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Abstract

A nonlinear model has been developed to investigate the galloping and wake-induced
oscillations of an iced twin-bundle transmission line, the low frequency but large am-
plitude oscillations often ohserved in the field. Numerical solutions involve a finite
clement analysis in conjunction with a perturbation scheme to account for a line’s
geometric nonlinearity, prestress and nonlinear aerodynamic loads. By applying a
quasi-steady theory and employing aerodynamic forces obtained from wind tunnel
simulations, the initiation of galloping is investigated numerically by using a conven-
tional stability analysis. Limit cycle amplitudes, if oscillations occur, are obtained
from an efficient, Krylov-Bogoliubov averaging method and their stability is also
studied. In addition, a computationally expedient time marching algorithm is used
to compute the response for those instances where averaging procedures cannot be
employed. Examples are presented to illustrate typical oscillations of iced, twin

conductors.
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Chapter 1

Introduction

1.1 Description and background

Overhead electrical transmission lines consist of single or bundle conductors, in-
sulator strings, support hardware, spacers and tower components (See Figure 1.1
in which the large separation of the two twin bundles excludes their interaction.)
Lines are often subjected to wind-induced vibrations of overhead conductors caused
by a blast of wind as well as a steady airflow. The conductors’ oscillations may
lead to flashover as well as wear and fatigue damage to the transmission structure.
Eventually, electrical power supply can be severely disrupted.

It has been found economical to use bundle conductors instead of single con-
ductors to transmit electrical power. The commonly used number of conductors
per bundle varies from two to four. For twin bundle transmission lines, the two
conductors normally lie in a horizontal plane, separated by a distance between 10
and 25 conductor diameters. However, despite the principal advantage of increased
:apability in power transmission, secondary problems may arise with the bundle
conductors. Due to the leeward conductor being immersed in the wake of the wind-
ward conductor, the bundles may experience instability caused by a wake vortex.
Thus, in addition to the possible acolian and galloping vibrations observed on single
conductors, bundle conductors may be subjected to wake-induced oscillations.

Galloping is characterized by low (0.1 to 3Hz) frequency, large amplitude, self
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excited oscillations. It is produced by aerodynamic instabilities that stem from
asymmetry in a conductor’s cross section due to the ice aceretion or, more rarely,
the stranding of the conductor cable itself [1]. Galloping instabilities of bundle con-
ductors involve mainly the bulk motion of the bundle. Wake-induced oscillations,
on the other hand, are instigated by the aerodynamic forces due to the shielding
effects from the windward conductors. They range in frequency from about 0.7 to
6Hz and may involve both a subspan and full span motion when the conductors
are connected by spacers. Aeolian vibration is a high frequency and low amplitude
oscillation, compared to galloping, that is caused by an alternating wind force aris-
ing from a pressure difference due to a regular formation of air vortices behind a
conductor.

Modelling the dynamic behavior of a transmission line as well as investigating
the effects of aerodynamic forces are challenging tasks because both aspects involve
nonlinearities. The object of this research is to study low frequency vibrations,
including both galloping and wake-induced oscillations, of twin bundle conductors
coated with ice when excited by a steady wind. The ice shapes are obtained from
field observations and frozen rain simulations. Aerodynamic forces on the ice coated
conductors are measured from static wind tunnel tests. By assuming the conductors’
motions to be quasi-static at low frequencies, the measured static aerodynamic forces

are applied to dynamic problems after proper modifications.

1.2 Literature review

1.2.1 Introduction

Successtul research has been made on a single conductor transmission line that gives

fundamental knowledge in understanding the galloping behavior of a transmission
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line [1, 2]. However, limited research has been reported for the galloping of bare
bundle conductors. Researchers considered the bundle either as an equivalent single
conductor [3] or as two rigid cylinders that are either spring mounted or fixed [4, 5,
G, 7]. Little analytical work has been reported for ice coated bundle conductors.
An carlier paper (8] has reviewed the static and dynamic behavior of clectrical
transmission lines and their mechanical components under wind and ice loading.
Recent rescarch on transmission line galloping and wake-induced oscillations has
been covered as part of wind excitation [9] and bluff-body, flutter problems [10].
A survey of aeolian vibrations [11] also briefly mentioned the galloping and wake-
induced oscillations of both single as well as bundle conductors. The scope of this
review highlights analytical studies (that emphasize a transmission line’s stability,

dynamic behavior and limit cycles) as well as galloping control devices.

1.2.2 Single conductor

Galloping of a transmission line oceurs when conductors, which are usually covered
with ice or wet snow, are excited by a steady side wind. Its nature has been reviewed
by Desai et al [8]. Recently, it has been shown that galloping may also happen on
telecommunication cables [12] and cables in a rain [13]. Due to the severe damage
that may be caused by galloping, the conditions initiating a conductor’s galloping
or the resulting limit cycle amplitudes have been studied extensively. Generally,
the aerodynamic forces in analytical models are obtained by curve fitting static
experimental data and assuming a quasi-static behavior [14, 15]. However, an effort
has been made to numerically determine the aerodynamic force coefficients by using
a potential flow and boundary integral approach [16]. After employing the equations

of motion, the initiation of galloping is determined by assessing the stability at
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a conductor’s static cquilibrium position under wind and ice loading. Galloping
vibrations are determined by finding limit cycles [1, 6, 17].

The most commonly used Den Hartog criterion for the vertical galloping of a
single conductor (often represented by a single degree of freedom, DOF) considers
a conductor’s vertical motion only. However, when the conductor’s torsional and
along-wind motions become important, for certain ice or snow geometries and con-
ductor orientations to the wind, the classical Den Hartog criterion is inadequate and

a multiple DOF model is required [13, 18].

Analytical models

The aerodynamic forces acting on a single conductor depend nonlinearly upon the
wind speed and relative angle of the wind’s attack to the conductor. Such a system
is simplified and made numerically tractable by employing a mass-spring—dashpot
oscillator consisting of a linear structure and nonlinear, quasi-static forces. The
conditions for initiating galloping are obtained by performing an eigenvalue stability
analysis on the linearized equations of motion near the conductor’s static equilib-
rium position [18-24]. A three DOF model, which includes the vertical, torsional
and along-wind motions, has been developed not only for predicting the galloping
instability but also the ensuing nonlinear dynamic motions of a single conductor,
the ice shape on which simulates one formed under wet snow [25, 26]. The results
from one specific ice shape suggest that the torsional motion, as well as the vertical
motion, is significant in initiating a galloping instability [18]. Based upon a two
DOF oscillator, which simultaneously considers the vertical and torsional motions,
an explicit solution was obtained for the conditions initiating galloping [19, 23].
Furthermore, a geometrical approach has been developed to investigate not only the

initiation of galloping but also the critical boundaries where bifurcations happen, as
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well as instability trends for conductors having cocentrie [20] or eccentric [22] cross-
sections. A parametric study gave an understanding of galloping instability and a
possible way of alleviating the galloping by changing a system’s parameters [20, 22].
However, despite the study of coupled vertical and torsional galloping, the intrinsic
coupling between vertical and horizontal movements has not been ignored [24]. It
was indicated that vertical galloping may be initiated by a horizontal displacement
or velocity.

Both two and three DOF oscillators, as well as two and three dimensional fi-
nite element models, have been studied extensively for different internal resonant
and non-resonant cases. By using the finite element method, nonlinearities and
interactions between various structural modes and different line spans can be ac-
commodated [27]. However, as the number of DOF grows, the computational time
increases greatly compared with that for an oscillator — even when a time averaging
technique is used.

When the static equilibrium position is unstable, a conductor is prone to gallop
and, then, its dynamic behavior should be studied. A prediction of a conductor’s
steady state limit cycle, which determines the galloping amplitude as well as the
frequency and relative phase difference of the vibrating components, has been ob-
tained by using numerical or nonlinear analytical methods [19, 28]. The stability of
a limit cycle can be determined by lincarly perturbing the limit cycle parameters
[1, 23, 29].

A comparison of the results from an oscillator and a finite element analysis has
been made by considering the vertical and torsional motions of a conductor. It
was found that the limit cycles predicted by a planar finite element idealization are
virtually identical to those from a two DOF oscillator representation of a single span

line vibrating in one structural mode [19].
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The components other than conductors of a transmission line have also been in-
vestigated. Most studies of the performance of interphase spacers, spacer—dampers,
detuning pendulums and towers have been experimental, as discussed in the later
section on galloping control. Cable-stayed structures, including interactions be-
tween cables and towers and different restraints and supports, were analyzed to find
their static and dynamic equilibrium positions in a steady and quasi-steady wind
[30, 31]. It was determined further [32, 33] that a multi-mode galloping of such

structures depends upon the initial conditions and the external disturbances.

Numerical and analytical methods

In general, nonlinear differential equations of motion, obtained from either an oscil-
lator or finite element approach, are solved by employing numerical integration or
a nonlinear analytical method. The application of a particular solution procedure
depends upon the nature of the problem; more than one method can be often ap-
plied successfully. The commonly used Krylov-Bogoliubov time averaging method
[1, 23, 27], the harmonic balance method [17, 34], the describing function method
(28] and multiple scale method [17, 30, 35] can predict steady state solutions of non-
linear equations. Recently, an asymptotic or a perturbation method was applied to a
system of weakly coupled, nonlinear wave equations. The equations were formulated
by considering the conductor to be a one-dimensional continuum moving vertically
[36] as well as in both the vertical and horizontal directions [37]. A trigonomet-
ric calculation method has also been developed for the galloping of a single DOF
oscillator [38]. When transitions from a quasi-periodicity to chaos occur and the
turbulent intermittencies need to be identified, an approximate attractor method
-an be used [39, 40].

The limit cycle determined by a two DOF (vertical and torsional) oscillator model



Chapter 1. Introduction 7

was obtained by employing the deseribing function method [28] as well as the Krylov-
Bogoliubov time averaging method [19, 23]. Results obtained from both methods
agree with those found from numerical integration [23, 28]. The Krylov-Bogoliubov
averaging method has been utilized successfully for different internal resonant and
non-resonant cases in conjunction with a three DOF oscillator as well as a three
dimensional finite element model [1, 27]. The galloping amplitudes obtained by
using the trigonometric calculation method have also been compared with those

from the time averaging method. They are essentially identical [38].

1.2.3 Bundle conductors

It has been found economical to transmit electrical power by using two or more
bundle transmission conductors, rather than a single conductor. However, bundle
conductors may experience both full span and sub-span oscillations because rel-
atively rigid, coupling spacers are introduced between the conductors. Indeed, a
leeward conductor can be immersed in the wake of a windward conductor so that
the bundle may also experience instability from the aerodynamic forces caused by
the wake. Therefore, in addition to possible acolian and galloping vibrations ob-
served on single conductors, bundle conductors may be subjected to wake-induced

oscillations [11, 17].

Wake-induced oscillations

Investigations [4, 5, 6, 7, 41, 42] of the wake effects on bare conductors have been
performed by considering two circular cylinders, one in the wake of the other. The
aerodynamic forces on the windward conductors are usually assumed to be the

same as those on a single conductor. However, the forces created on the leeward
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conductors, which are immersed in the wake of the windward conductors, depend
nonlinearly upon the conductors’ separation [43]. In one set of investigations [4,
7], the windward eylinder was fixed and the leeward cylinder was suspended by
a spring and a dashpot. Based on experimental data, the acrodynamic drag and
lift coefficients were approximated by polynomial functions of the relative position
between the two cylinders. A single DOF model, involving the vertical motion [4],
and a two DOF model, accommodating both the horizontal and vertical motions
of the leeward cylinder [5, 7, 41] have been employed to find the limit cycle of
the leeward cylinder. Again, the limit cycles obtained by the Krylov-Bogoliubov
method for wake-induced oscillations agree with those determined from numerical
integration [5, 7].

When the windward cylinder is free to move, both cylinders can be modelled
by masses supported by springs and dampers [6]. The equations of motion, their
solutions and stability can be obtained as before, although higher DOF models are
involved. The movement of the windward cylinder significantly affects the motion of
the leeward cylinder. For instance, there is a time delay between the motion of the
windward cylinder and this motion being “felt” by the leeward cylinder. The time
delay is a nonlinear function of not only the positions but also the velocities of both
cylinders. Analytical motions incorporating this effect have been found numerically
by using Runge-Kutta integration [6, 42].

The wake-induced oscillations and instahility of flexible cylinders in an array of
fixed cylinders have been investigated for multiple as well as twin conductor bundles.
The aerodynamic drag and lift on the flexible cylinders may be found experimentally
or analytically. Based on experimental data, both a single DOF idealization [44] of
a flexible cylinder and a two DOF representation [45] of two cylinders moving in the

cross-flow direction have been evaluated. On the other hand, the aerodynamic drag
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and lift, as well as the cylinder’s stability, were derived analytically by using a one-
dimensional, unsteady integral model [46]. Discrepancies between the experimental
and theoretical results were explained by the neglect of vortex shedding, the effect
of instabilities caused by fluid fluxes normal to the free air stream and the artificial
smoothing of data in the numerical integration.

