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Abstract

Fractional factorial designs have been proven useful for efficient data collection

and are widely used in many areas of scientific investigation and technology. The

study of these designs’ structure paves a solid ground for the development of robust

parameter designs.

Robust parameter design is commonly used as an effective tool for variation

reduction by appropriating selection of control factors to make the product less

sensitive to noise factor in industrial investigation. A mixed-level robust parameter

design is an experimental design whose factors have at least two different level

settings. One of the most important consideration is how to select an optimal robust

parameter design. However, most experimenters paid their attention on two-level

robust parameter designs. It is highly desirable to develop a new method for selecting

optimal mixed-level robust parameter designs.

In this thesis, we propose a methodology for choosing optimal mixed-level frac-

tional factorial robust parameter designs when experiments involve both qualitative

factors and quantitative factors. At the beginning, a brief review of fractional facto-

rial designs and two-level robust parameter designs is given to help understanding

our method. The minimum aberration criterion, one of the most commonly used

criterion for design selection, is introduced. We modify this criterion and develop two

generalized minimum aberration criteria for selecting optimal mixed-level fractional

factorial robust parameter designs. Finally, we implement an effective computer



program. A catalogue of 18-run optimal designs is constructed and some results are

given.
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Chapter 1

Introduction

Design of experiment is the process of planning studies and investigating efficient

methods for collecting data for scientific investigation. It has a long history of

successful applications in scientific research and engineering development. It is a

basic tool to identify the key factors among a large number of factors and test the

effects among the involved factors on the process.

Particularly, factorial designs are widely employed when the treatments have

factorial structure. R. A. Fisher (1971) was a pioneer of factorial design and

contributed many basic ideas in agricultural experiments. Box, Hunter and Hunter

(2005) were early advocators of using experimental design methods in the industrial

setting. In the last several decades, researchers’ interest in factorial designs was

increased. They developed various theories to further understand factorial designs

and their applications in industrial, agricultural, biological, pharmaceutical, and

manufacturing sciences, etc.

Full factorial designs, which include all the possible runs, allow us to estimate all

the factor effects. However, they are time consuming and costly. Therefore, it is not
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suitable when an experiment involves a large number of factors, which is often the

case in practice.

To save time and cost of running experiments, fractional factorial designs (FFDs),

whose runs are chosen from full factorial designs, were presented because of their

small run sizes and flexibility. Clearly, there are many ways to choose the runs from

full factorial designs. A regular fractional factorial design (Box and Hunter, 1961,

and Fries and Hunter, 1981) can be obtained when its runs are chosen according to

some rule. Otherwise, the design is called a non-regular fractional factorial design

(Plackett and Burman, 1946).

However, there exists a disadvantage when fractional factorial designs are used,

that is, the effects of factors can be aliased with each other and can not be estimated.

Therefore, it is hard to separate the influence of effects on responses.

Usually, investigators consider not only the estimation of the effects of interest

but also the limitation of the cost of performing the experiment. Since when the

number of factors and run size are fixed, we have many possible FFDs to choose,

how to select optimal designs, which allow us to estimate the most effects with the

least cost, among these designs becomes a primary problem for us. The problem

led to the development and use of various optimality criteria. The most common

criterion is the minimum aberration. It was proposed by Fries and Hunter (1980)

for regular designs and was further extended to general designs by Tang and Deng

(1999), Cheng and Ye (2004), and Lin (2014), etc.

The study of detailed structure of FFDs paves a solid ground for the development

of robust parameter design (RPD), which was pioneered by Taguchi (1986). RPD

is used as a statistical methodology for variation reduction of a process through
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changing the setting of controllable factors in order to reduce process sensitivity to

uncontrollable factors. There are two types of factors included in RPDs: control

factors and noise factors. Control factors have adjustable values during experiments

as opposed to noise factors whose values are difficult to control under normal

operating conditions.

Robust parameter designs have been studied extensively in the last several

decades (See Wu and Hamada (2000), Montgomery (2005), Wu and Zhu (2003), and

Bingham and Li (2002), etc). In particular, Zhu (2000) and Bingham and Sitter

(2003) studied minimum aberration regular robust parameter designs and Loeppky

(2006) investigated the minimum aberration non-regular robust parameter designs

and provided a catalogue of optimal designs.

In practical experiments, factors can be classified into two broad categories: quan-

titative factors and qualitative factors. A quantitative factor, such as temperature or

reactant concentration, is a variable whose levels can be connected with a numerical

scale. A qualitative or categorical factor, such as gender, color or batch of material,

is a variable whose level cannot be ordered.

Although a lot of research has been done for robust parameter designs, almost

all the work focused on two-level designs, in which all the factors have two levels.

However, in practice, many experiments can involve factors with three or more levels,

such designs are called mixed-level designs. Up to now, none of the existing work

studies optimal mixed-level robust parameter designs.

The objective of this thesis is to develop an approach to the selection of optimal

mixed-level RPDs with the consideration of both qualitative factors and quantitative

factors. Optimal RPDs will be searched and tabulated for 18-run mixed-level designs.
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In Chapter 2, we start with an overview of factorial designs, including regular and

non-regular two-level fractional factorial designs and mixed-level fractional factorial

designs. The tool of indicator function and minimum aberration optimality criteria

are introduced to study these designs. In addition, two-level RPDs are introduced. In

Chapter 3, we propose a general framework that can be used to express mixed-level

general RPDs. A new ordering principle of RPDs that include both qualitative and

quantitative factors is introduced and the minimum aberration criterion is extended

to mixed-level fractional factorial RPDs. Examples are given to further illustrate

the method. In Chapter 4, we construct minimum aberration designs from a 18-run

mixed-level design. A catalogue of 18-run optimal mixed-level fractional factorial

RPDs is provided. We also give two illustrative examples.
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Chapter 2

Factorial Designs

In practice, many experiments involve factors. Factorial designs are commonly

used in agricultural and industrial experiments (see Box, Hunter and Hunter, 1978

and Kempthorne, 1952) as an important systematic way to test the effect of multiple

factors on a response. An important consideration is how to select optimal factorial

designs so that experimenters can balance their need for as much precision of

parameters’ estimators and their desire to reduce as much costs of experimentation

as possible. Some criteria such as resolution (See Box and Hunter, 1961) and

minimum aberration (see Fries and Hunter, 1980), have been used to select good

designs.

This chapter presents factorial designs. In section 2.1, we will discuss regular

and non-regular two-level factorial designs. The difference between full factorial

designs and fractional factorial designs will be given. In section 2.2, we will introduce

more general designs, their indicator functions and some optimality criteria, such as

minimum aberration. Finally, in section 2.3, two-level factorial designs for robust

parameter experiments will be presented.
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2.1 Two-level Factorial Designs

2.1.1 Two-level Full Factorial Designs

In many industrial experiments, investigators are interested in studying the

effects of factors, as well as interactions between factors on a process. A two-level

factorial design is a design with each factor at two level settings. Generally speaking,

if there are k factors, each at 2 levels, then an experimental design with all possible

combinations of all the k factors would have 2k runs in total, which is called a two-

level full factorial design. These designs are used to decide which factors contribute

to important effects on the process.

In order to illustrate the estimation of effects, we consider a 23 full factorial

design which is used to investigate the influence of three factors, X1: initial pH (7.4

or 8.2), X2: temperature (30oC or 37oC) and X3: the number of baffles in the flask

(0 or 2), on the amount of nuclease (Max Morris, 1950)

Each factor has two level settings, denoted by -1 (low) and +1 (high). For

example, two temperatures are tested in the experiment, 30oC and 37oC, which are

denoted by -1 and +1, respectively. We want to try various combinations of these

settings so as to establish the best way for estimating the effects. There are 23 = 8

runs in total. These eight combinations are shown in the design matrix X:
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X =



X1 X2 X3

−1 −1 −1

+1 −1 −1

−1 +1 −1

+1 +1 −1

−1 −1 +1

+1 −1 +1

−1 +1 +1

+1 +1 +1


(2.1)

Matrix 2.1 helps us to test all the main effects. For Example, the effect of X1

is E(X1) = ȳ(X1+)− ȳ(X1−), where E(X1) represents the effect of X1, ȳ(X1+) is

the mean of the response at the high level of X1 and ȳ(X1−) is the mean of the

response at the low level of X1.

Running the full complement of all possible factor combinations means that we

can estimate all the main and interaction effects. There are three main effects, X1,

X2 and X3, three two-factor interactions, X1X2, X1X3, X2X3, and one three-factor

interaction, X1X2X3, all of which appear in the full model as follows:

Y = β0 + β1X1 + β2X2 + β3X3 + β12X1X2+

β13X1X3 + β23X2X3 + β123X1X2X3 + ε,

(2.2)

where ε ∼ N(0, σ2). A full factorial design allows us to estimate all eight coefficients
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{β0, ..., β123}. The 23 full factorial design matrix is

X =



(1) X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3

+1 −1 −1 −1 +1 +1 +1 −1

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 +1 −1 −1 +1 −1 +1

+1 +1 +1 −1 +1 −1 −1 −1

+1 −1 −1 +1 +1 −1 −1 +1

+1 +1 −1 +1 −1 +1 −1 −1

+1 −1 +1 +1 −1 −1 +1 −1

+1 +1 +1 +1 +1 +1 +1 +1


(2.3)

2.1.2 Regular Two-level Fractional Factorial Designs

In the previous subsection, some methodologies and concepts about full fac-

torial designs have been introduced. This subsection will give a brief and formal

introduction of the basics of two-level regular fractional factorial designs (FFD) so

as to build a foundation for the later extension and development.

In practice, many experiments involve plenty of factors, full factorial designs

are not feasible for experiments. For instance, when there are 10 factors in an

experiment, the total runs needed is 210 = 1024 which is too expensive and time

consuming. Thus, fractional factorial designs, which consist of carefully chosen

fractions of full factorial designs, were proposed.

The following is an Example to illustrate how to construct a two-level regular

FFD with five factors. We start with the 23 full factorial design (2.1) with three

factors X1, X2, and X3. Add a fourth column to the design matrix as factor X4,

using X4 = X1X2 to manufacture it, i.e., create new column by multiplying the

indicated column 1 and column 2 together. Do like wise for factor X5 = X1X3. The
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resultant matrix is the design matrix of a 8-run FFD with 5 factors. We call X4 and

X5 as generators.

The design matrix is

X =



(1) X1 X2 X3 X4 = X1X2 X5 = X1X3

+1 −1 −1 −1 +1 +1

+1 +1 −1 −1 −1 −1

+1 −1 +1 −1 −1 +1

+1 +1 +1 −1 +1 −1

+1 −1 −1 +1 +1 −1

+1 +1 −1 +1 −1 +1

+1 −1 +1 +1 −1 −1

+1 +1 +1 +1 +1 +1


(2.4)

As can be seen, X1X2X4 will yield a column of +1’s. Similarly X1X3X5 and

(X1X2X4)(X1X3X5) = X2X3X4X5 will yield two columns of +1’s, respectively.

These relations can be written as

I = X1X2X4 = X1X3X5 = X2X3X4X5, (2.5)

which is called the defining relation of this 25−2 design.

Usually, a two-level regular FFD with k factors and p generators is denoted by a

2k−p FFD. The generators can completely determine the design. Each term in the

defining relation is called a word. The word length for a regular design is defined as

the number of factors in a word, for instance, the length of the word X1X2X4 is 3.

Although we can use a 25−2 FFD to explore the effect of each factor without

performing 25 = 32 runs, the reduction in run-size come with a cost. Some factorial

effects among the involved factors are aliased with each other. For Example, it is
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hard to distinguish the effect of X1 from the effect of X2X4 interaction. This can be

found from the defining relation (2.5) by multiplication:

X1 = X1I = X1(X1X2X4) = X2
1X2X4 = X2X4.

In this case, we can say X1 is aliased with X2X4. Similarly, we can find all the alias

relations of the design. For Example, X2X3 is aliased with X4X5, since

X2X3 = X2X3I = X2X3(X2X3X4X5) = X4X5.

An important property of an FFD is its resolution (Box and Hunter, 1961) which

describe how badly the effects of a design are aliased (or confounded). Formally,

the resolution is defined as the length of the shortest word in the defining relation.

