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Abstract

Ground Penetrating Radar (GPR) emits into the ground, through a wideband

antenna, an electromagnetic rvave covering a large frequency band. Reflections from the

soil caused by dielectric variations (such as the presence of an object) are measu¡ed.

However, GPR systems do not include automatic detection and recognition algorithms,

an important feature for applying GPR to landmine detection. The radar group at the

University of Manitoba has developed a GPR system for Landmine detection. This

system itself does not have any digital signal processing (DSp) algorithms for landmine

detection and recognition. In this research effort, DSP methods for landmine detection are

investigated. These techniques include: a Linear Prediction (Lp) algorithm, the Total

Least Square (TLS) algorithm [5], the simplex method and the cross-correlation

techniques.

In the first part of this thesis, the finite-difference time-domain (FDTD) method,

which is widely accepted for modeling the time domain scattering from buried objects, is

used to generate the simulated GPR data for the evaluation of the implemented DSp

techniques. Clutter is modelled using a damped exponential model. An Iterative (IT)

algorithm [5] is used to decompose the data into its clutter and object contributions.

The LP algorithm, with adaptive processing for the general-purpose landmine

detection, and the IT algorithm proposed by Gupta [5] for landmine detection/range

estimation are implemented and tested, Analysis of the false alarms as a function of the

signal to noise ratio (sNR) is given based on the simulation results. The cross-correlation

alarm generator, which reduces the time consumption due to the iterative loop, is



introduced, and its perforrnance for the false alarms as a function of SNR is provided. A

dynamic rank calculation for the clutter decomposition is discussed.

Could these methods be used to detect non-metal landmines from experimental data

collected using this GPR system? Using this stepped-frequency, continuous rvave

(SFCW) GPR system, we collected GPR raw data from non-metal landmines. The

implemented DSP techniques are investigated, and the pararneters of the landmines that

algorithms are good at detecting are estimated. The LP algorithm was modified in order

to improve its performance. The time delays from the ground surface in the IT algorithm

and from the mine were estimated as well.

In our experiments, using a threshold calculated in an area where no landmines are

buried, the LP algorithm is able to generate alarms that appear as landmines. The lower

the threshold is set, the higher the generated false alarm rate is. With the cross-correlation

alarm generator, the false alarm ratio of the IT algorithm is reduced by up to 60%. The

implemented IT algorithm is able to detect the non-metal square landmine and to estimate

their ranges.



Contributions

The main goal of this research is to apply DSP techniques to detect a non-metal

landmine buried underground by using the existing GPR system developed at the

University of Manitoba. This thesis investigales DSP algorithms for general-purpose

non-metal landmine detection in the cross-range and for a square landmine detection both

in cross-range and in depth.

GPR raw data were collected directly ÍÌom the GPR system tvithout any signal

processing. Pre-processing of these GPR raw data focuses on background noise

reduction. An LP algorithm is introduced to reduce any deterministic signal based on the

layered ground model. Adaptive average background estimation method is used to

remove the strong noise. After pre-processing, GPR data is ready for further DSp

processing.

Two alarm generators, linear prediction alarm generator and cross-correlation alarm

generator, generate alarms for any possible landmines. An LP alarm generator is a

general-purpose method based on etor energt change in the cross-range. The Lp

algorithm is improved in order to obtain a befter result. Ifa landmine reference signature

is available, a cross-correlation alarm generator can be used to generate alarms and

reduce the processing time introduced by the IT algorithm.

On each alarmed cross-range scan position, the implemented IT algorithm

decomposes the GPR raw data into a clutter set and an object related contribution set.

With a reference signature, the number of alarms is reduced further, This thesis

introduces a dynamic rank caiculation method for the clutter estimation and estimates

time delay calculation for the surface contribution. The landmine related parameters are



estimated to calculate the depth ofthe buried object. Experiments on the measured GpR

data prove that these algorithms are able to detect the non-metal square landmine.

Estimation of the depth of the landmines is also provided.



Chapter I Introduction and Motivation

l.l The Land¡nine Threat

Landmines, since the First.Uy'orld War, have proved to be an effective military

rveapon. Antitank mines disrupt vehicular traffic, while antipersonnel mines protect

antitank mines, defend areas, and deny access to bridges and other assets, Under some

circumstances, landmines are used to control military and civilian movement across

political borders. Although landmines are seen as an effective and inexpensive rveapon,

they represent a threat to public safety, i.e., to innocent bystanders and civilians. They

undermine peace and stability and leave behind maimed individuals who require

continuing health care and may cease to be fully productive members ofthe society.

It is estimated that there are from 50 to 70 million uncleared mines within at least

70 countries. About 26,000 people are killed or maimed every year by landmines [16].

For example, in Angola, one of every 334 individuals is a landmine amputee, and

Cambodia has greater than 25,000 amputees due to mine blasts. The lives of over 22

million people are impeded from returning to normalcy by landmines. The US

Department of state (1998) provides further information on the global landmine crisis

t171.

1,2 The Landmine Detection Problem

Antipersonnel mines come in all shapes and sizes, and can be encased in metal,

plastic, wood or nothing at all. They can be embedded in a field cluttered with various

materials and objects, buried underground at various depths, scattered on the surface,

planted within buildings, or covered by plant overgrowth.



Because mines are made of a variety of explosive materials, a landmine detection

system should be able to detect mines regardless of the type of explosives used. Mines

come in a variety ofshapes and in various types ofcasings. Therefore, a detection system

should either be insensitive to the geometrical shape of the mine and the type of casing

material, or preferably, provide imaging information. The latter feature can enable the

system to better distinguish mines from background clutter, such as rocks, metal shreds,

etc. This, in turn, will reduce the false-positive alarm rate and the time wasted in trying

to clear an innocuous object that appears to be a mine. On the other hand, it is vital that

the detection system can find the mine, if it is there. Because mines can be buried at

different depths under the ground surface, the detection system should not be overly

sensitive to the depth of burial. The operator of a detection system should be able to

avoid close proximity to the position of the mine to minimize the possibility of

inadvertent triggering of the mine. Detection should also be perforrned at a reasonable

operational speed, and at not too prohibitive a cost. This requires that the system must be

accurate, not too slow and not too expensive.

In summary, mine detection involves dealing with a wide variety of mine material

and shapes, different soil types and terrain, and non-uniformity ofclutter. It is expected

that the characteristic signature of a buried mine may vary widely depending on local

circumstances. It may, therefore, be difficult to apply a particular technique unless the

nature ofthe mine, soil and background clutter is well known. It is inconceivable that a

single detection technology will be able to meet all needs.



1.3 Research in Landmine Detection

Landmines are a threat to human lives. Several methods have been developed for

landmine detection. They are based on metal detectors, snifters, thermograph techniques

and GPR.

Metal detectors attempt to obtain information on buried mines by emitting into

the soil a tirre-varying magnetic field to induce an eddy current in metallic objects; this

in turn generates a detectable magnetic field. However, landmines typically contain only

a very small amount of metal, possibly in the firing pin, *,hile many others contain no

metal at all.

Biological sniffing by dogs is also used. Dogs have greater olfactory senses

compared to humans, especially for small trace quantities, and can be trained to detect the

presence ofexplosives. This is, in effect, a material characterization process as dogs are

sniflng the vapours emitted from the explosive material. This technique requires,

however, extensive training, and the dogs' limited attention span makes it difficult to

maintain continuous operation. Electronic chemical sniffers can also be used, though

they are not as sophisticated as dogs in terms of their detection abilities, Moreover,

minefields are usually saturated with residual vapour emissions from recently detonated

explosives, which may add to the chemical clutter of the area, thereby confusing the

dogs'senses.

The thermography technique essentially measures the thermal emissivity ofthe

ground and interprets changes in emissivity as being caused by the presence of a foreign

object; therefore, material characterization information is not provided. Horvever, this

technology has the advantages of being passive, can be performed remotely, by aerial



search, and can cover a large area in a short time. lnfrared thermography is best suited

for identifoing minefìelds (global area search), rather than searching for individual mines

(local area search). It cannot work when the soil and mine are in thermal equilibrium,

and therefore is generally limited for use either at sunset or sunrise when a temperature

gradient can be established at the ground surface.

The difference in the reflectance and polarization of soil when disturbed by laser

energy may be used to identif the presence ofan anomaly Il]. This requires a powerÍì¡l

laser, complex data interpretation and provides no material characterization information.

Ground Penetrating Radar emits into the ground, through an antenna, an

electromagnetic *uu". Sor" GPR systems cover a large frequency band, called wide-

band GPR system. Reflections from the soii caused by dielectric variations (such as the

presence of an object) are measured. Further data processing allows the display of

horizontal slices or three-dimensional representations.

Used for about l5 years in civil engineering and geology to detect buried objects

and to analyze soil, this technology is well researched. This abundant research, however,

does not include GPR systems that use automatic recognition algorithms, a feature

impofant for applying GPR to mine detection. ln recent years, researchers have

investigated the application of GPR to mine detection. Although promising, the

technology has limitations. In particular, the range resolution needed to detect small

objects requires GHz frequencies, which resuits in decreased soil penetration.

Another constraint is cost. Compared to other technologies, especially the ones

currently being used, GPR systems can be expensive. Although a GPR system can be



expensive, it is a potential solution for the problem of landrnine detection. And lorv-cost

solutions have been proposed [ 8].

Horv could the GPR be used to detect the mines rvhile it is receiving very strong

reflection from the surroundings? And how about other subsu¡face objects such as

rocks? A subsurface object has a relative dielectric constant, rvhich will be different from

that ofthe ground, and this dielectric discontinuity will also be detected by the GpR. As

two objects with diffe¡ent relative dielectric constants will differ ìn their scattering

characteristics, it is feasible that they can be differentiated by a GPR system.

1.4 The proposed GPR system for landmine detect¡on

A GPR system, u, ,ho*n in Figure l-1, has been developed at the University of

Manitoba for research and development of DSP algorithms for mine detection. The

system consists ofa microwave network analyzer, an antenna and a motor for controlling

the cross-range scan. A personal computer is used to control the motor and receive data

from the network analyzer, The purpose ofthis system is to collect a set ofstandard GpR

raw data and make it available in a database, called Master database, for researchers to

develop DSP algorithms for buried object detection. For details about the Master

database, please refer to [ 9].

A single double-ridged horn antenna is used as the transmitter and the receiver. It

operates in the range of 1-12.4 GFIz. The targeted object is an anti-personal mine shown

in Figure l-2. However, other objects such as rocks are buried too. These objects are

randomly scattered on the sand surface before they are buried at different depths.

Our approach has concentrated on applying DSP techniques with this GpR system

to the detection ofsubsurface mines.



This thesis is organized into seven chapters. Chapter I describes the motivation

and general research efforts for landmine detection. Chapter 2 reviews various existing

signal-processing techniques. In Chapter 3, the DSP techniques used in our research are

discussed, including improvements ofthese methods. The FDTD method, which is used

to generate simulated GPR data, is introduced in Chapter 4. The simulated GPR data is

used to investigate the DSP methods of interest for landmine detection. Random noise is

added for the investigation of false alarms as a function of signal-to-noise ratio (SNR).

Problems and solutions are also discussed in this chapter. In Chapter 5, the measured

GPR data is used to investigate the LP algorithm; the problems encountered in our

experiments are described, and solutions to these problems are discussed, too, Before

the linear prediction (LP) algorithm is used, the GPR raw data is pre-processed to remove

the average background noise. The results of these experiments are presented and

discussed, The IT algorithm for clutter decomposition and range estimation on GpR raw

data is discussed in Chapter 6. A cross-correlation alarm generator is introduced and

experimental results are provided. Finally, in Chapter 7, Conclusions and Future worþ

summarizes the concepts developed, reports results, highlights possible future work, and

provides conclusions from this research effort.

t0



RF cable: Input & Output

Figure 1-l GPR system ârchitecfure for landmire detectiotr at the Uriversity of Manitoba



Figure l-2. Objects placed on the surface to show their coordinates before burying



Chapter 2 Review of Existing Signal Processing Techniques

Recently, considerable efforts have been put into the development of GPR

systems 8]. The coherent clutter component from the ground surface return consists of

the dominant clutter contribution and originates at the ground surface. The clutter

reduction techniques discussed below, which estimate the coherent component of the

clutter, can reduce the coherent component of the ground clutter. The other remaining

clutter is still present in the data, which can be further reduced by statistical techniques.

2,7 Conventional methods for clutter reduction

Early time gating is an efficient method for removing the surface clutter from the

reflection of deeply buried targets. Choosing an appropriate time gate is very

challenging, especially for targets close to the surface. In such cases, the target

contributions may be removed due to the overlapping returns ofshallow targets and the

ground surface. Ifthe GPR system has a high range resolution, then this method may be

very useful for removing the dominant clutter.

There are two methods for average background estimation. One is complex

average subtracting [6]. This method uses the mean of a number of measurements

taken in an area where it is k¡own no buried objects exist. Subtracting the average may

not lead to sufficient clutter reduction because the ground is an inhomogeneous medium

and its statistical properties vary with position along the surface, Inhomogeneous aspects

of the ground make returns vary from scan position to scan position. Background

estimation will be affected by the presence ofan object and thus the estimation will not

be accurate. The other method is a moving average estimate of the background [6],

l3



rvhich uses adaptive algorithms to adjust the estimated background according to the

environments.

The early time peak, which is usually due to the ground surface response, can be

synthesized in the time domain using a sinc-approximation and subsequently subtracted

[5]. However, the presence of shallow targets leads to a change in the amplitude and

location of the early time estimation. An improved peak subtraction approach uses a

superposition ofdamped exponentials in the frequency domain to estimate the early time

contributions from lossy media. The Prony method [5,20] has been used to estimate the

necessary exponential parameters. The estimated early time clutter can then be

subtracted from the data.

2.2 Statistical techniques used for incoherent clutter reduction

lf one assumes that incoherent clutter can be represented as a random process with

k¡own statistics, then the following methods can be used for clutter reduction.

. Use ofa rvhitening filter

The clutter statistics are determined from many realizations of a rough surface. The

whitening filter [9] is used as a linear prediction enor filter. The limitation of this

technique is that the ground medium's statistical properlies vary with every position

along the surface. Any mismatch in the clutter statistics used to design the fìlter degrades

the performance ofthe wiitening filter.

. Kalman filtering

Kalman filtering has been used for parameter estimation in the presence of random

noise. It detects sudden changes that occur at the unknown points, In this approach,
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parameters are considered as being constant with some fluctuations. The system used at

the Technische Universität Ilmenau [4] simulates an array of 6 emitting and receiving

antenna. The data are acquired in the frequency domain, betrveen I and 6 GHz. This

method focuses on the pre-processing ofGPR data. lt is suggested that for this method to

work, the clutter must show a certain amount ofcorrelation.

o Nonlinearoptimization

Using an impulse radar system with pulse repetition frequency of250 KHz, Brunzell

[6] subtracted the background noise from a handheld GPR return and applied an energy

detector to detect shallow objects under the ground. This technique assumes stable

ground reflection. l1 is unsatisfactory in practice because the background is unstable, i.e,,

background changes from scan to scan.

A subspace decomposition technique has been used for the elimination ofground-

reflected clutter Íìom the GPR data [7]. It is based on the generalized singular value

decomposition. The proposed model, which uses a low-order polynomial, is for slow

spatial variations. The method was applied to the depth interval that contained the

ground bounce. The GPR data was obtained by an impulse radar system, which was

developed by the Ohio State University.

Deming in [8] proposes the use ofthe maximum likelihood adaptive neural system to

detect landmines. This method requires that the clutter and mine signature models be well

defined. The time domain GPR data was obtained by an impulse radar system with center

frequency of 400 MHz at University of Oklahoma,
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o Linear Prediction method

The use of LP !0] for modeling clutter assumes stationary clutter, and computation

of ths LP coefiìcients is done over the clutter area assuming no buried landmines. The

proposed weighted LP algorithm deals rvith a non-stationary clutter environment, and the

LP coefficients are computed adaptively. In the paper, the ground penetrating radar is

FSC'vV radar, rvhich sends out stepped radio frequency signals to the ground and

measures the ¡eturn. The bandrvidth of the radar hardware is in the order of a few

Gigaherts (GHz).

o Hidden Markov Models

Hidden Markov Models are stochastic models for complex, non-stationary stochastic

processes that produce time sequences of random observations as a fi.¡nction of states.

The technique proposed in I l] uses a time-domain radar called GEO-CENTERS

EFGPR, which is GEO-CENTERS energy focusing GPR. ln this model, the landmine

signature is used for detection.

