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ABSTRACT

The moment method solution is employed in this thesis to analyse the field

behaviou¡ and the scattering matrix coefficients describing reflection, transmission,

and mode conversions at multiple-step waveguide junctions. The equivalence princi-

ple is used to divide the original problem into isolated regions and equivalent mag-

netic current sheets are used to replace the junctions faces on perfect electric conduc-

tors to ensure the continuity of the tangential electric and magnetic field components

at each junction. The magnetic current sheets are expressed in terms of infinite series

and each terrn corresponds to a new mode. In the case of double-step two coupled

sets of equations in terms of the unknown magnetic current sheets are obtained and

solved using the moment method. Some special cases, such as ridged and over-sized

double-step discontinuity are considered in detail. The analysis is also extended to

include cascaded junctions. The field and scattering matrix coefficients are computed

and presented graphically as a function of frequency for various separation between

the iunctions.
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CHAPTER 1

INTRODUCTION

The problem of coupling through apertures has many engineering applications,

such as waveguide to waveguide coupling, waveguide fed horn coupling, horn to horn

coupling, and waveguide fed aperture coupling.

Waveguides with multiple-step discontinuities are encountered in a variety of

engineering applications such as transformers to minimize the reflection coefficient [1],

band rejection filters [2], and dielectric resonators in waveguides below cutoff [3]. The

early work was performed by using the variational method [4,5], Schwarz procedure

[6-8], a quasi-optical theory [9], and several numerical methods, some of them based

on the moment method solution [10-12]. De Smedt and Denturck [13] used the

moment method and point matching solution to obtain the scattering matrix coefficients

for a double-step in terms of that for a single step discontinuity, for sufficiently large

separation between the junctions. Rozzi and Mecklenbráuker [14,15] proposed a solu-

tion based on the variational method and net'work modeling for interacting inductive

irises and steps in rectangular waveguides. The salient feature of their approach is that

the solution of the field problem yields a reactance matrix with monotonic convergence

properties. Wexler [16] used modal analysis to solve for waveguide discontinuities,

the field being expressed in terms of waveguides modes, and obtained a solution for

the mode coefficients. Later, a solution for double-plane steps in rectangular

waveguides was obtained by Pazelt and Arndt [17] using the method of field expan-

sion into eigenmodes. This method takes into account the influence of the evanescent

field modes and power transmitted due the higher order modes. Safavi-Naini and
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MacPhie [i8,19] used the principle of conservation of complex power to obtain the

scattering matrix of two-port network without matrix inversions. The Ray theory

method was also applied to study the scattering by a waveguide discontinuity 120-221,

where the field at a distant point due to line source excitation is presented as the sum

of the fields on the various multiply reflected rays from the source. The ray fields are

then converted into a sum of modes, with the amplitude of each mode being deter-

mined by the radiation pattern of the source in the two plane wave directions

corresponding to the mode. The ray diagram is complicated while the restriction on the

dimensions of the scatterer being large relative to the wavelength for a reasonable

accuracy makes the method less attractive.

The main objective of this thesis is to present a complete study of the field

behavior and the scattering matrix coefficients for single and multi-step waveguide

discontinuities for various values of separation length between the junctions.

In chapter 2, we present a moment method procedure for solving the single step

discontinuity based on the generalized network representation for aperture problems

123,241. The method is applied to two infinite rectangular waveguides with a transverse

planar junction with an incident field from the smaller waveguide. The field com-

ponents are expressed in modal form for both the TE utd IM modes. The scattering

matrix associated with incident and scattered fields in the smaller waveguide and the

transmitted field in the larger waveguide are determined from the analysis. The

Reciprocity Theorem permits determination of the scattered and transmitted fields

when the incident field is from the larger waveguide. The scattering matrix

coefficients are computed and presented graphically as a function of frequency.
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In chapter 3, we present the general solution for a double-step waveguide discon-

tinuity. The analysis is extended to a closely separated double-step discontinuity to

take into account the near field coupling within the double-step discontinuity and the

interaction between the higher order modes. The resulting set of coupled integral equa-

tions is solved using the moment method. Quantitative results for the field coefficients

are presented for a specific double-step waveguide discontinuity where the separation

between the junctions is small compared to the wavelength. Various values of L are

considered while the frequency range for computational purposes is from 2.6 to 10

GHz.

Chapter 4 presents an alternative solution to the double-step discontinuity by sub-

jecting the structure to an odd and an even excitation and then superimposing the

results to obtain the scattering matrix [13,251. This is in contrast to classical iterative

methods based on the wave matrix approach which employ the scattering matrix for

each individual junction and attempt to present the multiple interaction between junc-

tions using the term by term shifting matrix. A series of steps is commonly treated by

the transmission matrix parameter[26-28]. In other words, cascaded junctions are

always separated by waveguide sections, and those cascaded sections are treated by

applying the transmission matrix representation [29], while the cascaded junctions are

treated by the scanering matrix scheme for a double-step discontinuity. The only usual

restriction is on the connecting waveguide sections which should be sufficiently long

relative to the waveleneth.

The discussion and conclusions are presented in chapter 5. Appendix A, presents

application of the method to a single iris in a rectangular waveguide. The analysis for
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these types of discontinuities runs parallel to the foregoing analysis in Chapter 2 with

the only difference being in those cases where the waveguide cross-sections are the

same.



CHAPTER 2

AI{ALYSIS OF SIF{GLE.STEP DISCOh{TINUITY IN

RECTAI\GULAR WAVEGUIDES

The problem of a single-step waveguide discontinuity is discussed in this chapter.

The equivalence principle is used to divide the problem under consideration into two

regions [30]. This is can be accomplished by covering the aperture with an electric

wall and providing for the unknown tangential electric field in the aperture by attach-

ing magnetic current sheets to both faces of the junction. Continuity of the tangential

magnetic field components across the aperture yields an integral equation in terms of

the unknown magnetic current sheet. To solve the integral equation, the moment

method is used [31]. The unknown magnetic current sheet is expressed as an infinite

series with a linear combination of the expansion function. The expansion function is

substituted into the integral equation, then a weighting (or testing) function is defined

and used to test the integral equation at different points (point matching). Apart from

simplicity, the obvious advantage of the moment method is to choose weighting and

expansion functions to minimize the computation required for evaluating the inner pro-

duct [32,33]. A particular choice of expansion functions may be obtained by letting

the weighting and basis functions be the same (Galerkin's method) 134,351.
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2.1 Formulation

Consider two infinitely long rectangular waveguides having different cross sec-

tions as shown in Fig. 2-I. Tt,e source is located far enough from the junction in

waveguide A where it produces a multimode propagates field. The incident field pro-

pagating in the positive z-direction. A pan is reflected by the discontinuity and a pafi

is transmitted through the aperture S to waveguide B. The transverse components of

the electromagnetic field in modal form a¡e given as follows [31].

Zo¡Yor¿-i"|"' 
z nrx €o¡ - U¡Yoiei^t^ 'urx eo¡

i

-iry,. z\'Â t/ ^ Jrot-r, vLDiIbie "- Urx €6¡

i

a¡, b¡, and d¡ are complex coefficients of the transmitted and reflected mode, yo, and

nlø¡ Te the modal propagation constants, Yai and Y6¡ are the modal admittances, eo¡

and e6¡ are the modal vectors for the ith mode in waveguides A and B, respectively.

The propagaúon constants a¡e real for propagating modes while in the case of evanes-

cent modes they are imaginary. The normalization of the field is given by i13l

(2-3)

where r refers to waveguide A or B, respectively.

Using the Equivalence Principle [31,35], the fields in the two regions can be

modeled in terms of the equivalent magnetic current sheet M placed over the aperture

la,s-it^ 'r^ + ld¡ei\"' ' eo¡

ii
s ' -llr't¡ Z

U¡e "'-' ebi
i

(z

(z

<0)

>0)

(z <o)

(z >o)

(2-r)

(2-2)

Et=

Ht=

Irr, ' ,,0 ds = õ¡p
s
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Fig. 2-l: Geometry of single step .rvaveguide discontinuity'
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S, as shown in Fig. 2-2, with

M=urxE, dtz=O (2-4)

where u, is the unit normal and E, is ,re unknown electric field in the aperture S

which is to be determined. Thus, the field in waveguide A is the incident field plus

the field produced by the magnetic sheet M while the field in waveguide B is the field

produced by the magnetic current sheet -M.

