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Abstract

Ground Penetrating Radar (GPR) emits into the ground, through a wideband
antenna, an electromagnetic wave covering a large frequency band. Reflections from the
soil caused by dielectric variations (such as the presence of an object) are measured.
However, GPR systems do not include automatic detection and recognition algorithms,
an important feature for applying GPR to landmine detection. The radar group at the
University of Manitoba has developed a GPR system for Landmine detection. This
system itself does not have any digital signal processing (DSP) algorithms for landmine
detection and recognition. In this research effort, DSP methods for landmine detection are
investigated. These techniques include: a Linear Prediction (LP) algorithm, the Total
Least Square (TLS) algorithm [5], the simplex method and the cross-correlation
techniques.

In the first part of this thesis, the finite-difference time-domain (FDTD) method,
which is widely accepted for modeling the time domain scattering from buried objects, is
used to generate the simulated GPR data for the evaluation of the implemented DSP
techniques. Clutter is modelled using a damped exponential model. An Iterative (IT)
algorithm [5] is used to decompose the data into its clutter and object contributions.

The LP algorithm, with adaptive processing for the general-purpose landmine
detection, and the IT algorithm proposed by Gupta [5] for landmine detection/range
estimation are implemented and tested. Analysis of the false alarms as a function of the:
signal to noise ratio (SNR) is given based on the simulation results. The cross-correlation

alarm generator, which reduces the time consumption due to the iterative loop, is



introduced, and its performance for the false alarms as a function of SNR is provided. A
dynamic rank calculation for the clutter decomposition is discussed.

Could these methods be used to detect non-metal landmines from experimental data
collected using this GPR system? Using this stepped-frequency, continuous wave
(SFCW) GPR system, we collected GPR raw data from non-metal landmines. The
implemented DSP techniques are investigated, and the parameters of the landmines that
algorithms are good at detecting are estimated. The LP algorithm was modified in order
to improve its performance. The time delays from the ground surface in the IT algorithm
and from the mine were estimated as well.

In our experiments, using a threshold calculated in an area where no landmines are
buried, the LP algorithm is able to generate alarms that appear as landmines. The lower
the threshold is set, the higher the generated false alarm rate is. With the cross-correlation
alarm generator, the false alarm ratio of the IT algorithm is reduced by up to 60%. The
implemented IT algorithm is able to detect the non-metal square landmine and to estimate

their ranges.



Contributions

The main goal of this research is to apply DSP techniques to detect a non-metal
landmine buried underground by using the existing GPR system developed at the
University of Manitoba. This thesis investigates DSP algorithms for general-purpose
non-metal landmine detection in the cross-range and for a square landmine detection both
in cross-range and in depth.

GPR raw data were collected directly from the GPR system without any signal
processing.  Pre-processing of these GPR raw data focuses on background noise
reduction. An LP algorithm is introduced to reduce any deterministic signal based on the
layered ground model. Adaptive average background estimation method is used to
remove the strong noise. After pre-processing, GPR data is ready for further DSP
processing.

Two alarm generators, linear prediction alarm generator and cross-correlation alarm
generator, generate alarms for any possible landmines. An LP alarm generator is a
general-purpose method based on error emergy change in the cross-range. The LP
algorithm is improved in order to obtain a better result. If a landmine reference signature
is available, a cross-correlation alarm generator can be used to generate alarms and
reduce the processing time introduced by the IT algorithm.

On each alarmed cross-range scan position, the implemented IT algorithm
decomposes the GPR raw data into a clutter set and an object related contribution set.
With a reference signature, the number of alarms is reduced further. This thesis
introduces a dynamic rank calculation method for the clutter estimation and estimates

time delay calculation for the surface contribution, The landmine related parameters are



estimated to calculate the depth of the buried object. Experiments on the measured GPR
data prove that these algorithms are able to detect the non-metal square landmine.

Estimation of the depth of the landmines is also provided.



Chapter 1 Introduction and Motivation

1.1 The Landmine Threat

Landmines, since the First World War, have proved to be an effective military
weapon. Antitank mines disrupt vehicular traffic, while antipersonnel mines protect
antitank mines, defend areas, and deny access to bridges and other assets. Under some
circumstances, landmines are used to control military and civilian movement across
political borders. Although landmines are seen as an effective and inexpensive weapon,
they represent a threat to public safety, i.e., to innocent bystanders and civilians. They
undermine peace and stability and leave behind maimed individuals who require
continuing health care and may cease to be fully productive members of the society.

It is estimated that there are from 50 to 70 million uncleared mines within at least
70 countries. About 26,000 people are killed or maimed every year by landmines [16].
For example, in Angola, one of every 334 individuals is a landmine amputee, and
Cambodia has greater than 25,000 amputees due to mine blasts. The lives of over 22
million people arc impeded from returning to normalcy by landmines. The US
Department of State (1998) provides further information on the global landmine crisis
[17].
1.2 The Landmine Detection Problem

Antipersonnel mines come in all shapes and sizes, and can be encased in metal,
plastic, wood or nothing at ail. They can be embedded in a field cluttered with various
materials and objects, buried underground at various depths, scattered on the surface,

planted within buildings, or covered by plant overgrowth.



Because mines are made of a variety of explosive materials, a landmine detection
system should be able to detect mines regardless of the type of explosives used. Mines
come in a variety of shapes and in various types of casings. Therefore, a detection system
should either be insensitive to the geometrical shape of the mine and the type of casing
material, or preferably, provide imaging information. The latter feature can enable the
system to better distinguish mines from background clutter, such as rocks, metal shreds,
etc. This, in turn, will reduce the false-positive alarm rate and the time wasted in trying
to clear an innocuous object that appears to be a mine. On the other hand, it is vital that
the detection system can find the mine, if it is there. Because mines can be buried at
-different depths under the ground surface, the detection system should not be overly
sensitive to the depth of burial. The operator of a detection system should be able to
avoid close proximity to the position of the mine to minimize the possibility of
inadvertent triggering of the mine. Detection should also be performed at a reasonable
operational speed, and at not too prohibitive a cost. This requires that the system must be
accurate, not too slow and not too expensive.

In summary, mine detection involves dealing with a wide variety of mine material
and shapes, different soil types and terrain, and non-uniformity of clutter. It is expected
that the characteristic signature of a buried mine may vary widely depending on local
circumstances. It may, therefore, be difficult to apply a particular technique unless the
nature of the mine, soil and background clutter is well known. It is inconceivable that a

single detection technology will be able to meet all needs.



1.3 Research in Landmine Detection

Landmines are a threat to human lives. Several methods have been developed for
landmine detection. They are based on metal detectors, snifters, thermograph techniques
and GPR.

Metal detectors attempt to obtain information on buried mines by emitting into
the soil a time-varying magnetic field to induce an eddy current in metallic objects; this
in turn generates a detectable magnetic field. However, landmines typically contain only
a very small amount of metal, possibly in the firing pin, while many others contain no
metal at all.

Bio'logical sniffing by dogs is also used. Dogs have greater olfactory senses
compared to humans, especially for small trace quantities, and can be trained to detect the
presence of explosives. This is, in effect, a material characterization process as dogs are
sniffing the vapours emitted from the explosive material. This technique requires,
however, extensive training, and the dogs’ limited attention span makes it difficult to
maintain continuous operation. Electronic chemical sniffers can also be used, though
they are not as sophisticated as dogs in terms of their detection abilities. Moreover,
minefields are usually saturated with residual vapour emissions from recently detonated
explosives, which may add to the chemical clutter of the area, thereby confusing the
dogs’ senses.

The thermography technique essentially measures the thermal emissivity of the
ground and interprets changes in emissivity as being caused by the presence of a foreign
object; therefore, material characterization information is not provided. However, this

technology has the advantages of being passive, can be performed remotely, by aerial



search, and can cover a large area in a short time. Infrared thermography is best suited
for identifying minefields (global area search), rather than searching for individual mines
(local area search). It cannot work when the soil and mine are in thermal equilibrium,
and therefore is generally limited for use either at sunset or sunrise when a temperature
gradient can be established at the ground surface.

The difference in the reflectance and polarization of soil when disturbed by laser
energy may be used to identify the presence of an anomaly [1]. This requires a powerful
laser, complex data interpretation and provides no material characterization information.

Ground Penetrating Radar emits into the ground, through an antenna, an
electromagnetic wave-. Some GPR systems cover a large frequency band, called wide-
band GPR system. Reflections from the soil caused by dielectric variations (such as the
presence of an object) are measured. Further data processing allows the display of
horizontal slices or three-dimensional representations.

Used for about 15 years in civil engineering and geology to detect buried objects
and to analyze soil, this technology is well researched. This abundant research, however,
does not include GPR systems that use automatic recognition algorithms, a feature
important for applying GPR to mine detection. In recent years, researchers have
investigated the application of GPR to mine detection. Although promising, the
technology has limitations. In particular, the range resolution needed to detect small
objects requires GHz frequencies, which results in decreased soil penetration.

Another constraint is cost. Compared to other technologies, especially the ones

currently being used, GPR systems can be expensive. Although a GPR system can be



expensive, it is a potential solution for the problem of landmine detection. And low-cost
solutions have been proposed [18].

How could the GPR be used to detect the mines while it is receiving very strong
reflection from the surroundings? And how about other subsurface objects such as
rocks? A subsurface object has a relative dielectric constant, which will be different from
that of the ground, and this dielectric discontinuity will also be detected by the GPR. As
two objects with different relative dielectric constants will differ in their scattering
characteristics, it is feasible that they can be differentiated by a GPR system.

1.4 The proposed GPR system for landmine detection

A GPR system, as shown- in Figure 1-1, has been developed at the University of
Manitoba for research and development of DSP algorithms for mine detection. The
system consists of a microwave network analyzer, an antenna and a motor for controlling
the cross-range scan. A personal computer is used to control the motor and receive data
from the network analyzer. The purpose of this system is to collect a set of standard GPR
raw data and make it available in a database, called Master database, for researchers to

_develop DSP algorithms for buried object detection. For details about the Master
database, please refer to [19].

A single double-ridged horn antenna is used as the transmitter and the receiver. It
operates in the range of 1~12.4 GHz. The targeted object is an anti-personal mine shown
in Figure 1-2. However, other objects such as rocks are buried too. These objects are
randomly scattered on the sand surface before they are buried at different depths.

Our approach has concentrated on applying DSP techniques with this GPR system

to the detection of subsurface mines.



This thesis is organized into seven chapters. Chapter 1 describes the motivation
and general research efforts for landmine detection. Chapter 2 reviews various existing
signal-processing techniques. In Chapter 3, the DSP techniques used in our research are
discussed, including improvements of these methods. The FDTD method, which is used
to generate simulated GPR data, is introduced in Chapter 4. The simulated GPR data is
used to investigate the DSP methods of interest for landmine detection. Random noise is
added for the investigation of false alarms as a function of signal-to-noise ratio (SNR).
Problems and solutions are also discussed in this chapter. In Chapter 5, the measured
GPR data is used to investigate the LP algorithm; the problems encountered in our
experiments are described, and solutions to -these problems are discussed, tco. Before
the linear prediction (LP) algorithm is used, the GPR raw data is pre-processed to remove
the average background noise. The results of these experiments are presented and
discussed. The IT algorithm for clutter decomposition and range estimation on GPR raw
data is discussed in Chapter 6. A cross-correlation alarm generator is introduced and
experimental results are provided. Finally, in Chapter 7, Conclusions and Future work,
summarizes the concepts developed, reports results, highlights possible future work, and

provides conclusions from this research effort.
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Figure 1-2. Objects placed on the surface to show their coordinates before burying.

12



Chapter 2 Review of Existing Signal Processing Techniques

Recently, considerable efforts have been put into the development of GPR
systems [18]. The coherent clutter component from the ground surface return consists of
the dominant clutter contribution and originates at the ground surface. The clutter
reduction techniques discussed below, which estimate the coherent component of the
clutter, can reduce the coherent component of the ground clutter. The other remaining

clutter is still present in the data, which can be further reduced by statistical techniques.

2.1 Conventional methods for clutter reduction

Early time gating is an efficient method for removing the surface clutter from the
reflection of deeply buried targets. Choosing an appropriate time gate is very
challenging, especially for targets close to the surface. In such cases, the target
contributions may be removed due to the overlapping returns of shallow targets and the
ground surface. If the GPR system has a high range resolution, then this method may be
very useful for removing the dominant clutter.

There are two methods for average background estimation. One is complex
average subtracting [6]. This method uses the mean of a number of measurements
taken in an area where it is known no buried objects exist. Subtracting the average may
not lead to sufficient clutter reduction because the ground is an inhomogeneous medium
and its statistical properties vary with position along the surface. Inhomogeneous aspects
of the ground make returns vary from scan position to scan position. Background
estimation will be affected by the presence of an object and thus the estimation will not

be accurate. The other method is a moving average estimate of the background [6],
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which uses adaptive algorithms to adjust the estimated background according to the
environments.

The early time peak, which is usually due to the ground surface response, can be
synthesized in the time domain using a sinc-approximation and subsequently subtracted
[5]. However, the presence of shallow targets leads to a change in the amplitude and
location of the early time estimation. An improved peak subtraction approach uses a
superposition of damped exponentials in the frequency domain to estimate the early time
contributions from lossy media. The Prony method [5, 20] has been used to estimate the
necessary exponential parameters. The estimated early time clutter can then be

subtracted from the data.

2.2 Statistical techniques used for incoherent clutter reduction

If one assumes that incoherent clutter can be represented as a random process with
known statistics, then the following methods can be used for clutter reduction.
¢ Use of a whitening filter

The clutter statistics are determined from many realizations of a rough surface. The
whitening filter [9] is used as a linear prediction error filter. The limitation of this
technique is that the ground medium’s statistical properties vary with every position
along the surface. Any mismatch in the clutter statistics used to design the filter degrades
the performance of the wilitening filter.
* Kalman filtering

Kalman filtering has been used for parameter estimation in the presence of random

noise. It detects sudden changes that occur at the unknown points. In this approach,
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parameters are considered as being constant with some fluctuations. The system used at
the Technische Universitdt Iimenau [4] simulates an array of 6 emitting and receiving
antenna. The data are acquired in the frequency domain, between 1 and 6 GHz. This
method focuses on the pre-processing of GPR data. It is suggested that for this method to
work, the clutter must show a certain amount of correlation.

e Nonlinear optimization

Using an impulse radar system with pulse repetition frequency of 250 KHz, Brunzell
[6] subtracted the background noise from a handheld GPR return and applied an energy
detector to detect shallow objects under the ground. This technique assumes stable
ground reflection. It is unsatisfactory in practice because the background is unstable, i.e.,
background changes from scan to scan.

A subspace decomposition technique has been used for the elimination of ground-
reflected clutter from the GPR data [7]. It is based on the generalized singular value
decomposition. The proposed model, which uses a low-order polynomial, is for slow
spatial variations. The method was applied to the depth interval that contained the
ground bounce. The GPR data was obtained by an impulse radar system, which was
developed by the Ohio State University.

