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AbstractAbstractAbstractAbstract    

 

Swallowing dysfunction (dysphagia) is a common disorder in patients with 

neurological impairments, head/neck injuries or brain-stem stroke. The main 

objectives of this thesis were to use acoustical analysis of swallowing and breath 

sounds for 1) understanding the swallowing mechanism and the main cause of 

dysphagia, and 2) developing a noninvasive diagnostic technology to detect 

swallowing aspiration (the entry of bolus into airway); thus, identifying 

individuals at high risk of severe dysphagia.  

As the first objective of the study, swallowing mechanism modeling in two 

groups of healthy individuals and dysphagic patients (due to cerebral palsy or 

stroke) was approached by using two different assumptions to relate the 

swallowing sounds either to the pharyngeal response or to the neural activities 

that initiate the swallow. The results showed that the model with the assumption 

of neural activities as the cause of dysphagia was a better fit to the available 

data.  

As the second main objective of the study, we analyzed breathing and 

swallowing sounds of 50 dysphagic individuals during the fiberoptic endoscopic 

evaluation of swallowing (FEES) or the videofluoroscopic swallowing study 

(VFS). The results showed 91% sensitivity and 85% specificity in identifying 

patients with severe aspirations. Also, the algorithm was able to detect the silent 

aspiration among the swallows of each patient.   
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The proposed methods led to development of a non-invasive and reliable 

diagnostic/screening tool as an aid to the clinical examination of swallowing.  

The proposed acoustic method can be performed at the patients’ bedside to 

determine the appropriate further assessment or a dietetic treatment; thus, 

reducing the health care cost by prioritizing the patients’ referrals to the 

VFS/FEES tests.  
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AAAAnteriornteriornteriornterior    

Anterior refers to the structures at the front of the human body. 

Cranial nerves Cranial nerves Cranial nerves Cranial nerves     

Cranial nerves emerge directly from the brain in contrast to the spinal nerves, 

which emerge from the spinal cord. 

Epiglottis Epiglottis Epiglottis Epiglottis     

Epiglottis is a flap of tissues located behind the tongue and in front of the larynx. 

At rest, it has an upright vertical position to allow breathing. During the 

swallowing, it folds down to a more horizontal position to cover the larynx and 

prevents food from going into the trachea. 

Hyoid boneHyoid boneHyoid boneHyoid bone    

It is located at the root of the tongue between the mandible and the larynx. It 

serves as an anchoring structure for many muscles such as the tongue, larynx, 

pharynx and epiglottis. 

LLLLarynxarynxarynxarynx    

The larynx is an apparatus made up of cartilage, ligaments, muscles, and mucous 

membrane that connects the lower part of the pharynx with the trachea. Vocal 

folds are located within the larynx. 

MMMMedulla edulla edulla edulla     

A part of the brainstem that is responsible for the control of breathing and 

swallowing. 

NNNNasopharynx asopharynx asopharynx asopharynx     

The nasal part of pharynx, which extends from base of skull to the soft palate. 
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Nerve plexuses Nerve plexuses Nerve plexuses Nerve plexuses     

A nerve plexus is a network of connected nerve fibers that link spinal nerves with 

different areas of the body. 

OOOOropharynx ropharynx ropharynx ropharynx     

The oral part of pharynx, which extends from hard palate to hyiod bone. 

PPPPharynxharynxharynxharynx    

The pharynx is the common channel for swallowing and breathing. It extends 

from the base of the skull to the lower border of the cricoid cartilage, where it 

becomes the esophagus. 

PPPPosteriorosteriorosteriorosterior    

Posterior refers to the structures at the back of the human body. 

Pyriform sinusPyriform sinusPyriform sinusPyriform sinus    

The pyriform sinus lies on either side of the larynx.     

Upper Esophageal Sphincter (UES)Upper Esophageal Sphincter (UES)Upper Esophageal Sphincter (UES)Upper Esophageal Sphincter (UES)    

UES refers to the superior portion of the esophagus. The swallowing reflex 

triggers the UES opening.  

Vagus cranial nerve Vagus cranial nerve Vagus cranial nerve Vagus cranial nerve     

The vagus nerve is the tenth cranial nerve, which is the longest of all cranial 

nerves. 
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Chapter Chapter Chapter Chapter 1111 - IntroductionIntroductionIntroductionIntroduction    

    

Swallowing is one of the most complex mechanisms in the human body; it 

involves approximately fifty paired muscles [1]. The timing and coordination of 

the swallowing events are very important since any slight mismatch in the 

process may result in aspiration (the food is drawn into the airway below the 

level of true vocal folds). A normal swallow usually occurs in less than a second; 

it requires intricate control and coordination of the three swallowing phases. Any 

impairments such as abnormalities in food processing, delays in initiating 

swallows, difficulties in swallowing liquid, and inefficient oral and pharyngeal 

clearance of swallowed material may cause swallowing disorders (dysphagia) [2]. 

Dysphagia can occur as a result of congenital abnormalities, structural damage, 

cerebral palsy, head trauma, spinal cord injury, and damage after treatment for 

the oral, oropharyngeal and laryngeal cancer [2]. Also affected are individuals 

who suffer from cerebrovascular accidents in the form of complete or partial 

swallowing disorders. Dysphagic individuals are at risk of pneumonia, 

malnutrition, and dehydration [2]. 

There are different methods used to evaluate the specific characteristics of the 

swallowing mechanism such as the timing and movement pattern of anatomical 
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structures. Each method has its own advantages and limitations. Currently, 

among all the methods, videofluoroscopy (VFS) and fiberoptic endoscopy (FEES) 

are known as the gold standard assessment techniques [2, 3]. However, significant 

limitations of VFS are the subjects’ exposure to x-ray radiation, and that mild 

dysphagic individuals may not aspirate during the short VFS assessment. The 

limitations of FEES include the inability to view the oral cavity and the striated 

esophagus, as well as the events that may occur while the view is obstructed 

during the swallowing act (whiteout period). Furthermore, both VFS and FEES 

require patient’s cooperation, and are not portable and cannot be performed in a 

typical eating environment. Therefore, a non-invasive method to assess the risk of 

dysphagia that can be applied in any setting with minimal interference on normal 

eating procedure of the patient would be advantageous and of great interest for 

clinicians. 

Acoustical analysis of swallowing mechanism has received considerable 

attention in the last two decades. Its application as a monitoring tool for 

swallowing assessment [4] ,[5], [6] as well as gaining more insight about the 

swallowing mechanism and its pattern of occurrence within the respiratory cycle 

in both healthy and dysphagic individuals at different age groups [2], [7], [8] were 

investigated. However, the acoustical study of the swallowing is still at its 

infancy, and needs to be paired with the currently used methods such as VFS or 

FEES for validation. It should be noted that the VFS or FEES does not have any 

impact on the swallowing sounds. 

1111....1111 ObjectivesObjectivesObjectivesObjectives    

The goal of this thesis is to investigate the application of acoustical analysis in 

modeling the swallowing mechanism as well as identifying the individuals at high 

risk of severe aspiration. The objectives are: 
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• Developing a mathematical model for swallowing mechanism that can 

distinguish between dysphagic and healthy (non-dysphagic) individuals, 

and possibly the cause of dysphagia. 

• Developing an algorithm to detect swallowing aspirations; thus, developing 

a screening technique to identify patients at high risk of severe aspiration 

to prioritize patients’ referrals to the VFS/FEES tests. 

 

1111....2222 Organization of the ThesisOrganization of the ThesisOrganization of the ThesisOrganization of the Thesis    

This thesis is focused on the acoustical analysis of the swallowing for both 

swallowing mechanism modeling and as a tool to detect dysphagia. The thesis has 

two major parts: 1) modeling the swallowing mechanism to identify dysphagic 

individuals and also possibly the cause of dysphagia, and 2) detecting aspirated 

swallows independent of, but with comparable accuracy to, imaging assessments.  

In  Chapter 2, the swallowing mechanism and the assessment techniques are 

explained. In  Chapter 3, a mathematical linear model for swallowing sound 

generation and transmission is derived and followed by a pilot study on the use of 

the model for identifying patients at risk of dysphagia. This part of the work has 

been published in [9]. The nonlinearity characteristics of swallowing sounds are 

presented in  Appendix A [10].  

In  Chapter 4, a novel acoustic swallowing assessment is proposed to identify 

patients at high risk of aspiration [11]. In  Chapter 5, the feasibility of the 

acoustical analysis for detection of silent aspiration is investigated. The 

classification algorithm is developed based on the time-frequency features 

obtained from the spectrogram of the breath sound signal. This part of the work 

has been published in [12], [13].  Appendix D contains the study, in which we 
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tested the frequency response of the microphone to ensure it did not affect the 

acoustic characteristic of the swallowing and breathing sound within the 

frequency range of our interest.  

Investigation of other time-frequency techniques are discussed in Appendix C, 

where the classification results of the aspiration detection method using the 

features extracted from Born-Jordan time-frequency method are compared with 

those described in  Chapter 5.  Chapter 6 presents the overall conclusions, the 

main contributions of this thesis and recommendations for future work.  

One major limitation with acoustical diagnostic techniques for dysphagia is 

the difficulty of recording a good quality sound signal if the patient has loose skin 

over the trachea. Therefore, in  Appendix B, we explore the viability of using the 

ear and nose as alternative recording locations for recording breath and 

swallowing sounds for the purpose of dysphagia and aspiration detection [14].
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Swallowing occurs in the oral cavity, pharynx, larynx and esophagus. The oral 

cavity includes the lips, the teeth, soft palate, hard palate, mandible, floor of the 

tongue, and faucial arches [2].  

The pharynx is a fibro-muscular tube that extends from the base of the skull 

to the inferior part of the cricoid cartilage at which point it becomes the 

esophagus. The pharyngeal structure involved in the swallowing is divided into 

nasal, oral and laryngeal parts. The nasal part, which lies behind the nose, is 

entirely for respiration while the oral and laryngeal parts contribute to the 

pathway for both food and air. The muscular wall of the pharynx is comprised of 

the three pairs of pharyngeal constrictors named superior, medial and inferior 

constrictors which their fibers are attached anteriorly to the soft palate, the 

tongue base, the mandible, hyoid bone, thyroid and cricoid cartilage. 

The larynx is a valve connecting the pharynx to the trachea. The larynx is 

suspended from the hyoid bone by the thyrohyoid muscle and thyrohyoid 

ligament. The hyoid bone, which serves as the foundation of the tongue, is 

suspended by the muscles of the floor of the mouth. The pharynx ends with the 

Upper Esophageal Sphincter (UES), and becomes the collapsed muscular tube 

called the esophagus which extends to the stomach. 
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Based on the anatomic structure and the timing of the events, swallowing is 

divided into three distinct phases: oral, pharyngeal and esophageal.  

1- The oral phase: During this phase, which is the only voluntary phase of 

swallowing, the food is mechanically formed, chewed (masticated) and mixed 

with saliva in preparation to be swallowed and pass smoothly through the 

pharynx and esophagus. The facial muscles and the muscles of the tongue are 

involved to seal the oral cavity, open/close the jaw, and propel the bolus 

posteriorly. This phase is shown in Fig.  2-1(a). 

The sensory receptors in the oropharynx and tongue are stimulated when the 

tongue propels the bolus posteriorly. The decoding of the sensory information 

which occurs in the medulla triggers the pharyngeal phase [2]. 

2- The pharyngeal phase: Events during the pharyngeal phase, which is shown 

in Fig.  2-1(b), consist of different activities:  

- sealing of the nasopharynx by the elevation of soft palate to prevent the 

chewed food from entering the nasal cavity, and to develop positive air pressure 

around the pharynx to drive the bolus for the rest of the swallowing process; 

- elevation and anterior movement of the hyoid bone and the larynx that 

contribute to the closure (protection) of the airway. Anterior movement of the 

hyoid bone and larynx along with the contraction of the thyrohyoid muscle that 

connects the hyoid bone and the thyroid cartilage, provides the force to pull the 

UES open;  

- closure of the larynx that prevents any penetration of the food into the 

airway at the level of the true vocal cords. This closure occurs by elevation of 

larynx and movement of the epiglottis that covers the trachea. The epiglottic 

movement occurs in two steps: Horizontal movement which is induced by hyoid 
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elevation and downward movement as a result of the contraction of the 

thyroepiglottic muscle; 

- UES Opening: Anatomically, UES is the location of the cricopharyngeal 

muscle (CP) and the inferior muscle (IP) at the cricoid cartilage. At rest, the 

UES is kept closed by the contraction of the CP and IC muscles. At the end of 

the pharyngeal stage, these muscles relax to allow the bolus to enter the 

esophagus. 

As the bolus enters the esophagus, the tongue, hyoid bone, larynx and 

epiglottis are restored to their original positions. The upper esophageal sphincter 

closes when the tail of the bolus passes through the UES into the cervical part of 

the esophagus. 

Sensory information that guides the pharyngeal stage is conveyed by the 

ninth and the tenth vagus cranial nerves to the medulla. Any sensory loss in the 

pharynx or larynx results in the impairment of swallowing and penetration of the 

food into the airway. 

3- The esophageal phase: As shown in Fig.  2-1(c), in this stage the food is 

transported along the esophagus by peristaltic contraction waves generated by 

the sequential contraction of the esophageal wall muscle. The esophageal wall 

consists of two layers of muscle, a circular inner layer and the longitudinal outer 

one. Each layer has a different type of muscle, i.e. the upper third of the 

esophagus is dominated by the striated muscle, while the lower third is made up 

of smooth muscle. A combination of both types is found in the middle third of 

the esophagus. 
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Fig.  2-1.    (a) Oral phase (b) phrayngeal phase, and (c) esophageal phase of the 
swallowing [2]. (part of Figure 2.13: The Normal Swallow. From Evaluation and 

Treatment of Swallowing Disorders, 2nd Ed. (p. 28), by J. A. Logemann, 1998, Austin, 
TX: PRO-ED. Copyright 1998 by PRO-ED, Inc. Reprinted with permission. This 

diagram is prohibited from any further duplication) 

The contraction of the circular muscles along with local shortening of the 

longitudinal muscle transports the bolus from the pharynx to the stomach. The 

negative intrathoracic pressure occurring at the end of inspiration can help the 

propagation of the radially symmetrical waves of muscle contraction and 

relaxation (peristalsis) in the esophagus. 

The peristaltic mechanism is controlled by the central nervous system, vagus 

nerve, the intrinsic esophageal neurons and nerve plexuses. The relative role of 

each part of the nervous system depends on the type of the muscle, i.e. the upper 

third of the esophagus is mainly controlled by the vagus nerve while in the lower 

portion the role of the vagus nerve is to facilitate the autonomous intrinsic 

peristaltic wave. 

2222....1111 Swallowing DisordersSwallowing DisordersSwallowing DisordersSwallowing Disorders    

Difficulty in moving food from the mouth to the stomach is called dysphagia. As 

mentioned in the introduction, dysphagia can occur as a result of congenital 

abnormalities, structural damage, cerebral palsy, head trauma, spinal cord injury, 

(a)                             (b)                                 (c) 
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and damage after treatment for the oral, oropharyngeal and laryngeal cancer [2]. 

Also affected are individuals who suffer from cerebrovascular accidents in the 

form of complete or partial swallowing disorders.  

In general, swallowing abnormalities can be categorized in four groups: 

Penetration, Residue, Backflow and Aspiration [2]. They are summarized below; 

aspiration is more elaborated due to its importance. 

• Penetration is associated with the entry of food into the larynx at a level 

higher than the true vocal cords. Failure of laryngeal elevation, laryngeal 

closure and epiglottis tilt may cause penetration [2].  

• Residue is the oropharyngeal disorder, in which the food is left behind in 

the pharynx as the result of the inadequate push applied by the tongue to 

the bolus.  

• Residue Backflow disorder happens if the food moves back either from the 

pharynx into the nasal cavity or from the esophagus into the pharynx [2].  

• Aspiration is defined as the entry of the food into the airway below the 

true vocal folds. Poorly coordinated swallowing, as a result of any 

physiological or anatomical disturbances such as those in neurological 

disorders or in patients with stroke, may cause aspiration. It occurs if the 

protective mechanism of the glottic/supraglottic fails or does not happen 

in coordination with the bolus movement through the pharynx [15].  

Aspiration is the most important symptom of dysphagia; it can occur before, 

during and after the opening of UES. Aspiration before the swallow results from 

the damaged tongue function or the delayed triggering of the swallow reflex. The 

reduced control of the tongue during the oral preparatory phase may let a part of 

the bolus roll into the trachea causing aspiration. On the other hand, the delayed 
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triggering of the swallow happens due to any pause in the bolus movement in the 

transition between the consecutive oral and pharyngeal stages.  

