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Abstract

Automated unit test generation has been extensively studied in the literature in recent

years. Previous studies on open source systems have shown that test generation

tools are quite effective at detecting faults, but how effective and applicable are

they in an industrial application? In this thesis, this question is investigated in two

phases. In the first phase, I empirically investigate the effectiveness and applicability of

existing automated unit test generation tools and techniques in an industrial financial

application known as LifeCalc which is a life insurance products calculator engine

owned by SEB Life & Pension Holding AB Riga Branch.

In the second phase, I focus more on the software characteristics of financial

application domain. In this domain, many legacy applications exist as a collection

of formulas implemented in spreadsheets. These legacy code, at some point, will be

migrated to more modern development environment. However, migration of such

code to a full-fledged system is an error-prone process. While small differences in the

outputs of numerical calculations produced by the two artifacts are tolerable, large

discrepancies could have serious financial implications. Therefore, in this phase, I

introduce a novel specialized search-based unit test generation technique that seeks to

uncover the deviation failures in the migrated code automatically.
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Chapter 1

Introduction

Software testing is an essential part of software development processes to assure the

quality of software systems. Developers typically underestimate the required testing

effort, and therefore developer-written tests are generally not comprehensive [6]. To

overcome the challenges of manual test generation, automatic techniques and tools

based on different approaches have been introduced (e.g., [18, 22, 41]). Techniques

such as random testing [22, 41, 42], search-based testing [1, 15, 26, 37], or symbolic

testing [7,20,21,54] can effectively generate test inputs automatically. For instance,

search-based approaches [38] use techniques such as genetic algorithms to transform

software testing problems into optimization problems, where the objective of the test

generation process is implemented by a fitness function that guides the search.

In order for developers to adopt these tools, it is important to provide an under-

standing of their capabilities and the quality of the tests they produce. A common

way in the literature to evaluate generated test suites is by measuring their code

coverage (e.g., [16]). However, code coverage as a measure of test effectiveness has

1



2 Chapter 1: Introduction

been challenged by several recent studies (e.g., [23, 27]). Alternatives are to evaluate

the ability of tools to detect real faults (e.g., [17,46]) or artificial faults (e.g., mutation

analysis [19]). Another shortcoming of empirical studies on automated test generation

tools is that they only focus on open source projects. Evaluations on industrial

systems (e.g., [16]) are still rare, possibly because they require a level of maturity of

the underlying tools that is difficult to achieve for research prototypes. Consequently,

there is a need to provide further evidence of the capabilities of automated unit test

generation on industrial systems.

This thesis consists of two main phases: 1) The aim of the first phase of this thesis is

to evaluate the existing automated test generation techniques on a relatively complex,

production ready financial application known as LifeCalc, owned and developed inter-

nally by SEB Life & Pension Holding AB Riga Branch. I selected a search-based test

generation tool (EvoSuite [18]) and a random test generation tool (Randoop [41])

for experimentation, and delivered the following concrete contributions in the first

phase of this thesis:

• I describe the results of an experiment using 25 real faults of the LifeCalc

industrial application to assess the effectiveness of automatically generated test

suites in terms of detecting real-world faults.

• I analyze the undetected faults in LifeCalc in order to guide future research on

automated test generation tools.

• I provide general lessons learned from the application of the automated unit test

generation to industrial software.
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The experiments with the LifeCalc application reveal that EvoSuite detected

56.40% of the faults, and Randoop 38.00%. A closer investigation of the undetected

faults shows that 97.62% of them depend on either “specific primitive values” (50.00%)

or the construction of “complex state configuration of objects” (47.62%), and this

can guide future research towards improved techniques for detecting such defects. My

interactions with the developers of LifeCalc reveal several aspects of the test generation

research prototypes that inhibit a successful technology transfer from academia to

industry, which can guide testing researchers to achieving impact in practice.

2) In the second phase of thesis, I focus on special characteristics of the application

under test. In this phase of this study, I target the financial applications, in particular,

which are mostly programs to calculate different financial formulas. Spreadsheets were

traditionally used in financial corporations to perform these complex calculations. For

many reasons such as demands on performance, precision, support for automation,

conformance with other in-house tools and frameworks, changes to a corporation’s IT’s

strategic plans, etc. a corporation may be forced to migrate from spreadsheets to more

generic solutions such as web-based services or applications. The re-implementation

of the legacy spreadsheet applications may, however, introduce faults. If such faults

cause the outputs of the calculations performed by the re-implementation to deviate

from the outputs of the calculations of the original spreadsheet — i.e., a deviation

failure occurs — then this could have serious financial implications.

Testing [45] is an important approach to identify such deviation failures, but finding

specific inputs that reveal deviation failures is a challenging task. In particular, in

financial calculations there can be a small acceptable and inconsequential deviation in
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the outputs known as tolerable threshold. The challenge thus lies in finding inputs that

produce deviations that are larger than a specified tolerable threshold. As discussed

in the first phase, automation is often used to support testers in challenging testing

activities.

However, a general limitation of automated test generation is that it relies on

the existence of a test oracle [5] that can decide whether the system is behaving

correctly for an automatically generated test input. This is particularly challenging for

complex applications such as financial applications, where it is difficult to determine

what the correct output should be for a specific input. However, in the case of re-

implementations of legacy spreadsheet programs, the legacy spreadsheets specify the

expected behavior, and can thus serve as test oracles. Therefore, in the second phase

of this thesis, I introduce a new automated search-based test generation approach that

aims to find tests that maximize the deviation failures between a given spreadsheet

and its re-implementation.

The main fitness function in my scenario is the output deviation of the root (top

level) formula’s return values in Excel compared to its Java re-implementation. I

refer to this approach as the Output-based Search Technique (OST). To improve

fault finding and to help localize faults, I also propose a novel spreadsheet-based

technique, referred to as the Spreadsheet-based Search (SST), which concentrates the

search on lower-level sub-formulas. The original motivation for my research came

from the company reporting a substantial amount of manual effort that had to be

invested to identify deviation failures in this Java reimplementation — since deviation

failures were typically missed by the developer-written unit test cases, and could only
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be detected by a series of expensive manual acceptance tests conducted by business

analysts.

I evaluate the proposed techniques using a total of 40 formulas with previously

known and unknown faults from two products developed by SEB Life & Pension

Holding AB Riga Branch. The first product, a financial calculator engine known

as LifeCalc, is a newly implemented life insurance and pension products calculator

engine written in approximately 80,000 lines of Java code. The second product is

called PensionPlanner, and is a pension funds calculator [29] developed using Java

technology stack with around 170,000 lines of code. These products are produced in

order to replace the legacy Excel spreadsheets calculators (see Section 4.3.2 for more

details about the subjects of study).

The empirical experiments with LifeCalc show that the top-level search-based

approach (OST) correctly revealed 46.67% of the deviation failures, which represents

a solid 21.67% improvement over a baseline of random testing and 10.01% over test

cases optimized for branch coverage. Using the advanced SST method, a further

23.33% of the deviation failures are detected. Finally, relaxing time constraints and

increasing the search budget led to 90% deviation failure detection. Applying this

approach on PensionPlanner, I also managed to detect three new deviation failures

that were not detected by the manual test cases.

The contributions of the second phase of this thesis are, therefore, as follows:

• A new search-based test generation approach, the Output-based Search Tech-

nique (OST), that aims to detect deviation failures.

• A modified fitness function that utilizes spreadsheets’ nested structure of formu-
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las, implemented into an approach called the Spreadsheet-based Search Technique

(SST), to improve fault finding and their subsequent localization.

• The evaluation of the proposed OST and SST approaches using 40 formulas

with real deviation failures (known and unknown), in two commercial financial

applications. As part of this evaluation I compare the success rates and actual

deviation values of my approaches with automatically generated test cases for

branch coverage of the Java code, randomly generated test cases, as well as

manual, developer-written test cases.

This thesis is organized as follows: Chapter 2 provides necessary background

information. Chapter 3 presents empirical investigation of the effectiveness and

applicability of existing automated unit test generation techniques which is the first

phase of this thesis. Chapter 4 discusses the second phase of this thesis which focuses

on the characteristics of financial applications. Finally, Chapter 5 concludes this thesis

and provides future directions.



Chapter 2

Background

As matter of fact, there are two major approaches in order to test a software

system. The first approach is the conventional manual testing in which it is not only

laborious but also time consuming and also it requires a lot of effort in order to test a

software thoroughly. Moreover, it is difficult in order to detect a fault in this approach.

The second approach is automated testing, this approach is not only requires less

resources but also it facilitates comprehensive testing of a software with minimal effort.

In this study, I focus on automated test generation techniques such as Random and

Search-based testing techniques in which I have provided the necessary background

information in this chapter.

2.1 Automated Unit Test Generation

In object-oriented programming, a unit test is a small, executable piece of code

that exercises a functionality of a class under test. While there is a wide range of

7
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techniques to automatically generate tests in general, the specific case of unit test

generation is mainly addressed by approaches based on random generation of call

sequences, search-based optimization of call sequences, and symbolic approaches.

2.1.1 Random Testing

Random testing [3] is perhaps the most basic and straight forward form of test

generation [12], as it consists of invocation of functions with random inputs. Guided

random testing is a refined approach that starts with random input data and then

uses some form of extra knowledge to produce further input data. One of the main

examples of this category is feedback-directed random testing [42]. Feedback-directed

random test generation enhances random test generation by incorporating feedback

collected from executing test inputs that is used to avoid generating duplicate and

illegal input data. This technique takes a set of classes as input and creates method

sequences incrementally. It iteratively executes new sequences and checks them against

general contracts. Sequences that violate the contract are considered as failing tests,

and sequences that pose normal behavior are treated as regression tests.

2.1.2 Search-based Testing

Search Based Software Engineering is an approach that transforms software en-

gineering problems into optimization problems [37], where the objective of the test

generation is implemented by a fitness function that guides the search. Among the

many meta-heuristic search techniques used for test generation, Genetic Algorithms

are perhaps the most common [37]. In a Genetic Algorithm, randomly selected candi-
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date solutions are evolved by applying evolutionary operators, such as mutation and

crossover, resulting in new offspring individuals, with better fitness values. An example

objective function for unit test generation is the whole test suite’s code coverage [15].

2.1.3 Symbolic Testing

Symbolic approaches represent execution paths through a program as constraints

on the input values. A common approach is Dynamic Symbolic Execution (e.g., [22]),

where the paths of a program are systematically explored by iteratively negating one

branch condition in a path constraint at a time, and using a constraint solver to

generate a new test input for that path. Most approaches of this kind target generation

of specific input data and require manual construction of test drivers. The PEX [49]

tool expects these drivers in the form of parameterized unit tests, and there are related

approaches that aim to explore possible sequences of method calls (e.g., [48, 52]).

These approaches are promising in detecting faults, Shamshiri et al. [46] has evaluated

the effectiveness of these approaches in detecting fault in open source applications.

Moreover, Fraser and Arcuri [16] conducted a comprehensive evaluation of search-based

generation technique on 110 open source programs and reported challenges they had

due to practical limitations such as environmental dependencies.

2.2 Test Oracles

Most of the current test generation techniques are incapable of generating good

assertions [46]. Assertion is a boolean expression that checks the behavior of program

at runtime. An assertion requires test oracle to evaluate the program output. As a
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matter of fact, most test generation techniques are able to generate test data but an

oracle is not always available for the generated test. An oracle [5] is being used to

ensure that the generated outputs are the correct ones. Without an automated oracle

the automated tests won’t save much time (compared to fully manual testing) due to

the human involvement it the test result evaluation phase of test execution.

A pseudo-oracle [11] is an alternative version of the program under test which

is produced independently, e.g., by a different programming team or written in an

entirely different programming language. Pseudo-oracle has been introduced by Davis

and Weyuker to test non-testable programs [50].

For instance, in the financial ecosystem, spreadsheets tools such as Microsoft Excel

are widely used and they are treated as development environments for non-professional

programmers [32] In situations like our case study, where the actual oracle is not

available the excel forms (pseudo-oracle) can be used.

McMinn [39] has introduced a novel pseudo-oracle by utilizing testability trans-

formation. Testability transformation is source-to-source program transformation to

make the program under test more testable [24,25]. Basically, the original program,

which has no test oracle, will be automatically transformed into another program with

the same functionality. Then the test cases aim at fining differences in the outputs of

the two programs.

In a recent work, Matthew Patrick et al. [43] utilized pseudo-oracles in their new

search-based technique for testing various implementations of stochastic models with

the intention of maximizing the differences between the original implementation and its

respective pseudo-oracle. They have used Kolmogorov-Smirnov tests to compare the
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distributions of outputs from each implementation and concluded that their technique

reduces the testing effort and also enables discrepancies, where they could have been

overlooked.

There are other approaches than pseudo-oracle to test programs without a test

oracle, such as Metamorphic testing [8, 56]. Metamorphic testing predicts future

outputs using knowledge of previous outputs and sets of metamorphic relations, which

are necessary properties of software under test. Metamorphic relations are properties

that aim to generate new test cases from existing ones [57]. These properties are

presented in a form of relations between inputs and outputs of the program, which

can be used to validate the correctness of the software under test [34]. For instance, if

the method under test is Sine function we know that Sine(x+PI)=-Sine(x). Therefore,

one metamorphic relation for Sine method can be adding PI to any test input x we

already have for Sine and making sure that the above property holds.

Metamorphic testing has been extensively studied in the literature [33, 40] and

several studies [28, 55] compared metamorphic testing with other approaches such as

assertion checking.