In order to determine the unknown expansion coefficients, we apply the proper

boundary conditions. Thus the continuity of the tangential electric field components

across the apernrre S at z = 0, requires that

la¡ urx eai + Zd¡ urx €ai = M = Ðb¡ urX €bi (2-s)
tii

Also the continuity of the tangential magnetic field components across the aperture S

at z = 0, requires that

Zo¡ Yo¡ ttrx €o¡ - |,d¡ Yoi urx €ai = Ü¡ Yu¡ urx €6¡ Q-6)
iii

If equations (2-5) and (2-6) could be satisfied exactly, we would obtain the true solu-

tion. To obtain an approximate solution, we apply the moment method.

2.2 Moment method solution

To apply the moment method, we expand the magnetic current sheet M as

a
M = >V, Mo at z4 (2-7)

P=7

where V, are unknown complex coefficients to be evaluated, and M, are known vec-

tor basis functions. The above summation is limited to a finite number of terms Q.

By substitutng (2-7) into (2-5), we obtain
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Fig. 2-2: Equivalence for waveguides A and B.

->z



NN
Ðot urx €o¡ * ld¡ urx eo¡
;-1 ;-1
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o
= ty-

P=I
M,

and

NO
|b¡u,x €bi = 2V, M, (Z-g)
i=l p=l

Next, multiplying equation (2-8) by ttrx êo¿ and equation (2-9) by urx eør (k = L,2,...,

N), and integrating over the corresponding aperture S, we obtain

(2-8)

(2-10)

(2-r1)

summations on the

(2-12)

(2-13)

(2-r4)

fo,[u,, "",i=l S

Nf
' u"x €op ds + ld¡)urX €o¡ ' nrx êo¡, ds =

i=l S

Ol
fvr)uo ' urx €o¡ ds

P=l S

and

lu,lu,x ebi . n,x €6¡ ¿, = {vo[uo . u,x ê6¡ ds
i=l .S P=l S

Because of the orthogonality condition (2-3), all the terrns in the

left hand side are equal to zero except the i = k term. This leads to

o
ai + di = ÐVp h*p

P=l
(i = 1,2,..., N)

huip (i = 1,2,..., N)

where

hrip JMp . urx êr¡ ds (r = a,b)
s

Equation (2-14) can be written in matrix form as

H, = [hr¡p] ure
Next, define an inner product as in [31],

o
b¡ = ÐVp

P=l

(2-1s)



<w,Gr=[w.G a,
s

and a set of testing functions {Wp, p

the expansion functions. We take the

W¡r, and obtain

where

Wrik = JWr nrx€r¡ ds
s

The above equation can be written

- l1-

= L,Z,...,Q ], which may or may

inner product of (2-6) with the

(2-r6)

not be equal to

testing function

Yø¡JWt
ç

¡/ , ula
la¡YolW¡ ' tt,x €o¡ ds = 2l}Voho¡p - ai
i=7 s j=l Þ=1

wla I
>ltvrhuøl
i=l þ=1 )

Equation (2-17) can be simplified as

N wla I
Z\o¡YaiWa¡k = I l|Vpho¡plYo,Wo,o+i=l i=l þ=1 )

Yo¡JWt . urx €o¡ ds
s

urx e6¡ ds

(k = 1,2,...,Q)

(2-17)

(2-18)
äLt,',nu*)vu,wun

Wr - [Wr*] ¡¡* e
Following Mautz et al f24,36-381 equation (2-18)

admittance form as

Ì= F" +lr¡ ì
where

(2-re)

(2-20)

may be re-written in the generalized

(2-21)

(2-22)

(2-23)

(r

as in

= a,b)

(2-t5), i.e.

Ì

Y,

= ZwTYod

= WTY,H, (r = a,b)



With I',' being the diagonal matrix of the modal admittances in the corresponding

waveguide A orB, d andì *" the column matrices of the quantities a¡ and.Vo,and,

Z is the matrix transpose. Equation (2-21) can be interpreted as two networks llro/

and, [Yu] in parallel with the current source /as shown in Fig. 2-3. It is imponant to

know that [Yo] represents waveguide A and [f6] represents waveguide B, which may

be computed separately, then the results are combined to yield the solution of the

problem.

2.3 Galerkin's method solution

Since the aperture S has the same cross-section as waveguide A, we may let the

weighting and basis functions be the same and equal to l23l

a'= lail Nxt

Ì = [Vo] grr

Mp =Wp =uzxeap

Also, we let N = Q and €op = €bp.

-LZ-

(P=1,2,..., Q.)

This leads to

(r = a,b)

(2-24)

(2-2s)

(2-26)

(2-21)

(2-28)

(2-2e)

H, =W, - (J

whe¡e U is the identity matrix. Equations (2-22) and (2-23) reduce to

+I'= 2yod

f, =Y,
Substituting (2-28) and (2-29) into (2-21), we obrain

I =[Yo+Yb]V (2-30)

Equation (2-30) represents a (Nx N) system of linear equations. Its solution through

equations (2-12)-(2-13) yields the electric and magnetic fields in equations (2-1) and

(2-2). The final stage in this chapter is to obtain the scattering matrix coefficients for
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";

F"l

+

N

Vr

Iv¡]

N

o"
I

f

0'^,

Fig. 2'3: The generalized network presentation of equation (2-2r).
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the single-step discontinuity.

2.4 Scattering matrix formulation

The scattering matrix for the single step discontinuity is given by t39l

[. Sr1s = l;iL-Da s¿¿ l
(2-3r)

Let the subscripts a and b denote the left and right side regions of the junctions,

respectively. The complex reflection coefficients Soo can be obtained from (2-12) as

î =ì -a
where y' is obtained from (2-30) as

ì=z(yo+yù-L yod

Substitutin g (2-33) into (2-32) leads to

î=2(Yo+Yù-rYod-d
Therefore, the submarix S- can be written as

^îSoo -- fi = (y" + yù-r (yo - yø)

Similarly, the complex transmission coefficients can be obtained from (2-13) as

ì-¡twu - L va * Yb)-r Yod Q46)
Therefore, the submatrix S¿o mâ] be written as

(2-32)

(2-33)

. (2-34)

(2-3s)

(2-37)Sbo = EO =, (Yo + Y)-r Yo

The submatrices So¿ and S¿¿ due to the excitation in waveguide B may be obtained in

a similar manner since the situation is reciprocal to the above submatrices Soo and 56o

due to the excitation in waveguide A. Therefore, the source vector l can be written in

this case as
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I

I'= 2Yad

Now, it can be shown that the submatrices So¿ and 566 are given by

(2-38)

Sob =2 (Yo +Y6)-'Y6 (2-3e)

and

Suo = -Soo = (Yo + Y6)-'(Y6 - Yo)

2.5 Numerical results

(2-40)

W'e consider the structure shown in Fig. 2-2 where waveguide A has a width wo

= 7.214 cm, with height d = 3.404 cm and cutoff frequency f , = 2.08 GHz, while

waveguide B has a width wb = 4.50 cm, with the same height as waveguide A and

cutoff frequency f '" =3.33 GIlz = 1.603 /". These dimensions and frequencies were

selected to permit numerical comparison with published data by others using different

methods of solution. The magnitude and phase of Soo, Sob, and S¿o are plotted as a

function of frequency. Different values of N a¡e considered e.g. N = L,3,5, with N=5

yielding to a satisfactory accuracy. The results are compared with the values calcu-

lated by De Smedt et al [13] and the range of frequency is extended to 5 GHz. It is

seen from Fig. 2-4 that the magnitude of reflection coefficient is unity between 2.6

GHz and 3.33 GHz and the agreement befween the two curves is excellent below 3.6

GHz. Fig. 2-5 shows the magnitude of S¿ as zero at 3.33 GHz, the cutoff frequency

of waveguide B, while the magnitude of So¿ and ,S¿o can exceed unity because of the

normalization in equation (2-3) t131. In Fig. 2-7 we present the phase of Soo, So¿, ârd

