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"Up the road, in his shack, the old man was sleeping
again. He was still sleeping on his face and the boy was
sitting by him watching him. The old man was dreaming
about the lions."
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ABSTRACT

The development of a semiclassical model for atomic
and molecular collisions is discussed. The model treats
the interaction forces explicitly so that no resort to
model potentials need be made. Using this model a
deécriptioh of the collision throughout the entire region
of interaction is possible. The equations of the model
are solved numerically.

Preliminary calculations have been carried out on the
simple system consisting of a proton colliding with a
hydrogen atom. Studies were made at both low and high
energies. At low energies, the model casts considerable
doubt on the validity of the adiabatic approximation, and,
in fact, on the assumption of any static model potential
to describe a dynamic process such as a collision. At
high energies, the model gives excellent agreement with
experimental charge exchange cross sections, and adds to
the controversy over an appropriate basis set for the
description of high-energy p - H scattering.

The model is also applied to the "reverse" collision,
the photodecomposition of H2+. This allows an estimate of
the lifetime of the excited intermediate state due to photon
absorption and of the probability for decomposition.

The model is shown to be capable of generalization to

many-centre reactions.
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Chapter I

INTRODUCTION




(1)

The study of chemistry is largely the study of molecular
interactions, and molecular interaétions may be described
mathematically by the formalism of collision theory.
Consequently one might expect, and indeed would find, that
a good deal of research into the theoretical aspects of
atomic and molecular processes has involved this formalism
as a starting point~I~ (1). Such approaches undeniably have
proved fruitful in diéclosing certain aspects of reactive
molecular encounters, but they come no where near prescribing
a "mechanism" for the reaction of interest. That is to
say, although one may employ the results of collision theory
to describe a given chemical reaction, the extent of our
knowledge of the reaction is essentially limited to the
calculation either of asymptotic final states or some
perturbative expansion of the initial state into the
interaction region. Neither of these pieces of information
is too useful to the understanding of chemical reactions,
the former because the asymptotic final states will tell
one little of what occurred during the interaction in the
-.way of rearrangement processes, and the latter because a
perturbative expansion to any finite order is really an
"jnitial value solution" only and this solution is therefore

valid only when the initial conditions are maintained to

TReference 1 contains a selective sampling of such research.
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a high degree throughout the process (2), a situation
obviously atypical of chemical reactions. Thus, from such
approaches, one has no picture of the causal evolution of
the reacting species, of the complexity of sub-processes
which may constitute a chemical reaction.

Because of these difficulties recent years have seen
a swing to what perhaps could be called "more realistic
models" (3). Although the basic aim of these models is
the understanding of the physical mechanism of chemical
reactions, the impetus has been provided by the need for
interpretation of molecular beam studies. Typical calculations
of this type include the following two steps as a main

framework:

1) the assumption of some potential energy surface
describing the interaction between the species, and,
2) some form of trajectory calculation which is
carried out to evaluate the angular distribution
of products, cross sections for various processes,

and the 1like.

Now the idea of a trajectory implies a semiclassical model
in which the atoms or molecules move along classical
trajectories determined by some potential (step 1).

Presuming that such a potential can be found, step 2 requires
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the solution of the classical many-body problem which is
guite feasible by present computer‘techniques. Now although
the internal electronic structure of atoms and molecules
certainly must be treated quantum-mechanically, there can

be little argument with the treatment of the positions and
momenta of an atom or molecule, as a whole, classically.
Consequently such models have led to a simplification of

the problem in this sense. The quarrel that the present
author has with these "more realistic models" is that they
have treated step 1 completely unrealistically. For example,

common approaches to potentials are as follows:

1) if the system is sufficiently simple (for example,
atom-atom collisions) the potential surface may be
taken; for thermal collisions, to be the static
(velocity independent) ground state potential energy
surface or some anélytic approximation to it.

2) for more complicated cases, some model potential
(4) , or even set of model potentials (5) may be
assumed, the general characteristics of the process

being described by this potential.

It is difficult to see how one can, if he accepts the idea
of a model potential, achieve any more understanding of the

details of a given process than he puts into the model
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potential. Furthermore, the non-uniqueness of the results
obtained by suitably choosing a variety of parameters is
scarcely satisfactory and the assumption of a static potential
energy surface as an interaction potential is unguestionably
questionable.

It was this discontent with these semiclassical
approaches tb atomic and molecular collisions which initiated
the research discussed in this manuscript. It was felt
that a model could be developed which was capable not only
of describing the state of the system completely throughout
the interaction region but also of treating the interaction
forces explicitly, with the result that the model would be
entirely dynamic and no resort to static potential energy
surfaces would be necessary. In this dissertation the
development of such a model is discussed. It is important
to note that although the model is developed in terms of
a semiclassical picture, it is easily generalized to a fully
quantum mechanical model by the use of some practical
method to treat the various classical modes quantum
-mechanically (for example, a wave packet treatment of the
translational states of the étoms). It is, however, also
important to realize that a semiclassical picture of atomic
and molecular collisions is guite justified due to the

large masses of the interacting species.



Chapter IT

A BRIEF DISCUSSION OF THE FORMALISM OF THE EVOLUTION OF

A QUANTUM SYSTEM IN TIME+

T The ideas discussed in this chapter are essentially

those of reference 6.
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In attempting to obtain a model for molecular collisions
which is useful at all stages of the interaction, one is
in fact trying to solve the time-dependent Schrodinger
equation at all times t. For this reason, a brief
discussion of the formalism used in treating the time
development of a quantum system is worthwhile as an
orientation to the problem and to the futility of using
conventional techniques such as time-dependent perturbaticn
theory to obtain a solution. Since the development of the
model in the following chapter is carried out in the
Schrodinger picture, this will be the only mode of
description discussed here.

The observable dynamical quantities of a guantum system

are the expectation values of the various observables

<Q>=.<wlnlw> (II.1)

The Schrodinger picture assumes that the form of the
operators Q remains unchanged in time (unless Q has an
explicit time dependence) and that the state vector |W>>
bears the time dependence. If the system is not subjected
to observation during the time interval (to,t), the state
at time t, [W(tt), is exactly specified by the state

of the system at time t , IW(toi>. This specification

is made more precise by the postulate that the linear
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superposition of states is preserved in the course of time.
Consequently there is a linear correspondence between
|W(tox>anle(t»>which defines a time-translation operator

U(t,to):

¥ (t) = Ut e Y (E D . (11.2)

This operator is most commonly known as the evolution

operator. Obviously it satisfies the initial condition
U(to,to) =1, (I1.3)

where 1 is the unit operator, and it also obeys the group

property
U(t,to) = U(t,tl)U(tl,to) . (IT.4)

The evolution operator can be shown to be unitary as

follows. From the group property it is apparent that
U(to,tl)U(tl,tO) =1, (I1.5)

I
U(tl,to) = U' (to(tl) . (11.6)
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Since, in the course of time development of the system, the

normalization must not change,
{y(e) |v(e)) = <§(to)|U+(t,to)U(t,to)IW(tO$> = {e(e ) [¥ce, D

or,

ot (e, e Ut ) = 1 . ' (II.7)
Now multiplying (II.5) from the left by U+(to,tl) and
using (II.7), one obtains
U(t,,t) = U (¢ ,t,) | (II.8)
1770 o’ 717 ° ‘
Comparison of (II.6) and (II.8) shows that
U'l(t t,) = UT(t t.) (I1.9)
. 0' l OI l 7 .

which is the desired unitary property of U.
To obtain the differential operator equation satisfied
by the evolution operator, one uses the group property in

the form

U(t,to) = U(t,t-88)U(t-8t,t ) | (IT.10)
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where t-0t is a time moment immediately preceding t. For
small 6t, U(t,t-8t) is an infinitesimal unitary operator,

and denoting its generator by H(t), one can write+

U(t,t-3t)

]

1 - istH(t) . (II.11)
h

Substitution of (II.1l) into (II.10) yields

U(t,to) - U(t—Gt,tO) = =i H(t)U(t—Gt,to) p
h

st

which, in the limit as 6t - 0, becomes
~1ﬁ3tU(t,to) + H(t)U(t,to) = 0 (I1.12)

To make contact with the usual Schrodinger picture in terms
of the state vector, it is only necessary to apply the
operator equation (II.1l2) to the state vector ]W(t02> to

obtain

iRy ¥ () = H(t) [¥(8)> (IT.13)

.i..

An infinitesimal unitary transformation T may be written
as T = 1 + ieG, where G is the generator and e is a real
parameter. In equation (II.1l) the parameter is -6t, and

the factor h—l ensures that H has the dimension of energy.
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which is the familiar time-dependent Schrodinger equation,
the generator H(t) being known as the Hamiltonian.

Thus to be in a position to calculate the various
observables of the quantum system at any time t, it is
necessary to be able to solve the time-dependent Schrodinger
equation at all times. This is equivalent to a knowledge
of the evolution operator U(t,to) for all times t.
Conventionally, solutions of the time-dependent Schrodinger
equation are approximated by perturbation theory. This
theory supposes that the Hamiitohian H is susceptable to

resolution as

H(t) = Ho(t) + v(t) , (I1.14)
where HO may be regarded as the Hamiltonian of a known
approximate solution to the full problem, and V may be

considered as a small perturbation. In such cases it is

useful to set
U=U0U0U_, (IT.15)
where UO is the (known) solution of the operator equation

lhatUo = HoUo ' Uo(to,to) =1. (II.16)
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Substitution of equation (II.15) into the differential
equation (II.12) for the full evolution operator, and
multiplication of the resulting equation from the left

by UZ yields

: _ Lt .
ind, Uy = U_(HU_ - A3 .U )U . (I1.17)

UI is the solution of this equation satisfying the initial
condition UI(to’to) = 1. Thus, if one could obtain an
expression ﬁor UI, the full evolution operator U would be
known. However, from the resolution of the Hamiltonian

as in (II.14), equation (II.1l7) may be written as
ins, u. = (uivu )u (I1.18)
t I o ~o’"I ' :

and since V has an explicit dependence upon time, a closed
solution for UI is, in general, impossible. The solution,
however, may be obtained formally by iteration. Recasting
equation (II.18) as an integral equation incorporating the
~boundary condition, one obtains

t

_ =1 +
UI(t,tO) = 1 + (ih) °/€T UO(T,tO)V(T)UO(T,tO)UI(T,tO) .

t
° ' (II.19)
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The zeroth approximation to U, is then UI(t,to) = 1, This

I

leads to the first approximation

t
_ sy —1 +
UI(t,tO) = 1 + (ih) w/gf UO(T,tO)V(T)UO(T,tO) .
t

0
To obtain the second approximation, the first approximation
is substituted for UI(T,tO) in the right-hand side of (II.19),
and so on to higher orders. This results in the following

expansion for UI(t,to):
t
_ RN +
UI(t,to) = 1 + (ih) g/gfl Uo(Tl,to)V(Tl)Uo(Tl,to)
t
t Ty °
cpy =2 + +
+ (ih) ‘/gr%/éTl UO(Tz,tO)V(Tz)Uo(Tz,FO)UO(Tl,tO)X
Yt t
) 0
V(Tl)UO(Tl,tO)

+ .. . (I1.20)

Then from (II.15) and (II.20), the full evolution operator

~is given by £
_ eay — 1 .
U(t,to) = Uo(t,to) + (ih) U/;Il Uo(t"l)V(Tl)Uo(Tl'to)
to
t Ts
iy =2
+ (lﬁ) de%/dTl UO (tsz)V(T2)UO (Tlel)V(Tl)UO (Tl’tO)
to tO

+ ... . (1T.21)
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Suppose now that Ho is time-independent. This is
usually the case for chemical collision problems, H0 then
corresponding to the various asymptotic channel Hamiltonians.

" Since H is not dependent upon time, the solution of equation

(IT.16) is simply

U (t,t) = exp[—iHo(t~to)/ﬁ] . (I1.22)

Assuming that the state of the system at time tO is known,
to find the value of the observable Q on the system at time
t it is necessary to use U(t,to) as given by equation (II.21)
to evolve the state of the system from to to t. A simpler
example as far as notation is concerned is that of the

transition probability. Suppose that a complete set of

eigenvectors of H_ is the discrete set |é> , [b>', cees U€> ,
..., and that the corresponding eigenvalues are Eg, Eg, .oy
Eﬁ, ... . Allowing the system to be in the eigenstate ]a>

at time to’ the probability of finding the system in state

[b> at time t is given by

Wo,p = |<b|U(t,to)[§>]2 . (I1.23)

Since H is still explicitly dependent upon time, it is
necessary to resort to the expansion (II.21) to obtain

U(t,to). The successive contributions to the transition
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amplitude are as follows:
ol > =0, (I1.24a)

t
« O
tO
—iEg(Tl—to)/ﬁ

e (II.24b)

t T
2 .0
ol ey = (iﬁ)'zZ/ drz/ R A L
X
o t t

0 0

.0 e O o\ .
<b|V(T2)|K> e—lEk(T2_Tl)/h~<k|V(Tl)|a> e—lEa(Tl—to)/h

(II.24c¢c)

and so on. These increasing orders of approximation to the

transition amplitude may be interpreted as follows:

1) to zeroth order there is no coupling and the system
remains in the eigenstate [%}.

2) to first order (equation(II.24b)), the system can be
regarded as propagating from time t;to Ty under the
influence of the evolution operator Uo(t,Tl), its

. .0
state at time 1; being |a>e EL () B At 1 the

1
perturbation V(ty) causes transition to state [b>.
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From Ty to t the system remains in state |§>, evolving
according to UO.

3) to second order (equation(II.24c)), there is a
transition at time T, from lé> to an intermediate

state l@}, and again at time v, from |k) to ]§>. At

2
all other times the system evolves under Uo'

4) by now it should be apparent that the third order
contribution involves two intermediate states |k>»and

lL>u Similarly the n-th order contribution involves

(n—-1) wvirtual states.

