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ABSTRACT

Abstract

According to Canadian Cancer Statistics, breast cancer continues to be the most frequent
type of cancer diagnosed among Canadian women. An estimated 18,700 new cases of
breast cancer will be diagnosed in 1999. During their lifetime, 1 woman in 9 is expected to
develop breast cancer and 1 woman in 25 is expected to die from it. Early detection is a
woman’s hope for effective treatment and better survival rates. Unfortunately, present
imaging modalities are either ineffective or financially unjustifiable for mass screening, A
new non-invasive screening and diagnostic technique (viz., Electrical Impedance
Tomography, EIT) with high potential has recently been given much attention. However,
the transition of EIT from the laboratory to the clinic is yet to occur. The main problem
appeats to be one of spatial resolution, usually attributed to the lack of a robust and fast

algotithm capable of producing 3-D clinically useful images.

An existing EIT image reconstruction algorithm, the Wexler 3-D EIT algorithm, is
further refined to address the problem. A new and efficient scheme, the Modeller-Predictor-
Cottector (MPC) method, is devised and implemented on the original Wexler 3-D EIT
algorithm to improve its convergence rate. Images are recoveted within a time period
compatable to that of existing clinical imaging modalities. The spatial resolution of the
MPC-recoveted image, though recovered in a reasonable time period, is far from what is
desited. To this end, a novel approach, the Locator-Compensator (LC) algorithm is
developed and implemented to improve EIT's resolution limit, in particular at normal-to-
diseased tissue interfaces. Both schemes (viz. LC and MPC) were implemented on 3-D
computet simulations of small breast tumour (i.e., benign and malignant) imaging. Using the
improved Wexler 3-D EIT algorithm, breast tumours of size 2.35 mm in diameter wete
detected and diagnosed. Implementation of this improved imaging algorithm in conjunction
with the appropriate EIT hardware system is anticipated to provide a safe, cost-effective,
and easily accessible screening and diagnostic tool for the detection of small breast tumours.
EIT could setve as a complementary tool to conventional X-ray mammography, considering

its advantages.
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Chapter 1

Introduction

1.1 Electrical Impedance Tomography (EIT) as an Imaging Modality

The objective of electrical impedance tomography (EIT?) is to reconstruct images
of the disttibution of electrical impedance within a conducting tegion by means of
impedance measurements made on the surface of the region [Hend78, Pric79,
Brow82, and Vale89]. In medical applications, small subliminal electrical currents
(0.1- 1 mA at 0 - 100 kHz) are applied to the body from an array of electrodes
attached to the skin. These currents are below the threshold for petrception, let alone
tissue damage. Subsequently, from measurements of voltages and/ot cutrents made at
these electrodes, image reconstruction algorithms are applied to produce the
impedance images of the underlying body structure (i.e., this is characteristic of an

inverse problem) [John95]. Due to the differential electrical (i.e., impedance, Z at

macroscopic scale) or 'dielectric' (i.e., conductivity, ¢ or relative permittivity, e at
microscopic scale) properties of biological tissues at the above frequencies (see Table
1.0) [Gabr96], the resulting impedance images display useful and previously
unobtainable anatomical information. A clear and comprehensive relationship
between the macroscopic and microscopic electrical behaviour of tissues can be

found in Foster and Schwan, 1989 [Fost89] and Rigaud ez 2/, 1996[Riga96a].

VEIT is also known as Applied Potential Tomography (APT) or Electrical Impedance Computed Tomography (EICT).
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As a potential imaging modality, EIT offers several advantages over existing
medical imaging techniques such as X-ray Mammography (film-scteen or digital),
Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). The positive
attributes of EIT are its ability to produce images at reduced biological hazard, its
telatively inexpensive instrumentation requirements, and its physical ease of operation
[Webs90]. The technique has potential in medical [Kott97], industtial [Yang97], and
environmental [Tamb87] applications. For medical applications, EIT is being

considered as a screening [Gord99] or a diagnostic tool.

Table 1.0: Dielectric Properties of Biological Tissues at Frequencies of 10 kHz and 100 kHz.

| conmewmio | Rewwe
| 5
Liver 10 kHz 0.15 5.5x%10*
Spleen 100 kHz 0.62 3260
Lung 10 kHz 0.11 2.5 x 10¢
Kidney 100 kHz 0.25 1.09-1.25x%x 104
Bone 10 kHz 0.013 640
Whole Blood 100 kHz 0.55 4000
Skeletal Muscle 10 kHz 0.55 8.0x 104

* Reprinted, with permission, from reference [Gabr96].

However, as with any tomographic technique, the spatial resolution of EIT is
limited by the number of possible independent measurements performed on the
object under investigation, and as well as by the signal-to-noise ratio of the collected
data [Guar91]. Consequently, the focus in medicine has been on developing
applications where resolution is of no major concern. Despite the severe limitation of
spatial resolution, ongoing hardware and software developments are broadening

EIT’s potential to applications where resolution is of the utmost importance. One
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such application, of wotldwide interest, is in the detection of early stages of breast
cancet. The ultimate goal of researchers in this area is to develop a clinical EIT-based

breast cancer-screening tool to either complement ot replace mammography.

1.2 Medical, Industrial and Environmental Applications of EIT

Many possible clinical applications of electtical impedance tomography have been
investigated. Examples include gastric emptying, pulmonary ventilation, petfusion
changes during the cardiac cycle, pelvic venous congestion, hyperthermia monitoting,
breast cancer screening, and swallowing disorders [Dijk93, Jong94, and Boon97].
Dynamic imaging of impedance changes with time offers the most immediate clinical
potential. A potential application of 'static' EIT imaging would be in the screening of

breast tumours. Both 'dynamic' and 'static' imaging will be discussed later.

EIT has been used successfully in geophysical applications [Telf76 and Send82].
Tamburi et al, 1987, convincingly demonstrated the effectiveness of an EIT-based
system, Electroscan?, in subsurface imaging of pollution plumes [Tamb87]. Industrial
applications of EIT-based techniques include multiphase flow measurement, dynamic
internal behaviour of process vessels, reactots, sepatators or pipelines, fluidized bed

analysis, and combustion flame monitoring [Plas95, Yang95, Xie92, and Wang94].

1.3 A Review of Clinical EIT Literature

A comptehensive review on the fundamentals, principles, and concepts of
electrical impedance tomography teconstruction algorithms can be found in the
literature [Moru96]. Rigaud and Motucci, 1996, published an excellent teview on
existing hardware solutions for acquisition systems for EIT [Riga96b]. More recently,
Boone e al., 1997 [Boon97] published a summaty of present and future development
in EIT (viz., hatdware and reconstruction algorithm). The clinical applications of EIT
wete reviewed by Webster ef 4k, 1988 [Webs88], Dijkstra ef o/, 1993 [Dijk93],

2 Electroscan -- An EIT imaging system developed by Quantic Electroscan Inc., Winnipeg, MB, Canada
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Jongschaap et al, 1994 [Jong94], Kotre 1997 [Kotr97], and Boone er 4/, 1997
[Boon97].

Thete atre presently three ways to use electtical impedance tomography (EIT) in

the clinical environment [Boon97]:

® imaging the distribution of absolute impedance within the body at a specific
frequency (i.e., 'static' imaging);

® imaging the frequency variation of impedance within the body (i.e.,
'multifrequency' imaging); and

e imaging the variation in impedance during breathing or some other

physiological change in time, at a single-frequency (i.e., 'dynamic' imaging).

The fitst two ways are normally concerned with producing images that show how
the different types of tissues are distributed in the body; this is sometimes known as
tissue characterization or anatomical imaging. In such applications, BIT is being used as an
alternative to X-rays, CT and MRI, with certain practical advantages. The third
technique produces images of physiological function, such as in the imaging of short

(e.g., millisecond) changes in the physiological state of tissue.

In electrical impedance tomography, images are reconstructed from sets of
electrical measurements made on the surface of the body. To obtain high-quality
images, measurements with good accuracy, precision, and repeatability are needed
from the data acquisition system. Boone ez a/, 1997, provided an informative review
of the components of a typical EIT data acquisition system [Boon97]. Noise, optimal
current patterns, and electrode-electrolyte impedance among other factors impose
sttingent requitements on the accuracy of an EIT data acquisition system. Despite
these hurdles, useful images, albeit at relatively low resolution, have been obtained.
Metherall ef al., 1996, using a 64-electrode data acquisition system, reported a spatial
resolution of about 10% of image diameter for a centrally located object in the cross-

sectional plane [Meth96]. Using a 32-electrode system, Cook ez al., 1994, obtained a
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spatial resolution of 14% for 2 similar scenario [Cook94]. Although, the spatial
resolution of EIT is limited, its temporal tesolution and sensitivity in 'dynamic'
imaging is quite good [Kott97]. It appears that better spatial resolution ought to be
achievable by improving either the data acquisition system and/or the performance of
the reconstruction algorithm [Guar91]. This thesis will focus on improving the latter,
with the objective to image breast tumours at a physical size corresponding to

relatively good prognoses.

1.4 A Review of EIT Systems Hardware

Although the focus of this wotk is on EIT image reconstruction, most of the
factors limiting measutement accutacy in EIT systems are at its front end, ie., the
data acquisition system. In most practical systems, the measuring device applies a
known, constant cutrent to two ot more electrodes, and measures voltages that
develop between other electrodes. As published by Boone ez 4/, 1997, a practical EIT
system will normally have the following components: waveform synthesizer, current
source, differential amplifier, and a demodulator or some combination of these
components [Boon97]. For a comptrehensive discussion on EIT hardwate

components, see the following references [Riga96b and Boon97].

Rigaud and Morucci, 1996, published an excellent review on the hatdware
solutions developed for EIT and outlined changes that have taken place in the
previous decade, in terms of measurement strategy and development to overcome
hardware error sources that have undesirable effects on image recovery [Riga96b]. In
practice, it appears that there are formidable instrumentation problems, due to the
interaction of finite current drive output impedance, tecording amplifier common
mode rejection, and unequal skin-electrode impedances. A number of different EIT
systems have been successfully constructed or are presently undetr development to
address these limitations [Smit90, Riu92, Cook94, and Brow94]. These employ
differing strategies, such as additional electrodes, multiple electrode current injection,

or recording at multiple frequencies, to improve image accuracy with great success.
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1.5 A Review of EIT Image Reconstruction Algorithms

Image reconstruction in EIT is the process of converting the voltage/current
measurements from the data acquisition equipment into images. The reconstruction
process makes use of the relationship known to exist between voltage, current, and
tesistance (viz., Poisson’s equation). EIT image reconstruction is a nonlinear inverse
problem since the voltage is a function of both the applied current and resistivity, and
as well as the geometry of the imaging region. The invetse problem of reconstructing
the electrical impedance parameters from voltage and current measurements made on
the boundary is very difficult. This is due to the fact that this inverse problem is both
nonlinear, and quite arguably, depending on the algotithmic method employed for
impedance image recovery, i-posed [Oost91]. I/-posedness means that the solution does
not depend continuously on the measured data and that small changes in the
measured data can lead to relatively large errors in the reconstruction of the

impedance distribution.

Many approaches have been proposed for solving the inverse nonlinear problem
that atises in EIT. These methods fall into two broad categories. The first are non-
iterative (single-step) techniques, based on linear approximations. ‘The basic
assumption of these methods is that the conductivity distribution is approximately
homogeneous. Examples of these linear approximation methods include the Barber-
Brown backprojection [Barb83 and Avis95] and related methods [Guar91 and Barb93].
Single-step methods produce an image using the single application of a mathematical
operation [Boon97]. Single-step methods can generally be divided into two broad
categoties: backprojection [Batb93] and sensitivity matrisc [Gadd92 and Moru94] methods.

Iterative techniques are nearly always used to tty to solve the 'static' reconstruction
problem, i.e., find the actual resistivity in the body rather than a change in resistivity.
These include Wexler, Fry, and Neuman’s double constraint algorithm [WexI85 and
Wexl88] and a variant [Kohn87]. These methods generally solve a series of linear

problems via solution of the Poisson or Laplace (see Equation 1.0) electromagnetic
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equations (L., the forward problem) in an attempt to solve the full nonlinear problem
(i.e., reconstruction of the unknown impedance disttibution or inverse problem, see

Figure 1.0). Poisson's relation for a continuous inhomogeneous medium is:

—V -kVo =f [1.0]

whete K, @, and f are the conductivity, potential disttibutions, and impressed current
source distributions within the region being studied, respectively. Most of these
methods acknowledge the non-linearity and ill-posedness of EIT (discussed fully
later) and attempt to treat it without lineatization, unlike non-iterative methods. The
mathematical basis of an iterative image reconstruction technique, using the Wexler
algorithm [WexI85] or the Kohn-Vogelius variant [Kohn87] as an example, is
discussed in detail in Appendix II.

Cutrent Excitation Pattemns

Known or Assumed Unknown Sutface
Conductivity Distribution Potentials
The
—_— Forward —_—>
Problem

Cusrent Excitation Patterns @
Unknown Conductivity Known Suface

Distribution Potentials

The
-~ Inverse < ——
Problem

Figure 1.0: The Forward Problem (a) and the Inverse Problem (b) in
Electrical Impedance Tomography. In the Forward problem, a known or
assumed impedance distribution is used to calculate surface potentials
from applied currents. In the Inverse Problem, the measured potentials
and applied currents are used to solve for the unknown conductivity
distribution.

®



CHAPTER 1. INTRODUCTION

Kytiacou ez al, 1990 [Kyti90] and Yorkey e al, 1988 [York88], have published
excellent reviews comparing the different reconstruction algorithms for EIT. What
follows is a summary of the fundamental differences. Although there are many
different single-step methods, they can be divided into two broad classes, backprojection
and sensitivity matrix, as stated previously. The most widely used backprojection
technique is that first described by Barber and Brown [Barb83]. These authots
transformed the normal curve isopotential lines into a conformal space where
backprojection occurs along parallel lines. This process allowed the calculation of
coefficients for the backprojection operator. Each image pixel then had to be
“weighted” to compensate for the non-uniform angular distribution of backprojection
lines through that point. Variants of the Barber and Brown methods are quite

popular in the literature [Bayf95 and Kott94].

The othet broad class is that of the sensitivity mattix approach [Moru94]. The
sensitivity mattix is the matrix of values by which the conductivity values can be
multiplied to give the electtode voltages. In other words, multiplication by the
sensitivity matrix is equivalent to an approximate solution to the forward problem.
The sensitivity matrix uses a theorem detived by Geselowitz [Gese71]. To
teconstruct an image, the sensitivity matrix needs to be inverted. A number of
specific techniques to accomplish this step have been published [Gibs98 and
Gadd92].

These linearization methods ate vety attractive due to their mathematical
simplicity and computational speed, but they have the effect of ignoring the non-
linearity of EIT. Furthermore, thete are 2 number of undesirable featutes common to
them. In particular, the recovered images of a centrally-placed object appears
physically latger than that of a peripheral one of equivalent size, and underestimation
of overall difference in resistivity is normally greatest for centrally-placed objects

[Boon97].
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As mentioned above, it is primarily the accuracy of the guess at the conductivity
distribution stage, which distinguishes one iterative reconstruction technique from
another. Many iterative algorithms have been published in the literature. Among the
iterative techniques are variants of the Newton-Raphson method [York 88, Boon97
and Kotr97] and variants of the error function minimization algorithm [Kohn87].
Etror function minimization algotithms minimize an error function based on the
differences of potential distribution solutions compared to an initial assumed
conductivity distribution. The conductivity distribution is updated by minimizing the
etrot function with a least-square technique. Such algorithms include the Wexler EIT
algorithm and its variants [Kohn87]. Thete seem to be two particular limitations,

though highly disputable, to the iterative approach:

® The iterative process is perceived as being sensitive to noise and measurement
errof.
* Convetgence to a solution is observed to be telatively slow and thus the image

reconstruction process is computer intensive.
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1.6 A Review of Breast Cancer Imaging Modalities

According to Canadian Cancer Statistics3, breast cancer continues to be the most
frequent type of cancer diagnosed among Canadian women. Canada’s incidence rates
are among the highest in the world, second to the United States. In Canada, an
estimated 18,700 new cases of breast cancer will be diagnosed in 1999. During their
lifetime, 1 woman in 9 is expected to develop breast cancer and 1 woman in 25 is
expected to die from it. The statistics are less alarming in male breast cancer, an
infrequent and rare occurrence, accounting for 1% of all breast carcinoma [Bodn99];

although detection is often at advance, incurable stages.

Cuttently breast cancer can be detected in three principal ways: (1) conventional
x-ray mammogtaphy; (2) breast examination by a trained health professional; or (3)
self-examination. Any means to detect breast cancer befote the onset of symptoms is
termed screening. Presently, conventional x-tay mammography is the most effective
method of screening for breast cancer. However, the technique is not without
limitations [Kerl97, Huyn98, Jato99, and Gord99]. With mammography, there are
problems distinguishing malignant from benign tumours [Pate98]. Three of four
lesions that it detects are benign, resulting in unnecessaty costly follow-up medical
procedutes [Bren97]. In addition, 5 - 10% of breast cancers are undetected mostly in
young women with dense breast tissue [Cohe85, Shaw90, Yell91, Benn91, and
Hind99]. The X-ray dose of standard mammogtraphy causes breast cancer in and kills

one woman for every eight saved from the disease [Rick99].

While many ways are being explored to prevent and treat breast cancer, early
detection is a woman’s hope for effective treatment and better survival rates. Breast
lesion size has a direct cotrelation with survival: a lesion increases 8 times in size from
the time it is a non-palpable 0.5 cm to the time it reaches a palpable size of 1 cm.
Sivatamkrishna and Gordon (1997), in a quantitative analysis, have shown that the

probabilities that 1 cm and a 2 cm lesions have metastasized are approximately 7.31%

3 National Cancer Institute of Canada: Canadian Cancer Statistics 1999, Toronto, Canada, 1999.
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and 25.5% respectively. The authors concluded that detection of very eatly tumouts

ought to substantially reduce the likelihood of metastatic spread [Siva97].

The limitations of conventional mammography create the need for new
technologies that could detect and diagnose breast cancer at an eatly stage, thereby
eliminating unnecessary biopsies and providing more information about the extent of
cancer growth and improving prognosis. Magnetic resonance imaging (MRI),
ultrasound (US), computerized tomography (CT), positron emission tomogtaphy
(PET), and nuclear medicine (NM) are among a few modalities presently under
investigation for breast cancer screening [Ziew99]. These modalities, however, are
not without limitations. MRI brings the advantage of high-resolution 3-D imaging to
breast cancer staging (usually based on the size and degree of tumour spread) and
treatment evaluation. However, MRI without contrast media thus far has failed to
demonstrate sufficient sensitivity and specificity to justify the enormous expense and
time needed to perform these studies [Kram98 and Skaa98]. Ultrasound has
demonstrated efficacy in the differentiation of cysts from solid lesions but is
unteliable for the differentiation of benign from malignant solid lesion [Samu98]. CT
offets essential information that can alter treatment planning and optimize treatment
strategy but would likely be restricted, in bteast tumours diagnoses, due to the
relatively high level of radiation exposure presently employed [Trig99]. Larger trials
ate necessary to establish whether positton emission tomography and radionuclide
scanning would provide any efficacy in screening for asymptomatic breast malignancy
[Wahl98]. PET and NM would likely be limited by the requitement for the injection
of radioactive material. At the outset, it appeats that these new imaging modalities,
for reasons outlined above, might not be approptiate in screening for breast cancer
but could prove effective as diagnostic aids if they replaced less accurate tests,

eliminated biopsies, and improved treatment planning [Cole98].
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Can EIT be used as a breast cancer imaging (viz., detection and diagnosis)
technique? Can it be used to detect breast cancer before the onset of metastatic
spread? What are the limitations of the technique in the full nonlinear reconstruction
of absolute resistivity 'static' imaging? Although, the research efforts and
accomplishments of a few EIT groups [Cher95 and Chen99] engaged in EIT
hardware development deserve recognition, the transition of EIT from the laboratory
to the clinic has yet to occur. The main problem appears to be softwate related. In
particulat, the limitation in spatial resolution is usually attributed to the lack of an
efficient and robust EIT algorithm capable of producing clinically useful images.
Recent developments in 3-D EIT appear to be quite promising for clinical
applications [Meth96]. However, before EIT can be established as a complementatry
tool to mammography or as the technique of choice in the detection of bteast cancer,

the questions raised eatlier, and many more, need to be fully resolved.
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1.7  Purpose and Outline of Thesis

In Chapter 2, an analytical and critical review of 'dielectric' properties of breast
tissue is presented. A review of the histopathological development of breast cancer in
Chapter 2 reveals some important requitements for an EIT-based imaging algotithm,
in particulat, the optimal detection size for a good prognosis. The original Wexlet
EIT algorithm is presented in Chapter 3. Simple two and three-dimensional
computer simulations of breast cancer imaging are performed to illustrate the method.
In Chapter 4, several tests are conducted, via simulations, on the original algorithm in
order to understand its fundamental charactetistics and “dynamics”. Among the tests
carried out wete the algorithm's ability to handle noise, its effect on image quality due
to patient motion, and other considerations that are prevalent in clinical situations.
The objectives are to evaluate the algorithm's clinical ability and subsequently to
identify “areas needing improvement”. Two most crucial “areas needing
improvement” were identified for the success of the algorithm in the detection of
catly stages of breast cancer (i.e., at relatively small size of 1- 2mm in diameter).
These were the low convergence rate and the limited spatial resolution of the
tecovered images of the original algorithm. In Chapter 5, a Modeller-Predictor-
Cortector (MPC) scheme - that incorporates a modified Levenberg-Marquardt (LM)
least-squares fitting algorithm - is devised and implemented in the Wexler algorithm
in order to improve its convergence rate. The issue of low spatial resolution is
addtessed in Chapter 6. A novel technique, which combines the Peak Detection
Method, an image- processing algorithm, and a revised localized conductivity
compensation scheme, collectively referred to here as the Locator-Compensator (LC)
method, is developed to investigate EIT's limit of spatial resolution. By combining
the development of the two previous chapters, an improved Wexler 3-D EIT
algorithm is presented in Chapter 7. This improved algorithm is demonstrated using
realistic computet simulations of small breast tumours. A thorough discussion of the
objectives of this thesis is provided in Chapter 8. Conclusions and future work are

discussed in Chapter 9.
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Chapter 2

Breast Tissue: A Review of Histopathologies and Dielectric Properties

2.1 Introduction

Electrical or dielectric* properties of normal and malignant human breast tissue at
both radiowave and microwave frequencies have been investigated since as eatly as
the mid-1920. A knowledge of dielectric properties of tissue is important for several
reasons, most importantly to: 1) provide a better undetstanding of the biophysical
mechanisms involved in EM radiation-tissue interaction [Bern79, Leve84, and
Isma98]; 2) assess the potential of induced local hyperthermia, as a technique in
cancer treatment, from a knowledge of the differential dielectric properties over a
wide range of frequencies [Conw92, Hawl92, and Gers99]; and 3) evaluate the
possibility of noninvasive EM radiation-based imaging techniques [Pric79, Soll81,
Wtor99 and Rada99]. In principle, the latter ought to be possible due to the observed
differential dielectric properties between normal and diseased breast tissue [Suro88
and Mori90] over some frequency range. Because of the importance of the last
objective, and the recent interest in an EM radiation-based imaging technique as a
potential screening tool for breast cancer, an objective analytical and critical review is

presented at both radiowave and microwave frequencies.

4 . L . . . . . . . .
There is much confusion in the literature about nomenclature use in describing the electrical properties of tissues. In this thesis, the
most commonly used terminology is employed. The microscopic electrical properties that describe the interaction of an EM wave

Ed *
with matter are the complex conductivity O and the complex permittivity € . As described by Rigaud et al., 1996 [Riga96b],
although, “"the term 'dielectric' is typically associated with substances capable of storing electrostatic energy, it is also used for any
system capable of polarizing itself under the effect of an electric field". In many instances, the term 'dielectric’ is used to describe
electrolytes and certain noninsulating media such as biological tissues. As such, the trend in the literature has been in using complex
conductivity and permittivity to describe the properties of tissues at the microscopic level and complex impedance, the more general
quantity, for defining the electrical behaviour on a macroscopic level.
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To undetstand the concept of dielectric properties of a tissue, a brief summary of
the mathematical background and fundamentals is provided. Prior to the review, a
discussion on the manner in which breast cancer arises and progresses (i.e., its
histopathological development) is given. The putpose of the discussion on the
histopathology of breast cancer is to detive some fundamental requirements expected
of an EIT-based breast cancer screening system. These tequirements are then used
to evaluate published studies on the dielectric properties of the breast at both

radiowave and microwave frequencies.