Deming in [8] proposes the use of the maximum likelihood adaptive neural system to
detect landmines. This method requires that the clutter and mine signature models be well
defined. The time domain GPR data was obtained by an impulse radar system with center

frequency of 400 MHz at University of Oklahoma.
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e Linear Prediction method

The use of LP [10] for modeling clutter assumes stationary clutter, and computation
of the LP coefficients is done over the clutter area assuming no buried landmines. The
proposed weighted LP algorithm deals with a non-stationary clutter environment, and the
LP coefficients are computed adaptively. In the paper, the ground penetrating radar is
FSCW radar, which sends out stepped radio frequency signals to the ground and
measures the return. The bandwidth of the radar hardware is in the order of a few
Gigaherts (GHz).
e Hidden Markov Models

Hidden Markov Models are stochastic models for complex, non-stationary stochastic
processes that produce time sequences of random observations as a function of states.
The technique proposed in [11] uses a time-domain radar called GEO-CENTERS
EFGPR, which is GEO-CENTERS energy focusing GPR. In this model, the landmine

signature is used for detection.

2.3 Other methods for clutter reduction in GPR systems
¢ Iterative technique for clutter reduction in GPR system

An ultra-wideband GPR system is used in [5] where only a small spot on the
ground surface is illuminated. The clutter is assumed to be rough surface scattering,
surface-target interaction terms as well as son;e inhomogeneties. This new algorithm
decomposes the GPR return into its clutter and target contribution. The clutter reduction
algorithm yields an estimation of the depth of the subsurface target. A damped

exponential model is used. An adaptive estimation of unknown parameters is
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accomplished by the iterative process, which has two coupled iterative loops. The Prony
technique is also used for this parameter estimation. An appropriate time window is
required to separate the early time clutter contribution from the late time clutter. It is
claimed that this technique has the potential for real world applications. Their
experimental GPR data were acquired using frequencies between 1 GHz and 5 GHz in

increments of 100 MHz through a near field probe antenna.

2.4 DSP methods used in this thesis

In summary, an accurate estimation of the clutter is crucial for all of the above
techniques. Finding an accurate estimate is indeed a very challenging task due to the
uncertainty and variation in the ground scattering. Generally speaking, two kinds of
commonly used GPR systems for landmine detection are pulse radar and SFCW radar.
With our ultra-wideband network analyzer, which can generate a step frequency signal
from 1 GHz to 12 GHz, we will use linear prediction algorithm (based on layered earth
model) and average background estimation technique to reduce (pre-processing) the
background noise from the GPR raw data. After the pre-processing, LP algorithm will be
investigated for general cross-range landmine detection (error energy detection). On each
scan position, TLS-Prony in frequency domain for clutter estimation. The IT method with
the reference signature of a landmine [5] is used for the specific landmine detection, and
this technique can provide range estimation as well. The block diagram of the DSP

techniques used is shown in Figure 2-1.
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GPR raw data
¢ ['DTD GPR data (pp.34~47)
o Measured GPR data

Y

GPR data preprocessing
Layered earth model (Figure 3-1-1, pp. 19~22)
Average background reduction method (Figure 5-2-3, pp.85~87)

)

Alarm generator
Linear Prediction algorithm (Figure 4-2-1, pp.51~52), including
original LP algorithm [10] (pp.22~24), adaptive LP algorithm (pp.24)
and improved LP algorithm (pp.25~27)
Cross-correlation method (Figure 4-3-7, pp.32~33)

l

Alarm Generated?

No output

Iterative algorithm (Figure 4-3-2, pp.28~32)
Range estimation for the detected objects
(nn. 112~114)

!

Landmine image/recognition

Figure 2.1 Blocks diagram of DSP techniques used in this thesis
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Chapter 3 Introduction to Various Applicable DSP Techniques

As mentioned in Chapter 2, the LP algorithm [10] and the IT algorithm [5] are
used in our system and have been investigated further to meet our system needs for
landmine detection. The LP algorithm generates alarms if the calculated error energy is
above a threshold. The IT algorithm uses the TLS-Prony technique for clutter reduction
and the simplex method' for range estimation. A layered geophysical model is helpful in
understanding the wave propagation characteristics and in preprocessing the GPR data in
order to remove deterministic signals. In this chapter, we will introduce the concepts of
these techniques.

3.1 A geophysical model

A geophysical model [2] is proposed to represent the real earth in certain
significant respects. If there is a useful connection between the behavior of the earth and
the corresponding behavior of the model, the model can be useful in analyzing data from
the earth and making geological decisions. The linear algorithm, which will be
incorporated herein, is based on a layered-delay model.

There are two basic approaches to data processing: the deterministic approach and
the statistical approach. The deterministic approach is concerned with the building of
mathematical and physical models of, for example, a layered earth to better understand
wave propagation. The statistical approach is concerned with the building of models
involving random components. For example, deep reflecting objects are consic{ered to

have a random distribution.

' The MATLAB function “fiminsearch” is used, [21].
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A flat-layered earth is a well-know model used in geophysics, as depicted in
figure 3-1-1. A horizontal line represents the surface, and below the surface there are
media whose interfaces are parallel to the surface. There are N+/ horizontal interfaces.
The topmost interface is denoted by index 0, while the lowest interface is denoted by
index N. Two electromagnetic plane waves are assumed to exist within each layer, one
wave traveling upward and the other one traveling downward.

If a down-going propagating wave is incident on the top of interface », then the
reflection coefficient », is equal to the resulting up-going signal reflected from the top
of interface n, and transmission coefficient ¢, is equal to the resulting down-going
signal transmitted through interface »n. If the up-going wave is on the bottom of the

interface n, then the reflection coefficient is denoted as », and transmission coefficients

T
isdenotedas 7 ,,

Al Y(t)

Layer 9

Layer /

’

S r
" \/ P Su / Ty S n
Layern
S l; /\ rl;S."r
\ Tn S, n

Layer N

Figure 3-1-1: The layered system and the reflection / transmission coefficients for an interface
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Using the sifting property A(z) = F A(t)o(t — r)dt , any wave train can be represented
by its generating function:

Ay = A8t~ 1)+ A6t — 1, — A1)+ A, 6 (1~ 1, — 2A1) + ...
Signal 4, occurs at the time ¢, , and 4, occurs at a delay of one time unit £, + A7,

i.e., at a delay of the two-way travel time through the nearby layer. Then the received

signal Y(#) at the topmost surface at time ¢=t,is given by ¥, =r,4,. At time

! = t, + At, the received signal ¥; will be:

Y} =¥ A] + ‘I(')I';T()AG = P'OAI + T;)}-]TOYO /1"0
Letting by = 7971y /rogand by = r, , wehave

Y, =b,4,+ b)Y,
Similarly, at time # = #, + 2At, we have

Yy=rgdy; + T'UFITOAI + rgr}rzr]raAo

=I‘0A2 + Toi‘]‘t'o(Y] - TOFITOYO/FO)/]‘G + TOTII‘ZT]‘Evo

= I‘{)AZ + T0?‘1TOY; /1‘0 - (Tof‘lto)zj’o /(’_0)2 + Tt T1TOY0 /?‘0

Letting b, =T‘0’t'1?2'r1’t0/ r, —(1'01110/ ’b)2 =T'()T']IQT1T0/I@ —b|2, ie. T;:;T}?‘QT 1T/t = b}z + b, , then,
we have:

Y, =byd, + b)Y, + b,Y,

In general, summing all the contribution at 7 = ¢, + At , we will have the reflected

wave given as:
Y, =byd, +bY,  +b,Y, ,+..+D,7Y,

Suppose A,,, =0 at =1, +(n+ I)Af, and then the above equation becomes the

linear combination of the previous data.
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Y, oo=b6Y,+b,Y, +..+bY +0b,, Y, (3-1-1)
This equation justifies the "linear combination" model in the time-domain for the
deterministic signal and which will be used in FDTD simulation. A least square

algorithm is used to determine b,,b, ...,b,,, for a particular ground reflection simulation.

3.2 Linear Prediction Algorithm

The LP algorithm calculates the error energy from the nearby cross-range scan
position along the beam, as shown in Figure 3-2-1. On each scan position, the GPR
system emits a sequence of continuous frequency waves stepped over several
frequencies. Our current GPR system has up to 501 step frequencies from | GHz to 12.4

GHz. A Master database of many experiments has been compiled [19].

surface

e

Scan position

Figure 3-2-1 An application example using linear prediction algorithm

3.2.1 The basis of the linear prediction algorithm

Let y(n)=[x,(n) x,(n) .. x,(m]" bea vector that contains the complex (i.e.,
magnitude and phase) GPR return at the cross-range scan position n. The element x; (1)
is the received GPR phasor at step frequency f,, i=1,2,...,L. L is the total number of step

frequencies (L is 512 in our case). Given the current vector and a few previous vector

samples, it is up to the LP algorithm to decide if p(#)is from a landmine. The current
vector y(n) can be predicted from a linear combination of its past few vectors (for clutter

only). We may assume that the clutter vector sample y(n) satisfies the time-varying LP

model:
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P
)= Z ap (my(n—k)+e(n)=Y(n—-Da(n)+e(n) (3-2-1)

k=t

Yy =Y¥({n-Na (3-2-2)
where &k =1, 2, ces Py P is the prediction order, and
Y(n-D=[y(n-1) y(rn-2) .. y(n-p)] isascan data matrix of the last p scans. The LP

coefficient vector to be determined is a(n)=[a,(n) a,(n) .. ap(n)]r. The vector

e(n) is called the prediction error vector. The distribution of the sample vector y(n)
may not be Gaussian, but the LP error e(#) can be approximated as a Gaussian

distribution having zero mean and covariance matrix C [10]. Suppose that E[] indicates

the average operation, then the covariance matrix C is calculated by:

C =E[(y(m) — Fm)(p(n) — F(m))"]
where the superscript * represents the complex conjugate transpose operation.. Using

LSE to estimate the coefficients in equation (3-2-1) and to apply them to J(#n) in
equation (3-2-2), we can obtain the collection of LP error e(n) over a small area

assuming no landmine existing, and then the estimation of the covariance matrix C is
calculated using MATLAB function nermfit (refer to section 4.2 for implementation
details).

Letting &(n) be the weighted prediction error energy which can be calculated by
£(n)=e(m)' C7e(n) = [y(n) - F(m]' C7'[y(m) - F(m)] (3-2-3)
Taking the derivative of the above with respect to a(n) and setting this gradient to zero
gives the solution (see [10] for details and Appendix 1V for reference):
A =[Y(n-1)C'Y(n-D]"Y(n-1)'C"y(n) (3-2-4)

The error energy £() will then be given by:
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E(n) = y(m)"C ' p(n) ~ p(n)' C"'Y (n—1)a’(n) (3-2-5)
We then declare a detection of landmine if &£(n)is greater than some threshoid. E(n) is
the minimum weighted prediction error energy, where the weighting matrix is given by
C™'. Setting the derivative of &(#) to zero in equation (3-2-3} means that a least square
model is being used.
3.2.2 Threshold and weighting matrix

e Adaptive threshold

The prediction error energy &£(n) will typically vary from one set of p-scans to
another because the statistics of the ground will vary. Using a fixed threshold will
increase the false alarm rate or decrease the probability of detection. The mean E[&£(m)]
and variance E[j&(n)~ E[£(n) [] are updated as follows:

E[E(m] = (1= DE[E(n - D]+ A¢ () (3-2:6)

Bl £(m) - EE (] 1= 0 ~ DB £ -1 - B - D] P 1+ 2| £() - ELEGDI

The normalized error energy &£(n)is:

& (m)={&(n) — E[E(n]} H{E[ £(m) - EE@]P 2 (3-2-7)
A landmine is detected if &l (n) is greater than the normalized error energy threshold.
The parameter X in equation (3-2-6) is chosen experimentally.
o Weighting matrix

The weighting matrix W is given by C™":
w=cC"

Because the prediction error e(#) in the clutter may be highly correlated, the inverse of

the covariance matrix C may have a singularity problem. To solve this, we first find the

24



principle components of the clutter. Then, we reduce the rank of C by calculating its
eigenvector matrix @ and its related eigenvalue matrix G . And finally, we form the
weighting matrix W as follows:

W =0GQ’ (3-2-8)
The cigenvalue matrix is given by G =diag{A,,4,,...4, },A4 =24, >2..> 4,. If we form
a diagonal matrix of eigenvalues as:

D =diag{l/ A1/ 4,,..,1/ 4,,0,...,0}
where Jis the largest integer such that 4, /A, <k, where & is a chosen parameter, the

matrix W is then given by:
W =QDQ’ (3-2-9)

Now the coefficients are calculated by

a’m)=[Y(n-1)" W¥m-D]"'¥(n-1)" Wy(n) (3-2-10)

3.2.3 Improvement of the LP algorithm
[fwelet W=W,W,, y,(n)=W,p(n) and ¥,(n~1)=W,¥(n-1), where w,=p"?0
Equation (3-2-10) becomes:

a’ (=¥, (n-D'Y,m-DI"Y,. -1y, () (3-2-11)
The coefficients 4°(n) can be physically interpreted as the ratio of correlated energy

Y, (n-1)"y,(n) over the previous correlated energy Y,,(n-1)"Y,,(n-1).

We calculate ¥ (n-1)'Y,_ (n-1)by
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Y,(n-1y'Y, (n-1)

== 6= . y-ply.m-1) p,@-2) .. y.(-p)
Yo =Dp, =) y,=D'y. -2 .. y, -1y, (n1-p)

| 2=y (-l p, (-2 'y, (-2 .. y.(1-2)y,(n-p)

Yu=p)y.(n=0) y,(-p)'y,(1=-2) ... y,(n-p)y,(-p)

(3-2-12)
The diagonal components, ie., y, (n—7)"y, (n—7)in equation (3-2-12) are energies at
the previous scan positions. y, (n—1)" y, (n— j),i = j, are the cross-correlation products
of different scan positions. The linear prediction coefficients not only depend on the
previous enefgy received, but also depend on the cross-correlation at the different scan
positions.
After the background signal is removed, the residue signal is assumed to have Gaussian

distribution, which means the residue signals are independent from a scan position to

another san position. Based on this assumption, we will have:
o X . . .
Po(r=1) yy(n—j)=0,i+ j (3-2-13)
Then:
Y (n-1)'Y, (n-N=diagly, (n-1)'y,(n~1,p,(1-2) p,,(n—2),.....y,(n— p)" y, (n— p)}
=diag{energy,_, ,energy, ,,....,energy, "
=5
Here, we use the notation energy, ., ; = ¥, (n=0"y,(n-j) and energy =y (n-i)'y, (n-§)

& should have full rank, then

S~ = diag{energy ! energy S aenergy’ o)

and Y, (n-1Yp () =[y,m-1) y,(0-2)... y . (n-p)] y, ()
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Then equation (3-2-11) becomes

ao(n):SVIYw(n - I)tylr(n)

— [yn'(n '1)‘_}7“.(1’]) e (n - 2)‘ Yy (n) yn'(n -p)‘yn'(n}]f
CNEIgY . ; Cnergy, - energyﬂ_p
-1 energy ., ;
aja (ﬂ) - yw(n 1) P (I'I) - gyﬂ~l,n i= 1,2,"-, P (3-2-14)
CNergy ; CNergy , ;

The above equation (3-2-14) indicates that the linear prediction coefficient is the ratio of
cross-correlated energy over the energy received at the particular previous scan position.
The coefficient «° (n) will be zero, this is because

Yo =Dy (m=0, for all iz0
Therefore, the new complex GPR return vector cannot be predicted by the previous

returns. If this cross-correlation is small, the prediction will also be poor. Since

ai (n) =0, equation (3-2-5) becomes

&) = y(n)" €™ y(n)

The previous analysis has considered that GPR data at different scan positions are
highly independent. However, if €nergy,; is close to zero, this can result in
undetermined a; (n) values in equation (3-2-14). A new linear prediction formula for the
coefficients can be determined by:

energyn—i R
P

Z energy, ,

k=1

a,(n) = =12, p (3-2-15)

Here we have only modified the denominator of (3-2-14) so that no singularities
occur. The advantage of equation (3-2-15) is that the linear prediction coefficients are

calculated using correlation energy over the sum of the energies over the prediction area.
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This will avoid the sudden change because of the very low energy or zero energy in some

rarc cases.