Diggrammatically, these contributions to the transition
amplitude may be dépicted as shown in Figure 1.

The purpose for labouring through the above discussion
was to indicate the extent of the validity of a perturbative
solution to problems of chemical reactions. Physically
this may be most easily understood by considering the
general molecular reaction A + B - C + D, as depicted
schematically for the centre of mass frame in Figure 2.
According to first-order perturbation theory, only the
initial and final states are coupled by the interaction
causing the reaction. However, in a chemical reaction,
ndt only are the initial and final states usually spatially
separated, but they are also frequently extremely dissimilar.

Consequently, the overlap charge density between these states



Figure 1

Diagrammatic representation of the contributions to the

transition amplitude in perturbation theory.
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| o>

la> >

o\ 5
Q [ k> | b> ~
IQ>\\Q ‘l(k Il>\€; | b>

k> g ~



Figure 2

Schematic representation of a rearrangement collision

in the centre of mass frame.






(17)

is negligible, and the coupling <f1V[i> ~ 0. Second-order
perturbation theory couples the initial state to some
intermediate state, and that state to the final state. The
only states which will couple significantly to the initial
'state are those with neighbouring nuclear configurations
and similar electronic states, but these same states will
couple only negligibly to the final state for the same
reason as initial-final state coupling. Similarly, states
which couple strongly to the final state will not couple
significantly to the initial state. Since chemical
reactions are processes of large transition probability,
or, equivalently, of strong coupling, an adequate description
of the process can be achieved only with a sufficient number
of intermediate states. In terms of the diagrammatic
representation of perturbation theory used earlier, this
would appear as shown in Figure 3. Obviously the required
numﬁer of intermediate states is effectively infinite.
This presents a completely intractable calculation.
Mathematically, the validity of the approximation of
equation (II.15) can be seen from equation (II.17) which
is |

, _ ot o
i3, Up = U (HU - iR3. U )U_ .

Recall that UO is the solution to the equation iﬁatUo = HoUo .



Figure 3

Diagrammatic representation of the perturbation theory that

would be required by a process of strong coupling.
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For the approximation to be justified, UI must be an operator
changing slowly with time, as is evident from equation (II.17),
since in that case (HUo - iﬁatUo) is small. However for

any process of strong coupling, the right-hand side of
equation (IT.1l7) will be small asymptotically only, this
region then being the only region in which a perturbative
treatment may be used with any validity. When the colliding
species are in the region of strong interaction, the right-
hand side of (II.1l7) is large and the evolution operator UI’
and consequently U, changes rapidly in time. Thus, it is
again apparent that a perturbative approach to processes

of strong coupling would necessarily have to be of effectively
infinite order to account for the rapid, significant changes
occurring within the system. As a result, to solve the
quantum mechanical equations for a model which purports

to describe a system throughout the interaction region, it

will be necessary to employ some method for solving the

full differential (or integral) equation completely.



Chapter III

DEVELOPMENT OF THE GENERALIZED IMPACT PARAMETER MODEL
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In developing the generalized impact parameter model
within a semiclassical picture it is enough to consider

the general two-centre reaction
A+ B ~» s

where, at present, no specific statements need be made about
the products of this reaction. Suffice it to say that there
exist a variety of exit channels such as elaséic scattering,
charge exchange, molecular rearrangement, etc. Having
obtained the equations of the model, one can easily show
that it is capable of generalization to reactions involving
three or more centres. This approach was thought to be the
most straightforward since it was felt there would be no
point to complicating the derivation of the basic equations
by variables due to extra centres, especially since the |
equations for the two-centre process embody all the details
of the model.

The model does not assume a static potential energy
surface as an interaction potential. The atoms are
considered as following claséical trajectories determined
by the interatomic potential, which is a dynamical variable
in that it depends upon the internal states of the atoms,
these states having an implicit dependence upon the.

velocities of the classical nuclei through their explicit
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dependence on the time-dependent interatomic separation
R(t). The interaction between the atoms in this trajectory
is the time-dependent coupling which leads to the various
excitation and exchange processes constituting the
mechanism of the reaction. Thus, all the changes occurring
within the system are coupled. The derivation is carried
out in atomic units in which the values of the electron

mass and charge, and h are unity.
C
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A. The Quantum Mechanical Equations

If one does not suppose that the system is initially
and finally in the same channel, the electronic Hamiltonian
for the colliding species is capable of several resolutions

of the form
H = Ho + V (Irr.1)

according to which channel is occupied. Since here the

only resolutions of H considered will be those corresponding
to the physical partitioning of the system, the Hamiltonians
c

Ho are the asymptotic channel Hamiltonians, whose eigenvalue

problems are presumed to be known,
C|.C\_ =C|.C
Holxj>— Ejlxj> (III.2a)
cy.C
<leXk>= S5k (III.2b)

The internal spatial coordinates of the asymptotic channel
eigenfunctions ]x§>>have been omitted to simplify the
notation. Assuming that the state of the system can be
expanded in terms of the complete sets of eigenfunctions

of the asymptotic channel operators, one obtains
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. C
lv> = }jz_a;?(t)u;?)e'mj v (III.3)
c j . .

Incorporation of the phase factors into the stationary

eigenfunctions yields
l¥> = Z Za‘?(t) |65 (6)> (III.4)
c 3 J J
where the time-dependent coefficients are given by
aj(e) = oS(e) ¥ (III.5)

The operator

9= ZZ|¢JC.(t><¢);.:(t)| (III.6)
c 3

does not represent a resolution of the identity since,
although the sets'{¢§(t)} are complete and orthonormal
within their respective channels, the union of these sets,
which is the basis on which the collision ié being
projected, is overcomplete and non—ortﬁonormal. As a
result, it is necessary to nbrmalize the expansion (III.4)

such that ©

|¥(R,£)) = N(R,t) ) Zajc.(t) |¢‘j3(t)> . (111.7)
. c J
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The dependence of the normalization N on R and t can easily

be shown as follows:
_ o1 _ZZZ"C, ¢’ c c
@R, ¥R, =1 =FK L& 35 (6)<05 (1) |65 (e ag (¢) |
P r]
(I1I.8)

Ve / ’
and denoting <§§(t)|¢§(ti} by Ni?(R,t), the expression

(I1I.8) becomes

*ZEZ:Ei:a (t)N (R t)a (£) , (III.9)

cHhc i,3

or, in matrix terms,

1= 8 3(0)N(R,t)alt) . (I11.10)

Thus, it is apparent that

1/2

N = N(R,t) = {E()N(R,t)a(t)}” . (III.11)

It

" To keep the notation as simple as possible, the
normalization N(R,t) may be incorporated into the coefficients

ag(t) to yield
|¥ (R, L)) = ZZ E: (R, t)a (t)}l¢ (£))
c j
= Z Z (R t) |d> (t)> (III.12)
C j ‘ - .
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The normalization requirement now becomes
b(R,t)N(R,t)b(R,t) = 1 . (III.13)

It is important to notice (as equation (III.13) shows) that
normalization of the expansion only rescales the basis
vectors; they are still non-orthogonal. This diffulty will
be discussed in more detail at a later stage.

The purpose now is to obtain a solution to the time-

dependent Schrodinger equation,
i3, |¥(R,£))> = H|¥(R,t)> . | (III.14)

To this end, the expansion (III.12) for the state vector

is substituted into (III.1l4) to obtain

iatz }:b;.:(R,t) ]¢‘j’(t)> =" ) ) bS(R,t) [6S(E)> .
c 3 c 3 J J
(IIT.15)

Carrying out the differentiation, one has
. : c c . c c
lfc: }J:{atbj (R,t)}lcbj(t)) + 1; zj:bj(R,t) at|¢j(t)>

- c, c |
; jbj(R,t)Hl¢j(t)> , | | (III.16)
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or,
iggﬁ%ﬁmmnwyﬁw=;%}?mum_i%ﬂﬁw»

- c - _ oC c
= ;L::bj(R,t){H Ej}l¢j(t)> . (111.17)

Multiplication across from the left by the bra<<¢§(t)|

yields

i) Z(cbf(t) 65 (£)> {8, bS (R, 1) }
c j

= Zc: 23:<¢§I(t) | - E?l@?(t))bgz(R,t) . (III.18)
Defining the matrix H(R,t) by
Hci:?(R,t) = <¢§’(t) ]HI¢§(t)> , (ITI.19)
the set of coupled equations (III.18) becomes
ip_(R,t)’{atp_(R,t)} ='{_P_I_(R,'t) - N(R,t)E}b(R,t), (III.20)
or,

3,b(R,t) = ~iN"1(R,t) {H(R,t) - N(R,t)E}b(R,t). (III.21)
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The matrix E is diagonal with its non-zero elements being
the possible energy eigenvalues of the asymptotic channel

states.

From the possible resolutions of H, one can write
H(R,t) = N(R,t)E + V(R,t) . (III.22)
V is the matrix of the various channel perturbations

between the various basis states. It is illustrative to

write V as follows:

F'yaa zaB Zay . -
zBa y_BB
vV = . (I11.23
vYe

The various sub-matrices of V can then be interpreted as

follows:

1) a given diagonal block represents the perturbation
within that channel coupling the states of that
channel, for example, !aa represents the perturbation

v® within channel a coupling the states of channel o,
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V??(R,t) = <@g(t)]va|¢?(t)>', The diagonal blocks
are thus responsible for transitions occurring within
the channels.

2) to interpret the off-diagonal blocks, consider a

B

specific one such as Zu . This represents the

8 of channel B8 coupling the states of

perturbation V
channel B to the states of channel a,

0B _ o B . B o
Vij(R,t) = <¢i(t)|V |¢j(t)>». Thus, transitions

between the channels are determined by these off-

diagonal blocks.
Now using (III.22), equation (III.21) becomes
3 0(R,t) = ~iN 1(R,£)V(R, )b (R,t) . (I1I.24)

At this point it is worthwhile to digress in order to
consider the relationship between the above equation for
the coefficient matrix b(R,t) and the evolution operator
formulation of the problem. The coefficients in the

expansion of the state vector are given by
b‘J?(R,t) =<¢Jc.(t)|qf(R,t)> .  (III.25)

Since the derivation has been in the Schrodinger picture,

one can write
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¥ (R e) = Uttt ) [¥(R, ). (III.26)

Using this, the expression (III.25) for the coefficients

becomes

b;(R,t) =~<¢§(t)lu(t,to)|v(R,t %

oS ute, ) | zz: ;bﬁ'(R,to) PR

%; §;<b§(t)IU(t,to)l¢§(toi>b§(R,to) :
(I11.27)

Thus a solutiom of the partial differential equation
(IIT.24) for the coefficient matrix b(R,t) at all times t
would be equivalent to a determination of the matrix of
the evolution operator of the full system, as long as the
other variables upon which b depends have no time
dependence.

Since, in the present formulation, the interatomic
separation R is time-dependent, the partial differential
equation (III.24) must be réplaced by the total differential

equation

db(R,t) = 3. b(R,t) +‘{aRg(R,t)}(dR/d£) . (II1.28)
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The partial derivative of the matrix b with respect to R

is easily obtained as follows:

B (R, ) = 3 (N(R,)a(t)} = {o,F(R,t)Ia(t)
= {3; A(ON(R,Ba(t) ~?}a(e)
-3/2

“HEDNR,0)a(8)} >/ 23 (0) (M alt) Ja(t)

I

{b(3,N)b}b/2 . (III.29)

BRE can be obtained from the matrix elements of N, and
drR/dt is simply related to the classical velocities of the

atoms.
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B. The Classical Equations

The classical equations of motion are most conveniently
derived in the laboratory frame, in which the coordinates
of the atoms may be denoted (xl,yl,zl) and (x2,y2,zz). To
obtain these equations one makes use of Hamilton's canonical

equations (7),

= 3%/, (III.30a)

and = —a%/aqk , ' (III.30Db)

o
i~
!

where Py and q, are, respectively, the generalized
momentum and coordinate for the k-th particle, and W is
the total Hamiltonian function for the system. W. is

defined by

2.
%* = Z P?/2m- + E(R,t) , (III.31)
j=1 J J

where E(R,t) is the mean quantum mechanical energy given

by

E(R,t)

Il

¥ (R,t) |H[¥ (R, t)D

b(R,t)H(R,t)b(R,t) (III.32)
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The fluctuations in E are assumed to be small. Thus,

Hamilton's equations become

. = ./m. ITIT.33a
qy pj/ 3 ( )

and p —BE/qu . (ITI.33b)
Thus, the mean quantum mechanical energy E(R,t) is the
interatomic potential energy which determines the trajectories
of the atoms. It is readily apparent that E is a dynamical
variable since, through its dependence on the coefficients
b;(R,t), it has an implicit dependence upon the velocities

of the classical particles.



Chapter IV

THE METHOD OF SOLUTION OF THE EQUATIONS
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Having now developed the equations of the model, it
only remains to obtain a solution to the set of equations

consisting of

db/dt = 3.b + 3:b (drR/dt) , (Iv.1)
. = p./m. ’ Iv.2
9 pj/ 3 ( )
and g‘>j = —aﬁ/aqj . (1v.3)

Since it was desired to obtain a solution which was free

of the previously mentioned faults of perturbation theory,
it was decided to solve the equations numerically using

the Runge-Kutta method (8). This method generates a fourth-
order solution to a total differential equation. The
computer program+ was written to solve the equations
simultaneously with momentum and total energy (classical
plus quantum mechanical) conservation. Unitarity of the
solutions was ensured by normalizing after each cycle of

'~ the Runge-Kutta process. Thus, from the initial positions,

momenta, and state of the system, one obtains the initial

T The computer program is given in Appendix II in the form

that it was set up to treat the specific physical examples

discussed in the following chapter.
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potential and kinetic (and therefore the total) energy;
using this potential energy, the pésitions, momenta, and
the coefficient matrix b(R,t) may be obtained at a time
At later, this information then defining a new potential
and kinetic energy. Proceeding in this iterative fashion,
one may thus obtain all these quantities throughout the
interaction region.