S¿o in degrees, where the phase of S- and S¿o are above zero degrees while the phase

of S¿ is below zero degrees between 2.6 G}Jz and 3.4 GHz. The phase of Soo , Sob,

and S¿o is zero degrees above 3.4 GHz. The impedance mismatch that occurs when
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two waveguides are connected together may be represented by the voltage standing

wave ratio (VSWR) in the waveguide containing the incident wave 129,40-42), i.e.

vswR- t+ls'"l 
(2-4.1\

1 -lsoo | "- -^"

The results are presented at various frequencies in Fig. 2-8.
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CHAPTER 3

AI\ALYSIS OF DOUBLE.STEP DISCONTINUITIES IN

RECTANGULAR WAVEGUIDES

In this chapter the problem of double-step discontinuities in rectangular

waveguides is discussed. The analysis developed in chapter 2 for the single-step

discontinuity (two regions problem) is extended to double-step discontinuities (three

regions problem). To accomplish this, the Equivalence Principle is used to replace both

faces of each junction by electric walls, each of which carries magnetic curent sheets

on both sides. The problem is divided into three separate regions which are coupled by

the magnetic current sheets. Continuity of the tangential magnetic field components

across the two apertures results into two coupled equations involving the unknown

magnetic current sheets. These equations are expressed in matrix form using the

moment method. The results can be interpreted in terrns of the adminance matrices

computed separately for each region.

3.L Formulation

Consider the double-step discontinuities in rectangular waveguides as shown in

Fig. 3-1. The problem consists of th¡ee regions A, B, and C, respectively, which are

separated by two boundaries (unctions faces). The fields transverse to the positive z-

direction may be written in modal form as follows [25,31].
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s2 @ -->z

Fig. 3-1: Geometry of general double-step waveguide discontinuities.
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In region A

in region

E, = l(ai¿-i^{"'' + diei"l^ t),oi
i

-1"{t¡z *f,¿JIt,r)rU¡

=ÐYo¡(a,e-it^ t - d,ri"l^ z) urx eo¡
i

Ht

B

E¡ = l(b¡e
i

(3-1b)

(3- 1c)

E, = lc¡e-i^1"' 
('-L)er.

i

H, =Ðc¡Yrre-i"{"' "-L) uzX €ci

¡4(t) - uzx Et(L) at z = L

H, =}Yø¡(b¡¿-J"l'' - Í¡et"t" 
z) 

Ltrx e6¡ ,

and in region C

¡

a¡, b¡, and c¡ are complex coefficients of the transmitted modes, d¡ and./¡ are com-

plex coefficients of the reflected modes, Ta¡, Tu¡, and. yr¡ are the modal propagation

constants, Yo¡, Y6¡, and Y"¡ are the modal admittances, and €o¡, €6¡, and er¡ a_re the

modai vectors for the i th mode in regions A,B , and C, respectively.

Using the Equivalence Principle, the fields in the three regions can be modeled in

terms of the equivalent magnetic current sheets ¿r(0) *¿ ¡4(L) placed over the aper-

tures St and ,S2, respectively, as shown in Fig. 3-2, with

¡4(o) - urx E,(o) at z =0 (3-2)

(3-3)

where Er(o) *¿ Et(L) úe the total electric fields in the apertures 51 and 52, respec-

tively, which are to be determined later. The field in region A is the incident field

plus the field produced by the magnetic sheet M(0), which is identical to (3-1a). The

(3- 1a)
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- M(o) M (L)

l+- L

Fig. 3-2: Equivalance for rvaveguides A,B, and C'
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fi.eld in region B (resonator box) is the total field produced by the two magnetic

current sheets -¡4(o) and. M(L), which is identical to (3-1b). The field in region C is

the field produced by the magnetic current sheet -M(L), which is identical to (3-1c).

In order to determine the unknown expansion coefficients, we apply the proper

boundary conditions at the various junctions. Thus the continuity of the tangential

electric field components across the apertures ^S1and 52 requires that

|o¡ urx €o¡ * Ðd¡ urx eo¡ - M(o)

=|.b¡ nrx €6¡ +ü¡ urx €,6¡ at z --0 (3-4)

ano

f,b,¿-lt" 
t ,r* eø¡ + ü ¡ri^lu 

L urx €6¡ - ¡4(L)
ii

= Ðrt urX €r¡ at z = L (3-5)
I

Also the continuity of the tangential magnetic field components across the apertures

51 and 52 requires that

\o¡Yotnrx €o¡ - ÐdiYo¡ttrX €o¡ =
ii

Ðb¡Yo¡urx €6¡ - ü¡Y6¡urx €6¡ at z = 0 (3-6)
ii

and

þ¡y6¡e-i^lti 
L ,rx €bi - 2f ¡yu¡"i^l' 

t urX €6¡ =
ii

Ðr¡Y"¡nrx €r¡ at z = L (3-7)
i

Since in general it is not possible to obtain closed form solutions for the unknowns in

equations (3-4) through (3-7), we apply the moment method.
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3.2 Moment method solution

To apply the moment method, we expand the magnetic current sheets M(0) and

¡4(L) ¿g

O'
¡.rQ) - i* rz (o) ¡..r (o)ur - L,p ,,'p At Sl (3-8)

P=l

and

Q"
¡4(r) - fVr{r) yoø> aÍ 52 (3-9)

P=l
where Vp(o) and Vp(L) Te unknown complex coefficients to be evaluated, Mp(o) and

Me(L) are known vector basis functions. The above summations are limited to a finite

number of terms Qt md Qz. By substituting (3-8) and (3-9) into (3-4) and (3-5), we

obtain

Nr Nr Qt

Ðo¡ urx êo¡ * Ðd¡ urx€o¡ = lvo(o) Mr(o) (3-10)
j=l i=1. o=l

N1 N1 Q,

2b¡ urx €6¡ * 2f ¡ urx €bi = fvo,c) ¡4r<o> (3-11)
i=l i=l p=L

Nz :^., Nz o"

ib,r-i'" t u,* eui + ff ¡ri"tu 
L u,x€6¡ = fvo(r) Mp(L) Q-n)

i=l i=l o=l

Nz Q,

ft, ,rx €ci = >Vrø' Mp(L) (3-13)
i=l p=l

The summations on the left hand sides of the above equations may be truncated to a

finite numbers of modes N1 and N2. Next, multiplying equations (3-10) by urx€o¡,

(3-11) and (3-12) by u7Xê6¡, ild (3-13) by ttrxêr¡r, and integrating over the

coresponding apertures S1 and 52, respoctively, we obtain
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Nr.Nrn
2o¡ J urx €o¡ ' nrx €o¡, ds, + Z¿, ) urx €,o¡ ' ttrx €o¡, ds, =
i=l Sl i=l Sl

o,
f,vr*'luoa' ' u,x e¿ ds 1 (3-14)

P=l Sr

N1.Nr,
2U, ) urX €6¡ ' urx €6¡, ds, + Z,Í, Jurx €6¡ . Hrx €6¡ ds 1 =
i=l Sl i=l Sr

O'
lrz(o) f. '^'
.¿-¿ , p JMo*' ' urx e6¡, d.s 1 (3-15)
P=l Sr

Nn - Nz J Þ

}b,¿-tt'' " Jur* €bi .urx e6p ds2+ Ðf ¡rJïu 
L 

)urx e6¡ .urx €6¡, d.s2=
i=1 52 i=l Sz

O"

Ðvrtt'Juo(t) ' urx ê6¡, ds2
p=L 52

(3-16)

(3-20)

and

Nzro"
)t¡lttrx ê"¡ ' urx €r¡, dsz= îroor[urn, . ürx e"¡, ds2 e-17)
i=l 52 p=l 52

Because of the orthogonality condition for the mode functions in each region (2-3), all

the terms in the summations on the left hand side a¡e equal to zero except for the i = k

term. This leads to

Qt
ai + di = lvo{o) ¡},0} (3-18)

P=l

O,b¡+f¡=fvo<o)nf) (3-1e)
P=l

b¡e-i^tu, 
L + f¡ri"ttt 

L = fvr<t> ttg>

,, = lvou ttfrr)
P=l

where

P=1

(3-2r)
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h"\oì = Íur*, . u,x êo¡ ds 1

