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Abstract

This thesis deals with the VLSI implementation of a fitzzy cognitive system. As-

pects of frzzy set theory and neural networks are combined to produce a lobust

system for exl:ressing uncertainty. A novel alchitecture for digital neural netlvolks

is intloduced and analyzed. The system concept is implemented in a three-chip set

ivhich incolpolates fault tolerance and a cellular automata based built-in self test.

\¡LSI design tr¿de-offs are explored and details of the implernentation ale presented.
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Chapter 1-

Introduction

1-.1 Purpose

Tlre purpose of this thesis is to examine the \/LSI impleme¡rtation ol a ftzzy cognitive

s¡'stern. This cornplex title lec¡riles a rnore in-depth explanation of its meaning.

Very Large Scale Integlation, or' \,'LSI, refers to the implementation of an algo-

rithm as an application specific integlated circuit, ol ASIC. The science surrounding

this 'silicon sculpture' is ri'ell documented, as rvell as much of the alchitecture invoh'ed

in the digital ir.nplementations refelred to thloughout this thesis.

The fuzzy set tlteory tnt,o\'ed in the system r.efers to the rvork of L. Zadeh ancl his

school of thought [44]. This theor¡, i¡v6lvs. the use of multivalued logics to represent

uncertainty. The next chapter of this thesis includes a more indepth introduction to

1uzz5, s¿¡ theory, as it pertains to this rvork,

The rvold 'cognitiue' has been u'idely interpreted in most of the papers written

on the subject of cognitive science, The term as used in this thesis is not meant to

infer rational, hutnan-lihe thought, but lather is used to reflect the system's abilit5' to
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perform contextual interpletation. A great problem in analyzing mass quantities of

data is discliminating important facts to be extracted. This is the advantage of the

system developed in this thesis.

The basic system described here is based on previous rvork in rvhich softil'are

simulations rvele used for signal classification purposes [a]. The very general system

described here is u'ell suited to hardrvare implernentation, and would have the advan-

tage of near-real-time processing petformance. This type of system is well suited to

all types of pattern recognition/classification problems in rvhich ii ivould be advan-

tageous to p.,..ocluce both quantitative azd qualitative output.

L.2 The Problem

Recent plogress in the developrnent of fuzzy set theory has been centered around areas

such as fuzzl' controllers, expelt systems, digital signal and image processing systems,

and robotics [35]. \\/ith this progless has come an increase in system complexit¡',

meaning that some softrvale driven systems ale very slot'.

Concurlentl¡', hardrvare development has advanced to very large scale integlation

(\/LSI) on a single chip. In addition, a gleat deal of research has been conducted

on massivel¡' parallel computing schemes involving neural networks. The learning

capabilities of these netrvolks have been rigorously documented in numelous case

studies (involi,ing, for example, speech and pattern recognition), [9] [18]. It is also

evident that fuzzy sets form a rvell suited tool for modeling processes of knon'ledge

representation, especially for adjusting the relevant cognitive perspective of a system,

l22l126).
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The merger o{ these technologies rvould obviouslJ' be of gr.eat interest, and sorne

lesearch has been done in this field, par.ticularly lt3]. À4ost of this u,oÌk has been

centered around using fuzzl' contlollels as algorithms for control purposes realized in

an uncertain envilonment.

Intloduction of a refelential str.uctur.e to this mer.ger allo$'s a very general. quali-

tative output to be presented to the end user. This type of output is rvell suited fo-.-

expert system applications as ri'ell as human interpretation.

B¡'combining man¡'divelse fields of stud5' ¿ vs¡¡' 1'¿l¿¿bls tool fol evaluation in

general pattern lecognition ploblems mav be created.

1.3 Project Scope

This thesis covels introductor'¡' 1,1"ot,, used in the implementation of a thlee chip set

rvhich forms the ruzz5, cogniti'e s;'stem. Since such a large numl¡er. of di'er.se fields of

study ale in incolporated in the development, only a short backglound ancl lelevant

information *'ill be coveled. No atte.rpt is made to co'eL all details of fuzzy set

ú.heor'.y or' ¡eula/ ¡iet ¡r,or*s.

The nrain bod¡' 6¡ this thesis is inr,oh'ed s'itli the developrnent of three integlated

cilcuits. Little attempt was made to connect the chips once fal:ricated, although the

intent rvas that they s'ele designed to rvork together. The chips ü,ere tested, and the

performance and testability u'er.e analvzed.

\\¡hile soft*'are simulations ha'e been attempted, these are by no means exhaus_

tive. Furthermore, since some preprocessing must be done of-line, it *,as assumecl

that this rvas relati'elJ' stlaighiforl'ard but time-consuming task, outside the scope
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of tì1is thesis. The main emphasis of this thesis is on

structures fol palticulal computations.

the implementation of novel



Chapter 2

Overview

2.L Fuzzy Set Theory

2.1.L The Fuzzy Paradigm

Ftzzy sel theory is an extlapolation from trvo-valued logic. \\¡hereas crisp definitions

are often used in mathematical modeling (especially in plactical engineering appli-

cations), it is often very useful to use intelmediate terms, somervhere l¡etl'een trvo

extremes.

Fol example, in conventional processing, it is normal to give commands like move

forward at 20 kph. A lobot rvould then proceed to move at exactl)' 20 kph (rvithin

the tolerance of its machinery).

Often though, oul natulal language precludes such strict tolerance. A phlase

like nove forward at abou,t 20 kph rvould be more natulal, and tvhile imposing

the constraint the the robot tlavel at eractly 20 kph still satisfies the about 20 kplt

constraint, it is an artificial imposition.

Fuzzy logic attempts to eliminate this artificial intrusion s'ith the use of gladual
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01020

Veloc¡ry (kph)

(a) Crisp Paradigm

Figure 2.1: Crisp and Fuzzy Membership in

0102030

Velocity (kph)

(b) Fuzzy Parâdigm

the Robot Velocity Problem

memì:elship functions in the place of crisp numbers. So in the fuzzy paradigm, a

ts'o valued Aes-ol'-1to response is replaced l'ith a gradual membelship indicating the

deglee of belongingness to a concept. The difference in paradigms is displa5'ed in

Figure 2.1.

In these figules, a '1' ranking on the meml¡ership axis is meant to suggest total

belongingness to the concept. A'0'ranking suggests total exclusion. A ranking some-

s'hele in the intelval [0,1] suggests paltial belongingness. To illustrate this concept,

exarnine lhe fuzz5,set plesented as Figu::e 2.1b. If a lobot li'ere to travel at 18 kph,

tlris rlould under many circumstances be acceptable to the constraint about 20 kph.

A high deglee of membelship is thelefore assigned. If the robot travels at 10 kph

hon'ever, tlris is unacceptable since it is not about 20 kph,

This yielcls tri'o impoltant facts al¡out this kind of approach. The first is that



CHAPTER 2. OVERVIET\I

membership is extlerrely subjective. A value that one peÌson may class as ¿ôazf 20

kph (i.e. 15 kph), anothel might consider outside of the range of acceptable values.

It can be said that the general trend of the function remains the same regardless of

the specific interpretation.

The second observation is that tlie ftzzy set is context dependent. The ftzzy

set established by the telm about 20 kph is related to tolerances determined by the

environment.

A mathernatics of such fuzz5' sets has been developed ovel the last feiv ¡'e¿¡s.

Zadeh established the concept in 1965 {aa], and fol rnany years Iittle n'oLk n'as asso-

ciated rrith it. A levival occutled in the mid 1980's and loda7, 1uzz5, logic is a sort of

technological levolution in Japan. The use of this technique has even filteled dorvn

from the reseaLch laborator'5' into manS' consurner ploducts.

Fuzzy set theo::y has been used mainl¡'to handle unceltaint5' ¿¡¿ imprecision for.

situations in ivhich conventional techniques perform pooi.l5'.

Thlee kinds of implecision have been isolated, [2] namel¡' gener.ality (rnultiplicit¡,

of objects), ambiguit¡' (context-clepenclenc¡') and vagueness (imprecise boundaries).

Of these, fuzzy sel theoly handles generalit¡'in some situations and handles vagueness

extlemely rvell. \/ague terms such as rrlcå, wise, fast, etc. may be encoded rather easil¡'

into the kinds of membership functions shorvn in Figule 2.1b.

2.L.2 Mathematical Overview

Norv that a farailiar'ìty has been established t'ith the notion of a fuzzy sel, a discussion

of the mathernatics involved in the fuzz¡, cognitive system ma¡, proceed. This section
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comprises only a tin¡' segment of fizz5, relational mathematics, and therefole the

leader is refelred to [1a] [2a] fol mole indepth readings.

Basic opelators involved in the types of relations involved are the t-nolm, rep-

resented as @, the s-norm) repÌesented as @, arl luzzy negation, represented as

@

The t-norms and s-no¡ms may be described as any functions satisfying the critelia

of Table 2.1, rvhere a, al ,brbl , cel\,Il.

t-nor"ms s-norms

Satisfvin s Conditions l,1l x 10,1l : 10, 1

Bonndalv Conditions a{Q0 :0,a| )r : a a(s_)U : ¿, ¿(s)l :
) Coramutativitl' a(t)b : b )a a(s)ô : ó(s)a

i ii) Associativit¡, alÐ\blÐc) : \a(Ðb)lÐc
= a(Ðl¿(àc

a€j(o(g)cJ : (ø(Ð0)(g)c
: a(î)å6c

iv) trlonotonicit¡ For ar < a,br < b

a1@bl 1a@b I a1@å1 < ø@å

Table 2.1: Conditions for t-norms and s-nomrs

These nolms are related by the expression:

a@ó: r - (1 - a)@(1 - ¿,) (2 1)

rvhich is simpl5' a folm of De \4olgan's theorem.

Fuzz¡' negation ma5' be intelpleted as a type of complementation.

a@:7-a (2.2)

The Fuzzy Matching Op erator

An explession comparing trvo fuzzy sets may be established on the basis of logic and

set theor¡'. Consider trvo fuzzy sets A and B at the same element of the universe of
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discourse, ¿: A(r),1¡: B(r). The concept that ¿ is equal to å rnay be explessed as

d : ö (the matching operator), and may be replesented logically as

a is contained. i¿ å and b is contained in a

Not, representing the and conjunction as a t-norm and containment as a pseudo-

complementary operation, ry', the expt'ession fol equality index becomes:

o: 6: (atþb)@(btþa) (2.3)

A similal explession mâl¡ be created involi'ing s-norms and anothel pseudocom-

plemeutar'¡' opelation, B to implement the logical concept

a is not contai,netl in. b or b is ¡tot contained in a

(aBb)@(bBa)

Complementing this expression yields another equality index.

a=l¡=I-(aþIt)@(l¡þa)

(2.4)

(2.5)

(2.6)

A mole robust matching operation ma¡'be formed by incorporating both t-nolm

and s-nolnr equalit¡' explessiolrs.

This rnay therL be nodified to

, [(oøå)@(ö/a)]+ {[(t - o),þ0 - ö)]@[(1 - å)r/(t - a)l] ,o r\,:u= \L.tt

A mr'nimuni function, A, mal' þs used fot t-nolms and a maximum function, V,

ma)'be used as tlte s-norms. If a Gôdelian implication is used for the psudocomple-

ments,
. ( t. if o<ba--+b= (.' .^

l. ó, riû>¿)
(2,8)
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then the matching expression of equation (2.7) becomes

a=b= [(¿ -+ ö)^ (b--+ d)]+ {[(1 - d) --+ (1 - å)]^ [(1 - ö) --+ (r - ø)]]
(2.e)

(2.r2)

Since l'e s'ould like to implement a digital system, the [0,1] interial must be

lemapped onto another disclete space, [0,\,I], yielding

10

It can be ploven that

(a---+ ö)n (r,---+ a)- {'i,', 
"i:ti 

(2.10)

[(r-a¡--(r -ö)]^[(1-¿,)--+(r -d)]: { 
t-,í,'o), trlltl (2.il)

l'hich allol's equation (2.9) to become

I (û^b)+I-(ovò) :1 - J L. .- r. I -_________n__ \ ,L ít r il

I I, iÎ a:b

(2.13)

Assuming a four'-bit lesolution, yielding tr,f=15 and only natr.ual numbers used in

tl.re disclete space, this leads to the function depicted in Figure 2.2. Al¡out haìf of

the resolution is nos' roasúerl, since the only numbels used in this discrete space at'e

a: l¡ 17, ot u = å : 15. The [8,14] interral is unused. Gleatel lesolution could l¡e

simulatetl in the s1'sten'r if this intel'ral rvere used. It rvould thelefore be advantageous

in the digital system to implement the function sho*'n in Figure 2.3, since it fully

utilizes the lesolution of the [0,15] space.