2.3 Other methods for clutter reduction in GPR systems

o Iterative technique for clutter reduction in GPR system

An ultra-wideband GPR system is used in [5] where only a small spot on the

ground surface is illuminated. The clutter is assumed to be rough surface scattering,

surface-target interaction terms as well as some inhomogeneties. This new algorithm

decomposes the GPR return into its clutter and target contribution. The clutter reduction

algorithm yields an estimation of the depth of the subsurface target. A damped

exponential model is used. An adaptive estimation of unk¡own parameters is
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accomplished by the iterative process, rvhich has two coupled iterative loops. The Prony

technique is also used for this parameter estimation. An appropriate time tvindow is

required to separate the early time clutter contribution from the late time clutter. It is

claimed that this technique has the potential for real rvorld applications. Their

experimental GPR data tvere acquired using frequencies behveen I GHz and 5 GHz in

increments of 100 MHz through a near field probe antenna.

2.4 DSP methods used in this thesis

ìn summary, an accurate estimation of the clutter is crucial for all of the above

techniques. Finding an accurate estimate is indeed a very challenging task due to the

uncertainty and variation in the ground scattering. Generally speaking, hvo kinds of

commonly used GPR systems for landmine detection are pulse radar and SFCW radar.

Wilh our ultra-rvideband nehvork analyzer, which can generate a step frequency signal

from I GHz to 12 GHz, we will use linear prediction algorithm (based on layered earth

model) and average background estimation technique to reduce (pre-processing) the

background noise from the GPR raw data. AÍÌer the pre-processing, LP algorithm will be

investigated for general cross-range landmine detection (error energt detection), On each

scan position, TLS-Prony in frequency domain for clutter estimation. The IT method with

the reference signature of a landmine [5] is used for the specific landmine detection, and

this technique can provide range estimarion as well. Thè block diagram of the DSp

techniques used is shown in Figure 2- l.
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GPR rarv data
o FDTD GPR data (pp.34-47)
o Measured GPR dala

GPR data preprocessing
Layered earth model (Figure 3-l -l,pp. 19-22)
Average background reduction method (Figure 5-2-3, pp.85-87)

AIarm generator
Linear Prediction algorithm (Figure 4-2-1, pp.5l-52), including
original LP algorithm [ 0] (pp.22-24), adaptive LP algorithm (pp.24)
and improved LP algorithm (pp.25-27)
Cross-correlation method (Figure 4 -3-7, pp.32-33)

Alarm Generated?-Y
No output

Iterative algorithm (Figure 4-3-2, pp.28-32)

Rânge estimation for the detected objects
lnn. I l2-l l4ì

Landmine image/recognition

Figure 2.1 Blocks diagram ofDSP techniques used in this thesis



Chapter 3 Introduction to Various Applicable DSP Techniques

As mentioned in Chapter 2, the LP algorirhrn [10] and the IT algorithm [5] are

used in our system and have been investigated further to meet our system needs for

landmine detection. The LP algorithm generates alarms if the calculated error energt is

above a threshold. The lT algorithm uses the TLS-Prony technique for clutter reduction

and the simplex methodl for range estimation. A layered geophysical model is helpful in

understanding the wave propagation characteristics and in preprocessing the GpR data in

order to remove deterministic signals. In this chapter, we will introduce the concepts of

these techniques.

3,1 A geophysical model

A geophysical model [2] is proposed to represent the ¡eal earth in certain

significant respects. Ifthere is a useful connection between the behavior ofthe earth and

the corresponding behavior ofthe model, the model can be useful in analyzing data from

the earth and making geological decisions. The linear algorithm, which rvill be

incorporated herein, is based on a layered-delay ntodel.

There are two basic approaches to data processìng: the deterministic approach and

the statistical approach. The deterministic approach is concerned with the building of

mathematical and physical models oi for example, a layered earth to better understand

wave propagation. The statistical approach is concerned with the building of models

involving random components. For example, deep reflecting objects are consijered to

have a random dishibution.

' The MATLAB fi.rnction "fminsearch" is used, [21].
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A flatlayered earth is a rvell-know model used in geophysics, as depicted in

fìgure 3-l-1. A horizontal line represents the surface, and below the surface there are

media whose interfaces are parallel to the surface. There are N+.1 horizontal interfaces.

The topmost interface is denoted by index 0, rvhile the lowest interface is denoted by

index iy'. Two electromagnetic plane waves are assumed to exist within each layer, one

rvave traveling upward and the other one traveling dorvnrvard.

If a down-going propagating wave is incident on the top of interface r, then the

reflection coefficient r, is equal to the resulting up-going signal reflected from the top

of interface r, and transmission coefficient r,, is equal to the resulting down-going

signal transmitted through interface n. If the up-going wave is on the bottom of the

interface il, then the reflection coefficient is denoted as r,, and transmission coefficients

is denoted u" , ',.,

Layer,

Layer /

Layer n

Lay€rÀ

Figure 3- l-1: The layered system and the reflcction / transmission coefücients for an interface
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Using the sifting property AG) = [ AØ6(t - t)dt, any wave train can be represented

by its generating function:

A(t) = 1o51, - to) + Atõ(t- /o - 
^f) 

+ A26(t - to - 2LÍ) +...

Signal ,lo occurs at the time l, , and A, occurs at a delay ofone time unit to + Lt ,

i.e., at a delay of the two-way travel time through the nearby layer. Then the received

signal Y(t) at the topmost surface at time I = ¡o is given by Yo = t o Ao. At time

t = to + Lt, the received signal ï¡ will be:

Yt = ,'OA1 + t64r¡As = rgAl + rO\r6Ys /rs

Letting å1 = tOrtro /16 and bo = ro ,wehave

Y, = brA, + brYo

Similarly, at time , = to + 2 At, we have

Y2 = 16 A2 r t'6r1rsA1 + l¡t'1r2t¡t6 A¡

= 16 A2 -r c'¡11t 6(Y 1 - r'0r1r6Yg/rg )/rs + ;gr'112r ¡t6 Ag

= roAz + r'er1tsY1 / r¡ - (tsr1c()¡2 ro /çrs)2 + lxtlr2rlrsys / rs

Letting b2=rd;ÌTc¡cslrr-(i¡ysltb)2 =io"lZrfo/,0 -fi , i.". ,'¡"1¡2, ¡ts/t6 = bl * 6, , rn"n,

we have:

Yz=boAr+b,Yr+brYo

In general, summing all the contribution at f = t0 + n\t, we will have the reflected
wave given as:

Y,, = boA, + brY,,_, + bzY,,_2 + ... + b,,yo

Suppose 1,,*, =0 at t=t0+(n+l)Lt, and then the above equation becomes the

linear combination ofthe previous data.
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Y,,*, = brY,, + bzY, | + ... + b,Yt + b,,*tYtl (3-l-l)

This equation justifies the "linear combination" model in the time-domain for the

deterministic signal and which will be used in FDTD simulation. A least square

algorithm is used to dete¡mine 4,b2,...,b,,*t for a particular ground reflection simulation.

3.2 Linear Prediction Algorithm

The LP algorithm calculates the etor energt from the nearby cross-range scan

position along the beam, as shown in Figure 3-2-1. On each scan position, the GpR

system emits a sequence of continuous frequency waves stepped over several

frequencies. Our current GPR system has up to 501 step frequencies from I GHz to 12.4

GHz. A Master database of many experiments has been compiled [19].

surface

Scan pos¡t¡on I 2

Figure 3-2-l An application example using linear prediction algorithm

3,2.1 The basis of the linear prediction algorithm

Let !(n) =[x1@) xr(n) ... x r(n)fr be avector that contains the complex (i.e.,

magnitude and phase) GPR retum at the cross-range scan position n. The element .r¡ (,?)

is the received GPR phasor at step frequency f,, i=|,2,...,L. ¿ is the total number of step

frequencies (L is 512 in our case). Given the current vector and a few previous vector

samples, it is up to the LP algorithm to decide if y(n) is from a landmine. The cunent

vector J(rr) can be predicted Íìom a linear combination of its past few vectors (for clutter

only). We may assume that the clutter vector sample y(r) satisfies the time-varying Lp

model:
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¡@) =lar(n)y(n - k) + e(n) = Y (n - 1)ø(n) + e(n)
l=l

i(n) = Y(n - r')a

a" (n) = ly (n - l)- Cuy (n - 1)11 y (n - t)' C-t y(n)

The eror energy {(n) will then be given by:

rvhere k =1, 2, ..., p, p is the prediction order, and

Y(n -l) =ly(n -l) !(n-2) ... y(r-p)l is a scan data matrix ofthe last p scans. The LP

coefficient vector to be determined is a(n) =[a,(n) a,(n) ... dp(n)]Î. The vector

e(z) is called the prediction eruor vectot. The distribution ofthe sample vector Jr(r?)

may not be Gaussian, but the LP enot e(n) can be approximated as a Gaussian

distribution having zero mean and covariance matrix C [10]. Suppose that E[] indicates

the average operation, then the covariance matrix C is calculated by:

c = Et?(n) - 7 (n))( y(n) - | (n))' I

where the superscript + represents the complex conjugate transpose operation.. Using

LSE to estimate the coeflìcients in equation (3-2-l) and to apply them to !(n) in

equation (3-2-2), we can obtain the collection of LP error e(n) over a small area

assuming no landmine existing, and then the estimation of the covariance matrix C is

calculated using MATLAB function norn{ít (refer to section 4.2 for implementation

details).

Letting {(n) be the weighted prediction error energy which can be calculated by

€(n) = e(n)' c-'e(n) =[y(n) - j(n)]'c-tly(n) -j(n)l (3-2-3)

Taking the derivative of the above with respect to a(n) and setting this gradient to zero

gives the solution (see [0] for details and Appendix IV for reference):

(3-2-l )

(3-2-2)

L'

(3-2-4')



{(n)= y(n)'C'ty(n)- y(n)'C-tY(n-l)a.(n) (3-z-5)

We then declare a detection of landmine if f(r) is greater than some threshold. f(n) is

the minimum tveighted prediction error energy, where the weighting matrix is given by

C-'. Setting the derivative of ((n) to zero in equation (3-2-3) means that a least square

model is being used.

3.2.2 Threshold and weighting matrix

o Àdaptive threshold

The prediction error energy Ç(n) will typically vary from one set of p-scans to

another because the statistics of the ground will vary. Using a fixed threshold will

increase the false alarm ¡ate or decrease the probability of detection. The mean E[f(n)]

and variance Ell€(n)- E€ø)l'?l are updated as follows:

El€(n)l = (t - )òEl€ø -Dl+ )"4@) Q_2_6)

EÍl € (ò - El€ ø)lf ) = ( - x) Ell { (n - l) - Ek(r - l)l l, I + I | ( (n) _ El( (n)l l,

The normalized eror energy f(z) is:

(' (n) = {t@) - Et{n)l} /{sïi(n) -E[€(ù11,1]',, (3_2_7)

A landmine is detected if l'(r) is greater than the normalized enor energy threshold.

The parameter l. in equation (3-2-6) is chosen experimentally.

o Weighting matrix

The weighting matrix ll is given by C-' :

W =C-l

Because the prediction error e(n) in the clutter may be highly correlated, the inverse of

the covariance matrix C rnay have a singularity problem. To solve this, we first find the
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principle components of the clutter. Then, we reduce the rank of C by calculating its

eigenvector matrix Q and its related eigenvalue matrix G. And finally, rve form the

weighting matrix W as follows:

w = QGQ' (3_2_8)

The eigenvalue matrix is given by e =diag{A,22,..,1,.},A> 2r2_...21r.. lf we form

a diagonal matrix ofeigenvalues as:

D = dias{l / 4,1/ 22,...,1I Àr ,0,...,0}

where -I is the largest integer such that At / Ar Lt , where ,t is a chosen parameter, the

matrix lY is then given by:

w =QDQ' Q_2-s)

Now the coefficients are calculated by

ao(n)=[y(n-1)- IW(n-t)]4y(n-\. Wy(n) e-z_to)

3.2.3 Improvement of the LP algorithm

lf weletl/ =W;Wh, y,,(n)=llt,l(n) and {'(n -l) =Il¡Y(n-t),where Ltt¡Dtt2e

Equation (3-2-10) becomes:

ao(n)=[y,,.(n.l)'1,,(n-l)]''y,'(n-l)'J,,,,(n) (3-2-11)

The coefÏicients ø,1n¡ can be physically interpreted as the ratio ofconelated energy

y,,(n - l)'y,,(n) overthe previous correlated energy Y}/(n-l)*Yv(n-l).

We calculate {,, (n - t )'{,, (n - l) by
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{'(n-l)'{.(n-1)
=[t,,,(n-t) y,,,(n-2)

I t,,Ø-1)'t,,(n-t)
I y,,.(n-2)' y,,,(n-1)

=l

Iy,,,(n- p)'y,,(n-t)

'.. y,, (n - p)l' þ,, (n -1)
y,,(n -1)' y,,.(n - 2) ...

y,,(n -2)' y,,.(n -2) ...

y,,(n- p)' y,,,(n-2) ...

y,.(n-Z) ... y,,,(n- p)l

y,,(n-t)'y,,,(n-fi1
y,,(n-2)'y,.(n- fll

I

t,,(n- p)'t,,(n- p)l

(3-2-t2)

The diagonal components, i.e., y,,.(n-i)'y,,.(n-i)in equation (3-2-12) are energies at

the previous scan positions. y,,.(n-i)' y,,,(n- j),i + j, are the cross-correlation products

of different scan positions. The linear prediction coefficients not only depend on the

previous energy received, but also depend on the cross-correlation at the different scan

positions.

AÍÌer the background signal is removed, the residue signal is assumed to have Gaussian

distribution, which means the residue signals are independent from a scan position to

another san position. Based on this assumption, we will have:

y,,(n - i)' y,,(n - j) = 0,i * i (3-2-13',)

Then:

Y*(n -t)'Y*(n - t)= diagly.(n -t)' y,,(n -t), y,(n -2)' ¡,.(n -z),....,y*(n - p)' y,,(n - p)|
= di aglenergy,,_,,energ%_r,....,energy,,_p Ì
=ó¡

Here, we use the notation energy,_,,,_j = y,,(n-i)' f ,,ø- j¡ and s¡s¡S,,_, = y"(n-i).y*(z_i)

S should have full rank, then

S - 
| 

= d iag {energy,1,, energy, 1,r,..., ener gy 
;'_ r}

and {,(n -l)'y,'(n) = [y,'(n -l) y,,(n-2).... y,'(n -p)]'¡,,,(n)
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Then equation (3-2-l l) becomes

ø'(n) =.t-'r,, (n - I )- r,, (n)

_rJ,,.(n-l)'J,,.(n) J',,. (n - 2)' J,,. (n) J,,.(n-p)'r,,.(n),i
€nergyr.r energy,-2 energyf-p

ae (r) = J" (n - i)'-v,, (n) 
= Aïär:l,, = ,,r,..., oenergyn_i energyn_i

o,(n) = iYW,í =1,2,..., p

I energy"-*

The above equation (3-2-14) indicates that the linear prediction coeffìcienr is the ratio of

cross-correlated energy over the energy received at the particular previous scan position.

The coefficient øiQr)will be zero, this is because

¡,,.(r - i)- ¡,,,(z) = 0, for all i*O

Therefore, the new complex GPR return vector cannot be predicted by the previous

returns. If this cross-correlation is small, the prediction will also be poor. Since

a! 1n¡ = g , equation (3-2-5) becomes

\(n) = y(n). C-t y(n)

The previous analysis has considered that GPR data at different scan positions are

highly independent. However, if energ)i-r is close to zero, this can result in

undetermined a,'(¿) values in equation (3-2-14). A nerv linear prediction formula for the

coefïìcients can be determined by:

(3-2-t4)

(3-2- l s)

I

Here we have only modified the denominator of (3-2-14) so that no singularities

occur. The advantage of equation (3-2-15) is that the linear prediction coefficients are

calculated using conelation energy over the sum ofthe energies over the prediction area,
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This will avoid the sudden change because of the very lorv energy or zero energy in some

rare cases.

3.2.4 Summary of the LP algorithm

The linear prediction algorithm calculates the weighted prediction emor of a

clutter vector sample from a position so that significant error energy may indicate that the

clutter has changed suddenly, indicating the possibility of having a landmine at that

position. Because it does not use any knowledge of mine properties, it is a general

algorithm for any landmine detection, but it has the disadvantage that it will be triggered

by any abrupt change in soil properties, or by any buried object.