3.2.4 Summary of the LP algorithm

The linear prediction algorithm calculates the weighted prediction error of a
clutter vector sample from a position so that significant error energy may indicate that the
clutter has changed suddenly, indicating the possibility of having a landmine at that
position. Because it does not use any knowledge of mine properties, it is a general
algorithm for any landmine detection, but it has the disadvantage that it will be triggered
by any abrupt change in soil properti.es, or by any buried object.

If the received GPR wave is independent from each scan position, the complex
GPR return vector is unpredictable. The improved linear prediction algorithm in (3-2-15)
is obtained for the specific case of zero error energy, which was more applicable to our
problem (mostly homogeneous clutter). The improved linear prediction coefficients are

modified to avoid the zero energy problems in equation (3-2-14).

3.3  TLS-Prony Method
The TLS algorithm [5] is used for ground bounce clutter estimation and reduction in the
frequency domain. An exponential model is used to model the clutter and the Prony
method estimates the parameters for clutter decomposition.
3.3.1 Concept of the TLS Method

In this GPR application, the received GPR raw data in the frequency domain, at

each scan position, can be presented by:
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vaY=[wy) .. yo)N=0y .. y] (3-3-1)

wherew,,i=1,... is a sequence of L continuous frequency steps. FEach frequency
measurement y, has an error e,. Equation (3-3-1) becomes:

Vo= o yultle, .. e Date, k<n<M (3-3-2)

k
Then, the TLS method becomes finding a solution for the vector @ such that Ze,%_,- isa

=0
minimum.
If we definexas [y,, y,, .. y.,1, e.,=[e,_, .. e_] and e,,=e,, then
Equation (3-3-2) becomes:
Yy, =[x, + e_r,n]a +e,, (3-3-3)

Let e=[e,, |e,,],then TLS problem becomes finding the vector @ such that the norm

of e is minimum.

If

k
y.=xa=Y ay,., (3-3-4)

i=1
substituting y,, in Equation (3-3-4) to Equation (3-3-3), we have
a
0= exndtey,, =[ey,ley, ]|:1:| (3-3-5)

Using Prony method (provided by MATLAB) to estimate coefficient vector a, ey, will

be minimized, which results in e, » be minimized because of Equation (3-3-5). This

indicates that the norm of e, expressed as Jel= (3 e})!/2, is minimum if the coefficient

j=

vector a satisfies equation (3-3-4).
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3.3.2 Exponential model
Using an exponential model [5], y{w) becomes:

N

y(w) = Z ce”VigT v (3-3-6)
i=]

where /" is a linear phase factor, ¢;is a complex amplitude factor for the frequency

independent component of the received signal, e “7" is a damping factor with %20, 1 is

the time delay as the wave propagation toward the mine, and @ denotes frequency. Three
parameters [ C;, %, %] will be estimated by the Prony method. (N > 2 is expected). The

time delay parameter #; can also be used to calculate the range of the buried landmine.

3.4 Modelling of the clutter and the landmine contribution

After the estimated clutter is removed, the residual GPR data is dominated by the
contribution from the buried object if there is any. In this section we will introduce a
scattering model for the buried object contribution and its parameters will then be

estimated by the Simplex method.

3.4.1 An exponential model for Clutter and Target’s seattering model

Similar to the clutter model, the scattering model is defined as:

tw)=Ad,e e 75T () (3-4-1)

where a linear phase factor e /“%" is considered as the contribution from the mine at the
timedelay J,,8, > 0, and T (») represents a reference signature of a landmine.

The received GPR data Gpr(w) can then be represented as:
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Gpr(w) = c(@) +1(@) + n(w)
where n(w) is additive Gaussian noises. If é(w) represents the estimated clutter from c(w)
defined in equation (3-3-6), the residual GPR data R(®)=Gpr(o)—&w) is dominated by
the mine contribution #(w). The unknown parameter vector #=[4, y, &,] for the mine

are determined by minimizing the square error, known as least square error, between the

object model and residual data.

l.’J"

E,(0)= z |R(@)- (@)} =3 | R(@)~ 4, e 5T, (o) (3-4-2)

where , and o, are the start and end frequencies, and 9=[4, y, 4,] is the unknown

parameter vector to be estimated.

3.4.2 Simplex method for the parameter estimation
In section 3.4.1, the reflection from the mine is modeled by the reference

signature T {w)and unknown parameter vector 0 = [A,. Y, Sr] in equation (3-4-1).

The parameter vector 0 is estimated by using the Simplex method to minimize the error
in equation (3-4-2).

The error function (3-4-2) is represented as a LSE. Why don’t we directly use the
LSE method to estimate these parameters? There are two reasons. One is that the
simplex method requires only function evaluations. LSE is not very efficient in terms of
the nw‘umber of function evaluations that it requires. However, the Simplex Method may
often be the best method to use. In the case of multiple dimensions, the LSE method
sometimes does not converge to the minimum, but the simplex is constantly shrinking.

The other reason is that the simulation results from the Simplex method, fminsearch in
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MATLAB, and the LSE method, Isqeurvefit in MATLAB, indicated that the Simplex
Method was more suitable than the LSE method in our case. Refer to Appendix I for

details.

3.5  Cross-correlation technique with threshold
In section 3.4, a reference signature is used for mine detection and parameter estimation.
With our high range resolution GPR radar, the cross-correlation technique with a
reference signature in time domain can also be used to generate alarms.
Suppose that in time domain, y(z) and x(?) are two jointly stationary random

processes, the cross-correlation of y(#) and x(?) is defined as:

Cor}j,,x (v) = E[y()x()] = f;o Yt +T)x(t)dt (3-5-1)
In our GPR application, after the clutter is removed, the GPR residual data, in time
domain, R(f) can be represented by

R)= AT, (O} +n()+r,(1) (3-5-2)
where n(7) is random noise, independent of the mine contribution 47, (r), and r.(f) is the
residual clutter. 7,(1)is a reference signature of the mine. The cross-correlation of R(f)
and 7,() is:

E[R@)T, ()1 = ELAT (DT (D] + E[n(DT, (D] + Elr, (DT, (1)] (3-5-3)

Since n(¢) is ind‘ependent from 7,(1), the second term will be zero, i.e.

E[R@E)T ()} = AET () 1+ Elr, (DT, (] (3-5-4)

32



If the threshold is set to E[r, (£)T, (£)], then, a target is detected

if E[R(t)T(¢)) > threshold . The threshold is an experimental result, which is obtained

by illuminating a small area where no mine is expected.
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Chapter 4 Implementation of DSP algorithms and Simulation results

In this chapter, the FDTD method is used to generate the simulated GPR data. In
section 4.1, we first introduce the creation of FDTD GPR data, and then preprocess them
for further processing. The linear prediction algorithm discussed in section 4.2 generates
alarms for object detection without any knowledge of specific object type. The IT
algorithm for specific object detection, described in section 4.3, consists of two steps: one
is for removal ground reflection, and the other one for the estimation of target parameter,
especially for the range estimation. The objectives of these simulations are to determine

the adequacy of these DSP algorithms’ implementation and their efficiency.

4.1 Introduction to FDTD GPR data
4.1.1 General geometry model for the FDTD simulations

The FDTD method is a powerful and simple method, which can easily produce
numerically synthesized data for the GPR problem. The specific objects of interest are
landmines, which, electrically, are lossy dielectric objects with minimal highly
conducting parts.

In order to build a scattering model for the FDTD simulation software, we need to
create the geometry of the problem first. An example of the problem data file is in
Appendix II. Its geometry is shown in Figure 4-1-1 and Figure 4-1-2. Test points, from
T1 to T17, are set between the current s:ource and ground surface. To ensure the accuracy
and stability of the 3-D FDTD computation, the numerical parameters for the problem

must be chosen carefully.
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Typical Georelry of the problem for the FDTD simutation

z
¥ X
Figure 4-1- 1 Typical Geometry of the problem for the FDTD simulation
Typical Geometry of the problem for the FDTD simutation
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Figure 4-1- 2 x-z plane of the typical geometry of the problem
o Cell size

Cell size is determined based on the shortest wavelength. For example, if the GPR

frequency is from 1GHz to 5GHz, the highest frequency Jmax is SGHz. The shortest

wavelength is:
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vg _ [5
Ain = , Vg = (4-1-1)
fmax gr

v, is the propagation speed and &, is the relative dielectric constant of the propagation

media. The term ¢ is the propagation speed in the air, i.e. 3x10%. ¢, is around 3.15 for
lossy sand [15] and 3.5 for plastic landmine [5]. Therefore,

oo 300
fmax 5*]09*\/3

Amin= =0032 M

The cell sizes in each of the three dimensions are denoted as: x, Ay, and 4z, To

simplify the simulation, we chose a uniform grid with dx=dy=dz=Ah. Ak gives more

than 10 samples per shortest wavelength for a accurate result. In this example,

dh = Ax = Ay = 4z = 0.0025 m < 0.0032 m

e Time steps
Once the cell size has been determined, the size of the time steps is calculated from

the stability conditions. For a 3-D rectangular grid, the stability [imit can be written as

1
step = [ [ 1
C( . + , + . ) 1/2
Ax Ay Az

At

(4-1-2)

If dh = Ax = Ay = Az = 0.0025 m , the calculated time step Ar,,, is

step

Ah 0.0025

o3 3%108 %43

o The derivative of a Gaussian wave

At =4.81E-12sec

The source is an elemental current source having a Gaussian pulse shape in time.

¢ <0

J= _(4,)? h
a*e Y t>0 . D

36



The first derivative of equation (4-1-4) is:

a0 0 t <0

= _ _Ltg)?

dt —M*e b 1> 0
b

(4-1-5)

With parameter a=1.0, 7, =1E-9 and b=0.18£-9, the frequency bandwidth of the signal

is 5GHz. Figure 4-1-3 and Figure 4-1-4 are the waveforms of equation (4-1-5) in time
domain and frequency domain. The time duration of this wave is approximately 1.0ns.

The time step, Az, , is 0.00481125ns. Therefore there are 207 samples in this period of

time. The Gaussian pulse is well resolved in time.

Fourier Transform of Clrre
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Figure 4- 1-3 Current source waveform in freauency domain
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4.1.2 FDTD simulated GPR data

Based on the geometry of the problem example in Appendix I, the test points and
the current source are in the x-z plane, but with different x locations, i.e. different
distances to the object. Test point 9, shown in figure 4-1-2, is at the same position as the
current source in the y-z plane.

There are three major components generated in the FDTD GPR data: the direct
coupling between the current source and the receiver (i.e., the test points), contributions
from the ground object and from the buried object. Three FDTD simulated GPR data are
generated: ground only (no bomb buried under the ground) for the determination of
ground contribution; a bomb buried under the ground surface; and no ground and no
bomb for the determination of coupling.

In order to determine the initial time point for the reflection from the buried object

surface, FDTD GPR data is analysed as below. The shortest distance between the current
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source and ground surface is denoted as AR, ground surface to test point 9 as AR, and

the distance between the buried object and ground surface is denoted as AR;, as shown in

Figure 4-1-5.
l Buried obiect

oz
h 4 Ground Surface

7y A

i 'AR, =12.5 cm

! . S

: ® 19

1AR; =20 cm

________ \ 2

®

Current source

Figure 4-1- 5 x-z plane of the FDTD problem from Figure 4-1-2

The propagation time to reach ground surface from the current source is AR/c. AR, /c is
the propagation time from ground surface to test point 9. Similarly, the propagation time
to reach the buried object surface and be reflected back to ground surface is 2 x 4R , /v -
Therefore, the total propagation time ¢ » at test point 9 is the sum of the propagation times

from the current source to the buried object plus the propagation time from the buried

object to test point 9, i.e.,

_AR AR, 2xdAR AR +AR, +2xAR, x4€,

c c Vg c

! =1.0833E 9+(4.4096E 1 1 )x AR, (4-1-6)

P

In our FDTD simulation, &, for the ground object is set to 7. Adding the time delay 1ns

for the Gaussian waveform, the time that requires for the buried object reflection to reach

T9 should be

1, +1ns=2.0833+0.044096x AR,  (ns). (4-1.7)
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We generate six FDTD simulated GPR data with different depth AR; for the
buried objects, as listed in Table 4-1. The name of the FDTD GPR data is defined based
on the following rules:

» ‘T9’ denotes test point 9.

e ‘mine’ or ‘ground’ indicates a landmine object or ground object involved.
According to the above definition, “mine ground T9 AR3” indicates FDTD GPR
waveform received at test point 9 with a landmine buried under the ground in the depth of
AR;3. “ground T9” means ground only, no landmine is buried, and GPR waveform is
received at test point 9. With no landmine and no ground, the GPR waveform at test
point 9 is donated as “non_T9”, the direct coupling from the current source at test point
9. The residual GPR data after subtracting “non_7T9” from “ground_T9” is the reflection
contributed by ground only, ground_only_T9, as shown in Figure 4-1-6.

ground_only_T9 = ground T9 - non_T9 {4-1-8)
Similarly, “minetground_T9_AR;3” denotes the contribution from ground plus the buried
landmine after direct coupling is removed, as shown in Figure 4-1-7.
mine+ground_T9 AR3= mine_ground _T9 AR; - non T9 4-1-9)
Finally, we can obtain the landmine-only reflection waveform, “mine_only_T9 AR;” by
subtracting “ground_only T9” from “minetground T9 AR;”,

mine_only T9 AR; = minetground T9 _AR; - ground only T9 (4-1-10)
The FDTD waveforms for the landmine only are shown in Figure 4-1-8. We define the
peak time step as the sample time at which the GPR waveform reaches its peak point.

The peak time step is calculated by (7, +1ns)/At,,, . The calculated peak time steps for

the buried landmines with different depths are listed in table 4-1.
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Table 4-1: Parameter for six generated FDTD GPR waveforms at test point 9.
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We notice that the calculated peak time step has an offset of 13 time steps from
the corresponding simulated FDTD peak time step. For example, in the first row of table
4-1, subtracting 465 from 478 is 13. This is because the calculated peak time step is a
reference point based on the current source center point (the center of the derivative of
Gaussian waveform in Figure 4-1-4). And the simulated FDTD peak time step is the
sample time at which the total received reflected waveform reaches its peak value. They
are not the same. However, If we use the first row of table 4-1 as a reference, we can see

that the number of peak time step increases 46 per 5-cell-increase in AR,. For instance,

578-524 = 511-465 = 64. This proves that the simulated FDTD peak time step in FDTD

waveform reflects the depth of the buried landmines.