The accuracy of the calculations was controlled by
using a variable step size At such that the total energy
at a given iteration was equal to the total energy at the
previous iteration within certain limits (which were
varied according to the energy of the collision being
considered). 1In all cases, energy conservation was
sought to at least three significant figures. Further
details of the numeric solution of the equations are to
be found in the documentation within the program in
Appendix II. |

It perhaps should be mentioned here that equation

(IV.3) presents no difficulty since, for example,

pxl = —aE/’axl

can be written as

Py, = = (3E/B8R) (3R/3x,)
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and,

3 .E = 8 (BHb)

b(3 H)b + {bH(d b) + (8R§)§}3} . (IV.4)

ogH can be obtained from the matrix elements of H and the
gradients of b with respect to R are obtained numerically

within the computer program. Since

R ='{(xl - x2)2 + (yl - y2)2 + (zl - 22)2};5 ’

(IV.5)

one may calculate;BR/Bxl, and therefore éx .
1



Chapter V

APPLICATION OF THE GENERALIZED IMPACT PARAMETER MODEL

TO SOME PHYSICAL SYSTEMS
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For the initial application of the generalized impact
parameter model to physical systems it was thought best to
choose simple systems. By simple systems it is meant
systems for which the asymptotic channel eigenfunctions
are known exactly so that the required matrix elements may
be evaluated analytically. In this way one need not worry
about numerical errors introduced through approximate
evaluations of such matrix elements. Furthermore, simple
systems have few degrees of freedom and, as such, give
one some insight into the possibilities of applying the
model to more interesting processes involving complex
molecules and sustaining various possible exit channels.
For these reasons, the collision of a proton with a
hydrogen atom was chosen as a reasonable system on which
to test the model.

Since one's first interest as a chemist lies in low
energy processes (<10 eV), a variety of calculations on
proton-hydrogen atom scattering at low energies were
performed. As an offshoot of this, a study was made of
the photodecomposition of the simple molecule H2+.
‘Finally, recent years have seen considerable acﬁivity in
high energy (that is, in the KeV range) scattering of a
proton from a hydrogen atom. Thus, because we sought to
compare the calculations of the model developed here with

calculations performed by others and with experimental
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results, a set of high energy calculations were obtained.
Before one proceeds to a discuséion of these various
calculations, a short orientation to the proton-hydrogen
atom system is in order. To evaluate the matrix elements,
a molecular coordinate system fixed on the nuclei was
chosen. This coordinate system is shown in Figure 4. The
problem reduces to two dimensions because of the symmetry
about the internuclear line, and to one dimension for zero
impact parameter collisions. Since the formation of three
unbound particles is unlikely, the Hamiltonian for the
system may be considered as capable of populating two exit
channels. 1In thé non-rearrangement channel (which is
identical to the initial channel), the electron remains
bound to the proton of the target atom (proton A). Denoting

this channel as channel &, one has

H=H +v®, (v.1)
B = -1v% -1, (V.2)
2 T,
and vi=1-1 , (V.3)
R I

-In the rearrangement channel (channel B), the electron is
bound to the projectile proton (proton B). This leads to

the resolution



Figure 4

The molecular coordinate system used in the evaluation

of the matrix elements.
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H=m o+ VP, (V.5)
with HS =121, (V.6)
2 T,
and ‘ vP = l1-1, (v.7)
R ra

These two channels include the possibility of the

formation of H2+ as, for example, in a spiralling collision.
For either channel, the set of eigenfunctions for the
asymptotic channel Hamiltonian is the set of eigenfunctions
for the hydrogen atom. Thus the union of two such sets is
used as the basis on which to expand the state vector for
the collision. The matrix elements of N and V were
evaluated by conversion to elliptic coordinates in the
usual manner. From these matrix elements, the matrix
elements of H can be obtained, and it is only straight-
forward differentiation to obtain the elements of the

derivative matrices BRE and SRE. These matrix elements

are given in Appendix I.
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A. Low Energy Proton-Hydrogen Atom Scattering

Since our present interest is in collisions at low
energies (<10 eV), it was considered that the hydrogenic
orbitals'{ls,Zs,sz} on each centre would be a sufficiently
large set for this purpose. The orbitals 2px and 2py on
each centre may be omitted by symmetry considerations.

It is well known from the general theory of scattering
that the Schrodinger equation (or the corresponding
integral equation) describing the scattering process may
have several solutions depending upon how one chooses the
asymptotic boundary conditions. This is borne out by test
calculations which were carried out with the generalized
impact parameter model largely to check the computer
program. For example, if the initial asymptotic state is

chosen to be the antisymmetric molecular function lcu*,
¥ (R=o, £=0) =.(2)"%{¢ (a) - ¢,_(B)} (v.7)
! 1s 1s ! *

and the atoms are directed toward each other with relative
incident energy corresponding to 4 eV, it is found that

the wave function Y(R,t) always maintains the antisymmetric -
character with which it started. The dynamic potential
energy surface for the collision turns out to be the same

as the static potential energy surface of the lcu* molecular
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state. This is easily understood in terms of the static
molecular potential energy surfaces which are shown in
Figure 5. (These surfaces were obtained by solving the
time-independent Schrodinger equation on the above basis.)
Since only antisymmetric states can contribute, it follows
that the only potential energy surfaces which could
influence that due to the lOu* state would be those'due
to the other antisymmetric states, all of which lie at
sufficiently high energy to make a negligible contribution.
Similar results were obtained by starting out with a

symmetric asymptotic molecular state,
¥(R=o,t=0) = (2) {4, (A) + B) } 8)
=, t=0) = (2)7 o, (B) + ¢, (B)] . (v.

In this case, ¥Y(R,t) retains its symmetric character, the
dynamic potential energy surface corresponding exactly
with the static log molecular potential energy surface,
this being expected on grounds analogous to those applied |
to the antisymmetric collision.

The collision of a proton with a hydrogen atom
corresponds to an asymmetric asymptotic state in which
the electron is initially in, say, the 1ls level of the
target system. Therefore one might expect "conservation"
of asymmetry in the process. 1In particular, since the

asymptotic atomic state ¢ls(A), say, can be regarded as a



Figure 5

+

The molecular potential energy surfaces for H2 .
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linear combination of symmetric (V.8) and antisymmetric

(V.7) molecular states,
0@ = ()THIo (R = =) + 1o *(R = =)} , (v.9)

one should expect static potential energy surfaces due to
both log and lcu* to contribute. Equation (V.9) also
suggests that caution should be exercised in choosing the
initial state (R = finite) for numerical calculations since
even small errors in this choice would cause the system
initially to propagate along an erronious potential energy
surface. In practice this difficulty was overcome by
minimizing the initial state of thé‘target system with
respect to energy and repeating the calculations using
increasing values of the initial separation until the
dynamic potential energy surface became independent of this
separation. For these p - H collisions it was found that a
suitable initial separation was in the range of 150 to 200
atomic units, and that at these separations the minimization
process was essentially meaningless, the electron being
effectively in the 1s level.- Confidence in the validity of
the results obtained was also reinforced by verifying the
invariance of the calculations to time reversal. In this
respect the accuracy proved to be remarkable in view of the
extremely complicated behaviour of the electronic wave

function, a point which will be discussed shortly.
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The contribution of both log and lou* states to the
scattering process is borne out by our calculations.
Figure 6 portrays the dynamic potential energy surfaces for
a variety of zero impact parameter collisions. As the
incident energy decreases, the dynamic potential energy
surfaces correlate more closely with the log state,
However, even for thermal (0.02 eV) and sub-thermal collisions,
the dynamic potential energy surfaces are still significantly
different from ﬁhe static lcg surface, as indeed one might
expect from the above symmetry conservation arguments.
This is quite interesting, since frequently low energy atomic
and molecular collisions are approached theoretically via
the adiabatic approximation (9). The heart of this
approximation is that for low energy processes the colliding
systems perturb each other so slowly and to such a small
extent that their electronic wave functions go over
smoothly into the static molecular eigenfunctions for the
complete system. The potential energy surface for the
interacting species is then taken to be the static molecular
potential energy surface corresponding to the molecular
state into which the system is assumed to go. From the
results displayed in Figure 6, it would appear that this
approximation really becomes valid only in the limit of
an infinitely slow collision, in which the static and

dynamic problems become equivalent.



Figure 6

The dynamic potential energy surfaces for the p - H

collision.
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The differences between the static and dynamic
approaches are even more obvious in the wave functions, or,
more conveniently, in the electron densities. In the
symmetric and antisymmetric collisions theﬁelectron
density in one channel is the same as that in the other
at any instant of time. On the other hand, the density
for the p - H collision oscillates rapidly in the
interaction region (resonant charge exchange) as depicted
in Figure 7 for the rearrangement channel in a collision
of typical energy.

A variety of calculations were carried out for non-
zero impact parameters. The dynamic potential energy
surfaces for these collisions were similar to those for
zero impact parameter. The trajectories for these
calculations are of interest, however, as they indicate
the ability of the model to handle trajectories which are
far from the usual linear-trajectory approximation
normally employed in an impact parameter treatment. A
typical trajectory is shown in Figure 8 corresponding to
an impact parameter of 1 a.u. and incident energy of 0.5 eV.
The coordinates refer to the'laboratory frame. It can be
seen how the initial and final interactions are attractive
(corresponding to the outer region of the dynamic potential
energy surface), the intermediate interaction being.

repulsive (corresponding to the inner region of the



Figure 7

Exemplary behaviour of the electron density during the

collision.
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Figure 8

A typical trajectory produced by the generalized impact
parameter model in low energy scattering. The coordinates

refer to the laboratory frame.
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potential energy surface).

The results that have been obtained here are especially
simple, and, in general, one would not expect the same
results for more complicated systems. For example, the
dynamic potential energy surfaces shown in Figure 6 have
the static log and lcu* as lower and upper bounds,
respectively. Consequently, it appears that, according to
the generalized impact parameter model, iﬁ would be
impossible to form H2+ by a low energy zero-impact parameter
collision. However, for more complicated systems, there
may be several molecular states lying at'low enough energy
so that the dynamic potential energy surfaces cross these
stationary molecular levels. In such a case a collision
can then be responsible for taking the system from one
molecular level to another either in the same molecule or
in a different molecule. The investigation of such collisions
by the generalized impact parameter model should provide
some interesting features of such processes as level
crossing. Some possibilities for‘such an investigation

will be discussed in Chapter VI.
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B. Molecular Photodecomposition

In our treatment of low energy collisions, a discussion
was made of symmetric and antisymmetric collisions. It
should be realized that although these processes do not
correspond to physical collisions, the antisymmetric
collision, at least, is not entirely'unphysical since it
is closely equivalent to the reverse of the photo-
decomposition of H2+. The realization of this prompted an
application of our model to this photodecomposition
process, the idea being to calculate the probability for
molecular decomposition and the lifetime of the excited
state resulting from photon absorption, both these
quantities being unobtainable by time-dependent perturbation
theory. ’

Using formal collision theory and partitioning the
overall photodecomposition process into the constituent
sub-processes of photon absorption and decomposition, it
has been shown (10) that the transition probability for
the complete process can be expressed as a correlated product
of transition probabilities for these sub-processes, as

follows:

W g, = 218 (B;-B¢

irf,.f5, & 1

-Ef2)|<fl,f2|T(decomp)|é>[2|<é|T(abs)|£>]

=22 2
(B,-E_)% + T_“/4

(vV.10)

2
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T being the scattering operator. To use this expression,
it is necessary to be in a position to calculate separately.
the probability for photon absorption, ]<§[T(abs)[i>|2’ for
molecular decomposition,|<fl,f2IT(decomp)|é>]2, and the

1 of the intermediate state. Whereas

lifetime t_ = (Pa)~
the first of these may be evaluated by time-dependent
perturbation theory, the last two cannot, since time-
dependent perturbation theory is, as it has already been
pointed out, applicable to processes of small probability
only. However, the probability of molecular decomposition
from an unstable state may be close to unity.

To apply the generalized impact parameter method to
the photodissociation process it is necessary to know the
state [a>>to which the molecule is excited by photon
absorption. 1In practice, |a>>is a continuum eigenstate,
and, strictly speaking, one should include all such states
allowed by energy conservation. However, the sum over
all such excited states may be approximated by the
wavefunction for the antibonding molecular state if one
invokes the Franck-Condon principle, which assumes that
the nuclear configuration after excitation is the same as
that just before. The application of the impact parameter
method developed in this manuscript to the photodissociation

process is equivalent to following the evolution of a

system whose electronic state is initially the antisymmetric
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molecular state lou* corresponding to the nuclear
coordinates Ro’ where RO is the equilibrium separation of
the nuclei in the H2+ molecule. The asymptotic states

resulting from the decomposition correspond to either lsA
or 1sB since the energy of the molecular state lou* is
insufficient to permit the formation of excited atomic
states. Using the previously obtained solution of the
stationary eigenvalue problem for H2+, the equilibrium
nuclear configuration RO and the eigenfunction of the
state 10u* corresponding to this equilibrium separation
were obtained (in the notation of the generalized impact
parameter model this eigenfunction is Q(Ro(to),to=0) ).
Using this information as input for the computer program,
the evolution of the molecular decomposition was followed.
If the lifetime of the state lcu* is defined as the
time during which the interaction between the fragmenting
atoms is significant, this lifetime may be inferred from
Figure 9 which shows the conversion of internal (or quantum
mechanical energy) into the translationai enérgy of the
fragments. The lifetime of the state lcu* turns out to be
of the order of 10—'14 secondé. Since decay by decomposition
is much faster than alternative relaxation processes such
as spectroscopic emission, the probability of decomposition

will be approximately unity.



Figure 9

Conversion of the internal energy of the molecule H2+ into

the translational energy of the fragments.