Aspiration during the swallow relates to reduced laryngeal closure, the 

mechanism designed to protect the airway during the swallow.  Aspiration after 

the swallow may have different causes: the remaining residue in the pharynx after 

the swallow may be aspirated or inhaled into the trachea. Other possible reasons 

may include reduced laryngopharyngeal sensation, the reduced pharyngeal 

peristalsis, pharyngeal dysfunction, reduced laryngeal elevation, or 

cricopharyngeal dysfunction. 

Aspiration can be either accompanied [16] by a clinical indication (such as 

coughing /choking and a wet vocal quality) or be silent. It has been reported that 

40% of dysphagic individuals aspirate silently. The majority of the patients with 

silent aspiration are not diagnosed until they develop pneumonia. The frequency 

of aspiration after a stroke has been reported to be between 51% and 73% [17], 

and 38%-41% after acquired brain injury (ABI) [18]. Also, frequent aspiration has 

been found in patients with head and neck cancers and advanced dementia [19].  

2222....2222 SSSSwallowing Assessment Techniqueswallowing Assessment Techniqueswallowing Assessment Techniqueswallowing Assessment Techniques    

The instrumental techniques to assess swallowing disorders include ultrasound, 

electromyography, pharyngeal manometry, VFS, FEES, scintigraphy, 

auscultation and acoustical analysis. 

UltrasoundUltrasoundUltrasoundUltrasound    

Ultrasound can examine the oral phase of swallowing such as tongue function and 

temporal relationships between the events during this phase [20]. The temporo-

spatial pattern and the quantitative analysis of the hyoid bone movement can be 

obtained by this method [21]. Although this non-invasive method provides 
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multiple plane views of the oral phase, its inability to detect penetration or 

aspiration (due to the shadows cast by the pharyngeal structure) significantly 

limits its application. 

Electromyography (EMG)Electromyography (EMG)Electromyography (EMG)Electromyography (EMG)    

Electromyography (EMG) is used to determine which muscles are active during 

swallowing, and to evaluate the strength and the duration of their activity during 

different phases of the swallowing. For example, the contraction properties of the 

muscles of the mouth, larynx, and pharynx during swallowing have been studied 

using EMG technique [22]. Furthermore, the EMG method can help to get an 

understanding of the physiology of the lower cranial nerves [23]. Most of the 

studies of the pharyngeal stage of swallowing focused on the activity of a single 

muscle or muscle pair such as cricopharyngeus, superior pharyngeal constrictor, 

or levator veli palatini. EMG studies of swallowing cannot help identifying 

neither aspiration, nor residual problems of swallowing disorders. 

Manometry Manometry Manometry Manometry     

Manometric data are recorded in the pharynx by inserting a catheter transnasally 

into the pharynx, UES and the cervical part of the esophagus [24]. As the bolus 

passes through those regions, the pressure changes, which result from the muscle 

contractions, are recorded at several holes along the catheter. In addition, 

pharyngeal manometry can be used to quantify the strength of the muscle 

contraction, the intra bolus pressure and the UES relaxation. 

In order to correlate specific characteristics of the recorded space-time 

pressure with physiological events during the swallowing, pharyngeal manometry 

is typically combined with VFS. However, the invasive nature of this method 

limits its clinical application. 
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Fiberoptic Endoscopic Evaluation of Swallowing (FEES)Fiberoptic Endoscopic Evaluation of Swallowing (FEES)Fiberoptic Endoscopic Evaluation of Swallowing (FEES)Fiberoptic Endoscopic Evaluation of Swallowing (FEES)    

Fiberoptic Endoscopic Evaluation of Swallowing (FEES) is used to provide a 

dynamic view of the anatomical structure of the oral cavity, pharynx and larynx 

before and after swallowing. FEES is performed by inserting a small fiber-optic 

endoscope transnasally down to the level of the soft palate. FEES can visualize 

aspiration of the saliva secretion, post-swallow residue in the pharynx and vocal 

fold abnormalities. Compared to other swallowing assessment tools, it is more 

sensitive in detection of residue and its location. However, the observations 

obtained by FEES are limited. The interaction between the oral, pharyngeal and 

upper part of the esophagus cannot be visualized during the “whiteout” period 

when endoscope’s tip contacts the swallowing structures. This obstructs the 

image during the period when the most important swallowing events such as the 

epiglottis closure occur. Moreover, FEES is an invasive method that might be 

uncomfortable for the patients. The way aspiration is detected by FEES is shown 

in Fig.  2-3 in two frames of a recorded video during FEES test; the left image 

shows the anatomical structure of swallowing before the swallow, and the right 

one shows the frame after swallowing; the aspirated bolus is colored, and pointed 

out by an arrow, to be seen easily. 
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 Fig.  2-2. FEES procedure  (a) feeding by the SLP during the test, and (b) the 
images of the anatomical areas seen on the screen. 

 

                      (a) 

  

                      (b) 

Fig.  2-3. (a) Normal, non-aspirated swallow; (b) an aspirated swallow as observed by 
FEES. The bolus in the airway as a result of aspiration is indicated by the arrow.  

Videofluoroscopy Study (VFS)Videofluoroscopy Study (VFS)Videofluoroscopy Study (VFS)Videofluoroscopy Study (VFS)    

VFS and FEES are considered to be the gold standard tools to assess the 

structure and mechanism of the swallowing. During VFS examination, subjects 

are fed small amounts of a barium-coated bolus, and X-ray waves are used to 
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track the bolus and capture the swallowing events in real time. Figure 2-8 shows 

the VFS recording equipment. It enables visualization of the movement of the 

oral cavity structures, larynx, hyoid bone, tongue base, pharyngeal walls and 

cricopharyngeal region, along with monitoring the bolus position. Also, it permits 

accurate measurement of the temporal relationships among swallow events, the 

opening ability of the upper esophageal sphincter (UES) and detection of the 

mechanisms causing aspiration [25]. The way aspiration is detected by VFS is 

shown in Fig.  2-5. 

 

Fig.  2-4. The VFS setup for swallowing assessment. The individual is given barium 

coated food or liquid while the x-ray images are displayed and recorded. 
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(a) 

  

(b) 

Fig.  2-5. (a) Normal, non-aspirated swallow; (b) an aspirated swallow as observed by 

VFS. The bolus in the airway as a result of aspiration is indicated by the arrow in 

(b). 

The most important limitation of VFS is the subjects’ exposure to radiation 

as radio-sensitive structures, the ocular lens and the thyroid gland, are in the 

imaging field. In addition, the test is not portable, cannot be performed in a 

typical eating environment, and requires patient’s cooperation. 

ScintigraphyScintigraphyScintigraphyScintigraphy    

Scintigraphy examination is a nuclear medicine test, in which the person swallows 

a specific amount of radioactive bolus, and a gamma camera records the images 

during the swallowing. The advantage of this method, in addition to the 

identification of the silent aspiration of saliva, is its ability to quantify the 

aspiration and to track aspirated materials. Although the scintigraphy and VFS 

methods are complementary, scintigraphy is more sensitive for detecting 

aspiration below the glottis [26]. However, the exact cause of the disorder cannot 

be identified by using this technique. Scintigraphy is an expensive and invasive 

test. 
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AuscultationAuscultationAuscultationAuscultation  

Cervical auscultation has been used by clinicians and researchers who 

investigate acoustical patterns and temporal relations of the swallowing 

mechanism. It was shown that cervical auscultation can be used to identify the 

inspiration and expiration phases happens before/after the swallow, the moment 

of the pharyngeal swallow, the pharyngeal secretions in the airway before/ after 

the swallow, changes in the levels of secretion [27].   

It was suggested that the respiratory pattern during swallowing is different for 

individuals with dysphagia. For example, a more variable respiratory pattern, a 

less consistent swallow apnea and the more frequent occurrence of inspiration 

after the swallow are observed in those patients [28],[29]. Thus, it was 

hypothesized that the clinical examination including cervical auscultation with a 

stethoscope would be able to distinguish patients who aspirate from those who do 

not [27]. However, swallowing assessment by auscultation highly depends on the 

examiner’s skills [30]. Therefore, in recent years, acoustical analysis of swallowing 

has received considerable attention as a complementary tool for cervical 

auscultation. 

    Acoustical AnalysisAcoustical AnalysisAcoustical AnalysisAcoustical Analysis    

Swallowing sound signals are listened and recorded by placing a microphone or 

an accelerometer on the subject’s neck, either laterally or over the suprasternal 

notch of trachea. It is commonly known that the swallowing sound consists of 

two distinct segments: Initial Discrete Sound (IDS) and Bolus Transit Sound 

(BTS) [4]. IDS is related to the opening of the upper esophageal sphincter, while 

BTS is the gurgle sound associated with the transmission of the bolus into the 

esophagus. A Typical swallowing sound signal is shown in Fig.  2-6. 
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Swallowing occurs within the breath cycle. There is a deglutition apnea in 

breathing when swallowing happens. The microphone (accelerometer) collects 

both the swallowing sound and the breath sounds before and after the swallow. 

The swallowing and breath sounds are considerably different and have to be 

analyzed separately. The time-frequency characteristics of the breath and 

swallowing are different. The spectra of the swallowing sound signal contain 

higher frequency range compared to that of the breath sound. A typical 

waveform and spectrogram for a sequence of swallowing and breath sounds, 

recorded by a microphone placed over the suprasternal notch, is shown in Fig. 

 2-7.  

Early acoustical swallowing sound analysis was mainly focused on the timing 

of the swallowing events [31]. Later, with the application of digital signal 

processing, it was used for diagnostic purposes, i.e. detecting swallowing disorders 

[5]. Some work has been done to automatically detect the swallowing sound 

segments from the breath sounds, as well as classifying normal and dysphagic 

swallowing sounds [32]. Different techniques including nonlinear dynamic 

analysis, recurrence quantification analysis (RQA) [32], hidden Markov modeling 

(HMM) [32], and multiresolution wavelet analysis [32] were applied to detect 

characteristic features of swallowing sounds. Other researchers [33], [34] 

investigated whether there are any differences between normal and dysphagic 

swallowing sounds.  

This work of this thesis is built upon the knowledge gained by previous 

studies to enhance dysphagia and aspiration detection by acoustical analysis. The 

focus of previous studies were on swallowing segmentation and dysphagia 

prediction by swallowing sounds analysis; the focus of this work is on the 



Chapter 2- Background 

18 
 

detection of aspiration in a record of swallowing and breath sounds as well as 

investigating the cause of swallowing disorder. 

 

 Fig.  2-6. A typical swallowing sound signal. 

 

 

Fig.  2-7. (a) A typical swallowing sound signal with the before/after breath in time 
domain. (b) the spectrogram of the same signal. 

IDS                   BTS 
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3333....1111 IntroductionIntroductionIntroductionIntroduction    

Swallowing sounds have been analyzed to find plausible differences between the 

control and dysphagic groups with a high accuracy [5], [35]. However, mechanism 

of swallowing sound generation and transmission has not been addressed 

adequately; thus, the exact mechanism of swallowing sounds has remained a 

challenge [36]. In one of our group member’s previous works [36] a model was 

introduced in an attempt to explain swallowing sound generation. In that model, 

swallowing sounds were assumed to be produced by exciting the pharyngeal wall 

structure and tissue with an impulse train coming from the pharynx. Having 

assumed the excitation source and the pharyngeal wall structure are independent, 

the linear model shown in Fig.  3-1 was proposed to represent the swallowing 

sound generation.  

 

Fig.  3-1. Model of swallowing sound production [36]. 
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Swallowing mechanism, as a sequential and rhythmic motor behavior is an 

interesting model for the neuro-physiological analysis of motor activities. 

However, because of the complexity of the motor pattern along with the great 

number of muscles and nerves involved, it has received less attention than other 

motor activities such as locomotion, mastication, or respiration [37]. In addition, 

it is difficult to initiate the swallowing sequence in anesthetized animals [37]. 

Understanding the underlying neural pathways that govern the act of swallowing 

is crucial in order to correctly identify swallowing disorders.  

Basically, the swallowing mechanism initiates with a train of impulses coming 

from the brain cortices that produce a temporal summation on the brainstem 

swallowing center [38]. Consequently, the swallow is triggered via the cranial 

nerves, which directly control the muscles involved in the swallowing. In a 

normal swallow, if any residual material remains in the pharynx, it will be 

detected by the sensory receptors that initiate a second swallow to clear the 

pharynx.  

As a pilot study for modeling the swallowing sound, it was attempted to find 

a mathematical model that describes the swallowing sound generation of the 

pharyngeal phase. The model, which is based on the model introduced in [36], 

proposes the components that may account for normal or abnormal swallowing 

sounds. This section is mainly focused on the model components and how they 

change as the characteristics of the swallowing sound change between individuals 

with and without swallowing disorders. 

3333....2222 MethodMethodMethodMethod    

Considering the swallowing sound as a result of a linear time invariant system 

excited by a train of impulses, pharyngeal swallowing sound modeling can be 

approached by two different assumptions. In one approach it is assumed the 
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impulse train, representing the neural activities to trigger swallow, is the same for 

both groups of healthy and dysphagic and it is the pharyngeal model that 

accounts for the difference between the two groups. On the other hand, in the 

second approach, it is assumed the pharyngeal response is the same for both 

groups but the neural activities to initiate the swallow are different between the 

two groups.   

3333....2222....1111 Data Data Data Data     

Two different datasets of swallowing sounds were used for the pilot study. Each 

dataset included swallowing sound recordings of 5 dysphagic patients and 5 

individuals without any swallowing disorder (controls). However, since the sensor 

and sampling rate of the two datasets were different, each dataset was analyzed 

separately. Dataset 1 was adopted from our previous study [7], in which 

swallowing sounds of controls and dysphagic (patients with cerebral palsy) were 

recorded by a Siemens (EMT25C) accelerometer placed over the suprasternal 

notch of the trachea and digitized at 10240 Hz. Dataset 2 included swallowing 

sounds recorded by a Sony (ECM-77B) microphone placed over suprasternal 

notch of trachea, and digitized at 44 kHz. The controls’ data in dataset 2 was 

adopted from [36], while the dysphagics’ data were recorded at Health Sciences 

Centre, Winnipeg, with the same microphone and sampling rate from stroke 

patients. The experimental protocol was the same for all data recordings: each 

participant was fed 5 boluses of a thin liquid texture (i.e. juice) with a 5ml spoon, 

resulting in 50 swallowing sounds for each dataset. The study has been approved 

by the Biomedical Ethics Board of the University of Manitoba and all 

participants or their legal guardian signed a written consent prior to experiments.  

Since the sampling rates of the two datasets were different, the recorded 

sounds of dataset 2 were down-sampled by a factor of 4 to match those of dataset 
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1. All signals were band-pass filtered between 100-2500 Hz (as it was the filter’s 

bandwidth of the adopted signals from [7], and normalized to their maximum. 

IDS and BTS parts of the swallowing sound signals were separated manually by 

an expert by auditory and visual inspection of the signals in the time and 

frequency domain. Only the IDS part of the swallowing sound, which is related to 

the pharyngeal phase, was considered in this study. 

Modeling Modeling Modeling Modeling     

The swallowing sound can be thought to be the output of a linear and time 

invariant (LTI) system representing the oropharynx muscle and tissue responses 

to the neural activities that initiate swallow, and are represented by an impulse 

train (Fig.  3-1). Since both the input (neural activities) and the transfer function 

(pharyngeal response) can affect the output (IDS), the modeling is approached by 

investigating the changes between the swallowing sounds of the two groups of 

control and dysphagic as a result of a change either in the pharyngeal response or 

the system input, each being considered separately.   

Approach 1Approach 1Approach 1Approach 1: : : : Pharynx Transfer FunctionPharynx Transfer FunctionPharynx Transfer FunctionPharynx Transfer Function    

In the first approach, it is assumed that the transfer function of the pharynx 

changes as the tissue characteristics vary between the individuals with and 

without dysphagia. In this approach, similar to the model suggested for the 

electromyogram (EMG) signals, the impulses are considered to be with the same 

amplitude, arriving at random intervals and having Poisson distribution [39].  

Muscles involved in swallowing are driven by several motorneurons, through 

which the neural signals are transmitted to the muscles [37]. Similar to the EMG 

model in [39], it is assumed that the recorded swallowing sound signal is a 

weighted sum of the neural pulses (the impulse train) passing through the throat 

muscle fibers. The swallowing sound is assumed to be a weighted sum of the 
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impulse responses of each active muscle fiber’s response, h�,…,  h�, as depicted in 

Fig.  3-2.  

