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Abstract

This thesis deals with the VLSI implementation of a fuzzy cognitive system. As-
pects of fuzzy set theory and neural networks are combined to produce a robust
system for expressing uncertainty. A novel architecture for digital neural networks
is introduced and analyzed. The system concept is implemented in a three-chip set
which incorporates fault tolerance and a cellular automata based built-in self test.

VLSI design trade-offs are explored and details of the implementation are presented.
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Chapter 1

Introduction

1.1 Purpose

The purpose of this thesis is to examine the VLSI implementation of a fuzzy cognitive

system. This complex title requires a more in-depth explanation of its meaning.

Very Large Scale Integration, or VLSI, refers to the implementation of an algo-
rithm as an application specific integrated circuit, or ASIC. The science surrounding
this ‘silicon sculpture’ is well documented, as well as much of the architecture involved

in the digital implementations referred to throughout this thesis.

The fuzzy set theoryinvolved in the system refers to the work of L. Zadeh and his
school of thought [44]. This theory involves the use of multivalued logics to represent
uncertainty. The next chapter of this thesis includes a more indepth introduction to

fuzzy set theory, as it pertains to this work.

The word ‘cognitive’ has been widely interpreted in most of the papers written
on the subject of cognitive science. The term as used in this thesis is not meant to

infer rational, human-Ilike thought, but rather is used to reflect the system’s ability to
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perform contextual interpretation. A great problem in analyzing mass quantities of
data is discriminating important facts to be extracted. This is the advantage of the

system developed in this thesis.

The basic system described here is based on previous work in which software
simulations were used for signal classification purposes [4]. The very general system
described here is well suited to hardware implementation, and would have the advan-
tage of near-real-time processing performance. This type of system is well suited to
all types of pattern recognition/classification problems in which it would be advan-

tageous to produce both quantitative and qualitative output.

1.2 The Problem

Recent progress in the development of fuzzy set theory has been centered around areas
such as fuzzy controllers, expert systems, digital signal and image processing systems,
and robotics [35]. With this progress has come an increase in system complexity,

meaning that some software driven systems are very slow.

Concurrently, hardware development has advanced to very large scale integration
(VLSI) on a single chip. In addition, a great deal of research has been conducted
on massively parallel computing schemes involving neural networks. The learning
capabilities of these networks have been rigorously documented in numerous case
studies (involving, for example, speech and pattern recognition), [9] [18]. It is also
evident that fuzzy sets form a well suited tool for modeling processes of knowledge
representation, especially for adjusting the relevant cognitive perspective of a system,

[22] [26].
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The merger of these technologies would obviously be of great interest, and some
research has been done in this field, particularly [13]. Most of this work has been
centered around using fuzzy controllers as algorithms for control purposes realized in

an uncertain environment.

Introduction of a referential structure to this merger allows a very general, quali-
tative output to be presented to the end user. This type of output is well suited for

expert system applications as well as human interpretation.

By combining many diverse fields of study a very valuable tool for evaluation in

general pattern recognition problems may be created.

1.3 Project Scope

'This thesis covers introductory theory used in the implementation of a three chip set
which forms the fuzzy cognitive system. Since such a large number of diverse fields of
study are in incorporated in the development, only a short background and relevant
information will be covered. No attempt is made to cover all details of fuzzy set

theory or neural networks.

‘The main body of this thesis is involved with the development of three integrated
circuits. Little attempt was made to connect the chips once fabricated, although the
intent was that they were designed to work together. The chips were tested, and the

performance and testability were analyzed.

While software simulations have been attempted, these are by no means exhaus-
tive. Furthermore, since some preprocessing must be done off-line, it was assumed

that this was relatively straightforward but time-consuming task, outside the scope
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of this thesis. The main emphasis of this thesis is on the implementation of novel

structures for particular computations.



Chapter 2

Overview

2.1 Fuzzy Set Theory

2.1.1 The Fuzzy Paradigm

Fuzzy set theory is an extrapolation from two-valued logic. Whereas crisp definitions
are often used in mathematical modeling (especially in practical engineering appli-
cations), it is often very useful to use intermediate terms, somewhere between two

extremes.
For example, in conventional processing, it is normal to give commands like move
forward at 20 kph. A robot would then proceed to move at exactly 20 kph (within

the tolerance of its machinery).

Often though, our natural language precludes such strict tolerance. A phrase
like move forward at about 20 kph would be more natural, and while imposing
the constraint the the robot travel at ezactly 20 kph still satisfies the about 20 kph

constraint, it is an artificial imposition.
Fuzzy logic attempts to eliminate this artificial intrusion with the use of gradual

5
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Figure 2.1: Crisp and Fuzzy Membership in the Robot Velocity Problem

membership functions in the place of crisp numbers. So in the fuzzy paradigm, a
two valued yes-or-no response is replaced with a gradual membership indicating the
degree of belongingness to a concept. The difference in paradigms is displayed in

Figure 2.1.

In these figures, a ‘1’ ranking on the membership axis is meant to suggest total
belongingness to the concept. A ‘0’ ranking suggests total exclusion. A ranking some-
where in the interval [0,1] suggests partial belongingness. To illustrate this concept,
examine the fuzzy set presented as Figure 2.1b. If a robot were to travel at 18 kph,
this would under many circumstances be acceptable to the constraint about 20 kph.
A high degree of membership is therefore assigned. If the robot travels at 10 kph

however, this is unacceptable since it is not about 20 kph.

This yields two important facts about this kind of approach. The first is that
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membership is extremely subjective. A value that one person may class as about 20
kph (i.e. 15 kph), another might consider outside of the range of acceptable values.
It can be said that the general trend of the function remains the same regardless of

the specific interpretation.

The second observation is that the fuzzy set is context dependent. The fuzzy
set established by the term about 20 kph is related to tolerances determined by the

environment.

A mathematics of such fuzzy sets has been developed over the last few years.
Zadeh established the concept in 1965 [44], and for many years little work was asso-
ciated with it. A revival occurred in the mid 1980’s and today fuzzy logic is a sort of
technological revolution in Japan. The use of this technique has even filtered down

from the research laboratory into many consumer products.

Fuzzy set theory has been used mainly to handle uncertainty and imprecision for

situations in which conventional techniques perform poorly.

Three kinds of imprecision have been isolated, [2] namely generality (multiplicity
of objects), ambiguity (context-dependency) and vagueness (imprecise boundaries).
Of these, fuzzy set theory handles generality in some situations and handles vagueness
extremely well. Vague terms such as rich, wise, fast, etc. may be encoded rather easily

into the kinds of membership functions shown in Figure 2.1b.

2.1.2 Mathematical Overview

Now that a familiarity has been established with the notion of a fuzzy set, a discussion

of the mathematics involved in the fuzzy cognitive system may proceed. This section
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comprises only a tiny segment of fuzzy relational mathematics, and therefore the
reader is referred to [14] [24] for more indepth readings.

Basic operators involved in the types of relations involved are the t-norm, rep-
resented as (@), the s-norm, represented as (8), and fuzzy negation, represented as
®.

The t-norms and s-norms may be described as any functions satisfying the criteria

of Table 2.1, where a, a?, b, b, c€[0,1].

| | t-norms | $-norms |
| Satisfying Conditions | [0,1] x [0,1] = [0,1] I
1} Boundary Conditions | a«(@0 =0,a@®1 =« a®)0 = a,a6)] =1
i1) Commutativity a(Db = bDa a@®b = b®a
1ii) Associativity a@(b%ci@:}b%?b)@% a@(b(icc)l(gb(écz)b)@c
iv) Monotonicity ) For a* < a,b" <}
@b < a®b | al@b < a@®b

Table 2.1: Conditions for t-norms and s-norms

These norms are related by the expression:
a@b=1-(1—-a)®D(1 -1 (2.1)
which is simply a form of De Morgan’s theorem.

Fuzzy negation may be interpreted as a type of complementation.

a®:1—a (

5\3
Q%]
St

The Fuzzy Matching Operator

An expression comparing two fuzzy sets may be established on the basis of logic and

set theory. Consider two fuzzy sets A and B at the same element of the universe of
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A(z),b = B(z). The concept that a is equal to b may be expressed as

discourse, a =
a = b (the matching operator), and may be represented logically as

a is contained in b and b is contained in a
Now representing the and conjunction as a t-norm and containment as a pseudo-

complementary operation, ¥, the expression for equality index becomes:

a = b= (appb)D(bpa) (2.3)

A similar expression may be created involving s-norms and another pseudocom-
plementary operation, 8 to implement the logical concept

a 1s not contained in b or b is not contained in a
(2.4)

(e 8b)©(bBa)

Complementing this expression yields another equality index.

a=b=1- (afb)(bfa)

A more robust matching operation may be formed by incorporating both t-norm

and s-norm equality expressions.
S (G0 o R R CEDIOIGED) 2.6

This may then be modified to
o =0 DOEA)+ (0 - WU D00 -0} (5

A minimum function, A, may be used for t-norms and a maximum function, V,

may be used as the s-norms. If a Godelian implication is used {for the psudocomple-

1, fa<b
““’b:{b, ifa> b (2:8)

ments,
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then the matching expression of equation (2.7) becomes

[(a=Ab—oa)l+{[(1—a) > (1 -BIA[01—-b) - (1 -a)}

a=b= 5 (2.9)
It can be proven that
(a—+b)/\(b——>a):{a/1\’b’ ez (2.10)
(== -pali-9 - a-a)={ TV L Gy
which allows equation (2.9) to become
a=b= { '(Mb)?:(wb)’ g ‘ i g (2.12)

Since we would like to implement a digital system, the [0,1} interval must be

remapped onto another discrete space, [0,M], yielding

b _ a/\b)-l-—]\;—(aVb)’ lfa ?é b
= M, ifa=b

a

(2.13)

Assuming a four-hit resolution, yielding M=15 and only natural numbers used in
the discrete space, this leads to the function depicted in Figure 2.2. About half of
the resolution is now wasted, since the only numbers used in this discrete space are
a=b<T, ora=0b=15 The [8,14] interval is unused. Greater resolution could be
stmulated in the system if this interval were used. It would therefore be advantageous
in the digital system to implement the function shown in Figure 2.3, since it fully

utilizes the resolution of the [0,15] space.

This function may be easily implemented by multiplying the first condition of

equation (2.13) by two, yielding a continuous function.

a=b=(aAb)+M—(aVDd) (2.14)
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Figure 2.3: The Fuzzy Matching Function with Data Remapping
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A quick examination of these functions reveals that they experience maxima at
the point where ¢ = b. The least amount of the matching functions occur when a

and b are farthest apart (i.e., a=15, b=0, MATCH=0).

The Inverse Fuzzy Matching Operator

In the situation where the degree of matching between two fuzzy quantities is known
as well as one of the quantities, an inverse matching operation is required to generate

the second fuzzy quantity.

Since more that one value may be generated as the output of such an inverse
function, further analysis must be undertaken to resolve the obvious contradictions

that may arise.