This function ma¡' be easil¡' i¡¡p1"-"nted by multipl¡'ing the first condition of

equation (2.t3) by tl'o, yielding a continuous function.

o:þ:(a^b)+À.t-(avó) (2.r4)
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Figure 2.2: The Fuzzy Matching F\rnctior-r

u,""ffiffi
B& o-9o

ffi
ËËf.¡ï 0.60

Þtil o.3o

lJ"""

x,:ffiHffi
ffi 0e0

ffi
ffii! 0.60

lì+l o.3o
lslilil

Llooo

Figure 2.3: The Fuzzy l\tlatching Function with Data Remapping
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A quick examination of these functions reveals that thev experience maxima at

the point l'hele ¿ : å. The least amount of the matching functions occur rvhen a

and å a¡e farthest apart (i.e., ¿:15, ó:0, MATCH:O),

The Inverse Fuzzy Matching Operator

In the situation ivhere the degree of matching betrveen tt'o fuzzy quantities is knorvn

as u'ell as one of the quantities, an inverse matching operation is required to generate

the second fuzz5, quantity.

Since mole that one value ma1, be genelated as the output of such an inverse

function, fulthel analJ'sis must be ulder-taken to resolve tlie obvious conttadictions

that may alise.

For oul purpose, r'e ale intelested in functions rvhich satisfy the matching critelia,

that is, all points u'hich lie under the surface of Figure 2.3. Ðquation (2.13) may be

les'ritten (only tlte a f ö condition ivill be anal)'zed) as

Imin -1,41 - max'lQ:r'=o<l (215)

ri'lrele min : a A l¡, and max = aY l¡. \\¡ith some manipulation, this yields,

t2

2Q - I'I I min-max

Al -2O ) max-min
¿0

(2.16 )

\\Ie ale given eithel min oL Ítax, so not' examine each situation indii'idually.

I) max is given, min is unknown.

2Q-Aflmax(min



CHAPTER 2. OVER\'TE\\/ 1Q

(2.r7)* nin ) rnax l2Q - À[

II) min is given, nax is unknown.

2Q - Al - rnin 5! - max

+ max S min-(2Q - M) (2.18)

Fol the genelal case, uhere it is unknoivn in advance rvhether the given term is

the maximum or minimum,

a = b + (2Q - A[) a, åe[0, i] (2.1e)

defines the intelval into s'hich the unknori'n value falls.

Fol the case of data remapping as in equation (2.1a), the Q multiplier drops of
to become

a : b + (Q - tt[) a, öe [0, 1] (z.zo)

The natul.'e of the intetval cleated b5'the invelse-matching function mal,be best

undelstood *'ith an example. The scenalio is the data complessed matching function

of Figule 2.3 ri'ith a four'-l¡it [0,15] discr.ete resolution. Take the case u,here

Q:a:b:72 and ö-8
A 'r'ertical plane is constlucted, as shol'n in Figure 2.4.

It is visuall)' obvious that an inter.val ranging from 5 to 11 is created, and this

may be mathernaticall5' derived fr.om equation (2.20)

a:b+(Q-11):8+(12-15)
: 8r(_3)

+ [5,11]
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Figule 2.4: Example of fnvelse Matching

It l'ill be seen in later sectiols that the nature of this interral pr-ovides a veÌJ,

robust qualitative anrl quantitative output to the fuzzy cognitivs s¡'sfsrn.

2.2 Neural Networks

2.2.1 The Purpose of Neural Networks

Conventional cornputers simply cannot achieve many things that rve desire of them,

and so an obvious comparison is often made to the human brain. \\/hile conyentional

\/on Neumaln a.d I{arvard computer alchitectures ha'e proved themselves extremel¡,

useful fol both scientific resealch and easing the burdens of the ave.age life in general,

they ha'e some e'ident shortcomings. It has been estimated that it would take over

1000 super computers to do the kind of real-time visual processing accomplished by

the Darü'inianl¡' optimized brain.

74

OF

Matching

Irìlerval of the
lnverse Måtch
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On the othel hancl, the human brain has perhaps ;th tt " 
po$,er to do purel5,

mathematical calculations rvhen compared to a simple pocket calculator. The brain is

simply not built to perform these kinds of calculations with high speed and precision.

Anothel startling compalison may be made with respect to memory. Brains forget

or distort many facts th¿t a¡e labeled 'IMPORTANT'. Computers seldom if ever forget

vital facts. Blains, on the other hand, excel at completing incomplete facts, even rvhen

some of the information given is erroneous. Conventional computers handle this kind

of ploblem ver'¡, poorl¡'.

Obviousl¡' the trvo machines ale built for different pur.poses, and perfor.m poor.ly

on ploblems outside of theil scope of expertise. \\/e rvould, horvever, like computer.s

to handle man¡'of the tasks that humans take for granted such as image processing,

lecognition, and associative memorization. It is for this reason that the quest for a

mote brain-like computer began.

Backgrou nd

Altificial neula.l netl.otk (ANN) rnodels have a long and spur.ious history. N{ore lhan

4 decailes ago, [21], a numl¡er of theories began to evolve regalding representations

of biological neulal connection s5'slgrn5 in mathematics. A gleat deal of interest

accumulated into the 1950's and 60's, until lTte neu t¿oøe of artificial intelligence (AI)

began to dominate the 1970's. The less than anticipated results generated from these

ph¡'sical symbol sl'stems [22] brought a resurgence of connectionism in the 1980's

The connectionist attempt has been concentrated in trvo at'eas. The fir'st is the

undelstanding of hou' biological neulons interrelate. Figur.e 2.5 gives a very sirnple

t5
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Figure 2.5: A Sirnple Depiction of Biological Neurons

illustration of the neural connections. Biological neural networks utilize massive par'-

allelism to accolrplish high speed computation. This massive parallelism includes not

onl¡' connections to subsequent la¡'e¡.. 1rltt also connections rvithi¡ a giyen la5'e¡ and

feedback to prei,ious layers. For simplicity, this thesis will examine only feed-forri'ard

nets'orks (no inter'-lal'el connections ol feedback).

The neuron is often modeled as shorvn in Figure 2.6. A iveighted summation is

usecl to model the biological neurons chemical activity. A nonlinearit5, is used at the

output to constrain the netrvork values. Some thresholding functions classically used

are shos'n in Figule 2.7.

Several methods ma)' be used to implement the functions of an ANN, including
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fully digital, full¡' ¿t1o1o* or hybrid (some combination of digital and analog) method-

ologies. \\/hile an analog design rvotrld be fast and consume very little space, design

time is prohibitive. Digital design is \¡ery a¡ea intensive and much slower than analog

systems, hotvevel design time is minimal due to the great body of knorvledge that has

been accumulated throughout the computer revolution. Furthermore, since existing

computer halds'are utilizes almost exclusively digital technolog¡', an analog neuraJ.

netrvork must use some sort of digital interface to communicate. Hybrid designs are

ver)'attractiver since the5'may apply the advantageous features of both analog and

digital design. Unfoltunately design time is again prohibitive, since the interfacing of

digital and analog parts is not a trivial task.

The hald limiter shori'n in Figule 2.7a is used in a simple device called a per'-

ceptron. \\¡hen tr'finsk)' and Papert rvrote their famous book Perceptrons, [2t], the¡'

pointed out some limitations of single laye:: pelceptron netrvolks (such as the XOR

ploìrlem). Fol the single la5'el netri'ork, li¡ear separabilit)' is u 
".u. 

u, issue. This

ploblem u'as later 'solved' rvith the back-plopagation model of learning, also knorvn

as the multila¡'e'-ed perceptron netl'or-li. In this type of netrvork, several l¿r'els of

neurons ma)' be used to capture high older statistics.

The bacli-plopaga tion algorithm is so named since learning is accomplished ihlough

the back-propagation of the error derivative from the output to the input. Because

derivatives ale lequired, continuous functions such as the sigmoid of Figure 2.7b arc

used, but ofter approximated by the pieceu'ise-linear thresholding function of Figure

2.7c. In effect, back-propagation combines a nonlinear perceptron-like netivolk rvith

gradient descent optimization to achieve a minimum global error, given enough neu-

rons. It is difficult to foresee horv many neurons are sufficient for a given problerl.

18
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A lack of convergence to the desiled output space is often attributed to searching a

large plateau for minima. N,fany thousands of learning epochs may pass without any

noticeable change in convergence if this occurs. Appendix A illustrates an example

of the back-propagation algorithm and discusses some methods of improvement.

Because back-propagatio n works it has become the most popular learning method,

and many softrvare models exist to simulate pelformance. Since it is generally quite

slol'to lealn, other methods have been investigated.

One of the most interesting alternate methods is Hebbian learning. With ihis

technique, collelations betl'een neutons strengthen the connection betri'een them,

rvhile anticollelations ri'eaken connection strength.

Regardless of the learning method used, neural netrvorks are computational struc-

tures tlrat ale not programmed in a conventional sense. They learn the requiled

statistics, and can thereaftel perform leal-time computations in a parallel distribuied

fashion.

2.2.2 Limitations and Possibilities

Although there is a tlemendous research effolt in neural netn'olks and many claims

regarding their capabilities, application areas are still experimental. The follorving

discussion contrasts neural netrvolks rvith more traditional AI techniques, Similar'

compalisons can be made in other frelds t'here neural netrvorks have the potential to

outperform more conventional computations (i.e., pattern recognition).

Neural netu'orks are not nearly as ivell understood as the sequential symbol ma-

nipulators of the 1970's AI endeavols. Classical AI attempts rvere limited in their

19
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heuristic apploach to the ploblem at hand. That is, if a program *'as specifically

rvlitten to pla5, ç1l".., it rvas extremely difficult to modify it to handle vision pr.ob-

lems, for example. On the other hand, neural netlvoÌks are of such a general natule

that a given net$'oÌk may be used to learn a multitude of different problerns.

\\¡hile the heuristics invoh'ed in a symbol-manipulating AI attempt are extlemel¡'

complex to code and perfect (sometimes requiring years), the heuristics involved in a

neulal netrvolk ale self-generated. The user of a neural netrvork does not (necessalilS')

need to utilize exper-tise on the subject at hand, as the'program' (connections) rrsed is

genelated b¡'tl.re l.raldivare from an examination of the problem. This lack of a formal

s¡'mbolic language is one of connectionism's greatest advantages and dorvnfalls.

Ideally a conventional AI solution invoh'es errough heulistics to apploximate an

algolithmic solution. Il this ü'a¡'the optimal (or neal optimal) solution is consis-

tentl5' found. Problems uufot tunately occul iu the combinatolial explosions folr.necl

by extlemel¡-lalge sealches (ie: chess cannot be pla5'ed algolithmically - thele a'-e too

many combinations to sealch). Heulistics used for this t5'pe of s5'stem ale inherently

plagued b¡'unexpected situation that the'rules of thuraì:'supplied by the progr.an-

mer do not covet. (If extremely good heuristics ale intensively pr.oglammed b¡' the

skilled opelator. the plogram rvill operate s'ithin its built-in limiting constr.aints.) On

the other hand, the heulistics folmed b¡'the neural netrvork rvill consistentl¡' generate

an optimized solution (although pelhaps not globally minimized), provided enough

neurons are available for the problem's complexit5'. Fulthermore, the generalization

abilities of neulal netrvorks allorv forrnulation of new 'rules of the garne' as thel, þs-

come necessal')', So not onl¡' ¡¡r¡t1t, neural netrvorks solve the problem of knorvledge

access in an elvilonment of combinatolial explosion rvith content-addressal¡le mem-

20
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ories, but also extrapolate from those memories in unpredicted situations.

Perhaps the gleatest advantage of neural netrvorks is this ability to learn, gener-

alize and extract increasingly high levels of classification. These abilities form impor-

tant distinctions rvith classical AI (Searle's Chinese room thought experiment is quite

confounded by the absence of a central administrator), and have provided extremely

encouraging preliminary results.

An additional advantage of the neural netrvolk approach is its use of parallelism.

A classic problem in dist¡ibuted processing is getting it to be rvell distriózfed. Not

only do neural netu'olks soh.e this dilemma extremel¡' rvell, but performance also

deglades glacefully as neurorìs become faulty.

A majol dorvnfall of neural nets'orks (and particular'ly back-propagation) is its

slog'speed at lealning nerv tasks and generating meaningful statistics. A conventional

programming approach relies on ah'eady-tlained human netrvorks to provide these.

Altelnatel5,, otÌrel networks (palticularly Hopfield net*'orks) aÌe \¡ely slorv to ploduce

corLect output (despite theil speed at learning).

It has been argued that physical symbol manipulation attempts have reached a

'blick rvall' because they are looking at the ü'r'ong level of knou'ledge required to do

some fundanental problems. While this may also be true for connectionist systems,

this science has not yet ¡eached as high a level of sophistication, and it is thelefore

much more difficult to judge.

\\¡ith the ver¡' complementarJ' abilities of these two approaches, it rvould be ex-

tremely attlactive to combine the tivo. One possible approach might be to share

silicon. The conventional digital von Neumann architecture n'ould oversee the rvork-
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ings of an analog neu.al netrvo.k. The neural net*.ork rvould then becone another.

tool in the computer scientist's bag-of-t'icks. At this time it is dificult to predict the

¡ole that neural netn'o¡ks *'ill play in computation. It is, horvever, clear that they are

a pou'erful computational paradigm that rvill become more prevalent in the future.

2.3 VLSI

VLSI, or \/e.y La.ge Sca.le I'tegr.ation, is an acÌonym that was spa.*,necl from the

computel r-evolution. It suggests a silicon die on u'hich there are approaching 100,000

gates. None of the devices designed in this thesis are close to this level of complexity,

but clearl¡' illnstl'ate the potential of \iLSI fol artificial neur.al net*,or.k implemen-

tations. The te.m vLSI has e'ol'ed to s*ggest large, complex Application specific

Integlated Cilcu jts (ASICs).