1 a.u. of time = 2.419 x 10~17 seconds
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The internal energy as a function of internuclear
distance is shown in Figure 10. Within numerical accuracy
the curve corresponds to the static internal energy of
the lcu* state. This is to be expected from the symmetry
arguments of the previous section, the evolving state of
the molecule remaining as the lcu* state since it can
correlate only with antisymmetric states, of which there
are none close to the lou* in energy. As in the case of
molecular collisions, oné would not expect that the
photodecomposition of more complex molecules, or, for

that matter, asymmetric molecules, would be this simple.



Figure 10

The internal energy of the H2+ molecule as a function of

the interatomic separation.
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C. High Energy Proton-Hydrogen Atom Scattering

As was pointed out in the introduction to this chapter,
there is currently quite considerable theoretical interest
in high energy proton-hydrogen atom scattering. Such
interest derives from the desire to‘be able to reproduce
experimental observables for such collisions, specifically
to be able to calculate accurate cross sections and
exchange probabilities for such collisions. An application
of the generalized impact parameter model to high energy
proton-hydrogen atom encounters therefore allows comparison
of this model with both experiment and models used by
others.

At low relative velocities of incidence the
translational energy of the electron can be neglected.
However, for high energy encounters, the translational
motion of the electron becomes quite significant.

For example, at high relative veiocities between the proton
and the atom, the usual electronic eigenfunctions for the
hydrogen atom do not satisfy the time-dependent Schrodinger
equation even asymptotically. This was pointed out by
Bates and McCarroll (11). These workers showed that the

correct form for the basis set must be
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c _ c s wC 2 2 2
|¢j(ti> = Ixj>exp{ 1(Ej + Ve + Vo + vzj)t}
8 8 8

X exp(+1vxjx/2)exp(+1vyjy/2)exp(+1vzjz/2) ,
(v.11)

where‘{xg} is the set of stationary state eigenfunctions
for the hydrogen atom and ij’ vyj, vzj are the translational
velocities of the electron in the x, y, z directions in
state j. 1In practice, the subscript j on these velocities
refers to the atomic centre only, but the above notation
is simpler and results in the same interpretation. Actually
the expression (V.11l) is specifically for the centre of
mass frame, which is the reference frame used for the high
-energy calculations reported here. The centre of mass
frame was chosen because all other recent calc&lations of
p - H scattering have been obtained in this reference frame.
Centre of mass collisions are easily accomplished in the
generalized impact parameter model by starting the classical
particles with equal and opposite velocities toward each
other.

The only change that the modification (V.11l) of the
basis set makes, other than in the matrix elements, is

that equation (III.24) for the partial derivative of b with

respect to time becomes
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3¢ (R, t) —i[g‘l(R,t)y(R,t) - y_]]_o_(R,t) ;o (V.12)
where the matrix v is diagonal with its non-zero elements
being vj2/8, where vj is the translational velocity of the
electron in state j.

Current research on the proton-hydrogen atom
scattering system has been principally concerned with the
search for a basis set appropriate to describe the collision.
The reason for this trend is apparent from a short history
of the research. Four years ago, Wilets and Gallaher (12)
used a hydrogenic basis set modified in the manner of
Bates and McCarroll. Their calculation used a linear-
trajectory, constant-velocity approximation in which the
classical particles particles were constrained to move in
linear trajectories throughout the interaction, and the
velocities of these particles were assumed to be constaht.
In comparing their calculated total electron exchange
probabilities with the experiments of Helbig ang Everhart
(13), they found that the oscillations in their exchange
probability as a function of energy were incorrect in both
magnitude and phase. Since the validity of the linear-
tréjectory approximation had been investigated by Mittleman
(14) and was found to be good down to about 200 eV, Wilets

and Gallaher concluded that the errors in their calculations

were due to the choice of the basis set. For this reason,
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they repeated the calculation using a Sturmian basis set
(15). This basis set, which purports to take account of
the continuum, yielded total exchange probabilities which
were in excellent agreement with experiment. Various
cross sections were also reproduced quite well. However,
the Sturmian functions were found to have poor convergence
properties and did not represent the 2s level of hydrogen
well. The search for a basis set continued. Cheshire (16)
used a hydrogenic basis with variable nuclear charge,

and subsequently Cheshire, Gallaher, and Taylor (17) have
used a basis set consisting of both hydrogenic states and
éseudo states (these pseudo states give strong overlap
with the intermediate states of H2+ and as such simulate
the molecular features of the collision at small atomic
separations.)

It was felt by this author that perhaps all this
investigation into the basis set could in fact be labelled
as barking up the wrong tree, and that possibly the error
in the original work of Wilets and Gallaher was indeed due
to the assumption of linear trajectories and constant
velocities in the interactioﬁ region. For this reason,
it was thought worthwhile to perform some calculations
of high energy p - H scattering using the same hydrogenic
.basis as Wilets and Gallaher, namely, the set'{ls,2s,2pz}

on each centre, but without the restriction of the linear-
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~trajectory, constant-velocity approximation. The
~generalized impact parameter method is ideally suited to
this calculation.

In the way of practicalities, it should be noted that,
at high energies, the classical particles approach each
other quite closely in a zero impact parameter collision.
This results in a very small step size At being necessary
for energy conservation, and consequently in extremely
long times for the calculations. Thus, some a priofi
decision is necessary as to what calculations would be the
most useful. It was decided to choose some representative
energy and perform a set of calculations over a range of
impact parameters at this energy. This allows a
determination of cross sections for the various processes
occurring at this energy. It also allows one to obtain
some idea of the variation of total electron exchange
- probability as a function of energy from calculations at
some reasonably finite impact parameter and still compare
with the experimental results of Helbig and Everhart (whose
data is for scattering angles of the order-of a degree).
In this way the required computer time is minimized while
very useful results are still obtained.

Thus, a series of calculations were performed over a
range of impact parameters at 20 KeV. A plot of electron
exchange probability versus impact parameter for 20 KeV

is shown in Figure 11. From this figure it is seen that



Figure 11

Charge exchange probability versus impact parameter at 20KeV.
The scattering angle may be obtained from the asymptotic
momenta after the collision. The scattering angle 0 is

given below for several impact parameters:

p=1.0 a.u. © = 0.036°
o = 1.5 a.u. 0 = 0.012°
p = 2.0 a.u. © = 0.004°
p=2.5au.  0=0.001°
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the total exchange probability does not really become
independent of impact parameter, but rather that the
variation of these probabilities with impact parameter
at small impact parameters becomes quite small. Exchange
and excitation probabilities between various states at
20 KeV are shown in Figure 12.

From Figure 11 it is apparent that one would have
to use very small impact parameters to obtain scattering
angles of the order of degrees, and that the total exchange
probabilities at these small impact parameters would not
be significantly different from those at larger impact
parameters as long as one is still working at a region
where the rate of change of total exchange probability with
impact paramter is small. Thus, a series of calculations
at 2, 4, 8, 14, and 20 KeV were performed at reasonably
small impact parameters (0.25 to 0.50 a.u.). The size of
the impact parameter at a given energy was determined by
repeating the calculation with decreasing impact parameters
until the total exchange probability changed only slightly
with impact parameter. The total exchange>probability as
a function of energy is shown in Figure 13. Also displayed
in this figure are the experimental results of Helbig and
Everhart and the results obtained in the original

calculations of Wilets and Gallaher using the hydrogenic

<
3



Figure 12

Probability multiplied by impact parameter versus impact

parameter at 20 KeV for the following processes:

2p exchange
ot s 2p'excitation
_____ 2s exchange

®© 0 ® & 06 60 0 8¢ 2S excitation
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Figure 13

Electron exchange probability as a function of incident

proton energy:

- — 0 - — curve through the experimental points of

Helbig and Everhart (13)
the calculation of Wilets and Gallaher (12)

X the generalized impact parameter calculation
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basis set. The tremendous improvement of our results over
the linear-trajectory, constant-velocity approximation is
obvious. Since our calculations have used the same basis
set as the Wilets and Gallaher calculation, one is at first
led to the conclusion that the linear-trajectory, constant-
velocity approximation is not valid. However, our same
calculations indicate that not only are the trajectories
effectively linear but the velocities along these
trajectories are insignificantly different from their
asymptotic values. Assuming that the numerical accuracy

of the original Wilets and Gallaher calculation was sufficient,
the only conclusion one can draw about the difference
between the results df the linear-trajectory, constant-
velocity approach and the generalized impact parameter
approach lies ih the difference in the physical natures

of the two approaches. The linear-trajectory, constant-
velocity approach is of course not an energy conserving
approach, since, as the atoms approach, the internal energy
of the atoms increases through excitation and exchange
processes, the potential energy increases due to increasing
interaction, but the kinetic energy of the atoms remains
constant. However, in the generalized impact parameter
approach the changes in the kinetic energy are coupled

to the internal and potential energies (that is, to the

quantum mechanical energy) so that there is overall energy.
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conser;ation. Now although the changes in the kinetic
energy represent only a small percentage of the total
energy, the improper coupling of the various energies
could still possibly be the proverbial straw that broke
the camel's back.

The cross section for a given excitation or exchange

process from the level i to the level f is defined as
= 21/ dp pP E
Oi‘*f - TTO p p i+f(pl K) r

where Pi+f(p’EK) is the probability of excitation or
exchange to the level f from the initial level i. This
probability is defined as

jor = IPER = =%,
and is a function of impact parameter p and the incident
proton energy EK. bg(R = ») is the asymptotic coefficient
of level £ in channel ¢ after the collision. From the
20 KeV calculations, cross sections for 2s and 2pZ excitation
and 1ls, 2s, and 2pZ exchange from the 1ls level of the
target atom were obtained; These are given in Table 1 along
with other evaluations of the same quantities and

experimental results. It is seen that our results are as

good as, and in some cases, better than those obtained
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Table 1

Excitation (D) and Charge Exchange (E) Cross Sections in Units of 10—17 cmz.

Process Linear-Trajectory Approximation with Generalized Experiment
Hydrogenic Pseudo~-state Sturmian §§§Z§t Parameter
Basis (12) Basis (17) Basis (15)
2s (D) 1.076 0.943 1.3 3.400 -
2pZ(D) 1.816 3.425 4.6 5 3.577 » 4.5
1s(E) 38.730 41.400 40.0 47.950 ‘ -
2s (E) 3.327 3.760 3.6 4.002 4,2
2pZ(E) 1.085 1.633 3.2 2,531 3.1

The values for the hydrogenic and the pseudo-state bases are from a tabulation in
reference 17; the experimental values are from the work of Stebbings et al (18),

except for the value for 2s(E) which is from Figure 4 in referénce 12.
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using hydrogenic functions, Sturmians, etc., with the
linear-trajectory, constant-velocity approximation.

As a general conclusion, it would appear that a
hydrogenic basis is quite adequate for the description of
the p - H collision at high energies, provided that the
coupling is treated properly. Furthermore, since the
basis set used is quite small, it would seem that the
high energy levels (both discrete and continuum) of
hydrogen contribute to a small extent only to the
evolution of the collision system. One should perhaps
point out that the ability to follow the evolution of
the collision throughout the interaction is also useful
at high energies. For example, the charge density as a
function of interatomic separation does not, at high
energies, show the oscillatory behaviour which was seen at
low energies. This indicates why simple perturbative
approaches such as the Born approximation may be
successful occasionally in the description of high energy

processes, but certainly not in similar low energy reactions.



Chapter VI

GENERALIZATION OF THE MODEL AND A SURVEY OF POSSIBLE

APPLICATIONS TO PROCESSES INVOLVING COMPLEX MOLECULES
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Although the generalized impact parameter model has
brought forward several interesting features of the
systems to which it has been applied in the research reported
here, the real promise and purpose of the model lies in
dealing with reactions of cbmplex molecules. Because such
reactions usually involve more than two centres, it is
important to illustrate how easily the model may be
generalized to many-centre reactions.

To this end, consider the application of the model
to a general three-centre reaction. From such a discussson
the extension to processes involving more centres is
straightforward. For a three-centre reaction the inter-
atomic separations may be denoted as in Figure 14. The
only change that the extra centres will make in the quantum
mechanical equations is in the evaluation of the required
matrix elements. For three centres, the matrix elements
may possibly be obtainable analytically, but for reactions
involving more centres these elements will require numerical
evaluation, unless the interactions can be treated pairwise,
as will be illustrated in an example below. 1In any case,
the matrix elements can be expressed in terms of the
Rij's. For the three-centre reaction, there are three
dynamic interatomic potentials which govern the classical
motions of the atomé, just as the single potential does in

the two-centre processes.



Figure 14

The coordinate system for a three-centre reaction.
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In an attempt to indicate the power of the model,
several possibilities for research will be discussed here,
the emphasis being on the ability of the model to predict
a mechanism for a reaction. Although the required
calculations may take large amounts of computer time, as
a chemist one is more interested in the processes
occurring during a specific collision than in obtaining
macroscopic observable quantities, such as cross sections,
which require a set of calculations. Consequently, only
a few calculations may be needed to envisage a general
mechanism. In any case, a single calculation would
provide a vast amount of information as to electron
densities and bond rearrangements occurring during the
evolution of the collision. Such information could
conceivably indicate why certain areas of a molecule are
so-called "reactive sites" while others are not, why
certain groups are eliminated during a reaction, etc..
The model should also be useful for studying hindered
internal rotations within molecules, vibrational energy
transfer, and so on.