2.2  Mathematical Background on Dielectric Properties of Tissue

A large amount of data on the dielectric properties of tissue has been accumulated
in the literature, starting with the eatly work of Fricke [Fric26], Cole and Cole
[Cole42], Geddes and Baker [Gedd67], and Foster and Schwan [Fost86]. Recently,
Gabtriel and Gabriel [Gabt96] compiled an extensive survey on the dielectric
properties of tissues at radiowave and microwave frequencies. In a 1989 article,
Foster and Schwan provided a comprehensive review of the dielectric relaxation
mechanisms of tissue [Fost89]. Duck summatrized the dielectric properties of tissues
covering the frequency range from d.c. to over 10 GHz [Duck90]. Some definitions
and basic mathematical concepts of the dielectric propetties of tissue are discussed

below.

The electrical characteristics of tissues covering the frequency range from
radiowave to microwave can appropriately be described by using the properties:
relative permittivity, €', and conductivity, ¢ [Fost89 and Riga96a]. The relative
permittivity and conductivity ate, respectively, the charge and current densities
produced in a medium (e.g, tissue) in response to an applied electric field of unit
amplitude. Using the approach of an idealized parallel-plate capacitor, Foster and

Schwan [Fost89] derived an expression for complex conductivity and relative
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permittivity as a function of frequency (see Table 2.0). The lengthy derivation is

summarized here:

The complex conductivity, ¢ *, of a material is defined as,

O*=0+ jWEE, [2.0]

where 0 is the dielectric static conductivity, jis ¥—1, @ is the angular frequency, €
is the dielectric static permittivity, and €, is the permittivity of free space (i.e., 8.854 X
10 12 F/m) respectively.

Similarly, the complex permittivity, € *, is defined as:
E k= g'—jg” [21]

Conductivity, o, is defined as the conductance of a unit volume of matter and
has units of Siemens meter! (S m™). Conductivity usually has a frequency-
independent patt (due to ionic conduction), a frequency-dependent component (due

to dielecttic telaxation), and € " equivalent to o/(we,), usually referred to as the

“loss”, is sometimes used with reference only to the frequency-dependent part of the

conductivity. In the literature there ate many references to the "dielectric constant"
of a material, by which is meant the real part of the complex permittivity (i.e., 8'),
typically at low frequencies, at which €' is independent of frequency. "Petmittivity"

or "relative permittivity", is usually used to indicate the real part & of the complex
permittivity, £ *, relative to that of free space, &;.
The complex conductivity o * and permittivity € * are related by,

O*= jE,E* [2.2]

trom which the complex impedance of a material, Z *, can be derived as,

AR s [2.3]

O *
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In some papers, resistivity p is used. This is the inverse of conductivity, p = —. A
c

more comptehensive derivation can be found in Foster and Schwan [Fost89].

Table 2.0: List of parameters employed to describe 'dielectric' properties of tissues or biological
materials at lower frequencies.

| Pamees | DesciponofPasmerers
O * Complex Conductivity
o Static Conductivity
E* Complex Permittivity
3 Permittivity or Relative Permittivity
& Permittivity of Free Space
A Complex Specific Impedance
e" Loss
P Resistivity

The resistivity of many tissues is anisotropic (i.e., their electrical properties depend
on the direction of measurement). For example, skeletal muscle conducts electricity
relatively better longitudinally than transversely. Anisotropy is crucial for the
uniqueness of a solution [Sylv86 and Lion97]. As such, anisotropy effects ought to be
considered during reconstruction of electrical impedance images [Eyub92 and Glid97].
However, breast tissue is mostly isotropic. It consists of fibrous and fatty tissues,
which for the most part can generally be considered as being isotropic but

heterogeneous.
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2.3 Anatomy and Histopathology of Breast Cancer

The breast, ot mammary gland, begins developing in the embryo about 7-8 weeks
after conception. From about 12-16 weeks, epithelial buds develop and branch out
to lay the foundation for future ducts and milk producing glands [Folk85]. Similatly,
other tissues develop into muscle cells that will form the nipple and areola (the datk
region around the nipple). At 20-32 weeks, these buds canalize to form
lactiferous/milk ducts. From infancy to puberty, there is no difference between the
female and the male breast [Rava98]. However, with the onset of puberty, the female
breasts undetgo dramatic changes. The estrogen effect stimulates longitudinal ductal
growth and the formation of terminal ductal buds. Further glandular development
occuts in response to progesterone, in patticular, the formation of lobules. In the last
8 weeks of pregnancy the lobules mature and increase in complexity in preparation

for lactation. This process approximately takes 3-4 weeks.

The adult female breast is composed of essentially three basic structures: the skin,
the subcutaneous and interparenchymal fat, and the breast tissue, which includes the
parenchyma and the stroma (see Figure 2.0) [Folk85]. Simply stated the breast is
made up of primarily the milk-producing glands and the network of larger and larger
ducts that conduct milk from the glands to the nipple. The glands and ducts are
otganized into lobes and lobules. The patenchyma contains about 15-20 lobes, each
of which is drained by a lactiferous duct. The breast itself lies on the pectoralis

muscles, which cover the chest wall.

Microanatomically, the basic histopathologic unit of the breast is the terminal duct
lobular unit (TDLU). The TDLU is composed of the smallest branches of lactiferous
ducts, the extralobular terminal duct and the lobule. The lobule is composed of the
intralobular duct and the ductules [Well75]. The ducts and the lobules are the sites
where most breast abnormalities arise, both benign and malignant. The size of the

ducts is approximately 1- 2mm in diameter.
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* Reprinted, with permission, from reference [Shaw92].

Figure 2.0: This shows (a) the gross anatomy and (b) terminal duct lobular unit (TDLU) of the normal
breast. The three main component of the breast are identified as the glands, the network of ducts, and
the lobules. The TDLU consists of the lobule, intralobular terminal duct, and ductule. The average
size of the ducts is approximately 1- 2 mm in diameter. The size of the duct is of great interest to EIT
imaging of early breast tumours.

There is no known single cause of breast cancer. However, genetic and/ot
hormonal factors may play a role in some patients [Land88, Will88, and Paul90].
What is generally known about the natural history of breast cancer, and has come to
be accepted as the model of progression, is that in the eatly stages, up to the point of
initial invasion, it forms a linear sequence. The sequence of events within this period
is predictable and the probability of regional or systemic spread is low. After
significant mass formation has occurred, the course becomes more randomized. This
formulation supports the importance of eatly detection and treatment [Tubi91 and
Tubi99]. Furthermore, as tumour size increases, the likelihood that distant metastasis
has taken place rises and there appears to be a critical volume before which distant
metastasis does not occur [[Kosc84]. For this reason, scteening patients for breast
cancer before tumours are large enough to be palpable has been proposed as a way to

decrease the risk of dying of the disease [Holm89, Fryk90, Cris93, and Peer96].
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Histopathology is the study of the effects of disease on tissue. Histopathological
classification of breast cancer helps in establishing the diagnosis of the lesion and
approptiate determination of patient treatment and prognosis. Breast cancers are
usually classified histologically based on the types and patterns of cells that compose
them. Carcinomas can be invasive, extending into the sutrounding stroma (i.e., fat
and connective tissue) through which tumour cells spread locally, regionally, and
distantly via vascular lymphatic space, or noninvasive (e.g., ductal carcinoma in situ)
which is confined just to the ducts or lobules [WHOS82]. Invasive carcinomas are
commonly divided into two major types: ductal and lobular. Figure 2.1 below
summatrizes the most documented histologic types of invasive, non-invasive, and
special vatiants (i.e., those with distinct morphology and prognosis) of breast
carcinomas. Morphology is the study of structure or form and the features

comptised in the form and structure of an organism ot any of its parts.

Catcinomas have a propensity to spread via lymphatics. Breast cancets, when
they metastasize, often go first to the axillary lymph nodes where most lymphatics
from the breast drain. Other organs can be sites where metastases lodge, and such
sites as lung, bone and liver are more common. Among the least aggressive cancers
are non-invasive intraductal and lobular carcinoma in situ. Carcinomas, which can
potentially metastasize but less commonly do, ate: colloid, medullary, and papillaty

carcinomas.

The majority of ductal carcinoma is thought to develop in the terminal duct
branches, and the calcifications associated with these lesions tend to have a lineat,
branching orientation ot configuration, cotresponding to the duct lumen. Lobular
processes are often benign, and include many forms of fibrocystic changes (i.e.,
adenosis, sclerosing adenosis, and cystic hyperplasia). Associated calcifications are
more smoothly marginated and rounded, conforming to the configuration of the

ductules.
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Invasive Carcinomas

Non-invasive Carcinomas

Variants of Carcinomas

Infiltrating Ductal Intraductal in situ (DIS) Tubular
Ductal with DIS Lobular in situ (LIS) Medullary
Infiltrating Lobular Mucinous
Adenoid cystic Papillary
Secretory or juvenile Metaplastic
Apocrine Inflammatory
Paget's disease of the nipple Others

Figure 2.1: The most common histologic classification of breast cancer. Breast cancer histologic
types are generally divided into three main categories: Invasive, non-invasive, and variants of
invasive and noninvasive. This broad classification is gathered from the WHO histological typing

of breast tumours, see reference [WHOS2].

The stage of breast cancer is based on its size and degtee of spread. Traditionally,
the staging system consists of primarily four stages as identified in Table 2.1. In Stage
I, the actual tumour is generally no longer than 2 centimeters (i.e., 2 cm) and has not
spread to the rest of the breast. In Stage II, any of the following may be true: the
tumour is no longer than 2 cm but has spread to the lymph nodes; the tumour is
between 2-5 cm and has or has not spread to the lymph nodes; ot the tumour is
larger than 5cm and has not spread to the lymph nodes. Stage I11 is usually divided
into Stage IIIA and IIIB. In Stage IIIA, the tumour is larger than 5 cm and has
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spread to the lymph nodes undet the arm, and in Stage ITIB, the tumour has spread
to the lymph nodes inside the chest wall along the breastbone. In Stage IV, also

called the metastatic cancer, the tumour has spread to other organs of the body.

The most precise system for cancer staging is considered to be the TNM
(Tumour-Nodes-Metastases). The TNM staging system was developed by the
American Joint Committee (AJC) on Cancer Classifications and is used to stage
breast cancer. In the TNM staging system, the tumour, lymph nodes, and metastatic
spread are assessed separately. Each letter is followed by a digit that identifies the
severity of the condition, (see Figure 2.2 below). As an example, a patient diagnosed
with T2N2M1 has tumour growth from 2-5 cm, which has spread to the lymph
nodes and have grown together or into other structures under the atm, and has

distant metastases ot skin tecutrence beyond the breast atea.

Table 2.1: The Traditional Staging of Breast Cancer (based on size and degree of spread).

Stage I - Tumour 2 cm or less in diameter and without evidence of spread
- Tumout is no larger than 2 cm and has spread to the lymph nodes
- Tumour is between 2-5 cm and has or has not spread to the lymph
Stage II
nodes
- Tumour is lazger than 5 cm and has not spread to the lymph nodes
Stage ITIA - Tumour is larger than 5 cm and has spread to the lymph nodes
Stage II1
Stage ITIB - As in Stage IITA, and has spread to lymph nodes inside chest wall
Stage IV - Tumour has spread to other organs of the body
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24  Diagnoses via Mammography

Among the abnormalities found on mammography are masses and calcifications.
Evaluation of a mass lesion is first characterized by its margination, whether it is
relatively well circumscribed or spiculated and poorly defined. Well-circumscribed
masses with smooth margins usually represent benign lesions such as fibroadenomas,
hematomas, and papillomas. Although well-circumscribed masses are most likely
benign, some malignant cancers also may well be defined (e.g., infiltrating ductal
carcinomas). Irregulatly shaped masses with pootly defined or spiculated margins

may be an indicator of malignancy [Shaw92)].

Calcifications ate tiny specks of calcium seen on mammograpy. The analysis of
calcifications is based on assessment of prior mammogtams of morphologic features,
size, distribution, location, and stability. Calcifications that are widely scattered, of
uniform size, and well defined are usually representations of benign conditions.
These include fibroadenomas, fat necrosis, and oil cysts. Itregular calcifications that
are heterogeneous in size and clusteted together may indicate the presence of

malignancy.
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Tumour (T) Nodes (N) Metastases (M)

NO: No palpable nodes

T1: <2 cm diameter in the lymph nodes MO
No evidence of
N1: Spread to lymph distant metastases

T2: = 2-5 cm diameter nodes but not grown

together or in other

structures
T3: > 5 cm diameter

M1

N2: Spread to lymph Distant metastases or

nodes and has grown .
. : ! skin recurrence beyond
T4: Any size extended together or in other breast aes y

to chest wall or skin structures

N3: Tumour has spread to
lymph nodes inside the
chest

Figure 2.2: The TNM (Tumour-Nodes-Metastases) Breast Cancer Staging System. A new and
revised TNM staging system can be found in the American Joint Committee on Cancer (AJCC)
Staging Manual, 5" Edition, 1998.

Microcalcifications present mote of a problem for mammogtraphy than
calcifications, since microcalcifications can represent a malignant process [Taba85].
They can be divided roughly into two types based solely on theit site of origin.
Lobular calcifications tend to occur in the terminal ductules. Examples of processes

that may result in lobular microcalcifications include seceral fibrocystic lesions (e.g.
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adenosis, sclerosing adenosis, cystic hyperplasia, and lobular hyperplasia) and lobular
carcinoma in situ. There are other less common mammographic signs of carcinoma.
These include dilated lactiferous ducts, focal areas of symmetry ot architectural
distortion, and thickening or retraction of the skin. These conditions are usually
benign; however, in some indeterminate cases biopsies are required for proper
diagnosis. More detailed discussion on mammographic pathological abnormalities

found in mammogram can be found in the following references [Well75 and Rose87].

2.5  Literature Review on the Dielectric Properties of Breast Tissue

An EM-based scteening tool (e.g, EIT) will only be effective if adequate
impedance variation exists between normal, benign and malignant breast tissues. It is
well  known that cancerous and normal tissues differ morphologically,
histopathologically, and physiologically [Kino 88 and Blad95]. These differences have
been known to induce changes in their electrical properties and as such, had
prompted many investigators to explore tissue (viz. normal and cancerous)
charactetization. Of great interest, both from a scteening or therapeutic point of
view, is the characterization of the biophysical features of cancerous breast tissue. To
this end, an analytical and critical review of the literature on the dielectric properties
of breast tissue at both radiowave and microwave frequencies is presented. The
putposes of this review are to objectively assess published studies and discuss their

findings.

Only a few sets of useful data on the dielectric properties of normal and
malignant breast tissues have been published. Fricke & Morse [Fric26] found
significantly higher permittivity of breast tumour tissue at 20 kHz as compared to
normal or malignant tissues in vitro. England & Sharples [Engl49] and England
[Engl50] discussed the dielecttic properties of breast fat and carcinomas at 3 GHz.
Based on the obsetvations of [Engl49] and [Engl50], Mallard ef o/ 1967 postulated

the potential use of microwave-based measurements for tumour detection [Mall67].
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Chaudhaty ¢f a/. [Chau84] studied the dielectric properties of breast carcinoma and
normal tissues at frequencies from 3 MHz to 3 GHz in vitro. They found significant
differences in the dielectric properties of normal and malignant tissues, in patticular
at frequencies below 100 MHz, and suggested the use of EM-based radiation
scanning for detection of an early stage of breast cancer. Sollish e 2l [Soll81]
developed an in vivo dielecttic breast scanner based on assumed differential dielectric
properties of notmal to malignant breast tissues. Surowiec ¢ /. [Suro88] studied the
electrical properties of breast catcinomas and sutrounding tissues from 20 kHz to 10
MHz in vitro. They further observed differences in the dielectric properties (viz., the
real component of conductivity and permittivity) of normal and malignant breast

tissues and indicated the potential of impedance imaging as a diagnostic tool.

Mitsuyama ez a/. [Mits88] measured the electrical impedance of breast tumours in
vivo. Motimoto ¢ al. [Moti90] and [Moti93] published in vivo data on bio-
impedance measurement of breast tumours between the frequency range (0 — 200
kHz) and further confirmed the significant differences in dielectric properties of
normal and malignant breast tissues. Rigaud ez @/, 1996 published a summary of
published works on the in vitro and in vivo characterization of breast cancer tissues
[Riga96]. Jossinet [Joss96] investigated the variability of impedivity (the equivalent
for a.c. of electrical resistivity, p, for d.c.) in normal and pathological breast tissue
over the frequency range (0.448 kHz — 1 MHz) [Joss96]. The results obtained by
Jossinet [Joss96] are somewhat consistent with that of Surowiec e¢f 4/, [Suro88] and
Morimoto et al., [Mori93]. In Figure 2.3 below, the relationship between the in vivo

and in vitro studies described earlier is shown.
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Figure 2.3: Relationship between published in vivo and in vitro studies on dielectric
properties of breast tissues at radiowave and microwave frequencies. The region
identified as M-J-S, is the frequency region at which the studies of Morimoto ef al., 1990,
Jossinet 1996, and Surowiec ef al., 1988 overlap. Similarly, M-J, J-S, and C-S are the region
at which Morimoto et al., 1990 and Jossinet 1996, Jossinet 1996 and Surowiec ef al., 1988,
and Chaudhary et al., 1983 and Surowiec et al., 1988 overlap.

The frequency region identified in Figure 2.3 as M-J-S (i.e., between 20 kHz to
200 kHz), is the region of frequency over which the studies of Motimoto e 4/,
1990[Moxi90], Jossinet, 1996 [Joss96] and Surowiec ez al., 1988 [Suro88] overlap. The
ovetlap could provide a frequency region over which to compare the results of each
study. However, they each had employed a different methodology for breast tissue
characterization, and had made measurements on different breast cancer
histopathologic types. Surowiec e# 4/, 1988 employed the experimental method of
reflectometry on ductal catcinomas (invasive), Motimoto et @/, 1990 used a three-
electrode probe method for in vivo measutements on papillotubular and solid-tubulat
catcinomas (vatiants of invasive carcinomas), while Jossinet, 1996 utilized a fout-
needle hand-held electrode probe to measure variability of impedivity in six groups of
breast tissue, with no mention of histopathological type. Others have employed

diffetrent approaches [Chau84, Camp92, and Blad95].
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Among the studies mentioned above, the work of Surowiec ef al., 1988 [Suro88]
appears to be the most reliable. Since measurements were made on the central part
of the tumour, on the tumour surrounding tissue, and on the petipheral tissue, and at
normal body temperature, this approach reflects the general knowledge and
understanding of the natural progression of breast cancer development. These
measurements were performed sttictly on infiltrating ductal and lobular (i.e., invasive)
carcinomas, and the measurement frequency range (20 kHz - 100 MHz) is well within
the frequency range (i.e., > 1 MHz) suggested by Jossinet, 1996 [Joss96]. This is not
to say, in anyway whatsoever, that measurements at lower frequency, for example at 2
KHz, do not produce adequate variation in dielectric parameters for potential
diagnostic purpose. The in vivo study of Morimoto ef 4/, 1990 [Mori90] had shown
that significant variation exists at lower frequency for both benign and malignant

tumoutr.

A property of breast tissue that is of great interest, in particular for the detection
of tumours via EIT, is its dielecttic (viz., conductivity or relative permittivity)
propetty. Since the published data of Surowiec e @/, 1988 was identified to be more
realistic, the difference in conductivity (i.e., the contrast) of the normal and diseased
breast tissue was plotted in order to determine how much of a conductivity difference
exists as a function of frequency. For the purpose of demonstration, a dimensionless
parameter that quantifies the conductivity difference or contrast, C was introduced.
Contrast C, is defined as the absolute value of the quotient of conductivity of the

diseased tissue (0,) to that of the normal tissue (o) as a function of frequency,

94
(o)

n

C= [2.4]

where C is the difference or contrast in conductivity, o, is the conductivity of the

malignant tissue in units of (mS/cm), and o, is the conductivity of the normal tissue
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in units of (mS/cm), respectively. The conductivity contrast plot is shown in Figure

2.4 below.

Conductivity Contrast (C) of Diseased to Normal
Breast Tissue as a Function of Frequency

8- | —@— Conductivity Contrast |
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Figure 2.4: Real component of complex conductivity (i.e., conductivity) contrast, C,
as a function of frequency for the published data of Surowiec et al. 1988. It is
obvious that significant variation exists between normal and diseased breast tissue.
This demonstrates that impedance imaging at radio wave frequencies has potential
in the detection of breast tumours.

It is obvious from the contrast plot above that sufficient vatiation in conductivity
exists between normal and diseased malignant breast tissue, in particular at
frequencies above 1 MHz. This indicates that radio wave impedance imaging has
potential as a breast cancer detection and as a diagnostic tool since adequate variation
exists between normal and benign breast tissue as was also demonstrated by
Mortimoto et al., 1990 [Mori90] in the frequency range of 0-200 kHz. Based on the

study of Motimoto ef 4/, 1990, an EIT machine operating, say at 2 kHz, ought to be
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sufficiently adequate to produce virtually pure resistivity images of the diseased

breast.

2.6 Discussion

A review of the literature on the histopathologies and dielectric properties of
breast tissue was provided. The breast was identified as anatomically simple,
consisting of three main components, the skin, the subcutaneous and
interparenchymal fat, and the breast tissue, which includes the parenchyma and the
stroma. Microanatomically, the basic histopathologic unit of the breast was identified
as the terminal duct lobulat unit (TDLU). The TDLU is composed of the smallest
branches of lactiferous ducts whose average size is approximately 1 - 2mm in
diameter. Such size imposes a ctucial requirement on the sensitivity of a clinical or

experimental breast cancer-screening system.

Since breast cancer is the most common cancer in women worldwide [Park93], its
tissue characterization has aroused great interest both on the levels of screening and
therapy [Riga96]. In the studies reviewed, it was observed that significant differences
exist in the impedance properties of breast tissue (viz. normal, benign, and malignant)
measured both in vitro, albeit with different experimental methods, and in vivo. In
vivo breast tissue chatacterization studies are very scarce, mainly due to its complex
technical requirements [Riga9G]. It was determined that more extensive, particularly
in vivo studies of dielecttic measurements of breast tissue samples is needed to
establish values more accurately from subject to subject (i.e., inter-subject vatiability)
and to investigate the reality of any differences between the myriad of breast

histopathological types.

If breast tumours are to be detected at a physical size at which the probability of
metastatic spread is relatively low (i.e., within the range 1 - 2 mm in diameter or prior
to Stage I and TINOMO), an EIT system ought to be able to detect a breast tumour at

the equivalent size of a basic unit of TDLU (i.e., the size of an average duct).
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Following detection, an accurate diagnosis of the histopathological type of breast
tumout, from the recovered impedance image of an EIT system, is anticipated. This
imposed a further requirement on an EIT system, one of being able to distinguish
between benign and malignant breast tumour from the recovered conductivity

distribution.

2.7  Summary

The concepts and basic mathematics of dielectric propetties of tissue were
reviewed. The electrical characteristics of tissues covering the frequency range from
radiowave to microwave can approptiately be described by using the properties:
relative permittivity, e', and conductivity, o. The breast was identified as
anatomically simple yet 2 prodigious producer of neoplasms (i.e., cancers). Excellent
prognosis is anticipated with eatly detection (i.e., at a physical size of 1 - 2 mm),
despite the histopathological vatiarion of breast carcinomas. From evidence obtained
in the literature, mammographic scteening can be quite unreliable. The general figure

is that it misses 15% of tumoutrs — though the size range of the missed tumours is not

clinically known.