,S1

(3-22)

ht? = [uor, . u,x e6¡ ds1
sr

,tt, = [*ro, ' u,x €6¡ d.s2
s2

htf;'= Irort, . u,x ê"¡ ds2
,S2

Solving for b¡ and "f¡ from (3-19) and (3-20), and applying a simple elimination pro-

\J-23 )

(3-24)

(3-2s)

(3-26)

(3-27)

testing

cedure yields

b¡ = ;-3- ^ lr,r,, 
t?vrrrnlpì - ?,rrorr#;r1' 2 sin (y6¡ L) [ oar, p=r I

f , = ¡ffi*¡F,r,o' rU) -,-i tu' ?r,r, or\'ìf

Next, taking the inner product (as defined in (2-i6)) of (3-6) and (3-7) with the

functions We(O) and Wk(L), respectively, we obtain

lo,r,,l*n'o' ' ,,t 
N' I Q' I

i=L .s1 
x eo¡ ds r = ) 

LÐ''o'olPì 
- tt 

)'"t!,*o'o' 
' H'X €o¡ d's 1+

t -iyt¡
4 4^:_ /^.
í=t2sin (Tt¡ L)

å iyø¡
l-

f,_r}sin(yu, L)

and

! -iYoi¿-iru 
L

ÈL=, zti"('lbt L)

' ItrX €6¡ dS, +

' urx e6¡ dS1 (3-28)

l'''^' þ1 ro' nt - þ.'," 
oo') 

l,* r'

Er ro,oU) - r-i ^tø;' ?, lo, nt?] jr*,

Qz ì,
Zvo{tt¡g) llwo{Ltp=l ) Szlr'''þ-'ro'nt

' LlrX €6¡ ds2+



. .Qt I
-ira, L îrr*rot? | I wr{tt . u,

p=I ) Sz

er¡ ds 2

equations can be expressed in

Nr -iY..
Y-,w:,0) + Ji '-Þ'u'& 

i_, sin (^tø¡ L)

I
nl!) lwtol (k = r,2,...,e 1).)

8, I
(yø¡ L)fvr(L)hb?rt lwltot =p=r )

I
lY,,wtl,) (k = t,2,...,e
)

N2 íyu,eiIt,L lA,I '^ ''' I fvo{r)¡}t't - t
Í=t2sin ("{u¡ L) lÉ,

N,IQ, I
>,lîvrL)h,,, Ir,,lwk(L) 

. u,x
i=l Lp=l ) Sz

The above set of coupled integral

Nr N,IQ, I
}Ðo,Y"¡W"9 = i I fv,<otnfo)l
i=l i=l |.p=1 ' ' 

)

late,
lcos 

(y¡¡ Dtve(o)hb\?- fvrø,, o=t p=l

and

N" -;y.. ( o,
5i J'a¡ |î.Vr{o)¡So>-cos
fi sin (Tu¡ L) li,

NrlQ,
> | t vr{r)n[rr)
i=l [p =1
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x ê6¡ dS2=

(3-2e)

the simplified forms

(3_30)

ù (3-31)

where

W:Pl = Iwlo) . u,xeo¡ ds1 e-32)
.s1

WIPì = I*rro, - u,xe6¡ ds¡ (3-33)
sl

Wlk) = [*ort, . u,xê6¡ ds2 e-34)
s2

W"\l) = Iw*ø, . u,x€r¡ ds2 (3-35)
.S2

The above equations can be written in matrix form [43,44] as

r f- -..1 [ , -^l .

T = lf" - icot (yø¡ L) Yu" lñ0) + | t y,LzlflL)
- L 

ti" (ïh' Ð ';- )' 
(3-36)
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d = | =-: , , v;r]øu * l-¡ro, (yu¡ L) tÎ, * v,fú>
[sin(1¿¡r) ') L"

where d is the null matrix and

with Yo, Y6, ànd Y, being the diagonal matrices of the modal admittances in the

corresponding regions A, B, and C, respectively. Equations (3-36) and (3-37) are

(Qt+ Qz) x (Qt+ Q2) coupled sets of complex equations which suggest the general-

ized network representation as shown in Fig. 3-3, and should be solved simuitaneously

in order to yield the unknown coefficient matrices ñ0) and, lØ), respectively. The

system of matrices in equations (3-36) and (3-37) a.re composed of an admittance

matrix Yo of region A and an admittance matrix f, of region C which are coupled by

the coupling matrix 16, where

Í = zwlo)r yod

Yo = t¡¡ jo)'Yonlo)

Et' = Wu{ØrYu¡1}o)

fot' = Wu(ÐrYu¡¡o(L)

Vît = Wu(LVYr¡7uQ)

VÎ' = WIL)rYul¡u(r)

Y" = Ylt)rY,n;rl

Hr(o) - thr$)l Nt x et (r = a ,b)

H:L) = th,lr)l NzxOz (r = b,c)

t - l';' Yr"1
'o : lr:' Y;')

(3-37)

(3-38)

(3-3e)

(3-40)

(3-41)

(3-42)

(3-43)

(3-44)

(3-4s)

(3-46)

(3-47)
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Fig. 3'3: The generarized network presentation of equations (3-36) and (3-37).
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3.3 Galerkin's method solution

For the special case of a symmetric double step discontinuity (waveguides A and

C have the same cross section), we let

where U is the identity matrix. Therefore, equations (3-38) through (3-44 ) reduce ro

Mp(o) = Mp@) = WrQ) = ltr/o(L)= urx €op (p = 1,2,...,e)

Also, we set Qt = QZ - Nt = Nz = N and eoo = €bo .This leads to

H;o) = H;o) = Hu(r¡ - n (L) - fl

W:o) = Wb(o) = Wb(L) = W!) = ¡¡

Í = Zyod

Ío =Yo

fu"=y]'=yît=yî'=yu

1" =Y'
By substituting (3-51) through (3-54) into (3-36) and (3-37), we obtain

I r [ ; I ..-.Í= lY" - icot (Tt¡ Ll r, llÐ. l:---J-Y, lflL)'t -'-o)' 
l_sin 

(yu¡ L)^'J'
l-'l-

d = |, j tu lñ' + l-icot (^tu¡ L)Yu +r,fÌn,
lsin(y¿rZ) -J L

Adding (3-55) to (3-56), we obtain

. [ \^,L I r .-rI = Iyo+j tan t!ïlvø I Lø, * ìø, )L¿I
Similariy, subtracting (3-56) from (3-55), we obtain

(3-48)

(3-4e)

(3-s0)

(3-s 1)

(3-s2)

(3-s3)

(3-s4)

(3-ss)

(3-s6)

(3-s7)

(3-s8)
f ^., l-

1= 
I 
Yo-icot rþ!>vu I [*', - Pu,]

J

Equations (3-57) and (3-58) represent in matrix form a decoupled system of (2Nx2N)
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linea¡ equations. Its solution provides through equations (3-18)-(3-21) the solution for

the fields in equations (3-1).

3.4 Numerical results

We consider the structure shown in Fig. 3-4 where waveguides A and C have

width wa = 7.214 cm, and height d = 3.40 cm, while waveguide B has width wb =

4.50 cm and the same height as waveguide A. The separation between the junctions

for the first case is taken to be L = 7.98 cm. To obtain the electric field distribution at

the junctions, the sum of the solutions of equations (3-56) and (3-57) yietds twice rhe

electric field distribution at z = 0, while their difference yields the electric field distri-

bution 4t z = L. For computation of the field coefficients, different values of N are

considered e.g. N = 5,'7,9,11,13, with N = 15, the field coefficient has a masnitude

less than 0.5 percent of rhat of the first coefficient with N = 1.