The combined effects of vortex-induced oscillations and the galloping of a square
sectioned cylinder in a cross flow have been investigated by Corless and Parkinson
[47]. They suggested that the interactions can be modelled by simply combining the
mathematical models of each form taken separately. An improved solution for the
primary resonance was developed subsequently based upon the method of multiple
scales with a more appropriate asymptotic embedding [48]. The analytical solution
was quasi-periodic for weak nonlinearities but, when strong nonlinearities exist,
transient chaos was present for certain, physically realizable, parameter values [47].

In addition to an oscillator approach, a finite element analysis has been per-
formed for bundle conductors despite the great computational effort required. Di-
ana et al [49] studied buffeting and galloping by using tensioned beam elements for
triple bundles, when full span oscillations are solely of interest at very low, 0.1 to
0.2 Hz frequencies. The equations of motion were solved by employing a Newmark
step-by-step, numerical integration. When sub-span motions were also included, an
eight or a sixteen DOF cable element, whose lengths equal the sub-span length, has
been used to study the vibration of bundle conductors incorporating spacers [50].
Another alternative is to utilize three-node, isoparametric cable elements represent-
ing conductors and beam elements representing spacers [51]. If only the bulk or
full-span motion needs to be considered, the constrained motion can be idealized
by an equivalent single conductor model, which is much more computationally ef-

ficient [52]. Linearized equations of motion were derived for both two and three
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dimensional models and the conductor’s oscillations and stability were determined

numerically.

Alleviation of wake-induced oscillations

Extensive field and laboratory studies and theoretical analyses have been conducted
to reduce the possibility of initiating galloping and to decrcase the amplitudes of
galloping by altering conductors’ parameters [2, 53, 54] and adding control devices
[55-63]. The amplitude, of course, relates directly to the frequency of flashovers
between vertically aligned phases and to the severity of mechanical damage to towers
and hardware.

Due to the complexity of wake-induced oscillations, an exhaustive analytical
study of the effect of parameter changes has not been performed for conductors.
Price and Abdallah [6] studied the individual effects of frequency detuning and
mechanical damping as a means of alleviating the oscillations. It was indicated
that detuning the modes of vibration was effective in a fixed windward conductor
analysis. However, it is unlikely that frequency detuning is particularly beneficial
for bundle transmission lines in which a multitude of modes may coalesce. They
also showed that increasing the mechanical damping is generally the most effective
way of enhancing stability. Damping can raise, in some circumstances, the wind’s
threshold speed necessary to cause instability and it can also reduce the limit cycle
amplitude. In contrast, it has been suggested that only high levels of mechanical
damping, in excess of that normally achievable in practice, are beneficial for twin

bundles [6, 42].
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Summary

Much progress has been made in modelling and theoretically analyzing galloping.
Theoretical studies, which complement experimental investigations, include the ini-
tiation of galloping, finding the limit cycles of galloping and wake-induced oscilla-
tions, parametric studies as well as control techniques. Further advances are still

needed, however, to develop practical control devices that are invariably effective.

1.3 Present contributions

This thesis focuses mainly on analyti cally modelling the dynamic behavior of a
twin bundle transmission line as well as investigating the effects of aerodynamic
forces. A finite element technique coupled with a perturbation scheme, which may
reduce computational time, is employed to derive the nonlinear, algebraic equations.
Based on the successful research for a single transmission line [1], two analytical
models, an equivalent single conductor and a wake-induced oscillation model, are
proposed for simulating a twin conductor bundle’s motion. The equivalent single
conductor model is proposed for a full span motion. By eliminating the sub-span
motion between the two conductors, the total DOF is halved and the computational
cfficiency is improved greatly. When the sub-span motion needs to be investigated,
a program for wake-induced oscillations is developed to take into account both
full span and sub-span motions. The program is able to handle non-uniform ice
geometrics and wind loads along the line. Regardless, the initiation of galloping.
the limiting amplitude, if galloping happens, as well as the history of a twin-bundle

transmission line’s motion are investigated.
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1.4 Organization of thesis

General mathematical models and methods are described in Chapter 2 for au-
tonomous nonlinear systems, together with a description of computationally cffi-
cient, time averaging scheme (the Krylov-—Bogoliubov method), a numerical time
integration procedure and their application to the galloping problem. An equiva-
lent single conductor model is developed in Chapter 3 to investigate the full span
(bulk motion) of a twin conductor bundle. Both physical and fictitious spacers are
assumed to restrict relative movements between conductors and spacers. In the
case when full span and sub-span motions are considered simultaneously, the model
for wake-induced oscillations is given in Chapter 4. Then a sub-span motion is

allowed at all the nodal points not defined by physical spacers. Finally, Chapter 5

summarizes the conclusions and discusses future work.
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Chapter 2

Mathematical Models and Methods

2.1 Autonomous nonlinear systems

2.1.1 Mathematical models

In the analysis of flow-induced vibrations, mathematical models are generated for
both the structure and fluid. Because of their flexibility, cable structures are sus-
ceptible to large motions when excited externally. They respond in a geometrically
nonlinear fashion to both prestress forces and increasing load, regardless of the
material’s linearity. The equilibrium configurations, as well as the state of stress,
always depend nonlinearly upon the prestress and external static forces. However,
the response to dynamic forces may be non-linear or quasi-linear depending on the
directions and magnitudes of the dynamic forces relative to the state of stress and
configuration of the prestressed structure. In this thesis, cable motions are con-
sidered to be near-linear with a varying load near the cable’s static equilibrium
configuration when the dynamic displacements are assumed small. Therefore, the
cable can be simplified to cquivalent linear oscillators after the cquilibrium configu-
ration has been obtained under a static load.

Fluid models are formed from a combination of quasi-static theory and experi-
mental data. As fluid mechanies is an inherently nonlinear, many degree of freedom
phenomenon, it is very difficult to accurately describe the phenomenon by using

a general theoretical model. The experimental data needed in modelling the fluid

14
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behavior are obtained from static wind tunnel tests. These data are used in the
analysis of a dynamic problem by applying quasi-static theory. In conclusion, a
nonlinear autonomous system, which does not explicitly involve time as a variable,
is developed to model the cable structure and acrodynamic loads by considering the

nonlinearity of hoth the structure and fluid.

2.1.2 Governing equations of motion

The analysis of oscillations for a weakly nonlinear, autonomous system that has
second order differential equations of motion is developed by applying an asymptotic
method based on the classical £ order, Krylov-Bogoliubov (KB) method [35, 64, 65,
66]. The general form of N, second order differential equations of motion can be

written in principal coordinates as
. 92 . , R .
Ni+w; 1 = 8]?7;(7]1,772, e TN TS T2y e nN,)): 1=1,2,... ,Np 3 Np <N , (21)

where N, is the number of principal coordinates, 7; 18 a generalized displacement, e
is a small parameter (¢ << 1), w; is a natural frequency of the corresponding linear,
undamped system (¢ = 0) and €F} is a modal load containing linear and nonlinear
terms. The weak nonlinearity stems from the modal loads, € F;, which have order

in comparison to the unit order, inertial and elastic forces.

2.1.3 Solution of the autonomous nonlinear equations

The static equilibrium position of the system described by equation (2.1) corre-
sponds to the zero solution, n = 9 = 0. The first order dynamic solution can he
approximated by

m: = Ai(t) cos(wit + y(t)) (2.2)
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where A;(¢) and 1;(t) are the unknown, slowly varying ith amplitude and phase,

respectively. The w} are unknown and close to the 7th natural frequency, i.c.

W= w + O) (2.3)

2

The fundamental assumption of the asymptotic analysis is that, for a sufficiently
small value of the parameter e, the solution of equation (2.1) is nearly harmonic but
with a slowly varying amplitude and phase over one cycle of oscillation.

Rewrite the periodic solutions of equation (2.1) in the form
ni(t) = Ai(t)cosUy(t), (2.4)
Wi(t) = Wit + (1),
where A;(t) and ¥;(t) are defined such that
7 = — AW} sinV;, (2.5)
A,,;cos\Ili = A,Usinl.
Then the KB technique is applied to the modified equations
i + w*?m =ckF; + (w*f — W, 1=1,2,... . N, (2.6)

where wf = w;, i = 1,...,k, for the non-resonant modes and wi = w; + Of(e),
t = 1,...,m, for the resonant modes. The k and m are the number of the non-
resonant and internally resonant modes, respectively, and k+m = N,. Furthermore,
the wj arc expressed in terms of a common, but unknown frequency w* for the
resonant modes.

Substituting cquations (2.4) and (2.5) into equation (2.6) results in two uncou-

pled equation sets in A; and ¢;, which are given by

Aw} = [Ai(w? — w?)cosV; — eFy)sin;, = 1,...,Np, (2.7)
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and
Ai'z/_:’iwi* = [Ay(w? — wi*)cosT; — eFilcos¥;, i = 1,...,N, (2.8)

after manipulation. Equations (2.7) and (2.8) are averaged by integrating them
with respect to time, ¢, and by treating slowly varying functions A;(t) and ¥;(¢) as

constants A; and +,. The resulting 2N, averaged equations are

A w =7 / (Wi — Wi cosV; — eFy]sinW,dt (2.9)
A; 7 Wi = T [Ai(wQ wi)cosV; — eF)eosW,dt, (2.10)
where T; is the period of the ith mode. Equations (2.9) and (2.10) now provide an

¢ order approximation to the system described by equation (2.1).
2.2 Stability analysis

2.2.1 Static configuration and initial stability

In general, a static equilibrium problem is formulated as the solution of [68]
P(q) — F =0, (2.11)

where F'is a vector of applied loads and P is the nonlinear internal force vector
which is indicated to be a function of the nodal parameters ¢. The residual of the
problem, ¢, is given by

#q) = Plg) — F. (2.12)

and a solution is defined as any set of nodal displacements, g, for which the residual

is zero. 'The solution is obtained by using the Newton-Raphson (NR) iteration
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method, which starts from a state satisfying physical arguments for a solution and
then small increments are applied to the loading vector, F. Thus, for any step, a
set of values for the components of ¢ is found to satisfy the zero residual condition.
By taking small enough steps, a solution path may usually be traced [67].

The initiation of galloping is determined by the stability of the static equilibrium
configuration of the transmission line. An unstable static configuration is generally
called the initiation phase of galloping. The stability analysis is performed by lin-
carizing the equations of motion near the static equilibrium configuration. The

equations of motion generally have the form

[M{g} + [CHa} + [K{q} = {F}, (2.13)

where [M], [C] and [K] are the global N x N structural mass, damping and stiffness
matrices, respectively. The cable and beam eclements used to model conductors
and spacers are described in Appendix A. The {F} and {g}, on the other hand,
are the external dynamic force and nodal displacement vectors measured from the
equilibrium configuration of the structure. Therefore, the N linearized equations of

motion are given by
[MI{G} + [Crl{a} + [Ki[{q} = {0}, (2.14)

where

and
(K] = [K]-[Ky] - (2.15)

The [Cy] and [Ay] stem from the linearization of the aerodynamic loads. They are

formed by assembling the linearized element load vector, {FL°}, where

{F°} = [CuNHq} + [Kve){¢®} . (2.16)
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Elements of [Cy°| and [Ky€] are presented in Appendix B. Eigenvalues of the re-

sulting characteristic matrix, [S,], are computed from

[ 1
[S,] = . (2.17)
—-[A'ﬂ“] [I([J] —-[]\/[J_I [CL]

Here [0] and [I] are the N x N null and identity matrices, respectively. The static

configuration is stable if all the eigenvalues of [S,] have a negative real part.

2.2.2 Limit cycle and its stability

By considering the equations of motion to be weakly nonlinear, time averaging
schemes can be used to approximate the periodic solutions. The equations of motion

(2.13) are transformed first to the principal coordinate system, n;, as [1, 27]

Ny
i+ win, = F, — i, i=1,2,... , N, (2.18)
k=1
where
Ny
Eyy =D ($ing— Fy + biajot Foy + iy M,). (2.19)
=1

Here n, and N, are the number of nodal points and principal coordinates, respec-
tively. The w?, ¢;; and ¢; gy on the other hand, are the squared natural frequencies,
clements of the cigenfunction matrix [¢] and damping matrix [C*] in principal co-
ordinate system, respectively. By applying infinite time integration (7' — oc) in
cquations (2.9) and (2.10), the resulting 2N, averaged equations for the amplitudes

A; and phases 1; become

- 1T |
Aws = lim 7 /0 [As(wf — wi)cosV; — Fy, — F, |sin,dt (2.20)

T—00
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. 1 T )
Appw; = lim — / [As(w? = wi?)cosV; — F, — F, JcosT,dt, (2.21)
T—oo T 0
where
N,
Fo, =Y iy, Ay wisiny.

k=1

The constants A; and ¢, and frequencies wf, 7 = 1,2, . .. Ny, j=1,2,....m,

can be found by letting }L(f) = z—/;J = 0 in cquations (2.20) and (2.21) and solving
the resulting nonlinear algebraic equations. Therefore, the approximation of a limit
cycle given by equation (2.4) can be determined.

