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ABSTRACT

The moment method solution is employed in this thesis to analyse the field
behaviour and the scattering matrix coefficients describing reflection, transmission,
and mode conversions at multiple-step waveguide junctions. The equivalence princi-
ple is used to divide the original problem into isolated regions and equivalent mag-
netic current sheets are used to replace the junctions faces on perfect electric conduc-
tors to ensure the continuity of the tangential electric and magnetic field components
at each junction. The magnetic current sheets are expressed in terms of infinite series
and each term corresponds to a new mode. In the case of double-step two coupled
sets of equations in terms of the unknown magnetic current sheets are obtained and
solved using the moment method. Some special cases, such as ridged and over-sized
double-step discontinuity are considered in detail. The analysis is also extended to
include cascaded junctions. The field and scattering matrix coefficients are computed
and presented graphically as a function of frequency for various separation between

the junctions.
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CHAPTER 1

INTRODUCTION

The problem of coupling through apertures has many engineering applications,
such as waveguide to waveguide coupling, waveguide fed horn coupling, horn to horn

coupling, and waveguide fed aperture coupling.

Waveguides with multiple-step discontinuities are encountered in a variety of
engineering applications such as transformers to minimize the reflection coefficient [1],
band rejection filters [2], and dielectric resonators in waveguides below cutoff [3]. The
early work was performed by using the variational method [4,5], Schwarz procedure
[6-8], a quasi-optical theory [9], and several numerical methods, some of them based
on the moment method solution [10-12]. De Smedt and Denturck [13] used thé
moment method and point matching solution to obtain the scattering matrix coefficients
for a double-step in terms of that for a single step discontinuity, for sufficiently large
separation between the junctions. Rozzi and Mecklenbrauker [14,15] proposed a solu-
tion based on the variational method and network modeling for interacting inductive
irises and steps in rectangular waveguides. The salient feature of their approach is that
the solution of the field problem yields a reactance matrix with monotonic convergence
properties. Wexler [16] used modal analysis to solve for waveguide discontinuities,
the field being expressed in terms of waveguides modes, and obtained a solution for
the mode coefficients. Later, a solution for double-plane steps in rectangular
waveguides was obtained by Patzelt and Arndt [17] using the method of field expan-
sion into eigenmodes. This method takes into account the influence of the evanescent

field modes and power transmitted due the higher order modes. Safavi-Naini and



MacPhie [18,19] used the principle of conservation of complex power to obtain the
scattering matrix of two-port network without matrix inversions. The Ray theory
method was also applied to study the scattering by a waveguide discontinuity [20-22],
where the field at a distant point due to line source excitation is presented as the sum
of the fields on the various multiply reflected rays from the source. The ray fields are
then converted into a sum of modes, with the amplitude of each mode being deter-
mined by the radiation pattern of the source in the two plane wave directions
corresponding to the mode. The ray diagram is complicated while the restriction on the
dimensions of the scatterer being large relative to the wavelength for a reasonable

accuracy makes the method less attractive.

The main objective of this thesis is to present a complete study of the field
behavior and the scattering matrix coefficients for single and multi-step waveguide

discontinuities for various values of separation length between the junctions.

In chapter 2, we present a moment method procedure for solving the single step
discontinuity based on the generalized network representation for aperture problems
[23,24]. The method is applied to two infinite rectangular waveguides with a transverse
planar junction with an incident field from the smaller waveguide. The field com-
ponents are expressed in modal form for both the TE and TM modes. The scattering
matrix associated with incident and scattered fields in the smaller waveguide and the
transmitted field in the larger waveguide are determined from the analysis. The
Reciprocity Theorem permits determination of the scattered and transmitted fields
when the incident field is from the larger waveguide. The scattering matrix

coefficients are computed and presented graphically as a function of frequency.



In chapter 3, we present the general solution for a double-step waveguide discon-
tinuity. The analysis is extended to a closely separated double-step discontinuity to
take into account the near field coupling within the double-step discontinuity and the
interaction between the higher order modes. The resulting set of coupled integral equa-
tions is solved using the moment method. Quantitative results for the field coefficients
are presented for a specific double-step waveguide discontinuity where the separation
between the junctions is small compared to the wavelength. Various values of L are
considered while the frequency range for computational purposes is from 2.6 to 10

GHz.

Chapter 4 presents an alternative solution to the double-step discontinuity by sub-
jecting the structure to an odd and an even excitation and then superimposing the
results to obtain the scattering matrix [13,25]. This is in contrast to classical iterative
methods based on the wave matrix approach which employ the scattering matrix for
each individual junction and attempt to present the multiple interaction between junc-
tions using the term by term shifting matrix. A series of steps is commonly treated by
the transmission matrix parameter[26-28]. In other words, cascaded junctions are
always separated by waveguide sections, and those cascaded sections are treated by
applying the transmission matrix representation [29], while the cascaded junctions are
treated by the scattering matrix scheme for a double-step discontinuity. The only usual
restriction is on the connecting waveguide sections which should be sufficiently long

relative to the wavelength.

The discussion and conclusions are presented in chapter 5. Appendix A, presents

application of the method to a single iris in a rectangular waveguide. The analysis for



these types of discontinuities runs parallel to the foregoing analysis in Chapter 2 with
the only difference being in those cases where the waveguide cross-sections are the

same.



CHAPTER 2

ANALYSIS OF SINGLE-STEP DISCONTINUITY IN
RECTANGULAR WAVEGUIDES

The problem of a single-step waveguide discontinuity is discussed in this chapter.
The equivalence principle is used to divide the problem under consideration into two
regions [30]. This is can be accomplished by covering the aperture with an electric
wall and providing for the unknown tangential electric field in the aperture by attach-
ing magnetic current sheets to both faces of the junction. Continuity of the tangential
magnetic field components across the aperture yields an integral equation in terms of
the unknown magnetic current sheet. To solve the integral equation, the moment
method is used [31]. The unknown magnetic current sheet is expressed as an infinite
series with a linear combination of the expansion function. The expansion function is
substituted into the integral equation, then a weighting (or testing) function is defined
and used to test the integral equation at different points (point matching). Apart from
simplicity, the obvious advantage of the moment method is to choose weighting and
expansion functions to minimize the computation required for evaluating the inner pro-
duct [32,33]. A particular choice of expansion functions may be obtained by letting

the weighting and basis functions be the same (Galerkin’s method) [34,35].



2.1 Formulation

Consider two infinitely long rectangular waveguides having different cross sec-
tions as shown in Fig. 2-1. The source is located far enough from the junction in
waveguide A where it produces a multimode propagates field. The incident field pro-
pagating in the positive z-direction. A part is reflected by the discontinuity and a part
is transmitted through the aperture S to waveguide B. The transverse components of

the electromagnetic field in modal form are given as follows [31].

’
Zaie‘j’Ya.‘ zeai + Zdiefyai z e, (Z < O)
14 i
E, = i 2-1)
‘ E_bie TV 2 gy (z >0) (
H
Zai Yaie_jyai Zuzx €4 — Zdi Yaiej'yai Zuzx €4 (z<0)
i i
H, = i 2-2
‘ ShiYpe ™ Tu x ey (z > 0) @2
i

\

a;, b;, and d; are complex coefficients of the transmitted and reflected mode, vy,; and
Ypi are the modal propagation constants, Y,; and Y;; are the modal admittances, e,
and e,; are the modal vectors for the ith mode in waveguides A and B, respectively.
The propagation constants are real for propagating modes while in the case of evanes-

cent modes they are imaginary. The normalization of the field is given by [13]
fei - e, ds =5, (2-3)
S

where 1 refers to waveguide A or B, respectively.