More extensive studies of dielectric measurements of breast tissue samples is
needed to establish values more accurately from tissue to tissue and to investigate the
teality of any differences between tumours and normal tissue. As far as EIT imaging
is concerned, the most crucial feature of tissue impedance is the existence of
sufficient variation between different tissue types to allow appropriate imaging. Such

variations, from sparse data obtained so far, seem to be available.
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Chapter 3

The Original Wexler 2-D and 3-D EIT Algorithm

3.1  Basics of the Original Wexler EIT Algorithm

The Electtical Impedance Tomography (EIT) algorithm discussed hete was first
developed and demonstrated by Wexler, Fry, and Neuman [WexI85]. It has been
further expanded in subsequent publications [Tamb87 and WexI88] and in patent
applications [Fry85], where the algorithm is called the “Electroscan” system. Similar
algotithms have been published since [Kohn87], and the data processing method has
recently been referred to as the "double-constraint algorithm" [Moru96] or the
"Wexler Algorithm" [Cond96]. A review of the original Wexler EIT algorithm is
presented here. Two- and three-dimensional computer simulations of breast cancer

imaging, using the original Wexler algorithm, ate performed and the results discussed.

The basic principle of the EIT algorithm is that the surface voltages (i.e.,
potentials) measured under a given current density are characteristic of a particular
impedance disttibution of a region/otgan under investigation. In the original Wexler
algorithm, the impedance distribution is determined from the field equations and
subsequent estimates of the conductivity and resistivity distributions are
calculated based upon differences between the computed field values and the actual
measuted values at the surface. An initial guess is made for the impedance
distribution and the system is solved for the current distribution for one set of
boundaty conditions and the voltage disttibution for a second set of boundaty
conditions. New impedance distributions are computed using these results. This is
tepeated until a threshold criterion based on the minimum of a residual obtained from

these two calculations is reached (i.e., an etror function minimization algorithm).
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To demonstrate the computational Wexler EIT algorithm in the imaging of a 3-D
object, 2 3-D grid of nodes is defined ovet a cube (Figure 3.0). The cube is divided
into a 3-D finite element mesh of # points. Measurement locations are shown around
the 3-D object. A particular excitation pair is indicated centered at points # and 4, and
a reference node is at . The total cutrent flowing through the electrodes is I. At
node points, located at mesh intetsections, the potentials are computed for each
excitation (or view), and the conductivity is then estimated within the intervening
region inside the cube. An iterative approach, involving successive estimates of
potential-conductivity-potential, etc., is employed, as shown in the flow chart of

Figure 3.1.
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Figure 3.0: A 3-D imaging region. Region is divided into 3-D finite elements
where a and b represent a particular excitation pair, and r is a reference node.
An excitation pair is a pair of nodes where current is injected in one and
measured at the other. Reprinted, with permission, from reference [Wex185].
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In summary, the algorithm proceeds as follows (see Figure 3.1):

Step 1. Calculation of ¢ and J with Neumann Boundary Conditions

Assume initially a2 homogeneous medium with constant conductivity (k). The
potential ¢ and the current flux density distribution J (A/m?) are computed by
solving Poisson’s equation (1.0). The interior current distribution for each excitation
case is determined by first solving for the interior potentials with the known
impressed curtents applied at appropriate surface node locations. For this scenatio,

the inhomogeneous Neumann current boundary condition:

K(s)% =h(s) [3.0]

is specified; &(s)(A/m? describes the electrical current flux density enteting or

leaving the breast over an electrode surface. With these boundary conditions and a
conductivity distribution estimate throughout the interior, the voltage (potential)
distribution throughout the intetior of the breast is solved using a numerical
technique, in particular the Finite-Element Method (FEM) [Redd93 and Silv96]. The

FEM computes the field at node points for each excitation. At other points within
the elements, @ is found by interpolation [Berr92]. Once ¢ is known, the electric field
intensity E, is given by the negative gradient of the potential, i.e.,

F=—Vo [3.1]

Thus, with ¢ and E obtained, the electrical current density distribution is given by
J =xE =-xV¢ [3.2]

which is Ohm’s Law in point form [WexI80] .
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Initialize Conductivity
Distribution, k

f !

Calculate ¢ and J
for Neumann Boundary
Conditions

Compare
Calculated to
Actual Measured
Potential,
Agreement?

Calculate ¢
for Dirichlet Boundary
Conditions

'

Calculate Revised
< Conductivity
Distribution, k

Figure 3.1: The original Wexler EIT algorithm flow chart. The algorithm is initialized using
an assumed conductivity distribution. Potentials are computed for Neumann and Dirichlet
boundary conditions over the volume and over all excitations.
distribution is then compared to exact distribution. If satisfactory, the algorithm outputs
the conductivity. If not, the potentials from Neumann and Dirichlet are used to compute a
new or revised conductivity distribution and this succession continues iteratively until

convergence.
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The voltages computed from application of the Neumann current boundary
conditions are then compared with the actual voltages measured. Unless the exact
conductivity distribution ¥ is known in advance, thete will be a discrepancy since K is

only an estimate at the outset. The procedure continues to Step 2.

Step 2. Calculation of ¢ with Dirichlet Boundary Conditions

The algorithm then uses the measured voltages to cause a change to the
conductivity distribution to tend towatd minimization of the differences between the
measured and calculated surface voltages. This is performed by computing the
interior potential distribution from application of Ditichlet boundary conditions while

leaving the remaining Neumann boundary conditions unchanged.

Mathematically, the Dirichlet boundary condition is,
o(s) = g(s) [3.3]

where g(s) is the boundaty potential distribution.

This computation yields reasonable potential distribution patterns, even for very
approximate conductivity distributions, due to the influence of the applied measured
voltages acting on the interior region. A general-spassity preconditioned conjugate

gradient method is used to solve the resulting equations [Fry83].

Step 3. Calculation of Conductivity

Imposition of Ohm’s law (3.2) over the interior region employing both the
previously estimated J [Step 1] and ¢ [Step 2] for all excitations permits a
conductivity distribution X to be found that yields compatibility of the Neumann and

Dirichlet boundary conditions. With J as calculated from Step 1 and ¢ as calculated
from Step 2, Ohm’s law is generally not satisfied. A residual R is obtained. To
enforce compatibility, minimization of the square of the tesidual over all points and

for all excitations is sought in a least squate manner:

R:vaﬁ +KV9) - (J +KVo) dv [3.4]
X
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where R is the square residual sum, 17 is the region over which the imaging is
performed, and X represents the excitations over which the sum is taken. Minimizing

and rearranging yields

-1, 7-vear
VX, ve-vear

[3.5]

whete &, is a revised estimate of the conductivity within element 2z Equation (3.5),
which does not involve mattix operations, is applied to each element of the mesh in
turn to update the conductivity distribution over the entite region within which the

imaging is being performed.

Step 4. Recursive Improvement

With the new K estimate computed in Step (3), the process is repeated iteratively
from Step (1) until convergence as illustrated in the flow chart of Figure 3.1. The last
step involves the processing and presentation of the impedance image. Procedures
such as edge enhancement, histogram adjustment, and othetr image processing
techniques are applied to the gray-level image obtained from transformation of the
conductivity distribution at this stage. See Appendix I for a simplified discussion on

the physical approach of the Wexler EIT image reconstruction technique.

3.2 2-D Computer Simulations using the Original Wexler 2-D EIT Algorithm

To demonstrate the potential of the original Wexler algorithm, 2-D and 3-D
computer simulations were performed on a simplified model of the breast. These
computer simulations, though not fully realistic, ate nevertheless adequate

tepresentations of the problem under investigation (i.e., imaging of breast tumout).

In the simple 2-D case, a breast tumour is simulated within a homogeneous
background at 2 conductivity ratio of 4.0:1.0 respectively (see Figure 3.2). The region
is divided into 9X9=81 finite elements with 9 gauss points in each element (see

Appendix II for a definition of gauss point). It is at these gauss points that functions
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are sampled in order to evaluate the required integrals. Sixteen electrodes are
arranged on the mesh boundary and eight pairs of current injections/extractions ate
applied. In order to eliminate contact resistance effects, potential measurements at
active injections/extractions are not used in the computation. This scenario gives rise
to 81 unknowns and 84 independent measurements (i.e., for the minimum number of
excitations needed to recover the image, using the sometimes measurement pattern, and
measured using a multi-probe extension of the four-probe technique, discussed fully
in Chapter 4, Section 4.3). This setup corresponds to a determinacy of approximately
1.04, determinacy, being estimated as the ratio of the total number of independent

measurements to the total number of unknowns.

¥
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h 4
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Figure 3.2: Simplified 2-D breast tumour imaging setup using the
Wexler 2-D EIT imaging algorithm. Arrows show points of
injection/extraction (i.e., excitations). There are 8 pairs of current
excitations. Background region has conductivity of magnitude 1.0
and central element (i.e, the tumour element) has conductivity of
4.0.

Figures 3.3(a-d) show a sequence of images recovered for the 2-D case of Figure 3.2
using the original Wexler algorithm after 5, 50, and 500 iterations respectively. The

gray-level images were generated using the software package Microcal™ Origin™ 5,

3 Microcal™ Origin™, Version 5.0, Copyright © 1991-1997, Microcal Software, Inc.
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(3.3b) -- Recovered 2-D Conductivity Image at 5 Iterations
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(3.3¢) -- Recovered 2-D Conductivity Image at 50 Iterations

Recovered Gray-Scale Image at 50 Iterations
with the Wexler 2-D EIT Algorithm
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(3.3d) -- Recovered 2-D Conductivity Image at 500 Iterations
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with the Wexler 2-D EIT Algorithm
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Figure 3.3 (a-d): Recovered conductivity images with the original Wexler 2-D EIT algorithm for setup
of Figure 3.2. Image (a) shows the gray-level of the 2-D setup, (b), (c), and (d) show the recovered
images at 5, 50, and 500 iterations respectively. Note that the conductivity of the tumour element
increases with iterations and surrounding elements have higher conductivities than ideally expected.
This phenomenon is termed the "Tumour-Edge" effect for obvious reason.
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3.3  3-D Computer Simulations using the Original Wexler 3-D EIT Algorithm

In the simple 3-D computer simulations of breast imaging, the finite element
mesh was created using standatd linear elements with 8 nodes (see Appendix I). The
3-D computer model of the breast adopted is a cube of 9X9X9 = 729 elements with a
central element representing a tumour of conductivity 4.0 within the homogeneous
region of conductivity 1.0 (see Figure 3.4). Twenty current injections/extractions
paits ate employed over the five sides of the cubic region, cottesponding to a
determinacy of approximately 0.8. Measutements are not performed on one side of
the cubic region, which cottesponds to the side at which the breast is attached to the
chest wall. Figures 3.5(a-d) show a sequence of images recovered for each layer of the
3-D simulation of Figure 3.4 using the original Wexler algorithm after 5, 50, and 500

iterations respectively.

Layer1

Layer 2

Layer3

Layer 4

Layer5
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Layer7

Layer 8

AN
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\4
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Figure 3.4: Simplified 3-D breast tumour imaging setup using the Wexler 3-D EIT imaging
algorithm. Arrows show points of injection/extraction (i.e., excitations). There are no
injection/extraction on the side of the chest wall. There are 20 pairs of current excitations, 9 layers,
and a total of 729 elements. Tumour element is located at (x=5, y-5, and z=5) coordinates.
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(3.5a) -- 3-D Simulated Problem (3.5b) -- Recovered 3-D at 5 Iterations

42



CHAPTER 3. THE ORIGINAL WEXLER 2-D AND 3-D EIT ALGORITHM

(3.5¢) - Recovered 3-D at 50 Iterations (3.5d) - Recovered 3-D at 500 Iterations

Figure 3.3 (a-d): Recovered conductivity images with the original Wexler 3-D EIT algorithm for setup
of Figure 3.4. Image (a) shows the gray-level of the 3-D setup, (b), (c), and (d) show the recovered
images at 5, 50, and 500 iterations respectively.
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3.4  Convergence Rate of the Original Wexler 2-D and 3-D EIT Algorithm

To demonstrate the convergence rate of the otiginal Wexler EIT algorithm, the
norm of the etror term is plotted as a function of iteration. The norm of the error

term is defined as:

Zl Kexact - Kcalc.
i
Z‘ Kexact
i

Error =

+M [3.6]

whete Keace is the exact conductivity distribution obtained by direct measurement,

Keale. is the calculated conductivity distribution, and M is the total number of elements.
Figure 3.6 shows the error norm plot (ie., the convergence rate) of the otiginal
Wexler EIT algorithm for the 2-D and 3-D simulations that wete described earlier

over 500 iterations.

Norm of Error Term as a Function of Iterations
for Breast Tumour Simulations using the
Wexler 2-D and 3-D EIT Algorithm
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Figure 3.6: Norm of error term as a function of iterations for the 2-D and 3-D
Wexler EIT algorithm for the simulations described above . Note that the 3-D
algorithm converges much faster than the 2-D algorithm (to be discussed fully in
Chapter 4).
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3.5  Spatial Resolution of the Original Wexler 2-D and 3-D EIT Algorithm

To demonstrate the spatial resolution of the otiginal Wexler EIT algorithm, the
full- width at half-maximum (FWHM) of a single low-contrast object of unit atea and
volume is imaged at a central location within 2 2-D and 3-D region of area 2500
element? (e, 50x50 elements) and 125,000 element® (ie., 50X50X50 elements)
respectively. Background region is set at a conductivity of 1.0 and the central unit
area and volume element at conductivity of 4.0. Forty and two hundred and seventy
excitation pairs wete employed to recover the 2-D and 3-D images respectively which

cotresponds to a determinacy of approximately 0.94 and 0.88 respectively.

FWHM is a parameter commonly used to describe the width of 2 "bump" or an
object in a picture, when the object does not have sharp edges. It is given by the
distance between points on the 2-D profile at which the function reaches half its
maximum value. Figure 3.7 shows an example of the FWHM for a Gaussian

function.

The Full-Width at Half-Maximum (FWHM)
of a Normal Gaussian Function

Maximum
o Height (h) (h/2)

FWHM

width (w)

Figure 3.7: An example of FWHM (Full-Width at Half-
Maximum) for a Gaussian function. The FWHM is a measure of
spatial resolution of an image and is given by the distance
between points on the picture at which the function reaches half
its maximum value.
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The unit area/volume central element employed in the 2-D and 3-D breast
tumour imaging simulation approximates a Dirac delta function. The Dirac delta
function is often used in imaging to analyze the performance of an imaging device. It
is useful to measure the device's response to as simple an input as possible.
Mathematically, the delta function in 1-D is defined in terms of the tfollowing

properties:

, 0 if x#x’
5(x—x):{oo oo [3.7]

oo ’ ’ . .
J‘_ 5(x - x )dx =1 "Atrea under function is one" [3.8]

The reconstructed image of a Dirac delta function is the point spread function
(PSF) whose normalized cosine Fourier transform would correspond to the
modulation transfer function (MTF) of the imaging system if the latter were linear and

space invariant [Moru92],

fF(x)cos 2rvxdx
MTF (v) = =

[3.9]

+oo

[F(x)dx

where F(x) is the symmetrical point spread function, » is the spatial frequency (i.e., the

denominator used to normalize MTF(z) by the total surface under the PSF.

If it is assumed that the PSF is the Dirac pulse response at a region within the
image, then the MTF is that region's frequency response. The PSF is 2 common tool
for quantifying the spatial resolution of the imaging system. As mentioned previously,
linearity and space invariance are prerequisites for the proper use of the PSF. Despite
the fact that EIT is nonlinear and space variant, the PSF can provide a useful
indication of the system behavior [Guar91 and Meth96]. Figure 3.9 below shows the

recovered two-dimensional conductivity profiles of the 2-D and 3-D simulations
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described above for a central Dirac impulse (see Figute 3.8), generated using the

Student Version of Matlabg®

Dirac Delta Function Representation

084

06
04.\.

02 .. .

0.

Figure 3.8: The Dirac Delta function representation. One element approximates a
Dirac function of conductivity on the imaging plane. A similar representation of Dirac
function was used by Guardo et al., 1991 [Guard91]. Though, not fully realistic, this
representation provides a good indication of the system behaviour.

For the investigation of spatial resolution of the Wexler 2-D and 3-D EIT
algorithms, conductivity profiles as a function of element position (elements) were
recovered at 100 iterations. For the 3-D simulation, measurements of the FWHM
were performed in both the cross-sectional and axial plane. The FWHM values
obtained for the simulations are relatively close to those reported by Idet e al, 1995
[Idet95] in the 2-D case and Metherall ¢f 4/, 1996 [Meth96] in the 3-D case as shown
in Table 3.0 below.

6 Matlab, The Language of Technical Computing, Version 5.00.4073, Copyright © 1984-1996, The MathWorks, Inc.
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Table 3.0: FWHM results of the 2-D and 3-D simulations of Section 3.5. Results are compared to
those of Ider et al., 1995 and Metherall ef 4l., 1996. Note that results are quite similar.

Ider et al., 1995 Metherall ez al., 1996 | Wexler et al., 1985

0, 0,
Object Position FWHM (%) FWHM (%) FWHM (%)
2-D 3-D 2-D 3-D 2-D 3-D
x-s: 10 x-5: 13
Central 27 - - axial: 12.5 24 axial: 14.6

= data not available, X-§ - cross-scctional plane, and axial - axial plane.

3.4
3.2 -
3.0
2.8
- - @ 2-D Profile (FWHM = 28%)
2.6 —0&~~3-D X-Sectional Plane Profile (FWHM = 13%)
7 —X—3.D Axial Plane Profile (FWHM = 14.6%)
fé\ 2.4 —- "..!‘..‘
%E’ 2.2- &)
= 2.0 o e,
= ] i .
‘g‘ 1.8 —_ .{,.. LN
T 164 ¢ % X e
S - s o,
1.4 4 ‘ s LY
E o .
1.2 s o,
] o"" .,
1.0 2.8 3.9.3. 9 aﬂ#&-&-&x-x-&m— LT S R RN P
0.8 T ——— width R
016 ll'lllllllll!lllllllllll Ilill ll!lllllllllllII'IlII'IIII
0 5 10 15 20 25 30 35 40 45 50

Element Positions (Elements)

Figure 3.9: FWHMs for the 2-D and 3-D simulations of Section 3.5. The FWHM for the 2-D simulation
is 24% of the diameter of the imaging region. The FWHM of the cross-sectional and axial plane of the
3-D simulation are 13% and 14.6% of the diameter of the imaging region respectively.
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3.6 Discussion

The original algotithm of Wexler has many advantages over other methods, the
most important being that it transfers the difference in potential between the
Neumann and Dirichlet boundary conditions to the interior rather than to the
boundary, unlike the procedure used in Newton-Raphson-like methods [Wo090].
This approach yields a spatse-matrix permitting use of efficient finite-element method
solution schemes. Furthermore, cutrents are allowed to follow natural paths, and no
attempt is made to force them to behave in beam-like fashion. Image quality is not
degraded by contact and spreading resistance as is inherent in resistance projection

techniques [Bate80].

Fot section 3.2 and 3.3, the magnitude of conductivity of the central tumour
element for the 2-D simulation was determined to be 1.36, 2.21, and 2.64 at iterations
5, 50, and 500 respectively. In the 3-D case, the conductivity of the central element
was 1.58, 2.42, and 2.85 at 5, 50, and 500 iterations tespectively. Analysis of the
tecovered image appeats to indicate that the recovered conductivity of the central
clement is affected by closely surrounding elements. It appears as though the
difference in conductivity, between simulated and recovered, is distributed
equivalently to surrounding elements. As a result, the magnitude of the recovered
conductivity of the central element is consequently lower than average. This effect

appeats to be more pronounced in the 2-D case than in the 3-D simulation.

From the simulations desctibed in Section 3.4, it was obvious that the original
Wexler EIT algotithm is slowly convergent, though the 3-D is relatively faster than
the 2-D algorithm. Fot the more realistic 3-D breast cancer imaging simulation
desctibed in Section 3.5, the algorithm convetrges in approximately 3hrs and 47
minutes at approximately 8,000 iterations on a SUNW, SPARCstation-4. The spatial
resolution (i.e., FWHMs) of the 2-D simulation was observed to be much lower than
that of the 3-D case. The original Wexler 3-D algotithm can only resolve up to 13%
in the cross-sectional plane and 14.6% in the axial plane of the diameter of an imaging

region.
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3.7 Summary

The original Wexler EIT algorithm cottectly solves the physics of the inverse
nonlinear problem of EIT. It does so by solving Poisson's equation, which correctly
describes the flow of electrical current in a heterogeneous medium. However, to be
of any potential clinically (i.e., in the imaging of breast tumours at an early stage), the
algorithm needs refinement. At first glance, it appeats that both the convergence rate
and the spatial resolution of the recovered image ought to be improved drastically.
What other critetia/standards should the Wexler EIT algorithm fulfill/meet in order
to be of potential in the screening/imaging of small breast tumour? This question is

fully addressed in the next chapter.
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Chapter 4

Characteristics of the Original Wexler 2-D and 3-D EIT Algorithm

4.1 Introduction

In Chapter 3, the original Wexler EIT algorithm was identified as being slowly
convergent and the spatial resolution of the recovered image as being relatively low
compared to other clinical imaging modalities. To be of potential in the clinical
imaging of breast cancer, the Wexler EIT algorithm needs to be improved.
Improving the convergence rate and the spatial resolution, however, do not
necessarily guarantee clinical success, since many other factors such as the algorithm's
ability to handle noise and patient motion among others, need to be considered in
order to meet expected clinical imaging standards. As such, the characteristics of the
Wexler EIT algorithm is thoroughly investigated here, through a seties of computer
simulated tests and effects, in an attempt to determine whether it meets the expected

clinical imaging requirements.

The choice of an initial conductivity disttibution dictates the time it takes an
iterative EIT algotithm to convetge, i.e., when the difference between the calculated
conductivity distribution is equivalent to the actual measured conductivity
distribution. Does the Wexler EIT algotithm converge sooner if the assumed initial
conductivity distribution is relatively close or equivalent to the correct one? What
about the effect of different excitation schemes and the number of finite elements on
convergence rate, and consequently, on recovered image quality? How does the
Wexler EIT algorithm perform at sharp conductivity edges (i.e., at diseased-to-normal

tissue interface)? What about noise handling? Can the algorithm handle noise that
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exists in a real clinical situation? These and many more issues are considered here by
petforming 2-D and 3-D computer simulation models of simplified breast cancer
imaging using the Wexler EIT algotithms. Results of these simulations are discussed

and presented.
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4.2 Initial (or Starting) Conductivity Distribution Effect

In general, a highly accurate initial guess of conductivity distribution ought to lead
to faster convergence speed [Mura85 and Avis92]. If the initial starting conductivity
distribution is equivalent to the exact conductivity distribution, similar to 5 null test in
image processing, the Wexler EIT algorithm converges at the first iteration. This
observation supports the accutacy of the computer code, Using the ptevious 2-D and
3-D simulation setups of Chapter 3 (see Sections 3.2 and 3.3), heteafter referred to as
the standard 2-D and 3-D examples, the effect of initial (ot assumed) conductivity

distribution is investigated.