In Fig. 3-5 we have plotted the magnitude of the field coefficients yfO) and, V {L)

as a function of frequency. The value of V{o) va¡ies between 1.8 at f = 3.35 GHz and

1.0 at f = 3.75 and 5.0 GHz, respectively, while the value of yÍ¿) is unity berween f =

3.75 and 5.0 GHz. Fig. 3-6 shows the phase of y{0) and y{¿); they differ by 32

degrees at f = 2.6 GHz, but they are almost equal at 3.8 GHz. On the other hand, there

is a sudden change in phase for both coefficients at 3.8 GHz. In Fig. 3-7 we have

plotted the magnitude of the field coefficient Vlo) r"trus frequency with L (length of

the smaller waveguide) as a parameter. It can be seen that by decreasing the value of

Z the magnitude of yl0) decreases as well. For example, the value of yl0) drops from

1.65 to 1.06 as the length decreases from 4 cm to 1 cm at f =3.4 GHz, while Fig.3-8

shows that the magnitude of VÍL) increases from 0.38 to 0.88 at f = 2.8 GHz.In Figs.
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Fig. 3-4: Geometry of symmetric double-step waveguide discontinuities.
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3-9 and 3-10 we plot the phases of the field coefficients, where the phase of yÍ0)

varies between -50 and 50 degrees while the phase of V f ) remains negative. Again

this is obtained by decreasing the value of L from 4 cm to 1 cm. Tables 3-I and 3-2

present the field coefficients of a symmetric double-step discontinuity computed as a

function of the separation length L, the value of the field coefficient V{o) varies

between 1.0 and 1.96 while the value of V{r) süghtly change by increasing the length

L at 5 GHz. At higher frequencies, namely f = 10 GHz, the field coefficients remain

approximately constant for the same variation of l.
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Fig. 3-7: Magnitude of yl0) with L as a parameter.
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Fig. 3-E: Magnitude of V {L) with I, as a parameter.
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Table 3-1. Field coefficients as a function of separation length

for wSlwo = 0.624, f = 5 GHz

Maenitude Phase (deerees)

Separation, L (cm) V,(u) V?) V,(u) V

I
2

3

4

5

6

7

I
9

r0

lt
T2

13

t4
15

1.103

1.196

1.107

1.000

1.099

1.195

1.111

1.000

1.095

r.195

1.1 15

1.000

1.O92

1.960

r.l l9

0.990

0.980

0.989

0.999

0.991

0.980

0.989

0.999

0.990

0.980

0.989

0.999

0.991

0.981

0.988

r7.660

0.196

-17.138

44.206
18.190

0.s86

-r6.622

-43.4r2

18.726

0.978

-16. I 14

-42.620

19.270

1.370

-15.611

27.229

22.284

26.968

u.434
-27.500

-22.289

-26.714

-43.869

27.779

22340
26.469

43.305

-28.068

-26.232

-26.232
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Table 3-2. Field coefficients as a fi¡nction of separation lengrh

for w6lwo = 0.624, f = 10 GHz

Maenitude Phase (deerees)

Separation, L (cm) y+", V V,(') v
I
)
3

4

5

6

7

8

9

10

1l
12

13

L4

15

1.031

1.019

1.000

1.038

1.010

1.016

r.033

1.000

1.028

t.022
1.003

1.036

1.009

1.0r3

1.035

0.999

0.999

0.999

0.999

0.999

0.999

0.999

0.999

0.999

0.999

0.999

0.999

0.999

0.999

0.999

-9.244

18.401

-32.r73
-0.997

29.207

-20.901

7.146

4t.747

-l r.391

16.000

-35.243

-2.996

26.3s5

-23.5r3
s.096

26.889

-30.038

-37.776

25.746

-35.477

-31.r63

26.431

-42.976

-27.470

29.054

38.994
-25.855

33.9r2
32.434
-26.089



CHAPTER 4

ALTERNATIVE SOLUTION FOR SYMMETRIC DOUBLE-STEP

DISCONTINUITIES IIV RECTANGULAR WAVEGUIDES

In this chapter the problem of symmetric double-step discontinuities is discussed.

The problem can be simplified by considering the two special cases of even and odd

excitation modes and then superimposing the results. In the case of even excitation

modes, waves of equal amplitude but opposite in phase are assumed propagating in

regions A and C simultaneously [11,25]. Since the field distribution is symmetrical

about z=0 as shown in Fig. 4-1, a magnetic wall (open circuit) may be placed at the

syrrunetry plane z=0. In the case of odd excitation, waves with opposite in ampiitude

and phase ate propagating in regions A and C simultaneously. Since the field in this

case is anti-symmetric, this allows an electric wall to be placed at the symmetry plane

z =0. Addition of the two excitations results in twice the amplitude of the excitations in

region A and zero excitation in region C. Therefore, the problem is reduced to a sin-

gie step discontinuity and terminated alternately by a magnetic or electric wall as

shown in Fig. 4-2. The analysis for this type of structure runs parallel to the analysis

in chapter 2, the only difference being that waveguide B is not infinitely long in this

case, being bounded by an alternate magnetic or electric wall at z=0 which requires

one more boundary condition to be considered in the analysis.
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Fig. 4-1: Geometry of symmetric double-step waveguide discontinuities.
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4.1 Formulation

Consider the structue shown in Fig. 4-2, wíth an incident field propagaring in the

positive z-direction. A part of it is scattered by the discontinuity and a part is transmit-

ted to waveguide B. The transmitted waves are totally reflected at z=0 plane. Thus, the

transverse components of fields are given in modal form as follows.

a¡, b¡, and d¡ are complex coefficients of the transmitted and reflected mod.es, yo¡ and,

Tt¡ Te the modal propagation constants, Yoi and Y6¡ are the modal admittances, and

eo¡ ande6¡ ara themodalvectorsfortheith modeinthecorrespondingwaveguidesA

and B, respectively. For the case of an electric wall e = -1 while in the case of a mag-

neticwall€=1.

Using the Equivalence Principle, the fields in the two regions can be modeled in

terrns of the equivalent magnetic cuïent sheet M placed over the aperture ,S, as shown

in Fig. 4-3, with

M =urxE,

I a¡Yo¡e
i

Ht=

Lat z ---
2

where E, is the unknown electric field

waveguide A is the incident field plus

¡y", ç * !)' llrx €o¡ z < -LlZ
(4-2)

-Llz<z <0

(4-3)

in the apeffure to be determined. The field in

the field produced by the magneric sheet M.

F

2 o,,
i

2 b¡e
i

-j^{'¡ (z * 
*) ro, + 2 d,eiT^ 

<' * l) ,o,
i

-J"l¿¡ z 
eA¡ + Le bieilr, ebi

i

-iv-, k + L\
" Ltrx eo¡ - 2 d¡Yo¡e

i

z < -LlZ

-Ll2<z <0
(4-1)

I b¡Y6¡e-t'u; z uzx ebi - Ð e b¡yu¡eilu'' urx e6¡
lt



-49-

----)z

_L
z=-)

_L

2

Fig. 4-3: Equivalence for waveguides A and B.

z:0

-ttt ;b @
f
U
u
t-.-
U
IIJ
J
fI¡



-50-

The field in waveguide B (resonator box) is the total field produced by the magnetic

current sheet -M plus the ñeld totally reflected by the magnetic or electric wall at the

boundarv z=0.

In order to determine the unknown expansion coefficients, we apply the proper

bounda¡y conditions. Thus the continuity of the tangential electric field components

across the apernrre s at t = -*,requires that
L

Ð o¡ urx eai + 2 di urx eo¡ - M
I t 

,-. L _¡n,, L

Z b,rt^l''1ur* eø¡ + Z E bie 
tY''t rr* ,0, G-4)

ii
Also the continuity of the tangential magnetic field components across the aperture S

L
at z = -:, requires that

L

Ð a¡Yo¡nrX €o¡ - Ð d¡Yo¡ttrx €o¡ =
IT

iv'! -iY,,\
Z b¡Yu¡e ¿ u'x €6¡ - Z eh¡Yt¡e : urx e6¡ (4-5)
ii

To obtain an approximate solution for equations (4-4) and (4-5), we apply the moment

method.

4.3 Moment-method solution

To apply the moment method, we expand the magnetic cunent sheet M as

OrU = }Vo Mo at z=-î Ø-6)
P=L L

where Vo are unknown complex coefficients to be evaluated, and Mo are known vec-

tor basis functions. The above sunìmation is limited to a finite number of terms Q.