For our purpose, we are interested in functions which satisfy the matching criteria,
that is, all points which lie under the surface of Figure 2.3. Equation (2.13) may be
rewritten (only the ¢ # b condition will be analyzed) as

< (min +M — max)

Q=a=b< (2.15)
2
where min = a A b, and max = a V b. With some manipulation, this yields,
20 — M < min—max
M —20Q > max—min (2.16)
N ———

>0

We are given either min or max, so now examine each situation individually.

I) max is given, min is unknown.

2QQ — M + max < min
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= min > max +2¢ — M (2.17)

II} min is given, max is unknown.
2Q — M —min < —max

= max < min—(2Q — M) (2.18)

For the general case, where it is unknown in advance whether the given term is

the maximum or minimum,
a=b+(2Q - M) a,be0,1] (2.19)
defines the interval into which the unknown value falls.

For the case of data remapping as in equation (2.14), the Q multiplier drops off
to become

a=0bx(Q—-M) abe0,1) (2.20)

The nature of the interval created by the inverse-matching function may be best
understood with an example. The scenario is the data compressed matching function
of Figure 2.3 with a four-bit [0,15] discrete resolution. Take the case where

Q=a

A vertical plane is constructed, as shown in Figure 2.4,

b=12 and bh=28

It is visually obvious that an interval ranging from 5 to 11 is created, and this

may be mathematically derived from equation (2.20)
a=b£(Q—-M) = 8+(12-15)
= 8+ (-3)

= [5,11]
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161
Fuzzy Matching
Function at b=8

12—

MATCH
% //
Z

Interval of the
Inverse Match

Figure 2.4: Example of Inverse Matching

It will be seen in later sections that the nature of this interval provides a very

robust qualitative and quantitative output to the fuzzy cognitive system.

2.2 Neural Networks

2.2.1 The Purpose of Neural Networks

Conventional computers simply cannot achieve many things that we desire of them,
and so an obvious comparison is often made to the human brain. While conventional
Von Neumann and Harvard computer architectures have proved themselves extremely
useful for both scientific research and easing the burdens of the average life in general,
they have some evident shortcomings. It has been estimated that it would take over
1000 super computers to do the kind of real-time visual processing accomplished by

the Darwinianly optimized brain.
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On the other hand, the human brain has perhaps 11_0‘5}1 the power to do purely
mathematical calculations when compared to a simple pocket calculator. The brain is

simply not built to perform these kinds of calculations with high speed and precision.

Another startling comparison may be made with respect to memory. Brains forget
or distort many facts that are labeled IMPORTANT". Computers seldom if ever forget
vital facts. Brains, on the other hand, excel at completing incomplete facts, even when
some of the information given is erroneous. Conventional computers handle this kind

of problem very poorly.

Obviously the two machines are built for different purposes, and perform poorly
on problems outside of their scope of expertise. We would, however, like computers
to handle many of the tasks that humans take for granted such as image processing,
recognition, and associative memorization. It is for this reason that the quest for a

more brain-like computer began.

Background

Artificial neural network (ANN) models have a long and spurious history. More than
4 decades ago, [21], a number of theories began to evolve regarding representations
of biological neural connection systems in mathematics. A great deal of interest
accumulated into the 1950’s and 60’s, until the new wave of artificial intelligence (AI)
began to dominate the 1970’s. The less than anticipated results generated from these

physical symbol systems {22] brought a resurgence of connectionism in the 1980’s

The connectionist attempt has been concentrated in two areas. The first is the

understanding of how biological neurons interrelate. Figure 2.5 gives a very simple
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Figure 2.5: A Simple Depiction of Biological Neurons

illustration of the neural connections. Biological neural networks utilize massive par-

allelism to accomplish high speed computation. This massive parallelism includes not

only connections to subsequent layers, but also connections within a given layer and

feedback to previous layers. For simplicity, this thesis will examine only feed-forward

networks (no inter-layer connections or feedback).

The neuron is often modeled as shown in Figure 2.6. A weighted summation is

used to model the biological neurons chemical activity. A nonlinearity is used at the

output to constrain the network values. Some thresholding functions classically used

are shown in Figure 2.7.

Several methods may be used to implement the functions of an ANN, including
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Figure 2.6: Artificial Neural Model
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fully digital, fully analog or hybrid (some combination of digital and analog) method-
ologies. While an analog design would be fast and consume very little space, design
time is prohibitive. Digital design is very area intensive and much slower than analog
systems, however design time is minimal due to the great body of knowledge that has
been accumulated throughout the computer revolution. Furthermore, since existing
computer hardware utilizes almost exclusively digital technology, an analog neural
network must use some sort of digital interface to communicate. Hybrid designs are
very attractive, since they may apply the advantageous features of both analog and
digital design. Unfortunately design time is again prohibitive, since the interfacing of

digital and analog parts is not a trivial task.

The hard limiter shown in Figure 2.7a is used in a simple device called a per-
ceptron. When Minsky and Papert wrote their famous book Perceptrons, [21], they
pointed out some limitations of single layer perceptron networks (such as the XOR
problem). For the single layer network, linear separability is a crucial issue. This
problem was later ‘solved’ with the back-propagation model of learning, also known
as the multilayered perceptron network. In this type of network, several layers of

neurons may be used to capture high order statistics.

The back-propagation algorithm is so named since learning is accomplished through
the back-propagation of the error derivative from the output to the input. Because
derivatives are required, continuous functions such as the sigmoid of Figure 2.7b are
used, but often approximated by the piecewise-linear thresholding function of Figure
2.7c. In effect, back-propagation combines a nonlinear perceptron-like network with
gradient descent optimization to achieve a minimum global error, given enough neu-

rons. [t is difficult to foresee how many neurons are sufficient for a given problem.
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A lack of convergence to the desired output space is often attributed to searching a
large plateau for minima. Many thousands of learning epochs may pass without any
noticeable change in convergence if this occurs. Appendix A illustrates an example

of the back-propagation algorithm and discusses some methods of improvement.

Because back-propagation works it has become the most popular learning method,
and many software models exist to simulate performance. Since it is generally quite

slow to learn, other methods have been investigated.

One of the most interesting alternate methods is Hebbian learning. With this
technique, correlations between neurons strengthen the connection between them,

while anticorrelations weaken connection strength.

Regardless of the learning method used, neural networks are computational struc-
tures that are not programmed in a conventional sense. They learn the required
statistics, and can thereafter perform real-time computations in a parallel distributed

fashion.

2.2.2 Limitations and Possibilities

Although there is a tremendous research effort in neural networks and many claims
regarding their capabilities, application areas are still experimental. The following
discussion contrasts neural networks with more traditional AI techniques. Similar
comparisons can be made in other fields where neural networks have the potential to

outperform more conventional computations (i.e., pattern recognition).

Neural networks are not nearly as well understood as the sequential symbol ma-

nipulators of the 1970’s Al endeavors. Classical Al attempts were limited in their
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heuristic approach to the problem at hand. That is, if a program was specifically
written to play chess, it was extremely diflicult to modify it to handle vision prob-
lems, for example. On the other hand, neural networks are of such a general nature

that a given network may be used to learn a multitude of different problems.

While the heuristics involved in a symbol-manipulating Al attempt are extremely
complex to code and perfect {(sometimes requiring years), the heuristics involved in a
neural network are self-generated. The user of a neural network does not (necessarily)
need to utilize expertise on the subject at hand, as the ‘program’ (connections) used is
generated by the hardware from an examination of the problem. This lack of a formal

symbolic language is one of connectionism'’s greatest advantages and downfalls.

Ideally a conventional Al solution involves enough heuristics to approximate an
algorithmic solution. In this way the optimal (or near optimal) solution is consis-
tently found. Problems unfortunately occur in the combinatorial explosions formed
by extremely large searches (ie: chess cannot be played algorithmically - there are too
many combinations to search). Heuristics used for this type of system are inherently
plagued by unexpected situation that the ‘rules of thumb’ supplied by the program-
mer do not cover. (If extremely good heuristics are intensively programmed by the
skilled operator, the program will operate within its built-in limiting constraints.) On
the other hand, the heuristics formed by the neural network will consistently generate
an optimized solution (although perhaps not globally minimized), provided enough
neurons are available for the problem’s complexity. Furthermore, the generalization
abilities of neural networks allow formulation of new ‘rules of the game’ as they be-
come necessary. 5o not only might neural networks solve the problem of knowledge

access in an environment of combinatorial explosion with content-addressable mem-
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ories, but also extrapolate from those memories in unpredicted situations.

Perhaps the greatest advantage of neural networks is this ability to learn, gener-
alize and extract increasingly high levels of classification. These abilities form impor-
tant distinctions with classical Al (Searle’s Chinese room thought experiment is quite
confounded by the absence of a central administrator), and have provided extremely

encouraging preliminary results.

An additional advantage of the neural network approach is its use of parallelism.
A classic problem in distributed processing is getting it to be well distributed. Not
only do neural networks solve this dilemma extremely well, but performance also

degrades gracefully as neurons become faulty.

A major downfall of neural networks (and particularly back-propagation) is its
slow speed at learning new tasks and generating meaningful statistics. A conventional
programming approach relies on already-trained human networks to provide these.
Alternately, other networks (particularly Hopfield networks) are very slow to produce

correct output {despite their speed at learning).

It has been argued that physical symbol manipulation attempts have reached a
‘brick wall’ because they are looking at the wrong level of knowledge required to do
some fundamental problems. While this may also be true for connectionist systems,
this science has not yet reached as high a level of sophistication, and it is therefore

much more difficult to judge.

With the very complementary abilities of these two approaches, it would be ex-
tremely attractive to combine the two. One possible approach might be to share

silicon. The conventional digital von Neumann architecture would oversee the work-
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ings of an analog neural network. The neural network would then become another
tool in the computer scientist’s bag-of-tricks. At this time it is difficult to predict the
role that neural networks will play in computation. It is, however, clear that they are

a powerful computational paradigm that will become more prevalent in the future.

2.3 VLSI

VLSI, or Very Large Scale Integration, is an acronym that was spawned from the
computer revolution. It suggests a silicon die on which there are approaching 100,000
gates. None of the devices designed in this thesis are close to this level of complexity,
but clearly illustrate the potential of VLSI for artificial neural network implemen-
tations. The term VLSI has evolved to suggest large, complex Application Specific

Integrated Circuits (ASICs).

VLSI methodology is a science in itself. An attempt must be made to minimize
area and power dissipation while maximizing performance and flexibility. At all times
an attempt is made to minimize routing length since long lines add capacitance to
the system thereby reducing speed. When long lines or large loads are required, fan-
out and drive must be considered. Additional drivers added to the circuit at precise

points can be used to increase speed.

The ability to optimize the many constraints involved in ASIC design is a skill
requiring many years to achieve proficiency. While the author in no way claims

proficiency, an attempt was made to adhere to good design techniques.

Outside of the requirements already mentioned, an attempt was made to incor-

porate a Built-In Self Test (BIST) and fault tolerance in all of the designs. BIST
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allows each chip to verify its own operation before being inserted into a circuit board.
Error-free operation is ensured, therefore reducing the cost of troubleshooting the
system once it has left the production facility. Fault tolerance is used to increase
product life by including some sort of redundancy to ensure that the device may be
damaged yet still perform its function. These considerations are considered in more

detail in the next chapter of this thesis.