Using the Equivalence Principle [31,35], the fields in the two regions can be

modeled in terms of the equivalent magnetic current sheet M placed over the aperture



Fig. 2-1: Geometry of single step waveguide discontinuity.



S, as shown in Fig. 2-2, with

M =u,x E, at z =0 (2-4)
where u, is the unit normal and E, is e unknown electric field in the aperture S
which is to be determined. Thus, the field in waveguide A is the incident field plus
the field produced by the magnetic sheet M while the field in waveguide B is the field

produced by the magnetic current sheet —M .

In order to determine the unknown expansion coefficients, we apply the proper
boundary conditions. Thus the continuity of the tangential electric field components

across the aperture S at z = 0, requires that

Xa; uX ey +3d; uxe,; =M =YDb; u,X ey (2-5)
i i i
Also the continuity of the tangential magnetic field components across the aperture S

at z = 0, requires that

2a; Yo u;% eg; = 2d; Yoi uX €4 = 2hi Yoi uy X e (2-6)
i 3 {

If equations (2-5) and (2-6) could be satisfied exactly, we would obtain the true solu-

tion. To obtain an approximate solution, we apply the moment method.

2.2 Moment method solution

To apply the moment method, we expand the magnetic current sheet M as

@
M = Zle M, at z=0 2-7)
p:
where V, are unknown complex coefficients to be evaluated, and M, are known vec-

tor basis functions. The above summation is limited to a finite number of terms Q.

By substituting (2-7) into (2-5), we obtain



Z=0

Z=0

Fig. 2-2: Equivalence for waveguides A and B.
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N N 0
Zai Uy X €y + Zdi U, X €5 = va Mp (2-8)
i=1 i=1 p=l

and
N Q
%biuzx €pi = Zlvp Mp (2-9)
i= p=

Next, multiplying equation (2-8) by u,x e, and equation (2-9) by u,% e, (k = 1,2,...,

N), and integrating over the corresponding aperture S, we obtain

N N
Eaifuzx €y " U X ey ds + Zdifuzx €h " U, X ey ds =

i=1 § i=1 S
Q
SV,IM, % ey ds (2-10)
p=l1 §

and

N Q

Zbijuzx €y " U, X ey ds = ZVPJMP U, X ey ds (2-11)

i=1 § p=l S

Because of the orthogonality condition (2-3), all the terms in the summations on the

left hand side are equal to zero except the i = k term. This leads to

0
g +di= 3V, hyy (=12, N) 2-12)
p=1

0
by = 2V, by ( =12,.,N) (2-13)

p=1

where

hip =M, -, x e ds  (r =ab) (2-14)

S

Equation (2-14) can be written in matrix form as

Hr :[hrip]NxQ (2-15)

Next, define an inner product as in [31],
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<W ,G>=|W-G ds (2-16)
S

and a set of testing functions {W, p =1,2,..,0}, which may or may not be equal to

the expansion functions. We take the inner product of (2-6) with the testing function

Wy, and obtain

N N (o
ZaiYaiIWk TU X e ds =3 | X Vphg, —a YaiIWk “UpX ey dS +
i=1 1y i=1 [p=1 s
N | Q
2| 2V hp YbiJ.Wk T U X ey ds (2-17)
i=1 [p=1 S
Equation (2-17) can be simplified as
N N (g
220, Y ;Wain = 2| X Vphaip [YaiWay +
i=1 i=1 |p=1
N[0 '
2| 2 Vo lwip | Yoi Whik k =12,.,0) (2-18)
i=1 {p=1
where
Wi = .[Wk U xe,; ds (r=ab) (2-19)
1y

The above equation can be written as in (2-15), i.e.

W, =Wl Nx o (2-20)
Following Mautz et al [24,36-38] equation (2-18) may be re-written in the generalized

admittance form as

T=[Y, +%,]V 2-21)

where
T=2wly,@ (2-22)

Y, =WIY,H,  (r =ab) (2-23)
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a = [a;] Ny (2-24)

V=1V,] g1 (2:25)
With Y, being the diagonal matrix of the modal admittances in the corresponding
waveguide A or B, @ and ¥/ are the column matrices of the quantities ¢; and V,, and
T is the matrix transpose. Equation (2-21) can be interpreted as two networks / I7a ]
and [ fb ] in parallel with the current source I as shown in Fig. 2-3. It is important to
know that [ }7a ] represents waveguide A and [ I_/;, ] represents waveguide B, which may
be computed separately, then the results are combined to yield the solution of the

problem.

2.3 Galerkin’s method solution

Since the aperture S has the same cross-section as waveguide A, we may let the

weighting and basis functions be the same and equal to [23]
M, =W, =u,xe,, p=1.2,.,0) (2-26)
Also, we let N = Q and €ap = Cpp. This leads to

H =W, =U r=ab) 2-27)
where U is the identity matrix. Equations (2-22) and (2-23) reduce to

I'=2v,2 (2-28)

Y, =Y, (2-29)
Substituting (2-28) and (2-29) into (2-21), we obtain

T=[Y,+Y,]V (2-30)
Equation (2-30) represents a (Nx N) system of linear equations. Its solution through
equations (2-12)-(2-13) yields the electric and magnetic fields in equations (2-1) and

(2-2). The final stage in this chapter is to obtain the scattering matrix coefficients for
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— ' —
[Ys) :' [Yb]
I
N N VN

Fig. 2-3: The generalized network presentation of equation (2-21).
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the single-step discontinuity.

2.4 Scattering matrix formulation

The scattering matrix for the single step discontinuity is given by [39]

S S
S=|4 2-31
IVSba Sbb } (231

Let the subscripts a and b denote the left and right side regions of the junctions,

respectively. The complex reflection coefficients S,, can be obtained from (2-12) as

d=V-z (2-32)

where ¥ is obtained from (2-30) as

V=2@,+1,)'Y,2 (2-33)
Substituting (2-33) into (2-32) leads to

T=2F,+Y,) ' Y,72-2 ‘ (2-34)
Therefore, the submatrix S,, can be written as
d_ 1
Spa = —a; =X, +Y,) " Y, - Y) (2-35)

Similarly, the complex transmission coefficients can be obtained from (2-13) as

b=20,+Y,)'y,2 (2-36)

Therefore, the submatrix S;,, may be written as

5

Spa = == 2(,+Y,)ty, (2-37)
The submatrices S,;, and S;;, due to the excitation in waveguide B may be obtained in
a similar manner since the situation is reciprocal to the above submatrices S,, and S,

due to the excitation in waveguide A. Therefore, the source vector I can be written in

this case as
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I'=2Y,2 (2-38)

Now, it can be shown that the submatrices S, and S}, are given by

Sp =2 ¥, +Y,)Y, (2-39)

and
Spp = =Saa = (Vg +Y,) (¥ = ¥,) (2-40)
2.5 Numerical results

We consider the structure shown in Fig. 2-2 where waveguide A has a width w,
= 7.214 cm, with height d = 3.404 cm and cutoff frequency f, = 2.08 GHz, while
waveguide B has a width w, = 4.50 cm, with the same height as waveguide A and
cutoff frequency f’. = 3.33 GHz = 1.603 f,. These dimensions and frequencies were
selected to permit numerical comparison with published data by others using different
methods of solution. The magnitude and phase of S,,, S,,, and S, are plotted as a
function of frequency. Different values of N are considered e.g. N = 1,3,5, with N=5
yielding to a satisfactory accuracy. The results are compared with the values calcu-
lated by De Smedt er al [13] and the range of frequency is extended to 5 GHz. It is
seen from Fig. 2-4 that the magnitude of reflection coefficient is unity between 2.6
GHz and 3.33 GHz and the agreement between the two curves is excellent below 3.6
GHz. Fig. 2-5 shows the magnitude of S, as zero at 3.33 GHz, the cutoff frequency
of waveguide B, while the magnitude of S,, and S, can exceed unity because of the
normalization in equation (2-3) [13]. In Fig. 2-7 we present the phase of S, S, and
Sy, in degrees, where the phase of S, and S, are above zero degrees while the phase
of Sy is below zero degrees between 2.6 GHz and 3.4 GHz. The phase of S,,, S,

and S;, is zero degrees above 3.4 GHz. The impedance mismatch that occurs when
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two waveguides are connected together may be represented by the voltage standing

wave ratio (VSWR) in the waveguide containing the incident wave [29,40-42], i.e.

