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ABSTRACT

The various methods of solving heat conduction problems
are thorovghly reviewed, followed by the application of several of
these methods to solve a series of thermal problems associated with
the design and construction of a potential Nelson River frozen
‘dike. The solutions to these problems are presented in detail. The
main results were obtained using a finite-difference approach with
the numerical iterations carried out on a digital computer. General
ohservations and conelusions on the frozen dam heat transfer study
are given. The methods of solving heat conduction problems are sum-
marized, and recommendations are made regarding selection and best

use of the various methods;'The important matter of formulating ﬁhe

actual problei is ulscussed.
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as used.
Trne
A - area, sg.ft.
c - neat capacity, Btu/ F
Cﬁ - specific heat, Biu/lb - F
e - natural logarithmic base
b - function
n - convective heat transfer coefficient, Btu/hr-ft?-°F
koo~ thermal conductuvity, Btu/hr—ft—oF
K - conductance, Btu/hr-CF
A - length, ft.
n - natural logarithm
y - langley (gm cal/cm”)
M- dimensionless medulus
i - meters
& - heat, Btu
a - heat flow, Btu/hr
S - shape factor
t - temperature,oF
W internal heat generation per unit time and volume
Greek Symbols
o - thermal diffusivity, ft”/hr T - time, hr
JAR a finite increment ¥ - summation
& - thickness of thermal layer, ft @ - angle
g - absorptivity (dimensionless) w - angular velocity, rad/hr
S - angle
Subscripts
a - air F - frozen
av - average m - mean
eff - effective UF - unfrozen
w - water




[ETHODS OF SOLVING HEAT CONDUCTION PHOBLEMS,
WITH PARTICULAR REFERENCE TG FROZEN DAMS

I INTKODUCTION

This thesis primarily concerns methods of solving heat conduc-
tion problems, and is the result of an extensive study of heat conduction
in a frozen dam. The presentatioﬁ consists essentially of a review of
methods of solving heat conductlbn problems, followed by the appllcatlon
of several of these methods to determlne the thermal regime of a frozen '
dike. | |

The mathematical theofy of heat conduction is outlined in
Section II. This is prerequisite to the resume of the various methods of
solving heat conduction problems whi;h follows in Section III. For the
purpose of presentation, the methods considered have been categorized as
analytical, finite-difference, analog and experimental. Although basically
academic in nature, this survey has considerable practical value since
the emphasis in dealing with the various methods was not only to indicate
the phv51cal basis of each method, but also to discuss the practlcal as-
pects of application and utility. '

The frozen dam thermal problem 1is introduced early in Section
IV, The solution of the thermal regime was obtained through a éimplified
heat conduction model. The solutions to six specific problems ;ssociated
with the design and construction of frozen dikes, are presentéd.'The
solutions to these prcblems have been used in a feasibility #tudy of -the
hydro-electric power development of the lower Nelson River. Béth amalytical

i



auu anmlog methoas were used to determine the steady state solutions. The
finite-difference approach was used exclusively to solve the cyclic 
problems involving phase change. The.nature and size of these periodic
heat conduction problems required the use of a digital computer to éﬁrry
cut the numerical iterations. General observations and conclusions on the
frozen dam heat tranéfer study are givén.

The methods of solving heat conduction problems are summarized
in Section V. Recommendations are included regarding selection and best
use of the various methods. The important matter of suitable formulation
of an actual heat conduction problem based on theoretical and practibal

considerations,; is discussed,

(-~




IT CONDUCTION HEAT TRANSFER THEORY

Heat transfer by conduction takes place in both solids and
fluids providing temperature differences exist. For the case of fluids,
heat transfer by convectionband/or radiation will frequently occur
simultaneous with conduction. The treatment of heat conduction as the
sole means of ‘heat transfer therefore implies the medium under con-
sideration is or acts as a solid. Accordingly, heat conduction may'be
considered as a process.of redistribution of internal energy in a medium
without measurable displacement of mass. It is conventional to use the
term 'heat flow*iwhen referring to the actual physical process of
transferriné internal energy. This term used qualitatively is often
accompanied by a statement as to the general direction of the 'flow'.

The mathematical theory of heat conduction treats matter as
being continuous, and is béééd,on a generalized macroscopic analysis of
the transfer of energy in a‘solid. The fundamental law of heat condﬁq—
tion was deduced from a studj of ‘the results of experiments on the
linear flow of heat through a’ slab perpendlcular to the faces. The:
quantity of heat (Q) per unit area (A) transferred from one face to the
other during an arbitrary period of time under conditions of steady
temperature was found to be directl& proportional to the thermal cop;
ductivity (k) of the slab material, the temperature difference (%)
between the two faces, and the duration of the time interval (AT),band
. inversely proportional to ihe distance between the two faces (4x). This

law was described by Biot in 1804, and was first used as a fundamental




mathematical equation by Fourier in 1822 in his analytical theory of

heat. In differential form, the fundamental equation of heat conduction

R )

= at ‘
)':k dx . . . ° ° ° 3 . ° - ( l)

where g = dQ/dT is the heat flow (or rate of heat flow) correéponding
to the instantaneous rate of transferring energy across a defined surface.
The minus sign is required in keeping with a convention that dx be
positive in the direction of heaﬁ flow, whereby dt must be negative
since heat must flow in-the direction of decreasing temperatufe; The
derivative dt/dx is defined as the temperature gradient in the x-direction,
or more generally as the gradient of the temperature field. The quantity
q/4 is called the heat-flux. |

| Equation (1) isjcompletely general for unidirectionsl heat
flow, and simply states that the heat flux at any point at any instant is
proportional to the temperature gradient at the point at the instant
under consideration. The constant of proportionality is the tﬁermal cone
ductivity which is a property of the material. The equation applies to
any point in the continuum, and at any point, dt/dx (or more épecifically,
dt) may vary with time. The heat flux at a point in a region is a vector
whose direction indicates the direction of heat flow and whose magnitude
corresponds to the quantity of»ﬁéat per unit time crossing a unit area

normal to the vector at the point.

2.1 General Heat Conduction Eguation

The general heat conduction equation together with equation (1)

constitute the basic mathematical relations involved in the theory of




heat conduction. Whereas equation (1) gives the heat flux in terms of
the thermal conductivity of the medium and the temperature gradient,
the general heat conducti'on equation describes the dependence of tem-
perature on the spatial coordinates and time in the presence of heat
sources/sinks; In view of the importance of the general heat conduction
equation, the derivation for a Cartesian coordinate system is given in

detail,

v

The physical model shown is a parallelepiped having;dimensions
Ax, Ay and Az, subject to transient heat conduction and interﬁal heat
generation. For the immediate purpose, the medium is taken to%be homo-
geneous and isotropilc, the thermal conductivity is independen£ of

temperature, and the rate of heat generation is unifomm.
o= f(xays’z & )

Heat in is the summation of 'the heat flows into the element through‘the.




%, ¥, & z faces. Heat out is the summation of the heat flows out of the
element through the x + Ax, y + Ay, and z + Az faces.

By thé law of conservation of”energy:

Heat in + heat generation - héa‘ri‘ out = time rate of change of internal
energy. r

The rate given by (q in - g oﬁt) may be positive or negative. Internal
heat generation is positi?e for‘aiheat source or negative for a heat
sink. For a heat source, using W to denote the heat generation per unit
time and volume, the heat genérated yithin the elément per unit time ‘is
W(Ax.Ay.Az). The time rate of change of internal energy of the element
is the rate of heat storage if positive or the rate of heat release if
negative. Expressed in terms of the time rate of change of the average

temperature of the element, the time rate of change of internal energy
ot
0

&V . where density (p) and specific heat (Cp) are

is p C (Mx.Ay.Az)
b T

assumed constant.
For the heat flow into the element, from the fundamental law Qf heat

conduction (g = -kA%), the heat flow into the element through the x-
face {area Ay - Az) is: |

at
Q.. . = -k(Ay‘AZ) E-}EIX’

ot ’
where 5; g{ denotes the temperature gradient with respect to x at the

" Similarly, the heat flow out of the element through the x + Aﬁ face is:

ot
= 1 ° -
qout,x+Ax k(ay AZ)&K‘x+ﬁx

i

e :
. ot . dt . = .
An expression for w—! . in terms of S—l can be obtained by expanding
- ox xtAx X X . ; .




the temperature gradient at the x-face in a Taylor's series as follows:

a3t ot o /3t ¥ /3t x>
iy i —— Pt A b — o = o000
3 ‘}”A}: Bx{x ox (Bx ix,f' * x| ox x ) 2! *
Tt 3 /3t )\ 3 (3t \>A><“ ]
- e e P {._. —— oe 0
out ,x+hx k(Ay'AZ)L Bxlx * % KB‘ k) bx + 0\ ox & 21 *

The difference between the two heat flow rates is:

“Tava-t\ % Bt\[\ ]
qin,x.“ qout,x-%-Ax = -{-x(ay AZ)E_?B—JE (—5—22 IXEAX * 5323(5;{ e }

=3

. ° L] a _é—i}- a §-'E- AX e %9
b k(bxe by b2) [sz(ax‘x (L) B ]

Parallel expressions may be developed for the y and z pair of faces.

These terms, divided by the volume, are designated as Y & Z. Now apply-
ing the heat rate balance equation as previously written and dividing

by the volume (Ax.Ay.Az), gives:

E?LE’ \.;.5 ( \ +...] +Y+Z4+W = pc..___atav"

L x| 8% {x Por  °
Now let Ax, Ay and Az —=0, i.,e. approach point A.
OL e - . or simply %& at a point.
A s —— .
Also oy tA or t at a point.
The general equation bscomes

x [ 9Ft Pt ¥t w 3t ' ? ‘
Ocp La}{E + ayz v Z -J -+ aT s ° ° ° ° . (2)

This linear second order partial differential equation is the general
heat conduction equation written in Cartesian coordinates for a homo--

geneous and isotropic solid whose thermal conductivity is independent of




temperature. If the medium is heterogeneous or homogeneous but aniso-

tropic, equation (2) becomes

1T 324, 3%y 3@t W ot

If k varies with temperature, equation (2) written quite generally

becomes

173 5t 3 /. N\ L .d 7o N, W o 3t
_55;_3;5 <k'é‘;{'\ +—5—§r‘(k a}-\’TEZ\k 6;> [+ pCp = 57

Writing the equation to incorporate the relationship k = £(t) makes the
equation non-linear. Carslaw and Jaegerl give the equation for the case
of k varying with temperature but independent of position (for which an

v

exact solution is possible) as:

Kk Py, Pr, Fy | LW _Bk[ AN AN S R S -
oG, L ayﬁ‘*az&l‘“pcp‘“a—t (”a'"xj +(By) ﬂa)ﬁpcp T

Although the thermal conductivities of solids generally vary
with tcmperature, equation (2) is frequently used in engineering practice
using k equal to the average k for the temperature range encoﬁntered in |
a problem. This procedure will give results which are usually’within the
required degree of accuracy.

Equation (2) may be derived in a similar manner for;cylindri—
cal or spherical polar coordinates. The equation in cylindric%l co=
ordinates (r,0,z) corresponding to equation (2) will be used iater and

is given as follows for reference.

1

fie
pC

| E—
[eXi o))
0 ot

|

2t .13t 1 a%_,ka%] Woo_ 3t ;'(3)
0 ¥ T rdr ™ 36 5 pCp ot * !




2.2 Tvpe of Problems

Equation (2) or its equivalent in other coordingte systems
will generally be the form of the general heat conduction eguation used
in this‘thesis, i.e. k,p,;and Cp are constant and independent of‘
temperature and position. In solving the partial differential eqguation
corresponding to.a particular problem,’in order to determine the exaét
solution,‘certain information associated with the problem must be known
which can be applied to evaluate the constants of integration. Accord-
ingly, problems in heat conduction fall into a class of problems termed
initial and boundary value problems. Boundary conditions are the values
of the required solution (usually temperature) at the bounding surfaces
of the geometry. Boundary conditign temperature values may be constant
or vary with time in a prescribed manner. Occasionally, the heat flﬁx_at
a surface provides a bourdary condition. For unidirectional heat flow,
given the heat flux at a surface and the thermal conductivity of the:?
medium, the temperature gradient‘at the surface may be calculated usigg
equation (1).

Similarly, as the name implies, initial conditions give the
values of temperature for the problem at time, T = O. Hence, initial
conditions are required for transient heat conduction problems where it
is required te solve for temperature for particular values of T > O,
Initial conditions are the base values of temperature from which a tran-

sient departs. For many practical problems, the initial conditions are

-

hat the material is isothermal.
Regarding equation (2), if the temperature at a given point

in the medium varies with time (or alternatively, if temperature varies
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with both time and position) thé proces5 is called conduction in thg
unsteady state or transient héat‘conduction. On the otber hand, if the
temperature at each point in thé continuum does not vary with time, i;e.
3t/ = 0, the process is éalled_conduction in the steady state. For
this case, the temperature fiéldfis constant ; hence for constant k, the
heat fluxes are also constant and ingependent of time.

The general heat conduction equation applies to all heat con=
duction problems --- heat flow in one, two or three dimensions, in
steady or unsteady states, with or without internal heat generation. The
equation is linear, and in writing the equation appropriate to any
particular situation, certain terms in the equation may equal zero. For

example, for two-dimensional transient heat flow without internal heat

generation:
i TN - 14
pCp Lo T oy oT

The two dimensions x and y are required to describe the temperature dis-
tribution at any time, T. For any given value of T, all sections through

the three dimensional geometry in the x,y plane have identical tempera-

3° d o
ture fields, hence %;% = 0, and in fact S% = const = 0, i.e. there

re no temperature gradients in the z directaon.

2.2.1 Steady State Problems

For steady state situations, the problem is generally that of
determining the temperature distribution and/or the heat flow. The two.

special cases, written using all three coordinates, are as follows:

Sueady stave temperature fields without heat sourses

e (¥ L ¥ FLT L%
oC_ L& T dy*  82® U or ' L
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~ K
Since =x # 0,
oy
p ¢
'\,‘Z ,C ) ad t . a('ﬁ .t O
- + = + - =
ax® oy~ oz .

2
Using the symbol V t (the Laplacian) for the second-order differential

parameter of T, the equation is

v#t = 0 (Laplace eguation)

From the Laplace eguation, since the temperature distribution is inde-

pendent of any thermal property of the medium, it is apparent that for a

given geometry and set of boundary conditions, different materials will
have the same temperature distribution. The actual heat flows for
different materials will of course vary depending on the thermal conduc-
tivity cf the material, In addition, for this type of problem, it should
be realized that certain heat sources/sinks must be physically involved
in the situation inlorder to maintain steady temperature conditions.

ese heat sources/sinks exist at or beyond the boundaries of the problem,
and their effects are included in the specifications of the boundary
conditions,

Steady state temperature fields with uniform heat scurces

K [ 3%t ¥t 324 w3 _

ol YIS E TRl T St 0
) P

22 ~ 2 .

Avg + gyg- + SZE = - %— = constant

or



2.2.2 Transient Problems

For ordinary transient problems, it is usually required to

12

termine the temperature distributions for various values of time. In

some cases the instantaneous heat fluxes or the integrated heat flows

over certain time intervals may be of importance. A special case in-

volving transient heat conduction is that for which the temperature

boundary conditions change with time in a pericdic manner. The required

soluion for this type of problem is usually the steady periodic solu-

tion for which the temperature fields for the medium vary in a

repetitious cyclic manner with the boundary conditions. Periodic heat

conduction is discussed in detail in section 3.1.2 b) since it is the

main type of problem involved in the frozen dam study.

From equation (2), the equation for unsteady state heat con-

duction without internal heat generation is:

The quantity (k/pCp)EE @, the thermal diffusivity, is contained in the

¢}

cuation. The actual transient behaviour depends on the thermal”diffu~

sivity which may be considered as a form of reciprocal time ccnstant.

This concept may be illustrated by considering the case of a small pellet

of undefined geometry having a temperature t, which is suddenly immersed

in a large bath of temperature t,. It is assumed that the convective
heat transfer coefficient is infinite, and the surface of the pellet

attains a temperature ty instantaneously upon immersion. Using the

Je
=ty

i

ar

,

at the instant of immersion:

differential operator p= () , as a result of equation (l),i
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% = vy o™ tf’ ER L
o -—-~—-——-—R , Tor Uy > T,
vrhe re el Flha o Say ad s 5 Y X L s
where R, the i» —sal resistance, is of the form T ‘with units of
oy L - ' Q
o nrefiw ¥ 1 _ hr-F
IVX T X Ty T e e
Btu It Biu
By the law of conservation of energy;
Heat input = +time rate of heat storage in the pellet.

where C i1s the thermal capacity of the pellet, i.e.

. : . . lbm Btu Btu
C - A\ v b4 b t 2 X e — = o
z(V,o,Cp) with units ft T X T oz
Equating the two expressions for pQ:-
Uy '; L/Q — Cp-tp
ty, = (L+Tp) t, where T = RC is the time constant (hrs.).

The time constant of a syétem is a measure of the speed of response, If
T is small, the pellet temperature t,-—>ty relatively quickly. Converse-

ly, i1f T is large, more time is required for the change to occur. Now .