Chapter 3

An Industrial Evaluation of Unit

Test Generation

Automated unit test generation has been extensively studied in the literature in

recent years. Previous studies on open source systems have shown that test generation

tools are quite effective at detecting faults, but how effective and applicable are they

in an industrial application? In the first phase of this thesis, I investigate this question

using a life insurance and pension products calculator engine owned by SEB Life &

Pension Holding AB Riga Branch.

To study fault-finding effectiveness, I extracted 25 real faults from the version

history of this software project, and applied two up-to-date unit test generation tools for

Java, EvoSuite and Randoop, which implement search-based and feedback-directed

random test generation, respectively. Automatically generated test suites detected

up to 56.40% (EvoSuite) and 38.00% (Randoop) of these faults. The analysis of

results demonstrates challenges that need to be addressed in order to improve fault

12
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detection in test generation tools. In particular, classification of the undetected faults

shows that 97.62% of them depend on either “specific primitive values” (50.00%) or

the construction of “complex state configuration of objects” (47.62%).

To study applicability, I conducted a qualitative study to understand developer’s

expectations about the test generation tools and the generated test cases. This leads

to insights on requirements for academic prototypes for successful technology transfer

from academic research to industrial practice, such as a need to integrate with popular

build tools, and to improve the readability of the generated tests.

Followings are the concrete contributions of the first phase of this thesis:

• I describe the results of an experiment using 25 real faults of the LifeCalc

industrial application to assess the effectiveness of automatically generated test

suites in terms of detecting real-world faults.

• I analyze the undetected faults in LifeCalc in order to guide future research on

automated test generation tools.

• I provide general lessons learned from the application of the automated unit test

generation to industrial software.

This chapter is organized as follows. Section 3.1 states the experiment setup.

Section 3.2 presents results. Section 3.3 discusses lessons learned. Section 3.4 reviews

related work. Section 3.5 concludes the first phase.
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3.1 Experiment Setup

In this section, I describe the experiment methodology. The main objective of

this study is to evaluate the effectiveness of existing mature test generation tools, in

terms of revealing known real faults in an industrial application, and understanding

the existing barriers for practitioners when adopting these tools.

3.1.1 Research Questions

To achieve the mentioned goal, I have designed an experiment to answer the

following research questions:

RQ1: How effective are automatically generated unit tests in terms of finding real

faults? This question intends to assess the capability of two test generation tools that

are widely adopted in academia, in terms of revealing real faults.

RQ2: What categories of faults are harder to detect using the current automated

test generation tools? This question aims to categorize the faults that have not been

detected by any of the examined test generation tools.

RQ3: What major barriers do developers see when adopting automatic test gener-

ation tools? This question tries to identify some of the practitioner’s requirements

which are not currently supported by automatic test generation tools. (Due to resource

limitations I only consider EvoSuite for RQ3 )

3.1.2 Subject of Study

I have conducted comprehensive experiment on a life insurance and pension prod-

ucts calculator engine known as LifeCalc, which is a standalone software component
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owned by SEB Life & Pension Holding AB Riga Branch. LifeCalc is written using

the Java technology stack. Its implementation started in early 2015 and it has been

released to production in early 2016. LifeCalc’s development team consists of 5 devel-

opers, 2 testers and 1 business analyst/project manager. LifeCalc is a medium-sized

application that consists of complex critical calculations with plenty of business rules

that are implemented using complex conditions, which makes it challenging for test

generation tools. LifeCalc’s stacks comprise of front-end (client) and back-end (core,

services) modules with approximately 80,000 LOC.

LifeCalc is built in a nightly build using the Jenkins [30] Continuous Integration

(CI) build management system, and all tests are executed during the nightly builds.

Moreover, builds are also triggered on demand if there are any critical bug fixes

that need to be deployed to production. In these cases, there is a restricted subset

of important tests which will be executed to test the critical functionalities of the

application. The company’s developers provided us 25 faults from their issue tracking

system. They selected these faults randomly, trying to include examples from different

times throughout the life cycle of the project. I studied the commits in the version

repository that contained the fix for the fault until I understood them well enough to

know how to replicate them by writing manual unit tests. For each fault, I extracted

the faulty and fixed program versions, such that they differ by a minimal change that

demonstrates the isolated fault fix.
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3.1.3 Fault Analysis

Based on the fault descriptions, I distinguish between the following two types of

faults in the dataset: 1) Specification-based faults and 2) Exception-related faults.

The first category requires knowledge about the expected logic (specification) vs. the

existing implemented logic. This means that, in most cases, a JUnit assertion is

required to detect the fault in the faulty version of the program. The second category

consists of faults that can be detected without knowing the exact logic of the code. In

other words, the unit test’s failure is due to an unhandled exception thrown in the

code under test, and not about a failing assertion in the test.

In the rest of this section I explain these categories with an anonymized code

snippet example per category (the anonymization is due to the agreement with SEB

Life & Pension Holding AB Riga Branch for any kind of publications).

Specification Faults

Among the collected 25 faults, I identified five as specification faults because

the expected business logic was not implemented correctly. For instance, the code

snippet from LifeCalc-b23, shown below, is one of the Specification Faults, in which

the assigned developer was retrieving tariff values yearly, whereas tariff values in the

properties file are defined on a monthly basis, and thus param1 needs to be multiplied

by 12. One way to detect this fault is to have an assertion in the generated tests on

the fixed version to check the value of param3.
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1 public double faultyMethod(int param1 , int param2) {

2 ...

3 double param3 = 0.0;

4 // Faulty Statement

5 - param3 = Double.valueOf(PropertiesReader.getProperty("mt.m[" + param1

6 + "]")) * Math.pow((1 + param2), -1);

7 //Fixed Statement

8 + param3 = Double.valueOf(PropertiesReader.getProperty("mt.m[" + param1

9 * 12 + "]")) * Math.pow((1 + param2), -1);

10 ...

11 return param3;

12 }

Listing 3.1: Example of a specification fault in this study

Exception-related Faults

I identified 20 faults in this category in the pool of 25 faults. I encountered several

types of common exceptions such as NullPointerException (NPE) (thrown when an

application attempts to call methods on a null object instance), ArithmeticException

(thrown when an exceptional arithmetic condition has occurred) and NumberFormat

Exception (thrown to indicate that the application has attempted to convert a

string with invalid format to one of the numeric types). However, most of the faults

from this category were due to NPEs. The following code snippet from LifeCalc-

b18 shows one of the exception throwing faults: An exception is thrown due to

an invalid parameter value (property key) of the getProperty method. Therefore,

PropertiesReader.getProperty(invalidKey) returns a null value, which then

causes the program to throw a NPE on conversion of the String to a Double object.
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1 public void faultyMethod(ObjectX objx , String param1 , String param2) {

2 ...

3 if(param1.equalsIgnoreCase(Enum1.P_012.getValue ())){

4 // Faulty Statement

5 Double rate = Double.valueOf(PropertiesReader.getProperty("rate_" +

6 param2 + "")) * objx.getObj ().getPaymentFrequency ();

7 }

8 ...

9 }

Listing 3.2: Example of an exception-related fault in this study

3.1.4 Automated Unit Test Generation Tools

As mentioned earlier, LifeCalc is written in Java, and therefore I had to consider

test generation tools for Java. For the Java programming language, there are mature

tools that can generate JUnit test cases using random testing (e.g, Randoop) and

search-based testing (e.g., EvoSuite). However, for symbolic approaches, usually

research prototypes in Java only generate test data, and not JUnit test cases [10]

(i.e., testers have to manually write test drivers for those symbolic tools for each

single class). Therefore, I only selected tools from the categories of random unit test

generation and search-based unit test generation. Randoop [41] and JCrasher [9] are

instances of random unit test generation tools. I decided to use Randoop as it is one

of the most used random test generation tools in academia, and it is still being actively

maintained. EvoSuite [18] and TestFul [4] are representative of evolutionary test

generation tools which apply search techniques in order to optimize test suites based

on various coverage criteria. EvoSuite was chosen as it is actively being maintained

and extended, and ranked first in recent SBST tool competitions (e.g., see [14]).
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Randoop

Randoop [41] is one of the most stable random test generation tools, with easy

to follow instructions to get it up and running in short time. Randoop implements

feedback-directed random test generation, by generating sequences of method invoca-

tions for all the classes under test. In other words, it builds test inputs incrementally,

and then the newly created test inputs extend previous ones. As soon as these test

inputs are created, they will be executed and the results collected from these executions

will be used to guide the generation of new ones. Randoop can be used for both

fault-detection and regression testing. For regression testing, the tests contain asser-

tions that capture the current state. For fault detection it checks various predefined

or custom contracts, and the violation of any of these contracts indicates an error in

the tested classes. Randoop requires the user to provide a list of classes under test.

For the experiments in the first phase of this thesis, I had to manually identify a list

of classes that are the dependencies of the faulty class, for each of the 25 analyzed

faults. I used all the default settings, except for the stopping criterion, for which I

used two configurations: The default setting of 3 minutes, and an increased duration

of 15 minutes.

EvoSuite

EvoSuite [18] is a search-based unit test generation tool for Java that uses

a genetic algorithm to evolve a set of test cases with the intention of maximizing

code coverage. EvoSuite initially generates random sets of test cases and then uses

evolutionary search operators such as selection, mutation, and crossover to improve the
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generated test cases. This evolution process is guided by a fitness function calculated

based on various coverage criteria [44]. EvoSuite then performs optimizations with

respect to the defined coverage criteria on the test suite with the highest coverage.

Ultimately, it enforces sanitization checks to ensure the generated tests are valid and

executable. In this experiments, I executed EvoSuite on the faulty classes with the

branch coverage criterion as fitness function. I applied the same stopping criteria (i.e.,

3 and 15 minutes) as I used for Randoop.

3.1.5 Test Generation Scenario

I generated the tests on the fixed versions so that the automatically generated

JUnit assertions are based on the correct implementations. Generating tests on the

fixed version is useful in the context of regression testing, and allows us to simulate

whether the specification faults can be detected in such a testing scenario. For

exception-related faults I could have also generated the tests directly on the faulty

version, since throwing of exceptions can be used as an automated oracle. In other

words, the current experiment design makes more sense in the context of regression

testing, where one needs to create a regression test suite that passes in the current

version, to be used to guard from future faulty changes. However, as the faulty and

fixed versions differ only in terms of the fault fix and the interfaces are identical,

I expect that results on exception-faults would be similar, if tests were generated

directly on the faulty version.
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3.1.6 Experiment Procedure

The overall experiment procedure is as follows (See Figure 3.1):

• First, I extracted both fixed and faulty versions of LifeCalc based on the identified

commit IDs provided by SEB Life & Pension Holding AB Riga Branch.

• Then, for each fault, I generated test suites using both, EvoSuite and Randoop,

on the fixed version.

• To determine whether a fault was found, I executed all generated test cases on

the corresponding LifeCalc faulty version. These executions were done manually

using the Eclipse IDE. A test case is considered to detect the fault if it fails

on the faulty version. This failure can be due to an exception in the executed

classes or a JUnit assertion failure in the tests.

• In order to accommodate for the randomness of the test generation tools, each

tool was executed 10 times for each fault. RQ1 uses two set ups for test

generation budget (3 and 15 minutes), which will be discussed more in the next

section.

• I collected all the statistics from the execution logs and manually verified the

validity of the failing test cases, in order to avoid possible false positives [46].
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Figure 3.1: The overall experiment procedure

The measure that I use to assess the effectiveness of the test suites is the percentages

of the runs (how many out of 10) that detected the fault. I also aggregate these by

averaging over several versions (faults).
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3.1.7 Qualitative Study Procedure

Our participants in the conducted study were the five developers of LifeCalc with

different level of expertise, varying from 1 to 8 years of working with Java technology

stack, and familiarity with the application code base. The participants were provided

with a qualitative study package (Appendix A) containing sets of tasks to perform

and their respective guidelines.

Based on the analysis of the fault effectiveness experiment, I gave the participants

tasks such as executing the generated tests, and trying to debug and locate a fault (I

gave each developer three faults of different level of difficulty, as determined in the

RQ2 analysis; see Section 3.2.2). In addition, I asked them to write a manual test that

covers the same faulty code as a generated test to better understand how generated

tests relate to developer preferences. They were also provided with comprehensive

guidelines including all the necessary commands to run and generate tests using

EvoSuite.

After performing these tasks, the developers answered a questionnaire containing

seven demographic questions, four questions using Likert-scale to rate aspects of tools

and generated tests, and six free-text questions. See the discussion in Section 3.2.3 for

details on the questions.

3.2 Experiment Results

In this section, I discuss the results of the experiments and answer the research

questions presented in Section 3.1.1.
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3.2.1 Effectiveness of Automatically Generated Unit Tests

RQ1: How effective are automatically generated unit tests in terms of finding real

faults?

The results of test suite executions are summarized in Table 3.1. I first consider

the 3 min. scenario: The first observation is that both tools can find some of the

faults, and are unsuccessful at detecting the others. The average fault detection rate

is not particularly high (50.80% in EvoSuite vs. 36.80% in Randoop). However,

the variation of effectiveness for different faults, which I can see in Table 3.1, is a more

interesting observation. There are cases (like LifeCalc-b4, LifeCalc-b7, etc.) where

none of the tools can detect the fault even in ten executions. On the other hand, there

are cases (like LifeCalc-b6, LifeCalc-b15, LifeCalc-b18, etc.) where every single test

suite out of the 10 per tool can detect the fault.