4.1.3 Landmine signature

Landmine signature is used for object-oriented object detection. This signature should
be unique, different from the other objects involved. There are only two objects in our
simulation, a ground object and a buried landmine object. The landmine signature should
be able to identify the landmine waveform from the reflection contributed by the ground
object. The signature can be obtained from the landmine-only GPR waveform. In Figure
4-1-8, the reflection waveforms from the landmines buried in different depths have the
same feature, which is different from the reflection from the ground, as shown in Figure

4-1-6. It can be used as the landmine signature. We normalized mine_only T9 AR;asa

reference signature 1., (;), as shown in Figure 4-1-9. f; is the time step.
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Figure 4-1-9 Landmine signature obtained after normalising the mine-only reflection waveform

4.1.4 Pre-processing of FDTD GPR data

The GPR waveforms with a landmine, as shown in Figure 4-1-6, is different from
the GPR waveforms with no landmine, as shown in Figure 4-1-7. The contribution from
the ground is much stronger than the reflection from the landmine. In order to detect the
landmine, this ground surface reflection must be preprocessed (reduced) before any
further processing.

Setting the prediction order to 24 for the linear algorithm in section 3.1, we

calculate the estimated GPR data (7)) based on the previous received GPR data

¥, ) >24,j>i by using equation (3-1-1) as below:

24
Y )= Z biy(t; ) (4-1-11)

i=1
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Then, we use the least square algorithm to determine the coefficients {;, i=1 to 24}, i.e.,

b; is chosen so that the error in equation (4-1-12) is minimum:

24
error =| p(¢,,) = > b, y(t, ). j>24 (4-1-12)

i=|
After the coefficients are obtained, we estimate the ground-only reflection, Esground, by:

24
Esground(t;) = Zb;y(i ik >24 (4-1-13)
i=l
Finally, subtracting Esground from the received GPR data, we get the residual GPR data
as below:

Residual - mine+ground_T9 ARz = mine+ground _T9_AR; — Esground (4-1-14)

Residual _ground _only_T9 = ground_only T9 — Esground (4-1-15)

The residual GPR waveform Residual_ mine+ground_T9_AR;, as shown in Figure 4-1-
10, is generated after pre-processing of GPR data mine+ground TQ_AR3 with ARs=25.
It consists of contributions from the landmine and the residual ground contribution after
the estimated ground reflection, Esground, is removed. Comparing the Figure 4-1-7 with
Figure 4-1-10, we can see the landmine GPR waveform is enhanced and the contribution

from the ground surface is reduced significantly.
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Figure 4-1-10 residual GPR data after nre-processing on mineteround T9 AR. with

Table 4-2 is construc-ted as if the landmines are buried under the ground surface
with different depths at different scan positions. Figure 4-1-11(a) is the corresponding
geometry. Prep GPR_data group is created based on table 4-2. Prep_GPR_data_group
will be used in the further processing for landmine detection. The image of
Prep_GPR_data_group, as shown in Figure 4-1-12, reflects the range of the buried
landmines according to their depths. The strongest (darkest) line at the time step of

around 430 is the residual ground contribution after the preprocessing of GPR data.

Table 4-2: a grouped preprocessed GPR data

Cross-range 1~15, 1728, 16 26 42 55 68 81
scan position 30~41, 43~54,
56~67,69~80,
82~93
Residual GPR Residual Residual  minetground T9 AR;
data groundgonly_T AR = AR;=10 | AR;=15 | AR;=20 | AR;=25 | AR;=30
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Figure 4-1-11(b) the image of a grouped pre-processed GPR data generated according to table 4-2
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4.2 LP algorithm for landmine detection

The LP algorithm, described in Section 3.2, is a general method designed for
landmine detection. In this section, the implementation of the LP algorithm is discussed.
The pre-processed FDTD GPR data, Prep_ GPR_data_group created in section 4.1.4,
will be used as the input. The simulation results will be analysed.
4.2.1 Implementation of LP algorithm

Figure 4-2-1 is the implementation block diagram of the LP algorithm described

in section 3.2.1. For the improved LP algorithm, the prediction coefficient vector a px1 1S

calculated according to the equation (3-2-15). At the beginning, five parameters need to

be determined. The prediction order p, the adaptive parameter A and the scale factor

¢ scale are experimental values. The weighting matrix W,,,,and the normalized error
energy threshold &, are calculated over a small area with no buried landmines.

Figure 4-2-2 is the LP initiation block diagram for the calculation of H,,,, and &, -
In Figure 4-2-2, y,,(» is the pre-processed GPR data at the cross-range scan

position n. m denotes the total number of pre-processed GPR data in time domain.

Y,.,(n-1) is generated by the pre-processed GPR data from the p previous scan positions,
ie.,

V1= ={ P @ = 1=, ~2,0,m = p. }. (42-1)
The prediction coefficient vector @ ,,;(n) and error energy e,,,;(#) are calculated by:
&yl (n) = [Yi;xp (n— l)mep (H - ])]—1 mep (n— 1)* Yo (ﬂ) (4-2-2)

€l (h‘) = Vo (n) - mep (n - l)apxi (n) (4-2-3)
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Moving to the next scan position and updating ¥,,,(z~1) with the latest pre-processed
GPR data from the previous p scan positions, we obtain a series of
€ua(m),n=p+1Lp+2,.. The covariance of €,4()is C,,,. The weighting matrix

W

mxin

is calculated by

mem ﬂlxﬁl - (Q”!xq q)(q QqX"E )_ (4'2'5)

If the inverse of G, has singular problem, then the weighting matrix w,,_ is calculated

M=

according to section 3.2.2. After estimating #,,,,,, we can calculate the weighted error

energy ¢&(n), and then normalise the error energy threshold ¢,,..,.. by:

f(ﬂ) = Vonxl (n)* mxmymx] (n) Yol (ﬂ) nm mxp (n)“px! (") {4-2-6)

lhresha.’d é: Scale x max{{f(n) 5]/(E[| g(n) é: l ])”2} (4'2'7)

¢ is the mean of ¢(n) and E[|&(n)—¢& [*] is the variance of ¢(n).

After initialization, we obtain the weighting matrix w,_, and the normalised error
encrgy threshold ¢&,,..;,; as the parameters of the LP algorithm in Figure 4-2-1. The
prediction coefficient vector & ,.;(#) and the weighted error energy &(n) are estimated
by:

4,0 (M) =Y, (n=1)'W, Y, =DV, (1= D)W, .00 (4-2-8)

gr(n) = ymxl (n)* mxmymxl (n) ymxl (n) mxm mxp (I’l 1)a‘pxi (n) (4-2-9)

We then normalize the weighted error energy #(n) as &'(n):

&M =[&(m) ~E1HENEm - (4-2-10)
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where £ is the mean of &(n) and E[|£(n) — & |°] the variance of ¢(n). The LP algorithm

generates an alarm if

&) > & threshold {4-2-11}
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LP algorithm for landmine detection

v

Input prediction order p, weighting matrix W
and adaptive parameter 4

'

Read in preprocessed GPR data from the first p scan

positions and generate ¥, (1—1) as described in

section 3.2.1. Here, n=p+1

i’

Read in next preprocessed GPR data y,, (1)
from the # scan position.

Update ¥

ey (B — 1) with
Yia (1), and move to the

next scan position. Increase »
by one

A

Estimate the prediction coefficients:
@, () =¥, ,(1-1)W,
The weighted error energy &(nj:

6(") = Yo (I?)' ’memymxi (ﬂ) ~ Yaxi (n)'memymxp (ﬂ - ])apxl (?’1)

mmemxp (H - ]}]_] mep (” - 1)' ;memymxl (”)

;

Calculate the average mean E[&{#n)] and variance E[f E(n)y - E[E(m)] ]2 ]:

E[¢(m] = (1= D E[E(n -1+ A (n)

E[{)~ERe)) 1=~ DB -EBn-DF 1+ ) -ERe))

L

The nommalized error energy f'(n) :

& ()=[)-ECHV{ERN-EE@I1Y”, if BIE)~EEC)] 120

or & (n)=¢(nyif E[|£(m) — E[E(m)]']1=0

l

Object detection:

&) > é‘,;,,,,s;,,,,,;, indicating a object detected

Figure 4-2-1 Biock diagram of the Linear Prediction Algorithm
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Initialization of LP algorithm for
landmine detection

Set prediction order p and & scale

!

Read in preprocessed GPR data from the first p cross-range scan
positions and generated ¥, p(n—1} as described in section 3.2.1.

l

Read in next preprocessed GPR data p,  (#) from the » scan

.

Estimate the prediction coefficients:
1 (1) = (¥ (2= D)y (1= D17 ey (1= 1) 1 ()
The prediction error efi):

€pixl (”) = Ymxi (”) - mep {Pl - l)apx] (H)
Calculate the mean 2

mxl

_ i m
emxl = E[emxl (ﬂ)} &= ;}—; Zemx] (n)

n=]

l

Calculate the covariance C,,,, of e, (n) and Weighting Matrix W,

Wi = Coor = (Qreg N g @)™

position.

The error energy &)
é(}’l) = Yot (”)‘ memymxl (II) ~ Y (H)‘ ’memapx! (H)

The normalized error energy threshold &,y p00 ©

Simesrota = & _scale x max{[&(n) — E(Z(mIAEI| £(n) - E[E(n)

Figure 4-2-2 Initiation of parameters for LP algorithm over a small area
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We use Prep_GPR_data_group as the input of the LP algorithm with p set to 5
and ¢ scale to 2. The adaptive parameter A is set to 1 due to the ideal flat ground

surface, and m is 1031. Figure 4-2-3 is the output of the LP algorithm. The normalized
error energy generates six peaks at the cross-range scan positions of 16, 29, 42, 55, 68,
and 81. The LP algorithm alarms six scan positions for landmine detection. Comparing
with the cross-range scan positions of the buried landmines listed on table 4-2, we can see
that the LP algorithm generates alarms for every buried landmines. The result is
expected. If the object is buried closer to the ground surface, then the reflected signal is
stronger. This demonstrates that the implemented linear prediction algorithm works well

for the general landmine detection.

Figure 4-2-3 Output of LP algorithm with Prep GPR data_group
4.2.2 Simulation Results

In practice, noise from the system or from unknown resources is unavoidable.
Normal distributed random numbers with zero mean were added to

Prep GPR_data_group in order to simulate noisy measured GPR data.
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Prep_GPR_data_group noise = Prep GPR_data_group + Noise (4-2-12)
The added noise should have the same frequency bandwidth, i.e., SGHz, as the
preprocessed FDTD GPR data, Prep_ GPR_data_group, shown in Figure 4-2-4. The

processing block diagram of the additional noise generator is shown as below:

Noise generator:
Function normrnd in Matlab

v

Apply filter with 5GHz frequency
bandwidth

v

Shift noise start time at the ground
surface

Preprocessed FDTD GPR data for LP processing
4000

2000

-2000

-4000
0

Ok
N
E-9
[»2]

frequency (GHz)

Figure 4-2-4 Pre-processed GPR data as an input of LP algorithm

Figure 4-2-5 (a) is an example of generated noise with SGHz bandwidth, F igure 4-2-5 (b)

is the image of simulated GPR data with noise, Prep_GPR_data_group noise.
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loise with 5GHz bandwidth

-5 (a) Generated noise with 5GHz bandwidth

2

Figure 4

5(b) Image of simulated GPR data with added noise

2.

Figure 4-

(SNR) is defined as:

ise ratio

no

The signal-to

(4-2-13)
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E; isthe reflected signal energy from landmine only, i.e., mine_only T9 AR;. E, isthe

residual energy from the ground surface after signal preprocessing, Residual_

ground_only _T9, plus noise, Noise. Then we have:

E = i] mine_only_T9 AR, (i} (4-2-14)

I=1l

E, = Z;Residual_ ground only T9 (i) + Noise (i) |’ {4-2-15)
i=1

Because the landmines are buried at different depths, their SNRs are different. In the
above simulation, the calculated SNRs of Prep GPR_data group noise with standard
noise deviation of 4000 and 5500 are listed in table 4-3 and table 4-4. Figure 4-2-6 is an

output of LP algorithm with noise deviation of 5500.

Table 4-3 SNRs with noeise deviation of 4000

Cross-range scan position 16 29 42 55 68 81
of buried object
SNR (dB) 09219 | -0.45348 -1.6119 | -2.4817 | -3.6589 | -4.3115

Table 4-4 signal-to-noise ratios (SNRs) with noise deviation of 5500

Cross-range scan position 16 29 42 55 68 81
of buried object
SNR (dB) -0.5896 | -1.365 -3.1934 -3.8872 | -4.8006 | -5.2197

A false alarm is defined as an alarm that the LP algorithm generates at a cross-

range scan position where there is no landmine buried. If & ,';,,es;,o,vd in the LP algorithm

is set high, then the false alarm will be low and some of the landmines with low SNRs

will not be detected.
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Figure 4-2- 6 Output of LP algorithm for landmine defection

For example, in Figure 4-2-6, if we set é‘,',,,‘es,,o,d to 2, then three landmines,
located at the cross-range scan position 16, 29 and 42, would be detected with no false
alarms generated, and the other three landmines, located at the cross-range scan position
55, 68 and 81, would be undetected. If & ,';,,,es,,o,rd in the LP algorithm is set to 1.1, then

four landmines, located at the cross-range scan position 16, 29, 42 and 55, are detected
with one false alarm generated. The landmines with very low SNR are undetectable,
such as the landmines at the scan position 68 and 81.

Table 4-5 is the simulation results for the number of detected landmines over

SNR and the false alarms over SNR. S#r is averaged over 10 landmines buried in the

same depth scattered at different cross-range scan positions, as shown in Figure 4-2-7.

Snr = —Z Snr (i) (4-1-16)
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Snr (i),1 = 1,.., 10 | is the calculated SNR of the 10 landmines. The number of alarms

is the total number of alarms generated by the LP algorithm, including false alarms.

Figure 4-2-7 Image of 10 landmines buried in the same depth at different cross-range
scan positions

Table 4-5 Generated alarms over averaged SNR and landmine detected over SNR

§nr Number of Nu;nber of S_nr Number of Number of
alarms Landmine detected alarms Landmine detected
-4.725 14 10 -5.545 43 9
-4,722 11 10 -5.676 40 6
-4.736 il 10 -5.613 37 8
-4.981 31 10 -5.715 43 9
-5.005 24 10 -5.881 42 5
-5.004 26 10 -5.999 39 8
-5.018 26 10 -5.938 38 7
-5.011 25 9 -5.861 42 6
-5.143 23 9 -5.927 39 5
-5.196 30 10 -6.118 43 7
-5.184 23 10 -6.307 41 7
-5.144 29 9 -6.338 40 9
-5.328 35 8 -6.512 33 5
-5.426 33 9 -6.457 38 4
-5.491 29 9 -6.281 42 4
-5.522 43 8 -5.881 42 5
-5.627 36 9 -6.438 4] 6
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Figure 4-2-8 shows the curve generated according to table 4-5, and indicates that

if the SNR is greater than -5dB, less than 95% of landmines will be detected. With a

fixed threshold &y,eq0 » if the SNR is set low, the number of false alarms will be high

and the percentage of detected landmines over the total number of buried landmines will

be low.
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Figure 4-2-8 simulation results for false alarms over SNR and ratio of detected landmines over SNR
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4.23 Summary

The purpose of this simulation was to determinate the adequacy of the
implementation of the LP algorithm. Seven basic sets of pre-processed FDTD GPR data
were generated, pre-processed and reconstructed to simulate the cross-range GPR data.
Using these preprocessed FDTD GPR data as the inputs of the LP algorithm, the
implemented LP algorithm was able to detect the buried objects at different cross-range
scan positions. The output of the LP algorithm reflects the error energy in response to the
depth of a buried object, i.e. if the landmine is closer to the ground surface, the output of
the LP algorithm is stronger due to higher SNR.