Generally, designs with higher-resolution are considered better, and the aim of a

design is usually to find an FFD with the highest-resolution for a given number of

factors when the run size is fixed. However, designs with the same resolution do not

mean they have same properties, which is illustrated through the use of Example

2.1.2.

Example 2.1.2 Consider two 27−2 FFDs A1 and A2 generated by

X6 = X1X2X3, X7 = X3X4X5,

and

X6 = X1X2X3, X7 = X2X3X4X5,

respectively. Their defining relations are

I = X1X2X3X6 = X3X4X5X7 = X1X2X4X5X6X7
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and

I = X1X2X3X6 = X2X3X4X5X7 = X1X4X5X6X7,

respectively. Both A1 and A2 has Resolution IV, since the shortest word in both

defining relations is 4. Although they have the same resolution, A1 has two four-letter

words and A2 has only one four-letter word, which means there are more aliased

two-factor interactions in design A1. Since main effects and two-factor interactions

are usually important and needed to be estimated, A2 is better than A1.

Fries and Hunter (1980) introduced word length pattern (WLP) and minimum

aberration as an additional index to distinguish among designs with the same

resolution. It is based on the following hierarchical ordering principle (Wu and

Hamada, 2000)

(1) lower order effects are more important than higher order effects

(2) effects of the same order are equally important.

For example, X1 is more significant than X1X2 and X1X2 is equally important as

X2X3.

Now we present the definitions of word length pattern and minimum aberration

of a design.

Definition 2.1.1 For a regular 2k−p FFD A, let Wi(A) be the number of words of

length i in the defining relation of A. Define

W (A) = (W1(A),W2(A), ...,Wk(A)),

to record the frequencies of different lengths of the words. W (A) is called the Word

Length Pattern (WLP) of the design A.
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Definition 2.1.2 (Minimum Aberration) Given two 2k−p fractional factorial designs

A1 and A2. A1 is said to have less aberration if there exists s such that

W1(A1) = W1(A2),W2(A1) = W2(A2), ...,Ws−1(A1) = Ws−1(A2),Ws(A1) < Ws(A2).

We say A1 is the minimum aberration design if no other design has less aberration

than A1.

In Example 2.1.2, A2 has only one four-factor interaction and two five-factor

interaction. So by Definition 2.1.1, the wordlength pattern of A2 is (0, 0, 0, 1, 2, 0,

0). Meanwhile, A1 has two four-factor interaction and one six-interaction. So A1’s

wordlength pattern is (0, 0, 0, 2, 0, 1, 0). The number of four-factor interaction of

A2 is less than that of A1. Therefore, A2 has less aberration. The resolution and

minimum aberration criterion can be combined by looking at an ordered list of the

number of words of each length for A1 and A2 as shown in the following table:

Design Generators Wordlength Pattern Resolution

A1 X6 = X1X2X3, (0, 0, 0, 2, 0, 1, 0) IV

X7 = X3X4X5

A2 X6 = X1X2X3, (0, 0, 0, 1, 2, 0, 0) IV, less aberration

X7 = X2X3X4X5

We can see that a minimum aberration design is the one for which the first

unequal entry is the smallest.

Minimum aberration designs are generally deemed optimal since they have the

smallest number of alias relationships between low-order effects. In Example 2.1.2,
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A1 leads to 6 pairs of aliased 2-factor interactions, which are

(X1X2, X3X6), (X1X3, X2X6), (X1X6, X2X3) because I = X1X2X3X6;

(X3X4, X5X7), (X3X5, X4X7), (X3X7, X4X5) because I = X3X4X5X7.

But A2 aliases only the first 3 pairs of two-factor interactions, and therefore we

think A2 is better.

As such, it is popular to use minimum aberration criterion to decide how to

assign additional factors to interaction columns in a design matrix. Except for FFDs,

the minimum aberration criterion can be adapted for more complex experimental

situations. The generalized minimum aberration, introduced by Tang and Deng

(1999), is a generalization of the minimum aberration, and applied to estimate the

goodness of general FFDs. Zhu (2000) and Bingham and Sitter (2003) developed

the minimum aberration criterion for Robust Parameter Designs. We will discuss

these developments in the following sections. For more work on minimum aberration

designs, see Bingham and Sitter (1999), Li and Lin (2003), Cheng and Tang (2005),

and Ai, Xu, and Wu (2010), etc.

2.1.3 Non-regular Two-level Fractional Factorial Designs

A major constraint attached to the use of regular two-level FFDs is the require-

ment that run sizes must be powers of two. When this restriction is not practical,

non-regular fractions, which do not preserve all of the structure of regular plans, may

be used. In the past decade or so, a great deal of work has been done on the class of

non-regular designs and its various extensions. Except for the flexibility of run size,
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non-regular designs has one more advantage that some factorial effects are partially

aliased, unlike regular FFDs, in which effects are either fully aliased or independent.

Wu and Hamada (2000) discussed some methods for analyzing non-regular designs.

Unlike regular designs, which can be studied through their generators or defining

relations, non-regular designs do not have generators, thus, it is hard to explore

these designs. Recently, Fontana et al. (2000) and Ye (2003) showed that any FFD

can be represented by an indicator polynomial function, or indicator function.

Definition 2.1.3 (Fontana, Pistone and Rogantin, 2000 and Ye, 2003)

Denoted by D a 2k full factorial design. Each run is denoted by the vector x =

(x1, x2, ..., xk), where x2i = 1, i = 1, 2, ..., k. The indicator function of a two-level

fractional factorial design A with n runs from D is defined as

FA(x) =

{
Nx if x ∈ A,
0 if x 6∈ A and x ∈ D,

where Nx indicates how many times the given run x appears in the design A.

Suppose M is the set of all subsets of {1, 2, ..., k} and M ∈ M. Let XM(x) =∏
m∈M xm. Note that ∅ is an element of M and X∅(x) = 1. Fontana et al. (2000)

and Ye (2003) pointed out that FA(x) can be represented by a polynomial function,

that is

FA(x) =
∑
M∈M

bMXM(x), (2.6)

where the coefficient of XM can be determined by

bM =
1

2k

∑
x∈F

XM(x). (2.7)
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Obviously, the constant b∅ = n
2k

. Fontana et al. (2000) showed that |bM | is

always less than or equal to |b∅| and a design is a regular design if and only if

|bM | = |b∅|. The indicator function of a regular design can be easily obtained from

its generators.

Example 2.1.3 Consider the regular 25−2 FFD (2.5). The indicator function

can be easily determined by its generators

F (x) =
23

25
(1 +X1X2X4)(1 +X1X3X5)

=
1

4
(1 +X1X3X5 +X1X2X4 +X2

1X2X3X4X5)

=
1

4
(1 +X1X3X5 +X1X2X4 +X2X3X4X5),

However, for non-regular factorial designs, their indicator functions are not as

simple as those of regular designs. They can be obtained by (2.6) and (2.7).

Example 2.1.4 We consider a non-regular 12-run factorial design listed in

Table 2.1.
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Table 2.1: A projection of 12-run non-regular factorial design

X1 X2 X3 X4 X5

1 1 1 1 1

-1 1 -1 1 1

-1 -1 1 -1 1

1 -1 -1 1 1

-1 1 -1 -1 -1

-1 -1 1 -1 -1

-1 -1 -1 1 -1

1 -1 -1 -1 -1

1 1 -1 -1 1

1 1 1 -1 -1

-1 1 1 1 -1

1 -1 1 1 -1

The indicator function of the design is

F (x) =
1

25
(12 + 4X1X2X3 − 4X1X2X4 + 4X1X2X5 + 4X1X3X4 − 4X1X3X5

+ 4X1X4X5 + 4X2X3X4 − 4X2X3X5 + 4X2X4X5 − 4X3X4X5

− 4X1X2X3X4 + 4X1X2X3X5 − 4X1X2X4X5 + 4X1X3X4X5

+ 4X2X3X4X5 + 8X1X2X3X4X5)

=
1

8
(3 +X1X2X3 −X1X2X4 +X1X2X5 +X1X3X4 −X1X3X5 +X1X4X5

+X2X3X4 −X2X3X5 +X2X4X5 −X3X4X5 −X1X2X3X4 +X1X2X3X5

−X1X2X4X5 +X1X3X4X5 +X2X3X4X5 + 2X1X2X3X4X5)

(2.8)

bt can be used as a measurement that reflects the degree of aliasing between

effects. In Example 2.1.3, the coefficient of X1X3X5 is equal to 1/4 which is the
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same as the constant b∅ of the indicator function. It indicates that X1 is fully aliased

with X3X5, or X3 is fully aliased with X1X5, or X5 is fully aliased with X1X3. In

Example 2.1.4, the coefficient of X1X2X3 is 1/8 which is smaller than the constant

3/8. This indicates that X1 is partially aliased with X2X3, or X2 is partially aliased

with X1X3, or X3 is partially aliased with X1X2.

Indicator function is a powerful tool for studying factorial designs, especially non-

regular designs. For example, using indicator functions, Li, Lin, and Ye (2003) studied

optimal non-regular foldover designs, Balakrishnan and Yang (2006) investigated

the relation between the designs with different resolutions, Lokeppy (2006) studied

optimal non-regular two-level RPDs, and Balakrishnan and Yang (2009) discussed

various non-regular semifoldover designs. For more work, see Edwards (2011) and

Ou, Qin, and Li (2011), etc.

In section 2.1.2, we briefly introduced wordlength, wordlength pattern, and

minimum aberration criterion for regular designs. Deng and Tang (1999) extended

these concepts to general two-level factorial designs. Li, Lin and Ye (2002) redefined

them using indicator functions as follows.

Definition 2.1.4 Let A be a two-level FFD and (2.6) be its indicator function. The

generalized word length of XM is ||M||+ (1− |bM/b∅|), where ||M|| is the number

of letters in the word XM.

For instance, in Example 2.1.3, the length of the word X1X3X5 is ||M||+ (1−

|bM/b∅|) = 3+1−|1
4
/1
4
| = 3. In Example 2.1.4, the length of the word X1X2X3X4X5

is ||M||+ (1− |bM/b∅|) = 5 + (1− | 8
25
/12
25
|) = 5 + 1− 2/3 = 51

3
.
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Definition 2.1.5 Let A be a two-level FFD. Define the extended word length pattern

of A to be

(f1, ..., f1+(n−1)/n, f2, ..., f2+(n−1)/n, ...., fk., ..., fk+(n−1)/n),

where fi+j/n is the number of words of length i+ j/n.

Tang and Deng (1999) proposed the generalized resolution of two-level FFD A

based on extended WLP, which is the smallest i+ j/n such that fi+j/n 6= 0.

In Example 2.1.4, there are 10 length 32
3

words, 5 length 42
3

words and 1 length

51
3
. So f3 2

3
= 10, f4 2

3
= 5 and f5 1

3
= 1. The extended WLP is [(0,10,0), (0,5,0),

(1,0,0)] and its generalized resolution is 32
3
. The minimum aberration design can be

obtained by sequentially minimizing extended WLP.

2.2 Mixed-level Fractional Factorial Designs

In practical experiments, many factors have more than two levels. For instance,

quite often, experimenters would like to choose several different relative humidities

to increase the analyzing accuracy. If three relative humidities 70%, 80%, 90% are

chosen, then the factor “relative humidity” would have three levels: 70%, 80% and

90%. Considering these situations, general factorial designs or mixed-level factorial

designs which include factors with different level settings, are usually used. For

example, the design in Table 2.2 is a mixed-level design with 8 factors: one has two

levels and the others have three levels.
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Table 2.2: L18: A 18-Run 2137 Mixed-Level Design

Two-level factor Three-level factor

X1 X2 X3 X4 X5 X6 X7 X8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 2 2 2 2 2 2

0 1 0 0 1 1 2 2

0 1 1 1 2 2 0 0

0 1 2 2 0 0 1 1

0 2 0 1 0 2 1 2

0 2 1 2 1 0 2 0

0 2 2 0 2 1 0 1

1 0 0 2 2 1 1 0

1 0 1 0 0 2 2 1

1 0 2 1 1 0 0 2

1 1 0 1 2 0 2 1

1 1 1 2 0 1 0 2

1 1 2 0 1 2 1 0

1 2 0 2 1 2 0 1

1 2 1 0 2 0 1 2

1 2 2 1 0 1 2 0

Note that each row corresponds to a run, such as treatment combination, and

each column to a factor. Label the eight columns as X1, X2, X3, X4, X5, X6, X7,

and X8 and let x1, x2,..., x8 denote the levels of the eight columns.