The advantages of ASICs over off-the-shelf technologies are indispensable to those
who require them. The most important advantage for the purpose of this research
is speed. Where real-time computations are necessary, only an ASIC can provide
maximal performa‘n‘ce. A second advantage is size. A customized IC reduces the space
and therefore the complexity of Printed Circuit Boards (PCBs). A third advantage
is that of the proprietary information contained on the chip. An ASIC is much more
difficult to copy than a PCB covered with commercially available parts, and this is
often an important consideration for industry. Two disadvantages of ASICs are cost
and design time. It is simply less expensive and less time consuming to assemble

prefabricated devices into a PCB.

Of the plethora of commercial technologies available for microelectronics, one of
the most common is the Complementary Metal Oxide Semiconductor (CMOS). In
this process, both PMOS and NMOS structures are constructed, usually as duals.
While the redundancy requires approximately double the area of either PMOS or
NMOS, the power dissipation of the complementary technology is remarkably low

(power is only dissipated at switching).

Several techniques are available for decreasing the size of CMOS such as pseudo-
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NMOS, dynamic CMOS, clocked CMOS, CMOS domino and cascode voltage switch
logic. Since the University of Manitoba standard cell library was readily available,
fully static complementary CMOS logic was used for all designs with the exception
of the occasional transmission gate used for multiplexing. While most of these cells
were created by others [5] several have been modified for various reasons. Still other
cells have been created from scratch, such as a static random access memory cell used

to estimate memory capacity in the given technology.

The fully digital route was taken due to its speed of design, low power dissipation
and ease of interfacing with more common digital devices such as personal computers.
This also infers that some of the calculations that were not essential on-chip could be

accomplished in software.

Fabrication of all devices was through the Canadian Microelectronics Corpora-
tion’s 3;m double-level-metal CMOS technology. This was the most complex tech-

nology available at the onset of this research.

Through the course of this research, many software aids have been used for design
and simulation. Electric, a hierarchical layout tool [30], APLSIM (APL SIMulator),
an interactive analog simulator [31], and BSIM, a switch level simulator [20] were
extensively used tools. Two of the three chips developed in this research were totally
hand placed and routed. This technique was found to be extremely time consuming

and tedious, although at the time there was no alternative.

Initially, a Very high speed application specific integrated circuit Hardware De-
scription Language (VHDL) [11] [1] with Queen’s Unlversity Silicon Compiler (QUISC)

[15] were used to speed up the design of regular structures by eliminating some of the

. P OV P —_ - PR [ [P
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tedious mannal routing. While a structural definition was used to design these blocks,
it was found to be awkward and unsatisfactory for larger sections of the design. It is
anticipated that a behavioral description would greatly simplify the design process,

and that VHDL will become the design methodology of choice in the near future.

The design of the neural network would not have been possible without a high level
schematic capture system like Cadence [32]. The speed of this tool allowed experi-
mentation with different implementation styles that are simply too time consuming
with hand-placed and routed systems. Since one problem with automatic place and
route is possible poor performance due to long lines, performance was enhanced with
a hierarchical place and route of the larger blocks in the neural network. This tech-
nique ensured maximal routing length of only one neuron (as opposed to the entire

die size).

2.4 System Overview

Now that the main components of theory surrounding this thesis have been intro-
duced, a more indepth explanation of the system structure and operation will be

presented.

The fuzzy cognitive system may be viewed as the multiple stage structure pre-

sented as Figure 2.8,

The system consists of:

I} Matching (in the input space, followed by aggregation)

IT) Transformation (of the matched input space to the output space)
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Figure 2.8: Structure of the Fuzzy Cognitive System

III) Inverse matching (in the output space)

The structure possesses a referential character, since it does not work with directly
input information. The input data (called the objective) is compared to a prototype
(reference) description in the input space. This results in a vector of degrees of

equality having the same dimension as the object in the input space.

The matching (as introduced previously) in a broad sense of the word, is a pro-
cess of comparison of successive coordinates of two objects (patterns). Denote by
A = [araz- - @), and X = [zy22---z,] the objects matched where lower case let-
ters represent corresponding coordinates to be matched, a;, z:€[0,1]. The matching
procedure returns a vector of results of comparison realized coordinatewise, a; = x,
where = represents the matching operator. The matching block converts data from
the physical space, in which the objects are characterized, into an abstract space

representing degrees of matching achieved at the input space.

These values are then compressed, arranged into a vector form and sent to the

inputs of the transformation block. Aggregation may be desirable to reduce the
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dimensionality of the problem (N << n). It is not, however, necessary to implement

the structure, rather it is used to compress the incoming data.

At the next stage of processing, the vector of the degrees of equality in the input
space of matching is transformed to the relevant vector in the output space of match-
ing. Transformation could be accomplished with special purpose hardware, but this
is highly dependent on the specific problem under investigation. For the sake of gen-
erality and flexibility, the transformation block is implemented as a neural network
with ‘N’ inputs and ‘m’ outputs. For the sake of simplicity, the basic network being
implemented is a single-layer with a threshold element. This single layer may be used
in conjunction with subsequent chips to produce additional layers or may be used to

cycle upon itself, creating iterative layers.

After transforming the input equality vector, the relevant vector in the output
space Is calculated with the inverse matching operation (as described previously).
This procedure results in a range of values given by an upper and lower limit. The
larger the range, the less exact one can be in finding the exact result within the
interval. If the range is very small it is much simpler to estimate the exact value that
generated the matching value. If there is no interval (i.e., the upper and lower limits
are identical), the crisp case is generated. Because the interval gap is a measure of

imprecision in the system it is referred to as an interval of confidence.

Since a very general structure is used to perform the transformation, a supervised
learning phase must be associated with the system. This phase is depicted in Figure

2.9.

Since both values of the objective and prototype are known in the output space,
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the inverse matching block of Figure 2.8 is now replaced by a matching block. The
values are generated from both ends and appear to the transformation block as data
at the input and output. The purpose of this learning phase is to obtain the unique
mapping from input vector (N} to output vector(m}. Once this mapping has been
learned, it may be stored in the form of system weights, and recalled to perform the
calculations for that specific problem as needed. The learning may be performed in

a number of ways including the back-propagation algorithm.

Several constraints must be placed on the fuzzy cognitive system to implement it

in hardware. IYigure 2.10 shows the structure of the system implementation.

The first major constraint is resolution. Since the system is digital, it was neces-
sary to assign some number of bits to the input, output and intermediate blocks. A
uniform resolution of four bits was decided upon. This decision was primarily based
on implementation concerns such as area and preliminary system simulations with
fixed-bit arithmetic. From a VLSI standpoint, it would be possible to prove the va-
lidity of design methodologies, while still having the ability to implement functional

devices.

The second constraint was silicon area, and it was decided to break the system

into three separate chips. This would ensure that if an alteration was required on
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one of the stages of operation, only that chip need be redesigned. VLSI limitations
also enforced that the neural network would be a massive undertaking on its own,
requiring a very large die size to fabricate even a simple network. The three chip
system would consist of a matching chip with optional aggregation, a reconfigurable

neural network chip and an inverse matching chip.

It was also decided that 4 sets of objectives/prototypes would be allowed as inputs
and that the output would have sixteen discrete points of resolution (i.e., a vector
of 16 sets of upper/lower bounds). To investigate the workings of the system, a
simulation program was written. The code from this program and an example are

presented in Appendix B.
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System Implementation

3.1 Enhancements to the Implementation

3.1.1 The Fault Tolerant Methodology

Fault tolerance is a technique used to ensure reliability of performance in a system
[29][12]. Normally some form of redundancy is used to maintain system integrity in
the event of some failure, be it transient, intermittent or permanent. The failure
could take the form of a flaw in material processing when the device is fabricated, or
some unforeseen circumstances while in operation such as an alpha strike or voltage

surge.

In the constraints of the fuzzy cognitive system, three different techniques of fault

tolerance were attempted (one for each chip designed).

On the first one, the matching chip, triple modular redundancy (TMR) with voting
was used. In this scenario, three processors each independently performs identical
calculations. The outputs of these sections are then compared and a {wo-out-of-

three approach taken. If one of the processing elements is faulty, the other two units

31
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would overrule it at the voting stage. In this way the system may suffer a fault in
one unit without consequence to the resulting calculations. In this error-masking
scheme, it may be advantageous to produce information when one of the processors
is consistently found to be at fault. The information may then be used to judge how

long the system will continue before total failure.

No attempt was made in the matching chip to indicate time-to-failure. Addi-
tionally, each redundant block would ideally be a unique hardware implementation,
meaning that the same calculation is performed several times in different ways. Coded
checking (such as residues) is one commonly used scheme [3]. All of the redundant
blocks are identical on this chip since time constraints on the design did not allow

experimentation of this kind.

The second chip designed, used for inverse matching, utilizes a different scheme.
In this case, duplex redundancy (DR) with error detection was used. Two identical
blocks were used to compute the inverse matching output, and these results were
compared. If they do not agree, one output line changes indicating that an error has
been detected. At this stage, the user may choose to replace the part completely, or
ignore the error flag and take the output as valid (a very dangerous decision). Regard-
less of the action, steps may be taken to ensure acceptable performance. The main
reason for choosing this less acceptable form of fault tolerance is complexity consid-
erations. The inverse matching operation is much more computationally demanding
(and therefore more area intensive) than the matching operation. The DR scheme
utilizes only £ of the area of the previous scheme, and furthermore the comparison

equipment at the output is less complex in this technique.
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The final scheme used for fault tolerance comes from the nature of parallel com-
putations in a neural network. Fault tolerance of neural networks is a relatively new

field of study, although a few attempts have been made [7).

It has long been known that a biological systems degrade gracefully as neurons
become faulty (i.e., brain damage). Since the computation is both highly parallel and
distributed, a few bad neurons do not totally disable the complete system. In our
system in which 16 neurons will feed 16 neurons, if one neuron produced an erroneous
result it is then passed on to the next layer. At this point, a weighted summation is
taken of all neurons on the previous layer and one of the 16 values in this summation
is in err. In a worst case scenario, this means that the total is correct 15 parts out of
16. While this is tolerable, it reduces for larger networks. The built-in self tolerance

1s a very attractive feature of neural networks.

The training process may also reduce the effect of faults by recovering from them
intelligently. The working neuron’s weights may be compensated to lessen the impact
of the faulty areas. While it would also be advantageous to make fault tolerant

neurons, the demands were found to be too area intensive for this application.

An interesting scenario for fault tolerance will be examined after the neural net-

work system structure has been presented.

3.1.2 The Built-In Self Test Methodology

Built-in self test (BIST) is a technique used to reduce the difficulty of testing [39].
Random test vectors are generated on chip and presented to the circuit where the

output is then compressed and compared to known correct code. A signal is presented
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to the user indicating the success or failure of the test.

BIST eliminates the need for bulky, expensive test equipment and is potentially

much faster, since computations are accomplished on-chip.