In practice, noise from the GPR system or unknown resources is not avoidable.
Random noise was generated to simulate the random contribution from a variety of
environments. The landmine detection percentage and the total number of false alarms
are functions of signal-to-noise ratio. If SNR is high, then the landmine detection
percentage is high, and the number of false alarms is low. The simulation results were
what we expected. According to our simulation results, if the SNR is lower than —5dB,
the detection of landmine is not guaranteed. Lowering the landmine detection threshold
will result in more false alarms.

The simulation resuits of the improved LP algorithm are almost the same as the
original one. This is because the inputs of the LP algorithm are highly correlated, i.e., the
equation (3-2-13) is not satisfied.

In our simulation, the generated FDTD GPR data is based on a simple geometry.

We did not verify the effect of varying environment with adaptive threshold. More

60



complex geometry of problem models with rough surface or a simulated varying

environment may be considered as a future work.
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4.3 IT algorithm for object detection
4.3.1 Problem and solution for specific landmine detection and range estimation

In section 4.2, we simulate the linear prediction algorithm to generate alarms for
general object detection. This method does not provide any further object-related
information, such as depth. The IT algorithm in [5] is an object-oriented method that
provides a way to estimate the depth of a buried object. The object’s signature is required
for the method.

The IT algorithm first uses the Prony technique to decompose the ground surface
contribution from the received GPR data, and then uses the Simplex method, with the
reference signature of interest, to estimate the target related parameters based on a
damping exponential model. After the estimated ground surface contribution is removed,
the residual GPR data is further cross-correlated with the object’s signature and compared
with the threshold for object detection. The detection block diagram for this procedure is
shown in Figure 4-3-1, and the implementation block diagram of the IT algorithm is

shown in Figure 4-3-2.

Pre-processed GPR

v

IT algorithm |

Residual data
Reference signature of

interest [

Cross-correlation detector

¥

Threshold & .

v

Generate a alarm for object detection if
any, estimate the object-related range

Figure 4-3-1 Block diagram for object detection with IT algorithm
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4.3.2 Implementation

The IT algorithm has two loops, an inner loop and an outer loop, denoted by Jj,
and Jj,, respectively. The outer loop controls the time window for the estimation of the
ground surface contribution only. In this loop, mis the maximum number of sampled
frequencies, #; and f, are the start and end point of the time window. The first time
window (Zy #; ) must not include any contributions from the buried object. So the first 7,
must be the chosen carefully. At the beginning, we set the previous estimated object

~

contribution to zero, i€, lige,p(@;)=0. The maximum numbers for the inner loop

M, .er, the outer lbop M ,er, and the threshold & for object detection are chosen
experimentally.

The preprocessed FDTD GPR data, Residual_mine+ground_T9_AR;, consists of
the residual contribution from the ground surface and the contributions from the buried

object. In the time domain or frequency domain, Residual mine+ground T9 AR; can
be represented as s(#;) or s(w;)
s(8) =R (5) + Ly o (1), 0 = 1oy ma
5(0,) = hy (@) + lyg o (@), i = 1,0y 1 (4-3-1)
where 4. (2;) or h.{@;) represents the ground surface contributions, and Larges((;) OF
large(@;) are contributions from a buried object. f; is the time step and ®; the sample

frequency. m =1031 in our case. In Figure 4-1-10, we can see that the peak value from

the ground surface contribution is located at the time step 420, so we choose 7, =0 and
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1, =420 as the first window. The ground surface contribution within the first time
window is g(#;}=s{t;),7=1,..420 . g(®;) is the FFT transform of g(t;).

After the ground surface contribution g(@;)is obtained, we use the damped
exponential model, described in section 3.4.1, to estimate the contribution, l;c (@,),

based on g(®;). The estimate can be expressed as:

K
he(@,) =) aye s =Joi (4-3-2)
k=t

where @ is the damping factor, a, is the coefficient of the model, X is the rank used

by the Prony technique (we will discuss how to estimate the rank later), and ? is the time

delay. The residual data #(w,) , obtained by removing i;c (@;) from s{w;) , should be

dominated by the contributions from the buried object if any.
The buried object contribution is modelled as:

-0, — Jo;

f[r
Larg et (@;)=a,e Lsignature (@;) (4-3-3)

where Lsignature (@) represents the target signature of interest as shown in Figure 4-1-9,

@, is the damping factor, and @, the coefficient of the model. #; is the time delay which
can be used to estimate the range of the buried object. The square error between the
object model and the residual data r(®;) is:
m
Cpror = le r(@;) ~a,e " IO t e @)1 (4-3-4)
i=1

Using the Simplex method to minimise e, , we obtain the latest estimated object

contribution as:
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mié,—j(u,—rrt

targ el n (6:)!-) = are_ signature (mi) (4-3-5)

If the change between the previous estimated object contribution, farge,:p (@;), and the

latest estimated object contribution, fa,g er.n(@;) , is less than the threshold &, i.e.,

" i
D Mg et (@) =gt p @< 5 Warg e, p (@) | (4-3-6)
i=1 i=1

We consider that a buried object has been detected. The object related parameters,

[5‘, a, f, } and the residual data, »(w;), are outputted for further processing. If

equation (4-3-6) is not satisfied and the inner loop does not reach its maximum number,

we subtract the estimated object contributi;)n from the pre-processed GPR data s{@;) to
obtain the contributions from the ground:
g(w;) = s(w;) -t arger n(@;) (4-3-7)

Afterwards the inner loop is increased by 1 and continued for the object detection from

equation (4-3-2).

If the inner loop reaches its maximum number, then the algorithm exits from the
inner loop to the outer loop and increase the time window by A, . If the outer loop does
not reach its maximum number, then the algorithm enters the inner loop again. If the
outer loop does reach its maximum number and no object has been detected, then the
algorithm stops and exit.

4.3.3 Implementation Problems and solutions

Three important parameters in the IT algorithm implementation are the rank of the

Prony technique for clutter subtraction, the first time window for clutter-only estimation

and the start point for the Simplex Method.
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e The rank of the Prony technique

The rank, K in equation (4-3-2), is required by the Prony technique. The rank varies

according to the complexity of the environment. It is hard to guess it around based on

experiments, K can be calculated from the ground contribution, g(#;). In order to

estimate the rank, we first make a data matrix A from g{®;), and then use the singular

value decomposition (SVD) of the matrix to obtain the rank.

Vector x is the collection of the previous received ground contribution

g(tf—])sl = 13-‘-:L .
x=[gl} gliy) .. gt )]

Using the linear prediction algorithm in time domain, we have:

gy =xa=[glt,,) gltis) - g la a .. a1
a=[a, a, .. a;]"isthe linear coefficient vector.
Similarly,
gt =xa=[gt;) gt) - gliplle a
Let . ; ((:fl)) and y _ ggtf::)) :(2:2)) gg(?f.)>
ltraae) Dy gltia) g(r,-_HJ,,-)“ e &Wpaara) p

Then, we have
y=Xa

The singular value decomposition (SVD) of the matrix X is:

X=UpVv'; p- Dyx Ok rii-x)
0(M~K)xK O{M-K}‘(L—K)
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U and V are unitary matrices and D is a diagonal matrix. The rank of data matrix X
is k , therefore the number of the linear prediction coefficients is ¥ . The

implementation for the rank of data matrix is:

Initial K
1'4 Increase K by AK

Form data matrix X

l YES

Calculate the rank of X Stop

No

Figure 4-3-3 Rank calculation block diagram for the Prony technigue

e The first time window for ground surface contribution enly

The first time window must cover the contributions from the ground surface only.
Initially, we searched the time step with the highest signal peak as the start of reflection
from the ground surface. It is true for a deep buried non-metal landmine. But
sometimes, this is not true for subsurface buried objects or landmines with a small metal
piece. Based on the above consideration, the first window is chosen upon experiments.
Implementation of the window search can be accomplished by two methods: one is based
on an automatic search of the peak signal from the ground surface in a certain time area.
The other one is to configure the first time window manually.
o: The start point for Simplex Method

The Simplex method needs a start point. After the estimated ground surface

contribution is removed, the residual GPR data, »(®,) , is supposed to be dominated by

the reflection from the buried objects. #{@;) can be rewritten as:
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L - ~J ilr i
H(o;) = h(@;) = h(@;) + a,e™ 7t e (@), = ,eym (4-3-12)

*

S L signawre (02 7) . .
Multiplying Sl : 7~ on both sides of the above equation, we have
” t.signalure (aj i ) ”
‘" ®; - t (@; -
r(cu,—) signature ( r) 5= [hc(ﬂ'},—) _ hc ((f);‘)] signaiure r) 5 + are—m,a,—jw,—!, (4_3_13)
l? tsfgna.'ure ((01) B ” Isignamre (wl) ”
t.:fgrmrure (60,-) . —@,r, — Jot .
r{w;) should be dominated by the second term, a,e™“"/“" _ Again,

” (.signmure (ﬂ),} ”2
the Prony technique is used to estimate the parameters [&r a, fr] for the start point

*
tsr'gna!ure ((t) i )

7 .
” tsigna.'nre (([)1') il

based on the strongest signal in the »(w,)

4.3.4 Simulation Results
The purpose of the following simulation is to evaluate the adequacy of the
implemented IT algorithm. We use the preprocessed FDTD GPR data with buried objects
as the input. We expect that the ground surface contribution should be decomposed from
the contributions of the landmines. Unlike the LP algorithm in section 4.2, the IT
algorithm processes the received GPR data at a cross-range scan position. It does not
need any GPR data from previous scan positions. In our simulation, the data in Residual
minetground T9_AR;, listed in table 4-6, is used as the inputs of the algorithm. The
geometry of these data, as shown in Figure 4-3-4, is created according to table 4-6.
We assume that the GPR system illuminates the area with a narrow beam width
and the buried landmines are separated enough so that there are no contributions from the
nearby landmines. For example, on the second cross-range scan position; the GPR

receives contributions from the ground surface and from the landmine buried directly
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under the scan position 2. No contributions from the closest landmine under the scan

position 3 and scan position 1 are considered.

Cross-Range movement

Ground

landmine

______________________________________________ »
Moving cart

'

! 2 3 1
= Cross-range scan position Surface

Figure 4-3-4 Geometry of the preprocessed FDTD GPR data set for IT simulation

Table 4-6: a set of preprocessed FDTD GPR data

Cross-range scan position 1 2 3 4 5 6
Residual mine+ground _T9_AR;
AR; 5 10 15 20 25 30

Figure 4-3-5 is the images of the input and the output of the IT algorithm. From

cross-range scan position 2 to 6 and from time step 390 to time step 450, the ground

surface contributions are reduced significantly. At the cross-range scan position 1, the

buried object is 1.25cm deep under the ground surface. The contributions from the

ground surface and from the buried object are partly overlapped. The un-overlapped

ground surface contribution, from time step 390 to time step 430, is reduced, too. We can

conclude that the implemented algorithm does decompose the ground surface

contributions from the contributions of the buried objects.
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Figure 4-3-5 Images of input and output data of IT algorithm

4.3.5 Simulation problems and solutions

In our simulation, we faced the time consumption problem of the IT algorithm. In
order to show this, the following example was set. The threshold & was defined as 0.001
for ground-only preprocessed FDTD GPR data, Residual_ ground only T9. No
landmine was buried. The inner loop was set to 10 and the outer loop to 8. The
algorithm did not detect an object as expected, but the consumption of CPU time was
3.249e+002 seconds, i.e. 5.41478 minutes for the detection procedure. For a cross-range
scan area of 20 cm, if scan positions are lem apart equally, the number of total scan
position would be 20, and the IT algorithm ﬁee'ds 1.8 hours to finish. If the threshold is

set to 0.01, the algorithm generates the alarms at the ground-only scan position.
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One of the solutions to this time consuming problem is to apply this algorithm on
the alarmed scan positions only. The alarms can be generated by the LP algorithm for
general landmine detection or by a cross-correlation alarm generator for specific
landmine detection. Because a reference signature is also used in the algorithm, we
prefer the second one. In this solution, Figure 4-3-1 is modified as indicated in Figure 4-

3-6.

I Pre-processed GPR k——
v

Cross-correlation alarm generator

v

Detection?

¢ Yes

IT algorithm I
¢ Detected object

Reference signature of
interest

Another scan

I Threshold ]

v

Generate an alarm for object detection if any and provide the object-related range.

Figure 4-3-6 Object detection Block diagram with IT algerithm
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The cross-correlation alarm generator is shown in Figure 4-3-7, as below:

Preprocessed GPR data

v

Set first time window (fg I3 ),7g and {} are the start and

end point of the time window

I

Subtract the ground surface contributions from the first
time window

Cross-correlation Corr with reference signature of interest

N

o
l Go to next scan position

l Yes

Generate alarms for further processing 1

Figure 4-3-7 block diagram for cross-correlation alarm generator

Suppose cor is the cross correlation of the pre-processed GPR data with the
reference signature 00, (@;). The cross-correlation alarm generator in Figure 4-3-6
generates an alarm if corr is greater than the threshold s, (an estimated value with an

adjustable factor we will discuss it later). The purpose of this alarm generator is to run
the IT algorithm only on the alarmed scan positions, reducing the total time over the

whole scanning area.
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If the range resolution, dR, of the GPR system is high enough, then the first time
window, used in the IT algorithm, is also helpful in the cross-correlation alarm

generator to reduce part of ground surface contribution.

3x10 %7/
dR = -5 = X £y (4-3-13)
2B 2x 5%x10

Here B is the bandwidth of current source. v, is the propagation speed and &, is the
relative dielectric constant of the propagation media. In our FDTD simulation, B is
5GHz and £, is 7, therefore, dR is [.13cm. Because the shortest distance between the
buried objects and the ground surface is 1.25cm, the range resolution is high enough to
separate the ground surface from the closest object. This means that the first time

window can be used to remove part of the ground reflection with no loss of any

contributions from the objects.

S0y 18 calculated over a small area with no object buried.

F N
Soopy = Af;’ ZCorr(i) (4-3-14)
i=1

Where cony) is the cross correlation value at the scan position i, F,, is a factor to adjust
the threshold &, N is the number of scan positions for the threshold estimation. If

Fcate 18 high, &, will be high, and the number of generated alarms will be low. &, is

set high enough so that few alarms are generated over an area with no objects buried.

But, If &, is too high, a buried object, which generates a low reflection, i.e. low SNR,

will not be detected. This is unacceptable. So &, should be set low enough so that no

buried object will be undetected.
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We use Prep_GPR_data_group_noise, in section 4.2.2, as the inputs of the cross-
correlation alarm generator. Figure 4-3-8 shows the images of the inputs and the output
of the alarm generator. There are 93 scan positions and only half of them are alarmed.

