened e Maximum-Likelihood
__»r(t) Matched T sec / Statistics | Sequence Estimation Sequence»
Filter 2071, - » 7K ~ (MLSE) k=K
w(—1) Viterbi Algorithm (VA) Z £0(t— kT)
Zp = J r(Ow(t — kT)dt =0

Figure 2.2: Maximum-likelihood sequence estimator.



s@ =x@®* h@) ,

k=K

= > xph(t—KT) . (2.3)

=0

The output signal s(f) is corrupted by additive white Gaussian noise n(¢) to yield the

received signal r(¢) .

@) = s +n( ,
k=K

= xeh(t—KT) + (o) . @4

k=0

r(?) is the received signal corrupted by white Gaussian noise and intersymbol interference.

If r(t) issampled at ¢ = jT , where # accounts for the channel delay and sampler phase, then

r(to +JT) = xih(to) + > xh(to + jT —KT) + nlto +jT) . (2.5)
T : T T
Desired Output IS1 Noise

The output is corrupted by ISI unless A(f) is zero at all sampling instants except at ¢ = fg .
The first term on the right side is the desired output produced by the input symbol at ¢ = jT ,
the second term is the intersymbol interference and the last term is the additive white
Gaussian noise. The presence of ISIis the primary impediment to reliable high-rate digital

data transmission over high signal-to—noise ratio bandlimited channels such as voice—grade

telephone circuits.

In 1972, Forney [7] developed a receiver structure for the maximum-likelihood estimation
of digital sequences in the presence of ISI. The receiver consists of a whitened matched

filter, a symbol-rate sampler and a Viterbi processor as shown in Figure 2.2. The sampled



outputs of the whitened matched filter form a set of sufficient statistics {z; } for the

estimation of the input sequence { x; }.

Equation (2.3) shows that s(f) can be expressed as a linear combination of a set of
square—integrable basis functions A(f—T). In the detection of signals that are a linear

combinations of a set of square—integrable basis functions, the outputs of a bank of matched
filters, each matched to a basis function, form a set of sufficient statistics for estimating the

input sequence. Thus the K + 1 quantities

a2 f FO(t—KT)dt | 0<k<K 2.6)

—c0

form a set of sufficient statistics for the estimation of the input sequence { x; }, 0 < k < K,
where K may be finite or infinite. But a; are just the convolution integral of r(¢) and
h(—1),1e. a; are the sampled outputs of a filter 4(—¢) matched to the channel impulse

response A(t) .

By applying the D—transform to the matched-filter output sequence a , equation (2.6) can
be defined as
k=K

aD)2 S aD | @.7)
k=0

Since

e

ag

I r(Oh(t — kT )dt

[

o K
=J > xjh(t~jT)h(t — kT)dt + j n(®h(t —kT)dt

co

K -3
= > % f (¢ — jTYh(t —kT)dt + j n(Oh(t - kT)dt
J=0 ®

- OO



K
= D XRij @8)
=0

the D—transform of @ can be expressed as
a(D) =x(D)R(D) + n'(D) . (2.9)

In equation (2.8),

Y h(t—KT)d k=t=v
R4 MDA kDt (2.10)
0 k—jlzv+1
are the pulse autocorrelation coefficients of A(f). It follows that
A k=y
RD)= > RiD* 2.11)

b=y
is the D—transform of the pulse autocorrelation function or the spectral function of A(f) .
Since R(D) is finite with 2v + 1 nonzero terms, it has 2¥ complex roots. Furthermore,

since R(D) =R(D™1), the inverse ﬂ‘l of any root 8 is also aroot of R(D) . Thus, the 2v

complex roots of R(D) may be grouped into ¥ inverse pairs. If f (D) is any polynomial
of degree v whose roots consist of one root from each of the ¥ inverse pairs of R(D) , then

R(D) has the spectral factorization
RD)=f" D) @™ . (2.12)

By letting f(D) =D"f (D) for any integer delay », equation (2.12) can further be

generalized to

R(D) =fD)D1y . (2.13)

n'(D) in equation (2.9) is the zero—mean colored Gaussian noise with autocorrelation

function azR(D) , since



E{n'n;') =I I E{n(®On@)h(t - KT)h(x - jT)drdr

= Usz—j (2.14)
where 02 is the spectral density of the white noise n(f) and E{n(t)n(‘l:)} =0%0(t-1).
If n(D) is the zero—mean white Gaussian noise with autocorrelation function o2 , then the
colored Gaussian noise n'(D) can be expressed as
n'(D) = n(D)fD™) 2.15)
since n'(D) has the autocorrelation function azf(D”l)f(D) = 0'2R(D) . The autocorrelation

function entirely specifies the zero-mean Gaussian noise.

By combining equations (2.9), (2.13) and (2.15), the D-transform of the output sequence of

the matched—filter A(—¢) can be expressed as

a(D) = x(DY D)D) + n(DD™) . (2.16)
If
A a(D)
zD) = IRl (2.17)
then
2(D) = x(DYf(D) + n(D) 2.18)

where n(D) is the zero—-mean white Gaussian noise and z(D) is defined as the D—transform

of the sampled output sequence { z; } of the cascade of a matched filter h(—f) with a
transversal filter 1/AD~!) as shown in figure 2.3. The cascade in figure 2.3 is called a

whitened matched filter w(—f) since the noise component n(D) of the output sequence is

whitened with a constant spectral density of o2 .
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Figure 2.3: Whitened matched filter w(—¥¢) .
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Yk Zk ,
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Figure 2.4: Finite-state machine model.
Sample
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B Communication - Mlgtlc ©
System w%_’fetl)' 20,21, « » ZK

Zp = [ rOw(t — kT)dt

Figure 2.5: Equivalent channel model of the finite—state machine model.
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More generally, for any spectral factorization of the form R(D) = AD)AD™), the filter

w(f) with a chip D—transform

Al ‘
w(D, ) = RB)—h(D, )] (2.19)

is well defined and its time reversal w(—¢) can be used as a whitened matched filter. Hence

the sampled outputs z; of w(—1)

72 I r(Ow(t — KT)dt (2.20)

—00

satisfy equation (2.18) and thus form a set of sufficient statistics for the
maximum-likelihood estimation of the input sequence { x; } in the presence of ISI and zero

mean white Gaussian noise .
However for an arbitrary spectral factorization of R(D) , the causality of the whitening filter

1 /f(D‘l) is not guaranteed. To actually realize w(—f) , the factorization of R(D) has to be

such that the whitening filter 1/f(D™) is stable and causal, and preferably real.
In equation (2.18), the signal sequence

YD) 2 (D)D) @.21)

is the convolution of the input sequence x(D) with the finite channel impulseresponse f(D) ,
and the received sequence z(D) is the sum of the signal sequence y(D) and a white Gaussian
noise sequence n(D). Thus, the relationship in equation (2.18) can be modeled as a

finite—state machine (FSM) as shown in figure 2.4. An equivalent communication channel
model is depicted in figure 2.5. The finite—state machine may be imagined as having a shift

register of ¥ memory elements that store the ¥ mostrecentinputs x;_;, 1 < i < v. The

12



signal y; may be taken as the weighted sum of the ¥ most recent inputs and the weighted

current input xi .
In the time domain the outputs of the finite—state machine can be expressed as

Zp=Yyr+ng , (2.22)

where #; is a zero mean white Gaussian noise with spectral density o, and
=y

EDY o (2.23)

=0

where f; , i=0,1, ... v arethe coefficients of f{D) . Note that equation (2.23) reflects the

effect of ISI on the output signal.

The ny, are statistically independent zero mean Gaussian random variable with variance o? .

Consequently, for a given input sequence {x;}, zx is (conditionally) statistically

2

independent Gaussian random variable with mean y; and variance o“ since z is a linear

combination of y; and ny.

Based on the FSM model and the statistical properties of x;, yx, and z;, Forney [7]

introduced the application of the Viterbi algorithm to produce the maximum-likelihood

estimate of the input sequence { x; } in the presence of ISL.

13



2.2 Viterbi Algorithm (VA)

The Viterbi algorithm [8, 17] was first introduced as a decoding method for convolutional
codes. Itis equivalent to a dynamic programming solution to the problem of finding the
shortest path through a weighted graph. The Viterbi algorithm searches through a structure
called trellis for the code word that gives the largest value of a log-likelihood function called
path metric. The output of the Viterbi—decoder is always the code word that gives the largest
path metric, thus it is in fact a maximum-likelihood decoding algorithm. Since the channel
memory in an ISI channel is analogous to the encoder memory in a convolutional code the
Viterbi algorithm can be used to produce the maximum-likelihood estimate of the sequence

transmitted over an ISI channel.

On the basis of the finite—state machine model as depicted in figure 2.4, the one—to—one
mapping relationship between the input sequence { x; } and the signal sequence { y; } in
equation 2.23 can be described by a trellis. A trellis contains information of all the possible
state sequences. Each node corresponds to a distinct state at a given time, and each branch
represents a state transition at the next instant of time. For any ISI channel, the channel
memory ¥ determines the number of states that exist in the trellis. Each possible state
sequence in the trellis corresponds to a possible input sequence transmitted over the ISI
channel and is represented by a unique path through the trellis. In the general case of a finite
ISI channel with v interference terms and m input alphabets, there are m¥ states in the
trellis and m branches entering and leaving each state/node. The trellis of an ISI channel

with binary input and a channel memory of ¥ = 2 is shown in figure 2.6 as an examplé.