X

T = RC = T VpCD where x, V and A are components of the geometry.
Hence for a givén geometry, a large value of o = %5— gives‘a small T

p ; ;
and hence a short transient period. Accordingly, thermal diffusivity is

a measure of the thermal sensitivity of a material - the time response

f 2 material to a temperature disturbance. The units of thermal

[e]

3, ¥ °r 2 ¢
G/ = P A PP = St vn X = —
ot /S hr Op hr




II1 METHCDS OF SOLVING HEAT CONDUCTION PROBLENMS

Cf the numerous methods available for solving heat conduction

oblems, in general, each method has a fairly definite range of appli-

il

t

et

cation which is either inherent in the methed or due to mathematical
complexities. For example, free-hand flux plotting may be used only for
two dimensional steady state'problems. For any given problem, usually
more than one method can be employed, and any one of these methods wili

tend to have certain advantages and disadvantages compared to the others.

The selection of a method to solve a particular problem within the re-

L3
o
}J .
]
@
o
o,

egree of accuracy with a minimum expenditure of time and effort
iz largely & matter of engineering judgment. The lack of suitable
facilities/apparatus may, in many cases, rule out the use of certain
methods (particﬁiarly analog methods). A finite-difference approach to
a large-scale pfoblem by numerical iteration may be impractical by hand
computation, whereas the solution may be readily obtainable tﬁrough‘the
use of an electronic digital computer after only a few hours Qf pro=
gramming and computer operation, .

For the purpose of presentation, the various methédé of

solving heat conduction problems were arbitrarily classified és analytical,

finite ilf erence (both graphical and numerical), analog and experimental.
The objsctives in dealing:with each method were to present it% physical
basis and to discuss the practical aspects of its applicatign énd utility.
The survey was by no means'exhaustiQe; new methods/techniques§withip a

method are being developed continually. In this respect, the gmphasis

was in dealing with U1@ older and better known methods which have been




’,__I
Ut

N

established through years of use, Certain solution methods were treated

by illustrative example. In most of these cases, the examples

presented have a bearing on the frozea dam problem.

3.1,
inalytical methods of solving heat conduction provlems consist
essentlally of straight solutions of the partial differentiel equation of

heat conduction, i.e. mathematical solutions to equation (2) written to

correspond to a given problem, with the constants of integration evalua-

ted through the use of boundary condition data. Following selection of
a suitable coordinate system, the problem is first formulated by writing

ferential eguation and the initial and boundary
the neture of the required solution. The

mathematical, and may be subjected to any
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ct
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ot
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mathematical technigue to obtain a particular solution. In theory, any

5

heat conduction problem can be solved analytically. In practise, even if

o

the problem can be successfully formulated, the solution may be in-

matics involved,
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3.1.1 Heat Conduction in a Single Independent Variable

This class of problem is one-dimensional steady state heat con-
duction with or without internal heat generation. (The case of t = f£(T)
alone is no longer a heat conduction problem since zero temperature
gradients preclude conduction of heat). The three basic geometries are
the plane wall, hollow cylinder (tube) and hollow sphere. The ne wall
or plate has finite thickness, however its parallel boundlng surfaces are

infinite in extent. The hollow cylinder is infinitely long. The bounding




16
surfaces for all three geometries are isothermal and at different
temperatures. Heat flows from one surface through the medium to the

irface in a direction which is normal to the surfaces.
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Many heat transfer situations encountered in engineering
practice approach unidirectiocnal steady state heat conduction. Examples
without internal heat generation are the walls of a refrigerator, a cir-
cular insulated steam pipe,etc. Applications involving internal heat
generation may include electric heating elements, nuclear fuels, curing
of concrete, etc. For the refrigerator wall for example, heat flow ﬁill,
be predominately unidirectional on a surface area basis. Two or three
coordinates will be required to specify the temperature distribution at
the edges and corners. If the surface area 1s relatively large compared
0 the thickness of the wall, edge effects will tend to be negligible,
and the entire wall may be treated ﬁo a very good approximation as a
case of‘one—dimensional heat flow.

In view of the importance of unidirectional heat flow relations

-

in -

3

1eat conduction analysis, two cases are considered in detail - the
plane wall without heat sources and the cylinder with uniform internal .
heat generation,

a) Plane Wall (W= 0)

From equation (2),

0 and since t = f(x)

LN

alone, E T 0
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For t, > t,, g is as shown and x increases in the same direction as q.

A&
P DV at
Since —z = 0, =—= = (, a constant.
Q.’x Q—'&
Soldt =0 Jax
t = (X -+ D

the boundary conditions be

It

L= by at x = X%, and

ot
{

T, 2t X = X,

Solving for C and D from these boundary conditions gives an eguation for

th crperature distribution (linear). Heat flow is unidirectional, and

L

t

[
[

@

for equation (1), an expression for dt/dx can be obtained by differen-
tiating the temperature distribution equatlon with respect to x. The re-

sulting heat flow equation is:

ey - _ kAt 5 ‘
2 - Zht) - 52 (£

Ko = Xy
Hence the heat flux (for k independent of t} is simply the product of the
thermal conductivity and the ratio of temperature difference to wall
thickness.
(Fquation (L) might have been derived more readily by integraﬁing
equation (1) over the limits given by the boundary conditions. This
tshortcut! method is possible ogly because unidirectional heat flow is
involved for which equation (1) is applicable). -
If thermal conductivity varies linearly with temperature, for
a temperature range bounded by t, and t,, it may be sﬁoan that thév!

mean thermal conductivity value suitable for use in the heat flow .

equation is k at t = 3(ty + t,), i.e. k at the average*témperature‘éf the
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2. The actual temperature distribution will deviate from a straight

line relationship. The position of maximum temperature deviation from a

inear temperature distribution occurs at the value of x for which

}-_J

(ty + t,). The general expression for mean thermal conductivity .
L TOREE - = : A 1 — 1 T N
(including k non~-linear in temperature) is k = ———— I 2 k.dt, k=£(t)
- m Yy - tp t
> %

The multilayer wall is an obvious extension to the case of

steady state unidirectional heat flow through a plane wall. The

multilayer wall consists of uniform layers of different materials of

either equal or unequal widths. A two layer wall is first considered.

. e e T e TN e

£
f)

0

»&3

The usual problem is to calculate the heat flow through the

composite wall. Temperature t,, being an interior temperature, is usually

not known. Under steady temperature conditions, there can be no heat -

-

storage or release for the medium, hence the heat flow through each layer
must be the same. Assuming no contact resistance between the two layers,

i.e. no temperature discontinuity at the interface, from equation (4),

for unit area:

k. (¢

- 1) = k?(t? - )
X Axy

I

q =

>

Solving for t, in terms of t,, t; and the thermal resistances, and sub-

.y . ~ . . ) . t Ad t:)
stituting for t, in the heat flow equation, leads to g = 2 2
' Xy + Ay

ky
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2 PR E A
A, e per unit surface area. . e . (5)

The condition of no contact resistance implies a perfect thermal
bond between the materials. In practice, some temperature drop will occur
at an interface due to a finite contact resistance. If the thermal re-

S

OL

[43]

slstance

the materigls are large and the materials are well fitted,
neglecting contact’resistancesvmay not cause significant error in tne
compuzed heat flow. On the other hand, if the materials are good thérmal
conductors and the layers are relatively thin, the contact resistances
may very well govern the heat flow.

An estimation of the magnitude of contact resistance for a
ziven problem tends to be a rather complicated matter even if parameters
such as surface roughness and interfacial pressure are accurately known.
Theories of:real contact area between plane surfaces in contact and of
constriction resistance have been establishedB, however there is still

relatively little data published on the subject.

b) Cylinder (W = const.)

A solid generating heat uniformly on a volume basis and of!?
long straight cylindrical geometry, is considered. The situation might,
for example, represent the ideal case of a wire carrying electric current

with no skin effects and electrical resistance independent of temperature.

r
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Since radial heat flow is involved, eqguation (3) in cylindrical coordi-

R - BN
= s v = S A SO e = 0.
0 | or T or | pC
P
Sirce t = £{r) only,
Py, ldv W g
dar* ° rdr =k °

Substituting S = %% (gradient) and multiplying through by r dr results in

- g r dr where L.H.S. = d(rsS).

I

rdS + Sdr

v

Two successive integrations leads to

W oo , ;
-'C:__-V-—-o__ ! Cl,g/nr'\‘cg

The constants of integration may be evaluated by applying known boundary
conditions. The cylinder dissipates heat by convection to its surround-

ings, hence

ok ! 2
3

ep = Bt -t ).
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Alec Eﬁg»_o = 0 Dby symmetry which requires C;, = O.
[ORANN -
i P_B
gsing Ty T - 5o 73 + C, and the first B.C. results in
02 o
~ — n o Tn"“_‘.- (1 X 4;;.\
g U ""—L’k R —_‘,"‘)
US4 i

cemperature distribution becomes

- 2 7/
- e T, . . . . o (&)

Ca
= Uaoe T
Alsc by - t, =
As expected, the temperature levels in the solid depend on the ambient

temperature (te ) and the convective heat transfer coefficient (h). The

temperature difference (ty, - i, ), however, depends only on internal
factors; being directly proportionzl to W and R®, and inversely propor-

o

tional to the thermal conductivity of the medium. Note, as long as steady

temperature conditions prevail, low for the problem simply

a
o
&
o)
oy
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o
iy

ends on W, i.e. g = TR°W Btu/hr. per ft. of cylinder length. The

[@]
®
5
( ]

One particular analytical approach to one-dimensional steady
state problems warrants special mention. This approach is to write out a
neat balance equation on an incremental element of the geometry, thereby
capitalizing on the fact that heat flow is unidirectional. This approach
was used to specify one of the boundery conditions of the preceding

cylinder problem. It is also commonly employed in analyzing extended

surfaces which are used in many applications tc increase the heat dissi-
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T a structure., If the fin diameter or width is small

ompared te its length, convection tends to control the heat flow - there
are large axial temperature gradients, however sections normzl to the

1

2] axis are essentially isothermal -~ hence one~dimensional

rate balance ecquation is:-

6]
s8]
¢t

steady state heat conduction.}Th@ he
Healt in by cond. = Heat oui by éond. + conv..loss at the perimeter.
For a fin element of"length dx (x in the axial direction), applying
equation (1) of the form g =. -k A(x) g% , and expanding the 'heat out!

term in a Taylor series wsing the first two terms as a reasonable ap-—
¥

\dt dt . d T at
-X A(x)ii = -k A(x . +~§; [k A(x)aij dx + h(Cax)(t - to ),

3 I 3. N N
koS A(x) %ﬁi} dx = hCadx (t - ta)
e 19 N
a T, + :
a,n.d. "\é‘:‘: L A(}:) a‘;" 1 = %{Q' (ﬁ - too ) ° ° ° . ° ° . (7)

which has a generazl solution of the form

, . itbre =X hC
T ~tew =0 e +C, e where m = & .

A large amount of theoretical information and data is availlable

to the designer/analyst involved in a fin problem; both in heat transfer

2

L ~
Lexts an

. . 6 . o
the general literature. Gardner gives curves for fin

efficiencies of several varieties of straight fins, annular fins and -
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heat conductlon in a single indegendent variable. Mathematically, these

in nature since formulation involves an
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ordinary differential eguation. Due to ease of handling, analytical .

IR}

problems of this category.

q

methods are used almost exclusively in solving

]
-

U

%.1.2 Heat Conduction in Two Independent Variables

Heat conduction in two independent variables mey be either two=-

dimensional steady state or one-dimensional transient. These two cases

&3}

are considered separately in the above mentioned sequence. The presence

of heat sources/sinks within the temperature fields is excluded through-

a) Two-Dimensional Steady State Problems

tzj

rom equation (2) since t = f(x,y), the temperature field is

described by:

s, Pt Py _ '
\_,w,——&g-.@?—o . o . . . . . .. (8)

s usuel, for a given geometry and set of boundary conditiongp‘the re-
quired solution to the problem is either the heat flow at a ﬁafticular
surface or the temperature field. If the former is the requi#ement, it is-
necessary usually to solve first for the spatial distribution of tempera-

ture. Several analytical methods are available; the main ones are reviewed

as follows: :

i) Method of Separation of Variables (Product Method) .
The solution of partial differential equations by separation
of variables consists basically of reducing the partial differential

ecquation to one involving the product of two (or more) ordinary differential
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equations. Success in obtaining the final solution justifies the assump~-
tion that the dependent variable can be expressed as a product of func-
tions of different independent variables. A separation constant is

involved (see example following), and occasionally the boundary condi-

[e4]
e

LLONEG raequ

re this parameter to assume certain discrate characteristic
values (eigenvalues) for the problem. In this case, unless the solution
can be expressed in closed form or tabular data is available, numerical
evalzation of temperature as a function of a sum of eigenfunctions may
be somewhat tedious. In general, however, the product method is an ex-
tremely powerful and useful mathematical tool. Fortunately, many partial
differential equations describing heat conduction belong to the class of
separable domains, and the methéa is freguently used with success.

A secondary advantage associated with the method involveé the
fact that_boundary conditions are often specified for constant valﬁes of
a geometric coordinate. The method of separation of variables permité
direct application of the boundary conditions, thereby facilitating:“
evaluation of the constants. The methed is illustrated by the following

exanple.

¢
L3 [

&

&2
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The geometry shown is a cross-section through a long wedge
whose bounding surfaces are isothermal and at different tempsratures.
For practical purposes, the temperature at the apex may be considered
as the average of the two boundary temperatures. The situation might
represent a dike with its sides exposed to water and atmosphers respect-
ively, where the interest is in temperature for values of radius suf=-
ficiently small that the length of the slope appears to go to infinity
befere breaking horizontally. '

A cylindrical coordinate system is used with réfereﬁces as’
indicated. From the boundary conditions (t constant for all values of r),
it is suspected that an equation for t might be written in terms of ©

alone, This is in fact true, and a short derivation would be:

_ 1 4%t _
t = f£(9), andrz 3 0

However, to illustrate the product method, temperature is considered as

being dependent on both radius and angle, i.e. t = £(r,6). From equation

¥t o, 1ot , 1 ¥t _ *ty o _
3@ Y InTFEw T 9 5 5 0.
Assume t = B%- where R = f(r) alone,

£(8) alone.

and @

Substitution into the Laplace equation gives

&R , B4R , R &3¢ _
¢ Y S TR agg 0, and therefore
= a2 2
:gfj %;? + % %%:] = % . %ég— = 3, the separation constant.

[

The two sides are functions of different independent variables and can

be equal only if each is equal to a constant. This separation constant is




an integer which may be positi%re or negative. Since the problem has been

over-formulated; try S = 0.

. A% 3 o
"%—e—é = (0, hence g—g = "A .
Jag = afde
¢ = A8 + B
FR ., 1dR _ |
Also a‘;g b = 3o = 0
*R _ 1dR
ar r ar
dR
WG L e
(dR/drS r
, dR ~ _dR
7 —— = - 2 —_—
Zn 37 Ln r+ nCordr
Jar
R
't = R = (CZnr+D) (486 + B)

Now C = O, since in order to match the boundary conditions, t must be

I

c
r
cj%ﬁ

C Lnr +D

constant for a given & for all values of r.

ot = (AD)® + (BD)
= EO+F
Nowt =1t at @ = 0, hence F = ¢
W W
and the equation becomes t = E 6 + tw

Also t = ta at @ = B, and substitution yields

= T -
ta : EB + tw wherg B
t -1
St=l2 ¥io 4+t
B W
or for % >t
W a

t

a

P

-t
W
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= (Y = b
t—tv{-(__:.___e,.........(9)

1

P
Cnly one coordinate is required to specify temperature in the
final expression which makes the problem one-dimensional steady state.
If the problem were extended to include a dike plus foundation, a
Cartesian co-ordinate system might very well be used due to foundation
considerations. For this case, two space coordinates would be required
to specify temperature within the dike proper. The point then is thaﬁl
the coordinate system haé a bearing on the dimensionality of the proﬁlem.
Failure to choose the 'best' coordinate sysﬁem may complicate a probiem
needlessly by requiring an exira indepeﬁdent variable.

ii) Conformal Mapping

In the theory of functions of a complex variable, the term
'mapping' refers to the transformation of points in the z-plane
(z = x + iy) into corresponding points of the w-plane (w = u + iv) ac~
cording ﬁo their functional relétionship w = f(z), where w(a second
complex variable) is a'function of the complex variable z within a de-
fined domain. If the function is analytic and has non-vanishing deriva-
tives, the mapping is conformal, i.e. the transformation presérves
angles, hence in particular orthogonal curves are mapped into orthogonal |
curves.

Any function that has continuous partial derivatives of ﬁhe
second order and tﬁat satisfies the Laplace equation in two iﬁdependent
variebles is called a harmonic function. Both the real and imaginary
parts of an analytic function of a complex variable are harmohic fung-

tions. This may be shown as follows:
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D D o -3 . o
§§ = g% and %% = —ai by the Cauchy - Riemann conditions.
Hence O o Fv o4 Pu =¥y
ence 3F T axay. ¢ S Sy ox

For well behaved functions u and v, the order of partial is immaterial;

d d
e ()
and in particular 5 = a}“

;;.a_g_.l:l. = 9.2_1 ::if_\.’.: :..a.il.l.o
o dx3y dyox 3y° °

from which

W T T
Similarly,
v v

= + 5 = 0.