The stability of a limit cycle is determined by performing a stability analysis on

the equations

N .
- n 0A; UG 814
Ai(t) = SA Zj i=1,2,...,N,, (2.22)
k=1
Np —; m

J; (t) = Z 8A ) + Z (/)A t), ji=12,...,m, (2.23)
where m is the number of internally resonant modes. Approximations for the partial
derivatives 94, i/ OA;, o4, i/ Oy, OI/JZ/OA and az/;l/am nJj = 1,2,...,N,, k1l =
1,2,...,m, can be obtained from equations (2.9) and (2.10). A (N, +m) (N, +m)
characteristic matrix, [S,], is constructed from equations (2.22) and (2.23) such that

o4, oA,
Sci,j = aa Ci(Np+k) — A
aAJ o 7 ) a(/)k

O—IZZ 0(/)
CNpD)G b—z;, S(,(N,,+1) (Nptk) — 0(/] N (2.24)

,7=1,2,...,N,, kl1=12...m

The signs of the real parts of the eigenvalues of [S.] determine the stahility of the
limit cycle. When m # 0, one eigenvalue is always zero because all the W; are
measured with respect to a reference mode. If all other eigenvalues have negative

real parts, the limit cycle is stable.
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2.3 Numerical time integration

A direct time integration of the equations of motion is performed separately in the
principal coordinate system (2.18) as an alternative approach that may be employed
to validate the results obtained from the time averaging technique. It may also be
performed on the sub-space equations in order to reduce computational cffort. The

algorithimm is swmmarized below [1].

At time t = 0O:

The initial {n}o and {0}, are known so that, for the first time step t = At, employ
the following formulae

(nhas = 55 [(Fo+ (gl = 190) fmdo + (=€) (ido] . (225)

and
. 2 )
{ntar= At ({ntae = {n}o) — {1} (2.26)
For the subsequent time steps ¢ = 2At, ...t + At, use

(heese = 82 (P + (500 - 19) fnh— gzbidieac— (OHAY] . 220

and

ITNES Qit (B{n}tiear — 4{n} + {fl}t—At) , (2.28)

where [2] is the diagonal matrix containing the squared natural frequencies and the

components of { F*} are defined in equation (2.19).



Chapter 3

Galloping (Bulk Motion) of a Twin Conductor Bundle

3.1 Introduction

It is often observed in the field that twin conductors move in phase with an imper-
ceptible sub-span motion. Therefore, the full span or bulk motion is often studied
alone. Then, researchers have considered an equivalent and advantageously simpler
single conductor model [1, 2] for a bundle [69]. Moreover, an oscillator analysis based
on a damped spring and mass model for twin bundles [3] and a finite element anal-
ysis, using tensioned beam elements for triple bundles [49], have been performed.
However, further analytical work needs to be performed on the full span oscillations
of ice coated as opposed to bare twin-bundle conductors.

In this chapter, the full span bulk motion of an iced twin bundle is investigated,
whereas the sub-span motion is neglected. Hence, the twin bundle is modelled
as an equivalent single conductor, the motion of which can be represented by the
displacements and rotation of a reference curve located midway between the two
conductors. A finite element technique is coupled with a perturbation scheme and
the nonlinear, algebraic equations are derived and solved. Flexible cable elements
are used to represent the conductors and both fictitious and real rigid spacers are
assumed to restrict the motion between corresponding nodal points on the two
conductors. Compared with the case when both full span and sub-span motions

are employed, the resulting computer program is much less time consuming and

22
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needs less storage because the number of variables representing the bulk motion is
the same as that for a single conductor. The initiation of galloping, the limiting
deflection amplitude if galloping occurs, as well as the history of the twin-bundle
transmission line’s motion are investigated. Numerical results are given for one iced
transmission line and the effects of wind speed as well as the conductors’ horizontal

tension are studied.

3.2 Formulation

3.2.1 Mathematical model

The bulk motion of a twin bundle is represented by the displacements and rotation
of a reference curve between the two conductors. This fictitious curve is designated
the center of rotation, as shown in Figure 3.1. It is assumed that the rotation
about this center is small and that the longitudinal motions of both conductors arc
negligible. The conductors are modelled by using computationally efficient, three-
node, isoparametric cable elements. Relative movements between two corresponding
nodal points on the conductors are constrained by spacers. Rigid spacers link the
two conductors at nodal points, e.g., a massless, fictitious spacer joins correspond-
ing conductor nodes not defining a physical spacer. Then, the equivalent single
conductor model can take advantage of the results from previous research on single

conductors [1].

Equations of motion for two individual conductors

By considering two separate conductors lying side by side, the equations of motion
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for the windward and leeward conductors can be written, respectively, as

[A/['ll’]{(.j’ll’} + [C’w]{q’l“} + [I('IU} {q?l’} = {EU} + {E‘?“’} (31)

and
[Mi{a} + [Cl{a} + [Kil{a} = {F} + {Fa). (3.2)

The [M;], [Ci] and [K], 4 = w and [, are the N x N mass, damping and stiff-
ness matrices and subscripts w and [ denote the windward and leeward conductors,
respectively. Vectors {qu}, {F} and {Fy,} are the displacements, external aero-
dynamic loads and the forces simulating the effects of the spacers on the windward
conductor, respectively. The {¢;}, {F} and {Fy;} are analogous vectors for the lec-
ward conductor. The effects of the ice formation on the conductors are taken into
account when forming the mass and stiffness matrices. The procedure for construct-
ing [M,,] and [Mj], [C,,] and [C}], as well as [I,,] and [K)] is similar to that used in

reference [1]. Details of these matrices are given in Appendix B for completeness.

Forces on the spacers, {F},} and {F,}
Equations of motion for the twin conductor bundle are derived from equations (3.1)
and (3.2) in the following section. The forces given by the spacers at cach nodal

point, j, are denoted as { Fyy; } and {Fy;} for the windward and leeward conductors,

i.e.
{stj} - {F'zuvjy Fij7 Fzmuj: Aé[wj}: (33)
and
Fai}y = {Fuy Fuy, Fug, Mis ). (3.4)

Here, the Fyuwj, Fiwj, Fuwj and M,; are the forces in the z, y and z directions and
the (torsional) moment on the windward conductor whilst the Fug, Foj, Fuy and

My are those on the leeward conductor. By using Newton's second law, the relations
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between the forces on the spacers and the movements at the center of rotation can
be determined. The expressions for the massless fictitious spacers and the physical

spacers are
- 6sj Mgj U‘J - Etlj + Emlj
= Osj sy U5 = Fyj + Fuyy
— b5 Mgy Wy = Fupy 4+ Fug (3.5)
- 6Sj Isj 0J = ]\'ij + -Fij lw COs HOj + Euwj l'w sin 90.-/'
+ ]\/[11 — E)l;j ll COS Hoj — lej ll sin 9()J' s

where

‘ 0 for a massless, fictitious spacer at node j
By = (3.6)
1 for a physical spacer at node j .

The I,; and mg; are the inertial moment and mass of the physical spacer at node
J. The I, and I; are the distances between the center of rotation and the windward
and leeward conductors, respectively, for both the real and fictitious spacers. The
6o, is the angle between the spacer and horizontal plane at node j whilst iy, Uy, Wy
and 91 are the accelerations in the z, y and 2 directions and the angular acceleration

of the twin bundle, respectively.

Constrained motions

The movements of both conductors can be expressed in terms of the motion at the
center of rotation when the sub-span motion is neglected. Thus, the linear and

angular velocities take the matrix form
{dos} = [Tyyl{dy}, s=w and I, (3.7)

for the windward and leeward conductors where {455}, s = w, 1, and {¢;} are time
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derivatives from the displacements and rotations {¢s}, s = w, 1, and {g;}, respec-
. v — Lo T — 1 , T ool (o 1
tively. The {qu;} = {thwy, Vs, Wy, s}, {@;} = {uwgy, vig, wiy, 037 and {q;} =
w;, v;,w;, 05} vepresent the displacements in the 2. v and z directions and rot:
{uj, Vj, Wy, J} represent the displacements in the x, y and z directions and rota-
tions at the windward, leeward conductors and at the center of rotation of the twin
bundle at nodal point j, respectively. The transformation matrices [Th;) and [T}

are defined as

i 1 00 0 1 00 0
0 1 0 [,cosby; 0 1 0 =l cosby,;
[Ty) = Y ad [T = B G
0 0 1 I[,sinfy; 0 0 1 —Isinby;
0 00 1 | 0 00 1

where 6y is the initial rotation coordinate at node j at the center of rotation. There
are two assumnptions made in deriving equations (3.7) and (3.8). The first assump-
tion is that the rotation, 6, is small; the second is that the longitudinal movements
of both conductors are identical. Therefore, displacements can be approximated

after integration and algebraic manipulation by
{as5} = [Toi){q;}, s=w and | (3.9)

Accelerations can be expressed by employing two terms used for the accelerations
due to the conductors’ tangential and normal components with respect to the centor

of rotation. The expressions for the accelerations are

{dos} = [Tl{@} + [Top{d3}, s=w and I (3.10)

where

{47} = {4, 03, 03,60},
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[ﬂujO] -

0

0
0

0
0

0 0
0 "“l'ul sin 0();)-

0 Ly cosby;

0 0 |

and

[Tij0] =

Equations of motion for the twin bundle

0
0
0
0

0

0 0
0 ll sin 60j
0 —ll [@on Hoj

0 0

27

. (3.11)

It can be shown straightforwardly from equations (3.3), (3.4), (3.5) and (3.8),

by using Newton’s second law, that

[T;uj]T{-stj} + [T}j]T{Eelj} - (Ssj []V‘[?J]{qj}

for a fictitious as well as a real spacer, where

Finally, by letting

as well as

-

(M) =

{4s} = [TeH{a},
{4} = [T{q}.

the equations of motion hecome

Mg, 0
0 mgy O
0 Mg,
0 0

s=w
§=w

{4} = ITHG} + [Tl{d*).

0
0
0

Iy

and

and

S =1

and [

(Mg} + [CHd} + [KHq} = {F}

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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where {g} is the global displacement vector of the bundle at the center of rota-
tion and {¢,} and {¢} are the displacement vectors for the windward and leeward

conductors, respectively. They are designated

{" = {a}" {e)". - {67},
@ = Ha)y gy (e,
where n,, is the number of nodal points at the center of rotation, or the reference
curve. The matrices in equation (3.17) are defined as
M] = (L] IM)[Te] + [TTMIT] + (M)
€] = [LIICT] + [T]TIC)T (3.18)

K] = [L)T[KW[TW) + [T 1K) [T)]
and the resultant force vector is given by
{F} = [LJ{F.} + [T)"{R}. (3.19)

Similarly, the aerodynamic vectors, {F,} and {F}}, arc assembled from the force
vectors {F,;} and {F};} whilst the transformation matrices, [T] and [T}], are ob-
tained similarly from matrices [T,,;] and [T};] at nodal point j, j = 1,. .. .My The

mass matrix, [M,], is the contribution from the physical spacers’ inertias. More

specifically,
{Fs} = {{Esl }T, {FSQ}T: e {Een,,}T}Tr s=w and ]’a (320)
T, O R 0
0 T92 0 co 0
Tef=1 + . - : , s=w and I, (3.21)
0O --- 0 Ts(n,,—l) 0
0o ... 0 To,
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and
I . ,

(331 ]\'/[s] 0 0

0 bsa Mgy 0 0
[M;] = (3.22)

0 0 53(n,,—1) A’[s(n,,—l) 0

0 0 6sn,, ]\/fsn,,

The [Two] and [Tjg] are related to the second order velocity terms used in equation
(3.16). They have similar definitions to those for [T},] and [7}] when Ty and Tj;
are substituted by ;.0 and Tijo, 7 =1,2,... .My, respectively. However, they are
neglected in deriving equation (3.17) because the center of rotation is assumed to

be close to the net center of gravity of the two conductors.

3.2.2 Modelling aerodynamic forces

The steady aerodynamic forces, {F'}, in equation (3.17) are obtained directly from
experimentally measured static forces and moments at the center of rotation of
the twin bundle by applying a quasi- steady theory. These forces. which cause the
conductors to vibrate, depend nonlinearly upon the geometry of the iced conductors
and the relative wind speed to the conductors. The general form of the aerodynamic

forces per unit length can be written, at cach nodal point, as

By, = % Pair Uty d Cy,

F, = %p U2, dC,, (3.23)
and

My = 3 oy Ul & G,
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where poir, Uper, d and Cy, i = 4, 2,0, are the density of air, relative wind speed with
respect to a conductor, a reference structural dimension and the load coefficients,
respectively. In this analysis, the cocfficients Cy, C, and Cy are approximated
conventionally by cubic polynomials of the angle of attack at the rotation center, «,

to simulate the experimental data. Hence, the polynomials take the general form

3
Oz' = Za'ijafj: 1= Yy, z, 97 (324)
=0
where .
R6 T
o =8 — tan (22T (3.25)

U,
Here, U, is the free stream speed in the z direction and R is the characteristic
radius corresponding to a reference point where the instantaneous angle of attack is
computed [70]. Many researchers simply take R = 0 by measuring « at the center
of rotation for a single conductor [71, 72, 73, 74]. Others researchers use R =~ d/2 by
measuring « at a reference point located on the windward side of a single conductor
[1, 27]. In this chapter, the constants a;;, i = y, 2,6, j = 0,1,2, 3, of equation (3.24)
are obtained from a least square curve fit of the experimentally measured lift, drag
and moment coefficients [1]. These coefficients are calculated as a function of the
free stream speed, as well as the relative wind speed for the moving twin conductors,
and the instantaneous wind’s angle of attack. They are measured along the center of
rotation so that I? is taken to be zero for solely the bulk motion of the twin bundle
conductor.