In the 2-D and 3-D simulations of Figures 3.2 and 3.4 tespectively, the central
element/voxel (i.e., the tumour) had a conductivity of 4.0 within a background region
of conductivity 1.0. The imaging region (i.e., tumour and surrounding) was then
tecovered by making an initial homogeneous (i.e., conductivity equal to 1.0) guess at
the conductivity disttibution. If the initial guess at the conductivity disttibution is 2.0,
3.0, 4.0, or 5.0, the time to convetge is accelerated. Figures 4.0 (a-b) show the norm
of the error term as a function of iteration, at conductivity disttibution guesses of 1.0,

2.0, 3.0, 4.0, and 5.0 for the 2-D and 3-D cases respectively.
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Norm of Error Term as a Function of Iterations
for 2-D Breast Tumour Simulations using
Different Starting Conductivity value
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Figure 4.0(a,b): Norm of error term as a function of iteration for 2-D and 3-D setup
of Figure 3.2 and 3.4 respectively. Initial conductivity guess of 1.0, 2.0, 3.0, and 4.0,
and 50 are shown. Note the increase in convergence speed when initial
conductivity distribution guess is close to exact conductivity distribution.
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From the results obtained above, it is obvious that a good starting value will
produce cotrect results, while 2 poor initial guess may lead to slow convetgence
[Mura85]. As mentioned earlier, if the assumed conductivity distribution is equal to
the exact distribution, the Wexler EIT algorithm converges in the first iteration.
Similarly, an accurate initial guess would lead to an improved recovered image quality.
It can also be observed that, at similar conditions, the Wexler 3-D EIT algorithm
converges much faster than the 2-D algorithm. This is associated with the fact that

current is not restricted to the 2-D plane

4.3  Excitation Configuration and Measurement Pattern Effect

An excitation pattern is usually defined as a set of current injections and extractions
employed to recover an image. A measurement pattern is a set of measured potentials
induced by an excitation pattern [Mu94]. In iterative approaches to solving the
nonlinear inverse 'static' EIT imaging problem, the choice of excitation and
measurement pattern is crucial to the success of an algorithm [Mura85]. In particular,
it is impottant that the most reasonable number and location of electrodes is chosen
since the incorrect choice will affect the speed of the algorithm and concurrently the

quality of the recovered image [Hua91].

In the literature, one finds numerous studies on optimal electrode configuration
and measurement pattern distribution. A few are mentioned here. Seager and Bates
have given, in a comprehensive and detailed proof, the optimum electrode-pait
position for two eccentric disks [Seag84 and Seag85]. Newell, Gisser, and Isaacson in
a seties of papers proved that for two concentric disks, the best current distribution to
be introduced (with the electrodes) is the spatially sinusoidal one [1s2286, Giss87, and
Newe88]. Lidgey ef 4/, 1992 employed programmable voltage sources to obtain an
optimal current pattern [Lidg92]. Hua ef 2/, 1993 used compound electrodes (i.e., a
latger outer electrode to inject current and a smaller inner electrode to sense voltage)

to demonstrate improvement in recovered image quality [Hua93]. Blad ez 4/, 1994
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using a method that implements a voltage soutce in order to measute current
accurately, rather than using a constant current generator, showed that improvement
in the stability of the hardware leads to greater image quality [Blad94]. Recently,
Schuessler and Bates, 1998 in a study on determining the optimal number and type of
electrodes for thoracic 'static' EIT imaging, argued that compound electrodes, that
permit voltage measurement at the site of cutrent injection did not yield any practical
improvement of the image quality [Schu98]. 'They showed that by doubling the
number of boundary electrodes a reduction in the teconstruction error by almost two

otders of magnitude could be obtained.

It is known and generally accepted that the number and location of electrodes
employed in an excitation pattern depends on the algorithm, the problem at hand, and
somewhat on experience [Mur85]. To some extent, this is a correct statement.
However, the fact that numerical schemes are used to solve the field problem, allows
the introduction of truncation (or discretization) error that is incidental to image
recovery. With that in mind, and considering the similarity between finite element
discretization and lumped element networks, Mu detived some practical obsetvations
for optimal excitation and measutement pattern of the 2-D and 3-D Wexler algorithm

[Mu94]. Among the obsetvations, of particular interest to breast imaging, are:

® The etror function minimization algorithm, namely the Wexler EIT algorithm, can

addtess both over- and undet-determined problem.

® Network formulation allows selection of the minimal number of nodes, in a
topological sense, without increasing determinacy.  Subsequently, optimal
measutement locations can be derived. This observation is of particular interest

for the imaging of breast cancer.

® Sensitivity analysis and graph theoty implementation tevealed that the reliable
region produced by the arrangements of excitation patterns is crucial in speeding
up the algorithm and subsequently in imptoving image quality. As demonstrated

by sensitivity analysis, not all the excitation patterns are necessarily needed for
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optimal recovery time and image quality. Rather, what is needed is an optimal

arrangement that can provide a reliable region.

® To ecliminate contact and spreading fesistance for tetrapolar excitations, a
measurement scheme, ie., the sometimes pattern, that discards potential
measurements at active electrodes produced more reliable image and reduced the

number of independent measurements.

* Changing electrode shape does not improve image quality significantly.

A more comprehensive discussion on optimal excitation and measurement
patterns can be found in [Mu94]. For the purpose of this discussion, Mu's
observations were implemented on the standard 2-D and 3-D examples of simple
breast cancer imaging computer simulations model. Mu's obsetrvations were verified

using the standard examples of Figures 3.2 and 3.4.

From the results of simulations it was observed that the Wexler algorithm addressed
problems that are slightly under-determined and petforms well at determinacy higher
than 1.0. The sometimes measurement pattern recovered impedance images faster and
with more accuracy than the always pattern, which uses all measured boundary
potentials including those at active electrode sites. Excitation patterns that employed
a symmetrical or near-symmetrical configuration provides faster convergence and
improved image quality. The combination of minimal node involvement, symmettical
or near-symmetrical excitation pattetns, and sometimes measurement patterns provide
the optimal configuration for the imaging of breast tumour. Similar optimal
excitation and measurement configuration was shown, via simulations using the

Wexlet EIT algorithm, by Mu for nonuniform geometry [Mu94].
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4.4  Finite Element Mesh Scheme and Size Effect

As defined eatlier, the forward problem involves finding the internal current and
voltage distributions from the known conductivity disttibution and boundary
cutrent/voltage distributions. There is no analytic solution to the forward problem
for an irregular and inhomogeneous medium. Thus finite element method or finite
difference method is usually used to obtain the numerical solution [Moru96]. The
generation of a finite element mesh usually depends on the conductivity distribution
and geometric shape of an object (i.e., situation-dependent). For a forward solution,
more elements will generally result in higher accuracy but at the expense of higher

computational time and complexity [Moru96].

Ideally, the smallest object that an algorithm can recover accurately would in
principle be equal to or greater than the average size of the finite element mesh. In
the case of eatly stage 3-D breast tumour imaging, the finite volume element (or
voxel) size ought to be approximately (1x1x1 = 1 mm3) in volume, if a tumour of
volume Imm? is to be recovered. However, considering the average female breast
size, one will be faced with a rather much complicated 3-D dense mesh, and
consequently a formidable computing task. As such, many mesh formulation
schemes have been developed to address the compromise between accuracy and
computational complexity in solving the nonlinear problem of EIT [York88 and
Berr92].

Mu, 1994 described a procedure that starts with a coarse mesh to obtain an initial
guess and a fine mesh to recovet the image accurately in the inverse problem. Mu
argued and demonstrated that the convergence period would be greatly reduced if a
coarse mesh were used first to obtain an approximate solution, then a finer mesh to
teach the true image. The implementation of this scheme is tully described in Mu,
1994 [Mu94].
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Here the observations detived by Mu [Mu94] were implemented on the standard
2-D and 3-D computer simulation examples for breast cancer imaging (Figure 4.1).
The purpose is to determine whether the scheme developed by Mu can be
incorporated into the Wexler algorithm in order to provide an improved algorithm
that will speed up the otiginal convergence speed and recover an image of appropriate

quality for breast imaging.

Norm of Error Term as a Function of Iterations
for 2-D Breast Tumour Simulations using
Mu's Scheme for switching between FEM Size
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Figure 4.1: Norm of error tern as a function of iterations for the 2-D original Wexler
EIT algorithm with and without Mu's scheme for improving convergence speed.
Note that the 2-D algorithm converges much faster with Mu's scheme than the
original Wexler algorithm. Similar results were obtained for the 3-D simulation.

It is obvious that Mu's scheme results in faster convergence. In this simulation, a
coarse mesh of size 5X5 was used in the first 20 iterations and a fine mesh of 9x9 was

used to recover the true image for the same geometty.
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4.5  Convergence Behaviour Test on Spatial Location of Tumour

Does the Wexler EIT algotithm converge fastetr if the region(s) of interest
has/have different spatial locations? Murai and Kagawa 1985, using 2-D computer
simulations, observed that conductivity change nearer to the surface was easier to
detect than conductivity change in the internal region [Mura85]. They attributed this
observation to an "inherent difficulty" with the inverse problem. Kotre 1996
[Kotr96] developed a measurement strategy, for subsutface electrical impedance
imaging, from obsetvations of an object spatial location convergence behaviour.
There ate no other reported studies of the relationship between convergence speed
and spatial location of anomaly/ies. As such, in this section a comprehensive
investigation of the time the Wexler algorithm takes to convergence as a function of

spatial location of the tumour is performed.

To test convergence behavior on the spatial location of a tumour, 2-D and 3-D
computet simulations were performed. In the 2-D simulation, a tumour of unit area
1 element? is imaged at peripheral, intermediate, and central locations within an
imaging region of area (81 element?, i.e., 99 elements). The tumour element (or
pixel) has a conductivity value of 4.0 within a background tegion of conductivity 1.0.
The minimum number of excitations pairs is used, i.e., eight excitation (i.e., injection
and extraction) pairs are used to recover the tumour using the sometines pattern. This
scenario gives tise to a detefminacy of 1.04. The spatial locations of the peripheral,
intermediate and central tumour element are at (x=1, y=5; x=3, y=5; and x=5, y=5)
tespectively. For the 3-D simulation, 2 tumour of unit volume 1 element? is imaged at
the petipheral, intermediate, and central location within an imaging region of volume
(729 element?, ie., 9X9X9 elements). The tumour element (or voxel) has a
conductivity value of 4.0 within a background region of conductivity 1.0. The
minimum number of excitations (i.e., twenty) is used to recover the tumour using the
sometimes pattern. 'This cotresponds to an under-determined problem (determinacy is

approx. 0.8). The spatial locations of the petipheral, intermediate, and central tumour

60



CHAPIER +. CHARACTERISTICS OF THE ORIGINAL WEXLER 2-D amd 3-D EIT ALGORITHM

voxel are at (x= 1, y=5, z=5; x=5, y= 3, z=5; and x=5, y=5, 2=5) respectively. With
teference to Figure 3.4, each voxel lies on the same layer, ie., layer 5 but are at

different spatial coordinates as described above.

Norm of Error Term as a Function of Iterations
for a Peripheral, Intermediate, and Central Tumour
Pixel using the Original Wexler 2-D EIT Algorithm
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Figure 4.2: Norm of error term as a function of iteration for the peripheral, intermediate, and
central pixel element using the original Wexler 2-D EIT algorithm. Note that the peripheral pixel
has the highest convergence rate when compared to the intermediate or central tumour pixel.
Similar observations were made for the 3-D original Wexler EIT algorithm.

Figure 4.2 above shows the convergence rate of the Wexler 2-D EIT for the
peripheral, intermediate, and central tumour pixel respectively. Similar behaviour was
observed for the 3-D algorithm. It is obvious from Figure 4.2 above that if the
tumour is located at the periphery, the Wexler algorithm converges much faster than
if the tumour is located at the intermediate ot centtal location. The central tumour

clement takes relatively the longest time to converge.
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The convergence characteristic and 'dynamic' of the Wexler algorithm was
investigated further. This time, rather than plotting the notm of the error term, the
recovered conductivity value of a background pixel on the edge of a central tumout, a
background pixel located on the periphery, and 2 central tumour pixel were imaged.
The central tumour pixel has a conductivity value of 2.8. The edge and petipheral
pixels have conductivity values of 1.0. The purpose of this investigation was to
determine how the conductivity value of the pixel of interest, described previously,
behaves with increased iteration counts. Figure 4.3 below shows the tecovered
conductivity value for the backgtound peripheral and edge pixel, and a central tumour

pixel as a function of iteration counts for the 2-D simulation setup.

Recovered Conductivity Value for the Peripheral and
Edge Background Pixel, and Central Tumour Pixel using
the Original Wexler 2-D EIT Algorithm
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Figure 4.3: Recovered conductivity value as a function of iteration for the background
peripheral and edge pixels, and central tumour pixel element using the original Wexler 2-D
EIT algorithm. Note that the peripheral pixel lies within a conductivity of average value 1.0.
Similar observations were made for the 3-D original Wexler EIT algorithm. The conductivity of
the background edge pixel first increases with iterations, but then later drops to its normal
value of 1.0.



CHAPTER 4. CHARACTERISTICS OF THE ORIGINAL WEXLER 2-D amd 3-D EIT ALGORITHM

The simulation results obtained in Figure 4.3 appeared to indicate that the
background pixel kept at an average conductivity value of 1.0 throughout the iteration
counts. The background edge pixel conductivity increases with iteration count at
catly iteration and later drops to the correct value. Similar observations were made
for the 3-D algotithm. What is also obvious is that if the history of conductivity
distributions is known from earlier iterations, future distributions can be determined

by extrapolation. The last observation is further investigated in the next paragraph.

Fitting Functions Employed to Model Recovered
Conductivity Value of Central Tumour Pixel
using the Original Wexler 3-D EIT Algorithm
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Figure 4.4: Fit functions employed to model the conductivity behaviour of the central tumour
pixel as a function of iterations. Note that the best-fit functions are the three-parameter
exponential and the three-parameter log respectively. Similar observations were made for the
3-D original Wexler EIT algorithm.
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The behaviour of the conductivity value obsetrved above for the central tumour
pixel is modelled. The putpose is to determine the correct "fit function" that will fit
the observed conductivity progtession as a function of iteration. Since the focus is on
the central tumour pixel, no fitting functions were detived for the background
petipheral and edge pixels. Besides, the conductivity value for the background
petipheral and edge pixel ought to be ideally at a constant (approximately an average

value 1.0).

Figute 4.4 above shows the "fit functions" of the recovered conductivity
distribution for the 2-D simulation described above. In this simulation, the central
tumour pixel is at a conductivity value of 2.8 and the background region is at a
conductivity value of 1.0. It can be observed that the best fit functions are the three-
parameter exponential and logarithmic functions respectively. Fitting was performed
using the software package Oftigin Microcal™. The functions are mathematically

expressed as:

y=a- bln(x+c) [4.0]
b
y=ae*te [4.1]

where 4, b, and ¢ are fitting parameters, y is the conductivity value at iteration x.
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4.6  Spatial Resolution Dependency as a Function of Location of Tumour

In otder to investigate the spatial resolution dependency as a function of location
of tumour for the original Wexler EIT algorithm, a single low-contrast object of unit
area and volume 1 element? and 1 element3 is imaged at a central, intermediate, and

peripheral spatial location. The area and volume of the imaging region are 50X50

clements (i.e., 2500 element?) and 50X50x50 elements (le., 125,000 element?)
respectively. As discussed in Chapter 3, the unit area/volume element approximates a
Dirac function. The FWHM (a measute of spatial resolution) of the recovered Dirac
impulse was used to determine the spatial resolution of the simulated tumour. Table
4.0 below shows the recovered FWHMs of the central, intermediate, and peripheral
simulated tumour of conductivity value 4.0 within a background region of

conductivity value 1.0.

Table 4.0: FWHM results of the 2-D and 3-D simulations of Section 4.6. Results are compared to
those of Ider et al., 1995 and Metherall et al., 1996. Note that results are quite similar.

Ider er al, 1995 Metherall er al, 1996 | Wexler et al., 1985
Object Position FWHM (%) FWHM (%) FWHM (%)
2-D 3-D 2-D 3-D 2-D 3-D
Periphery 14 - - - 13 9
Intermediate 18 - - - 17 11
x-s: 10 x-s: 13
Central 27 - - axial: 12.5 24 axial: 14.6

- data not available, X-5 - cross-sectional plane, and axial - axial plane.

It is obvious that the resolution at peripheral location is supetior to that at
intermediate and central. When compared to values obtained from the literature, the
spatial resolution of the otiginal Wexler 2-D and 3-D EIT wete found to be quite
similat to those obtained by [Ider95 and Meth96]. It is appatent that if the loss in
resolution as a function of tumour spatial location could be compensated for, EIT

spatial resolution would improve.
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4.7  The "Tumour-Edge' Effect

From previous simulations it was observed that the Wexler EIT algorithm fails to
give an acceptable image with sharp edges in a reasonable time. This effect is quite
obvious in Figure 4.3 above, and in the recovered images of Chapter 3, Section 3.3.
The conductivity of the background element that is located on the edge of the central
tumour increases as a function of iteration. This affects the recovered conductivity
value of the central tumour. This phenomenon is termed the "Tumour-Edge" effect

and is observed at diseased-to-normal tissue interface as seen above.,

If the original 2-D Wexler algorithm is used to image a conductivity function of

the form k =1+sin’x-sin® y located within a host medium with & =1 (Where 0 <x,

Y = T span the picture) the algorithm converges in only a few iterations with high
image quality. This represents a smoothly varying conductivity disttibution over a 2-
D case. However, if the conductivity distribution has the form of a square pulse, as
had been simulated so far and shown below (Figure 4.5a-b), the algorithm takes much
longer to converge and the resolution the at diseased-to-normal tissue interface is

quite poor.

(a) (b)

Figure 4.5(a,b): (a) shows a 2-D region with background region of conductivity 1.0. The central
tumour has conductivity value of 4.0. The ideal recovered tumour for the central square pulse should
be as seen in (b). However, the recovered distribution for the central element using the original
Wexler 2-D EIT algorithm is more of a Gaussian (Bell-Shaped) type and has a peak conductivity value
of 2.64 at 500 iterations. Similar observations were made for the 3-D algorithm. In the 3-D case, the
recovered peak conductivity of the central element was 2.85 at 500 iterations.

In ordet to quantify, and later assess whether resolution at the diseased-to-normal

tissue interface improves, a figure-of-merit is defined that characterizes how close the
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recovered conductivity distribution is to the expected square pulse. The figure of
merit is termed the conductivity profile ratio and is represented by the Greek letter T.

As seen in Figutre 4.6 below, T is defined as,

T= —— [4.2]
w

w, Width of Recovered Conductivity Distribution
w, Width of Simulated Conductivity Distribution
h,  Height of Recovered Conductivity Distribution
h_ Height of Simulated Conductivity Distribution

- w
.

Figure 4.6: The conductivity profile ratio, T. This parameter allows one to evaluate how close is the
recovered conductivity distribution to the simulated conductivity distribution. w, and h, are the width
and height of the recovered conductivity distribution. Similarly, w, and h, are the width and height of
the simulated conductivity distribution. A value of 1.0 implies that the widths and heights of the
simulated and recovered conductivity distribution is equal to each other.
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4.8 Instrumentation or Measurement Device Noise Effect

From a review of literature, it was found that measurements made in EIT are
subject to noise and drift artifacts. Boone et al, 1995 [Boon95] provided a
comptehensive assessment of noise and drift artifacts using the Sheffield Matk I
system, and identified three possible sources of measurement artifact. These are the
intrinsic noise in instrumentation of EIT, electrode-electrolyte noise and drift, and
noise and drift in skin impedance. They suggested that the instruments contributed
about 10%, 65% arose from the skin impedance and 25% arose from impedance
variations in the tissue itself. Sinton es 4/, 1992 [Sint92] published quantitative
measurements of the Sheffield real-time EIT's [Brow87 and Smit90] noise
performance in realistic conditions. They found image noise traded off against
temporal or spatial resolution by filtering the images. Wang ef 4/, 1994 [Wang94]
showed that noise increased by a factor of up to 30 from the periphety towards the
center of a saline-filled phantom image. They proposed a method to equalize noise to

a uniform level of about 16 dB.

The measurement noise effect introduced by instrumentation sensitivity was
simulated using the original Wexler 2-D EIT algotithm. In the simple 2-D simulation
model of breast tumour imaging, the region is divided into 9x9=81 finite elements.
"The background region is at a conductivity ratio of 1.0. The central tumour pixel has
a conductivity value of 4.0. Sixteen electrodes ate atranged on the mesh boundary
and eight paits of current injections/extractions ate applied. Sometimes and always

measurement patterns wete employed to recover the image.

To simulate instrumentation or device noise, 2 pseudo-random number generator
(written in C language) was developed and implemented in the algotithm to generate

random instrumentation noise data so as to corrupt direct measured boundary
potentials at node # from @, to ¢,. Images were recovered with an SNR (signal-to-

noise ratio) of 70 down to 10 in 10-decibel (dB) intetvals. Figure 4.7 below shows the

graph of contrast, C, a parameter that was defined in Chapter 2 as the rato of the
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conductivity of the region of interest, i.e., the tumour to that of the background for

both the sometimes and always measurement patterns as a function of SNR.

Contrast, C of Recovered Images versus SNR of
the Impedance Data from which they were Reconstructed
for the sometimes and always Measurement Patterns
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Figure 4.7: Contrast of the recovered images as a function of SNR for the sometimes and always
measurement pattern using the 2-D original Wexler 2-D EIT algorithm. Note that the sometimes
pattern provides the best contrast even at lower SNR. Results obtained with the 3-D algorithm
provide slightly better contrast.

Figure 4.7 above shows graphs of contrast versus SNR for sometimes and always
measurement pattern. Above 60 dB SNR, contrast curves reach plateaus that are
essentially determined by the amplitude of reconstruction artifacts that extends out of
the tumour element, in particular the observed "Tumour-Edge" effect observed
above. The sometimes pattern exhibits higher contrast than the always pattern. Figure
4.6 can be used to relate contrast values to the visibility of the tumour object in the
tecovered images. With the sometimes pattern, the tumour is still distinguishable at an
SNR of 20 dB.
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4.9  Electrode-Electrolyte (or Electrode-Skin) Impedance Effect

The human skin is divided into three principal layers: The epidermis, dermis and
the subcutaneous fat layer (or hypodermis) [Figure 4.8]. The outermost layer of the
epidermis, i.e., the stratum corneum, is the site that is constantly worn out and replaced
by new cells. The contact impedance of the electrode-electrolyte (electrode-skin) can
sometimes be much greater than the undetlying tissue [Rose88]. The skin-electrode
impedance can cause measurement etror [Boon95, Hua93, and Riu90] that will affect
image quality [Boon96]. Furthermore, the type of image teconstruction employed will
influence the effect of measurement etror on the image. Boone e 4/, 1995, using a
linear back-projection reconstruction [Barb87], showed that a drift of 5%, from an
initial impedance of 100 €2, is sufficient to produce image distortion. Hua ef a/, 1993
demonstrated, using an iterative scheme, that FEM models for electrodes can be used

to improve petrformance of an EIT algorithm [Hua93].

HUMAN SKIN |

Basal Ceills
Differentiate And
Move Outward,
Creating New Skin
And Displacing
(shedding) Dead
\ Skin Celis

NATURE 'S RAIN, INC.
COPYRIGHT 1997

* Reprinted, with permission, from Nature's Rain, Inc., 1997.

Figure 4.8: Anatomy of the human skin. The human skin is divided into three principal
layers: The epidermis, dermis and the subcutaneous fat layer (or hypodermis). The
outermost layer of the epidermis, i.e., the stratum corneum, is the site that is constantly
worn out and replaced by new cells. The contact impedance of the electrode-electrolyte
can be much greater than the underlying skin. As such, the electrode-electrolyte
impedance needs to be accounted for in image reconstruction.
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In the Wexler algorithm, the sometimes measutement pattern is used to measure
boundary potentials. As such, the effects of electrode-contact resistance are minimal,
if any (see Appendix I for a complete discussion of reduced contact impedance). The
impedance of the skin and that of the chestwall of the breast ought to be considered
in the imaging reconstruction algorithm. To appropriately address the impedance
effect of the skin and chestwall on image quality, accurate geometrical finite element
models arte required [Hua93]. Due to the scope of this thesis, the impedance effect of
the skin and that of the chestwall are considered as future work and are not addressed

here.
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4.10 Electrode and Patient Motion Effect

Of intetest to clinical imaging is an algorithm's ability to handle measurement
device motion and patient movement. In EIT of breast imaging, since images are
acquired with electrodes attached to the breasts, any spatial deviation from the point
of contact can cause image attifacts [Saha85]. Howevet, the image artifact caused by
clectrode motion is largely dependent on the image reconstruction algorithm
employed. In the Wexler algorithm, since an iterative procedure is used for the field
solutions (viz., the preconditioned conjugate gradient method), the preceding field
solutions setve as starting approximations to the succeeding calculations. As such,
clectrode motion would not affect image quality significantly since the starting field
values of the previous iteration, prior to motion, would be used to derive field
solutions after the motion. To vetify this argument, a two-dimensional simulation

was performed (Figure 4.9 a-b).