The functions u and v are called conjugate harmonic functions. In geﬁeral,

if a harmonic fu&ction is given, it can be shown that its harmonic conju-

gate exists, and the latter can be calculated to within an arﬁitrary con-

stant. In potential theory, the harmonic conjugates are reférréd to

generally as the'potential function' (@) and the 'stream function! (¢).
An important characteristic of conjugate harmonic fgnctions

is that the curves u(x,y) = Cy, a constant, and v(x,y) = C, afe mutually

orthogonal. In order for the curves to be perpendicular at th%:point of

intersection, the slope of one curve must be the negative reci%rocal of

k3 f I

the slope of the other curve at the point of intersection.

For u{x,y) = GCy,
du=o=§—§dx+§§dy | B
, I
dy =(@.3/.§35> (aine B %s
whence dx}u~ S0/3y providing 5y # 0. f
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Similarly, for v(x,y) = C

a5
(5v Ax

dx v 6v/ay/ *
- d du/d '
. a%lv, = gﬁégi s, by substitution from the Cauchy-Riemann conditions.

=1 -1

= du/ox = QX\ at the same point (x,y).
au/dy dx u

The temperatureifunction, t = f(x,y), and the temperature
gradients~for steady state heat conduction are continuous throughouﬁ a
domain consisting of ﬁhe interior of the solid under consideration; Hence
since equation (8) is a Laplace equation in two dimensions, temperature
(t) is a harmonic function of x, y. It follows, lines t(x,y) = C, are the
isotherms. Furthermore, from equation (1), lines orthogonal to the iso-
therms (the conjugate harmonic, say S(x,y) = Cq) must be heat%flow lines
since the heat flux vector is in the direction of the tempera£ure gradient
which is perpendicular to the isotherm at each point.

The preceding coupled with one important theorem associated
" with conformal mapping, form the basis for the use of conformal mapping
in solving two-dimensional steady state heat conduction problems. This
theorem7 states - "Every harmonic function 'of x and y transforms into a
harmonic function of u and ; under the change of variables x ;+ ,iyv=
f(u + iv) where f is an analytic function". Accordingly, unde?éconformal
transformations, equation (8) applies (with appropriate independent
variables) to the transformed geometry és wellnas the originai geometry.

The general technique in solving two-dimeﬁsional st%ady state
heat conduction problems via conformal mapping is to locate tfe geémetry

()

in the x,y'plane,‘and seek a transformation which will providéia géometry




in theu, v plane which is amenable to solution. Problems of Eoundary
conditions of either prescribed temperature (Dirichlet) or specified
normal temperature gradient (Neumann) can be handled. Tables of trans-
formations are availableB. For a given problem, an explicit equation for
temperatureican generally be obtained by writing the temperature relétion
in the u, v plane (usually by in;pection), and substituting the trans-
formation function to obtain temperature in terms of the coordinateél
(x,y) of the actual geometry. (Note, locating the geometry in the u,v
plane and working in reverse is permissible providing the inverse fﬁﬁb—
tion (analytic) ig single-valued.,) The application of this mathematicél
tool is illustrated by the following simple example. . |

The problem is a long pipe with an eccentric bore of geométry;
0.D. = 2,0, I.D. = 1.25; and eccentricity, e = 0.25".3The temperature
field is steady, and the boundary conditions are that the constant
‘temperatures of the inner and outer surfaces are t. = 160°F and t, = 60°F.
It is required to compute the heat loss from the pipe. The average
thermal conductivity of the material for the temperature range involved
is k = 1.0 Btu/hr-ft-°F.

A transformation was found’ (Fig. 1) which maps the region into’
a concentric cylinder geometry for which the heat flow equation is well
known. No scale change is involved. The inner radius of this new cyiinder
is 1.0 inches, and an equation is given for the outervradius (RO) which.
was calculated to be 1.42 inches. Using a cylinder length of 1 ft., and
solving directly in the ?ransformed plane, results in

q = 2mfkdt _ 20(100) - 3990 Btu/hr. per ft. of length.

r
) 1.42
rl~ £n 1.0

i



31

An explicit equg?ion for heat flow existslO for this problem in terms
of the aciual geometry. The time required to obtain a numerical result
is about the same for both methods given the formula or the transform.
iii) Flux Plot

Freehand flux-plotting may be used to solve two-dimcnsional
(Cartesian) steady state heat conduction problems in a rapid though ap-
proximate manner. Although graphical in nature, this method is included
in this section for the sake of continuity since its basis isirelated to
the principles of confsrmal mapping. As previously outlined, in two-
dimensional steady stéte heatvflow, the isotherms and heat fléw lines
intersect at right angles. Heat flow lines are adiabatic in tbe,senée
that heat will not flow across such a line. If a grid bf isotberms and
heat flow lines is constructed so as to provide orthogonality% the region
bounded by two adjacent adiabatic lines constitutes a heat flow lane.
if in addition, the lines of the grid form curvilinear squareé (average
length of the sides opposite each other are equal), the tempe?ature 

difference between a given isotherm and its two neighbouring itotherms is

the same.
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In finite-difference form, for a length ' ' of the cross-section (see

sketch);

kiy 2) bt ,
Aqy, = (Yxij 1 = k(yaﬁj Atg

since the same heat flows through each element under steady temperature

conditions.

Now, y3 = Xy and y, = X, from the construction, hence At, = At, = Ati.

To solve a two-dimensional steady state problem, thé geometry

is first examined for squetry. This generally leads to isolation of a
cémponent region which is bounded by two isotherms (at different tempera-
tures) connected by two adiabatics. The procedure now is to sketch a

flux plot for this region by fomming a grid of curvilinear squares. When
completéd, the number of temperature‘intervals (N) and the number of

héat flow lanes (M) are counted. The heat flow for the.region is the

sum of the inéremental heat flows of each heat flow lane petween the

boundary isotherms, i.e.

Q = ~1Aqi
= k2 Zl Aty since Aq, .= k £ At = bqg
Now Aty = At, = At, = Ap;iﬁ?genéral.
Also AL = 5 wherthA and tB are the boundary condition temperatures.

Hence by substitution for Aty = At

g = ke G-t oL L. . . .. L L0

The ratio M/N = S is called the shape factor.
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~ The total heat flow and over-all shape factor for the geometry are q or
S times the numbér of symmetrical sections respectlve}y.

Accordingly, flux-plotting both allows an estimate éf the
heat flow and provides information as to the location and value bf the
isothermé. Accuracy depends on the degree of refinement of the network.
Increased accuracy can be achieved by decréasing the size of the grid.,
This technique is iilustrated by solving the previous problem?of the

pipe with an eccentric bore (Flg. 2). The geometry is symmetrlcal in

two halves. From the solution by conformal mapping, the exact: value of

_oam = 20
0.351

the shape factor is S = = 17. 9 The value obtalned
by flux-plotting (S = 17.5) is ' only approximately 2% in error.

Values for the shape factors (or equivalence) of variations of
several geometries have been published; in particular for insglation
designsll and buried heat sources,lz’13 the latter including three

dimensional effects.

iv) Method of Fictitious Sources and Images
The method of fictitious sources and images, originated mainly
by Lord Kelvin (1880), has proven extremely useful in solving certain ‘
heat conduction problems having non-linear boundary conditions. Prcbébly
the bést known solution in heat conduction by this method is that fbr
the two-dimensional steady state problem of a buried cable dlSSlpatlng
heat to its surroundings. The boundary conditions for this problem are:
1) a linear isotherm bounding the medium (semi-infinitely
extended) surrounding the buried cable; and
2) a circular isotherm located in the medium, representing

the constant surface temperature of the buried cable.
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egquation is linear, and the net effect on a point in the geometiry due to

pd ¥

either fictitious or actual heat sources/sinks, may be determined by

the principle of superposition. The combination which gives the boundary

of the heat source, and in doing so, the surroundings become infinitely

By AN

extendad and the actual heat source (buried cable) becomes 'line'. The

given in several heat transfer texts inclu-
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'he method of fictitious sources and 1lmages may be used for
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either steady or unsteady state problems. Jakob ” deals with both in-

s point sources, and with instantaneous line

)

N

s and continuo

O
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tantane
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and plane sources. The case of a point source (sphere) located in an in-

finite medium, all at uniform initisl temperature, instantaneously brought

to a fixed higher temperature at T = O, becomes a transient heai conduc-
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problem whose analysis leads to the fundamental solution for tempera-

)

NN e, s . 16 .
for heat conduction in three dimensions. Carslaw and Jaeger  give

o

ur

(¢}

several cases of heat conduction solved by this method.
Incidentally, buried cable theory may be used to solve the
problem of the pipe with eccentric bore - the surface temperatures become

isotherms surrounding the buried line heat source. The solution, however,
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involves a trial and error approach which is time consuming. A further

analytical solution is given by El—Sadenl7.

b) One-Dimensional Transient Problems
From equation (2) since t = f(x,7), the temperature field is

described by:

CPEY At _ _k |
az&?/‘ - —a—,F 3 o —BEI: ° ° ° ° . ° . o(ll)

Since only one space coordinate is required to specify temperature at
any given time, the geometries are the infinite slab, the infihitely long
cylinder and the sphere.

Problems of this type may be classified as either pure transient

or steady periodic. Pure transients basically entail moving from one

steady state condition to another due to a change of a boundary condition
temperature. Tﬁe boundary temperature may change from one temperatﬁra
level to another either instantaneously or over a period of time. Hé;t
will be stored or released from the medium depending on whether the;éur—
face température change causes the body to be heated or cooled.

On the other hand, the boundary condition temperature may vary

continuously in a regula} periodic manner. After a suitable period of time

with the boundary conditions having been applied for several cycles, the
transient involved in moving from the initial temperature conditions will
pass, and the ﬂemperatures of points in the medium will vary in a repe-
titious cyclic manner in respense to the periodic boundary conditions.
The heat conduction process at this stage is called 'steady periodic' or
tquasi-steady'. Alternate heat storage and release takes place. Although

the initial conditions together with the thermal diffusivity of the
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material, determine the duration of the transient to when a steady |
periodic condition is attained, the steady periodic pattern depends‘only
on the boundary conditions. Hence initial conditions are not required»
to solve for the steady periodic temperature regime. Actually, the usual
problem is to solve for tempefature under steady periodic conditionsf
The requirement here is to solve for the temperature history over the
time period required to complete one cycle. The temperature of any in-
terior point of the geometry which is influenced by the boundary con-
ditions, will lag the surface temperature by a certain time interval. The
time intervals for various points may be of interest particularly for
cases having long cycle times. ‘

i) Pure Transient Solutions

Various metallurgical and manufacturing processes approach uni-
directional transient heat conduction. A typical example is a;heated plate
(length and breadth >> thickness) suddenly immersed in a quenching bath.
Heat leaves from both sides of the plate by convection. If the initial
condition is that the temperature is uniform or the distributiqn is sym—
metrical about the midplane, the temperature history will be iﬁe same
for each half of the plate, i.e. the midplane is adiabatic. Hénée the
half geometry is effectively infinite slab - one face insulat%d and the
other losing heat by convection. ”

The general classical solution to this type of prob&em is re-

viewed first, followed by a discussion of the use of charts.%Applica-
tion of the method of separation of variables (described ear%ier) to
equation (11) or its equivalent in other coordinate system%,?feducés the

problem to ordinaryvdifferential equations in the space andéﬂime domains.
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Cartesian Coordinates

Assuming t = XT where X = f(x) alone and T = f(7) alone, and substi-

tuting into equation (11) results in:

1 . d%x 1 4T = k .
S o = = the separation constant.
X '@ T @ P

.:,Hré% = a K| ar )
AZnT = o Kt +4Zn A
T= 4™
As T—+2° , T—=0 for +ve K, hence t = XT > since x is bounded.kTleis

is of course not possible as t must: remain finite. Therefore K < 0; and

let K = =A%,

2
"in T — A e-d?\:r
1 d®X 2
Now ¥ & =A%

Y . :
hence %}—} + A2 X = 0 (Helmholtz's e_quation).

The solution is

X=Bcosax+051n Ax‘ ‘

t=XT=Ae’a>‘T(Bcos ?\x+051nzx) ... .(12)"
The constants are evaluated by applylng the boundary conditions. Note,
the solution to the Helmholtz equatlon for the rectangular coordinate
system invelves sine an‘d: c‘osine terms - oscillating periodic functions

of constant amplitude.

Cylindrical Coordinates

i
l

From equation (3), the equation equivalent to equation (11) is:

o [F i &) -

rsu—J
%
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Assuming t = RT leads to

1 [¢3r 1 dR S -

5 é_a;g + el == ar K, the separation constant.

. . v . ., _ 3 . ) _3 . -y >‘2.‘-

Again K must be negative, and letting K= -A° results in T = A e = .
d®R 1 dR ' .

Now + = = + 2 o=

OV = r ar RA 0 ( Helmholtz )

or

#r . L dR 4 p =0
a(arz  r) dlar)

This is Bessel's equation of zero order ; Bessel's equation of:order n!

being in general :-

Py , 1 dy 2y =
v + z I + (1 -z ) y=0, n= const.

The solution, a Bessel (cylinder) function, to the Helmholtz equation is

R = BJO(A r) +C Yo(}\r),

where Jo = Beséel function of the first kind, zero order, an@

I

Y
o

Bessel function of the second kind, zero order.
. ' 2 i ' : 2 ‘
‘4 =Rl = Ae " " [B Jo(?\r)ﬁ-CYo(?\r)] Ce e (1)

e

Again the constants must be determined by the boundary conditibns. The
solution to the Helmholtz equation this time involves two oscillating
functions whose amplitudes decrease as r increases. The solutibn18 to

the Helmholtz equation in a spherical coordinate system contains ?%;

4

sin(A r) and %—; cos ( Ar) terms which are again oscillating functions

whose amplitudes decrease as r increases at a rate even faster than the

Bessel functions.

A common situation for unidirectional transient heat conduction

is sudden change of either the boundary temperature of'the body or ﬁﬁe
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temperature of a fluid surrounding the body. The temperature and heat
flow solutions for these and other similar problems frequenély involVe
the sum of a convergent series or the sum of the roots of a transcendal -
equation. It follows, obtaining a numerical result may be a time-consuming
proposition. For this reason, various authors have prepared charts for use
in solving transient problems. Heislerl9, for example, gives data for
the sudden temperature change of the environment of bodies of initial
uniform tempefature. His charts may be used to determine the temperature
histories at the surface and center of a semi-infinite plate, and at |
the surface, center and half radius of an ihfinitely long cylinder or
sphere. In a recent publication, Schneider20 presents approximately fifty
graphical solutioys for a variety of one-dimensional constant-property
transient problems for varidus geometries and boundary conditions which
include both changes in surface temperature and surface heat flux. In
genefal temperéture history:charts are plotted in terms of dimensionless
groups maklng up the theoretlcal relations, thereby making the data
unlversal in appllcatlon The usual parameters used are: |
1) N g = }Lﬁ/k (Blot modulus), an index of the relatlve

re51stance of the medlum to that of the convective sur-

roundings._("rhe symbol '£ " designates the thickness of

the infinite plate or radlus of the cyllnder or sphere)

2) N = o T/p° (Fourler modulus), a dlmen51onless time and

Fo
measure of the response.
i

3) Various dimensionless position and temperaturejratios.

ii) Steady Periodic Solutions

The boundary condition temperature is periodic, and; since any
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. rel o -~ w A .. ~ o
terms of & Fourler series, the
written as
N EN [
t = (¢ -+ LA Ccos nwT o+ T B sin n wT
O O —_ —_——") ¢!
=1 i

the variocus constants are determined by the usual procedures of
narmonic analysis. By working from eguation (11) via the product method,

and taking the separation coastant te be an imeginary number, the general

solution™ corresponding to equation (12) has the form:

5 o= g XI2 | B cos (3Be v - 7x/]2) + C sin (#Po 7 -3/ 2) .

¢t
f
e
it
e
Q
O
W
e
Q
-
-
b
1]
.
ot
3
Id
Q
-3
5

R o 5 T AR A J R T
wnere D and E are arbitrary constants

tion compares closely to the Fourier series expression.
The case of a slab (infinite in extent) extending from the

surface x = 0 to x = ™, subjected to one-dimensional unsteady state heat

»

concduction by a periodic surface temperature, is now considered. If

t (boundary temperature at x = Q) varies in a simple harmonic manner be-

tween - L and + © such that ¢t = t cos wT, then it can be shown
on o o om
O S
wviit
) A - o
L = i € ccs (W7 -2 x) where A ==
om ( 1\-) 20, 2
is the solution to eguation (11).
PR ™ -, ARV e}
oL - - AKX - AR .
— = 1 x - e > COS(UJT - A X_) + 7\6 Sll’l(w'\' - A K) l]’ °
ox om | 1
g & .
2 - A L~ 2 - / - -AX . -
o Comi e cos{wT -xx) - A% e sin(ot - 2x

-7 T " ® sin(wr - ax) - A2 70K cos(wr - 7 x)

= - 272 ¢ e 7% sin{oT - 2 x).
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Qs
ot

- -AX .
- W tom e sin{wT - Ax).

l

o/
-4

Substituting into equation (11) results in

- = . = -g') :

2 @ A w or A )2d Q.E.D.
Note also, at x = O,

t = to = tom cos wT+as required.