The time for scanning this area is reduced by 50%.

aige! signature in 1ime doma

S SRR ——
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_ Preprocpssed FOTD GPR daty . R

v

T
I
4
1
]
o
B
-
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]
1
o
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Alarms ganerated for;

'
t

1
L w

Figure 4-3-8 Inputs and output of the cross-correlation alarm generator

There are only six objects in Prep_GPR_data_group noise. We should be able
to reduce the alarms further with a higher cross correlation threshold &,,,,. Table 4-7 and

Table 4-8 are the simulation results with different thresholds for the number of object

detection and the number of the false alarms over SNR.
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Table 4-7 Alarms over SNR and object detection over SNR with F_. ;. 0.35

SNR alarm object detected SNR alarm # | object detected
# # #

-5.169 15 10 -5.740 63 9

-5.092 15 10 -5.835 38 9

-5.166 20 10 -5.788 60 10
-5.175 17 10 -4.867 10 10
-5.334 34 10 -4.842 10 10
-5.329 25 10 -4.809 10 10
-5.452 21 10 -4.747 10 10
-5.503 19 10 -4.765 16 10
-5.490 29 10 -6.029 | 74 10
-5.462 31 10 -5.999 71 10
-5.604 30 10 -6.025 70 10
-5.603 40 10 -5.796 50 10
-5.57 41 10 -6.168 87 10
-5.625 40 10 -6.205 84 10
-5.763 63 10 -6.018 85 10
-5.874 56 10 -6.275 81 10
-5.840 56 10 -6.065 62 10

Table 4-8 Alarms over SNR and object detection over SNR with F,_,;, 0.40

SNR alarm object detected SNR alarm # | object detected
# # #
-4.871 10 i0 -5.551 22 10
-4.909 10 10 -5.856 | 31 9
-4.864 10 10 -5.720 |34 8
-5.031 11 10 -5.744 133 9
-4.995 10 10 -5.855 | 37 10
-4.943 11 10 -5.847 | 25 10
-5.176 11 10 -5.769 | 26 10
-5.301 10 10 -5.687 | 32 10
-5.157 11 10 -5.976 | 51 9
-5.315 15 10 -6.080 | 33 9
-5.374 14 10 -5.957 | 49 10
-5.315 17 10 -6.0269 | 46 9
-5.320 20 10 -6.108 | 47 10
-5.333 17 10 -6.111 45 9
-5.540 18 9 -6.140 | 60 10
-5.647 22 8 -6.297 | 67 9
-5.590 31 10 -6.297 | 59 9
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Figure 4- 3-9 Number of false alarms over SNR with different threshold factor

Table 4-7 and Table 4-8 indicates that if SNR<-5.3dB, the number of alarms are
up to 30. The cross-correlation alarm generator yields good results if the SNR is high
enough, SNR>-5.3dB. With the same SNR, the number of false alarms is decreased
when compared with the LP alarm generator over the same SNR, see table 4-5. Figure 4-
3-9 is created based on table 4-7 and table 4-8. It indicates that with the same SNR,
increasing F,., reduce the false alarms. A high threshold &, is helpful in reducing
the number of false alarms, but it also increases the number of buried objects undetected.
With a low threshold 6, ( Fme = 0.35) and SNR >-5.5dB, the ratio of generated alarms
per landmine is less than 3 and no landmines are undetected. The maximum number of
generated alarms in table 4-7 is 34. The total number of scan positions is 93. Therefore,
the number of the generated alarms over the total number of scan positions is up to 37%
(34/93), i.e., the time consumption for this scan is reduced by 63%.

We applied the IT algorithm on the alarmed scan positions. The buried objects

were detected as expected.
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The image of the output of the IT algorithm is shown in Figure 4-3-10.
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Figure 4-3-10 Image of pre-processed FDTD GPR data after IT algorithm

4.3.6 Summary

The IT algorithm was successfully implemented and the three main parameters of
this method were correctly chosen. These three parameters are: i) the first time window
selection for the ground surface contribution; ii) the rank estimation for ground
contribution by the Prony technique; and iii) the start point for the object contribution by
the Simplex method.

The implemented IT algorithm was applied to the pre-processed FDTD GPR
data. The results indicated that the implemented IT algorithm decomposes the ground
surface contribution from the contributions of the buried objects and detects the buried
objects. This proves that the implemented IT algorithm works well with our simulated
FDTD GPR data.

During our simulation, we found that this algorithm has an execution time

problem. With an inner loop of 10 and an outer loop of 8, this algorithm takes up to 5
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minutes to finish the detection over a scan position. In order to solve this problem, we
introduced the cross-correlation alarm generator to generate an alarm on a cross-range
scan position if the estimated measure is greater than a threshold. The IT algorithm is
stimulated on an alarmed scan position only. By doing this, the detection time over an
area of 93 scan positions can be reduced up to 70%.

Figure 4-3-11 is the recommended block diagram for buried object detection with
DSP techniques discussed in this chapter. The use of these DSP techniques on measured

GPR data for landmine detection is presented in Chapter 5.

GPR raw data

v

GPR data preprocessing for removing of
deterministic propagation reflection if any

v

Average background reduction

Yes No
LP algorithm l

Alarms No output

Cross-correlation alarm generator:

/v

IT algorithm for ground contribution
subtraction

v

Range estimation for the detected
objects

v

Landmine image/recognition

Figure 4-3-11 Recommend Block diagram for landmine detection
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Chapter 5 Experiments on the Measured GPR data
In Chapter 4, we discuss the implementation of the LP algorithm for general object
detection and the IT algorithm for object-oriented object detection. These two algorithms
can detect the landmines with FDTD GPR data. In this chapter, we first introduce the
collection of the measured GPR data with our lab set-up and pre-process them. And then,

we apply these two algorithms for landmine detection.

5.1 GPR raw data collection

The system function block is shown in Figure 1-1 and is detailed in [19]. A Network
Analyzer generated stepped frequency signals from 1GHz to 12.4GHz. The number of
frequency steps is 501. One horn antenna attached to the moving cart is used for both
signal transmission and receiving. In this work, GPR raw data or measured GPR data
refers to the directly received data from the input of the Network Analyzer and is
collected in frequency. At each cross-range scan positicn, GPR raw data is recorded and
then downloaded to a PC. With this microwave Network Analyzer, the range resolution

R for the waveform through lossy sand is:

resolution

R psotuion = ;; = % = 0.74cm (5-1-1)
€, is 3.15, see [5].

Controlled by the PC, the moving cart moves evenly across the cross-range
direction. The horn type antenna moves from right to left or left to right along the beam,
covering a total cross range distance of 3m with various step sizes. Moving the antenna

across the beam is called “a scan”. The sandbox is bottomed with absorbing material to

reduce the reflection from the room floor.
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Figure 5-1-1 Hlustration of conceptual geometry bock for GPR raw data collection

One scan of GPR raw data, NA_raw_data.mat, was collected with a landmine buried
under the sand with no buried rocks, as shown in Figure 5-1-1. The scan was performed
across a beam of 140cm long. There are 116 scan spaces with a step size of 1.2¢m
approximately. Figure 5-1-2 is the waveform of the GPR raw data in time domain.
Figure 5-1-3 is the image of the GPR raw data along the beam. There are no noticeable

differences among the received raw GPR data at different scan positions.
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Figure 5-1-2 GPR raw data collected from sand with rocks and landmine
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Figure 5-1-3 Image of a scan of GPR raw data

As with our simulation with FDTD GPR data, these raw GPR data must be pre-

processed in order to apply signal-processing techniques for landmine detection.

5.2 Data pre-processing
We perform a few scans, and we noticed that there was little change in a scan of GPR
raw data after time sample point 120. The Sandbox is 27cm deep. Range resolution

Riesorion 18 0.74cm. It takes about 36 time sample points for the micro waveform to reach
the bottom of the sandbox from the sand surface.

R _ 27 ~ 36 (5-2-1)

resolution

R
If the time sample point for the sand surface is located at 50, then the major contributions
from the sandbox will be from the time sample point 50 to the time sample point 122

(50+2*36). The GPR raw data after the time sample points 122 are the contributions
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mainly from the stable surroundings. Therefore, the GPR raw data, after time sample
point 122, was filtered out by setting them to zero. After this processing, the scan of
GPR raw data is denoted as NA_raw_data 122, as shown in Figure 5-2-1. As for the
time sample points for the sand surface, it is an experimental value. It depends on the
distance between the antenna and sand surface, and the time delay caused by the length of

the cable attached from the antenna to the Network Analyzer as well.

Figure 5-2-1 Image of a scan of GPR raw data after the out-of-range data is filtered

GPR raw data consists of two major signals: the deterministic signal and the
statistical signal. The statistical signal is a random distribution from the reflecting objects
like rocks, landmines and rough sand surface. The deterministic signal is the
contributions by the stable surrounding objects with very slow change from a scan

position to the nearby scan position, comparing with the disturbance caused by the small

83



objects. We defined clutter as the contributions from any reflection objects, except the
contributions from the landmines.
5.2.1 Decomposition of deterministic propagation clutter

In FDTD simulation, the ground surface contributions can be reduced by the linear
algorithm based on layer geometry model. Figure 5-2-2 is the output of the linear
algorithm with GPR raw data, NA raw dafa 122, as its input. The prediction order is

24. The estimated coefficients are obtained based on the sand-only area.

Figure 5-2- 2 Image of GPR raw data after deterministic signals are removed

Comparing Figure 5-2-2 with Figure 5-2-1, we do not notice any improvement.
Changing the prediction order did not improve the result. This indicates that the received
GPR raw data is not linear predicable in the same sense found using the algorithm with

layered geometry model.
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5.2.2 Average background estimation

Figure 5-2-1 demonstrates that background signals from unknown sources
through the whole scan are very strong and has no significant change except the area
from time sample point 50 to 60. The background noise in a small area is considered

stable, which can be removed from the GPR raw data. LetgpPraarasy be a vector

representing GPR raw data at the scan position 7 .

gPRdata (i) = {GPRdata (¢ jebhi=1,m} (5-2-2)
m is the number of total sample points. In our case, 7 is 501. % is the time sample

point. GPRdata(t;,i) is the GPR data sampled at time % at the scan position i. The

background noise packGround;y is the average of GPR raw data over N scan positions.

- N
backGround (i) = ]%;‘Z gPRdata (i) (5-2-3)

i=1
In a large cross-range area, adaptive background average is used in order to adjust the

various changes in the environments.
N
backGround (k)= gPRdata (k - i}x AdapC (i),k > N (5-2-4)

I=t

AdapC(i),i =1,2..., N are adaptive parameters chosen by:
N
> AdapC (i) = 1 : (5-2-5)
i=]

AdapC(i)is adjusted according to the roughness of the sand surface. If ¥ =2,

AdapC() =, AdapC(2)=1-a and backGround () = gPRdata (1}, then we have:

backGround (k) = a x backGround (k — 1) + (| — a) x gPRdata {k) (5-2-6)

The residual GPR data r,,(k) at 4 scan position is obtained by removing the estimated

background noise from the GPR raw data.
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Top (k) = gPRdata(k) — backGround(k) (5-2-7)
Figure 5-2-2 is the implementation block diagram for the adaptive background noise

estimation.

- Received GPRdata
(GPRdata Received l_—" Account + 1

v

> Update the buffer with the latest GPR data

é D E— AdapC

Adaptive background noise estimation
backGround (i)

4

Adaptive background noise subtraction
Top (k) = gPRdata(k) — backGround(k)

!

Residual GPR data 7,,(k)

Figure 5-2-3 the block diagram of background estimation and removal

Figure 5-2-4 is the residual GPR data after the background noise with adaptive
coefficients of [0.1 0.35 0.55] is removed. It indicates that the big disturbance under
sand surface is located from scan position 80 to 100. It is the place where a landmine is
buried. The landmine image becomes clear after subtracting the adaptive background
noise. In our current set-up with dry sand and the flat surface or rippled surface, changing

the adaptive coefficients makes no significant difference among the images of the
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residual GPR raw data. This is because our sand environment is a homogeneous-like
media. The residual GPR data after this pre-processing, called pre-processed GPR raw

data, can be used for further processing.

Figure 5-2-4 Image of residual GPR data afier pre-processing

5.3 Experiments with the LP algorithm

NA_raw_data_E3_B is a scan of GPR raw data from a master database. There are
7 objects scattered under the sand surface. Figure 5-3-1 is the pre-processed GPR raw
data as the input of the LP algorithm for general landmine detection. In this collection,
the 'sand surface is roughly located at time sample point 110. The major contributions
from the sandbox are from time sample point 110 to 180. The prediction order was set to
5 and the average number was set to 10 for the alarm threshold estimation. The alarm
generator threshold is 1.5. Then, seven alarms were generated, located at the scan

position 11, 13,738, 66, 78, 88 and 89 as shown in Figure 5-3-2. There were two
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landmines roughly centred at 119cm and 80cm. Because there are 118 scan positions
over 140cm, the landmines’ scan positions are calculated by:

scan_position = mine_position*118/140cm (5-3-1)

The landmines are located at scan position 67 and 100.

Figure 5-3-1 Image of pre-processed GPR raw data as the input of LP for landmine detection

. L Sy

-

Figure 5-3-2 Output of LP algorithm for landmine detection
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Alarms at nearby scan positions are considered as one alarm area, i.e. two alarms
generated at scan position 11 and 13 are considered as one alarm area, and alarms located
at scan positions 88 and 89 as another single alarm area. The results then are:
= 5 false alarm areas generated,
= A landmine located at 67 is detected,
* A landmine at 100 is missed.
Note that the landmine scan position 67 could be 66 due to the inaccuracy in the
measured GPR data. Lowering the threshold to 1.2, we obtain 13 alarms located at scan
positions:
{(1r 13y, 38, (66 68), (76 78 79 80), (88 89), (99 100), 108]
The results are:
» 7 false alarm areas generated,
= A landmine located at 67 is detected,
» A landmine at 100 is detected.
Figure 5-3-2 indicates that there are six cluttered peak areas:
Area 1: from scan position 11 to 13,
Area 2: from scan position 30 to 38,
Area 3: from scan position 62 to 68,
Area 4: from scan ;‘-msition 76 to 80
Area 5: scan position 100,

Area 6: scan position 108.
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Because the LP algorithm is a general method for landmine detection, no knowledge of
the landmine shape and size is considered. With pre-processed NA_raw_data_E3 B, and
the threshold of 1.2, the LP algorithm generates six alarmed areas for further landmine
determination. With some knowledge of the buried landmines, the alarms can possibly be
reduced further. Based on the above results, we concluded that with our lab set-up, the LP
algorithm can detect landmines with some false alarms. The lower the threshold is set, the

more alarms will be generated.

5.3.1 Improvement of the LP algorithm

GPRdataSiore_rawData.mat is a scan of GPR raw data collected with high cross-
range resolution and a single buried square landmine. No rocks were buried. Figure 5-3-
3 is the image of the GPR raw data after pre-processing. Setting the prediction order to 5
and the average number to 10, we expect the peak alarms generated around scan position

50 and scan position 65. The LP algorithm’s output is shown in Figure 5-3-4.