The attractive nature of using cellular automata (CA) for BIST has been well
documented [10] [28]. This structure is simply a special case of a one dimensional
neural network, in which only next-neighbor connections are made. Under constrained
conditions, these networks will specific generate all 2% possible combinations of an n-
bit system in a pseudorandom order. CA’s are a very good structure for VLSI since
they require only localized connections, are simple to implement and offer good fault

coverage.

Rule 90/150 hybrid CA’s were used in all three chips to perform BIST. The
derivation tables for rules 90 and 150 are shown in Table 3.1, and these functions can
be easily implemented with one (rule 90) or two (rule 150) exclusive OR gates. In
this table, i1 represents the temporal evolution of a single automaton, i, connected

to nearest neighbors (i-1) and (i+1).

The CA’s in all chips were two-bits larger than actually required for the test,
with the two outer bits ignored (and null boundary conditions). This overestimation
approach was taken to increase fault coverage (the vectors used in the test are more

random) at the expense of nominal silicon area.

The first two chips designed (matching and inverse matching) take advantage of
the redundant channels. The technique used involved creating pseudorandom num-
bers with the CA, propagating the same random number through each channel in

parallel, and comparing the outputs. A discrepancy in any of the outputs sends a
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G100 & (i+1): RL}le a0 Ru.le 150
41 1441
0 0 0 0 0
0 0 1 1 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 0
1 1 0 1 0
1 1 1 0 1

Table 3.1: Cellular Automata Rules 90 and 150
signal to the user, inviting further testing on individual channels.

The neural network chip also uses the pseudorandom numbers to cycle through
a chain of neurons, comparing all neurons at the output (they should have identical
responses). Discrepancies indicate further testing is required to isolate the damaged

neuror.

3.2 External Processing from the Neural Network

3.2.1 Preprocessing on the Neural Network

The matching concept of equations (2.13) and (2.14) may be implemented as shown
in Figure 3.1. For division-by-two, the least significant bit (LSB) is simply discarded.
An option was included to use either of the two equations. The block was created

with ripple-carry adders, inverters and multiplexors.

Another option was created to include aggregation. Aggregation was implemented
with the barrel-shift adder configuration shown in Figure 3.2. The technique simply

keeps a running total of inputs, ignoring the least significant bits. For a resolution of
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Figure 3.2: Implementation of the Aggregation Option

16 points in the input space, the aggregating function would sum 16 numbers coming
from the matching block, and divide the result by 16 (ignore lower 4 LSBs), essentially
averaging the vector.

The completed implementation is presented as Figure 3.3. A graphical description
of the blocks in the design is presented as Figure 3.4. Some specifications of this chip

are presented as Table 3.2.

Four identical independent channels are implemented on the chip, and these are

used as comparisons against each other in the BIST.
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‘Total Chip Sizel | 4503 x 4503
Number of Pins 68
Input Pins 32
Output Pins 16
Devoted Test Pins 5

Table 3.2: Matching Chip Specifications
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Figure 3.5: Inverse Matching Implementation

3.2.2 Postprocessing on the Neural Network

The inverse matching function of equations (2.19) and (2.20) may be implemented as
shown in Figure 3.5. An option for multiplication-by-two is accomplished with simple

shifting.

This block is obviously more complex than the matching operation, and it is
justifiably more area intensive. Part of this complexity is derived from the function’s
dual output nature. Simple ripple-carry adders, inverters and multiplexors were again
used for the implementation. The completed implementation is presented as Figure
3.6. A graphical description of the blocks in the design is presented as Figure 3.7.

Some specifications of this chip are presented as Table 3.3.

Four identical independent channels are again implemented on the chip, and these

are used as comparisons against each other in the BIST.
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Total Chip Sizel

4503 x 4503

Number of Pins

68

Input Pins

32

Output Pins

32

Devoted Test Pins

o

Table 3.3: Inverse Matching Chip Specifications

tin 3 pm CMOS
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3.3 Neural Processing

The most complex part of the fuzzy cognitive system is the neural network. Many
identical neurons transmit their information to many other identical neurons, and
the immense parallelism is very difficult to implement in VLSI. The more neurons
on a single chip, the less complex the neurons must be, The more serialized the
computation, the smaller the neuron, and therefore more may be place on a single

chip. Each serialized neuron is now slower than a more parallel implementation.

In an attempt to find an optimized solution, a compromise was arrived at: parallel
computation would be performed with a distributed serial system. While each neuron
performs a pipelined serial operation, many neurons perform in parallel, thereby

maximizing the computing potential and distribution.

3.3.1 Neural Architecture

Since the number of available neurons on the chip was uncertain at the onset of this
research, it was decided that the synapses and neuron would be designed as a single
unit. Based on this fact, the term neuron may be used to infer both the neural and

synaptic structures.

It was decided at an early stage to use a three-bit resolution for the weights
since this was a complementary resolution to the four-bit activations. Other schemes,
including a one-bit weighting algorithm were attempted but discarded. The single-
bit weighting scheme has a very narrow field of use and would require many, many

neurons to accomplish any task of practical use.
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Figure 3.8: General Architecture for Neural Processing

The basic conceptual architecture of Figure 3.8 was used to implement the neuron.
A form of bounded multiplication is performed at the synapse, and a running bounded
accumulation is used at the neuron itself. At the thresholding stage, the neural
output is forced through a piecewise linear thresholding function with variable slope.
A threshold was used instead of a bias term since it gives more control of the neural

output.

If a 4 x 4 full multiplier were used, few neurons could be placed on the chip. Since
multiplication is extremely area intensive in VLSI, a simplified multiplication scheme

was used, as shown in Table 3.4.

The simplification of multiplication/division by factors of 2 yields a tremendous
simplification in terms of hardware complexity since it may be implemented by base-2
shifting. For example, the number (0110); = (6);0 may be multiplied by a factor 2
by shifting the bits once to the left, as (1100); = (12);0. The original number may

be halved by shifting once to the right, as (0011); = (3)10.

At the thresholding stage, the neural output is forced through a piecewise lin-
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a2 a1 ao | Multiplier |

I 1 1 —2
1 1 0 -1
1 0 1 -1
1 0 0 —0
0 0 0 +0
0 0 1 +3
0 1 0 +1
0 1 1 +2

Table 3.4: Simplified Synaptic Scheme

a, ai; ag | Results
0 0 0| ZERO
0 0 1 /2

0 1 0 x2

0 1 1 ]-IMAX
1 0 0 |+4+3MAX
1 0 1 /4

1 1 0 x4

1 1 1 MAX

Table 3.5: Thresholding Scheme
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ear thresholding function with variable slope. A three-bit resolution was used for

threshold control, and the scheme implemented is presented as Table 3.5. Options

are included to either totally disconnect the neuron (output ZERO) or turn the out-

put always ‘on’ (output MAX). The i%MAX option could be used to induce a more

extreme, hard limiting output.

Another source of area saving may be found in the adder-tree associated with

a fully parallel implementation, shown in Figure 3.9. Figures 3.10-3.12 show some

attempts at pipelining the operation.

The results of this investigation are summarized in Table 3.6. While speed is
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Figure 3.12: Level 4 Pipelined Neural Architecture

reduced, size is greatly reduced.

After several months of careful study, it was decided that a serial processing neuron
would be ideal for VLSI implementation. Since it was desired that 16 neurons would
be implemented on a chip, the most serialized network would be used (level 4). It

should be noted that while the level 3 estimate in Table 3.6 indicates that 18 of these

Levels | Area of Neuron Clock Cycles Neurons
Pipelined (gm? x 10°) per Neural Cycle | per Chip!
0 21.29 1 4
2 8.44 4 11
3 5.36 8 18
4 4.76 16 26

Table 3.6: Trade-offs in Neural Pipelining

' Assuming 96.48x 10%um?® maximum chip size.
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neurons could be placed on a chip, this does not account for interconnectivity, the

pad frame area or any equipment used for testability.

Some estimations were also done to see how much memory (SRAM) would fit on
our maximum allowable die size. A reasonable approximation would be 7-8 kilobits

of data. For one layer, we require:

#bits #neurons #per neuron Total #bits
Weights — 3 X 16 X 16 = 768
Threshold — 3 X 16 X 1 = 48
Activation — 4 X 16 X = 64
880

Since a reasonable sized neural network has 3 layers, this becomes 3 x 880 = 2640
bits of information. This would require approximately %Pd of the full die size. With
16 neurons on the chip and some testability, it was deemed unwise to hold the weights
and threshold controls on-chip. Given this fact, it was totally unrealizable to perform
learning computations on-chip. It would be necessary to develop a system architecture

which would allow fast access to both weights and threshold values.

3.3.2 System Architecture

At the system level several trade-offs were required. After several months of careful
study, it was decided that a serial processing neuron would be ideal for VLST im-
plementation. While several engineers have attempted to implement digital neural
networks in VLSI, most of the attempts have been very regimented, that is, a specific

network was envisioned, and that precise network was implemented.

A technique was discovered for greatly increasing flexibility and processing speed

while greatly decreasing power consumption and size. It seems so trivial and beneficial
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that it is not directly obvious why this solution has not previously been used, yet it

has not.

Figures 3.13 and 3.14 show standard configurations of forward propagating neural
networks. This technique is perhaps the most often used for implementations [43]

since it is straightforward.

Most implementation attempts have utilized multiplexors at either the input or

output of the neuron to allow serial processing in the neurons at each layer. This
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requires that a physical connection from each neuron on each layer to each neuron
on the next layer be present. Therefore, for a layer of 16 neurons feeding a layer
of 16 other neurons, 256 physical connections must be present. This high degree of
interconnection greatly reduces neuron complexity, since only a specific area of silicon
is allowed for an implementation. Large drivers must also be used for each of these
lines, as they may be propagating signals as far as the diagonal of the chip. If these
drivers are not used, speed will be greatly decreased, and so an area/speed trade-off
is encountered. The greater the distance a signal must travel, the larger the driver
should be. In parallel systems, this is usually difficult to foresee without meticulous
planning and accuracy. The solution is to use fairly large drivers, in the hope that
signals that are only required to travel a short distance are overly driven, while only
the very longest lines are slightly underdriven. The resu& is mediocre performance,

and medium size.

Furthermore, if the network is to be reconfigured, the multiplexor block must be
reconfigured and replaced in each neuron. For example, if 17 neurons (instead of 16
on the previous layer) are required on a given layer, all multiplexors for the new layer
must be changed to a 17-to-1 (rather than 16-to-1). While this increases size (the new
multiplexors are inherently larger) and slows computation (more logic implies slower
response), the major problem is that of reconfigurability for the designer. The new
multiplexors must be design from scratch, and replaced in the specific neurons that
require it. Furthermore, once fabricated, there is no reconfigurability whatsoever.
The structure of the network simply cannot be changed at this stage (i.e., no more

neurons may be added on the layer).

Another scheme that has been used [7]{42] is the bus architecture shown in Figure
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Figure 3.15: Bus Architecture for a Digital Neural Network

3.15. This architectural system is taken from the often-used von Neumann single
processor concept of using one bus to access many peripherals. It has been adapted
for use in parallel systems with interesting consequences. It allows any number of
computational elements to use the bus, and even to access devices off-chip that are
given access to the bus. The long lines require very large drivers for realistic speed.
The single communication channel also becomes a bottleneck when communications
become intensive. While a multibus structure alleviates some of this problem, a
multitude of bus arbitrators and controllers becomes necessary. This in turn makes

it difficult to design efficient structures in VLS.