Associated with each branch is a branch metric which determines the likelihood of the
occurrence of the state transition represented by the branch. The accumulation of the branch
metrics of a particular path forms the path metric which determines the likelihood of the
occurrence of the input sequence represented by the path. At the terminal node of the trellis,

the path with the largest path metric is the maximum-likelihood path. Thus, to find the

14



maximum-likelihood path through the trellis, the Viterbi algorithm has to visit all the

possible paths in order to compute and compare the path metrics.

During the decoding process, the Viterbi algorithm computes and compares the metrics of
the m paths entering each of the m” states at each decoding step. The path with the largest
path metric at each state is called the survivor. The fixed number of computations and the
regular decoding procedure make a Viterbi processor very easy to implement. However, the
number of states is m” and thus the computational complexity grows exponentially with the
length of the channel memory v . For ISI channels with large or infinite memory, the
implementation of the maximum-likelihood sequence estimator using the Viterbi approach

becomes impractical.

STATE
Xk-1 X2 k=0 k=1 k=2 k=3 k=4 k=K-2 k=K-1 k=K

0 0 Q O/"/ 0O
/
0 1 O o) O o)
1 0 O @) O o) O
1 1 O O O ) )

Figure 2.6: A four-state trellis.
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2.3 Sequential Algorithm (SA)

The sequential algorithm [17] was introduced by Wozencraft as the first practical decoding
method for convolutional codes. Fano introduced a new version of sequential decoding,
subsequently referred to as the Fano algorithm [17]. Later, Zigangirov and Jelinek
discovered independently another version of sequential decoding initially called ZJ
algorithm but now commonly known as the stack algorithm [17]. In 1989, Xiong [26]
developed the application of the sequential algorithm to the sequence estimation for ISI

channels.

In the sequential decoding, the input and output relationship of the finite—state machine
model is represented as paths through a code tree. Figure 2.7 shows an example of a code
tree for an ISI channel with binary inputs and a channel memory of ¥ = 2. Each node in the
code tree represents a path through part of the tree, and each possible input sequence { x; }
transmitted over the ISI channel is represented by a unique path through the code tree. The
purpose of a sequential decoding algorithm is to search through the nodes of the code tree
in an efficient way so as to find the maximum-likelihood path. As in the Viterbi algorithm,
whether or not a particular path is likely to be part of the maximum-likelihood path depends

on the metric value associated with that path.

The most important difference between the Viterbi algorithm and the sequential decoding
algorithms is that during the decoding process the Viterbi algorithm examines all the nodes
in the trellis while the sequential decoding algorithms examine only a number of the nodes
in the code tree. Thus, the computational complexity of the sequential algorithms does not
grow exponentially with the channel memory v as for the case of the Viterbi algorithm, but
is essentially independent of the channel memory ¥ . This property makes sequential
decoding algorithms applicable to ISI channels with large or even infinite memory. The
number of nodes visited by the sequential decoding algorithms is determined by the noise

level of the ISI channel. Moreover, for a given ISI channel the error probability of sequential
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Figure 2.7:  Code tree of a finite state machine model for an ISI channel with binary inputs

and a channel memory of ¥ =2. Note: y; = y(Xt, X1, X2) -
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decoding is essentially the same as for Viterbi decoding.

In this research, only the stack algorithm is considered. A very time consuming step known
as the complete stack reordering in the conventional sequential stack algorithm is shown to
be not fully needed. The stack reordering procedure of the stack algorithm is then modified
so that the stack can be efficiently implemented» by a very special type of systolic array called
the systolic priority queue as proposed by Chang and Yao [3]. The details of systolic priority
queue will be discussed in the next section. The Fano algorithm is not considered in this
research since it has an irregular decoding structure which makes the Fano decoder
unsuitable for the parallel and pipeline processing characteristics of the systolic array

implementation.
2.3.1 Stack Algorithm

In the stack algorithm, a memory structure called the stack is required to store the previously
examined paths of the code tree. Each stack entry holds a path along with its associated
metric. The path with the largest metric is placed at the top of stack while the others are
placed in a descending order of their associated metrics. The basic idea of the stack
algorithm is to move forward along the path with the largest metric until the end of the code ‘
tree is reached. Each decoding step consists of extending the path at the top of the stack by
computing the branch metrics of its m succeeding branches, and then adding these m

branch metrics to the metric of the top path to form the . path metrics for the m successors
of the top path. The top path is then deleted from the stack and the m succeeding paths are
inserted into the stack. All of the paths in the stack are then rearranged in a descending order
of their associated metric values so that the path with the largest metric is at the top of the
list. The decoding steps are repeated until the top path reaches the end of the code tree. The
top path is then taken as the decoded path and the algorithm terminates. The stack al gorithm

is summarized as follows.

18



The stack algorithm:

Step 1) Load the stack with the origin node in the code tree, whose metric is taken to be zero.

Step 2) Compute the metric of the m successors of the top path in the stack.

Step 3) Delete the top pa"ch from the stack.

Step 4) Insertthe m new paths in the stack, and rearrange the stack in a order of descending
metric values.

Step 5) If the top path in the stack reaches the end of the code tree, stop. Otherwise, return

to step 2.

A complete flowchart for the stack algorithm is shown in figure 2.8.
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_oad origin node
. in top stack

Compute metrics
of successors
of top path

!

Delete top path
from stack

Insert successors
into stack

|

Reorder paths
in stack in

descending order

of path metrics

{ Output top path
\  Stop

Figure 2.8: Flowchart of the conventional sequential stack algorithm.
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2.3.2 Problems with the Practical Implementation of Stack Algorithm

There are three practical problems associated with the implementation of the stack
algorithm. The first problem is input buffer overflow which results in a loss of data, or an
erasure. A sequential stack decoder has to search for the maximum-likelihood path by
tracing back and forth from node to node through the code tree, an input buffer must be
present to store the incoming received data while they are waiting to be processed. In the
case of a very noisy channel, the decoder may have to perform long searches so as to find
the current best path without using any received data held in the input buffer. Under such
a circumstance, the received data in the input buffer will accumulate which eventually leads
to an overflow of the input buffer. When an input buffer overflows, incoming received data
will force undecoded received data to be shiftéd out of the buffer. These bits are then lost

which results in an erasure.

The second problem with the stack algorithm is stack overflow. In any practical
implementation of the stack algorithm, the number of entries in the stack has to be finite.
For a channel with m input alphabets, m paths are inserted into the stack while only one
path is deleted from the stack in each decoding step. There is always some probability that
the stack will fill up before decoding is completed, especially for the case of a noisy channel.
The most common way of handling this problem s to allow the path at the bottom of the stack
to be pushed out of the stack on the next decoding step. If the stack size is large enough, the
probability that a path at the bottom of the stack would recover to reach the top of the stack

and be extended is very small and the loss in performance due to stack overflow is ne gligible.

The third problem with the stack algorithm is the complete stack reordering of the paths in
a descending order of their associated metric values after each decoding step. The complete
reordering of the stack is not only time consuming but also dependent upon the number of
paths exists in the stack. It is undesirable for the decoding time to be dependent upon the

number of paths in the stack since this number increases by m — 1 after each decoding step.
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The complete stack reordering can become quite time consuming as the number of paths in
the stack becomes large, and places severe limitations on the decoding speed that can be

achieved with the basic algorithm.

This research concentrates only on solving the complete stack reordering problem of the
stack algorithm. The complete stack reordering is not fully required in the stack algorithm.
The only purpose of complete stack reordering is to have the current best path placed on the
top of the stack so that it is ready to be extended in the next decoding step. To achieve the
goal of having the current best path placed on the top entry of the stack, it is not necessary
to have all the paths arranged in a descending order. On the basis of the operational
characteristics of a special type of systolic array called the systolic priority queue, the stack
reordering procedure of the conventional stack algorithm is modified in such a way that the
best path is placed on the top entry of the stack without having the rest of the paths arranged
in a descending order of their associated metric values. No matter how many paths are in
the stack, the systolic array is always able to complete its task within a fixed and short interval

of time.
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2.4 Systolic Priority Queues

As described in the stack algorithm, there is an associated path metric stored with each path
in the stack/array. Since the location of a particular path in the array depends on the
magnitude of its associated path metric, the operations of the different systolic priority

queues are explained in terms of the magnitudes of the path metric »7;, . Thus in the examples
illustrated in this section, each entry A; in the array is denoted by only a number my

representing the path metric of a particular path .

The requirement for the systolic array is that it be able to place the largest metric at the top
of the array so that it can be extended in the next decoding step. Extending the largest/best
metrics involves the deletion of the current best metric and the insertion of m new
succeeding metrics. In particular, the time involved for the above three operations must be
fixed, short and independent of the number of metric values in the array and the size of the
array. This type of systolic array is known as the systolic priority queue. Two general types
of linear systolic priority queues are discussed. They share the linear array structure shown

in figure 2.9, where A; is a sequence of registers used to store the path metrics my .

Ao Aq Aj Az Ay As T Ay A;

Figure 2.9: Basic structure of linear systolic priority queue.
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The two types are called the Random Access Memory Systolic Priority Queue and the Shift
Register Systolic Priority Queue. The primary difference between them is in the method for
rearranging the order of the metrics. By implementing the stack in the stack algorithm with
either one of the two linear systolic priority queues named above, the stack reordering can
be carried out in parallel rather than sequentially as imposed by the conventional complete
stack reordering procedure. Thus, the best path is always placed at the top of the array within
a fixed and short interval of time. The Shift Register Systolic Priority Queue is used in this

research for the final VLST implementation of a sequential demodulator.
2.4.1 Random Access Memory Systolic Priority Queue (RAM-SPQ)
Figure 2.9 shows the basic structure of the RAM—SPQ, where A;, i=0,1,2, ...,is a
sequence of registers for storing the metric values. Figure 2.10 shows the building unit 4;

of the RAM-SPQ. Each register A; can exchange data with its two adjacent neighbors

inside the array and an external device as shown in figure 2.10.

external communication

neighbor

——3 . 3 neighbor
communication A;

communication

Figure 2.10: Building unit of the Random Access Memory Systolic Priority Queue.