\/LSI methodology is a science in itself. An attempt must be made to minimize

area and pos'el dissipation u'hile maximizing performance and flexibilit5,. At all times

an attempt is made to minimize routi.g length since long li'es add capacitance to

the s¡'s1srn thc.cb¡' r'ed'cing speed. \\¡hen long li'es or large loads are 
'ec1uir.ecl, 

/an-

out and d.rit;e r.nust Ìre conside.ed. Additional dr.i'el.s added to the circuit at precise

points can be used to incr.ease speed.

The ability to optimize the man¡' constraints involved in ASIC design is a skill

requiring man\' \'ears to acÌriei'e ploficiency. while the authol in no rvay claims

proficiency, an attempt u'as made to adhere to good design techniques.

outside of the requirements ah'eady me'tioned, an attempt *,as made to incor-

po'ate a Built-In self rest (BIST) and fault tolerance in all of the designs. BIST
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allos's each chip to verify its ori'n operation before being inserted into a circuit boald.

Elror-free operation is ensured, therefore reducing the cost of tloubleshooting the

s¡'stem once it has left the ploduction facility. Fault tolerance is used to increase

product life by including some so¡t of redundancy to ensure that the device ma¡' þs

damaged J,et still perfolm its function. These considelations ale considered in mole

detail in the next chapter of this thesis.

The advanta.ges of ASICs ovel of-the-shelf technologies are indispensable to those

ivho require them. The most important advantage for the purpose of this resealch

is speed. \\¡hele leal-tin're computations are necessarJ¡) onl], ¿¡ ASIC can provide

maximal pelfornance. A second advantage is size. A customized IC reduces the space

and thelefole the complexity of Printed Cilcuit Boards (PCBs). A thild advantage

is that of the proplietal¡.' information contained on the chip. An ASIC is much more

difficult to cop¡'than a PCB covered s'ith comnelcially available parts, and this is

often an important considelation fol industr'5'. Ts'o disadvantages of ASICs ale cost

and design time. It is simpl5' less expensive and less time consuming to assemble

plefaìxicated clevices into a PCB.

Of the plethola of commercial technologies availaì:le for microelectronics, one of

the most conrmon is the Complementary À,fetal Oxide Serniconductor' (CÀ,ÍOS). In

this process, both PtrlOS and N\{OS structules ale constructed, usuallS' as duals.

\\¡hile the redundancy requires apploximatell, double the area of either PN{OS o::

NÀ{OS, the pori'el dissipation of the com.plementary technolog¡' is remarkably lol'

(poivel is onl1'dissipated at sl'itching).

Sevelal techniques are available for decreasing the size of Clt{OS such as pseudo-

oe
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N {OS, dynamic Ctr,f OS, clocked C['IOS, C\{OS domino and cascode voltage srvitch

logic. Since the Univelsity of \{anitoba standa¡d cell librar.y rvas readily available,

fully static cornl:lementary Cil,IOS logic .rvas used for all designs rvith the exception

of the occasional transmission gate used for multiplexing. While most of these cells

rvele created b¡' othels [5] sevelal have been modified for various reasons. still other

cells have been cle¿ted from sclatch, such as a static random access memory cell used

to estimate memol)¡ capacit¡' in the given technology.

The full¡' cligital route ryas tal.ien due to its speed of design, loiv poiver dissipation

and ease of intelfacing tvith mor.e coûtrnon digital devices such as personal computels.

This also infe.s that some of the calculations that ri'ere not essential on-chip could be

accorrplished irr soft s'ale.

Fablicatiol of all devices s'as tlirough the Canadian X,Iicroelectronics Corpor.a-

tio''s 3¡m do.l¡le-level-metal C\IOS technology. This rvas the most complex tech-

nolog¡' available at tlie onset of this lesealch.

Through the course of this r.esealch, many soft*'are aids have been used for design

and simulation. Electric, a hieralchical la5'out tool [30], APLSn,I (APL Slil,lulator.),

an i'teracti'e analog simulator [31], a'd BSItrf, a s$'itch level simulator [20] *,ele

extensivel)' used tools. Tu'o of tlìe thlee chips de'eloped in this resear.ch g'ele totall¡,

hand placed altd louted. This technic¡-re s'as found to be extr.emelS, time consuming

and tedious, although at the time ther.e u'as no alternative.

Initial\', a \¡ely higli speed application specific integr.ated cilcuit Hardu,ar.e De-

scription Language (\/HDL) [11] [1] \\'ith Queen's Unlversity Silicon Compiler. (eUISC)

[ts] u'ere used to speed up the design of regular structures by eliminating some of the
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tedious manual louting. while a stluctulal definition u'as used to design these blocks,

it rvas found to be ari'k*ard and unsatisfactory for larger sections of the design. It is

anticipated that a beha'ioral descliption rvould greatly simplify the design pÌocess,

and that \/HDL ri'ill l¡ecome the design methodology of choice in the near future.

The design of the neulal netivo.k rvould not have been possible rvithout a high level

schematic capture system like cadence [32]. The speed of this tool allo*,ed exper.i-

mentation t'ith different implementation st¡'les that are simply too time consuming

u'ith hand-placed and routed systems. Since one problem rvith automatic place ancl

route is possible poor pelformance due to long lines, pelformance s'as enhanced rviih

a hierarchical place and loute of the largel blocks in the neu.al netri.orli. This tech-

nique ensured maximal louting length of only one neuron (as opposed to the entire

die size).

2,4 System Overview

Norv that tlie main components of theo.y surro'nding this thesis ha'e been intr.o-

duced, a rnole indepth explanation of the system structure and operation n,ill be

plesented.

The fuzz5'cog'iti'e system may be vierved as the multiple stage structure pre-

sented as Figure 2.8.

The systerl consists of:

I) À'fatching (in the input space, follorved b¡, aggr.egation)

II) Tlansfolraation (of the matched input space to the output space)



CHAPTER 2. O\IERVIE\TI

These i'alues ale then compressed, arranged into a vectot'form and sent to the

inputs of the trausformation Ì:loch. Agglegation may be desirable to reduce the
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Figure 2.8: Structure of the F-uzzy Cognitive System

III) Invelse matching (in the outpr,rt space)

The stluctule possesses a refelential character', since it does not s'ork s'ith dii'ectl5'

input information. The input data (called the objective) is compared to a plototype

(r'efelence) description in tlie input space. This results in a vectol of deglees of

eqr,ralitl' havilg the same dimension as tìre object in the input space.

The matchilg (as intloduced previousl¡') in a bload sense of the s'ord, is a pro-

cess of comparison of successive coo-,-'clinates of trvo objects (pattelns). Denote b¡'

A - 1a1a2...a,,]. and f, : [r1o-2.'.c"] the objects matched ivhele lou'er case let-

tels lepresent colresponding cooldinates to be rratched, ai,riet01 1]. The matching

procedule letulns a vector of results of comparison realized cooldinatel'ise, di = :ùi,

rvhele = replesents the matching opelator. The matching block converts data from

the pli¡,si6¿l space, in u'hich the objects ale characterized, into an abstla.ct space

rep.r..esenting deglees of matching achieYed at the input space.

Output
Space
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dimensionalitS' of the problem (I/ << "). It is not, hou'ever', necessar)¡ to implement

the stluctur-e, lather it is used to compress the incoming data.

At the next stage of processing, the vecto¡ of the degrees of equality in the input

space of matching is transformed to the relevant vector in the output space of match-

ing. Transforrnation could be accomplished rvith special purpose hardl'are, but this

is highly dependent on the speciflc ploblem undel investigation. For the sake of gen-

erality and flexibility, the transformation block is implemented as a neural network

'rvith 'N' inputs and 'm' outputs. Fol the sake of simplicitS', the basic netrvolk being

implemented is a single-laJ'er rvith a threshold element. This single la1'el ma¡'be used

in conjunction rvith subsequent chips to produce additional layers or may be used to

c5,cle upon itself, creating iterative laJ'els.

Aftel tlansforming the input equality vector, the lelerant vector in the output

space is calculated rvith the inverse matching opelation (as described pleviously).

This procedule results in a range of values given by an upper and lorvel limit. The

Iarger the lange, the less exact ore cârl be in finding the ex¿ct result rvithin the

intelval. I{ the lange is vely small it is n'ruch simplel to estimate the exact value that

genelated the matching valte. If there is no interval (i.e., the upper and lot'el limits

are identical), the crisp case is genelated. Because the interval gap is a measure of

implecision in the s¡'stem it is refelred to as an interual of confidence.

Since a vely genelal structule is used to perform the transformation, a supervised

Iearning phase must be associated u'ith the system. This phase is depicted in Figule

2.9.

Since both values of the objective and plototype are knos'n in the output space,
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Figule 2.9: Learning Phase

the inverse matching block of Figure 2.8 is norv replaced by a matching block. The

values are genelated fi'om both ends and appear to the transformation block as data

at the input and output. The pulpose of this learning phase is to obtain the unique

mapping frorr inpr:t vector' (N) to output vector(ni). Once this mapping has l¡een

learned, it ma¡' bs stored in the fo¡m of s1'stern rveights, and recalled to perform the

calculations fol that specific ploblem as needed. The learning may be performed in

a number of l'a1's ir.rcluding the back-plopagation algorithm.

Several constlaints must be placed on the fuzzy cognitive s¡'51¿¡¡ to implement it

in hardrvare. Figure 2.10 shorvs the stluctule of the system implernentation.

The fir'st najol constraint is resolution. Since the s5'stem is digital, it was neces-

saly to assign sorne numbel of bits to the input, output and intelmediate blocks. A

uniform resolution of four bits ri'as decided upon. This decision u'as primarily based

on implementation concerns such as area and preliminary system simulations rvith

fixed-bit arithn-retic. From a \/LSI standpoint, it u'ould be possible to prove the va-

liditl'of design methodologies, while still having the ability to implement functional

devices.

The second constraint was silicon area, and it il'as decided to b¡eak the system

into three separate chips. This rvould ensure that if an alteration rvas reqr.rired on
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one of the stages of operation, only that chip need be redesigned. VLSI limitations

also enforced that the neural netrvork would be a massive undertaking on its orvn,

requiring a vely large die size to fabricate even a simple netlvotk. The three chip

system would consist of a matching chip with optional aggregation, a reconfigulable

neural netu'olk chip and an inverse matching chip.

It ri'as also decided that 4 sets of objectives/prototypes would be allorved as inputs

and that the output would have sixteen discrete points of resolution (i.e., a vector.

of 16 sets of upper/lolver bounds). To investigate the workings of the s¡'stem, a

simulation progt'all-t s'as u'r'itten. The code from this plogÌam and a.n example ale

presented in Appendix B.
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System Implementation

3.1 Enhancements to the Implementation

3.1.1 The Fault Tolerant Methodology

Fault tolerarce is a technique used to e'su.e reliability of pe.formance in a system

l2gllI2l. Nolrnally some form of redundancy is used to maintain s),stem integlity in

the event of some failure, be it transient, intermittent or permanent. The failure

could take the form of a flarv in matelial plocessing rvhen the clevice is fabricatecl, or

some unforeseen cilcumstances rvhile in operation such as an alpha strike or voltage

surge.

In the constraints of the fuzzJl cognitive system, three rliffelent tecliniques of fault

tole¡ance u'ere attempted (one for each chip designed).

on the fir'st one, the matching chip, t'ipìe modular redundancy (TÀrR) with voiing

rvas used. In this scenario, three plocessors each independently performs identical

calculations. Tlre outputs of these sections are then compared and a two-out-of-

fåree approach taken. If one of the processing elements is faulty, the othe' trvo units
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$'ould ovel-l'ule it at the voting stage. In this rvay the system may sufer a fault in

one unit rvithout consequence to the resulting calculations. In this error-masking

scheme, it may be advantageous to produce information when one of the processors

is consistentl¡' found to be at fault. The information may then be used to judge horv

long the system ivill continue befor.e total failure.

No attempt s'as made in the matching chip to indicate time-to-failure. Addi-

tionally, each redundant block rvould ideally be a unique hardware implementation,

meaning that the same calculation is performed several times in diferent rvays. Coded

checkirg (s.ch as residues) is one commonl5' used scheme [3]. All of the r.ed'ndant

blocks ale identical on this chip since time constraints on the design did not allon'

experimentation of this kind.

The second chip designed, used fol inverse matching, utilizes a differ.ent scherne.

In this case, duplex redundancy (DR) rvith error detection *'as used. Two identical

blocks q'ere used to compute the in'er.se matching output, and these results rvere

compared. If they do not ag.ee, one o.tput line changes indicating that an err.ol has

l¡een detected. At this stage, the user may choose to r.eplace the palt completely, or

ignore the ello'- flag and take the output as valid (a very dangeÌous decision). Regard-

less of the action, steps ma¡, be taken to ensure acceptable perfor.mance. Tlie main

reason for choosing this less acceptable form of fault tolerance is complexitJ' consicl-

elatiots. The invelse matching operation is much mole computationall¡' de¡¡¿n¿;r€

(a'd therefo'e more area intensive) than the matching operation. The DR scheme

utilizes onl¡' ] of the area of the p.evious scheme, and furthermore the comparison

equipment at the output is less complex in this technique.
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The final scheme used for fault tolelance comes from the nature of parallel com-

putations in a neulal nettvork. Fault tolerance of neural netrvorks is a relatively nerv

field of study, although a feiv attempts have been made [7].