Given the results, one follow up question is “Can I improve the effectiveness of

the tools by allocating more search budget to them?”. To answer this question, I also

ran the experiment of RQ1 with the longer stopping criterion of 15 minutes. Note

that this experiment is not meant to be a thorough study on the correlation between

testing budget and effectiveness. The goal is just to have an idea on what can one

expect by adding extra resources to these tools. A more thorough study would be an

interesting future work. In total, 19 out of 25 faults were found. However, as the tools

are both based on randomized algorithms, these faults were not found in all of the 10

runs. On average, Randoop can find faults in 36.8% of the runs, whereas EvoSuite

in 50.8% of the runs. While increasing the search budget is useful for EvoSuite

(+5.6%), it had only a moderate effect on Randoop (+1.2%).
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Table 3.1: Fault detection rate of EvoSuite and Randoop for each fault over 10

executions per fault

Fault EvoSuite (%) Randoop (%)
3 min 15 min 3 min 15 min

LifeCalc-b1 40 +0 0 +0
LifeCalc-b2 30 +10 10 +0
LifeCalc-b3 60 +0 30 -10
LifeCalc-b4 0 +0 0 +0
LifeCalc-b5 100 +0 90 +10
LifeCalc-b6 100 +0 100 +0
LifeCalc-b7 0 +0 0 +0
LifeCalc-b8 20 +10 0 +0
LifeCalc-b9 80 +0 40 +10
LifeCalc-b10 0 +0 0 +0
LifeCalc-b11 60 +0 10 -10
LifeCalc-b12 0 +0 0 +0
LifeCalc-b13 70 +30 90 +10
LifeCalc-b14 50 +10 0 +0
LifeCalc-b15 100 +0 100 +0
LifeCalc-b16 30 +20 0 +0
LifeCalc-b17 80 +20 90 +10
LifeCalc-b18 100 +0 100 +0
LifeCalc-b19 60 +20 70 +10
LifeCalc-b20 60 +0 20 -10
LifeCalc-b21 0 +0 0 +0
LifeCalc-b22 0 +0 0 +0
LifeCalc-b23 100 +0 70 +10
LifeCalc-b24 100 +0 100 +0
LifeCalc-b25 30 +20 0 +0

Average 50.80% +5.60% 36.80% +1.20%

RQ1: Existing tools can potentially detect most of the faults (19 out of 25 were

detected at least once). But there are also some faults (6 out of 25) that are never

found within the explored search budgets.

Given the variations in the results per fault, it would be interesting to see what kind

of faults are easier to detect and on which faults the tools have difficulties. Therefore,

in RQ2 I explore this question.
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Table 3.2: Percentage of detected faults per category over all executions using Evo-

Suite and Randoop, + indicates the fault detection rate is increased

Fault Category EvoSuite (%) Randoop (%)
3 min 15 min 3 min 15 min

Specification Faults 46 +4.00 34.00 +2.00
Exception-related Faults 52 +6.00 37.50 +1.00

3.2.2 Analysis of Faults Not Detected

RQ2: What categories of faults are harder to detect using the current automated

test generation tools?

As discussed in detail in the fault analysis section (Section 3.1.3), I categorized the

faults into two types: 1) Specification faults and 2) Exception-related faults. Table 3.2

shows the percentages of faults that are detected in each category. The results show

that, as expected, the detection rate is higher with 15 minutes search budget. However,

looking into the Exception-related Faults I can see that there is quite a variation

between the effectiveness of test suites on different faults (Detailed summary of all

execution shows the fault category for each faulty version of LifeCalc presented by

Table 3.4). Therefore, I next try to characterize the faults in the exception-related

faults category.

I look at the faults in this category in three subclasses: 1) Easy Faults (that are

detected by both tools in at least 80% of times, with 3 and/or 15 minutes stopping

criterion), 2) Hard Faults (that are detected at least once by one tool and are not

“easy faults”), and 3) Challenging Faults (that are never detected by either tools).

The next subsections describe these faults with anonymized code examples from the

industrial system.
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Easy Faults

In the Easy Fault category, the faulty statement does not require satisfying a

complex condition prior to its execution. In other words, those are faults that

do not require specific input data and they do not depend on complex conditions.

For instance, the following code snippet represents a simple NullPointerException

(NPE) in LifeCalc-b5 :

1 public void faultyMethod(ObjectX objx) {

2 if(! StringUtils.isEmpty(objx.getObj ().getLocale)){

3 // Faulty Statement

4 Double interest =

5 Double.valueOf(PropertiesReader.getProperty("interest.rate.A_" +

6 objx.getObj ().getLocale () + ""));

7 }

8 }

Listing 3.3: An Easy Fault

Detecting this fault requires the invocation of faultyMethod with an ObjectX

instance that has a non-empty locale attribute String with invalid value. As the

invalid property key interest.rate.A InvalidKey would be missing in the property

file, there will be a NPE when converting a null String to Double object. Table 3.3

shows the same results of Table 3.1 (for the exception-related faults only) grouped by

the fault difficulty categories. Of the Easy Faults 87.14% were detected by EvoSuite

and 91.43% by Randoop. Overall, in this category, EvoSuite found the fault in 61

out of 70 cases, while Randoop performed slightly better by detecting faults in 64

out 70 times. The following is a test case generated by EvoSuite for an easy fault:

1 public void test17 () throws Throwable {

2 FaultyClass faultyClass0 = new FaultyClass ();
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Table 3.3: Fault detection (%) variation over 3 and 15 minutes search budget in

different fault categories, + indicates that fault detection rate is increased while -

indicates the fault detection rate is decreased

Category EvoSuite (%) Randoop (%) Faults(#)
3 min 15 min 3 min 15 min

Easy 87.14 +10.00 91.43 +5.71 7
Hard 47.78 +5.55 12.22 -2.22 9
Challenging 0.00 0.00 0.00 0.00 4

3 ObjectX objx = new ObjectX ();

4 Object obj0 = new Object ();

5 obj0.setProdCode("012 _200");

6 obj0.setCoverSumLife (12);

7 obj0.setLocale("012 _200");

8 objx.setObj(obj0);

9 faultyClass0.faultyMethod(objx);

10 }

Listing 3.4: Generated Test Case for An Easy Fault by EvoSuite

In this specific example, the cases where the fault had not been detected was

due to the fact that a locale object was not initialized. Since there is a simple null

check condition prior to the faulty statement, the faulty statement was not covered.

Randoop generated, on average, around 14,500 test methods on each run for this

particular fault (LifeCalc-b5 ) while EvoSuite generated 18 test methods. Although

most of the methods generated by Randoop do not cover this fault, there is at

least one method that covers this fault. The following is a sample test generated by

Randoop that detected the fault:



Chapter 3: An Industrial Evaluation of Unit Test Generation 29

1 public void test4() throws Throwable {

2 FaultyClass var0 = new FaultyClass ();

3 Objectx var1 = new Objectx ();

4 Object var2 = new Object ();

5 var2.setLocale("hi");

6 var1.setObj(var2);

7 var0.faultyMethod(var1);

8 }

Listing 3.5: Generated Test Case for An Easy Fault by Randoop

Hard Faults

This category describes faults that are either surrounded by conditions which

require specific primitive values, or the faulty statement itself requires specific input

data. The mentioned primitive values are not only explicit inputs of the tests, but

also attributes of objects passed to the tests. The following code snippet shows a fault

from the Hard Fault category.

1 public List <Double > faultyMethod(int param1 , int param2 , String param3 ,

2 String param4) {

3 List <Double > list = new ArrayList <Double >();

4 if (param3.equalsIgnoreCase(Enum1.POSITIVE.getValue ())) {

5 for (int i = 1; i <= param1 * 12; i++) {

6 if (param4.equalsIgnoreCase(Enum2.LOW.getValue ())) {

7 // Faulty statement

8 list.add(i,Math.pow ((1+ Double.valueOf(PropertyReader.getProperty("inv_min"))) ,(

Double.valueOf (1)/Double.valueOf (12))) -1);

9 }

10 }

11 }

12 }

Listing 3.6: Example of a Hard Fault
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The faulty method contains an NPE in LifeCalc-b8. To detect the fault using the

generated tests, it needs to satisfy two conditions (lines #4 and #6) that require a

specific string input. Note that the two nested if conditions require test inputs that

can be extracted from enum values. Line #8 is the faulty statement in which the

property value of inv min is an invalid key in the properties file. This type of faults

may occur due to two reasons: 1. the program tries to get a value of an invalid key

in the properties file (the code is faulty). 2. The valid property key is missing in

the properties file (fault in the properties file). The second case happens because the

business analysts are able to change the property file values directly, and previously

there was no sanitization check in place to validate the properties files. Therefore, due

to human error, there could be properties with no or wrong values.

The Hard Faults category is where search-based approaches have the most advan-

tages (47.78% for EvoSuite vs. 12.23% of Randoop), because they can focus on

generating corner cases. EvoSuite found Hard Faults in 43 out of 90 executions

while Randoop only detected such faults in 11 out of 90 executions. The following is

an example of a test method generated by EvoSuite for LifeCalc-b8 which is a Hard

Fault. The generated input data is able to satisfy both conditions and detects the

fault. In the process of test data generation, EvoSuite has extracted the required

input data to satisfy both conditions in line #4 and #6 in the above listing from the

values existed in the enum.
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1 public void test2() throws Throwable {

2 ...

3 FaultyClass faultyClass0 = new FaultyClass ();

4 faultyClass0.faultyMethod (10,4,"positive","low");

5 ...

6 }

Listing 3.7: Generated Test Case for An Hard Fault by EvoSuite

On the other hand, Randoop generated approximately 12,500 test methods on

average per execution and none of the generated test methods were able to satisfy the

conditions, mainly because they did not provide the required test data. The following

is an example of a test generated by Randoop:

1 public void test352 () throws Throwable {

2 ...

3 FaultyClass var0 = new FaultyClass ();

4 java.util.List var1 =

5 var0.faultyMethod (1 ,2147483 ,"20160419 _7232","c$$u#");

6 ...

7 }

Listing 3.8: Generated Test Case for An Hard Fault by Randoop

Challenging Faults

The third category of faults I call Challenging Faults. In this type of fault, the faulty

statement is usually surrounded by complex conditions that requires constructing

complex objects that are populated with specific values. For instance, in the following

example, line #11 is the faulty statement in which getPaymentFrequency() can have

the potential value of 0 which causes an arithmetic fault of a division by zero. The

root-cause of this fault has to do with a new scheme for payment frequency that was
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denoted by value zero.

1 public List <DateTime > faultyMethod(ObjectX objectx , DateTime a, DateTime b)

2 {

3 ...

4 List <DateTime > list = new ArrayList <DateTime >();

5 Double a = 0.0;

6 list.add(0, new DateTime ());

7 list.add(1, a);

8 for (int i = 2; i <= Months.monthsBetween(a,b).getMonths (); i++) {

9 if(objectx.getCalcCoverList ().get("CoverCode").getPromilUWDate ().isAfter(b)

10 && objectx.getProdCode ().equalsIgnoreCase("ProductCode") && i==2){

11 list.add(i, list.get(i - 1).plusMonths (1));

12 // Faulty statement

13 a = (Days.daysBetween(a, list.get(i)).getDays () + 1) /

14 objectx.getPaymentFrequency ();

15 }

16 }

17 ...

18 }

Listing 3.9: A Challenging Fault
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Basically, the execution of the faulty statement requires satisfying a complex

condition (line #8), which in turn requires specific data. It is considered complex

since a randomly initialized map is unlikely to contain such specific keys and values.

Once the outer condition has been satisfied, the faulty statement also demands a

specific data which in this case, getPaymentFrequency(), is zero.

Based on the definition, the Challenging Faults are difficult for both tools, and

were not detected at all. The following is a sample test case generated by EvoSuite

for LifeCalc-b4. It constructed an empty object and set some of the basic attributes

(i.e., setProdCode()) properly, but it failed to initialize and set a relatively complex

List, getCalcCoverList(), which is a map containing object Cover:

1 public void test10 () throws Throwable {

2 ...

3 FaultyClass faultyClass0 = new FaultyClass ();

4 LocalTime localTime0 = LocalTime.now();

5 DateTime dateTime0 = localTime0.toDateTimeToday ();

6 LocalTime localTime1 = localTime0.plusHours (27);

7 DateTime dateTime1 = localTime1.toDateTimeToday ();

8 ObjectX objx = new ObjectX ();

9 objx.setProdCode("017 _200");

10 faultyClass0.faultyMethod(objx , dateTime0 , dateTime1);

11 ...

12 }

Listing 3.10: Generated Test Case for An Challenging Fault by EvoSuite

Randoop also partially constructed the input data, but because var1 creates

a new ObjectX, both var1.getCoverEndDate() and var1.getBirthDateInsured()

return null. Given that var5 and var6 are null, the fault is not covered. The following

is an example of a test generated by Randoop for LifeCalc-b4 :
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1 public void test474 () throws Throwable {

2 FaultyClass var0 = new FaultyClass ();

3 ObjectX var1 = new ObjectX ();

4 DateTime var5 = var1.getCoverEndDate ();

5 DateTime var6 = var1.getBirthDateInsured ();

6 var1.setDiscount ((java.lang.Double)10.0d);

7 var0.faultyMethod(var1 , var5 , var6);

8 ...

9 }

Listing 3.11: Generated Test Case for An Challenging Fault by Randoop

In order to detect faults from the mentioned categories, tools are required to

improve their coverage and propagation, which means not only the faulty code needs

to be covered, but also it has to be executed with a set of specific values in order to

fail. I will discuss this in more detail in Section 3.3.