In the random access memory scheme, each register is initialized to a path metric value of
positive infinity (in practice a large positive number). A global control signal PT which
serves as a pointer to locate a particular register in the array is initialized to zero (PT is

pointing at register Ag ).

Insertion and deletion of path metric values in this type of systolic priority queue are very
similar to the push and pop operations of a stack. After each insertion or deletion, the path
metric values in the queue are rearranged in a unique pairwise manner so as to ensure that
the best metric is located at register Apr_; (analogous to the top of the stack), where Apr
is the next available register. Since the metrics are reordered in pairs of two, reordering of
the entire array proceeds in a parallel manner. The insertion operation takes place according
to the procedure described below.

Insertion of a succeeding path metric m; in RAM-SPQ:

1) Insert the succeeding path metric my into register Apr, Apr < my .

2) Increment PT by one after insertion of my, PT <« PT+ 1.

3) If i satisfies (—PT) mod 2 =0 ,for i = 0, thenrearrange the metric valuesin A; and
Ajy1 such that the metric value in A;4; is greater than or equal to the metric value in A;,

A = AL

A flowchart for the insertion operation is shown in figure 2.11. An example of the insertion

operation in the Random Access Memory Systolic Priority Queue is shown in figure 2.12.
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Insert new metric
in APT

i=20"
(i—-PT)mod2
=0 7,

No Yes

Rearrange metrics in
No change array such that
A1 2 A

Figure 2.11: Flowchart of the insertion of a succeeding path metric in Random Access

Memory Systolic Priority Queue.

26



Insert 8 into Ag. Ag | Ay | Ay | A3 | As | As | A6 | A7

Before insertion,

PT = 4. 3 5 10 | 14 ++oo +oo| +00f| +
PTr=4
After insertion,
before stack reordering,| 3 5 10 14 8 + | 40| 4o
Pr=PT+1=5. *
PT=5

(i—PT) mod 2=07 No Yes No Yes No Yes No Yes

After stack reordering. 3 5 10 8 14 | + o +00f +

Figure 2.12: Example of the insertion operation in the Random Access Memory Systolic

Priority Queue.
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The deletion operation takes place according to the procedure described below.

Deletion of the largest path metric my in RAM-SPQ:

1) Decrement PT by one, PT < PT —1.

2) Empty Apr, which contains the largest path metric .

3) If i satisfies ((—PT) mod 2 =0 ,for i = 0, thenrearrange the metric valuesin A; and

Ajy1 such that the metric value in A4 is greater than or equal to the metric value in 4;,

A Z A;L

Figure 2.13 shows a flowchart for the deletion operation. Figure 2.14 shows an example of

the deletion operation in the Random Access Memory Systolic Priority Queue.
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Delete metric in
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'

" =0
(i—PT)mod 2
N =0 ?

No Yes

Rearrange metrics in
No change array such that
Ajr1 2 A

Figure 2.13: Flowchart of the deletion of the largest path metric in Random Access Memory

Systolic Priority Queue.

29



Delete 14. Ag | At | Ay | A3 | As | As | A6 | A7

Before deletion,

PT =5. 3 5 10 8 14 ++°o + o] +o

PTr=5
PT=PT-1=4, s 110 T
delete 14 in Ag. 3 1 8

- &

=y
~
I

N

After deletion,
before stack reordering.

3 5 10 8 | (14) | + | +o0f + 0

p

PTr=4

(i—-PT) mod 2=07 Yes No Yes No Yes No Yes No

After stack reordering. 3 5 8 10 | (4)| +o] +o| +

A

PTr=4

Figure 2.14: Example of the deletion operation in the Random Access Memory Systolic
Priority Queue. Note: The path metric inside the parenthesis () is overwritten

by the path metric in the next insertion step.
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The examples shown in figure 2.12 and figure 2.14 illustrate the following properties of the

Random Access Memory Systolic Priority Queue.

1). Only one control signal PT isrequired. PT is either incremented by one (PT + 1) to
locate the next available register for insertion of a new metric or decremented by one
(PT -1 ) to locate the register which holds the largest metric value for deletion.

2). After each insertion or deletion, the order of metric values in the array are reordered in
pairs of two adjacent registers and the stack reordering can be done in a parallel or
pipeline manner. Thus, the array reordering procedure can be done in a fixed and short
interval of time and the time required is independent of the number of metric values in
the array.

3). After each array reordering, although the path metric values are only in a partly
descending order, Apr_; will always contain the largest path metric value ready for the
nextdeletion and Apr is always the next available register ready for insertion of a new

metric.

With a basic understanding in the insertion, deletion and array reordering procedure of the
RAM-SPQ, the application of this particular'type of systolic priority queue in the stack
algorithm is demonstrated by an example. Figure 2.15 shows the flowchart of the RAM
scheme stack algorithm. Figure 2.16 shows an ISI tree to which the RAM scheme stack
algorithm is applied. The number labeled at each node is the path metric of the path
represented by that particular node. Several steps in decoding the ISI code tree shown in
figure 2.16 is considered. The contents of the RAM-SPQ at each decoding step is shown

in figure 2.17.
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Figure 2.15: Flowchart of the RAM scheme stack algorithm for a channel with binary

inputs.
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Figure 2.16: Example of a code tree for an ISI channel with binary inputs.
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Step  Operation | Ao | A1 | Ay | A3 | Ag | As | A¢ | A7 | Ag
+ | +0) +o] +0)] +0]| +o0| +0] +0] +o

1 insert 27 27 | + 0| + 0| +00| +0| +0]| +0] +0| +o»
insert 21 27 | 21 | +o| +0| +0| +00| +00| +0| +o
2 delete 27 21 | @D | + o) + 0] +0] +0| +0| +0| +o
insert 24 21 | 24 | + o] + oo + 0| + 00| +0]| + 00| + o
insert 18 21 24 18 | + 0| +o0| + 0| +0| +0| +0
3 delete 24 21 18 1 24| +oo| +0| +00| +00| +00| +
insert 21 18 21 21 | + 0] + 0] + 0| +x| +0| +
insert 15 18 21 21 15 | +0| +0f +0]| + 00| + o

4  delete 21 18 | 21 151 Q)| +o| +0| +o0| +0| +

insert 12 18 15 21 12 ] +0} +0] +0] +o]| +»

insert 18 15 18 12 | 21 18 | +o0f +00| +00]| +

5 delete 21 15 12 18 18 | Q1) | +oof +o| +00]| + o

insert 6 12 15 18 18 6 +o0] +0| +0] +o

insert 24 12 15 18 6 18 24 | + o] +o0f +0

6 delete 24 12 15 6 18 18 | 4| +o| +00| +»
insert 9 12 6 15 18 18 9 + 00| +0| +
insert 27 6 12 15 18 9 18 27 + oo + o0

7 delete 27 6 | 2] 15| 98| 18]@n] +o| +w
insert 30 6 12 9 15 18 18 30 +oo| + o0
insert 12 6 9 12 15 18| 18 | 30 | 12 | +»

8  delete 30 6 | 912 15] 18] 18| 1230 +w

Figure 2.17: Array contents of the stack decoding of the ISI tree shown in figure 2.16 with
Random Access Memory Systolic Priority Queue. Note: The path metric
inside the parenthesis () is overwritten by the path metric in the next insertion

step.
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Refer to figure 2.17, the number of metric values in the array increases by one after each
decoding step and the largest metric is always at the PT — 1 position after each insertion or
deletion. Mostimportant of all, the structure of the systolic priority queue allows the parallel
processing of data, and hence the array reordering procedure can be completed in a fixed and
short interval of time independent of the number of metric values in the array. This feature

greatly enhances the decoding speed and applicability of the stack algorithm.
2.4.2 Shift Register Systolic Priority Queue (SR-SPQ)

Figure 2.9 shows the basic structure of the SR-SPQ, where A( servesasan input/output port
and A;, i=1,2,3, .., isasequence of registers for storing the metric values. Figure 2.18
shows the building units Ay and A; of the SR-SPQ. Aq can exchange data with an external
device and its adjacent neighbor, and each register A; can exchange data with its two

neighbors inside the array as shown in figure 2.18.

external 3 —> neighbor
communication Ao communication

neighbor 3 —3 neighbor
communication A communication

Figure 2.18: Building units of the Shift Register Systolic Priority Queue.
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In the shift register scheme, each register A; (for i=1,2,3, . .) is initialized to a path

metric value of negative infinity (in practice a large negative number). Two global control
signals are required to control the shift right and shift left operations of the path metric values
in the array. At the end of this sub—section, a modified version of the insertion and deletion
operations shows that only one global control signal is required to control shift right
operation of the path metric values in the array. Insertion and deletion operations can only

take place at Ag since register Ap serves as an input/output device.

After each insertion or deletion, the path metric values in the array are rearranged in a unique

pairwise manner so as to ensure that the largest path metric is located at register Aj

(analogous to the top of the stack). As in the Random Access Memory Systolic Priority

Queue, the pairwise rearrangement of metrics allows reordering of the entire array to

proceed in a parallel manner. The procedure for the insertion operation in the Shift Register

Systolic Priority Queue is described below. |

Insertion of a succeeding path metric m; in SR-SPQ:

1) Insert the succeeding path metric my into register Ag, Ag < my .