For simplicity, it is assumed that the input impulse trains are uncorrelated. 

Also, each impulse train is considered as a renewal point process with identical 

interval statistics. In addition, we may safely assume the fiber types of the 

muscles involved in swallowing are of the same type. Therefore, if the number of 

active motorneurons is constant, �, then the initial part of swallowing sound 
signal (IDS) can be assumed to be a stationary process, and its power spectrum 

density (PSD) may be expressed as[39]:  

)()(}{)(
22 ωωω xxjyy jHkNE Γ=Γ  ( 3-1) 

where jk  is the coefficients of the weighted sum, {}E  represents statistical mean,  

H(jω) is the Fourier transform of h(n), and )(ωxxΓ  is the PSD of the input 

impulse train.  

If )(ωxxΓ  is relatively constant compared to )(ωyyΓ , it can be replaced by a 

constant term ( ak ) and ( 3-1) can be rewritten as: 

.)(}{)(
22

ajyy kjHkNE ωω =Γ  ( 3-2) 

The above approximation used in ( 3-2) was shown to be valid regardless of 

the interval density of the incoming impulse train [39]. Moreover, the individual 

neural impulse trains may be considered to be Poisson point processes with the 

distribution parameter (mean value) of .ak=λ  
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Fig.  3-2. The model [39] considered in the first approach to represent the IDS part of 
swallowing sound. 

In this approach of modeling, the 
� coefficients represent the intensity of the 

neural impulses to initiate swallow. Given that the bolus size and texture are 

fixed in our data, we can simplify the model further and assume the }{ 2
jkE  is 

constant, then Γ

(ω), representing the IDS segment of the swallowing sound is a 

scaled version of �(��). Therefore, �(��) (or equivalently ℎ(�)) can be obtained 
by fitting a suitable analytical form to the PSD of the IDS segment of the 

swallowing sound signal  Γ

(ω). 
To evaluate the above model, the PSD (using Welch method [40] with 50% 

overlap between the successive windows) of the IDS segment of the swallowing 

sound was fitted using a Bode approximation with a resulting transfer function of  
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( 3-3) 

where �, �, and � are the zero of order �, pole of order �, and gain of the system, 

respectively.  

To find the transfer function for each group of the control and dysphagic 

swallowing sounds, the Bode approximation as presented in ( 3-3) was fitted to 

the IDS segment of every swallowing sound, and the Bode parameters were 

averaged among the signals of every subject in each study group. The swallowing 

sound characteristics do vary among the individuals and within each one due to 
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different bolus size and texture. In this study we have kept the bolus size and 

texture the same for all study subjects. Furthermore, we fed every study subject 

in the same manner in order to keep the pharynx and upper airway posture the 

same for everyone. Hence, we assumed that a specific model may represent the 

swallowing sounds of healthy and dysphgic groups. Figure 3-3 shows the PSD of 

a typical swallowing sound of the control group along with its fitted Bode curve. 

The same plot for a typical dysphagic swallowing sound is shown in Fig.  3-4.  

The time-domain transfer function signals were found by calculating the 

inverse Fourier Transform of the approximated transfer functions found for each 

group of data (Fig.  3-5). 

 

Fig.  3-3. PSD and its fitted Bode plot of the IDS segment of the swallowing sound of a 
control subject. 
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Fig.  3-4. PSD and its fitted Bode plot of the IDS segment of the swallowing sound of a 
dysphagic subject. 

 

 

Fig.  3-5. The time domain response of the Bode approximation models derived for the 
control (—) and dysphagic (--) groups. 

To validate the fit of the models for each group of data set, the mean-square-

error (MSE) was calculated. To determine MSE, the error between the actual 

PSD of the IDS segment and the corresponding values of the Bode curve was 

calculated, squared, added up for all data points, and divided by the number of 

points. The smaller the MSE, the closer the fitted curve is to the data. 
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Approach 2Approach 2Approach 2Approach 2: : : : Pharynx Neural InputsPharynx Neural InputsPharynx Neural InputsPharynx Neural Inputs    

In this approach, it was hypothesized that the transfer function of the pharyngeal 

walls to the initiating neural pulses is the same for both normal and dysphagic 

swallow but it is the neural pulses, i.e. the input of the system that accounts for 

the difference between the two groups. Therefore, it was assumed that the 

pharyngeal response (the system transfer function) can be suitably represented by 

a wavelet basis function at a fixed pre-defined level. The selection of the type of 

the basis function is described below. 

To investigate the above hypothesis wavelet decomposition was applied to the 

IDS parts of the swallowing sounds of both groups. In wavelet analysis a basic 

finite function is defined as the basis function for describing a set of functions or 

signals. Then, the signal is described in some scales by which the components of 

the signal in the subspace spanned by the specified basis function [41]. 

�(�) = � ���(
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( 3-4) 

Where ��� and "� are the approximation and detail coefficients, respectively. The 

first term shows the components of the signal )(tf in the subspace spanned by 

∅�, and the second term represents the detailed components of the signal in 

higher scales.  

 In the wavelet analysis, the discrete wavelet approximation coefficients at a 

specific level of decomposition were examined. The Symlet wavelet of order 8 was 

chosen to be consistent with previous studies [36]. It is speculated that the energy 

of the coefficients at the specific level can mimic the impulses applying to the 

system.   
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To find the level of decomposition that can best distinguish between the 

healthy and dysphagic swallows, a simple classification has been done. For each 

swallowing sound, the energy of the approximation coefficients was calculated at 

8 levels of decomposition. The best level was chosen according to the specificity 

and sensitivity of the classification calculated for each level.  

3333....3333 ResultsResultsResultsResults    

In the first approach, different models were obtained for the control and 

dysphagic subjects. The control group’s model was approximated by a second 

order zero at 16 Hz, and a pole of the order 7 at 255 Hz.  On the other hand, the 

dysphagic group’s model was approximated by a third order zero at 32 Hz and a 

pole of the order 6 at 230 Hz. Both models shared the same gain.  To evaluate 

how well each model represented its assigned group (control/ dysphagic) the 

Mean Square Error (MSE) between the actual PSD of the signal and each of the 

two Bode approximated models were calculated for each of the swallowing 

sounds. Therefore, two sets of MSE values were obtained for each signal: the 

MSE of the signal in its own model and the MSE in the other model (Fig.  3-6).  

As can be seen in Fig.  3-6, the MSE of the control individuals in the control 

model is less than that in the dysphagic model (the MSE lie in the left side of the 

bisector line). This result was desired; however, it was not consistent for the 

dysphagic group, i.e., the points were spread in the region of plot, in which the 

MSE of the dysphagic data in the control model is less than that in the 

dysphagic model. In other words, if the models were the best candidates to 

represent their own data, the MSE plot would have been perfectly separated by 

the bisector line. 
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Fig.  3-6. The Mean Square Error (MSE) between the PSD of each swallowing sound 
signal of control/dysphagic subjects (from both the datasets) and the Bode 

approximated transfer function for control/dysphagic models as shown in x/y axes, 
respectively (The bisector line of the plane is plotted for better presentation of the 

results). 

As for the second approach using the wavelet analysis, the approximation 

coefficients for all levels of decomposition were calculated; they are shown in Fig. 

 3-7 and Fig.  3-8 for the control and dysphagic signals, respectively. To determine 

the scale, at which the wavelet basis function describes the pharyngeal response 

of the swallowing sound the best, we used the ability of the model to classify the 

two control and dysphagic groups as the criterion. A simple linear classification 

technique was used as the linear ones are more robust in heterogeneous 

populations. At each level of decomposition, the mean values of the energy of the 

wavelet approximation coefficients were calculated for each group, the average of 

which sets a threshold for a simple classifier for that level. The classification 

results are shown in Table  3-1. The accuracy is determined by calculating the 

percentage of correctly classified control and dysphagic data according to:  

accuracy = true control + true dysphagic
total number of control and dysphaigc 

To further evaluate the performance of each level in representing the 

pharyngeal response, the specificity and sensitivity of the classifier were 
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calculated as follows: 

speci9icity = true dysphagic
true dysphagic + false dysphagic 

sensitivity = true control
true control + false control 

As demonstrated in Table  3-1, the 2nd and the 3rd level coefficients can 

discriminate between the swallows of the control and dysphagic groups with 

higher accuracy in comparison to the other levels. Therefore, they were chosen for 

further investigation. 

Table  3-1. The classification results at 8 levels of decomposition. 

level Accuracy Specificity Sensitivity 

Data set D1 D2 D1 D2 D1 D2 

1 78% 84.44% 71.88% 76% 88.89% 95% 

2 80% 84.44% 74.19% 76% 89.47% 95% 

3 82% 84.44% 75% 76% 94.44% 95% 

4 80% 80% 72.73% 72% 94.12% 95% 

5 76% 68.89% 67.57% 61.54% 100% 78.95% 

6 66% 71.11% 59.52% 64% 100% 80% 

7 64% 51.11% 58.14% 47.06% 100% 63.64% 

8 64% 57.78% 58.14% 51.43% 100% 80% 

 

The energy of the best scale coefficients was then calculated for all swallows 

of each individual. To display the classification results for all swallows of the two 

groups, the energy of the 3rd level coefficients were plotted versus that of the 2nd 

level coefficients for both datasets (Fig.  3-9). The values were averaged among 

the swallows for each subject. Since two different datasets were used for this 
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study, their energy levels were different; hence, to show both datasets on the 

same plot, we normalized the values in each dataset with respect to the 

maximum value within the same dataset. 

 

Fig.  3-7. The approximation coefficients at 8 scales (a)-(h) for a typical swallowing 
sound of a non-dysphagic subject. 

 

Fig.  3-8. The approximation coefficients at 8 scales (a)-(h) for a typical swallowing 
sound of a dysphagic subject. 
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Fig.  3-9. The scatter plot of the energy of the control and dysphagic data at two levels 
of wavelet decomposition averaged among each subject’s swallows. The values of x-axis 
and y-axis belong to the 2nd and 3rd level, respectively. The filled marker shows the 

values of the first dataset while the blank ones represent the second. 

3333....4444 DiscussionDiscussionDiscussionDiscussion    

In this part of study, based on the assumption that swallowing sound is a result 

of a linear time invariant system excited by a train of impulses, two hypotheses 

for modeling the swallowing sounds were investigated. In the first hypothesis it is 

assumed the neural activities are the same and it is the pharyngeal response 

(model) that is different between the two groups of the swallowing sounds. On 

the other hand, in the second hypothesis it is assumed the impulse train 

representing the neural activities to trigger swallow is the same for both groups of 

healthy and dysphagic and it is the pharyngeal model that accounts for the 

difference between the two groups. 

In the first hypothesis it is assumed the neural activities are the same for all 

swallows despite the potential disorder, and it is the pharyngeal response (the 

model) that is different between the two groups of the healthy and dysphagic 

swallowing sounds. On the other hand, in the second hypothesis it is assumed the 
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pharyngeal response is the same for both groups but the neural activities to 

initiate the swallow are different between the two groups. 

To investigate the first hypothesis, the pharyngeal tissue response to the 

neural activities was modeled by a linear time invariant model. The model was 

derived by fitting a single zero and pole with multiple orders Bode approximation 

to the PSD of the IDS part of the swallowing sound signals in each group. As a 

result of the Bode fitting, two different models were obtained for the healthy and 

dysphagic groups.  

In a previous study, swallowing sound was assumed to be generated as the 

result of convolving two signals in time domain: a train of impulses as the neural 

activities and the linear system that represents the pharyngeal wall. To separate 

the convolutional components from the resultant signal, cepstrum analysis was 

used [36]. By applying a low-pass filter to the cepstrum result, the low frequency 

component which resembles the model of the pharyngeal response was obtained 

and called the principal curve. The time domain response of the pharyngeal 

system, shown in Fig.  3-5, is similar to the principal curve introduced in [36].  

The idea of fitting a Bode curve to the PSD of the signal was borrowed from 

[39] in modeling electrormyogram (EMG) signals. The EMG model was 

considered to be composed of the neural pulse train inputs passing through an 

LTI system representing the motor unit action potential. In spite of the same 

description for the two biological signals, EMG and swallowing sound, the 

outcome was not similar. While the method was successfully applied in EMG 

modeling, it was not found to be a good tool for modeling swallowing sound. 

The results of the first approach, shown in Fig.  3-6, imply that some 

dysphagic swallows were fit better by the normal model than their own model. 

Hence, one may question the validity of the first hypothesis at least for this 
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group of dysphagic patients that their data was used in this study. Given the fact 

that the participants in our dysphagic group were all cerebral palsy and stroke 

patients, the second hypothesis that considers a deficiency in neural activities for 

swallow initiation in dysphagic group, sounds more reasonable.  

The wavelet analysis may provide another piece of the modeling puzzle 

relating to the role of the neural activities. The main idea behind the wavelet 

analysis in this study was to find an estimate of the impulse train input to the 

swallowing model. Since the principal curve was similar to the Symlet wavelet of 

the 8th order, the symlet8 wavelet was used for the wavelet analysis in [36] and 

the present study. The timing and amplitude of the arriving impulses are 

inherent in the wavelet coefficient at a particular order of the decomposition. 

Choosing the 3rd level is shown to yield the best classification results between the 

two groups; the energy of the 3rd level wavelet approximation coefficients was 

lower for the dysphagic individuals than those for the control subjects. 

It is interesting to note that the 3rd level of the decomposition, which yielded 

the best classification result, is in agreement with the best features obtained in 

[34]. It was shown that the frequency domain features, extracted from the IDS 

segment, that were corresponding to the frequencies below 700 Hz, represented 

the main characteristics of the signal [34]. The frequency range of the dyadic 

wavelet transform corresponding to the 3rd level wavelet resolution can be 

obtained by dividing the Nyquist frequency by 23 which is calculated as 640 in 

this study. 

Swallow, as a sequential and rhythmic motor behavior, can be thought to be 

the result of a neuro-physiological model involving all levels of the nervous 

system; it can be triggered by stimulating a peripheral nerve and also involves 

some regions of the central nervous system. The model is stimulated by a pattern 
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of excitation in pharyngeal and laryngeal muscles appeared as seen in the form of 

the spikes in EMG studies of the swallowing sounds [35]. The exact role of the 

central mechanisms in generating the impulses is still unknown. However, the 

timing and amplitude of the impulses have been found to be responsible for the 

sound generation in swallowing [37]. 

The role of the input signal in the model of the swallowing can be highlighted 

in cerebral palsy (CP) disorder which was the case in the patient group of this 

study. It has been shown that cortical dysfunction, as in CP, may result in 

swallowing impairment [28]. In CP patients, a major output pathway from the 

motor cortex to the brainstem and cranial nerve is damaged. Also, the damage 

can occur in the neural circuitry that mediates the processing of the signals 

coming from the anatomic structures involved in swallowing such as oral cavity, 

pharynx, and esophagus. These signals contain the information regarding the 

characteristics of a bolus as it passes through the swallowing pathway. Therefore, 

either types of damage influence the excitation signal that stimulates the muscles. 

This can be due to the improper information conveyed to the structures 

controlling swallowing or the impaired pathway from the control center. 

It can be speculated that both assumptions for modeling the swallowing 

mechanism of the two groups of control and dysphagic are valid depending on the 

type of dysphagia. As the patients participating in this study suffered from CP, 

the wavelet modeling seems to be a better representation of the swallowing sound 

generation. These individuals lack a controlled, coordinated swallow due to 

neuromotor impairments that may interfere with efficient food processing, delays 

in initiating swallows, and inefficient oropharyngeal clearance of the swallowed 

material [7]. Therefore, the model in the second approach that takes into account 

the effect of the input is congruent with physiological cause of dysphagia that 

occurs in conjunction with the neurologic problem such as CP. However, if 
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dysphagia is due to muscle atrophy or degeneration, the first model may be a 

better fit to the swallowing mechanism. 

The proposed modeling and the model evaluation in this part of the study 

were the first attempts toward modeling the swallowing mechanism. Moreover, 

the statistical properties of the swallowing sound are discussed in this study. This 

knowledge is important to select an appropriate type of the system (i.e. linear vs. 

nonlinear) for modeling. For this purpose, the gaussuanity and nonlinearity of the 

system are investigated and discussed in  Appendix A. 