Finally, I look at the results per category when I add extra test generation budget

to the tools. Table 3.3 shows the new results in +/- percentages. Increasing the

search budget did not facilitate the detection of Challenging Faults. On the other

hand, detection of Easy Faults increased by at least 5.71%, which can be due to the

fact that Easy Faults are detected if the faulty statement is covered, even without

requiring any specific input data or construction of complex object.

RQ2: Faults whose triggering requires generating input object data with complex

states are hard to detect.

Up to 56% of the faults have been detected by the test generation tools, but those

are mostly Easy Faults. I would like to understand the developer’s point of view

about the generated tests, specifically about the tests which failed to detect any fault.

Therefore, to answer RQ3 I conducted a qualitative study.
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Figure 3.2: Likert chart that demonstrates the difficulty of the tasks.

3.2.3 Understanding Pitfalls of Test Generation Tools

RQ3: What major barriers do developers see when adopting automatic test gener-

ation tools?

The main goal of qualitative study is to assess the applicability of test generation

tools and automatically generated unit tests. I gave the participants certain tasks and

asked them to answer the following questions (see Section 3.1.7 for more details):

1) How difficult was it for you to set up EvoSuite, execute the test suite, resolve

dependencies and read the generated tests? They rated all of above tasks relatively easy

except for the readability of the generated tests. In terms of building and resolving

dependencies, EvoSuite uses Maven [35]) which they found really useful by saying
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“... maven is definitely a plus point”. Figure 3.2 reveals some concerns about the

readability of the generated tests. As one of the developers said “... it is hard to

follow some of the generated tests”.

The developers next had to read the bug report and re-execute the unit tests again,

and try to debug and locate the bug using the given set of unit tests. Then, I asked

them to answer the following question:

2) How can the generated tests be improved? In general, the developers did not

like the generated assertions, as they said “... poor assertions, sometimes there is an

assertion and sometimes there is not? The assertions are mostly checking for simple

stuff like list size and so on.”. In addition, they also did not like the generated input

data. They described the generated data as “ ... set of extreme value test data with a

correct datatype. They are not meaningful but complying with the method signature

datatype”. Some of the generated tests are readable but they are covering easy faults

based on the fault categorization. On scale of 1 to 5, 1 being not helpful at all and 5

being very helpful, the developers rated the generated tests as sightly (4 developers)

to moderately (1 developer) helpful.

I then asked them to manually write unit tests that cover the same code as the

given generated tests (the rationale is that the following responses would not be purely

subjective, and also this would help us to have a proper understanding of the tests)

and answer the following questions:

3) Describe what you like better about manually written tests than generated tests?

Developers prefer the test data (e.g., primitive values) used in the manually written

tests. In addition, in manually written tests, the assertions are meaningful and useful
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unlike the generated ones.

4) Would you keep the generated unit tests? They mostly answered no to this

question. They specified that generated tests are not as good as manually written

tests in terms of test data. In addition, either there is no assertion or if there is, it

is not validating useful data. However, it can easily be modified to become a useful

assertion. Finally, I wanted to find out their overall opinion about the automatic test

generation and identify the advantages and the pitfalls from their point of view by

answering the below questions:

5) Given your current infrastructure setup, how would you like to have automated

unit test generation framework integrated? They emphasized that it is important to

integrate these tools into their development and continuous integration (CI) environ-

ments. They said “ ... supporting Jenkins is a must”. In this case, EvoSuite provides

plugins for both CI tools (Jenkins) and development tools (IntelliJ and Eclipse).

6) What are the major barriers from your point of view in adopting automatic test

generation tools? Aside from assertions and test data that I mentioned earlier on,

they also reported several other issues, like inability of test generation tools to support

well-known, widely-used Java framework (e.g., Spring) and core components such as

dependency injection. This highlights the importance of supporting major tools and

frameworks.

RQ3: Assertions and readability of generated tests need to be improved. To be

embraced by developers, test generation tools need to support the major development

frameworks.
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Table 3.4: Summary of fault detection over 10 executions of EvoSuite and Randoop.
� fault is detected, � fault is not covered, � fault is covered but not detected.

Fault EvoSuite Randoop Fault Classification

LifeCalc-b1 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
AverageLifeCalc-b1 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b2 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
AverageLifeCalc-b2 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b3 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
AverageLifeCalc-b3 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b4 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
HardLifeCalc-b4 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b5 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
EasyLifeCalc-b5 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b6 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
EasyLifeCalc-b6 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b7 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
HardLifeCalc-b7 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b8 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
AverageLifeCalc-b8 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b9 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
AverageLifeCalc-b9 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b10 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
HardLifeCalc-b10 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b11 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
AverageLifeCalc-b11 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b12 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
HardLifeCalc-b12 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b13 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
EasyLifeCalc-b13 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b14 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
AverageLifeCalc-b14 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b15 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
EasyLifeCalc-b15 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b16 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
AverageLifeCalc-b16 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b17 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
EasyLifeCalc-b17 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b18 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
EasyLifeCalc-b18 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b19 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
EasyLifeCalc-b19 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b20 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
AverageLifeCalc-b20 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b21 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
SpecificationLifeCalc-b21 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b22 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
SpecificationLifeCalc-b22 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b23 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
SpecificationLifeCalc-b23 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b24 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
SpecificationLifeCalc-b24 (15 Minutes) � � � � � � � � � � � � � � � � � � � �

LifeCalc-b25 (03 Minutes) � � � � � � � � � � � � � � � � � � � �
SpecificationLifeCalc-b25 (15 Minutes) � � � � � � � � � � � � � � � � � � � �
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3.3 Lessons Learned

Throughout this section, I discuss the challenges I faced in terms of tools setup

and interaction with the developers, and suggest technical improvements that can be

addressed by the test generation tools.

3.3.1 Tool Set up Challenges

One of the major challenges I faced during this experiment was setting up each

LifeCalc version with its required dependencies and ensuring its successful compilation.

I had to make sure all environmental dependencies, some of which contained sensitive

information, are mocked and available to LifeCalc.

As for experiments I used the command line versions of Randoop and EvoSuite, I

had to derive the right classpaths of the system under test. Given that one application

might have dependencies to many third party libraries, the manual resolving of

dependencies was an error prone task. Basically I had to check the tools’ logs

to determine which library is still missing. Then I would add those libraries to the

classpath to get a proper execution. For instance LifeCalc-b3 was dependent on Apache

Commons Lang, and when this library was missing on classpath, EvoSuite would

silently generate empty test suites. After disabling minimization (-Dminimize=false)

and enabling the debug (-Dlog.level=debug) mode in EvoSuite, I managed to identify

the missing libraries and re-executed all the experiments for this particular fault.

However, in retrospective, as the target application was built with Maven, I could

have used some of its EvoSuite’s plugins to derive the right classpaths and properly

setup all the needed dependencies. Note that EvoSuite does have a plugin for Maven,
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but it is not suitable for the type of experiments I ran in the first phase of this thesis.

Generally, the documentation of these test data generation tools could be extended

to explain how to use the command line versions on existing projects compiled with

build tools like Maven, Ant and Gradle.

Insight 1: The use of unit test generation tools on the command line requires

detailed understanding of the build infrastructure, and tool documentations are

currently not helpful in achieving a correct setup.

3.3.2 Suggested Improvements

Based on the results of the conducted experiment, the following are potential

improvements for the test generation tools:

Construction of Complex Objects

Since for most of the Challenging Faults the generated test cases failed to satisfy the

outer condition, due to incapability in constructing and populating complex objects,

one priority for tool builders should be to improve the construction and population of

complex objects.

Insight 2: 100% of the challenging faults remained undetected as none of the tools

were able to construct and populate objects with complex structure. More research

on how to solve this problem is required.

Generating Specific Input

In most of the Hard Faults the faulty statements are not covered as there is a

conditional statement prior to them that requires specific primitive data. There
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are some cases where the faulty statement was covered, but only a very specific

set of primitive data would trigger the failure. For example, in the code snip-

pet highlighted in the Listing 3.9 line #11, the faulty statement should not only

be covered, but getPaymentFrequency() also needs to be 0 in order to throw a

java.lang.ArithmeticException. One good example of improving value generation

is implemented within EvoSuite by extracting enum values as a set of required input

data.

Insight 3: Only 47.78% (EvoSuite) and 12.22% (Randoop) of hard faults which

require specific primitive values have been detected, even if the faulty statements are

executed. Covering code is not enough: further criteria to optimize should be

designed to help these tools in generating this kind of input values.

Extension of Assertions

I encountered cases such as LifeCalc-b21, specified below, where the fault could

have been detected by the generated test case with a better assertion.

1 ...

2 for (int i = 2; i <= Months.monthsBetween(param1 , param2).getMonths (); i++)

3 {

4 // Faulty Statement

5 list.add(i, list.get(i - 1));

6 // Fixed Statement

7 list.add(i, list.get(i - 1).plusMonths (1));

8 }

9 ...

To detect this fault, tests need to check the content of the list. However, generated

assertions tend to only consider direct observer methods of the objects in the test

(e.g., isEmpty(), size()), and thus only check for the list size.



42 Chapter 3: An Industrial Evaluation of Unit Test Generation

Insight 4: At least 50% (EvoSuite) and 64% (Randoop) of the specification

faults could have been detected with more appropriate assertions. More research in

effective assertion generation would hence be useful.

3.3.3 Developer Feedback

I demonstrated the tools and the results of this study to the LifeCalc developers.

They were interested about the possibility of integrating automated test generation

tools with continuous integration tools such as Travis and Jenkins. This is currently

in its early implementation stage, as tools like EvoSuite have provided beta versions

of a Jenkins plugin.

Insight 5: Developers in industry expect automated test generation tools to

integrate with standard continuous integration tools. For an effective technology

transfer from academic research to industrial practice, building plugins for these

tools would be useful.

The other comments of the developers were related to the readability of the

generated tests, and difficulties in navigating through the generated test suites.

Insight 6: Developers in industry are concerned about the readability of generated

unit tests, the generated input data, and the generated assertions. These are topics

that would warrant further research.

Given that test readability is a concern for developers, smaller automatically

generated test suites may be more preferred to read and analyze. Table 3.5 reports the

size of test suites based on the total number of generated test methods. As expected

from a random testing-based tool, Randoop has generated up to approximately

53,000 test methods (LifeCalc-b1 ) while EvoSuite’s test suite size did not exceed 32

test methods. EvoSuite performs a minimization to ensure that redundant tests are
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excluded. It would be more practical if test generation tools filter all redundant tests

throughout the process, and it would be beneficial to prioritize the generated tests in

a way to detect faults earlier, specially in cases where the generated test suite is huge.

This way, the test execution could have stopped sooner, for cases where the fault is

detected, and the test execution resources would be optimized. This point may be

more important for Randoop that tends to generated larger test suites. Moreover,

recent extensions of EvoSuite and Randoop to support popular build management

frameworks, such as Maven and Gradle, suggest that tool development is heading in

the right direction.

3.3.4 Threats to Validity

In this experiment, I only considered two major test generation tools representing

search-based and random testing approaches. However, tools based on dynamic

symbolic execution or any other approaches might be more suitable in the case where

there is a complex condition need to be satisfied. For each of the selected tools,

EvoSuite and Randoop, I have used their latest version with default settings. The

tools might perform better if some of the settings are fine tuned. Since I had a limited

number of known faults, in order to mitigate internal validity threat, I managed to

analyze all the fault detection results to ensure that they are failed with the same

reason as the manually written test cases, by going through the produced error logs.

However, given the limited number of faults in the experiments, I might have some

external validity threats, which I tried to mitigate by asking developers to provide the

faults rather than choosing the faults ourselves.
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Table 3.5: Total generated test methods for all faults per execution setup (3 and 15

minutes) for both EvoSuite and Randoop

Fault EvoSuite Randoop
3 min 15 min 3 min 15 min

LifeCalc-b1 2 3 31371 52636
LifeCalc-b2 4 4 1294 3579
LifeCalc-b3 4 4 2977 3965
LifeCalc-b4 15 15 20019 27150
LifeCalc-b5 18 32 14502 17899
LifeCalc-b6 4 4 13893 17643
LifeCalc-b7 6 6 3122 5992
LifeCalc-b8 7 14 12630 15767
LifeCalc-b9 4 4 6893 9092
LifeCalc-b10 2 2 18488 23119
LifeCalc-b11 8 9 2121 6655
LifeCalc-b12 12 12 3022 6987
LifeCalc-b13 21 22 9876 12876
LifeCalc-b14 3 3 5433 7652
LifeCalc-b15 8 10 1232 3989
LifeCalc-b16 2 2 2457 4998
LifeCalc-b17 5 7 11542 13432
LifeCalc-b18 10 17 15432 17878
LifeCalc-b19 3 3 5679 8553
LifeCalc-b20 14 14 4390 7658
LifeCalc-b21 8 14 8992 11234
LifeCalc-b22 7 10 11675 21245
LifeCalc-b23 16 24 1959 3009
LifeCalc-b24 13 19 2832 6721
LifeCalc-b25 6 11 9772 14289

The categorization of the undetected defects was manual, by taking into account

the executions with certain level of subjectivity in the process. I reduced that by having

multiple people with different level of expertise going through them independently

to mitigate this risk. There were only five participants in the qualitative study but

all of them are professional developers with certain level of familiarity with system

under test. The participants didn’t have prior knowledge with automated unit test

generation but they were provided with a guideline on how to generate tests for
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EvoSuite.