1 +lSaai
1-|S

The results are presented at various frequencies in Fig. 2-8.

VSWR = (2-41)

aa'
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CHAPTER 3

ANALYSIS OF DOUBLE-STEP DISCONTINUITIES IN
RECTANGULAR WAVEGUIDES

In this chapter the problem of double-step discontinuities in rectangular
waveguides is discussed. The analysis developed in chapter 2 for the single-step
discontinuity (two regions problem) is extended to double-step discontinuities (three
regions problem). To accomplish this, the Equivalence Principle is used to replace both
faces of each junction by electric walls, each of which carries magnetic current sheets
on both sides. The problem is divided into three separate regions which are coupled by
the magnetic current sheets. Continuity of the tangential magnetic field components
across the two apertures results into two coupled equations involving the unknown
magnetic current sheets. These equations are expressed in matrix form using the
moment method. The results can be interpreted in terms of the admittance matrices

computed separately for each region.

3.1 Formulation

Consider the double-step discontinuities in rectangular waveguides as shown in
Fig. 3-1. The problem consists of three regions A, B, and C, respectively, which are
separated by two boundaries (junctions faces). The fields transverse to the positive z-

direction may be written in modal form as follows [25,31].
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1
[

Fig. 3-1: Geometry of general double-step waveguide discontinuities.
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In region A

—J Yai 2 [ Yai 2
E, =Y(a;e? 7% +diel %) e,
i

H =YY (e ™% —del?yyxe, ; (3-12)
i

in region B

—j i 2 j i Z
Et — Z(bie Yo +fieJYb )ebi
i

H =YY, (e — fe/% %y u,x ey (3-1b)
;

and in region C

Ccl

E, = Ye;eta L)
i

H, =3¢; Y,;e Ve @) u,X e . (3-1c)

i
a;, b;, and c¢; are complex coefficients of the transmitted modes, d; and .f; are com-
plex coefficients of the reflected modes, Y,;, ¥,;, and y,; are the modal propagation
constants, Y, ¥;, and Y,; are the modal admittances, and e,;, e,;, and e, are the

modal vectors for the ith mode in regions A,B , and C, réspectively.
Using the Equivalence Principle, the fields in the three regions can be modeled in

terms of the equivalent magnetic current sheets M® and M©) placed over the aper-

tures S, and S,, respectively, as shown in Fig. 3-2, with

MO =y, x EO atz =0 (3-2)

MO =y x ED at z =L (3-3)

where E® and E,®) are the total electric fields in the apertures S; and S, respec-
tively, which are to be determined later. The field in region A is the incident field

plus the field produced by the magnetic sheet M®, which is identical to (3-1a). The
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Fig. 3-2: Equivalance for waveguides A,B, and C.
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field in region B (resonator box) is the total field produced by the two magnetic
current sheets —M @ and ML), which is identical to (3-1b). The field in region C is

the field produced by the magnetic current sheet —M €, which is identical to (3-1c).

In order to determine the unknown expansion coefficients, we apply the proper
boundary conditions at the various junctions. Thus the continuity of the tangential

electric field components across the apertures S and S, requires that

Zai U, X €, + Zdl U, X ey, = M(O)
i i
=2b uX ey +3f; uxey arz=0 (3-4)
i i
and
Zbie‘j“{b{ L uzx ebl' + ZfierH L uZX ebi = M(L)
H i .
=Yc; u,xe,; atz=L (3-5)

13

Also the continuity of the tangential magnetic field components across the apertures

S, and §, requires that
Zai Yyu,x eq — Zdi You,xey =
i i
2biYpiu % ey = Xf i Ypiu, ¥ ey at z =0 (3-6)
i i
and
—jvei L ¥si L _
Shi¥pie Y MU x ey = Xf Yyl ™ Tux ey =
i i
dceiYou,xe; atz=L (3-7)
i
Since in general it is not possible to obtain closed form solutions for the unknowns in

equations (3—4) through (3-7), we apply the moment method.
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3.2 Moment method solution

To apply the moment method, we expand the magnetic current sheets M © and

ML) a5
0 Sy 0
MO =3 vO MmO at Sy (3-8)
p=1
and
0,
ME =y vE ML ar S, (3-9)
p=1

where Vp(o) and VP(L) are unknown complex coefficients to be evaluated, Mp(o) and
Mp(L) are known vector basis functions. The above summations are limited to a finite

number of terms O, and Q,. By substituting (3-8) and (3-9) into (3-4) and (3-5), we

obtain
N1 N1 Ql
>a; ux ey + Xd; uyxey = 3 VO MO (3-10)
i=1 i=1 p=1
N, N, 2 0 e 0
Yb; ¥ ey + S ux ey = 3V, MO (3-11)
=1 i=1 p:l
N» N, o
Zbie_fybi L u,x ey + Efiejybi L U, xep; = ZVP<L) MP(L) (3-12)
i=1 i=1 p=l
N, o
e ux e = V0 ME (3-13)
i=1 p=1

The summations on the left hand sides of the above equations may be truncated to a
finite numbers of modes N, and N,. Next, multiplying equations (3-10) by u,xe,,
(3-11) and (3-12) by wu,Xxep, and (3-13) by u,xey, and integrating over the

corresponding apertures S, and S ,, respectively, we obtain
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Nl Nl
Eai-'.uzx €qi " U X €t dsl + Zdi-[uzx €qi " Uy X €5 dsl =
=1 Sl i=1 Sl
O
EVP(O)IMP(O) C U X ey dsq
p=i Sy
N, N,
ZbiJ.uZX €p; U, X epp ds1+2f,-fuzx €p; U, X et ds1=
l=1 Sl l=1 Sl

O
ZVP(O)fMp(O) U, X Epk dSl
p=l1 S1

N, v I N, v T
Zbie e fuzx ep; " U X €y dS2 + ZfiBJYb' juzx €p; " Uy X epp d52 =
i:1 S2 l=1 Sz

0,
ZVP(L)IMP(L) “ U, X e dSo

p=1 S2
and
N, Qs
- L L.
3¢ Juzx ey " U X e dsy = YV )IMP( ) u,x ey ds,
i=1 S, p=l S,

(3-14)

(3-15)

(3-16)

(3-17)

Because of the orthogonality condition for the mode functions in each region (2-3), all

the terms in the summations on the left hand side are equal to zero except for the i = k

term. This leads to

21
a; + di = EVP(O) ha(ig)
p=l

!
bi+fi=XVOhQ
p=1

. , 0,
i L (L
bie V" 4 fielW = T VO RS
p=l

Q,
¢ = va(L) hc%)
p=l
where

(3-18)

(3-19)

(3-20)

(3-21)
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ha(zg) = IMp(O) c U, X ey ds1

Sy

hb(ig) = J'Mp(o) T U, X €y dSl

Sy

(‘L)"' JM(L) U, X ey; dSz

S2

rE) = [ME) - ux e ds,

S2

(3-22)

(3-23)