The rightmost term in the last equation may be approximated by the first lincar
term in the Taylor series expansion of the inverse tangent function. However, this
approximation may give erroneous results, especially when ].1?9 +V | > 0.6U. for
which the error in the computation of « itself is more than 10%. To reduce the

error, the next term in the Taylor series is included in the expression for « so that
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the approximation
a = a+ /3 (3.26)

is used in the time averaging process where

and

3.2.3 Initiation of Galloping

Equations of motion (3.17) define the stability and motion of the conductors’ bulk
motion. The static configuration of a transmission line, subjected to ice and a mean
steady wind load, is computed from the nonlinear, static equilibrium equations
obtained by letting {¢} = {¢} = 0 in equation (3.17). The resulting nonlinear static
equations,

[Kl{q} = {F}, (3.28)

are solved by using the NR iteration method described in section 2.2.1 of Chapter
2.

The initiation of galloping is determined by the stability of the static equilibrium
configuration of the transmission line. The static configuration is stable if all the
cigenvalues of the characteristic matrix, [S.], determined in equation (2.17) have a
negative real part. If the static configuration is unstable. the limiting motion and
the history of a motion are found by employing two independent methods, the KB

averaging scheme and direct time integration.
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3.2.4 Limit cycles

By considering the equations of motion to be weakly nonlinear, time averaging
schemes can be used to approximate the periodic solutions. The equations of motion

(3.17) are transformed first to the principal coordinate system, 7;, as [1]

N,

it win =F, = ¢y i=12,....N, (3.29)
k=1

where
Ny

Eyo = (baj—ns Fy, + dujory Foy + puyy My,).
J=1
Here n, and N, are the number of nodal points and principal coordinates, respec-
tively. The w?, ¢ 5, Iy, and ¢ k> on the other hand, are the squared natural frequen-
cies, elements of the eigenfunction matrix [¢], forcing vector {F*} and the damping
matrix [C*] in the principal coordinate system, respectively. By applying the KB

technique to the modified equations
N,
7 + w*fnl = ‘Fﬂi - Z C;k’f]k + (w*? - wf)nl 1=1,2,... 7N‘IJ= (330)
k=1

as described in deriving equation (2.6) of Chapter 2, the resulting 2N, averaged

equations (2.9) and (2.10) beconie

- _ 1 47 . .
Awr =F, = 71111‘1 — / [A (w2 — w?)cosW; — F,, — F,,lsinV,dt (3.31)
—oo T Jo
and
- — 1 /T . .
Appw; = Fy, = Tlim = / [Ai(wi — w*)cosT; — Fy, — F,]cosWydt, (3.32)
OO . 0
where
N,
Fo, = ¢y Ap ) sin¥y, (3.33)
k=1

By substituting equation (3.33) into equations (3.31) and (3.32), the expressions

- 1 T Np B Np (S‘Z - . . .
Fy, = ——715130 _f/o [g | sin®; dt—> 7’”02,». Ap Wi, cosyy,, (3.34)
j=1 k=1
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and
— 1 47 i j d N (Si,'.- — _
F, = — lim ——/ E cos W, dt — —c . Ay wi sin,.
Vi Too T Jo ; yzh i LZ;} o Cik Ak Wy Py
Ay 2 .
+?(wi——wl ) i =1,2,...,N, (3.35)

are formed where Fy . which corresponds to the principal coordinate 7; at nodal
point j, is defined as

szg = (/),1:]-._271 ij + (/),1.]'_172' sz -+ (/)«1]',1' ]\{[gj . (336)

y
The phase difference, 1,;, and function, &, are given b
ki y Ui S .

Y = P, — P, (3.37)

and

‘ 1 if wf = wi
O, = (3.38)
0 if wf # wj.

After further algebraic modification, equation (3.36) becomes

Fly = %pm:,. U.;° d; <é Ty, @ + 0, Ty &3/3 + 6, T &2 ) ., (3.39)
where
ay = (/)('IJ'—?)-i Gyp + (/)(/U—l)ﬂi Uap + Paji oy dj .p=12.3, (3.40)
and

1 if & is considered to be large
O = (3.41)
0 if & is considered to be small .

The & is considered small when @ << 0.1 so that the linear approximation reflected

in equation (3.26) is reasonable. (This situation is exemplified later in a numerical
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example.) The d; and 6; are a reference structural dimension and the conductor’s
rotation at the jth node, whereas A; and #; indicate the averaged amplitude and
time shift of the ith mode, respectively. The Uyp, Uz and Ty, are computed from

4 > a’kp ;I‘JZ?/’Z:‘Q;P:LZ?’;.j:1:2:---:7lx): (342)

— _ <L77l + L?l
a'kp — -
where L, and L, indicate the length of the adjacent mth and nth elements, re-
spectively, to which j (§ # 2,4,6,...) is the common node. If j = 2,4,6,... , then

Ly, = Ly, = L, is the length of the element for which j is the middle node. The 5

and @; used in equation (3.39) are simplified further to the form

Ny
T o= > (C%cos v, + S7sin \Iln) (3.43)
n=1
and
N, ‘
G = — Y. SsinV, (3.44)
n=1
where
Cé = Zn (/)f»lj,n
whilst
; an,;"
Si = T(RJ Sijm + bujnn) (3.45)
zj

The R; in the last equation represents the characteristic radius at the jth node and
$ij 1s the ijth element of [¢]. It can be seen from equations (3.34), (3.35), (3.39)
and (3.43) that the infinite integration of the products of terms linear, quadratic
and cubic in @; as well as linear in 6;, that are associated with sin ¥; and cos U, are
required recursively at cach jth node, for every ith mode. These integrations have
been derived explicitly but are not presented here for brevity. They can be found

in [1].
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The constants A; and @] and frequencies wi, i = 1,2,...,N,, j=1,2,...,m,
are found by letting A;(t) = ¥; = 0 in equations (3.31) and (3.32) and solving
the resulting nonlinear algebraic equations. Therefore the quasi-periodic limit cycle,

given by equation (2.4), can be found.

3.2.5  Stability of limit cycles

The stability of a limit cycle is determined by the (N, +m) % (N, +m) characteristic
matrix, [Sc], constructed from equation (2.24) of Chapter 2. The signs of the real
parts of the eigenvalues of [S;] determine the stability of the limit cycle. When
m # 0, one eigenvalue is always zero because all the ; are measured with respect
to a reference mode. If all other eigenvalues have negative real parts, the limit cycle

is stable.

3.2.6 Time integration

A direct time integration of the equations of motion is performed separately in the
principal coordinate system (3.29) as an alternative approach. The algorithm is

summarized by equations (2.25) to (2.28).

3.3 Numerical results

A single span, iced twin conductor bundle is used to illustrate a typical full -span
motion when galloping is initiated. The ice accumulations on the conductors. which
cause the conductors’ instability, are obtained from a simulated freezing rain [1]. The

sample designated C11, whose cross-section is illustrated in Figure 3.2(a), resembles
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severe icing formed naturally on a single conductor just below 0°C [2]. The icing
on the windward and leeward conductors is considered identical in order to use
available but limited experimental acrodynamic data. However, about 20% more
ice can be accreted in a strong sideways wind on the windward conductor [75]. It
is also assumed that each line has a uniform coating of ice and that the wind speed
does not change along the span.

The finite element model has 21 nodes at the center of rotation (with node
numbers 1 and 21 representing the left and right supports, respectively) so that
twenty elements, ten on the windward and ten on the leeward conductor, are used to
discretize the two single span conductors. The physical parameters of the conductors
are obtained from field measurements and they are listed in Table 3.1. Quasi - static
aerodynamic forces are measured in a wind tunnel where the separation between the
two rigid C11 models is constant. The separation used here is 0.471 m and, initially,
the orientations of models are a,, = ¢ = 40° when the two conductors lie in a
horizontal plane, as shown in Figure 3.2(b). These orientations are within the range
in which galloping tends to happen [1, 2]. By employing a least square curve fit, the
experimental data are found to give the aerodynamic coefficients listed in Table 3.2.

The static profile of the span for the self weight, ice load and static acrodynamic
lift and drag forces created by a steady side wind of 4 m/s is shown in Figure 3.3.
The horizontal distance between any two adjacent nodal points is always 6.294 m.
The horizontal static tension is 30 kN for hoth simply supported and fixed ends.
The only difference between the end conditions is that the longitudinal degree of
freedom is retained in the simple support case. However, apart from dead-end spans,
a simple support allows a more realistic interaction between adjacent spans so that
it is studied in greater detail. The wind speed and tension are chosen so that a 1:1

resonant galloping occurs for both end conditions.
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The stability of the static profile of the conductor bundle under the aerodynamic
load is investigated to determine the initiation of galloping. The static profile is
found to be unstable for both end conditions at the assumed 4 m/s wind speed.

A modal analysis is performed for the [K] and [M] matrices formulated in equa-
tion (3.17). The resulting two lowest frequency modes correspond to one loop sym-
metrical modes for both end conditions, as shown in Figure 3.4. The mode shapes
are similar for both cases, the first involves a predominantly horizontal motion and
the sccond is essentially a vertical movement. However, as expected, the second
natural frequency is slightly higher for the fixed-ends. Because the initial stability
analysis predicts an instability, limit cycles are investigated for a combination of the
two lowest frequency modes.

An analysis for an internally resonant system (wy/w; = 1%) is performed when
the KB time averaging method is applied because the frequency ratio is considered
to be closely spaced. On the other hand, step by step time integration is used in
the same manner regardless of a resonant or non-resonant situation. The rotation
of the conductor bundle is found to be very small due to the rigid spacers so that
the limiting motions for the windward and leeward conductors are indistinguishable
from that at the center of rotation. Therefore, only the limit cycle at the center
of rotation is given at the mid-span in Figure 3.5. This figure shows that the
results of the step by step time integration procedure and the KB time averaging
algorithm agree well. However, the slightly different natural frequencies procuced
by the two end conditions leads to noticeably different horizontal movements in the
limit cycles. The smaller limiting motion amplitude at the fixed ends stems from a
higher longitudinal strain (or tension) because the length of the cable changes when
one loop galloping happens. However, this change cannot be fed into the adjacent

span when the end constraints are fixed.
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The change in the peak limit cycle amplitudes at the mid span is investigated
for the simply supported span at various steady wind speeds. The initial stability
analysis predicts that the static profile becomes unstable for the first two lowest
frequencies when the wind speed exceeds about 2 m/s. It is found, as expected,
that the amplitude of the limiting motion grows significantly as the wind speed
ncreases. Indeed, Figure 3.6 shows that the limiting amplitude’s growth rate is
almost linear and about 10% that of the wind speed. However, the formulation does
not accommodate acrodynamic loads that are not weakly-nonlinear at large wind
speeds. It has been suggested that a 9 m/s wind speed is at the high end of speeds
found to produce galloping [1]. Therefore only 2.5 m/s to 6 m/s wind speeds, which
is in the range of moderate winds, are considered here.