A lot of work has been done for mixed-level fractional factorial designs. For

example, Wu and Zhang (1993) discussed minimum aberration factorial designs with

two-level and four-level factors; Xu and Wu (2001) studied a generalized minimum

aberration criterion for comparing general fractional factorial designs and Tang and

Xu (2014) establish some theoretical results for three-level fractional factorial designs

and obtain the best level permutations for regular designs with 27 and 81 runs. For
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more work, see Cheng and Wu (2002), Liu, Fang, and Hichernell (2006), and Guo,

Simpson, and Pignatiello (2007), etc.

2.2.1 Indicator Functions of General Factorial Designs

In section 2.1.3, indicator function of a two-level FFD is briefly discussed. Cheng

and Ye (2004) extended this definition further to general factorial designs, where

factors can have different levels.

Definition 2.2.1 (Cheng and Ye, 2004) Denoted by D a full factorial design and

A a general FFD in D, that is, for any x ∈ A, x ∈ D. The indicator function FA(x)

of A is a function defined on D, such that for any x ∈ D, it counts the number of

appearances of the run x in A.

Assume that D contains k factors X1,X2,...,Xk. The levels of ith factor Xi are

elements in the set Si = {0, 1, 2, ..., si − 1}. Clearly, the number of runs in D is

N = s1s2...sk. For each factor Xi, define ci0(x), ci1(x),..., cisi−1(x) such that

∑
x∈{0,1,...,si−1}

ciu(x)civ(x) =

{
0 if u 6= v

si if u = v.

ci0(x), ci1(x), ..., cisi−1(x) are called orthogonal contrasts. Obviously, if Xi is a two-level

factor, then

(ci0(0), ci0(1)) = (1, 1), (ci1(0), ci1(1)) = (−1, 1).

Wu and Hamada (2000) pointed out that the linear and quadratic contrasts for a

three-level factor are

(ci0(0), ci0(1), ci0(2)) = (1, 1, 1),
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(ci1(0), ci1(1), ci1(2)) = (−
√

3/2, 0,
√

3/2),

(ci2(0), ci2(1), ci2(2)) = (1/
√

2,−
√

2, 1/
√

2).

For a given design and a run x = (x1, x2, ..., xk) ∈ D, a polynomial term is

defined as

Ct(x) =
k∏

i=1

citi(xi), (2.9)

where t = (t1, t2, ..., tk) ∈ T and T = S1 × S2 × ...Sk. In general, C0(x) = 1.

Cheng and Ye (2004) showed that FA(x) has a polynomial form and a general

FFD can be represented by an indicator function.

Theorem 2.2.2 (Cheng and Ye, 2004)

Denoted by D a full factorial design with N runs and A a general FFD in D. FA(x)

has the form

FA(x) =
∑
t∈T

btCt(x), (2.10)

for all x ∈ D. The coefficients bt can be calculated by the formula

bt =
1

N

∑
x∈A

Ct(x). (2.11)

To illustrate the use of mixed-level factorial designs, we consider an exam-

ple. Suppose a m-run mixed-level factorial design A with k1 two-level factors

and k2 three-level factors. The design space D is a collection of 2k1 × 3k2 runs:

{(x1, x2, ..., xk1 , ..., xk1+k2), xi = 0, 1, i = 1, 2, ..., k1;xj = 0, 1, 2; j = k1+1, ..., k1+k2}.

From Theorem 2.2.2, any mixed-level factorial design can be expressed through an
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indicator function FA(x). By (2.11), the coefficients of the indicator function of A

can be calculated by the formula

bt =
1

2k1 × 3k2

∑
x∈A

Ct(x)

and b0 = m
2k1×3k2 . According to the notation in Cheng and Ye (2004), we denote

t = (t1, t2, ..., tk) by t = t1t2...tk in this thesis. Thus, Ct(x) = Ct1t2...tk(x) and

bt = bt1t2...tk . The following example provides the detail calculation on finding an

indicator function.

Example 2.3 Consider a mixed-level factorial design O with four factors

X1, X2, X3 and X5. X1 is a two-level factor chosen from the first column of Table

2.2 and X2, X3, X5 are three 3-level factors chosen from columns 2, 3, and 5 of Table

2.2. By (2.11), we can find the coefficient of each term in the indicator function of

design O.

For instance, for the first run x = (0, 0, 0, 0) in O,

C1211(x) = c11(0)c22(0)c31(0)c51(0) = (−1)(1/
√

2)(−
√

3/2)(−
√

3/2) = − 3

2
√

2
;

for the second run x = (0, 0, 1, 1) in O,

C1211(x) = c11(0)c22(0)c31(1)c51(1) = (−1)(1/
√

2)(0)(0) = 0;

for the third run x = (0, 0, 2, 2) in O,

C1211(x) = c11(0)c22(0)c31(2)c51(2) = (−1)(1/
√

2)(
√

3/2)(
√

3/2) = − 3

2
√

2
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Do like wise for the rest of runs and we can get the values of C1211 for all of the

runs in O. Hence, by (2.11) we can obtain b1211. Other coefficients can be found

similarly. Note that C0000(x) = 1, we obtain the indicator function of O:

FO(x) =
1

3
− 0.167C1011(x) + 0.117C0211(x)− 0.117C1211(x) + 0.096C1021(x)

− 0.117C0121(x)− 0.117C1121(x)− 0.136C1112(x)− 0.096C1012(x)

+ 0.117C0112(x) + 0.117C1112(x) + 0.136C1212(x)− 0.166C1022(x)

+ 0.117C0222(x)− 0.117C1222(x).

(2.12)

FO(x) counts the number of times that the run x appears in the design. For

example, one can check that when the run x = (0, 0, 2, 2), FO(x) = 1, which implies

that x = (0, 0, 2, 2) appears one time in O; when x = (1, 1, 1, 1), F (x) = 0, which

indicates that this run is not in O.

In an indicator function, Ct(x) is called a word which represents X t1
1 X

t2
2 ...X

tk
k .

If bt 6= 0, where t = (t1, t2, ..., tk), then ti = 0 means the effect of Xi is not active.

For a quantitative factor Xi, ti = 1 indicates the linear effect of Xi is active, and

ti = 2 indicates the quadratic effect of Xi is active, and so forth. For a qualitative

factor Xi, ti 6= 0 implies treatment effects are active.

For example, consider b1012 = −0.096 in (2.12). Since t2 = 0, the effect of X2 is

not included in the corresponding term C1012(x), which is X1X3X
2
5 . Since b1012 6= 0,

it involves with three possible explanations: the treatment effect of X1 is aliased

with the interaction of the linear effect of X3 and the quadratic effect of X5; or the
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linear effect of X3 is aliased with the interaction of treatment effect X1 and the

quadratic effect of X5; or the quadratic effect of X5 is aliased with the interaction of

the treatment effect of X1 and the linear effect of X3.

Similarly, C0222(x) represents the quadratic-by-quadratic interactionX0
1X

2
2X

2
3X

2
5 =

X2
2X

2
3X

2
5 . The coefficient b0122 = 0 implies that the linear-by-quadratic interaction

X2X
2
3 is orthogonal to X2

5 in the design, or X2
3X

2
5 is orthogonal to X2, or X2X

2
5 is

orthogonal to X2
3 .

In experiments, factors can be classified into two types: qualitative factors and

quantitative factors. The former deal with descriptions and focus on collecting

information that is not numerical. Thus, there is no ordering among levels for this

type of factors. For example, for a qualitative factor, contrast (c1(0), c1(1), c1(2)) =√
3
2
(−1, 0, 1) represents the difference of treatment effects between levels 0 and 2;

contrast (c2(0), c2(1), c2(2)) =
√

1
2
(−1, 2, 1) represents the difference of treatment

effects between level 1 and the average of levels 0 and 2. On the other hand,

quantitative factors can take only numbers, which are usually used to fit a regression

model for prediction. Thus, there is an ordering among levels of these factors.

In a mixed-level fractional factorial design, there are three types of words: 1)

consists of only qualitative factors; 2) consists of only quantitative factors; and

3) consists of both qualitative and quantitative factors. A word is named as a

mixed-type word if both quantitative factors and qualitative factors are in the word.

Cheng and Ye (2004) defined two norms for t. The norm of t, denoted by ||t||0 is

defined as the number of factors it involves. When all the factors are quantitative, the
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norm of t is defined as the sum of its polynomial degree, denoted by ||t||1 =
∑k

i=1 ti.

Cheng and Ye (2004) defined generalized wordlength patterns for the designs with

only qualitative factors and the designs with only quantitative factors, respectively,

as shown in Definition 2.2.3.

Definition 2.2.3 (Cheng and Ye, 2004) Let A1 and A2 be two factorial designs

with k qualitative factors and k quantitative factors, respectively. The general-

ized wordlength patterns of A1 and A2 are defined as (α1(A1), ..., αk(A1)), and

(β1(A2), ..., βK(A2)), respectively, where

αi(A1) =
∑
||t||0=i

(
bt
b0

)2,

βi(A2) =
∑
||t||1=i

(
bt
b0

)2,

and K =
∑k

i=1(si − 1). The resolution of A1 and A2 are defined as the smallest

integer j such that αj > 0 and βj > 0, respectively.

When a design A has mixed-type words, Lin (2014) extended the idea of Cheng

and Ye (2004) and defined the norm of t as ||t|| =
∑k

i=1[I(ti 6= 0)I(gi = 1) + tiI(gi =

2)], where I(·) is an indicator function, and

gi =

{
1 if Xi is a qualitative factor

2 if Xi is a quantitative factor
.

For example, assume X1 and X2 are qualitative factors, and X3 and X4 are quanti-

tative factors, the length of X1X
2
2X3X

2
4 is 1 + 1 + 1 + 2 = 5.
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Lin (2014) also extended the generalized wordlength pattern of A as

(γ1(A), γ2(A), ..., γk(A)), where

γi(A) =
∑
||t||=i

(
bt
b0

)2,

The resolution of A is defined as the smallest j such that γj(A) > 0. Meanwhile,

sequentially minimize γi(A) for i = 1, 2, ..., k can get minimum aberration designs.

2.2.2 Geometric isomorphism

In this section, we review the effect of level permutation of a factor on the

properties of a design.

For qualitative factors, level permutations will not change the structure of the

design since there is no ordering among levels of qualitative factors. However, for

quantitative factors, Cheng and Ye (2004) pointed out that permuting levels for

one or more factors will generate designs with different geometric structures and

properties, since there is an ordering among levels of quantitative factors.

Geometric isomorphism of two designs is defined as follows.

Definition 2.2.4 Denoted by D a full factorial design. Let A and B be two FFDs

in D. We say designs A and B are geometrically isomorphic if A can be obtained

from B by reversing the level order of factors and/or variable exchange.

Lin and Po (2014) pointed out that for two geometrically isomorphic designs,

A and B, with both quantitative and qualitative factors in design space D, their

generalized WLPs are identical.
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For three-level factors, there are six permutations among the levels:

{0, 1, 2} → {0, 1, 2}, {0, 1, 2} → {0, 2, 1}, {0, 1, 2} → {1, 0, 2},

{0, 1, 2} → {1, 2, 0}, {0, 1, 2} → {2, 0, 1}, {0, 1, 2} → {2, 1, 0}.

These permutations can be classified into three pairs as shown in Table 2.3.

Within each pair, two permutations generate two designs that are geometrically

isomorphic. That is, we only need to consider one permutation in each pair.

Table 2.3: Geometric Isomorphism Groups
Rule Notation Permutation

I Xi {0,1,2}→{0,1,2} or {2,1,0}
II X̀i {0,1,2}→{1,2,0} or {1,0,2}
III X̂i {0,1,2}→{2,0,1} or {0,2,1}

X̀i indicates the level permutation rule II is chosen for factor Xi, while X̂i

indicates the level permutation rule III is chosen for factor Xi. Moreover, level

permutations of a design may change the indicator function of the design.

Example 2.4 Consider the factorial design O in Example 2.3. Assume X1 is

a two-level qualitative factor and X2, X3, and X5 are three-level quantitative factors.