It has long been knorvn that a biological systems degrade gracefully as neulons

become fault¡'(i.e., brain damage). Since the computation is both highly parallel and

distributed, a feu' bad neurons do not totally disable the complete system. In our

system in which 16 neurons rvill feed 16 neurons, if one neuron produced an erroneous

result it is then passed on to the next layer. At this point, a weighted sum¡nation is

taken of ¿ll neulons on the previous layer and one of the 16 r'alues in this summation

is in elr. In a *'orst case scena.io, this means that the total is correct l5 parts out of

16. \\¡hile this is tolerable, it reduces for. lar.ger net.r'orks. The built-in self tolerance

is a very attractii'e feature of neural netu'or.ks.

The training ptocess rnay also reduce the effect of faults by recover.ing from them

intelligentll'. The l'orking neLrLor's rr eights may be compensated to lessen the impact

of the faultS, aleas. \\/hile it u'ould also be advantageous to make fault tolerant

neuÌous, the demalds rvere found to be too alea intensive for this application.

An interesting scenalio for.fault tolerance rvill be examined after the neural net-

rvork systern stluctule has been plesented.

3.L.2 The Built-In Self Test Methodology

Built-in self test (BIST) is a technique used to reduce the difficulty of testing [39].

Random test 
'ectors are generated on chip and p'esented to the circuit where the

output is then compressed and compared to knoivn correct code. A signal is presentecl

.).)
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to the user indicating the success o¡ failure of the test.

BIST eliminates the need for bulky, expensive test equipment and is potentially

much faster, since computations are accomplished on-chip.

The attractive nature of using cellular automata (CA) for BIST has been t,ell

documented [10] [28]. This structu¡e is simply a special case of a one dimensional

neural nets'ork, in rvhich onl)' next-neighbor connections are made. under constrainecl

conditions, these netrvolks u'ill specific generate all 2" possible combinations of an n-

bit system in a pseudoranclom order. CA's are a ver.y good structure for \/LSI since

they lequire onl}' localized connections, are simple to implement and ofer goocl fault

covelage.

Rule 90/150 h5'br.id CA's u'ere usecl in all three chips to per.form BIST. The

de¡i'ation tables {o' rules g0 and 150 ale shos'n in Table 3.1, and these functions can

be easil¡' irnplemented ivith one (rule 90) or t*'o (rule 150) exclusive oR gates. In

this table, ir+1 Ìeplesents the temporal evolution of a single automaton, i, connected

to nearest neighbols (i-1) and (i+1),

The CA's in all chips rvere trvo-bits larger. than actuall5, required for.the test,

l'ith the trvo outeÌ bits ignoled (and null boundary conditions). This o'er.estimation

approach rvas taken to increase fault coverage (the vectors used in the test are more

randotn) at the expense of nominal silicon area.

The first trvo chips designed (matching and in'erse matching) take advantage of

the l'edundant channels. The technique used involved creating pseudorandom num-

bers lvith the cA, propagating the same random numbe. through each channel in

parallel, and comparing the outputs. A discrepancy in any of the outputs sen<ls a
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(i 1), i¿ (i+1)¿ Rule 90

i,+r
Rule 150

ir+r
0

0

0

0

1

I
I
I

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

0

1

I
0

1

0

0

1

Table 3.1: Cellular Automata Rules 90 and 150

signal to the user', inviting fulther testing on individual channels.

The neulal network chip also uses the pseudorandom numbels to cycle througli

a chain of neurorls, compaling all neurons at the output (the¡' should have identical

lesponses). Discrepancies indicate fulthel testing is requiled to isolate the damaged

neuLon.

3.2 External Processing frorn the Neural Network

3.2.1 Preprocessing on the Neural Network

The rnatchirg concept of equations (2.13) and (2.14) may be implemented as shol'n

in Figure 3.1. Fol division- b),-trvo, the least significant bit (LSB) is simply discarded.

An option ü'as included to use eithel of the trvo equations. The block rvas cleated

rvith lipple-carr5' addels, inverters and nultiplexors.

Another option s'as c¡eated to include agglegation. Agglegation s'as implemented

with the barlel-shi{t adder configulation shot'n in Figule 3.2. The technique simpl¡'

keeps a mnning total of inputs, ignoring the least significant bits. For a resohrtion o{

Jô



CHAP TER 3. SYSTðiìl II,IPLEI,LENTATION

Prototype

Objective
MATCH

Figure 3,1: Fuzzy Matching Implementation

From
MATCHING

Block

Aggregated Oufput
(lBnote 1.SBs þ pìoduce 4-bit ourpu!)

Figule 3.2: Implen-rentation of the Aggregation Option

16 poi'ts in the ir.rput space, the agg.egati'g function g'ould sum 16 number.s comi'g

from the matching ìrlock, and di'ide ihe result by 16 (ignor.e lol'er.4 LSBs), essentiallv

avelaging the vector'.

The completecl irnplementatio' is p.ese'ted as Figu.e 3.3. A graphical cìescr.iption

of the blocks i' the design is presented as Figur.e 3.4. some specifications of this chip

are plesented as Table 3.2.

Fou' identical i'dependent channels are implemented on the chip, ancl these are

used as comparisons against each other in the BIST.
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Figure 3.3: Matching Chip with Äggregation
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KEY

A . Fault Tolerant Matching Block
B - Aggregation Block
C - Cellular Automata
D - E¡¡o¡ Checker fo¡ BIST
E - Matching Block
F - Voring Cell

Figure 3.4: Bleakdown of the Matching Chip

Total Chip S ize 4503 x 4503
Nur.nbel of Pins 68

.l n J;ut Pins
Output Pins 16

ljevoted lest Pins

Table 3.2: Matching Chip Specifications

I in 3 pnì CIUOS
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MATCH Prototypc

A B

IA-BI

B B

A+B I I lA-Bl

Upper Limit Lower Limit
of Intcn al of Interval

Figule 3.5: Lrverse Matching Implementation

3.2,2 Postprocessing on the Neural Network

The invelse natching function of equations (2.19) and (2.20) ma¡'ìre implemented as

sìrol'n in FigLr::e 3.ð. An optiol fol muìtiplicatiol-by-tl'o is accomplished t'ith simple

shifting.

This blocli is obr-iously more complex than the matching operation, and it is

jLrstifiably nole aÌea intensive. Palt of this cornplexit¡,is delived from the function's

dual output natule. Simple li¡>ple-cally addels, inveltels and multiplexors l'ere again

used fol the implementation. The completed irrplenentation is plesented as Figule

3,6. A graphical descliption of the l¡locks in the design is plesented as Figule 3.7.

Some specifications of this chip ale plesented as Tal¡le 3.3.

Four identical independent channels ale again implernented on the chip, and these

are used as conpalisons against each other in the BIST.
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Figure 3.6: Inverse Matching Chip
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Figule 3.7: Breakdo*'n of the fnverse Matching Chip

l'otal Chip Srzer 4503 x 4503
Numbel of P ins 68

lnput Pins
Output Pins

Devoted 'Ì'est Pins 5

Table 3.3: fnverse Matchirrg Chip Speciffcations

A - Enor Checking Inverse Matching Block
B - Output Selection Multiplexors
C - Cellula.r Automata
D - Input Selection Multiplexors
E - Inverse Matching Block
F - Error Detecdon Cell

I in 3 pm CÀIOS
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3.3 Neural Processing

The most complex palt of the fuzzy cognitive system is the neu¡al netrvork. N{an5,

identical neurons tlansmit their information to many other identical neurons, and

the irnmense parallelism is very diflÊcult to implement in \/LSI. The more neurons

on a single chip, the less complex the neurons must be, The more serialized the

computation, the smaller the neulon, and therefore more may be place on a single

chip. Each selialized neuron is norv slol'er than a more palallel implementation.

In an atter.npt to find an optimized solution, a complomise rvas arrived at: parallel

computatiorr l'ould ì:e performed u'ith a distributed serial system. \\¡hile each neuron

pelfolms a pipelined selial opelation) many neulons perform in parallel, ther.eb5,

maximizing the computing potential and distribution.

3.3.1 Neural Architecture

Since the nnrll¡el of available neurons on the chip rvas unceltain at the onset of this

research, it rvas decided that the sJ,uapses and neulon s'ould be designed as a single

unit. Basecl on this fact, the term nelLÌ'on may be used to infer both the neural ancl

s)'naPt ic stÌ cttll'es.

It was decided at an eally stage to use a thr.ee-bit lesolution fol the iveights

since this rvas a complementar'5' resolution to the four.-bit activations. Other schemes,

including a one-bit rveighting algoriihn were attempted but discarded. The single-

bit l'eighting scheme has a very nattow field of use and u'ould require many, man¡'

neurons to accomplish an)¡ task of practical use,
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Weighting

xiwi

Summation

N

E x¡wi t-
i=l < R@¡,ETatøt)

Input
xi

Weight Tkeshold
wi Cont¡ol

Figule 3.8: General Architecture for Neural Processing

The basic conceptual architectule of Figure 3.8 rvas used to implement the neuron.

A forrn of borurdecl multiplication is pelformed at the synapse, and a lunning l¡ounded

accur¡ulation is used at the neulon itself. At tlie thresholding stage, the ner:ral

output is folcecl thlough a piecervise lineal thresholding function rvith variable slope.

A threshold s'as used instead of a bias telm since it gives mole contlol of the neulal

output.

If a 4x 4 {ull multiplier were used, ferv neulons could l¡e placed on the chip. Since

multiplication is extremel¡' area intensive in \/LSI, a simplified multiplication scheme

u.as used, as shou'n in Table 3.4.

The simplificatiol of rnultiplication/division b)' factols of 2 yields a tremendous

simplification il telns of haldrvale complexity since it ma5' be implemented by base-2

shifting. Fol example, the number'(0110), - (6)ro ma),be multiplied by a factor'2

b5' shifting the bits once to the left, as (1100), : (i2)ro. The original number ma5'

be halved by shifting once to the right, as (0011), : (3)ro.

At the thlesliolding stage, the neural output is forced thlough a piecervise lin-
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A2 Ar AO Atultiplier
111
110
101
100

1

_l
2

-0
0

0

0

0

0

0

1

1

0

1

0

1

+ tl
,1t2
+1
-L,

Table 3.4: Simplified Synaptic Scheme

A2 Al AO Results
0

0

0

0

1

1

1

1

0

0

i
1

0

0

I
1

0

1

0

1

0

1

0

1

,LLI{O

l2
x2

-åN{AX
+àN{AX

l4
X4

A4AX

Table 3.5: Thresholding Scher¡re

ear thleshoìcling function rr'ith valial¡le slope. A three-bit resolution *,as used fol

tlu'eshold cont'ol, and the scheme implemented is plesented as Table 3.b. options

ale included to either totally disconnect the neuron (output ZERO) or tuln the out-

put alu'a¡'s'on' (output À4AX). The +åI{AX option could be used to incluce a mor.e

extrerne, lrurd limiting oúplt.

Anothe. sou'ce of a.ea sa'i'g maj¡ be found in the adder-tree associated *,itrr

a full¡' palallel implementation, shorvn in Figule 3.9. Figures 3.10-3.12 shou,some

attempts at pipelining the operation.

The results of this investigation are summarized in Table 3.6. While speecl is
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(a)

Input

Neurål Output

Figule 3.9: Parallel Neural Architecture (Unpipelined)
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Fignle 3.10: Level 2 Pipelined Neural Architecture

Figr,rle 3.11: Level 3 Pipelined Neural Architecture
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I Pt'"t-"d I

Lly_l------+ Neuraloutput

FigLrle 3.12: Level 4 Pipelined Neural Architecture

reduced, size is greatly leduced.

After seve-,-al months of careful stud¡', it s'as decided that a selial processing neulon

rvould be ideal for'\/LSI implementation. Since it ri'as desiled that 16 neurons rvould

be implernented on a chip, the most serialized netri'ork ivould l¡e used (level 4). It

should ìre noted thât l'hile tlie level 3 estimate in Tal¡le 3.6 indicates that 18 of these

Levels
Pipelined

Area ol Neulon
(gm2 x 106)

U.lock U)/cles
pel Neural Cycle

N euÌons
pel Chipi

0

2

3
Ã

27.29
8.44
.].JD

4.76

1

4

8

l6

4

11

18

26

Table 3.6: TYade-offs in Neural Pipelining

t Assuming g6.48x 106¡m2 maximum chip size.
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neul'ons could be placed on a chip, this does not account fol interconnectivit¡', the

pad fiame area oì' any equipment used for testabiliiy.