3.4 Related Work

Recently, researchers have shown an increased interest in automated software

testing. There are a number of studies in which tools and techniques are being

evaluated in terms of coverage. For example, Fraser and Arcuri [16] evaluated

EvoSuite on 110 open-source projects. Besides decent levels of achieved coverage,

they reported challenges they had due to practical limitations such as environmental

dependencies, which Arcuri et al. [2] later addressed. This work was relevant in the

experiments as I had a set of faulty classes with environmental dependencies, such as

the file system. Xiao et al. [51] identified complex domain object creation as one of

the main challenges in unit test generation, which I also encountered throughout the

experiment (see discussion on “challenging faults” in Section 3.2.2).

The work of Shamshiri et al. [46] is perhaps the most related one to what is

presented in this phase. Shamshiri et al. evaluated the effectiveness of automated test

generation tools (e.g., Randoop and EvoSuite), but in contrast to this work they

used open source projects (the Defect4J benchmark). Quantitatively, the number of

faults detected on these open source software is comparable with what is reported

in this phase for the industrial case study: Shamshiri et al. report a fault detection

rate of 55.7%, which is comparable to the conducted experiment, in which the test

generation tools found up to 56.4% of the real faults. In addition, this work also has

an additional qualitative study.
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3.5 Conclusions

In the first phase of this thesis, I performed a systematic study to determine the

effectiveness of automatically generated test suites in terms of revealing real industrial

faults. I used two of the most common test generation tools in academia, EvoSuite

and Randoop. I evaluated them on a life insurance and pension products calculator

engine developed by SEB Life & Pension Holding AB Riga Branch. Our experiment

results demonstrate that test generation tools detected up to 56.40% (EvoSuite)

and 38.00% (Randoop) of faults in all executions.

Our fault categorization shows that at least 41% of the undetected faults are on

Hard Faults (they remained undetected due to the tests not being able to satisfy

specific primitive values required by the faulty methods) and Challenging Faults

(test generation tools were not able to detect the faults due to the incapability of

constructing complex objects as input data). Increasing the search budget had minimal

impact on fault detection rate in case of Hard Faults, but it increased the fault detection

rate by at least 5.71% for Easy Faults.

I have investigated the challenges that need to be addressed by test generation

tools in order to be adapted by practitioners by conducting a qualitative study. Based

on the result and the analysis, the tools are not yet there to be used by industry but

certainly they are on the right track. I analyzed the undetected faults in order to

find out the areas which test generation tools can be improved and hopefully these

concrete insights will lead the future research to address these challenges.



Chapter 4

Search-Based Detection of

Deviation Failures

Many legacy financial applications exist as a collection of formulas implemented in

spreadsheets. Migration of such code to a full-fledged system, written in a language

such as Java, is an error-prone process. While small differences in the outputs of

numerical calculations produced by the two artifacts are tolerable, large discrepancies

could have serious financial implications. Such discrepancies are likely due to faults in

the migrated implementation, manifesting themselves in what I refer to as deviation

failures. In the second phase, I introduce a search-based technique that seeks to uncover

deviation failures in migrated code automatically, by maximizing fitness functions that

measure the numerical difference in the output of an original spreadsheet compared

to its migration. I evaluate my proposed techniques on two financial applications,

produced by SEB Life & Pension Holding AB Riga Branch singular, who migrated

their system from a Microsoft Excel spreadsheet to a Java application. The evaluation

47
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involves 40 formulas with known and previously unknown faults in the Java code,

which were accidentally introduced by developers during the migration process. While

random and branch coverage-based test generation techniques were only respectively

able to detect approximately 25% and 31.66% of the faults in the migrated code, the

search-based approaches proposed in this phase detected up to 70% of faults with

the same test generation budget. Without restriction of the search budget, up to

90% of the known deviation failures were detected. In addition, three previously

unknown faults were detected by this approach which were confirmed by the SEB Life

& Pension Holding AB Riga Branch experts.

In detail, the contributions of second phase of this thesis are as follows:

• A new search-based test generation approach, the Output-based Search Tech-

nique (OST), that aims to detect deviation failures.

• A modified fitness function that utilizes spreadsheets’ nested structure of formu-

las, implemented into an approach called the Spreadsheet-based Search Technique

(SST), to improve fault finding and their subsequent localization.

• The evaluation of the proposed OST and SST approaches using 40 formulas

with real deviation failures (known and unknown), in two commercial financial

applications. As part of this evaluation I compare the success rates and actual

deviation values of the approaches with automatically generated test cases for

branch coverage of the Java code, randomly generated test cases, as well as

manual, developer-written test cases.

The second phase of this thesis is organized as follows: Section 4.1 presents a
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Figure 4.1: Invested Premium Formula Hierarchy
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motivational example. Section 4.2 describes the proposed search-based approaches.

Section 4.3 describes the experiment setup and research questions and presents the

results of the empirical evaluation, Section 4.4 reviews related works, and Section 4.5

concludes this phase.
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4.1 Motivational Example

To provide a better understanding of the specifics of spreadsheet-based financial

applications and the challenges faced during their re-implementation, I present an

anonymized example. Figure 4.1 shows the hierarchy of the following legacy Excel

formula to calculate “Invested Premium” in my case study (LifeCalc-f1), anonymized

for confidentiality reasons.

P = MROUND(I − (A + R), 100) (F0)

In F0, P is the Invested Premium, I is the Paid Insurance, A are the Administrative

Fees, and R are the Risk Fees. The formula contains rounding to the nearest multiple

of 100. Listing 4.1 presents the re-implementation of the formula.

I = M + S (F1)

In this formula, F1, I is the Paid Insurance, M is the Monthly Future Contribution,

and S is the Current Assets. F1 computes M as a subformlua of F0. Listing 4.2 shows

its re-implementation in Java.

The next formula, F1.1, calculates the value of an asset at specific future date

based on its growth interest rate over a period of time.

M = FV (rate, nper , pmt , pv , type) (F1.1)

The “future value” (FV ) represents monthly future contributions, while rate is

the interest rate per period, nper is the total number of payment periods, pmt is
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1 public Double investedPremium(AppObj obj , Double targetAmount , String strategy){}

2 premium = Util.round(paidInsurance(obj) - (adminFees(strategy) +

3 riskFees(targetAmount)), 100);

4 return premium;

5 }

Listing 4.1: Java Re-Implementation of Invested Premium (F0)

1 public Double paidInsurance(AppObj obj) {

2 Double investmentReturnRate =

3 Double.valueOf(rateProperties("lv.return.rate")); // 0.06

4 paidInsurance = futureMonthlyContrib(obj.getCurrentAmount (),

5 obj.getMonthlyPayments (), investmentReturnRate ,

6 obj.getRetirementTime (), obj.getSavingTime (),

7 obj.getFutureAssets ()) + currentAssets(obj.getPensionAssets ());

8 return paidInsurance;

9 }

Listing 4.2: Java Re-Implementation of Paid Insurance Formula (F1)

1 public Double futureMonthlyContrib(Double currentAmount ,

2 Double monthlyPayments , Double investmentReturnRate , Integer

3 retirementTime , Integer savingTime , Double futureAssets) {

4 monthlyContrib = (currenAmount + monthlyPayment) * ((( Math.pow

5 ((1 + (investmentReturnRate / 12)), (retirementTime -

6 savingTime))) - 1)) / (investmentReturnRate / 12)(*\ bfseries + futureAssets *)

7 * Math.pow((1 +( investmentReturnRate / 12)), (retirementTime

8 - savingTime));

9 return monthlyContrib;

10 }

Listing 4.3: Java Re-Implementation of Monthly Contribution (F1.1)
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the payment made in each period, pv is the present value, and type indicates due

payments. Listing 4.3 presents the re-implementation of this formula in Java. In the re-

implemented code, rate is investmentReturnRate/12, which is the monthly investment

return rate, nper is retirementTime − savingTime, which is the remaining months

till the retirements, pmt is currentAmount + monthlyPayment , which is the current

contributed amount plus the upcoming monthly contribution and pv is futureAssets ,

which is based on the value of future assets.

The Java re-implementation of this formula contains a fault — the reference to

the variable futureAssets (shown in bold in Listing 4.3) is is missing in the faulty

Java re-implementation. This causes it to produce a different output compared to its

Excel implementation. Thorough testing may reveal this problem. However, finding a

specific input that reveals the failure is non-trivial. It is not enough to just execute

the faulty code, since the effect of the fault may not propagate to the output and

produce a failure.

For instance, Listing 4.4 presents the test case generated automatically as part of a

branch-coverage optimized test suite by the EvoSuite tool [18]. This test case executes

(covers) the fault, but fails to reveal a failure. The calculated Invested Premium in

both programs is 1000, and therefore, based on the generated test data, the difference

between the output of the legacy Excel formula and its Java re-implementation of

Invested Premium (P) is 0.

Listing 4.5 shows a test case generated by my approach. This test case results in a

difference in the output of the Invested Premium (P) in the Excel and Java programs as

presented in Table 4.1 (∆ = |1100− 1200| = 100). The difference results from the the
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1 @Test(timeout = 4000)

2 public void test1() throws Throwable {

3 Pension pension0 = new Pension ();

4 AppObj appObj0 = new AppObj ();

5 Double double0 = new Double (30.0);

6 appObj0.setCurrentAmount(double0);

7 appObj0.setPensionAssets(double0);

8 Double double1 = pension0.investedPremium(appObj0 , 0.0, "S1");

9 }

Listing 4.4: Sample Test Case Generated by Branch Coverage

1 @Test(timeout = 4000)

2 public void test3() throws Throwable {

3 Pension pension0 = new Pension ();

4 AppObj appObj0 = new AppObj ();

5 Double double0 = new Double (10.0);

6 appObj0.setCurrentAmount(double0);

7 Double double1 = new Double (25.0);

8 appObj0.setMonthlyPayments(double1);

9 Double double2 = new Double (11.0);

10 appObj0.setSavingTime(double2);

11 Double double3 = new Double (100.0);

12 appObj0.setFutureAssets(double3);

13 Double double4 = new Double (40.0);

14 appObj0.setRetirementTime(double4);

15 Double double5 = pension0.investedPremium(appObj0 , 838.0 , "S1");

16 }

Listing 4.5: Sample Test Case Generated Proposed Search Technique

faulty re-implementation of Invested Premium (P) in one of the sub-formulas (Monthly

Contribution Formula F1.1) and is (∆ = |Excel − Java| = |1204− 1258| = 54).

In the second phase of this thesis, I aim to automatically generate test cases that
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Table 4.1: Invested Premium calculation using generated tests case in Listing 4.5.

Variables P I A R S M

Excel 1100 1604.80 500 0 400 1204.90
Java 1200 1658.80 500 0 400 1258.80

detect such differences (which I refer to as deviations). I propose a generic search-based

approach with two fitness function implementations. The baseline fitness function in

this example would be the delta between the root formulas (Invested Premium (P))

in Excel and Java. The other proposed fitness functions use the delta between lower

level sub-formulas. The next section, introduces the proposed approach and different

fitness functions in detail.

4.2 Search-based Approach for Deviation Detec-

tion

In this section, I describe a search-based approach (with two alternative fitness

functions) that aims to generate tests that maximize the deviation between an Excel

formula and its Java re-implementation. Note that at each given time, I only focus on

one Excel formula and its Java implementation, and the tests are generated as JUnit

tests for the Java implementation.

4.2.1 Deviation failures

Deviation failures are failures where two alternative implementations produce

different outputs. In financial applications, like many other domains, not all deviations
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are immediately considered as a failure, that is, some degree of variation in the outputs

is tolerable. These tolerable variations are specified in form of threshold limits defined

for each formula and its sub-formulas. Consequently, a deviation failure is deemed

to have occurred when the output of two programs differ by more than a specified

threshold limit:

Definition 1 (Deviation Failure). A deviation failure occurs when the numeri-

cal output o1 from a program p1 differs from the output o2 for a similar program p2

by a tolerable threshold t. That is, |o1 − o2| > t.

For ease of understanding, we normalize deviation failures in this phase, such that

violations are represented by numbers greater than 1.0, regardless of the formula-

specific tolerable threshold t:

Definition 2 (Normalized Deviation Failure). A normalized deviation failure

occurs when the numerical output o1 from a program p1, and the output o2 from

a similar program p2, divided by a tolerable threshold t, exceeds 1.0. That is,

|o1−o2|
t

> 1.0.

4.2.2 The Output-based Search Technique (OST)

Search-based test generation techniques, in general, formulate the test objective as

an optimization problem and apply meta-heuristic search algorithms, such as genetic

algorithms, to find an optimal solution [38]. Typically, the fitness function drives the
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search to generate test cases that cover as much of the code as possible. In this study,

however, I focus on the detection of deviation failures. I therefore first propose a

search-based method that guides the search for test cases towards deviations between

program versions that exceed defined tolerable thresholds.

I refer to this method as the Output-based Search Technique (OST). Assume the

Excel formula under test (F0) is re-implemented by a method called M0, in Java.

Let M0 and F0’s input parameters be x0, . . . , xn. Each test case may therefore be

represented by the vector < x0, . . . , xn >, and a fitness function can be defined as:

FF OST = |F0−M0|

To implement OST, I used the search-based test generation tool EvoSuite [18],

and extended it with my own fitness function. OST’s stopping criterion can be

any typical criterion such as time-outs, maximum number of generations or fitness

evaluations, etc.