If we change the levels of X2, X3 and X5 by level permutation rules I, II, and III,
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respectively. Then, the indicator function of the resulting factorial design O1 is

FO1(x) =
1

3
C0000(x) + 0.167C1011(x)− 0.102C0111(x)− 0.102C1111(x)

− 0.058C1211(x) + 0.09C0121(x) + 0.058C1121(x) + 0.058C0221(x)

− 0.102C1221(x)− 0.09C0112(x)− 0.058C1112(x) + 0.102C0212(x)

− 0.17C1212(x) + 0.167C1022(x) + 0.17C1012(x)− 0.102C0122(x)

− 0.102C1122(x)− 0.058C0222(x)− 0.058C1222(x)− 0.058C0211(x).

(2.13)

Obviously, FO1(x) is different from FO(x) listed in Example 2.3.

2.3 Two-Level Robust Parameter Designs

Robust parameter designs (RPD), initially proposed by Genichi Taguchi (1986),

are usually used to minimize variation in industrial processes and products. Typical

example of variation in operating levels of manufacturing processes include raw

material variation and temperature variation. The quality of a process is mainly

affected by two types of factors: control factors and noise factors.

Control factors are the variables whose values can be controlled in an experiment

and also under normal operating conditions.

Noise factors are the variables that are hard to control in a real application of the

process. Noise factors can be humidity, light and the temperature of environment,

etc.

Consider, the cake baking example in Montgomery (2005). An experimenter is

interested in improving the taste of cake. Some factors can be controlled by the
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cake manufacturer, such as amounts of flour, amount of egg powder, and amount

of sugar. These are control factors. However, bake temperature and time are noise

factors since they can not be controlled by the manufacturer and may vary among

the users.

The manufacturer wants to reduce the effects in variation of oven temperature

and time on cake quality under the best settings for the control factors. This is also

the goal of an RPD.

Because RPD has two types of factors, the factorial effects of RPD have more

complicated interpretation. We call the effects involving both control factors and

noise factors as control-by-noise effects or interactions.

In this thesis, we denote a control factor by “C” and a noise factor by “N”. Zhu

(2000) discussed the importance of control-by-noise interaction and considered C, N

and CN as equally important. To help define the ranking, Zhu (2000) proposed a

definition of word length for two-level regular RPDs:

W (k1, k2) =


1 if max(k1, k2) = 1,

k1 if k1 > k2 and k1 > 1,

k2 + 1/2 if k1 ≤ k2 and k2 ≥ 2,

where k1 is the number of control factors and k2 is the number of noise factors. Zhu

(2000) provides the words with lengths smaller than 4.5. We list these words in

Table 2.4.
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Table 2.4: Word Lengths for RPDs defined by Zhu (2000)

Word length Words

1.0 C,N,CN

2.0 CC,CCN

2.5 CCNN,CNN,NN

3.0 CCC,CCCN,CCCNN

3.5 CCCNNN,CCNNN,CNNN,NNN

4.0 CCCC,CCCCN,CCCCNN,CCCCNNN

4.5 CCCCNNNN,CCCNNNN,CCNNNN,CNNNN,NNNN

However, Bingham and Sitter (2003) increased the ranking of “CN” to reflect

their increased interest in the “CN” and suggested different word lengths for two-level

RPDs, which are shown in Table 2.5.

Table 2.5: Word Lengths for RPDs defined by Bingham and Sitter (2003)

Word length Words

1.0 C,N

1.5 CN

2.0 CC,NN

2.5 CCN,CNN

3.0 CCC,CCNN

3.5 CCCN,CNNN

4.0 CCCC,NNN,CCCNN,CCNNN

4.5 CCCCN,CNNNN

5.0 CCCCC,NNNN,CCCNNN,CCNNNN,CCCCNN

For a two-level fractional factorial RPD A, the word length pattern can be defined

as:

W (A) = (W1.0,W1.5,W2.0, ...,Wk),

where Wl counts the number of words of length l.
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The minimum aberration designs for fractional factorial RPDs can be obtained

by sequentially minimizing the composite W (A).

To rank non-regular two-level FF RPDs, Loeppky et al.(2006) defined the word

length of XM(x) as r + (1− |bM/b∅|)/2, where r is the word length defined by Zhu

(2000) or Bingham and Stter (2003), and the extended word length pattern as

(g2.0, ..., g2.0+(t−1)/2t, ..., gm−1, ..., gm+(t−1)/2t),

where gr+l/2t is the number of words of length r + l/2t. Loeppky et al.(2006) also

extended the notions of generalized aberration and generalized resolution based on

the extended wordlength pattern of RPDs. Particularly, they provided a catalog of

optimal robust parameter designs with 12, 16 and 20 runs.
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Chapter 3

Mixed-Level General Robust
Parameter Designs

In Chapter 2, some notations and concepts of FFDs and two-level RPDs have

been introduced. We also discussed the properties and structure of two-level fractional

factorial RPD’s and shown how to rank them using the minimum aberration criterion.

However, in practice, many RPDs involve factors with three or more levels, and

factors can be qualitative or quantitative. In this chapter, we will develop a new

methodology for ranking mixed-level fractional factorial RPDs with both qualitative

factors and quantitative factors..

In section 3.1, we will give the format of indicator functions for a mixed-level

RPD. This will provide a framework for the later development. In section 3.2, we will

define the wordlength for a mixed-level fractional factorial RPD by distinguishing

qualitative factors and quantitative factors. Then, we will extend the generalized

WLP and the minimum aberration criterion to mixed-level fractional factorial RPDs.
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3.1 Indicator Functions of Robust Parameter De-

signs

In this section, to study the properties of a general robust parameter design, we

redefine (2.10) and take both control and noise factors into account. Denoted by D

a mixed-level full factorial RPD with k1 control factors, k2 noise factors and M runs.

A design point x of D is defined as x = (x1, ..., xk1 , xk1+1, ..., xk), where k = k1 + k2.

Note that the design matrix of a factorial design is the same as that of an RPD.

The difference between them is that there exist two types of factors in the RPD. So,

the results from FFDs can be adapted to fractional factorial RPDs. That is, the

design matrix can be considered as a normal factional fractional design if we do not

distinguish control factors and noise factors.

Suppose A is a fractional factorial mixed-level RPD with k1 noise factors, k2

control factors and n runs. D is the full factorial mixed-level RPD with N runs

and A ∈ D. The levels of ith control factor XCi
are elements in the set SCi

=

{0, 1, 2, ..., sCi
− 1}. The levels of ith noise factor XNi

are elements in the set

SNi
= {0, 1, 2, ..., sNi

− 1}. Further, define TC = SC1 × SC2 × · · · × SCk1
and

TN = SN1 × SN2 × · · ·SNk2
. So T can be rewritten as T = TC × TN . Let t ≡ A ∪B,

where t ∈ T , A ∈ TC and B ∈ TN . Then, by (2.10), the polynomial form of the

indicator function of A ∈ D can be rewritten as

FA(x) =
∑
t∈T

btCt(x) =
∑
A∈TC

∑
B∈TN

bA∪BCA∪B(x), (3.1)
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where

bA∪B =
1

N

∑
x∈A

CA∪B(x).

In particular, b0 = n/N , where 0 = (0, 0, ..., 0), and C0 represents a column of ones.

Example 3.1 Consider a fractional factorial RPD D1 with 3 control factors

and 1 noise factor consisting of columns 1-4 in Table 2.2. Denoted by X1, X2, and

X3 the control factors that represent columns 1, 2, and 3, respectively, and X4 the

noise factor which represents column 4.

The indicator function of D1 is

FD1(x) =
1

3
− 0.167C1011(x)− 0.102C0111(x) + 0.102C1111(x)− 0.059C0211(x)

+ 0.059C1211(x) + 0.096C1021(x)− 0.059C0121(x) + 0.059C1121(x)

+ 0.102C0221(x) + 0.1701C1221(x)− 0.096C1012(x) + 0.059C0112(x)

− 0.059C1112(x)− 0.102C0212(x)− 0.1701C1212(x)− 0.167C1022(x)

− 0.102C0122(x) + 0.102C1122(x)− 0.059C0222(x) + 0.059C1222(x),

(3.2)

Note that b1021 6= 0 which implies that the main control effect X1 is aliased with

the control-by-noise interaction X3
2X4, the quadratic control effect X3

2 is aliased

with the control-by-noise interaction X1X4, the main noise effect X4 is aliased with

the control-by-control interaction X1X3
2.

The concepts and definitions mentioned above build a foundation for ranking and

ordering designs. In chapter 2, we discussed two-level RPDs without distinguishing
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qualitative factors and quantitative factors. In the next section, we will discuss how

to rank mixed-level RPDs with considering quantitative factors and quantitative

factors. and will extend the definition of wordlength of two-level RPDs to mixed-level

RPDs based on Table 2.4 and formula 3.3.

3.2 Word Length

In chapter 2, we introduced the wordlengths defined by Zhu (2000) (see Table

2.4) and Bingham and Sitter (2003) (see Table 2.5) for two-level RPDs. Zhu

(2000) also provides a formula to find the wordlengths, which is very helpful for

writing a computer program and searching optimal designs. However, Bingham

and Sitter (2003) did not provide such formula. To determine the wordlength, they

consider the shortest length of each word. For example, consider a word CCCNN

which can be viewed as C + CCNN , CC + CNN , CN + CCN , CCC +NN and

N+CCCN . Then, Bingham and Sitter (2003) add the aliased words’ ranks together.

Rank(C) + rank(CCNN) = 1 + 3 = 4; Rank(CN) + rank(CCN) = 1.5 + 2.5 = 4;

rank(CC) + rank(CNN) = 2 + 2.5 = 4.5; rank(CCC) + rank(NN) = 3 + 2 = 5

and Rank(N) + rank(CCCN) = 1 + 3.5 = 4.5. Therefore, the length of CCCNN

is declared to be 4, the smallest of these three combinations.

Based on their definition, we find the following formula as shown in (3.3):
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W (k1, k2) =



k1 if k2 = 0

k2 if k1 = 0 and k2 ≤ 2,

k2 + 1 if k1 = 0 and k2 ≥ 3,

k2 + 0.5 if k1 = 1 and k2 ≥ 1,

k1 + 0.5 if k1 ≥ 1 and k2 = 1,

k1 + k2 − 1 if min{k1, k2} ≥ 2,

(3.3)

where k1 is the number of control factors and k2 is the number of noise factors.

Notice that the case for min{k1, k2} ≤ 2 is defined based on their definition, but for

min{k1, k2} ≥ 3, we define the wordlength to be k1 +k2−1 to decrease the difference

between the number of factors in the word and the wordlength. This alternative

numerical rule will be very useful for searching optimal designs in computer program.

Now we show that when min{k1, k2} ≤ 2, the wordlength defined in Bingham and

Sitter (2003) follows the formula 3.3.

Proof:

A.For k2 = 0, W (k1, k2) = k1. It is obvious.

B.For k1 = 0 and k2 ≤ 2, W (k1, k2) = k2. It is listed in Table 2.5 .

C.For k1 = 0 and k2 ≥ 3, W (k1, k2) = k2 + 1.

The statement holds for k2 = 3 as listed in Table 2.5. We assume it holds

for k2 = m, where m ≥ 3, that is rank(N1...Nm) = m + 1. Then, show that

rank(N1...Nm+1) = m+ 2 for k2 = m+ 1.

The word of type N1N2...NmNm+1 can be viewed as creating alias structures of

the form N1 + N2...Nm+1, N1N2 + N3...Nm+1 and N1N2..Ni + Ni+1...Nm+1, where
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i = 3, 4, .... In the first case, the ranks sum as rank(N1) + rank(N2...Nm+1) =

1+m+1 = m+2; in the second case as rank(N1N2)+rank(N3...Nm+1) = 2+m; and

in the third case as rank(N1N2..Ni)+rank(Ni+1...Nm+1) = i+1+m− i+1 = m+2.

Therefore, the word has length m+ 2 and the statement is true.

D.For k1 = 1 and k2 ≥ 1, W (k1, k2) = k2 + 0.5. The statement holds for

k2 = 3 as listed in Table 2.5. We assume it holds for k2 = m, where m ≥ 3, that is

rank(CN1...Nm) = m+0.5. Then, show that rank(CN1...NmNm+1) = m+1+0.5 =

m+ 1.5 for k2 = m+ 1.

The word of type CN1...NmNm+1 can be viewed as creating alias structures of the

form C+N1...Nm+1, CN1...Ni+Ni+1...Nm+1 and CN1...Nm+Nm+1 where i = 1, 2, ....