Some estimations t'ere also done to see horv much memory (SRAM) rvould fit on

our maximum allos'aÌ¡le die size. A reasonable approximation l'ould be 7-8 kilobits

of data. Fol orre la¡'et, u'e requit'e:

fbits fneurons fper neuron Total fbits

Threshold-ì3x16x1:48
Activatiol--+4x16x1:64

880

Since a leasonal¡le sized neutal netivolk has 3 la)'srs, this becomes 3 x 880 : 2640

bits of information. This x'ould requile approximately $rd of the full die size. \\/ith

16 neurons on the chip and some testabilit¡', it t'as deemed uns'ise to hold the u'eights

and thresholcl contlols on-chip. Gii'en this fact, it rvas totall¡' unrealizable to perfolm

lealning compttations on-chip. It q'ould be necessary to develop a system architectule

rvhich u'ould allol'fast access to both weights and threshold values.

3.3.2 System Architecture

At the system level several tl'ade-ofÏs rvele r-equired, After sevelal months of careful

stud¡', it u'as decided that a serial processing neuron rvould be ideal for VLSI im-

plementation. \\/hile sevelal engineers have attempted to implement digital neulal

netu'olks in \¡LSI, most of the attempts have been very regimented, that is, a speciflc

netg'ork g'as envisioned, and that plecise netrvork was implemented.

A technique rvas discovered for greatly increasing flexibility and plocessing speed

rr'hile gleatlS' decreasing po\\,er consumption and size. It seems so trivial and beneflcial
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FigLrre 3.13: Conffguration of a Feed-Forward Network
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Figule 3.14: Another Conffgut'ation of a Feed-Forward Network

that it is not dilectly obvious irlìJ' this solution has not pleviousl¡' 6""tt used, r'et it

has not.

Figures 3.13 and 3.14 short'standard configurations of forivard propagating neural

netl'orks. This technique is pelhaps the most often used for implementations [43]

since it is stlaightforri'ard.

À4ost implementation attempts have utilized multiplexors at eithel the input ol

output of the neulon to allow serial plocessing in tlie neurons at each la¡'er. This
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requiÌes that a ph)'sical connection f¡om each neuron on each layer to each neulon

on the next la5'er be present. Ther.efore, for a layer of 16 neur.ons feeding a la),er.

of 16 other neurons, 256 physical connections must be present. This high deg.ee of

interconnection g'eatly reduces neuron complexit¡', since only a specifrc area of silicon

is allori'ed fol an implementation. Large drivers must also be used for each of these

lines, as the5' ¡1ut be propagating signals as far as the diagonal of the chip. If these

d'ivers are not used, speed rvill be greaily decreased, and so an area/speed trade-ofi

is encounteled. The g.eatel the distance a signal must tra'el, the larger the clliver.

should be. In palallel s]'sterns, this is usual\' difficult to folesee rvithout meticulous

planning and accuracl'. The solution is to use fairl]' l¿¡gs dr.ivers, in the hope that

signals that are onl5' required to travel a short distance are o'er.ly driven, u,hile onl5,

the 
'ery longest lines ar.e slightl¡,unde.chi'en. The result is nedioc,-e performance,

and medium size.

Fu.thelmo.e, if the netrvol'k is to be reconfigu.ed, the multiplexor block must l¡e

'econfiguled 
and replaced in each neu.on. Fo' example, if 17 neurons (insteacl o{ 16

on the ple'ior.rs la¡'er') are lequiled on a gi'en la5'er', all multiplexors fol the neu, la.r,el

must be changed to a 17-to-1 (r'ather than 16-to-1). \4/hile this increases size (the nen,

multiplexols a.e inhelently larger') and slori's comp'tation (more logic implies slol,er.

response), the majol problem is that of leconfigurability for the designer'. The ne*,

multiplexors must be design from scratch, and replaced in the specific neurons that

requile it. Fu.thermore, once fabricated, thele is no reconfigurability rvhatsoever..

The st.ucture of tlie netrvork simply cazzot be changed at this stage (i.e., no mor.e

neurons mai¡ be âdded on ihe layer.).

Anothe. sche're that has been used [7][a2] is the bus ar.chitect're shorvn in Figur.e
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Figrue 3.15: Bus Architecture for a Digital Neural Network

3.15. This alchitectulal system is taken from the often-used von Neumann single

processor concept of using one bus to access manl' pelipherals, It has been adapted

fol use in palallel sJ'stems rvith intelesting consequences. It allos's an¡' number. of

computational elements to use the bus, and even to access dei'ices of-chip that ar.e

given access to the l¡us. The long lines lequire ver.y large drivers fol realistic speed.

The single communication channel also becomes a bottleneck rvhen communications

become intensi'e. \\¡hile a multibus str.ucture alleviates some of this problem, a

multitude of l¡us all¡itlators and contr-ollers becomes necessary. This in tuln makes

it dificult to design efficient stluctures in VLSI.

In contlast to tìte palallel and bus systems) consider the architecture of Figule

3.16. In this configulation, each neur.on is fed one value of the input vector. The

neulon pÌocesses the datum and passes it to the next neuron in the chain (of the

same la5'er'), l'hich in tuln plocesses the piece of information. Each neuron maintains

a runling total fo¡ its cumulative s'eighted summation. This process continues until

all neurons on the layel have p.ocessed each piece of information fi'om the plevious

laJ'et. ttt" c¡'clic chain ensul'es that each neulon on the la)'er receir.es ever],piece of

information. To acld one neuron to a particular layer, the chain for.that laS,er.must

Data Bus

Address Bus
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shåll llocãl) d¡jvels ¡eqoj¡ed
si¡ce o'.ly o.è line is ¿rive.

;:":: å:::'::::::"

Figure 3.16: À Neural-Slice Feed-Folwa¡d Network

'be 
expanded b]' ou" 't trU'. Note that neithel the neuron itself nol any of it's parts

need be redesigned. The addition of a link incleases processing tirne by one neura.J

c.l,cie, that is, the number of clock cl'cles requiÌed to plocess one piece of information

at one neutolt,

Each neulon feecls onl¡'the'next neighbor', theleb¡'using local connections. Onl¡'

snall dlivels ale needed fol this, since the distance betg,een tu'o neuLons ma¡' be

specified al lbe placemen¿ stage oI design. Speed is also improved because onl¡' a

predictably small dliver is required for the very short ìine. Onl¡' one line from each

neuron to its nealest neighbor is required, thereb¡' gllmi¡¿ting 256 - 16 = 240 lines,

several of ri'hich ma5' r'un the diagonal length of the chip.

Although this technique g::eatl5' r'educes area, its greatest advantage is leconfig-

urabilit5'. Sevelal chips may be interfaced togethel as required to create a netrvolk

s'ith any numb er of neurons on a layer.
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Iterative techniques may be userl lo cycle lhe chip upon itseif. By collecting the

data at each neulon until all data lor fhe layer Ìras been processed, the neu¡c¡¡ is then

ready to transmit its informaliorrl,o tlre subsequelt la¡ler u{"oeurons. The i¡rformation

may then be transmitted to another chip, or returned to ite ou'n i:rputs to process

furthel layels. An infinite nu¡nbe¡ of layer:s r,:r a single chìp may tre crealed in this

rvay. AlternatelS', several chips rnay be,¡¡ed tc pipeline layers.

Obviousl¡'a vely flexible system has been developed, in which pipelined neurorrs

feed pipelined la¡'els and the-.ci{tï¡ótk .ccnsist¡ icf aay atmdrer tf nerar;lis ori aT4'

number of la ¡'els.

Built-In Self Test for the .Neu-r'¿ì NeJwo:'k

\\¡ith this alchitecture, BIST works ¿s follou's. First, pseudorandom tesf, vectors are

produced by the CA. Next, a single ve-cto¡: is pr''opagated throrrgh the sbift register's

chain system to the activation/u'eight/threshold inputs for each neuron. Another

vector is procluced and cycied tïirough the sysfem. A{lel an acceptable rrurnt¡er of

test vectols have been sent through the s5'stem, the outputs of all neuron are compared

for disclepancies.

Again the inherent system redundancy is used to better the self test. No data

compression is lequiled since it is assrrmed that the nurnbrr of correctlj' functioning

neurons outnumbels the faultl' ones.

A concept not actually implemented on the test clìp involves BIST rvith fault

tolel'ance. As the netrvork is processing its application, ìt cou.ld me every 1,000th or

10,000th calculation to run a sho¡l BIST. If a given leuron js fou¡d to be consistenil¡'

5.í
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in err', it ma¡, b" 
""tltorred 

frorn the chain. This efectively trims the network of

fault5' plocessor-s as they become unusable. The system is then quite robust and

Ìesistant to faults.

3.3.3 fmplementation Issues

A chip ivas designed using the aforementioned design principles, and a metal la)'ei-

replesentation is plesented as Figure 3.17. A graphical description of the blocks in

the design is plesented as Figure 3.18. The upper-level schematic that rvas used to

genelate the chip is plesented as Figule 3.19. Some specifications of this chip ar.e

presented as Tal¡le 3,7. Padfi'ame requirements forced selial loading and unloacling of

the shift legistel chain, although parallel of-chip cornmunication is trir,ial task given

mole compact pads.

At the time of implementation it rvas felt that thele might l¡e some advantage

keeping the shift legister as an autonomous entit¡i It seenr nìore plactical, upoll r.e-

flection, to eml¡ecl the shift registel elements rvithin each neuron. This rvould become

mole desilal¡le if the number of neulons on a chip t'ere incleased,
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PÀD FRAME

rETE rrtrtI
ErrrErrr

KEY

A - Pipelined Neuron
B - Shift Register
C - Cellular Automata

Figure 3.18: Breakdown of the Neural Network Chip

One disacìr,antage of this alchitectule is that the rveights ancl threshokl contlol

Iines must be available as requiredby the neuron. Since it is extremely area intensive

to implement memoly devices on-chip, pins must be reserved to load these values

from ofr-cl.rip as required. Foltunatel¡', only one rveight per neuron is requiled at any

given time. Fulthelmore, the rveights and thleshold contlols ar-e not required at the

sane time.
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Figure 3.19: Upper-Level Schematic for the Neural Network Chip
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L\ euron brze 1070 x 825

Shift Resister S izer '¿65U x '¿3 J

CA Sizer 805 x 640

Totaì Chin Sizer 7200 x 7450
NrrmbeÌ ol Plns 70

ln Dut P rÌrs 4 ( Seria
()utnrrt Ptns 4 (Serial )

\\/eisht Pins 4811

I llreshoid l. rns 3211

Devoted 'I'est Pins

Table 3.7: Neural Network Chip Specifications

1 in 3 pm CtrlOS
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Chapter 4

Conclusions and
Recommendations

4.L Surnrnary and Conclusions

\ILSI, rieural nets'olks and luzzy set theor5' rvere combined to produce a system for'

real-time application. Fault tolelance t'as attempted and redundancies of the la5'outs

rvele advantageously used for l¡uilt-in self test. The result of this eclectic merger is a

ver'¡, r'obust chip set. A blief synopsis of the thlee chips designed is plesented in the

follos'ing tal-,1e.

\{atching Neulal Netl'ork Inverse Nlatching
Chip Size in 3 ¡rm Tech.

Number of Pins 68 70 68

Nunbe:: of Input Pins 32 41 32

Numbel of Output Pins 16 41 32

Numl¡el of Pins for \\/eights N/A 48ft N/A
Number of Pins for Thresholding N/A 32il N/A

Number of Dedicated Test Pins 5 3 5ft

'I Se¡ial
ll ÀfuÌtiplexed
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In conclusion, the objectives outlined at the onset of this thesis have been achieved.

4.2 Recornrnendations

Sevelal interesting aspects of the sl'stem rvere only superficially explored, yet have

great potential impact on the design.

The on-chip pseudorandom number generation has some interesting possibilities.

Since a shift legister is used in the irrplernentation (to load/unload the CA), this

stmctule could be dilectly embedded into the neural nettvork stluctule. This rvould

lessen the 2-3% of chip alea ah'ead¡, consumed by the CA.

A common problem rvith the backpropagation algoritìrm occurs u'hen the search

point is dliven fal out on a plateau, maliing gladient decent vely difficult. If the

s5'sterl does not convelge, it t'ould be advantageous to begin the lealning procedule

again rvith nes' random weights, ancl the CA could plovide these.

Of course on-chip learnir.rg rvould gleatly inclease processilg speed of the system.

A coplocessing chip for lealning cor-rld ìre cleatecl ri ith the same alchitectulal concept

as the feed-fonlald chip. \\/hile the coplocessing idea rvould not be as fast as learning

on-chip, it *'ould ì¡e much fastel than softl'ale lealning, and the s¡'stem architectule

lends itself nicel5' to this kind of intelfacing. \\teights could be cJ'cled in a shift register'

in the same rvay that activation levels ale tlansported in the alread¡.made chip.

Given the chain-like structule developed lor neural computations, percolation the-

or¡, has some ol¡r,ious applications [3a]. This is a relativel5'nerv science g'hicìr involves

clustering of landornly occupied sites in a lattice. The application is specifically ap-

plicable to transport phenomena. A lalge series of neu::ols could be fabricated in a
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lattice configulation ¡vitÌl an emelging technologS' that causes many sites to be {ault¡'.

An attempt rvould then be made to ploduce a maximal length chain of rvolking sites

rvithin the lattice, yielding a relatively lalge number of neurons on tlie layer. \\/hile

man¡' u'orking neurons on ihe chip might not be used, the increase in yield for the

nerv technologl' could make the technique quite efective.