2) Shift all the path metric values my in the array one position to the right, Aj,; < A4;.

3) Rearrange the metric values in Ay;q and As;y, , for i = 0, such that the metric value
in A;;1 is greater than or equal to the metric value in Ay, Agiv1 = Agiia.

A flowchart for the insertion operation is illustrated in figure 2.19. An example of the

insertion operation in the Shift Register Systolic Priority Queue is shown in figure 2.20.
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Insert new metric
in AO

Shift all metrics in
array one position
to the right
Ajr1 < A;

;

i=0
Aziv1 = Agiso
(7

No Yes

Rearrange metrics in
array such that No change
Azir1 Z Adivz

Figure 2.19: Flowchart of the insertion of a succeeding path metric in Shift Register

Systolic Priority Queue.
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Insert 8 into Ay. Ag At Asg A3 Ay As Asg A7

Before insertion. 14 10 5 3 —o| —w| -

After insertion. 8 14 10 5 3 —o| —o| —o

Shifted right,
before stack reordering.

After stack reordering. 14 8 10 5 3 —®}] —®

Figure 2.20: Example of the insertion operation in the Shift Register Systolic Priority Queue.
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The procedure for the deletion operation in the Shift Register Systolic Priority Queue is

described below.
Deletion of the largest path metric m; in SR-SPQ:

1) Shift all the path metric values m in the array one position to the left, A; « A;;1 .
2) Empty Ag, which contains the largest path metric.
3) Rearrange the metric values in Aj;; and A, , for i = 0, such that the metric value

in Ap;y; is greater than or equal to the metric value in Agiip , Aziri = Agiso.

Aflowchartfor the deletion operationis illustrated in figure 2.21. Anexample of the deletion

operation in the Shift Register Systolic Priority Queue is shown in figure 2.22.
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Shift metrics to
left
A;— A

Delete metric in

Rearrange metrics in
array such that No change
Agiv1 2 Agiva

Figure 2.21: Flowchart of the deletion of the largest path metric in Shift Register Systolic

Priority Queue.
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Delete 14 in A;. Ap | A1 | Ay | A3 | As | As | Ag | A7

Before deletion. 14 8 10 5 3 —®0| —®

Shifted left,
Ag contains best metric.

14 | 8 [10] 5] 3 |-0]-w]-w

After deletion,
before stack reordering.

(14) 1 8 10 5 3 —®] - —®

After stack reordering. | (14) | 10 8 5 3 —w] —w| —~—»

Figure 2.22: Example of the deletion operation in the Shift Register Systolic Priority
Queue. Note: The path metric inside the parenthesis () is overwritten by the

path metric in the next insertion step.
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The examples shown in figure 2.20 and figure 2.22 illustrate the following properties of the

Shift Register Systolic Priority Queue.

1).

2).

3).

A right shift global signal is required to shift the contents of the array one position to
the right after each insertion. A left shift global signal is required to shift the contents
of the array one position to the left before each deletion so as to place the largest metric
in register Ag for deletion.

The insertion and deletion operations are followed by pairwise reorderings of the path
metric values in the array. The pairwise reorderings are to shuffle the path metric values

in Aziy1 and Ag;p so that the values in Ay are greater than or equal to the values

in Agjyo, for i=0,1,2, ... Since the reordering procedure occurs in pairs of two
adjacentregistersinthe 2i+ 1 and 2i + 2 positions, the reordering of the metric values
in the entire array can take place in a parallel manner (in the same time interval).

After each array reordering, although the path metric values are only in a partly

descending order, the largest path metric value is always located at register A7 .

The application of the SR-SPQ in the stack algorithm is demonstrated through the same

example, i.e., the ISI code tree of figure 2.16. Figure 2.23 shows the flowchart of the SR

scheme stack algorithm. Figure 2.24 shows the contents of the SR-SPQ at each decoding

steps.
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oad origin node

in top stack

Compute metrics
of successors
of top path

!

Delete largest
metric and
reorder array by
SR scheme

!

Insert metric (0)
into array and
reorder array by
SR scheme

!

Insert metric (1)
into array and
reorder array by
SR scheme

No

utput top pat
- Stop /

Figure 2.23: Flowchart of the SR scheme stack algorithm for a channel with binary inputs.
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Step Operation | Ao | A1 | A | As | Ax | As | Ae | A7 | As

—00] —0|] —0w] —0] —w] —w] —w]| - »
1 insert 27 27 | —0| —0| —o| —o0| —0| —0| —0] —
insert 21 21 27 | —o0] —0| —00| —0] —0]| —w| -

2 delete 27 QD 21 | —o| —0o] —0| —0| —0| —x]| —

insert 24 24 21 | —0| —w| —0w| —0| —0| —0| -

insert 18 18 24 21 | —m0] —0| —00| —0] —0| —

3 delete 24 24)] 18 21 | —o| —0| —0| —0| —0]| -

insert 21 21 21 18 1 —oo| —0] —0]|] —0| —e0]| -

insert 15 15 21 21 18 —ow| —w] —0| —e0| -

4 delete 21 @2n1 15 21 18| —e0] —0] —o0] ~0] —
insert 12 12 21 15 18 | —0] —o0| —0| —0| — o

insert 18 18 21 12 18 15 ] —0] —0| —0] -

5 delete 21 2D 18 18 12 15 —w] —~00]|] —w! —~o
insert 6 6 18 18 15 12 —o| —w|] —w| —
insert 24 24 18 6 18 15 12| —0] —»] —

6 delete 24 4)| 18 18 6 15 12 | —o0| —00| —o

insert 9 9 18 18 15 6 12 | —o0o)] —0| —
insert 27 27 18 9 18 15 12 6 -] —o
7 delete 27 QN 18 18 9 15 12 6 —w| -

insert 30 30 18 18 15 9 12 6 —00| —»
insert 12 12 30 18 18 15 12 9 6 —

8 delete 30 30)| 12 18 18 15 12 9 6 | —»

Figure 2.24: Array contents of the stack decoding of the ISI tree shown in figure 2.16 with
Shift Register Systolic Priority Queue. Note: The path metric inside the

parenthesis () is overwritten by the path metric in the next insertion step.
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Refer to figure 2.24, the largest metric is always placed at register A; after each insertion
or deletion and the number of metric values in the array increases by one after each decoding
step. As in the Random Access Memory Systolic Priority Queue, the array reordering
procedure only takes a fixed and short interval of time regardless of the number of values
in the array since the structure of the systolic priority queue allows the parallel processing
of data. Compared to the conventional stack algorithm, the time saved in the array/stack
reordering procedure by using the SR Systolic Priority Queue greatly enhances the decoding
speed and applicability of the stack algorithm. The decoding speed of the SR scheme stack

algorithm can be further improved as outlined by the following discussion.

In the stack algorithm, the deletion of the largest metric always proceeds after the insertion
of the last succeeding path metric in the previous decoding step. A faster operational speed
is achieved by combining the two operations mentioned above. The structure of the SR
Systolic Priority Queue allows the insertion and deletion operations to take place
simultaneously. The procedure for performing insertion and deletion simultaneously is

described as follows.

Insertion of a succeeding path metric m; and deletion of the largest path metric my in the

SR Systolic Priority Queue:

1) Insert the succeeding path metric m; into register Ag, Ap < m; .

2) Rearrange the metric valuesin Ay; and Aj;,q , for i = 0, such that the metric value in
Ay; is greater than or equal to the metric value in Ag;p, Ag; = Aoy -

3) Empty Ag, which contains the largest path metric.

4) Rearrange the metric values in Ay and Ag;,o , for i = 0, such that the metric value

in Ap;yq is greater than or equal to the metric value in Agiyy , Agir1 = Agisn.

Figure 2.25 shows the flowchart where insertion and deletion operations are performed

simultaneously. Figure 2.26 shows an example for the above combined operations.
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Insert new metric
in Ao

'

Rearrange metrics
such that No change

Mo = M1

Delete metric in

Rearrange metrics
such that No change
i+l = M2it2

Figure 2.25: Flowchart of simultaneous insertion of a succeeding path metric and deletion

of the largest path metric in SR Systolic Priority Queue.
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Insert 8 and delete 14. | Ao | A1 | Ay | A3 | As | A5 | Ag | Ay

Before insertion,

or deletion. 14 10 5 3 —0| —o| —»

After insertion,
before stack reordering.

After stack reordering,

— — — 00
Agi = Agiet. 14 8 10 5 3 % ®

After deletion,
before stack reordering.

an| 8 |10] 5| 3| -w|-w| -

After stack reordering,
Agir1 = Agisa.

aHf1mw | 8| 5] 3]|-wn|-wu|-=

Figure 2.26: Example of the simultaneous insertion and deletion operations in Shift
Register Systolic Priority Queue. Note: The path metric inside the parenthesis

() is overwritten by the path metric in the next insertion step.
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In the practical implementation of the stack algorithm, the actual removal of the largest path
metric from the top of the stack is not required. In all the discussions concerning the deletion
operation of the two types of systolic priority queues mentioned before, a step for emptying
the register holding the largest metric is only included for the easier understanding of the
deletion operation. When the insertion of the first succeeding path metric takes place in the
next decoding step, the content of the top stack will simply be written over by the newly
inserted values. Thus, the only important factis to have the current largest path metric placed

on top of the stack at the end of each decoding step.