(3-24)

(3-25)

Solving for b; and f; from (3-19) and (3-20), and applying a simple elimination pro-

cedure yields

' o 0,
— —J JYei L )5, (0) @)y, (L)
by=—— ¢ vORD — 3y Lyl
‘T 2sin (v, L) | ,E PR El g ""’}
; [0, o
- =] Ly L) _ ,J¥u L (0)4, (0)
fi = — V,*'h e V,"h
* 2sin(yy L) J‘Z:’l o El P

(3-26)

(3-27)

Next, taking the inner product (as defined in (2-16)) of (3-6) and (3-7) with the testing

functions Wk(o) and Wk(L), respectively, we obtain

a; az j (0) T U X €y dsl - Z LZ V(O)ha(lg) a; ]Yai .[Wk(O) TUX €y dsl +

11 i=1 Sy

"z’i —jYpi
=1 2sin (Y L)

. 2
e/t L 2 Vp(o’hbﬁg) Z V(L hy (L) .f Wi - uyx ey dsy +
p=1

zsl

Moo Yy,

. ! )
Z S ZV L ;! ~jYu L v
251n(’Yb L) ) (L) JYb 2 p(o)hb(zg) J” k(O) T U, X ey dSl
i=1 i

P=1 JSl

and

o =jve L

N2 —j¥pie ™ o Op D - O | [w®

o L ZV h ZV h _[ uzxeb,- dS2+
p=1 S»

=1 2sin(y,; L)

(3-28)
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N2 j¥y et

i=1 28in (Yp; L) {5 p=1

0, ]
Z Vp(L )hcip J Yci fWk(L) T U X € d.8‘2
p=1 Sz

N
)Y

=1

@ . o
—jve L
3 Vp(L)hb(i[pf) —p I ZVP(O)hb(tO)J fw(L) U, X ep; ds, =

(3-29)

The above set of coupled integral equations can be expressed in the simplified forms

N —iY,.

QO
VO © _ e
Z p ap i=1 sin (’Ybi L)

p=1

N,
220 Yaz (zk = Z

i=1 i=1

0,
[cos i L)Y, V00— ZV(L)h <L>} WD (k=120

p=1 p=1
and
N2 “iji Q1
A (O)h O _ cos Va; L) V(L);z (L) )=
ok Ly (L L
> v v, wE *k =12,..05,)
i=1l {p=1

where

wR = I W - u,xe, ds,
S

Wi = I & - uyxey; ds,

W = .[W(L) U, Xep; ds,
S,

w = I W) - u,xe,; ds,
S2

The above equations can be written in matrix form [43,44] as

P_ 1y _; . 711 |5(0) y.12 [{L)
I'= [Ya jeot (yy; L) Y, ]V’< + Lm D) ]V’(

(3-30)

(3-31)

(3-32)

(3-33)

(3-34)

(3-35)

(3-36)
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0 = {_sin*(;b,—L) 17,)21}?(0) + [-—jcot (v L) Y2 + ?JV"“ (3-37)

where O is the null matrix and
I=2wOTy z (3-38)
Y, =wOTy, H© (3-39)
v =wOTy, H O (3-40)
Y2 = wOTy, g &) (3-41)
17[)21 - Wb(L )TYb Hb(O) (3-42)
Y22 =wly, & (3-43)
Y, =wETy g L) (3-44)
HO =Dy vo, ¢ =ab) (3-45)
HE = 3] nyxo, (¢ =b.c) (3-46)

with Y,, Y,, and Y, being the diagonal matrices of the modal admittances in the
corresponding regions A, B, and C, réspectively. Equations (3-36) and (3-37) are
(Q,+ Q5 x(Qq + Q) coupled sets of complex equations which suggest the general-
ized network representation as shown in Fig. 3-3, and should be solved simultaneously
in order to yield the unknown coefficient matrices V® and V¢, respectively. The
system of matrices in equations (3-36) and (3-37) are composed of an admittance
matrix Y, of region A and an admittance matrix Y, of region C which are coupled by

the coupling matrix fb, where

> [I-;bn Elz} 347,
b= |v21 522 -
Yy Yy
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Fig. 3-3: The generalized network presentation of equations (3-36) and (3-37).
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3.3 Galerkin’s method solution
For the special case of a symmetric double step discontinuity (waveguides A and
C have the same cross section), we let

MO =ML =wO=wh=yxe, (@=12..0) (3-48)

Also, weset Q) =0y =N; =N, =N and ¢,, = ¢, . This leads to
Ha(O) = Hb(O) = Hb(L) = Hc(L) =U (3-49)

WO=wO=wD=w =y (3-50)
where U is the identity matrix. Therefore, equations (3-38) through (3-44 ) reduce to

I'=2y,2 (3-51)
Y, =Y, (3-52)
fbu _ }TbIZ - —bzl _ —bzz =Y, (3-53)
Y, =7, (3-54)

By substituting (3-51) through (3-54) into (3-36) and (3-37), we obtain

P=lv. - . O, J L) ]
Ilﬁjm%mnW+[m%mnP (3-55)
== ———J 0) l:— ] . :l L) -

o [Sin D Y,,}V‘( + | —jeot (y; L)Y, + Y, |V (3-56)

Adding (3-55) to (3-56), we obtain
= !:Ya-f-jtan (Y”‘2 )Y, J [V"OM 17(“] (3-57)
Similarly, subtracting (3-56) from (3-55), we obtain
L
T= [ya—jcoz (Y”‘2 )Y, } [17““’)— V"“} (3-58)

Equations (3-57) and (3-58) represent in matrix form a decoupled system of (2N x 2N)
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linear equations. Its solution provides through equations (3-18)-(3-21) the solution for

the fields in equations (3-1).

3.4 Numerical results

We consider the structure shown in Fig. 3-4 where waveguides A and C have
width w, = 7.214 cm, and height d = 3.40 cm, while waveguide B has width w, =
4.50 cm and the same height as waveguide A. The separation between the junctions
for the first case is taken to be L = 7.98 cm. To obtain the electric field distribution at
the junctions, the sum of the solutions of equations (3-56) and (3-57) yields twice the
electric field distribution at z = 0, while their difference yields the electric field distri-
bution at z = L. For computation of the field coefficients, different values of N are
considered e.g. N = 5,7,9,11,13, with N = 15, the field coefficient has a magnitudé

less than 0.5 percent of that of the first coefficient with N = 1.

In Fig. 3-5 we have plotted the magnitude of the field coefficients V{® and V {&)
as a function of frequency. The value of V{? varies between 1.8 at f = 3.35 GHz and
1.0 at f = 3.75 and 5.0 GHz, respectively, while the value lof V) is unity between f =
3.75 and 5.0 GHz. Fig. 3-6 shows the phase of V{? and V{L); they differ by 32
degrees at f = 2.6 GHz, but they are almost equal at 3.8 GHz. On the other hand, there
is a sudden change in phase for both coefficients at 3.8 GHz. In Fig. 3-7 we have
plotted the magnitude of the field coefficient V{? versus frequency with L (length of
the smaller waveguide) as a parameter. It can be seen that by decreasing the value of
L the magnitude of VI(O) decreases as well. For example, the value of VI(O) drops from
1.65 to 1.06 as the length decreases from 4 cm to 1 cm at f = 3.4 GHz, while Fig. 3-8

shows that the magnitude of V{L ) increases from 0.38 to 0.88 at f = 2.8 GHz. In Figs.
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Fig. 3-4: Geometry of symmetric double-step waveguide discontinuities.
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3-9 and 3-10 we plot the phases of the field coefficients, where the phase of V{®
varies between -50 and 50 degrees while the phase of V{) remains negative. Again
this is obtained by decreasing the value of L from 4 ¢cm to 1 cm. Tables 3-1 and 3-2
present the field coefficients of a symmetric double-step discontinuity computed as a
function of the separation length L, the value of the field coefficient V{?® varies
between 1.0 and 1.96 while the value of V{£) slightly change by increasing the length
L at 5 GHz. At higher frequencies, namely f = 10 GHz, the field coefficients remain

approximately constant for the same variation of L.
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Table 3-1. Field coefficients as a function of separation length

for wy/w, = 0.624, f = 5 GHz.