Different horizontal static tensions in the conductors cause the change in the
limit cycle amplitudes indicated in Figure 3.7. The tensions considered at the 4
m/s wind speed of the example are a little beyond the usual practical range of
15 kN to 30 kN determined from 20% of a conductor’s ultimate tensile strength
[76]. However, Figure 3.7 shows that, as the tension increases, the limiting motion
decreases substantially initially, attains a minimum around 65 kN before rising. This
phenomenon can be explained as follows. A larger tension causes the stiffness to
increase which, in turn, causes the motion’s amplitude to decease but the angular
speed to increase. Thus, the aerodynamic forces grow as the static tension increases,
as shown in Figure 3.8. (This figure illustrates the dynamic changes during a period
of the limiting motion in the aerodynamic coefficients at different static tensions.)
Therefore, the motion’s amplitude increases when the effect of the aerodynamic
forces to inherently increase the cable’s motion is greater than the counteracting
effect of the tension. Finally, it can be concluded that if galloping is the sole concern,

the highest feasible static tension should be employed for this transmission line.
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3.4 Concluding Remarks

A nonlinear model has been developed to investigate the full-sp.a,n oscillations of
an iced twin bundle transmission line, the type of oscillations often observed in the
field. Numerical solutions involve a finite element analysis employed in conjunction
with a perturbation scheme. They account for a line’s geometric nonlinearity, pre-
stress forces and nonlinear acrodynamic loads. By eliminating the sub-span motions
between the two conductors, the twin bundle is modelled as an equivalent single con-
ductor so that the total number of degrees of freedom is halved and computational
cfficiency is improved greatly. The acrodynamic forces acting on the conductors
are obtained from experimental wind tunnel simulations by applying a quasi-steady
theory. The initiation of galloping is investigated numerically by using a conven-
tional stability analysis. Limit cycle amplitudes, if oscillations occur, are obtained
from an efficient, Krylov-Bogoliubov averaging method and their stability is also
studied. In addition, a computationally expedient time marching algorithm is used
to compute the response for those instances where averaging procedures cannot be
employed. Examples are presented to illustrate typical oscillations of an iced, twin
bundle conductor. They suggest that the galloping amplitude grows with increasing
wind speed but decreases and, then, increases with a larger horizontal tension.
Calculating the bulk motion of a transmission line is much more computationally
efficient than simultaneously considering both full span and sub-span motions he-
cause an equivalent single conductor model can be applied. This simpler model can
be used for a quick check in a preliminary design of a new transmission line. How-
ever, the rotation of iced conductors, which is important in analyzing the limiting

motions of single conductors, is suppressed.
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Table 3.1: Properties of Field Lines
Parameters Symbols (Unit) Data
Conductor diameter d (m) 0.0286
Conductor’s elasticity modulus E (N/m?) 4.78033 x 100
Torsional rigidity GJ (N m?/rad) 101
Axial - torsional coupling parameter Br (Nm/rad) 0
Moment of inertia I (kg m) 0.3334 % 1073
Eccentricity in y direction E, (mm) 2.05
Eccentricity in z direction E, (mm) —0.63
Cross—sectional area of conductor Area (mm?) 594.48
Area of ice accretion Area(ice) (mm?) 423.24
Conductor’s mass/unit length m (kg/m) 2.379
Damping per unit length in y, z direction &y & 0.743 % 1072
Damping per unit length in 8 direction & 0.138 % 1072
Ice density (kg/mm?) 0.9163 % 1076
Distance between two conductors [ (m) 0.4710
Horizontal span length L (m) 125.88
Density of air Puir (kg/m3) 1.2929
Free stream (wind) speed U (m/s) 2.0-6.0
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Table 3.2: Experimentally Determined Aerodynamic Coefficients

Coefficients

C11 conductor
at @ = 0° and aw = oy = 40°

Qy;j
Gy
a,gj

7=0,1,2,3

2.7151, -0.3335, -8.1094, 16.7162
1.7440, 1.7210, 1.6650, 3.56309

0.3206, -1.4543, 0.5869, 11.9408

41
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Figure 3.1: Bulk modelling of a twin bundle conductor
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Figure 3.2: The twin bundle model showing (a) the cross-section of a single C11

conductor and (b) the arrangement of the windward and leeward conductors
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Chapter 4

Wake—Induced Oscillations

4.1 Introduction

The equivalent single conductor model described in Chapter 3 efficiently computes
the full span motion of a twin conductor bundle. However, modelling galloping or
wake-induced oscillations becomes necessary when sub-span motions are not neg-
ligible. Investigations of wake effects on bare conductors have been performed by
cousidering two circular cylinders, one in the wake of the other. In one set of inves-
tigations, the windward cylinder was fixed and the leeward cylinder was suspended
by a spring and a dashpot. A single degree of freedom (DOF) oscillator, involving
vertical motion [4], and a two DOF model, accommodating both the horizontal and
vertical motions [5, 7, 41], have been employed to find the limit cycle of the leeward
cylinder. The computational superiority of a time averaging method, commonly the
Krylov-Bogoliubov (KB) method, has been illustrated for those oscillator models
for which periodic limiting motions and their stability conditions were determined
explicitly [4, 7, 41].

When the windward cylinder is free to move and both cylinders are representecd
by masses supported by springs and dampers, a four DOF oscillator model is needed
[6, 77]. The resulting nonlinear equations of motion have been integrated numerically
by utilizing a time marching scheme. Unfortunately, such a scheme may be very

time consuming, especially for a lightly damped system when many oscillation cycles
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have to be performed hefore a limiting periodic or quasi-periodic dynamic response
is attained.

This chapter studies low frequency vibrations, including both the galloping of an
individual conductor and the wake-induced oscillations of twin-bundle conductors
coated with ice and subjected to a steady side wind. The aerodynamic forces needed
for the analyses are obtained from static wind tunnel measurements by assuming
that a quasi-steady theory is valid for low frequency motions. A finite element
analysis, as well as a perturbation scheme, are employed to derive and solve the
nonlinear equations. The finite element model takes into account both a full span
and a subspan motion and it is able to accommodate non-uniform ice geometries
and wind loads along a continuous line. T hree-node, isoparametric cable elements
are used to account for the conductor’s geometrical nonlinearity, whilst two-node
beam elements represent the relatively rigid spacers. A D--section is a typical ice
shape of extreme icing found in field observations and freezing rain simulations [78].
Therefore, the aerodynamic data for the D-section are used in the numerical exper-
imentation. The initiation of galloping, the limiting amplitude, if galloping occurs,
as well as the history of a twin-bundle transmission line’s motion are investigated.
Results for twin conductors having different degrees of structural coupling are also

presented.

4.2 General formulation

The finite element method employed to analyze the galloping of a twin-bundle trans-
mission line utilizes three-node isoparametric cable elements for the conductors [67]

and two node beam elements for the spacers spanning the two nearby conductors
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[79]. The equations of motion,
[MI{G} + [CHa} + [KH{q} = {F}. (4.1)

are derived from the static configuration of the transmission line by employing a
variational principle [80]. The [M], [C] and [K] are the global N x N structural
mass, damping and stiffness matrices, respectively. The {¢} and {F}, on the other
hand, are the global displacement and external dynamic load vectors, respectively.
The ice on the conductor is taken into consideration when forming [M] and [K ).
The effects of remote spans and support insulator strings are represented by linear
springs and they are reflected in the stiffness matrix, [K]. It should be noted that
the [K and {F'} are nonlinear functions of {¢} or {¢}. The basic formulation for the
elements’ mass, damping and stiffness matrices as well as the external force vectors
is summarized in the following subsections. Further details and the explicit forms

can be found in reference [81].

4.2.1 FElements

The three node cable and two node beam elements that are used to idealize con-
ductors and spacers are described in Appendix A. Explicit expressions for the mass

and stiffness matrices are given in Appendix B.

4.2.2 Remote spans and support-insulator strings

Remote spans are modelled as weightless linear springs having stiffness, Kgr, in the
global X direction as shown in Figure 1.1. The Kgr is added to the diagonal entry
in the global stiffness matrix, K], which corresponds to the U displacement at a

tower hardware’s simple support connection to a conductor. The support insulator
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string, which is considered to be a single, vertical rigid bar, pin connected to the
tower’s armi, is also modelled as a linear static spring having components K, and
K, in the X and Z directions, respectively. The K, affects the diagonal stiffness
term associated with the corvesponding U displacement whereas K 1, contributes to
the analogous term associated with the W displacement. Details can be found in

Appendix C.

4.2.3 Damping matrix

The determination of an element’s damping matrix, [C*], is difficult in practice
because of incomplete experimental data. It is often assumed, therefore, that the
global structural damping matrix, [C], can be approximated by Rayleigh damping,

which is a linear combination of the stiffness and mass matrices, i.c.
[C] = B [M] + p, [K], (4.2)

where 81 and f, are determined experimentally. Details can be found in Appendix

D.

4.2.4 Aerodynamic forces

The aerodynamic forces, which cause the conductor to vibrate, depend nonlinearly
upon the geometry of the iced conductors and the relative wind velocities to the
conductors. The force vector, {F}, in equation (4.1) is formulated in the global
coordinate system. It is evaluated by measuring the quasi-steady lift, Fr, drag, Fp,
and moment, M. In general, the acrodynamic forces per unit length can be written

at each nodal point in the form

1
= 5 Pair Ui d Cy,
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1
FD = 5 Pair U12? d CD, (43)

and

1 .
My = 5 pair Up & Gy,

where po;, Up, d and C;, i = L, D. 6, are the density of the air, relative wind speed
with respect to a conductor, diameter of a bare conductor and the lift, drag and
moment coefficients, respectively. It has been found experimentally that Cp, Cp
and Cjy have different forms for windward and leeward conductors. Therefore, the

forces on these conductors need to be treated individually.

Wind tunnel measurements

Aerodynamic forces and moments are measured on both windward and leeward
conductor samples in static wind tunnel tests for different orientations and various
locations of the leeward conductor in the wake of the windward one [78]. Ice shapes
are generated on the conductors in freezing rain simulations that duplicate the
meteorological conditions for naturally occurring freezing rain. After validating
several simulated ice shapes by comparing them with much more difficult to obtain
natural ice profiles formed under comparable conditions, short models representing
the most commonly encounted or severest ice shapes are used for wind tunnel testing.
The location and orientation of the models are constrained to the four geometric
degrees of freedom sketched in Figure 4.1(a). The Z and Y are the horizontal and
vertical separations between the models’ centers and ayy and «;, are the angles of
incidence of the free air stream to the windward and leeward models about their
geometrical centers of rotations, respectively. Least square curve fitting is used
for the measured force coefficients Cy,, Cp and Cy to obtain smooth curves for a

theoretical analysis.
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Windward conductor

Aerodynamic forces and moment depend nonlinearly upon the geometry of the iced
conductor, the relative wind speed, Uy, and the relative angle of the wind to the
conductor, a. The Ug and « for the windward conductor are expressed, at a typical
iced cross section, by [1]

U?}.W = (U - Z¥fl«’)2 + Yl%/

and

Qyy = 9W — Qwy (44)

where U is the free stream speed. Subscript, W, indicates a variable related to the
windward conductor here and in the sequel to avoid repetition, e.g. Upw is the wake
speed relative to the windward conductor. Also,

Yy

U—_Z-—W) (4.5)

Ay = IfCLTL—l(

Yiv = Viv + Rty

and

Zw = Wiy, (4.6)

where Ry is a characteristic radius corresponding to a reference point where the
instantancous angle of attack, ayy, is computed. This reference point is presumed
to be located at the windward sides of both individual conductors so that Ry (and
Ryp) is approximately d/2.

The €, Cp and Cjy for the windward conductor depend nonlinearly upon the
relative angle of the wind’s attack on the conductor, ayy. If the structural rotation
Is assumed small, the forces Iy and F, and the moment M, in the 2yz coordinate

system can be approximated by [1]

Fy = Filaw)cosaw + Fp(aw)sin ayy,
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F, = —Fj/(()éw) sin o + F/)(()zw) cos ayy, (47)
and

./\/[9 = ]\Jg(ﬂlw).
Hence, the substitution of equation (4.3) into equations (4.7) results in

1 . . .
Fy = 5 Pair [Uz + (ngw -+ ‘/w)z] d Cy(()zw),

1 . . . 5
Fe = 5 par [U*+ (Bwbw + Viv)*] d Colaw), (48)
and
1 . . . P s
My = 5 Pair [U* + (Rwbw + Viw)?] & Cylauw).

The Cy,, Cp and Cy are determined from quasi-steady, wind tunnel experiments
on single conductors (78] and they are utilized to compute the Cy, C, and Cy of
equation (4.8). The angle of attack to the windward conductor, oy, is scaled such
that aw = 0 at the static equilibrium position of the windward conductor. In the

present analysis, the cubic polynomials
3 .
Ci=> " ay oy, i=y.2,0 (4.9)
j=1

are employed to represent the experimental results. The approximation described

in section 3.2.2 of Chapter 3. viz
aw = Ty + /3, (4.10)
where

Oéwzew—alw

Qw = (ngw + ’I.JW)/U (411)
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is used in the time averaging process. The ay, J = 0,1,2,3 and ¢ = y, 2.0, of
equation (4.9) are obtained from a least square curve fit of experimental data. The
constant term a; in equation (4.9) is omitted in the time integration process and
the computation of the limit cycle because it is absorbed in the formation of the

static loads.

Leeward conductor

The acrodynamic forces acting on the leeward conductor, which are produced by
the wake of the windward conductor, depend nonlinearly upon the relative positions
(Y and Z) and rotations (ayy and ay,) of the two conductors. Usually the motion
of the windward conductor affects the leeward conductor after a time delay due to
the retardation of the wake flow leaving the windward conductor and approaching
the leeward conductor [82]. However, this flow retardation is neglected here because
galloping happens at a low frequency. Hence, the motion of the windward conductor
can be considered ‘small’ because its speed is much less than that of either the free
or wake stream . If the time delay is included, a similar procedure to that given
below can also be used.