Several important observations can be made by inspection of the tempera-

ture equation
fum? - -
to= ot e N2¥  cos l‘wT - E%ﬁi-J. e e e e (1u)

1) For a particular depth x, the maximum temperature (amplitude)

occurs when the cosine term has a value of unity, i.e. when

wT - S 0. Hence the time lag is AT = %j:i: . The lag
20 20w
increases with depth; the temperature variations at certain
depths will be in.phase with the surface temperature Qariations.
2) The temperature variation at any depth has the same periedicity
as the surface temperature variation, however the amplltude de-
creases exponentlally w1th depth. The depth of zero amplltude
occurs where the temperature variations are con31dcred (spe01f1ed)
negligibly small. At stlll greater depths, the surface tempera-
ture has no 1nfluence other than that of establishing the steady
temperature level.i f‘ . |
3) The damping factor contains w - the higher the freéuencj of the
thermal oscillation, the less the penetration. On the;other hand
the greater the thermal diffusivity, the deeper the penetration.

Heat conduction under steady periodic conditions occurs in

machine oparatacns and various industrial processes anvclvxng thermal

v ‘V\\\! tR&:[,
A N

LN@@AQY -
'“B@,T@@
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cjcling. In addition, quasi-steady heat conduction takes place on a very
large scale in nature with the surface of the earth being heated and |
cooled by the atmosphere both on a daily and annual cycle basis, The
preceding slab analysis applies (with appropriate surface temperaturé
cycle) to the temperature variations in the ground, as well as to several
other situations such as the penetration of temperature into the walls

of a cylinder o{xan internal combustion engine. In general, Foufier’anal-
ysis is widely used in solving problems of this type.

3.1.3 Heat Conduction in Three or Four Independent Variables

Heat conduction in three and four independent variables encoﬁ-
passes three-dimensional steady state and two- and three-dimensional
transient. These copstitﬁte the complex cases of heat conduction. Un-
fortunately, an analytical solution to any given problem ofktbis type may
not be practical or even possible due to mathematical difficuities.‘This
is somewhat ironical since solids undergoing heat conduction Qre always
finite in size, hence an éxact solution for temperature requi%es its
specification using £hree coordinates. For many practical cas%é, however,
end effects are sufficiently‘localized‘that a solution suitabie forvthe ;
bulk of the geometry can be obtained by considering temperatu}e to de-
pend on only one or two space variables. McAdam322 gives empiricai
equations to solve for thrée - dimensional steady heat flow fbr redtangu-
iar boxes of uniform wall thickness with isothermal inner and?outer sur-
faces. Similar equations have begn published23 for réctangulaf blogké,
square plates, etc. Morse and'Féshbachga give'solutions to seQeral‘cases

of the Laplace equation in three dimensions, however, they point oﬁt,

that the Laplace equation separates in only a few coordinate systemé; and

RN
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the three-dimensional solutions nearly always turn out to be infinite

series or integrals which genérally do not converge rapidly. Regarding

transient problems, the produét’superpositioh principle due to Newman25

can be applied to solve certain two - and three-dimensional transient cases

(finite cylinder, brick-shaped_objects,etc) using unidirectional trén-
sient solutions (charts) - thé solutions for these cases being the préduct
of two or three solutions each in one-dimension. |

A number of solutions to specific problems of the types under
consideration have been pubiished over the years. For example, Dicker and
Friedman26 give the solution to the transient heat conduction equation
for two-dimensionmal convex quadrilateralvand three-dimensional convex
hexahedral domains (nonfseparable) using Galerkin's method in conjunction
with the Laplace transform. The examples given in their paper are for
uniform initial temperature with the boundaries subjected to sudden change
of temperature. Steady state solutions as T —= % are includea. Althouéh
these various solutions are available in the literature, their?values
are largely academic since they are intended basicélly to demohstrate,
particular analytical techniques. The final results generally have no
‘direct application, i.e. the chance of having the boundary conditions of
a real problem match those of a published solution is quite remote. Any
real problem will tend to be unique in at least certain aspecﬂs, hehce
an analytical solution must be approached from basic fundamengéls.

To summarize, solutions to heat conduction pfoblemsgin three

or four independent variables by purely mathematical methods,jeven if

theorgtically possible, are subject to limitations which dépeﬂd both on

il
i

[
I
I H
i




the compiexity of the probiem and on the mathematical ability of the
anaiyst. The current restrictions on analytical methods of solution,
however, are being continually removed by advances in mathematics. Iﬁ

this respect, the more modern mathematical techniques - operational
calculus (in particular, the Laplace transform to take care of the time
variable), integral transforms, matrix formulation, etc - are meeting with

increasing popularity and success.

3.2 Finite -~ Difference Methods

>In the finite-difference approach to solving heat conduction
problems, the géometry is subdivided into a number of regionsj; the thennal
relations for each region (zone) being represented by its central poiﬁt
(node). Temperature is computed for each node, i.e. at discrete poinpé
in the geometry rather than at any point as in analytical solutions;

The basis and procedure for the method is given for the case of one-
dimensional transient heat conduction - this case is relatively simple
but general in that it involveé both space and time increments.

The geometry is as shown in the following diagram. The initial
conditions (7 ='O) give the true initial temperature distribution as indi- -
cated by chain line. The geometry has been subdivided, and attention is
focused on the shaded zone abcd. The temperatures at points O and 1 are

joined by a straight line, from which the temperature gradient at plane

-t

t 1
ad is approximated by (~%;7—). Similarly, the temperature gradient at

ty - o ' ~
plane bc is approximated byQ—LE£—43). In addition, the temperature at

plane 1, i.e. t,, approximates the average temperature of the;zone. ‘
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From the general heat conduction equation for a homégeneous

isotropic medium with constant thermal properties and W = 0;

2y i
[BX?J ot °

a2k |
The term in brackets —525— *is the slope of the temperature gradient.

Written in finite-difference form, the equation becomes

M
RS
at . ‘
(a2 . t -1 t, -t :
Now <ax. Y - _1 ( o) 1) - gfL——“al for plane 1
RGP T LT oA =
(zone 1); -
L tp -2ttt i
o~ (Ax)® ?“
S R o
Also 57 — ™ T P

‘where t{ is the future temperature at point 1 at the end offthe time

increment AT.
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. My - '
e to 24+ t”t} = by -t
(8x)? AT

i

- 27
to -2t tt = é géZQ*A (tk - t{)

LT
Defining a modulus, M = (Ax)2/0AT, gives
b= 2ttty = Mty - Mty

Hence an explicit equation for t{ becomes

to+ (M= 2) b+t
g, = 2 { = Yt L @)

Similarly,

ty + (M - 2) t, + ty

th
5 m

From the preceding, if the true temperature distribution is
non-linear, it is ébvious that tﬁe finer the geometric subdivision (i.e.
the smaller Ax), the more closely the finite-difference formulation
approaches the ﬁartial differential equation.

Equation (15) can be derived in another manner which sheds
more light on the nature of the appfoximations inherent in the method.
For the alternative approach, a heat balance is set up on the element

abcd which has a volume (A - Ax), where A is the cross-sectional area in

plane 1.
Heat in_ - Heat out = Heat stored or released
kAt - 1) KA(ty - o)
AT o T L —— 1= (AMx) pC () - &)
I3 Ax Ax %

Simplification and substitution for M leads to equation (15). It is noted
that the initial temperatpfefgradients are used to compute the heat flows

during the time interval{‘This'indicates - the smaller AT, the better the
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accuracy.

3.,2.1 Transient Numerical Solutions

The general procedure can be amply illustrated by considering
the previous development to représent an actual problem. Temperatures
to and t3y are given by the boundary conditions. Knowing 4x from the
construction, a suitable AT could be selected based on convergence-
criterion (to be covered later), and hence M could be calculated. Now:
knowing t, and ty from the initial conditions (T = 0), values for t}
and t, can be calculated from the derived equations, thereby solving for
the temperature distributioﬁ at T =0+ OT. Using t,) and t, as the new
base values and the appropriate specified boundary temperatures, the‘

_procedure is repeated to solve for temperature at 7 = 0 + AT +_AT = 247,
Ete.

The numerical method for transient heat conductionjcan accom-
modate practicélly any type of surface coﬁdition, including the case of
a variable convective surface which is of considerable practical impor-

s

tance. If a boundary condition varies with time, the relationship is

27

handled numerically by a series of small step changes. Dusinbérre
gives a number of rules and suggestions regarding subdivision:of the

geometry to suit the boundary conditions, and handling of the various

i
i

surface conditions.

The matter of convergence is considered next. For ﬁnidirectional
transient heat conduction, the convergence criterion is M = 2. No
formal justification will be given, however several facts aré noted.
> o

From the definition of M, for M < 2, AT must be relativelyil%rgé which

implies poor aceuracy. Regarding equation (12), if M < 2, @e@b?rature ty
f ’ N
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depends on ty in a negative sense. This suggests convergence will be
oscillatory if at all possible. Establishment of a convergence criterion
was initially found necessary by experience - using a value of M too
small resulted in the calculated numerical answers oscillating and
finally diverging as time became large. The convergence criterion was
subseqﬁently set by a combination of empiricism and intuitive argumeht.
At least one mathematical inyésﬁigation of convergence has been made;‘
Fowler28 recognizes and dlSCUSSe$ two distinct types of convergence;
firstly, the convergence of numér1ca1 solutlons as time becomes largev and
secondly, the convergence asvtlme‘and space increments go to zero of the
numerical solution becomingvidéntical with the corresponding analytical
solution. His investigation uéing a one-dimensional slab of initially’
uniform temperature includes several types of boundary conditions. The
various solutions are expressed in terms of a set of polynomials or finite
Fourier series.’The methods used for establishing convergence of the se-~
cond kind can be extended to two and three dimensions with arbitrary |
initial temperature dist ributi on.

The convergence criterion can be put into a more useful form.

27,29

This is done following the procedure of Dusinberre ’. Several equatiqns
useful for setting up a calculation result.

Equation (15) may be written as

. M-2 1
ty = (%) to + ( 0 > ty, + <ﬁ) ty, Or as

~a ‘weighting' procedure where the values of the F factors are deflned by

the correspondence.
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‘ -2
Now ©F = 1 since + (M 2) L

1 =
PR/ R T
1 QAT KAT A KAT
Also F., =F == = = ez = e
°f01 T 21T T (ax)? pCp(AX)‘g A c
r T =}.§Ai. i Et_.}.l_
where K 7 ° S2Y In $Top s
and ¢ = (A-x) pCp, say in Btu/°F.
. _ Kbt ' ’
Hence in general, F = = - .« . .. . .. . (16)
Now Fll = 1 = (?Ol+ F2l)
= 1 = z 5%1 in general.,
Convergence requires Fll to be zero or positive, i.e. negative coefficients
must be avoided.
T
Hence z Ké < 1.

This relationship can be rewritten to form the general convergence cri-

terion which is given by

4+

C
AT = ':_:'K"'—' ° ° ° ° . 3 ° @ ° ° . . ° (17)

g ]

The precedihg may be readily extended to two and three
dimensions. For the two-dimensional transient case, the simplest sub-
division of geometry is a network of squares as indicated in the following

diagram. Setting up a heat rate balance on Zone/node 1; for unit area:-

k , bxpC_(ty - ty)

| (e -t )M - g e ) [ = T A
<

Again letting M = ‘é%%l— , leads to

ty *ty Fty tts -4ty = M(t), - t;) or

_ by t by bttt M - L)ty

ty m
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 The convergence criterion is M > 4. The general equations (16) and (17)

27

apply. Dusinberre™’ discusses various ways of subdividing a cylinder,
and provides useful data on squares, rectangles, annular segments and
triangles as elements of an area. |

| The basic relations for a three-dimensional transient system.
can be derived in a similar fashion. The convergence criterion for a
solid sectioned into cubical regions is M = 6. -

The basic ideas of the finite-difference numerical épproach

are summarized at this point. As outlined, the procedure is e%sentially .
that of a heat balance. The future temperature of a node depagds on the
temperatures of the surrounding nodes (heat flows) and its own present
temperature (heat storage or release). For heat‘capacity purp?ses, the
material in a zone is effectively lumped at the node. The lin%é coﬁnect—
ing adjacent nodes may be considered as heat flow paths. Inte%nal heat
generation can be handled by including the heat generation ﬁe%min the
initial heat balance. . i%a'

In general, although the basic principles of the meihod are
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space increments (with accompenying smaller AT), the better tre accuracy.

A stepped subdivision particularly near boundaries is often advantageocus.
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f 2 check on all or part of the calcula
analytical methed, the inaccuracies cen usually only be discussed gueli-
tatively. Accordingly, preparing a problem for solution requires & fair
amount of engineering judgment. In order to ensure suitable accuracy, it
is generally necessary tc use either a relatively fine subdivision of
geometry with the cor responding near maximum AT, or &4 time increment which
is substantially less than the maximum permissible AT as given by the con-
vergence criterion. In any event, the computation usually involves a

3

large amount of arithmetic which tends tc make the method tedious and
time consuming. This disadvantage can be overcome by using a digital
computer. This method of computation is very practical since the calcu-

lation procedure consists of a repsiitious fixed seguence of arithmetic

operations which can be readily programmed.
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erence numerical approach coupled with modern
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computational facilities, leads to an extremely versatile and powerful
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method of solving transient heat conduction problems. The method is
most advantageously used for solving problems with geometries such as.
an assembly consisting of several different materials. Here with judi-

cious subdivision, the different material properties can be readily
transfomed into appropriate F factors. The time increment is set by
the governing node(s). Instantaneous heat flows between any two nodes
for any case at any time can be obtained by applying equation (1) in® .
finite difference form i.e. q = %ﬁ,(tn - tnill)' Cases of variable
thermal conductivity or other material properties can be handled by ap-
plying suitably altered F factors és the computation progrésses. The'
method can be used for the more complex transient heat conduction prob-
lems such as with moving heat sources or phase change. The latter.will
_ be discussed later in this thesis.

The method under consideration can be used for both:pure tran-
sient and steady periodic problems. For the steady periocdic cése, the
computation procedes from assumed initial temperature conditions to the
final repetitive staté by a process of iteration. The cycle time is
divided into a number of equal time steps (AT) in keeping wit%‘ghe con-
vergence criterion. Iterapion may similarly be used to obtainga steady
| state solution, i.e. if a problem having constant boundary coﬁ@itions is
set up as a transient, given sufficient time, the process wilifmove from
the initial conditions to steady temperature conditions. The geétriction
here 1s that the heat conduction medium must be homogeneous: Ef:

The finite-difference numerical method described is;called

the 'explicit' method.due to the fact the equations give futufg;tempera—
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ture in terms of the present (known)‘temperature. An alternative
numerical metﬁod uses the temperature gradients at the end of the time
increment in conjunction with the heat stored or released during the tiﬁe
interval. This formulation is called the LiebmannBo method, and has no
appérent restriction on the value of the modulus, M. Nevertheless, even
though the calculation is always stable regarding convergénce, using a
large AT indiscriminately can result in a solution which may be substan-
tially in error. This method is 'implicit' in that the equations contain
all fﬁture (unknown) temperatpresvexéept for one present temperaturé.
H;nce solving for temperature;égleach time step involves the solutioﬁ of
a set of simultaneous equgtiq?s.‘Cbmpared to the explicit method, fhé
advantage achieved by reméviﬁg the restriction on the magnitude of Af

tends to be offset by thefmbre complicated calculation.

3.2.2 Transient Graphical Solutions
From equation (lﬁ),ﬁfor M= 2, the expression for future tem-
perature is:

ty = 3(t ) +ta).

This equation for one-dimensional transient heat conduction can be easily.

solved graphically. Equatién (15) is based on a geometry such as a plane
wall subdivided into several layers of uniform thickness (Ax). Hence, if
temperature versus position is plotted to scale, since t} is the average
of to and t,, the\graphicél'solution for t is the temperature corrés-

ponding to phe point of intersection of a straight line joinigg to and tg
and plane 1. This method of solving one-dimensional transientéproblemsvis

generally referred to as the Schmidt plot. Since M = 2, froﬁ the defi-

i
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nition of M, the time interval is given by A1 = (Ax)?/20. This

equation shows the fixed relationship between subdivision of the geo-
metry and the time step. The selection of a suitable Ax for a givén
prcblem depends on the nature of the required solution. The choice of the
space increment, however, uneed not remain tixed for the complete graphical
construction, but rather can be varied as desired. The Schmidt plot can

be used for constant or variable boundary temperatures or heat flux, and
for convective surfaces. This method can also be used for mulfi—layer
wall problems. For this case, the space increments for the different
materials are proportional such that the same AT applies throﬁghout.

Jakob31

describes other graphical methods for solving tran~
sient problems involving cylinders and spheres. As in the casé of the
Schmidt.plot, these methoés are limited by their nature te Qnefdimensional
heat flow. The main feature of a graphical solution is that i£ ﬁrovides

a picture of temperature change with time.