If the received GPR wave is independent from each scan position, the complex

GPR return vector is unpredictable. The improved linear prediction algorithm in (3-2-15)

is obtained for the specific case ofzero eror energy, which was more applicable to our

problem (mostly homogeneous clutter). The improved linear prediction coefficients are

modified to avoid the zero energy problems in equation (3-2-14).

3,3 TLS-Prony Method

The TLS algorithm [5] is used for ground bounce clutter estimation and reduction in the

frequency domain. An exponential model is used to model the clutter and the prony

method estimates the parameters for clutter decomposition.

33,f Concept of the TLS Method

In this GPR application, the received GPR raw data in the frequency domain, at

each scan position, can be presented by:
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v(a) =[v(ot) ... y(ot,)]=Irt ... yr.l (3-3-l)

]Jihereo)i,¡=1,...,L is a sequence of Z continuous frequency steps. Each frequency

measurementy¡ has an error e,. Equation (3-3-l) becomes:

y,=[y,.t ... y,uf+le,-, ... e,ulþ+e,, k<n<M (3-3-2)

Then, the TLS method becomes finding a solution for the vector Ø such that !"]-, i" u
i=0

minimum,

If we definexas ly,_, y,,_, ... j*¡1, e,,u --fe,_, ... e,_ì and e 

"., 
= ¿,, , then

Equation (3-3-2) becomes:

y,, =|x,,+ et,t,fa *êr,u (3-3-3)

Let e =1e,., l¿r.,,1, then TLS problem becomes finding the vector a such that the norm

of ¿ is minimum.

If

t
y,, = x,,a= La,!,_,

t=l

substituting y,? in Equation (3-3-4) to Equation (3-3-3), we have

(3-3-4)

O = e x,t,a + e y,n = t, -,, 1" r,, lli) (3-3-s)

Using Prony method (provided by MATLAB) to estimate coefficient vector a, er,n will

be minimized, which results in er,, be minimized because of Equation (3-3-5). This

indicates that the norm of e, expressed as ¡e¡= lfeltt2 , is minimum if the coefficient
i=0

vector a satisfies equation (3-3-4).
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3.3.2 Exponentialmodel

Using an exponential model [5], y(ø) becomes:

Y(o) =Z cie-dlte-i@tt (3-3-6)

where e-jøt' is a ìinear phase factor, c, is a complex amplitude facto¡ for the frequency

independent component ofthe received signal, e-a/i is a damping factor with y,20, !¡ is

the time delay as the wave propagation toward the mine, and ¿r denotes frequency. Three

parameters íC¡,t¡ ,/¡l will be estimated by the Prony method. (¡{ > 2 is expected). The

time delay parameter t, can also be used to calculate the rânge ofthe buried landmine.

3.4 Modelling of the clutter and the landmine contribution

After the estimated clutter is removed, the residual GPR data is dominated by the

contribution iÌom the buried object if there is any. In this section rve wijl introduce a

scatteûng model for the buried object contribution and its parameters will then be

estimated by the Simplex method.

3,4.1 An exponential model for Clutter and Target's scattering model

Similar to the clutter model, the scattering model is defined as:

t(ro)= tr,"-'t ' "-¡'u'r,(r) (3-4-l)

where a linear phase factor ¿-l'4 is considered as the contribution from the mine at the

time delay 6,,6,2 0 , and T,ko) represents a reference signature ofa landmine.

The received GPR data Gpr(o) can then be represented as:
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GPt(@) = c(o)+ r(@)+ n(a)

rvhere a(ø) is additive Gaussian noises. If ó1ro) represents the estimated clutter from c1ø;

defined in equation (3-3-6), the residual GPR data R(ú)) = cpt (.ù)-¿(a,) is dominated by

the mine contribution (ø). The unknown parameter vector 0=lA, y, a,f for themine

are determined by minimizing the square error, known as least square enor, between the

object model and residual data.

(3-4-2)

where ø, and, a,, are the start and end frequencies, and e =1l, y, á,] is the unknown

parameter vector to be estimated.

3,4,2 Simplex method for the parameter estimation

In section 3.4.1, the reflection from the mine is modeled by the reference

signature T,(o) and unknown parameter vector 0=l¿, y, Arl in equation (3-4-1).

The parameter vector 0 is estimated by using the Simplex method to minimize the eror

in equation (3-4-2).

The error firnction (3-4-2) is represented as a LSE. Why don't we directly use the

LSE method to estimate these parameters? There are two reasons, One is that the

simplex method requires only function evaluations. LSE is not very efficient in terms of

the number of function evaluations that it requires. However, the Simplex Method may

often be the best method to use. In the case of multiple dimensions, the LSE method

sometimes does .not converge to the minimum, but the simplex is constantly shrinking.

The other reason is that the simulation results from the Simplex method, fminsearch in
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MATLAB, and the LSE method, lsqcurvefit in MATLAB, indicated that the Simplex

Method rvas more suìtable than the LSE method in our case. Refer to Appendix I for

details.

3.5 Cross-correlationtechniquewiththreshold

In section 3.4, a reference signature is used for mine detection and parameter estimation.

With our high range resolution GPR radar, the cross-corelation technique with a

reference signature in time domain can also be used to generate alarms.

Suppose that in time domain, y(t) and x(t) are twojointly stationary random

processes, the cross-correlation of y(t) and x(t) is defined as:

Corrr,,(r)=E[r(t)x()]= f-yQ+r)x(t)dt (3-s-l)

In our GPR application, after the clutter is removed, the GPR residual data, in time

domain, .i?(f) can be represented by

R(r)= ATr(t)+n(t)+rcq (3-5-2)

where ,?(/) is randorn noise, independent ofthe mine contribution A1(t), and r" (t) is the

residual clutter. r,(r) is a reference signature of the mine. The cross-conelation of R(l)

and r, ¡r¡ is:

EßQ'lr,Q\ = EÍAr ,()r; (ùl + EÍn(ùr: (ùl + EÍt "ç)r: G)l (3-5-3)

Since z(t) is independent from 4 (r) , the second term will be zero, i.e.

E f RQ)r Ø1 = A E tllr,. ç )ll2 I + E tr c (Ðr; Øl (3-5-4)
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If the threshold is set to Efr"(t)T,' (r)l , then, a targer is dereced

by illuminating a small area where no mine is expected.

)J



Chapter 4 Implementation of DSP algorithms and Simulation results

In this chapter, the FDTD method is used to generate the simulated GpR data. In

section 4.1, rve first introduce the creation ofFDTD GPR data, and then preprocess them

for fufher processing. The linear prediction algorithm discussed in section 4.2 generates

alarms for object detection without any knorvledge of specific object type. The IT

algorithm for specific object detection, described in section 4.3, consists of two steps: one

is for removal ground reflection, and the other one for the estimation oftarget parameter,

especially for the range estimation. The objectives ofthese simulations are to determine

the adequacy ofthese DSP algorithms' implementation and their efficiency.

4.I Introduction to FDTD GPR data

4,1.1 General geometry nodel for the FDTD simulations

The FDTD method is a powerful and simple method, which can easily produce

numerically synthesized data for the GPR problem. The specific objects of interest are

Iandmines, rvhich, electrically, are lossy dielectric objects with minimal highly

conducting parts.

In order to build a scaftering model for the FDTD simulation software, we need to

create the geometry of the problem first. An example of the problem data file is in

Appendix II. lts geometry is shown in.Figure 4- I - I and Figure 4- I -2. Test points, from

Tl to TI7, are set between the current source and ground surface. To ensure the accuracy

and stability of the 3-D FDTD computation, the numerical parameters for the problem

must be chosen carefully.
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Tylical Geonetry cl lhe protj€.n for tiìe FDTD sirrulatbn
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r00
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I

0 --l
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00 50 1m

vx

Figure 4-l- I Typical Geometry ofthe problem for the FDTD simulation

. Cell size

Cell size is determined based on the shoftest wavelength, For example, if the GpR

flequency is from lGHz to 5GHz, the highest frequency 1,"* is 5GHz. The shortest

rvavelength is:



. Ya

^",i" = 
/*

c

"le '
(4-l - l)

vs is the propagation speed and 6, is the relative dielectric constant ofthe propagation

media. The term c is the propagation speed in the air, i.e. 3x108. e, is around 3.15 for

lossy sand [5] and 3.5 for plastic landmine [5]. Therefore,

, v, 3+ ld4,¡"=-;-= ^- =0.032 tÎ""" 'l-u^ 5'rId*J35

The cell sizes in each of the three dimensions are denoted asi /r, Áy, and /2, To

simplifr the simulation, we chose a uniform grid rvith ztx=ziy=zlz=Lh. Âå gives more

than 10 samples per shortest wavelength for a accurate result. ln this example,

lh = lx = ly = lz = 0.0025 m < 0.0032 nt

o Time steps

Once the cell size has been determined, the size of the time steps is calcujated from

the stability conditions. For a 3-D rectangular grid, the stability Iimit can be rvritten as

.tltc(--, + ------;* - _) '
¿x' ¿)' " /z'

lf lh = lx = Zy = lz = 0.0025tt,thecalculatedtimestep 
^f,r"p 

is

. ¿h 0.002s
lt.."_ = -_ = -'-,-- 

= =4.81E_12seccJ3 3*l0o *J3

(4-1-2)

¡ The derivative ofa Gaussian rvave

The source is an elemental current source having a Gaussian pulse shape in time.

Io
fft) _ I _(t_to)2

lo* " 
b2

t<0

t>0
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The first derivative ofequation (4-l-4) is:

df(t) | 0

ïï= f _zo(t . t,) *,-o#
I b'

t <0
14-1-5ì1>0

With parameter a=1.0, to=18-g and ¿=0.18¿'-9, the frequency bandwidth ofthe signal

is 5GHz. Figure 4-l-3 and Figure 4-l-4 are the rvaveforms of equation (4-l-5) in tirne

domain and frequency domain. The time duration of this rvave is approximately l.Ons.

The time step, 
^/","p, 

is 0.00481 I25ns. Therefore there are 207 samples in this period of

time. The Gaussian pulse is well resolved in time.

Fouriei Trânslorm of Currenl De¡sily

6 1E 
': 
.¿12.;.::.:11:..
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Figure 4- l-4 Cùnent sou¡ce waYeform in time domain

4.1.2 FDTD simulated GPR data

Based on the geometry ofthe problem example in Appendix Il, the test points and

the current source are in the x-z piane, but with different x locations, i.e. different

distances to the object. Test point 9, shown in figure 4-l-2, is at the same position as the

current source in the y-z plane.

There are three major components generated in the FDTD GPR data: the direct

coupling behveen the current source and the receiver (i.e., the test points), contributions

from the ground object and from the buried object. Three FDTD simulated GPR data are

generated: ground only (no bomb buried under the ground) for the determination of

ground contribution; a bomb buried under the ground surface; and no ground and no

bomb for the determination ofcoupling.

In order to determine the initial time point for the reflection from the buried object

surface, FDTD GPR data is analysed as below, The shortest distance behveen the cunent
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soufce and ground surface is denoted as lRl, ground surface to test point g as ÁR2, and

the distance betrveen the buried object and ground surface is denoted as /Rr, as shown in

Figure 4-l -5.

t-B'J"b¡." -__-l

1 ¿a'

Cround Surface

i i ARz =12.5 cm

i --Í-----. 
'niÁ& =20 cm

._-_____Y________
O cunent sou.ce

Figure 4-l- 5 x-z plane ofthe FDTD problem from Figure 4-t-2

The propagation time to reach ground surface Ílom the current source is lR /c. ZRr/c is

the propagation time from ground surface to test point 9. Similarly, the propagation time

to reach the buried object surface and be reflected back to ground surface is 2 x /R ,/v 
" 

.

Therefore, the total propagation time tp at test point 9 is the sum ofthe propagation times

lrom the current source to the buried object plus the propagation time Íìom the buried

object to test point 9, i.e.,

ÃR. AR^ 2x/R
I D =-----!+-1+--------) =' c c v"

À,?, +ÁR, +2xÂR, x,Ç
= 1.08338 9+(4.409681 I )xÂR, (4-l -6)

In our FDTD simulation, e, for the ground object is set to 7. Adding the time delay hs

for the Gaussian waveform, the time that requires for the buried object reflection to reach

T9 should be

t , +7ns =2.0833+0.04409e. /R, (rrÐ .
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We generate six FDTD simulated GPR data rvith different depth /R3 for the

buried objects, as listed in Table 4-l. The name olthe FDTD GPR data is defined based

on the following rules:

. 'T9' denotes test point 9.

¡ 'mine' or'ground' indicates a landmine object or ground object involved.

According to the above definition, "ntine3round_79_1R:" indicates FDTD GPR

waveform received at test point 9 with a landmine buried under the ground in the depth of

ÁRj. "ground_T9" means ground only, no landmine is buried, and GPR rvavefonn is

received at test point 9. With no landmine and no ground, the GPR waveform at test

point 9 is donated as "non_T9", the direct coupling from the current source at test point

9. The residual GPR data after subtracting "non_79" from"ground_T9" is the reflection

contributed by ground only, ground_only_T9, as shown in Figure 4-l-6.

ground_only_T9 : ground_T9 - non_T9 (4-l-8)

Similarly, "mìnetground_T9_/R3" denotes the contribution from ground plus the buried

landmine after direct coupling is removed, as sho\¡r'n in Figure 4-l-7.

mÍne+ground_79_AR3=tt¡ne3round_Z9_ÁRs-non_79 (4-l-9)

Finally, we can obtain the landmine-only reflection tvaveform, "nine_only_79_ÁRi' by

subtracting'þran nd_only_T9" from " mi n etgro u n d_79_AR!',

mi n e_onl¡t_T9_ÁRj = m¡ne+g ro und_Ig_ÁR 3 - g ro und_onlJt_Tg (4-r -r 0)

The FDTD waveforms for the landmine only are shown in Figure 4-l-8. We define the

peak time step as the sample time at which the GPR waveform reaches its peak point.

The peak time step is calculated by (tp+tns)t^t,t"p. The calculated peak time steps for

the buried landmines with different depths are listed in table 4-1.
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Table 4-l: GPR waYeforms at test Doínt 9-
Cells for landmine

buried under the ground
surface

lR.
(cm)

l ¡me oeray
(ns)

Calculated peak

time step
FDTD

simulated peak

t¡me steD

5 I .25cm 2.3038 478 465
l0 2Scm 2.5243 524 5l I
l5 3.75cm 2.7447 570 557
20 5.0Ocm 2.9652 6t6 603
25 6.25cm 3.1857 662 649

30 7.50cm 3.4062 707 695

Figure 4-l-6 cPR ry aveform of ground_onl¡_T9



F igure 4-1 -7 mine*ground_T9_ARr\\ith ¿R3 =lO

:]::-i-=:.;::,i.:'
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We notice that the calculated peak time step has an offset of l3 time steps from

the coresponding simulated FDTD peak time step. For example, in the first row oftable

4-1, subtracting 465 from 478 is 13. This is because the calculated peak time step is a

reference point based on the current source center point (the center of the derivative of

Gaussian waveform in Figure 4-l-4). And the simulated FDTD peak time step is the

sample time at which the total received reflected waveform reaches its peak value. They

are not the same. However, lfwe use the fìrst ro\¡/ oftable 4-l as a reference, we can see

that the number of peak time step increases 46 per S-cell-increase in /l?, . For instance,

578-524 : 5 I I -465 : 64. This proves that the simulared FDTD peak time step in FDTD

waveform reflects the depth ofthe buried landmines.

4.1.3 Landminesignature

Landmine signature is used for object-oriented object detection. This signature should

be unique, different from the other objects involved. There are only two objects in our

simulation, a ground object and a buried landmine object. The landmine signafure should

be able to identifl the landmine waveform from the reflection contributed by the ground

object. The signature can be obtained from the landmine-only GPR waveform. In Figure

4-1-8, the reflection waveforms Íìom the landmines buried in different depths have the

same feature, which is different from the reflection from the ground, as shown in Figure

4-l-6. lt can be used as the landmine signature. We normalized mìne_only_Tg_ARj as a

reference signature t sis,,.r,,o (t) , as shown in Figure 4-l -9. l¡ is the time step.
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Figure 4-l-9 Landmine signature obtained after normâlising the mine-only rellect¡on wâyeform

4.1.4 Pre-processing of FDTD GPR data

The GPR waveforms with a landmine, as shown in Figure 4-l-6, is different from

the GPR waveforms with no landmine, as shown in Figure 4-1-7. The contribution from

the ground is much stronger than the reflection from the landmine. In order to detect the

landmine, this ground surface reflection must be preprocessed (reduced) before any

further processing.