The other search operators such as crossover, mutation, selection strategy, etc. are

the same as default settings in EvoSuite (i.e., The crossover operation combines

different parents (P1 and P2 ) to generate new offspring (O1 and O2 ) which is then

mutated by adding, modifying or deleting statements. Once the reproduction is over,

there will be new parents ready for selection).

It is also worth mentioning that identifying the corresponding Java method (M0)

per Excel formula (F0) was done manually in this study. It can be potentially

automated for instance using keyword matching, but it may become very imprecise.

Therefore, I did not try to automate this step.
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4.2.3 Spreadsheet-based Search Technique (SST)

OST explores the top level formula of a spreadsheet only. The Spreadsheet-based

Search Technique (SST) delves into sub-formulas. Assume F0 from the previous

section consists of two sub-formulas F1-1 and F1-2, which are implemented in M1-1

and M1-2, respectively. M1-1 and M1-2 are called in M0 and have input parameters

as < a1, . . . , ai > and < b1, . . . , bj >. Now assume the defect that results in deviation

failure is in M1-2 and it will be detected only with a specific value sets for < b1, . . . , bj >.

Following OST, the search algorithm’s inputs are < x1, . . . , xn > thus there is no

specific guidance towards values for < b1, . . . , bj > during the search. The FF OST

fitness function is detached from the sub-formula inputs, and only looks at the final

output.

Therefore, to overcome this problem I need to localize the underlying deviated sub-

formula at each level, starting from root formula all the way to its leaves. Spreadsheet-

based Search Technique (SST), implements this idea by starting from root-level

deviations but narrowing it down to the defective method over time.

In high-level, the proposed SST algorithm is a recursive version of OST, as follows:

1. It applies an OST on a level i formula Fi-x (where i is the level starting from 0

– the root level – and x is the sequential ID for each sub-formula in the given

level); See Figure 4.1.

2. The OST searches through the input space of Mi-x parameters. Mi-x is a Java

method that corresponds to the Fi-x formula.

3. The search continues until a deviation between the outputs of Fi-x and Mi-x is
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detected.

4. After finding a deviation, the search continues for t seconds, while still in level i,

to potentially increase the already detected deviation.

5. If the algorithm manages to increase the deviation in t seconds, step 4 is repeated.

6. The algorithm stops exploring level i and moves to level i + 1, when the best

deviation could not be improved in t seconds.

7. To move to level j = i + 1, the Fi-x’s sub-formulas (Fj − 1, . . . , Fj-y) are

analyzed to find out which one is the “most contributing” sub-formula. The

“most contributing” sub-formula is the one with the highest local deviation,

where a local deviation is the delta between the sub-formula’s output and its

corresponding Java method’s output, in level j.

8. The algorithm repeats steps 1-7, until it reaches a global stopping criterion (e.g.,

time-out ).

Variations of SST

In this phase, the SST algorithm comes in three variations (configurations). These

configurations vary in terms of a) the global stopping criteria and b) the time periods

spent to explore the input space in each level. In the first two variations (SST1 and

SST2), the global stopping criterion is n = 5 minutes. In SST1, the algorithm spends

multiples (m) of 60 seconds on the same formula level, after the first deviation is found

(t = 60). As discussed in the algorithm, the exact value of m depends on whether

there is still a progress in the fitness value for each given level or not.
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In SST2, n is still equal to 5 minutes, but the algorithm spends multiples (m) of

30 seconds on the same formula level. The main difference between SS1 and SS2 is

that SST2 spends minimal time in each level, thus has more time to explore lower

levels, with the same total budget. SST3 is the final variation of SST with t = 60

seconds, but no time limit for global stopping criterion. The SST3’s global stopping

criterion is “Stop when all levels of formula are explored”. The objective of SST3 is to

explore the maximum power of the SST approaches, regardless of the underlying cost.

In the empirical study section (Section 4.3), I will compare SST1, SST2, SST3,

and OST with each other and with some baselines (random search, coverage-based

testing, and manual testing).

Preparation Step

There are at least three preparation steps that are required before running any of

the SST techniques, as follows:

• Identifying hierarchy of sub-formulas per Excel formula. I have auto-

matically collected this information and record it in a matrix using a custom

Excel macro.

• Mapping excel formulas and Java methods. As mentioned before, this

part has been done manually, I mapped all identified Java and Excels formulas,

manually. Note that the thresholds per sub-formula was already available to us

as “error margins” in the applications.

• Dealing with external dependencies. In order to avoid external dependency
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issues, such as access to properties files, I have replaced all the variables retrieved

from property files with the actual values, in the Java code.

4.3 Empirical Study

In order to evaluate the proposed search-based test generation techniques for

detecting deviation failures, I conducted an empirical study on two real financial

applications. This section describes the details and results of this study.

4.3.1 Research Questions

The objective of the study has been broken into four research questions as follows:

RQ1 How effective is the Output-based Search Technique (OST) compared to

baseline test generation at detecting deviation failures?

The aim of this research question is to evaluate how a focused search-based approach

for deviation detection compares to common existing test generation techniques at

defecting defects.

RQ2 Is spreadsheet-based search (SST) more effective than Output-based Search

(OST) at detecting deviation failures?

The aim of this research question is to evaluate the improvement of the optimized

Spreadsheet-based search (SST) over the basic Output-based (OST) approach, given

the same search budget.

RQ3 What is the deviation failure finding potential of the Spreadsheet-based

Search?

The aim of this research question is to assess the overall fault finding ability of the
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Spreadsheet-based Search Technique (SST), without tight constraints on the search

budget.

RQ4 Can Spreadsheet-based Search detect new and unknown deviation failures?

The aim of this research question is to evaluate whether results on SST generalize

and can detect previously unknown deviation failures.

4.3.2 Subjects of Study

The experiments are based on two real financial applications. The first application

is a life insurance and pension products calculator engine known as LifeCalc. It is a

medium-sized standalone software component with approximately 80,000 LOC, and

consists of complex critical pension products calculations with many business rules.

Its implementation started in early 2015, and it has been released to production in

early 2016. The second application is PensionPlanner, a pension funds calculator

engine [29] with at about 170,000 LOC. Both of these applications are developed and

owned by SEB Life & Pension Holding AB Riga Branch.

Initially, LifeCalc and PensionPlanner were implemented using Excel sheets and

have been used by the company for several years. For many internal strategic reasons,

including better automation support and technology compatibility with their other

products, these products been newly implemented using the Java technology stack.

Throughout the implementation, the original Excel sheets have been used as the

specification for the implementation of the new applications.

For RQ1–3, the company’s developers provided us with 20 spreadsheet formulas

from LifeCalc. For each of these formulas they further provided us with a deviation
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failure report of the Java-based reimplementation, which had been resolved in their

issue tracking system. They selected these formulas and failures arbitrarily, trying to

include examples from different times throughout the life cycle of the project. For

each spreadsheet formula, I extracted the corresponding Java program version along

side with any manual tests that had been used in order to detect and fix the particular

fault.

For RQ4 (detection of unknown faults) I could not use the same formulas, since

I already know that each of them contains contains a fault. Therefore, I further

randomly selected 20 spreadsheet formulas from LifeCalc and PensionPlanner (10

each), without knowing whether they contain any deviation failures. I did not have

access to any manually written test cases for these formulas.

Table 4.2 reports characteristics of the studied 40 formulas in terms of some Excel

and Java metrics. The “Levels” (number of nested levels in the hierarchy of the

formula starting from 0 for root) and “Sub-formulas” (total number of sub-formulas in

all levels) are extracted from the Excel formula directly. However, the “Variables” (the

total number of unique variables in corresponding Java methods for all sub-formulas

in all levels) and “LOC” (the total number of lines of Java code for all sub-formula of

the root) are extracted from the Java code1. These statistics show that the studied

formulas cover a wide range of “difficulty”, with “Variables” ranging from 3 to 36,

and “Sub-formulas” ranging from 1 to 16.

Note that in all the cases, the deviation failure has been revealed using the manual

test cases written by the developers after the bug had been reported by business

analysts. In other words, the initial test cases written by the developers were not able

1http://metrics.sourceforge.net
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Table 4.2: Characteristics of 40 formulas in terms of #Unique variables (V), #Nested

levels in the formula hierarchy (L), #Total sub-formulas within all levels (S) and total

#Lines of Java code (C).

(a) 20 known faulty formulas

Formula V L S C

LifeCalc-f1 8 2 3 41
LifeCalc-f2 15 3 9 165
LifeCalc-f3 12 4 7 109
LifeCalc-f4 6 2 3 56
LifeCalc-f5 24 3 12 270
LifeCalc-f6 19 6 10 307
LifeCalc-f7 26 2 8 120
LifeCalc-f8 21 3 11 235
LifeCalc-f9 12 2 8 154
LifeCalc-f10 5 1 4 89
LifeCalc-f11 31 6 16 534
LifeCalc-f12 18 3 9 192
LifeCalc-f13 36 5 13 389
LifeCalc-f14 7 1 5 104
LifeCalc-f15 3 1 1 13
LifeCalc-f16 10 1 2 29
LifeCalc-f17 8 4 5 95
LifeCalc-f18 7 2 3 45
LifeCalc-f19 27 5 10 216
LifeCalc-f20 15 6 9 182

(b) 20 NEW formulas

Formula V L S C

LifeCalc-f21 23 4 9 233
LifeCalc-f22 13 3 7 112
LifeCalc-f23 11 3 5 77
LifeCalc-f24 9 3 6 117
LifeCalc-f25 14 4 9 203
LifeCalc-f26 33 7 14 309
LifeCalc-f27 25 5 13 230
LifeCalc-f28 17 2 4 78
LifeCalc-f29 11 4 7 145
LifeCalc-f30 18 3 6 97
PensionPlanner-f1 29 3 7 142
PensionPlanner-f2 15 3 7 134
PensionPlanner-f3 11 4 9 234
PensionPlanner-f4 7 1 3 80
PensionPlanner-f5 13 2 5 71
PensionPlanner-f6 19 4 8 173
PensionPlanner-f7 5 2 4 101
PensionPlanner-f8 8 1 3 42
PensionPlanner-f9 22 4 10 217
PensionPlanner-f10 11 3 7 88

to detect these faults. The business analysts’ manual acceptance testing is the last

resort before releasing the product. Therefore, such late detection of deviation failure

is expensive and risky. Hence, the goal is to provide an automated test generation

approach that can detect such faults with smaller budget and earlier in the development

phase.
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4.3.3 Experiment Design

In this section, I discuss the design of my experiment to answer each research

question.

Normalization

For each execution of a technique in my experiments, I record the maximum

deviation detected in the root-level. Remember that not all deviations are considered

a failure unless they are above certain tolerable threshold associated with the formula.

Thus to help with readability of the tables, the deviations are normalized by dividing

them by the actual thresholds.

Therefore, zero means no deviation, values in (0, 1) are tolerable deviations, and

any value greater than or equal to 1.0 is considered a detected deviation failure.

My main goal is just to detect any deviation equal to or greater than 1.0. However,

the higher the deviation the better, assuming that higher values of deviations may

correspond to more serious effects. For example, suppose the system’s threshold for

an annual pension value is $1.0, and so a $1.5 deviation is a non-tolerable failure but

may not affect the customer satisfaction by large if not detected and fixed right away.

However, a deviation of $100 will create a much bigger impact and insatisfaction

among clients.

False positives

Automated test generation techniques in general may create false positives. That

is, there may be cases where a generated test exceeds the tolerable threshold, but
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may violate domain and business related preconditions that the test generator is

not aware of. For example, in LifeCalc-f16 the variable value must not be more

than 100000.0, and a generated test with value 184414.16 is not acceptable based on

business assumptions. Unfortunately, the only reliable way to validate the results is

to ask domain experts. For all results in my experiments I therefore validated the

solutions (test cases) with SEB Life & Pension Holding AB Riga Branch’s domain

experts.

Metrics

The metrics used in the results are as follows:

• Median Root Deviation: The median of normalized deviations in the root-

level, over 30 runs, per technique per failure.

• Median Sub-formula Deviation: The median of normalized deviations in

a specific sub-formula, over 30 runs, per technique per failure. Note that this

metric will only be used for SST techniques in RQ3.

• Success Rate: The ratio of detecting a deviation ≥ 1.0, over all 30 runs per

formula per technique.

• Validated Success Rate: The ratio of detecting a “valid” deviation ≥ 1.0,

over all 30 runs per formula per technique (validated by company’s experts).

• False Positives: The ratio of “invalid” reported deviations over total reported

deviations, in 30 runs per formula (validated by company’s experts).



66 Chapter 4: Search-Based Detection of Deviation Failures

Statistical Tests

Whenever I compare deviation values directly, I not only look at the median values,

but also run a non-parametric statistical significance test (U-Test) to make sure the

differences between two techniques are not due to chance. I also report the median

Success Rates and median Validated Success Rates, over all formulas under study.

RQ1 Methodology

This research question compares OST, my basic search-based technique for devia-

tion detection, against two baseline test generation approaches:

• Random testing: Random search is used as a sanity check. If OST is not

better than random testing, then there would be no need for a search-based

approach, because the search problem is either very simple, or too challenging. I

used EvoSuite’s random test generation to do a random search with the same

search budget as OST (with the minimization option disabled).

• Branch coverage testing: Code coverage criteria such as statement and

branch coverage are quite common in industry, and they are commonly targeted

by search-based test generation. I compared my approach with the coverage-

based test generation implemented in EvoSuite. Since coverage based test

generation is also search-based, this allows us to focus only on the different

fitness functions (from maximizing code coverage to deviation values).