By substituting (4-6) into (4-4) and applying the orthogonality condition (2-3) for the
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mode functions in each region and simplifying, we obtain

o
ai + di = ÐV, ho¡, (i = 1,2,..., N) (4-7)

P=t

b¡=# 9ro ru* (i =r,2,...,N) (4-8)
itø,| -i"[u] p=1e '+Ee

where

a

hrip = JMp ' ilrx er¡ ds (r = a,b) Ø-9)
s

Equation (4-9) can be wrinen in matrix form as

H, = [h,¡p] wxT (4-11)

Taking the inner product of (4-5) (as defined in (2-16)) with the resring function IV¿

on the apeffure.S, we obtain [46],

N ¡rla I
2|o¡YaiWa¡k = E l\Vpho¡plyo,W^o+i=l i=l Þ=1 )

,LL

^/ 
J"{u;V - -l'lti7

il¿ '-Ee
LlLLi=l iw| -i^{',;e '+Ee

la I
lZvrhbip lYbiwbik (k = 1,2,...,Q) Ø-12)
LP=l )

where

I
Wrik = J Wt ' urx€r¡ dS (r = a,b) (4-I3)

_s
The above equations can be written in matrix form

W, = [Wr*] ¡¡*g Ø-14)
Following Mautz et al [24] equation (4-12) may be written in the generalized admit-

tance form



,= 
[r.

.L
J"{une-
.LLJft;V -l^lti7e - +ee
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lulì

where

Í = zwll"d

fr = WTYrH, (r = a,b)

d = [a¡] ru*t

I = [Vr] g,r
With f, being the diagonal matrix of the modal admittances in the corresponding

waveguide A or B while d and.î *" the column matrices of the quantities a¡ andVo,

respectively.

4.3 Galerkin's method solution

As the aperture S occupies the cross-section of the smaller waveguide A, we may

let

(4-15)

(4-16)

(4-17)

(4-18)

(4-ie)

(4-20)

(4-2r)

(4-22)

(4-23)

Mp=Wp=uzxeap

Also, we let Q = N and eoo

H, JW, =U

(P=L,2,..., Q.)

- ebp. This leads to

where U is the identitv matrix.

7 = Zyod

l, =Y,
Substituting @-22) and (4-23) into (4-i5), we obtain

(r = a,b)

Equations (4-16) and (4-17) reduce
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/=

î=Ì -a
I

where V may be obtained from (4-25) as

| ,r,* -iv,! Il'"*++vulìI iyrl -it,,i IL e '+ee ' _l

(4-24)

(4-2s)

(4-26)

In the case of even exciration (e = 1), equation (4-24) reduces to

f n,r I/= lyo+ jtan(!L¡vulî
L¿I

while in the case of odd excitation (e =-1),

l- .Tu¡L. I, = 
Lr" 

- icot ç!;) ,, )O
Equations (4-25) and (4-26) represent ( Nx N) systems of linear equarions. Its solution

through equations (4-7)-(4-8) yields the field distributions in equations (4-1) and (4-2).

The final step of the presented analysis is to formulate the scattering matrix for the

double- step discontinuity.

4.4 Scattering matrix formulation

The (2Nx 2N) scattering matrix for the double-step waveguide discontinuity may

be written as [13]

f- - I l- -l

c_ lS"" So"l_ 1 lf,+fo f"-f,l
' = 

Lt o s""-l = 1 lr" -r" r" +ril Ø-27)

where f, is the reflection coefficient matrix due to even excitation while fo is the

reflection coefficient matrix due to odd excitation. For the even excitation. the com-

plex reflection coefficients can be obtained from (4-7) as

(4-28)
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r l-1. | ",/,,L l-'I = zlr" * itan (!ir ru I yod
L¿I

Substituting Ø-29) into (4-28), we ger

T -'l-r
. | ¡t..[. | -

î = 2lr" * itan ëfr ru ) 
yod - È

(4-2e)

(4-30)

(3-33)

(3-34)

Therefore, the (Nx N) submatrix f, is obtained in the form

r^=E-fu r'''f^ñ 'TuiL l-1 | ''' I

d = 
lr" 

+ iøn rîr t, ) fr, - itan (!f, 
", ) (4-31)

The submatrix fo due to the odd excitation may be obtained in a similar manner, as

| ^{n;L l-1 | v^,L Iro = 
ly, - tcot (:fr ru ) lr" 

* icot G:fl vu J Ø32)

Comparing the above scattering matrix with the one obtained by De Smedt et at ll3l
in terms of that for a single-step is

and

Soo = S"" = S#) + Sr$) 5lsl ea'L

c -c -uac - rco, -
SS) 5rG) ea'L

1 - Su$)z ¿-?h L

The above scattering matrix needs more computation than the one obtained. in equation

(4-27) because in using the above equations we have to combine the scattering matrix

at each junction to obtain the overall scattering matrix. In addition the length L has to

be sufficient[y large compared to the wavelength. This is in contrast with the obtained

scattering matrix which handles two consecutive junctions at a time, in other words,

the amount of computation is reduced ro one hatf by using equation (4-27).

4.5 Cascaded junctions
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In this section we present a solution for the scattering matrix when a number of

junctions (more than two) are considered together in a cascade as shown in Fig. 4-4.It

is convenient to presei'. each two consecutive junctions by their scattering matrix

(equation (4-27)). The scattering matrix of a cascade of waveguide junctions may be

obtained by multiplication of the scattering matrices of each t'wo consecutive junctions.

The only restriction is that the length L, has to be sufficiently large compared to the

wavelengh.

4.6 Scattering matrix for cascaded junctions

To obtain the scattering matrix for the structure comprised of waveguides A and

E as shown in Fig. 4-4, it is first necessary to express the scattering matrix of the

double-step between waveguides A and C as shown in Fig. 4-5 (a) as

b{o) = s}Í) 
"{o) 

* s#) uf') (4-3s)

o{c) = s}Í) ofo) * s$> ø{ct Ø-36)
This is to be combined with the scanering matrix of the double-step between

waveguides C and E and with the help of the transmission matrix, i.e.

blc) {'t' = S#) ¿-'YtL' a{c) +S!!) o{E¡ G37)

b{t) = S$) ,t,t, ofc) + Sy)a{E) (4_38)

With the elimination of the internal variables (see Appendix B), the overall combined

scattering matrix shown in Fig. 4-5 (b) reduces to

ç (d) c (d) c (d) o-Z^{rL,"ac "cc "caS*=S#)*
| - S@)2 e-2"í'L'

(4-38)
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So" =

S"o =

ç'(d)ç (d)o-^l['
"o.c "ce -

I - S@2 ¿-z^t'L'

SS)g @)t-r'L'

(4-3e)

(4-40)

(4-4r)

(4-42)

(4-43)

(4-44)

c (¿) S#) g(d) 
"-4tL'e - c(d\ , "ec '

| - 5@lz ¿-21ú'

Since the input waveguides are identical, we may obtain the following simplifications

slt)=s#)=sJ!)

sJÍ) = s#)

s!!) = 5$t

4.6 Numerical results

We consider three numerical examples, namely, ridged, over-sized and a cascaded

double-step waveguide discontinuity. The purpose of doing this is to make sure rhat

the analysis presented is valid for these structures and also for various values of L bv

comparing with available data for these examples.

4.6.1 Ridged double-step waveguide discontinuity

Consider the structure shown in Fig. 3-4 where the dimensions are stated in sec-

tion 3.3. The magnitude and phase of Soo and ,So" are plotted as a function of f¡e-

quency. Different values of N were considered i.e. N = 3,5,...,9, with N = 9 yielding

a satisfactory accuracy. The results are compared with the experimental values

obtained by De Smedt and Denturck while the frequency range is extended to 5 GHz

in order to show the interference of higher order modes. It is seen from Fig. 4-6 that
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the two curves for the reflection coefficient are vi¡tually identical below 3.3 GHz. Even

at higher frequencies, the agreement is close. Resonance occurred at 3.75 GHz in the

smaller waveguide (between the junctions) which is slightly towards higher frequen-

cies. Fig. 4-7 shows the magnitude of the transmission coefficient, the difference

between the two curves being about -4 dB at 2.6 GHz. The agreemenr is also good at

higher frequencies, while the magnitude of So. for frequencies above 3.8 GHz is 0 dB

(unity). Fig. 4-8 shows the phase of the reflection coefficient, and the difference

between the curves is about 8 degrees in the range 2.6 GHz to 3.6 GHz. The agree-

ment is also good at higher frequencies than 3.6 GHz. On the other hand, Fig. 4-9

shows the phase of S-, the agreement between the two curyes is good at frequencies

higher than 3.1 GHz. We have plotted in Fig.4-10 the variation of Soo and So" in dB

versus frequency with L as a parameter. Here the magnitude of the reflection

coefficient dropped to - 50 dB and the resonance occurred at 4.1 GHz for L = 6.0 cm

and at 4.75 GHz for I = 4.50 cm, the latter separation length being the same as the

width of the smaller waveguide. Figs. 4-i0 and 4-11 show that the magnitude of the

reflection and transmission coefficient improve by varying L. For example, the magni-

tude of the transmission coefficient increases from -9.8 dB to -1 dB as the length Z

decreases frofoi 4 cm to 1 cm. We have ploned the VSITR versus frequency for

different lengths in Fig. 4-12, where the results show that decreasing the vaiue of L

results in increasing the magnitude of VSWR at the normalized frequency 1.8. The

computations were again extended up to 5 GHz.