(a) (b)

“a
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v

A A
A 4

h 4
Y

A 4
vV v Vv YV

*A clockwise rotation of (a) by one element in

U size causes the electrodes to be displayed as
shown in (b).

Figure 4.9 (a,b): (a) shows the initial location of the electrodes, (b) shows the final location of the
electrodes after a spatial clockwise rotation of the electrodes by one element in size. Central tumour
has conductivity value of 4.0 and background 1.0. Eight excitation pairs were utilized to recover the
impedance images. Motion is simulated in the interval of 50 to 51 iterations.
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In this simulation the region is divided into 9x9 = 81 elements. Conductivity of
central tumour element is 4.0 and background is 1.0. Eight excitation pairs ate used
to recover the image at 50 iterations ptior to motion simulation and at the 15t iteration
after motion simulation. Electrode motion is simulated during the interval of the 50
to 51t iterations. Figure 4.10 (a-b) below shows the recovered image at 50 and 1t

iteration respectively.

@)

Recovered Gray-Scale Image at 50 Iterations
with the Original Wexler 2-D EIT Algorithm

Number of Elements in the Y-axis

1 2 3 4 5 6 7 8 9 10
Number of Elements in the X-axis

(b)

Recovered Gray-Scale Image at 50 Iterations
with Simulated Electrode Motion

Number of Elements in the Y-axis

1 2 3 4 5 6 7 8 9 10
Number of Elements in the X-axis

Figure 4.10 (a,b): (a) shows the recovered image before the electrode motion simulation, (b) shows the
recovered image after the motion simulation. Note that both images are similar and that the
conductivity of the recovered tumour element are 2.21 and 2.10 respectively.
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It is obvious that the recovered image ptior to electrode motion simulation is quite
similar to the one recovered at the first iteration after electrode motion. The
conductivity profile ratio T for the tumour before and after electrode motion were
0.41 and 0.39 and the recovered peak conductivity magnitude of the tumour wete
2.21 and 2.10 tespectively. Similar observations were made for the 3-D original

Wexler EIT algorithm.

Image artifact can also occur if the patient moves (i.e., consequently the breast is
displaced) duting imaging. This effect is quite common in existing imaging modalities
e.g., MRI and CT [Herr97 and Qana99]. There are no reported studies of the effect
of patient motion artifact on image quality in EIT literature. Here, a simplified
simulation of a translational motion of a tumour, as a result of patient motion, is
simulated using a simple 2-D model of the breast. The central tumour element above
is translated from the initial spatial coordinates of (x=5, y=5) to (x=3, y=3). The
tumour has conductivity 4.0 and is in a background tegion of conductivity 1.0. This
simple translation is taken to simulate breast motion and consequently movement of
the tumour. Breast motion is simulated during the interval of the 50t iteration to the
51st iteration. Figure 4.11 (a-b) below shows the recovered image at 50 iterations

ptiot to motion simulation and at the first iteration after motion simulation.

@)

Recovered Gray-Scale Image at 50 Iterations
with the Original Wexler 2-D EIT Algorithm

Number of Elements in the Y-axis

1 2 3 4 5 6 7 8 9 10
Number of Elements in the X-axis
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(b)

Recovered Gray-Scale Image at 50 Iterations

with Simulated Patient (or Breast) Motion
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Figure 4.11 (a,b): (a) shows the recovered image before breast motion simulation, (b) shows the
recovered image after the motion simulation. Note that a higher conductivity is seen at the (x=4,
y=4) coordinates, midway between the initial and final coordinates.

From above simulation, it can be seen that the Wexler EIT algorithm will not
perform that accurately in the presence of patient motion. It did recover a
distribution, though not the correct one. Thete ate a few ways to resolve patient
motion in EIT. An obvious one is to improve the original convergence rate of the
Wexler algorithm within seconds intetval so patient motion is reduced. The other is
to quantify loss of resolution from the motion and compensate fot it in the algorithm.
The latter had been attempted successfully in MRI imaging of the heart [Muru94]. In
his MSc dissertation, Murugan, 1994 showed that contrast loss can be quantified and
compensated for to improve overall resolution. This was attempted for MRI

SPAMM tag contrast imaging [Muru94]. A similar idea can be used here.
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4.11 Effect of the Third Dimension on the 2-D Wexler EIT System

Two-dimensional (2-D) impedance images are usually made from planar
arrangements of electrodes [Moru96]. However, electric fields cannot be constrained
to flow in 2 2-D plane in a 3-D object. Conductivity vatiations usually depend on all
three cootdinates and hence voltage vatiation throughout a 3-D imaging region
cannot be assumed to be in the 2-D plane only. As such, off-plane impedance
changes, in most cases, imply that 2-D measurements are subject to errors. Kuzuoglu
et al., 1992 argued that the correct mathematical model of a physical system (for
example, the human breast) ought to be represented in three-dimension [Kuzu92].
Howevert, the use of 3-D finite element routines, as atgued by Kuzuoglu ef 4/, 1992,
usually leads to a few major shortcomings. In particular, excessive storage
requirements ate needed and with some intensive computation. For example, if one
uses a 100x100X100 element model (i.e., 1,000,000 unknowns), this would result in
999,999 lineatly independent measurements (or equations) to solve simultaneously, a

clearly formidable computing task.

For a better understanding of the effect of the third dimension on a two-
dimensional EIT system, an experimental study is catried out using the Wexler 2-D
image reconstruction algorithm on a simulated 3-D cubic imaging region. In this
simulation the finite element mesh was created using standard linear elements with 8
nodes (see Appendix I). The computer model adopted is 2 cube of 9X9X9 = 729
elements (or voxels) with a central Dirac delta element tepresenting a tumour of
conductivity 4.0 within the homogeneous tegion of conductivity 1.0 (see Figure 3.4,
Chapter 3). Sixteen electrodes were arranged on a hotizontal plane, centered on the
5t Layer as shown in Figure 3.4. The minimum number of excitation pairs needed to
recover the 2-D planar images, using the sometimes pattetn, was determined to be equal
to eight. The original Wexler 2-D EIT algorithm was used to tecover images over 50
iterations. Recovered images wete obtained when the tumour was at the central

position (x=5, y=5, and z=>5), and at the following off-plane positions (x=5, y= 5, z=
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4; and x=5, y=5, and z=3). The recoveted 2-D images are shown in Figure 4.12

below along with the cross-sectional profiles.

Recovered Image at 50 Iterations with the Original Cross-Sectional Profile for Layer S
Wexler 2-D EIT Algorithm when Implemented on a 3-D
Object with a Tusour on Layer 5 and Electrodes on Layer S 22w and Electrodes Plane on Layer 5
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Figure 4.12: Contribution from the off-plane when using the 2-D Wexler EIT algorithm to image a 3-D
object. This renders interpretation of EIT images difficult and should be addresses in the image
reconstruction algorithm.
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4.12 Discussion

An investigation of the characteristics and 'dynamics' of the original Wexler EIT
image reconstruction algorithms, with potential in the detection and diagnosis of
breast cancer, has yielded some important observations. The tests and effects that
were performed here had the purpose of determining whethet the original Wexler
EIT algotithm could satisfy the standard requitements expected of a potential clinical
breast cancer image-reconstruction method. The tesults of computer simulations are

presented and discussed.

In section 4.2, the effect of the initial (or starting) conductivity distribution on the
iterative Wexler 2-D and 3-D EIT algorithms was investigated. It was observed that a
good starting value would produce correct results, while a poor initial guess may lead
to slow convetgence or may never converge. This observation is supported by many
other studies where incorporating a priori information within the image
reconstruction algotithm has led to improve convetgence rate and subsequent
improved image quality [Avis95 and Mees95]. In the case where the assumed (or
initial) conductivity distribution is equal to the exact distribution, the Wexler 2-D and
3-D EIT algorithms convetge in the fitst iteration. This observation is an indication

of the accuracy of the image reconstruction algorithm and code.

In section 4.3, an investigation was performed to detive the optimal excitation and
measurement pattern configuration. Using a multi-port netwotk formulation as
discretized models, along with sensitivity analyses and graph theory, Mu, 1994 [Mu94]
detived some interesting observations on the effects of different excitation patterns
on the ability of an EIT algorithm to recover the image. Mu's observations were
implemented on simple 2-D and 3-D computer simulations of bteast cancer imaging.
From the results of simulations it was obsetved that the Wexler algorithm addressed
ptoblems that are slightly under-determined and performs well at determinacy higher
than 1.0. The sometimes measurement pattern recovered impedance images faster and

with more accuracy than the always pattern, which uses all measured boundary
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potentials including those at active electrode sites. Excitation patterns that employed
a symmettical or near-symmetrical configuration provide faster convergence and
improved image quality. The combination of minimal node involvement, symmetrical
or near-symmetrical excitation patterns, and somesimes measutement patterns provide

the optimal configuration for the imaging of breast tumou.

In Section 4.4, an investigation into the finite element size effect on convergence
rate and image quality was conducted. Mu, 1994 desctibed a procedure that starts
with a coarse mesh to obtain an initial guess and a fine mesh to recover the image
accurately in the solution of the inverse problem. Mu argued and demonstrated that
the convergence period would be greatly reduced if a coarse mesh were used first to
obtain an approximate solution, then a finer mesh to reach the true image. The
observations derived by Mu [Mu94] wete implemented on the standard 2-D and 3-D
computet simulation examples for breast cancer imaging. Results of simulations
indicated that Mu's scheme improves the convergence rate and subsequently the

image quality.

In section 4.5, the effect on convergence speed of the spatial location of the
tumour was demonstrated. It was obsetved that better convergence rate is attained if
the tumour is located on the periphery of the object than if it is located in an
intermediate or central position within the object. It was also observed that
conductivity of the element on the edge of a central tumour element increases with
iteration count at early iterations. The conductivity value of the edge element then
decreases at later iterations. This phenomenon appeared to affect the resolution at
the sharp edges of the diseased-to-normal tissue interface. This effect was termed the
"Tumour-Edge" effect. If the potential and conductivity distributions are known
from past history, the distributions at convetgence can be determined by
interpolation. This observation will prove crucial in developing a method to improve

the convergence speed of the algorithm, as is discussed further in Chapter 5.
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In section 4.6, an investigation of the behaviour of spatial resolution as a function
of location of tumour was performed. It was determined that the resolution of EIT is
spatially variant. The resolution of a tumour at a peripheral location is superior to
that at an intermediate and/or central location. When compared to values obtained
from the literature, the spatial resolution of the original Wexler 2-D and 3-D EIT
were found to be quite similar to those obtained by [Ider95 and Meth96]. It is
appatent that if the loss in resolution, in patticular at the diseased-to-normal tissue
interface, as a function of tumour spatial location could be compensated for, EIT
spatial resolution would improve drastically. This issue is further investigated in

Chapter 6.

The "Tumour-Edge" effect identified in Section 4.5 and 4.6 was investigated
further in Section 4.7. It was observed that the Wexler EIT algorithm fails to give an
acceptable image with sharp edges in a reasonable time. The higher conductivity
value of the tumour has an effect on the surrounding edge elements. This affects the
recovered conductivity value of the edge elements, since their conductivity values are

much higher than the background.

To assess the effect of the "Tumour-Edge" phenomenon on recovered impedance
images, simulations were performed. It was obsetved that if the original 2-D Wexler
algotithm is used to image a conductivity function of the form x =1+sin’x-sin®y
located within a host medium with k=1, the algorithm converges in only a few
iterations with high image quality. This represents a smoothly varying conductivity
distribution over a 2-D case. However, if the conductivity distribution has the form
of a squate pulse, the algorithm takes much longer to converge and the resolution at
the diseased-to-normal tissue interface is quite poor. To quantify the difference
between the simulated and recovered conductivity at the tumour location, a figure of
merit was introduced. The figure-of-merit was termed the conductivity profile ratio
and was represented by T. This provides a measure of how close the recovered

distribution is to the simulated distribution and is used to assess improvement in
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spatial resolution at diseased-to-normal tissue interface. The resolution at diseased-to-

normal tissue interface is addressed further in Chapter 6.

In section 4.8, the effect of instrumentation or device noise on convergence rate
and recovered image quality was investigated. It was observed that, with the sometimes
measurement pattern, tumours of appropriate contrast could be distinguished
adequately from the background region. However, fot the wways measurement
pattetn, noise would affect image quality. The fact that the algorithm can handle
noise that will be characteristic of a clinical EIT-based system further adds to its

potential in medicine.

In section 4.9, the effect of electrode-electrolyte (ot electrode-skin) impedance on
tecovered image quality was discussed. It was determined that for the Wexler
algotithm the effects of electrode-contact resistance are minimal, if any. Furthermore,
accurate finite element models of the impedance of the skin and that of the chestwall

ought to be considered in the imaging reconstruction algorithm.

In section 4.10, the effect of electrode and patient motion was investigated on a
simple breast model. It was shown that the results of the original Wexler EIT
algorithm is not affected significantly with electrode motion. This is so since the
Wexler algorithm is an iterative procedute and the preceding field solutions serve as
starting approximations to the succeeding calculations. As such, electrode motion
would not affect image quality significantly since the starting field values of the
previous iteration, prior to motion, would be used to detive field solutions after the

motion.

Simulation of breast motion showed that the original Wexler EIT algorithm would
not petform that accurately in the presence of patient motion. Methods were
suggested that would address this issue. An obvious one was to improve the original
convergence rate of the Wexler algorithm drastically so that radiologically useful
images ate obtained within seconds, avoiding any contribution to image deterioration

from patient motion during imaging. A more practical apptoach was to quantify the
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loss in resolution from the motion and compensate for it within the image
reconstruction algorithm. The success of the later approach was demonstrated in an

MSc dissertation on MRI cardioimaging.

An experimental study of the effect of the third dimension on 2-D Wexler EIT
system was conducted in Section 4.11. It was observed through simulations that the
2-D Wexler EIT system inevitably produces three-dimensional current flow. This
renders interpretation of EIT images difficult. This study has shown that a detailed
understanding of the nature of this 3-D effect is essential and ought not to be
neglected. This effect has justified the focus of this thesis on the development of an
improved Wexler 3-D EIT algorithm rathet than the 2-D algotithm.,

82



CHAPTER 4. CHARAC TERISTICS OF THE ORIGINAL WEXLER 2-D il 3-D EIT ALGORITHM

4.13 Summary

The characteristic of the Wexler EIT 'static' imaging algotithm was assessed toO
determine whether the algorithm meets expected clinical requirements. 'To be of
clinical potential, imaging ought to be possible at fast rate and with high accuracy.
Further, noise, electrode-skin contact impedance, and patient motion would need to
be appropriately accommodated. The final recovered image ought to be of high

diagnostic quality in order to determining proper patient treatment and prognosis.

The Wexler EIT algorithm appeats tO satisfy most of the ctiteria of a clinical
imaging algorithm. It can handle instrumentation noise, image distortion due to
electrode motion, distinguish benign from malignant tumout, and is relatively robust.
Liowevet, because of the fact that time for image recovery and spatial resolution ate
not of clinical standards, the algotithm is not yet suitable for imaging small breast

tumouts.

Two crucial observations wete made in this chapter. First, it was observed that
knowing the history of conductivity/potential distributions as a function of iteration,
the future conductivity/ potential distribution could be deduced by modelling the past
Lehavior and extrapolating to later iterations. Second, the overall spatial resolution in
EIT was shown to be inapproptiate for clinical putposes, in particular, there was
inadequate resolution at sharp edges (i.e., at clear demarcation between diseased-to-
normal tissue interface). 1fa resolution compensation scheme is applied during image
reconstruction, the overall spatial resolution ought to improve. The issues of
convergence and spatial resolution are investigated, and methods are devised to
improve both for the original 3-D Wexler EIT algorithm in the following two

chaptets.
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Chapter 5

A Modeller-Predictor-Corrector (MPC) Algorithm to Improve Time of
Convergence for the Original Wexler 3-D EIT Algorithm

5.1 Introduction

In recent teviews on EIT’s algorithmic performance, the original Wexler
algorithm - an error minimization scheme - was charactetized as being slowly
convergent [York87, Isaa92 and Kyri93]. Although relative to other iterative methods
the convetgence rate of the Wexler algorithm is somewhat slow, fundamentally the
algorithm is superior in solving the physics of the inverse nonlinear EIT problem. In
patticular, the algorithm makes no assumption as to the pattern of flow of electrical
cutrent within 2 medium. However, as shown previously, its resultant time of
convetgence and spatial resolution of the recovered images are not of clinical imaging
potential (e.g., in the imaging of breast cancer). With that in mind, the focus of this
chaptet is on improving the convergence rate of the otiginal Wexler EIT algorithm
for potential clinically. The issue of low spatial resolution is discussed in the next

chapter.

Initially, the low convergence rate of the original Wexler algorithm is
demonstrated. ‘Thereafter, a new Modeller-Predictor-Cortector (MPC) scheme is
developed and implemented on simplified 3-D computer simulations of small breast
tumour imaging. Results of computer simulations using the MPC method are

discussed and summarized.
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5.2 Time of Convergence of the Original Wexler 3-D EIT Algorithm

The time of convergence of the otiginal Wexler 3-D EIT algorithm was
demonstrated eatlier (see Chapter 3, Section 3.4 and Chapter 4, Section 4.5). It was
obsetved that the algorithm was slowly convergent (i.e., took relatively more iterations
to convetrge) and, considering the time per iteration, was not of clinical imaging
potential when compared to existing imaging modalities. For the purpose of the
present discussion, a slightly different 3-D computer simulation setup of breast

tumour imaging is employed (see Figure 5.0).
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Figure 5.0: Simplified 3-D breast model. Volume has 15625 elements. One
hundred and ten excitation pairs were employed. The ‘sometimes’
measurement pattern was used. The tumour element is located on Layer 13,
with coordinates (x=13,y=13, and z=13). Though not fully realistic, this
model provides a means to investigate the problem of convergence rate in
the detection of small tumours of the breast.
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In this 3-D simulation setup, a cube is used to represent a simplified model of the
breast. The model is divided into 15625 (i.e., 25X25X25) finite volumettic elements
(e, voxels), with the central voxel representing the tumour (see Figure 5.0). The
tumout element is located at the spatial coordinates (x=13, y=13, and z=13). Two
hundred and twenty electrodes were arranged over the 3-D object surface, and a
minimum number of one hundred and ten injections/extractions views wete
employed to reconstruct the 3-D images. This cortesponds to a determinacy of 1.15
using the 'sometimes' measurement pattern. The central voxel tepresenting the tumour
has a conductivity of 4.0 and the backgtound region has conductivity of value 1.0.
Measutrements ate not taken on one side of the cube. This side represents the side of

the breast that is attached to the chest wall.

Figute 5.1 below shows the norm of the etror term plotted as a function of
iteration for the recovered 3-D breast model setup of Figure 5.0 above. It is obvious
that the algorithm tends to converge faster at eatly iterations and appears to be almost
"dormant" at later iterations. Though the time to converge is situation dependent,
this setup took approximately 104 minutes (at about 2,200 iterations) to approach

converge while running on a SUNW, SPARCstation-4.

It is obvious that in order for the Wexler 3-D EIT to be of potential in the
imaging of small breast tumour, the convetgence rate ot the time for a complete
medical scan ought to be imptoved drastically. The Modeller-Predictor-Cotrector
(MPC) algorithm developed in the next section attempts to improve the time of

convergence so as to be of clinical potential.
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Norm of Error Term as a Function of Iterations
for 3-D Breast Tumour Simulations of Figure 5.0
using the Original Wexler 3-D EIT Algorithm
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Figure 5.1: Norm of error term as a function of iterations for the simplified computer
simulation setup of Figure 5.0 using the original Wexler 3-D EIT algorithm. Note that

the algorithm is slowly convergent. The norm of error term is defined in Chapter 3,
Section 3.4
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5.3  The Modeller-Predictor-Corrector (MPC) Algorithm

Based on the observations reported in Chapter 4, it is obvious that with a
knowledge of the history of conductivity distributions as a function of iteration, one
can condense and summarize the data by fitting it to a model. Modeling, in this case,
can be used as a kind of constrained extrapolation, where a few given data ate
extended into a continuous function, with an idea of the function type. Ideally,
extrapolating to or close to the exact conductivity distribution (i.e., the distribution
being sought) ought to speed up the time for convergence. At what iteration does
one have to interpolate in order for the algotithm to converge (i.e., where measuted is
equal to exact conductivity distribution)? A naive apptoach would be to extrapolate
iteratively (i.c., make a guess iteration number and interpolate to that number), while
successively compating conductivity disttibution, until convergence is attained. This
is the scheme employed in the multistep predictor-corrector approach to convergence

as implemented by Strobel, 1996 [Stt096].

In the multistep approach adopted by Strobel 1996, a 'characteristic' equation of
the processing algorithm is derived from past known conductivity distribution and
interpolated iteratively, via multiple guess of iteration number, to exact distribution
until convergence. The detrived equation is assumed to be characteristic of the
imaging algorithm. The multistep approach was implemented in the Wexler EIT
algorithm with little, if any, success [Stro96]. Though the convergence rate of the
initial Wexler EIT algorithm improved, it was yet not optimal for clinical breast
imaging. The Modeller-Predictor-Corrector (MPC) scheme developed here attempts
to solve this problem. In the MPC algorithm discussed below, both the potential and
conductivity distributions are modelled from past behaviour in a least-squares manner
and no guess at iteration number is needed as in the multistep approach to

convergence discussed by Strobel 1996.
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The purpose of the Modeller-Predictor-Cortector (MPC) scheme is to improve
the time of convergence of the original Wexler EIT algorithm. In this approach, the
potential (or voltage, @) and conductivity (x) disttibutions of the processing
technique (i.e., the original Wexler algorithm) are modelled nonlinearly over the first
to # iterations. The modeled/fitted potential equation as a function of iteration is
then extrapolated in order to predict the number of iterations that is equivalent to the
measured/exact potential distribution. The exact potential is used to seck the
iteration number at which the algorithm convetges. That iteration number is then
used in the modelled conductivity equation to derive the cortresponding conductivity
distribution. Itis expected that the derived conductivity distribution will be close to if
not equal to the distribution that is being sought. Realizing that the derived
conductivity was arrived at by interpolation, thus etrot-bound, the predicted
conductivity distribution is then used to reinitialize the processing algorithm. The
reinitialization step allows correction of the detived conductivity distribution until

convergence is attained.

In summary the MPC algorithm proceeds as follows (see Figure 5.2)

Step 1: Model ¢ and x as a function of iteration 1.

The recovered potential and conductivity distributions, over the first to # iterations,
ate modelled using the nonlinear least-squares fitting scheme of Levenberg-Marquatdt
(LM) (see Section 5.4 for a discussion of the Levenberg-Marquatrdt procedure). The

fitted mathematical equations as a function of iteration 7, ate expressed as:

o =¢@) [5.0]

K =x(i) [5.1]
where ¢ and K are the potential (or voltage) and conductivity distributions at

iteration 7 respectively.
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In order to use the Levenberg-Marquardt least-squates fitting algorithm and to
ensure correct "fit parameters”, the cotrect actual physical peak shapes (i.e., the fit
functions) for the potential and conductivity disttibutions history ate required. In
Chapter 4, Section 4.6, it was demonstrated that the actual "fit functions" for the
conductivity distributions were in the nature of types of three-parameter exponential
or logarithmic functions. Due to the fact that the LM method is an itetative process
that requires a user-defined "fit-function", any interpretations from the final results
ate only as good as the initial inputs. After all, the algorithm only optimizes the
information fed into it; it can not intetpret it for the user. This is discussed further in

Section 5.4,

Step 2: Predict K at iteration J(K,)

Once the optimal equations for potential, ¢, and conductivity, K are detived from
Step 1, the potential relation (5.0) is then used to detive the iteration number I, at
which the algorithm is considered to have convergence. This is accomplished by
substituting the known potential disttibution, ¢, , obtained through direct
measutements, into the mathematical relation (5.0). Unlike in the multistep approach,
where guesses at iteration number are taken repeatedly until convergence, in the MPC
method no guess at iteration number is made. Rather, the known potendal (¢, ) is
used to derive the correct iteration number, I for which the algotithm is considered to

converge.