Figure 5-3-3 Image of pre-processed GPR data with a buried obiject under the sand surface
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Figure 5-3-4 indicates that the LP algorithm detects the significant error energy at
the scan position 50, and some small energy changes scattered at the scan position 55, 62,
67 and 85. The results are within our expectation. Figure 5-3-5 to Figure 5-3-7 are the
outputs of the LP algorithm with different prediction orders. We notice that from
prediction order 5 to 18, the strongest alarm is at scan position 50, the left edge of the
landmine. If the prediction order is higher than 22, then the strongest alarm switches to
scan position 60 from scan position 50, the right edge of the landmine, see Figure 5-3-6.
For prediction orders of 20 to 21, the results are messed up far from satisfactory, as

shown in Figure 5-3-7.

1
1

Figure 5-3-4 output of LP algorithm
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Figure 5-3-6 output of LP algorithm
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The above results indicate that in the above case, with prediction order of 20, the
original LP algorithm has trouble to set an alarm for the obvious buried landmine.

Figure 5-3-8 to Figure 5-3-11 are the outputs of the improved LP algorithm with
different prediction orders. If the prediction order is less than 10, it alarms at both right
edge and left edge of the buried object. If the prediction order is above 10, it generates
one error energy peak area located from scan position 50 to 60, i.e. the position of the
landmine. This indicates that the improved LP algorithm obtains better results for this

case than the original LP algorithm,
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energy to appear from 60 to 80. There are rocks scattered under the surface, so there
should be some low error energies scattered, at scan locations from 10 to 20, from 40 to

50, from 60 to 80 and probably 100.

Figure 5-3-12 Image of pre-processed GPR raw data as the input of LP algorithms
The prediction order was set to 5. Figure 5-3-13 and Figure 5-3-14 are the outputs
of the original and improved LP algorithms of the pre-processed GPR raw data,
NA_raw_data_E3_B, from the Master database. Figure 5-3-15 and Figure 5-3-16 are the

outputs of the original and improved LP algorithms for a prediction order of 8.

Figure 5-3-13 Output of LP algorithm for landmine detection
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Figure 5-3-16 Output of improved LP algerithm for landmine detection

Comparing the above results, both the original and improved LP algorithms are

able to generate alarms in the expected areas.

obtained better results than the original LP algorithm [10] as can be seen from the highest

error energy located from scan position 60 to 80.

The following tables are created by the original/improved LP algorithms for the

However, the improved LP algorithm

false alarms and landmine detection as a function of the threshold (¢}, ., ., ) .

Table 5-1 false alarms vs. threshold by the original LP algorithm with prediction order 5

False alarm areas

Landmine detected

§ ;hres.fm.'d
1.1 5 2
13 4 2
1.5 4 1
1.6 3 0

98




Table 5-2 false alarms vs. threshold by improved LP algorithm with prediction order 5

¥
S threshold

Falsc alarm areas

Landmine detected

15

1.6

1.8

2

>2

Q| e} i D

2
2
1
1
1

Table 5-3 false alarms vs. threshold by original LP algorithm with prediction order 8

False alarm arcas

Landmine detected

‘fr.hreshafd
1.1 4 2
13 4 1
15 4 0

Table 5-4 false alarms vs. threshold by improved LP algorithm with prediction order §

False alarm areas

Landmine detected

£ .'lfires.f:q.'d
1.1 5 2
1.3 4 2
1.5 2 1
>2 0 1

Table 5-5 faise alarms vs. threshold by LP algorithm with prediction order 15

fl}iresfm.’d

False alarm areas

Landmine detected

2.2

2.0

1.8

1.5

1.3

O &l N

NN - O

Table 5-6 false alarms vs. threshold by improved LP algorithm with prediction order 15

S:diresfm.'d

False alarm areas

Landmine detected

>2

1.8

1.5

1.3

1.1

DR W = O

[ ] N RN RN R
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From the above results, we can conclude that
® The improved LP algorithm obtained better results than the original one.

» The lower the threshold (... ) is set, the more false alarm areas are generated.

e With the improved LP algorithm, the square landmine is detected with fewer false
alarms generated than using the original LP algorithm.
¢ For a rounded landmine, because its reflection is very low, it has to be detected with
lower thresholds. Unfortunately, many false alarm areas are generated with a very
low threshold. Because of this, the work presented here was focussed on the square
landmine that was available. Detection of the smaller rounded mine was left for future
research.
5.3.2 LP algorithm with adaptive technique
With a time varying environment, the adaptive LP algorithm is needed to adjust
its results in response to the environment changes. Data was collected with a landmine,
located between scan position 5 (left edge of the landmine) to 10 (right edge of the
landmine). Some rocks are scattered in the scan area. The scan positions are separated
2.5cm apart. Figure 5-3-17 is the image of this pre-processed data. The peak error

energies are expected to be at the scan position around 5 to 10 and 20 to 26.

Fisnire 5-3-17 ITmage of nre-nracessed GPR raw data with a haried landmine and racks
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Because the location of the landmine is in the training area, the LP algorithm with
no adaptive processing detects the right edge of the landmine, but fails to detect the left
edge of the landmine. In this case, we set the prediction order to 3, the adaptive
coefficient A (refer to section 3-2-2) to 0.015. The output of the adaptive LP algorithm is
shown in Figure 5-3-18. Figure 5-3-19 is the output of the LP with no adaptive

technique.

[ T QS
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Figure 5-3-18 output of adaptive LP algorithm
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Figure 5-3-19 output of original LP algorithm with no adaptive technique

101



Figure 5-3-19 indicates that the LP algorithm without the adaptive technique
failed to detect the error energy change at cross-range scan position 5, but alarmed the
error energy at the scan position 12. With the adaptive technique, the adaptive LP
method is able to generate alarms at the scan position 6, 12, 20 and 27, corresponding to
the disturbance made by the landmine and the rocks as can be seen in Figure 5-3-17.

There are no significant differences among the outputs of the adaptive LP

algorithm if the adaptive coefficient is less than 0.15 and the prediction order is less than
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Figure 5-3-21 output of adaptive LP algorithm
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Figure 5-3-23 output of improved adaptive LP algorithm

Figure 5-3-23 is the output of improved LP algorithm with adaptive coefficient
0.015. Comparing with Figure 5-3-16, we can see that the improved, adaptive LP
algorithm generates better results than the original, adaptive LP algorithm. The strongest

error energy is located at the scan position 26 and 27. The adaptive coefficient is an
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experimental value. With the same data, we obtain good results if the adaptive coefficient
is in the range of [0.01 0.2].

The data used has a low cross-range resolution of 2.5c¢cm. The pre-processed GPR
raw data, NA_raw_data E3_B from the Master database, has a higher cross-range
resolution of Tcm or so. The higher cross-range resolution means a lower change in the
GPR data from the nearby scan position. Figure 5-3-24 is the output of the adaptive LP
algorithm with the pre-processed GPR raw data, using NA raw data E3 B as its input.
Comparing Figure 5-3-24 and Figure 5-3-15, if the normalised error energy threshold is
1.5, we can see the alarmed areas in both figures are the same. This indicates that the
adaptive technique does not improve the resu'lts. This is because the cross-range
resolution (1.2cm) in the pre-processed NA_raw_data_E3 B is high enough so that there

is no big changes in nearby scan positions.

Figure 5-3-24 Output of original adaptive LP algorithm
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Figure 5-3-25 is the output of improved LP algorithm with the adaptive technique.

The results are not improved.
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Figure 5-3-25 output of improved LP algorithm

In summary, the adaptive LP algorithm is used to adjust its results in response to
the various environment changes. If the cross-range resolution is low, i.e., the distance
between the closest scan position is big, the contribution from the surroundings changes
quickly and then the adaptive technique is used in response to this change. The adaptive
coefficient is an experimental value. With our lab collected GPR raw data, the adaptive
coefficient is chosen in the range of [0.01 0.2]. The adaptive LP algorithms are able to

generate alarms for landmine detection.
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5.4 Summary of experiments with LP algorithm

GPR raw data with our GPR system were collected. These GPR raw data must be
pre-processed before any further processing for landmine detection purpose is done. The
pre-processing techniques we used are the filtering technique, which filters the out-of-
range contributions, and the average background estimation method.

With pre-processed GPR raw data and without any previous knowledge of
landmines, the LP algorithm can generate alarms. The lower the alarm threshold is set,
the more the alarms are generated. If the threshold is not lower enough, a landmine with
low energy contribution may not be detected. With a very flat surface, we find that in
one case of high cross-range resolution, the original LP algorithm coula detect one edge
of the landmine, but fails to detect the other edge or unablie to detect the buried landmine.
With the improved LP algorithm, better results are obtained.

Finally, we experimented with the pre-processed GPR raw data with rocks scattered
under the surface to simulate the environment changes in the fields. The adaptive LP
algorithm is able to generate alarms for the buried landmines.

If a landmine is located at the area used for parameter training, the LP algorithm fails
to detect the starting edge of the landmine. Using a reduced prediction order, the adaptive
LP algorithm is able to detect the contributions from the buried landmine and rocks. In
varying environment, the adaptive LP algorithm works better than the LP algorithm

without adaptive processing.
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Chapter 6 Experiments of the IT algorithm on Measured GPR Data

Using FDTD simulations, the implemented IT algorithm can decompose the residual
ground surface contributions in the pre-processed GPR data and detect the simulated
landmines. The cross-correlation alarm generator is introduced to solve the time
consuming problem of this algorithm. In this section, we will apply the pre-processed
GPR raw data to the cross-correlation alarm generator to generate alarms and then use the

IT algorithm on the alarmed scan positions for the [andmine detection.

6.1 Landmine signature

The reference signature of the landmine is an important feature when using the
cross-correlation alarm generator and the IT algorithm. In FDTD simulation, the
reference signature is obtained by subtracting the ground-only contribution from the
contributions of the ground and the landmine, as mentioned in section 4-1-3. Similarly,
with the pre-processed GPR raw data, the reference signature is obtained by subtracting
the reflection of a deep buried landmine from the pre-processed sand-only GPR data with
time gating.

Figure 6-1-1 shows the image of the pre-processed GPR raw data for the
landmine signature subtraction. The landmine contribution is clearly visible. Using a

time gate from 8 to 20, we obtained the reference signature.
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Figure 6-1-1 pre-processed GPR raw data and a reference signature of interest

6.2 Cross-correlation alarm ‘generator
The threshold in the alarm generator is calculated at the first few free spaces, i.e. no
landmine is buried at these scan positions. Figure 6-2-1 shows the image of the

preprocessed GPR raw data collected with the landmine and two rocks buried in the sand.
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There are 31 scan positions in total. The threshold scale F,_,, is set to 1.1. There are 17

alarms generated. The IT algorithm is run only at the alarmed scan position. The

calculation time for alarmed scan positions vs. total scan positions is reduced by 45%,

17
F-—=45%) .
( Y O]

e e el e mde =l
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Figure 6-2-1 lllustration of alarms generated bv the cross-correlation alarm generator

In Figure 6-2-2, the GPR raw data is collected with two big rocks and 5 small

rocks under the surface. With 21 scan spaces and threshold scale 7., of 1.1, there are
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12 alarms generated. The calculation time for alarmed scan positions vs. total scan

positions is reduced by 42%.
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Figure 6-2-2 Ilustration of alarms generated by the cross-correlation atarm generator

In Figure 6-2-3, the GPR data was collected in an unknown environment. With
118 scan positions over a 140cm beam. The threshold scale was set to 1.2, and 43 alarms
were generated. The calculation time for the alarmed scan positions vs. total scan
positions was reduced by 63%.

In summary, the cross-correlation alarm generator uses a reference signature of
the landmine to generate alarms, which prompt us to use the IT algorithm for further

landmine detection. The detection time can be reduced by up to 63% comparing it with
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the time consumed by using the IT algorithm for every scan position. If the threshold is

set higher, the number of alarms generated will be lower.

~ the reference signature of interes

JEpP SR

VAV R i S

image o p

Figure 6-2-3 Alarm generated by cross-correlation alarm generator

6.3 Clutter decomposition, l]andmine detection and range estimation

At an alarmed scan position, the IT algorithm is used to decompose the clutter from
the landmine’s contribution, to further confirm the detection of a landmine and provide
an estimated range. The propagation wave travels through the air (free space) and the
sand. The distance between the antenna and the sand surface is variable. The estimation

of the time delay from the sand surface to the buried landmine is critical for landmine
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range estimation. Once the estimated time delay is obtained, the range for the landmine
can be calculated accordingly.
6.3.1 Sand surface and range estimation

The microwave network analyzer does not provide the time sequence, as was the case
in the FDTD simulation. The time delay for the contributions from the sand surface must
be estimated first. In our lab set-up, the antenna is placed close to the sand surface to
minimize the contributions from unknown sources. By doing this, we expect the
strongest reflected signal to be the sand surface. Therefore, the sand surface is selected at
the sample time point where the strongest signal is located.

An example of the pre-processed GPR raw data is shown in Figure 6-3-1. It has 21
scan positions along the flat sand surface, with a landmine, two big and five small rocks
buried. The strongest signals for all of the scan positions are located at the same sample
time point 13. The GPR waveform beyond the peak varies at different scan positions.
They are the contributions received from the sand. A small peak at the sample time point

38 is explained as the contribution from the sandbox bottom or floor.
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Figure 6-3-1 an example of GPR raw data before average background is removed
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Once the sand surface sample point is located, we can set the first time window for

the clutter estimation. The Prony technique, with an estimated rank, is used to estimate

the time delay Tgyrfuce for the sand surface contributions. If the time delay for the

landmine contributions is denoted as Ujangmine , then the range of the buried landmine
will be:
k= 1’3 X dt = vg x (tn'audmine - t:u.-;fare )/2 (6-3-1)

v, is the propagation speed. Because the network analyzer’s frequency bandwidth is

i1.4GHz, the time resolution is:

5, = —  _ 008772 ns (6-3-2)
11.4GH:=

The range resolution is defined as the minimum distance that we can identify the two
separated objects. Because the time delay is two-way propagation time, the range
resolution is calculated by:

O xvy, _ G, xc _ 4.366¢7 " x3¢"

8o = =
=2 T anE J3.15

where € is the propagation speed in free space and ¢ is the dielectric constant of the

=0.00738m =0.738cm (6-3-3)

media. & is set to 3.15 as specified in [15]. With this GPR raw data, the estimated time

resolution is 0.08731909765204ns, close to the theoretical value 5, in equation (6-3-2).
The maximum range estimation error is §,/2, i.e., 0.368cm. If the landmine is buried at
a distance R, the range distortion is defined as R+4,. Figure 6-3-2 is the image of the

preprocessed GPR raw data, as shown in Figure 6-3-1. There is a landmine buried around

Scm deep, centered at the scan position 11. The sample time point for the landmine is
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estimated at 20. Therefore, the estimated range of the landmine is &, x(20-13)=5.1cm.