Based on the fact mentioned above, the simultaneous insertion and deletion operation of the
SR Systolic Priority Queue can be used in the stack algorithm for inserting the last
succeeding path metric in each decoding step so that the largest path metric is ready for
deletion in the next decoding step. For a channel with binary inputs, one deletion operation
and two insertion operations are required in each decoding step. By using the simultaneous
insertion and deletion operation described above, only one more insertion operation is
required for a channel with binary inputs. Since the time unit required for the simultaneous
operation is the same as the time unit required for the insertion operation, thus the time units

required for the deletion operation is completely eliminated.

Finally, since the left shift control signal is only required in the deletion operation,
elimination of the deletion operation means the elimination of the left shift control signal.
Thus, only one control signal is required for the Shift Register Systolic Priority Queue.
Figure 2.27 shows the flowchart of the modified version of the Shift Register stack
algorithm. This modified version is used in the design and development of the sequential

demodulator described in Chapter 3.
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oad origin node
in top stack

Compute metrics
of successors
of top path

!

Insert metric (0)
into array and
reorder array by
SR scheme

!

Insert metric (1)
into array and
delete best metric

by SR scheme

No

' Output top path \
Stop

Figure 2.27: Flowchart of the modified version of the SR scheme stack algorithm for a

channel with binary inputs.
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2.4.3 Concluding Remarks on Systolic Priority Queues

The implementation of the stack algorithm by systolic priority queues alleviates the stack
reordering problem in the conventional stack algorithm. By using the systolic priority
queue, the stack reordering procedure can be completed in a fixed and short time
independent of the number of path metric values in the stack. Both of the RAM and SR
Systolic Priority Queues have a very satisfactory speed in performing the required

operations.

In the RAM Systolic Priority Queue, each register needs an external input/output
connection. While in the SR Systolic Priority Queue, only the register Ag at the leftmost
end needs an external input/output connection. From the hardware implementation point of
view, a lot more circuitry is required in the RAM Systolic Priority Queue to locate the desired
register to do the input/output operation at each decoding step. In the SR Systolic Priority
Queue, the input/output operation only takes place atregister Ao and thus no extra circuitry
is required to determine the location of the desire register. Moreover, with the simultaneous
operation in the SR scheme, the number of global control signals in the SR scheme isreduced

to one which is the same as in the RAM scheme.

On the basis of the above, the SR Systolic Priority Queue is superior to the RAM Systolic

Priority Queue for the hardware implementation of a sequential demodulator.
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Chapter 3  Design of the Sequential Demodulator

3.1 General Description of the Sequential Demodulator

The receiver structure for the maximum-likelihood estimation of digital sequences in the
presence of ISI consists of a whitened matched filter, a symbol-rate sampler, an
analog—to—digital (A/D) convertor and a sequential demodulator. To generate the sufficient
statistics required for maximum-likelihood estimation, the output from an ISI channel is
first filtered by the whitened matched filter and then sampled by the symbol-rate sampler.
The sample is quantized by an A/D convertor to a level suitable for input to the sequential

demodulator.

This research concentrates only on the design of the sequential demodulator. The circuitry
of the whitened matched filter, the symbol-rate sampler and the analog—to-digital (A/D)
convertor is assumed to exist. In this chapter, the storage configuration, operation and design
of a sequential demodulator applicable to ISI channels is discussed in some detail. The
design of the sequential demodulator is based on a Shift Register Systolic Priority Queue
architecture. The overall block diagram of the sequential demodulator is shown in figure
3.1. It consists of seven custom—made ASIC VLSI chips and eight standard memory ICs.
Figure 3.1 depicts the connections between blocks of the demodulator and direction of signal

flow.

General design parameters for the demodulator are that it can handle a block length of 256
bits and a maximum of 9 interference terms. The maximum allowable stack size of the

design is 1024. An 8-bit representation is used for the sufficient statistic z; and a 16-bit

representation for the metric.

Details of the sequential demodulator are discussed in the subsequent sections. Section 3.2

describes the input and output storage configuration of the design. Section 3.3 demonstrates
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the operation of the design through a specific example. Section 3.4 discusses the details of

the hardware design.
3.2 Storage Configuration

In this section, the storage format of the sequential demodulator’s input and output are
discussed. The input consists of a sufficient statistic look—up table and a branch metric
look—up table. The output consists of path metric values, associated addresses, 9—previous
information bits, path lengths and explored paths. Figure 3.1 shows the storage locations
of the corresponding input and output. The storage format of the input look—up tables is first

described. Then the output storage format is illustrated through an example.

In the design, the sufficient statistic z; is assumed to be available as a form of data stored
in memory. The output of the whitened matched filter is sampled every T seconds and the
sampled output is then quantized to one of 256 different levels using an 8-bit
analog-to—digital (A/D) converter. The quantized values are stored in chronological order
as 8-bit numbers in RAM7. RAM?7 thus acts as a sufficient statistic look—up table. In
general, address add; of RAMT7 holds sufficient statistic z;,; received attime (i + 1)T" . For
example, if the number of symbols in the explored path (011) is three, then, to extend the
path, the sufficient statistic z4 received at time 4T is required. The above shows that the
path length or the number of symbols in the explored path can be used as an address to

retrieve the desired sufficient statistic from RAMY7.

The second input to the sequential demodulator is the branch metric look—up table. Since

the sufficient statistic z; is represented by an 8-bit number then for any ISI channel with

v interference terms, there are only 248 where L=v +1 , possible combinations of the

L-—previous information bits and the sufficient statistic z;. To each combination of the

L +8 bits, there is a particular value for the branch metric. All of the 228 possible branch

metric values of a particular ISI channel are precalculated and the values are stored in a
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2L+8 possible combinations) are

EPROM. The corresponding values of the bit patterns (
used as addresses for the branch metric values in the EPROM. The EPROM thus acts as a

look—up table for the branch metric calculation as shown in figure 3.1.

The output storage format of the sequential demodulator is illustrated through the specific
example shown in figure 3.2. Figure 3.2 shows the relationship between a sample code tree
and the contents of SPQ-MU, SPQ-AU, RAM1, RAM2 and RAM3-6. To each path metric
stored in the SPQ-MU, there is a associated address stored in the corresponding location in
the SPQ-AU. The associated address provides the locations of the 9—previous information
bits, the path lengths and the explored paths in corresponding RAMs. For example, ms is

the current largest path metric and add, is its associated address since they are located in

the register Ag of the SPQ-MU and SPQ-AU respectively.

As can be seen from the code tree shown in figure 3.2, the explored path which corresponds
to the node labeled ms is (010). With the assumption that all the previous inputs are *0’,
the 9-previous information bits of the explored path (010) is (000000010). Moreover, since
there are three symbols in the path (010), the path length is equal to three or (00000011) in
an 8-bit binary representation. Figure 3.2 shows that the 9—previous information bits
(000000010), the path length (00000011) and the explored path (010) are stored in add, of
RAMI1,RAM?2 and RAM3—6respectively. Finally, note that the 9-previous information bits
and the path length of an explored path are stored as one word in address add; of RAM1 and
RAM?2 respectively while the explored path is stored as eight consecutive words in address

block add; of RAM3-6.

Based on this basic understanding of the general features and storage structure of the

sequential demodulator, the details of the design are discussed in the next section.
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Figure 3.1:
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Block diagram of the sequential demodulator based on a systolic priority queue

architecture. Note: The number on the side of each arrow indicates the number

of data lines represented by that particular arrow.
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mo
— U my
ms
my
X = 0
m3

SPQ-MU ms mg | ms my | —o| -] —0| —
SPQ-AU add,| adds| addpl addi] O 0 0 0

v —Previous Information Bits Path Length

RAMI1 RAM2
addy | — — - — — — — — 0 addy 00000010
addy | — — — — — — — — 1 addy 00000001
addy | — — — — — — 010 add, 00000011
adds | — — — — — — 011 add; 00000011
add, | next available address addy | next available address

Explored Path

RAM3 RAMA4 RAMS RAMS6
addy {0 O
add; |1
add, 1010
add; |0 11
addy next available address

Figure 3.2: Therelation of a sample code tree with the systolic priority queue contents and

the stack contents. Note: Each add; in RAM3—6is an address block of 8 words

and each word consists of 32 bits.
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3.3 Operation of the Sequential Demodulator

This section explains the extension of an explored path by the sequential demodulator
implementation. After outlining the general steps, the details of each step are illustrated
through a specific example, namely, that of extending the explored path (010) in the code

tree of figure 3.2.

There are seven steps involved in extending an explored path in the binary code tree. The

first step sets up the RAMs. Steps 2—4 extend the path associated with branch (0) while steps

5-7 extend the path associated with branch (1). The steps are:

1). Duplicate data in the associated address (of the current largest path metric) to the next
available address of RAM1, RAM2 and RAM3-6.

2). Calculate the metric of the extended path associated with branch (0).

3). Insert the path metric and the address of the extended path associated with branch (0)
into the systolic priority queues.

4). Store the extended path, its 9—previous information bits and its path length in RAM3-6,
RAM]1 and RAM2 respectively.

5) to 7). Repeat 2) to 4) for the extended path associated with branch (1).

To explain these steps in detail, consider figure 3.2. Metric ms , corresponding to explored
path (010), is the current largest path metric with associated address add,. The next
available address in the RAMs is addy . The first step in extending an explored path is that
of duplication of data from address add; (i.e. associated address of the largest path metric)

to address add; (i.e. the next available address) of RAM1, RAM2 and RAM3-6.