Magnitude Phase (degrees)
Separation, L (cm) v v v v
1 1.103 0.990 17.660 27.229
2 1.196 0.980 0.196 22.284
3 1.107 0.989 -17.138 26.968
4 1.000 0.999 -44.206 44 434
5 1.099 0.991 18.190 -27.500
6 1.195 0.980 0.586 -22.289
7 1.111 0.989 -16.622 -26.714
8 1.000 0.999 -43.412 -43.869
9 1.095 0.990 18.726 27.779
10 1.195 0.980 0.978 22.300
11 1.115 0.989 -16.114 26.469
12 1.000 0.999 -42.620 43.305
13 1.092 0.991 19.270 -28.068
14 1.960 0.981 1.370 -26.232
15 1.119 0.988 -15.611 -26.232
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Table 3-2. Field coefficients as a function of separation length

for wy/w, = 0.624, f = 10 GHz.

Magnitude Phase (degrees)
Separation, L (cm) 2 vy vi® Vi)
1 1.031 0.999 -9.240 26.889
2 1.019 0.999 18.401 -30.038
3 1.000 0.999 -32.173 -37.176
4 1.038 0.999 -0.997 25.746
5 1.010 0.999 29.207 -35.477
6 1.016 0.999 -20.901 -31.163
7 1.033 0.999 7.146 26.431
8 1.000 0.999 41.747 -42.976
9 1.028 0.999 -11.391 -27.470
10 1.022 0.999 16.000 29.054
11 1.003 0.999 -35.243 38.994
12 1.036 0.999 -2.996 -25.855
13 1.009 0.999 26.355 33.912
14 1.013 0.999 -23.513 32.434
15 1.035 0.999 5.096 -26.089
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CHAPTER 4

ALTERNATIVE SOLUTION FOR SYMMETRIC DOUBLE-STEP
DISCONTINUITIES IN RECTANGULAR WAVEGUIDES

In this chapter the problem of symmetric double-step discontinuities is discussed.
The problem can be simplified by considering the two special cases of even and odd
excitation modes and then superimposing the results. In the case of even excitation
modes, waves of equal amplitude but opposite in phase are assumed propagating in
regions A and C simultaneously [11,25]. Since the field distribution is symmetrical
about z=0 as shown in Fig. 4-1, a magnetic wall (open circuit) may be placed at the
symmetry plane z=0. In the case of odd excitation, waves with opposite in amplitude
and phase are propagating in regions A and C simultaneously. Since the field in this
case is anti-symmetric, this allows an electric wall to be placed at the symmetry plane
z=0. Addition of the two excitations results in twice the amplitude of the excitations in
region A and zero excitation in region C. Therefore, the problem is reduced to a sin-
gle step discontinuity and terminated alternately by a magnetic or electric wall as
shown in Fig. 4-2. The analysis for this type of structure runs parallel to the analysis
in chapter 2, the only difference being that waveguide B is not infinitely long in this
case, being bounded by an alternate magnetic or electric wall at z=0 which requires

one more boundary condition to be considered in the analysis.



-46-

Fig. 4-1: Geometry of symmetric double-step waveguide discontinuities.
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4.1 Formulation

Consider the structure shown in Fig. 4-2, with an incident field propagating in the
positive z-direction. A part of it is scattered by the discontinuity and a part is transmit-
ted to waveguide B. The transmitted waves are totally reflected at z=0 plane. Thus, the

transverse components of fields are given in modal form as follows.

¢

. L . L
—jYai (2 + =) JVai (2 + )
Y ag;e 2oy +Y die 2 e, z <-L/2
< I i
E, = i - 4-1
! Zbie ]Yblzebi +28biejyhz €y; -L2<z<( ( )
i i
-t @ + 2 i 2+ £
EaiYaie u,x €4 ‘—ZdiYaie U, X e, z <=L/2
< i i
H, = . " (42)
d Zbinie JY”‘ZuZx Ep; "ZEbinieJYb‘ZuZX €p; -LR2<z<0 .
i i

a;, b;, and d; are complex coefficients of the transmitted and reflected modes, y,; and
Ypi are the modal propagation constants, Y,; and Y,; are the modal admittances, and
s and ey; are the modal vectors for the ith mode in the corresponding waveguides A

and B, respectively. For the case of an electric wall € = -1 while in the case of a mag-

netic wall € = 1.

Using the Equivalence Principle, the fields in the two regions can be modeled in
terms of the equivalent magnetic current sheet M placed over the aperture S, as shown

in Fig. 4-3, with

M =u,x E, ar z = ——g— (4-3)
where E, is the unknown electric field in the aperture to be determined. The field in

waveguide A is the incident field plus the field produced by the magnetic sheet M.
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The field in waveguide B (resonator box) is the total field produced by the magnetic
current sheet —M plus the field totally reflected by the magnetic or electric wall at the
boundary z = 0.

In order to determine the unknown expansion coefficients, we apply the proper

boundary conditions. Thus the continuity of the tangential electric field components

L :
across the aperture S at z = = » Tequires that

doa; uxe; +y duxey =M
i i

. L . L
JW; ﬂ%f
Z bie uZX €; + E g b,-e u,x €y (4-4)
; .

3

Also the continuity of the tangential magnetic field components across the aperture S

L .
atz = ——é—, requires that

2 aYuuxey -y diYuxe,; =
; :

L L
]W? N

2 biYye “uxey -3 ebVye o -uxey (4-5)

i :

To obtain an approximate solution for equations (4-4) and (4-5), we apply the moment

method.

4.3 Moment-method solution

To apply the moment method, we expand the magnetic current sheet M as

2 L
M= Z1Vp M, at z=== (4-6)
p:
where V,, are unknown complex coefficients to be evaluated, and M, are known vec-

tor basis functions. The above summation is limited to a finite number of terms Q.

By substituting (4-6) into (4—4) and applying the orthogonality condition (2-3) for the
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mode functions in each region and simplifying, we obtain

Q
a; + di = ZVP haip (l = 1,2,..., N)
p=l
1 0
b‘ = L 2 ZVP hbip (l =1 2,..., N)
ijiE‘ —./'Ybi? p=l1
e +Ee

where
hyip =JMP " U, X e, ds (r =a,b)
S
Equation (4-9) can be written in matrix form as

Hr = [hrip] NxQ

(4-7)

(4-8)

(4-9)

(4-11)

Taking the inner product of (4-5) (as defined in (2-16)) with the testing function W,

on the aperture S, we obtain [46],

N N |0
22(1;' Yai Waik = Z ZVp haip Yai Waik +
i=1

i=1 |p=1

. L .
N eJYbi—z— —e e—JYbi7 0
V_hy;
Z L L Z p "“bip

i=1 JVei— —J Yo = =1
e 2 2

+€e
where

W = We - uyxe; ds ¢ =a.b)
S
The above equations can be written in matrix form

W, =Wl nxo

YpWea  (k=12,.,0)

(4-12)

(4-13)

(4-14)

Following Mautz et al [24] equation (4-12) may be written in the generalized admit-

tance form
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. L . L
]Ybi7 _JYbi‘é‘
-I—>_ o e —£e opeg ‘7
= (fat L b
J”{bf7 *JYb.'f
e + e
where
- _
I'=2wly,z

Y, =WIY.H  (r =apb)
@ =[a;] N

V=1V,] gx1

(4-15)

(4-16)

(4-17)

(4-18)

(4-19)

With Y, being the diagonal matrix of the modal admittances in the corresponding

waveguide A or B while @ and ¥ are the column matrices of the quantities @; and V,,

respectively.