The estimated range for the landmine is within the range distortion Scm +0.368cm .

reference signature of interes

Figure 6-3-2 the image of preprocessed GPR raw data

6.3.2 Initial experiments with IT algorithm

With the pre-processed GPR raw data, shown in Figure 6-3-2, used as the input, the
cross-correlation alarm generator generates 12 alarms over 21 scan positions. The IT
algorithm decomposes the clutter and detects the objects on the alarmed scan positions.
Figure 6-3-3 is the output of the IT algorithm with the threshold § =0.1. The estimated

objects include some rocks and the landmine. The detected areas are listed as below:
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Scan positions 8 9~12 13 14~15 17 | 21
Detected area # I 2 3 4 5 6

i

b e
by = o —

Figure 6-3-3 the output of the IT algorithm

The geometry characteristics of the landmine are helpful to reduce the false alarm
rate further. Most landmines are symmetric. The landmine we used is 14cm long, 6.5cm
wide and 3.5 thick. The GPR raw data, used in this thesis, was collected along the beam

with the landmine face up, as shown in Figure 6-3-4,

Figure 6-3-4 plastic anti-personal landmine used in our lab experiments

In this experiment, the landmine covers at least three continuous scan positions due to

the cross-range resolution of 2.5cm. In Figure 6-3-3, the contributions from continuous
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scan position 9 to 12 are stronger than the signals from the other alarmed scan positions.
We can conclude that a landmine is detected at the scan position 9 to 12, buried about
6cm to 8cm deep. There are 1em to 3cm differences in range estimation. The reasons
could be measurement errors, waveform distortion by the rocks or imperfect of landmine
signature.
6.3.3 More experiments

Figure 6-3-5(a) shows a pre-processed GPR raw data from the Master database. The
cross-correlation alarm generator generates 40 alarms over a total of 118 scan positions.
Figure 6-3-5(b) is the image of the estimated objects by the IT algorithm. The detected

areas are listed in table 6-1.
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Fieure 6-3-5(a) an examnle nre-nrocessed GPR raw data for the 1T aleorithm

116



L ewdeesinnedion
___________________ e s

t
t
1
1
1
[
'
v
t
[}
i
1
[
1
1
1
1
'
]

J I
b
t
t
'
'
1
1
'
+
1

L L L

| N S SRR RN
{4 IS ST SRR SR

Figure 6-3-5(b) the output of the 1T algorithm

Table 6-1 estimated objects from Figure 6-3-5(b)

Detected area # Scan positions Range (cm)
1 3 1
2 22 and 23 4~5
3 641075 4~5
4 95 to 98 3.5
5 107 3
6 115 and 116 0.5

The cross-range resolution is approximate lcm. The landmine should cover more than
five continuous scan positions. The detected areas #3 and # 4 are two possible areas
containing buried landmines. Table 6-2 is the geometry model (see Appendix I for
geometry structure) for the GPR raw data collection. It indicates that a square landmine
is buried 3cm deep centred at cross range scan position 80cm (scan position 67) and a
round landmine lecm deep at 119cm (scan position 100). There are ten rocks scattered

around.
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We conclude that the square landmine is detected, located at scan position from
64 to 75, with estimated depth of 4cm. The area #4 is a false alarm caused by the

contributions from the rocks.

Geometry model: Table 6-2

X{cm) Y(cm) Z(cm) | Scan position
Square Mine 80 59 3 67
Round Mine 119 59 1 100
Rock 1 123 50 5.5 103
Rock 2 95 70 6 80
Rock 3 53 58 3.5 44
Rock 4 78 34 4 65
Rock 5 30 21 5 25
Rock 6
Rock 7 125 30 5 105
Rock 8
Rock 9 69 65 5.5 58
Rock 10
Rock 11 20 51 2 16
Rock 12 10 59 53 8
Rock 13 100 39 2.5 84

Figure 6-3-6 shows another pre-processed GPR raw data from the Master
database. The cross-correlation alarm generator generates 52 alarms over 118 scan
positions. Figure 6-3-7 is the image of the estimated objects by the 1T algorithm. The

detected areas are listed in table 6-3.

Table 6-3 estimated objects from Figure 6-3-7

Detected area # Scan positions Range {cm)
1 12 8
2 38 and 38 0.5
3 57 to 61 4-6
4 72 4
5 91 5.5
6 103 5

The detection result is that a landmine is buried at scan positions 57 to 61, with

the estimated depth of 4 to 6¢m.
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6.4 Summary of experiments with IT algorithm

Using an ultra-bandwidth microwave network analyzer (1GHz to 12.4GHz),
range resofution of around 0.7cm can be obtained. This resolution allowed us the use of
early time gates to decompose part of the contributions from the sand surface and apply a
cross-correlation alarm generator. The data at scan positions selected by these alarms was
further processed using an IT algorithm. With the pre-processed GPR raw data, the
cross-correlation alarm generator can reduce the time consumption of this IT algorithm
significantly by up to 60%, depending on an experimental alarm threshold. The time
delays for the sand surface and the detected objects were estimated. The estimated range
of the landmine is‘within the range distortion. With many different sized rocks scattered
in the sand, the IT algorithm was able to detect the square landmine and provided an

estimated range.
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Chapter 7  Conclusions and Future Work

The effort of this research was to develop DSP algorithms to be used in data collected
by the GPR system built at the University of Manitoba, for landmine detection. In this
thesis, the linear prediction algorithm and the IT algorithm combined with a cross-
correlation alarm generator were investigated.

The DSP algorithms, implemented for GPR data pre-processing, are the linear
prediction algorithm for the deterministic signal reduction based on the layered ground
model and (adaptive) average background estimation. The linear prediction algorithm for
the deterministic signal reduction based on the layered ground model was found to be
more suitable for FDTD GPR data. With the lab collected GPR raw data, the average
background estimation method could effectively remove the background noise.

Two alarm generators, the LP algorithm and the cross-correlation alarm generator,
were implemented. With both FDTD GPR data and lab-collected GPR raw data, the LP
algorithm with/without adaptive technique generated alarms at scan positions where
buried landmines were located. The improved LP algorithm obtained better results than
the original one. The landmine detection and false alarm rates were studied for different
SNR values. With both FDTD GPR data and lab-collected GPR raw data, the cross-
correlation alarm generator generated alarms at scan positions where landmines were
buried. The cross-correlated alarm generator generated more alarms than the LP
algorithm with a good landmine detection rate for high SNRs (greater than —5.5dB).

The IT algorithm was applied at the alarmed scan positions. This reduced the time
consumption introduced by the IT method. With FDTD GPR data and lab-collected GPR

raw data, the implemented IT algorithm decomposed the clutter, reduced alarms and
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provided estimated ranges for the detected objects. The sand surface time delay was
estimated in order to estimate range more accurately.

Using FDTD GPR data, the simulations verified the adequacy of these algorithms for
landmine detection. Experiments with the measured GPR data proved that these
implemented DSP algorithms were able to detect the square landmine. Ranges of the
buried objects were also estimated.

Other contributions of this thesis included the following. The linear prediction
algorithm for deterministic signal reduction based on layered earth model was introduced.
We improved the LP algorithm to obtain a better result for the general alarm generation.
Using the cross-correlation alarin genel:ator reduced the time consumption by the IT
approach. We developed the dynamic rank method for clutter estimation. The surface
time delay was introduced in order to calculate the ranges of the detected objects.

Currently, FDTD GPR data is obtained based on a simple model. Further study may
be needed to create more complex models with simulated rocks and rough surfaces for
the GPR data simulation. Our experiment efforts were focussed on the detection of a
square non-metal landmine buried in dry sand with scattered rocks. Future work may
consider the application of these methods with different landmines under different

propagation media.
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Appendix I
Simplex Method and LSE Method for Target parameters estimation

o The Simplex Method
MATLAB function fininsearch uses the simplex search method to find the minimum
of a scalar function of several variables, starting at an initial estimate. It is generally

referred to as unconstrained nonlinear optimization.

fminsearch(myfun, xy,options, py, p,,...} starts at the point x, and finds a local minimum
x of the function described in myfun. x; can be a scalar, vector, or matrix. It passes

the problem-dependent parameters py, p,, etc., directly to the function myfun ,
Let

x = |real (Ar) imag (4r) y 1]

py=lo; T(0)]

Py = R(w)

Where 4, is a complex number representing the scattering factor in the damped
exponential model [5]. y represents the damping factor, and ¢, represents the time
delay. T(@) is the reference signature. @ is the frequency. We use fminsearch to search

the optimized parameters that minimizes the error in equation (3-4-2).

¢ Least Square Error (LSE) method:

MATLAB function Isqeurvefit solves nonlinear curve-fitting (data-fitting) problems

in the least-squares sense. That is, giving the input data X4, and the observed output

Ydata » we find coefficients x that "best-fit" the following equation.
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Where X4, and ¥4, are vectors and F(x,x,,,) is a vector valued function.
x = Isqeurvefit(myfun, Xy, X 4005 ¥ dara )

Starts at X and finds parameter x to best fit the nonlinear function myfun( x,x,,) to

the data V44, in the least-squares sense. Y4, must be the same size as the vector (or
matrix) returned by myfun( x, x4, ).

Let
x:[rea[(Ar) imag(Ary y t,]

Xdaa = [(0; T(GJ)]

Ydata = R{w)
Where 4, is a complex number representing the scattering factor in the damped
exponential model [5]. ¥ represents the damping factor, and ¢,. the time delay. T(@) is

the reference signature. @ is the frequency.

¢ Simplex Method and LSE method for the x parameter estimation
Both Simplex method and Least Square Error (LSE) method are useful for solving
the nonlinear problem in (3-4-3). fminsearch is unconstrained nonlinear optimization,
and Isqcurvefit is the best-fit for the problem in the least-squares sense. Isqcurvefit may
:only give local solutions , and the function “ myfun * to be minimized must be
continuous. fminsearch can often handle discontinuity, particularly if it does not occur
near the solution. In our case, the estimation of the start point may not near the solution,

so the fminsearch is a better choice.
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¢ Simulation results

Data generator:

Set x =[F€af(/11') imag(Ar)y y 1‘,] to different values and add noise into the
Jandmine’s contribution A.e” "¢/ T (@), which is defined as myfun.

_ — it .
Vaata = A€ e T (@) + noise (A-1)

The additional noises are normal random numbers with zero mean and standard deviation
Nleve.’ .
Parameters estimated with no noise:

Set Npyey=0, 4, =023+ j0.54, time delay #,.=1.3, and the damping factor y=2.1

in equation (A-1).  The estimate parameters by fminsearch and Isgcurvefit are

x=[0.23 0.54 21 13]. This is correct.

Parameters estimated with noise added:

Set x= [0.23 0.54 2.1 1.3] as the original parameter x;. Ny, is chosen in the
range from 0.01 to 0.15. With  each Ny, we generates
estX0=|realestAn) imadesiAl) est_y est_t,)as the estimated start point for the estimation of
x, in both fminsearch and Isqcurvefit functions.

The estimated start points with different N,.; values are shown at the top four

charts of the following Figure. The blue lines are the original parameters in the vector

X, . The green curves are the estimated start points, i.e.,
estXl = [real (estAr) imag (estAr) est _y est _ t,] .
We can see that the differences between the original parameters and

corresponding components in estX6 are increased as Ny, is increased.
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The middle four charts of the Figure are the outputs of Isqcurvefit function. The
blue curves are the original parameters. The red curves are the estimated parameters with

the original parameter vector x, as the start point. The green curves are the estimated

parameters with the estimated parameter vector eszx# as the start point.
The bottom four charts of the Figure are the outputs of the fminsearch function.
The blue curves are the original parameters. The red curves are the estimated parameters

with the original parameter vector x, as the start point. The green curves are the

estimated parameters with the estimated parameter vector estX# as the start point.

We can see that LSE method is sensitive to the start point of the parameters. With
the original parameter vector x, as the start point, the output of fminsearch function,
Simplex method, is almost the same as the output of Isqeurvefit function, the LSE
method. However, with the estimated parameters estX@, the results from the Simplex
method are much better than the results from the LSE method. The output of fminsearch

function is constantly optimized to the original parameters x, .

Conclusion

The difference between the estimated start point estx¢ and the original start point
X, increases as the noise deviation, Ny, increases. With the Least Square Error (LSE)

method, the search of .the start point is important. The errors between the estimated
parameters and the original parameters increase as the noise deviation increases. The
Simplex Method is less sensitive to the start point as the LSE method does. Comparing
with the LSE method, the Simplex method gets better results in the parameter estimation

for equation (A-1).
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Appendix II

An example of the problem model for FDTD simulated GPR data

R A S S SR AR SR E S SRR R S SR SRR AR RS SR EE R RS R R R R SRR R RS E X EE SR

* & %k

* Input data file for GPR
* March 11 2003
* GPR problem, Test

Fkdkhkdhdbdhdh bk bbb drd b h kT bbb dbdrdrdh b drd b b dr bbb dhk bk b d Ak d kb ek d vk xhk kb k& %k

*

-Problem size: lower_x, upper_x, lower y, upper y, lower z, upper_z
0 24C 0 33 0 2490

*

.Number of time steps and output frequency of the data
1000 300

*

.Space increment: delta ¥, delta y, delta z

1

0 240 0.0025
1

0 33 0.0025
1

0 240 0.0025
*

.Test point T1
80 16 50 3 T1
*

.Test point T2
85 16 50 3 T2
*

.Test point T3
%0 16 50 3 T3
*

.Directory to which output the files
. /Example/

*

.Boundary conditions: specify with characters ('e' or 'a')
aaaaaa

*

.Mur ABC: 1 - first order; 2 - second order
2

*

.OCbject Ground

16 224 16 17 100 220 7 1.0 0.01

*

.Object bomb

1ié6 124 16 17 130 132 3.5 1.0 0.01

*

.Isource dipole

3 120 121 16 17 20 21 1.0 1.0 0.0 0.0
dgaussian

1.0 1le-9 1.75e-10

*
.End: end of file
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Appendix 11T

The following geometry is used in the experiments setup.

27 em Sand f
Object under search
110 em
A
< >
144 cm
Fig. 2. Scanning set up
I
@ & @
3~5em
(0,0,0) X
> < ASem R 10 UL _I_Q.C_"lb
A
O e )
27 em
z — -
Object under search
Sand
A 4
«
110 em
Fig. 3. 3-D Coordinate system adopted Fig. 4. Side view (right side) of scanning setup
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Appendix IV

The coefficients of linear prediction algorithm for alarm generator
The derivation of equation (3-2-3)
§(n)=e(n) ' C7le(n) =[y(n) - F(m)]'C ' [yp(n) - y(n)]
=y, ~Y,(mal'ly, - Y, (n)a]
Where

»,, (1) =wy(n)
Y (n)y=wY(n)

_ *
Cl=ww

Take the derivative with respect to ¢ and set to zero

69;2") S (=Y, () )y, ~ ¥, (mal+ [y, - a'¥ (n) =Y, (1)) =0

We have:

(-Y, )Ny, -Y, (n)al=1[y, —a'¥ (n) 1Y, (n)

(=Y, (n))y, +Y, (MY, (n)a=yp,Y (n)-a'¥, (n)'Y, (n)

Y (n)Y y, +y, Y (n)=Y (n)Y (n)a+a'¥, (n)'Y, (n)

Y, (n) y, +1Y ;(m)y, 1" =Y (MY, (m)a+{[Y,(n)Y, (n)] a}

Comparing the both side of the above equation, we obtain:
Y,(n) y, =Y, (n)Y, (n)a

If Y,: (n)Y,, (n) isinvertible, then we have:

a =Y, (m)Y, (m)]7Y, (n) p,
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