3.3.1 Duplication of data in RAM1, RAM2 and RAM3-6

Before considering the details of the duplication process, the memory arrangement of

RAM3-6 and the address control of RAM1, RAM2 and RAM?3-6 are described.
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RAM3-6 can be viewed as one RAM with a 32-bit data bus and a 13-bit address bus. Since
a maximum path length of 256 bits is chosen in the design, RAM3—6 are partitioned into
blocks of eight words where each word contains 32 bits. The maximum available stack size

is thus 1024. Figure 3.3 shows the storage arrangement of an explored path within a block

in RAM3-6.
One Block
10 MSB RAM3 RAM4 RAMS RAM6 _
32 bit word

.......... 000 bit [1,8] bit [9,16] | bit [17,24] | bit[25,32] | g
.......... 001 bit [33,40] | bit [41,48] | bit [49,56] | bit [57,64]
.......... 010 | bit[65,72] | bit[73,80] | bit [81,88] | bit[89,96]
.......... 011 | bit [97,104] [bit [105,112] |bit [113,120] | bit [121,128]
.......... 100 |bit [129,136] | bit [137,144] | bit [145,152] | bit [153,160]
.......... 101 [bit [161,168]]bit [169,176] |bit [177,184] | bit [185,192]
.......... 110 |bit [193,200] | bit [201,208] | bit [209,216]] bit [217,224]
.......... 111 |bit [225,232] | bit [233,240] | bit [241,248] ] bit [249,256]
Figure 3.3: Explored path storage configuration. Note: .......... represents the block

address add; and is controlled by Bus1 of the Address Controller. The 3 LSB

are controlled by the Path Length Buffer.

The address of each 32-bit word is specified by a unique 13-bit pattern. The ten MSB (add;)

determine the block location within RAM3—6 and the three LSB (000 to 111) determine the

word location within the block.

The addresses of RAM1, RAM2 and RAM?3-6 are controlled by two ASIC’s, the Address
Controller and the Path Length Buffer. RAM3—6 addresses are controlled by Busl of the
Address Controller and the three MSB from the Path Length Buffer. Within the Path Length
Buffer, there is a 3-bit counter which controls its three most significant output lines during
the duplication process. The output of the 3-bit counter (000 to 111) is held while Busl

output changes from add; to add; allowing each of the eight consecutive 32-bit words of
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an explored path to be duplicated. Once a word is duplicated, Busl goes back to add;. This
is repeated eight times. Similar to Busl, RAM1 and RAM2 address lines are controlled by
Bus2 of the Address Controller. Bus2 changes from add; to add; to duplicate the

9—previous information bits and the path length of an explored path. However, since only

one word needs to be duplicated, Bus2 only switches once.

Having described how the addresses of the RAMs are controlled, the actual duplication
process is illustrated through an example of extending the explored path (010) in the code
tree of figure 3.2. The data in address add, of RAM1 and RAM2 are read and then written
into address add, of RAM1 and RAM2 by the L-Previous Information Bits Buffer and Path
Length Bufferrespectively. Atthe same instant, each of the eight consecutive words in block

add, isread and then written into block add, of RAM3-6 by the Explored Path Controller.

As soon as the duplication process in RAM1 and RAM2 is completed, the Address

Controller switches Bus2 back to add, . Then the sequential demodulator uses the data in

add, of RAM1 and RAM?2 to calculate the path metric of the extended path (0100).

3.3.2 Path extension

Continuing the example, the next step is to extend path (010) to (0100) and (0101). Refer

to figure 3.4. Path metric m7 for the extended path (0100) is calculated by retrieving the

branch metric of branch (0) from the EPROM and adding it to path metric ms .

To retrieve the branch metric, the 9—previous information bits (000000010) of the explored
path (010) are obtained from add, of RAM1 and combined with the extended branch (0)
to form the 10-bit sequence (0000000100). This 10-bit sequence is used to control the ten
most significant address lines of the EPROM. The eight least significant address lines of the
EPROM are determined by the appropriate sufficient statistic z; which is determined by the
depth in the tree or the path length. Thus the Path Length Buffer retrieves the path length
(00000011) of the explored path from add, of RAM2 and uses it as an address to retrieve
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z¢ . The 16-bit branch metric from the EPROM is then passed to the Path Metric Computer
for the calculation of m; for the extended path (0100). In the Path Metric Computer, the
16~bit adder adds the branch metric from the EPROM to the path metric ms from register

Ap of the metric systolic priority queue.

Having determined the path metric my7 , all data relevant to the extended path (0100) have
to be stored. The data consist of m7 , the associated address add, , the extended path, the

9—previous information bits and the path length of the extended path.

Path metric m; and its associated address add, of the extended path (0100) are inserted into
register Ao of the metric systolic priority queue and the address systolic priority queue
respectively by the procedure Insertion of a succeeding path metric in SR Systolic Priority
Queue (pp. 36-38). Since add, is now the associated address of m7 , the data in address

addy of RAM1,RAM2 and RAM3-6 have to be updated so that they are in correspondence

to my.

The extended path (0100) is stored in RAM3-6 prior to updating the path length of the
explored path (010). To do this, the ten MSB of RAM3-6 address are set to add, . The three
LSB, since data duplication has been completed, are now addressed by the three MSB of the
8-bit path length of the explored path (010). This determines the address of the word within
the block. The Explored Path Controller then uses the five LSB of the 8-bit path length of
the explored path (010) to determine the bit location within the 32—bit word for inserting the
extended branch (0) into RAM3-6. Thus the extended path is stored as (0100) in address
add, of RAM3-6.

The new 9-previous information bits (000000100) is stored in address addy of RAMI. The

L—Previous Information Bits Buffer shifts out the most previous bit of the sequence
(0000000100) to form the new sequence (000000100) which is the 9—previous information

bits corresponding to the extended path (0010).
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Finally the length of the extended path is updated by having the Path Length Buffer
increment the path length (00000011) of the explored path (010) by one. The new pathlength
(00000100) is stored in address add, of RAM?2.

Extension of branch (0) of the explored path (010) is now complete. Figure 3.4 shows the
contents of the code tree, SPQ-MU, SPQ-AU, RAM1, RAM?2 and RAM3-6 after the above
operations with the assumption that m7 < mg. The Address Controller switches Bus1 and

Bus2to add, inorderto extend branch (1). RAM1, RAM2, and RAM3-6 are now addressed

by addy until the beginning of the next extension step.

The extension procedures for branch (1) of the explored path (010) are similar to those for
branch (0). The differences are: 1) data in address adds of RAM1, RAM?2 and RAM3-6
are used and updated, 2) path metric mg and address addy are inserted into register Ag of
the SPQ-MU and the SPQ-AU respectively, note that, by a different procedure. It is
described on (pp. 45-47) under the heading Insertion of a succeeding path metric and

deletion of the largest path metric in the SR Systolic Priority Queue.

Figure 3.5 shows the contents of the code tree, SPQ-MU, SPQ-AU, RAM1, RAM2 and
RAM3-6 after a complete step of extending the explored path (010). The description of the
7 steps involved in extending an explored path is complete. For example, if the extension
of the code tree is to be continued, with the assumption that m; < mg and mg < mg , then the
explored path (011) is extended. The seven described steps are repeated. In the next section,

a discussion of the details in the hardware design of the sequential demodulator is given.
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add; |0 11
addy, (010
adds next available address

Figure 3.4:  The relation of a sample code tree with the systolic priority queue contents and
the stack contents after extending branch (0) of the explored path (010). Note:

Each add; in RAM3-6is an address block of 8 words and each word consists

of 32 bits.
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Figure 3.5: Therelation of a sample code tree with the systolic priority queue contents and

the stack contents after extending branch (0) and branch (1) of the explored

path (010). Note: Each add; in RAM3-6 is a address block of 8 words and

each word consists of 32 bits.
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3.4 Hardware Design

In this section, the hardware design of the seven ASIC’s shown in figure 3.1 is described.

Details of the design of the Systolic Priority Queue-Metric Unit and the Systolic Priority

Queue—Address Unit are given first followed by a brief description of the other 5 ASIC’s.

34.1 Systolic Priority Queue-Metric Unit (SPQ-MU) and Systolic Priority

Queue-Address Unit (SPQ-AU)

The hardware configuration of the SR Systolic Priority Queue architecture for the stack

algorithm is based on the steps given below.

1)

2)
3)
4)

5)

6)

7)

8)

Check for overflow of path metric values in the stack. If overflow occurs, then adjust
all the path metric values, else the contents of the registers are held. (adjust or hold).
Insert the path metric corresponding to branch (0), (insert data into register Ag ).
Shift all the path metric values in the queue one position to the right, (shift right).
Rearrange the path metric values in Aj;y; and Ajjip, so that Ajq = Agiyn, (f
A1 < Agisa , then exchange the data in Aj;y1 and Agjyn).

The contents of the registers are held, (hold).

Insert the path metric corresponding to branch (1), (insert data into register Ag ).
Rearrange the path metric valuesin Ap; and Aj;y1,sothat Ay; = Agjeq, (if Ao < Agig
then exchange the data in Ap; and Aj;yq ).

Repeat 4).