An area that has not been examined in this thesis is the system softt'are shelL,

shos'n in Figure 4.1. To make the system more effective, a softl'are shell could l¡e

cleated to aid in fuzzification (enteling the membelship functions), defuzzification,

geuelal s¡'stem plocessing, glaphical and numelical data examination, neu::al netrr'or.k

lealning ancl s'eight manipulatiorì.

Finally, it s'ould be advisable to implement another generation of the chips clis-

cussecl hele, nol' that unfoleseen ploblenx and potential have been documented.

The nerv chips could then be incorpolated into a circuit board and used for practical

ap¡rlications.
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Hardt+,are
Implementqtíon

Figr.rle 4.1: Softwale Shell fol the Fuzzy Cognitive Systern
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Appendix A

The Backpropagation Algorithm

An Example

To illustrate the mechanism of the backpropagation algolithm, an example is nou'

, presented. In the netu'olk of Pigure 4.1, the elror derivatives of all l'eights l'ill be

calculated r-rsing the nonlineal tlansfe;: lunction:

't
1 f ¿-"¡

:

:

: The techniclue shol'n in this exarnple is used in backpropagation to plopagate
l

i .rrol fiom the output back to the input, theleby indicating the optimal dilection of

. -ovement fot glaclient decent.

Ya:

;---Yal-uo1 -v'1oltat

AEj 
-:0.3560-1:-0.6440

t uoo'
::' 

?E : 0.4962 - 0.5 - -o.oo380a,"
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Des¡red Vålùe ------+ 0.'15

Acruål Ou¡put ..--> 0A924

Figule 4.1: Netwolk fol the Backpropagatiou Exatnple

1.0 0.5

0.3560 0.4962
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Xai
AE 0E 0y.1 AE,
^ = ã-ã--: ;-t9,r(r - 9"r)]OÌat O!¿1 O.1 s1 olat

: -0.2576[0.4924(I - 0.4s24)l : -0.06439

0E : (-o.a++0)[0.3560(1 - 0.3560)] : -0.1476
A Ì"2 - \

AE:"" : (-0.003s)[0.4s26(1 -0.4e26)] : -e.4e8x 10-a
Òr"z

Non' n'e must calculate Afi aîd Ab2:

65

Check:

l
ral : - hr(-:- - 1) : -0.03040

Aat

¿,: = -0 5928

o"s : - 0'01520

¿"r : -0.03040 : (1)v¡, -l (-1)y¿,

¿,2 = -0.5928 : (O)vo' I (-I)yo'

+Utz=05928

* ytt: -0.0304 + 0.5928 = 0.5624

c"3 : (0.5)y61 + (-0.5)yb,

-0.01520 : (0.5)(0.5624) + (-0.5x0.5e28) /
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w(a)(b) :

AE AE ôr ^¿r
=__ = _=____if_ : ?y, = (_0.06439)(0,5624): _0.03621
du1"r¡1ar¡ dx"1ðw6t¡pt¡ 0îú"-'

AE
6*",- : (-0'0643ex0'5e28) : -0'03817

ôEã-: (-0.1476)(0.5624) : -e.e33s1ouk2)lbr)

ôE
ã,_r_ : (_0.1426)(0.bs28) : _s.6s756
u lD la2)(b2)

=3!- = (_s.+ga x 10-a)(0.562a) -_ _5.J42 x r|--a
âur1oa11or1 \

= 
uu : (-s.+ss x 10-4)(0.5928) : -5.630 x 10-a

0ug311oz¡ \

Next Layer:

Yb:

ÐE 
-.08 0:r.. 

- 
0E

ã^ : +(ã-ã^) 
: 

\(ã.u("x¡'))
: (-0.0643s)(1) + (-0.1476)(0) + (-s.+se x 10-4)(0.5) : -0.06486

d l';
* = (-o.oa¿3sx-i) + (-0.1476)(-1) + (-e.4e8 x 10-a)(-0.5) :0.2125
o Aøz

xb:
AE 0E ôau AE,
^ = ;-;: =;-ly¡r(1- y¿r)]
oîù OAú OIbt Aln'-

: -0.06486[0.5624(1 - 0.5624)] : -0.01596

ot;
. - : (0.2125)[0.5928(1 -0.5e28)] : 0.05129
ðr¿z
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Norv l'e must calculate y":

67

Check:

0.5s":aor=-1"(a-r)

+Y":os

(0.7õ)(0.5) : -r(*be - tl J

w(b)(") :

AE 0E O:t.t AE
:- =;-;--: ^ y" = (-0.0t596)(0.5): -0.007s4dtc(br )(.) ¿r.? ôl ¿t¿r(ól)(c) ox'bt

AE
= (0.0512e)(0.5) : 0.02565

0u6z¡1"¡

Obi'iously the error delivatives on the ri'eights attached to neuron a3 are the

smallest. Consideling the actual output ellol on this neulon is the smallest this is

sensible. B)' the same logic, the erlot' detivative of the n'eights on neuron a2 ale

iargest.

Tlie ü'eight delivatives from the input la)'el to the hidden la}'s. .t. much ntole

difficult to interplet. At this stage the dilection the the t'eights should take is much

more distlibuted, and therefole apploximately the same rnagnitude. Thele is no

plefelence giten to sides as there is in the hidden-to-output ri'eight derivatives.

Improving Back-Propagation

Back-propagation uses a gradient descent method (a generalization of the least mean

ellol method) for lealning. Although lealning the rveights is NP complete in the
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\\'oÌst case rvith the lealning time grou'ing as o(N)3 rvith the number of inputs' lve

may use a nunber of techniques fol reducing learning time. Several other techniques

ma): be used for incr-easing the conceptual pog'er of the netri'orks.

Perhaps the most obvious u'ay to improve performance is to hards'ire preprocess-

ing and postplocessing units to the netrvork. This in-eflect reduces the amount of

rvork required b¡'the netrvolk to obtain valid results, thus speeding up the learning

The method of 'bins' may be used to teduce a continuous problem to discrete. This

ma¡, greatiS' r'educe the complexitS'of some ploblems at the expense of plecision.

Preprocessing n'ray also be used to reduce the corlelation of input data. This

techniqr:e allotvs the gradient to point directl¡'at the minimum, allo$'ing a linear

s¡'stem to calculate the solution.

Bl,examining the change of u'eights, other simplifications can be made. \\¡hile the

gradient ma¡'change only slightl¡'fol a small change in some rveights, the gradient

ma)¡ cllange g¡eatly for small rnovements in other iveights, This implies that if rve can

detect the changes in rveights, rve can afiect a localized adaptive learning rate, thus

speeding ntoveuettt torvald tìie minimur¡.

Altelnateì5', n'e rra¡'calculate the elrol gradient fol'the case rvhen a given li'eight

is equal to zero. If the gladient changes onl¡' slight'l¡" 1\'e may choose to sevet the

connection cor.rlpletely to speed up the lemaindel of the netrvork (feu'er lveights to

learn).

\\¡e mal' speed up lealning, particularl¡' in an as¡'nchlonous halds'are scheme,

by perfolming a constant weight reduction, ol forgetting procedule. This technique

ensures tlìat the rveights are kept to a ¡easonable limit, tltus yielding less complex



APPENDIX A. THE BACIQROPAGATION ALGORITHAI 69

mr.rltiplications.

A 'momentum' method may also be used to speed up learning in dilections rvith

small bui constant gladients. In this method, momentum builds up along ravines,

but cancels out ¿cross the ravines (ü'hen tliey are travelsed).

A radial basis function maJ' be used to drag'in solutions rvith landmarks. This

technique causes a best-fit approximation to a high dimensional space by allol'ing

radial basis function centers (in efect, the weights from the input-to-hidden lal'er')

to capture the data points (training set). With this complete, the lemaining rveights

ar.e determined rvith a linear least-squares optimization. Tl.ris plocedure is qr-rite fast

and eficient.

A number of othel methods may be used to modifl' the netivork itself. Since

mi¡imizing the squared elror is equivalent to to an estimation of maximum likelihood,

some proì:lenrs rnay benefit from a reintelpletation of the ploblen.

By utilizing sytnmetric \r'eiglìts and mapping the output l¡ack onto the inpr-rts, a

self-supervised netri'olk ma¡'be used as a feature detector. The outcome o{ the hidden

la¡'el is unknos'n, but neulons rna¡' bs reduced until the input may be aclequatel¡'

reconstlucted at the output. The features classified in the hidden la5'er ma¡'then l¡e

considered the minimum necessary for recognition.

Each of the techniques presented here has it's orvn advantages and disadvantages,

and adaptation to a given problem is required. Thele is, hol'ever, no slloltage of wa)'s

to implove back-propagation.



Appendix B

Software Simulations

In this Appendix, a presentation ivill be made of some softt'ate cleated to assist the

understanding of valious aspects of the fuzzy cognitive system. AII softrvale is rvrittel

in'C' language and although it l'as n'r'itten on a SUN rvolkstation, should be quite

poltable.

The Matching Operator

This program ploduces all possible corll¡inations for a four l¡it resolution [0,15] match-

ing operatol.
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/*+**+*++++**++******++*+*++*+'È++++++t**+**+*++*++*t*++****i***t+/
/* This progran generates aLl natching combinations, 4-bit res. */
,/*****+*+++++,i ,1.*+*+*+:l++*++*+++,1+*+'*'*+'t *+'l+*¡i**+*****************/

¡naino
{
ir't x,y,zì
x = 0;
y = 0;

do{
do{

z = ¡natch(x, y) ;

printf("\n%d fd ld" ,y ,x,z);
++ x;

] while (x<=15);

++y;
x = 0;

] r'hi.le (y<=15);

Ì

natch (obj ect , proto)
int obj €ct, proto;
{

int nax, min, answer;
if (obj ect<proto) {

nin = obj ect;
¡¡ax = proto;

]
else{

min = proto;
nax = obj ect;

)

if (max==min) {
answer = 15;

answer = (min + 15 - nax)/2',
/***t Elimi.nate tt.e '/2, to ¡nake the

]
return answer;

]

data compr€sÊed natchirt operator *+**
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The fnvelse Matching Operator

This program ploduces all possible combinations for a four bit resolution [0,15] inverse

matching oper-ator".
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/* *+***+*****+*t,*,**'l**** ****'*'* ***,**+ + +*,ß +,¡* * 
'* 'l ++ + +:l + * + + *:li:* + + * x *:*,* ,*,*,È:* '** '* 't /

/* Thi€ program generates all inverse natchint qonbinati.ons, 4-bit res, +,/

/* ***+**+,t*********+ +*+*+**,t:tt**++*+*+**+*++*++'***'*'*'*'**'*,*'É*++*+**+*** ****/

main( )
{
int ¡natch, proto, anseerl, an6rler2, nb, zbi

for(natch = O; natch <16; ++match) {

for (proto = O; proto < 16; ++proto) {

if (match > 7) {

ansserl = proto;
ansEer2 = proto;
mb = 1;
zb = Oi

] else {

answerl = proto + (2 * match) - 15;
ansser2 = proto - (2 * match) + 15;

/+,i++ Elininate the (2 *' to nake the data compressed inverse matching operator +++*
zb = oi
nb = 0;

if (ansçerl < 0)
answerl = 0;

if (answe¡2 > 15)
ansïer2 = 15;

Íf (answerl == 0) {
if(answer2 == 15)

zb = 7;

]

]
printf("match =
printf("\n");

) printt("\n");
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System Simulation and Example

The follon'ing code is used to simulate the complete s)/stem. In the example used,

the data is fabricated but based on an imaginary example discussed follorving the

presentation of the code.

/***** **+**+**{.++++++****+**++****+ +*:t**+,}:t*++++****++{,++,i+*+**++/
/* Tlis program si¡nulat€s thE 4-bit fuzzy cognitive systen. */
/**+**++++**t+*,*+*++*****,*'t+'1.+++++:i+*,i+:t++*+:È+*****++*+,t*+,fi +i i *+/

int obj€ct[4] tl6l ={{s,5,5,5,7,9,11, 12, 11,9,6,6,5,5,5,5},
{8,8,8,8,8,8,8,8,9,9, 10,e,7,e,8,8},
{0,0, 1,3,6,9,13, 12,10,e,9, 11, 12,14, 14,13},
{11,s, 8,9, io, 10, 11, 13, 13, 12, 10, 11, 11, 10, 10, 10}i ;

int proto[4] t16l = {{6,6,6,6,6,6, 15, 15, 15,2,6,6,6,6,6,6},
{11, 11,11,11,11,11,11,11,9,9,11,11,7,11,11,11},
{3, 4,s, 7, B, 10, 12, 11, 10, 10, 10, 1 r,72,ß,ß,12},
{3,4,5,7,9, 11,13,1s,15,14, 13, 10,11,10,10,e}} ;

int invproto[16] = {s,8,8,8,8,8,8,8,8,8,8,8,8,e,8,8} ;

int ï[4][16] = {{1s,14,13,14,ls,14,1s,1s,13,12,11,0,s,6,9,10},
{0,0,0,1,2,3,s,9,11,14,10,8,6,8,10, 11},

I12, 12, 12, 12, 12, 12, 72, 12, 12, 12, 12, 12, e, 12, 12, 1 2j,
{13, 12, 11,10,9, 10,11, 12, 13,14,ls,ls,14,10, 13, 12}};

int d[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

inrs[4]t161 = {{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o}¡
{o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o},
{o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o}} ;
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/* +**+****t**++ *++*+:t*+*** +++ +*:i++ +*+**++**+++*+****+**+*+** +++**/
/+ This is th€ ¡nain simulation for the fuzzy cognitive system. */
/***** *+*+*++*++*++'*++*+++,1+:i+*+**++*+*++:*++* +++*+*++*+++*+++*+++/

main( )
{
int n, n;
int z€n, sum, time, n€urj.n[4], big, s¡nalI;
int lov, high, bits;
n = 0;

, tinê = 0;
sun = 0;

, do{

:

printj ( "\nn=,ld" , n+ 1) ;

printf ( " INPUTS\n");
, Printf(¡r=== ===========\n" ) ;

do{
: zen = natch(obj êct [n] [tine] , proto [n] [time] ) ;

sun=zen+sum;
printf ("tíne ='/.d, proto=yd, object=%d, natch=.ld, surn=zd\n",

time , proto [n] ltinre] , obj ect [n] [t ime] , zen, sum) ;

' ++time;

: ) ïhiLe (time<=ls);

neu¡in[n]=sun/16;
+ i ñô=ô.