In the first case, the ranks sum as rank(C)+rank(N1...Nm+1) = 1+m+2 = m+3; in

the seconde case as rank(CN1...Ni)+rank(Ni+1...Nm+1) = i+0.5+m−i+1 = m+1.5

and in the third case as rank(CN1...Nm) + rank(Nm+1) = m+ 0.5 + 1 = m+ 1.5.

Thus, the word has length m+ 1.5 and the statement is true.

E. For k2 = 1 and k1 ≥ 1, W (k1, k2) = k1 + 0.5. It is similar with part D.

F. For min{k1, k2} = 2, W (k1, k2) = k1 + k2− 1. The statement holds for k1 = 3

and k2 = 2 as listed in Table 2.5. We assume the statement holds for k1 = m1 and

k2 = 2, where m1 ≥ 2that is rank(C1...Cm1N1N2) = m1 + 2− 1 = m1 + 1. Then, we

fix k2 and show that rank(C1...Cm1+1N1N2) = m1 + 2 for k1 = m1 + 1 and k2 = 2.

Rank(N)+Rank(C1...Cm1Cm1+1N) = 1 +m1 + 1.5 > m1 + 2;

rank(NN)+rank(C1C2...Cm1Cm1+1) > m1 + 2;

rank(C1NN) + rank(C2...Cm1+1) = 2.5 +m1 + 1 > m1 + 2;
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rank(C1...CiNN) + rank(Ci+1...Cm1+1) = (i+ 2− 1) +m1 + 1− i = m1 + 2;

rank(C1) + rank(C2...Cm1+1NN) = m1 + 2.

We can also proof it when we fix k1 and k2 = m2 + 1 by using the similar way.

Based on the formula above, in this section, we will define wordlengths for

mixed-level fractional factorial RPDs.

First, we consider a word which contains only qualitative factors. Since the

interest of using qualitative factors is to test whether the difference of treatments

exists, Cheng and Ye (2004) pointed out changing the polynomial degree of a word

not influence its wordlength. Let t = (t1, t2, ..., tk), S = {j|j ∈ {1, 2, ..., k} and

tj 6= 0}, and W =
∏

j∈S Xj. Based on the definitions of Zhu (2000) and the above

formula, we define the length of a word as follows:

Definition 3.2.1 When the word Ct(x) = X t1
1 X

t2
2 · · ·X

tk
k contains only qualitative

factors, the length of Ct(x), denoted by ||Ct(x)||0 is defined as the length of the word

W.

Consider, for example, the word “C2NN2” which contains only qualitative factors.

Since the length of the word W = CNN is 2.5 as listed in Table 2.4 or Table 2.5, so

the length of C2NN2 is also 2.5.

Table 3.1 and Table 3.2 illustrate the lengths of the words with only qualitative

factors for three-level RPDs in accordance with the definition of Zhu (2000) and

Bingham and Sitter (2003), respectively. To save space, we list the words with

lengths less than or equal to 4.5.
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Table 3.1: Word Lengths for three-level RPDs based on
Zhu’s definition of wordlength when all the factors are
qualitative

Word Length Words

1.0 C,N,C2, N2, CN,C2N,CN2, C2N2

1.5

2.0 CCN,C2CN,C2C2N,C2C2N2, CCN2, C2CN2, CC,C2C,C2C2

2.5 NN,N2N,N2N2, CNN,C2NN,CN2N,C2N2N,CN2N2,

CCNN,C2CNN,CCN2N,C2C2NN,CCN2N2, C2C2N2N,

CC2N2N2, C2C2N2N2, C2N2N2, C2CN2N

3.0 CCC,C2CC,C2C2C,C2C2C2, CCCN,C2CCN,CCCN2,

C2CCN2, C2C2C2N,C2C2CN2, C2C2C2N2, CCCNN,

C2C2CNN,C2CCN2N,CCCN2N2, C2C2C2NN,

C2C2C2N2N,C2C2CN2N2, C2C2C2N2N2, CCCN2N,

C2C2CN,C2CCNN,CC2C2N2N,CCC2N2N2

3.5 NNN,N2NN,N2N2N,N2N2N2, CNNN,C2NNN,

CN2N2, C2N2N2N,CN2N2N2, C2N2N2N2, CCNNN,

CC2N2NN,CCN2N2N,C2C2N2NN,CC2N2N2N,

CCN2NN,C2C2NNN,CC2N2N2N2, C2C2N2N2N2,

CCC2N2NN,CCCN2N2N,C2C2C2NNN,CC2C2N2NN,

CCCN2N2N2, C2C2C2N2NN,CC2C2N2N2N,

C2C2C2N2N2N,CC2C2N2N2N2, C2C2C2N2N2N2,

C2N2NN,C2CNNN,C2C2N2N2N,C2CCNNN,

C2C2CNNN,CCCN2NN,CN2NN,CCN2N2N2, CCCNNN,

CCC2N2N2N,CCC2N2N2N2

4.0 CCCC,C2CCC,C2C2CC,C2C2CC2, C2C2C2C2,

C2C2CCN,CCCC2N2, C2C2C2CN,C2C2CCN2, C2C2C2C2N,

CCCCN2, C2C2C2C2N2, CCCCNN,C2CCCNN,CCCCNN2,

C2C2C2CNN,C2C2CCNN2, C2CCCN2N2, C2C2C2C2NN,

C2CCCNN2, CCCCN2N2, C2C2CCN2N2, C2C2C2C2N2N,

C2CCCNNN,CCCCN2NN,C2C2CCNNN,CCCC2NNN2,

C2CCCN2N2N,C2C2CCN2NN,CCCCN2N2N2,

C2C2CCNN2N2, CCCC2N2N2N2, C2C2C2C2N2NN,

CCC2CN2N2N2, CC2C2CN2N2N2, C2C2C2CN2N2N,

C2C2C2C2N2N2, CCCCNNN,C2C2C2CNNN,

C2C2C2CN2, C2C2CCNN,CC2C2C2NN2, C2C2C2CN2N2,
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Table 3.1 (Continued)

Word Length Words

C2C2C2CN2N2N,C2C2C2CN2N2N2, CCCCNN2N2

CCCCN,C2CCCN,C2C2C2C2NNN,C2C2C2CN2NN ,

4.5 NNNN,NNNN2, NNN2N2, NN2N2N2, N2N2N2N2,

C2NNNN2, CNNN2N2, C2N2N2NN,CN2N2N2N,

CN2N2N2N2, C2N2N2N2N2, CCNNNN,CC2NNNN,

C2CN2NNN,CCNNN2N2, C2C2N2NNN,C2CN2N2NN,

C2C2N2N2NN,CC2N2N2N2N,CCN2N2N2N2,

C2C2N2N2N2N,CC2N2N2N2N2, C2C2N2N2N2N2,

C2CCNNNN,CCCNNNN2, C2C2CNNNN,C2CCN2NNN,

C2C2C2NNNN,CCCN2N2N2N,C2CCN2N2NN,

C2C2C2N2NNN,CC2C2N2N2NN,CCC2N2N2N2N,

CCC2N2N2N2N2, CC2C2N2N2N2N,C2C2C2N2N2NN,

CNNNN2, CC2C2N2N2N2N2, C2C2C2N2N2N2N2,

C2NNNN,CCNN2N2N2, CCCN2N2NN,CCCN2N2N2N2,

C2C2C2N2N2N2N,CCNNNN2, C2N2N2N2N,

CCCNNNN,C2C2CN2NNN,C2C2NNNN,CNNNN,

CC2N2N2N2N2
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Table 3.2: Word Lengths for three-level RPDs based on Bingham and Sitter’s
definition of wordlength when all the factors are qualitative

Word length Words

1.0 C,N,C2, N2

1.5 CN,C2N,CN2, C2N2

2.0 CC,NN,C2C,C2C2, N2N2, N2N

2.5 CCN,CNN,C2CN,CCN2, C2C2N,C2CN2

C2C2N2, C2NN,CN2N,C2N2N,CN2N2, C2N2N2

3.0 CCC,CCNN,C2CC,C2C2C,C2C2C2, C2CNN,C2C2NN

C2C2N2N,C2C2N2N2, CCN2N,CCN2N2, C2CN2N,CC2N2N2

3.5 CCCN,CNNN,C2CCN,CCCN2, C2C2CN,C2CCN2,

C2C2C2N2, C2NNN,CN2NN,C2N2NN,CN2N2N,

C2N2N2N2, C2C2C2N,C2C2CN2, C2N2N2N,CN2N2N2

4.0 CCCC,NNN,CCCNN,CCNNN,C2CCC,C2C2CC,C2C2C2C,

N2NN,N2N2N,N2N2N2, C2CCNN,CCCN2N,C2C2CNN,

CCCN2N2, C2C2C2NN,C2CCN2N2, C2C2C2N2N,C2C2CN2N2

C2C2C2N2N2, C2CNNN,CCN2NN,C2C2NNN,CC2N2NN,

CCN2N2N2, C2C2N2N2N,CC2N2N2N2, C2C2N2N2N2,

C2C2N2NN,C2C2C2C2, CCN2N2N,C2CN2N2N,C2CCN2N

4.5 CCCCN,CNNNN,C2CCCN,CCCCN2, C2C2CCN,C2CCCN2,

CCC2C2N2, C2C2C2C2N,CC2C2C2N2, C2C2C2C2N2, C2NNNN

CN2NNN,C2N2NNN,CN2N2NN,C2N2N2NN,CN2N2N2N,

CN2N2N2N2, C2N2N2N2N2, C2C2C2CN,C2N2N2N2N

Second, we consider the situation when all the factors involved in a word are

quantitative. Recall that Cheng and Ye (2004) defined two norms ||t||0 and ||t||1,

which were reviewed in section 2.2.1, for factorial desgins, where ||t||0 counts the

number of letters in the corresponding word and ||t||1 =
∑k

i=1 ti calculates the

polynomial degree of the corresponding word. In fact, we find there is a relationship

between ||t||0 and ||t||1, that is ||t||1 = ||t||0 +
∑

j∈S(tj − 1).

Definition 3.2.2 When the word Ct(x) = X t1
1 X

t2
2 · · ·X

tk
k contains only quantitative
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factors, the length of Ct(x) is defined as ||Ct(x)||1 = the length of W+
∑

j∈S(tj−1) =

||Ct(x)||0 +
∑

j∈S(tj − 1).

For example, consider the word C2NN2, which contains only quantitative factors.

Because the length of the word W = CNN is 2.5 by the definition of Zhu (2000)

(see Table 2.4), we have ||Ct(x)||0 = 2.5. Thus, the length of C2NN2 is ||Ct(x)||1 =

||Ct(x)||0 +
∑

j∈S(tj − 1) = 2.5 + (2− 1) + (1− 1) + (2− 1) = 4.5.