The above shows that only 5 distinct operations are needed to be performed by the queue,

namely, that of adjust, hold, insert data, exchange datain Ay;.1 and A;» and exchange data

in Ay; and Aj;q . Figure 3.6 shows the circuitry of the hardware to perform the 5 required

operations. Table 3.1 shows the logic table for the register Ag and register A;, for

i=1,2,3,4, .., of figure 3.6.
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Figure 3.6: Basic hardware structure of the SR Systolic Priority Queue for the stack
algorithm. Note: Register Ag just serves as an input/output port. Itis not part

of either the SPQ-MU ASIC or the SPQ-AU ASIC.
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Downshift—en’ S1 S0 Register Ay Register A;
0 0 0 Adjust Adjust
0 0 1 Adjust Adjust
0 10 Adjust Adjust
0 11 Adjust Adjust
1 0 0 Insert data Hold
1 0 1 Hold Shift all data right
1 1 0 Hold Exchange data in Aj;,q and Agjyn
1 1 1 |[Exchange datain Agand A; | Exchange datain Ay; and Ay

Table 3.1: Logic table for the register Ag and register A; in figure 3.6.

Except for register Ag, the remaining registers should be considered in pairs of Ay;,; and
Agisn ,ie. (A1, Ay)is one pair, (A3, A4 ) is another pair identical to (A7, A5 ), etc. Thus
register Ag and the register pair (Az;+1, A2iv2 ) are the 2 building units of the SR Systolic
Priority Queue as shown in figure 3.7. The circuits in figure 3.6 and figure 3.7 really only
deal with 1 bit of an M -bit path metric. The building blocks of an M —bit SR Systolic

Priority Queue are constructed simply by connecting M of the units in parallel as shown in

figure 3.8.

To complete the above building blocks, comparators to compare adjacent path metrics and
selectors to control hold, shift and exchange of the shift register contents, need to be added.
Thisis shownin figure 3.9. Havingillustrated the basic hardware structure of the SR Systolic
Priority Queue for the stack algorithm, the hardware design of the Systolic Priority
Queue—Metric Unit ASIC and the Systolic Priority Queue—Address Unit ASIC is described

below.
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The Systolic Priority Queue—Metric Unit ASIC is a 16-bit version with figure 3.9b used as
the building block. It consists of a cascade of four blocks. The Systolic Priority
Queue—~Address Unit ASIC is different from the SPQ-MU ASIC in the following ways. It
is simply used to store the associated addresses of the path metric values in the SPQ-MU
ASIC, thus neither overflow—checking nor magnitude comparing capability is required.
Moreover, no extra control circuitry is required since the location of the associated addresses
changes together with the their corresponding path metrics. Therefore, the 2—to—1 line
multiplexers, the comparators and the selectors in the circuits shown in figure 3.7, figure 3.8
and figure 3.9 are not required. The circuits in the figures are simplified to obtain the
building units of the SR Systolic Priority Queue for storing the associated addresses. The
simplified circuits are shown in figure 3.10 and figure 3.11. Since a stack size of 1024 is
chosen in the final design of the sequential demodulator, a 10-bit version of figure 3.11b is
used as the building block of the SPQ-AU ASIC. The final SPQ-AU ASIC is constructed
by cascading 4 of the 10-bit building block.

This completes the design description of the SPQ-MU and the SPQ-AU. In the following
5 sub—sections, the hardware designs of the other 5 ASIC’s are briefly described. For each
of the 5 ASIC’s, a top level block diagram and the function of each component block are

given.
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3.4.2 Path Metric Computer (PMC)

The Path Metric Computer calculates the path metric of an extended path, provides an
input/output port for the Systolic Priority Queue—Metric Unit and determines the operation
modes of the systolic priority queues. Its hardware configuration is illustrated in figure 3.12.

It consists of a 16-bit Adder, Register Ag of the metric systolic priority queue, and a 3-bit

Counter.
3-bit Counter B SPQ-MU
I Address
[ Controller
Branch Metric i
—_— _ Register Ay [€—— SPQ-MU
Look—Up Table 16-bit Adder . of metric SPQ 2 SPQ-MU

Figure 3.12: Block diagram of the Path Metric Computer.

The 16-bit Adder calculates the path metric of an extended path. It adds the branch metric
obtained from the Branch Metric Look—up Table to the current largest path metric from the

Register Ag of the metric systolic priority queue.

Register A functions as an input/output port for the Systolic Priority Queue—Metric Unit.

It consists of a 16-bit version of figure 3.8a connected to a comparator and a selector. The
output of the selector is connected to the Address Controller for controlling the multiplexers

in Register A of the address systolic priority queue. At the beginning of each extension
step, Register Ag outputs the current largest metric to the 16-bit adder. At the end of the

each branch extension, the path metric of the extended path is input into Register Ag .
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The 3-bit Counter determines the eight operation modes/steps of the stack algorithm (p. 59).
Its output, together with the output of the comparator, control the selectors and thus the
multiplexers in Register Ag. The output of the 3-bit Counter also apply to the Systolic
Priority Queue-Metric Unit. It combines with the outputs from the two adjacent
comparators of each register in the Systolic Priority Queue~Metric Unit. The result controls
the multiplexers in each register of the Systolic Priority Queue—Metric Unit and the Systolic

Priority Queue—Address Unit.
3.4.3 Address Controller (AC)

The Address Controller keeps track of the next available address in RAM1-6, provides an
input/output port for the Systolic Priority Queue—Address Unit and controls the addresses
of RAMI1-6. Its hardware configuration is illustrated in figure 3.13. It consists of a 10-bit

Counter, Register Ag of the address systolic priority queue, Multiplexer1 and Multiplexer2.

Address Lines  Busl < 10-bit Counter
[A3,A12] <€ Multiplexerl >
of RAM3-6

Address Lines_ Bus2 .
of RAM1-2 ¥ Multiplexer2

A A

| Register Ag 2 SPQ-AU
of address SPQ [®&——— SPQ-AU

t

PMC

Figure 3.13: Block diagram of the Address Controller.

The 10-bit Counter keeps track of the next available address location in RAM1-6. At the
end of each extension step, it up—counts its current value by one to locate the next available

address in RAM1-6 for the next extension step.
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Register Ap functions as an input/output port for the Systolic Priority Queue—Address Unit.
It consists of a 10-bit version of figure 3.11a. The operation of the Register Ag is controlled

through the selector output from the Path Metric Computer. At the beginning of each
extension step, Register Ao outputs the associated address of the current largest metric to
the two multiplexers. At the end of the first branch extension, Multiplexer2 inputs the

associated address into Register Ag . After the second branch extension, Multiplexer2 inputs

the value of the 10-bit Counter into Register Ag.

Multiplexerl and Multiplexer2 control the addresses of RAM1-6. Each multiplexer is
constructed from 10 2—to—1 line multiplexers. They accept the associated address of the
current largest path metric from Register Ag and the next available address from the 10-bit

Counter asinput, then output the appropriate address to RAM3-6 and RAM1-2 respectively.

3.4.4 L-Previous Information Bits Buffer (LPIBB)

The L-Previous Information Bits Buffer duplicates the data in RAMI, controls the address
lines [Ag,A17] of the Branch Metric Look-Up Table and updates the 9—previous
information bits of an extended path. Its hardware configuration is depicted in figure 3.14.
It 1s a 10-bit Shift Register which consists of ten D—flip—flops and ten 3—to—1 line

multiplexers. Refer to section 3.3 for details.

[D1Dg] l [D1,.Do]
Data Bus > Address Lines

10-bit .
of RAMI Shift Register Dy oﬂiﬁ‘f{}h }r?]géc
Current Extended————» >[4, §17]
Branch (0/1) ’

Figure 3.14: Block diagram of the L-Previous Information Bits Buffer.

75



3.4.5 Path Length Buffer (PLB)

The Path Length Buffer duplicates the data in RAM2, controls the address lines [ Ag, A> ] of
RAM3-6, controls the address lines of the Sufficient Statistic Look—Up Table, controls the
input of the Extended Path Controller for updating an extended path in RAM3-6, and
updates the path length of an extended path. Figure 3.15 shows the hardware configuration.
It consists of an 8-bit Counter, a 3-bit Counter and a Multiplexer Unit. Refer to section

3.3 for details.

3-bit Counter B Multiplexer Address bus
» Unit B of RAM3-6
Ap, A
[ D 5, D7] [ 0> 2]
Data Bus . .
of RAM? 8-bit Counter P
[Do, D4l gExtended Path
Controller
Address Bus of
ufficient Statistic

Look—Up Table

Figure 3.15: Block diagram of the Path Length Buffer.
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3.4.6 Explored Path Controller (EPC)

The Explored Path Controller controls the updating of an explored path in RAM3-6. Figure

3.16 shows the hardware configuration of the EPC. It consists a Multiplexer Unit, a

D—flip—flop unit and a 5x32 Decoder. Refer to section 3.3 for details.

[Do, D4] : [s0, $31] ; .
from Path Length 5x32 Decoder Mulgg};a e
of Explored Path
A A
D-Flip—Flop
Unit
Current Extended
Branch (0/1) — Data Bus
of RAM3-6
[Do, D31]

Figure 3.16: Block diagram of the Explored Path Controller.

Having described the hardware design of the seven ASIC’s, the testing result of the ASIC’s

and a discussion of the sequential demodulator are given in the next chapter.
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Chapter 4  Test Result and Discussion

In this chapter, the test result of the seven ASIC’s is first presented. Then a discussion of

the sequential demodulator based on its applicability is given.
4.1 Test Result

The ASIC’s were designed using the CAD tool Cadence™ (also known as EDGE, SDA, or
CDS) which uses a design methodology called schematic capture. In this environment, the
schematic of each ASIC is drawn, with the placing and routing of standard cells done
automatically from the schematic. In other words, silicon level representations of the

ASIC’s are derived from very simple circuit sketches.