Drnon = O (1) [5.2]
kg =x(I) [5.3]

Thereafter, the derived number of iterations, I, is used in the conductivity relation
(5.3) to detive the corresponding conductivity distribution (k). At this stage, it is
assumed that the derived conductivity distribution at iteration (I) is equivalent to or

close to the disttibution being sought. The algorithm then goes on to Step 3.
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Figure 5.2: The MPC flow chart. The algorithm is initialized using an assumed conductivity
distribution. A decision is then made if it is an initialization or reinitialization procedure. If it is
initialization, the algorithm proceeds to the Run, Model, and Predict steps respectively. The derived
conductivity K, at the end of the Predict stage, gets fed back to the decision phase. At this point, the

algorithm recognizes that this is the reinitialization step. This, in turn, is fed to the Wexler Algorithm
for error correction until convergence.
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Step 3: Cotrect k; by re-initializing

The eatlier assumption of Step 2, that the detived conductivity distribution (i) at
iteration (I) is equal to the distribution being sought is not entirely correct. It is
obvious that (k,) was arrived at by some interpolation operations, quite likely it
contains some error. To minimize the errors that might have been introduced at
Steps 1 and 2, the derived conductivity distribution (k) is corrected by re-initializing.
Re-initialization involves using the detived conductivity distribution (i) as the initial
starting conductivity distribution in Step 1 of the original Wexler EIT algorithm flow
chart (see Figure 3.1, Chapter 3). As well as removing any discrepancy, the re-
initialization step assures the correct physical approach of the original Wexler EIT

image reconstruction algorithm.

54  The Levenberg-Marquardt (LM) Least-Squares Fitting Algorithm

As stated previously, EIT is 2 nonlinear inverse problem and as such data
modelling requites a nonlinear approach. Mathematically, the building blocks of any

fitting procedute are:

® The data which represent the results of some measurements in which one or
several independent (input) variables (x7, x2, x3) wete varied over a certain range in

a controllable mannet so as to produce the measured dependent (output) variable(s)

91,92, 93 ...

® The mathematical expression (a function or a set thereof) in the form
IT=f1(0cl,x2,53,...pT,p2,p3,....)
V2=f2(xl,x2,53,....;p1,p2,p3,....)
P3=30xl,x2,53,....p1,p2,p3,....)

which represents the theoretical model believed to explain the process that
produced the experimental data. The model usually depends on one or mote
parameters, p7, p2, or p3. The aim of the fitting procedure is to find the values of

the parameters which best describe the data.
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It is necessaty to design a figure-of-merit function (or metit function for short)
that measures the agteement between the data and the model with a particular choice
of patameters. As will be discussed shortly, in the Levenberg-Marquatdt (LM)
method, the merit function employed is the Chi-Sgnare (x?) function. The parameters
of the model are then adjusted to achieve a minimum in the merit function, yielding
best-fit parameters. The adjustment process is then a problem in minimization in
many dimensions. To be genuinely useful, a fitting procedure should provide 1)
parameters, 2) etror estimates on the parameters, and 3) a statistical measure of
goodness of fit [Pres86]. The Levenbetg-Marquardt least-squares algotithm satisfies

these requirements.

The Levenbetg-Marquardt (LM) method is the most widely used algorithm in
nonlinear least squates fitting [Doga83, Pres86 and Reic92]. It is very useful for
finding solutions to complex fitting problems. Basically, the Levenberg-Marquardt
method [Leve44 and Marq63] combines the robustness of a steepest descent method
with the efficiency of a Gauss-Newton method [Bevi92]. The steepest descent and
Gauss-Newton methods are comprehensively discussed in Press ¢ a/, 1986 [Pres86],
Fletcher, 1987 [Flet87], and Reich, 1992 [Reic92]. For the purpose of this discussion
and its application hete, only the key features of the Levenberg-Marquardt algotithm,
an algorithm that switches continuously from a gradient method far from the
minimum to a Gauss-Newton step as the minimum is approached, are discussed

[Pres86].

As shown by Press e 4/, 1986 [Pres86], the following quadratic form can

approximate a general nonlinear fit equation,

x%@) = y-d'a+%a-D-a [5.4]

wherte X2 is the merit function, the parameter used to determine what the best fit is
for varying (a) which is the set of M unknown fit parameters (a1, a2 5 +...y Am). Y is

the shape or curve that is being fitted. D is an MXM Hessian matrix, the second
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partial derivatives of the functions used for fitting and d is a gradient vector (steepest

descent of order M), the fitst partial derivatives of the functions.

For poor initial approximations, the method of steepest descent will localize the fit
parameters by finding the next parameter values (ancw), using the current fit parameters

(acur), via the following equation,

Anext = Acur + D7 . [Vy? (aeur)] [5.5]

If the initial guess is faitly close, the Hessian matrix [Pres86] method works better for
finding the minimized values (amin), by using the current fit parameters (acur) as shown

below,

Amin = Acur — CONSE X VY (Acyr) [5.6]

Upon catrying out the partial detivatives of the merit function, X? and rearranging, a

vector (f8) and a matrix (0)) ate detived that represents the fit parameters,

19x?
= 5.7
B, 2 3s. [5.7]

o o1 0%x
4= 9a,0a, [5.8]

After determining the partial derivatives from the gradients, a second derivative
term arises, causing a destabilization during the fitting routine. The contribution of
the second term, which tends to cancel itself out when summed over all data points

(N), can be neglected, simplifying the ;, term. Hence, ignoring the term gives the

following for the Hessian mattix, when summed over all the data points in the cutve,

_ w1 [ oy(x;3a) dy(x;5a)
%—Z—[ da,  da, } >
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Using the inverse of the Hessian matrix, the step size can be rewritten as a set of

linear equations that can be solved for the new step size, da,,

§a, =——x B, [5.10]
kl

The new step, is then added to the current value, and tested in the merit equation for

"best fit". Similatly, the steepest descent formula of equation [5.6] translates to,

0a, = constantX f3, [5.11]

which is then subtracted from the curtent value to give the new parameters for testing
the "best fit". The final "best fit" solution is arrived when 2 is at 2 minimum, or
when B, values are O at all k values. It should be noted that any changes in o,

would not affect the final parameter fit values, since its only purpose is to determine

the rate (i.e., the step size) at which the minimum is obtained.

The Levenberg-Marquardt method combines the inherent stability of steepest
descent with the quadratic convergence rate of the Gauss-Newton method as
described in the previous section. The algorithm uses the method of steepest descent

to determine the step size when the tesults are far from the minimum,

da;, = constantX f3,

5a, =——x B,
Oy

But as the solution approaches the minimum, the algorithm switches to the Hessian
matrix for determining the step size in order to zero in on the best fit. Marquardt
realized that by combining equations [5.10 and 5.11], the full advantage of both
methods can be detived [5.12],
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&1
da,= ) ——x [5.12]

I=1 05 kl

whete & is 2 new matrix obtained by combining [5.10 and 5.11] and is defined as,

o =0, (1+1) (j=1..M) [5.13]
0y =0, (j #k) [5.14]

and A (A >> 1) is a regularization constant (ot fudge factor) to regulate the step size.
Marquardt's equation [5.12] spans the full range of the fitting processes, from the

method of steepest descent to the Hessian matrix (or Gauss-Newton) method.

The algorithm is usually implemented as follows:

e Compute ¥%(a).

* Guess at a modest value for A, say A = 0.001.

* Solve equation [5.12] for §a and evaluate y2(a +5a).

o If xXa +6a) 2 X2(a), inorease A by a factor of 10 (or any othet substantial

factor).

o Ify*a+8a)<yX(a), decrease A by a factor of 10, and update the trial solution.

The algorithm iterates until some convergence criterion is reached. Typically this

means when a minimum in the reduced 2 is reached.

The LM method works very well in practice and has become the standard of the
nonlinear least-square routine [Bevi92]. The Levenberg-Marquart scheme is
implemented in Stepl of the Modeller-Predictor-Cotrector to model potential
(voltage) and conductivity distributions from a knowledge of their past history and an

idea of their correct actual physical peak shapes (i.c., the fit function).
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5.5  3-D Computer Simulations using the MPC Algorithm

In order to demonstrate the effectiveness of the Modeller-Predictor-Corrector
(MPC) scheme in improving the convergence rate of the original Wexler 3-D EIT
algorithm, the previous 3-D simulation of small breast tumour imaging desctibed in

Section 5.2 is repeated with the MPC scheme.

The modelling is done over the first two to fifteen iterations, conductivity and
potential distributions ate predicted at the 15% iteration, and the correction is done
over the next five iterations (i.e., a total of 20 iterations for an apptoximate time of
7.4 minutes). To demonstrate and compare its ability in improving convergence rate,
a compatison to the original Wexler and multistep approach of Strobel, 1996 is
provided. Figure 5.3 below shows the error norm plot as a function of iteration
count for the original Wexler, Strobel's multistep, and the MPC methods employed

here.
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Noxrm of Error Term (x107)

and MPC Methods

Norm of Error Term as a Function of Iterations
for 3-D Breast Tumour Simulations of Figure 5.0
using the Original Wexler, Strobel's Multistep,
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Figure 5.3: Norm of error tern as a function of iterations for setup of Figure 5.0 using the
original Wexler 3-D EIT, Strobel's multistep, and MPC methods. Note that the MPC
method provides faster convergence than the mutistep or original Wexler 3-D EIT
methods. The recovered conductivity distribution at 10 iterations is also shown.
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It is obvious from Figure 5.3 that the MPC algorithm succeeds in obtaining fast
and quite accurate recovety of the conductivity disttibution. Though the image
recovered by Strobel's multistep approach [Stro96] is close to that recovered using the
MPC scheme, the time to converge (approximately 16.3 minutes) was much longer
than the MPC scheme. At 20 iterations, for a time period of 7.4 minutes, on a
SUNW, SPARCstation-4, the recovered conductivity distribution, obtained using the
MPC algotithm, was determined to be quite close to the exact conductivity

distribution. Using the concept of the conductivity profile matching ratio T (0 < T <

1), introduced in Chapter 4, the T value for the original, multistep, and MPC methods
were determined to be equal to 0.35, 0.78, and 0.82 respectively. The difference
between the MPC recovered conductivity distribution to that of the exact distribution
was identified to be at the diseased-to-normal tissue intetface. Measurement of
FWHM's on the recovered image at 20 iterations in the cross-sectional and axial plane
were 6.2% and 7.1% of the diameter of the imaging region respectively. These results
were an improvement over the otiginal algotithm with FWHMs values of 13.0% and

14.6% in the cross-sectional and axial plane for the central tumour respectively.
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5.6 Discussion

Using simulations, the original Wexler 3-D EIT algorithm was identified to be
slowly convergent. Method was devised to improve its convergence time. From
obsetvations made earlier in Chapter 4, it appears that if the history of potential and
conductivity distributions is known, one can predict their distributions at a future
time. This observation was at the basis of the Modellet-Predictor-Corrector (MPC)

scheme adopted here to improve time of convergence.

In the MPC scheme, the history of potential and conductivity distributions wAS
modelled over the second to # iteration period. Although the algorithm is quite
stable, the recovered potential and conductivity distributions at the first iteration were
not employed in the modelling phase. From experience obtained with the Wexler
iterative algorithm, the first iteration was always regarded as the iteration at which the
algorithm begins to "settle” down and the iteration at which it is getting ready for a
"kick start". Though, as mentioned above, the Levenberg-Marquardt algorithm is
very efficient in determining the most appropriate nonlinear fit parameters,
sometimes the method converges upon a local minimum, ot one or more of the
patameter values may tend to infinity. As such, the use of incorrect "fit functions"
forms, for further intetpretation, would lead to erroneous results. However, in this
application of the Levenberg-Marquatdt algorithm, the correct "fit functions" were
employed as derived carefully in Chapter 4. These were identified experimentally in
Chapter 4 to be of type three-parameter exponential and logarithmic functions

respectively.

Once modelled, the potential and conductivity relations were used to derive the
conductivity distribution at which the algorithm will converge or be relatively close to
convergence. ‘To minimize errors that may have propagated as a result of the
interpolation operations petformed on the relations, in an attempt at deriving the
conductivity distribution, the recovered distribution was used to reinitialize the
original Wexler algorithm. This ensures that the correct physical approach of the

Wexler algorithm is employed.
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The result of the simulation petformed on the simplified 3-D breast model
indicates that the MPC algorithm is quite effective in improving the time of
convergence. At 20 iterations, for a time period of 7.4 minutes, the tecovered

conductivity distribution was detetmined to be quite similar to the exact conductivity

distribution that was being sought. The conductivity profile matching ratio T (0 < T <
1), for the original, multistep, and MPC methods were determined to be 0.35, 0.78,
and 0.82 respectively. As mentioned above, the difference between the MPC
recovered conductivity profile to that of the exact distribution was identified to be
primarily at the diseased-to-normal tissue interface. Note that this effect, termed the

"Tumour-Edge" eatliet, was initially identified in Chapter 4.

Measutement of FWHM's on the recovered images at 20 iterations in the cross-
sectional and axial plane were 6.2% and 7.1% of the diameter of the imaging region
respectively. An obvious improvement over the original algorithm with FWHMs of

values 13.0% and 14.6% in the cross-sectional and axial plane respectively.

Despite the major improvement in the time of convergence of the algotithm,
using the MPC algotithm, now comparable to existing imaging modalities, the spatial
resolution of the recovered conductivity distribution, in particular at diseased-to-

normal tissue interface, still requites improvement.
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5.7 Summary

The time to convergence of the original Wexler EIT algorithm was demonsttated,
using computer simulations, to be relatively inappropriate in the imaging of eatly
breast tumours. The multistep acceleration to convergence as proposed by Strobel,
1996, was identified to be an improvement yet unacceptable in the imaging of breast
tumour. A new algorithm - the Modeller-Predictor-Cottector (MPC) - was developed
with the objective to drastically improve convergence tate of the original Wexlet EIT

algorithm.

Results of the 3-D computer simulation appear to indicate that the MPC method
is quite effective in improving convergence time. A clinically useful image, showing
the tumour, was recovered in 20 iterations. This recovery process took approximately
7.4 minutes on a SUNWS, SPARCstation-4. However, the resolution, in particular at
diseased-to-normal tissue interface, of the recovered image was not of clinical

potential. ‘This issue is investigated and addtessed fully in the next Chapter.

6 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 USA.
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Chapter 6

A Locator-Compensator (LC) Algorithm to Improve Spatial Resolution
of the Original Wexler 3-D EIT Algorithm

6.1 Introduction

The transition of EIT from the laboratoty to the clinic can only occur if the spatial
resolution of the technique improves so as to be comparable to, if not better than,
ptesent clinical imaging modalities. Dijkstra ef @/, 1993, in a review article on EIT,
argued that the poor spatial resolution of the technique, which is only about 10% of
the diameter of the body, is a major disadvantage in 'static' imaging [Dijk93]. As such,
they concluded that the greatest potential clinical application of EIT ought to be in
'dynamic' imaging (e.g, in the monitoring of cardiopulmonary function). Other

authots have came to similar conclusions [Camp94, Jong94, Moru96, and Kott97].

In Chapter 4, Section 4.6, the full-width half-maximum (FWHM, a measute of
spatial resolution) of the original Wexler 3-D EIT 'static' imaging algorithm was
shown to be approximately 13% in cross-sectional plane, 11%, and 9% of the
diameter of the imaging region for a central, intermediate, and peripheral recovered
Dirac impulse, respectively. Further, in Chapter 4 the ability to image sharp
conductivity changes, e.g., at diseased-to-normal tissue intetface, was demonstrated to
be relatively poor. Using the MPC algotithm of Chapter 5, it was shown that the
spatial resolution at diseased-to-normal tissue intetface improved slightly. Here, the
focus is on substantially improving the resolution at the sharp edge of the diseased-to-

normal tissue.
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In an attempt to improve the original Wexler EIT algorithm, Condamines and
Marsili, 1994 observed that the algotithm provides good qualitative results but is
quantitatively less accurate [Cond96]. Simply stated, the algorithm locates the
region(s) of interest (i.e., tumour(s)) at a very low iteration count, irrespective of the
size and type (e.g., benign or malignant) of the region(s). However, the recovered
conductivity distribution detail, at such eatly iteration, is somewhat far from what is

desired (i.e., what is being sought).

In Chapter 2, it was discussed that for EIT to be of clinical potential and for an
accurate diagnosis, a breast lesion ought to be detected at an early stage, physically
equivalent to an approximate size of 1-2 mm. Thus, it appears that the spatial
tesolution that can be obtained with the otiginal Wexler algorithm is not suitable to
image small breast tumours. This chapter focuses on improving the algorithm's
present limit of spatial resolution and attempts to refine its ability to detect small
breast lesions. A novel algorithm, termed the Locator-Compensator (LC) algotithm,
is developed and implemented on tealistic 3-D computer simulations of small breast

tumour imaging. Results of simulations are discussed and summarized.

6.2  Spatial Resolution of the Original Wexler 3-D EIT Algorithm

For the purpose of this section, the simplified 3-D model of the breast adopted
for Chapter 5, Section 5.5 is employed. The focus hete is on investigating the spatial
resolution of the original Wexler 3-D EIT algorithm rathet than on its convergence
tate discussed was in Chapter 5. The tegion to be imaged (i.e., a cube) is divided into
15625 (i.e., 25X25X25) finite volumettic elements (i.e., voxels), with a central voxel
representing the tumour (see Figure 6.0). The tumour element is spatially located at
the coordinates (x=13, y=13, and z=13). Two hundred and twenty electrodes were
arranged over the 3-D object surface and one hundred and ten injections/extractions
views were employed to reconstruct the 3-D images. This corresponds to a

determinacy of 1.15 using the 'sometimes’ measurement pattern. The voxel representin
y g p P g
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the tumour has a conductivity of 4.0 and is within a background region of
conductivity value 1.0. Measutements are taken on five sides of the cube. The

remaining side represents the side of the breast that is attached to the chest wall.
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Figure 6.0: A simplified 3-D breast model for simulation of Section 6.2.
Volume has 15625 elements. One hundred and ten excitation pairs were
employed. The tumour element is located on Layer 13, with coordinates
(x=13,y=13, and z=13). Though not fully realistic, this simplified model
provides a mean to investigate the limit of spatial resolution of EIT breast
cancer imaging

Figute 6.1 below shows the recovered images of layers 11, 12, 13, 14, and 15 for
the central tumour voxel of Figure 6.0. The spatial resolution (or the FWHDMs) in the
cross sectional and axial planes for the recovered image of the tumour voxel are

approximately 12.6% and 13.8% of the diameter of the imaging region.
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Figure 6.1: Recovered images of layers 11, 12, 13, 14, and 15 (from top) using the original Wexler 3-D
EIT algorithm at 50 iterations. The FWHMs (or spatial resolution) in the cross-sectional and axial
planes for the tumour voxel are approximately 12.6% and 13.8% of the diameter of the imaging region.
Note that to accommodate for gray scaling, the elements had to be double in size. In reality, there are
25%25 elements on the 2-D image shown above.
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6.3  EIT's Limit of Spatial Resolution: A Discussion

The quality of an impedance imaging system is directly and closely related to the
image it can provide, and therefore to the reconstruction algorithm, that it is to say,
the stability of the algorithm, reconstruction time, precision of the reconstructed
image, computing complexity, etc. [Moru96]. There ate 2 number of ways one can try
to improve resolution. One way is by incorporating a priori knowledge of the
location of vatious tissues and the range of cotresponding impedances [Avis95,
Mees95, and Bays98]. It appears that cotrect a prioti information is usually not
teadily available, for example the conductivity values within most anatomical regions
are not known [Dehg99]. However, with recent developments in "EIT spectroscopy’,
impedance mapping of anatomical structures and organs conttibute to the knowledge

of tissue characterization [Brow95].

Some authors have argued that in ordet to obtain high resolution with EIT, high
precision impedance measurements ate needed since the image reconstruction process
is ill-conditioned and small errors in measurement can lead to large errots in the final
image [Barb 95 and Boon96]. Maybe this is so for 'dynamic' imaging-based
algotithms. However, for iterative algorithms, e.g., the Wexler EIT image
reconstruction method, ill-conditioning is generally not much of a limitation as has

been demonstrated here.

With respect to EIT hardware, as seen in the literature, the general notion is that
formidable instrumentation problems exist, due mainly to the interaction of finite
current dtive output impedance, recording amplifier common mode rejection, and
unequal skin-electrode impedances [Boon97]. Consequently, the spatial resolution of
EIT would be limited. Howevet, many of the instrumentation problems that were
once consideted ttoublesome have now been overcome [Boon97]. Some have
employed strategies like using additional electrodes, multiple electrode current

injection, of tecording at multiple frequencies, to improve image accuracy.
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From simulations performed here and a review of literature, it appears that the
major difficulties with iterative-based 'static' imaging algorithms are convergence
problems (ditectly related to the guess made at initial conditions), noise and an
accurate model of the physical system being imaged [Riga9G]. Despite these hutdles,
EIT reconstruction methods that are based on an iterative algorithmic approach

generally provide higher image quality than direct methods [York88 and Shah95].

A few interesting obsetvations on spatial resolution of EIT can be found in the
literature. In particular, Kotre, 1997 remarked that the spatial resolution of a 'static'
tecovered EIT image is low and obsetved that it is worst towards the center of the
image [Kotr97]. Ider et al., 1995, using an iterative backprojection algorithm, showed
that the full-width half-maximum (FWHM), of 2-D single-object perturbations for
central, intermediate, and peripheral high-contrast objects are 27%, 18% and 14% of
the imaging region diameter respectively [Ider95]. Similar obsetvations were made for
the otiginal Wexler EIT algotithm. It was further demonstrated that the resolution at

normal-to-diseased tissue interface was telatively poor.

To be of potential in the imaging of small breast tumour, the spatial resolution of
the Wexler 3-D EIT algorithm ought to be comparable to existing high-resolution
techniques (e.g. MRI or CT, which typically go down to 1mm3 voxels) [Harm98]. The
overall resolution and, in particulat, the spatial resolution at normal-to-diseased tissue
interface would need to be improved. As shown in Chapter 4, the higher conductivity
magnitude of the tumour element/voxel has an undesired effect on the surrounding
normal element(s). This, in turn, contributes to the detetioration of image quality at
sharp edges. The Locator-Compensator method desctibed here mainly addresses the

issue of improving the lower spatial resolution at sharp edges.
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6.4  The Peak Detection Image Processing Algorithm

Though it is known in the literature [Hua91 and Ider95], and demonstrated in
Chapter 4, that the spatial resolution of EIT decreases from the petiphery to the
central portion of the image (ic, is space variant), no published work on
compensating for the loss in spatial resolution exists. The loss in spatial resolution is
a characteristic of the flow of electrical curtent through a heterogeneous medium as
governed by Poisson’s equation (i.e., the physics of electrical curtrent flow). However,
as has been pointed out by many investigators, it is imperative that the imaging
process in EIT incotporates the solution of the electric field equations [Tast81 and

Pric79].

How to improve EIT's spatial resolution? In the case of the Wexler EIT
algotithm, it was concluded in Chapter 5 that the algorithm locates disturbance(s) at
catly iterations.  Howevet, quantitatively the resolution of the recovered
disturbance(s) at such eatly iterations are far from what is desired. An obvious
approach, in this case, would be to apply some sort of quantitative tesolution
compensation to the localized region(s). By compensating for loss in resolution as a
function of location of region(s) of interest (i.e., at normal-to-diseased tissue
interface), an increase in the spatial resolution would be anticipated. In other words,
the characteristic EIT spatial resolution would, in theory, be shifted from space

variant to space invariant.