3.2.3 Steady State Numerical Solutions

The two main methods of solving steédy state heat conduction
problems by the finite-difference approach are the iteration and reiaxa-‘
tion methods. Both methods can be used to solve problems in oﬁe, twovor
three,dhnenéions with or without internal heat generation. The bases for
both methods afe essentially identical; the methods differ only in‘pro-
cedure. As in the ﬁransient humerical method, the geometry is subdi&ided
into a number of similar regions. Actually, this subdivision can be @éde
using practically any type of element, however the usual (and simpié%t)

procedure for two and three-dimensional cases is to use a network of
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squares or cubes respectively, By virtue of steady temperature con-
~ditions, there can be no heat storage or release, hence the emphasis is
on the hodes (points of intersection of the grid) and the lines conﬁect-
ing the nodes'(heat flow paths).

| The basic equation is now derived for the two-dimensional

steady staté case with no internal heat generation using a square grid.

i 2 |
I 1 ) 4
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For a homogenecus isotropié matérial, by a heat rate balance on node 1:

o f
M|

=

(tg = ta) + (bs = 1) + (by-rty) + (tgm m] =0

Since %% # 0,

ta+t3+t4+ ts,"l-‘-tl“= O ° ° ° © ° e o (18)
32

Tt can be shown - that this equation is a solution to the Laplace equa~-
tion in two dimensions to within good accuracy.

a) Iteration (Gauss-Seidel) Method

Continuing with the preceding development using the Dusinberre
nomenclature, the basic equation can be Kept general by ﬁritfhg as:

K2l(t2 'tl )+K31(t3 "t‘l )+Kl+l(t‘¥~"t1 )+K5l( ts ’tl ) = 0 ;

i

or

Ky b + Kgpba + K jte + K,

ts - Tty = O.
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Dividing through by ZK and assigning F' factors such as Fél = _Kzl/ZK,
etc, leads to:

. N ' - N g

F21
Here again TF = 1,

Similar equations canvbe written for all the nodes, and the
first step is to assume a temperature at each node based on all available
information. The procedure is now by iteration whereby a new ﬁempcr%;?re
at each node in turn is computed based on the tentative temperature:§f
surrounding nodes, i.e. using equation (19) explicitly. The proceduré:is
convergent since the fixed boundary temperatures are continually avéraged
in on the provisional unknown temperatures. At the final stage, the éame
temperatures repeat throughout the field which is equivalent to all
eqﬁations being solved simultaneously. The better'the initial guess on
temperature distribution, the fewer the number of iterations required.
Dusinberre suggests if the final temperature distribution is difficult to
predict, it is usually worthwhile to solve the problem first using a
course network. The initial temperature distribution for a finer network
is then based on this solution. Upon solving the problem, if desired, thé,-
isothermal field can be plotted by interpolation.

ASince the.iﬂeration procedure entaiis:a fixed repetitious.:
sequence of operations, the method éan be readily adapted to digital com-
puter computatioxi. internal heat generation can be handled by the itera~
tion method by including the heat generation term in the heat‘balange

t

used to derive the working equation,

33

The method of squaring”™ can also be used to solve the Laplace

i
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and Poisson equations in two dimensions. The basis of this method 1is
identical t& the iteration method; the procedure differs in that the.
final tempefatures are obtained by a process involving differences which
is used to modify the initiél guesses of temperature. The advantageiof‘
the method is speed of solution. This method can also be programmed for
a digital computer.

b) Relaxation Method

For the purpose of the method, equation (18) is writtea as
ty + 13 Tty +‘ts - 4t, = R, a residual which of course must be zero
" at the solution. As for iteration, the first step for the relaxation
method is to assume a temperature for each node. The initial residuals
are calculated. The\procedu;e then is to adjust the temperatures of the
various nodes so as to make the residuais zero everywhere. Thé sequence
of the relaxation is arbitrary; as a general rule, the larger residuals
‘are relaxed first., The amount of temperature adjustment at any stage
is based on the relaxation pattern, i.e. for the Laplace equation in'two
dimensions using a square network, from equation (18) it can ge seen
that a change of one unit of temperature at t, changes the reéidﬁal by )
7k, whereas the_same change in temperature for any one of the adjacent

i

nodes causes a residual change of only tl. In general, the re?axation
pattern for the nodes near the boundaries will be differentg %nd depend
on the boundary conditions. As with iteration, the better thé initial
guess, the sooner the solution is reached. Experience is ne?éséary in
order for the method to be used efficiently. Over-relaxatidn‘éérly_in

the procedure is often sdvantageous in redueing the time fér solution.
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The relaxation method is bestbknown as a method for solvihg
the Laplace and Poisson equations in two dimensions. The method can be
extended to three-dimensional problems, however the procedure becomes
complicated due to the additional two(or four) relaxation possibilities.

It is generally easier to use the iteration method for this case.

3.2.4 Steady State Gfaphical Solutions
The only graphical method of any importance is the freehand
flux plot used to solve two-dimensional steady state problems. This
method was described and discussed in Section 3.1.2. a) iii).

3,2.5 Heat-Balance Integral Method

'The heat-Baiance integral method for solving one-dimensional
transient problems is included in this section for two reasons - it is
semi-numerical and approximate; the latter due both to a finite-difference
approximation and an assumption regarding the temperature profile.

'

The basic method is illustrated using an example given by '

Goodman’~ in which a semi-infinite slab at uniform temperature (To), is
subjected at the surface x = O to a constant heat flux (F) starting at

T =0,

SURFACE (% =0)

7 /l/ SV AV A A AR B G N
B I LTEMP | | B3
R N eROFILE ‘ w B>
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The boundary condition is

ot _
k 'é‘;{ 'x_____o = «F for T >0
From equation (2), for W= 0 and @ = Eg—. , the governing equation is
‘ P
N d
ot b fortT>0and § >x >0,

OX?'/" aT

~

where & is the thermal layer and a function of time. The concept of a

~thermal layer is analogous to the laminar boundary layer thickness in

convection heat transfer, eSccept that the thermal layer thickness increases

with time. At any time, for x > & the slab remains at its original
temperature since there is no heat conduction beyond x = $ . The heat-
balance integral is obtained by multiplying both sides of the heat con-

duction equation by dx and integrating over the thermal layer, i.e. |

5 ¥y g , i
O’JO a}{z dX - '5';_' d.x ° ° ° ° ° ° . ° ’c (20)

.

~ In order to solve this equation, the shape of the temperature profile

within the thermal layer is assumed to be represented by a s\ec{ohd-degree

polynomial in x, i.e.

t = a+ bx + ¢x’, hence

5]

L b + 2cx.
oxX ; Lo

From the boundary condition, %‘x—‘o = - -E- = b,

Also % _s = 0 since there is no heat transfer beyond x = &.

S, b+ 286 =0 = 'FIE + 2c6, whence ¢ = S

k5




60

Now t = To at x=§, hence
2
T, = a+bd +cé ora = T =bd ~¢cé?
_ g JES _EE _ g ,EE
= Tt -3 To ¥ 5 -
o fp +EEY LB, 4 F o
St o= (T°+2k)-kx g ¥

(Note, the coefficients a and ¢ depend on S and hence on time).
Using this edpression for t,

L8

[ tdax = T & +
Jo o

Also, using a finite-difference approximation for the change of slope of

. =2
the temperature gradient, the average %xgt'- over the boundary layer is:

o D N I
%7 av | § | ¥x x=% ox x=0 [

Wt 2t ot ot ot
[ ad (™ — - m— = - — = B
| ?a'?dx~“[ax‘;<;s 5 b0 Y0 = ¢

=~

o

. ot _
since 3= |x= ¢ = 0.

Substituting into the heat-balance ‘integral ( equation (20)) giyes

F _ 3
ot \ 6k ‘

B P T
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The surface temperature at any time is givén by

F&
2k’

T =T + x =0
[o]

s
=1 +5 (62

Goodman points out this solution for surface tempefature is
9% in error compared to the corresponding analytical solutio@. This error
can be reduced to 2% by using a third-degree polynomial in X to approxi-
mate the temper;ture profile.

The heat-balance integral method appears to offet éodd accuracy
coupled with solutipn times comparable to analytical methods.{The method

35

is relatively new and still under development. Yang”~ outlines an improved

integral procedure,

3.3 Analog Methods _ -

‘The solution to a heat conduction problem by an énéiog méthod
involves the measurement of variables in a system which obey; én equation
indentical in form to thét which governs the heat conductiénijlthough
several non-eleétric analogs (hydraulic, soap film, etc) hév; been used
io solve the heat conduction equation, only eleciric analogsjwill be
considered since these are by far most extensively used due éo their
gpeed, accuracy and ease of construction and operation. The éeneral tech-
nigue, following selection and programming of an appropriate?analog Sy Se
tem, is to impose analogous boundary/initial conditions and %eaéure or
record the‘pertinent electrical quantities. An important feature of the
electric analég method is‘thélease at which boundary/initial condipions

!

and/or the equivalent thérmal diffusivity can be varied in the handling of
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transient heat conduction problem. Hence if desired for the purpose of
design optimization or other reason, the solution to a problem can be
readily investigated over a range.

3.3.1 Steady State Problems

Unidirectional steady state heat conduction problems are best
solved by analytical methods; however, a simple thermal-electric anaiog

exists which on occasions is useful for heat flow computations. The -

£l

equations

q = (_‘E{L_.> (ty~tp) and’ Olm's law, I = (-1-) E, are similar; the analogous
Xa=Xy : R

quantities being:
1) (t, - ta) and E (potential)

2) q - and I (flow)

3) (Eiﬁi—fi) and R (resistance)

Two and three-dimensional steady state heat conduction problems
with or without internal heat generation, under conditions already men-

tioned, form respectively Poisson and Laplace equations. In a much -

broader sense, the Laplace equation governs fields having no internal
excitation, whereas the Poisson equation pertains to fields with distri-

buted internal excitation. The Laplace equation in two dimensions, for

example, describes the vélocity potential in two-dimensional irrotational
flow of an ideal fluid, and the two~dimensional distribution of electric
potential in a region of constant resistivity. The latter of Eourse‘fo;ms

the basis for the electrical continuous type geometric analog.

The dry paper type of field plotter, commonly referred to as the
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analog field plotter, is a very useful tool for solving two~dimensional
Laplace problems having intricate geometries. The required apparatus .
consists essenﬁially of a DC power supply, voltage divider, high sensi-
tivity null detector and marking stylus. The general procedure is to
draw the geometry to scale on Teledeltos paper (a conducting sheet having
uniform resistance and thickgess characteristics), paint (silver, copper,
etc)‘in the boundary lines, and apply an electrical potential across the
opposing boundary strips. If temperature is the main interest, specific
‘isotherms can be plotted using the stylus-voltage divider-detector cir-
cuit. Alternatively, it is more usual to plot the isothermal field ueing
equel increments of temperature (potential) drop. The flux plet described
in Section 3.1.2. a) iii) can be completed by sketching in the heet flow

lanes, thereby rermitting evaluatlon of the shape factor and hence the

heat flow for the problem. Shape factors may also be determlned dlrectly36

by comparing the voltage drop across an unknown shape to thétgfor one of
keown shape factor. |
The Poisson equation in two dimeusions can also be eelvea by
the analog field plotter by employing a change of variables Whgeﬁ trans-

37 g

forms”' the Poisson equation ¥2t = ¢ into a Laplace equation R?zt'l= 0.

The transformed boundary conditions are fairly difficult to apbly but

are manageable.
!

McDonald and N1k1foruk3 estimate the limit of accuracy for

the conducting sheet analog to be about 2 per cent. The wet type of con-

tinuous medium, i.e. the electrolytic tank, is capable of eveq better

accuracies. Using the same basic procedure as fer the analog field plotter,
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the electrolytic tank can be used to‘solve two-and certain three-
' dimensional steady state problems.

3.2.2, Transient Problems

The two main electric analog methods for solving transient

heat conduction problems are the resistance - capacitance (R-C) analog

1

computer and the electronic analog computer. Both systems perform by're-
placing the continuous medium by lumped networks which is equivalent to

using a finite-difference approximation.

a) R-C Anélog (Beuken Model)

The analog can be shown by considering the one-dimensional
transient equation (diffusion equation) replaced by the following partial

finite-difference equation:

- + = L—)—- :“tl
——— o ] ° : ° ® L] * L] < 21

The geometric subdivision iogether with the analogous R-C network is

illustrated in the following éketph. ‘

I .
0 & KR o i - v ’ - ’\/\/\/\/\/\-————-—-‘ :
ey ;kfwoosn
¢ : S ‘ C, %
MODEI’\\\\‘\ZQ 3 I ST TR il?

N

According to Kirchhoff's current law, the electric potential in the
vicinity of node 1 is:

v - Vl VQ' - Vl x dV1 s . R : * -




Hence for Ro = .3 = R,

av,

VO - 2V1 + VB = R01 dT ® ° ° °

... - (22)

which is analogous to the temperature equation. The capacitor is the
analog of the heat storage capacity of the element of material, while

the resistors represent the thermal resistances; b
. o (ax)® Ax) .
i.e. RG—s 2K = (EX [(Ax A) pCp]

Similar analogs for two-and three-dimensional transient heat cenduction
can be devised using R-C network339. |
A transient heai condnction problem can be programmed for an

R-C network analyzer by choesing scale factors which permit suitable
capacitor.end resistor settings (or selection) and establish the relation
between network time and problem time. The initial and boundar& conditions
establishing the voltage range, are applied; and the transient voltages
at the various nodes are recorded; In addition to truncation errors due to
the finite-difference approximation, R-C nefworks are subject to errors

due to capacitor leakage and inpui-output equipment.

b) Analog Computer (Differential Analyzer)

The finite-difference approach for analog computer simuletion
is necessary due to the fact the analog computer can continuously integrate .
with respect to only one independent variable at any given time. Eqnefion

(21) rewritten as

o T : : :
tl = mg Jo (to - 21’:1‘ + tg) dr o ® . ° ° ° ° (23)

forms the basic operating equation.




schematic.

the phase of the input.
. : a( )
'sing tne differential operator, o - dT‘ =
. - G4 ’ N . .
i, = = = Cpkeq - € ) since i,
negligible current. Now e,
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¢ menner as equations (22)

ed since &) represents
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employing a coefficient setter is as follows:

!

As for the R-C analog, programming a transient heatjconduction
problem involves the use Qf‘apprOpriate time scales, and ‘the sélectiqn of
scale factors relating computer and problem variables. A wide ?ariety of
transient problems can be handled, including periodic temperature boundary
conditions. The size of the problem that can be handled by any particular
analég computer depends on its number of amplifiers. Other thaﬁ errors
due to the discretized model, the accuracy of an analog computér depends-
on the quality of its components. Amplifier drift is a typical sourée‘
of error. Freed and Ballisho estimate the accuracy of typical heat cpnduc-
tion solutions to be approximately 2 to 3 per cent.

To summarize, there is little doubt that analog methods #ré
capable of solving heat conduction problems in an efficient manner wi%h
accuracies within normal engineering requirements. Although usually:‘.
reserved for the more complex heat conduction situations, analog methods
also compare favourable with analytical and numerical methods for the
solution of routine problems. Both analog field plotters and electronic
analog computers are available Qommercially. These devices may of course
be used to solve problems in other fields. Under certain’circumstances,

~the design and construction of a special purpose-analog system:may be

i
|
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warranted. A number of schemes, both electric and non-electric have been

41

reported in the literature. For example, Paschkis '~ describes a combined
geometric and network method for solv1ng three-dimensional tran51ent heat

flow problems (continuous r331stance with lumped capacitors).

3.4 Experimental Methods

Heat conduction%éitﬁations arise occasionélly for which the
required solution cannot bé*obtained with sufficient accuracy by the
methods already ouﬁlined.‘Forithese cases, it is necessary to use experi-
mental methods in order to‘deténmine'the required information. In genefal,
the solution to a heat conduction problem is obtained experimentally only
as a last resort due to reasons of cost and time.

Two methods are’distinguished for the experimental investiga-
tion of a heat conduction problem - the direct approach characterizgd by
field testing, or the more indirect laboratory type method involving the
use of models tested under controlled conditions. In design work, the
former generally consists of building an instrumented mock-up of a tentative
deéign followed by a series of 'worst condition', etc, tests. hlthough -
boundary condltlons may be simulated, actual service env1ronme£tal con-
ditions are usually used. If these conditions tend to vary at random, rela-
tively lengthy test periods are necessary in order that interpretation of
results be conclusive. Prototype testing is generally fairly éxpensive.

.1n fact, the nature of the problem may be such that the cost éf a full‘
scale replica is prohibitive.

Size reduction alone through the use of models tends to reduce

" the cost of an experimental solution. Other features bf the médel approach

A
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The subscripts M and P denote model and prototype respectively. L is a

dimension, and h is the surface convective/radiative heat

transfer coefficient. A1l groups are dimensionless. Equations (25) and
£ LG

i

o

(26) have been derived by Jakob = by the application of the principle of

similarity to unidirectional heat conduction. Using his procedure,

equation (24) may be derived as follows:

For steady state heat flow, the equations for two systems 1 and 2 are

el == ] =
and Fg - *X:*-ﬁ 5 . . . . o . . - ° N - -n<b>
“"\2
where F denotes the heat flux = g/A.

In order for the heat flows for the two systems to be similar, a number




of 'similarity factors must apply which can be written as

Fy = CgF,

X = Clg

By = G,

bxy = CxL\xa .

Substituting into equation (a) gives
P, - (ckkﬂ)(ctAta) .

F (C 0x3)

By comparing with equation?(bi;"i?f
F C
X

Substituting for the C's infihis equation gives

Fl — kl Atl AX,’

— TR — g e g

Fy K, Ay  Axy -

or

Fax) o ((EMx ),
kAL kAt
1 2
Now Fy = h s hence Flelj = 2lo - 4,
_ Ay ~ A L
where Iy = A,/Bx; is a characteristic length.

Similarly FpAx, = qp/Lg , and equation (24) follows.

10

i

'The model theory as outlined provides a means of exfrapolating
. . !

data from a calculation or prototype/model test, to new tempeﬁature con-

ditions. Brownhs in his paper describing model tests on a buried pair of

insulated pipes and on a basementless building, demonstrates the calcula-

- tion of heat flows for different steady state boundary conditions. The
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equations for both steady state and transient models also showgthe
material of construction is optional.