Setting the prediction order to 24 for the linear algorithm in section 3.1, we

calculate the estimated GPR data i(lr*, ) based on the previous received GPR data

y(t¡-¡),j >24,j > í by using equation (3-l-l) as below:

24

i(t jtl) =>biyU j-i) (4-r-l I )



Then, rve use the least square algorithm to deterrnine the coefficients {b¡, í=l to24},i.e.,

å; is chosen so that the ¿r¡or in equation (4- l-12) is minimum:

24

e,'ror =ly(t jì-lø¿(t, )f , j >24
¡=l

After the coefficients are obtained, we estimate the ground-only refle ction, Esground,by:

(4-1-12)

(4-l-13)

24

Esground(t,) =\t,1,{t, ,¡;¡ , Zl

Finally, subtracting Esground from the received GPR data, we get the residual GpR data

as below:

Resìdual_ n ìne+gro und_Tg_^R3 : m¡ne+ground_T9_ÁR3 - Esgro und (4-l -t 4)

Residual_ ground_only_T9 = ground_only_T9 - Esground (4-l-15)

The residual GPR waveform Resìdual_ nùne+ground_T9_ZlRr, as shown in Figure 4-1-

10, is generated after pre-processing of GPR data mine*ground_T!_ÁRs with ÁIþ:25.

It consists of contributions from the landmine and the residual ground contribution after

the estimated ground reflection , Esground, is removed. Comparing the Figure 4- I -7 with

Figure 4-1-10, we can see the landmine GPR waveform is enhanced and the contribution

from the ground surface is reduced significantly.
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residoal 0PF dala ¡ner þieprcòess;ng

Fieure4-l-10 residual GPR data affer Dre-Drocessins on ndr¡¿+snund Tg ÁR, \\ith

Table 4-2 is constructed as if the landmines are buried under the ground surface

with different depths at different scan positions. Figure 4-1-l l(a) is the corresponding

geometry. Prep_GPR_data3roup is created based on table 4-2. Prep_GPR_data3roup

will be used in the further processing for landmine detection. The image of

Prep_GPRllataSrorp, as shown in Figure 4-l -12, reflects the range of the buried

Iandmines according to their depths. The strongest (darkest) line at the time step of

around 430 is the residual ground contribution after the preprocessing ofGPR data.

able 4-2: a data
uross-¡ange
scan position

1 -15, t7-28,
3041,43-54,
s6-67,69-80,

et-o?

t6 29 42 55 68 8l

Residual GPR
data

Residual_
grcund_onl!_T

9

Res¡duql n¡ne+sround T9 AR
ÁR¡=5 Rs=10 ÁR3=15 ARj=20 R¡=25 lR3=30
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Cross-range scan posilion

æ
^r"u["''"

Figure 4-l-l l(a) G€ometry of a grouped FDTD data: Prcp_GPR_døtaß¡oup

Su¡face i

Figure 4-l-l I (b) the image ofa grouped pre-processed GPR data g€nerated accordin gto table 4-2



4.2 LP algorithm for landmíne detection

The LP algorithm, described in Section 3.2, is a general method designed for

landmine detection. In this section, the implementation oflhe LP algorithm is discussed,

The pre-processed FDTD GPR data, Prep_GPR_data3roup created in section 4.1.4,

rvill be used as the input. The simulation results rvill be analysed.

4.2.1 Implementation of LP algorithm

Figure 4-2-l is the implementation block diagram of the LP algorithrn described

in section 3.2.1 . For the improved LP algorithm, the prediction coefficient vector rrp,t is

calculated according to the equation (3-2-15). At the beginning, five parameters need to

be determined. The prediction order p, the adaptive parameter I and the scale factor

{_scale arc experimental values. The weighting matrix IY,,,*,,,l¡fi the normalized error

energy threshold (),,",¡,"¡¿ are calculated over a small area with no buried landmines.

Figure 4-2-2 is the LP initiation block diagram for the calculation of W,n, and {),^¡¿¿ .

In Figure 4-2-2, y,",(n) is the pre-processed GPR data at the cross-range scan

position n. ¿¡ denotes the total number of pre-processed GPR data in time domain.

f,,oþ-t) is generated by the pre-processed GPR data from thep previous scan positions,

i.e.,

Y,,,p@ - t)={ v n*t(i),i = n -I'n - 2,. .,n - p' }. (4-2-1)

The prediction coefficient vector aot(n) and erorenergy e,,,*t(n) are calculated by:

a o"r @) = lY,Ï,, Ø - t)Y,,,", (n - 1)l- | y,,, (n - 1). y,,,,, (n)

e,¡(n) = y nor(n) - Yt,,*p(n -1)a pÃ(n)

(4-2-2)

(4-2-3)
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Moving to the next scan position and updating y,,_r(n-1) rvith the latest pre-processed

GPR data from the previous p scan positions, rve obtain a series of

e,,,"t(n),n = p+l,p+2,.... The covariance of e,,,*t(n) is Ç*,,. The rveighting matrix

12.,,,, is calculated by

w 
^,,, = c ;:"^ = (9,_q L q,q g;,,,)-l (4-2-5)

If the inverse sf C,,w, has singular problem, then the weighting matrix ø,,,,, is calculated

according to section 3.2.2, After estimating w,,^ , we can calculate the weighted eror

energy ð(,Ð, and then normalise the effor energy threshold (',¡,",¡",,, by:

( (n) = y,,,,,(n)* tt/,,,* y.*t@) - !.,t@)- w,,t*,L,,, p(n)a p*tø)

ë)**,0 = ( _ s cate x max{tÉ Ø) - I I / @Il 4 Ø) - I l, D',, }

f is the mean of ¿1r4 and Sïl€@)-€ ll is the variance of ¿1r;.

(4-2-6)

(4-2-7)

After initialization, we obtain the weighting matrix w.,. and, the noÍmalised error

energy threshold ëi*,ø¿ as the parameters of the LP algorithm in Figure 4-2-1. The

prediction coefficient vector ø rt(n) and the weighted error energy d(r) are estimated

by:

ø o,Jn) = ly,,,o(n -t)'rv,,,.y.,p@ -Dly,,,p@ -l)'tt^"^!._,(n) (4-2-B)

((n) = y,,,,(fl- W,,,,,y.u(n) - !.o@)-14/.,.Y.,0@ -t)a0,,@) G-2-e)

We then normalize the \¡ieighted eÍor energy ð(rl) as d'(ri):

1'@)=t€Ø) - lll{EIt4@) -l t'lt"'
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where f is the mean of ð(,') and Ell€@-lfl the variance of ¿1rr¡. The LP algorithm

generates an alarm if

ë' (") > (ø**aa ø-2-n\
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LP algorithm for la¡dmine delection

lnput prediclion order p, we¡ghting matrix ,/
and adaptiye parameter,

Read in preprocessed GPR data from the firstp scan

positions and generate Y",,'(n -l) as described in

section 3.2.1. Herc, n=p+l

Update {,0 (z - 1) with

J."r(n), and move to the

next scan position. Increase n
by one

Read in next preprocessed GPR data /,¡,r(r)
íÌom the z scan position.

¡ "aU.ut"lh"pr"d,.tffiI a r^|(nt =IY,,,o\n - 11' lv ù,,ùy,,^p(n -t)l'Y,,,e@ - t)'ty.,,,y 
^,,fu) I

I The rveiglrted enor energy fl/rrlr I

| {(¡t\ = r,,"ttn)' tv.,,, y,,,(n) - y .^,(n)' w.,.y., p(n - l)a p,t(n) 
I

t
I

I Calculate the average meân E[{(r)l ana variance Efl ((r) - E[d(r?)] I'z]: I

I EÍë(n)l= (t - À)EIëø -Dl+ Eþ) I

I stft,l*enr)lFl=(t-,¿lBK,-l)-EK'¡-l)ll'l+¿l('¡)-EKn)ll, 
I

The normalized error energy f (n):

4fn¡=l1n)-Bgtn)lt{E6qn)-øKn)llllt,,irE[Kn)-Eg(n)]l,l+0
or f '(r) = ((z) if E[ ( (n) - El( (n)]l' I = s

Obj€ct deteclion:

ë'(tt) > çúp,tt,"t,t,indicâting a obiect derected

Figure 4-2-l Block diagram ofthe Linear Prediction Algoritbm



lnitializâlion ofLP algorithm fot
landmine detection

Set prediction order p and (_scale

Read in pr€processed GPR data from the first p cross-range scan
positions and generated y-rp(r-l) as described in section 3.2.1.

Read in next preprocessed GPR data y,,,(z) ñom the ll scan

position.

Eslimate the pred¡ction coefficients:

ø p.tØ) = Ív;,pØ - t)y,,pø - D\-t y^"p(n - t)' y,,,(n\
The prediclion eror ¿lrr.

e n"t@) = ! ù,\(n) - Yn,,r(n - l)ø o,1ø)

The enor energy ffiy':

ë(k) = y ñ-t(n)' ty h,,ñ!,,"1(n) - y,,t(n)'ty,,,a p,tø)
The normalized enor energr threshold {).",ro¡¿ :

{,,,,",0.,0 = { _scale x max{t4(,,) - E(f (n))/(Ell ((n) - Et{@)i

Figüre 4-2-2 Initiation ofparameters for LP algor¡thm oyer a smalt ârea



We we Prep_GPR_tlata3roup as the input of the LP algorithm with p set to 5

and í-scale to 2. The adaptive parameter 2 is set to I due to the ideal flat ground

surface, and r,¡ is l03l . Figure 4-2-3 is the output of the LP algorithm. The normalized

error energy generates six peaks at the cross-range scan positions of 16,29, 42, 55, 68,

and 81. The LP algorithm alarms six scan positions for landmine detection. Comparing

with the cross-range scan positions ofthe buried Iandmines listed on table 4-2, we can see

that the LP algorithm generates alarms for every buried landmines. The result is

expected. If the object is buried closer to the ground surface, then the reflected signal is

stronger. This demonstrates that the implemented linear prediction algorithm works well

for the general landmine detection.

Figure 4-2-3 Output of LP âlgor¡thm.ìvith Prep_GpR_datajroup

4.2.2 SimulationResults

In practice, noise from the system or from unknown resources is unavoidable.

Normal distributed random numbe¡s rvith zero mean lvere added to

Prep_GPRllala3roup in order to simulate noisy measured GPR data.

9'
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Prep_GPR_dala3roup_noise:Prep_GPR_data_ßroup+Noise (4-2-12)

The added noise should have the same frequency bandwidth, i.e., 5GHz, as the

preprocessed FDTD GPR data, Prep_GPR_d ta_group, shorvn in Figure 4-2-4. The

processing block diagram ofthe additional noise generator is shown as below:

No¡se genemtor:
Func¡ion norlnrnd ;n Mãtlah

Preprocèssed FDfD GPR dalâ for LP processing

- - - - - -. i.. - - - - - rl - - - - -a- I - - - -- - -l -- -- - - - i. - - - - - - - i - - - - - -i /ì n lli^ ^ i i I ---

4000 | i

0 200
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2008

0

2000

x i0ò
6æm

lims sleps

3

2

1

.- -..i.- - - - - - -i- - ¡t - - - - i - -- - - - - I - - - - - - - i - - - -- - -.l - - - - - -..1; i/\ i i I i I
- - - - -i - - - - - - -i- t- -t- - - i- - - - - - - - i - - - - - - - i- -- - - - - i - - - - - - - j..ial..\i i i 1 i

46
fiequency (GHz)

Figure 4-2-4 Pre-processed GPR data as an input ofLP algorithm

Figure 4-2-5 (a) is an example ofgenerated noise with 5GHz bandwidth. Figure 4-2-5 (b)

is the image of simulated GPR data with noise, Prep_ GPR_dataJrcup_noìse.
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Figure 4-2-5(b) lmage ofsimulated GpR dala rvith added noise

The signal-to-noise ratio (SNR) is defined as:

SNR = l0 los E"
" 8,,

Nòisà iúnh SGHZ band#dlh

-- - - - - -i - - -- - - l; - n - - -^i - -- - - lì i.; - - - - - -l- -' - n- -f - - -¡ - - -
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E, is the reflected signal energy from landmine only, i.e., mÍne_only_79_ÁR j. 8,, is the

residual energy from the ground surface after signal preprocessing, Residuøt_

ground_only_T9, plus noise, Nolsø Then rve have:

¿" = Il mine_onty-r9_^nr(¡)l'

L
8,, = >l Residuot_ ground_onl ¡_T9 (i) + N¿iss (t) l':

(4-2-14)

(4-2-',ts)

Because the landmines are br¡ried at different depths, their SNRs are different. In the

above simulation, the calculated SNRs of Prep_GPiR_ dato3roup_noìs¿ with standard

noise deviation of4000 and 5500 are listed in table 4-3 and table 4-4. Figure 4-2-6 is an

output ofLP algorithm rvith noise deviation of5500.

âble 4-3 SNRs rvith roise deviâfion of
Cross-range scan position

of buried obiect
l6 29 42 55 68

s/vÃ (dB) 0.92t9 -0.45348 -1.61 -2.48t7 -3.6589 4.31l5

Cross-range scan position
ofburied obiect

l6 29 42 55 68 E]

s/úR (dB) -0.5896 1.365 -3.1934 -3.E872 -4.8006 .5.2197

A false alarm is defined as an alarm that the LP algorithm generates at a cross-

range scan position where there is no landmine bwied. ff {),,",¡.¡¿ in the Lp algorithm

is set high, then the false alarm rvill be lorv and some of the landmines with low SNRs

will not be detected.
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Figure 4-2- 6 Oulput ofLP algorithm for landnr¡ne detection

For example, in Figure 4-2-6, iÎ vre set q;ì.esttokr to 2, then three landmines,

located at the cross-range scan position 16,29 and 42, rvould be detected with no false

alarms generated, and the other three landmines, located at the cross-range scan position

55, 68 and 81, would be undetected. lf €)nn"naa in the Lp algorithm is set to l.l, then

four landmines, located at the cross-range scan position 16, 29, 42 and 55, are detected

with one false alarm generated. The landmines with very low SNR are undetectable,

such as the landmines at the scan position 68 and 8l .

Table 4-5 is the simulation results for the number of detected landmines over

SNR and the false alarms over SNR. S-r¡r is averaged over l0landmines buried in the

same depth scattered at diffe¡ent cross-range scan positions, as shown in Figure 4-2-7.

snr = lS snr r¡l10í'

5'l

(4-l -r 6)



Snr (i),i = 1,..., l0 , is the calculated SNR of the l0 landmines. The number of alarms

is the total number of alarms generated by the LP algorithm, includìng false alarms.

Figvre 4-2-7 lmage of l0 landmines buried in the same depth at different cross-range
scan positions

.,9.t8,4àì¡ !qi!P lisc¿gsiltú wilh addtd nóisÀ.-:ì5æ



Figure 4-2'8 shows the curve generated according to table 4-5, and indicates that

if the SNR is greater than -5d8, less than 95% of landmines rvìll be detecred. With a

fixed threshold 4nu¡a¿, if the SNR is set low, the number of false alarms rvill be high

and the percentage of detected landmines over the total number of buried landmines rvill

be low.

-5.6
sNR(dB)

Figure 4-2-8 simulâtion resülts for fâlse alarms over SNR and ratio ofdefecfed landmines over SNR
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4.2.3 Summary

The purpose of this simulation was to determinate the adequacy of the

implementation ofthe LP algorithm. Seven basic sets ofpre-processed FDTD GpR data

were generated, pre-processed and reconstructed to simulate the cross-range GpR data.

Using these preprocessed FDTD GPR data as the inputs of the Lp algorithm, the

implemented LP algorithm was able to detect the buried objects at different cross-range

scan positions. The output ofthe LP algorithm reflects the error energy in response to the

depth of a buried object, i.e. if the landmine is closer to the ground surface, the output of

the LP algorithm is stronger due to higher SNR.

In practice, noise from the GPR system or unknown resources is not avoidable.

Random noise was generated to simulate the random contribution from a variety of

environments. The landmine detection percentage and the total number of false alarms

are functions of signal-to-noise ratio. lf SNR is high, then the landmine detection

percentage is high, and the number of false alarms is low. The simulation results were

what we expected. According to our simulation results, if the SNR is lower than -5d8,

the detection of landmine is not guaranteed. Lowering the landmine detection threshold

will result in more false alarms.