How to locate these region(s) of interest and how best to apply the resolution
compensation? In her Ph.D. dissertation, Mu, 1994 discussed an approach that
combines an image processing technique, the peak detection method, to locate the
region(s) or peak(s) of interest with a modified conductivity distribution-updating
scheme [Mu94].  Although, Mu's method was correct, the results of its
implementation on the Wexler EIT algorithm were not appropriately effective in

increasing spatial resolution, in particular at normal-to-diseased tissue interface, where
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no drastic improvements were noticeable. The method and implementation of Mu's

approach is discussed in more detail in the next section.

The peak detection algorithm is an image processing technique that selectively
detects peak(s) in the image histogram. It does so by generating a peak detection
signal from an image histogram [Seza89]. Using the difference between the local
maxima and the zero-crossings of the detection signal, histogram peaks are then
located. Peak detection algorithms have been used successfully in selective post-
enhancement of digital anatomical images [Seza89]. Mu, 1994, demonstrated its
usefulness in improving spatial tesolution when applied at the pre-recovery stage of

conductivity distributions using the original Wexler EIT algorithm [Mu94].

The peak detection method as implemented by Mu, 1994, in an attempt to
improve convergence rate and subsequently spatial resolution, is summarized in the

following steps:

Step 1: The Wesxler algorithm, with its initial conductivity-updating scheme (see

Chapter 3, Section 3.1) is applied to the imaging region for nth iteration.

Step 2: At the nt iteration, the element conductivity difference (k, -k, = Ax,) is
determined and saved accotdingly for the whole imaging region. Whete K, is
the conductivity distribution of the whole region at the n iteration and x, is

the background conductivity disttibution respectively.

Step 3:Peak(s) within the imaging region is/are then located by finding the local
maximal conductivity changes. To avoid detecting any unwanted anomalies
induced by numerical etrors via discretization, a filtering scheme is applied
prior to peak(s) detection. The criterion for peak(s) detection is simply to
compare (Ak,) with a subjective preset value of some fraction of the

background conductivity (¥x,). If (Ak) exceeds the preset value (* K,), then

a modification to the updating-scheme is applied to the local region of the
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peak(s). Mathematically, if the neighborhood within 2 localized peak region,

Ky, > with central peak element conductivity, k,, exceeds #x,, then elements

within the localized region, x,, ate replaced at the (nth + 1) iteration by,

K1 =K, +0AK, [6.0]

where Ax, is the difference in conductivity for elements within the localized

region as defined earlier, and @ is the convergence acceleration factor as
discussed in Appendix 1I.
Step 4: This process is repeated over the whole imaging region until there are

acceptable errors between calculated and measured conductivity disttibutions.

The peak detection method, implemented by Mu, 1994, works well in situations
whete cotrect preset values are assumed. If a guess at a preset value is relatively lower
than the conductivity difference (Ak), the recovered overall resolution is not
approptiate for imaging small breast tumours. In particular, resolution at diseased-to-
normal tissue interface does not improve substantially. Since a user-determined
preset value is requited, the applicability of this approach is greatly reduced. Further,

once the peak(s) is/are located, an incorrect choice of the convergence acceleration

factot, @ can subsequently affect its stability [Pres86].
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6.5 The Locator-Compensater (LC) Algorithm

Despite the selective peak(s) localization approach adopted by Mu, 1994, in
attempting to improve spatial resolution, only tumours of physical size >30 mm in
diameter could be resolved. At such size, the metastatic probability is substantally
high. As discussed eatlier, ideal detection size would be within the range of 1-2 mm.
Can the original Wexler EIT image reconstruction algotithm be improved to resolve
tumours of size <4mm? A novel scheme, the Locator-Compensator (LC) method,

developed here appears to do just that!

The Locator-Compensator (LC) algorithm is a combination of a vatiant of the
peak detection method desctibed above and a new resolution compensation scheme.
The Locator-Compensator method is discussed in more detail in the next paragraph.
In brief, the peak detection variant method is used to locate the spatial coordinates of
the peak(s) at early iterations. Location of peaks is done in a much different manner
than desctibed previously. Once the cootdinates of the peak(s) ate localized, then the
resolution (i.e., in terms of conductivity magnitude of the peak(s)), are compensated
for.  The compensation is performed by applying the otiginal Wexler EIT
conductivity- updating scheme over the localized regions rather than over the whole
imaging region.

In this implementation of the peak detection method, rather than having to
assume a percent of the background conductivity (ie.,*x,), which subsequently is

used as the basis for the critetion for peak detection (i.e., by compating *k, to AK),

the variant of the peak detection method employs a non-subjective approach for
peak(s) localization (Figure 6.2). The Wexler algorithm with its otiginal conductivity
updating-scheme is used to sweep through an imaging region for # iterations. The
recovered conductivity distribution at each iteration (ie.,k;,k,,K;,..... K, ) is

averaged over # iterations (ie, K;+K,+K;+....+k,/n). The averaged

conductivity distribution at # iterations (i.e., k) is then averaged over all the elements
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within the imaging region. This results in an average conductivity per element

(Ken=1%n/N )» IN being the total number of elements in the adopted mesh for image

tecovery (or solution of the inverse problem). Peaks are located by comparing Ken to

Keni1> Whete K, is the conductivity of each element at #+1 iteration (Figure 6.2).
If X,,11 > Ken, the element or an aggregate of elements is/are identified as peak(s) or

if Kgpyy S Ken, then the element or an aggregate of elements is/are not regarded as

peak(s). To avoid detecting any unwanted anomalies due to truncation or
discretization, a filtering scheme is applied prior to peak(s) detection. Once
clement(s) is/are identified as peak(s), the spatial cootdinates of the immediate
elements surrounding the peak(s) element(s) ate identified. It is at these coordinates
that the new conductivity distribution updating-scheme is implemented to

compensate for loss in spatial resolution.

Once identified, the calculated potentials at cootrdinates of identified element(s)
are then substituted by the interpolated interior potentials obtained from measured or
known surface potentials. The interpolated potentials applied to the surrounding
clements node of the peak(s) element(s) caused the interior potentials (i.e., potentials
at nodes within the localized region(s)) to be nudged in the correct direction (.e.,
toward minimization of the differences between the measured and the calculated
potentials). Since the localized region(s) would generally consist(s) of a few elements
(Le., pixels ot voxels), this selective conductivity-updating scheme is relatively fast and
effective. While conductivity in the localized region is updated with the localized
updating scheme just described, conductivity update for the rest of the imaging region
proceeds via the original Wexler EIT conductivity-updating scheme. This process
continues until measured and calculated potentials are equal (i.e., until convergence is

attained).
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The Locator-Compensator algorithm is summatized in the following steps:

Step 1. Run Wexler Algorithm for n Iterations

The original Wexler EIT algotithm, with its conductivity updating scheme as
desctibed in Chapter 3, Section 3.1 (see Figure 3.1), is used to sweep through the
imaging region (see Equation 3.6) for # iterations. In btief, the revised estimate of

conductivity within element 7 over all node points and over all excitations is,

S, 7V
K":;jﬂvi V6 Vo dv

[6.1]

whete J is the estimated electtical cutrent density distribution, ¢ is the potential

obtained with Dirichlet boundary conditions, k; is a trevised estimate of the

!

conductivity within element 7 v; is the volume of the element 7, and X represents the

excitations over which the sum is taken.

Step 2. Save Conductivity Distribution (x) over 1 to n Iterations
The recovered conductivity distribution over the period of iteration 1 to # is saved

and averaged over # iterations, k. The average conductivity distribution x, is then

averaged over all the elements, Ken= " - The average over all elements ke is

then used as a criterion component for peak detection.

Step 3. Locate Peak(s) with the Peak Detection Variant Method at n+1 Iterations
Peak(s) is/are located by compating Ken to k,,,;, where k,,,; is the conductivity
of each element at #+1 iteration. If k,,, > Ker, the element or an aggregate of

elements is/are identified as peak(s) or if x,,, < Ken, then the element or an

aggregate of clements is/are not regarded as peak(s). To avoid detecting any

unwanted anomalies due to truncation or discretization, a filtering scheme is applied
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ptior to peak(s) detection. Once the peak(s) is/are located, the immediately
surrounding elements nodes spatial coordinates are identified. The potentials at these

nodes are saved accordingly.

Step 4. Compensate for Resolution at (n+2) to N Iterations

When viewed as a whole, the imaging region can be considered to consist of
localized peak(s) region and a background region. The conductivity updating-scheme
for the background region is that as utilized by the original Wexler algorithm,
described mathematically by relation [6.1] above. The new conductivity updating
scheme for the localized region(s) can be arrived at by applying the original Wexler
conductivity updating scheme to the identified region(s) in much the same way as
described in Chapter 3, Section 3.1. In this new approach, the calculated potentials at
the spatial coordinates of the external nodes of the elements identified in Step 3 are
substituted by the interpolated calculated potentials obtained from the measured or
known surface potentials. That is to say, applying Dirichlet boundaty conditions to
the localized regions while leaving the remaining initial (l.e., at # +1 iterations)
Neumann boundaty conditions unchanged. This causes the interior potentials to be
nudged in the correct direction. This is performed for each iteration and over the
whole imaging region iteratively until convergence at iteration N. Similatly, the

Dirichlet boundary condition for the localized region(s) is,

o(ls)=g(ls) [6.2]

which cottesponds to the interpolated calculated potentials at external nodes
coordinates of element(s) identified in Step 3. In addition, the boundary conditions
must include the Neumann conditions at cuttent-injection sites as described in

Chapter 3.
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By following 2 similar derivation process as in Chapter 3, the revised estimate of
conductivity within element / over the volumetric region enclosed by the identified

node points coordinates and over all excitations is given as,

Y[R
TR Voo

[6.3]

where J is the estimated electrical cuttent density distribution, ¢,is the interpolated

calculated potential obtained from the measured or known surface potentials (i.e.,

from application of Dirichlet boundary conditions), «, is a revised estimate of the
conductivity within element / of the localized region, v, is the volume of the element

/, and X represents the excitations over which the sum is taken.

By combining equations 6.2 and 6.3, a new conductivity-updating scheme is
obtained (6.4). This revised scheme is applied to each element in turn to update the
conductivity distribution over the entire region within which the imaging is being

performed.

_; mvi TVody _g I L TV, dv
i = ;M, Vo-Vodv ¥ ;HL Vo, Vo, dv

[6.4]

The Locator-Compensator algorithm makes use of the combined updating
scheme [6.4] to recover the conductivity distribution. Characteristically, the fact that
the original Wexler algotithm locates the peak(s) at early iteration, application of the
LC algorithm, will in theory, ensure that the peak(s) converge(s) much faster and with
adequate resolution at diseased-to-normal tissue interface. In the next section, the
Locator-Compensator (LC) method scheme is tested by petforming computer

simulations.
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Figure 6.2: The Locator-Compensator (LC) flow chart. The algorithm is initialized using an assumed

conductivity distribution. The original Wexler 3-D EIT is allowed to run for # iterations.

algorithm then proceeds to the Save, Locate, and Compensate steps. A comparison is then made to the
known conductivity distribution, if results agree then the algorithm outputs. If not, the algorithm

keeps iterating through the Compensation step until convergence.
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6.6  3-D Computer Simulations using the LC Algorithm

To demonstrate the effectiveness of the Locator-Compensator (LC) scheme in
improving spatial resolution, in patticular at diseased-to-normal tissue interface, the
previous 3-D simulation of small breast tumour imaging desctibed in Section 6.2 and
Figute 6.0 above is repeated here. The original Wexler 3-D EIT algorithm is run for a
petiod of 15 iterations. The recovered conductivity disttibutions over that time
interval are averaged. The averaged distribution is then subsequently average over all
the elements. This is saved accordingly and the original Wexler algorithm is allowed
to tun for one mote iteration. At the 16t iteration, the average conductivity per
clement is then used as a criterion to locate peaks.  Once localized, the peak
conductivities are then compensated for at the 17th iteration by the combined
conductivity-updating scheme described above. Figure 6.3 below shows the
recovered images of layers 11, 12, 13, 14, and 15 for the central tumour voxel of
Figure 6.0 using the LC algorithm at 50 iterations. The spatial resolution (or the
FWHMs) in the cross sectional and axial planes for the recovered image of the
tumour voxel ate approximately 5.4% and 6.3% of the diameter of the imaging

region.
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Figure 6.3: Recovered images of layers 11, 12, 13, 14, and 15 (from top) using the LC algorithm. The
FWHMs (or spatial resolution) in the cross-sectional and axial planes for the tumour voxel are
approximately 5.4% and 6.3% of the diameter of the imaging region. Images were recovered at 50
iterations. Note that to accommodate for gray scaling, the elements had to be double in size. In
reality, there are 25x25 elements on the 2-D image shown above.
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6.7 Discussion

Using simulations, the original Wexler 3-D EIT algorithm was identified to have
low tresolution. From observations made eatlier in Chapter 4, it appears that the
"Tumour-Edge" effect is responsible for the observed low resolution at the edges. As
such, the Locator-Compensator (LC) method was developed to improve the overall

spatial resolution.

In brief, the LC method involved locating the peaks with a variant of the peak
detection image processing algotithm and subsequently applying a new conductivity-
updating scheme. This combination appeared to improve tresolution at diseased-to-
normal tissue interface. Measurement of FWHM's on the recovered images at 50
iterations in the cross-sectional and axial plane were 5.4% and 6.3% of the diameter
of the imaging region tespectively. These results were an improvement ovet the
otiginal algorithm with FWHMSs of values 13.0% and 14.6% in the cross-sectional and

axial plane respectively.

It should be noted that the recovered image resolution obtained from the LC
algorithm is higher than that obtained with the Modellet-Predictor-Corrector MPC).
The resolution for the MPC in the cross-sectional and axial planes was 6.2% and
7.1% respectively. Though, the resolution of the LC method is supetior to that of
the MPC, the LC takes much longer to converge. The MPC converged in 20
iterations while the LC converged in 50 iterations for the same computer simulation
setup.  If combined, one anticipates that the MPC would help to improve
convergence rate and the LC method would improve resolution, in particular, at
diseased-to-normal tissue interface. This observation is further investigated in

Chapter 7.
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6.8 Summary

The spatial resolution of the original Wexler EIT imaging algorithm was
demonstrated to be relatively low, compared to other clinical imaging modalities. The
spatial resolution was identified to be space vatiant. The Locator-Compensator (LC)
algorithm was developed to compensate for the loss in spatial resolution at diseased-
to-normal tissue interface. Improvements were demonstrated on simplified 3-D
computer simulations of early breast tumour imaging. It was shown that the LC
method could resolve approximately 5.4 % and 6.3% of the diameter of the imaging

region.
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Chapter 7

An Improved Wexler EIT Algorithm for 3-D Breast Cancer Imaging

7.1 Introduction

It is generally assumed, though incorrectly, that the flow of electrical current is
restricted to the 2-D-measurement plane while current flowing elsewhete through the
medium is negligible [Meth96). This gross over-simplification has limited the
capability of EIT, as it is intuitively clear that there exists a three dimensional variation
of conductivity distribution within the 3-D object [Liu88]. Consequently, image
reconstruction via 2-D voltage distributions throughout a 3-D object can lead to
sevete image distortions. In Chapter 4, it was shown that significant advantages
might be achieved by extending EIT to 3-D, in particular, an increase in the size of
the independent data set for image reconstruction and an improved spatial resolution
of the derived images. To date only a few articles have addressed and contributed to

the understanding of 3-D EIT.

Using 2 new electrode arrangement scheme along with the Newton-Raphson
algotithm, Liu ef al, 1988 obtained good resistivity images of a 3-D object [Liu88].
Kuzuoglu e al, 1992, demonstrated the effect of the three dimensional variation of
conductivity distribution in 3-D EIT using FEM and the frontal algorithm of Irons
for matrix inversion [Iuzu92]. Metherall ef al, 1996, using a previously developed
EIT system and an inverse-matrix based algorithm, demonstrated the practical
potential of 3-D EIT in clinical applications of lung or brain imaging [Meth96]. A
three-dimensional image reconstruction algorithm for EIT, based on the inversion of

the sensitivity matrix for a finite right circular cylinder, was derived by Kleinermann ez
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al, 1996 [Klei96]. The authors showed that the 3-D algorithm recruits more central
information than the two-dimensional image reconstruction algorithm. And recently,
Glidewell ¢ al, 1997, from simulation results demonstrated and emphasized the

importtance of tissue anisotropy in 3-D EIT [Glid97].

In this chapter, the inevitable questions raised in Chapter 1 are addressed. Could
an improved Wexler 3-D EIT algorithm be used to image (viz., detect and diagnose)
breast tumours? Could it be used to detect breast cancer before the onset of
metastatic spread i.e., at physical size of 1-2 mm in diameter? An attempt is provided
here, using an improved algotithm obtained by combining the development of the
two previous chapters, in particular, the Modellet-Predictor-Corrector (MPC) scheme
to improve convergence speed and the Locatotr-Compensator (LC) algotithm to
improve overall spatial resolution. The potential of the improved 3-D Wexler EIT
algotithm is demonstrated through realistic (ie., pertinent to clinical situation)
computer simulations imaging of small breast tumours (viz., benign and malignant).

Results are presented and discussed.
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7.2 AnImproved and Refined Wexler 3-D EIT Algorithm

In Chapter 4, through computer simulations, it was demonstrated that the
convergence rate of the original Wexler 3-D EIT algorithm would need to be
improved drastically. This was achieved in Chapter 5 by using a new and efficient
scheme, the Modeller-Predictor-Cottector (MPC) algorithm. The efficiency of the
MPC scheme was demonstrated on 3-D computer simulations of small breast tumour
imaging. With an improved convergence rate, a subsequent improvement in overall
resolution was also observed. However, it was observed that resolution at diseased-

to-normal tissue was not of optimal level for the imaging of small breast tumours.

An algorithm (i.e., the Locator-Compensator, LC) that carefully locates region(s)
of interest and updates the region(s) conductivity with a combined conductivity-
updating scheme was developed in Chapter 6. It was shown, using simulations that if
the Locator-Compensator (LC) algorithm is apptopriately implemented, 2 substantial
increase in overall resolution, and in particular, at diseased-to-normal tissue, could be

achieved.

On the basis of the previous discussion, it is anticipated that an improved (i.e.,
fast and accurate) Wexler EIT image reconstruction algorithm, capable of producing
radiologically useful 3-D conductivity images, could be used to image (viz., detect and
diagnose) small breast tumours. This feat could be accomplished by combining the
development of the last two chaptets (i.e., Chapters 5 and 6) with optimal parameters,
identified while investigating the characteristics and 'dynamics' of the otiginal Wexler

EIT algorithm, of Chapter 4.

The flow chart of the improved Wexler EIT algotithm is shown in Figure 7.0
below. In this combined approach of the improved algorithm, the conductivity x
and potential ¢ are first initialized. The original Wexler 3-D EIT algorithm is then
used to sweep through an imaging region for # iterations. Thereafter, the MPC
algorithm is used to model the past behaviour of potential and conductivity

distributions. From the modeled potential and conductivity relations, a conductivity
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Figure 7.0: The improved Wexler EIT algorithm flow chart. The algorithm is initialized for k and ¢. The
algorithm then proceeds to the MPC algorithm. This outputs a derived conductivity, which is then
employed in the LC algorithm. If the resulted conductivity is equal to the measured conductivity, the

algorithm outputs the image. The improved algorithm runs for a

iterations.
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distribution x, is derived that is assumed to be close to the conductivity distribution
being sought (i.e., at convergence). The extrapolated conductivitity, K, is then used
to reintalize the original Wexler 3-D EIT algorithm. The MPC is applied for over
iterations. Subsequently, the LC algotithm is applied to the derived conductivity
distribution Kk, for a petiod of p iterations. The LC algorithm localizes peak(s) and
updates conductivity approptiately. This process continues until the calculated value

is equal to the measured potential. The algorithm then outputs the recovered image

in a considerably faster time and at higher spatial resolution.
In summary the improved algotithm proceeds as follows (Figure 7.0):

Step 1: Run Original Wexler 3-D EIT Algorithm for 7 Iterations.
The original Wexler EIT algotithm, with its conductivity updating scheme as
described in Chapter 3, Section 3.1 (see Figure 3.1), is used to sweep through the

imaging region (see Equation 3.6) for # iterations.

Step 2: Run the MPC Algorithm for m Iterations.
From the histoty of the recovered potential and conductivity disttibutions of Step
1, the MPC algorithm is applied to model, predict, and cotrect for a derived

conductivity distribution, x,. As discussed eatlier, the correction is performed using

the otiginal Wexler algorithm and this is performed for # iterations.

Step 3: Run the LC Algorithm for p Iterations.

Following Step 2, the Locator-Compensator (LC) algorithm is applied. This
localizes the peaks and the trevised conductivity distribution scheme is applied
subsequently to update the conductivity appropriately (ie., for localized and
background region). The LC algotithm is applied over p iterations. This process
continues until the calculated is equal to measured potential (i.c., until convergence).
The algorithm then outputs the recovered conductivity image. The whole process

takes approximately ¢ (c= 7 + m + p) iterations to converge.
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7.3 The Original Wexler 3-D EIT Algorithm: A Realistic 3-D Simulation

The Wexler 3-D EIT algorithm was thoroughly discussed in Chapter 3 and a few
tests and effects on the algorithms were performed in Chapter 4. For the purpose of
this section, a more realistic 3-D simulation that is tepresentative of small breast
tumour imaging is performed here (Figure 7.1). As in Chapter 3, the breast is
physically represented as a cube. The 3-D cube is divided into 50x50x50 (.e., for a
total of 125,000 elements or voxels). The central voxel teptresenting the malignant
tumour (conductivity equal to 4.0) is spatially located on the 25t layer at coordinates
of (x=25, y=25, and x=25). The intermediate voxel representing the benign tumour
is located on the 25% layer at cootdinates of (x=13, y=13, and z=25) respectively.
Three hundred excitation pairs were employed to recover the 3-D images, this
corresponds to a determinacy of approximately 1.08, a slightly over-determined
problem. Measurements are made on five sides of the breast model region, and no
measurements were made to the side that is attached to the chest wall. To render the
simulation as close to the realistic situation (i.c., conditions prevalent in a clinical
situation), a2 SNR level of 30 dB was added to the simulation. This was intended to

simulate instrumentation noise.
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Figure 7.1: Simplified 3-D breast tumour imaging setup using the original Wexler 3-D EIT imaging
algorithm. Arrows show points of injection/extraction (i.e., excitations). There is no
injection/extraction on the side of the chest wall. There are 300 pairs of current excitations, 50 layers,
and a total of 125,000 elements. Tumours (benign and malignant) elements are located at (x=13, y=13,
and z=25) and (x=25, y=25, and z=25) respectively.

Figure 7.2 below shows a sequence of images recovered for layers 23 to 27 for

simulation of Figure 7.1 using the original Wexler 3-D EIT algorithm at 100

iterations.
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Figure 7.2: Recovered conductivity images with the original Wexler 3-D EIT algorithm for setup of

Figure 7.1. Image (a) shows the gray level images of layers 23, 24, 25, 26, and 27 (from top to bottom)
for 100 iterations.
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7.4  The Improved Wexler 3-D EIT Algorithm: A Realistic 3-D Simulation

In order to demonstrate the effectiveness of the improved Wexler 3-D EIT
algorithm, the previous simplified 3-D simulation of small breast tumour imaging
described in Section 7.3 is repeated here. In this combined approach of the improved
algotithm, the conductivity k¥ and potential ¢ were first initialized to 1.0 and 0.0
respectively. The original Wexler 3-D EIT algorithm was then used to sweep through
the imaging region for 9 iterations. Thereafter, the MPC algorithm was used to model
the past behaviour of potential and conductivity distributions. From the modeled

potential and conductivity relations, a conductivity distribution k, was derived. The

derived conductivity distribution was used to reinitialize the original Wexler algotithm
and was allowed to run for approximately 5 iterations. Thereafter, the LC algorithm
was applied for a petiod of 20 iterations. The whole recovery process took about 34
iterations to converge using the improved Wexler 3-D EIT algorithm. Figures 7.3
below show a sequence of images recovered for layers 23 to 27 for the simulation of

Figure 7.1 using the improved Wexler 3-D EIT algorithm at 34 iterations.
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Figure 7.3: Recovered conductivity images with the improved Wexler 3-D EIT algorithm for setup

of Figure 7.1. Images show the gray-level of layers 23, 24, 25, 26, and 27 (from top to bottom) for 34

iterations. Note both tumours are idemtified at layer 25
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7.5 Discussion

In this chapter, the original Wexler 3-D EIT algotithm was used to image a
simplified computer simulation model of small breast tumours (benign and
malignant). The breast model was a cube of size 50X50X50 mm3. The malignant and
benign tumours wete each of physical size 1 mm3 in volume and had conductivity 4.0
and 2.0 tespectively. The recovered image at 500 iterations had an average FWHMs
value of 9.4% and 10.3% for the benign tumour and 13.6% and 14.9% for the
malignant tumour in the cross-sectional and axial plane respectively. The FWHM
obtained for the central (i.e., malignant) voxel (14.9%) hete is in accordance to the
measurements obtained in Chapter 3, Section 3.5 (14.1%). The difference was a

tesult of the total number of excitations pairs used to recover the image.