As all studied test generation approaches, in the second phase of this thesis, are

implemented in EvoSuite, the comparisons have less confounding factors related to

the implementation and optimization.
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In this RQ, I use the 20 known faulty formulas of LifeCalc (explained above) as

my targets. Each technique (R: Random Technique, BR: Branch Coverage Technique,

and OST: Output-based Search Technique) was executed 30 times per faulty formula,

resulting in a total of 600 executions. As each formula is implemented in a single

Java class, each execution consisted of applying EvoSuite on the corresponding class

with either random test generation, branch coverage optimization, or the OST fitness

function. I set a global stopping criterion for all three algorithm of 5 minutes.

RQ2 Methodology

This RQ investigates the effectiveness of SST. SST1 repeats 30 seconds of search,

after each maximum deviation detection, to improve in the same level (t=30 seconds),

whereas SST2 spends 60 seconds for the same reason. The global stopping criteria for

SST1, SST2, and OST are all the same (5 minutes). I have evaluated these approaches

on the same sets of failures as RQ1 by executing each approach 30 times per faulty

version. Since the deviations reported by SST are at the level of sub-formulas, they are

not directly comparable with OST’s deviations, which are in the root-level. Therefore,

I use Validated Success Rates as the main comparison metric.

RQ3 Methodology

SST3 uses the same time interval as SST2 (t = 60 seconds) at each level, but it

does not impose a global timeout (e.g., the 5 minutes used in RQ1 and RQ2). Instead,

the algorithm searches until there are no sub-formulas left. Obviously, this algorithm

is going to be more expensive than SST1, SST2, and OST, which is why RQ3 does

not compare SST3 with these algorithms. However, in RQ3 I am interested to know
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the ultimate effectiveness of an SST approach.

RQ4 Methodology

For RQ4, I compared SST with the baseline of manual testing. I used 20 new

spreadsheet formulas, different from those used in RQ1–3. These formulas were

not given to us as known faulty formulas, but I selected them randomly from two

applications LifeCalc and PensionPlanner (10 formulas each). This means that at the

time of experimentation 1) I did not know which formulas are faulty, if any, 2) for the

detected deviations I did not know if manual testing have detected a deviation there

as well or not, and 3) I did not know if SST3 has missed any deviation. Therefore,

this dataset was perfect for analyzing the effectiveness of SST3 in detecting unknown

deviation failures.

4.3.4 RQ1: How effective is the Output-based Search Tech-

nique (OST) compared to baseline test generation at

detecting deviation failures?

Table 4.3 summarizes the Median Root Deviations and Success Rates for R, BR,

and OST for the 20 known failures of LifeCalc. All Median Root Deviations ≥ 1.0

are highlighted as well. Overall, in 8 out of 20 cases OST’s Median Deviations are

above thresholds. In contrast, BR only exceeds the threshold in 7 out of 20 cases and

R only in 5 out 20. Consequently, OST has a median success rate of 50%, BR has

40%, and R only 28.34%.

Looking at the actual Median Root Deviations, in most cases, BR is better than
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Table 4.3: Comparing the Median Root Deviations (D) and Median Success Rate

(SR) over 30 executions per 20 formulas of LifeCalc using R (Random), BR (Branch

Coverage) and OST (Output-based Search) Techniques. Those highlighted are

detected deviations above threshold per technique. ∗ and † represents cases where the

OST’s deviation is significantly different than R and BR (p-value ¡ 0.05)

Technique R BR OST

Formula D SR D SR D SR

LifeCalc-f1 1.18 50.00 1.25 73.33 2.62∗† 70.00
LifeCalc-f2 0.64 23.33 0.88 46.67 0.99∗† 50.00
LifeCalc-f3 0.40 0.00 0.54 0.00 0.82∗† 16.67
LifeCalc-f4 0.78 30.00 1.15 63.33 1.63∗ 63.33
LifeCalc-f5 0.84 36.67 1.14 60.00 0.99 50.00
LifeCalc-f6 0.46 36.67 0.64 30.00 0.96∗† 50.00
LifeCalc-f7 0.86 40.00 0.90 46.67 1.36∗† 66.67
LifeCalc-f8 0.73 16.67 0.57 0.00 0.99∗† 50.00
LifeCalc-f9 0.42 0.00 0.43 0.00 0.57∗† 16.67
LifeCalc-f10 3.24 86.67 4.26 100.00 5.74∗† 100.00
LifeCalc-f11 0.61 26.67 0.98 50.00 0.97∗ 46.67
LifeCalc-f12 0.65 3.33 0.55 0.00 0.88∗† 16.67
LifeCalc-f13 0.69 23.33 0.68 26.67 0.84 33.33
LifeCalc-f14 1.06 50.00 1.09 60.00 1.50 70.00
LifeCalc-f15 2.01 76.67 1.38 63.33 2.30† 86.67
LifeCalc-f16 1.97 80.00 1.68 66.67 2.11 70.00
LifeCalc-f17 0.55 0.00 0.60 0.00 0.79∗† 20.00
LifeCalc-f18 0.94 40.00 0.82 33.33 0.88 43.33
LifeCalc-f19 0.61 0.00 0.70 0.00 0.96∗† 46.67
LifeCalc-f20 0.61 3.33 0.66 0.00 1.03∗† 50.00

Median (%) 0.96 28.34 1.05 40.00 1.45 50.00

R (14 out of 20 cases) and OST is better than both (18 out of 20). Since the raw

comparisons of medians may be misleading, I also ran a statistical significance U-Test,

which shows that OST’s results are significantly different (with higher medians) in 14

cases out of 20 compared to Random and 13 cases out of 20 compared to Branch.

Though having higher actual deviation values is important, these deviations may
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include false positives. Therefore, Table 4.4 shows the False Positives both in terms

of number of invalid reported deviations per formula and the median percentages of

invalid reported cases over all reported deviations, over all formulas. The effect of False

Positives on the Success Rates can be seen as the Validated Success Rates. Looking at

R, BR, and OST, in Table 4.4, I can see that OST’s validated success rate is 46.67%,

whereas, R and BR are far behind at 25% and 31.66%. Another point to note is

that the False Positive percentage for OST is not very high (11.67%). Therefore, the

developers’ time that is spent to inspect OST’s reported deviations are in most case

well paid off. It is also worth noting that the number of False Positives produced by

OST is in the same range as random search and branch coverage techniques.

Overall, the results suggest that neither test generation based on random search

nor on branch coverage are sufficient to detect deviation failures. However, the basic

search-based approach seems interesting and may have some potential. The results

conform with the motivational example given in Section 4.1 and confirm that a more

focused search-based approach may be performing even better, in terms of detecting

deviation failures.

OST outperforms Random search and Branch coverage (46.67% vs. 25% vs. 31.66%

Validated Success Rates).
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Table 4.4: False Positives (FP) and Median Validated Success Rates (SR) for Random

(R), Branch Coverage (BR) and Output-based (OST) Techniques for 20 known faults

in the LifeCalc. The undetected deviations are represented by (-).

Formula R (%) BR (%) OST (%)

LifeCalc-f1 40.00 22.73 19.05
LifeCalc-f2 14.29 21.43 6.67
LifeCalc-f3 - - 20.00
LifeCalc-f4 22.22 31.58 15.79
LifeCalc-f5 18.18 11.11 20.00
LifeCalc-f6 27.27 22.23 0.00
LifeCalc-f7 33.33 14.29 10.00
LifeCalc-f8 40.00 - 0.00
LifeCalc-f9 - - 0.00
LifeCalc-f10 46.15 40.00 33.33
LifeCalc-f11 0.00 26.67 0.00
LifeCalc-f12 0.00 0.00 0.00
LifeCalc-f13 14.29 25.00 10.00
LifeCalc-f14 6.67 27.78 19.05
LifeCalc-f15 43.48 10.53 19.23
LifeCalc-f16 25.00 10.00 14.29
LifeCalc-f17 - - 0.00
LifeCalc-f18 25.00 20.00 23.08
LifeCalc-f19 - - 7.14
LifeCalc-f20 0.00 - 13.33

Median FP (%) 16.23 12.69 11.67
Median Validated SR (%) 25.00 31.66 46.67

4.3.5 RQ2: Is Spreadsheet-based Search (SST) more effec-

tive than Output-based Search (OST) at detecting de-

viation failures?

As described in Section 4.2.3, the Spreadsheet-based Technique (SST) comes with

different variations, based on how much time is spent on different sub-formulas. In

order to allow for a fair comparison to OST, in this RQ I consider SST1 and SST2,

which use the same global stopping criterion.
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Table 4.5 shows the False Positives and the Validated Success Rates for SST1

and SST2, for the same 20 formulas of RQ1. Comparing Validated Success Rates of

SST1 (70%) and SST2 (66.7%) with OST’s (46.67%) from Table 4.4 I can already

observe the amount of improvement a spreadsheet-based approach can provide over

OST (extra 23.33%). The False Positives of SST1 and SST2 are also in a reasonable

range (11.25% and 12.66% respectively).

The idea behind having these two configurations for SST was to evaluate the

algorithm with a setting that lets more exploration (SST1) vs. more exploitation

(SST2). Although I obviously see some differences between the results, the comparison

remains inconclusive with respect to SST1 and SST2.

To better compare SST techniques with OST, I look at the root level deviations of

OST and SSTs. This requires manual propagation of SSTs to root-level which is quite

labour intensive. In my case 50 hours of manual work was required to apply it on 600

solutions of SST1 (20 formulas each 30 runs). Therefore, given the cost of this process

and the fact that the differences between SST1 and SST2’ results are insignificant, I

only apply this on SST1 (note that the manual propagation is not part of the SST

algorithm. I apply that just to calculate the extra evaluation metric).

Table 4.6 summarizes the Median Root Deviations for SST1 and OST over 30 runs,

per faulty version. According to the table, OST’s Median Root Deviations are always

less than SST1’s. Checking the statistical significance test results show that in fact

in 4 out of 20 cases (LifeCalc-f1, f10, f15, and f16) the differences are not significant.

Therefore, overall, in 16 out 20 cases SST approaches outperforms OST. Note that

SST1 not only finds higher root-level deviations and detects more failures, but it also
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Table 4.5: False Positives (FP) and Median Validated Success Rate (SR) using

Spreadsheet-based Techniques, SST1 and SST2, for 20 known faults in the LifeCalc.

Formula SST1 (%) SST2 (%)

LifeCalc-f1 17.39 23.93
LifeCalc-f2 4.76 25.00
LifeCalc-f3 4.55 16.67
LifeCalc-f4 17.39 15.38
LifeCalc-f5 17.86 19.23
LifeCalc-f6 10.00 14.29
LifeCalc-f7 16.67 13.33
LifeCalc-f8 14.81 0.00
LifeCalc-f9 0.00 0.00
LifeCalc-f10 26.67 26.67
LifeCalc-f11 3.85 14.29
LifeCalc-f12 0.00 9.09
LifeCalc-f13 18.52 0.00
LifeCalc-f14 5.00 18.52
LifeCalc-f15 8.70 12.00
LifeCalc-f16 12.5 12.00
LifeCalc-f17 6.25 11.11
LifeCalc-f18 16.67 0.00
LifeCalc-f19 8.00 7.41
LifeCalc-f20 22.22 8.00

Median FP (%) 11.25 12.66
Median Validated SR (%) 70.00 66.70

localizes the fault by identifying an exact low-level sub-formula with high deviation.

The more test budget, the better localization one can achieve. I explore this in more

details in RQ3.

Spreadsheet-based Search performs better than Output-based Search (70% vs. 46.67%

Validated Success Rates).
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Table 4.6: Median root deviations for SST1 and OST over 30 runs per failure for

20 known failures in LifeCalc. Those highlighted are detected deviations above

threshold. SST1 results are significantly different than OST’s (p-value ¡ 0.05).

Formula OST SST1

LifeCalc-f1 2.62 1.53
LifeCalc-f2 0.99 1.72
LifeCalc-f3 0.82 1.10
LifeCalc-f4 1.63 1.87
LifeCalc-f5 0.99 1.82
LifeCalc-f6 0.96 1.50
LifeCalc-f7 1.36 1.88
LifeCalc-f8 0.99 1.25
LifeCalc-f9 0.57 0.83
LifeCalc-f10 5.74 3.88
LifeCalc-f11 0.97 1.39
LifeCalc-f12 0.88 1.83
LifeCalc-f13 0.84 1.13
LifeCalc-f14 1.5 1.75
LifeCalc-f15 2.30 1.80
LifeCalc-f16 2.11 1.53
LifeCalc-f17 0.79 1.37
LifeCalc-f18 0.88 1.96
LifeCalc-f19 0.96 1.33
LifeCalc-f20 1.03 1.81

Median Validated SR (%) 46.67 70.00

4.3.6 RQ3: What is the deviation failure finding potential of

the Spreadsheet-based Search (SST3)?

Since RQ2 considered SST with limited search budget, there remains the question

whether more faults could have been found with higher search budget, or if the

experiments have already shown the full potential of SST. Table 4.7 summarizes the

“Validated Success Rates” for SST1 and SST3. I compare SST3 with the baseline of

SST1, which was shown as the better of the two SST variants evaluated in RQ2. As
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the table shows SST3 outperforms SST1 by 20% (70% vs. 90%), over the 20 formulas

under study from LifeCalc (same setup as RQ1 and RQ2).