4.3 Galerkin’s method solution

As the aperture S occupies the cross-section of the smaller waveguide A, we may

let
M, =W, =u,xe,, @=1.2,.,0)
Also, we let Q =N and ¢,, = €y, . This leads to

Hr=’W,-=U (r=a’b)
where U is the identity matrix. Equations (4-16) and (4-17) reduce to

=272

Yr = YI‘
Substituting (4-22) and (4-23) into (4-15), we obtain

(4-20)

(4-21)

(4-22)

(4-23)
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. L . L
lei‘i' —]Ybi?

I=|Y,+ =27, |7 (4-24)
JYei 5 ~J Yoi =

e % iee 2

In the case of even excitation (g = 1), equation (4-24) reduces to

L
T= {Ya + jtan (sz‘ ) Yb} 4 (4-25)

while in the case of odd excitation (g =-1),

T'= [Ya — jcot (Y—”;L—) Yb} 1% (4-26)
Equations (4-25) and (4-26) represent ( Nx N) systems of linear equations. Its solution
through equations (4-7)-(4-8) yields the field distributions in equations (4-1) and (4-2).
The final step of the presented analysis is to formulate the scattering matrix for the

double-step discontinuity.

4.4 Scattering matrix formulation

The (2N x 2N) scattering matrix for the double-step waveguide discontinuity may

be written as [13]
S S 1, +T r,-r
S = aa ac - = € o € o 4_2
l:sca Sch 2 [Fe - 1-‘o I-‘e + 1-‘o “4-27)
where I, is the reflection coefficient matrix due to even excitation while I, is the

reflection coefficient matrix due to odd excitation. For the even excitation, the com-

plex reflection coefficients can be obtained from (4-7) as

i=V-z (4-28)
where V' may be obtained from (4-25) as
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-1
L
V=2 [Ya + jtan (—792—) Y,,} Y, @ (4-29)

Substituting (4-29) into (4-28), we get

Ypi L
2

Therefore, the (¥ x N) submatrix I, is obtained in the form

-1
Z=2I:Ya+jtan( )Y,,] Y, -2 (4-30)

-1
Yoi L

L
v, +jun (2, &

' === lYa--jtan( 3 )Yb} (4-31)

@
The submatrix I', due to the odd excitation may be obtained in a similar manner, as

-1
r =

o = |Y, = jeot (l%‘_——) Y, Y, + jeot (J;—) Y, (4-32)

Comparing the above scattering matrix with the one obtained by De Smedt et al [13]
in terms of that for a single-step is

Saa =S =S+ 8 8 e (3-33)
and
S S et
Soc = o0 = Y (3-34)

The above scattering matrix needs more computation than the one obtained in equation

(4-27) because in using the above equations we have to combine the scattering matrix
at each junction to obtain the overall scattering matrix. In addition the length L has to
be sufficiently large compared to the wavelength. This is in contrast with the obtained
scattering matrix which handles two consecutive junctions at a time, in other words,

the amount of computation is reduced to one half by using equation (4-27).

4.5 Cascaded junctions
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In this section we present a solution for the scattering matrix when a number of
junctions (more than two) are considered together in a cascade as shown in Fig. 4-4. It
is convenient to presc... each two consecutive junctions by their scattering matrix
(equation (4-27)). The scattering matrix of a cascade of waveguide junctions may be
obtained by multiplication of the scattering matrices of each two consecutive junctions.
The only restriction is that the length L, has to be sufficiently large compared to the

wavelengh.

4.6 Scattering matrix for cascaded junctions

To obtain the scattering matrix for the structure comprised of waveguides A and
E as shown in Fig. 4-4, it is first necessary to express the scattering matrix of the

double-step between waveguides A and C as shown in Fig. 4-5 (a) as

b)) =8@ a) + §@ p(©) (4-35)
al® =8 a + 5§D p©) (4-36)

This is to be combined with the scattering matrix of the double-step between

waveguides C and E and with the help of the transmission matrix, i.e.

b 1(C) el — ch:d) el 1(C) +Sc(ed) a 1(E) (4-37)

biE) =S e gfO) 4 5D (B (4-38)

With the elimination of the internal variables (see Appendix B), the overall combined

scattering matrix shown in Fig. 4-5 (b) reduces to

-2y,
@) Sa(éi) Sc(cd) Sc(ad) € &
Saa =Sas’ +

4-38
1 - Sc(cd)z e—271L, ( )
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Fig. 4-5: Scattering matrix representation of cacaded discontinuities.
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SO

ae = 1 — §@2 ,~2nL (4-39)
cC

S e(cd )S cgi )e e

S = 4-40
1 S @n e~ 20k (4-40)

d 2L,
S S 5 7

See = S + (4-41)

1 - SC(Cd)z e—ZYIL,

Since the input waveguides are identical, we may obtain the following simplifications

Saa) =58 =58 (4-42)
S@ = 5@ (4-43)
St =8 (4-44)

4.6 Numerical results

We consider three numerical examples, namely, ridged, over-sized and a cascaded
double-step waveguide discontinuity. The purpose of doing this is to make sure that
the analysis presented is valid for these structures and also for various values of L by

comparing with available data for these examples.

4.6.1 Ridged double-step waveguide discontinuity

Consider the structure shown in Fig. 3-4 where the dimensions are stated in sec-
tion 3.3. The magnitude and phase of S,, and S,. are plotted as a function of fre-
quency. Different values of N were considered i.e. N = 35,...,9, with N =9 yielding
a satisfactory accuracy. The results are compared with the experimental values
obtained by De Smedt and Denturck while the frequency range is extended to 5 GHz

in order to show the interference of higher order modes. It is seen from Fig. 4-6 that
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the two curves for the reflection coefficient are virtually identical below 3.3 GHz. Even
at higher frequencies, the agreement is close. Resonance occurred at 3.75 GHz in the
smaller waveguide (between the junctions) which is slightly towards higher frequen-
cies. Fig. 4-7 shows the magnitude of the transmission coefficient, the difference
between the two curves being about -4 dB at 2.6 GHz. The agreement is also good at
higher frequencies, while the magnitude of S,. for frequencies above 3.8 GHz is 0 dB
(unity). Fig. 4-8 shows the phase of the reflection coefficient, and the difference
between the curves is about 8 degrees in the range 2.6 GHz to 3.6 GHz. The agree-
ment is also good at higher frequencies than 3.6 GHz. On the other hand, Fig. 4-9
shows the phase of §,., the agreement between the two curves is good at frequencies
higher than 3.1 GHz. We have plotted in Fig. 4-10 the variation of S,, and S, in dB
versus frequency with L as a parameter. Here the magnitude of the reflection
coefficient dropped to - 50 dB and the resonance occurred at 4.1 GHz for L = 6.0 cm
and at 4.75 GHz for L = 4.50 cm, the latter separation length being the same as the
width of the smaller waveguide. Figs. 4-10 and 4-11 show that the magnitude of the
reflection and transmission coefficient improve by varying L. For example, the magni-
tude of the transmission coefficient increases from -9.8 dB to -1 dB as the length L
decreases from 4 cm to 1 cm. We have plotted the VSWR versus frequency for
different lenéths in Fig. 4-12, where the results show that decreasing the value of L
results in increasing the magnitude of VSWR at the normalized frequency 1.8. The

computations were again extended up to 5 GHz.