The simulation results of the improved LP algorithm are almost the same as the

original one. This is because the inputs ofthe LP algorithm are highly correlated, i.e., the

equation (3-2-13) is not satisfied.

In our simulation, the generated FDTD GPR data is based on a simple geometry.

!ùr'e did not veriry the effect of varying environment with adaptive threshold. More
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co¡nplex geometry of problem models with rough surface or a simuìated varying

environment may be considered as a future work.



4.3 IT algorithm for object detection

4.3.1 Problem and solution for specific landmine detection and range estimation

In section 4.2, rve simulate the linear prediction algorithm to generate alarms for

general object detection. This method does not provide any further object-related

information, such as depth. The IT algorithm in [5] is an object-oriented method that

provides a \¡r'ay to estimate the depth ofa buried object. The object's signature is required

for the method.

The IT algorithm first uses the Prony technique to decompose the ground surface

contribution from the received GPR data, and then uses the Simplex method, with the

reference signature of interest, to estimate the target related parameters based on a

damping exponential model. After the estimated ground surface contribution is removed,

the residual GPR data is further cross-conelated with the object's signature and compared

with the threshold for object detection. The detection block diagram for this procedure is

shown in Figure 4-3-1, and the implementation block diagram of the IT algorithm is

shown in Figure 4-3-2.

G€nerate a alarr¡ for object detection if
a¡y, estimate the object-related range

Figure 4-3-1 Block diagram for object detection with IT algorithm

P¡e-processed GPR
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Input pre-processed GPR data at a cross-range scan posit¡on: s(a í), a i is a sample

frequency. i = 1,..., zr

Set the first time window ( 16 /u ). Set the previous target estimation t î 
^r" ", 

, o(r,) to t"ro.

Read in the object siEnat'ure Í signaho.e (a;¡) . Set the maximum numbers M¡¿¡¿y and Mo,,,"rfo,

inner loop and outer loop. lnitiate the inn€r/outer loop index j¡,=0and jo,,,=0

No
j ort) Mout",

Yes

:ase f¡ by Â¿,set r,, =0

M

Obtain the ground contribution within the
timé window; I (.,, , ) Incr

No

Estimate the contribution fiom s (ø, ¡ by using

Prony technique:

í.1r0, ¡ = | are-atdt-ia'rt

ICalculate the residual data;

¡(ø¡) = s(@') - iì"@ ,) g(a¡) = s(a ) - î^,sn,pkD,)

Use Simplex method with the target signature

and r(ø ,) to estimate the target contribution

î^r"r,u(r,) = srs-att' it"'tr,",*u,," (a,)
Update /"rr,r,o (ar,) 1y¡¡

î^re",,r(¿,¡) ard increase ¿r? by I

¡î*"",.,, -î*"",., ¡< a'¡î, No

Y
Declare the detection ofan object. 

l-
Output the residual d ata r(a ¡) and

estimated object-relat€d parameter

1", dr t,l

Figure 4.3.2 Ìmplementation block diagram oflT algorithm
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4.3.2 Implementation

The lT algorithm has two loops, an inner loop and an outer loop, denoted by 7j,,

and 7o,,, respectively. The outer loop controls the time windorv for the estimation ofthe

ground surface contribution only. In this loop, zr is the maximum number of sampled

frequencies, t¡and 16 are the start and end point of the time rvindow. The first time

window ( to /ó ) must not include any contributions from the buried object. So the first /¡

must be the chosen carefully. At the beginning, rve set the previous estimated object

contribution to zero, i.e, î^,"n,r(r,) = 0. The maximum numbers for the inner loop

M¡,,h", , the outer làop Mo,,¡",, and the threshold á lor object detection are chosen

experimentally.

The preprocessed FDTD GPR data, Residuøl_ mìne+ground_T9_/lR, consists of

the residual contribution from the ground surface and the contributions from the buried

object. In the time domain or frequency domain, Resìduol_ nine+ground_T9_ÁRj can

be represented as r(tr) or r(ø,)

s(t,) = h"(t,) + tarc et (t i), i = 1,..., nt

s(a,) = h"(a ,) + t*s et (o ¡), i = 1,..., nt (4-3- r )

whereå"(/¡) or h"(o,) represents the ground surface contributions, and Íu,sr(t) or

t^,e"t(a¡) are contributions from a buried object. f, is the time step and rdi the sample

frequency. m =1031in our case. In Figure 4-l-10, we can see that the peak value from

the ground surface contribution is located at the time step 420, so we choose /6 = 0 anrt
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tt=420 as the first window. The ground surface contribution rvithin the first time

window is 8(/¡)=s(/¡),i=1,...420. g(a,) is the FFT transform of g(t,).

After the ground surface contribution g(ar,)is obtained, we use the damped

exponential model, described in section 3.4.1, to estimate the contribution, n"@,) ,

based on g(ør). The estimate can be expressed as:

K

h"1o,¡ = \ aoe-''ot-io,tt (4-3-2)
k =l

wheÍeø k is the damping factor, a¡ is the coefficient of the model, i( is the rank used

by the Prony technique (we will discuss how to estimate the ¡ank later), and /¿ is the time

delay. The residual data r(ø,) , obtained by removing î"@,)from s(ø,), should be

dominated by the contributions from the buried object ifany.

The buried object contribution is modelled as:

tug 
"t 

kù i) = g ,.g- 
ø id ' - J (ù it 

' t ,¡s,,ot,r., (a¡) (4-3-3)

\\hèÍë t signarure (a¡) represents the target signature of interest as shown in Figure 4-l-9,

a, is the damping factor, and a, the coefTicient ofthe model. /¿ is the time delay which

can be used to estimate the range of the buried object. The square error between the

object model and the residual data r(o.l, ) is:

e,,., =>ll r(at,) -a,¿-a'd'- 
j'u",t 

",r,ou,," 
(or,)ll' (4-3-4)

Using the Simplex method to minimise eno- we obtain the latest estimated object

contribution as:
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(4-3-5)

If the change between the previous estimated object contribution, îu,r",,0(a,), and the

latest estimated object contribution, î^,"n,u7a,¡, is less than the threshold á, i.e.,

f ll î 
^,, ",., 

{r,) - î *, 
^. 

o 
(t,) | . af Ê 

^,, ",. o {, ) ll (4-3-6)

We consider that a buried object has been detected. The object related parameters,

[a, â, i ], and the residual data, r(ø,) , are outputted for further processing. If

equation (4-3-6) is not satisfied and the inner loop does not reach its maximum number,

we subtract the estimated object contribution from the pre-processed GPR data s(a.l,) to

obtain the contributions from the ground:

g(a,) = s(ro ) - î,,"",,,,(at,) (4-3-7)

Afterwards the inner loop is increased by 1 and continued for the object detection from

equation (4-3-2).

Ifthe inner loop reaches its maximum number, then the algorithm exits from the

inner loop to the outer loop and increase the time window by Å ¿ . If the outer loop does

not reach its maximum number, then the algorithm enters the inner loop again. lf the

outer loop does reach its maximum number and no object has been detected, then the

algorithm stops and exit.

4.3.3 Implementation Problems and solutions

Three important parameters in the IT algorithm implementation are the rank of the

Prony technique for clutter subtraction, the first time rvindow for clutter-only estimation

and the start point for the Simplex Method.
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. The rank ofthe Prony technique

The rank, r( in equation (4-3-2), is required by the Prony technique. The rank va¡ies

according to the complexity ofthe environment. lt is hard to guess it around based on

experiments, K can be calculated from the ground contribution, g(ø,) . In order to

estimate the rank, we first make a data matrix A from g (at ,) , and then use the singular

value decomposition (SVD) of the matrix to obtain the rank.

Vector x is the collection of the previous received ground contribution

g(t,.'¡),1=1,...,L .

-r = [g(r¡_r) cQ¡_z) -. cQ¡_t)] (4-3-8)

Using the linear prediction algorithm in time domain, we have:

g(ti)=xs=lg(ti_) s(t,_) ... s(t¡_)llq qz -. at.fr (4-3-s)

a =lq a2 ... ar1? is the linear coeffìcient vector.

Similarly,

g(t,*t) = xa =[g(t¡) g(r;_r) ... az ..' a rfr
_r
I c(,-,.,\ I I

r"t , = | 
,a, ,.,i I *o 

" =l ,ïÍ:;Ì åÍl:,;'
ti¡..
lsl'-'*^, rt^,,, 

[e(r,_v ) g(r,.¡r.r)

g(t¡-ut)llat

cç,-L) I
e(, ,*,) I

g (r,-r-n, -, )1.,,.

Then, we have

!= Xa

The singular value decomposition (SVD) ofthe matrix X is:

(4-3-ro)

(4-3-l l)x = uDV'.. o =l '^,r ox,1r *¡ I
lo1u. x¡x 0Jv-x¡p.. x¡J
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U and V are unitary matrices and D is a diagonal matrix. The rank of data matrix

is r , therefore the number ofthe linear prediction coefficients is r . The

implementation for the rank of data matrix is:

Fisure 4-3-3 Rank calculation block diasram for the Pronv technioue

. The fìrst time window for ground surface contribution only

The first time window must cover the contributions fiom the ground surface only.

Initially, we searched the time step with the highest signal peak as the start of reflection

from the ground surface. It is true for a deep buried non-metal landmine. But

sometimes, this is not true for subsurface buried objects or landmines with a small metal

piece. Based on the above consideration, the first window is chosen upon experiments.

Implementation ofthe window search can be accomplished by two methods: one is based

on an automatic search ofthe peak signal from the ground surface in a certain time area.

The other one is to configure the first time window manually.

. The start point for Simplex Method

The Simplex method needs a start point. After the estimated ground surface

contribution is removed, the residual GPR data, r(ø,) , is supposed to be dominated by

the reflection iìom the buried objects. r(¿o,) can be retvritten as:

x

Increase K by ÂK

Calculate the rank of X
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r(Ø¡) = hcþ)) - ñc(a ¡) + a,¿-ød,-ia/,t 
",u,o,.." 

(o,),i = l,...,nt Ø-3-r2)

Multiplying -!s!r-J!ì-on both sides of the above equarion, we have' ' " ll | 
"¡c*u," 

(ø ¡) ll

r ((Ð ) -!E!!!: lal - = þ c @ ) - i, 
" 
1r,¡1 J-utr:J!l-- + q,e -',o, - r.,,. t 4-3- t3\' " 

llt,'e,,",,,," (r,)ll' " "'llt"o,o,n" @)ll' ''-

ì.(@)- 
::je!:!!: )!:..!- should be dominated by the second term, a,e-@d,-ia+,. Again,' 

ll t 

",o,",,," 
(o ,) ll'

the Prony technique is used to estimate the parameters þ, å, i j for the start point

based on the strongest signal in the ,.t ,¡@

4.3.4 SimulationResults

The purpose of the following simulation is to evaluate the adequacy of the

implemented IT algorithm. We use the preprocessed FDTD GPR data with buried objects

as the input. We expect that the ground surface contribution should be decomposed from

the contributions of the landmines. Unlike the LP algorithm in section 4.2, the IT

algorithm processes the received GPR data at a cross-range scan position. It does not

need any GPR data lÌom previous scan positions. In our simulation, the data in Resìdual_

,nine+gruund_T9_1R3, listed in table 4-6, is used as the inputs of the algorithm. The

geometry ofthese data, as shown in Figure 4-3-4, is created according to table 4-6.

We assume that the GPR system illuminates the area with a narrow beam width

and the buried landmines are separated enough so that there are no contributions from the

nearby landmines. For example, on the second cross-range scan position; the GpR

receives contributions from the ground surface and from the landmine buried directly
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under the scan position 2. No contributions from the closest landmine under the scan

position 3 and scan position I are considered.

-- _._.___-______-_llï:¡¡r4;;;;f----*----
l\lor¡ng csrt

23

@¡ 
Cross-range scan pos¡tion

\ 'landmine

Figure 4-3-4 Geomelry ofthe preprocessed FDTD CPR data set for IT simulation

Figure 4-3-5 is the images ofthe input and the output ofthe IT algorithm. From

cross-range scan position 2 to 6 and from time step 390 to time step 450, the ground

surface contributions are reduced signifìcantly. At the cross-range scan position l, the

buried object is l,25cm deep under the ground surface. The contributions fiom the

ground surface and from the buried object are partly overlapped. The un-overlapped

ground surface contribution, from time step 390 to time step 430, is reduced, too. We can

conclude that the implemented algorithm does decompose the ground surface

contributions from the contributions ofthe buried objects.

t̂
Æ\/ r\

i

-6: a set of DTD
Cross-range scan position 2 3 4 6

Res¡¿ual_ ni e+grcund_Tg_ÁR 3

aj 5 l0 20 25 30
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lnpul of FDTD GPR data beloro lterâtive algorithm,.,2ül
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Figure 4-3-5 Images ofinput and output data oflT algorithm

4,3.5 Simulation problems and solutions

In our simulation, we faced the time consumption problem of the IT algorithm. In

order to show this, the following example was set. The threshold á was defined as 0.001

for ground-only preprocessed FDTD GPR data, Resìdual_ ground_only_Tg. No

landmine was buried. The inner loop was set to l0 and the outer loop to 8. The

algorithm did not detect an objeci as expected, but the consumption of CpU time was

3.249e+002 seconds, i.e. 5.41478 minutes for the detection procedure. For a cross-range

scan area of 20 cm, if scan positions are lcm apart equally, the number of total scan

position rvould be 20, and the IT algorithm needs 1.8 hours to finish. If the threshold is

set to 0.01, the algorithm generates the alarms at the ground-only scan position.

,1!1
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One ofthe solutions to this time consuming problem is to apply this algorithm on

the alarmed scan positions only. The alarms can be generated by the LP algorithm for

general landmine detection or by a crcss-coftelation alarm generalor for specific

landmine detection. Because a reference signature is also used in the algorithm, we

prefer the second one. In this solution, Figure 4-3-l ìs modified as indicated in Figure 4-

3-6.

Figure 4-3-6 Object derection Block diagram with IT algorithm



The cross-correlation alarm generator is shorvn in Fìgure 4-3-7, as below:

f--P'"'"*;dcPffi_-l
+

Set first time window ( I O t b ),10 and /ó are the start and

end Doint ofthe time window

Subtract the ground surface contributions from lhe fìrst
time rvindow

Cross-correlation CorT \vith reference signature of intcresl

Corr > 6"",- Go to next scan position

Figure 4-3-7 block diagram for cross-correlation alarm generator

Suppose colr is the cross correlation of the pre-processed GPR data \,vith the

reference signature t,¡g,*¡,,"(a¡). The cross-correlation alarm generator in Figure 4-3-6

generates an alarm if co'. is greater than the threshold á",- (an estimated value with an

adjustable factor we rvill discuss it later). The purpose of this alarm generator is to run

the lT algorithm only on the alarmed scan positions, reducing the total time over the

whole scanning area.
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lfthe range resolution, dA, ofthe GPR system is high enough, then the first time

window, used in the lT algorithm, is also helpful in the cross-correlation alann

generator to reduce part ofground surface contribution.

(4-3- 13)

Here .B is the bandwidth of current source. ys is the propagation speed and á¡ is the

relative dielectric constant of the propagation media. ln our FDTD simulation, -B is

5GHz and e, is 7, therefore, dR is l.l3cm. Because the shortest distance befween the

buried objects and the ground surface ìs l.25cm, the range resolution is high enough to

separate the ground surface from the closest object. This means that the first time

windorv can be used to remove part of the ground reflection with no loss of any

contributions from the objects.

á",,, is calculated over a small area with no object buried.

d,",, =!_ofc,,1¡ s_3_t4)N-

Where co,?(ù is the cross correlation value at the scan position i, Fr"o¡" is a factor to adjust

the threshold 6",,,, N is the number of scan positions for the threshold estimation. If

F"",¡, is high, 6"on will be high, and the number ofgenerated alarms rvjll be low. á"o,' is

set high enough so that ferv alarms are generated over an area with no objects buried.

But, If 4,,, is too high, a buried object, rvhich generates a lorv reflection, i.e. low SNR,

will not be detected. This is unacceptable, So á.,- should be set low enough so that no

buried object will be undetected.
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We we Prep_GPR_døta3roup_ttoìse, in section 4.2,2, as the inputs of the cross-

corelation alarm generator. Figure 4-3-8 shows the images ofthe inputs and the output

of the alarm generator. There are 93 scan positions and only halfofthem are alarmed.