The general form of the aerodynamic forces acting on the leeward conductor
in the zyz coordinate system is similar to that on the windward conductor which
is described in equation (4.7). The forces and moment can he obtained again by

applying the quasi-steady assumption so that

1 . _ .
E, = 5 Pair U d (=Cpsinary + Cr cosapy)
1 ‘ _ —
F, = 5 Pai Uz, d (Cpcosary + Cp sin ary) (4.12)
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and
1 . o —
My = 5 Pair Uz, d* Cy.

Here Upy, is the wake’s speed relative to the leeward conductor, whilst oy =
0, — «ar where 0; and «;, are the rotation and flow angle of the wind’s attack
on the leeward conductor. The lift, drag and moment coefficients on the leeward
conductor, Cp,, Cp and Cy, may be expressed in terms of Cp,, Cpp and Cy by using
(6]
Z?]) = O])/bQ, 61/ = C’]J/b2 and —69 = Cg/l)Q,

where b = (Cp/Cp..)'/? is the ratio of the wake to the free stream airspeed. The
Cp, Cp and Cy are based on the free stream airspeed and they are obtained exper-
imentally by employing a static model. If bare conductors or circular cylinders are
used, these coefficients depend nonlinearly on the relative position between the two
conductors [5, 7]. However, the coefficients are functiéns of the relative wind angle
as well as relative position when the conductors are covered with ice. They can be

written in the form
O’i = O’L’(QW7O{L7Y/3Z/)> CZ = C]hCD:C@? (413)

where Y and Z’ are the separations between the two conductors in the Y? and Z/
directions, respectively, as shown in Figure 4.1(b).
By using the definition of b, the resultant wake velocity relative to the windward

conductor, Uy can be seen from Figure 4.2 to be
ﬁu/ — b [7[”{/, (4]4)

where Upyy s the wind velocity relative to the windward conductor. The absolute

wake velocity components are derived, by utilizing equation (4.14), to be

UWY =D URW sin Qwy — YW
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Uwz =bUpw cos Owy + Zw, (415)
where
Yie =Viy + Ry by
Zyw = Wy
e W
Gwy = tan (m)
and

Qw = QW — Qwy.

-

Hence, the components of the wake velocity relative to the leeward conductor can
be written as

Uy =bUpw sinawy — Yy +7;,
ULZ =b URW COS v + ZW — Z/‘J, (416)

where

Y, =V, + R, 6,

and

Z I, = VVL.
Simplifying equation (4.16) by including only first order terms gives
Uy =bYw — Yy + Y,

and

ULZ:b(U—Zw)+ZW—ZL. (417)
Then the Upp and vy given in equation (4.12) can be found to be
Upt, = Uty + Uly (4.18)

and

any = tan" Uy /ULz) (4.19)
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when the angle of attack, ay,, used in equation (4.13), is defined by
Q= 914 — Qry. (420)

By substituting equation (4.18) into equation (4.12) and applying a similar approx-
imation to that used for equation (4.7), the acrodynamic forces can be written in

the form

1 ,
F, = 5 d Pair UZ Cylaw, ar,y, 2),
1
E. = 5 d par U7 Colaw, ar,y, 2), (4.21)
1 2 2

where

. . _9 . N
2_ 12 (1-b)2Zw — 2, (1-0)Yy Y,
=t HH bU " bU '

In this analysis, the force coefficient Cy is approximated by

4

4 3
Cy = > (Brii+ Byo2)y* + aw (D Bray® + > Brazy®)
k=0 k=0 k=0

3 2
-HlL(Z Bysy® + Z Biszy®) + iy (3 Brry* + 3 Brszy®)

k=0 k=0 k=0

+O/WCY1(ZBA0?J +ZBA 102y") + o2 ZBAHU +ZBA 122y")
= L 0 o j= o

+ai, ZBA 13" + ZBk 142Y )+01WCYL(Z By 1sy® + ZBk,mZyk)
=0 =0 A 0

+OtWCYL(Z Briry® + ZBA 182y") + o} ZBA 10y" + ZBI»ZO‘fy ). (4.22)
i=0 k=0 =0 k=0

Similar approximations are made for C, and Cy which have coefficients Cri and
Dy, respectively, and possess the same ranges for k and i as those for By, ;. These

coeflicients are all obtained from curve fitting experimental data. On the other
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hand, the variables y and 2 employed in the last equation are shown schematically

in Figure 4.1(b). They are defined as
y =Y —y

2 = 7 - 20 (423)

where yo and zp are the relative separations of the two conductors at the static

cquilibrium position in the y and 2z directions, respectively. Hence
Y = ?COS awy -+ 78111 QAwy

Z' = Y sinawy + Z cos ayy, (4.24)

and

Y=Y+ V, -V
Z = Zp+ W, — Wy (425)

where Vi, Viy, W, and Wy are the displacement components of the leeward and
windward conductors in the Y and Z directions, respectively. The Yz and Zp are

the initial separations of the conductors in the Y and Z directions, respectively.

4.2.5 Initiation of Galloping

The static configuration of a transmission line, subjected to loads from ice and a
mean steady side wind, is found by solving the nonlinear static equilibrium equations
stemming from letting {¢} = {¢} = 0 in equation (4.1). The resulting nonlinear
static equations,

[KHq} = {F}, (4.20)
are solved by using the NR iteration method described in section 2.2.1 of Chapter

2. The initiation of galloping is determined by the stability of the static equilibrium
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configuration of the transmission line. The static configuration is stable if all the
cigenvalues of the characteristic matrix, [S,], determined in equation (2.17) have a
negative real part. If the static configuration is unstable, the limiting motion and
the history of a motion are found by employing two independent methods, the KB

averaging scheme and direct time integration.

4.2.6  Limit cycles

By considering the equations of motion to be weakly nonlinear, time averaging
schemes can be used to approximate the periodic and quasi -periodic solutions. The
equations of motion (4.1) are transformed first to the principal coordinate system,
7, as [1]

Ny
i Fwing = Fy, = > i, i=1,2,..., N, (4.27)
k=1

where
TLP

o =Y (Gajoi Fy, + a1 F, 4 ¢aje My,).
=1
Here n,, and N, are the number of nodal points and principal coordinates, respec-
tively. The w?, ¢;;, F,, and i on the other hand, are the squared natural fre-
quencies, elements of the cigenfunction matrix [¢], forcing vector {F*} and damping
matrix [C*] in the principal coordinate system, respectively. Then the KB technique
is applied to the modified equations
2 a 2
M+ wSm = Fy, =Y i+ W5 —wn. i=1.2.... N, (4.28)
k=1

as described in equation (2.6) of Chapter 2. The resulting 2/V,, averaged equations

(2.9) and (2.10) become

: — 1 /7 .
Aw; = Fyu, = lim T/ [As(wf — wi?)cosT,; — F,, — F, ]sinT,dt (4.29)
0

T—00 '
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and
; — 1 /T . .
Adfuw; = Fy, = Jim = [ [Ai(? — wi)eos¥, — F,, — FlcosWdt,  (4.30)
T—s00 }]
where
Np
F,=>" ¢ip, Ay wyy sin Uy, (4.31)
k=1

By substituting equation (4.31) into equations (4.29) and (4.30), the expressions

. np Ny, 5
Fu = —711_1&? [Z F sin U, dt-]; ;’” i A wi cosy,
i=1,2,....N, (4.32)
and
. Ty N, 5zk
Fy, = —7113010—/ Z ng cos ‘I’idt_kz_:] 5 ¢ AA Wy, sin l/)m
A .- )
+—23(wf~w;2) i=1,2...,N, (4.33)

are formed where F] =9 Which corresponds to the principal coordinate 7; at nodal

point 7, is defined as

sze — (/)4]-_22 Yj -+ (/),1J 1,3 sz + (/)ll_jz ]\6[9 . (434)

Y

‘The phase difference, 9, and function, &, are given by
7 — g p x4
Vi = Py — Py, (4.35)

and

1 if W = Wl
by = (4.36)
0 if wf # wj.
The aerodynamic forces on the windward and leeward conductors have different

forms and, therefore, they are treated separately next. The nodal numbers are
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arranged, for convenience, such that odd (even) numbers are on the windward (lee-
ward) conductor and consecutive numbers increase by two from the left to the right

end support.

Nodal points on windward conductor

When j is an odd nodal number, equation (4.34) becomes
; 1 . 3 ,
Fyg = ZPar {U* + (Rw0w;)*} d; (Z a, %Vj> ; (4.37)
k=1

where
ap = ‘/)(/1.7'—2),1' Gyp + (/)('1j~1)¢i Uap + ‘/’4:1}1' agp dj ,p=1,2,3. (4-38)

After further algebraic manipulation, equation (4.37) becomes

; 1 > L e o A S
Fly = = par Up® dy | D G @i + 60 @1 G3,/3 + 60 Ty Tt |, (4.39)
Y 2 — J j j

where
) 1 if @&y is considered large ,
O = (4.40)
0 if @y is considered small .
Here auy is considered small when éy << 0.1 so that the linear approximation
given by equation (4.10) is valid. The U,;, d; and Ow; are the steady free air
speed, a reference structural dimension and the windward conductor’s rotation at
the jth node, respectively. On the other hand, A; and 1, indicate the time averaged

amplitude and the time shift, respectively. of the ith mode. The @y,.a,, and Tpy are

computed from

- (L'm, + Ln

Upp = 1 ) Uy 5 h=y,20;p=123;j=1,3...,n,—1, (4.41)

where Ly, and L, are the lengths of the adjacent mth and nth elements, respectively,

to which j ((j +1)/2 # 2,4,6,...) is the common node. If (j +1)/2 =2,4,6,... ,
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then L,, = L,, = L, is the length of the element for which j is the middle node. The

a; and &y in equation (4.39) are simplified further to the form

AIP . .
a = > (C’,’L cos W, + S7sin \I/n> (4.42)
n=1
Ny, _
da; = — > Ssin¥, (4.43)

n=1

where

0711 = An ¢/1j,7z

p A
S % (B) $jn + Puj-m) - (4.44)

n = U..
z]

The I?; in the last equation represents the characteristic radius at the jth node and
¢;; is the ijth element of [¢].

It can be scen from equations (4.32), (4.33), (4.37) and (4.42) that the infinite
integration of the products of terms linear, quadratic and cubic in o; as well as
linear in 6}, that are associated with sin ¥; and cos ¥;, are required recursively at
each jth node, for every ith mode. These integrations have been derived explicitly

but they are not presented here for brevity. Details can be found in reference [1].

Nodal points on leeward conductor

When j is an even nodal number, equation(4.34) becomes
. . 2
i 1 9 Ww WL
1

1-0b - :
+ {*——(Vw + Ry w) + U

2
i (Vi +R[,9L)J }C;'Z(,; (4.45)

where

C;zg = buj-2)s Cyy + duj-1).s Coj + Paza Coj ds - (4.46)
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The Cy;, C; and Cyy, which are defined in equation (4.22), can be simplified further

by using

Ry

y = V=V + 25— U HW + /OUVW. (447)
) Ry,
z = W, Wy — 7/0—U“9w - yoUVw (4.48)
R .
vy = HW - —UXZQW UO‘/;,V, (449)
R] . 1 .. 1-5b . 1—b.
vy, = 0 — —0; — — —— Ry Ow ) 4.5
oy, I i L bUVL"r i Rwew -+ U Vi (4 0())
Therefore,
1 N, 2 N, 2
.F?jze = 5[)(”-7- dj Uzjz 1+ Z Gl:k sin \If],,:l + l: Z Gz’]ﬂ sin ‘I/],;J CJZH’ (4 01)
k=1 k=1
N, o Mo
Y = ZG;;,A,COS‘IJL.,+ ﬁZGMsin\IJ;‘,, (4.52)
k=1
N, .
Zj = Z Gs . cos Uy, — L Z Gy sin Uy, (4.53)
k=1 Uiz
Ny 1 M
Qi = ZG()',],, COS \111,;— ﬁ G7)]\,Sin \I/]‘,, (454)
k=1 k=1
IVP 1 Np
ap; = Y Ggpcos¥y — b—ZGg,ksin‘Il;,, (4.55)
}{7:1 :
where
— 1-9 1
G - — _A~ >:j - /]
1k (—Apwy) ( i Gagi—1)-1,k i Gaj— u)
—_ 1—0 1-9 R ,
Gop = (—AWZ)< i ~——Qu(jo1)—2k — i Ry agj—1yn + IU(/ w2 + EUL (/)"Jj,l.:):
Gyp = A ((/)dj—Z,k, — (,/)zl(j~l)—2,lc>:
Gup = (—Apw}) (¢z1(j—1)-2,k + Ry (/)4(7'—1),1:):
Gsp = Ay (</)4j—1,k, - 954(3'—1)—1,k.>, (4.56)
Ger = A Pagg-1)p,
Gr = (—Aw}) (</54(j—1)—2,k, + Rw (/>4(j—1),1c>7
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Gsr = Ap buj,

Gor = (—Awi) (Prjoop + Ry dajn) — (1 —D)Gry.