3333....5555 Summary Summary Summary Summary     

In the pilot study presented in this chapter, a mathematical modeling of the 

swallowing sound generation is presented. To evaluate the model, its application 

on swallowing disorder diagnosis is discussed. As a starting point, a simple linear 

time invariant model is assumed to represent the pharyngeal wall and tissue 

excited by a train of impulses. The modeling is approached by two different 

assumptions. In one approach it is assumed the impulse train, representing the 

neural activities to trigger swallow, is the same for both groups of control and 

dysphagic and it is the pharyngeal model that accounts for the difference between 

the two groups. On the other hand, in the second approach, it is assumed the 

pharyngeal response is the same for both groups but the neural activities to 

initiate the swallow are different between the two groups. The results show the 

second approach complies better with the physiological characteristics of 

swallowing mechanism as it provides a much better discrimination between the 

swallowing sounds of control and dysphagic groups of this study. Though, it 

should be noted that our dysphagic group subjects were cerebral palsy and stroke 

patients. Hence, the model accounting for initiation of neural activities is 

reasonable to show better results. 
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4444....1111 IntroductionIntroductionIntroductionIntroduction    

Aspiration represents a problem in the airway protection during the swallow. 

Swallowing and respiration are reciprocal functions, in which many muscles and 

structures have dual roles. Thus, a safe swallow requires a highly coordinated 

interaction with respiration.  

In most normal individuals, expiration occurs at the end of the swallowing, 

and clears the larynx and pharynx from small residues of materials. Expiration 

after swallowing may help clear the airway from any material that may have 

penetrated [15]. It was shown that the number of swallows followed by 

inspiration increases as the level of consciousness decreases [7], [20]. This 

observation emphasizes the role of the central nervous system in controlling the 

breath-swallow interaction. The central nervous system modulates the timing and 

coordination of the interaction using the feedback sensory information about the 

presence of the food. Thus, neurological disorders, which affect the pathways 

involved in the swallow-breathing coordination, may increase the risk of 

aspiration as the result of changing the aforementioned pattern. For example, 

dysphagic individuals often show interruption in the inhalation phase, which may 

lead to aspiration.  
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When intervening with an individual with dysphagia, the first goal is to 

determine whether they are aspirating. Acoustical detection of aspiration has 

clinical value as a large population of the patients demonstrates silent aspiration, 

which does not show any clinical indications such as coughing or choking. 

Identifying dysphagic individuals does not draw attention as a diagnostic tool 

for speech-language pathologists (SLP) or physicians as they make the diagnosis 

by using the clinical symptoms and a quick examination. What is important for 

clinicians is the accurate aspiration detection. Thus, the rest of the thesis is 

dedicated to aspiration detection by analyzing the breath sounds after a 

swallowing event. 

In this chapter, we investigated the application of acoustical analysis of breath 

and swallowing sounds for identifying patients at high risk of aspiration [11]. We 

hypothesized that the existence of a small particle of food or liquid in the airway 

(due to aspiration) would change the pattern of breathing airflow by creating 

vortices (Fig.  4-1). Thus, we proposed a novel method based on phase-space 

analysis of breath sounds immediately after swallows followed by support vector 

machine classifier (SVM) [42] as a diagnostic aid for identifying patients with 

high risk of aspiration.  
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Fig.  4-1. An illustration of the pattern of airflow in (a) a clear trachea and, (b) a 
trachea with a food particle in it. 

4444....2222 MethodsMethodsMethodsMethods    

4444....2222....1111 Study Study Study Study SubjectsSubjectsSubjectsSubjects    

Data were collected from 50 dysphagic adult patients (age 60±20 years, 11 

females), who were referred to either VFS or FEES assessment as part of their 

diagnostic routine. Individuals with stroke, acquired brain injury and 

neurodegenerative disorders such as Parkinson, Huntington and Amyotrophic 

Lateral Sclerosis (ALS) were included. The study participants were fed different 

types of a variety of solid and liquid food, which were presented by a cup, spoon, 

or straw. The type and order of the food were decided by the speech-language 

pathologist. The recording was finished as soon as enough information was 

obtained about the swallowing mechanism of the participant based on the speech 

pathologist’s judgment. 

Swallowing and breath sounds were recorded simultaneously with either VFS 

or FEES assessment at DeerLodge Centre, Riverview Health Centre, and Health 

Sciences Center, Winnipeg, Canada. The study was approved by the Biomedical 

Research Ethics Board of the University of Manitoba, and all participants gave a 

written consent prior to the experiments. The speech-pathologist marked the 

(a) (b) 
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patient’s aspiration events using either VFS or FEES assessment. We considered 

patients as severely dysphagic if they aspirated in more than 50% or more than 5 

of their swallows during the swallowing assessment; 11 of the 50 dysphagic 

participants were in severely dysphagic category. Note that the aspirations were 

all identified by the speech pathologist in charge of imaging assessment 

independent of our analysis.  

4444....2222....2222 Data RecordingData RecordingData RecordingData Recording    

Tracheal sounds (breath and swallowing sounds) were recorded by a Sony (ECM-

77B) microphone placed over the suprasternal notch of the trachea using double-

sided tape. The sounds were recorded at 44.1 kHz sampling rate by a digital 

sound recorder (EDIROL R-44). The patients were fed different types of a 

variety of solid and liquid food decided by the SLP, who performed the VFS or 

FEES assessment. As the microphone collects both the swallowing and the breath 

sound signals, we separated the breath and swallowing signals by aural and visual 

examination of the signals in the time and frequency domain. Our group has 

studied and developed several automatic algorithms for breath and swallowing 

sounds separation; the most accurate one [43] achieved 93% accuracy. However, 

our recorded sounds included swallowing and breath sounds, the SLP’s voice and 

also some other noise in the hospital that needed to be excluded from the 

segmented data prior to analysis. Therefore, to assure 100% accuracy at this 

stage in this study, we used manual separation.  The breath sounds of the 1 to 3 

breath phases (inspiration/expiration) immediately after each swallow and before 

the next swallow were selected for analysis.  All the signals were band-pass 

filtered between 100-5000 Hz. 
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4444....2222....3333 Signal AnalysisSignal AnalysisSignal AnalysisSignal Analysis    

Inspired by the idea in “phase-space thresholding” used in the acoustical Doppler 

velocimetry [44]-[45], we plotted the time-domain breath sound data of each 

respiratory phase (after a swallow) versus its first and second derivatives, and fit 

an ellipsoid to encompass the data points. Then, we calculated the ellipsoid’s 

principal axes, and determined the data points of the time-domain breath sound 

data that fell outside the ellipsoid. The sum of the distances of those points from 

the center of ellipsoid was calculated, and normalized by the total energy of the 

signal in the time-domain. This was repeated for the 1 to 3 available breath 

phases sounds immediately after each swallow and before the next swallow. We 

considered the mean value of the distance of the data points outside the fitted 

ellipsoid as a characteristic feature for classification and testing our hypothesis as 

whether a foreign particle in the airway would change the flow of air and 

consequently change the generated breath sounds. The detail of the feature 

calculation is explained below. 

The first and second derivatives of the time-domain signal (∆xi and <=>?) were 

calculated as: 

,2/)( 11 −+ −=∆ iii xxx  ( 4-1) 

.2/)( 11

2

−+ ∆−∆=∆ iii xxx  ( 4-2) 

The center of the ellipsoid, which represents the mean values of the time-

domain signal, and its velocity and acceleration, is located at the origin of the 

phase-space domain after the mean values of each axis are removed. The linear 

least-square regression method [45] was used to calculate the rotation angles of 

ellipsoid’s principal axes. For Δ>? versus >?  and <=>?  versus Δ>?, the rotation 

angles of the principal axes are zero because of the symmetry in their 
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distribution. However, for >? versus <=>?   the rotation angle of the principal axis 
is given by: 
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where α  is the rotation angle of the principal angle in x-∆2x plane. Considering 

that the mean values of the time-domain signal is zero, the above equation 

simplifies to: 
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The principal axes of the ellipse projected into the x-∆2x plane, are a and b, as 

determined by equations ( 4-5) and ( 4-6), respectively; c is the major axis in ∆x-

∆
2x  plane.   
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where ABC and ABDE are the standard deviations of the first derivative and second 

derivative respectively and λ  is defined as F = G2 ln(I) , where N is the number 

of data points. In spherical coordinate system the ellipsoid is defined as: 
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where r, θ and Φ are spherical coordinate, as shown in Fig.  4-2. 

 

Fig.  4-2. Spherical coordinate in the phase-space. 

4444....3333 ClassificationClassificationClassificationClassification    

We used the SVM classifier to evaluate the classification performance. SVM finds 

the decision boundary by minimizing the objective function in ( 4-9), subject to 

the constraint shown in ( 4-10): 

1
2 ||L||= + M � N?

O

?
 

 

( 4-9) 

P?QRSTU + �V ≥ 1 − N? �YZ [ = 1, … , I ;     N? ≥ 0, ( 4-10) 

where TU is the feature vector, P? is the label of the class, R is the weight vector, 

b is the bias, C is the regularization parameter and N? is called the slack variable, 

which measures how much the constraint is violated. 

To remove any bias between training and testing, we used leave-one-out 

routine for testing the classification, in which data of all subjects—except one—

were selected as the training data, and the left-out data was used as the test 

data; this routine was repeated till all subjects’ data was used as a test data once.  

The training and testing accuracies were then calculated. 



Chapter 4-    Non-invasive and Automatic Detection of Patients at High Risk of 
Swallowing Aspiration 

44 
 

4444....4444 ResultsResultsResultsResults    

Figure 4-3 shows the phase-space plots of the breath signals following the 

swallows of two typical dysphagic patients: one with severe aspiration and one 

without aspiration. As expected from our hypothesis, two distinct patterns are 

observed (Fig.  4-3). For the breath sound of the patient without aspiration, the 

majority of the data points can be encompassed by an ellipsoid. On the other 

hand, for the patients with severe aspiration more variations occur in the breath 

sound’s phase-space, which results in more points outside the ellipsoid. The 

corresponding time-domain sound signals of Fig.  4-3 are shown in Fig.  4-4, where 

the points outside the ellipsoid are marked with red color to show the time 

occurrence of those points. Figures 4-4 (a) and (b) show the signal in the time 

domain. The variations of the signal (the first derivative) against the signal and  

time are shown in Fig.  4-4 (c) and (d). 

 

Fig.  4-3. The 3-D phase-space plot of the two breath signals (following swallows) of two 
patients: (a) without, and (b) with aspiration. The asterisks show the points that fall 

outside the ellipsoid. 

 

 

(a) (b) 
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Fig.  4-4. The time-domain breath sound signals corresponding to the graphs shown in 

Fig.  4-3: (a), (b) without, and (c) and (d) with major aspiration. Data points that fell 
outside the ellipsoid are shown in red. 

Figure 4-5 shows the scattered plot of the characteristic feature (sum of data 

points outside the ellipsoid) calculated for all the study subjects. The SVM 

classification resulted in 86% accuracy on the test dataset with 91% sensitivity 

(one false negative) and 85% specificity (6 false positive). The false positive cases 

are discussed in the discussion. Since we used leave-on-out routine, for every fold 

there was a training accuracy; thus we averaged them over the entire folds. The 

training accuracy, sensitivity and specificity were found to be 86%±0.01, 

91%±.0.02 and 84%±.0.0, respectively. As can be seen the average training 
accuracy is very close to test accuracy; that implies the robustness of the 

(a) (b) 

(c) (d) 
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classification results; it is also congruent with the observation that the standard 

deviation of the training accuracy between the folds is very small. 

 

Fig.  4-5. Scatter plot of the ellipsoid feature for all the participants. The triangle 
marker (∆) represents the patients in the severe aspiration group, and the asterisk (*) 

shows the group of patients with mild or no aspiration. 

4444....5555 DiscussionDiscussionDiscussionDiscussion    

We propose a novel acoustic swallowing assessment to identify patients at high 

risk of aspiration based on analysis of the breath sounds immediately after a 

swallow. The classification results show a high sensitivity (91%) and a reasonable 

specificity (85%) on the test dataset which was independent of the training 

dataset. 

Since any foreign particle in the airway (i.e. due to aspiration) can change the 

flow of air, we studied the fluid mechanical characteristics of the air flowing in 

the trachea during breathing after each swallow. As mentioned in Introduction 

section, the trachea can be modeled as a tube through which the airflow passes 

[46]. The airflow in the trachea is highly likely to be turbulent [47]. Therefore, we 

hypothesize that any small particle in the airway as a result of aspiration (Fig. 

 4-1) would affect the size of the turbulence large scales; that should be reflected 

in the breath sound signals. Based on this theory and hypothesis, we expect the 
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existence of a foreign particle in the airway would cause a rattling sound during 

breathing. This analogy shows to be correct, when one considers the time 

occurrence of the points outside the ellipsoid of time-domain signal versus its 

velocity and acceleration. As can be seen in Fig.  4-3 and Fig.  4-4, those data 

points outside the ellipsoid are all close to each other in time; implying the 

rattling sound in that time period due to the foreign particle in the airway. In 

addition, Fig.  4-4(d) shows the decaying of the rattling sound’s amplitude by 

time as the airflow passes and moves away from the particle in the trachea. 

In our previous study [12] with a dataset of 21 patients, we developed a two-

stage classification method for the same purpose as in this study. We tested the 

proposed method of our previous study on the dataset of this study as well; the 

two-stage classification on the dataset of this study showed 91% accuracy (1 of 

false positive and 1 of false negative) at stage 1, when identifying the aspirated 

patients, and 81% accuracy at stage 2 when identifying the aspirated swallows. 

These results of stage 1 are comparable with the accuracies achieved by the new 

proposed method, while the new method has the advantage of achieving the same 

accuracy or better with only one feature. The fact that the averaged training 

accuracy was similar to test accuracy is very encouraging as it implies the 

robustness of the classification results. 

Our proposed method was able to identify all patients except one correctly but 

had 6 false positives. It is of interest to consider the conditions of false positives 

further. One of the false positive cases was a patient, who did not show any 

aspiration in his VFS but he had continuous involuntary head movements as a 

result of the Huntigton’s disease; that might have affected the sound recording. 

The other false positive cases were patients with mild aspiration based on their 

FEES/VFS assessments. However, it is possible that some aspirations were 
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missed by the FEES/VFS imaging during the FEES white-out period (when 

endoscope’s tip contacts the swallowing structures) or when there was a pause in 

the VFS recording. Therefore, these 4 patients might have been indeed at high 

risk of aspiration (severely dysphagic) as our method predicts.   

Other than our group’s studies, to the best of our knowledge, there has not 

been any other study analyzing the tracheal breathing and swallowing sounds to 

particularly identify patients at risk of aspiration. Another group of researchers 

have used the accelerometer data to classify the healthy and abnormal swallows, 

which also included the swallows with aspiration; they used Euclidean linear 

discriminant classifier with an accuracy of 74.7% for aspiration detection on a 

population of 24 patients [48]. However, they did not report the sensitivity and 

specificity of their method. Our results of acoustic analysis of tracheal sounds 

significantly outperform the vibrational analysis of trachea during and after 

swallowing. Vibrational analysis only reflects the movements of the larynx, while 

the sounds are psudo-pressure signals, and thus, representative of the physiology 

of the airway. 

The modeling algorithm described in  Chapter 3 was not applied to new data 

mainly because the new data were recorded with the aim of breath sound 

analysis. For that purpose, we had to increase the gain of the amplifier to 

improve the sensitivity of recording breath sounds at the cost of having the 

swallowing sounds mostly clipped. 

The main contribution of this part of the thesis is proposing a novel, fast and 

robust acoustic analysis method that can identify patients with high risk 

aspiration. The method’s main novelty is in its feature extraction that represents 

the physiology of aspiration. Using the proposed method, one can develop a 

device that will simplify swallowing clinical assessment significantly. Given the 
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non-invasive nature of the acoustic swallowing assessment, and also that it can be 

readily applied during a natural meal setting at the bed side of the patient, it 

would be very useful and economical to be utilized as an screening before 

referring the patient for either VFS or FEES assessment. Therefore, the patients’ 

referrals to the VFS/FEES tests can be prioritized; thus reducing the health care 

cost significantly. 

4444....6666 SummarySummarySummarySummary    

In this chapter, we investigated the application of acoustical analysis of breathing 

and swallowing sounds for identifying patients at high risk of aspiration. We 

propose a novel method based on phase-space analysis of breath sounds 

immediately after swallows followed by support vector machine classifier (SVM) 

as a diagnostic aid for identifying patients with high risk of aspiration. The 

classification result of the proposed method was compared with the FEES/VFS 

assessments provided by the speech-language pathologists; it showed 91% 

sensitivity and 85% specificity in detection of patients with severe aspiration 

(high risk dysphagia). The results are promising to suggest the proposed phase-

space acoustical analysis method as a quick and non-invasive screening clinical 

tool to detect patients developing severe aspiration. 
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In this part of the study, we investigated the feasibility of detecting silent 

aspiration (those without any coughing or throat clearing after the aspiration) by 

sound analysis of the breath sounds immediately after a swallowing event. 