The time for scanning this area is reduced by 50%.

...

r:i..:::::::.l: :., 
ìargaìsìsri*irre io rime aomain

¡ i /lnn ! i i

: iv lf :v : i I

There a¡e only six objects in Prep_GPR_dat Jtoup_no¡se. We shouid be able

to reduce the alarms further with a higher cross correlation threshold 6"oo. Table 4-7 and

Table 4-8 are the simulation results with different thresholds for the number of object

detection and the number ofthe false alarms over SNR.

6q, .
r:: t¡ms sleps

::.-',: :ì t::,.i-2qqi:::j i :, ;j. r{!Q



Table 4-7 Alarms ove¡ SNR and object detection oyer SNR with F.,."Þ 0.35

SNR alarm
#

object detected
#

SNR alarm # ooJecI qelecleo
4

-5.169 l5 l0 63 9

-5.092 l5 l0 -5.1{:r5 5E

-5.166 20 l0 -5.788 60
-5.t75 t'7 t0 -4.861 t0
-5.334 IO -4.842 t0 l0
.5.329 25 l0 4.809 t0 l0
-5.452 2l t{) -4 74'1 l0 l0
5.503 l9 l0 -4.765 IO l0

-5.490 29 l0 -6.029 74 l0
-5.462 3l l0 -5.999 7t l0
-5 604 l0 .6.02s 70 ì{)
-5.603 l0 -5.796 50 l0
-5.57 41 l0 .6.t68 87 t0
-5.625 40 l0 .6.205 84 t0
-5 -763 ó3 l0 -6.018 85 l0
-5.87 4 56 l0 -6.275 l0
-5.840 56 t0 -6.065 62 l0

Table 4-8 Alarms over SNR and object delection ov€r SNR with F.""!" O.4O

SNR alarm t oelecteo SNR alafm # object detected
#

-4.871 l0 -5.551 )) l0
-4.909 5.856 3l 9

-4.864 to l0 5.720 I
-5.031 l1 IO -5.744 33 9

-4.995 l0 10 -5.855 17 t0
l0 -5.847 25 to

76 l0 .5.769 26 l0
-5.301 to l0 -5.687 32 l0

ll 10 -5.976 5l 9

5.315 I l0 -6.089 33 9

-5.37 4 l4 l0 -5.957 l0
-5.315 t7 l0 -6.0269 9

')(l l0 -6.108 47 0
-5.333 t7 l0 -6.1I I 45 9

-5.540 l8 9 -6.140 60 0

-5.64'1 22 -6.297 67 9

-5.590 3l t0 -6.291 59 9
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Figure 4- 3-9 Number offalse alarms over SNR with d¡fferent threshold factor

Table 4-7 and Table 4-8 indicates that if SNR<-5.3d8, the number of alarms are

up to 30. The cross-correlation alarm generator yields good results if the SNR is high

enough, SNR>-5.3d8. With the same SNR, the number of false alarms is decreased

when compared with the LP alarm generator over the same SNR, see table 4-5. Figure 4-

3-9 is created based on table 4-7 and table 4-8. It indicates that with the satne SNR,

increasing F"",," reduce the false alarms. A high threshold á"o,, is helpful in reducing

the number of false alarms, but it also increases the number of buried objects undetected.

With a low threshold õ"on 7F"".,":0.35) and SNR >-5.5d8, the ratio of generated alarms

per landmine is less than 3 and no landmines are undetected, The maximum number of

generated alarms in table 4-7 is 34. The total number of scan positions is 93. Therefore,

the number ofthe generated alarms over the total number ofscan positions is up to 37%

(34/93), i.e., the time consumption for this scan is reduced by 63%.

We applied the IT algorithm on the alarmed scan positions. The buried objects

were detected as expected.

.5.2::: . : 4
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The image ofthe output ofthe IT algorithrn is shown in Figure 4-3-10.

Figure 4-3-10 fmage ofpre-processed FDTD cPR data afrer IT algorithm

4.3.6 Summary

The IT algorithm was successfully implemented and the three main parameters of

this method were corectly chosen. These three parameters are: i) the first time rvindow

selection for the ground surface contribution; ii) the rank estimation for ground

contribution by the Prony technique; and iii) the start point for the object contribution by

the Simplex method.

The implemented IT algorithm was applied to the pre-processed FDTD GPR

data. The results indicated that the implemented IT algorithm decomposes the ground

surface contribution from the contributions of the buried objects and detects the buried

objects. This proves that the implemented IT algorithm works well with our simulated

FDTD GPR data.

During our simulation, we found that this algorithm has an execution time

problem. With an inner loop of l0 and an outer loop of 8, this algorithm takes up to 5

:

fesidu?l GPR Cala aãetltè¡êlive ?lgo¡lbdi
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minutes to finish the detection over a scan position. In order to solve this problem, we

introduced the cross-correlation alarm generator to genetate an alarm on a cross-range

scan position if the estimated measure is greater than a threshold. The IT algorithm is

stimulated on an alarmed scan position only. By doing this, the detection time over an

area of93 scan positions can be reduced up to 70yo.

Figure 4-3-l I is the recommended block diagram for buried object detection wirh

DSP techniques discussed in this chapter. The use ofthese DSP techniques on measured

GPR data for landmine detection is presented in Chapter 5.

C¡oss-corelâtion alalm genemtor:

IT algorithñ fo¡ ground conf¡bùtion
subl¡action

Ra¡ge estimation for lhe detected
objects

Landmine image/recognition

Figure 4-3-l I Recommend Block diagram for landmine detection

GPR data preprocessing for removing of
determinislic p¡opagation reflection if aly
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Chapter 5 Experiments on the Measured GPR data

In Chapter 4, we discuss the implementation of the LP algorithm for general object

detection and the IT algorithm for object-oriented object detection. These two algorithms

can detect the landmines with FDTD GPR data. In this chapter, we first introduce the

collection ofthe measured GPR data with our lab set-up and pre-process them. And then,

rve apply these two algorithms for landmine detection.

5,1 GPR raw data collection

The system function block is shorvn in Figure 1-l and is detailed in [19]. A Network

Analyzer generated stepped frequency signals f¡om lGHz to 12,4GH2. The number of

frequency steps is 501. One horn antenna attached to the moving cart is used for both

signal transmission and receìving. In this work, GPR raw data or measured GpR data

refers to the directly received data from the input of the Nehvo¡k Analyzer and is

collected in frequency. At each cross-range scan position, GPR raw data is recorded and

then downloaded to a PC. With this microwave Network Analyzer, the range resolution

R-",,,,,,,,, for the waveform through lossy sand is:

(5-l -l )

á. is 3.15, see [5].

Controlled by the PC, the moving cart moves evenly across the cross-range

direction. The horn type antenna moves from right to left or lefi to right along the beam,

covering a total cross range distance of 3m with various step sizes. Moving the antenna

across the beam is called "a scan". The sandbox is bottomed with absorbing material to

reduce the reflection from the room floor.
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Moving

l2
Cross-range scar¡ pos¡tion

SandBox

Figure 5-l-l lllustration ofconceptual geometry block fo¡ GPR raw data collection

One scan of GPR raw data, NA_raw_data.moL was collected rvith a landmine buried

under the sand with no buried rocks, as shown in Figure 5-l-1. The scan was performed

across a beam of l40cm long. There are 116 scan spaces with a step size of l.2cm

approximately. Figure 5-1-2 is the waveform of the GPR raw data in time domain.

Figure 5-l-3 is the image of the GPR ra\\.' data along the beam. There are no noticeable

differences among the received raw GPR data at different scan positions.

w
,

landmìne /

8t

Figure 5-l-2 cPR raìv data collected from sand rvith rocks and landmine



liaage ofâ scan of.GPR raw data

Figure 5-l-3 Image ofa scan ofGPR raw data

As with our simulation with FDTD GPR data, these raw GPR data must be pre-

processed in order to apply signal-processing techniques for landmine detection.

5,2 Data pre-processing

We perform a few scans, and we noticed that the¡e was little change in a scan ofGPR

raw data after time sample point 120. The Sandbox is 27cm deep. Range resolution

R*,"r,,i.,, is 0,74cm. It takes about 36 time sample points for the micro waveform to reach

the bottom ofthe sandbox from the sand surface.

R27
R __n ^" 0 ."19

If the time sample point for the sand surface is located at 50, then the major contributions

from the sandbox will be from the time sample point 50 to the time sample point 122

(50+2*36). The GPR ra\¡r' data after the time sample points 122 are the contributions



mainly from the stable suroundings. Therefore, the GPR rarv data, after time sample

point 122, rvas filtered out by setting them to zero. After this processing, the scan of

GPR raw data is denoted as NA_rrnv_data_.122, as shown in Figure 5-2-1. As for the

time sample points for the sand surface, it is an experimental value. It depends on the

distance between the antenna and sand surface, and the time delay caused by the length of

the cable attached from the antenna to the Nefwork Analyzer as well.

Figure 5-2-l Image ofa scan ofGPR raw data aÍìer the out-of-range data is filtered

GPR raw data consists of two major signals: the deterministic signal and the

statistical signal. The statistical signal is a random distribution ÍÌom the reflecting objects

like rocks, Iandmines and rough sand surface. The deterministic signal is the

contributions by the stable sunounding objects with very slow change from a scan

position to the nearby scan position, comparing with the disturbance caused by the small

óf:à:É.i.a,ü olGP¡iriaìd :il 
ata' qñ.er
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objects. We defined clutter as the contributions from any reflection objects, except the

contributions from the landmines.

5.2,1 Decomposition of deterministic propagation clutter

ln FDTD simulation, the ground surface contributions can be reduced by the linear

aìgorithm based on layer geometry rrodel. Figure 5-2-2 is lhe output of the linear

algorithm with GPR raw data, NA_rat+,_data_l22, as its input. The prediction order is

24. The estimated coefficients are obtained based on the sand-onlv area.

gEe...{ât ? anal 9ql e¡ryi¡lleli!fu a1¡ie'¡erìiÑed'

Figure 5-2- 2 Image ofGPR ra\. data afler deterministic signals a¡e removed

Comparing Figure 5-2-2 with Figure 5-2-1, rve do not notice any improvement.

Changing the prediction order did not improve the result. This indicates that the received

GPR raw data is not linear predicable in the same sense found using the algorithm with

Iayered geometry model.

-:r'.:,::ìi-l-l

.:;'-1i:::iLiiìi::i
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5,2,2 Average background estimation

Figure 5-2-1 demonstrates that background signals from unknorvn sources

through the rvhole scan are very strong and has no significant change except the area

from time sample point 50 to 60. The background noise in a small area is considered

stable, which can be removed from the GPR raw data. Let spRdata(i) be a vector

representing GPR raw data at the scan position i .

gPRdata (i) = {GPRdata (t,i), j =1,...,n| (s-2-2)

m is the number of total sample points. In our case, z is 501 . f; is the time sample

point. GPRdatø(r j,Ð is the GPR data sampled at ti^¿ t¡ at the scan position l' . The

background noise 

-oc*oom4i¡ 

is the average ofGPR raw data over N scan positions.

¡å
bøckcÌound (i\ = :- > sPRdara(i) (s-2-3)

ln a large cross-range area, adaptive background average is used in order to adjust the

various changes in the environments.

tnc*e r-"ø 1t'¡ =f gpRdøtø(k - i)x AdøpC(i),k > N

AdapC(i),i =1,2...,Nu." uOuO,,u" O*umeters chosen by:

rV

I aanpcli¡ = r
/=l

AdapC(i) is adjusted according to the roughness of the sand surface

AdapC(l) =a, Adqpc(2)=l-q and li*õñãî\ = spRdota (t\, then we have:

(s-2-4)

(5-2-s)

If N =2,

(5-2-6)tqc*G¡ound (t) = o 
" 

bocßGro"ud (k -l) + (l - d\x gPRdarø(k)

The residual GPR data roo(k) at i scan position is obtained by removing the estimated

background noise from the GPR raw data.
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rppT)= CPRdøta(k) - tøc*erunaT¡

Figure 5-2-2 is the implementation block diagram for the

estimation.

(s_2_7)

adaptive background noise

1-

Figu¡e 5-2-3 the block diagram ofbackground estimation and removal

Figure 5-2-4 is the residual GPR data after the background noise with adaptive

coefficients of [0.1 0.35 0.55] is removed. It indicates that the big disturbance under

sand surface is located from scan position 80 to 100. It is the place rvhere a landmine is

buried. The landmine image becomes clear after subtracting the adaptive background

noise, ln our current set-up with dry sand and the flat surface or rippled surface, changing

the adaptive coefficients makes no significant difference among the images of the

Adaptive background noise subt¡action

tpp&) = CPRdûta(k) - tøc*erowd(*)

Residual GPR data ro, (,t)
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residual GPR raw data. This is because our sand environment is a homogeneousJike

media, The ¡esidual GPR data after this pre-processing, called pre-processed GpR rarv

data, can be used for Íirrther processing.

0.55

5.3 Experiments rvith the LP algorithm

NA_rav_data_P3_.8 is a scan of GPR raw data flom a master database. There are

7 objects scattered under the sand surface. Figure 5-3-l is the pre-processed GPR raw

data as the input of the LP algorithm for general landmine detection. In this collection,

the.sand surface is roughly located at time sample point I10. The major contributions

íìom the sandbox are from time sample point 1 l0 to I 80. The prediction order was set to

5 and the average number was set to l0 for the alarm threshold estimation. The alarm

generator threshold is 1.5. Then, seven alarms were generated, located at the scan

position ll, 13,38,66,78, 88 and 89 as shown in Figure 5-3-2. There were two

cil?
0.35

qPB.
:¡.

Figure 5-2-4 Image ofresidual CPR data after pre-processing
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landmines roughly centred at ll9cm and 80cm. Because there are ll8 scan positions

over l40cm, the landmines'scan positions are calculated by:

scanlosition : minelosition*l I 8/1 40cnt

The landmines are located at scan position 67 and 100.

(5-3-l )

pt¡-p q3..iÈ,te$ìÐ,r jd.f...¡._1.q'.q"¡iñg1t:

Figure 5-3-l Image ofpre-processed GPR raw data as the input ofLP for landmine detection

Figure 5-3-2 Output ofLP algorithm for landmine d€t€çtion



Alarms at nearby scan positions are considered as one alarm area, i.e. hvo alarms

generated at scan position I I and l3 are considered as one alarm area, and alarms located

at scan positions 88 and 89 as another single alarm area. The results then are:

. 5 false alarm areas generated,

. A landlnine located at 67 is detected,

. A landmine at 100 is missed.

Note that the landmine scan position 67 could be 66 due to the inaccuracy in the

measured GPR data. Lorvering the threshold to 1.2, we obtain l3 alarms located at scan

positions:

[(lr r3), 38, (66 68), (76 78 7e 80), (88 89), (ee 100),r08]

The results are:

. 7 false alarm areas generated,

. A landmine located at 67 is detected,

. A landmine at 100 is detected.

Figure 5-3-2 indicates that there are six cluttered peak areas:

Area l: from scan position I I to 13,

Area 2: from scan position 30 to 38,

Area 3: from scan position 62 to 68,

Area 4: ÍÌom scan position 76 to 80

Area 5: scan position 100.

Area 6: scan position 108.
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Because the LP algorithrn is a general ìnethod for landmine detection, no knowledge of

the landmine shape and size is considered. With pre-processed NA_raw_data_83_8, and

the threshold of 1.2, the LP algorithm generates six alarmed a¡eas for fi.¡rtber landmine

determination. Vy'ith some knorvledge ofthe buried landmines, the alarms can possibly be

reduced further. Based on the above results, we concluded that with our lab set-up, the Lp

algorithm can detect landmines with some false alarms. The lower the threshold is set, the

more alarms will be generated.

5.3.1 Improvement of the LP algorithm

GPRdataStore_rateData.mat is a scan ofGPR raw data collected with high cross-

range resolution and a single buried square landmine. No rocks were buried. Figure 5-3-

3 is the image of the GPR ratv data after pre-processing. Setting the prediction order to 5

and the average number to 10, we expect the peak alarms generated around scan position

50 and scan position 65. The LP algorithm's output is shown in Figure 5-3-4.