A main advantage of the use of models for transient heat éon—
duction investigations lie; in the choice of a suitable time scale
through appropriate selection of model scale and materials. For the frozen
dam=problem,.for example, assuming the éctual material is reguired due to
the phasevcﬁange aspect, a simple calculation shows that a l/BC scale model
will compress the annual §ycle into a test cycle of 9.7 hours.‘Depending
on the size of the dike, eveh this scale may be too large for practiqal
purposes, however the cycle time would appear to be fairly convenient even
though it would be necessary to opérate the model continuously for several
days in order to achieve steady périodic conditions. This is not to imply
that model testing of a froien dam is feasible. A curéory examinatioglin-
dicates a numbef of prdblems oﬁher than boundary condition simulatién; A
main purpose of such a study would be to examine aspects such as moisture
migration and its associated heaﬁ transfer - a phenomena which involfés
physical parmneters'other than those used for the heat conduction theéry
of models. The point nevertﬁeless remains that model tests would permit
the required data to be oﬂtéined in a relatively short period of time;com-"

pared to field tests.




IV FROZEN DAM HEAT TRANSFER STUDY

Feasibility studies recently carried out by ﬁanitoba Hydro‘on
the hydro-electric power development of the lower Nelson River, included
the possibility ot using frozen earth materials for the construction of |
damé in areas where permafrost exists. The Department of Mechanical
Engineering of the University of Manitoba with assistance from Manitoba
Hydro undertook a heat transfer study concerning the thermal aspects of
such structures.,Thé main part of this study consisted of solving a number
qf heat conduction prpblemé associated with the design and construction of
frozen dikes. The author was involved in the calculations for these |
problems; the solutions and the methods used fqrm the body of this part

of the thesis.

L..1 General Background

Permafrost research over a period of many years has:produced
a vast literature containing its own set bf terminolégyhu. Perﬁanently
frozen ground or Qenﬁafrost is any earth material in which a‘témperature
‘below freezing has existed continually for many years. The sur%ace-material
.wblch thaws annually is called the active layer. This depth of t“;w ' |

o

locates the permafrost ‘table. The thickness of the permafrost belt depends

on many factors including the geothermal gradient, i.e. heat;flow from the
Lo :

1nter10r of the earth. The condition of temperature equlllbrlum between
the permafrost and the surface, is referred to generally as thu thermal

regime. Thls term 1mplles steady periodic temperature condltlons. Other

i

terms used in connectlon with the frozen dam are self- explanatory. The

i
i

term "zone of alternate freezing and thawing' has been borroWeﬁffrom the
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Russian literaturebs.

Frozen earﬂh materials have much greater mechanical strengths.
than their thawed counterparts due to the cementing action of ice. The
actual strength of a given material depends largely on the ice content
anq the nature of the ice formations. The necessary structuraltstability
of a frozen dike can be achieved, in principle at least, giveniavsuffi-'
cient quantity of a suitable frozen material. Frozen soil is a;so imper-
vious to water flow, hence a natural grout curtain tends to be éutomatically
provided for protection against seepage through the dike foundation; A
number of serious problems arise in construction in permafrost areas due
to the destructive action of freezing and thawing, etc, however these
were of no immediate concern in the frozen dam heat transfer study.-

Approximately 45 ﬁer cent of the total land area of both Canada
and the U.S.S. R. is uhderlain by permafrosth6 which ranges frﬁm continﬁous

" in the north to discontinuous (sporadic) in the more southern %egions. The
Nelson River, flowing northeasterly between the northern end of iake
Winnipeg and Hudson Bay, is situated within a band of disconti@uous perma-
frost (Fig. 3)h6. The total power potential of the Nelson Riv;r is about‘>
5000 megawatts of which only 160 megawatts (Kelsey) has been éeVeloped. A

| number of feasiﬁie power sites'exist all along its 400 mile léngth.‘

;.2 The Frozen Dam Problem ‘ N

A theoretical solution of the thermal regime of ; potential
Nelson River frozen 'dam was not possible without simplifying‘gésumptions; A
review of literaturqltelevanﬁbtofthe{?ubjeép?iﬁdidaped the‘the}mél regime

would be influenced by a large number of complex inter-related;factors.
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Externally, several processes of energy and moisture exchange
would take place between the exposed downstream slope of the dike and its
environment. The main factofs in§olved here are air temperature, wind,
surface cover (type and colour), insolation, precipitation, condensation
and evaporation. Similar processes taking place at the interface of the
dike and the water reservoir would depend on water temperature and seepage.
Collectively, these processes defined the boundary conditions. |

"Internally, heat transfer;would take place by conduction‘and
through mass movement of water (and air) in the voids of the dike ma£érial(s).
For a given iype of earth material, the thermal diffusivity depends largely
on the moisture content and its phase. The effective (measured) thermal
conductivitybreflects heat conduction through the mineral skeleton and
. mixed mode heat transfer through pores of ﬁhe base material. From a broad
macroscopic point of viéw, the frozeﬁ or thawed material of the dike could
be considered as homogeneous and isotropic, hence equations (1) and‘(2)
would describe ‘the heat conduction for either phase.

On the other hand, the convective type of heat £ransfer acﬁom-
plished by‘mqisture movement (air ¢ontribution is usually negligibleh7)
was more complex. Apparently'moisture may move as either a liquid or a
vapour. Vapour migration déﬁends on temperature'differencesa8 since it

L7

entails evaporation and subéequent condensation. Martynov' ' points out that
heat transfer through vapour mlgratlon is negligible in soils with tempera-
tures below 50 °C. This then 1eft 11qu1d-phase moisture which could be
transferred by either flltratlon or mlgratlon. Both phenomena depend on -

pressure gradlents. Flltratlon 1s ba51ca11y due to grav1tatlonal force,

whereas migration depends on 1nternal forces (caplllary'effects, etc. )
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phase change. A zone of alternate freezing and thuwing (active
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Martynov calls this the' firmly

Based on itne preceding, the initial task was that of formulating

the Trozen dam (thermal) problem. Although there is no close relationship
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between permafrost distribution and air temperature’ , soll temperatures

in general have been closely correlated with alr temperature and summer
L9 T L -
sunshine . Pearce and Gold”~ measured temperatures and heat flows in
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ingly, 1T appeared not unrealistic

of air temperature (with

:

reservolr water temperature.
Investigations concerning the convective mechanisam of heat
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be small. In any event, since moisture migration
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aterials, pure conduction alone would take place in the frozen core

o the dike. Hence, since most of the dike was to be kept frozen (either

turelly or artificially) for structural reasons, heat transfer by water

movement would be restricted to the active layer and to a region of un-

known size adjacsent to the water reservolr. Accordingly, the thermal re-
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The resulting model for the frozen dam problem was fairly
straightforward. Annual air and reservoir water temperatures formed the
boundary conditions. Heat conduction only took place throughout. Consider-
ing a section through é long dike, the problem was two-diﬁensional |
transient with the complication of phase change. The steady periodic solu-
tion gave the thermal regime corresponding to a dike after several yearé
of service.,

The phase change problem ('problem of Stefan') is nOn-liqear
since the boundary between the two phases moves at a velocity which is
.dependent on temperature. As this boundary moves a distance dxf, a heat
quéntity Lpdx' per unit area is absorbed or released by the material which
must be provided or removed by conduction. Hence, for the dike, the

velocity of the phase change'boundary was given by:

dx' _ 1 - ot ot i:

dT pL kUF ax e Lo kF ax lx=x' s ° 3 . e . :u (27)
where L = Jlatent heat of fusion of ice,

and . p = weight of moisture per ft3 of soil (constant). f

General equations for the phase change problem have been formdlated and .

. . . .51 . :
several analytical solutions ex1st5 , however, these solutions are of no

152,53,34 5l

great practical importance. Numerica and analog’’ methods have

been used successfuliy. o : .

P
[
[

4.3 Program and Methods of Solution

The problems analyzed as part of the frozen dam h@étitr&nafer
study, were those oqtlined55 by G.E. Crippen and Associates;Lﬁdf on behalf

of Manitoba Hydro. All problems are described in detail in Seétion 4Le5

§
I
[
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i
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where the calculations are summarized and the results presented. The
first problem consisted of determining the themmal regime of a flat por-
tion of ground, i.e. the cyclic condition before construction. As for the
frozen dam problem, this problem was simplified to heat conduction in a
semi-infinite medium which was homogeneous and isotropic in both the
thawed and frozen phases. The problem was solved‘first using ambient air
temperature as the boundary condition, and later, using modified air
~ temperature to include insolation. The affect of the geothermal gradient
on the temperature reglme is discussed. The results substantiate the quall-
tative discussion of Lachenbruch et al56

The second problem was to determine the.isotherm field for a
homégeneous fill dike on a, steady state basis. The problem was firstj:
solved for a dike of constant thermal conductivity using an analog field
plotter. The basic solution for temperature for this case is given by
equation (95. The "analog method proved an efficient means of determinihg‘
the isotﬁerm field in the dike foundation region. The temperature

57

superposition principle”’ was used to includevgeothermal gradient in
obtaining the final solution. The results were checked vy uhe dénformal
mapping methéd. The SbhwarzéChristhfel transform was not manageable;
the partial solution obtained added little other than to indicqte the
shape of the adiabatic llnes. The ‘problem was finally solved using two
themal conductivity values, one for each phase, |

The third problem requlred the solution of the thermal reglme
of a homogeneous fill dlke under natural condltlons. The problem was

‘,‘~

solved for two sets of thermal prOpertles whlch were sufflclently 51m11ar
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to permit certain conclusion§ to be made based on a detailed comparison
of results. The solution to this problem was of prime importance. If thé
natural thermal regime was not suitable from the structural point cf
view (this turned out to be the case), sﬁfficient imbrovement might be
poss.ble through design or cooling. Problems 3 to 6 inclusive were con-

cerned with methods of increasing the size of the frozen core. Froblem

L (steady state) and Problem 5 (cyclic) through a design incorporating

-

[y

a layer of insulatlon-type material used as a 11ner for the water reser-
voir, and Problem 6 by operating air cooling ducts during the w1nter.
Conditions of 'no surface cover' were used throughout the
calculations. All steady periodic solutions were obtained using the
fiﬁite-difference numerical method. The iterations were carried‘out using
the University of Mhnitoba Bendix G-15D digital computer. The?computation
was set up in the usual manner as outliﬁed in Section 3.2.1. ihe frozen
state governed convergence. Phase change was handled by the’méthod of
'excess: degrees'58’27. Subdivision of the geometry was a mattér of com-
promise. On the oné hand, it was necessary to select a Feomefrlc network
sufflclently refined so that reasonable results could be obtalned how—“
ever, on the other hand the number of nodes and hence the amount of

arithmetic involved for a solution, ‘had to be kept within practlcal

limits. The maln con51derations were accuracy and com,uter spgce and

i

time, |

4edyo Data

L.b.l.

[

Reference Appendix 'A' and Fig. 4, data obtained for the: .

iy
1,




E o
om

Tvnn

R

HnaTe Ly

et el e hias)

jOS

R

adwl

~

T
jpes

P oyray
PROFAAVEE

GTS5?

K]
[V

00

|

¢
)
joN

€0

u

were

w

¥

N

4

1on

T

Y

Y,

04

o)

ture

O1LS

jsel

1o
ER R




81

a) For the purpose of simplification, density (p) was taken
to be constant, i.e. independent of temperature and not affected by phase
change.
b) The thermal conductivity (k) values should be considered
as mean values for the temperature ranges encountered in each specific
case., In general, the thermal conductivity of soil increases with tem-
perature, however the variation is relatively small particularly over
- the temperature range from -20 to,+25°F62. Since the thermal cpnductivity
of a soil depends primarily on the water content énd‘whethcr the‘soil is
frozen or unfrozen, the relationship betﬁeen kUF and kF was established
knowing the moisture content (12 1lbs water/ft® of material) ani the
thermal conductivity values for ice and water of 1.3 and O.BABQBtu/hr-
_ft—oF respective}y. The ratio of kp : kyp is 1.43. This may be c6mpéred
to a value of 1,54 used in one Russian paperl+5 for frozen dam calcula-
tions (soil not described). At high moisture contents the ther%al con~
ductivity of frozen soil is generally about 50% greater than;wﬁen in a
thawed statehg. | ‘ |
c) The specific heat (Cp) value for the frozen statelwas
determined based oﬁ Cp = 0.2 Btu/lbm-"F in the thawed staie;énd .

Cp(ice)/cp(water) 0.5." 

Leli3. N

' : . 1 | .

The heat of fusion of ice is 144 Btu/lbm. This gave a valve for

rexcess degrees' applied at!phase change of: o ‘

Latent heat = 144 x 0.1 x 120 _ 82E° to free#e‘

= Av. specific heat © 0.175 x 120

L

t

or thaw.
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holi b,

"For all calculations, phase change was taken to occur at 32°F.
In general, the average freezing point of a number of soils is close to
32°Fh9. For steady state calculations in particular, the affect of a'
frecuing point less‘than 32°F (dissolved salts in the soil, fine grained

soils, etc) is readily apparent.

4.5 Calculations and Results

This section consists of reporting on six problems. For each
problem, a statement of the problem is given, the basic finite~difference
data is listed, and the results are presented.

4.5.1 Cyclic Condition Before Construction (Problem 1)
(1-D Slab-Transient - No cover)

The problem was ﬁo examine a flat portion of ground having no
surface cover (vegetation;‘snow,'etc), with its surface exposed to at-
mOSphére (air temp. varieé;AB.C.'# 1), and to determine the vériatiEns

of ground temperature wit££@ep£ﬁ,and,time. The soil was assumed to'pé
. homogeneous and isotrOpidi;hgéacﬁ;phase. The geometry used for thelﬁélcu—

lations was as follows: . ' .

o) SURFACE
s / 7 ISR A S :
l i " L} : ;
: AT e e e - :
' ‘ . I
— —t— —_— i\’:, ‘
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£(x,7)
3? d .
i—%—} ] = 5% except at locations where phase change is taking place.

For the finite difference calculations, Mx = 3.2 ft.

AT 91.25 hrs (~ % week)
te = ty4

The total number of Ar periods in the annual cycle was 96 (one computer
channel). | 4 |

a) The.first calculatiou neglected solar radiation and the geo-
thermal gradient. Temperature to equaled'ambient air temperature at.all
times, The results are shown in Fig. 5 (curve 'A') and Fig. 6{

1) The permafrost table is located at a depth of 7?.6 ft.

Temperature to‘is the average temperature of a zone which inciudes the
upper 1.6 ft of\;aterial.,Phase change associated with this material was
neglected, however the thermal resistance of the path O - l;w%s'fully
recognized. The assumption to = B.C. # 1 generates a minor error in the
calculated temperatures; node temperature values are slightly?high The
error in the location of the permafrost table, however, is relatlvely
large. The calculated temperature values apply equally well to a geo-
metry consisting of nodes O‘ 1',etc. In this case the average convectlve |
heat transfer €oefficient (h) for both phases is 0.53 Btu/hr-f‘tz- F. This
value is considered somewhat low for a truly exposed surface subject to
natural convective with some wind Nevertheless the value 1e of reasonable

order of magnitude considering the heat flow magnitude and the fact that

the geometry during part of the cycle is effectively a cooled flat plate
N
|5 4
L
[

it
i3




O
(IO S

oy

(OSSR GRS

lole:

rmple,

ey ARSI

A,

"
r

o}

3

by
* ,‘!~
fig
N
=
e

ble

+ o
v

OST

chang

e
kg

Yo o
DnLsEe
e £
Al

we

<

I

o

o

3y
on

o]

o
(=
[ok:

Q)

A

Y

i

to b

T

i

o

ic su
i

A5
(9103
Wl

e

Tor




.85

possibly all) would be transmitted to this region to

of Q(geothermal)
influence the temperature regime in the upper 20 ft of ground. The affect,
however, is negligible. The geothermal gradient of 300/100 nm nay be con-
sidered equivalent to a heat flux in frozen soil of 0.0165 Btti/hr--ft8
along the x-axis originating from a source located beneath the slab, Com-
parison of this value with typical instantaneous heat flows involved in
the problem, showed Q(geothexmal) to be only a very small fraction
(~ 1%) of the normal heat flows, hence its affect is negllsible in most

areas. Note, influence will of course increase with

the Q(geothermal)
depth.

- ii) During the months of October to January inclusive, the
‘location of the permafrost table and ﬁhe temperatures of the soil above
the permafrost table are not affected by Q(geothenmal) due ﬁogthe t§m~
perature profiles involved. Q(geothermal) affects only the te?perature
of the permafrost belt. , ‘%-
111) During the remaining months of the year not covered above,

. 3 -1-‘ v
Q(geothermal) may affect the temperature regime, but only s¢1ghtly. The
temperature gradients reverse relatively quickly in the sprlnc of the
- year, hence Q(geothermal) is required to do considerable wanmlng at @epth
before it can be transmitted to influence the temperature of frozen
ground in the upper 20 ft. o

| ¢) The second calculation was the same as la) except solar

heatinb was included.

to (ambient air)\‘+ —-—iEQléEl s Sol-air temperature.