4.6.2 Ov er-sized double-step waveguide discontinuity
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V/e consider the structure shown in Fig. 4-3 where waveguide A has a width wo

2.286 cm and a cutoff frequency f , = L3.12 GHz, while waveguide B has a width w¿

= 4.572 cm and a cutoff frequency f ', = 6.56 GIJz = 0.5 f ,. Th,: separation benpeen

the junctions is assumed to be L =2.743 cm.

Fig. 4-13 shows the computed magnitude of the reflection coefficient of an over-

sized double step waveguide discontinuity, while the frequency range is taken between

7 and 19 GHz. Different values of N were considered, with N = 11 yielding to a saris-

factory accuracy. The results are checked against the values calculated by Rozzi et al

1141. It is seen that the two curves are very close between f = 7 and 10.4 GHz. The

results obtained by the presented method lead to values of Soo which vanish at

different frequencies, namely f = 17.2,I4.I,17.2 GHz.

Tables 4.1 through 4.4 for the scattering matrix coefficients and the voltage stand-

ing wave ratio V^SIVR are computed using equations (4-27) and (2-41), respecrively.

The results presented in tables 4.1 and 4.2 arc obtained for w6lwo =1.2, and propagar-

ing frequencies f = 8 GHz and f = 15 GHz. The magnitude of VSWR is higher ar f = 8

GHz, while it stays approximately constant at higher frequencies.

Tables 4.3 and 4.4 present results are obtained for w6lwo = 2.0 and the same pro-

pagating freqencies stated before in the previous cases. It is interesting ro nore thar

increasing the width of waveguide B to twice the width of waveguide A results in

increasing the magnitude of the VSll¡R, this is due to the interaction of TE36 mode.

4.6.3 Cascaded double-step junctions

Consider the structure shown in Fig. 4-4 where the dimensions are the same as
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stated in section 3.3. The magnitude and the phase of Soo and So, are plotted versus

frequency. Fig. 4-14 shows the magnitude of Soo is 0 dB between 2.6 and 3.55 GHz,

where the separation benveen the junctions is taken to be L = 7.98 cm and the

transformer section Lt = I0 cm. In the case of the double-step, the resonance occured

at 3.75 GHz in the frequency range 2.6 to 5 GHz, while in this case three resonances

occured, namely at 3.55, 3.95, and 4.4 GHz, respectively. Also it can be seen that the

magnitude of ^So" is 0 dB in the range 3.55-5.0 GHz and varies between -47 and -4.0

dB in the range 2.6-3.55 G}Jz. Fig. 4-15 shows the phase of the scattering marrix

while Figs. 4-16 and 4-L7 are another examples where the separation t and the

transformer section L, are the same and equal to 7.98 cm. We have plotted the magni-

tude of VSWR versus frequency with Z as aparameter and Lt =7.98 cm in Fig.4-lg,

where the results show that decreasing the value of I from 6 to 4 cm results in

increasing the value of VSWR from 3.1 to 9.3 ar the normalized frequency 1.g.
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Table 4-1. Scanering cofficients as a function of separation length

forw6lwo=1.2,f=8GHz.

Separation, L (cm) S ac, sa. VSWR

1

2

J

Á-

5

6

I

8

9

10

11

t2

13

t4

15

-0.2127-i0.748s

-0.1016+j0.1 182

-0.0633-j0.1054

-0.2318+j0.4089

-0.0071 +j0.M52

-0.1834-j0.1009

-0.1415+j0.t174

-0.0311-j0.0804

-0.2389+j0.0027

-0.0274+j0.0761

-0.1469-j0.1163

-0.1787+j0.1038

-0.0092-j0.04s9

-0.233s-ja.ßs7

-0.0584+j0.1023

0.323s-j0.9189

-0.7491-j0.6439

-0.8510+j0.5106

0.1687+j0.9571

0.9843+j0.1720

0.4716-j0.8s66

-0.6277-j0.7s64

-0.9291+j0.3596

0.0111+j0.9709

0.9379+j0.3374

0.6096-j0.7702

-0.491s-j0.8460

-0.9796+j0.1955

-0.1470+j0.9605

0.8634+j0.4905

1.5 82

r.369

1.280

1.616

1.086

1.530

1.451

1.888

r.628

r.t76

t.461

1.530

1.098

1.618

r.268
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Table 4-2. Scattering cofficienß as a function of separation length

for w6lwo = 1.2, f = 15 GHz.

Separation, L (cm) Sa' s* VSWR

1

L

a
J

A
I

5

6

-

8

9

10

11

12

13

I4

15

-0.0016+j0.0073

-0.0061+j0.0133

-0.0i27+j0.0168

-O.0202+j0.0172

-0.0272+j0.0145

-0.0323+j0.0090

-0.0347+j0.0020

-0.0340-j0.00s4

-0.0302-j0.0118

-0.0240-j0.0161

-0.0166-j0.0174

-0.0094-j0.01ss

-0.0037-j0.0107

-0.000s-j0.0039

-0.0004+j0.0035

-0.9766-j0.2146

0.9078+j0.4198

-0.7966-j0.6M1

0.6484+j0.7608

-0.4700-j0.8820

0.270wj0.9622

-0.s743-j0.9977

-0.1578+j0.9868

0.36s7-j0.9301

-0.5567+j0.8301

0.7219-j0.69rs

-0.8536+j0.5206

0.94ss-j0.32s3

-0.9933+j0.1148

0.9949+j0.1011

1.015

r.029

1.043

1.054

1.064

1.069

1.072

1.071

1.067

1.059

1.050

r.037

1.023

1.008

1.007
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Table 4-3: Scanering coefficients as a function of separation length

forw6lwo=2.0,f=8GHz.

Separation, L (cm) Soo Soc VSWR

I

2

J

4

5

6

a

8

9

10

11

12

IJ

t4

15

-0.4347-j0.0167

-0.0039+j0.0a09

-0.429s-i0.M98

-0.0154+j0.08M

-0.4194-j0.0817

-0.0339+j0.1167

-0.4043-j0.1120

-0.0586+j0.1486

-0.3844-j0.1398

-0.08 843+j0. 175 1

-0.1100-j0.1644

-0.1220+j0.1955

-0.3320-j0.r8s2

-0.1582+j0.2094

-0.300-j0.2013

0.03s0-j0.8998

-0.9947-j0.æ4s

-0.1038+j0.8957

0.9789+j0.r874

0.r73r-i0.8874

-0.9s31-i0.2770

-0.2424+j0.8749

0.9183+j0.3623

0.3rr9-j0.8s72

-0.87s3-j0.4419

-0.3813+j0.8353

0.8255+j0.5152

0.4s0s-j0.8078

-0.7699-i0.s8r7

-0.5190+j0.7745

2.395

1.086

2.524

t.t78

2.492

1.277

2.445

1.3 80

2.385

1.488

) ?1 1

r.699

2.226

t.712

2.r33
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Table 4-4. Scanering cofficients as a function of separation length

for w6lwo = 2.0, f = 15 GHz.