Fisure 5-3-3 lmase ofDre-processed GPR data tvith a buried obiect under the sand surface

,.50.:::
im

!50

m
2æ

ry
4m
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Figure 5-3-4 indicates that the LP algorithm detects the significant error energy at

the scan position 50, and some small energy changes scattered at the scan position 55, 62,

67 and 85. The resulls are within our expectation. Figure 5-3-5 to Figure 5-3-7 are the

outputs of the LP algorithm tvith different prediction orders. We notice that from

prediction order 5 to 18, the strongest alarm is at scan position 50, the Ieft edge ofthe

landmine. If the prediction order is higher than 22, lhen the strongest alarm switches to

scan position 60 from scan position 50, the right edge of the landmine, see Figure 5-3-6.

For prediction orders of 20 to 21, the results are messed up far from satisfactory, as

shown in Figure 5-3-7.

Prediclion order = 5:

Figure 5-3-4 output ofLP algorithm

9l



Fisure 5-3-5 output ofLP algorithm

r i Prediction order- 25:.:.::..:.:

Figure 5-3-6 output ofLP algorithm



Predirtiorì order = æ

60 -',' :'70.
;.:,;..,,:.:;: ;,-': : , . cr0ss-iange scan p0s¡l¡on, . , :, '

Fisrlre 5-3-7 olltnr¡t oft,P alsor¡thm fôr landmine .letectiôn

The above results indicate that in the above case, with prediction order of 20, the

original LP algorithm has trouble to set an alann for the obvious buried landmine.

Figure 5-3-8 to Figure 5-3-l I are the ourputs ofthe improved LP algorithm with

different prediction orders. Ifthe prediction order is less than 10, it alarms at both right

edge and left edge ofthe buried object. If the prediction order is above 10, it generates

one error energy peak area located flom scan position 50 to 60, i.e. the position of the

landmine. This indicates that the improved LP algorithm obtains better results for this

case than the original LP algorithm.

:t
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crbs9:làlge s9ân p.o8ilion ,'. ¡¡ . ,

output ofimproved LP algorithm

:,.,. Pr¿diciion or¡ei.= I " "::.

39,, ..,4!,.;..¡'..S,,:.:-,.4,¡: :,70
': :'.crosS:range scàn p!È¡liainr::..r.

Figure 5-3-9 output ofimproyed LP algorithm



Prediclion order = l2

,- 
': 

.,t -5tl:-, :.::.60,.,:t :., :,?0 ., 
: 

.,. Ë0

crossìánqè scàl posiljon . 'r ,,

oufput ofimproved LP algor¡thm

. Þrcdjcfi;n.òid;i=:20:. ..... .: '

4'.,.t.' .'..::tt,.,t:l!:
cf 0qs:lqng9.!9!¡ pqiili(Ì4.ì::

Figure 5.3-l I output ofimproved LP algorithm

Figure 5-3-12 is the image ofthe pre-processed Nl _rav_daro_Ð3_B used as the

input ofboth the original and improved LP algorithms. We expect the highest eror



energy to appear from 60 to 80. There are rocks scattered under the surface, so there

should be some low error energies scattered, at scan locations from l0 to 20, from 40 to

50, from 60 to 80 and probably 100.

40:1.:58,:ìl:El::,-:.:i70 i: ì Al :.. ::: 90,: : 1tiÎ ::. 1 10

cross-rânge scan posilion

Figure 5-3-l2lmage ofpre-processed GPR raw data as the input ofLp algorith¡ns

The prediction order was set to 5. Figure 5-3- I 3 and Figure 5-3- l4 are the outputs

of the original and improved LP algorithms of the pre-processed GPR raw data,

NA_rrnv_data_83_-8, from the Master database. Figure 5-3-15 and Figure 5-3-16 are the

outputs ofthe original and improved LP algorithms for a prediction order of 8.

20.:. ::..','. .: .,:18::tt'.:::r.:,ì:6U:- :::: i. :'. æ
i.,,::'. r.r¡nìíôrr¡iideïráì itqsitioó-.]:,_ì,i,.r.,, r::]

Figure 5-3-13 Output ofLP algorithm for landmine detection

Pre-procsÊsed 6PR rald dala fgt LP processing
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Figure 5-3-14 Output ofimproved LP algorithm for landmine detection

Figure 5-3-15 Output ofthe LP algorithm for landmine detection
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Prediol¡ón ordèi:8

.-.:.'4i.

Figure 5-3-16 Output ofimproved LP algorithm for landmine deteation

Comparing the above results, both the original and improved LP algorithms are

able to generate alarms in the expected areas. However, the improved LP algorithm

obtained better results than the original LP algorithm [10] as can be seen from the highest

error energy located from scan position 60 to 80.

The following tables are created by the original/improved LP algorithms for the

false alarms and landmine detection as a function of the threshold (€),,,",,,.,0 ) .

Table 5-l false alarms ys. threshold by the orieinal LP



Table 5-2 false alarms vs. thr€shold

Table 5-4 false alarms vs. threshold

5-5 false alarms vs. threshold by LP

Table 5-6 false alarms vs. theshold



From the above results, we can conclude that

The improved LP algorithm obtained better results than the original one.

The lorver the threshold ( 6¿.",/.i / ) is set, the more false alarm areas are generated,

With the improved LP algorithm, the square landmine is detected with fewer false

alarms generated than using the original LP algorithm.

For a rounded landmine, because its reflection is very low, it has to be detected with

Iower thresholds. Unfortunately, many false alarm areas are generated with a very

low threshold. Because of this, the work presented here was focussed on the square

landmine that was available. Detection of the smaller rounded mine rvas Ieft for future

research.

5.3.2 LP algorithm with adaptive technique

With a time varying environment, the adaptive LP algorithm is needed to adjust

its results in response to the environment changes. Data was collected with a landmine,

located between scan position 5 (left edge of the landmine) to l0 (right edge of the

landmine), Some rocks are scattered in the scan area. The scan positions are separated

2.5cm apart. Figure 5-3-17 is the image of this pre-processed data. The peak error

energies are expected to be at the scan position around 5 to l0 and 20 to 26.

:... ,õ]

Fiorrre 5-1-i7Imâee ofnre-nrocecced GPR râw rlâtâ wifh â hrrried landmine anrl rocks
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Because the location ofthe landmine is in the training area, the LP algorithm with

no adaptive processing detects the right edge of the landmine, but fails to detect the left

edge of the landrnine. In this case, we set the prediction order to 3, the adaptive

coefficient 2 (refer to section 3-2-2) to 0.015. The output of the adaptive LP algorithm is

shown in Figure 5-3-18. Figure 5-3-19 is the output ol the LP with no adaptive

technique.

!,::::1..,.::::-'; J,2

i,::tt:tã!9
i.:!:irl:l::-Ê::'::,

¡:,y;,.¡.¡1þ:,.,iB

I r:i,-; :-ó:::.:l-:

<!:'::n:::<':ì
r : -1.'!. ,

;,,:.,::::=.8ì::'

ór€dict¡on ôi¡ér= 3 Ad¿piivs co;fr¡ci'jiìi;0.ù15

Figure 5-3-18 output ofadaptive LP algorithm

Figure 5-3-19 output oforiginal LP algorithm Ìyith no adaptive technique

¡r:;:ì,.:=::i,.r-ii:::ì
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Figure 5-3-19 indicates that the LP algorithm rvithout the adaptive technique

failed to detect the eror energy change at cross-range scan positìon 5, but alarmed the

error energy at the scan position 12. With the adaptive technique, the adaptive LP

method is able to generate alarms at the scan position 6, 12,20 and 27, corresponding to

the disturbance made by the landmine and the rocks as can be seen in Figure 5-3-17.

There are no significant differences among the outputs of the adaptive Lp

algorithm ifthe adaptive coeffìcient is less than 0.15 and the prediction order is less than

5, as can be seen in Figure 5-3-20 to Figure 5-3-22.

II 'l ,

: :,, ::.:::.:r.ì:,;.:7

I
3

Fi$¡re 5-3-20 output ofadaptive LP algorithm

!-:=:.,...19..::-ìrr=lì:,J_5:::.;.::..::i:: æì::i:.ìr:i:=?5j:
c!os-s:ranqe êq9tÌ p0eit¡on

Figu¡e 5-3-21 output ofadaptive LP algorithm

102



prèd¡clion order = i Adapt¡ve Êoefücient = 0.15

Figure 5-3-22 output ofadaptive LP algorithm

Figure 5-3-23 output ofimproved adaptive LP algo¡ithm

Figure 5-3-23 is the output of improved LP algorithm rvith adaptive coefficient

0.015. Comparing with Figure 5-3-16, we can see that the improved, adaptive Lp

algorithm generates better results than the original, adaptive LP algorithm. The strongest

enor energy is located at the scan position 26 and 27. The adaptive coeffìcient is an

:':ii

i.l:_-'.*¡
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experimental value. With the same data, we obtain good results ifthe adaptive coefficient

is in the range of [0.0] 0.2].

The data used has a lol cross-range resolution of 2.5cm. The pre-processed GPR

raw data, NA_ratç_data_83_B ÍÌom the Master database, has a higher cross-range

resolution of lcm or so. The higher cross-range resolution means a lower change in the

GPR data from the nearby scan position. Figure 5-3-24 is the output ofthe adaptive LP

algorithm with the pre-processed GPR raw data, using NA_raw_data_43_B as its input.

Comparing Figure 5-3-24 and Figure 5-3-15, if the normalised error energy threshold is

l 5, we can see the alarmed areas in both figures are the same. This indicates that the

adaptive technique does not improve the results. This is because the cross-range

resolution (l.2cm) in the pre-processed NA_rav_datq_83_B is high enough so that there

is no big changes in nearby scan positions.

l..Ía-:ä::::;r;::.{{i,
:-ì:a:a.-:::-;,:,:.-i=.::

Figure 5-3-24 Output oforiginal adaptive LP algorithm



Figure 5-3-25 is the output of improved LP algorithm with the adaptive technique.

The results are not improved.

Figure 5-3-25 output ofimproved LP algorithm

In summary, the adaptive LP algorithm is used to adjust its results in response to

the various environment changes. If the cross-range resolution is low, i.e., the distance

between the closest scan position is big, the contribution from the surroundings changes

quickly and then the adaptive technique is used in response to this change. The adaptive

coefficient is an experimental value. With our lab collected GPR raw data, the adaptive

coefïicient is chosen in the range of [0.0] 0.2]. The adaptive LP algorithms are able to

generate alarms for landmine detection.

prù!¿.r¡-q¡ q¡' 
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5.4 Summary of experiments rvith LP algorithm

GPR ¡arv data with our GPR system we¡e collected. These GPR raw data must be

pre-processed before any further processing for landmine detection purpose is done. The

pre-processing techniques rve used are the fìltering technique, which filters the out-of-

range contributions, and the average background estimation method.

With pre-processed GPR raw data and without any previous knowledge of

Iandmines, the LP algorithm can generate alarms. The lower the alarm threshold is set,

the more the alarms are generated. If the threshold is not lower enough, a Iandmine rvith

low energy contribution may not be detected. With a very flat surface, we find that in

one case of high cross-range resolution, the original LP algorithm coulå detect one edge

ofthe landmine, but fails to detect the other edge or unable to detect the buried landmine.

With the improved LP algorithm, better results are obtained.

Finally, rve experimented with the pre-processed GPR raw data with rocks scattered

under the surface to simulate the environment changes in the fields. The adaptive LP

algorithm is able to generate alarms for the buried landmines.

Ifa landmine is located at the area used for parameter training, the LP algorithm fails

10 detect the starting edge ofthe landmine. Using a reduced prediction order, the adaptive

LP algorithm is able to detect the contributions from the buried landmine and rocks. In

varying environment, the adaptive LP algorithm works bette¡ than the LP atgorithm

rvithoui adaptive processing.
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Chapter 6 Experiments of the IT algorithm on Measured GPR Data

Using FDTD simulations, the implemented IT algorithm can decompose the residual

ground surflace contributions in the pre-processed GPR data and detect the simulated

landmines. The cross-correlation alarm generator is introduced to solve the time

consuming problem of this algorithm. In this section, we will apply the pre-processed

GPR rarv data to the cross-correlation alarm generator to generate alarrns and then use the

IT algorithm on the alarmed scan positions for the Iandmine detection.

6,1 Landmine signature

The reference signature of the landmine is an important feature when using the

cross-correlation alann generator and the IT algorithm. In FDTD simulation, the

reference signature is obtained by subtracting the ground-only contribution from the

contributions ofthe ground and the landmine, as mentioned in section 4-l-3. Similarly,

with the pre-processed GPR raw data, the reference signature is obtained by subtracting

the reflection of a deep buried landmine from the pre-processed sand-only GPR data with

time gating.

Figure 6-l-l shorvs the image of the pre-processed GPR raw data for the

landmine signature subtraction. The landmine contribution is clearly visible. Using a

time gate from 8 to 20, we obtained the reference signature.
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Prepr0cessed GPR raw dala ¡n Time domâ¡n
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Figure 6-l-l Dre-processed GPR raw data and a reference signature ofinterest

6.2 Cross-correlation alârm generator

The threshold in the alarm generator is calculated at the first few free spaces, i.e. no

landmine is buried at these scan positions. Figure 6-2-l shows the image of the

preprocessed GPR raw data collected with the landmine and two rocks buried in the sand.



There are 3l scan positions in total. The threshold scale F"""1" is set to l.l. There are l7

alarms generated. The lT algorithm is run only at the alarmed scan position. The

calculation time for alarmed scan positions vs. total scan positions is ¡educed by 45%,

¡-!=¿sott.' 3t
..: -..:.:.: ..::...=,,,:.:,'.,j.=:t::.1::::..:.::.:::.:..,j.ì-,i:r:1..r..,:r:::,:::t:::::
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Fieure 6-2-l Illustration of alarms seqerated bv the cross-conelation alarm senerator

ln Figure 6-2-2, the GPR raw data is collected with two big rocks and 5 small

rocks under the surface. With 2l scan spaces and threshold scale F"""t. of 1.1, there are
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l2 alarms generated. The calculation time for alarmed scan positions vs. total scan

positions is reduced by 42%o.

lhe reference s¡gnâlure 0iinlerdst

:0

À
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l,:ùtuE' d;"9r;d ú

Figure 6-2-2 Illustration ofalarms generated by the cross-conelation alarm generator

In Figure 6-2-3, the GPR data was collected in an unknown environment. With

1 l8 scan positions over a l40cm beam. The threshold scale was set to L2, and 43 alarms

were generated. The calculation time for the alàrmed scan positions vs. total scan

positions was reduced by 63%o.

In summary, the cross-correlation alarm generator uses a reference signature of

the landmine to generate alarms, which prompt us to use the IT algorithm for fr¡rther

landmine detection. The detection time can be reduced by up to 63%o comparing it with
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the time consumed by using the IT algorìthm for every scan position. If the threshold is

set higher, the number ofalarrns generated rvill be lorver.
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Fisure 6-2-3 Alarm senerated by cross-conelation alarm qenerato¡

6.3 Clutter decomposition, landmine detection and range estimation

At an alarmed scan position, the IT algorithm is used to decompose the clutter flom

the landmine's contribution, to further confirm the detection ofa landmine and provide

an estimated range. The propagation rvave travels through the air (free space) and the

sand. The distance betrveen the antenna and the sand surface is variable. The estimation

of the time delay from the sand surface to the buried landmine is critical for landmine
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range estimation. Once the estimated time delay is obtained, the range for the landmine

can be calculated accordingly.

6,3.1 Sand surface and range estimation

The microwave network analyzer does not provide the time sequence, as was the case

in the FDTD simulation. The time delay for the contributions from the sand surface must

be estimated first. ìn our lab set-up, the antenna is placed close to the sand surface to

minimize the contributions from unknown sor¡rces. By doing this, we expect the

strongest reflected signal to be the sand surface. Therefore, the sand surface is selected at

the sample time point rvhere the strongest signal is Iocated.

An example of the pre-processed GPR raw data is shorvn in Figure 6-3-1. It has 2l

scan positions along the flat sand surface, with a landmine, two big and five small rocks

buried. The strongest signals for all of the scan positions are located at the same sample

time point 13, The GPR waveform beyond the peak varies at different scan positions.

They are the contributions received fiom the sand. A small peak at the sample time point

38 is explained as the contribution from the sandbox bottom or floor.