In contrast to the parallel and bus systems, consider the architecture of Figure
3.16. In this configuration, each neuron is fed one value of the input vector. The
neuron processes the datum and passes it to the next neuron in the chain (of the
same layer), which in turn processes the piece of information. Each neuron maintains
a running total for its cumulative weighted summation. This process continues until
all neurons on the layer have processed each piece of information from the previous
layer. The cyclic chain ensures that each neuron on the layer receives every piece of

information. To add one neuron to a particular layer, the chain for that layer must
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Figure 3.16: A Neural-Slice Feed-Forward Network

be expanded by one ‘link’. Note that neither the neuron itself nor any of it’s parts
need be redesigned. The addition of a link increases processing time by one neural
cycle, that is, the number of clock cycles required to process one piece of information

at one neuron.

Each neuron feeds only the ‘next neighbor’, thereby using local connections. Only
small drivers are needed for this, since the distance between two neurons may be
specified at the placement stage of design. Speed is also improved because only a
predictably small driver is required for the very short line. Only one line from each
neuron to its nearest neighbor is required, thereby eliminating 256 — 16 = 240 lines,

several of which may run the diagonal length of the chip.

Although this technique greatly reduces area, its greatest advantage is reconfig-
urability. Several chips may be interfaced together as required to create a network

with any number of neurons on a layer.
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Iterative techniques may be used to cycle the chip upon itself. By collecting the
data at each neuron until all data for the layer has been processed, the neuron is then
ready to transmit its informationto the subsequent layer vl ieurons. The information
may then be transmitted to another chip, or returned to its own inputs to process
further layers. An infinite number of layers ovn a single chip may be created in this

way. Alternately, several chips may be used tc pipeline layers.

Obviously a very flexible system has been developed, in which pipelined neurons
feed pipelined lavers and the wetwuzk conssts of any wumber i nearons on any
p 3 ¥

number of layers.

Built-In Self Test for the Neural Netwnrk

With this architecture, BIST works as follows. First, pseudorandom test vectors are
produced by the CA. Next, a single vecter i= propagated through the shift register’s
chain system to the activation/weight/threshold inputs for each neuron. Another
vector is produced and cycled through the system. After an acceptable namber of
test vectors have been sent through the system, the outputs of all neuron are compared

for discrepancies.

Again the inherent system redundancy is used to better the self test. No data
compression is required since it is assumed that the number of correctly functioning

neurons outnumbers the faulty ones.

A concept not actually implemented on the test chip involves BIST with fault
tolerance. As the network is processing its application, it could use every 1,000 th oy

I0,000th calculation to run a short BIST. If a given neuron is found to be consistently
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in err, it may be removed from the chain. This effectively trims the network of
faulty processors as they become unusable. The system is then quite robust and

resistant to faults.

3.3.3 Implementation Issues

A chip was designed using the aforementioned design principles, and a metal layer
representation is presented as Figure 3.17. A graphical description of the blocks in
the design is presented as Figure 3.18. The upper-level schematic that was used to
generate the chip is presented as IMigure 3.19. Some specifications of this chip are
presented as Table 3.7. Padframe requirements forced serial loading and unloading of
the shift register chain, although parallel off-chip communication is trivial task given

more compact pads.

At the time of implementation it was felt that there might be some advantage
keeping the shift register as an autonomous entity. It seems more practical, upon re-
flection, to embed the shift register elements within each neuron. This would become

more desirable if the number of neurons on a chip were increased.
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Figure 3.17: Neural Network Chip
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Figure 3.18: Breakdown of the Neural Network Chip

One disadvantage of this architecture is that the Wei.ght.s and threshold control
lines must be available as required by the neuron. Since it is extremely area intensive
to implement memory devices on-chip, pins must be reserved to load these values
from off-chip as required. Fortunately, only one weight per neuron is required at any
given time. Furthermore, the weights and threshold controls are not required at the

same time.
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Figure 3.19: Upper-Level Schematic for the Neural Network Chip
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Neuron Size! 1070 x 825
Shift Register Sizel | 2650 x 2370
CA Size! 805 x 640
Total Chip Size! | 7200 x 7450
Number of Pins 70
Input Pins 4 (Serial)
Qutput Pins 4 (Serial)
Weight Pins 48Tt
Threshold Pins 321t
Devoted Test Pins 3

Table 3.7: Neural Network Chip Specifications
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Chapter 4

Conclusions and
Recommendations

4.1 Summary and Conclusions

VLSI, neural networks and fuzzy set theory were combined to produce a system for
real-time application. Fault tolerance was attempted and redundancies of the layouts
were advantageously used for built-in self test. The result of this eclectic merger is a
very robust chip set. A brief synopsis of the three chips designed is presented in the
following table.

Matching Neural Network Inverse Matching

Chip Size in 3 gm Tech. 4503x4503 T7200x 7446 4503 % 4503
Number of Pins 68 70 68
Number of Input Pins 32 4t 32
Number of Qutput Pins 16 4t 32

Number of Pins for Weights N/A 48t N/A -
Number of Pins for Thresholding N/A 321 N/A
Number of Dedicated Test Pins 5 3 5t
t Serial

1t Multiplexed

59



CHAPTER 4. CONCLUSIONS AND RECOMMENDATIONS 60

In conclusion, the objectives outlined at the onset of this thesis have been achieved.

4.2 Recommendations

Several interesting aspects of the system were only superficially explored, yet have

great potential impact on the design.

The on-chip pseudorandom number generation has some interesting possibilities.
Since a shift register is used in the implementation (to load/unload the CA), this

structure could be directly embedded into the neural network structure. This would

lessen the 2-3% of chip area already consumed by the CA.

A common problem with the backpropagation algorithm occurs when the search
point is driven far out on a plateau, making gradient decent very difficult. If the
system does not converge, it would be advantageous to begin the learning procedure

again with new random weights, and the CA could provide these.

Of course on-chip learning would greatly increase processing speed of the system.
A coprocessing chip for learning could be created with the same architectural concept
as the feed-forward chip. While the coprocessing idea would not be as fast as learning
on-chip, it would be much faster than software learning, and the system architecture
lends itself nicely to this kind of interfacing. Weights could be cycled in a shift register

in the same way that activation levels are transported in the already-made chip.

Given the chain-like structure developed for neural computations, percolation the-
ory has some obvious applications [34]. This is a relatively new science which involves
clustering of randomly occupied sites in a lattice. The application is specifically ap-

plicable to transport phenomena. A large series of neurons could be fabricated in a
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lattice configuration with an emerging technology that causes many sites to be faulty.
An attempt would then be made to produce a maximal length chain of working sites
within the lattice, yielding a relatively large number of neurons on the layer. While
many working neurons on the chip might not be used, the increase in yield for the

new technology could make the technique quite effective.

An area that has not been examined in this thesis is the system software shell,
shown in Figure 4.1. To make the system more effective, a software shell could be
created to aid in fuzzification (entering the membership functions), defuzzification,
general system processing, graphical and numerical data examination, neural network

learning and weight manipulation.

Finally, it would be advisable to implement another generation of the chips dis-
cussed here, now that unforeseen problems and potential have been documented.
The new chips could then be incorporated into a circuit board and used for practical

applications.
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Figure 4.1: Software Shell for the Fuzzy Cognitive System
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Appendix A

The Backpropagation Algorithm

An Example

To illustrate the mechanism of the backpropagation algorithm, an example is now
presented. In the network of Figure A.1, the error derivatives of all weights will be

calculated using the nonlinear transfer function:

1

Fp = ————m
i 14 e-%

The technique shown in this example is used in backpropagation to propagate
error from the output back to the input, thereby indicating the optimal direction of

movement for gradient decent.

Ya:
oK . 3
= Yq1 — dg1 = 0.4924 — 0.75 = —0.2576
Byal
oF
= 0.3560 — 1 = —0.6440
ayaZ

E
= (.4962 — 0.5 = —0.0038
8ya3
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APPENDIX A. THE BACKPROPAGATION ALGORITHM

Desired Value —» 0.75 1.0 0.5
Actual Output ~——s 0.4924 0.3560 0.4962

Iigure A.1: Network for the Backpropagation Example
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Xga !
OE _ OE dy. _ OE

= — ., 1 — ]
a1 Y1 0701 OYm [Ya1( Ya1))

= —0.2576[0.4924(1 — 0.4924)] = —0.06439
OE

83:&2
or
83:&3

= (—0.6440)[0.3560(1 — 0.3560)] = —0.1476

= (—0.0038)[0.4926(1 — 0.4926)] = —9.498 x 107*

Now we must calculate y;; and ye:

1
Yal
Ta0 = —0.5928

Tap = — In(— — 1) = —0.03040

Zqa3 = —0.01520

Za1 = —0.03040 = (Vg1 + (—1)ys

Tap = —0.5928 = (0)yu1 + (—1)use

= Yy = 0.5928
= yy = —0.0304 + 0.5928 = 0.5624

Check:

Tz = (05)9'51 + (—0.5)y52

~0.01520 = (0.5)(0.5624) 4 (—0.5)(0.5928) +/
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W(a)(b) *

OE  OFE Ozm  OF
OwEeney  Ta1 OwEney  Ota

ypr = (—0.06439)(0.5624) = —0.03621

OE
———— = (—0.06439)(0.5928) = —0.03817
waty2)
oF
————— = (—0.1476)(0.5624) = —0.08301
dw(az)(b1)
_9F (—0.1476)(0.5928) = —0.08750
Iw(az)(b2)
OF
= (—9.498 x 107%)(0.5624) = —5.342 x 107*
Fw(az)(m)
oF
—— = (—9.498 x 107*)(0.5928) = —5.630 x 10~*
W (a3)(b2)
Next Layer:
¥b !
oFE a@a OF
Bym = 2 G )~ 2, o)

= (—0.06439)(1) + (—0.1476)(0) + (—9.498 x 107*)(0.5) = —0.06486

gg— = (—0.06439)(—1) + (—0.1476)(—1) + (—9.498 x 10‘4)(—0.5) = 0.2125
Yb2

Xp -

IE JF 8 oF
= 1 = ) [ybl(l _ybl)]
Yn

Oxy B Fys Oy
= —0.06486[0.5624(1 — 0.5624)] = —0.01596

ok
g—— = (0.2125)[0.5928(1 - 0.5928)] = 0.05129
Ub2
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Now we must calculate y,:

1
0.5y, = zpy = — In{— — 1)

Y1
= y. = 0.5
Check:
1
0.73)(0.5) = -1 -1
(0.19)(0.5) = ~In(——=1) V]
Wib)(c) *
OF dF Oxpy Ik
= = Y. = (—0.01596)(0.5) = —0.00798
Jweye 0% Owpi)e Der ( )05)
F
T (0.05129)(0.5) = 0.02565
Fw(ea)(e)

Obviously the error derivatives on the weights attached to neuron a3 are the
smallest. Considering the actual output error on this neuron is the smallest this is
sensible. By the same logic, the error derivative of the weights on neuron a2 are

largest.