Theoretically speaking, the existence of an external particle in the airway, as a 

result of aspiration must change the sound of flow turbulence during breathing as 

shown in Fig.  4-1. Hence, we hypothesize that silent aspiration can be detected 

by sound analysis of the breath sounds immediately after swallowing event with 

aspiration.  

To test our hypothesis, we recorded the breathing and swallowing sounds of 

dysphagic individuals, who were referred for the VFS or FEES swallowing 

assessment, simultaneously with VFS/FEES imaging. Our goal was to detect 

silent aspirations; thus, we excluded the aspirated swallows that were followed by 

coughing. We analyzed data of the patients who had at least 2 swallows with 

silent aspiration confirmed with either VFS or FEES. We analyzed the breath 

sounds immediately after the swallowing events, derived the characteristic 

features, and used a fuzzy clustering to classify the aspirated swallows from non-

aspirated ones. The results were compared and validated using the VFS/FEES 



Chapter 5----    Detection of Swallows with Silent Aspiration using the Swallowing 
and Breath    Sounds    Analysis    

51 
 

assessment. The following sections detail the acoustical analysis method and 

discuss the results. 

5555....1111 MethodMethodMethodMethod    

5555....1111....1111 Participants Participants Participants Participants     

Data were collected from 45 dysphagic patients (10 females), who suffered from 

stroke, and neurodegenerative disorders such as Parkinson, Huntington and 

Amyotrophic Lateral Sclerosis (ALS), or traumatic brain injury, and were 

referred to either VFS or FEES assessment. Patients with tracheostomy were not 

considered eligible for enrolment in this study as the tracheostomy changes the 

breathing and swallowing sounds in a way that it requires a separate group of 

individuals with enough number of subjects with the same condition. 

The swallowing sounds were recorded simultaneously with the VFS or FEES 

assessment at DeerLodge Health Centre, and Riverview Health Centre, and 

Health Sciences Centre, Winnipeg, Canada. The study was approved by the 

Health Research Ethics Board of the University of Manitoba, and all participants 

or their legal guardian signed a written consent prior to the experiments.  

Tracheal sounds were recorded by a Sony (ECM-77B) microphone placed over 

the suprasternal notch of the trachea. The sounds were recorded by a digital 

sound recorder (EDIROL R-44) at 44.1 kHz sampling rate. The patients were fed 

different types of a variety of solid and liquid food; the type and order of the food 

were decided by the speech-language pathologist (SLP) in charge, who performed 

either VFS or FEES assessments. 

5555....1111....2222 Signal ProcessingSignal ProcessingSignal ProcessingSignal Processing    

Swallowing occurs within a breath cycle during the deglutition apnea (cessation 

of breathing). The microphone placed over the trachea collects both the 
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swallowing and breath sounds. In this study, only the breath sound signals after 

the swallowing events were analyzed. Therefore, the breath and swallowing 

sounds were separated manually by auditory and visual inspection of the signals 

in the time and frequency domain.  

Each swallowing event of a patient was assessed by the SLP staff using the 

VFS/FEES images, and was marked as aspirated, or non-aspirated. Aspiration 

can occur during or after a swallowing; therefore, it is often difficult to find the 

exact timing of the aspiration. Thus, we analyzed 1-3 successive breath sounds 

after each swallow if the interval between the consecutive swallows permitted. 

Consequently, for any swallow marked as aspirated, for designing our classifier we 

marked the 1-3 proceeding breath sounds as aspirated. It should be noted that 

the swallows followed by coughing were excluded. Nevertheless, the cough is 

usually considered as a sign of aspiration. However, our goal is to detect the 

challenging silent aspirations.  

Figure 5-1 shows the spectra (calculated using the Welch method with 50% 

overlap between the successive windows of 20 ms) of the breath sounds after all 

the swallowing events of a patient having aspiration. The spectra of the breath 

sounds after aspirated swallows are marked with red dashed color. It is notable 

that the main difference exits in low frequencies, where the spectra of the breath 

sounds after aspiration show higher magnitude.  
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Fig.  5-1. The comparision of the PSD of breath sound signals after the swallow 
(simulataneaously recorded with FEES) for the swallows (with/without aspiration) of a 

dysphagic individual. 

5555....1111....3333 FeatureFeatureFeatureFeature    ExtractionExtractionExtractionExtraction        

We divided the frequency range below 500 Hz of each breath sound signal into 

100Hz sub-bands (the first sub-band was between 60-100 Hz as the signals were 

previously high-pass filtered for above 60 Hz). Then, the average power of each 

subband was calculated from the PSD of each breath, resulting in 3 features for 

each breath. Figure 5-2 shows the scatter plot of these three features calculated 

for all breath sounds after the swallows of one patient having aspiration. The red 

squares belong to the breaths after aspirated swallows.  
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Fig.  5-2 Scatter plot of the three average power features of the breath sounds after 
swallows of a patient having aspiration 

5555....1111....4444 Unsupervised Classification Unsupervised Classification Unsupervised Classification Unsupervised Classification     

We used the fuzzy k-means clustering algorithm to find two clusters among the 

data points related to all the breath sounds of each patient. The fuzzy k-means 

clustering algorithm is commonly used for unsupervised classification [42]. In this 

method, each data point belongs to a group of clusters with a membership degree 

that is optimized though running the algorithm. The membership value is the 

probability function ( )θω ˆ,|ˆ
jip X  whose parameter θ has to be updated by 

minimizing the cost function as ( 5-1): 
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where jX  is the data point or the feature vector to be classified, k is the number 

of clusters,
 iV

 
represents the vector of cluster centers and m is the fuzziness 

index (m>1) [49]. The role of m is to ignore the data points whose probability is 

low. The higher the value of m is, the lesser contribution of those data points to 



Chapter 5----    Detection of Swallows with Silent Aspiration using the Swallowing 
and Breath    Sounds    Analysis    

55 
 

the cost function [50]. In this study, we selected 

] 400)-(300P  200)-(100P  100)-(60P[ avavav=jX , k=2 and m=2. 

The algorithm begins by initializing the probability value of each data point 

indicating the degree it belongs to each cluster. The values should meet the 

condition expressed in ( 5-2): 
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jip Xω  ( 5-2) 

Then, the center of each cluster is calculated according to ( 5-3). Also, the 

probability of each cluster for every point is updated as ( 5-4). 
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Lastly, the procedures expressed ( 5-3)-( 5-4) are repeated until the cost 

function reaches its local minimum. Consequently, the final values of the centers 

of clusters are obtained, and every data point is assigned to a cluster where its 

membership degree has the highest probability. 

Having identified the two clusters of the breath sounds for each patient in the 

aspirated group, we designed a heuristic screening scheme to classify those 

breaths that were followed after an aspirated swallow as the following:  If any of 

the breaths (up to 3) after a swallow belongs to the aspirated cluster, then that 

swallow is labeled as an aspirated swallow. The clustering and heuristic 

classification scheme is shown schematically in Fig.  5-3.  
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To calculate the accuracy, specificity and sensitivity, true positives were 

defined as the swallows marked as aspiration, and true negatives are the non-

aspirated swallows. 

 

    

Fig.  5-3. Flowchart for aspiration detection. 

5555....2222 Results Results Results Results     

The spectral analysis showed in the breath sounds after the swallows formed two 

distinct clusters (Fig.  5-2); this pattern was consistent for all patients. Using the 

FEES/VFS assessment, it became apparent that the majority of the swallows of 

Cluster 1 belonged to non-aspirated swallows, while Cluster 2 had the majority of 
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the aspirated swallows. Clearly, the breath sounds after an aspirated swallow 

have significantly higher average power on the selected subbands. 

The results of the unsupervised clustering along with the heuristic 

classification of the swallows of each patient are summarized in Table  5-1. For 8 

out of 22 patients the sensitivity of the method was found to be 100% as all the 

aspirations were detected correctly. However, it should be noted that due to the 

very few number of aspirated swallows in some patients, i.e. Subjects, 2, 5, 8 and 

9, the average accuracy may not a good representative of the method’s accuracy. 

Therefore, we have shown results in terms of the total number of swallows, 

the number of aspiration, the number of correctly classified, and the misclassified 

cases in Table  5-1. It should be noted that no result was reported for subject #16 

in the table. The patient was on tube feeding, which is a device used to deliver 

nutrition directly into the stomach. The FEES was performed to evaluate his 

swallowing mechanism and decide if the tube can be removed. However, he could 

not complete even one swallow. There was a considerable accumulation of 

secretion in the pyriform sinuses that resulted in aspiration.  

The overall accuracy, sensitivity, and specificity for the all the swallows of the 

patients are calculated as 80.0%, 79.9% and 81.3%, respectively.  
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Table  5-1. Classification results of swallows for 22 patients having aspiration. 

subjects 

Total no. 

of 

swallows 

No. of 

swallows with 

aspiration 

TP FP TN FN 

Gender 

/Age 

1 10 3 3 2 5 0 M/70 

2 20 2 1 0 18 1 M/60 

3 11 4 4 1 6 0 F/23 

4 20 6 4 1 13 2 F/23 

5 20 4 3 2 14 1 M/71 

6 9 7 6 0 2 1 M/63 

7 14 3 3 4 7 0 M/60 

8 14 2 0 2 10 2 F/70 

9 21 2 1 2 17 1 F/57 

10 16 4 4 3 9 0 M/62 

11 25 2 2 2 21 0 M/52 

12 22 9 9 2 11 0 M/70 

13 21 5 4 2 14 1 M/81 

14 19 10 8 2 7 2 M/56 

15 9 4 4 3 2 0 M/90 

16 0 0 0 0 0 0 M/40 

17 15 6 4 2 7 2 M/73 
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18 21 5 4 4 12 1 M/85 

19 19 7 5 4 8 2 M/91 

20 29 8 7 9 12 1 M/20 

21 27 10 8 5 12 2 M/20 

22 13 4 3 2 7 1 F/57 

Total 375 106 86 54 214 20 58.8±21.7 

 

5555....3333 DiscussionDiscussionDiscussionDiscussion    

Swallowing assessments are generally performed to ensure the early diagnosis of 

patients who are at high-risk of aspiration. As mentioned earlier, VFS and FEES 

are two instrumental methods used as the Gold Standard to detect aspiration. 

Both techniques have limitations such as being invasive (exposing the patient to 

radiation), the high cost of equipment and the need for specialized training. In 

addition they cannot be applied during normal eating setting. Therefore, a non-

invasive, simple and yet accurate method with minimal interference on the 

normal eating procedure is of great interest. The results of this study show that 

the acoustical analysis of swallowing and breath sounds after the swallow has 

great potential to be used as a daily clinical tool to detect aspiration with high 

reliability and accuracy.  

Given that the trachea can be modeled as a tube through which the air 

(expiration/inspiration) flows [51], then it is logical to study the fluid mechanics 

characteristics of the airway dynamics. It has been shown that the airflow in the 

trachea is highly likely to be turbulent [47]. Thus, any particle in the airway will 

increase the size of the turbulence large scales, which results in a higher power at 
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low frequencies [52]; thus, a lower pitch sound is expected to be heard after an 

aspirated swallow.  

The particle in the trachea, as the result of aspiration, most probably changes 

the pattern of flow by creating vortices. Approximating the particle as a circular 

cylinder, we can obtain the frequency of vortex shedding in trachea, f, by the von 

Karman formula [53]: 

),
Re

7.19
1(198.0 −=

U

fd
     

where
U

fd
 is known as the Strouhal number, in which U is the instantaneous 

speed of airflow, d  is the diameter of the particle, and Re  is the Reynolds 

number. For a small particle with an average diameter of 1 mm, given that 

typical inspiratory speed is between 0.68 and 2.70 m/s [48] and Re varies between 

800 in light breathing and 9300 in heavy breathing for the airflow in the trachea, 

the frequency of vortex shedding is calculated to be in the range of 136-540 Hz. 

Thus, the vortex frequency due to the particle in trachea can increase the energy 

of the sounds’ power in frequencies lower than 540 Hz, depending on the size of 

the aspirated particle. This is congruent with the frequency range that the 

features are selected in this study.  

It should be noted that in this study only the breath signals that were free of 

artifacts and vocal noise were analyzed. When analyzing the breath sounds after 

the swallow, there might be some breath sounds that mimic the breath sounds 

after aspiration. These breath sounds may mistakenly be interpreted as those 

following aspiration, while they might be related to a compensatory clearing 

mechanism [54]. This may increase the false positive error. 
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We aimed to detect the swallows during/after which the patients developed 

aspiration. The method was successful in detecting silent aspirations with 81% 

sensitivity. However, the sensitivity of the method for the patients with few 

number of aspirations was not as good as the sensitivity obtained for the patients 

with more aspirations. If we exclude the data of the patients with less than 3 

aspirated swallows from Table  5-1 and calculated the sensitivity, it would 

increase; we can achieve 84% sensitivity. However, as we increase the sensitivity 

by ignoring the results of the subjects with few aspirations, we decrease the 

specificity results. The false negative results mainly exist due to the penetration 

and the residues that are left in the pharynx area after the swallow; they can 

increase the risk of aspiration.  

Despite the fact that physicians have used cervical auscultation to detect 

aspiration, there has not been any study that analyzed the tracheal sounds to 

detect aspiration. Some studies used the accelerometer to detect tracheal 

vibration during swallowing act; they have reported 80.3% accuracy [55] for 94 

aspirated and 100 normal swallowing samples. The same research group, using 

the same recording technique of tracheal vibration, classified the healthy and 

abnormal swallows (which also included the swallows with aspiration) by 

Euclidean linear discriminant classifier with an accuracy of 74.7% on a population 

of 24 patients [48].  

The results of our proposed method for detecting aspiration are superior to 

the above studies (using tracheal vibration) and also those of the cervical 

auscultation [56], [57]. Our methods achieved 81% for the sensitivity and 80% 

specificity for silent aspiration detection compared to sensitivity and specificity 

values of 62% and 66% [57] and 94% and 70% reported by cervical auscultation 

[56]. Although there was an overestimation of aspiration (high false positive 
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error) in the studies mentioned above, cervical auscultation was suggested as a 

tool to identify patients with high risk of aspiration [57].  

It should be noted that recording noise-free and good quality tracheal sounds 

for the purpose of detecting silent aspiration can be challenging in case of 

patients with loose skin and/or tracheostomy. In such cases, as an alternative 

solution, we suggest to record the sounds by a miniature microphone in the 

external ear or inside the nose, which was studied in [14] and explained in  0. 

5555....4444 SummarySummarySummarySummary    

In this chapter, the application of acoustical analysis for detection of swallowing 

silent aspiration is investigated. We analyzed the breath sounds of dysphagic 

individuals, who demonstrated silent aspiration during their VFS/FEES feeding 

and swallowing assessments. We found that the low frequency components of the 

power spectrum of the breath sounds after a swallow show higher magnitude 

when there is aspiration. Thus, we divided the frequency range below 300 Hz into 

three sub-bands and calculated the average power of the breath sound signal in 

each sub-band as the characteristic features. We used the unsupervised fuzzy k-

means clustering algorithm to label the breath sounds immediately after a 

swallow as aspiration or non-aspiration. The results were compared with those of 

the FEES/VFSS assessments provided by the speech language pathologists. The 

results are encouraging: more than 80% sensitivity in detection of swallows with 

silent aspiration.    
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6666....1111 ConclusioConclusioConclusioConclusionsnsnsns    

This thesis describes the application of acoustical analysis in the detection of 

swallowing disorders. The first objective was to develop a mathematical model 

that represents the swallowing mechanism. The model was shown to be able to 

account for the differences between the pharyngeal phase of the swallowing act in 

the dysphagic and control individuals. The outcome of this part of study can be 

used to identify the individuals with swallowing disorders. 

However, besides the research interest in understanding the complex series of 

neuromuscular events involved in swallowing, its application is limited to the 

research since identifying dysphagic individuals can be done by examining the 

clinical symptoms. On the other hand, identifying the patients, who are at risk of 

silent aspiration, is of great interest for the SLPs. Therefore, this research is 

mostly dedicated to aspiration detection.  