, plintf("Neura1 Net Input for obj€ctive l%dl = zd\n",n+f,neurin[nJ);
i sum=o;

, 
**tt'

) while (n<=3);
n=0;
printf ( "\nneural net inputs are : ");
do{

. printf("%d ",neurinlnJ );
++n;

, Ì Ehil6 (nl=4);
:

' ptÍntf("\n\n");

75



,A.PPEADIX B, SOFTIIIARE SIA4ULATIONS

,/****+++++¡,+*t,t +*+*+*t*+*:***:*+ +*/
/* Neura1 ¡¡etïork Simulation. */
/ * * + + t + * + * * * * * + * ++ * + + *+ + *:t +*,! + + */

n=0;
n=0;

do{

do{
s[¡n][n] = s[¡n][n] * neurinlml / 16;
if ((çtml[n] ==1s) ee (neu¡in[m] == 15))

s [m] [n] = r5;
++n; ] rhile (n!=16);

n = 0;
++ tî;

) while (ml-4);

n=0;
m=0;

do{
do{

d[m]=d[m]+s[n][m];
+ +n;

) $hj.1e (n !=4) ;

d[m =d[m] /4;
n = 0;
+ +m;

] rhile (m!=16);

printf("\n");

n=0;
¡¡=0;

printf ( "lrleural Net Weights are:\n");

oot
do{

if (t¡[n] [n] > 9)
Printf("7d ", r[m] [n] );

e16 e

pri.ntf(" %d ",wt¡nl [n] );
+ +n;

t-6
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) r¡hile (n!=16);

++¡n;

n=0 i
printf("\n");

) ïhi1e (¡tl l=4) ;

n=0;
n=0;

printf ( "\n\nNeural l{êt ¡latrix is:\n");

do{
do{

if (s [m] [n] > 9)
printf ("'ld ",s[m] [n]);

eLse

Printf (" %¿ ",s[m] [n]) ;

+ +n;

] while (nl=16);

+ +m;

n=0;
printf("\n");

] rhil,e (m!=4) ;

printf ( "\n\noutput of l{€ural Het isr\");

n = 0;

do{
ir (d [¡n] > 9)

Printf ( "'ld ", d[n] );
el.se

printf(" %d ", d[m] );
+ +n;

) while (m!=16);
printf ( "\n\n\n\n\n" ) ;

7i
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/**++++,t**+i *+++,i++*+ +** ***++++ +/
/* Inverse ¡fatching Stage. +/
/**+***++***++*+*****,t+*+*+*+*+*/

time = 0;

printf (" Input OutPut\n") ;

printf(" ============\n");

do{
lo¡{ = answerl (d[time] , invproto [time] ) ;

hith = ansÞer2 (d [t ime] , i.nvproto [timê] ) ;

bits = status(low,high) ;

printf("dtzdl = 7d invproto = %d low = %d high = Zd status = %d\n", time,
++time;

] nhj.1e (time<=15);

78

d [tine] , i.nvproto I

print f ( " \n\¡status Key:\n O ===> some interval of lêngth > l but <15\n");
printf(" 1 ===> interval of maximal length\n 2 ===> inte¡val of ninimal length\n");

)

/***t****+*++**+,t,t,*,*+++++,i+,1,1***+**+*++++++/
/+ Thi6 subroutine perfonns matching. */
/ + + + * * * {, * * * + + + + + +*,¡'* * * + + + + + +*'l * ** i. * + + + + + + ++/

match (obj ect , proto)
int obj ect, proto;
{

int ¡nax, nill, zenmatch;
if (obj ect<proto) {

nin = obj ect;
rnax = proto;

min = proto;
max = obj ect;

]
e 1s e.{

Ì

zenmatch=min+15 ¡Ìax;
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retu¡n zennatch;

]

,/+ + * + * + t+ * ** ++ + * +* t:t +,*:* 'i* * +:¡*:lr + * +,* + 't 'l 'i '* '* 
*:¡:*:É 't***,t 'É*,| * + t + ++ *:*:l t*+ * 'l:f:* * ** * * /

/* ThiÊ 6ubroutine calculates th€ loH bou¡dary of inverse ¡natching, */
/+++ +***t+ +*++*++***++*t*'l*'l*++:f*+*+ ++t+**:¡t+*+**+++**+++++*+*+*****t*+++/

answe¡1 (nnmatch, invproto)
int nnmatch, invproto;

{

i,nt lol{ansrrer;

iJ (nnmatch t1l"!""*", 
= invproro;

) else { 
l-owanswer = invproto + (2 + nnnatch) - 1s;
if (1oÞansrer <0)

loçansrer = 0;

]
return 1oïanÉsêr;

]

/**+ ++**+ +*,**+++*++t*+*+ *****+ +*++**+++****++ +*+*+ +++*i*++++*+*+* + +++ + ++++ +/
/+ This subroutine calculates the high boundary oJ inverse natching. */

ansçe12 (nn¡natch, invproto )
int nnnatch, invproto;

{

int highansr^'er;

if (nnnratch >7) {
hithansEer = invproto;

] else {
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highansïEr = invproto - (2 * nnmatch) + 15;
if (higharsEer > 15)

hiShansr€r = 15;

)
return hithanswer;

)

/+t**++****+++* +**++++:t:*t*++++*t*+**+++i+**++'l'r'**++++++'t+*'* '**'¡*++*++******/
/+ ThiÊ subroutine salculates thE statua bits after inverse natchint. */
/+ ** *,*,i + ** * r, + ** 't * ** * *:t+*:* 

'* 
* * * + *:t*i* + **+ + *:*,*:t*:* +++ * * ¡r* * + ++ + t* + ** * * * **+ * +*+ * * /

status ( 10!¡, hiSh)
int 1or, high;

{

int mb, zb, stats ;

i* (ror ==high) {
mb = 1;
zb = 0;

] else {
rnb=0;
zb=0;
i.f (1oï ==o) {

if (high ==ts)
zb = 7;

)
)

stats=nb*2+zb*li
return stats;
)
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The output of this simulation is the follori'ing:

81

time =0,
time =1,
time =2,
time =3,
tine =4,
tine =5,
tine =6,
time =7,
tine =8,
tine =9,
tin€ = 10,
ti.ne = 11 ,

tine = 12,
tine = 13,
time = 14,

Proto=6,
Proto=6,
p¡oto=6,
Proto=6,
proto=6,
Proto=6,
proto=15,
proto=15,
proto=15,
proto=2,
Proto=6,
proto=6,
proto=6,
Proto=6,
Proto=6,

obj ect=5,
obj ect=5,
obj ect=5,
obj ect=5 ,
obj ect=7 ,
obj ect=9 ,

object=11,
obj ect= 12 ,
object=11,
obj ect=9 ,
obj ect=6,
obj ect=6,
obj ect=5,
obj ect=5,
obj ect=5,

match= 14,
natch=14,
natch=14,
Íiatch= 14,
natch=14,
natch= 12,
match=11,
natch= 12 ¡

natch=11,
match=8,
match= 15 ,
match=15,
natch= 14,
match= 14,
match= 14,
match= 14,time =15, p!oto=6, obj ect=s,

Neulal llet Input for objective [1] = 13

INPUTS

s u¡[= 14

6 un=28
sun=42
eun=56
I u¡n=70
sum=82
I uJß= 93
E u¡n= 105
sun=116
sun=124
sun=139
sum=154
s um= 168
s um= 182
sun= 196
sun=210

natch=12, 6un= 12

¡natch=12, eun=24
match=12, sum=36
¡natch=12, sun=48
¡natch=l2, sun=60
natch=12, 6um=72

t¡Ìatch=12, sun=84
¡natch= 12, sum=96
match=15, sun= 111
¡natch=15, sun=126
nìatch=14, 6um= 140

¡natch=13, suÌnc 153
¡natch=15, sun= 168
match=l2, sun= 180
match=12, sun= 192
natch=12, sun=204

\.2

tinê =0,
time =1,
tine =2,
time =3,
tine =4,
ti¡ne =5,
time =6,
time =7,
time =8,
ti¡ne -9,
time =10,
time = 11 ,

tÍne = 12,
time =13,
time = 14,

proto=11 ,

proto=11,
proto=11,
ploto=11,
proto=11 ,
p¡oto=11 ,

proto=11 ,
proto=11 ,

Proto=9,
proto=9,
proto=11 ,
proto=11 ,
proto=7,
proto=11 ,
proto=11 ,

obj ect=8,
obj €ct=8 ,

obj ect=8,
obj ect=8,
obj ect=8,
obj ect=8,
obj ect=8,
obj ect=8 ,

obj ect=9 ,

obj ect=9,
obj ect=10,
obj ect=9,
obj ect=7 ,

obj ect=8,
obj ect=8,

time =15, proto= 11 , object=8,
l¡erEal Net Input for objective 127 = t2
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tihe =0,
ti¡ne =1,
tine =2,
tine =3,
time =4,
time =5,
time =6,
time =7,
tine =8,
time =9,
time =10,
time =11,
time =12,
time = 13,
time = 14,
ti¡ne =15,

Proto=4,
Proto=5,
Proto=7 ¡

Proto=8,
ploto=10,
proto= 12,
Proto=11 ,
proto=10,
proto=10,
proto=10,
proto=11,
P¡oto=12,
Proto= 13,
proto=13,
proto=12,

obj €ct=0 ,

object=1,
obj ect=3,
obj ect=6,
obj ect=9,
obj ect= 13,
obj ect- 12,
obj ect= 10 ,
obj ect=9 ,
obj €ct=9 ,
obj €ct= 11 ,
obj ect=12,
obj ect= 14,
obj ect= 14,
obj ect= 13 ,

natch=12,
natch=11,
natch=11,
natch=f1,
rnatch= 13,
¡natch= 14,
match= 14,
Eatch= 14,
natch= 15 ,
natch- 14,
match=14,
match= 15 ,
match=15,
¡flatch= 14,
natch= 14,
match= 14,

match=7,
match=14,
natch= 12,
match= 13,
match= 14 r

¡natch= 14,
match=13,
natch=13,
¡îatch=13,
match=13,
¡natch=12,
match= 14,
natch- 15 ,
match=15,
¡ìatch=15,
natch= 14,

sun=12
sun= 23
s um=3 4
euln=45
s u¡n=58
sun=72
6un=86
sun= 100
sum=115
3u¡r= 129
Bùrn= 143
sum= 158
suIn=173
sum=187
sun= 2 01
suln=215

proto=3, obj ect=o,

l{eural Llet Input for objective [3] = 13

I NPUTS

ti¡¡e =0,
time =1,
time =2,
time =3,
time =4,
time =5,
tine =6,
time =7,

time =11,
tine =12,
time = 13,
tine = 14,

Proto=3 |

Proto=4,
proto=5,
Proto=7,
Proto=9,
proto=11,
proto=13,
proto=15,

proto=10,
proto=11,
proto-10,
proto=10,

obj ect=11 ,

obj ect=5,
obj ect=8,
obj ect=9,
obj ect=10,
obj e ct= 10 ,
object=11,
obj ect= 13 ,

obj ect= 13 ,
obj ect- 12,
object=10,
object=11,
objôct-11,
obj ect= 10 ,

obj ect= 10,

I Um=7

sum=21

8umr33
sum=46
sum=60
sum=74
s!¡l=87
suJn= 10 0

s u¡l= 1 13
6um= 126
8un=138
sun- 152
sun=167
su¡n= 182

sun= 197
su¡n=211

tine =8, proto=ls,
ti¡Ìe =9, proto=14,
t j.ne 

= 10, proto=13,

time = 15, proto=g¡ object=lo,
Neural Net Input for objective [a] = 13

neural net inputs are ; 13 12 13 13
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lleural llet l,le ights arel
15 14 13 14 15 14 15 15 13 12 11 0 5 6 910
0 0 0 1 2 3 5 9 11 14 10 8 6 8 10 11