The weight derivatives from the input layer to the hidden layer are much more
difficult to interpret. At this stage the direction the the weights should take is much
more distributed, and therefore approximately the same magnitude. There is no

preference given to sides as there is in the hidden-to-output weight derivatives.

Improving Back-Propagation

Back-propagation uses a gradient descent method (a generalization of the least mean

error method) for learning. Although learning the weights is NP complete in the
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worst case with the learning time growing as o(/N)® with the number of inputs, we
may use a number of techniques for reducing learning time. Several other techniques

may be used for increasing the conceptual power of the networks.

Perhaps the most obvious way to improve performance is to hardwire preprocess-
ing and postprocessing units to the network. This in-effect reduces the amount of
work required by the network to obtain valid results, thus speeding up the learning.
The method of ‘bins’ may be used to reduce a continuous problem to discrete. This

may greatly reduce the complexity of some problems at the expense of precision.

Preprocessing may also be used to reduce the correlation of input data. This
technique allows the gradient to point directly at the minimum, allowing a linear

system to calculate the solution.

By examining the change of weights, other simplifications can be made. While the
gradient may change only slightly for a small change in some weights, the gradient
may change greatly for small movements in other weights. This implies that if we can
detect the changes in weights, we can affect a localized adaptive learning rate, thus

speeding movement toward the minimum.

Alternately, we may calculate the error gradient for the case when a given weight
is equal to zero. If the gradient changes only slightly, we may choose to sever the
connection completely to speed up the remainder of the network (fewer weights to

learn).

We may speed up learning, particularly in an asynchronous hardware scheme,
by performing a constant weight reduction, or forgetting procedure. This technique

ensures that the weights are kept to a reasonable limit, thus yielding less complex
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multiplications.

A ‘momentum’ method may also be used to speed up learning in directions with
small but constant gradients. In this method, momentum builds up along ravines,

but cancels out across the ravines (when they are traversed).

A radial basis function may be used to draw-in solutions with landmarks. This
technique causes a best-fit approximation to a high dimensional space by allowing
radial basis function centers (in effect, the weights from the input-to-hidden layer)
to capture the data points (training set). With this complete, the remaining weights
are determined with a linear least-squares optimization. This procedure is quite fast

and efficient.

A number of other methods may be used to modify the network itself. Since
minimizing the squared error is equivalent to to an estimation of maximum likelihood,

some problems may benefit {from a reinterpretation of the problem.

By utilizing symmetric weights and mapping the output back onto the inputs, a
self-supervised network may be used as a feature detector. The outcome of the hidden
layer is unknown, but neurons may be reduced until the input may be adequately
reconstructed at the output. The features classified in the hidden layer may then be

considered the minimum necessary for recognition.

Each of the techniques presented here has it’s own advantages and disadvantages,
and adaptation to a given problem is required. There is, however, no shortage of ways

to improve back-propagation.
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Software Simulations

In this Appendix, a presentation will be made of some software created to assist the
understanding of various aspects of the fuzzy cognitive system. All softwareis written
in ‘C’ language and although it was written on a SUN workstation, should be quite

portable.

The Matching Operator

This program produces all possible combinations for a four bit resolution {0,15] match-

ing operator.
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/**’k*************************************************************/

/* This program generates all matching combinations, 4~bit res. */
/s ok sk ok sk sk s skok ok sk sk o ke ok sk s ok sk ok ok o sk o ook sk o ok ok oo o sk ok R ok ok ok sk sk ok ok oK ok ok ok Kok ok ok ok

main()

int
X =

-«
|

do{

3 Y2,

do{
z = match(x,y);
printf("\n%d Y%d %d",y,x,z);
++x;

} while (x<=15};

++y;
x = 0;

} while (y<=15);

}

match{object,proto)

int

{

/*¥%* Eliminate the ‘/2* to make the data compressed matching operator ¥#i*

object, proto;

int max, min, answer;
if (object<proto){
min = object;

max = proto;
else{

min = proto;

max = object;

}

if (max==min){
answexr = 15;
telse
answer = {min + 15 - max)/2;

}

return answer;
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The Inverse Matching Operator

This program produces all possible combinations for a four bit resolution [0,15] inverse

matching operator.
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/*****i‘******************************************************************/

/* This program generates all inverse matching combinations, 4-bit res. */
J ARk sk ok ok sk sk o ok ok sk ks ok ok ok ok ok sk ok ok sk sk sk ok sk ook ok sk ko ok ks ksl R ok kKRR R Rk

main()
int match, proto, answerl, answer2, mb, zb;
for(match = 0; match <16; ++match) {

for {prote = 0; proto < 18; ++proto) {

if (match > 7) {

answerl = proto;
answer2 = proto;
mb = 1;
zb = 0;

} else {

answerl = proto + (2 * match) - 15;
answer2 = proto - (2 * match) + 15;
/***%+ Eliminate the ‘2 *’ to make the data compressed inverse matching operator *x**
zb = 0;
mb = 0;

if (answeri < 0)

answerl = 0;
if (answer2 > 15}
answer2 = 15;

if (answeri == 0} {
if (answer2 == 15)
zb = 1;

}

printf("match =
printf("\n");
} printf("\n");

1
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System Simulation and Example

The following code is used to simulate the complete system. In the example used,
the data is fabricated but based on an imaginary example discussed following the

presentation of the code.

/et ok ook dokok ok ok ko Rk ok ok o o sk sk sk ok sk ok skook ok ok sk R ROk Rk

/* This program simulates the 4-bit fuzzy cognitive system. ®/
[/ ek sk Ok Kok o o sk ok o ek sk ool ok stk sk ook ok o sk kil AR R Rk kR ok ok

int object[4][16] ={{5,5,5,5,7,9,11,12,11,9,6,6,5,5,5,5},
{¢,8,8,8,8,8,8,8,9,9,10,9,7,8,8,8},
{0,0,1,3,6,9,13,12,10,9,9,11,12,14,14,13},
{11,5,8,9,10,10,11,13,13,12,10,11,11,10,10,10}};

i

int proto[4][is} = {{6,6,6,6,6,6,15,15,15,2,6,6,6,6,6,6},
{11,11,11,11,11,11,11,11,9,9,14,11,7,11, 11,11},
{3,4,5,7,8,10,12,11,10,10,10,11,12,13,13,12},

{3,4,5,7,9,11,13,15,15,14,13,10,11,10,10,9}};

int invprote[1sl {8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8};

int wl4][186]

{{15,14,13,14,15,14,15,15,13,12,11,0,5,6,9,10},
{¢,0,0,1,2,3,5,9,11,14,10,8,6,8,10,11},
{12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12},
{13,12,11,10,9,10,11,12,13,14,15,15,14,10,13,12}};

int d[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
int s[4][16] {{¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

0,0,0,0,0,0,0,0,0,0,0,0}};
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/o ok sk ook sk o ook ook oK Kok RO oK K B KoK K oK oK R KRR ok ok o ok ek ok ks s kel ok sk sk sk ok ok /

/* This is the main simulation for the fuzzy cognitive system. */
[ ARk sk ok ok Rk sk ok ok ok Kok ko ok ok bk ks k ki okokok ok ok ok kokok sk kokok ok f

main(}

int n, m;

int zen, sum, time, neurin[4], big, small;
int low, high, bits;

n = 0;
time = 0;
sum = 0;
do{

printf("\nn=Yd",n+1);
printf(" INPUTS\n");
printf(“:::: ::::::::::::::::::::::::::\n“) R

do{
zen = match{object[n]l[time],protoin][time]);
sum = zen + sum;
printf("time =%d, proto=Yd, object=d, match=Vid, sum=Yd\n",
time,proto[n][time],object[n][timel,zen,sun);
++time;
} while (time<=15);

neurin[n] = sum / 16;
time=0;

printf("Neural Net Input for objective [%d] = ¥d\n",n+1,neurin[nl);

sum = 0;
++n;

} while (n<=3);

n=0;
printf("\nneural net inputs are : ");
do{

printf("4d ",neurinlnl};

++n;

} while (n!=4);

printf{("\n\n");

75
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/*******************************/

/* Neural Network Simulation. */
[k ok ok ok kR ok ok ok ko ok Rk ko k

n=0;
m=0;
do{
do{
sm]n] = wiml[n] * neurinfm] / 18;
if ((wim}En] ==15) && (neurinlm] == 15))
s[m][n) = 15;
++n; } while (nt!=18);
n= 0
++m;
} while (mi=4);
n=0;
m=0;
do{
do{
dlm] = d[m] + s[nllml;

++n;
Jwhile (n!=4);

élm] = d[m] / 4;
n = 0;
4

} while (m!=18);

printf("\n");

n=0;
m=0;

printf("Heural Net Weights are:\n");

do{
do{
if (wlmdInl > 9)
printf{("%d “,wIlnlnl};
else
printf (" %d ",wIm]J[nl);
+4n;

)
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} while (n!=16);

++m;

n=0;

printf("\n");
} while (mi=4);

printf ("\n\n¥eural Net Matrix is:\n");

do{
do{
if (s[mllnl > 9)
printf{"¥%d ",s{mlEnl);
else
printf(" %d *,s{m]{nl);

++1n;
} while (n!=16);

++m;

n=90;

printf("\n");
} while (m!=4);

printf("\n\nOutput of Neural Net is:\');
m=0;

do{
if (dm] > 9)
printf("%d ",dm]);
else
printf(" %d ",dlml);
+4m;
} while (m!=16};
printf("\n\n\n\n\n"};
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£ Ak sk ok ok koo ko sokkok ok ok ok ok ok

/* Inverse Matching Stage. */f
[ ok ok kb ok Rk Rk ok ok ok ok ok ok f

time = 0;

printf(* Input Output\n");
Printf(“ e e ===:=============:=:=::==:=::::==:==:=====\n!l);

dof
low = answeri{d[time],invproto[timel);
high = answer2(d[time],invprotoitime]);
bits = status(low, high);
printf("d[%d] = %d invproto = %4 low = Yd high = %d Status = %d\n", time, d[timel,invprotol
++time;
} while (time<=15);

printf("\n\nStatus Key:\n 0 ===> some interval of length > 1 but <i5\n");
printf(" i ===> interval of maximal length\n 2 ===> interval of minimal length\n");

}

/**********************’i‘*******************/

/* This subroutine performs matching. */
/o ok s koK ok o s ok Sk sk o ko ok ok ok ok ok sk ok ok ok ok f

match(object,proto)
int object, proto;
{
int max, min, zenmatch;
if (object<proto){
min = object;
max = proto;
)

else{

min
max

proto;
object;

]

}

zenmatch = min + 15 - max;
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return zenmatch;

/**************************i#********************************************/

/* This subroutine calculates the low boundary of inverse matching. */
Stk kokk ok kR ok sk sk ok Kok sk okoR s ok ok ok ok kR ok ok kb bRk Rk kbR kR Rk Rk k

answeri(nnmatch, invproto)
int nnmatch, invproto;

int lowanswer;

if (nnmatch >7) {
lowanswer = invproto;

} else {
lowanswer = invproto + (2 * nnmatch} - 15;
if (lowanswer <0)
lowanswer = 0;