As was pointed out in the discussion of low energy
collisions in Chapter V, more complex reacting species,
and indeed even simple asymmetric molecules, will show
more complicated sub-processes in the course of their

interactions. As an example, the phenomenon of level
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crossing was cited as a means for the collision to carry
the system from one molecular staté to another. This is
certainly one possibility for study, and it could be
accomplished using as simple a system as the collision of

a proton with a beryllium atom,
H+ + Be - H + Be+ .
Still another interesting possibility for study is the

intramolecular rearrangement reaction

H H H H

H H H

which is a symmetry conserving process. The conventional

mechanism for such a process is
BN e )
[3/0\/\\(: X
N TN

To apply the impact parameter model to such a process, the

o-bond framework could be set up in the following manner.
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A basis set of hydrogenic orbitals consisting of 2s, 2px,
2py, 2pZ (possibly with variable nuclear charge) could

be chosen on each of the carbon atoms A, B, C, and D. The
coefficients of such a basis set would initially correspond
to sp2 hybridization. The C-H o-bond framework would then
arise from overlap of one of the sp2 orbitals with a ls on
the hydrogen. The 7-bonds would be set up by overlap of
the P, orbitals. The atoms would all be treated classically
and interactions such as those between neighbouring H atoms
could be specified by some potential function. The
calculation would then simply consist of feeding energy
into the molecule and following the rearrangement. Before
such a study could be attempted, it would be necessary to
ascertain that the model could handle reasonably well
changes in hybridization such as those occurring on centres
A and D.

Of course, one could talk for great lengths about
possible applications of such a model. Those discussed
above are two of the more interesting of the possibilities
which are planned for study by the research group this
author has had the pleasure bf working with for the past
year and a half.

As a general conclusion to this manuscript it is only

fair to mention the major drawback of the model, since

this also suggests possibilities for future research in
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this field. Of course the model is subject to the usual
approximation of molecular quantum'theory, namely, that
the electrons are described by some truncated basis set.
This is not a serious diffulty, however, as one can usually
choose a sufficiently large basis and still remain within
the realm of practical calculations. This has been borne
out by the high energy calculations discussed in Chapter

V. These calculations gave very good agreement with
experimental results with only six states. The semi-
classical approximation is also justifiable for atoms and
molecules. The most serious approximation of the model is
that which assumes the union of the asymptotic channel
eigenfunctions as a basis set for the collision.

Although these functions are renormalized, the set still
remains overcomplete, and, in fact, can become grossly so
in the regions of strong interaction when the particles
are spatially in close proximity. This overcompleteness
of the basis set results in the difficulty that, in general,
the coefficient matrix b is not unigue. The solution to
such a problem would be to project the collision on the
eigenfunctions of a given channel of the reaction. Aslyet,
however, no simple and satisfactory means has been found

to accomplish this.



Appendix I

THE MATRIX ELEMENTS REQUIRED FOR THE PROTON-HYDROGEN

ATOM COLLISION
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The matrix elements were evaluated by conversion to
the elliptical coordinates (A,u,¢). With reference to

Figure 4, these coordinates are defined as follows:
A= (ra + rb)/R '
B = (ra - rb)/R ’

and ¢ is the azimuthal amgle round the axis AB. The

ranges of these three variables are

1

IN

A K e,

-1

IN
N

1,

IN

u
¢ 2T.

In atomic units, the basis functions are as follows:

IN

and 0

-1
¢'lS(A) = (m) *? exp(-r_) ,
b, (B) = (32m77 (2 - r) exp(-r_/2) ,

-1
and ¢2p (a) = (32mw) * r, exp(—ra/2) cosf .
Z .
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Since the basis functions are orthonormal within the
channels, only the cross-channel elements of the matrix
N need be evaluated. These elements are as folloWs: '

(L + R + R2/3) e R

!

<ls (n)|1s (B)>

(1 + R/2 + R%/12 + R%/240) & R/2

<2s (n) | 2s (B)>
{2p, () |2p_(B) = (-1 - R/2 - R%/20 + R3/60 + R%/240) & R/2

ls(a)|2s(B)) = C{(-64/R + 22 ~ 3R) + (64/R + 10) e %/2}e7R/2

c{(64/R®* + 32/R - 16 + 3R) + (-64/R? - 64/R

Il

<ls (a) ] 2pz (B)>

- 8) e_R/z}e—R/2

-R/2

(s a)|2p, (8) = -(r%/120 + R*/240) e

where C is a constant whose numerical value is 32 .
' 27v2
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For the matrix V, the elements within the channels
are as follows:

2R

Qs @) |v]is@a)y = (1 + 1/R) &

il

(1/R + 3/4 + R/4 + R%/8) e R}

{as(n) |v]2s (a)

Cp, () [V|2p (&) = ~12/R3 + (12/83 + 12/R% + /R + 11/4

+ 3R/4 + R2/8) e R

Qs (R)|v]2s (a)> = D(2 + 3R) & F/2
s (a) |v|2p, (a) = D{64/9R? + (-64/9R - 32/3R - 8 - 3R) e /%)
les @) |v]|2p, (&) = 3/8% + (-3/R® - 3/R - 3/2 - 5R/8 - R%/8) & %
where D is a constant whose numerical value is —2(2)%/27 .

The cross-channel elements of V are as follows:
{(1s @) |v]1s(B)> = (1/R - 2R/3) &%
(as(a)|v]2s(B)> = (1/R + 1/4 - R/24 + R%/24 - R%/160) & R/2
Cp, (8)|V]2p, (B = (-1/R - 1/4 + 3R/40 + R%/60 - R>/160) & /2

{is(B)| V|25 (A)> = C{(-64/R% + 8/R) + (64/R? + 24/R + 15/4) e %2}

% e—R/2
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<18(A) lVl2S(B)> = C{(“64/R2 + 32/R - 33/4 + 9R/8) + (64/R2)e"R/2}
« o~R/2

2

Qs (®) [v]2p, (a)> = c{(64/R> + 48/R% - 8/R) + (-64/R> - 8o/R
- 24/R - 3) e R/2}"R/2

c{(64/R> + 24/R% + 12/R + 6 - 9R/8)

i

is(a) |v]2p_ ()

+ (—-64/R3 - 56/R2) e—R/Z}e"R/2

<?s(B)[V]2pZ(A$> ZS(A)IVIZPZ(B)

-R/2

(-R/24 - 7R%/240 + R3/160) e

The matrix elements of H are obtained from the

relation

where E is the matrix

[——0.5. 0 0 _ 0 0 ]
0 -0.125 0 0 0 0
0 0 -0.125 0 0 0
0 0 0 -0.5 0 0
0 0 0 0 -0.125 0
0 0 0 0 0 -0.125
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The matrix elements of the derivative matrices BRE
and BRE are simply obtained by differentiation of the

elements of N and H with respect to R.



Appendix II

THE COMPUTER PROGRAM
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THIE PROGRAIL IMITIATES THI DATA ON DISK FOR THE MATN PDOGRAMT

1

0

/

I«DLICI“ RLRL'S(?~T o~u)
: ORDRP/R¥(2,3),RV(2,3),R2(2,3),PX(2,3),7v(2,3),75(2,2),

HE POSTITIONS AND MOITINTA ARE DRENOTLDD RM(I,J) ,PY(Tr,

PK(I J),PY(I,3),72(1,7) DRSPECTIVLLY. THT DT‘*“”TOII
HIY PARTICLE i1 - AMD LI DIMENSICH J REFLRS 70 ONF
SAVE D ITEDRATIONS

COMPLEX#16 1 (G,3)

TIIV’ COETFICILNT IMATRIX B IS DRDNOTED A(I,T) T.'?{'TE‘_T’.TT DITENGION
LFERS T0 THE ASYMPTOWIC Ci ' }‘."T“ THIL HIGTO g

]\CX\T I REFLRS 70 O OF TLE

REAL*8 Z2IP1(38) ,H(¢),TvEC
LOGICAL®! ES“/.FALQ R
voUTquPNC: (zIP1(1),72(1, )

DATA IRELD, 'uit;/J,(/,u:Z OTRY/1,0/
DATA ”Onuff, /2,17

“JA

}

NOPART
NOTRY

THE COLT,ISTON,

VDT I,

THE DATA IS READ AND TEHEN ¥WRITTEN ON DISK

READ (IRBZED,S () P BNE

=60) prm DELTAT

I

READ (IRLAD,100) (ﬁ*(1,1) f(J,1) PI(I,1), RS (), RE(T, 1),V (T,

RZ(I,1),T=1,30P 0T)

TEST WHETHIIR TIL DICIVLGD MADRIZ I8 AD 2GS DATA OR CALCULAT
(BY »» VARIZWIOUAL T’"’\(‘“Db\\_, TO QRTAIN A MININUII ENDRCY STURTE G
THE ASYIMDTOYIC STATL).

READ (IRTCA
I (.HCT.

THE COLFTFICILNTS
USED TO CONTIUUL
CALCULZATION FRQOI

DEING CALCULATID-THIS IS
ALSO PDGCTﬂrL 0 CONDIY

-

)
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N

\
J

READ (IRDAD,S0) (A(I,1),T=1,
GH MO 50

RINV=1.D00, gsozw((nx(1,1)~nx(2,1))**2+(:?(1 1) =PY(2,1)) %24 (20 (1, "
1)) **%2)

'.\r) —Tr ("\

ANdi -

IS USLD 20 OBTAIN T MNITTINUN ENIRCY

E(1)=-.5D0C

H(2)=0.D0C

H(3)=-.125DC0C
H(h)==,704535530C2CC3CDO0*RTINV*RINV
H(5)=3.DOC*RITVHERIIIV

E(6)==12 . DCO¥RIV*RINV*RINV-,125200
CALL DEICHII(IF,EVEC,3,9)

EIG=H(()

&
!
Q
—
n
)
£
r
=

CLN LHERGY OF THLD MI?

"—i

ZED ASVFDPTOTIC STATI,

THE COGFrICIENTS OrF THE CALCULATLD ASYIDRINTIC STATE APRD HWORIALITID

Z\ OR.L O 7)0\,
nn 30 1I=1,3
TJ=T+6
A(I,1)=EVLC(TJ)
RIORM=1T OPN+’*LC(J)’>2
ANORII=DSOR (' TORM)

DO 40 I=1,

»?

THE HORMALIZLD ASYIMPTOTIC OTATT IS

A(T,1)=A(T ,1)/\*Oﬁh
A(4,1)=(0.DCO,0.D00)
2(5.1)=(0.D00,0.D00)
A(6,1)=(0.D0O,0.D00)
WRITL (HUTRT) 2,HCTRY ITEST,EQ, TN , DELTAT , TOCLRG , 7008

EO IS8 T IZ'~ET-1,~Y CALCULATED ON THI TFIRST ITERATIOCN, DELTAT IS TiC
STLEP SIZE B JICH THL TIN IS INCRLWMINTED,

WRITL (L“'”m ZIn1
WRITE (I”RT L, 70) MOPART,DELTAT, (I,7H(I,TH),0V(I,Ji),Pn(T,T0),

KOMASS (), m (T, J1) , »Y (I,J0) , 5 (2,01) ,I=1,110P7RT)

WRITL (IWRITL,150) (I,2(I,1),I=1,6)
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IF (.HOT.AREAD) WRITE (IWRITE,140) TIG
WRIT (*HLIET 120)
GO 70 10
60 CALL BXIT
RETTURE
70 POR&AT (111,28¥, "2HD INITIAL DATA FOR THT SEMICLASSICAL
XOF',I5," NMUCLEI '/1H 31X, "INITIAL 2IME INTERVAI, USED
ACULA 10 IS',J“O.1O, rJULT////0 0,53, VINITIAL PARTICLE : LITR
x5! C//11‘ ¥ "PARTICLIHY €3, PN, 5%, VERT O DV 53 tEst G tRat P33,
}{*4 P 3W, VUIIAGS Y 5, VEEY g1, ot B3, Tkt G TRy By k! GX,'net 5,
x'*'/(l ,QA,I;,h1,7D15.8))
20 TORMAT (I5,D20.10)
90 FORIAT (4G20,10)
100 FORMAT (LG20.10/3G20.10)
110 rPORMAT (111 ,7R04)
120 FORMAT (THC, " IS RUYN FINISHED')
130 rOrREIAT (L1,4¥,G20.10)
140 FORMAT (110,' 7THR EICYH DINRGY WAS ',G20.10)
150 FORIAT (1H  ,37,"%', 153, 'R MATRIN',15%,'='/(14 323, T5,2G20,10))

EMD

THIS PROGRAM SOLVES THE QUANTUIl MECHANTCAL AMND %9 CLASSTCAT
EQUATIONS OF TEHE CENERALIZED INPACT DARAMETER MODDT.

THE MAII PROGRAM DEALS I'OSTLY WITE THE CLASSICAL LOUATIONS.
IMPLICIT DEAL*S (A-=H,0=7

BAL*¥3 ERRO RX(”), IRRORYV (2) ,ZRRORZ (2) ,=Am(2) ,ERBY(2) ,nRP7 (2) ,DEL>
X(2) ,DELDPY(2) ,DELPL (2) ,ALPHA (L) /.5D0C,.202280321283813453000,
X1.7071067511665400 e, .1Gﬁ(ﬁnfr(ffcdh(7noﬁ/,ﬁ“"h(v)/ 5060,
¥.202893218313453D00,1.7071067811665470090, .5D0O0/, 2 (4) /2.D00, 2%
¥1.D00,2.D00/

ALPER, BETA, AND ANUMB ARE CONSTANTS FOR THE RUNGE-KUTTA PROCESS,
DILPX, DELPY, AND DELPZ ARE EFFECTIVELY [OMTIMUI INCRIMLINTS, 2D
THL REMAINDER OF THE ABOVE CHARACTEPS ARI ERROR TIRMS TOR DL
RUNGE=-KUTTZA PROCESS.