Table 3.3 and Table 3.4 list the words with lengths at most 5 for three-level

RPDs when the words contain only quantitative factors. The wordlengths defined in

Table 3.3 and Table 3.4 are based on the definition of wordlengths in Zhu (2000)

and Bingham and Sitter (2003), respectively.
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Table 3.3: Word Lengths for three-level RPDs based on Zhu’s definition of wordlength
when all the factors are quantitative

Word length Words

1.0 C,N,CN

1.5

2.0 CCN,CC,C2, N2, C2N,CN2

2.5 NN,CNN,CCNN

3.0 CCC,CCCN,CCCNN,C2N2, C2C,C2CN,CCN2

3.5 NNN,CNNN,CCNNN,CCCNNN,C2NN,CN2N,

C2CNN,CCN2N,N2N

4.0 CCCC,CCCCN,CCCCNN,CCCCNNN,C2C2N,C2CN2,

C2CCNN,CCCN2N,CCCN2, C2C2, C2CC,C2CCN

4.5 NNNN,CNNNN,CCNNNN,CCCNNNN,CCCCNNNN,

CCN2N2, N2NN,C2NNN,CN2NN,N2N2, C2CN2N,

CN2N2, C2N2N,C2C2NN

5.0 CCCCC,CCCCCN,CCCCCNN,CCCCCNNN,

C2CCN2, C2CCC,C2CCCN,CCCCN2, C2CCCNN,

C2C2CNN,C2CCN2N,CCCN2N2, C2C2CN,CCCCN2NN,

C2CCCNNN,C2C2N2, CCCCN2N,C2C2C,CCCCCNNNN,
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Table 3.4: Word Lengths for three-level RPDs based on Bingham and Sitter’s
definition of wordlength when all the factors are quantitative

Word length Words

1.0 C,N

1.5 CN

2.0 CC,NN,C2, N2

2.5 CCN,CNN,C2N,CN2

3.0 CCC,CCNN,C2C,N2N

3.5 CCCN,CNNN,C2N2, C2CN,CCN2, C2NN,CN2N

4.0 CCCC,NNN,CCCNN,CCNNN,C2CC,C2CNN,CCN2N

4.5 CCCCN,CNNNN,C2C2N,C2CN2, C2N2N,CN2N2

C2NNN,CN2NN,C2CCN,CCCN2

5.0 CCCCC,NNNN,CCCNNN,CCNNNN,CCCCNN,C2C2C

C2C2NN,C2CN2N,CCN2N2, C2CCC

However, in many practical experiments, the words involved in designs are more

complicated. They can be mixed-type words which contain both qualitative and

quantitative factors. For calculating these type of words in RPDs, we define the the

length of a mixed-type word in following:

Definition 3.2.3 The length of a mixed-type word Ct(x) = X t1
1 X

t2
2 · · ·X

tk
k is defined

as ||Ct(x)|| = the length of W+
∑

j∈S I(gi = 1)(tj − 1), that is

||Ct(x)|| = ||Ct(x)||0 +
∑
j∈S

I(gi = 1)(tj − 1), (3.4)

where

I(·) =

{
1 if “ · ” is true

0 otherwise;
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and

gi =

{
1 if Xi is a quantitative factor

0 if Xi is a qualitative factor.

One can see that ||Ct(x)|| reduces to ||Ct(x)||0 when all the factors in Ct(x) are

qualitative and to ||Ct(x)||1 when all the factors in Ct(x) are quantitative.

For example, consider a word CC2NN4. Suppose all the control factors are

qualitative and all the noise factors are quantitative. The length of the word

W = CCNN is 2.5 in Table 2.4 or 3.0 in Table 2.5. Therefore, the length of Ct(x)

is ||Ct(x)|| = 2.5 + (0 + 0 + 1× (2− 1) + 1× (4− 1)) = 6.5 on the basis of Zhu’s

definition, or ||Ct(x)|| = 3.0 + 1 + 3 = 7 on the basis of formula 3.3.

3.3 Generalized Wordlength Pattern And Mini-

mum Aberration

By modifying Definition 2.2.3, we define the generalized word length pattern of a

mixed-level RPD as follows:

Definition 3.3.1 Let A be a mixed-level fractional factorial RPD with indicator

function FA(x) in (3.1). Let βi(A) =
∑

Li
(bJ∪K/b0)2, where Li is the set of all

J ∪K such that the length of CJ∪K(x) equals to i in (3.4). Then the generalized

wordlength pattern of A is B(A) = (β1.0(A), β1.5(A), ..., ).

With this new definition of wordlength pattern, the usual minimum aberration

criterion can be simply utilized for mixed-level fractional factorial RPDs.
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Definition 3.3.2 Let A1 and A2 be two different mixed-level fractional factorial

RPDs with generalized WLPs B(A1) and B(A2), respectively. A1 is said to have

less aberration if βs(A1) < βs(A2) and s is the smallest number such that βs(A1) 6=

βs(A2). We say A1 is the minimum aberration mixed-level fractional factorial RPD

if no other RPD has less aberration than A1.

For better illustration, in the rest of this thesis, we denote B1(A) and B2(A)

the generalized WLPs based on the lengths of words defined by Zhu (2000) and

formula 3.3, respectively. The corresponding generalized minimum aberration criteria

are called G1 minimum aberration criterion and G2 minimum aberration criterion,

respectively.

3.4 An Illustrative Example

Consider a non-isomorphic mixed-level fractional factorial RPD D2 with its

columns 1-3, and 7 selected from Table 2.2. Assume the first three columns X1, X2,

and X3 of D2 are control factors and the fourth column X7 represents a noise factor.

Moreover, we assume only X1 is qualitative and other factors are quantitative in

Table 2.2.

The indicator function of D2 is

FD2(x) =
1

3
+ 0.204C1111(x) + 0.118C0211(x) + 0.118C1121(x)− 0.204C0221(x)

− 0.118c1112(x) + 0.204C0212(x) + 0.204C1122(x) + 0.118C0222(x).

(3.5)
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Assume the wordlength defined based on Bingham and Sitter (2003) is used.

To illustrate how to obtain the generalized WLP, we list all the coefficients of the

indicator function and the wordlengths of all the corresponding words in Table 3.5.

Table 3.5: The results of D2 in Example 3.2

54 coefficients (1
3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.204 0.118 0 0 0 0 0.118 -0.204 0 0 0 0 0 0 0 0 0

0 -0.118 0.204 0 0 0 0 0.204 0.118 0)

The length of each words (0 1.0 1.0 2.0 2.0 3.0 1.0 2.0 2.0 3.0 3.0 4.0 2.0 3.0

3.0 4.0 4.0 5.0 1.0 1.5 1.5 2.5 2.5 3.5 1.5 2.5 2.5 3.5

3.5 4.5 2.5 3.5 3.5 4.5 4.5 5.5 2.0 2.5 2.5 3.5 3.5 4.5

2.5 3.5 3.5 4.5 4.5 5.5 3.5 4.5 4.5 5.5 5.5 6.5)

The first wordlength, “0”, implies the length of C0000 is 0. Now we consider

calculating β1.0(D2). Totally, there are 4 words whose length is “1”. The cor-

responding words are the 2nd term, the 3rd term, the 7th term and the 19th

term. Since their coefficients are “0” as shown in Table 3.5, by Definition 3.3.1,

β1.0(D2) = ( 0
1/3

)2 + ( 0
1/3

)2 + ( 0
1/3

)2 + ( 0
1/3

)2 = 0. Do like wise for the rest βi(D2),

where i = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, we can get the generalized

WLP B2(D2) =(0, 0, 0, 0, 0, 0.5 0, 1, 0, 0.5, 0).

Now, consider the D1 in Example 3.1. The wordlength defined based on Bingham

and Sitter (2003) is used. Under the same assumption that only X1 is qualitative

and other factors are quantitative, we then obtain its generalized WLP: B2(D1) =(0,

0, 0, 0.34375, 0, 0.35416, 0, 0.625, 0, 0.64583, 0.03125). As can be seen, D2 has less

generalized aberration than D1.

To further illustrate, consider assigning a control factor to the column 2 and the
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noise factors to other three columns. Then the generalized WLP for D1 is (0, 0, 0,

0.09375, 0, 0.09375, 0, 0.375, 0.25, 0.125, 0.1667, 0.61458, 0.25, 0.03125), whereas

the generalized WLP for D2 becomes (0, 0, 0, 0, 0, 0.125, 0, 1.125, 0, 0.375, 0, 0.375,

0, 0). Obviously, different way to assign the columns to control factors and noise

factors can generate designs with different structures.
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Chapter 4

Optimal Robust Parameter

Designs

In this chapter, we apply the construction method and the generalized G1 and

G2 minimum aberration optimality criteria introduced in Chapter 3 to obtain a

catalogue of optimal mixed-level robust parameter designs with 18 runs.

We use a computer program to calculate the wordlengths and generalized

wordlength patterns for each choice of the robust parameter designs with the

given number of control factors and noise factors. Then search over all the class of

non-isomorphism designs constructed from Table 2.2 and select the best one that has

generalized minimum aberration. We assume that in Table 2.2, the factor with two

levels, X1, is qualitative and the rest seven factors with three levels are quantitative.

In section 4.1 and section 4.2, we list optimal 18-run fractional factorial RPDs

according to the corresponding G1 and G2 minimum aberration criteria as defined

in Chapter 3, respectively. In section 4.3, two illustrative examples are employed to

help understand the catalogue and some results are presented.
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4.1 Optimal G1 Minimum Aberration 18-run Ro-

bust Parameter Designs

Recall that in section 3.2, we defined the wordlength for mixed-level RPDs based

on the wordlength defined by Zhu (2000) and Bingham and Sitter (2003), respectively.

Then we defined the corresponding wordlength patterns, B1(A) and B2(A), and

generalized G1 and G2 minimum aberration. In this section, we search optimal

mixed-level robust parameter designs using G1 minimum aberration criterion.

Table 4.1 presents a complete catalogue of optimal RPDs selected from Table

2.2 with only three-level factors. Table 4.2 and Table 4.3 list optimal RPDs chosen

from Table 2.2 with the inclusion of the two-level factor X1. It is assumed that X1

is a control factor in Table 4.2 and a noise factor in Table 4.3.

In each table, columns 1-3 list the number of factors k, the number of control

factors k1, and the number of noise factors k2, respectively. For each choice of k1

and k2, there are usually more than one geometrically isomorphic optimal RPDs.

To save space, only one optimal design is shown as an example in column 4, where

the bold numbers represent the columns of control factors. In column 5, we present

the generalized wordlength patterns of the corresponding optimal designs.

For example, in Table 4.1, when k = 4, k1 = 1 and k2 = 3, {2, 4̀, 5, 8} in column

4 means that the optimal design is constructed from columns 2, 4, 5 and 8 with

column 8 as a control factor and columns 2, 4 and 5 as noise factors. Among these,

column 4 is changed by the permutation rule II. The generalized wordlength pattern

of the optimal design is B1(A) = (0, 1.125, 1.5, 0.375, 0.5, 0), which is listed in column

5.
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Table 4.1: Optimal G1 minimum aberration 18-Run RPDs
selected from Table 2.2 with only three-level factors

k k1,k2 Columns β1(2.0), β1(2.5),..., β1(5.0)

3 1,2 {2,3,7} (0.01852,0,0,0.1713,0,0.75926,0)

2,1 {2,3,7} (0.01852,0,0.1713,0,0.75926,0,0.125)

4 1,3 {3,4̀,5,6} (0.02778,0.0625,0.02083,1.10243,0,0.84375,0)

2,2 {2,3̀,4,5} (0.05208,0.0434,0.80671,2.02315,0.01273,0.05671,0.29)

3,1 {2,4̀,5,6} (0.04282,0,1.20023,0,1.54282,0,0.64468)

5 1,4 {3̀,4̀,5̀,6,7} (0.03241,0.15625,0.02778,2.50694,0,3.54948,0)

2,3 {2̂,3̂,4,5,8} (0.08333,0.427,0.81,3.5,0.778,2.51,0.666)

3,2 {2̀,4̀,5̀,6,7} (0,0.25,3.1875,2.25,0.625,0.75,2.25)

4,1 {2̀,4̀,5̀,6̀,7} (0.09606,0,3.16146,0,2.78472,0,4.05556)

6 1,5 {2̂,3̂,4̂,5,6,7} (0.18751,6.09375,5.90625,8.375,7.625,6.28125,3.28125)

2,4 {2̂,3̂,4̂,5,6,7} (0,0.9375,2.625,6.1875,0,6,0.875)

3,3 {2̂,3̂,4̂,5,6,7} (0,2.25,4.125,3.375,1.875,9,2.25)

4,2 {2̀,4̀,5̀,6,7,8} (0.375,0.53125,5.5,2.125,5.9375,2.4375,8.73437)

5,1 {2̂,3̂,4̂,5,6,7} (0.1875,6.1,5.9,8.375,7.625,6.28125,3.28125)

7 1,6 {2,3,4̀,5,6̀,7̀,8} (0.375,9.1875,13.125,19.5,20.6875,22.4,15.1875)

2,5 {2,3,4̀,5,6̀,7̀,8} (0,1.875,3,10.875,0,15.375,1)

3,4 {2̀,3̀,4,5,6,7,8} (0.5625,2.1,4.211,11.98,5.367,16.539,5.766)

4,3 {2,3̀,4̀,5,6,7,8} (0.84375,2.046875,7.375,7.394,10.756,15.25,13.8)

5,2 {2̀,3̀,4̀,5̀,6,7,8} (0.75,0.75,8.625,4.3125,13.5,4.6875,21.625)

6,1 {2,3,4̀,5,6̀,7̀,8} (0.375,9.1875,13.125,19.5,20.6875,22.40625,15.1875)