These integrations have been derived similarly to those for the windward conductor
but higher order terms are needed due to a more complex form of the acrodynamic

forces acting on the leeward conductor.

4.2.7  Stability of limit cycles

Constants A; and U; and frequencies wf, i = 1,2,...,N,, j=1,2,...,m, are found
by letting }_ll(f) = WJ = 0 in equations (4.29) and (4.30) and solving the resulting
nonlinear algebraic equations. Therefore the approximation of a limit cycle, given
by equation (2.4), can be determined.

The stability of a limit cycle is determined by the (N, 4 m) % (N, +m) character-
istic matrix, [Sc], constructed from equation (2.24) of Chapter 2. The signs of the
real parts of the eigenvalues of [S.| determine the stability of the limit cycle. When
m # 0, one eigenvalue is always zero because all the 1; are measured with respect
to a reference mode. If all other eigenvalues have negative real parts, the limit cycle

is stable.

4.2.8 Time integration

A direct time integration of the equations of motion is performed separately in the
principal coordinate system (4.27) as an alternative approach. The algorithm is

swmmarized by equations (2.25) to (2.28).
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4.3 Results and discussion

An oscillator idealization of a fixed windward conductor model is employed to val-
idate the computer program by duplicating data for an existing example of wake-
induced oscillations of a leeward conductor. Two bare conductors are represented as
circular cylinders; the leeward cylinder is supported by linear springs and dampers.
The rotation of each cylinder is neglected due to its symmetrical cross-section. Aero-
dynamic force coefficients are identical to those used in references [5] and [7] so that
the results can be checked directly with those given in reference [7]. Agreement
between the present limit cycle amplitudes and those presented in reference [7] is
within 6% for both time-averaged and numerically integrated solutions although
different numerical schemes are employed.

The second oscillator example used to verify the program involved two moving
cylinders; both the windward and leeward cylinders are mounted on linear springs
and dampers as in reference [6]. The coupling springs and dampers between the
cylinders simulate the effects of spacers. The solutions from the two methods agree
reasonably (less than 10% difference in the limit cycle amplitudes) for the final
limit cycle oscillation loci of both cylinders. Moreover, the difference in the limiting
motions between the current approach and that considering a time delay caused by
retardation of the wake flow traveling from the windward to the leeward conductor
has also been checked. However, only the numerical time integration is performed
in this instance. Figure E.1 shows the limit cycles obtained by the two approaches.
The limit cycle amplitudes have approximately the same order for the example used
in reference [6]. Therefore, the time delay is neglected in the current approach when
determining the trend of the galloping and wake-induced motions.

A finite element model employing two conductors, one located in the wake of

the other, is a more realistic simulation of a full scale transmission line. It has been
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found that about 20 percent more ice is formed on the windward than the leeward
conductor and the ice shape on the leeward conductor tends to be more roundish
[75]. However, a typical D-shaped ice conductor and a bare cylinder are used as the
windward and leeward conductors to simulate probably an extreme icing situation.
The two conductors having fixed ends are separated greatly (0.45 m), compared
to the conductors’ diameter of 18.82 mm, so that the aerodynamic forces on the
conductors are similar to those on two individual single conductors. Information on
the single D-shaped conductor can be found in reference [1] when the wind’s angle of
attack on the D-section is 40°. On the other hand, C;, = 0, Cp = 1.2 and Cy =0
for a bare cylinder [6]. Other parameters used in the caleulation are: wind speed =
4.1 m/s, pair = 1.2929 kg/m?, conductors’ length = 125.88 m and a pretension =
21733 N. A total of twenty, 3-node cable elements (ten for each conductor) is used.
Node numbers are from 1 to 41 and from 2 to 42 on the windward and leeward
conductors, respectively.

Interphase spacers are used to control galloping at least to the extent of prevent-
ing phase to phase contacts. The spacers are normally located away from the towers,
sometimes at or near mid-span, sometimes at the one~third or one-quarter points of
the span [76]. The number of spacers used in the separate calculations is increased
progressively from 1 to 2, 3, 4, 9 and, finally, to 19. For example, one spacer is
located in the initial calculation at the mid-span; then two rigid spacers are used to
conneet nodes 13 and 14 and nodes 27 and 28, respectively, at approximately the
one-third span, and so on.

The three lowest frequency modes having close frequency values are used to
compute the limit cycle of the conductors. Their mode shapes are shown in Figure
4.3. They correspond to one loop, symmetrical modes when one spacer is located at

the mid-span. The horizontal motion, vertical movement and the rotation dominate
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the first, second and third modes, respectively. Due to the three closely spaced
natural frequencies, a 1 : 1 : 1 resonant case is considered when the KB averaging
method is employed. The limit cycles at the mid-spans of the windward and leeward
conductors are shown in Figure 4.4 to be similar. Compared to the conductors’
motions computed at mid-span when a different number of spacers are used, it can
be seen that the limiting motions for the cases involving one, two or three spacers
are very similar. Consequently, slightly increasing the number of spacers hardly
affects the limit cycle’s amplitude, but should lead eventually to the bulk motion
described in Chapter 3. Therefore, interphase spacers do not prevent galloping but

they force the motions into a mode in which a flashover is much less likely [76].

4.4 Concluding Remarks

A nonlinear finite element model of galloping and wake-induced oscillations has
been developed for a twin-bundle, electrical transmission line when the conductors
are coupled by spacers and coated with ice. Three node, isoparametric cable ele-
ments are used to account for the conductors’ geometrical nonlinearity as well as
their prestress and the nonlinear acrodynamic loads. On the other hand, two node
beam elements represent the relatively rigid spacers. The acrodynamic forces are
obtained from static measurements in a wind tunnel by assuming a quasi-steady
behavior. The initiation of galloping is investigated numerically by using a con-
ventional stability analysis. Limit cycle amplitudes, if periodic or quasi-periodic
oscillations occur, arc obtained from an efficient, Krylov-Bogoliubov time averaging
method. However, a computationally expedient. time marching algorithm is used
to compute the response for those instances where the averaging procedure cannot

be employed. A stability analysis is also performed for all motions.



Chapter 4. Wake-Induced Oscillations 71

The Krylov-Bogoliubov method of time averaging as well as a numerical inte-
gration scheme are employed separately to solve the nonlinear equations of motion
for wake-induced oscillations. The two solutions agree well for the limit cycles.
The time averaging method is an efficient way of solving the nonlinear equations
for wake-induced flutter with a fixed windward conductor. When the windward
conductor is allowed to move, however, the nonlinear equations become more com-
plicated and the convergence of the iterations used to solve the equations becomes
slower. Therefore, the initial guess for the limit cycles becomes more important in
reducing the computational effort.

Iced twin conductors tend to move as a bundle when they are coupled by rigid
spacers. Sub-span motions are caused by the differences in the aerodynamic forces
as well as the properties of the two conductors. Examples are given to illustrate

typical oscillations of both bare and iced, twin conductors.
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Figure 4.1: (a) Location and orientation of conductors in acrodynamic wind tunnel
tests and (b) coordinate system defining the relative positions between the windward

and leeward conductors
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Figure 4.4: Mid-span limit cycle loci obtained from KB method by using the lowest

three frequency modes for the (a) windward and (b) leeward conductors



Chapter 5

Conclusions and Future Work

‘T'wo nonlinear finite element models of galloping and wake-induced oscillations have
been developed for an iced twin-bundle, clectrical transmission line. Systematic
procedures are formulated to investigate the initiation of galloping and to compute
the limit cycles when galloping happens.

The initiation of galloping is investigated numerically by using a conventional
stability analysis for both models. Limit cycle amplitudes, if periodic or quasi-
periodic oscillations occur, are obtained from an efficient, Krylov-Bogoliubov (KB)
time averaging method. However, a computationally expedient, time marching al-
gorithm is also developed to compute the response for those instances where the
averaging procedure cannot be employed. A stability analysis is also performed for
all motions.

Iced twin conductors tend to move as a bundle when they are coupled by rigid
spacers. Sub-span motions are caused by the differences in the aerodynamic forces
as well as the properties of the two conductors. Calculating the bulk motion of a
transmission line is much more computationally efficient hy employing an equivalent
single conductor model. when the full span motions are of sole interest. Therefore,
this simpler model can be used for a quick check in a preliminary design of a new
transmission line.

Recommended future work is suggested next.

1. A detailed parametric investigation can be undertaken expeditiously to evaluate

76



Chapter 5. Conclusions and Future Work 77

the influence of a particular parameter on either the initiation of galloping
or on the limiting amplitudes. Design curves in the form of the stability

boundaries can also be constructed.

2. The effects of an auxiliary control device can be incorporated in both finite cle-
ment models. Then the number and locations of the devices can be optimized

to help alleviate galloping.

3. The number of conductors in a bundle can be extended to three or four in both
models. However, the DOF may become very large for the wake-induced
model. Then the efficiency of the equivalent single conductor model becomes

more obvious.
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Appendix A

Elements

A.1 Cable element

Each three-node isoparametric element idealizing a conductor is referred to the fixed
global X, Y, Z axes and the initial intrinsic coordinate, S, which is along the cable’s
center [67], as shown in Figure A.1(a). By denoting the displacements in the X Y
and Z directions to be U, V and W, respectively, and the rotation about S to be #,

the element nodal displacement vector, {¢°}, is defined as
1 =<{a} {e} {es} >7 (A1)

where
{au} =< U, Vi W, 6, >T, k = 1,2,3. (A.2)
The global coordinates and the displacements of a reference cross section’s axis
of rotation are represented, respectively, by
3
<XYZ >T: Z N, < X, Y. Z,, >T (A3)
k=1
and

<UVWOT = [N{¢) (A.4)

where the parabolic shape functions, Ny, are given by

28% 38
452 48
Ny, = — — .
2 I + T (A.5)

36
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and

252 5
M o= -1

Here L. is the length of the element. Moreover, the shape function matrix, [N], is
[N] = [ Ni[Ls] No[ly] Ns[Lj] ] (A.6)

where [I,] is the 4 x 4 identity matrix.

Mass matrix

The consistent clement mass matrix takes the standard integral form
) Le
] = [N V), (A7)
0

where
W = o[ R]"[RldA
ulo= | JA.
J Ap
The p(y, z) is the mass density of a conductor per unit volume over the total cross
sectional area, Ar, of an iced-conductor’s profile in the local y-z plane coordinates.

Furthermore, the 3 x 4 matrix [R] is defined by

100 0
Rl=1010 -z
001 y

Stiffness matrix
The element stiffness matrix, [Kr¢], is decomposed into the three components
given by
(K¢ = [K3] + [K:] 4+ [Kices (A.8)
where [K7] , [K,°] and [K*],. are the large deformation elastic and initial stress (or

geometric) stiffness matrices as well as the stiffness matrix due to the eccentric ice
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weight. The later is linearized in the vicinity of the static profile [1]. Details of the

computation of [Kg] , [K,°] and [K¢];.. are given in reference [81].

A.2 Beam element

Spacers are simulated by using two node, beam elements whose mass matrix is estab-
lished by lumping equal parts of the element’s total mass to the nodal points. The
beam clement’s standard stiffness matrix is formulated by employing local coordi-
nates and four DOF at each nodal point [79]. (See Figure A.1(b).) By transforming
the local nodal displacement vector into global coordinates and denoting the dis-
placements in the X, Y, Z directions and the angular rotation to be U , V, W, and

0, respectively, the element nodal displacement vector, {¢%}, is

{¢°} =< {a1} {@} >T. (A.9)

Here {qz} =< U, Vi W, 0, >T, k = 1, 2, refers to the nodal displacement vectors
on the windward and leeward conductors, respectively. Angle 6 is the same as the
rotation of a conductor about its center because it is assumed that the spacers and

conductors are attached rigidly.
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1
f\ Deformed
(U, Vi, W, ) > configuration

~ 2

- 3
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(b)

Figure A.1: (a) Three-node cable element and (b) two-node beam element
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Element Structural Matrices

B.1  Elements of [M¢
The symmetric mass matrix [M¢] is given by

(M) [My] [Ms;]
) (M) (M) (B.1)
[Ms]  [Ms] [Mg]

e Le
[M]_2940

where the non-zero elements of the symmetric matrices [M;],i = 1,2,...,6 are

3 3
o _ _ ; . _ i
Misg = Mgy = Muzz = Y Py 5 Mgy = ZPpSyp
p=1 p=1
3 3
, _ i . _ i
Mizy = PiSuy 5 Musa = Y Pilg, . (B.2)
p=1 p=1

Here, 1, Syp, S,p and Iy, are the per unit length mass, first mass moment of area
about the y and z axis and the mass moment of arca about the S axis, respectively,
at the pth node of the iced conductor. Constants Py, Pi and P} are listed in Table

B.1.

B.2  Elements of [K%], [K%);. and [K¢]

The upper triangular terms of the symmetric matrix [K§] are given next for a
bare cable element having constant axial rigidity, AF, an axial-torsional coupling

parameter, By, whose significance has been outlined in [83], and torsional rigidity,

90
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GJ, over its length L. (Refer to [1, 27] for details.)