L8

The values used were h = 4 Btu/hr—ft”—oF, the absorptivity € = O.7,in
summer and 0.1 in winter (existence of snow or at least a frosted sur-
face was allowed), and QQsolar)'as per Appendix 'A' data. The values were
selected so as to represent the net radiative heat exghange - absorbed
insolation less surface emission. The net effect of the above was to in-
crease the mean annual aif tempurature from 23.h°F to 28.8°F. The result
is shown in Fig. 5 (cufve 'B'). The permafrost table is located at a
depth of 10.4 ft. This level is 2.8 ft. lower than the equivalent geo-
metry for the case of radiation negleuted. Actually, the lowéring of the
permafrost table due to solar heatihg by 37% of the original‘depth should
be considered as order of magnitude’only. The result may be'considerably
in ervror since,fbr.example, a relatively large portion of the absurbed
solar energy tsnds to be dissipated;by surface evaporation. Ncte, the
nature of Curve 'B' in covering the‘entire cycle makes the very existence
of permafrost questionabie. |

a) mhe condition of no surface cover made the above described
calculations unique. The location of ‘the permafrost table depends very
definitely on the surface uover, both as to type and colour, At Keléey, )

6L to

for instance,‘the depth of the permafrost table has been reported
vafy from 2 to 3 ft in areas of swamp and organic cover to 5 uo 6 £t on
the more exposed higher ground. | | | | ‘

e) The lower Velson River region lies within the band of dis=-
continuous permafrost where the distribution of permafrost ia Sporadic

The condition of no surface cover made the problem equlvalent to deter -

mining the maximnm depth to the permafrost table., Considering solar heat-
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at about 30 meters { ~ 100 ft), the percentage of frozen dike structure
above bedrock contained in a 60 meter wide section symmetrical about the
center line, falls to 30% for Case 1 compared to 46% for Case;2. The
above figures are based on the final isotherms resulting fromi'normal'
heat flow and the geothermal gradient. ‘ ‘

b) Conformal mapping (Section 3.1.2 a) ii) was used?to check
the results of Case 2 abo%e. The method and results are outliﬁed in 
Appendix 'B'. The pomplete§solution involves a Schwarz~Chriétéffel trans~
formation, however the method used (biésed temperature) is valid, aﬁd
a complete solution can be obtained by this method coupled wiih free-hand
flux plotting in the dike foundation region. 4 simplified flux ploty
neglecting foundation distortions is shown in Fig. 9. The frost liné
(t = 0°C) is located at @ = 98.5°.

c) The boundany‘conditions used for Case 2 are the actual'ﬁean
anmal temperatures for this préglem. The problem was solved next using
| ﬁhese boundary conditions and k = 0,7 for thawed soii and k = l.Otfbr
'Afrozen soil. The location of the frost line of Fig. 9 shifts towards!

’the water side since the lower conductivity material is situated oniﬂhis B
- side. The same heat flows throuéh each material, and for a flux plththis-
applies for each heat fiow lane. By writing equation (1) for each phése
and using a common flux plot, the location of the frost line was readily
established. The isothennjpositions for each phase were then determined
by the analytical method. The solution is shown in Fig. 10. The frost line
is located at § = 85.9° - a shift of 12.6° towards the water side.

L.5.3 Homogeneous Fill Dike - Cyclic (Problem 3)

The problem consisted of solving for the natural thérmal,regime
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of a dilke having the séme cross-section as that examined in the steady
state analysis. For a longvdike, dvue to symmetry, the heat conduction is
two-dimensional transient with phase change. The steady periodic solution
was required. ’ |
t = £(x,7,7).

k ok 3t . ‘o
0 {~5§; —;; = 5 except at locations where phase change‘ls

B

taking place.

A finite;diffegencenumerical calculation was set up and .
programued using the geometr& shown in Fig. 11l. The downstream lepo‘had
no surface cover, and solar heating was neglected. The dike surfaces
followed air and water temperatures as applicable. The node zones w§re ‘
2.5 m b& 7.5 m rectangles. The timeiincrement (A7) was 365 hours (~ 2 weeks)
- hence 24 AT periods in the annual cycle.

a) The problem was solved using the usual thermal prOperties
for the diko material (Cése'l), The results are given in Appendix 'C'
~and Fig. 12. | | |
| | b) The oroblem was'solved’using the usual thermal properties
except the k values (hence thermal diffusiv1ties) were halved (Case 2)
i.e. effectively p,C and moisture content were held constant while k was
varied by a factor of two. Toe o and k ratios were still the same . The
results are presented in Appendlx 'D' and Flg. 13.

c) The solutions were compared and the following points noted'

i) The general heat transfer pattern is the same for ooth

'

cases. Temperature extremes are greater for Case 1 than for Case 2/ due

to the hlgher thermal diffusivity of Case 1, i.e. the materlal is more

1
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sensitive to the boundary conditions. The general heat fransfer pzttern
is illustrated in Fig. l4. The heat flow process is rather complex compared
to the steady state concept of a uniform flow of heat from the ﬁater side
to the air side. Yeat transfer to and from the soil adjacent to the dowﬁ-
stream slope may be considered as being similar to the Probleﬁ 1 sladb |
calculation. This same basic pattern also holds for the regioﬁ beneath
" the water side surface. (Due to thermal lag, the temperature gradients
continued to changé over the period of approximately 6 months during which
B.C. # 2 remained constant at 32°F). The actual pattern for either one is
influenced by the existence'(and nature) of the other. For fixed boundary
conditions and materials, the interaction will be a function §f thé |
‘geometry. The third heat flux vector shqwn in Fig. 14 reflecté the basic
flow of heat from water side to air side. Note from Appendice§ 1Ct aﬁd

D' the locaﬁions of the 36°F and 3£°F isotherms (also the adboining,
320F) remain fairly constant throughout the annual cycle, indgcaﬁing an
. almost steady flow of heat into the frozen core. The central ?egion es-

- sentially floats in equilibrium between the two sub-surface p%enomena.

ii) The debth of the zone of alternate thawing éng‘freezing\

beneath the downstream slope averaged about 6% ft for Case l compared
to about 5 £t for Case 2.. Thls difference is due again to the blgher
thermal diffusivity of Case 1, i.e. deeper penetration. The above flgures
for zone depth may not be taken as absolute values. Accuracd ;n this
respect, as for Problem 1, required exact application of the boundary

l,

conditions. (A bettermapproximatlon for the actual depth 12 glven in
S : i s
Problem 6). Furthermore, there was some error in the relative depths for

e
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this zone since the inherent assumption of more or less instantaneous
thawing/freezing of the triangular zones of Nodes 56, .6k, eoc, affected the
location of the depth of maximum thaw in slightly different ways. Both
solutions indicated the depth of th&w increased going up the downstream
slope. Additionally; Node 89 zone thawed more than Node 8l zone as should
be the case since the heat transfer would approach the Problem 1 slab
calcuWation with increasing latera] distance from the dike.

iii) The boundary between permanently frozen and thawed‘soils
for Case 1 was closer to the dike cross-section centerline than for ' |
Case 2 by about 2 ft. The difference is considered essentially due once
again $0 the higher thermal diffusivity of Case 1. Following the summer
thaw, the active zone adjacent to the downstream slope refreezes and the
frozen‘core‘is sub-cooled,1The degree of sub-cooling depends on the
thermal sensitivity of.the’material. (The average temperature of the
frozen core in early Apr11 was 21 8°F for Case 1 versus 24.3 °F for Case 2).
Since the temperature gradlent is in the same direction across the frozen

.l core durlng the period of sub—cooling, the lower boundary tends to be

pushed out as the amount of heat extracted increases.

iv) The location of the boundary between permanently frozen
and thawed soils was practically flxed at depths below about 25 ft from
the peak of the dike, i.e. there was almost negllgible Shlft over the
annual cycle. For Case l, the total swing at Node 51 was about 7 1nches

decreasing to about 2 inches at Node 54. Thers was some ev1denoe of

underthawing of the frozethore, however this point could not be estab-

lished‘definitely. Further:calculations using a deeper cross-eection are

{
i
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" heat flow) when the tempeféiure.df a node tends to move through 320? '
from above or below. In genérél, the true temperature of a node is 32°F
when the node zone is about;h;lf frozen/thawed. If the node is 1eSsbﬂhan
half frozen, the true temperature exceeds 32°F, and vice versa. If ;
zone undergoes complete phase change, i.e. either freezes or thaws com~
pletely, the net affect on the temperatures of surrounding nodes as é
result of hbiding the tempefature of the phase changing node constaht'
at 32°F, is more or less negligible due to the compensating characteris—
tic. By the same argument, if a zone is about half frozen on the average
throughout the full cycle, the error is negligible since the variations .
are such that thaw equals freeze during the cycle. Unfortunatély, with
>a coarse geometry these idealized situations occurred rarely, and the
error present in the final solutions is now discussed in some%detail;

i)'Nodes 57,65, ete.

These nodes thaw partially and then refreeze. Since;thaw.equals
- freeze, from point of view of ﬁhase'change this region contaigs alternaﬁe
heat sinks and sources where sink equals source_in magnitude.fActually for = ilii
Case 1 (maximum £haw of node zones about 34%) the (ta - 32). T integrals‘,:

for thawing and freezing (T is the beriod for each) are very éearly eqpal

despite the fact that thé'true average temperature of a node’;uring

},freezing will always be less than 32°F, vhereas the true avex?gg node

temperature during thawing will.be apprdximately 326F when abéut LOE of

the node zone is thawed (allowing for steeper temperature graéienta’

above the frost line than below). Accordingly, the thawing énéthen freez-

ing action retards"heating and cooling respectively in more;offless equal

L X .
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degrees. Due to this action the actual application of B.C. # 1 loses some
of its significance since an éverestimate of thawing power is offset by
an equal overestimate of freezing ability. The total cycle for the nodes
under consideration consistéd of partial thawing and refreezing, and in-

cluded a period during which the region was completely frozen. Hence

conditions were biased in favour of an overestimate of the size of the fro-

zen core,

ii) Nodes 50 to 54 inclusive.

Sincé the frost line is on the air side of the center line,

" holding a node at 32°F in order to account for latent heat of fusion:re-
sults in a node temperature which is less than the true average tempera-
ture for the zone. The affect is that opposite nodes appear cglder'than
they should be, hence a sliéhtly distorted isothemm picture resulted. In
addition, é'latent heat balance was not possible since the heat inflc#
‘to the zone was overestimated while the heat outflow was underestimated
(thaw exceeded freeze). In view of the fact that the frost line throﬁgh
the subject area for Case 1 shifted only a very small amount gver the
annual cycle, phase change was neglected for the Case 2 calcuiation.

This procedufe‘§implified locating the frost line. The amount’of ffeezing
/thawing was estimated by the changes of node temperature over the cycle.

L.5.k4 Zoned Fil1l Dike - Steady State (Problem 4)

The problem was to investigate the affect on the témperature
regime of a dike due to a layer of insulation-type material used as a
liner for the water reservoir. For comparison purposes, the éike geo~
metry used was tLhe same as tor Problems 2 and 3, i.e. a 1 inéj slope.

The main dike material was a‘homoganeous fill having k valueé‘in the
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two phases of Kyp = 0.7 and kF = 1.0 Btu/hr-ft-oFf; The liner for the
reservoir wés arbitrarily chosen to be a 3 ft thick slab consisting of
a hypothetical insulating material of k = 0.1 Btu/hr-ft-°F.

a) For the steady-étate calculation (surfaces at - 4.8°%C énﬁ
+6.l°C,)a wedge was substituted for the uniform 3 f% ihick layer of in-
sulating material; the wedge having the same cross-sectional area asi%he
rectangulaflslab. This approaximation simplified the solution since thé
temperature drop across the wedge is constant.

b) The solution is the frost line is located at § = 75.1° -

compared to Figure 10, a shift of 10.8° towards the water side. The

temperature drop across the wedge of insulating material is 1.890?

L4.5.5 Zoned Fill Diké - Cyclic (Problem 5)

The steady périodic solution for the temperature regime based
on the geoﬁetry énd materials of Problem 4, was obtained by the finite-
difference method using the geometric sub-division shown in Figure‘ll.
Since the insulating material is located immediately beneath the water
reservoir, there is no phase change involved for nodes wh05§ zones con-
tain the insulating material. In‘addition, the zones of nodes 41, 33 eté, 
contain only a small quantity of the insulating material (x = 0.1), hence
for calculation purboseé, the p and Cp values for the insulating material
were taken to be the same as for thawed glacial till. |

a) The main results of the computation are as follows:

v i) The boundary between permanently frozen and thawed sbils
almost ‘coincided with the centerline of the dike - the mean frost line

over the annual cycle was located just to the left of the centerline asl
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L.5.6 Homogeneous Fill Dike - Cyclic - Cooling Ducts (Problem 6)

During construction of the dike, a network of horizontal pipes
is incorporated in the dike section., During the winter, cold air is
drawn mechanically through the ducts, thereby extracting heat. The duct
cooling system is sealed during the summer months. Using natural cold
winter air makes the method analogous to the technique of extended sur-
faces as contrasted to pure refrigeration. In principle, the plpln6 laj-
-out can be designed to provide the necessary frozen core size and the
degree of sub-cooling. |

The main objectives for the aﬁalysis concerning the use of‘air

cooling ducts, were to determine the feasibility of the method and to

provide data useful for the cooling system design. The cooling ducts used

were 3 ft. diameter steel pipes. The period or cooling duct operation was

5 months, November to March inclusive. Theoretically, an optimum cooling
period would exist for each particular duct depending'on location. In
practise, actual weather conditions would deviate considerably from the

mean values of B.C. # 1, hence a certain amount of day-to-day adjustment

of the cooling operation would be required either manually or automati- -

| cally. Hence this type of optimization was not considered since it 1is

best carried out on>the job.

a) The design for winter cooling as to number and location of

ducts (especially design optimizatidn) would obviously require at least
some 'trial and error! procedure. This aspect led to considerable pre-

1iminary work in deveIOping!a computer program which could be readily
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with a duct located in an unlimited mass of soil using the geomeiry of
Figure 16.(Limiting temperature at the boundary was 32°F - the phase
change temperature at thé thawed front, and the maximum temperature for
the frozen core). No purpose can be served in describing the calcula-
tions in detail, hence only the main results are noted as follows:

i) The heat flux in the immediate vicinity of the duct is
apparently vefy much greater than the normal heat flux. The calculation
from vwhich the data used later was extracted, indicated the insiantaneous
heat flow rates half way through the period of duct operation (mid-
January) were such that the normal heat flux in the vicinity of Node 43
of Figure 11 (Problem 3, Case 1) was only 2% of the duct heat flux at
the éurface of the duct and about 63% of the duct heat flux at a rédius
of h%.ft from the center §f #He duct. This comparison gives at leasﬁ some
ordef of relative magnitqde %.the'true comparison for the purpose éﬁ hgnd
should of course have beeplbeiweén the heat flux due ﬁo the heat extfac-
tion power of the duct aﬂdithe.heat flux due to the water reservoif with
the duct in position and‘oéefating.

ii) There is e?efy indication that the duct zone enters'é
new period of cooling operation at a temperature very nearly%32°F./Follow-
ing 5 months of cooling duct operation, calculations showed phe duct zone
temperature would relax itself to 32°F within a period of abdut 3 nmonths
- this without the benefit;of the warming influence of the water regervoir,

d) The wvalue for héff (a iumpéd thermsl resisbance composed
of the convéctive heat transfer coefficient and all miécellaneous ﬁhermal '

resistances associated with the duct proper) used in the duct calcula--
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4tions wes by no msans negligible and had to be given due consideration.
In erriving at a realistic value for heff’ the following factors were
considereds

i) Numerous theoretical equations and empirical correlations
are availaple to predict the convective heat transfer coefficient for the
inner surface of the duct. These equations indicated an 'h' value of
very nearly 4 Btu/hr-ft’-oF based on an alr flow of 1500 ft/miﬁ and using
properties at -3.8°F average. | |

ii) The calcuiapions.for the duct zone assumed the cboling

medium (air) to be ‘at the actual ambient air temperature. In practise,

with a suction system, the average temperature of the cooling medium would

be approximately actual air temperature less half the air temperature
rise. The allowable air temperature rise is a variéble; the value for
‘ Atair is likely to be established as a compromise between desifed duct
length and the pAVCp (Btu/hr-°F) product based on a knowledgevbf the.

average heat extraction rate per unit length of duct, i.e.

~(Btu/hr-ft of duct)av x length of duct (fe)
Bair T PAVC,

Since V is likely to have a value of approximately 1000 to 2000 ft/@in,
the pAVCp value is relatively large. Accordingly, even with frictiohgi
heating, Atair is likely to be of the order of a few degrees only.;i{
Nevertheless, these considerations indicated compensation in the fofm of

. a suitable fictitious thermal resistance was in order to effectively re-

duce the cooling air temperature by a small amount.'
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iii) A large contact resistance could exist between the duct
and the surrounding dike material. The themmal conductivity value for air
at the temperatures of this problem is about 0,013 Btu/hr-ft-oF, hence

the ratio k to k(air) is 77. There is no literature readily

(frézen soil)
available regarding the contact resistance between a buried pipe and soil.
" (The situation is usually reversed in buried pipe applicaﬁions, i.e heat
loss to be minimized, and use of insulation yields an insulation resis-
tance whlch is large compared to the combined soil and contact re51stance)
At any rate, the design of the coollng system would have to be such so as
to ensure a reasonably good thennal bond between the ducts and the 3011
since otherwise, in the llmlt a hlgh contact resistance would tend to
undermine the whole purpose: of duct coollng. The use: of extended surfaces
(corrugated pipe, fins, etq) appears advantageous in this respsct. ‘In
" view of the preceding, they&aiue for heff was somewhat arbitrarily taken
as h_ = 2.0 Btu/hr-ft2-F. «

e) A calculation was carried out for a single duct located cen-
trally in the Node 7l zone. The geometries were as shown in Figures 15
and 16. The time interval. correspondlng to Figure 15 was 365 hours, the ;
same as for Problems 3 and 5. For Figure 16, Ax was 3 ft and AT was
60.8 hrs (1/6 of 365 hrs.). The duct zone temperature was thejaverage
temperature of the material within a redius of 6.17 ft. of the duct cen-
ter. The values for duct zone temperature are listed in Appendlx 1B,
This appendix also contains the boundary condition temperatures used in

this problem and Problems 3 and 5. The main results are shGanln
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Figure 17. The isotherm field at the end of January is given in Figure
18.