Table 4.2: Optimal G1 minimum aberration 18-Run RPDs
selected from Table 2.2 with X1 as a control factor

k k1,k2 Columns β1(2.0), β1(2.5),..., β1(5.0)

3 1,2 {1,3,6} (0,0,0,0.03704,0,0)

2,1 {1,2,3} (0.02778,0,0.05093,0,0.02778)

4 1,3 {1̀,2,4,5} (0,0,0,0.18519,0,1.5,0)

2,2 {1,2̀,3,6} (0.03935,0.1875,0.0625,0.95602,0.03472,0.58102,0)

3,4 {1,2,3,8} (0.05556,0,0.49537,0,1.15278,0,0.49537)

5 1,4 {1̀,2,3,6,7} (0,0,0,0.97917,0,4.3125,0)

2,3 {1,2̀,4,5̀,8} (0.02315,0.12,0.5765,0.088,2.8,0.02778,3.37731)

3,5 {1,2̂,3,6,8} (0.09606,0.75,1.75463,0.7338,0.83333,1.6412,2.17)
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Table 4.2 (Continued)

k k1,k2 Columns β1(2.0), β1(2.5),..., β1(5.0)

4,1 {1,2̂,3,4,8} (0.09028,0,2.29861,0,1.90972,0,3.84028)

6 1,5 {1,2,3̂,5̀,6,7} (0,4,6.0625,5.75,4.125,3.5,2.3125)

2,4 {1,3̀,5,6̀,7,8} (0,0.875,2,4.5625,0,5,6.625)

3,3 {1,2̀,3̀,4,5,6} (0,1.2708,3.2292,4.7292,1.2292,4.9895,1.5208)

4,2 {1,2,4̀,5,6̀,8} (0,0.97917,5.6666,2.25,2,1.625,5.8333)

5,1 {1̀,2,4̂,5,6,7} (0,5,5.89583,5.91667,3.70833,3.91667,1.4)

7 1,6 {1,2̂,3,4,5,6,7} (0.5,5.81,12.094,14.19,15.1875,13.875,9.344)

2,5 {1,2̀,3̀,4,5,6̀,7} (0,1.625,2,9.4375,0,11.84375,17.57812)

3,4 {1,2̀,3̀,4,5,6̀,7} (0,3.14583,4.625,9,1.70833)

4,3 {1,2,4̀,5,6̀,7,8} (0.1875,2.93,8.78,4.5625,6.14,13.3177,8.7968)

5,2 {1,2̀,3̀,4,5,6,7} (0.5625,1.10938,8.79427,2.79,12.065,4.427,13.852)

6,1 {1,2,4̂,5̀,6,7,8} (0.28125,8.589,10.4,15.516,14.6875,16.11,7.1875)

8 1,7 {1̀,2̂,3̀,4̂,5̀,6,7,8} (0.75,9.375,20.91,30.09375,37.633,43.453,39.2)

2,6 {1,2̀,3̀,4,5,6̀,7,8} (0,2.75,2,15.5625,0,24.14,39.2)

3,5 {1,2,3,4,5,6,7,8} (0,5.66676.20833,13.9583,2.45833,35.1875,2.958)

4,4 {1,2̂,3,4̂,5,6,7,8} (1.1,4.3,7.2448,17.3515,13.3411,29.426,14.95)

5,3 {1,2̂,3,4̂,5,6,7,8} (1.188,3.88,11.145,10.467,20.66,20.1,30.1)

6,2 {1,2̀,3̀,4,5,6,7,8} (1.468,1.41,12.8281,4.75,24.29687,4.5625,38.28)

7,1 {1,2,3̀,4̀,5,6̀,7,8} (0.56,12.34,20.4375,33.52,37.172,47.95,32.67)

Table 4.3: Optimal G1 minimum aberration 18-Run RPDs
selected from Table 2.2 with X1 as a noise factor

k k1,k2 Columns β1(2.0), β1(2.5),..., β1(5.0)

3 1,2 {1,2,3} (0.00926,0,0,0.0463,0,0.00926,0)

2,1 {1,2,3} (0.01389,0.00463,0.00926,0.02315,0.02778,0.02778)

4 1,3 {1,2,6,8} (0.01852,0,0,0.26389,0,1.02778,0)

2,2 {1,2,3,7} (0.0185,0.037,0.1713,0.4491,0.76,0.2963,0.125)

3,4 {1,2̀,3,6} (0.028,0.00926,0.225,0.0648,0.993,0.055,0.63657)

5 1,4 {1,4,6̀,7,8} (0.02778,0.06713,0.02083,1.19271,0,2.58681,0)

2,3 {1,2,4̀,5,8} (0.0521,0.08,0.81,3.00116,0.01273,0.71,0.295)

3,5 {1,2̂,4̂,5,6} (0.04282,0.037,1.2,0.87153,1.54282,1.2,0.68171)

4,1 {1,2̀,3̀,6,7} (0.05556,0,0.05556,0.8125,0.16667,4.3125,0)

6 1,5 {1,2,4̀,5,6̀,8} (0,3.4375,4.5,5.375,5.25,3.6875,2.5)

2,4 {1,2̂,4̂,5,6,7} (0,0.1875,2.25,3.42708,0,4.5625,0.75)
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Table 4.3 (Continued)

k k1,k2 Columns β1(2.0), β1(2.5),..., β1(5.0)

3,3 {1,2,4̀,5,6̀,8} (0,0.25,3.22916,4.7916,0.625,2.5,2.375)

4,2 {1,2,4̀,5,6̀,8} (0,0,4.2291,2.54166,2.625,1.0833,4.625)

5,1 {1,2̀,4̀,5̀,6,7} (1,0.1666,0.6666,9.0625,1,2.25,7.375)

7 1,6 {1,2,3,4̀,5,‘6,8} (0.1875,6.344,8.26,12.74,14.78125,13.72,12.4)

2,5 {1,2,3,4̀,5,6̀,8} (0,0.9375,2.625,7.14583,0,9.5416,0.875)

3,4 {1,2̀,3̂,4̀,5̀,6,7} (0,2.25,4.125,5.75,1.875,13.1875,2.25)

4,3 {1,2,4̀,5,6̀,7,8} (0.375,0.53125,6,6.75,5.9375,6.10937,10.734375)

5,2 {1,2,3,4̀,5,6̀,8} (0.1875,0.25,6.94792,4.21875,7.5,3.47917,13.9375)

6,1 {1,2̀,4̀,5̀,6,7,8} (1.5,1.5,1,15.125,1.5,10.09375,19.40625)

8 1,7 {1,2,3,4̀,5,6̀,7̀,8} (0.375,9.6875,16,26.5625,34.75,40.65,38.0625)

2,6 {1,2̀,3̀,4̀,5̀,6,7,8} (0,2.875,1.875,10.895,0,22.927,0.625,35.6458)

3,5 {1,2̀,3̀,4̀,5,6,7,8} (0.46875,2.9375,4.82,11.6289,5.2421)

4,4 {1,2̂,3,4̂,5,6,7,8} (0.84375,2.484375,7.73698,10.6549,12.123)

5,3 {1,2̀,3̀,4̀,5̀,6,7,8} (0.4687,2.9375,4.82,11.6289,5.2422,27.21,5.6718)

6,2 {1,2,3,4̀,5,6̀,7̀,8} (0.375,0.5,10.5625,5.9375,18.8125,6.375,32.5,9.5)

7,1 {1,2̀,3̀,4̀,5̀,6,7,8} (2.25,3,1.5,25.3125,2.25,22.3125,50.64)

4.2 Optimal G2 Minimum Aberration 18-run Ro-

bust Parameter Designs

In this section, G2 minimum Aberration mixed-level RPDs in 18 runs are obtained

and tabulated.

Table 4.4 lists the G2 minimum aberration designs selected from Table 2.2

with only three-level factors. Table 4.5 and 4.6 present the G2 optimal minimum

aberration RPDs constructed from Table 2.2 with the inclusion of the two-level

factor X1. In particular, in Table 4.5, X1 is assumed to be a control factor and in

Table 4.6, X1 is considered as a noise factor. Similar to the tables in section 4.1,

Tables 4.4-4.6, columns 1-5 show the number of factors (k), the number of control
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factors (k1), the number of noise factors (k2), an example of optimal designs, and

the corresponding generalized wordlength pattern, respectively.

Table 4.4: Optimal G2 minimum aberration 18-Run RPDs
selected from Table 2.2 with only three-level factors

k k1,k2 Columns β2(2.5), β2(3.0),..., β2(5.0)

3 1,2 {2,3,8} (0.01389,0.00926,0.38194,0.02778,0.00926,0)

2,1 {2,3,8} (0.01389,0.00926,0.38194,0.02778,0.00926,0)

4 1,3 {2,3̀,4,8} (0.02778,0.04167,1.43056,0.00694,0.08333,0.30556)

2,2 {2̀,3̀,4,5} (0.03819,0.04167,2.37153,0.02778,0.05903,0.02083)

3,1 {2,3̀,4,8} (0.02778,0.04167,1.43056,0.3125,0.08333,0.02778)

5 1,4 {2̀,4̀,5̀,6,7} (0.03704,0.08333,4.13889,0.01389,0.16667,2.11806)

2,3 {2̀,4̀,5̀,6,7} (0.06481,0.86806,5.02778,0.05556,0.24074,1.86111)

3,2 {2̀,4̀,5̀,6,7} (0.06481,0.86806,5.02778,0.43056,0.24074,1.52315)

4,1 {2̀,4̀,5̀,6̀,7} (0.03704,0.08333,4.13889,2.13194,0.16667,0.11111)

6 1,5 {2̂,3̂,4̂,5,6,7} (0.1875, 5.15625, 0.9375, 2.8125, 3.09375, 6.312)

2,4 {2̂,3̂,4̂,5,6,7} (0.375,0.5625,6.5625,2.25,3.375,7.25,3)

3,3 {3̀,4̀,5̀,6,7,8} (0.5625,1.78125,5.0625,2.4375,3.9375,6.5625,6.1875)

4,2 {2̂,3̂,4̂,5,6,7} (0.375,1.3125,6.5625,2.625,2.625,3,7.25,3.125)

5,1 {2̂,3̂,4̂,5,6,7} (0.1875, 0.9375, 5.15625, 3.09375, 2.8125, 2.0625)

7 1,6 {2,3,4̀,5,6̀,7̀,8} (0.375,7.3125,1.875,6.375,6.75,14.625,4.875,9.75)

2,5 {2,3̀,4̀,5,6,7,8} (1.3125,0.78125,7.73438,3.98,10.664,9.37,12.1875)

3,4 {2,3̀,4̀,5,6,7,8} (1.6875,0.82813,9.765625,6.4,10.148,12.043,8.38281)

4,3 {2,3̀,4̀,5,6,7,8} (1.6875,1.48437,9.7656,5.789,10.148,13.4,8.383)

5,2 {2,3̀,4̀,5,6,7,8} (1.3125,1.8125,7.734375,5.8281,10.664,9.8,12.1875)

6,1 {2,3,4̀,5,6̀,7̀,8} (0.375,1.875,7.3125,6.75,6.375,4.875,14.625,10.9375)

Table 4.5: Optimal G2 minimum aberration 18-Run RPDs
selected from Table 2.2 with X1 as a control factor

k k1,k2 Columns β2(2.5), β2(3.0),..., β2(5.0)

3 1,2 {1,3,6} (0,0.01852,0.01852,0,0)

2,1 {1,2,3} (0.00926,0.01389,0.03704,0,0.02778)

4 1,3 {1,3̀,6,7} (0,0.055,0.066,0.26,0.84375,0.09375)

2,2 {1,2̀,6,7} (0.02083,0.42593,0.1412,0.26389,0.794,0.384)

3,1 {1,2,6,7} (0.00926,0,0.03704,0.01852,0.0463,0.57407)
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Table 4.5 (Continued)

k k1,k2 Columns β2(2.5), β2(3.0),..., β2(5.0)

5 1,4 {1,2̀,3,6,7} (0.0417,0.0833,0.6458,0.6319,1.6875,1.118)

2,3 {1,2̀,3,4̀,8} (0.04282,0.8669,2.80208,0.06597,0.08449,2.29282)

3,2 {1,2,4,5̂,8} (0.01389,0.00463,0.05787,0.06944,0.79861,3.39815)