Once the sand surface sample point is located, we can set the fìrst time rvindorv for

the clutter estimation. The Prony technique, with an estimated rank, is used to estimate

the tjme delay tsur¡¡ç" for the sand surface contributions. If the time delay for the

landmine contributions is denoted âS tlandmine , then the range of the buried landmine

will be:

R=t,rxdt=vrx(tn,,¿.¡.,-t,,,V"",)/2 (6.3-l)

r,sis the propagation speed. Because the network analyzer's frequency bandwidth is

ll/GHz, the time resolution is:

á.= I 
= 0.08772 ns' 1l .4 GH:

(6-3-2)

The range resolution is defined as the minimum distance that rve can identify the two

separated objects. Because the time delay is two-way propagation time, the range

resolution is calculated by:

^ 
_6,rr, _ ô,xc _4.366e-tt x3eq _ o.o073gm = o.73gcmoR= - = ^ -= t-¿ ¿xle ./J.l)

(6-3-3)

where c is the propagation speed in free space and s is the dielectric constant of the

media. ¿ is set to 3.15 as specified in [5]. With this GPR raw data, the estimated time

resolution is 0.08731909765204ns, close to the theoretical value 4 in equation (6-3-2).

The maximum range estimation error is dÃ /2, i.e., 0.368cm. If the landmine is burie{ at

a distance Â, the range distortion is defined as ÂiáR. Figure 6-3-2 is the image of the

preprocessed GPR raw data, as shown in Figure 6-3-1. There is a landmine buried around

5cm deep, centered at the scan position I l. The sample time point for the landmine is
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estimated at 20. Therefore, the estimated range ofthe landmine is á^x(20-13)=5.lcm.

The eStimated range for the landmine is rvithin the range distortion 5cn!0.368c¡n .

6.3.2 Initial experiments rvith IT algorithm

With the pre-processed GPR raw data, shorvn in Figure 6-3-2, used as the input, the

cross-correlation alarm generator generates 12 alarms over 2l scan positions. The IT

algorithm decomposes the clutter and detects the objects on the alarmed scan positions.

Figure 6-3-3 is the output of the IT algorithm with the th¡eshold ô = 0.1 . The estimated

objects include some rocks and the landmine. The detected areas are listed as beiow:

lhÈ reièrencè signature of inléte6l

.::lO. ...:..,12..:..;. ! 14.:.::,ì.'16 : :

iy¡f .j_.sF:dolislá!ìoii alarít:gônèr4p¡
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Scan oositions I 9-12 3 l4-t 5 t7 21

Detect€d area # 2 3 4 5 6

lmáge of delealed larget !4iththieôhôld 0J

:r:ì:: 6,':i,-:.::i::. j8,i:,r::j 10: :rr.:J2: :

:.,.::,:.:,lt':..,:: :...,.,sian posäioä

Figure 6-3-3 the output ofthe IT algorithm

The geometry characteristics ofthe landmine are helpful to reduce the false alarm

rate fi.¡rther. Most landmines are symmetric. The landmine we used is l4cm long, ó.5cm

wide and 3.5 thick. The GPR raw data, used in this thesìs, was collected along the beam

with the landmine face up, as shown in Figure 6-3-4.

Figure 6-3-4 plastic anti-personal landmine used in our lab exÞeriments

In this experiment, the landmine covers at Ieast three continuous scan positions due to

the cross-range resolution of 2.5cm, ln Figure 6-3-3, the contributions from continuous
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scan position 9 ro 12 arc stronger than the signals from the other alarmed scan positions.

Vy'e can conclude that a landmine is detected at the scan position 9 to 12, buried about

6cm to 8cm deep. There are lcm to 3cm differences in range estimation. The reasons

could be measurement errors, rvaveform distofiion by the rocks or imperfect of landmine

signature.

6.3.3 More experiments

Figure 6-3-5(a) shows a pre-processed GPR raw data from the Master database. The

cross-correlation alarm generator generates 40 alarms over a total of I l8 scan positions.

Figure 6-3-5(b) is the image of the estimated objects by the IT algorithm. The detected

areas are listed in table 6- I .

l l tl'r': ::-:

Fieure 6-3-5lal an examnle ore-nrocessed GPR raw data for the lT alsorithm

:301
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lmage óldetected targelwith thteshoid 0.0i

Figure 6-3-5(b) the output ofthe IT algorithm

The cross-range resolution is approximate lcm, The landmine should cover more than

five continuous scan positions. The detected areas #3 and # 4 are two possible areas

containing buried landmines. Table 6-2 is the geometry model (see Appendix III for

geometry structure) for the GPR raw data collection. It indicates that a square landmine

is buried 3cm deep centred at cross range scan position 80cm (scan position 67) and a

round landmine lcm deep at 1l9cm (scan position 100). There are ten rocks scattered

around-
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We conclude that the square landmine is detected, Iocated at scan position from

64 to 75, with estimated depth of 4cm. The area #4 is a false alarm caused by the

contributions from the rocks.

Figure 6-3-6 shows another pre-processed GPR raw data from the Master

database. The cross-correlation alarm generator generates 52 alarms over 118 scan

positions. Figure 6-3-7 is the image of the estimated objects by the IT algorithm. The

detected areas are listed in table 6-3.

The detection result is that a landmine is buried at scan positions 57 to 61, with

the estimated depth of 4 to 6cm.

lI8
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6,4 Summary of experiments rvith IT algor¡thm

Using an ultra-band\¡/idth microrvave network analyzer ( I GHz to l2.4GHz),

range resolution of around 0.7cm can be obtained. This resolution allorved us the use of

early time gates to decompose part ofthe contributions from the sand surface and apply a

cross-correlation alarm generator. The data at scan positions selected by these alarms was

further processed using an IT algorithm. With the pre-processed GPR raw data, the

cross-correlation alarm generator can reduce the time consumption of this IT algorithm

signifìcantly by up to 60%, depending on an experimental alarm threshold. The time

delays for the sand surface and the detected objects were estimated. The estimated range

ofthe landmine is within the range distortion. With rnany different sized rocks scattered

in the sand, the lT algorithm was able to detect the square landmine and provided an

estimated range.
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Chapter 7 Conclusions and Future Work

The effort of this research was to develop DSP algorithms to be used in data collected

by the GPR system built at the University of Manitoba, for landmine detection. In this

thesis, the linear prediction algorithm and the lT algo¡ithm combined with a cross-

correlation alarm generator were investigated.

The DSP algorithms, implemented for GPR data pre-processing, are the linear

prediction algorithm for the deterministic signal reduction based on the layered ground

model and (adaptive) average background estimation. The linear prediction algorithm for

the deterministic signal reduction based on the layered ground model rvas found to be

more suitable for FDTD Cpn ¿ata. With the lab collected GPR raw data, the average

background estimation method could effectively remove the background noise.

Two alarm generators, the LP algorithm and the cross-correlation alarm generator,

were implemented. With both FDTD GPR data and lab-collected GPR raw data, the LP

algorithm with/without adaptive technique generated alarms at scan positions where

buried landmines were located. The improved LP algorithm obtained better results than

the original one. The landmine detection and false alarm rates were studied for different

SNR values. With both FDTD GPR data and lab-collected GPR raw data, the cross-

correlation alarm generator generated alarms at scan positions where landmines were

buried, The cross-correlated alarm generator generated more alarms than the LP

algorithm with a good landmine detection rate for high SNRs (greater than -5.5d8).

The IT algorithm was applied at the alarmed scan positions. This reduced the time

consumption introduced by the IT method. With FDTD GPR data and lab-collected GPR

raw data, the implemented IT algorithm decomposed the clutter, reduced alarms and
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provided estimated ranges for the detected objects. The sand surface tirne delay rvas

estimated in order to estimate range more accurately.

Using FDTD GPR data, the simulations verified the adequacy ofthese algorithms for

landmine detection. Experiments with the measured GPR data proved that these

implemented DSP algorithms were able to detect the square landmine. Ranges of the

buried objects were also estimated.

Other contributions of this thesis included the follorving. The linear prediction

algorithm for deterministic signal reduction based on layered eaÉh model was introduced.

We improved the LP algorithm to obtain a better result for the general alarm generation.

Using the cross-conelation alarm generator reduced the time consumption by the IT

approach. We developed the dynamic rank method for clutter estimation, The surface

time delay was introduced in order to calculate the ranges ofthe detected objects.

Currently, FDTD GPR data is obtained based on a simple model. Further study may

be needed to create more complex models with simulated rocks and rough surfaces for

the GPR data simulation. Our experiment efforls were focussed on the detection of a

square non-metal landmine buried in dry sand with scattered rocks. Future tvork may

consider the application of these methods with different landmines under different

propagation media.
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Appendix I

Simplex Method and LSE Method for Target parameters estimation

o The Simplex Method

MATLAB function fninsearcú uses the simplex search method to find the minimum

ofa scalar function ofseveral variables, starting at an initial estimate. It is generally

referred to as unconstrained nonlinear optimization,

fminsearch(myfun,xo,options, pþ p2,...) starts at the point .r0 andfindsalocal minimum

x ofthe function described in myfun. r0 can be a scalar, vector, or matrix. lt passes

the problem-dependent parameters pþ p2, etc., directly to the function myfun .

Let

¡ = þ.eat (Ar) inag (Ar) / t,l

p ¡ = lat; T( at)l

Pz = R(a)

Where A, is a complex number representing the scattering factor in the damped

exponential model [5]. / represents the damping factor, and tr. represents the time

delay. Z(ar) is the reference signature. a is the fiequency. We use fminsearch to search

the optimized parameters that minimizes the enor in equation (3-4-2).

¡ Least Square Error (LSE) method:

MATLAB function Isqcurvefit solves nonlinear curve-fitting (data-fitting) problems

in the least-squares sense, That is, giving the input dala xdata and the observed output

!doø,,Ne find coefficients ¡ that "best-fit" the following equation.
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^1n llln {', 
* 0"," ) - t *, ll' = I>llo u,,,.,, ) - t r,,,ll'

WheÍe xda& and ,dara are vectoÍs ¡l F(x,x¿",") is a vector valued function.

x = lsqcurvef¡t(nryfun, xo, x ¿oto, ! daø)

Starts at x0 and fìnds parameter .r to best fit the nonlinear function mytun( x, x.r,h ) to

the data y¿o,o in the least-squares sense. Jda,a must be the same size as the vector (or

matrix) retumed by myñrn( x,x¿.").

Let

;¡ =þ.eal(At.) inag(Ar) y t,l

x0",. =la; r@)l

J ¿ro = R(a)

Where A, is a complex number representing the scattering factor in the damped

exponential model [5]. / represents the damping factor, and r,. the time delay. 7(ø) is

the reference signature. a is the flequency.

o Simplex Method and LSE method for the x parameter estimation

Both Simplex method and Least Square Error (LSE) method are usefi:l for solving

the nonlinear problem in (3-4-3). fminsearch is unconstrained nonlinear optimization,

and lsqcurvefit is the best-fit for the problem in the least-squares sense. lsqcurvefit may

. only give local solutions , and the function " myfun " to be minimized must be

continuous. fminsearch can ofÌen handle discontinuity, particularly if it does not occur

near the solution. In our case, the estimation ofthe start point may not near the solution,

so the fminsearch is a better choice.
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r Simulation results

Data generator:

g"¡ ¡¡ =þeal(AÒ imag(Ar) y 4l to differenr values and add noise into the

landmine's contribution A,.e-o/'e- 
jt"T,(r) 

, which is defined as myfun.

ldoø = A,.e-'r'e- jtt'T,.7a¡ 
+ noise (A-1)

The additional noises are normal random numbers with zero mean and standard deviation

Parameters estimated rvith no noise:

Set N¡",,r:0, A, =0.23+ j0.54, time delay tr=l.3, and the damping factor y2J
in equation (A-l). The estimate parameters by fminsearch and lsi¡curvefit are

' =[o.zz o.s+ z.t 1.3]. This is conect.

Parameters estimated rvith noise addedl

Set.r=þ.23 0.54 2.1 t.:] as the original parameter xo,Nt"u"t ischoseninthe

range from 0.01 to 0.15. With each Nk,"r, we generates

estX(Èþ eø\estA) inaáestAù est _y est 1,las lhe estimated start point for the estimation of

-to in both fminsearch and lsqcurvefit functions.

The estimated start points with different ¡y'l¿v¿l values are shown at the top four

charts of the following Figure. The blue lines are the original parameters in the vector

ro , The green curves are th9 estimated start points, i.e.,

¿e¡yQ = þeal (estAr ) imag (esÍAr ) est _y est _t,1.

We can see that the differences between the original parameters and

corresponding components in estx| arc increased ds Nte"et is increased.
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The middle four charts of the Figure are the outputs of lsqcurvefit function. The

blue curves are the original parameters. The red curves are the estimated parameters with

the original parameter vector -\'0 as the start point. The green curves are the estimated

parameters with the estimated parameter vector ¿rrx, as the start point.

The bottom four charts ofthe Figure are the outputs ofthe fminsearch function.

The blue curves are the original parameters. The red curves are the estimated parameters

with the original parameter vector -ro as the start point. The green curves are the

estimated pararneters with the estimated parameter vector estx? as the start point,

We can see that LSE method is sensitive to the start point of the parameters. With

the original parameter vector -r0 as the start point, the output of fminsearch function,

Simplex method, is almost the same as the output of Isqcurvefit function, the LSE

method. However, with the estimated parameters estx?, the results from the Simplex

melhod are much better than the results from the LSE method. The ouþut offminsearch

fl¡nction is constantly optimized to the original parameters r0 .

Conclusion

The difference between the estimated start point ¿slx¿ and the original start point

r0 increases as the noise deviation, N¡"u"¡, increases. With the Least Square Error (LSE)

method, the search ofthe start point is important. The errors behveen the estimated

parameters and the original parameters increase as the noise deviation increases. The

Simplex Method is less sensitive to the start point as the LSE method does. Comparing

with the LSE method, the Simplex method gets better results in the parameter estimation

for equation (A-l).
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Appendix II

An example of the problem model for FDTD simulated GPR data

* Input data file for GPR
* March 11 2003
* GPR problen, Test

.Problen size: lov¡er_x, upper_x, lower y, upper_y, lo!.¡er_2, upper_z
02400330240

. Nurìlcer of time steps and output frequency of the data
100 0 300

,Space increment: delta x, delta y, delta z
1

o 2ao 0. 0025
1

0 33 0.0025
1

o 240 0.0025

. Test point T1
B0 1650311

. Test point T2
85 16 503T2

, Test point T3
90 16 50 3 T3

.Directory to which output the files

.,/Exanìple,/

.Boundary conditions: specify Hith cha¡acters {'e'or 'a')
aaaaaa

.Mur ABC: 1 - first order; 2 - second order
2

, Obj ect Ground
16 224 1,6 t't 1,00 220 7 1.0 0.01

.Object bo¡nb
L1.6 124 16 l',t 130 732 3.5 1.0 0.01

. Isource dipofe
3 720 I2I 1,6 I',l 20 21 1.0 1.0 0.0 0.0
dgauss ian
1.0 1e-9 1.75e-10

. End: end of f i.le
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Appendix III

The follorving geometry is used in the expsriments setup.

144 cm

Fig. 2. Scanning set up
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Fig. 4. Side view (righi side) ofscanning setup
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Fig. 3. 3-D Coordinate system adopted
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Appendix IV

The coefficients of linear prediction algorithm for alarm generator
The derivation ofequation (3-2-3)

Ë(n) = e(n)'c -'e(n) = ly@) - 7@)1'c -'ly@) - VØ)l
= ty,,. - Y,,, (n)al' 1y,,, - Y,, (n)al

Where

y,,,(n) = wy(n)

Y,,(n) = wYç¡¡

L =W tV

Take the derivative rvith respect to d and set to zero

4#= (-y" (,¡)')t y, -y"(n)al+ [r,.'- a'y"(n)'ll-r*(n)] = e

We have:

(-Y,,,(")-)ty,, -Y,,.(n)al = ty,,' - a.Y,,.(n).|Y,,(n)
(-Y,,(")-)y," + v,i 1n¡v,,,(n)ø = y,,,'Y,,(n) - o'Y,,(n). Y,,(n)
Y,,(n)- y,, + !,,-Y,,.(") = v,i(n)Y,,(n)a + a-Y,,(n)'Y,,(n)
Y,,("). !,, + lY ,i@)y,,1. = Y,;(n)Y,,(n)¿ + {[ Y,,(n).Y,,,(n)]'a]'

Comparing the both side ofthe above equation, we obtain:

Y ,, (r)- y ,, = Y ,; (n)Y ,,, (n) n

If Y ,: (n)Y ,, (n) is invertible, then we have:

ø = ly,; (n)y,, (n)l-'y ,, (n). y,,
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