The main goal of the swallowing assessment techniques is to determine if silent 

aspiration occurs. This information will help the SLP create an individualized 

treatment plan and a dietary modification to help patients improve their 

swallowing skills and reduce developing further complications such as pneumonia. 
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We hypothesized that the entry of food or liquid into the airway due to 

aspiration can change the time-frequency characteristics of the breath sound 

related to aspiration. Then, to detect aspiration, we analyzed 1-3 breath sounds 

after the swallows. First, the research proceeded by proposing a novel method 

based on phase-space analysis of breath sounds immediately after swallows 

followed by support vector machine classifier (SVM) as a diagnostic aid for 

identifying patients with high risk of aspiration.  The classification result of the 

proposed method was compared with the FEES/VFS assessments provided by 

the SLPs; it showed 91% sensitivity and 85% specificity in detection of patients 

with severe aspiration (high risk dysphagia). The result was promising to suggest 

the proposed phase-space acoustical analysis method as a quick and non-invasive 

screening clinical tool to detect patients developing severe aspiration.  

Also, we used a fuzzy k-means clustering to identify the aspirated swallows. 

The data set includes 22 patients who demonstrated aspiration during the 

assessments that was run simultaneously with VFS/FEES. The results showed an 

overall 80% accuracy in detecting the aspirated swallows. These results were 

encouraging on the use of the sound analysis of the breaths after the swallows for 

silent aspiration detection.  

Overall, the contributions of this thesis can be summarized as the followings. 

1. Development of a mathematical model for swallowing sounds generation to 

help understanding the main cause of dysphagia ( Chapter 3) 

2. Development of an algorithm for identifying patients at high-risk 

dysphagia. ( Chapter 4) 

3. Development of an algorithm for non-invasive swallowing aspiration 

detection ( Chapter 5) 

4. Investigating non-linear characteristics of swallowing sounds (Appendix A) 
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5. Investigating other sites for recording swallowing and breath sounds as an 

alternative to the trachea (Appendix B) 

6. Investigating other time-frequency methods for analysis of swallowing 

sounds in comparison with the spectral and wavelet analyses (Appendix 

C) 

6666....2222 Future Work RecommendationFuture Work RecommendationFuture Work RecommendationFuture Work Recommendation    

The results of our research are encouraging; however, there are some 

improvements and works that can be considered in future studies as suggested 

below. 

- Precise synchronization of the sound and imaging data: This can help 

improve the accuracy of the results. Also, the correlation between the 

swallowing/breath sounds and other swallowing disorders such as residue, 

can be studied. Thus, it will lead to better understanding of the swallowing 

mechanism. 

- Automatic/semi-automatic segmentation of the breath sounds: This will 

facilitate using the algorithm in a medical device for swallowing assessment 

of dysphagic individuals by the SLPs in health centers. 

- Using another microphone to record the ambient sounds, and using an 

adaptive filter to remove the undesired sounds such as the SLP’s talking 

and preserve the swallowing and breath sounds to facilitate the automatic 

segmentation. 

- Record in a controlled environment, where a specific protocol is defined for 

the type of food and liquid, and their order by which the patient is fed. 

Then, the effect of the type of food on the breath sound following 

aspiration can be studied. 
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- Study the depth of aspiration and quantify it by analyzing the 

swallowing/breath sounds. 

- Extend the research by recording the pharyngeal pressure simultaneously 

with the VFS/FEES and swallowing/breath sounds: The correlation 

between the sound data and pressure profile of the swallowing can improve 

the modeling and diagnosis of dysphagia. 
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Much of what is known about physiological systems such as swallowing 

mechanism has been learned using linear and time-invariant (LTI) system theory. 

The main advantage of linear system analysis is the availability of analytical 

tools to deal with the modeling. However, many real systems have complex 

properties that cannot be studied by restricting them to linear techniques.  

The input of the system is an important issue in modeling as it is neither 

known nor accessible for most physiological systems, such as swallowing. In such 

cases, it is convenient to make some assumption of the input signal, i.e. a random 

Gaussian noise signal. However, if the model is considered as an LTI, then it is 

not correct to assume a white Gaussian noise input while the output is not 

Gaussian. Hence, the statistical characteristics of the signal (the output of the 

system) should be studied before making any assumption of the input 

distribution and the type of the system. This section investigates the gaussianity 

and linearity of the swallowing sound signal, and whether it is different between 

the two groups of control and dysphagic individuals. 
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AAAA....1111....1111 DataDataDataData    

Data in this study included swallowing sound recordings of 10 dysphagic (stroke 

and/or head trauma patients) and 10 age-matched individuals without any 

swallowing disorder as the control subjects. The swallowing sounds were recorded 

by a Sony (ECM-77B) microphone placed over the suprasternal notch of the 

trachea and digitized at 44 kHz. The swallowing sounds of the dysphagic group 

were recorded simultaneously with the VFS or the FEES assessment at Health 

Sciences Centre, and Riverview Health Centre, Winnipeg, Canada. The 

experimental protocol was the same for all data recordings: Subjects were fed 5-8 

boluses of a thin liquid texture (i.e. juice) with a 5ml spoon. The study was 

approved by the Biomedical Ethics Board of the University of Manitoba, and 

participants signed a written consent prior to experiments.  

All signals were normalized to their maximum amplitude. IDS and BTS 

segments of the swallowing sound signals were separated manually by an expert 

by auditory and visual inspection of signals in the time and frequency domain. 

The IDS part of the swallowing sound was considered in this study.   

AAAA....1111....2222 Statistical AnalysisStatistical AnalysisStatistical AnalysisStatistical Analysis    

According to Wold decomposition theory, any weak or wide-sense stationary 

process bx(t)d  with innovations )}({ tε  has a moving average (MA) representation 

as (5) [58]: 

∑ −=
∞
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),()()(
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where e(�) are independent identically distributed random variables with
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In other words, a linear model can approximate )}({ tx because the innovations 

are independent. In this case, any input with the Gaussian distribution will result 

in a Gaussian output. Thus, the 2nd order statistics, i.e. correlation and spectral 

analyses, can readily determine the statistical properties of the process and be 

used for system identification. However, if the innovations are not normal and 

0)}({ 3 ≠tE ε  or the signal comes from a nonlinear system, then higher order 

statistics become important. The 3rd order cumulant of a zero mean stationary 

process is defined as: 

)},()()({),( * ntxmtxtxEnmcxxx ++=  ( A-2) 

which is nonzero since 0)}({ 3 ≠tE ε . The cumulants of a Gaussian signal are zero 

at the orders higher than 3. Therefore, the Gaussianity of the process should be 

determined before making any assumption of the type of the system (i.e. 

linearity). It should be noted that the signal is assumed to be zero-mean in all the 

analyses. 

Similar to the definition of the power spectrum as the Fourier transform of 

the second cumulant (the autocorrelation), the Bispectrum is defined as the two-

dimensional Fourier transform of the 3rd order comulant  

( A-3). This is known as the indirect method for calculating the bispectrum: 

f(��, �=) = � � �CCC(g, �)h&�(ijkliDm)
$

k%&$

$

m%&$
 

 

( A-3) 

This function is periodic in both �� and �= with period 2n. The symmetry 

properties of the bispectrum of a real signal can be expressed as: 

f(��, �=) = f(�=, ��) = f(−�� − �=, �=) = f(��, −�= − �=) ( A-4) 

Therefore, f(��, �=) can be determined in terms of the values inside a 

triangle whose vertices are located at (0,0), (1/2,0), (1/3,1/3).  
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The indirect method is not a consistent estimate of the bispectrum, and needs 

some modification such as multiplying the time domain signal by a window 

function [58]. Also, this method is time consuming and has computational 

burden. This motivates the use of frequency domain analysis known as the direct 

estimation of the bispectrum assuming the linear representation shown in ( A-5). 

The direct estimate of the bispectrum is calculated based on the Fourier 

transform of the signal ( )( jX ω ) is:  

),()()(),(ˆ *1
kjkj XXXNkjB +

−= ωωω  ( A-5) 

whereN is the length of the signal, and Njj /2πω =  for Nj ,...,1,0= .Since )( jX ω is 

periodic with N , the values of ),(ˆ kjB will be computed over the region inside a 

triangle formed by three lines as: ,0,0 =−= kjk  and Nkj =+2 . It was shown 

that this estimation is not consistent [59]. Thus, the concept of averaging such as 

what is done in the power spectrum estimation methods is applied. The simplest 

approach is to average the values of ),(ˆ kjB  over a 2D window of size MM × . All 

the points must be located in the triangular region introduced above. It is shown 

that to have an asymptotically unbiased estimate, M  should be an increasing 

function of N  and satisfy the criteria in Eq. 10 [58].  
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Thus, M(N) is proposed to be equal to cN  , where 15.0 << c . The area inside 

each window, over which the averaging is performed, consists of 2
M  points 

centered at 2/)12(,
2
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−
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k −≤ . Therefore, the 

new estimator can be obtained as ( A-7):  
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),(ˆ kjBav  is an asymptotically unbiased, consistent estimate [60]. The 

approximate asymptotic distribution of the 2nd order spectra estimates was shown 

to be independent complex normal variables [61]. Therefore, a complex normal 

distribution with unit variance can represent the distribution of

)},(ˆvar{/),(ˆ),( kjBkjBkjZ avav= . 

The complex variance is calculated in [56] and shown in ( A-8).  
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where and kjQ ,  is the number of p, q in the square that are in D but not on the 

boundaries, plus twice the number on the boundaries as explained before. 

 The two random variables )Re(Z  and )Im(Z are independent and normally 

distributed ))1,(( iN µ . Thus, the variable 222
)Im()Re(),( ZZZ +=kj is distributed 

according to the chi-square distribution denoted by )(2
2 λχ  with two degrees of 

freedom [62] and the non-centrality parameter 2
2

2
1),( µµλ +=kj  [62] that can be 

written as [59]:  
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( A-9) 

Therefore, the statistic of ∑= kj kjkjY ,

2
),(2),( Z  has a chi-square distribution 

with 2n degrees of freedom with the non-centrality parameter as the summation 

of ),( kjλ .  

AAAA....1111....2222....1111 Test of GaussianityTest of GaussianityTest of GaussianityTest of Gaussianity    

The test for gaussianity is designed based on the statistics introduced above. In 
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case of a Gaussian signal, ),( kjB  is equal to zero, which results in the central chi-

square distribution as the non-centrality parameter becomes zero. To investigate 

the gaussianity of a signal statistically, we need two null and alternative 

hypotheses. The null hypothesis ( 0H ) is considered such that Y has 

approximately chi-square distribution )0(2
2nχ , and the alternative hypothesis ( 1H ) 

would be that Y has the noncentral chi-square distribution. In all instances a p 

value less than 0.05 is considered as the significance level. Rejecting the null 

hypothesis is equivalent to the rejection of the gaussianity assumption. If the 

signal is a nongaussian one, then the linearity test can be performed. Otherwise, 

the test of gaussianity does not convey any information about the linearity of the 

system.   

AAAA....1111....2222....2222 Test of linearityTest of linearityTest of linearityTest of linearity    

Given that a stationary signal has a linear representative, then the spectrum and 

bispectrum are obtained according to Eqs. ( A-10), and ( A-11) respectively: 

22 )()( ωσω ε HS xx = ,  ( A-10) 

)()()(),( *
3 jijiji HHHB ωωωωµωω += ,                                ( A-11) 

where )}({)},({,0)}({ 3
3

22 tEtEtE εµεσε ε ===  and )(ωH  is the Fourier transform of 

the filter coefficients. If 0≠εµ , then the linear process is non-Gaussian.  

The linearity is investigated by analyzing the characteristics of the 

noncentrality parameter of )(2
2 λχ  denoted by ),( kjλ which equals to 0λ  ( A-12) if 

the signal is generated by a linear process. 

62
30 /),( εσµλλ Ckj == , ( A-12) 

where QNMC 4−= .  
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The statistic 
2

),(2 kjZ has a chi-square distribution ( )(2
2 λχ ). It is assumed 

that ),( kjλ s are generated by a random variable that has a degenerate 

distribution equivalent to )( 0
2
2 λχ  when 0),( λλ =kj . The statistical test performs 

based on the distribution of the random variable that generates F. The null 
hypothesis assumes a linear process generates the signal, which results in a chi-

square distribution with a constant noncentrality parameter 62
30 / εσµλ C= . The 

alternative hypothesis assumes that a nonlinear system generates the signal. 

Hence, the random variable generating λ  has a non-degenerate chi-square 

distribution.  

The noncentral chi-square distribution of )(2 λχP  can be expressed as the 

Poisson-weighted mixture of central chi-square distributions [62] as indicated in 

Eq. (16). Therefore, )(2 λχP  has a thicker tail under the null hypothesis than under 

the alternative hypothesis. This can be measured by calculating the interquartile 

range of the distribution. The result of statistical is obtained based on the 

comparison between the interquartile ranges of )(2 λχP  under each of the two 

hypotheses. The null hypothesis is true if the interquartile value of )(2 λχP  is 

greater than the interquartile value of )( 0
2 λχP .  
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AAAA....2222 ResultsResultsResultsResults    
 

The bispectra of typical swallowing sounds of a control and a dysphagic subject 

are depicted in Fig.  A-1. The amplitude of the counter plot of these samples of 

the bispectrum confirms the nongaussian characteristics of the swallowing sound 

signal. The swallowing sound signals were tested for the nonlinearity. 
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Interestingly, all the statistical significance p values, were zero. Thus, the null 

hypothesis of gaussianity was rejected.  

Next, we performed the linearity test since the signals were categorized as 

nongaussains. The results show significant differences between the theoretically 

calculated value of the interquartile range and the estimated one for every 

swallow of each individual. The mean and standard error, averaged among the 

swallows in each group of data, are shown in Table  A-1. Thus, it can be 

concluded that swallowing sound is generated by a nonlinear system, and should 

be analyzed by the nonlinear techniques. Moreover, no trend was found to be 

characterizing each group (Fig.  A-2). Also, the results of both tests did not 

exhibit any obvious difference between the two groups of data. 

It was shown that the bispectrum plots of both groups showed more and less 

the same pattern. However, further studies may find some characteristic 

differences between the bispectra of the two groups as this was beyond the scope 

of this part of the study. The outcome would be considered in future studies on 

modeling the swallowing mechanism. 
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(a) 

 

(b) 

Fig.  A-1. The bispectrum of the swallowing sound of (a) a control and (b) a dysphagic 
subject. 

Table  A-1. The difference between the theoretical and estimated values of the 
interquartile range averaged for each group. 

Data Rtheory-Restimated 

Control Group 730.9 ± 21.6 

Dysphagic Group 1408.0 ± 66.2 
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Fig.  A-2. The test of linearity results: the difference between the estimated and the 
theoretical interquartile range for all the 10 control and 10 dysphagic data (averaged 

over all the swallows of each individual). 

    

AAAA....3333 DiscussionDiscussionDiscussionDiscussion    

The statistical analysis of the swallowing sound reveals that it has a nonlinear 

generation model. Recently, the nonlinear techniques were used to automatically 

detect the swallowing sound segments from the breath sounds, as well as 

classifying normal and dysphagic swallowing sounds. For example, nonlinear 

dynamic analysis, recurrence quantification analysis (RQA), (HMM), and 

multiresolution wavelet analysis were among the nonlinear techniques applied to 

detect characteristic features of swallowing sounds [32]. However, none of the few 

studies done on the swallowing sound modeling assumed nonlinear models for the 

swallowing sound generation.  

In the model that was suggested in [36] and further studied in [9], swallowing 

sound was assumed to be produced by exciting the pharyngeal wall structure and 

tissue with an impulse train coming from the pharynx. The swallowing sound was 

thought to be the output of an LTI system representing the pharyngeal muscle 

and tissue responses to the neural activities that trigger the swallow, and are 

represented by an impulse train. That model benefits from the simple known 

relationship between the generated sounds during the swallow, and the 
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physiological events occurred as the result of the neural excitation. These were 

the first attempts toward modeling the swallowing mechanism. 

Although the linear model can shed light on some aspect of the swallowing 

sound generation model, it may lead to an oversimplification of the actual system 

dynamics. This study investigated the validity of the linear assumption. The 

outcome of this study would be considered in future studies on modeling the 

swallowing mechanism. 
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The various malfunctions and difficulties of the swallowing mechanism necessitate 

various diagnostic techniques to address those problems. Swallowing sounds 

recorded from the trachea have been suggested as a non-invasive method of 

swallowing assessment. However, acquiring signals from the trachea can be 

difficult for those with loose skin. The objective of this part of our study was to 

explore the viability of using the ear and nose as alternative recording locations 

for recording swallowing sounds. One major limitation with acoustical diagnostic 

techniques for dysphagia is the difficulty of recording a good quality sound signal 

if the patient has loose skin over the trachea. Therefore, in this study we explore 

the viability of using the ear and nose as alternative recording locations for 

recording breathing and swallowing sounds for the purpose of dysphagia and 

aspiration detection.  Although the main motivation for this study comes from 

the application of the technique in older population, in this pilot study we tested 

the concept of ear and nose recordings in comparison to tracheal recording only 

in a few young people.  We believe under normal conditions, the relationship 

between the sounds collected at ear, nose and trachea would not change 

significantly by age.  