This substantial improvement of SST3 over SST1 is due to the increased search

budget. Table 4.8 summarizes the average cost of SST3, over 30 runs, for each of the

20 formulas. The costs are presented as minutes spent on average to finish one run

of SST3. They range from 5 (e.g., LifeCalc-f15) to 27 minutes (LifeCalc-f11). Since

different SSTs may go into different levels and find deviations in different sub-formulas,

direct comparison of deviation values is not possible. However, it is interesting to

see whether SST3 has managed to localize the faults better than SST1 or not. I can

measure this by counting the cases where SST3 identifies a faulty sub-formula in a

lower deeper level than SST1.

Table 4.7 also lists the “Median Sub-formula Deviations” for SST1 and SST3

techniques together with their identified methods ID and level. As I can see in 5 out of

20 cases SST3 has better localized the fault (deeper level faulty method is identified).

In the other 15 cases out of 20, the two techniques identified the same method as

faulty but SST3 have detected a higher deviation (all p-values are also less than 0.05).

Therefore, SST3 is definitely more effective than SST1, both in terms of detecting

deviation failures and higher normalized deviations.

Given enough time, SST can detected up to 90% of deviation failures.

Although the maximum (27 minutes) is almost 5.5 times that of the SST1 and

OST budget, it still looks quite reasonable compared to the time that is needed for

manual testing: The faults that were identified as “detected” by manual testing, were

only reported when in a separate sprint(s) business analysts went through a thorough
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Table 4.7: Sub-formula Deviation (D), Method ID (M) and Level (L) of detected

failures using SST1 and SST3 in the 20 known faults in LifeCalc.

Technique SST1 SST3

Formula L M D L M D

LifeCalc-f1 2 1 1.81 2 1 3.28
LifeCalc-f2 2 2 1.25 2 2 2.40
LifeCalc-f3 3 3 1.26 4 4 2.53
LifeCalc-f4 2 5 1.61 2 5 3.83
LifeCalc-f5 2 6 2.04 2 6 4.24
LifeCalc-f6 4 7 1.95 4 7 6.86
LifeCalc-f7 2 9 1.82 2 9 4.70
LifeCalc-f8 2 10 1.97 2 10 2.36
LifeCalc-f9 2 11 0.94 2 11 1.47
LifeCalc-f10 1 12 4.68 1 12 10.67
LifeCalc-f11 4 13 1.45 6 15 2.64
LifeCalc-f12 2 16 1.16 2 16 1.91
LifeCalc-f13 4 17 1.44 5 19 3.05
LifeCalc-f14 1 20 1.15 1 20 2.93
LifeCalc-f15 1 21 1.53 1 21 7.37
LifeCalc-f16 1 22 1.22 1 22 6.64
LifeCalc-f17 2 23 1.17 3 24 2.68
LifeCalc-f18 2 25 1.80 2 25 2.92
LifeCalc-f19 4 26 1.54 5 28 3.02
LifeCalc-f20 4 29 2.10 6 31 3.81

Median Validated SR (%) 70.00 90.00

and expensive set of manual acceptance testing. The analysts would use the domain

knowledge and datasets that typical developers won’t know about. Hence, in general,

creating a failure deviation detecting test case by a developer required a round of unit

level testing by the developer followed by at least one round of manual acceptance

testing by the analysts to report the symptoms of the bug, which finally would result

in a unit test case by developers to be added into regression test suite. It also worth

mentioning that the required budget in SST3 varies across formulas and is highly

correlated with the size and complexity metrics reported in Table 4.2.
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Table 4.8: Average execution time used (minutes) over 30 executions for each failure,

using SST3.

Formula Avg. Time

LifeCalc-f1 8
LifeCalc-f2 12
LifeCalc-f3 14
LifeCalc-f4 8
LifeCalc-f5 22
LifeCalc-f6 23
LifeCalc-f7 15
LifeCalc-f8 16
LifeCalc-f9 13
LifeCalc-f10 6

Formula Avg. Time

LifeCalc-f11 27
LifeCalc-f12 15
LifeCalc-f13 20
LifeCalc-f14 7
LifeCalc-f15 5
LifeCalc-f16 5
LifeCalc-f17 11
LifeCalc-f18 7
LifeCalc-f19 17
LifeCalc-f20 19

4.3.7 RQ4: Can SST3 detect new and unknown deviation

failures?

In total, deviation failures were found for 7 out of the 20 new formulas at least

once. Among the 7 faulty formulas, three of PensionPlanner had not been detected

by Manual testing but were detected by SST3. After validating the results, the SEB

Life & Pension Holding AB Riga Branch confirmed that these faults are new and are

due to their limited manual acceptance testing for the new product. Four faults were

detected in LifeCalc, and these were confirmed as known faults. Note that LifeCalc is

an older application with a lot of time already spent on manual acceptance testing by

the business analysts. No known fault were missed by SST3.

Table 4.9 presents the percentage of false positives for the new 20 formulas of the

two applications under study (LifeCalc and PensionPlanner), for SST3. It also shows

which formulas were identified as faulty by manual testing. Note that the information

of which formulas contain known faults was not available at the time of test generation;
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I obtained this information after test generation, when validating the tests with the

domain experts.

To summarize, Table 4.9 also shows the “Validated SR” for SST3 (86.67%) and

Manual testing (57.14%) in the second 20 formulas, which were randomly selected.

However, manual testing misses all three deviations that SST3 detected in Pension-

Planner, which indicates that more manual acceptance testing is required for that

application.

It also worth reminding that all failure detecting manual unit test cases were

written after the faults were reported by the analysts. This means that the original

manual unit test cases’ “Validated Success Rate” was zero. It also means that getting

the reported success rates by manual testing requires the business analysts involvement

in manual acceptance testing and thus is very expensive, compared to the automated

SST3’s approach which can be integrated with developers unit testing framework.

SST3 detected 86.67% of deviation failures (including three unknown failures),

whereas the expensive manual testing detected 57.14%, in the second set of 20

formulas.

4.3.8 Threats to Validity

The main threat to the validity of this study is the generalizability issues. Given

that the evaluation is done based on a case study in one company, I can not generalize

the results to other applications. However, my case study is based on two real-

world industry applications with real deviation faults, which might be considered as

representative. In addition, even if the applications themselves might be representative,

the selection of the first 20 formulas by the company, might have been biased. However,
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Table 4.9: False Positives (FP) and Sub-formula Deviation (D) using SST3 for 20

NEW formulas. (- / 3/ 7) represents no failure/detected/not detected using Manual

techniques.

Technique SST3 Manual

Formula FP D Detected?

LifeCalc-f21 - - -
LifeCalc-f22 6.66 93.34 3
LifeCalc-f23 - - -
LifeCalc-f24 13.33 86.64 3
LifeCalc-f25 6.66 93.34 3
LifeCalc-f26 - - -
LifeCalc-f27 23.33 76.64 3
LifeCalc-f28 - - -
LifeCalc-f29 - - -
LifeCalc-f30 - - -
PensionPlanner-f1 16.66 83.34 7
PensionPlanner-f2 20.00 80.00 7
PensionPlanner-f3 - - -
PensionPlanner-f4 - - -
PensionPlanner-f5 - - -
PensionPlanner-f6 - - -
PensionPlanner-f7 - - -
PensionPlanner-f8 - - -
PensionPlanner-f9 10.00 90.00 7
PensionPlanner-f10 - - -

Median Validated SR (%) 86.67 57.14

random selection of the second 20 formulas reduced that threat. In addition, I believe

that the approach is quite generic for spreadsheet application migration and thus I

encourage replication of this study.

In terms of conclusion validity, I have conducted each experiment 30 times and

reported medians and statistical significance results. Ideally I would like to rerun the

experiment with more executions to gain more confidence in the results.

I keep internal validity threats as low as possible, by using a common framework
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(EvoSuite) to implement all techniques. However, evolutionary algorithms for my

objective may be required and there might have been errors in the tools and scripts.

Finally, in terms of construct validity, I have reduced the threat by defining very

basic and clear measures for deviations and success rates . I also validated the solutions

by the company experts. However, the domain experts may have given incorrect

answers.

4.4 Related Work

Differential testing [36] such as regression testing and N-version testing aims to

demonstrate the behavioral differences between two versions of a program executed

with the same test inputs. Evans and Savoia [13] presented differential testing with

the intention of detecting more changes as compared to regression testing alone. It

generates tests for both original and alternative systems and compare both versions

with these two test suites. Furthermore, Tao Xie et al. [53] extended differential

testing for object-oriented programs. They proposed a framework called Diffut in

which it simultaneously executes methods of two versions of the program with the

same inputs and compare their outputs.

Another related work in the context of automated regression testing is BERT

(BEhavioral Regresstion Testing) [31]. BERT tries to provide more insight to the

developers as compared to the traditional regression tests by focusing on subset of

code and identifying the behavioral differences between two versions of a program.

DiffGen is another approach presented by Taneja and Xie [47] which tries to reveal

the behavioral differences of two version of Java programs by instrumenting the code
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and adding new branches to expose the differences between two version of class if

these branches are covered by test generation tools.

McMinn [39] has introduced a novel pseudo-oracle by utilizing testability trans-

formation. Testability transformation is source-to-source program transformation to

make the program under test more testable [24,25]. Basically, the original program,

which has no test oracle, will be automatically transformed into another program with

the same functionality. Then the test cases aim at fining differences in the outputs of

the two programs. In a recent work, Matthew Patrick et al. [43] utilized pseudo-oracles

in their new search-based technique for testing various implementations of stochastic

models with the intention of maximizing the differences between the original imple-

mentation and its respective pseudo-oracle. They have used Kolmogorov-Smirnov

tests to compare the distributions of outputs from each implementation and concluded

that their technique reduces the testing effort and also enables discrepancies, where

they could have been overlooked.

4.5 Conclusions

Detecting deviation failures in financial applications is difficult because of the large

input domain of financial formula’s outputs that need to be explored. I have introduced

a new search-based approach to address this problem by generating tests to maximize

the discrepancies between the newly implemented program (Java implementation)

and its legacy version (Excel spreadsheets). My approach explores not only the final

outputs of formulas but also the respective sub-formulas. The exploration time of

each sub-formula level and the global stopping criterion can be tuned (t seconds).
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I have evaluated my proposed techniques on two complex pension product cal-

culators, LifeCalc and PensionPlanner, using real financial deviation failures. The

new proposed approach outperforms random and branch coverage test generation ap-

proaches. Furthermore, I have compared both of my proposed approaches, multi-level

sub-formulas search-based approach with Output-based Search approach, in which

spreadsheet-based approach produced up to 23.33% better detection rate as well as

better fault localization. Finally, I showed that my results is quite cost-effective in

practice, given the higher validated success rates (86.67%) compared to the expensive

manual testing (57.14%).



Chapter 5

Conclusions and Future Works

This thesis consists of two major phases; in the first phase I performed a detailed

empirical study to evaluate the effectiveness and the applicability of automated unit

test generation tools and techniques in an industrial setup. The results of fault

analysis demonstrate that current techniques have difficulties with detecting faults

that depends on generation of specific primitive values or construction of complex

object structure. I have provided several concrete insights, such as incapability of tools

in generating proper assertions or the need to integrate with well-known development

frameworks, which will hopefully lead the future research in this area. A future work

in this direction is evaluating other test generation techniques, for example symbolic

testing.

In the second phase of this thesis, I addressed specific problem within financial

applications domain. Detecting numerical discrepancies are difficult and in this thesis,

I proposed two novel search-based deviation detection approaches that seek to uncover

deviation failures by maximizing the differences in the output of the original program

83
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and its alternative implementation. I evaluated the proposed techniques using real

faults within a complex financial application. The results indicates that the new

techniques outperforms current search-based and random techniques. One future work

in this direction, is to automatically map the (sub)formulas to Java methods, to fully

automated the proposed test generation process. Another direction, is to investigate

other methods of designing an SST e.g., by choosing sub-formula differently. I would

also like to more thoroughly evaluate the fault localization aspect of SST compared to

other localization techniques. Finally, a future direction that applies on both phases

is conducting the evaluations on a larger scale, involving multiple applications from

multiple financial corporations.



Appendix A

Qualitative Study Package

A.1 Main Study

1. How can the generated tests be improved?

2. Describe what you like better about manually written tests than generated tests?

3. Would you keep the given set of generated unit tests?

4. Given current infrastructure setup, how would you like to have automated unit

test generation framework to be integrated in?

5. What are the major barriers from your point of view in adapting automatic test

generation tools?
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A.2 Tasks

Tasks (please follow the steps)

1. Open the qualitative study package including 3 test suites, 3 bug reports, 3 code

snapshots, and the questionnaire.

2. Extract the given unit tests and follow the basic given Standalone EvoSuite

guidelines to setup and execute them.

a. Answer Questionnaire SECTION A.1: Q1

3. Read the bug report and re-execute the unit tests again and try to debug and

locate the bug using the given set of unit tests. (There are both failing and

passing tests in the given set of test suites).

a. Answer Questionnaire SECTION A.1: Q2

4. Try to write a manual unit tests that covers the same code as the given generated

tests.

a. Answer Questionnaire SECTION A.1: Q3 and Q4

5. Try to identify the advantages and the pitfalls of given tests from your point of

view.

a. Answer Questionnaire SECTION A.1: Q 5 and Q 6

6. If you still have time, run this extra task:

a. Read the instructions for test generation in the guideline.

b. Use EvoSuite to generate test cases for the given class.

c. What is your overall impression on using the tool?
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