4.6.2 Over-sized double-step waveguide discontinuity
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We consider the structure shown in Fig. 4-3 where waveguide A has a width W,
2.286 cm and a cutoff frequency f, = 13.12 GHz, while waveguide B has a width w,
= 4.572 cm and a cutoff frequency f’, = 6.56 GHz = 0.5 f.. Th= separation between

the junctions is assumed to be L = 2.743 cm.

Fig. 4-13 shows the computed magnitude of the reflection coefficient of an over-
sized double step waveguide discontinuity, while the frequency range is taken between
7 and 19 GHz. Different values of N were considered, with N = 11 yielding to a satis-
factory accuracy. The results are checked against the values calculated by Rozzi er al
[14]. It is seen that the two curves are very close between f = 7 and 10.4 GHz. The
results obtained by the presented method lead to values of S,, which vanish at

different frequencies, namely f = 11.2,14.1,17.2 GHz.

Tables 4.1 through 4.4 for the scattering matrix coefficients and the voltage stand-
ing wave ratio VSWR are computed using equations (4-27) and (2-41), respectively.
The results presented in tables 4.1 and 4.2 are obtained for w;,/w, =1.2, and propagat-
ing frequencies f = 8 GHz and f = 15 GHz. The magnitude of VSWR is higher at f = 8

GHz, while it stays approximately constant at higher frequencies.

Tables 4.3 and 4.4 present results are obtained for wy,/w, = 2.0 and the same pro-
pagating fregencies stated before in the previous cases. It is interesting to note that
increasing the width of waveguide B to twice the width of waveguide A results in

increasing the magnitude of the VSWR, this is due to the interaction of TE 3, mode.

4.6.3 Cascaded double-step junctions

Consider the structure shown in Fig. 4-4 where the dimensions are the same as
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stated in section 3.3. The magnitude and the phase of S,, and S,, are plotted versus
frequency. Fig. 4-14 shows the magnitude of S,, is 0 dB between 2.6 and 3.55 GHz,
where the separation between the junctions is taken to be L = 7.98 c¢cm and the
transformer section L, = 10 cm. In the case of the double-step, the resonance occured
at 3.75 GHz in the frequency range 2.6 to 5 GHz, while in this case three resonances
occured, namely at 3.55, 3.95, and 4.4 GHz, respectively. Also it can be seen that the
magnitude of S,, is 0 dB in the range 3.55-5.0 GHz and varies between -47 and -4.0
dB in the range 2.6-3.55 GHz. Fig. 4-15 shows the phase of the scattering matrix
while Figs. 4-16 and 4-17 are another examples where the separation L and the
transformer section L, are the same and equal to 7.98 cm. We have plotted the magni-
tude of VSWR versus frequency with L as aparameter and L, = 7.98 cm in Fig. 4—18»,
where the results show that decreasing the value of L from 6 to 4 cm results in

increasing the value of VSWR from 3.1 to 9.3 at the normalized frequency 1.8.
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Table 4-1. Scattering cofficients as a function of separation length

for wy/w, =12, f =8 GHz.

Separation, L (cm) Saa S e VSWR
1 -0.2127-j0.7485 0.3235-j0.9189 1.582
2 -0.1016+j0.1182 -0.7491-j0.6439 1.369
3 -0.0633-j0.1054 -0.8510+j0.5106 1.280
4 -0.2318+j0.4089 0.1687+j0.9571 1.616
5 -0.0071 +j0.0452 0.9843+j0.1720 1.086
6 -0.1834-j0.1009 0.4716-j0.8566 1.530
7 -0.1415+j0.1174 -0.6277-j0.7564 1.451
8 -0.0311-j0.0804 -0.9291+j0.3596 1.888
9 -0.2389+j0.0027 0.0111+j0.9709 1.628
10 -0.0274+j0.0761 0.9379+j0.3374 1.176
11 -0.1469-j0.1163 0.6096-j0.7702 1.461
12 -0.1787+j0.1038 -0.4915-j0.8460 1.530
13 -0.0092-j0.0459 -0.9796+j0.1955 1.098
14 -0.2335-j0.0357 -0.1470+j0.9605 1.618
15 -0.0584+j0.1023 0.8634+j0.4905 1.268
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Table 4-2. Scattering cofficients as a function of separation length

for wy/w, =12, f =15 GHz.

Separation, L (cm) S pa Sac VSWR
1 -0.0016+j0.0073 -0.9766-j0.2146 1.015
2 -0.0061+j0.0133 0.9078+j0.4198 1.029
3 -0.0127+j0.0168 -0.7966-j0.6041 1.043
4 -0.0202+j0.0172 0.6484+j0.7608 1.054
5 -0.0272+j0.0145 -0.4700-j0.8820 1.064
6 -0.0323+j0.0090 0.2700+j0.9622 1.069
7 -0.0347+j0.0020 -0.5743-j0.9977 1.072
8 -0.0340-j0.0054 -0.1578+j0.9868 1.071
9 -0.0302-j0.0118 0.3657-j0.9301 1.067
10 -0.0240-j0.0161 -0.5567+j0.8301 1.059
11 -0.0166-j0.0174 0.7219-j0.6915 1.050
12 -0.0094-j0.0155 -0.8536+j0.5206 1.037
13 -0.0037-j0.0107 0.9455-j0.3253 1.023
14 -0.0005-j0.0039 -0.9933+j0.1148 1.008
15 -0.0004+j0.0035 0.9949+j0.1011 1.007
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Table 4-3: Scattering coefficients as a function of separation length

for wy, /w, = 2.0, f = 8 GHz.

Separation, L (cm) S,z S VSWR
1 -0.4347-j0.0167 0.0350-j0.8998 2.395
2 -0.0039+j0.0409 -0.9947-j0.0945 1.086
3 -0.4295-j0.0498 -0.1038+j0.8957 2.524
4 -0.0154+j0.0804 0.9789+j0.1874 1.178
5 -0.4194-j0.0817 0.1731-j0.8874 2492
6 -0.0339+j0.1167 -0.9531-j0.2770 1.277

-7 -0.4043-j0.1120 -0.2424+j0.8749 2.445
8 -0.0586+j0.1486 0.9183+j0.3623 1.380
9 -0.3844-j0.1398 0.3119-j0.8572 2.385
10 -0.08843+j0.1751 -0.8753-j0.4419 1.488
11 -0.1100-j0.1644 -0.3813+j0.8353 2.311
12 -0.1220+j0.1955 0.8255+j0.5152 1.699
13 -0.3320-j0.1852 0.4505-j0.8078 2.226
14 -0.1582+j0.2094 -0.7699-j0.5817 1.712
15 -0.300-j0.2013 -0.5190+j0.7745 2.133
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Table 4-4. Scattering cofficients as a function of separation length

for wy,/w, = 2.0, f = 15 GHz.