Before sending the designs for fabrication, the schematics were simulated under the SILOS
simulator for verification of design logic. SILOS is executed within Cadence using a netlist
generated from Cadence. The output of the simulation is viewed by the Waveform Display
package provided in the Cadence environment. Since no design errors were found in the
simulation, the layouts (i.e. the silicon representations) were translated to the Caltech
Intermediate Form (CIF) files and submitted to the Canadian Microelectronics Corporation

(CMC) where they were fabricated with the three micron CMOS process.

Upon receipt of the ASIC’s, they were tested with an ASIX-2 tester. A static test was
performed on each ASIC. During the test, input test vectors were applied to an ASIC and
the outputs were compared with the designated output test vectors. None of the ASIC’s

passed the static test. In all the ASIC’s, there are inputs and outputs that are stuck at ’1°.

Further investigation was done to find out the cause of the stuck at ’1” problem. Each ASIC
was inspected under the microscope. The inspection revealed unconnected pads which
corresponded to the inputs and outputs that exhibited the stuck at ’1’ problem in the static
test. In order to determine whether the routing errors are in the fabrication or in Cadence,

layouts of the ASIC’s were examined. This examination confirmed that the unconnected
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pads are due to the layouts generated by Cadence. The unconnected pads resulted in four

ASIC’s which could not be tested, the other three were only partially tested.

The four ASIC’s that were unable to be tested are the Systolic Priority Queue—Metric Unit,
the Systolic Priority Queue—Address Unit, the Path Metric Computer and the L-Previous
Information Bits Buffer. The Systolic Priority Queue—Metric Unit and the Systolic Priority
Queue—Address Unit have fourteen and six unconnected pads respectively, however the
crucial pad that makes the two ASIC’s not testable is the input pad CK, which drives the clock
signal. The Path Metric Computer has ten unconnected pads. It was unable to be tested
because the two input pads SET and RESET which drive the set and reset signals of the ASIC
are not connected. The L—Previous Information Bits has two unconnected pads, however
the reason for test failure was not caused by the unconnected pads. The ASIC was unable
to be powered up. It is suspected that there exists a short between power and ground.

Unfortunately, the fault in this ASIC could not be located.

During the test of the Address Controller, malfunction of the 10-bit Counter and the output
A7 were observed. The malfunction was caused by two unconnected pads, CE_ AC and A7,
which appeared as stuck at ’1” faults. The counting operation of the 10-bit Counter could
not be disabled since the count enable input CE_AC of the 10-bit Counter is stuck at ’1’.
Similarly, the counting operation of the 8-bit Counter in the Path Length Buffer could not
be disabled because its count enable input PL UP_COUNT EN is stuck at ’1’. In addition,
the outputs DPL3, DPL7, A3 and A7 of the 8-bit Counter are not connected and all appear
as stuck at ’1’ faults. Finally, the 5x32 Decoder in the Explored Path Controller did not
perform properly. One input, AZ1, of the 5x32 Decoder is not connected and stuck at ’1’.

Thus whenever the input to AZJ was ’0’, the decoder gave an incorrect output.

To summarize, the main problem of the ASIC’s is the unconnected pads originated from the
layouts. All the unconnected pads appeared as stuck at ’1’ faults in the test. The problem

was caused when the layouts were generated using the router in Cadence. The Detail
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Routing stage was proceeded before all nets were routed in the Global Routing stage. This
resulted in unconnected pads. In the Global Routing stage, there is no guarantee that all nets
are completely routed by just one trial regardless of the constraints imposed on the locations
of the I/O and standard cells. If some of the nets are reported partially routed, then the global
routing has to be undone and the Global Routing stage needs to be repeated. The above is
repeated until all nets are completely routed. If all nets are completely routed, then the Detail
Routing stage can proceed. The layouts of the seven ASIC’s are regenerated in Cadence.
With several trials in the Global Routing stage for each layout, layouts with all pads

connected are obtained.
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4.2 Applicability of the Sequential Demodulator

The applicability of the sequential demodulator is discussed in terms of the number of
interference terms in the ISI channel, the length of the input to the IST channel and the size

of the stack required.
4.2.1 Number of interference terms in the ISI channel

The sequential demodulator shown in figure 3.1 is designed to handle ISI channels with at
most nine interference terms. If the ISI channel has exactly nine interference terms, no
modification to the design shown in figure 3.1 has to be made. Specific branch metric
look—up tables have to be prepared and used for different ISI channels. However if the

number of interference terms changes, the design has to be modified accordingly.

If there are less than nine interference terms, only the L—Previous Information Bit Buffer and
the Branch Metric Look—Up Table need to be modified. If there are n <9 interference
terms, then the 9 —n most significant output lines of the L-Previous Information Bit Buffer,

and therefore the 9 —n most significant address lines of the table, are not required. They
should hardwired to either ’0” or ’1’. If they are hardwired to ‘0°, then only the first 28++1

addresses of the look—up table are used, else the last 28+*1 addresses of the look—up table
are used. The table has to be programmed accordingly or can be substituted by a smaller

dimension memory IC.
4.2.2 Length of input to the ISI channel

The sequential demodulator is designed to decode a block of 256 bits. If the sequence length
of the inputis just one block, then the decoding proceeds as described in chapter 3. However,
if the length of input is longer than one block, then the following assumption has to be made.
The node with the largest path metric from the previous block is assumed to be the root node
of the current input block. That is, the path corresponding to that particular node is assumed

to be the desired path for that block. The last nine symbols of the decoded path from the
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previous block is assumed to be the 9—previous information bits corresponding to the first
symbol in the current input block. To continue the decoding, the 9—previous information bits
is input into the address (0000000000) of RAM1 and the rest of the system is reset to the
initial state. Then the decoding of the current block proceeds as described in chapter 3. The

final decoded path is obtained by concatenating the results obtained from the input blocks.
4.2.3 Stack overflow problem

The sequential demodulator is designed to have a stack size of 1024. If stack overflow
occurs, an overflow flag signifies the occurrence of overflow. If the decoding continues, the
result becomes meaningless. When overflow occurs, the value of the 10-bit Counter in the
Address Controller goes back to (0000000000) which is the location of the next available
address in RAM1-6. Due to the storage scheme of the design, address (0000000000) of
RAM1-6 might contain data for the most likely path. A better storage scheme has to be

developed to handle the stack overflow problem.
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Chapter S  Conclusions and Suggestions for Further Study

5.1 Conclusions

In this thesis the VLSI implementation of a sequential demodulator based on the Shift
Register Systolic Priority Queue architecture applicable to ISI channels is developed and
performed. The sequential demodulator consists of eight standard memory IC’s and seven
ASIC’s that are fabricated with the three micron CMOS process. The design is capable of
handling input blocks of 256 bits and a maximum of 9 interference terms. It has a maximum
allowable stack size of 1024. An 8-bit representation is used for the input sufficient statistic

7 and a 16-bit representation for the metric.

The idea of Chang and Yao [2] in using the Shift Register Systolic Priority Queue to
substitute the stack in the conventional sequential stack algorithm is used for the VLSI
implementation of the sequential demodulator. The proposed algorithm is investigated and
implemented into hardware. Two Shift Register Systolic Priority Queues applicable to the
stack algorithm are implemented for manipulating the path metrics and their associated
addresses. The Shift Register Systolic Priority Queue architecture is used to eliminate the
time consuming and number—of—entries dependent stack reordering problem in the
conventional stack algorithm. With the systolic priority queue architecture, complete stack
reordering is no longer required and the largest path metric is guaranteed to appear at the top
of the stack within a fixed and short interval of time regardless of the number of metrics in

the stack.

To complete the design of the sequential demodulator, algorithms for storing the explored
paths and evaluating the metrics are developed and hardware implemented. The input
sufficient statistic z; and all possible branch metric values are available as two look—up
tables. The output explored paths are stored in a RAM. To facilitate the storage of explored

paths and the evaluation of branch metrics, the path lengths and the 9—previous information
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bits of the explored paths are also stored. The technique of indirect addressing is used to store
and locate the path length, the 9—previous information bits and the explored path of a
particular path metric. Associated with each path metric in the metric systolic priority queue,
there is a value in the corresponding position in a second systolic priority queue that
represents the address of the above three data in the RAMs. The knowledge of the pathlength
is used to locate the specific position for storing the extended path and retrieve the specific

sufficient statistic z;. The retrieved sufficient statistic z; and the 9-previous information
bits are then used as the address to retrieve the expected branch metric from the branch metric

look—up table.
5.2 Suggestions for Further Study

The arearequirement of the design is quite large and thus limits the feasibility of the design.
Further investigation needs to be done to overcome this problem. The 16-bit metric
representation and the 10-bit associated address of each path metric are the two main factors
contributing to the area requirement of the design. Since a 16-bit representation is chosen
for the metric, only eight entries can be accommodated in the Systolic Priority Queue_Metric
Unit. Thus a total of 128 Systolic Priority Queue-Metric Unit ASIC’s are required to
construct a stack size of 1024. More research is definitely needed to establish a new metric
representation that requires fewer bits and provides satisfactory error performance.
Similarly, 128 Systolic Priority Queue—Address Unit ASIC’s are required to construct the
stack of size 1024 for storing the associated addresses. The 10-bit associated address is
required because of the indirect addressing technique used in the design. New algorithms
for storing the explored paths and evaluating the metrics need to be developed in order to
eliminate the requirement of the 10-bit associated address. Also, modification of the design
to handle the stack overflow problem and multiple stack decoding are two other possible

extensions to the work presented in this thesis.
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