4,1 {1,2,3̀,4,8} (0.02778,0.09028,2.20833,1.72917,0.18056,0.048)

6 1,5 {1,2,3,6̀,7̀,8} (0,2.5,1.5,2.5,3.5625,4.25)

2,4 {1,2̀,3̀,4,5,6} (0.46875,2.9375,4.82,11.6289,5.2421,27.208)

3,3 {1,2,4̀,5,6̀,8} (1.375,8.3125,0,0,5.5,4.625)

4,2 {1,2,4̀,5,6̀,8} (0,0.97916,5.6666,2.25,2,1.625)

5,1 {1,2,4̀,5,6̀,8} (0,0,5.3125,4.75,0,0)

7 1,6 {1,2̂,3,4̂,5,6̀,8} (0.5,3.84375,1.96875,6.79687,5.29687,5.79687)

2,5 {1,2,3,4̀,5,6̀,8} (0.6875,1.27,9.01,2.0313,4.91,8.4)

3,4 {1,2,3,4̀,5,6̀,8} (0.875,2.1875,10.0625,4.1875,3.875,10,10)

4,3 {1,2,4̀,5,6̀,7,8} (0.75,2.40625,11.1875,3.65625,4,11.2708)

5,2 {1,2,4̀,5,6̀,7,8} (0.5625,1.85938,10.33854,3.84896,4.64,7.2)

6,1 {1,2,4̀,5,6̀,7,8} (0.28125,0.96875,7.62,6.6,3.796875,3.61)

8 1,7 {1,2̂,3,4̂,5,6̀,7,8} (0.75,6.5625,2.8125,10.64,10.266,11.95312)

2,6 {1,2̂,3,4̂,5,6,7,8} (1.91,0.91,10.625,6,15.289,11.13)

3,5 {1,2,3̀,4,5,6,7,8} (2.5938,2.308,11.12,11.4323,15.07,18.155)

4,4 {1,2̀,3̀,4,5,6,7,8} (2.72,2.6146,13.0573,12.148,15.1016,21.423)

5,3 {1,2̀,3̀,4,5,6,7,8} (2.468,2.73,12.984,10.778,16.8,18.587)

6,2 {1,2,3̀,4̀,5,6̀,7,8} (1.125,2.96875,15.09375,8.09375,11.03125,14.797)

7,1 {1,2,3̀,4̀,5,6̀,7,8} (0.5625,1.9375,10.40625,12.09375,8.34,8.97)

Table 4.6: Optimal G2 minimum aberration 18-Run RPDs
selected from Table 2.2 with X1 as a noise factor

k k1,k2 Columns β2(2.5), β2(3.0),..., β2(5.0)

3 1,2 {1,3,6} (0.0093,0,0.028,0.0046,0.00463)

2,1 {1,2,3} (0.00463,0.00926,0.01389,0.03704,0,0.02778)

4 1,3 {1,2,6,7} (0.01852,0.00926,0.403,0.042,0.02315,1.05)

2,2 {1,2,3,7} (0,0,0.125,0.375,0.75,0.25)

3,1 {1,2,6,7} (0.375,0.125,0.625,0.875,0)

5 1,4 {1,2̀,3̀,4,8} (0.02778,0.04167,1.43,0.021,0.86111,0.35417)

2,3 {1,2,4̀,5,6} (0.0463,0.02778,2.73611,0.0463,0.361,0.972)

3,2 {1,2̂,3,4,8} (0.04167,0.03704,1.34722,1.26389,1.43981,0.13426)
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Table 4.6 (Continued)

k k1,k2 Columns β2(2.5), β2(3.0),..., β2(5.0)

4,1 {1,2̀,3̀,4,8} (0.01389,0.07639,0.04167,3.9375,0,0.22917)

6 1,5 {1,2,4̀,5,6̀,8} (0,3.4375,0,1.875,2.625,3.25,2.125,4.375,0.875)

2,4 {1,2,4̀,5,6̀,8} (0,0.25,5.4375,0.75,1.875,1.375,3,3.375,3.625)

3,3 {1,2,4̀,5,6̀,8} (0,0.25,5.4375,2.9583,1.41667,1,3,4.2916,1.5833)

4,2 {1,2,4̂,5̀,6,8} (0,0,3.4375,4.625,2,0,3.25,6.625,0,0,2.3125,3.5)

5,1 {1,2,4̂,5̀,6,8} (0,10.0625,0,9.875,0,5.8125,0,0.25,0)

7 1,6 {1,2,3,4̀,5,6̀,8} (0.1875,5.40625,0.9375,4.92,3.3438,7.656)

2,5 {1,2,3,4̀,5,6̀,8} (0.6875,1.2708,9.0104,2.0312,4.9062,8.4062)

3,4 {1,3̀,4̀,5̀,6,7,8} (0.5625,1.78125,7.3125,2.8125,5.71875,8.25)

4,3 {1,2̀,4̀,5̀,6,7,8} (0.4688,1.3438,7.375,3.375,4.1875,10.15625)

5,2 {1,2,3,4̀,5,6̀,8} (0.1875,1.1875,5.40625,7.38541,3.645833,5)

6,1 {1,2̀,3̀,4̀,5,7,8} (2.3125,10.07812,13.42187,15.2539,14.543)

8 1,7 {1,2̀,3̀,4,5,6,7,8} (0.65625,5.64,1.6875,12.72,6.578,13.69,10.9)

2,6 {1,2̀,3̀,4̀,5̀,6,7,8} (0.938,0.5625,11.625,3,8.688,13.75,23.1)

3,5 {1,2̀,3̀,4̀,5̀,6,7,8} (1.125,2.4375,12.65625,4.5,9.46875,20.0625)

4,4 {1,2̀,3̀,4,5,6,7,8} (2.71875,2.6145,13.05729,12.1484,15.1015)

5,3 {1,2̀,3̀,4̀,5̀,6,7,8} (0.9375,1.875,11.625,8,8.125,20.625,18.5937)

6,2 {1,2,3,4̀,5,6̀,7̀,8} (0.375,0.5,10.5625,5.9375,18.8125,6.375,32.5)

7,1 {1,2,3,4,5,6,7,8} (5.0625,13.36,28.75781,36.484,35.34375,41.1)

4.3 Two Illustrative Examples and Results

When we plan an experiment which involves several control factors and noise

factors that are either qualitative or quantitative with each at two or three levels,

we may choose an optimal design directly from Tables 4.1-4.6 to satisfy our needs.

Now two examples is applied to gain further insight of these optimal design tables.

Example 4.1

Consider a mixed-level fractional factorial RPD A with one factor assigned to column

1 of Table 2.2 and other four factors assigned to the four columns selected from
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columns 2-8 of Table 2.2. Assume A has two control factors and two noise factors,

that is k1 = 2 and k2 = 2. Totally, we obtain 4 optimal RPDs using G1 minimum

aberration criterion by searching among the entire class of non-isomorphic RPDs

with X1 as one of the control factors, and 18 optimal RPDs for the case that X1

is a noise factor. All the optimal RPDs are presented in Table 4.7 and Table 4.8,

respectively.

Table 4.7: Optimal G1 Minimum Aberration RPDs when k1 = 2, k2 = 2 and X1 is a
control factor

Columns Generalized Word Length Pattern B1(A)

{1,2̀,3,6} (0.03935, 0.1875, 0.0625, 0.95602, 0.03472, 0.58102, 0)

{1,2̀,3,7} (0.03935, 0.1875, 0.0625, 0.95602, 0.03472, 0.58102, 0)

{1,2,4,8̀} (0.03935, 0.1875, 0.0625, 0.95602, 0.03472, 0.58102, 0)

{1,2,5,8̀} (0.03935, 0.1875, 0.0625, 0.95602, 0.03472, 0.58102, 0)

Table 4.8: Optimal G1 Minimum Aberration RPDs when k1 = 2, k2 = 2 and X1 is a
noise factor

Columns Generalized Word Length Pattern B1(A)

{1,2̂,3̂,7} (0.01852,0.03704,0.1713,0.44907,0.75926,0.2963,0.125)

{1,2,3,6̀} (0.01852,0.03704,0.1713,0.44907,0.75926,0.2963,0.125)

In column 1 of Tables 4.7 and 4.8, the optimal designs are listed, where the

control factors are written in bold numbers. For example, {1,2̀,3,6} in Table 4.7

implies this optimal design is constructed by columns 1, 2, 3, and 6 in Table 2.2

with two control factors X1 and X6 and two noise factors X2 and X3. Among these

factors, X2 is changed by the level permutation rule II. The second column list the

generalized wordlength pattern B1(A) of the corresponding optimal designs.
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Example 4.2

Consider the design A in Example 4.1. Now G2 minimum aberration criterion is

used instead of G1 minimum aberration criterion. For the case that X1 is one of the

control factor, we obtain 2 optimal RPDs by searching among the entire class of

non-isomorphic RPDs. For the case that X1 is one of the noise factor, there are 2

optimal RPDs totally. All the optimal RPDs are presented in Table 4.9 and Table

4.10, respectively.

Table 4.9: Optimal G2 Minimum Aberration RPDs when k1 = 2, k2 = 2 and X1 is a
control factor

Columns Generalized Word Length Pattern B2(A)

{1,2̀,6̀,7} (0.02083, 0.42593, 0.1412, 0.26389, 0.79398, 0.38426)

{1,2̂,6̂,7} (0.02083, 0.42593, 0.1412, 0.26389, 0.79398, 0.38426)

Table 4.10: Optimal G2 Minimum Aberration RPDs when k1 = 2, k2 = 2 and X1 is
a noise factor

Columns Generalized Word Length Pattern B2(A)

{1,2̀,6̀,7} (0.01852, 0.00926, 0.40278, 0.04167, 0.02315, 1.05556)

{1,2̂,6̂,7} (0.01852, 0.00926, 0.40278, 0.04167, 0.02315, 1.05556)

The optimal designs are listed in the first column, where the control factors are

written in bold numbers. In column 2, the generalized wordlength pattern B2(A) of

the corresponding optimal designs is presented.
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Chapter 5

Conclusion

Fractional factorial designs are popular in areas of science and technology and

used to identify the effect of factors on a process because they are more flexible

and have smaller run sizes than full factorial designs. Some investigators proposed

new designs build upon the work on detailed structure of fractional factorial designs.

Robust parameter design is one of the representative examples. The main purpose

of this project is to study mixed-level fractional factorial robust parameter designs

and to introduce a new ranking principle of lengths of words that is helpful to select

optimal mixed-level robust parameter designs.

In Chapter 2, we reviewed two-level full factorial designs, two-level regular and

non-regular fractional factorial designs, mixed-level fractional factorial designs, and

two-level robust parameter designs. In regular designs, generators in the defining

relation play key roles in determining optimal designs. However, they are not

available to choose good designs by generators in non-regular designs. With the

development of indicator function, the concept of defining relation can be extended

to non-regular designs, mixed-level fractional factorial designs and robust parameter
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designs. Furthermore, we introduced minimum aberration as an optimality criterion

for ordering fractional factorial designs and two-level robust parameter designs.

Chapter 3 discussed the use of indicator function for a mixed-level robust pa-

rameter design and developed a new methodology for selecting optimal designs. We

proposed a new definition for lengths of words when the difference of qualitative

factors and quantitative factors and the difference of control factors and noise factors

are taken into consideration. Moreover, we defined generalized wordlength patterns

B1(A) and B2(A), and generalized G1 and G2 minimum aberration optimality criteria

to mixed-level robust parameter designs.

Chapter 4 investigates optimal robust parameter designs using the generalized

G1 and G2 minimum aberration criteria developed in Chapter 3. An optimal robust

parameter design should have the minimum aberration among all the possible designs.

We focused our efforts on searching for optimal mixed-level robust parameter designs

of 18 runs from Table 2.2. We considered every possible combination of control and

noise factors and every possible permutation assigned to the columns of Table 2.2.

G1 and G2 minimum aberration robust parameter designs are searched among the

set of all non-isomorphic fractional factorial mixed-level robust parameter designs.

A catalogue of generalized minimum aberration fractional factorial robust parameter

designs with 18 runs is tabulated. Lastly, we used two examples to illustrative this

catalogue and find some rules between these tables.

Overall, while dealing with the important problem of selecting optimal mixed-

level fractional factorial robust parameter designs, the thesis attempts to a framework

for the study of robust parameter designs which involves two groups of factors.
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