The swallowing sounds are commonly recorded over the trachea [63],[30]. Few 



Appendix B- Characteristics of the Swallowing Sounds Recorded in the Ear, Nose 
and on Trachea  

88 
 

studies have been devoted to finding the ideal location of sensor placement on the 

neck area to acquire adequate signals for analysis [64]. However, it is not always 

possible to record swallowing acoustics from the neck area; thus, the discovery of 

alternative recording areas is vital for patient diagnosis. Fortunately, the neck is 

not the only anatomical area where swallowing sounds can be detected [65]. The 

ear and nose are two under-researched anatomical areas that show great promise 

for use in the signal-collection of swallowing sounds. Very appropriately these 

organs in combination with the structures concerned in the swallowing 

mechanism form an entire field of study in medicine, otorhinolaryngology (the 

study of the ear, nose and throat). The objective of this pilot study was to make 

an initial exploratory foray into investigating the possibility of using the ear or 

nose as regions from which to record swallowing sounds for the purpose of 

identify aspiration and potential dysphagia.  

BBBB....1111 MethodMethodMethodMethod    

BBBB....1111....1111 Experimental DataExperimental DataExperimental DataExperimental Data    

5 young healthy subjects (20.7 ± 2.3 y, 2 females) participated in this study and 

gave written consent. The study was approved by the Biomedical Ethics Board of 

the University of Manitoba. The subjects were prepared in the following manner 

after being seated in an acoustically isolated room: 

A. The neck of each subject was restrained using an Ambuff Perfit ACE 

extrication collar to limit any potential noise contributions due to neck 

movement. 

B. The first of three Sony ECM-77B electret microphones (40 Hz-20 KHz 

Bandwidth) was applied over the suprasternal notch using double-sided tape. 

C. After piercing a hole through the center of a foam earplug 

(PharmaSystems Quiet Foam uHear Ear Plugs); the second microphone was 



Appendix B- Characteristics of the Swallowing Sounds Recorded in the Ear, Nose 
and on Trachea  

89 
 

inserted into the earplug, similar to what was employed in previous studies aimed 

at detecting respiratory sounds from the ear [66], [67]. The earplug and 

microphone were then inserted into the subject’s ear and adjusted until a 

satisfactory signal quality was achieved.  

D. The third microphone was prepared and inserted into the subject’s nostril 

such that the microphone remained securely in place during swallowing, and did 

not fall out. For each subject the nose microphone was prepared by enveloping it 

in both plastic wrap followed by a fresh 3.5 × 9.5 cm sheet of 2-ply nose tissue to 

isolate the microphone from mucus and nasal fluids. The plastic wrap was placed 

such that it did not occlude the microphone head and the nose tissue was placed 

such that that a bubble of air remained between the nose tissue and microphone 

head. The left nostril was used as a default for the test, however if the signal’s 

quality was found to be lacking, the alternate nostril was attempted. 

The signals were amplified and filtered (5 Hz-5 kHz) using Biopac DA100C, 

and digitized by NI-DAQ (NI cRIO-9215) at 10240 Hz sampling rate. After 

recording, the signals were filtered through a MATLAB Butterworth band pass 

filter (100-3000 Hz) to eliminate high frequency ambient noise, and low frequency 

interferences such as heart sounds and muscle artifacts. 

Figure B-1 shows a diagram of the experimental setup described above. Each 

subject was handed a disposable drinking cup of water, and asked to use a plastic 

tablespoon to consume the water with spoon at their own pace but allow only 

one swallow within one breath cycle. Five to seven swallows were recorded. The 

bolus size of the water was limited to 15 ml (i.e. one full standard US 

tablespoon). 
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Fig.  B-1 Setup for Swallowing Experiment    

BBBB....1111....2222 Signal AnalysisSignal AnalysisSignal AnalysisSignal Analysis    

The swallowing segmentation into IDS and BTS was done by aural and visual 

examination using the tracheal recording as a reference similar to those in [9]. 

Figure B-2 shows the swallowing and the breath sound signals recorded at the 

three locations, trachea, nose and ear in time domain. 

The recorded sounds were segmented into 3 sections: IDS, BTS and the post-

swallow breath, which was an expiratory phase for all subjects in this study. 

Each signal segment was normalized to its variance (energy). Then, we calculated 

the Power Spectrum Density (PSD) of each of these sections using Welch’s 

Method with 50% overlapped Hanning windows of 50 ms in length. Figure B-3 

shows the PSD of the IDS segment of each recording. The three signals were 

normalized to their variance. The tracheal sound has the lowest magnitude due 

to the normalization. The tracheal graph and the ear PSDs would interchange, if 

the signals were not normalized. 
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Fig.  B-2  A typical normalized swallowing and breath sounds signal as marked by 
the solid arrow followed by breath sounds as indicated by the dashed arrow; the signals 
are shown in time domain, and recorded simultaneously from trachea, nose, and ear. 

Au= arbitrary unit. 

We extracted the following features from the PSDs: a) the peak frequency 

(fpeak) as the frequency at which the peak magnitude occurs, b) the frequency at 

which the signal had lost 90% of its power, called fmax , c) the average power of 

the PSD over the octave bands: 150-300, 300-600, 600-1200, and 1200-2400 Hz as 

were used in a previous study seeking to detect respiratory sounds at the external 

ear [67].  

Lastly, we calculated the approximation wavelet coefficients at the 2nd and 3rd 

levels of decomposition using Symlet basis function of order 8. The energy of 

those wavelet coefficients were shown to distinguish between the two groups of 

dysphagic and control data [9]. Therefore, we were interested to investigate the 

quality of the nose and ear signals in comparison to tracheal sound with respect 

to the same characteristic features. 
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Fig.  B-3 Typical spectra of the IDS segment of a swallowing sound recorded at the ear, 
nose and trachea of one subject. Each segment was normalized to its total energy 

before spectral estimation.    

BBBB....2222 Results and discussionResults and discussionResults and discussionResults and discussion    

BBBB....2222....1111 Qualitative Observations of Swallow Signal Qualitative Observations of Swallow Signal Qualitative Observations of Swallow Signal Qualitative Observations of Swallow Signal QualityQualityQualityQuality    

Overall, the signals recorded at nose, ear and tracheal, all had a high level with 

respect to background noise. Compared to signals recorded over trachea, the 

signal-to-noise (SNR) of the nose breath sounds was higher and SNR of those in 

ear was lower. The quality of the swallowing sounds for both the ear and nose 

were very comparable to that recorded over the trachea. Though, these 

differences, while noticeable, were slight. An interesting observation from the 

time domain signals (Fig.  B-2) was that the final discrete sound (FDS) could be 

clearly heard in the ear recording. FDS is a short duration click sound at the end 

of swallow and opening of the airway. It has been speculated to be due to the 

airway opening. However, based on our experience, FDS is not always present. 

Comparing all the three signals in the time domain, we found that although the 

signal recorded in the ear is not as strong as the tracheal or nasal ones, its FDS 

segment (if present) could be picked up by the ear microphone, which confirms 

our assumption about the origin of the FDS segment. 
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BBBB....2222....2222 Analysis oAnalysis oAnalysis oAnalysis of the Peak (fpeak) and Maximum Ff the Peak (fpeak) and Maximum Ff the Peak (fpeak) and Maximum Ff the Peak (fpeak) and Maximum Frequency requency requency requency 
(fmax)(fmax)(fmax)(fmax)    

Figure B-4 shows the values calculated as fpeak for the water swallows of all the 

subjects’ three recorded signals, and for each section (IDS and BTS) of the 

swallowing signal. The results showed lack of consistency between subjects and 

between features as to an exact peak and maximum frequency. A larger more in 

depth study may reveal more about the effects of recording location on the peak 

and maximum frequencies; however, due to the limited sample size in this study, 

we refrain from drawing conclusions based on the apparent inconsistency of the 

data. 

 

Fig.  B-4.  fpeak of the IDS, BTS and the expiration segments for all locations averaged 
among subject’s data. 

BBBB....2222....3333 Analysis of Average PSD Magnitude over Octave Analysis of Average PSD Magnitude over Octave Analysis of Average PSD Magnitude over Octave Analysis of Average PSD Magnitude over Octave 
Frequency BandsFrequency BandsFrequency BandsFrequency Bands    

Figure B-5 shows the average power calculated in the 4 octave frequency bands, 

averaged among the subjects, for different recording site. As can be seen, the 

signals of the three recording sites have a consistent pattern in terms of power 

over different frequency bands. The ear appears to have the lowest downward 



Appendix B- Characteristics of the Swallowing Sounds Recorded in the Ear, Nose 
and on Trachea  

94 
 

sloping trend (3.8 dB/octave frequency step decay for the breath sound) whereas 

the trachea has the greatest (7.7 dB/octave frequency step decay for the breath 

sound). The average power values of the ear falling at a slower rate than the nose 

and the trachea average power at a faster rate than the nose.  

The average power calculated for the tracheal recording falls off at higher 

frequencies at a greater degree than the nose and ear is consistent with the fact 

that skin acts as a low-pass filter, with a varying degree of strength dependent on 

the skin thickness for frequencies from about 500 – 8000 Hz [68]. As the ear and 

nose signals are not recorded through the skin, they do not suffer this effect.  

It should also be noted that the ear signal appeared to have a higher noise 

floor than those recorded at nostril and trachea. This might have contributed to 

a lower signal drop off in the higher frequencies (as ambient random noise is 

constant over all frequencies). Our ear recording results agree with those 

published in [67]. In that study of breath sounds, recorded at the external ear, a 

gradual loss of 10 to 20 dB in signal strength between the 150-300 Hz and 1200-

2400 octave bands was noted, which may indicate that the noise floor is of less 

concern than initially thought due to the noisy nature of the signals recorded in 

the ear. 
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Fig.  B-5. The average 
over the octave frequency bands. The values are averaged among subject

As we are interested in the low frequency components of the breath sounds 

(below 300 Hz) for aspiration detection, i

the signals does not change in the low frequencies; the higher frequencies are of 

less importance for aspiration detection. Since the PSDs of the signals of the 

three recording sites remain similar to each other (wi

and consistent in the low frequencies, it may be concluded that the ear and nose 

may hold promise for use in detecting aspiration.

BBBB....2222....4444 Analysis of Wavelet CoefficientsAnalysis of Wavelet CoefficientsAnalysis of Wavelet CoefficientsAnalysis of Wavelet Coefficients

Figure B-6 presents the calculated 3

water swallows averaged for each subject. It can be seen that there is no 

consistent pattern between the recording locations for the swallows in either the 

2nd or the 3rd order decomposition. The wavelet coefficients and thus the 

fundamental waveforms are incongruent between the ear, nose and trachea. Thus, 

Characteristics of the Swallowing Sounds Recorded in the Ear, Nose 

. The average power of the IDS, BTS and the expiration segments calculated 
over the octave frequency bands. The values are averaged among subject

As we are interested in the low frequency components of the breath sounds 

(below 300 Hz) for aspiration detection, it is important that the average power of 

the signals does not change in the low frequencies; the higher frequencies are of 

less importance for aspiration detection. Since the PSDs of the signals of the 

three recording sites remain similar to each other (with less than 20 dB variation) 

and consistent in the low frequencies, it may be concluded that the ear and nose 

may hold promise for use in detecting aspiration. 

Analysis of Wavelet CoefficientsAnalysis of Wavelet CoefficientsAnalysis of Wavelet CoefficientsAnalysis of Wavelet Coefficients    

presents the calculated 3rd order wavelet coefficients for the IDS of 

water swallows averaged for each subject. It can be seen that there is no 

consistent pattern between the recording locations for the swallows in either the 

order decomposition. The wavelet coefficients and thus the 

ntal waveforms are incongruent between the ear, nose and trachea. Thus, 

Characteristics of the Swallowing Sounds Recorded in the Ear, Nose 

95 

 

power of the IDS, BTS and the expiration segments calculated 
over the octave frequency bands. The values are averaged among subject’s data.    

As we are interested in the low frequency components of the breath sounds 

t is important that the average power of 

the signals does not change in the low frequencies; the higher frequencies are of 

less importance for aspiration detection. Since the PSDs of the signals of the 

th less than 20 dB variation) 

and consistent in the low frequencies, it may be concluded that the ear and nose 

nts for the IDS of 

water swallows averaged for each subject. It can be seen that there is no 

consistent pattern between the recording locations for the swallows in either the 

order decomposition. The wavelet coefficients and thus the 

ntal waveforms are incongruent between the ear, nose and trachea. Thus, 
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recordings from these locations should not be arbitrarily interchanged. This 

implies that during an acoustical swallowing assessment, if the goal is to diagnose 

dysphagia in general, all recordings must be taken from either the trachea, or the 

nose or the ear but not from a mixture of the recording sites.  

Fig.  B-6. The mean and standard error of the energy of wavelet coefficients averaged 
for the IDS segments of all subjects a) 2nd order decomposition, b) 3rd order 

decomposition.    The value of the standard error shows the variation within each subject. 
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BBBB....2222....5555 Study LimitationStudy LimitationStudy LimitationStudy Limitation    

There are certain limitations to the results discussed as well as issues discovered 

during our study that we suggest be considered in subsequent experiments. We 

found that noise recorded in the ear was strongly dependent on the placement of 

the microphone in the subject’s ear. This is likely due to the variances in ear 

canal shape and the limitations of using a cylindrical earplug and rigid 

microphone. It is also important to note that a more thorough study should also 

have considered normalizations involved with inter subject variance in the 

physical characteristics of the ear and nose to account for differences in ear canal 

shape, nose length, and various other factors. These factors were not considered 

in this pilot study. We also wish to stress that due to the small sample size used 

and the nature of this being a pilot study we chose to observe strong visual 

trends in the data as opposed to calculating precise numerical values whose 

accuracy and statistical significance could not be guaranteed. 

BBBB....3333 ConclusionConclusionConclusionConclusion    

In accordance with the objective of this study, we found that recording 

swallowing and breath sounds at the ear or nose may be used as alternative 

recording site as to trachea depending on the goal of acoustical swallowing 

assessment. If the goal is identifying people with dysphagia in general, the 

recording site cannot be used interchangeably between the subjects. On the other 

hand, if the goal is only to detect the swallows with aspiration within a dysphagic 

patient, the ear and nose sites may be used as an alternative recording site to 

trachea in case of a patient having loose skin over the neck. In summary, direct 

comparisons of swallowing sounds recorded at different sites is not recommended. 

However, recording swallowing sounds at the ear or nose in cases where tracheal 
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recordings cannot be used is certainly viable for low frequency breath sound 

analysis for use of aspiration detection for a dysphagic patient. 
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CCCC....1111 IntroductionIntroductionIntroductionIntroduction    

Short-time Fourier transform, or spectrogram, is known as the standard method 

for the study of signals. The spectrogram uses the quasi-stationary assumption; 

the signal is assumed to be stationary within a specific time interval by 

multiplying with a window in time domain. Choosing a long time window leads 

to a good frequency resolution, and inevitably, poor time resolution. On the other 

hand, a short time window results in a good time resolution at the cost of poor 

frequency resolution. Also, according to the uncertainty principle, the size of the 

window cannot be selected arbitrarily small and, thus, it not possible to achieve a 

perfect time-frequency resolution. Therefore, there is always a tradeoff between 

the time and frequency resolutions when calculating the spectrogram.  

CCCC....1111....1111 CohenCohenCohenCohen’s Class of Times Class of Times Class of Times Class of Time----Frequency RepresentationFrequency RepresentationFrequency RepresentationFrequency Representation        

To improve the resolution issue of the spectrogram, other time-frequency 

methods have been introduced based on the generalized bilinear time-frequency 

representation (TFR). The TFR’s can be defined as the Fourier transform of a 

weighted, symmetric, nonstationary correlation of the signal in the lag variable τ

( C-1).  
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where )(ts is the signal, and ),( τφ t is the kernel which is independent of the 

signal. The TFRs can also be defined in terms of the Fourier transform of the 

signal ( C-2). 
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(),(),( * ηηηη dfdfSfSffftP  ( C-2) 

where ),( fηΦ is the 2-D Fourier transform of the kernel, and )( fS is the Fourier 

transform of the signal )(ts .  