EAL*L TIINT,TCRU, TIHTR, THACCH

TUINT, TCPU, THTR, AND TMACCH APE USED FOR CONTROLLING THY

CPU TIME OF THL CALCULATIONM

WHE PUYSICAL %I CONTROL TS TN THE RUECTI-KUTTA PROCEAS,
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OLI IALENCYE (IN,
() L()C)J.Ju_ ’r,‘.()(_\ .

p 'P'] C PCOPY (6) ,TRROND (6

ERRORNA IS THLD R

L

TV FTIMIMLT
TICE-RUTA

LOGICAL*L Iue®, PIRETY

TOCLRS ALD TCQSH ARD USED D0 ESTADRLICH THI BOUSDS O 5y
CONSERVATION,

COMMON /CORDRP/PX (2,3),1v(2,3),75(2,3),7%(2,3),°V(2,3),22(2,2),
X“LKSS( )
OMMOWN /P /LORUM, DHINT , HOBHIG, THTRN L, TMACCH, TCPT

NORUM IS THID MUM2 ] IVEPATIONNS
ARGUITENT wWIIICIH PPCLT i
O SUBROUTIHES

. OTEC
THROUCH

COMEON /AVATRY/A(6,3)

THE INITIAL PARAMITERS ARD NOUW REZD DY SUDRDROUTINI READ,

1 TV O T TTYTYTEYT e Ty
ITTant, 112, ERRT,

XT0O0SH)

TLID IS AN BND PARAMETER ON TEE TINVF THE CALCULATION RUIS,

TLE CALCULATION IS T0O RE CORNTINUED I'ROM 2 DIGI 13.7-\.'3?'7\,. ST I
P TC A STARDING BLOCII (LARII, 50) THICE USIS THI RULG
ROCLES IN A SPECIAL FASHICH TOR TWO ITERAWIOND.

]'F‘ ¢ MEST) GO TO 5C
1 =T

II" (J

J]v—mi\'

IFr (JU.GT.3) Ji=

CALL HOVEC(ACOPY (1) ,8C,~(1,T1))

GO T0 70

IOVEC ARD DXCLOR ARZ
1) HOovEC (1u7To,
BYTE 'FROM!

THIS IS USED

BMBRLEDR T?OUTITT]ZC..,
G "TMLEWMC!Y BYTRS TRON ST
1] TrTm(\ 1
LR I - L]

2) EXCLOR (INTO,NLEING,TROM) EXCLUSIVE OR'S 'FROIL' CHTO
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PINTO' POR A STRING 'NLING' BYTES LOM
ZERO A MATRIX,
THE TIHED INTERVAL IS SHORTENLD IF THE ERROR I

LARGE,

TINE=TTME -

MOPRY=1OTRY~1
LLLTA;«J“TTFW*

™= rn tas)
DELTAT

5D00

Ui

NORUN=2 *HORUL~1IQTRY
WRITH ( EPI’E €0) DLLTAT,NOTRY,NOR
NTLEST=, FALSH. .

IFr (DELTAT.LT.1.D-07) CALL EXIT

THE FURTHEST BACK ITERATION (STEP JI
POSITIONS(I,1), THE POMENTA(I,T1), AN

TO RESTART THL R
(J'L
MOVEC(RX (1,1),
MOVEC(RY (1,1),
POVEC(RZ(1,1),
HGV‘C(“V(1 1),
oveC(PY(1,1),

CALL MOVLEC (DY (1 1) ’

CALL MOVIiIC(a(1, 1),DC,L(1,JSL))

GO 1O 50

THL TIIL INTIRVAL IS LEXQTUINED IF
CREATLR THAN REQUITID. THE TLAST
RESTADT THEE RUNCGE-KUTTA PROCLSS.
LOADED SINCE THI ITERATION POINTORS

DuLTﬂ”u-’*”?m*7 Doo
NORUN= (IJQRUIITIOT V)
VRITE (TVIRITH, 1€0)
NTESY=,FALSE.,
IF (Ji11.20.1) GO
CALL MOVEC(RX(1,1),
CALL MOVEC(RY(1,1),
CALL MOVEC(RZ(1,1),
CMLL
CALL
CALL
CALL

HOVLC (PV (1, 1),
MOVEC (PE (1, 1) .
MOVEC (2(1,1) , 9

T T

T JLHGL RKUTTA BLO

~

Tlitﬁ'—

‘~]C

2.20,1) GO TO

MOVEC(PX(1,1) 3

L-nUr TA PROCESS

o e

50

HLENG, R (1,JM2))
MLEHG, PY (1,J112))
NLENGL R (1,72 )
TLENG,PY (1,5H2))
NLENG,PY (1,12) )
MLING,PZ (1,712))

/"\

DrLmaT

70 5¢C

RX

AT

MLENG (1,
MILEIG r>v(1 LTTT1)
NLELG, Pb(1”
N1, 1)
‘4,9"(1 )
G,Pr (1, 1)
1,71) )

~ .—a i

Cx FOLLOMS

iV
I

THE PN
ITETATION
LY THE

ALPRIIADY

T
i
ke

ACTUR

P PTOTIRY , NORUTLT

Iy

HAVE

2l

VIS
THL

)

¥

12) IS LOADID FOR TH

CcOonw

Jeledls

G, THIS I8 U
THY IWIRGY

FICTINT TR

an or n»,\,--n '_-‘T"”

AL

DLIM

LOLDIED

AT O

MOVED.

SIID 70

I8 TOO0

13 (T,

15
0
I

1)
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CALL MOVEC (ACOPY (1) ,%¢,2(1,T3512))
GO 70 70

LR REV=1

BRIV IS THE ERGY AT THN PROVIOUS JTTLRATION,

.L.IA!_J

IF(HCTRY.EC.0) GO 70 67
NOTRY=HOTRY+ 1

JE,1=2

Jil=3

S LIRE G ALY % P r
NTLE=

]

CO T0 °0

3
4

.
[
o}
!

L]

THE FHBRGY TEST IS SET UP IF NOTRY=(

TOOLRG=DALS (TCOLRD4F7)
TOOSI=DABE (TOOSE%11)

TOOLRG AD T00S5:1 ARL THE ACTUAL ROUITDS ON TR

WRITE (IWRITE,17C) E,TOCLRG,T0NSI:
GO 7O G5

CALL EXCLOR(LRDORI (1 ), ‘
CALL EXCLOR(ERRORY (1) ,?IT T
CALIL LXCLOR(ZRRORZ (1) Py
CALL TECLOR(ERPX (1 Y, FLENG, ’T”“’ (1 ) )
CALL JXC] OR(EDPY (1) ,T‘Ll IIF nRpPvY (1))
CALL EXCLOR(ERPZ (1) ,NLEIC, NPT (1))
CALL I\Cl-OT’ (3BRORA (1 ) 9

IF (N0 HTLST)Y €O 70 9

THE POIITRRS FOR TIHE POSITIONS AND

i}
J

IHOLD=J2
JN2=J171
T =T

S IN=TROLD

CALL MOVLC(RX(1,J1i) ,HLENG, RX(1,T11)
CALL MOVEC(RY(1,Ti1) ,VLENIC,RY(1,71)
CALL MOVEC(RZ (1,J:1), TLL”C,RZ(1,JN1)
CALL MOVIC(PX (1 J«),JLENC Y (1,371)
CALL “OVLC(PY(1,U_) NLEHG,DV (1, 7"1)
CALL MOVEC(PZ (1,IM) ,lLING,PZ (1,T71)
FIRST=,TRUIL.

TIRST STEP-THE ERROR ARRAYS ART INIVIALIZID

ROV,

NOW CHANGED,
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NOW THE ACTUAL RUNGE-FUTTA PROCLDURL IS USHD.

DO 140 X¥=1,4
IF (FKJEC.2.0RVKK.ED.L) T E=1TME+, 5DO0SDILTAT
:{=T&;(1 ,J..“L\) "'.L\zx(-«,\ )
Y=RY(1,JW) RV (2,.710)

2 (1,J17) -R2 (2,711)
R= ‘“I‘”( HEDIC AN E A
RINV=1,D0C/R
PYI ___"7*'(1 ’““) /rrr\ W(‘f“(
PYI=PY (1 ,u“) /TS ,(
PZ2I=rzZ {1, .’)/”_‘_"\ (
DRT= ""‘.T‘"T FYEPYI4HZ

1) -
1)~
1)—p2(h,Ju)’~Ln
FPOT) ARINY

RESPECT TO TINE.

DRT IS THD DERIVATIVE OF R WE

i~
+3

THZSE QUANTITILS HAVE 70 DO WITH "‘”T TRANSTLATICOHAL ENIRGY OF TiL
ELECTRON AID ARE REQUIRED FOR HICH-ENERGY CALCULATIONS ONLY.

—~

VISO=(PX(1,JH) #%24PY (1,J17) ¥% 2407, (1,T7) %%2) /TMAGa (1) %2
VZSO“ (nx- (3 .o n) ) .‘.')_;_nv(') T»r) kI 4DE (1‘ ,J w) e »2) /r__w:',‘,r\_gg (3) D
VSUMX=0,5D00% (PX(1,717) / TRAES (1) 4P (2,T1) /manee(2))
VSULIY=0 snoo*(vV(1 )/m AL U(1)+“”(“,JW)/m“T"‘( )
VEUMZ=C.5D00%* (P2 (1,TH) /THASS (1) +D2 (2,TN) /TIASS (2))
vc;xr__XV("[J\T‘ ")

VSEY=VSURMY® "V
VSZ=VSULIZ*7
PI(TIMIT, R,ACOPY, 2ASAVE, DET (DRT,PID,FIRST V160, V280, VATl
AVC Y ] U'Iz. VSX,VC-‘ PG ,,Y, )
DELP (1) IREDELTHRINTV
DL‘LT‘Y (1)=-- Y’f DET=RINV
DELPZ (1) =—0FDRTHRITIV
DELPX(2)=#DETERINV
DELPY (2)=VHDnTHERINY
DELPZ (2) =g 4DETHRINY

YTK

1

THE ENERGY IS CALCULATED AND THESTED AUD THE NEV CODIPICTIINT FATTIL
IS LOADED INTO A(1,JH1).

IF (.MOT.TIRST) GO 70 116
TK=0,.D00
DO 1020 I==1 HOPARY
100 TE=71+ (P (I,JL 1) #H24DY (T, J201) #2400 (T, T171) #542) /(2 D(“C*’TTG’NS‘C ()
‘ I’--T’.L“-!JIK (DCOIITG (ACOPV (1)) = ".COP" ( 1) -!-DC““J’" (’\("‘T’" (2))=pcopy(2)+
XDCOLITG (:\,Cf"D"("‘) ) FACORPY (3) ) *V180% [ 5DOC+ (DCO C{RCOTY (L) ) #=ACODY (§) +
XDCONIG (ACODY (3) ) *ACOPY (5) 4+-DCOILTIC (F:COD‘._’ (8) ) *2COPV(G)) =V2an® , 3000

IK IS ML KINDTIC DNERCY, PIR IS THD OUANTUM MICHANICAT, END RCY,

'

o
D
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E IS THE TOTAL ENLRGY.

IF (LHOT.WEST) GO =0 110

CALL IMOVEC(A(1,J11),8GC,2CORPY (1))
ERROR=DARS (1D RIV-1)

IF (DRROR.GT.POCLRG) GO TO 20

IF (DRROR.LT . TCOBM.AMD  DULYAT LT, 20,.001) €O TO 30
EPRLV=I )

LW T‘C(SFKIOI‘-?S AND MOUIDTZA OF A PARTICULAR IWEDRATION ARE
ATED .
Z‘.LP-‘-ALK A (330)

APP=3 ,DCC*PLP
BL”"‘L;L’T[‘ (X))

ARUM=AMUNE (KK
DO 120 I=1,HQPRART
TMASSI=TMASS (1)

PXI=pX (I ’ IJ)
PYI=DPY(X,L)
PLI=P%(X,L)

}x" "‘Dxx_l. if”f‘(.‘c -[
BERROR=ERRO 11:("’)

RX (I, L) =RX ( L) +2LD% ({X=2NUMTRROR) *DEITAT
ERRORZ(I) = ‘PO WAHAPPE (VE TWMHFLRROR) -1 J*XK

DELP=DRLPY ( I)
ERP=ERPX (L)
"(I L)=PII+ALD
ERPX (I) =LRP+ADP
VK=PYI/TIASST
ERROR=LERRORY (1)
RY(I,L)=RY(I,L)+ALD
ERRORY (I)=ERROR+AEP
DELP=DILLPV(I)
ERP=L RPY (1)
PY(I,L)=PYI+ALDP* (DLIP~
ERPY (I)=ERP+ADPD* (DIIP—~
ZK=P L,I/”"Jd,‘.
ERROP=LRRORZ (I)
RZ(I,L)Y=RZ(I,L)+2LP* (21~ PNUGM¥ERROR) *DIZTTAT
ERRORZ (I) = ’-‘RROR-HLT’P* (CH=ATUIPFIIRROR) ~BEm# R

IIRD) -L”'.T‘ D,,.I,

#DELTAT

SR SO
—DInTTR Y

-

_D:Tn=nnnv (1)

LRPZ(T)

'D"" ( T =D TLATDE (DFTJT\__;:‘( IREE S h'D) "‘Dl TTAW
ERPY (T)-”P“*“?“n(JbL P=RIUIFERD) ~BET*DELP
CONTINUL

E NEW CORFFICIENT IATRIX FPOR A PARTICULAR ITERATION I8
C ICLI D,

DTy
-
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DO 13C I=1,6
""'I’J =ALP® (L.Szﬂh (.-) - ‘L

130 EI T’O \f\ (1) —LRRO?\‘A(I) :
FPIRST=,FALSE,

140 COF!TIL‘IDE
IF (JNOT.NTEST) GO 70 60
NOTRY=NOTRY+1
T=TCPU
CALL S7TPWRI(T)

C $TPTM STOPS THE CPU TIITR,

aaoQn

TF ((7-THACCH) (LT, THINTAND HOTRY.LTLITORMT) 0 70 15
TMACCH=T
CALL MOVDC (A(1,JM),96,2C0PY (1))
CALL WRTDI(NOTRY,TIIE,NTLST, 12,7111, EPREV, DILT T,E,TK,PIR,TOOLPC,
XTOO0SH, &10)
150 IFr (TIML.LY,TEND) GO TO 80
NCOUNT=NCOUNT+1
IF (HCOUHT . LT.IWRIT) CO TO 30
CALL WRITE(MOTRY,TINE,JN1,DRLTAD,T,TH,PIR)
HNCOUNT=(
GO TO §0 v
160 FORMAT (1HO,'"TINE INTERVAL CHANGED TO',G15 2, AT STED', T3, NUIIED
XR Or RUNS IS 'L,I10)
170 FORMAT (12 , 'INITIAL LNDRCY IS8 ',D20.18," WTTF UPPER TOLFEPRACE T,
XG20.10,"' AMD LOWER TOLERANCE',G20.10,' O

T
B YR

SUBROUTINL QUANTI(T,R,R,DLT,APG,DRY,DIF,TINST, V1SN L2680 ,VsUNE,
XVSUILY , VSUMZ ,VEX ,VS Y,vez, K ’ Y ’ .-'.x)

THIS SUBROUTIKL PLRFORMS I'OST OF THE CALCULATIOQNS PRQUIPED BY TI7

QUANTUM MECLANICAL J,'.QUAA_TIOITS.