11[}; Tn = PiAGY + B(AG)? + BAGAG , i=1,2,3 (B.3)
15L,° e 1A 2 LA 2 T A2
g Bia = PAGAG + B(AGAG + AGAL)
+ BAGAL i=1,2; j=2,3 and i#j (B.4)
3é12 BEln — PoCt + Pugl + P, i=1,2,3 (B.5)
Ko = % P, — :;SJLALOPZ‘;PS” . i=1,2,...,6 (B.6)
$msied = Kmg o 1=1,2
Kpsivs = k%i,ll , 1=1,2
k%7,1+8 - k%i+4,11 ;=12
k%2,1+/li = "%1,2+/1i , 1=1,2
Keagray = Koiagey - P=12 1 =1,2,3
Kosire = Kmiparr » P=12 , i=1,2,3
kzes = kbsio (B.7)

Constants P; and P,j,j =1,2,3,13 ;i = 4,...,12 are presented in Table B.1 along
with [,n and ¢ (where applicable). The ¢ in equation (B.6) is the gravitational

constant and the first mass moment of area at the clement’s kth node, S, K, 18
Sap = / pydA . (B.8)
Jar

Stiffness terms, which involve S, in equation (B.6), are computed by first linearizing
the restoring moment as ¢S5, sin 6 =~ ¢S,0 at the typical iced cross section shown in
Figure 4.2(b); and then forming the equivalent element terms from
00 0
[Kice = —g / 00 0| [Nds (B.9)
0 0 &,
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where
3
Sz == Z ]\[k SZ}.: . (BlO)

k=1
The undefined quantities in equations (B.3) through (B.5) are

AG = ¢ — ¢, i=12, j=1,2
and
(CANCENCENE NP (A F i (B.11)
where
X Yo Z)"=x v ZT+ U v W[ (B.12)

are the deformed coordinates of the kth node of the element.

The symmetric, geometric stiffness matrix [K¢] , on the other hand, is approxi-
mated as
T, — 1)

er o L1 e (
[I{a] ~ _—_-[‘[{0'1] + 6L()

o 155 (5.13)

where

(7= 54V3)I) (=8 + 54v3)[T] 7]

(K2l = | (=8 +6i4v3)[]] 167] (=8 — 6343 | » i=1.2

iy (~8— SaVB)T] (7 + V3]
(B.14)

[I] = diag[l 110 (B.15)

and 77 and T5 indicate the static tension at Gauss points 1 and 2 which are located
distance S = Le(v3 — 1)/2v/3 and § = Lo(v/3 + 1)/2V/3 from node 1, respectively.

Furthermore, 8} = 0 and 6% = 1.




Appendix B. Element Structural Matrices 93

B.3  Elements of [Cy°] and [K;°]

The non -~ zero elements of matrices [Cy€] and [K;;°] of equation (2.16) arc given

below.

(a) Elements on the windward conductor

Cullj—odimn = L 11) i“'yl
Cuf’f«g_1,4i~2 = P 1i4 P 1i5 z.azl
Cufigioe = P b di Py 'agy
Cui(i—l)-i—j«li = I Cﬂ'/ei(i~1)+.i,4i—2 ; J=23;1=1,23 (B.16)
uiz 24 — Pli/l P1i6 iayl
ku/(ii—l,fli = P to 0z
/)7/'21:}4?: — Pf/1 dz PIZ() ia()l ; g = 1, 2, 3. (B17>

Here ¢ represents the ith node of a cable element and constants Pj,, Ry, ‘ay cte

correspond to the ith node. Moreover,

1 L,
PII/I = P1/1—2P4— 4
. i 1
16 :
o= wir Uzi di . 1=1,2.3. B.18
15 Uzi 2/) : ¢ 3 ( )

(b) Elements on the leeward conductor

el o 7 i 1
Cugi—24i-2 = — Py P Bo,a/b
el o i i i
Cugi—14i—2 — — Ly L5 Cos/b
,el _ i 11
Cuginio = — Piy di Ply'Dos/b

C“‘elé—l)ﬂ',tli = Ry Cui(i—l)-{—j,/li-—Q i 1=2,3,4;1=1,2,3 (B.19)

. el - % z i
]“uzlz'——2,/li = Py 6 Bo,s
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. el _ i iAo
’I”U/li——l,tli = P 14 116 OO,D
k el _ Pz d. Pi ’LD
wdi,di T 14 % 416 0.5
L, el __ Pz i zB ,
Udj—2,44—1 14 416 0.2
. el _ i i1
Udi—1,di—1 P 14 P 16 00,2

L, el . 7 . i1
udigi—1 PM dt Pl(s DO,Z

. el . i ioq
kudz 2,4i~2 — Pm 16 Bl,l
, el _ Pz zcr
wdi—1,4i~2 T 14 L1
. el — i Copid
wdidi—2 T 14 d; —Pm Dl,l
. eW _ i/
Cudi—245-2 = PM Is ‘B
. eW _ i pi i
Cutim14ia = — Ply PisC
eW . % i iy
Cugigi—e = — Piydi Pi5'D
eW _ . e
Cud(im1)+j4i = Ry, Cud (i—1)45,4i—
k e . PZ Pz ZB
Udi-2,45 14 416 £0,3

. eW _ pi o pi i
]“Ufli—l,,/]i = P}y P 'Cogs

, eW i g it
]”U/lz',fli - PM d; Pl(s D0,3

_ i iq

ku/u— 2,4i—1 — T PM 16 BO,2
]\' eW — P7 7 -iC )
“Udj—],di—1 4 16 “~0,2

. eV _ i i i

AU47:,42'—-1 - T L4 dz‘ P16 D0,2
. eW _ i id
k1t4i—2,4i—2 — T 1414 Y1s Bl,l
L, el _ PL IC
Udj—1,46—2 14 1,1

. _ i g pi i
kU/lz sio = — Piydi Pig'D1y

?

H

1=1,2,3.

j=2.3.45i=

i=1,23,
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(B.20)

(B.21)

(B.22)
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where
iry i i i 1- bi
B = — "By 120+ "Bogyo + Bos — 5 Bo,s
i % 7 % 1-— bi
C" = —'Cy 120+ Cooyo + Cos — b Coys
. . . . 1-0,
D' = —"Dy 120+ Doayo + Doz — 7~ Dogs. (B.23)

The superscripts L and W refer to the leeward and windward conductor, respec-

tively. Equation (2.16) may be modified to
(P} = [Co™" W} + Ko Ha )+ [Cu™Ha™ ) + (K™ W™}, (B.24)

where {¢°} is the element nodal displacement vector and {¢g2V'} is the vector of

nodal displacements of the corresponding element on the windward conductor.

B.4 Beam elements of [K¢]

The symmetric stiffness matrix for a 4-DOF beam element is given by [79]

ah? 0 0 0 —ah? 0 0 0
0 127 0 61h 0 —127 0 GIh
0 0 127 0 0 0 —127 0

E 0 61h 0 41h? 0 —G6Ih 0 21h?

K= — (B.25)

—ah? 0 0 0 ah? 0 0 0

0 —127 0 —6/h 0 127 0 —6/h

0 0 =127 0 0 0 127 0

0 61h 0 21 h? 0 —=6/h 0 4]/1,”

where E, I, h and a are Young’s modulus, the second moment of area, length of the

element and the cross-sectional area, respectively.
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Table B.1: Expressions for Pi and P,

96

5 1 2 3 1 5 6
pi 273 140 —21 112 —56 —21
P 140 112 —56 1344 112 140
pi —21 —56 —21 112 140 273

l ; i ; i+ 4 i+ 4 i+ 8
n i i+ 4 i+ 8 i+ 4 i+ 8 i+ 8
P, 183 —216 33 272 ~56 23
Ps 23 —56 33 272 —216 183
Py —66 112 —46 —224 112 —66

l ; ; i i+ 4 i+ 4 i+ 8
n ] j44 j+38 J44 j+8 j+8
P, 183 —216 33 272 —56 23
j2) —33 56 —23 —112 56 ~33
Py 23 —56 33 272 —216 183

I 5 ; i i+4 i+4 i+ 8
n 4 8 12 8 12 12
Pro ~15 16 =1 ~16 0 1
P 16 —16 0 0 16 —16
Py ~1 0 1 16 —16 15

; 1 2 3 1 5 6

l 4 4 4 8 8 12
n 4 8 12 8 12 12
Pr, 7 —8 1 16 - 7




Appendix C

Expressions for Kgr, K, and K;_

Remote spans are modelled as linear static springs, Kgr, in the X direction as
shown in Figure 1.1. The support insulator string, which is considered to be :
single, vertical rigid bar, pin connected to the tower’s arm, is also modelled as a
linear static spring that has components K, and K;, in the X and Z directions,
respectively. The Kgr and K, affect the diagonal stiffness term associated with
the corresponding U displacement whereas K, contributes to the analogous term

associated with the W displacement. It can be shown that [1, 84, 85]

1 L | pS’L’°
— 1
Ker _ AE T 1258 (C1)

1 Wi

K, = —|(p,L —

and
2H

K;, = K, + T (C.2)

where L, and L are the horizontal span length and total length of the iced cable

between adjacent towers, respectively. Moreover, Dy Is the total vertical load, H(=

Tgf() is the horizontal component of the static tension whilst L; and Wi are the

length and weight of an insulator string, respectively.
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Appendix D

Computation of the Damping Matrix, [C]

Elements ¢; ; of the symmetric, structural damping matrix [C] are approximated b
(V) . «

assuming mass and stiffness proportional Rayleigh damping [86]. Hence
Cij = BMig + Brokiy 127 (D.1)

where the symbolic subscript & takes the value y when i # 3n,n =1,2,3,...,3x Tp,
and 6 when ¢ = 3n. Furthermore, m;; and k; ; are elements of the structural mass

and stiffness matrices, respectively. The S, and By, in equation (D.1) are computed

from
28 w1 W
Be, Er1Wh1 W
(Wit + wia)
2Erowro — Erqwr
[3}‘:2 _ (meA,Q fuwkl) (D.2)

(wk.22 — wi1?)
where gy and &, are the measured damping ratios for two k modes having the re-
spective natural frequencies wyy and wyy. If &y are not measured, By, are considered

to be zero in equation (D.1) and By, is simply

B = 28wy (D.3)
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Appendix E

Formulation Considering Flow Retardation

The aerodynamic forces on the leeward conductor are determined by the air flow
or the resultant wake around it. The magnitude and direction of the resultant
wake velocity, in turn, depend on the free stream speed, relative separation between
the two conductors and motion of the windward conductor. Therefore, there is a
coupling between the windward conductor’s motion and the aerodynamic forces on
the leeward conductor, as indicated in Chapter 4. However, it takes a finite time for
a flow traveling from the windward to arrive at the leeward conductor. Thus, what
influences the leeward conductor at time ¢ originated from the windward conductor
at time t—7, where 7 is the time delay. The effects of 7 on the leeward conductor will
be considered here [6, 82]. The derivation of the forces follow the same procedure
described in Chapter 4 except that the variables involving the windward conductor
from equations (4.16) to (4.25) will be those at time ¢ — 7 instead of at time ¢.

The aerodynamic forces in equation (4.21) become

1
. l:r2 ~
1 y = SPairY, dCy((XWT: Qr, Y, 4)7

2
1 ;
F, = il)airU@ZdCz (”M"'T: Qs Y, Z):
and
My = l +U2d%C
g — ()/)(lzr e G(CYWT,&L’.%Z)a

(E.1)
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where

] . 2 . . 2
2 . 2 (]. - I))ZW’T - ZL (1 - I))YWT - }/]1
U2=U {[ 1+ T + o .

The subscript 7 indicates the retarded variable at time t — 7 and C;, i = vy, a, 6,
has the samec expression as in equation (4.22) after changing ayw into ay,. The

variables used in the last equation are defined as

y =Y -y
Z = ZI— 20,
Yir
awr = Oy, — tan™ (——a—), (E.2)

- ZWT
Q= 6[, — tan—l(ULy/ULz),

where

Uy =b YWT - Y[/V’r + Yl

and

Uz =b (U = Zw,) + Zw. — Zp. (E.3)

Other variables, which are shown in Figure E.2, can be found as follows.

Y — Yir + Y, , 1= by Zwsr
- (B ) (15 )

COSQuyy 7 Ub

7' = (7 — YSImaWT) + /—{JQZ'L,
COSQyy + Ub

7 = T (U—Z‘WT)

T = (Zp — Zw, + Z,) /U,
Dy — (ZB + ZL)Zw/U-i- %(ZB/U)Q(]. +2ZL/ZB)ZW

;= = E.4
1—*Zw/U-}-ZBva/U2 ( )




Appendix E. Formulation Considering Flow Retardation

3 : : : —— Without time delay
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Figure E.1: Limit cyele loci for the (a) windward and (b) leeward conductor
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Figure E.2: Positions of the windward and leeward conductors
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