72 72 12 !2 12 72 12 12 72 72 72 12 12 12 12 12

13 12 11 10 910 11 12 13 14 15 15 14 70 13 72

83

lleural llet ¡latrix is:
72 tr 70 77 12 7t 12 L2 tO I A O + 4 7

0 0 0 0 1 2 3 6 I 10 7 6 4 6 7

999999999999999
10 I I I 7 8 I 9 10 11 12 12 11 8 10

9

output of Neural Net is:
7 7 67 7 7 A I I9I6 7 6 8 8

Input 0utput

d tol = 7

d[1] = 7

dt2l = 6

d[3] = 7

d[a] = 7

d[5] = 7

d[6] = e

dlTl = s
dtsl = e

d[e] = s
dt10l = e

d [11] = 6

d[12] = 7

d[13] = 6

d[14] = 8

d[15] = I

Status Key:

invproto = I
j.nvproto = 8

invproto = I
invproto - I
invproto = 8

invp¡oto = I
invproto = I
invproto = I
invproto = 8

invproto = 8

invproto = I
invproto = I
invproto = I
invproto = I
invproto = 8

invproto = 8

lorJ = 7

10!¡ = 7

lot¡ = 5

Ior{ = 7

low=7
Loç=7
10ï=8
loe=8
1oI{=8
10!¡ = 8

1oE = I
1or¡ = 5

1or¡ = 7

Ioï=5
Lo!¡ = I
10ç=8

hi.gh = I
high = 9

hi.gh : 11

high = 9

high = 9

high = 9

high = I
high = 8
high = I
high = I
high = I
high = 11

high = 9

hith = 11

high = 8

high = 8

Status = 0

Status = 0

Status = 0
Status = 0

Status = 0

Status = 0
Status = 2

Status = 2
Status = 2

Status = 2

Status = 2

Status = 0

Status = 0

Status = 0
Status = 2
Status = 2

0 ===> sone inte¡vaL of l€ngth > 1 but <15

1 ===> interval of naxinal. length
2 =--> interval of nininal length
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* ffir ÑN
Figure 8.1: Prototype Jet for the Sirnulation

Considel the follorving example. Imagine that a fighter jet is approaching the

plotected missile site of Figule 8.1. This jet is fi'iend15'and therefore s'ould be usecl

to tlain tlre neulal netrvolk (it is used as the prototy9te). The plane is flori'n tol'alcls

the nissile site undel sevelal conditions and angles. Four methods ale used to sense

incoming claft:

o \/isual Inspection

o Sonic Charactelistics

¡ Radal Plofile

¡ Communications/Beacons

Norv the s)'stem is taken out of its learning mode, and another claft is sensecl

apploaching. as shot'n in Figule 8.2. While fhis is also a jet and very similal in most

rva),s, it is not exactl]' the same. This nerv subject is termecl the objectiue.

The data of the previous simulation ma5'be interpreted as the conpalison of these

ts'o aircraft. The input data is presented graphically as Figures 8.3-8.6. The output

of the simulation is presented as Figute 8.7.

84
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kmmr,",-.-
\

Figure 8.2: Objective Jet for the Simulation

o.oo 3.75 7,50 11.25 15.00

Fìelalive Châracter¡slic

Figure 8,3: Visual fnspection for Simulatio¡r 1
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r+EéËb-d-ñe-ìi;l

0.00 3.75 7.50 11.25 15.00

Relative Characler¡slic

Figure 8.4: Sonic Chalacteristics for Simulation 1

0.00 3.75 7.50 11.25 15.00

Relative Characleristic

Figr.rle B.5: Radar Ploffle for Simulation 1
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16.00

16.00

12.O0

.g

3 e.oo
É

=

4.00

0.00
0.00

I* @Þdi¡EIT'¡ñEa,Þ-
l+4Þdr!! !ñbr.NP

3.75 7,50 t 1.25

Rêlalive Characlerislrc

Figule B.7: Output of Sinulatio¡r 1
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Figule 8.8: New Objective Jet for the Siurulation

Tìre nalloli' confidence intelval of the output indicates tltat the object undel

scrutin¡'is similal to the tlaining data but not exact. A human or expet't s5'stem

could then l¡e used to take applopliate actiol.

Norv imagine another incoming claft, shorvn in Figule 8.8. The data fol this nerv

encounter is p::esented in the follou'ing simulation.

88
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tine =0,
tin€ :1,
tine =2,
tine =3,
tine -4,
tine -5,
time =6,
tine =7,
tine =8,
time =9,
tiÍie =10,
tine =11,
time = 12,
time = 13,
time = 14,

Proto=6,
ProtoÈ6,
Proto=6,
proto=6,
proto=6,
proto=6,
proto=15,
proto=15,
p¡oto-15,
proto=2,
Proto=6,
proto=6,
Proto=6,
proto=6,
proto=6,

obj ect=15 ,
obj ect-15 ,
obj ect=15,
obj ect=15,
obj ect=15,
object=14,
obj ect= 14,
obj ect= 13,
obj ect= 12,
obj ect=11 ,
obj 6ct= 10,
obj ect=8 ,

obj ect=6 ,

obj ect=4,
obj ect=2,

natchÊ6,
natch=6,
¡ìatch=6,
match=6,
natch=6,
¡natch=7,
match- 14,
match=13,
match=12,
match=6,
match=l1 ,

match=13,
natch=15,
match=13,
match= 11 ,

natch=9,

natch=4,
match=5,
natch=6,
match=8,
natch=9,
match= 11 ¡

match=13,
match= 14,
match=13,
¡natch= 15,
match= 13 ,
match= 14,
match= 14,
match=10,
¡natch=7,
match=6,

s um=6

suIn= 12
6urn= 18

sum=24
s ulr=30
s um=37
s um=s1
sum=64
suJn=76

6 uln=8 2

Bunr93
sum= 106
sum= 121

sum= 134
sun= 145
sum= 154

sum=4

eun=9
s un= 15

sum=23
sum=32
sum=43
sum=56
sum=70
sum=83
sun=98
sum=111
sum= 125
sum= 139
s u¡Ì= 149
sumÈ 156
sìrn= 162

time = 15, proto=6, object=o,
Neural Net Input for objective [1] = I

I I{PUTS

time =0, proto=11, obj ect=o,
time =1, proto=l1, object=1,
time =2, proto=11 , object=2,
time =3, proto=ll , object=A,
time =4, proto=11, obj ect=s,
tirne =5, proto=1l, obj ect=7,
time =6, proto=11, obj ect=13,
tÍne =7, proto=11, object=12,
time =8, proto=g, object=ll,
ti¡ne =9, proto=g, obj ect=g,
time =10, proto=l1, object=13,
time -11, proto=11¡ object=l2,
tim€ = 12, proto=7, object=8,
time = 13, proto=ll¡ object=6,
time = 14, proto=11, object=3,
tine = 15, proto=ll, object=2,
N€uraL Net Input for objective [2] = 10
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IIIPUlS

90

ti.me =0, Proto=3 ¡ object=ll¡
tiÌn€ =1, Proto=4, object=l1,
tine =2, proto=s, object=11,
time =3, Proto=7, obj ect=g 

'
time =4, Proto-8, obj ect=s,
time =5, Proto=lo, obj êct=s,
tine -6, proto=l2, obj êct=s,
tir¡E =7, proto=11, obj ect=s,
timê =8, proto=1o, obj ect=E 

'
ti.me =9, Proto=lo, obj ect=E 

'
rime =10, Proto=lo, obj ect=s,
tine =11, Proto=l1, object=s'
tine =12, proto=12, object=s¡
tine =13, Proto=l3, obj ect=s,
time = 14, proto=l3, object=s,
time = 15, proto=l2, object=o,
t¡êural Net Input for objective [3] = 8

natch=7, sr¡n=7

natch=8, sun= 15

natch=g, sum=24

natch=13, 5uh=37
match=12, sum=49

¡natch=10, sum=59

natch=8, €um=67

match=g, sun=76
natch;1o, Eum=86

match=10, surn=96

match=1o, sum= 106

rnàtch=g, eum= 115

¡\atch=8, sum= 123

match=7, sum= 130

natch=7, suln= 137

match=3, sum= 140

¡natch=13 ¡ Êum=13

match=l2, sum=25

match=11, sun=36
match=g, sutn=4s

natch=10, sum=55

match=15, sun=70
natch=ll, 6uln=81

natch=8, 8un=89
match=?, 6um=96

match-7, sum= 103

natch=7, sum= 110

natch=g, sum= 119

¡ìatch=g, sum= 128

nìatch=11 , sun= 139

natch=14, sum= 153

match=15, sum= 168

n=4 II¡PUTS

time =0, Proto=3, obj ect=s,
ti¡ìe =1 , Proto=4, obj ect=7,
ti.lne =2, Proto=s, obj ect=g 

'
ti.m€ =3, Proto=?, obj ect=13,
tine =4, Proto=g, obj ect= 14,

ti¡Ìe =5, proto=11, obj ect=11,
ti¡ne =6, Proto=13, obj ect=g 

'
ti¡ne =7, Proto=ls, obj ect=8,
ting =8, Proto=ls, obj ect=7,
time =9, Proto=l4, obj ect=6,
tine =10, Proto=13, obj ect=s,
time =11, Proto=lo, object=4,
time =12, proto=l1, object=s,
time =13, Proto=lo, obj ect=6,
time = 14, proto=lo, object=g,
time = 15, proto=g, object=g,
lleural Net Input Jor objective [4] = 10

neuraL net inPuts are : 9 10 I 10
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l{eu¡at ìlet l,le ights are:
15 14 13 14 15 14 15 15 13 12 11 0 5 6 9 10

o o 0 1 2 3 E 911 14 10 I6 810 11

12 72 12 t2 72 12 t2 L2 12 !2 12 t2 L2 !2 12 t2
13 12 11 10 910 L!t2 13 14 15 15 14 10 13 12

91

lfeural Net Matrix is:
a7 7 7 8 7I8
00001135
66666666
87665667

68
66
88

65
66

35
66
86

66

a7

output of NeuraL Net is:
5 5 4 4 5 5 5 6 6 7 6 5 45 6 6

Input 0utput

d[0] = 5

dtll = s
d[2] = 4
d[3] = 4

d[4] = 5

d[5] = 5

d[0] = 5

d[7] = 6

d[8] = 6

dtel = 7

d[10] = 6

d[11] = 5

d[12] = a
d[13] = 5

d[14] = 6

d[1s] = 6

Status Key;

invproto = I
invp¡oto = 8

invproto = I
j,nvproto = I
invproto = I
invploto = I
j.nvproto = I
invproto = I
invp¡oto = I
invproto = 8

invproto = I
invproto = I
invproto = I
invproto = 8

invproto - I
i.nvproto = I

low=3
low=3
1ow=1
10$=1
Ios=3
lor{ = 3

Lov=3
Low=5
10!¡ = 5

low=7
low=5
low=3
low=1
lon=3
loi{ = 5

Io!¡ = 5

high = 13
high = 13

high = 15

high = 15

high = 13

high = 13

high - 13

high = 11

high = 11

high = 9

high = 11

high = 13

high = 15

high = 13
high = 11

high = 11

Status = 0

Statua = 0

StatuE = 0
Status = 0

Status = 0

Status = 0

Status = 0

Status = 0

Status = 0

Status = 0

Status = 0

Status = 0

Status = 0

Status = 0
Status = 0

Status = 0

0 ===> so¡ne interval of lentth > 1 but <15

1 ===> interval of maximal lentth
2 ===> intèrval of minimal lentth
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e
3
Ê

=

3.75 7.50 11.25 15.00

Relalive charâclerislic

Figule 8.9: Visual fnspectior.r for Sin'rulation 2

This data is leplesented glaphicall5'in Figules 8.9-8.12. The output ofthesecond

simulation is plesented as Figure 8.13.

Obvior.rsl5' this nerl' craft is yer¡' ¡nlilie the t.aining data of Figu.e 8.1. The

sensor'¡' data rellects this disclepanc¡'. The lalge confidence intelval indicates that

thele is a gleat deal of unce::tair.rt¡' as to the nature of the nerv objectii'e,

Again, an expelt s¡'stem oL human opelatol could make a final judgrnent as to the

action to be taken. In this case, that could be to launch a more detailed investigation

ol simpll'reireat the plocess later'.

This example illustlates some important chalacteristics of the fuzz¡, çeg¡i¡i,'"

s¡'stem. Filst, s'e ale dealing rvith leal-tin-re computations and so speed is vital.

Second, the sl'ster¡ produces quantitative and qualitative infolmation. This is not

simpì¡'patteln recognition since an expression of uncertainty is produced.

oôo
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16.00

12.00

i
e
-8 B.oo
E

lr-scÞô'o Èoþrr.l

3 75 7.50 11.25 1s.00

Belatìve Characleristic

Souic Characteristics for Simulation 2

4.00

0.00
0.oo

Figure 8.10

0.00 3.75 7.50 11.25 15.00

Relalive Characlerislic

Figure 8.11: Radar Profile for Simulatiou 2
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12.00

.9
e3 e.oo
É

4.00

0.00
0.00 3.75 7,s0 11.25 15.00

Flelalive Characlêrislic

Figule 8,12: Communications/Beacotrs for Simulation 2

0.00 3.75 7.50 1 1,25 15.00

Belalive Characle slic

Figule 8,13: Output of Simulation 2
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