IMPLICIT COMPLIX*16 (A-11,0-0
REAL*C T,R,RINV,ALIOR{,EXR,FXR2,EXRI,DEYP,DCOS D81, DRT, TR, ARG
Z,V150,V2e0,YDIF, VOUMY , VSTV, VSUMY , VSH, V.“V VET,¥,Y,T,veUN, .7-\‘

DATA PD“”/G/

COMPLEX*16 IMAG/(0.DOC,1.D00)/,N
X(6) , 1INV (6,6) ,1(6,6),P JT“(( 5) 115
XG,E)

EQUIVALEHCH (NE(1,1),7Tirv(1,1),PDHn(1,1))

LOGICAA“Q FIRSi

INTEGER*L ONE/1/

o f )r“r°[Tm(v,(),’(1 DRT
(6,6) ,vEC2(6) , D2 (6) T PR (6

TIEE._E PHAED FACTORS AR USED IN THE HIGH-IINDPGY CATCULATICIIC AN,
“IY. a__'\,’r(_l'[?_!_‘?(i \7_{_‘](‘ rz :

e

VDIp=T* (V18O=-v220) *,125n 00



(89)

DPH=DRCOS (VDI A
PR=DCOS (VDIT)+ITin
PLP=DCOS (VSN
PIII=DCOS (VAT
G o o e e e e e e e e e e e e e e e e e e et et e et e e et e e e
PLPOS=DCOS (.
PHEIG=DCOS (.,

P o mteT : 1 e ey s
RUPOS ALD DUNEG ARISL RO
iR el ss T
PURCTIONE,

YEICE OF

iy

oNeNONe]

RINV=1.000/%

T

Liss )h :D(-—. SI)CO*I{)
I (BXRHLLT.1.D-20) DXRE=0.DO00

TN T TN
~ PO

TE 1.9—23) EXR=0.N00
HYR2=DEXP (~2.D00%D)
IF (E¥R2.LT,1.D=20) DERI=0.DON

N I8 CALCULATID.

1 PEPRESENTS OVIRLAD® WITHIL I OIS

i g, .J..I TIRAN o ~Lio Liatiieasiil e
T TITTT T y
WO CHAITNTLE M IS I ID,L:L'I'_ f BreIs

Ty T s o -

ARL ORTHOLHORIAL VWITHIN THE FRA (3 e CHANILLE,

QOOOO00nN

CALL DXCLOR(H(1,1),537¢,8(1,1))
Do 10 1=1,¢

10 ¥{(T,I)=1.D00
h(1 )= "”*(1.DOO+R+R*R*.3333

H(4,1)=11(01,8)

T VI=0, 83805208 13D00% LMD (=3 ,]
XR) #TYRIN)
N4, 2)=TRMED

1(1,J)=:e(1,a>

w
)
(48]
[ &%)
w
8}
w
58]
w
[&9)
Lo
[}
-]
Z
S

N
o]
(o)
e}
.
)
1
-
5
J
D
o
N
o
-
~~
—_—
L]
o]
<
oD
+
iJ
3
Y

M(2,4) =TRIFPLPOS
M(5, 1)—‘T(ﬂ, )
TR=0. 05208613 2.D00/PHGL DGO/ (REN) + (-

X8.D00- .J?O (1.
(u,J)~”ﬁTJDKNRG
N(1 C)=21(4,3)
u(3,4)~ TI*PIIPOS
N(G,1)=x(3,4
w(? 5)=ErR# +R%,5D00+R¥R%, 08333333333333D00+D %%
O4166C6u-6 0

¥ (2.DO0HR) *LHPIFE L 00U166CG6CEE66TDO0

N(G,2)=K(3,"
N(3,0)=ELRI* (=1.D00=R%,5D00~, 05D00*R¥REREDEDE , 01 6GCE6560 GOCETRONLT
KEwlE 00L1C6E6CCECGE6GT7D00)
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15 M(J,I)=19(J,T) *Pli%PHI
IF (.NOT.FIRST) GO 70 35
Do 20 I=1,¢

2C BT (I)=DCOIICG(E(I))

w
[@n)

w
Ut

), DIM3

CDGIPD (A,L,C,D m1 nIN2 FULTTT
13) 0 GIVE MATRIX

MATRIX B(DINZ2

CALL CDGHPD(i1,2,VE C_L i DT”,IZDT" OHE)
CALL CDGMPD (BT, VECT EITO 1, ONE ,HIDIF, ORIE)

NORMALIZATION

ANOR4=RBNORH
AMORM=DSORT (ANORM)
DO 30 I—T,L

B(I)=B(I)/An0n

THL MATRIX H IS EVALUATED. FIRST THE COULOMDR INTLGRALS ARD
OBTAINED, TIDN THE MATRIY NE 21D THE INTIORNUCLEAR P.’”I LGION
AR INCLUDID IN THE ‘TN"PJ"( IL.

TED LLEMNENTS WITHIN THE CHAMNITLLS ARE AS TFOQLIOWS:

H(1,1)==RIIV+ (1.DCO+RINY) #TXR

H(4, 11)——1l(1,1)

H(2,2)==RIIIV+.25D00% (L. DCOHRINV43 . DO0+DR+, 5D00 %D “R) HTIR
H(.) _))—-rr(’) 2

H(3,3)=-RINTV~12,DO0*RINVE%3+((7.D00+(12.D00+12.00 *RINV) #RITV)®

ARTINVH2,.75D00+,73D00%* R+, 125D00*R%*R) *RR

H(6,6)=H(3,3)

TRM= 1011}75C\m017 7EEDO0* (2.DC0+3.DO0*R) *RHRFEIPE

H(1, ) "?Ii-?f’ TR

H(4 ,3)"? (1,

H(2 1)—DILDOQ‘ AT

H(5,4)=H(2,1)

TRM=-=.10475656C175734DCO% (7, 'l1111']1111111'1T‘f‘('""‘T""?’T‘RIZ?V-}—(-—(

X10.6E66666666667D0C+7.11111111111111DOCHRINY) #RINV=0.D00=3 . DOO%R) *
XE"P'?L’ZQIL)

H(1,3)=PHNEC*TRM

H(L ) =E (1,3)

H(3,1)=PHPOS%TRI

H(G, Y )~z:(3 1)

H(2,3)=3.D00%RIFVERINVH (= (3.D00+3 . D00 FRTIV) #RINV-1.5D00~, (25D00%D—

.12 JD(V‘ ERAER) FDUR
H(3,2)=0(2,3
n(s5,6)=m1(2,3

2,
2,

~— e
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THI CROSS~CIANIILL IILENENTS ARE AS FOLLOVS:

H(4,1)==(+1.000) *5yn
HET,8)=H(4,1)
’(5,2)=-(7—" 25D0 2h
A.FTDNTC(CC(GSC(/DOO*\* :
H(2,5)=1(5,2)
H(6,3)=-.C3125D00%nsnsn* 3 3 233332 3N00-4  NCOERIVVERIIIV=-2,N0G
\ru'v)Tijw* >

i

ES13D00% (5.25N00+10, DOCHRINVE (1, DOCHTYIE) =1, 120000%R)

o TNTLS
VAL Al

F(11,2) =PILGET T
H(1,5)=t (4,2
TRM=~.£3805245313D00% (=3.D0C+14 . DCOFRIITVH (=3, 75D00-14, DOQERTIV) %

e T T
.\.3_. - 1 ) x.ux{.p“

TRN=~.8380 20813000 (1., DO”"?-S.MOW*(Q.DOG+8.POG*RIXV)*RINV—
X8.DOO* (1.DQD+”T”V)*R uvﬂ“"rt) IR

H(G,3)=PILespn

(1, 6)~1(L 3)

1?”«—.03
¥1G6.D00%m7

DO+ DOCHRINY) + (3. D00+

H(3,0)=1(5,
H(5,3)==.015623D00%R%*R* (1.33333333333333000+2.CCCC06CCELGELTDO0
YRINV~.(G6CCCEGE6666GGT7D00%R) #IyDH

-y

-
L LWWRT =

[
!
[ e
~eN e~ Ty e
CT Ut Ut oy O o
~
S et e N (Y

Ao

~

THE MATRIZ NE IS CALCULATED.

DO 40 I=1,5

NE(I,1)=-1(I,1)%.5D
ME(I,2)==-1 (I,L) .12
NI (T, ?)=—n(T 3)%.12
NE(T,B)==27(I,4)%.5]
(1,5)= —n( ,5)%.125D00
I(I,6)==10(I,6)%.125D00

NC¥W THE TOTAL MATRIN H IS CALCULATLD.
DO 37 1I=1,3

DO 37 J=4,6
H(I,J)—M(I,J)‘?“ $DIIP

37 H{J,I)=KE(J,I)*Pl*PHl
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DO 56 I=1,6
DO 50 J=1,6
H(T,J)=H(I,J)+L(I,J)+10(I,d) *RINV

CALL MOVIC (HIuv(1, 1),¢7b, (1,1))
CALIL CDIINV (ITI;TV,T’-!_JI. S, UBTM, DEY

CD',JIS,T‘-/ (

7
A.._., -
A¥D LOADS THL‘ RLOSULTE I 2,

T

TO TINL IS CALCULATED, TT I8 DEMOTED DPDBT.

CALL CDGIIPD (HINV,H,RESULT,NDIM, HNDIM, MDIH)
RESULT (1,1)=RESULL(1,1) 4. JP(‘O" 2 Jﬂ(‘(‘ #VTED
{ESULT(‘-,M):' PHSULT (2, ")+ 125D0C-.125D00* V'l“(
RESULT (3,3)=RISULT(3,3)+.1 ""T)ﬂO- T25D00*V1S
RESULT (4 ’e)=T‘ZEL'* T(4,0)y+,5D00-, 1231‘)”(\ V280
R*J;.)[JIJF’(J 5)=RESULT(5,5)+. 1" DOC-. 3”0"“7"““
RESULT (6, 6)=DESULT(C,6)+. ")("O-— 17‘" GOHEV2E0
CZ\LL; CDGIPD (RusULY, B, PHET ,JW 1, DTN, ONE

DO &0 I=1,0
PDET(T) —-I"J‘G“""D“” (1)

THE OUZ\V'_"UV MECHAMICAL ENERGY IS CALCULATID, IT IS
DEHOTED PII,

DO 70 I=1,6

BT (I)=DCONIG(B(I))

IF(.NOT.FIRST) GC TO 75

CALL CDGMPD (..).,B"]:.: i ,,. T)__L‘;,;T])I, ,(\"T')

CALIL CDGMPD(BT,VECY,PIL,0HE,NDI,ONE)

THE PARTIAL DERIVATIVE OF THE MATRIXY I WITH RREPECT TO R IS5
CALCULATED, JT% IS DEHOTED PDIR.

CALL ZXCLOR(PDMR(1,1),57¢,PDIR(1,1))
PDNR(1,U4)=-LIR* 3333333"3333.»33“0(‘ (R+R*R)
PDIR (4 ,1)=PDIE (1 by

11‘_L ,DET) THVERTES A SOUARE FATRIY A OF DIHENSIOH

DT:s

THE PARTIAL DERIVATIVL OF TPII CORFRICIDIY MATRIX B WIUVH REERPLCT

PDNR(2,5)=-EYRII*,£3333333333323323D-01#(1,D00+(,5DOC+H(-.2DCO+. 025007

X*R) #R) ¥R) *R

" PDER(5,2)=PDIIR(2,5

PDNR(3,6)—L‘}\ EEE rI‘(’)(""‘(3 DOCH(1.5DCO+ (. 16RCAREBCELCCEETDRN-
LHG’C‘GG( GC bu7Y) 01%*R) *R) *R) *

PDHR(E,3)=PDNR(3,€)

1
R

”RN—.U300 204813D00*EXEII® (1,5D00%R=-14 ., DOO+RIITVE (32, DOCHGL . DONERITTY
N=RXRHF (10.DCCHRINVHEGCE . DOOK (1. DOO+RINV) ))
PONR(1T, 3)—“”Y“G*LRI

PD"R(L,“ =2 (1,5)
PDNR (2, 1) =PEPOS*TR!H

\
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PDIR(5,1)=PDITR(2,14)
RM=, 8383 03?ﬂ°13U“F“ThRT'( 1T.5D00%*RETT.D00=1C . DOAHRTIVE (1.D60+(
XU DOO+8.DOOFRINV) #RITV) +BERE* 8. D00 (1, DOOERIVVES , DOCH (1.0060+ (2.D00
X+2.DO0HRINV) #RINV) ) )
PDHR(1,6) =PINLEHTRI
IR(4,3)=PDHN(1,45)
R(3,4)=PiPOSHTRI
DD“”(G,1)=PD?R(3,M

()

PDNR(2,6)==-.41GCC%
PDIR(3,5)=PNun(2,

PDNR(5,3) =PDNR (2

PDNR(G,2)=DPDITR (2

Do 77 1=1,3

Do 77 J=4,6
PDHR(I,J)=PDyR(I,T)*DPPEDID

Pj;TR(L, 1) =PDITR(T, I) *DITEDIN

VAR=VSUIT{* R/ X+ VRUMZ*R /7,

o 78 I1=1,3

Do 78 J=4,¢

DPRUR(Y,T)=PDP(I,J) T nORVARSIT(T 2 T)

PONR(T,T)=PDNR(JT,T) ~THACHEVARE (J,I)

CALL CDGMPD (PDER,B,VECT,NDIM,NDII, 1)

CALL CDGHPD(BT,VLCT,TES,1,NDL, 1)

DO 80 I=1,6

S CCECEOTD=-0D LY (4, DO0H3 , NOCHR~, SDAOENH) *n%Dn

C\C»\CT\"‘\.
e e e Ty e

—~~
o
~
!