}

return lowanswer;

/*************************************************************************/

/* This subroutine calculates the high boundary of inverse matching. */
Aok o K koK KoK oK o ok sk o o ks sk ok o sk ok sk s o ok sk sk sk ok sk ok ok ok ok ok skt sk ok ok ok sk ke sk ok stk ok ek ako ok koo sk sk ok ok ok f

answer2(nnmatch, invproto)
int nnmatch, invproto,;

int highanswer;

if (nnmatch >7) {
highanswer = invproto;
} else {
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highanswer = invproto - (2 * nnmatch) + 15;
if (highanswer >15)
highanswer = 15;

}

return highanswer;

}

/**********************************************************************#**/

/* This subroutine calculates the status bits after inverse matching. */
/o ok sk ok sk kR AR ok kR Rk kR Rk Rk ok ok koK k

status(low,high)
int low, high;

int mb, zb, stats ;

if (low ==high) {

mb = §;

zb = 0;
} else {

mb = 0 ;

zb = 0 ;

if (low ==0) {
if (high ==15)
zb = 1;

}

stats = mb * 2 + zb * 1;
return stats;

}
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The output of this simulation is the following:

n=1 INPUTS

time =0, proto=8, object=5, match=14, sum=14

time =1, proto=6, object=5, match=14, sum=28

time =2, proto=6, object=5, match=14, sum=42

time =3, proto=6, object=5, match=14, sum=586

time =4, proto=6, object=7, match=14, sum=70

time =5, proto=8, object=9, match=12, sum=82

time =6, proto=i5, object=11, match=11, sum=93

time =7, proto=i5, object=12, match=12, sum=105
time =8, proto=i5, object=11, match=1i1, sum=116
time =9, proto=2, object=9, match=8, sum=124
time =10, proto=6, object=6, match=15, sum=139
time =11, proto=6, object=6, match=15, sum=154
time =12, proto=6, object=5, match=14, sum=168
time =13, proto=6, object=5, match=14, sum=182
time =14, proto=6, object=5, match=14, sum=198
time =15, proto=¢6, object=5, match=14, sum=210

Neural Net Input for objective [1] = 13

n=2 INPUTS

time =0, proto=11, object=8, match=12, sum=12
time =1, proto=1i1, object=8, match=12, sum=24
time =2, proto=i1, object=8, match=12, sum=36
time =3, proto=11, object=8, match=12, sum=48
time =4, proto=i1, object=8, match=12, sum=60
time =5, proto=11, object=8, match=12, sum=72
time =6, proto=it, object=8, match=12, sum=84
time =7, proto=11, object=8, match=12, sum=96
time =8, proto=9, object=9, match=15, sum=111
time =9, proto=9, object=9, match=15, sum=126
time =10, proto=11, object=10, match=14, sum=140
time =11, proto=11, object=9, match=13, sum=153
time =12, proto=7, object=7, match=15, sum=168
time =13, proto=il, object=8, match=12, sum=180
time =14, proto=ii, object=8, match=12, sum=192
time =15, proto=11, object=8, match=12, sum=204

Neural Net Input for objective [2] = i2
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n=3 INPUTS

time =0, proto=3, object=0, match=12, sum=12

time =1, proto=4, object=0, match=11, sum=23

time =2, proto=5, object=1, match=11, sum=34

time =3, proto=T7, object=3, match=11, sum=45

time =4, proto=8, object=8, match=13, sum=58

time =5, proto=10, object=9, match=14, sum=72

time =6, proto=12, object=13, match=14, sum=86

time =7, proto=ii, object=12, match=14, sum=100
time =8, proto=10, object=10, match=15, sum=115
time =9, proto=10, object=9, match=14, sum=129
time =10, proto=10, object=9, match=14, sum=143
time =11, proto=11, object=11, match=15, sum=158
time =12, proto=12, object=12, match=15, sum=173
time =13, proto=13, object=14, match=14, sum=187
time =14, proto=13, object=14, match=14, sum=201
time =15, proto=12, object=13, match=14, sum=215

Neural Net Input for objective [3] = 13

n=4 INPUTS

time =0, proto=3, object=11, match=7, sum=7
time =1, proto=4, object=5, match=14, sum=21
time =2, proto=5, object=8, match=12, sum=33
time =3, proto=7, object=9, match=13, sum=46
time =4, proto=9, object=10, match=1i4, sum=60
time =5, proto=11, object=10, match=14, sum=74
time =6, proto=13, object=11, match=13, sum=87
time =7, protoe=15, object=13, match=13, sum=100
time =8, proto=15, object=13, match=13, sum=113
time =9, proto=14, object=12, match=13, sum=126
time =10, proto=13, object=10, match=12, sum=138
time =11, proto=io0, object=11, match=14, sum=152
time =12, proto=11, object=11, match=15, sum=167
time =13, proto=10, object=10, match=15, sum=182
time =14, protoe=10, object=10, match=15, sum=197
time =15, proto=9, object=10, match=14, sum=211

Neural Net Input for objective [4] = 13

neural net inputs are : 13 12 13 13
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Neural Wet Weights are:

15 14 13 14 15 14 15
¢ 0 0 1 2 3 &
12 12 12 12 12 12 12
13 12 11 10 9 10 11

Reural ¥Net Hatrix is:

15

9
12
12

i3
11
12
13

12 11 10 11 12 11 12 12 10
¢ 0 6 01 2 3 6 8
g 9 9 ¢ 9 9 9 9 9

i0 9 8 8 7 8 8 9 10

Output of Neural Net is:

7 7 6 7T 7T 7T 8 9 9

Input

afol = 7 invproto =
dali1l = 7 invproto =
dfz2] = 6 invproto =
dfz] = 7 invproto =
df4] = 7 invproto =
da[5] = 7 invproto =
ale] = 8 invproto =
da{7] = 9 invproto =
di8} = 9 invproto =
die] = ¢ invproto =
dafiol = 9 invproto =
dl1i] = 6 invproto =
dfi2] = 7 invprote =
dfi3l = 6 invprote =
dal14] = 8 invproto =
dfib]l = 8 invproto =

Status Key:

N o= O

1211 0 5 6 9 10
14 10 8 6 8 10 11
12 12 12 12 12 12 12
14 15 15 14 10 13 12

8
10 7
2]

0 3~
O O o X

it 12 14 10

g9 9 6 7T 6 8 8

8 low = 7
8 low = 7
8 low = 5
8 low = 7
8 low = 7
8 low = 7
8 low = 8
8 low = 8
8 low = 8
8 low = 8
8 low = 8
8 low = &
8 low = 7
8 low = §
8 low = 8
8 low = 8

It

0 O+ O - O 0 WWOoWwWHW O O O

===> some interval of length > 1 but
===> interval of maximal length
===> interval of minimal length

[=9

-

<156

Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status

NN O O ONNNMNOMNOO O OCOO
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Figure B.1: Prototype Jet for the Simulation

Consider the following example. Imagine that a fighter jet i1s approaching the
protected missile site of Figure B.1. This jet is friendly and therefore would be used
to train the neural network (it is used as the prototype). The plane is flown towards
the missile site under several conditions and angles. Four methods are used to sense

incoming craft:
¢ Visual Inspection
¢ Sonic Characteristics
¢ Radar Profile
¢ Communications/Beacons

Now the system is taken out of its learning mode, and another craft is sensed
approaching, as shown in Figure B.2. While this is also a jet and very similar in most
ways, it is not exactly the same. This new subject is termed the objective.

The data of the previous simulation may be interpreted as the comparison of these
two aircraft. The input data is presented graphically as Figures B.3-B.6. The output

of the simulation is presented as Figure B.7.
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Figure B.2: Objective Jet for the Simulation
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Figure B.3: Visual Inspection for Simulation 1
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Figure B.4: Sonic Characteristics for Simulation 1
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Figure B.5: Radar Profile for Simulation 1
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Figure B.6: Communications/Beacons for Simulation 1
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Figure B.7: Output of Simulation 1
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Iigure B.8: New Objective Jet for the Simulation

The narrow confidence interval of the output indicates that the object under
scrutiny is similar to the training data but not exact. A human or expert system

could then be used to take appropriate action.

Now imagine another incoming craft, shown in Figure B.8. The data for this new

encounter is presented in the following simulation.
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n=1 INPUTS

time =0, proto=6, object=15, match=§6, sum=6
time =1, proto=6, object=15, match=6, sum=12
time =2, proto=6, object=15, match=6, sum=18
time =3, proto=6, object=15, match=6, sum=24
time =4, proto=6, object=15, match=6, sum=30
time =5, proto=6, object=14, match=7, sum=37
time =6, proto=15, object=14, match=14, sum=51
time =7, proto=15, obiect=13, match=13, sum=64
time =8, proto=i5, object=12, match=12, sum=76
time =9, proto=2, object=11, match=6, sum=82
time =10, proto=6, object=10, match=11, sum=93
time =11, proto=6, object=8, match=13, sum=106
time =12, protoe=6, object=86, match=15, sum=121
time =13, proto=86, object=4, match=13, sum=134
time =14, proto=6, object=2, match=11, sum=145
time =15, proto=8, object=0, match=9, sum=154

MNeural Net Input for objective [1] = 9

n=2 IKNPUTS

time =0, prote=11, object=0, match=4, sum=4
time =1, proto=1i1, object=1, match=5, sum=9
time =2, proto=11i, object=2, match=6, sum=15
time =3, proto=1it, object=4, match=8, sum=23
time =4, proto=1ii, object=5, match=9, sum=32
time =5, proto=11, object=7, match=11, sum=43
time =6, proto=11, object=13, match=13, sumn=56
time =7, proto=11, cbject=12, match=14, sum=70
time =8, proto=9, object=11, match=13, sum=83
time =9, proto=9, object=92, match=15, sum=98
time =10, proto=11, object=13, match=13, sum=111
time =11, proto=11, cbject=12, match=14, sum=125
time =12, proto=7, object=8, match=14, sum=139
time =13, proto=11, object=86, match=10, surn=149
time =14, proto=11, object=3, match=7, sum=156
time =15, proto=11, object=2, match=6, sum=162

Neural Net Input for objective [2] = 10
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time
time
time
time

=12,
=13,
=14,
=15,

IKRPUTS

prote=i0,
proto=10,
proto=10,
proto=1i1,
proto=12,
proto=13,
proto=13,
proto=12,

object=11,
object=11,
object=11,
object=9,
cbject=5,
object=5,
object=h,
object=h,
object=b,
object=hb,
object=5,
object=5b,
object=5,
object=5,
object=5,
object=0,

Neural Net Input for objective [3] = 8

time

INPUTS

proto=9,

proto=11,
proto=13,
proto=156,
proto=15,
proto=14,
proto=13,
proto=10,
proto=il,
proto=10,
proto=10,
proto=9,

object=13,
object=14,
object=11,
object=9,
object=8,
cbject=7,
object=6,
object=5,
object=4,
object=5,
object=6,
object=9,
object=9,