Separation, L (cm) Saa Sac VSWR
1 -0.0005+j0.0062 -0.9971-j0.0763 1.012
2 -0.0018+j0.0122 0.9883+j0.1520 1.025
3 -0.0042+j0.0180 -0.9737-j0.2269 1.037
4 -0.0074+j0.0233 0.9535+j0.3004 1.050
5 -0.0112+j0.0282 -0.9277-j0.3721 1.063
6 -0.0159+j0.0323 0.8964+j0.4416 1.075
7 -0.0211+j0.0357 -0.8600-j0.5085 1.087
8 -0.0268+j0.0383 0.8186+j0.5724 1.098
9 -0.0327+j0.0399 -0.7725-j0.6328 1.109
10 -0.0389+j0.0407 0.7220+j0.6895 1.119 -
11 -0.0451+j0.0405 -0.6674-j0.7423 1.129
12 -0.0512+j0.0394 0.6090+j0.7906 1.138
13 -0.0570+j0.03737 -0.5470-j0.8343 1.146
14 -0.0625+j0.0344 0.4820+j0.8732 1.154
15 -0.0674+j0.0308 -0.4143-j0.9071 1.160
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CHAPTER §

DISCUSSION AND CONCLUSIONS

A moment method solution for the multiple-step discontinuity in rectangular
waveguides is given in this thesis. The solution is expressed in terms of aperture
admittance matrices, one for each region. The presentation is confined to a single-step
in Chapter 2, then the analysis is extended to double-step in Chapter 3, where two cou-
pled set of equations are obtained and expressed in matrix form. Finally the method is
applied to the multiple-step discontinuity in Chapter 4 using a cascading procedure,
with the only restriction being that L, should be sufficiently large compared to the

wavelength.

De Smedt and Denturck [13] obtained the scattering matrix for a symmetric,;
double-step discontinuity in terms of the single-step discontinuity, their solution is
lengthy (in terms of the amount of computation) because it requires computation of the
scattering matrix coefficients for each junction while the separation length has to be
sufficiently large compared to the wavelength. This is in contrast to our solution which
handles two consecutive junctions at a time, and by doing this the amount of computa-
tion is reduced to one half. Furthermore, the junction to junction separation is not res-
tricted in our case in principle, although shorter separations require longer computation

time to achieve reasonable convergence.

The simplicity of the moment method can be noted in the way the continuity con-
ditions across the junctions are satisfied. By using the Equivalence Principle, the
tangential electric field is automatically satisfied by replacing the apertures by electric

walls each carrying magnetic current sheets on both sides of the apertures, leaving
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only the tangential magnetic field to deal with.

In Chapter 2 and 4, the comparison with experimental data obtained by De Smedt
and Denturck [13] shows significant agreement since this problem has no exact solu-

tion to compare with.

In Chapter 4, the symmetric double-step discontinuity has been formulated by
applying the Equivalence Principle and the Bisection Theorem [25]; the field analysis
has been simplified by considering the two special cases of even and odd excitations

modes and then superimposing the results to obtain the solution of the problem.

The magnitude of the reflection and transmission coefficient improves when three
or more waveguide discontinuities are connected in a cascade as shown in the last sec-
tion of Chapter 4 by getting more ripples compared with the results obtained for the
double-step discontinuity [17]. The other way we obtained better results was that by
decreasing the value of the length L from 7.98 to 4 cm. There seems to be no way to
determine the accuracy of the results obtained for cascaded junctions without com-

parison with available numerical or experimental data.

The scattering matrix coefficients are applicable for ridged and oversized double-
step waveguide discontinuities as shown in Chapter 4. The purpose of analyzing these
particular cases was to obtain a reliable solution for design of waveguide steps which
are possible to analyse by 6ther methods only with restriction on dimensions and mode
spectrum. This is particularly true since the moment method solution proved to be
quite flexible for handling such structures and quite accurate when compared with

available data.
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The higher order modes of excitation are taken into account in the analysis, and
the ripples in the frequency response of the input reflection coefficient illustrate the

relevance of our solution for the design of waveguide junctions.

Various values of both lengths L and L, are considered, while the formulation
and convergence do not seem to suffer by varying both lengths. However, the fre-

quency range taken is confined between 2.6 and 19 GHz.

5.1 Suggestions for future research

Although we have investigated the moment method solution up to four discon-

tinuities, it is obviously of interest to extend the effort to N step discontinuities.

Another potential study involves employing the moment method in two different
co-ordinates systems such as the problem of circular-to-rectangular waveguide junc-

tions, waveguide-horn junction, etc.

Finally, the method can also be adapted to the coupling between two homs, cou-
pling between two waveguides particularly since the method has already been applied

to study the coupling between two slits.
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APPENDIX A

ANALYSIS OF ASYMMETRICAL DIAPHRAGMS IN
RECTANGULAR WAVEGUIDES

A particularly important problem in electromagnetic theory is the analysis of
diaphragms or irises in rectangular waveguides. So far, a few special discontinuities

have exact solutions; otherwise a numerical solution is suggested.

Wu er al [11] have used the moment method procedure to present a solution to
scattering by irises in rectangular waveguides. In their solution, the evanescent wave is
presented by the extra induced current density on the conducting surfaces which is
localized at the discontinuity, then the moment method with the point-matching tech-
nique is applied to solve for the scattering matrix coefficients and the induced current
density. It should be noted that Ray theory has also been applied to investigate this

problem by Yee and Felsen [20,21].

We present here a moment method procedure which is straightforward and paral-
lel to the analysis in Chapter 2, the only difference in this case being that the cross-

sections of the waveguides are the same and also the aperture size S is arbitrary.

Consider an infinitely long rectangular waveguide having a discontinuity at z=0 as
shown in Fig. A-1. The transverse components of the electromagnetic field in modal

form are giVen as follows [31].
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Fig. A-1: Geometry of an asymmetrical diaphragm.
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a;, b;, and d; are complex coefficients of the incident, transmitted, and reflected

modes, respectively.
Following the procedure outlined in Chapter 2, the scattering matrix for this struc-
ture can be written as

Sy=H,Y'Wly, -U (A-1)

and for the submatrix S,;, we have

Sy =H Y, WY, (A2)
where the subscript 1 refers to the left waveguide and 2 refers to the right waveguide.
Since the structure is symmetric about z=0, the submatrices S, and S,, are identical
to S, and S, respectively, i.e.

S12=52 (A-3)

and
Sy =581 (A-4)
In Fig. A-2 we have plotted the magnitude of the reflection coefficient of a per-
fectly thin diaphragm located at the lower wall (z=0) with a length equal to a/2. The
aperture is divided into a number of subsections 3,5,...,11. However 11 subsections and

7 modes (i.e. N=7) yield to an excellent accuracy.
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The results are verified by comparing with the exact solution obtained by Collin
[5]. The agreement is excellent between the two solutions, particularly in the rang
0.5 < a/k < 0.85. On the other hand, the agreement between the exact and ray theory
solution is poor especially near the cutoff frequencies to which the solution can not be
applied [45].

Fig. A-3 show the magnitude of the transmission coefficient compared with the
exact and ray theory solution, the agreement is excellent with the exact solution for
values 0.7 < a/A, while Fig. A-4 show the phase of the reflection coefficient plotted in

degrees.
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Fig. A-4: Phase of §,, for an asymmetrical diaphragm with d =

a
5
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APPENDIX B

DERIVATION OF THE SCATTERING MATRIX FOR
CASCADED JUNCTIONS

In this appendix we present a derivation to the equations in section 4.6 as fol-

lows.
bA) =5D al® + 5D p(©) (B-1)
a{ =5 aft) + 5 b{© (B-2)
b{OeM =5 ™Mb afO) 4 5D af® (B-3)
bE) =5 e g f€) 4 5 af® (B-4)

Substituting (B-3) into (B-2) and then solving for a fc), we obtain

SC(Cd) Sc(ed) e ! L,

d)

) =
aj = . ajy =
1-5@” gk 1 -5 ol

a{f (B-5)

Again, substituting (B-5) into (B-4) and simplifying, we obtain

d d L,
(E) _ Se(c.) Sc(a e
bi¥’ = @2 ,-2nL
1 -85 e

(B-6)

S@) §@) gd) 2L
al(A) + <Se(ed) + ec cc ce > al(E)

1-s@2 ok

B e,

Sec S

ee
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