The basic goal of these alternative methods is find a joint time-frequency 

distribution that describes the energy or the intensity of a signal simultaneously 

in time and frequency [69]. Thus, ),( ftP  shows the intensity at time t and 

frequency f ; or equivalently, ftftP ∆∆),(  indicates the fractional energy of the 

signal in a time-frequency interval of ft∆∆ at t , f . The time and frequency 

marginals are defined as ( C-3) and ( C-4), respectively. The time marginal is 

called the instantaneous power and the frequency marginal is known as the 

energy density spectrum. 

∫ = ,)(),(
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tsdfftP  ( C-3) 

∫ = .)(),(
2

ωSdtftP  ( C-4) 

The total energy ( E ), as shown in ( C-5) will be equal to the total energy of the 

signal if the marginal are satisfied. 

∫∫= dtdfftPE ),( . ( C-5) 
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CCCC....1111....2222 Desired Properties Related to the KernelDesired Properties Related to the KernelDesired Properties Related to the KernelDesired Properties Related to the Kernel        

The properties of the TFRs are determined based on the kernel; they are 

reflected as the constraints imposed on the kernel [70]. Here, we explain some of 

the desired properties and their relation to the kernel constraints. 

- Time shift invariance can be achieved if ),( τηϕ , which is the 1-D Fourier 

transform of ),( τφ t in t, is independent of time. 

- Frequency shift invariance can be guaranteed if ),( τηϕ is independent of 

frequency. 

- The instantaneous power (the time marginal) is obtained from the 

frequency integration of ),( ftP if .,1)0,( ηηϕ ∀=  

- The energy spectral density (the frequency marginal) can be gained from 

the time integration of ),( ftP if .,1),0( ττϕ ∀=  

- Bilinear distributions are real if they satisfy the necessary and sufficient 

condition of ).,(),( * τηϕτηϕ −−=  

- The TFR is limited to the same time interval of a time-limited signal 

(finite support in time) if .2/1,0),(),( 2 τητηϕτϕ πη >=≡ ∫ tdet
tj  

- The TFR is limited to the same frequency range of a band-limited signal 

(finite support in frequency) if .2/1,0),(),( 2 ηττηϕηϕ τπ >=≡ ∫ fdef
fj  

CCCC....1111....3333 Interference PropertiesInterference PropertiesInterference PropertiesInterference Properties    

The bilinear structure of the TFRs generates some inherent spurious values in 

the distribution, which is referred to as the cross terms. These terms are more 

prevalent in the multicomponent signals and cause difficulty in interpreting the 

distribution. For example, assume a stationary analytic signal such as ( C-6): 
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The TFR representation can be shown as ( C-7): 
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 Similarly, we have: 
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For the real TFRs, we can express the cross term component as ( C-10) and 

define the cross term envelope according to ( C-11) [70]. 

].)2/)(,(Re[2),(),(),(
)(2

1212
12

1221

tffj
sssscross efffffftPftPftP

−+−−Φ=+= π  ( C-10) 

).2/)(,();( 1212 ffffffK +−−Φ≡Φ  ( C-11) 

From ( C-6)-( C-9), it can be seen that the cross terms appear as the 2-D 

Fourier transform of the kernel ),( τφ t calculated along the 12 ff −=η  axis and 

shifted in frequency by 2/)( 21 fff += .  

Various time frequency distributions have been proposed to compromise the 

cross term and the TFR’s desired properties [71], [72]. For example, for the 

Wigner distribution with the kernel function is )(),( ff δη =Φ , the cross terms are 

not attenuated. They are located at the frequency average of the signal 

frequencies; the cross term envelope is shown to be )2/)(();( 21 ffffK Wigner +−≡Φ δ .  
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For the Born-Jordan TFR, the kernel is defined as )/(/1),( ηηη frectf =Φ ; 

hence, the cross term envelop can be obtained as ( C-12): 

)]./()2/)([(|)|/2();( 122112 fffffrectfffK JordanBorn −+−−≡Φ −  ( C-12) 

Assuming that 21 ff < , we can write ( C-12) as ( C-13). 
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fffff
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( C-13) 

Using ( C-13), we can see that the cross terms are attenuated and spread over 

the signal frequencies.  Thus, the Born-Jordan TFR is known as a member of the 

class of reduced interference distributions (RID), which has the property of 

reducing cross terms. 

The spectrogram can be also considered as a member of the TFRs whose kernel is 

defined as )2/()2/(),( * ηηη −+=Φ fHfHf , where )( fH is the Fourier transform of 

the window multiplied by the signal. The cross term envelope can be obtained as  

).()();( 2
*

1 ffHffHfK mSpectrogra −−≡Φ  ( C-14) 

Interestingly, the cross terms are placed at the actual signal frequencies in the 

spectrogram. Although the cross terms attenuation is not an issue in the 

spectrogram, it was shown that it is not possible to satisfy the time marginal 

while attenuating the cross terms and localizing them to the actual frequency 

components [70]. Although the spectrogram does not satisfy the marginals, its 

non-negative distribution makes it the desirable TFR when it comes to 

interpreting the energy distribution in the time-frequency plane. Table  C-1 shows 

a summary of the properties of the three TFRs we have discussed. 
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Table  C-1. The properties of some TFR kernels 

TFR Kernel  

),( τφ t  

Marginal 

Time    

Freq. 

Finite  

support 

Time      Freq. 

Cross term 

Attenuation  

Localization 

Spectrogram )2/()2/( * ττ −+ thth      � � 

Wigner )(tδ  � � � �   

Born-Jordan )/(/1 ττ trect  � � � � �  

 

To further explain the TFRs mentioned above, we will show the implementation 

results of the Wigner, Born-Jordan and the spectrogram on a multicomponent 

test signal, which consists of 2 finite duration frequencies components at 12Hz 

and 20 Hz. The test signal can be expressed as ( C-15), which is shown in Fig. 

 C-1(a).  
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( C-15) 

where Hzf 121 =  and Hzf 202 = . As can be seen in Fig.  C-1(b), the spectrogram 

yields the most satisfying results in terms of the interpretation. This is mainly 

due to spectrogram’s cross term properties in localizing the cross terms around 

the signal frequencies. It should be noted that the spectrogram does not preserve 

the marginals nor does it maintain the finite support properties.   
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Fig.  C-1 (a) The test signal consisting of two frequencies, 12 Hz and 20 Hz in time 
domain, (b) spectrogram of the signal, (c) the Wigner representation, and (d) Born-

Jordan time-frequency representation of the signal. 

On the other hand, both the Wigner and Born-Jordan kernels produce cross 

terms. These cross terms are more significant in Wigner distribution and are 

(d) 

(c) 

(a) 

(b) 
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mainly visible at the frequency 4 Hz and 16 Hz in the Wigner results (Fig. 

 C-1(c)). As shown in Fig.  C-1(d), the cross terms in the Born-Jordan distribution 

spread between the signal frequencies. 

CCCC....2222 MethodMethodMethodMethod    

To investigate the application of other time-frequency methods in aspiration 

detection, we calculated the Born-Jordan distribution of the breath sounds of a 

dysphagic individual of the aspirated group of patients. The goal was to 

investigate if the features obtained from the Bron-Jordan distribution can 

improve the aspiration detection results. At the first step, we looked into two 

breath sounds of a dysphagic individual; one breath was related to a swallow 

without aspiration and the other one followed an aspiration event.  

To compare the results with the spectrogram, and analyze the frequency 

contents of the distribution, we calculated the frequency marginal ( C-4), which 

shows the energy density spectrum of the signal. We seek to gain insight into the 

characteristics of the Born-Jordan energy distribution of the signal; whether they 

can be used to distinguish between the aspirated and non-aspirated swallows. 

Then, we calculated the average power features at the frequency bands below 300 

Hz, which are similar to those obtained from the PSD of the signal.  Finally, to 

compare the classification results of the two time-frequency features in detecting 

aspiration, we applied the fuzzy c-means clustering algorithm to the Born-Jordan 

average power features.  

CCCC....3333 ResultsResultsResultsResults    

Figure C-2 shows the spectrogram and the Born-Jordan distribution of the breath 

sound after a swallow without aspiration. The same plot for the breath sound 

related to an aspiration event is shown in  
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Fig.  C-3. The PSD and the Born-Jordan frequency marginal of the two breath 

sounds were shown in Fig.  C-4 and Fig.  C-5, respectively. The classification 

results in terms of the TP, TN, FP, and FN are shown in Table  C-2. 

 

Fig.  C-2 (a) The spectrogram of a breath sound after a non-aspirated swallow, (b) the 
Born-Jordan distribution of the same signal. 

 

(a) 

(b) 
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Fig.  C-3 (a) The spectrogram of a breath sound following an aspiration, (b) the Born-
Jordan distribution of the same signal. 

(a) 

(b) 
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Fig.  C-4 (a) The PSD of a breath sound after a non-aspirated swallow, (b) the 
frequency marginal of Born-Jordan distribution of the same signal. 

 

 

(a) 

(b) 
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Fig.  C-5 (a) The PSD of a breath sound following an aspirated swallow, (b) the 
frequency marginal of Born-Jordan distribution of the same signal. 

 

 

(a) 

(b) 
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Fig.  C-6. Scatter plot of the thre average power features of the breath sounds after 
swallows of a patient having aspiration by using (a) PSD (b) the frequency marginal of 

Born-Jordan distribution of the same signal. 

Table  C-2. The classification results of aspiration detection by using the features 
obtained from two time-frequency representation methods: spectrogram and Born-

Jordan. 

Method 
Total no. of 

swallows 

No. of swallows 

with aspiration 
TP FP TN FN 

Spectrogram 19 10 8 2 7 2 

Born-Jordan 19 10 2 0 8 9 

(a) 

(b) 
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CCCC....4444 DiscussionDiscussionDiscussionDiscussion    

The relative performance of the various time-frequency distributions is mainly 

goal/signal dependent. Although the bilinear time-frequency representations 

(excluding spectrogram) satisfy the marginal properties, they are not preferred 

when the visual interpretation is desired. The appropriate cross terms attenuation 

and localization are the important properties required for the visual 

interpretation of the time-frequency content of the time-varying signal[73]. Also, 

the computational time should be considered when comparing different time-

frequency methods. The spectrogram provides the best visual interpretation 

characteristics in spite of its poor time-frequency resolution. On the other hand, 

the Born-Jordan TFR does not suffer from the resolution. However, it lacks the 

visual interpretation that helps the initial selection of features.  

The classification results by using the spectrogram features outperform the 

Born-Jordan. However, it does not mean that the Born-Jordan representation 

conveys less information compared to the spectrogram. It might be due to the 

features that were extracted from the Born-Jordan distribution. The Born-Jordan 

satisfies the marginal properties as in ( C-3) and ( C-4). Therefore, calculating the 

integral over the time yields the frequency distribution of the signal. If we display 

the x-axis of Fig.  C-4(b) and Fig.  C-5(b) in logarithmic scale for and show the 

values of the y-axis (frequency marginal) in dB unit, we obtain Fig.  C-7, which 

resembles the periodogram. Periodogram is not a consistent estimate of the true 

power density spectrum. Thus, the smoothing techniques such as the Welch 

power spectrum estimate, which offers trade-off between the bias and the 

variance of the estimation, existed. Since we calculated the PSD by using the 

Welch method, the features. In other words, selecting other sets of features can 

improve the classification results. This can be investigated in future studies. 
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Fig.  C-7 The frequency marginal of Born-Jordan distribution of the breath sound 
following (a) an non-aspirated swallow as shown in Fig.  C-4 and (b) an aspirated 

swallow as shown in Fig.  C-5. 

 

(a) 

(b) 
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DDDD....1111 IntroductionIntroductionIntroductionIntroduction    

In this thesis, the swallowing and breathing sounds were recorded by using a 

Sony ECM-77B microphone, which is an omni-directional electret condenser 

microphone. The objective of this appendix is to ensure that the frequency 

response of the microphone does not affect the acoustic characteristic of the 

swallowing and breathing sound.  

There are different methods for the measurement of the frequency response of a 

microphone, which can be found in IEC (International Electrotechnical 

Commission) standards such as 61094-2, 61094-3 and 1094-4 [74]. These 

standards describe the conditions under which the measurements are performed. 

The IEC 60268-4 standard specifies that all the measurements should be 

performed in the free field while the sound source generates the plane or spherical 

waves. To have the plane or spherical waveforms, the sound source should be 

small compared to the sound wavelength at the specific test frequency and has to 

be far away from the microphone. However, this is not always practical. 

Therefore, we defined our measurement conditions, which are described in the 

following section. 



Appendix D- Frequency Response of the Microphone 

115 
 

DDDD....2222 Measurement ProcedureMeasurement ProcedureMeasurement ProcedureMeasurement Procedure    

The near filed effect of the microphone was tested in an anechoic chamber. The 

microphone was placed in front of the speaker (Cyber Acoustics desktop speaker 

system, CA-2100) in two different locations: 1- directly connected to the speaker, 

and 2- hanging at the distance of 25 cm from the speaker. The microphone was 

connected to the digital audio recorder (Edirol R-44), which recorded the sounds 

at 44100 Hz sampling frequency. The audio amplifier filters the signal between 

20-22000 Hz. 

We generated the sinusoidal wave signals of pure tones at different frequencies 

(Table  D-1). For each of the frequencies listed in Table  D-1, the pure tone sound 

was generated at 44100 Hz, and was held for 4 seconds. Each of the 4 second 

pure tone sine waves was then followed by 1 second of silence; thus, we could 

easily discriminate between different frequencies.  

The sound was generated using Matlab, and was played on an Arduino platform 

connected to the speaker. The sound signal was recorded on an SD card, which 

was mounted on the Arduino board. It should be noted that a laptop could not 

be used to play the sound as laptops’ sound output are considerably distorted for 

our purpose due to embedded filtering of the sound output of the laptop. This 

was tested in our measurement.  

Table  D-1. The frequencies used to test the microphone. 

Frequency interval  Incremental step 

50 Hz-1000 Hz 50 Hz 

1000 Hz-10000 Hz 1000 Hz 

10000 Hz-20000 Hz 2000 Hz 
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The spectrogram representation of the sound played through the speaker is 

shown in Fig.  D-1. The blue vertical segments represent the 1 second silence 

segments between the pure tone sound signals.  

 

Fig.  D-1. Spectrogram of the sound signals played through the speaker. 

 

DDDD....3333 Results Results Results Results     

DDDD....3333....1111 Direct CDirect CDirect CDirect Connection of the onnection of the onnection of the onnection of the Microphone to the SMicrophone to the SMicrophone to the SMicrophone to the Speakerpeakerpeakerpeaker         

The spectrogram of the sound signal recorded by the Sony ECM 77-B 

microphone placed on the speaker is shown in Fig. D-2. 

Comparison of Fig. D-2 with Fig.  D-1, shows that the distortion occurred at high 

frequencies. As can be seen in Fig. D-2, the distortion appears at 10 KHz, which is 

in agreement with the manufacturer’s frequency response. 
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Fig. D-2. Spectrogram of the sound signal, recorded by the Sony ECM 77-B 
microphone, placed on the speaker. 

 

DDDD....3333....2222 MMMMicrophoneicrophoneicrophoneicrophone    in fin fin fin front of the Speaker at 25cm Dront of the Speaker at 25cm Dront of the Speaker at 25cm Dront of the Speaker at 25cm Distanceistanceistanceistance    

We repeated the test by changing the recording configuration. For this part, we 

hung the microphone in the air, 25 cm away from the speaker. Fig.  D-3 shows the 

spectrogram of the sound signal recorded by the microphone. 

DDDD....3333....3333 Frequency RFrequency RFrequency RFrequency Responseesponseesponseesponse    

To visualize the frequency response of the sensors, we plotted the amplitude of 

the signal recorded by each sensor at the different frequencies listed in Table 1. 

Also, to check the consistency, we repeated each measurement three times.  Fig. 

 D-4 shows the frequency response of the Sony ECM-77B microphone in three 

recordings. The magnitude of the responses (y-axis) is normalized to the 

maximum value. The variation of the frequency response of the Sony ECM 77-B 
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microphone occurred within 10 dB over the frequency range between 100Hz to 

10KHz.  

 

Fig.  D-3. Spectrogram of the sound signal, recorded by the Sony ECM 77-B 
microphone, hanging in front of the speaker at the distance of 25 cm. 
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Fig.  D-4. Three measurements of the frequency response of the Sony ECM 77-B 
microphone hanging in front of the speaker at the distance of 25 cm.  
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DDDD....4444 ConclusionConclusionConclusionConclusion    

The frequency response of the microphone by which all the swallowing and 

breath sound data were recorded in this thesis has been studied. The results show 

that the frequency response matches the specification provided by the 

manufacturer in the data sheet.  

 