Neural Net Input for objective [4] = 10

neural net inputs are :

g 10 8 10

match=7,
match=8,
match=9,
match=13,
match=12,
match=10,
match=8,
match=9,
match=10,
match=10,
match=10,
match=9,
match=8,
match=7,
match=T7,
match=3,

match=13,
match=12,
match=11,
match=9,
match=10,
match=15,
match=11,
match=8,
match=7,
match=7,
match=7,
match=9,
match=9,
match=11,
match=14,
match=15,

sum=7
sum=15
sum=24
sum=37
sum=49
sum=59
sum=67
sum=76
sum=86
sum=96
sun=106
sum=115
sum=123
sum=130
sum=137
sum=140

sum=13
sum=25
sum=36
sum=45
sum=55
sum=70
sum=81
sum=89
sum=96
sum=103
sum=110
sum=119
sum=128
sum=139
sum=153
sum=168

90
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Neural Ket Weights are:

1
i
1
1

0 0 W o W oMK

2
4
2
4

[+ v B¢+ o))

15 14 13 14 15 14 156 15 13
0 0 0 1 2 3 & 911
12 12 12 12 12 12 12 12 12
i3 12 11 10 9 10 11 12 13
Neural Net Matrix is:

8 7 7 7 8 7T 8 8 7
0 0 0 0 1 1 3 5 6
6 6 6 6 6 6 6 6 6
g8 7 6 6 b 6 6 7 8
Output of Neural Net is:

E 5 4 4 5 5 5 6 6

Input

gafo] = 5 invproto =
d[1] = 5 invproto =
df2] = 4 invproto =
d[3] = 4 invproto =
d[4} = 5 invproto =
d[s] = 5 invproto =
df6] = 5 invproto =
a[7] = 6 invproto =
d[s] = 6 invproto =
dfel] = 7 invproto =
d{10] = 8 invproto =
afi1) = & invproto =
al12] = 4 invproto =
d[13] = 5 invproto =
al14] = 6 invprote =
d[15] = 6 invproto =
Status Key:

N - O
i

11
10
12
15

(e TR« v R )

0 5 6 910
§ 6 8 10
12 12 12 12
i5 14 10 13

w oo

0O ;> Wi

[ R v B¢ B VY

o Je R« V1 ]

11
i2
12

~N ] ® "

Tro W WO N W W Wk A WW

==> gome interval of length > 1 but
===> jinterval of maximal length
==> interval of minimal length

<15

Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status

OO OO0 OO0 OO OO0 OO 0o
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Figure B.9: Visual Inspection for Simulation 2
This data is represented graphically in Figures B.9-B.12. The output of the second

simulation is presented as Figure B.13.

Obviously this new craft is very unlike the training data of Figure B.1. The
sensory data reflects this discrepancy. The large confidence interval indicates that

there is a great deal of uncertainty as to the nature of the new objective.

Again, an expert system or human operator could make a final judgment as to the
action to be taken. In this case, that could be to launch a more detailed investigation

or simply repeat the process later.

This example illustrates some important characteristics of the fuzzy cognitive
system. First, we are dealing with real-time computations and so speed is vital.
Second, the system produces quantitative and qualitative information. This is not

simply pattern recognition since an expression of uncertainty is produced.
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Figure B.10: Sonic Characteristics for Simulation 2
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Figure B.11: Radar Profile for Simulation 2



APPENDIX B. SOFTWARE SIMULATIONS 94

16.00 : : : o
: H - CB2objsct Obyeciva |

3 ? ]-—*— CB2piote Probotyps|:

: F :

Membership

4.00 -

0.00 : ; t
0.00 375 7.50 11.25 15,00

Relative Charactleristic

Figure B.12: Communications/Beacons for Simulation 2
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Figure B.13: Output of Simulation 2



Bibliography

[1]
2]

3]

[4]

Armstrong J. A. Chip-Level Modeling with VHDL, Prentice Hall, 1989.

Black, M. Vagueness - An excercise in Logical Analysis, Philos.Sci., Vol.4, 1937,

pp.427-455.

Blight, D.C. Concurrent Error Detection Techniques, internal document, Uni-

versity of Manitoba, 1988.

Bortolan, G. and R. Degani, K. Hirota, W. Pedrycz. Classification of Electrocar-
diographic Signals with the aid of Fuzzy Pattern Matching, Proc. Symp. Appli-

cations of Fuzzy Sets, lizuka88, Japan.

Canadian Microelectronics Corporation. CMOS3 DLAM Cell Library, Kingston,

Ontario, Canada, 1989.

Canadian Microelectronics Corporation. Guide to the Integrated Circuit Imple-
mentaiton Services of the Canadian Microelectronics Corporation, Version 4.0,

Queen’s University, Canada, March 1989.

Chu, L.C. and B.W. Wah. Fault Tolerant Neural Networks with Hybrid Redun-
dancy, International Joint Conference on Neural Networks, San Diego, Califonia,

USA, 1990, pp.11639-11649.



BIBLIOGRAPHY 96

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[16]

Diamond, J. and R. McLeod, W. Pedrycz. A Fuzzy Cognitive System: Founda-
tions and VLSI Implementation, 3rd IFSA Congress, Seattle, Washington, 1989,

pp.396-399.

Grossberg, S. Neural Networks and Natural Intelligence, MIT Press, Cambridge,
Mass. 1988.

Hortensius, P.D. and R.D. McLeod, W. Pries, D.M. Miller, H.C.Card. Cellular
Automata-Based Pseudorandom Number Generators for Built-In Self Test, Com-

puter Aided Design of ICs and Systems, Vol.8, No. 8, Aug. 1989, pp.842-859.
IEEE Standard VHDL. Language Reference Manual, IEEE Std 1076-1987.

Johnson, B.W. Design and Analysis of Fault-Tolerant Digital Systems, Addison
Wesley, USA, 1989.

Johnson, C. NASA Unites Neural Nets, Fuzzy Logic, Electronic Engineering

Times, May 23 1988, pp.40-41.

Kaufmann, A. and M.M. Gupta. Introduction to Fuzzy Arithmetic : Theory and
Applications, Van Nostrand Reinhold Co., New York, N.Y., 1985.

Kostiuk, A. R. QUISC: An Interactive Silicon Compiler, M.Sc. Thesis, Depart-
ment of Electrical Engineering, Queen’s University, Kingston, Ontario, June

1987.

Lim, M. and Y. Takefwji. Implementing Fuzzy Rule-Based Systems on Silicon

Chips, IEEE Expert. Vol. 5, No. 1 February 1990, pp.31-45.



BIBLIOGRAPHY ) 97

(17

[18]

[19]

[21]

22}

[23)

[24]

[25]

Mano, M. M. Digital Logic and Computer Design, Prentice Hall, New Jersey,

1979.

McClelland, J.L. and D.E. Rumelhart. Ezplorations in Parallel Distributed Pro-
cessing: A handbook of Models, Programs and Ezcercises, Cambridge, MA, USA,
MIT Press, 1988.

McCulloch, W.S. and W. Pitts. A Logical Caleulus of the Ideas Imminent in
Nervous Activity, Bulletin of Mathematical Biophysics, Number 5, 1943, pp.115-

133.

Miller, D.M. A Simple Switch Level Simulator and Its Applications to Stuck-Open
Faults in CMOS, Second Technical Workshop on New Directions for Integrated

Circuit Testing, Winnipeg, April 1987. pp. 195-205.
Minsky, M. and S. Papert. Perceptrons, Cambridge, MA, USA, MIT Press, 1969.

Newell, A. and H. Simon. Computer Science as Empirical Inquiry: Symbols and

Search, Mind Design, USA, MIT Press, 1981, pp.35-66.

Pedrycz, W. A Fuzzy Cognitive Structure for Pattern Recognition, Pattern Recog-

nition Letters, to appear.

Pedrycz, W. Course Notes for Recent Advances in Computer Engineering, Uni-

versity of Manitoba, 1989.

Pedrycz, W. Direct and Inverse Problems in Comparison of Fuzzy Data, Fuzzy
Sets and Systems, vol.34 1990, pp.233-236.



BIBLIOGRAPHY 98

[26]

[27]

[28]

[30]

(31]

[32]

[33]

[34]

[35)

Pedrycz, W. Fuzzy Conirol and Fuzzy Systems, Research Studies Press, J. Wiley,

New York, 1989.

Pedrycz, W. Selected Issues of Frame of Knowledge Representation Realized by

Means of Linguistic Labels, submitted to the Journal of Intelligent Systems.

Podaima, B.W. and R.D. McLeod. Weighted Test Pattern Generation for Built-
In Self Test using Cellular Automata, Third Technical Workshop on New Direc-

tions in Testing, Halifax, October, 1988.

Rennels, D.A. Fault-Tolerant Computing - Concepts and Framples, IEEE Trans-

actions on Computers, Vol. C-33, Num. 12, Dec. 1984, pp. 1116-1129.

Rubin, S. R. An Integrated Aid for Top-Down FElectrical Design, Fairchild Lab-

oratory for Artificial Intelligence Research, Palo Alto California, 1983.

Schneider, R. An Interactive MOS Digital Timing Simulator with an APL User
Interface, M.Sc. Thesis, Department of Electrical Engineering, University of

Manitoba, 1985,
SDA Systems. SDA System Manual, USA, 1988.
Simucad, Inc. Stlos II Logic and Fault Simulator User’s Manual, USA, 1988.

Stauffer, D. Introduction to Percolation Theory, Taylor & Francis Ltd., London,

England, 1985.

Tanenbaum, Andrew S. Structured Computer Organization, Prentice Hall, En-

glewood Cliffs, N.J, 1984. pp. 124-126.



BIBLIOGRAPHY 99

[36] Togai, H. and H. Watanabe. Ezpert System on o Chip: An Engine for Real-Time

(37]

[38]

[39]

(40]

[42]

[43]

[44]

Approzimate Reasoning, IEEE Expert, 1, 1986, pp. 55-62.

Watanabe, H. and W.D. Dettloff, K.E. Yount. VLSI Chip for Fuzzy Logic In-
ference, Proc. 3rd Intern. Fuzzy System Assoc. Congress, August 6-11, 1989,

pp.292-295.

Weste, N. and K. Eshraghian. Principles of CMOS VLSI Design: a systems

perspective, Addison-Wesley, Reading, Mass., 1985.
Williams, T.W. VLSI Testing, IEEE Computer, 1984, pp.126-136.

Xilinx, Inc. The Programmable Gate Array Design Handbook, Xilinx Inc., USA,

1986.

Yamakawa, T. A Simple Fuzzy Computer Hardware System Employing Min and
Maz Operations - A Challenge to 6th Generation Computer, Proc. 2nd II'SA

Congress, Tokyo, 1987, pp.827-830.

Yasunaga, M. et al. Design, Fabrication and Evaluation of a 5-Inch Wafer Scale
Neural Network LSI composed of 576 Digital Neurons, International Joint Con-

ference on Neural Networks, San Diego, Califonia, USA, 1990, pp.I1527-11535.

Yestrebsky, J., and P. Basehore, J. Reed. Neural Bit-Slice Computing Element,
Micro Devices, Lake Mary, Florida, USA.

Zadeh, L.A. Fuzzy Sets, Information and Control, Vol.8, 1965, pp.338-353.