N DRARMT Y T ‘r‘:‘- - T ~ ™ L YT T gl n
THE PARTIAL DERIVATIVL O WU VMATRIY [ UIDH DOSPLCT 0 D TIC

CALCULATLD, IT IS DEUOTED PpuR,
PDDR(T) ==, 5DOO%RLSHE (1)

THE TOTAL DLIRIVALIVL OF THRE MNATRIY B WITLH RROSLCT w0 T IS
CALCULATIED,., IT T& DLNOTED DLT,

DLT (I)=DDi

_I.

3R (I) *DRTH2PDLT (1)

[

I YIITH RESDICT 10 R IS

T .f\R’l’IAL DLRIVATIVE OF THE IATRIN
T IS DINOTED PDIIR.

0
)
=
O
c
1
N
Ll
1
|0
[y
°
b
t-

THE LLEIENTS TITHIN

s ]

I C,“Z‘.*f‘ LLs ARE RS FOLLOWNS:

PDHR(1,1) = (RINV#RIIIV=-EXD2# (2, DOD+RINVH (2, DON+PTIV) ) )
PDHR (L, 4)=PDER(1,1) A
PDHR(2,2) =RIHV*RINV-.25D00*EIRE (4, DOOFRINYS (1, DOCHNTIV) 42, DOO+DE DS

.zx. 1)("(\)

DIIR(5,5)=PBIR(2,2)
PDIZ’“(3 3) =RINVERINVE (1,D00+3C.D00%DINT RIVIV) = ((7.D0C+(1S.Dn00H(
X3C.DO0+36.DO0O*RINY) #RINIV) ¥*RINV) #RINVE2 . DOCHDE  3D00H, 12 PSDNNOHEDEDR)
HLHR

DUR(( ) =PDI! 1?.(3,.))
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=, 304520791 033D00%RFLER*INDRN
IR (1, 2) =PIaTCHr R
2(4,5)=PDIR(1,2)
R(2,1)=PiPOS*TRI
R(5;4)=PDHR(2,1)
~ 1CLT75G5C0TT73780D00% (T4 ,222222222222000% TVl (=1 , DACHIIINE
XEXRID) +(RINVH* (10.DO0+DINVE21.2333333333333n00)+C, D f"f‘+l‘ SDOD%R) *nn®
XEURE)
&_._JZ =it

PDIIR(1,3)=PlIInG*TPH
PDHR(4,6) =0t "il (1,3)
PDIR(3,1)=DLPOS*TRIT
PDIHR (G, 4)=r1 r?(3,1)
PDHR(2,3)==06.DOO%*RINVHE3+ ((3.D00+ (C.DOOHE.DOCHRIITV) #RIIV) #RTITY
X.875DC O+._>7 DOC*R+,125DO0%*R*R) 1IN
PDHR(3,2) = u“(2 3
PDLLR(J, ')—-DDT'P (2,3
POUR{E,5) =PDI 1\(2,3

"
-4
-
-~

THE CROSS-CHEANNEL ETLENIENTS ARE AS FOLLOVS:

PDHR (1, 4) =R*DXR
PDHR (4, 1)=PDUR{1, 1)
PDIIR(2,5)=-.208333333333333D=01%(=7.D00C+2.53N00%R~, 25D0G*D
XR
PDHR(5,2)=PDIR(2,5)
PDHR(3,6)=-,C250-01%(1.D00+R%* (,5D00-R%,(383333333333333DCN) ) “NURIER
PDH 2(6,3)=PDIR(3,6)

k==, £380524813D00LXRIFRY (. 50250004 (=3 .75D00+ (5. D00+10. DO0s SRIV)
Y'UINV)*PIJV—((1O DO0+10.DOO%RTIITV) #*RINV) #RINVETYRE
PDHR(1,5) =PUNDGH*TRM
PJ:P(L,_)=91HR(1,5)

DHR(2,U4)=-PHIPOS¥,8380524813D00*THPES ((1.5D00~ (7.D00+14 ., ODONERTITY)
V"PINV)* RIV+ (3.7 :900+(14.D00+1A.DOO*RIJV RT“V)”PIJV‘TIAJ )

PDIIR(5,1)=PDHR(2,4)

Tr’vi-—-.oJuOJ"Lro'IJDOO"I]XI‘L’ (=.5625D004+(2.625D00-(2.D00+ (L. DCO+16.D00
XHRTUV) #RIFV) #RINV) #RINVHE. D00 ( (1. D00+ (2. PO0+2. DODSRTHY) #RTIY)
XRINV) *RINVH*EXRI) ¥R

PDHR(1,€) =PHNLC*TRM

PDA;R(“",J) =PDILiIk (1 ,C)

PDIR(3,4)=-PHPOS*,8380524513D00*LXRE ( (~ 1,Jnnn+(u NOO+(16.000+
32.DOOJPJNU)vRT W) *RIFV) ¥FRINV=(3.DOC+ (1G.DCO+ (32.DONE32,. DOOHRIIV)
XRTPV) FRILV) #*RINVHDXRY) #R

PDER(6,1)="PDHR(3,4)

PDHR(2,6 ~f+:xxxﬂ.5°0333333333333w~02*(—ﬁ.Doo—s.Dco*azxv+8.500*n—n
X*R)

PDHR(5,3)=PDIIR(2,6)

PDHR(3, J) =PDER(2,5)

PDIIR(G,2)=PDIR(2,5)

DO 82 I~ ,3

DO 82 J=4,06
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x:n(T #ODEDUD

H (J’T) HPIIEDIN

‘..L-l.

I,J)+T RCHVARE

P(J,m) ~TMACHEVARF

et

r v
RESULT (I, 1)=-=.3D0C*DDIR(I,1)
RESULT (T,2)=-. 125D00*DPDNR(I,2)
h"CUT“'rn(II:s) —-1?—‘:?) O”’T)"\‘Th(-:-,:g)
l\J‘x)LJJT(J_,!)-:_.S 1)
LuOUTJr_L‘(T ) _..1 51 I’S)
RESULM(I, G)==. 1251 10

DO 90 I=1,60

Do 90 J=1,0

PDIIR(I,J) --T’DIIP (T,J)=H(T,TJ)*RIMV*
CALL
CALL
CALL
CALL
PI ]_‘.R*PF_FQ—F

ARG=PDER

ou“,y'c" ¥MDIIL,FDIN, OUR)
TR,ONT,MDI,

ARG IS Or THD

RESPECT

THE
TO

PARTIAL DERIVATIVIE
R.

INTLRNAL

RLTURI
EXD
SUBROUTTINE
XT00S1I)

CAD (DELTAT, NOTRY, T

T
L4‘_I

THIS SULROUT
CALCULATION.

70 START TyIZ

RLADE TR

T3 R

IMPLICIT RIOAL*
COlPLIEX*1C A
REAL*S 2IP1(330)
COMMON /AMATRI/A(6,3)

DAYL IREAD,IVRITE/S,4/

RUAL® L TIORIL, THACCH, THIINT, TCPU
LOGICAL*L "mrom,svirﬁ/.$L ./
COMBION /CORDRY/121(2,3) ,nv(2,3) ,R5 (2
XTHASS (2)

EOUI vpL:n . (u1ﬁ1(1),DV(1 1))
COminY /RU/MORULT, T
IF (c‘rr \.L\T) GO _LO 2‘1
EAD (Ih:;o 130,5:D=70)

hh \D (LIRTAD) :E,WOTRY,
READ (WRE -D) ZI1p1

€ (A~11,0~2)

M frn il
'.i.,..l-)\_J[" .T. Jx :'

TIMACCH, T

HORUM ,NIREAD , NW

hstask ool s kel
NTLRST,TO

I"‘ 1D

POPY

Ty
RENRH;

EROY

n
,TINE, DELTAT ,, TOCLRG,

ATFVAHPDER (T, T) ERINVHRTIOULT (T,

WIEH

MUDRIT NTLET, T2, 00, 00D, TO0LRG,

ChRDS

,3),m(2,3),PY(2,3),72(2,3),

TCOSI

-
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2C

30

70

3

9

0
0

100

11

0

120

(96)

READ (MRDAD) A
READ (NRIAD,LIID=
WRITE (IWRITL, 0
GO TO 70

CALL S$TRTH(TCPU)

3C)
} MPRLAD

("
b

1.,'!

PRTM STARTE THD CPU TIMER,

RoAD (IRIEAD,80) TiImeT,wiilnM

TIACCi=

START=, FALSE .

GO TO 10

IT‘ (HOTRY, G MORUI) GO TC 10
WIND WREAD

J.L\ J‘V4 1

Ir (JU2.EQ.1) Ju=3

IF (.HOTLWMNTEST) JN=Ji12

WRITT (IWRITE,120) DELTAT, (I,P¥(I,J7),PY(I,JH),Pa (%, ,T 255 (T),
XRX(I,J1) ,1 V(I,J*),?Z(T,J:),I=1,2)
YRITE (IWRITE,100) (x,n(1,30),I=1,0)

RETURL]
CALI, ITXIT
RETUR

FOR:MAT

'SEMTCLASSICAL SCATITIRIHIEG OF PROTON-IVDROCLY SYATD
H D2001CI

(2G
FORIAT (11i  ,'Oll READING DATA SDT-INDFILE MISSINHC',I5)
FORMAT (11 B OMATRIN'/(T5,26G2C.10))
FORIIATY (11 7R4)
FORMAT (1E 8%, By 253 SCATL
3

-4
1
by
Dl
ad
-

it/

’ Sy 2
13, "IUTITTIAL TIMD IVITERVAL USDED Il CALCULATION IS ',
Xl 7\ U l/// /‘1 vy
Sal 5

/1 , 533, VINITIAL PART ._( LE PARAMLTEDPS'///15H  ,"PRRTICLE

T o 1= ; sk sl s34 | I o sk = =4 Tl 2% U ! 57 t
XY, G, DY, By, VREY 63, 1P, By, TEEY 6T, PRt 5X, LY, 31, PSS T, B
s 5% s Tt | BT 70 1 i I:‘::’:I 1 = L IV | T N x; D7

X, 6%, "RY' ,5X, V%Y G, TRY ", 53, ' ¥ 6%, URAT BY, TR/ (1T ,2¥,15,2%,

14
X7D15.8))

130 rorAT (I16,215,D20.10)

END
SUBROUTINE WRITL (NOTRY,7TINE,JN,DELTAT,E,TK,PIR)
IMPLICIT REAL*J (A-11,0-2) '
REAL*8 ZIP1(38)
COMMON /CORDRP/RX(2,3),PV(2,3),R%(2,3),P2(2,3),P¥(2,3),72(2,3),
XTMA "‘%(2)
EQUIVALLNCE (2121(1),R¥(1,1)) .
LOGCICAL®L MNTLST L
COMPLLX*16 A ,PIDC
COMMON /AMATRI/A(G,3)
REAL*L TR, THACCIHE, mCTDU TUTINT
DATA T'"’TT"/G/ S ROPART/2/
COMMO /U /1ICTULT, TH IJT,I“:"L‘?FT THTRIL, TACCH, TCPU
TIIW’""‘I”I;—“T’L”T o
WRITE (TI'RITI’ 70) 1 TRV,T]"’
}() ,T). ( -'.) ,:.\.u (I,J ) ,I=1 ,:T

s

(T,7Px(T,m1),py(x,mn) ,pe{1,dJ:]) 0 (3,T
RT)
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2,J0) ) EE2H (R (], T00) =1V (2, T50) ) Ji7)

30 WRITE T,A(I,TI7), V"
WRITE (IiF PID,TH, T
IF (NOTRY.CLE.HONUN) GO TO 40

RPEURE

ENTRY WRTDK (NOTRY
X008, *)

IF (MOTRY.CE.MNORUN) GO T0 20

40 T=TCPU

CALL &7pTMm (7
IF (TR
WRITD  (W7R)
WRITED (ITnT)
WRITE (WWRT) A
END PILE MNURT

WRITE (TWRITL, 100)
IF (HOTRY.LT,NORUH
WRITEH (TWRITE,S0)

TRy AT o TTY d g bl T R
IR, NTDET, T2, TN, 80, DELTAT,E, TR, DI, TOOLRG,

.0) CALY, BXIT '
HOTRY  NTUST , B0, TIHE, DELTAT, TO0OLREG, TOQCH

RETURY 1
50 REWIND INVRT
RETURN ,
55 FORMAT (1H ,'#%% TII IHTERIUCLEAR SHPARATION D IS
X'STATE * ',16X,'HB MATRIX' 1(1, %% ', '3 MODULUS
60 FORMAT (1H ,I5,3X%,2G20.1C,4¥,C20.10)
70 FORMAT (110, 'RUN ”UWVVR',I1O ' AT T= ',D20,13,"
KoV, 0¥, VPN, 8H, VY 1N, VR 8, YDV, Gx, vt g, vt
x'*',°V,'Rx',8x,'*',1x TR 8, YRY Y, 83, VY 13, VY 83, TRETY, 3, T /(11
X ,2¥,12,2¥,6(1¥ )
80 FOREV“(1hO PTG RU HISIED .')
95C FORMAT (11 ,10%, "k Ry QULHTUH ENERGY ',2D20.1C/1H 10X, "&ks
X KIUETIC FN:RFV' D26, 10,2X,'TOTPT ENERGY',D20.10)
100 FORMAT(1H ,'THE POLLOWING DATA ST WRITIEL ON DISL')

END
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