Separation, L (cm) Soo So" VSWR

1

2

J

À-

)

6

I

9

10

11

12

IJ

T4

15

-0.0005+j0.0062

-0.0018+j0.0122

-0.0042+j0.0180

-0.0074+j0.0233

-0.0112+j0.0282

-0.0159+j0.0323

-0.0211+j0.0357

-0.0268+j0.0383

-0.0327+j0.0399

-0.0389+j0.0407

-0.0451+j0.M05

-0.0512+j0.0394

-0.0570+j0.03737

-0.0625+j0.0344

-0.067a+j0.0308

-0.997r-jj.0763

0.9883+j0. i520

-0.9737-j0.2269

0.9535+j0.30M

-0.9277-iO.372r

0.8964+j0.4416

-0.8600-j0.s08s

0.8186+j0.5724

-o.772s-j0.6328

03220+j0.6895

-0.6674-j0.7423

0.6090+j0.7906

-0.5470-j0.8343

0.4820+j0.8732

-0.4r43-j0.907r

r.012

r.025

t.037

1.050

1.063

1.075

1.087

1.098

1.109

1.1 19

r.r29

1.138

t.146

1.r54

1.160
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CHAPTER 5

DISCUSSIOF{ AND CONCLUSIONS

A moment method solution for the multiple-step discontinuity in rectangular

waveguides is given in this thesis. The solution is expressed in terms of aperture

admittance matrices, one for each region. The presentation is confined to a single-step

in Chapter 2, then the analysis is extended to double-step in Chapter 3, where two cou-

pled set of equations a¡e obtained and expressed in matrix form. Finally the method is

applied to the multiple-step discontinuity in Chapter 4 using a cascading procedure,

with the only restriction being that L, should be sufficiently large compared to the

wavelength.

De Smedt and Denturck [13] obtained the scattering matrix for a symmetric

double-step discontinuity in terms of the single-step discontinuity, their solution is

lengthy (in terms of the amount of computation) because it requires computation of the

scattering matrix coefficients for each junction while the separation length has to be

sufficiently large compared to the wavelength. This is in contrast to our solution which

handles two consecutive junctions at a time, and by doing this the amount of computa-

tion is reduced to one half. Furtherrnore, the junction to junction separation is not res-

tricted in our case in principle, aithough shorter sep¿ìrations require longer computation

time to achieve reasonable converqence.

The simplicity of the moment method can be noted in the way the continuity con-

ditions across the junctions are satisfied. By using the Equivalence Principle, the

tangential electric field is automatically satisfied by replacing the apertures by electric

walls each carrying magnetic current sheets on both sides of the apertures, leaving
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only the tangential magnetic field to deai with.

In Chapter 2 and 4, the comparison with experimental data obtained by De Smedt

Denturck [13] shows significant agreement since this problem has no exact solu-

to compare with.

In Chapter 4, the symmetric double-step discontinuity has been formulated by

applying the Equivalence Principle and the Bisection Theorem 125); the field analysis

has been simplified by considering the two special cases of even and odd excitations

modes and then superimposing the results to obtain the solution of the problem.

The magnitude of the reflection and transmission coefficient improves when three

or more waveguide discontinuities are connected in a cascade as shown in the last sec-

tion of Chapter 4 by getting more ripples compared with the results obtained for the

double-step discontinuity U7). The other way we obtained better resulrs was rhar by

decreasing the value of the length L from 7.98 to 4 cm. There seems to be no way to

determine the accuracy of the results obtained for cascaded junctions without com-

parison with available numerical or experimental data.

The scattering matrix coefñcients are applicable for ridged and oversized double-

step waveguide discontinuities as shown in Chapter 4. The purpose of analyzing rhese

particular cases was to obtain a reliable solution for design of waveguide steps which

are possible to analyse by other methods only with restriction on dimensions and mode

spectrum. This is particularly true since the moment method solution proved to be

quite flexible for handling such structures and quite accurate when compared with

available data.
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The higher order modes of excitation are taken into account in the analysis, and

the ripples in the frequency response of the input reflection coefficient illustrate the

relevance of our solution for the design of waveguide junctions.

Various values of both lengths ,L and L, are considered, while the formulation

and convergence do not seem to suffer by varying both lengths. However, the fre-

quency range taken is confined between 2.6 and 19 GHz.

5.1 Suggestions for future research

Although we have investigated the moment method solution up to four discon-

tinuities, it is obviously of interest to extend the effort to N step discontinuities.

Another potential study involves employing the moment method in two different

co-ordinates systems such as the problem of circular-to-rectangular waveguide junc-

tions, waveguide-horn junction, erc .

Finally, the method can also be adapted to the coupling between two horns, cou-

pling between two waveguides particularly since the method has already been applied

to study the coupling between two slits.
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APPEI\DX A

ANALYSIS OF ASYMMETRICAL DIAPHRAGMS IN

RECTANGULAR WAVEGUIDES

A particularly important problem in electromagnetic theory is the analysis of

diaphragms or irises in rectangular waveguides. So far, a few special discontinuities

have exact solutions; otherwise a numerical solution is suggested.

'Wu ¿r al IIll have used the moment method procedure to present a solution to

scattering by irises in rectangular waveguides. In their solution, the evanescent wave is

presented by the extra induced current density on the conducting surfaces which is

localized at the discontinuity, then the moment method with the point-matching tech-

nique is applied to solve for the scattering matrix coefficients and the induced current

density. It should be noted that Ray theory has also been applied to investigate this

problem by Yee and Felsen 120,211.

We present here a moment method procedure which is straightforward and paral-

lel to the analysis in Chapter 2, the only difference in this case being that the cross-

sections of the waveguides are the same and also the aperture size S is arbitrary.

Consider an infinitely long rectangular waveguide having a discontinuity at z=0 as

shown in Fig. A-1. The transverse components of the electromagnetic field in modal

form are given as follows [31].
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Fig. A-l: Geometry of an asymmetrical diaphragm.
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and di are complex coefficients of the incident, transmitted, and reflected

respectively.

Following the procedure outlined in Chapter 2, the scattering matrix for this struc-

ture can be written as

srr=a"l;rw[Yo-u (A-1)

and for the submatrix .S21, we have

s2r = n"V;rw[v, (A-2)

where the subscript 1 refers to the left waveguide and 2 refers to the right waveguide.

Since the structure is symmetric about z=0, the submatrices S 12 and S 22 are identical

to ,S21 and Stt, respectively, í.e.

Sn= Szt (A-3)

and

Szz = Srr (A-4)

In Fig. A-2 we have ploned the magnitude of the reflection coefficient of a per-

fectly thin diaphragm located at the lower wall (z=0) with a length equal to al2. The

aperture is divided into a number of subsections 3,5,...,1.1. However 11 subsections and

7 modes (i.e. N=7) yield to an excellent accuacy.
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The results are verified by comparing with the exact solution obtained by Collin

[5]. The agreement is excellent between the two solutions, particuiarly in the rang

0.5 < a l?," < 0.85. On the other hand, the agreement between the exact and ray theory

solution is poor especially near the cutoff frequencies to which the solution can not be

applied [45].

Fig. A-3 show the magnitude of the transmission coefficient compared with the

exact and ray theory solution, the agreement is excellent with the exact solution for

values 0.7 < a/ìv,while Fig. A-4 show the phase of the reflection coefficient plotted in

degrees.
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APPENDIX B

DERIVATION OF THB SCATTERING MATRIX FOR

CASCADED JUNCTIONS

In this appendix we present a derivation to the equations in section 4.6 as fol-

lows.

b{o) = S}!) ofo) * 5{a) 69> .u-t)

o{c) = S}!) ofo) * s#) uÍ'> .'-2)

bfc)rtru' = S!!) 
"-^hL' 

o{c) * SS) ofÐ CB-3)

b{Ð = S$) "t"' or', + Sy) a{E) G-4)
Substituting (B-3) into (B-2) and then solving for a{c), we obrain

o{,)=- 
S:!) ç(d)ç(d)o-"hL'- 

1 - L,!"- 'ol 
o{o) +;trt;ar of') (B-s)

Again, substituting (B-5) into (B-4) and simplifying, we obrain

b{rt = s#) sl3 tttt' 
n{A) + ( s}!) * sP s#),|.9:,.Tt' 

\ olr) (8-6)u7 
t-s<an;urt 

uÌ' 'î 
\""'t ,U<yv e-/'hL, /

5""Sr.
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