£) In order to fully assess the affect of the cooling duc£
operation, it was necessary to solve for the initial conditions. This
solution is equivalent to resolving FProblem 3, Case 1, using a new
geometry. The fesults are also indicated in Figure l?. The thicknessyof
the zone of altérnate thawing and freezing near the downstream slopé'was """
about 4 ft. This value is a better approximation of the actual depthfof
this active zone since the geometry permitted accounting for phase éﬁange
of more of the actual material near the surface.

g) For the final solution; the temperatures of nodes beyohd the
neighbourhood of the'ducp were very nearly identical with the initial
condition temperatures. The thickness of the active zone at the down-
stream slope remained essentially the same, however Node 86 froze an
additional 11%. Nodes 76,‘83 aﬁd 90 remained virtually constant through-
out the cycle at 33.0°F, 32.AOF and 32.1°F respectively. The thaw/freeze
variations for Nodes 67, 73 and 75 were surprisingly small, hence Figure
17 shows only the mean frost line. There is scme geometry error of‘the
type mentioned in Section 4.5.3 e) ii) which makes the calculation con-
servative in that the extent of frozen material surroundiné the dugt on
the thawed front tends to be underestimated.

h) Regarding the cooling:duct zone calculation, based on
hypp = 2.0 Btu/hr-£t? -OF a.nd kp = 1.0 Btu/hr-ft-"F, the average heat

extraction fOr the 5 month cooling period was about 10 Btu/hr per square

foot of duct surface. This rate produces an air temperature rise of about
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3.6 7° in 500 feet of duct based on a flow velocity of 15CC ft/min. The
maximum heat extraction rate was about 140% of the average and occurred
in early January. ‘This data on heat extraction rates is considered fairly
representative - inspection of the isotherm field of Fig. 1€ in the

‘neighbourhood of the duct together with other information indicated the
values will tend to be slightly_high due to the error resulting from the
use of the symmetrical model.?

i) In general, the ﬁsg'of this method of winter cooling'to'inf
crease the size of the frqzen §oge, aﬁpears to be definitely feasiblé.
The single duct calculatiéd'both‘demonstrates the effectiveneés of £hé
method and provides information as to duct spacing. The results shéw that
the duct (purposely positionea well 'into the original thawed zone) hés
the effect of blocking the reservoir heat flow, and is able to stana up

' to the summer thawing action. There is every indication that a string of

ducts could be used to hold almost any frost line within limits. Auxiliary

ducts located in the frozen core could also be used for sub-cooling
purposes if desired. Further calculations based on specific objectives

could be carried out using the computer program contained in Appendix 1F',.

L.6 General Observations and Conclusions

| Regarding the first problem, the thickness of the aétive layer
~ is known to have a strong dependence on surface cover. For thé 50il=-
" moisture gombination considered, th€1£hiékast active layer fér the lower
Nelson River region (corresponding to no surface cover) is estimated to

average about 8 ft over a period of several years. This result cannot be

i




exirapoiated to other conéitions. The heat flow pattern for the calculations
were such that ah increase in the water content of the soil wculd decrease
the depth to the permafrost table due to the phase change influence.'On

the other hand, the depth to the permafrost table tends to increase with

the thermal diffusivity of the soil. The themal diffusivity of a given

soil depends largely on the moisture content; for most soils, thermal dif-
fusivity increases with moisture content up to a maximum value and then de-

L9

creases ' . Similarly, moisture migration increases with increasing water

content to a certain level and then decreasesl+9

. The actual moisturg,con—
tent, therefore, appears to be a very important parameter in the location
'df the permafrost table.

The geothermal gradient has negligible influence on the thérmal
regime of the upper 20 ft of soil. Howéver, the geothermal gradient would
definitely have to be included in a calculation on a deep cross-section
such as for detsrmining the location of zero émplitude of the periodic sur-
face temperature. Such a computation would also determine the thiclkness of
tﬁe pernafrost belt since the distance from the point of zero amplitude
to the lower boundary of the permafrost belt, depends-simply on the valué'
of the geothermal gradient.

Concerning the dike calculations, it is first emphasized that
the steady state solutions {Problems 2 and L) have no real significance
in so far as detailed information relating to the actual problem is con-

cerned. The main reasén for this is that the boundary conditions are dis-

tinctly periodic in nature and the temperature field is time dependent.l
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Steady state anlysis of a problemvof this kind should be used only for
genergl comparison purposes such as progressively varying a boundary tem-
perature, geometry or thermallqonductivity ratio, and noting the changes
in the temperature solution. fhe actual solution for any particular con-
figuration will provide q@ali%aﬁivé data at best. The discrapancy’bé£w¢eu
the location of the boundary Eétween frozen'and thawed material of
Figures 10 and 12 supporté‘these conclusions. |

The primary solutiohs (Figures 12 and 13) of the two cases of
the natural thermal regime of‘a homsgeneous fill dike are fairly similar.
This suggests the solutions obtained may be used as a first approximation
for a Nelson River dike of any saturated homogeneous material having an
@ ratio of about 2. The thermal regime solutions, however, differ more in
detail. In this respect, the use of a high thermal diffusivity material on
the downstrgam slope of the aike to increcase the size of the frozen core
has considerable merit. The possible lateral increase in the size of the
frozen core is fairly limited due to the influence of the water reservoir,
hdwever, the vertical penetration was indicated to be gquite sébstantial.\

Phase change appears to be a very important factor in establish;'
ing the temperature regime of a frozen dike. It is probably sﬁbordinated
only by the boundary conditions. To simplify the situation for the pur-
pose of illustrating a point, as far as the bulk of the dike is coﬁcerned,
the boundary condition at (or near) the downstream slope consists of |
B.C. # 1 and 32°F (the phase change temperature), each effective over ap-
proximately hélf the cycle. For a given scil moisture content, the 32°F

portion is a function of B.C. # 1 in that the latter determinés the lehgth
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.o o} .. :
and position of the 32°F period. The phase change temperature therefore
enters as a common denominator in the solution of the thermal regime of

any dike.

The condition of no surface cover on the downstream slope of the

dike is fairly ideglized. The only improvement would be to place an in-
sulating layer on this surface during the summer moﬁths (possibly vege-
tation which is burned off in the aﬁtumn). The importance of fully
utilizing the downstream slope for cooling purposes warrants emphasis.
The large area involved is an indication of the available potential for
natural cooling. In or&er to capitalize on this potential, it is necessary
to reduce the summer thaw (plant growth, sun shades, etc) and provide an
exposed surface during the winter months (in particular, keep insulating
snow off the surface). Such conditions could be approximated through the
use of snow shedsé5'which have been used successfully in ce?tain Russian
designs. Under normal circumstances; the high insulating value of snow
compared to vegetation could foreseeable seriously affect the frozen core

of the dike by impeding refreezing of the active layer and sub-cooling.

The criterion for structural stability of a frozen dam as giveh'_

by BogoslovskyhB is that a minimum of half the dam section must be kept
permanently frozen. The requirement for a lelson River dike is still to
be established. Using the Fussian rule as a tentative criterion, the
results of Préblem 3 (Case 1) indicate the natural thermal regime pro-
vides conditions which aré below the minimum requirement. Artificial

means of increasing the size of the frozea core are therefore necessary.
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As already mentioned in conjunction with Problem 5, designing a dike with
an insulating liner on the upstream slope has fair possibility for this
purpose, however the main problem would be locating or developing an in-
sulating material which is suitable and available at reasonable cost. The
use of air cooling ducts appear to be a more practical method. There is
every indication that a frozen core comprising 60% or more of the dike
section could be achiecved v thout lifficulty through internal cooling
using netural cold winter air. One possible source of trouble might wéll
be detericration of the quality of the:tihermal bond between a duct and
its surrounding frozen soil due to cracking as the fesult of thermal
cyeling., |

A conceptual design for an internally cooled dike for the lower
Nelson River is shown in Figure 19. Available information for the Nelson
River region iné;cates a maximum depﬁh to bedroqk of about 100 ft. Extra-
polated calculations indicated four cooling ducts positioned approx;mately
as shown, would provide permafrost conditions to bedrock.

The temn ‘accuracy' as used in Section III refers té the devia-
tion of a solution to a given formulated problem from the exavt analytical
solution to the problem This usage of the term was gennrally contlnued
in Section 4.5. The main questlon then concerns the formulatlon of the
frozen dam problem. Just how closely the predicted thermal “eglme based
on simplified models, will approach the actual thermal regime’ ‘remains to
be seen. Due to the complexity of the real problem, model or field tests
appear to be necessary in order to perhitveven an approximate;answef to

{

the question of the true accuracy of solution.




V SUMMARY AND RICOMMENDATIONS

A purely mathematical approach is undoubtedly the most
efficient method of solving unidirectional steady state heat conduction
problems. The expressions for heat flow and temperature tcgéther wi@h
the numerical answers can almost always be determined easily and quickly.
In certain cases, such as a fin with a variable convective heat transfer
coefficient, a finiﬁe—difference approach may be superior.

For two-dimensional steady state problems involving single:
homogeneous materials and no heat sources, the analog field plotter pro-
vides an excellent means of obtaining a good engineering solution. This
method 1s especlally recommended for irregular geometries. The concépt of
a‘shape facto? for evaluating heat flow is particularly useful. Free-hand
flux plotting may be used to obtain a rough solution as a'first approxi-
mation, however investing any great length of time to obtain an accurate
solution defeats the main purpose of this method. The possible use of

conformal mapping should not be over-looked. This method can be extremely

powerful. As demonstrated byfthe simple example included in Section 3.1.2

o]

jilj), neat Ilow solutions fdr the transformed geometry may well bg'one—
dimensional. A mathematicgl éblution-for temperature using the produét
method i3 likely to be prgdtiéal only‘for regular shapes. This methpd is
best used to-Spbt7chéck'ﬁgéfaééﬁfacy of a. flux plot.

FEither numericaliiﬂeration or relaxation is suggested for two=-

a * y l' » -
dimensional steady state problems involving heat sources and/or hetero-

geneous materials. There is little to choose between these twé methods

i

i
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on treoretical grounds. The choice in practice depends on the nzture of
the problem and personal experience.

For three-dimensional steady state problems, if the shape is
fairly regular, the possibility of using existing published data22’23
should be investigated for at least an approximate solution for heat {low.
4 solution for temperature»distribution may be possible through the
principle of superposition. For composite structures , the problem is
pest tackled by numsrical iteration. The ¢iectrolyiic tank or pronotyﬁe/
model tests constitute the only other practical alternatives.

The choice of method for a one-dimensional transient problem
depends mostly on the nature of the required solution. If the depth of
.penetration of the temperature disturbance versus time is of prima%y
interest, the heat-balance integral method offers falr accuracy and
speed. In general, if only specific temperature information ié required,
the analytical method is preferred since it is capable of yielding exact
results quickly. Similarly, chartsl9’2o can be used for quick solutions
but less accurate results. On the other hand, if general température
field variati;ns are required, a solution by the finite-diffefence
mumerical method automatically contains a complete set of temperature
values for discrete points at uniform time intervals. Interpqlation in
space and time is relqtively‘simple. If graphical data is deéired, the
Senmidt plot is the obvious choice. The qualitative festures o this
WELOL,, IOWEVEY, are parﬁially of fset by the necessity of ha%iﬁg to

translate the graphical resulis to numerical data. This alsojapplieé to

i
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an analog computer solution which would provide continuous temperature
variations with time for discrete points of the geometry.

The finite-difference numerical method is exceptionally versa-
tile in accommodating non-uniform initial conditions, unusual boundary
conditions, variable thermal properties, phase change, etc. Combined with
a digital computer, this method is capable of solving a wide range of two-
and three-dimensional iransient problems. As illustrated in the frozen
dam heat transfer study, a steady periodic solution can be oblained by
iteration. In general, if accuracy is especially critical or if the prob-
lem cannot be formmulated adequately, model experiments or field tests
are necessary. The outstanding feature of the model method'is the cholice
of a suitable time scale. The analog computer also permits selection of
a convenient time scale. Since the number of amplifiers available limits
the number of nodes; the analog couputer is best used for qualitative
anzlysis of transient probléms involving more than one independent space
variable. As already mentioned, the main advantage of electrical analog
simulation liés in the ease at which problem parameters can be varied in
order to investigate the solution to a heat diffusion problem over & )
range for design work or performance studies.

For engineering purposes, the method of separation of variables
to obtain an analybical solution is more or less limited‘to two indepen-
dent variables, For steady state problems, simple expressions can often be
derived for heat {low. Thé cguations Lfor temperature for both steady and
unsﬁéady state nroblems ére uspaily more difficult to evaluate. A ;Qn-
siderable amount of qualitati&eyihformatiqn can ofﬁen be deduced by eX=

.




“111

amining the ecguations themselves. Solving the eauations to provide
numerical results may however be tedious and time consuming. In some
cases the use of a digital computer for this purpose may be warranted.
For such cases, the finite-difference numerical method is probably Just
as economical,

The key to successful application of the finite-difference
‘numerical method lies in the use of a digital computer. The method is
easy to program. The program can be checked by spol checking the coﬁputer
results using a desk calculator. Type-out can be arranged to suit. For
example, in the dike computation, a 'profile' type-out was used to
facilitate interpretation of results. For an iteration procedure, conver-
gence can be assisted by the computer Operator if desirea.

Heat conduction problems encountered in engineering work méy
range from a simple calculation of the steady state heat loss‘through a
plane wall to a problem concerning re-entry kinetic heating of an ablative
nose cone of a space vehicle. For any heat conduction problem of even
moderate complexity, probably the most important part of solving the
achual problem consists or formulating the problem. The accurécy'of.the
data available for solving the problem has an immediate direct bearing on
the accuracy of the final solution. Boundary conditions are u%ually diifie-
cult to apply exactly. Approximations may be necessary regarding contact
resistance, internal heat generation, etc - for example, consider heating
due to eiponential attenuétion of gamma rays. No purpose can gé garved

in further generalizing on the matter of formulation since every problem

!
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is unigue. The main point is that approximations and simplifying assump-
ions are invariably necessary in formulating a problem, and these in
turn generally have more affect on the trve selution accurscy than thc

method used to solve the heat conduction model.
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TABLE 1

BOUNDARY CONDITION DATA

APPENDIL T o

Mean iMonthly

Mean Honthly

Approx. Average

Air Tenperature Water Temperature Insoclation
(°F) F) (Ly/day)™

Jan - 16.6 32 75
Feb - 8.6 32 180
Har, + 2.8 32 320

Lpr + 20,9 32 450
say + 36.9 36 500

Jun + 5064 57 515
Jul. + 59.0 66 500
Aug. + 56,0 66 360
Sep. + Lh.2 57 225

Cct + 32.0 Ll 140

Nov + 10.0 33 75
Dec. - 6.7 32 50
Year + 23.4 43

(-4.89C)

"1 1y = 3.68 Btu/ft?

(6,10)
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BOUNDARY CONDITION AND DUCT ZONE TEMPERATURE DATA

TABLE 2

‘Note: For actual temperature (°F) subtract 100,

Period Ending . Water Air Duct
Jan. 15 132.0 82.5 107.6
30 " 8l ol 107.9
Feb, 15 " 88.9 110.7
30 " 94.0 113.1
Mar. 15 " 99.0 116.2
30 " 10646 119.3
Apr. 15 " 116.0 127.9
30 " 125.9 130.7
May. 15 " 132.0 131.6
30 140.0 141.7 131.8
Jun. 15 155.0 148.0 131.9
.30 159.0 152.8 132.0
Jul. 15 164.5  159.0 "
30 167.5  159.0 "
Aug. 15 167.5  157.5 "
30 “16L.5 0 154.5 "
Sep. 15 161.0  147.0 "
‘ 30 153.0 141.5 "
Oct. 15 147.0 134.2 "
30 141,00 129.8 "
Nov. 15 134.0 11445 122.2
30 1320 105.5 118.9
" Dec. 15 L 96.5 113.6
30 " 90.0 110.4
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- Data

1800 =

0700 to 072k inclusive - t  data (Appendix 'E')
0725 to 0749 inclusive - t_ data

0750 to 0774 inclusive - t, data

0775 = 0.0890;}‘UF R

0776 = 0.6440 B

0777 = 0.1695 ¢

0778 = 0.3220

0779 = 0.1292

0780 = O.LBBZ} /T |
0781 = 82,0  to freeze/thaw

0782 = 132,0
0783 = 2,0 g
0790 = Nsides

0791 = Miscellaneous

0792 = SF/T

0800

il
w

It
[42]

0900

1500 =

b
=

1600 =

= [l

1700 =

=
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