When the improved algorithm was employed to trecover the image, the
convergence rate and the overall spatial tesolution improved dramatically. By
combining the development of the two previous chapters, ie., via MPC and LC
algorithms, the convergence rate and spatial resolution of the original Wexler
algotithm improved dramatically even in the presence of a SNR level of 30 dB. The
FWHMs in the cross-sectional and axial planes were 2.2% and 2.5% for the
intermediate benign tumour and 2.7% and 3.1% for the malignant tumour of the
diameter of the imaging region respectively. The tecovered conductivity values for
the benign and malignant tumours were 1.93 and 3.87 for known values of 2.00 and
4.00. An obvious improvement in resolution at diseased-to-normal tissue interface
resulted with the implementation of the improved algotithm. The work cartied out
here demonstrates clearly an improvement over the original algorithm with FWHMs

in the cross-sectional and axial plane of 13.0% and 14.5% respectively.
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7.6  Summary

Using simplified 3-D simulation of breast tumour (benign and malignant) imaging,
it was obsetved that the original Wexler 3-D EIT algorithm recovers images with low
resolution, in particular at diseased-to-normal tissue intetface and that image quality is

degraded with addition of noise.

Implementation of the combined MPC and LC algorithms on the original Wexler
3-D EIT algorithm was demonstrated to improve both the convergence rate and
overall spatial resolution. Simulation results indicated that the improved algorithm
could resolve tumours (benign or malignant) of size 2.2 - 3.1 mm in diameter and in
the presence of noise. The recovered conductivity values for the benign and
malignant tumours were determined to be equal to 1.93 and 3.87 for simulated values

of 2.00 and 4.00 respectively. This degree of performance is clinically useful.
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Chapter 8

Results and Discussions

Breast cancer is the most common cancer in women worldwide [Park93]. It is
ranked first in cancer deaths among women in developed countties and was second
only to cervical cancer in developing countties [Pisa93]. As a consequence of
demographic trends in aging and population growth, breast cancer deaths are
expected to increase. If these trends continue in previously low-risk countries, it is
predicted that the worldwide incidence of new breast cancer cases will be over one
million annually by the year 2000 [Mill86]. Most of the women that develop breast
cancet have no family histoty or other recognizable risk factors. There is no way to
tell who will get breast cancer and no proven way to prevent it, so the best possible
defense is to find the tumour as eatly as possible. Successful early detection depends

on three methods [Newm?97]:

® Performing monthly breast self-examinations,
* having a yearly clinical breast examination by a health cate professional, and

® getting regular mammograms after age 40.

While routine breast self-examinations have been shown to aid in early detection and
consequently in improving survival rate, a great majority of women still do not
practice breast self-examinations [McLe88 and Mah92]. Modeste e 4/, 1999, in a
study among women in a Caribbean population, identified 2 low level of breast self-
examination, infrequent clinical breast examinations as part of regular care,
unavailability of mammography services, and cost of screening as barriers to eatly

detection [Mode99]. It is evident that changes in the behaviour of women and
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physicians are needed to increase the use of breast self-examination, clinical breast

examination by a health care professional and mammographic screening [Frie98].

The ideal breast clinical test combines high sensitivity and specificity. That is,
nearly all patients with disease will be identified by the test and patients without
disease will not be inaccurately identified - few false negative and false positive results.
However, current procedures for detection and diagnosis illustrate the difficulty of
optimizing both sensitivity and specificity. Neither screening mammography nor
clinical breast self-examinations provide a definitive diagnosis of breast cancet. Every
patient with a positive screening test requires biopsies. However, in 67-87 percent of
cases, biopsy of breast lesions discovered via screening mammography is negative for
malignancy [IKuni93]. These usually result in associated risk, unnecessary discomfort,

and increased cost.

In clinical trials, screening mammography has been shown to reduce mortality
from breast cancer by about 25% to 30% among women aged 50 years and older after
only 5 to 6 years from the initiation of screening. Among women 40 to 49 years old,
the evidence supporting the efficacy of screening mammography is less convincing
[Mill93, Neug95, and Esse96]. Elwood et al, 1993 argued that the difference in
effectiveness of screening mammography in younger women might relate both to the
greater difficulty in distinguishing normal from abnormal tissue, and to greater growth
speed and different biological characteristics of tumours [Elwo93]. In a study to
determine factors that influence the sensitivity of modern first screening
mammography, Ketlikowske e¢f a/, 1996 showed that sensitivity is lowest among
women younger than 50 years, possibly because of rapid tumour growth [Kerl96].
Thus, despite the value of mammography as a breast cancer screening tool and
improvements in the technique, it remains an imprecise diagnostic technique. Jackson
et al., 1993 discussed that the radiologically dense breast in young women remains
difficult to image despite improvement in mammography equipment and technique

[Jack93].
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A few imaging techniques are presently being investigated as a potential or
complementary breast screening or diagnostic tools. Among these are ultrasound
(US), nuclear medicine (NM), computetized tomography (CT) and magnetic
resonance imaging (MRI) [Ders89]. As previously described in Chapter 1, these
modalities have a limited role and have yet to demonstrate their efficacy. In brief,
ultrasound has a limited role in the differentiation of cystic from solid masses and as a
guide for aspiration and preoperative localization of selected breast lesions.
Computed tomogtaphy has a more limited role to determine the spatial orientation of
a lesion detected only in the lateral mammogtaphic position. The other modalities are
generally considered expetimental with no demonstrated efficacy for eatly detection

or diagnosis of breast cancer.

A new and emerging imaging technique, electrical impedance tomogtaphy (EIT),
has been given a lot of attention recently. EIT is a technique that produces images of
impedance (viz. conductivity or relative permittivity) distribution in a slice through the
body by means of noninvasive electrical measutements and a reconstruction
algorithm. EIT has nﬁany advantages among which are its noninvasiveness (e, no
associated radiation hazard), its relatively inexpensive hardware requirements, and its
ease of operation (i.e., minimal operator supervision). This technique has potential in
medical, industrial, and environmental applications. In medical applications, EIT is

being considered in lung, brain, and heart imaging among others [Moru96].

Many experimental studies have postulated that due to the differential electrical
(or dielecttic) properties of breast tissue (viz. normal, benign, and malignant), an EM
radiation-based imaging technique (e.g, EIT) ought to be able to detect the
characteristic dielectric contrast. To date, only a limited amount of work has been
done on EIT of breast cancer imaging. This is mainly due to the fact that the spatial
resolution requirement for clinical breast cancer imaging is considerably high and that

the time for a complete scan is relatively longer than established imaging modalities.
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Despite these stringent requirements, a few attempts at breast EIT imaging have
been made. Skidmore e a/, 1987, described a data collection system for gathering
electtical impedance measurements from the human breast [Skid87]. Holder er al,
1994, obtained good quality in-vivo images of the female breast using the Sheffield
Matk 1 electrical impedance tomography system [Hold9%4]. Larson-Wiseman, 1998
using the Rensselaet's third-generation adaptive current tomograph (ACT3) EIT
system, along with a clustered electrode array configuration, showed the possibility of
catly breast cancer detection [Lars98]. Recently, Radai e al, 1999, using 2-D
simulations, demonstrated that the impedance technique is quite reliable and could be

used to detect breast cancer [Rada99].

The purpose of this thesis was to demonstrate whether an improved Wexler 3-D
EIT 'static' impedance image reconstruction algorithm could be used to detect and
diagnose small breast tumours (ie., of physical size 1-2 mm3 in volume). If
successful, a high detection rate would tesult, opening the prospect of making breast
cancer a highly curable disease. Since EIT would be economical in capital outlay and
maintenance, a much latger proportion of the female population (e.g., minotities and

isolated communities) could be reached more effectively for screening purposes.

Simplified two- and three-dimensional computer models of the breast were
employed to demonstrate the feasibility of the Wexler EIT algorithm in the detection
and diagnosis of small breast tumours. The observations and results of the

simulations are discussed here.

In Chapter 2, a review of the literature on the dielectric properties of breast tissue
was provided. In some cases, it was observed that significant differences exist in the
impedance properties of breast tissue (between normal, benign, and malignant).
However, it was concluded that more extensive, particulatly in vivo, studies of
dielectric measurements of breast tissue samples are needed to establish values more
accurately from subject to subject (i.e., inter-subject vatiability) and to investigate the

teality of any differences between the different breast histopathological types and
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normal tissue. However, as far as EIT imaging is concerned, the most crucial feature
of tissue impedance is the existence of sufficient variation between different tissue
types to allow appropriate imaging. Such vatiations, from the spatse data obtained so

far, seem to be quite reliable.

In Chapter 3, the otiginal Wexler (also known as the double-constraint method)
image reconstruction algorithm was reviewed by performing simple 2-D and 3-D
computer simulations of breast cancer imaging. In terms of image reconstruction
methodology, it was observed that the Wexler algorithm has many advantages, the
most important being that it transfers the difference in potential between the
Neumann and Dirichlet boundaty conditions to the intetior (i.e., it provides local
support) rather than to the boundary, unlike the procedure used in Newton-Raphson-
like methods [Wo0090]. This approach yields a sparse-mattix permitting use of
efficient finite-element method solution schemes. Furthermore, currents are allowed
to follow natutal paths, and no attempt is made to fotrce them to behave in beam-like
fashion and image quality is not degraded by contact and spreading tesistance as is

inhetent in resistance projection techniques [Bate80].

Optimally, in the clinical situation, image acquisition ought to be relatively fast and
accurate. However, it was appatent from the simulations petformed that the original
Wesler EIT algorithm was slowly convergent and that the spatial resolution was
inadequate for clinical imaging purposes. For the more realistic 3-D model of breast
cancer imaging simulation desctibed in Section 3.5, the algorithm converges in
approximately 3 hours and 47 minutes at approximately 8,000 iterations on a SUNW,
SPARCstation-4. The spatial resolution of the 2-D simulation was observed to be
much lower than that of the 3-D case. This was associated with the physics of the
inverse problem. The original Wexler 3-D algotithm can only resolve up to 13.0% in
the cross-sectional plane and 14.6% in the axial plane of the diameter of an imaging

region as demonstrated by simulations.
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Closer analysis of the recovered image appears to indicate that the recovered
conductivity of the central element was affected by closely surrounding clements. It
appeats as though the difference in conductivity, between simulated and recovered
conductivity for the central element, was equally distributed to the immediate
surrounding elements. As a result of which, the magnitude of the recovered
conductivity of the central element was consequently lower than what was anticipated.
This effect appeats to be more pronounced in the 2-D case than the 3-D case. This
phenomenon is probably due to the fact that electrical current is not restricted to the

2-D plane.

The observations and results of Chapter 3 are summarized and discussed as

follows:

® The algorithm used the correct physical approach. As such, it yields a sparse
matrix permitting use of efficient finite element schemes.

® Currents were allowed to follow natural paths and image quality was not
degraded by contact and spreading resistance.

® Being iterative, the algorithm's convergence rate was charactetistically slow.

® Recovered spatial resolution both in the cross-sectional and axial plane was
not of clinical potential.

® Recovered conductivity differences (i.c., between simulated and tecovered) of
an element (i.e., pixel or voxel) of interest appears to "dissipate" or "spread"

equally among immediate surrounding elements.

Though faster convergence rate and relatively higher spatial resolution are
important requitements of a reliable clinical image-processing algotithm, they are not
the only prerequisites. In Chapter 4, a series of tests and effects, of relevance to
clinical expectations, was conducted on both the otiginal Wexler 2-D and 3-D EIT
algorithms. These tests and effects were conducted for the purpose of evaluating the
potential of the Wexler EIT algorithm in a clinical environment and to identify "areas

needing improvement".
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The observations and results of Chapter 4 are summarized and discussed as

follows:

It was determined that if the initial starting conductivity distribution was
equivalent to the exact conductivity distribution, the Wexler EIT algorithm
converges at the first iteration. This observation supports the accuracy of the
mathematical code. Through simulations, it was also observed that a good
starting value would produce correct results, while a poot initial guess may not
lead to convetrgence. This obsetvation is suppotrted by othet studies [Mura85
and Avis95]. In the 2-D and 3-D simulations the tumout element (i.e., pixel or
voxel) had a conductivity of 4.0 and the background region was at 1.0. It was
observed that, if the algorithm was initialized with a homogeneous
conductivity of 2.0, the convergence rate improves over that of the
homogeneous 1.0. However, the improvement is not significantly better than
if the initial assumption of 3.0, 4.0 and 5.0 was made. This observation
supports the importance of incorporating a ptiofi information in EIT

algorithms.

In section 4.3, an investigation was petformed to detive an optimal excitation
and measurement pattern configuration. It was determined that excitation
patterns that employed a symmetrical or near-symmetrical configuration
provide faster convergence and improves image quality. The combination of
minimal node involvement, symmetrical or near-symmetrical excitation
patterns, and  sometimes measurement patterns  provide the optimal

configuration for the imaging of breast tumour.

In Section 4.4, an investigation into the finite element size effect on
convergence rate and image quality was conducted. Mu, 1994 desctibed a
procedure that statts with a coarse mesh to obtain an inital guess and a fine
mesh to recover the image accurately in the solution of the inverse problem.

Mu argued and demonstrated that convergence speed would be greatly
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reduced if a coarse mesh were used first to obtain an approximate solution,
then a finer mesh to reach the true image. The observations derived by Mu
[Mu94] were implemented on the standard 2-D and 3-D computer simulation
examples for breast cancer imaging. Results of simulations indicated that Mu's

scheme improves the convergence rate and subsequently the image quality.

® In section 4.5, the effect on convergence speed of the spatial location of
tumour was demonstrated. It was observed that better convergence rate is
attained if the tumour is located on the petiphery of the object than if it was
located in an intermediate or central position within the object. It was also
observed that conductivity of the element on the edge of a central tumour
element increases with iteration count at catly iterations. The conductivity
value of the edge element then decreases at later iterations. This phenomenon
appeared to affect the resolution at the sharp edges of the diseased-to-normal
tissue interface. This effect was termed the "Tumour-Edge" effect. If the
potential and conductivity distributions are known from past history, the
distributions at convergence can be determined by intetpolation. This
observation will prove crucial in developing a method to improve the

convergence speed of the algorithm.,

¢ In section 4.6, an investigation of the behaviour of spatial resolution as a
function of the location of the tumour was performed. It was determined that
the resolution of EIT is spatially vatiant. The resolution of a tumour at 2
periphetal location is supetior to that at intermediate and central locations.
When compared to values obtained from the literature, the spatial resolution
of the original Wexler 2-D and 3-D EIT were found to be quite similar to
those obtained by [Ider95 and Meth96]. It is apparent that if the loss in
tesolution, in particular at the diseased-to-normal tissue interface, as a function
of tumout spatial location could be compensated, EIT spatial resolution would

improve drastically.
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The "Tumour-Edge" effect identified in Section 4.5 and 4.6 was investigated
further in Section 4.7. It was detetmined that this effect was responsible for
the poor spatial resolution at the diseased-to-normal tissue interface. A figure-
of-merit was introduced to quantify the difference between the simulated and
recovered conductivity at the tumour location. The figure-of-merit was
termed the conductivity profile ratio and was represented by T. This provides
a measure of how close the recovered distribution is to the simulated
distribution and would be used to assess improvement in spatial resolution at

the diseased-to-normal tissue interface.

In section 4.8, the effect of instrumentation or device noise on convergence
rate and recovered image quality was investigated. It was observed that, with
the sometimes measurement pattetn, a tumour of approptiate contrast could be
distinguished adequately from the background region. The fact that the
algorithm can handle noise that will be characteristic of a clinical EIT-based

system further adds to its potential in medicine.

In section 4.9, the effect of electrode-electrolyte (or clectrode-skin) impedance
on recovered image quality was discussed. It was determined that for the
Wexler algorithm, the effects of electrode-contact resistance ate minimal, if
any. Furthermore, accurate finite element models of the impedance of the
skin and that of the chestwall ought to be considered in the imaging

reconstruction algorithm.

In section 4.10, the effect of electrode and patient motion was investigated on
simple breast model. It was shown that the original Wexler EIT algorithm is
not affected significantly with electrode motion. Simulation of breast motion
showed that the otiginal Wexler EIT algorithm would not perform that
accurately in the presence of patient motion. Methods were suggested that

would address this issue.
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* An experimental study of the effect of the third dimension on the 2-D Wexler
EIT system was conducted in Section 4.11. It was observed through
simulations that the 2-D Wexler EIT system inevitably produces three-
dimensional current flow. This renders intetpretation of EIT images difficult.
This study had shown that a detailed understanding of the nature of this 3-D
effect is essential and ought not to be neglected. This effect has justified the
focus of this thesis on the development of an improved Wexler 3-D EIT

algorithm rather than the 2-D algotithm.

Based on the observations made in Chapters 3 and 4, it was obvious that one of
the crucial "areas needing improvement" of the Wexler algorithm was the relatively
longer time it took the algorithm to converge. Further, as discussed in Chapter 4, it
was of significant importance that any realistic attempt at imaging the breast ought to
be done in three-dimensions, ie., 3-D. As such, the focus of Chapter 5 was to

improve the convergence rate of the original Wexler 3-D EIT algorithm.

An algorithm was developed and implemented on 3-D computer simulations of
small breast tumour imaging. The algotithm was artived at from an important
obsetvation made in Section 4.6, an investigation on the convergence rate of the
algotithm as a function of spatial location of tumour. It was observed that if the
potential and conductivity distributions of the algotithm at the first few iterations are
known, future (i.e., at later iteration) distributions could be predicted. That was the
basis of the Modeller-Predictor-Corrector (MPC) algorithm developed to improve the

time of convergence.

In brief, the MPC involved modelling past behaviour of potential and conductivity
distributions, predicting conductivity distribution at an iteration close to convergence
by using predicted potential distribution, and correcting conductivity distribution by
teinitializing the otiginal Wexler algotithm with the predicted conductivity

distribution. Results of simulation performed on a simple 3-D breast model (of size

25X25X25 mm?) in an attempt to detect 2 1 mm3 tumour indicated that the MPC
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algorithm is quite effective in improving the time of convergence. At 20 iterations,
for a time period of 7.4 minutes, on a SUNW, SPARCstation-4, the recovered
conductivity distribution, obtained using the MPC algorithm, was determined to be
quite close to the exact conductivity distribution. The conductivity profile matching
ratio T (0 < T < 1), for the ortiginal Wexler, Strobel's multistep, and MPC methods
were determined to be 0.35, 0.78, and 0.82 respectively. The difference between the
MPC tecovered conductivity profile and that of the exact distribution was identified
to be at the tumour (i, benign and malignant)-edge interface. Note that this effect,
termed the "Tumour-Edge" effect catlier, was initially identified in Chapter 4.
Despite the major improvement in the time of convergence, now comparable to
existing imaging modalities, the spatial resolution, in particular at diseased-to-normal
tissue interface, was yet to improve. The "Tumour-Edge" effect, identified earlier as

responsible for the observed low resolution, was closely investigated in Chapter 6.

The obsetvations and results of Chapter 5 are summarized and discussed as

follows:

® The original Wexler 3-D EIT algorithm was identified as slowly convergent.

® The Modeller-Predictor-Corrector (MPC) algotithm was developed to improve
time of convergence of the original Wexler 3-D EIT algorithm.

® Results of computer simulations on a simplified 3-D breast model, using the
MPC scheme, showed a drastic improvement in convergence rate.

® Conductivity profile matching ratio T was identified to be higher than the
original or multistep methods. Consequently, an appropriate and useful
conductivity image was recovered in a relatively shorter time span comparable
to existing imaging modalities.

¢ Overall spatial resolution had improved. The FWHMs of the recovered image
at 20 iterations in the cross-sectional and axial plane wetre 6.2% and 7.1% of

the diameter of the imaging region respectively.  These results were an
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improvement over the original algorithm with FWHMs in the cross-sectional
and axial plane of 13.0% and 14.5% respectively.
® It was observed that due to the "Tumour—Edge" effect, resolution at diseased-

to-normal tissue interface did not improve that considerably.

The Locator-Compensator (LC) algorithm developed in Chapter 6 was used to
address the observed "Tumout-Edge" effect. In brief, the I.C algorithm involved
using a variant of the peak detection method to locate peak(s) and a combined
conductivity-updating scheme to compensate for resolution at located peak(s). The
LC method was implemented on a computer simulation of a simplified 3-D breast
model (of size 25x25x25 mm?), in an attempt to image a small tumour of size 1 mm?3
in volume. The FWHMs in the cross-sectional and axial plane were 5.4% and 6.3%
of the diameter of the imaging region respectively. Results showed an improvement
over the original algorithm with FWHMs in the cross-sectional and axial plane of

13.0% and 14.5% tespectively.

The obsetvations and results of Chapter 6 are summatized and discussed as

follows:

® The original Wexler 3-D EIT algorithm was identified to have overall low
resolution.

® The Locator-Compensator (LO) algorithm was developed to improve spatial
resolution of the original Wexler EIT algorithm, in particular, at diseased-to-
normal tissue interface.

® Results of computer simulations on 2 simplified 3-D breast model, using the
LC scheme, showed 2 drastic improvement in resolution at diseased-to-normal
tissue interface.

® An observed two-fold increase in resolution magnitude was observed.
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In Chapter 7, an improved Wexler 3-D algorithm was demonstrated on a more

realistic computer simulation of a simplified breast model. The breast model was a

cube of size 50X50%50 mm3, The malignant and benign tumours were of physical
size 1 mm3 in volume and had conductivity 4.0 and 2.0 respectively. By combining
the development of the two previous chapters, i.e., MPC and L.C algorithms, the
convergence rate and spatial resolution of the original Wexler algorithm improved
dramatically even in the presence of a SNR level of 30 dB. The FWHM:s in the cross-
sectional and axial planes were 2.2% and 2.5% for the intermediate benign tumour
and 2.7% and 3.1% for the malignant tumour of the diameter of the imaging region
tespectively. The recovered conductivity values for the benign and malignant
tumours were 1.93 and 3.87 for known values of 2.00 and 4.00. The improved
Wexler 3-D EIT algorithm cleatly demonstrated that small breast tumours can be

detected and diagnosed accurately with EIT.

The observations and results of Chapter 7 are summarized and discussed as

follows:

® 'The original Wexler 3-D EIT algorithm was identified to have overall low
convergence tate and spatial tesolution, in patticular at diseased-to-normal
tissue interface,

® By combining the MPC and the LC algotithms of Chapters 5 and 6
tespectively, an improved Wexler 3-D EIT algorithm was obtained.

¢ Results of computer simulations on a more realistic 3-D breast model, using
the improved LC, showed a drastic improvement in resolution at diseased-to-
normal tissue interface.

® EIT can be used to detect and diagnose small breast tumours.

The improved Wexler 3-D EIT algotithm for imaging small breast tumour
developed hete was demonstrated on uniform geometry. Though realistically, the
breast is not uniform, the improved and refined algorithm presented here would

petform similarly for nonuniform geometry as demonstrated by Mu, 1994 [Mu94].
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

The statistics for breast cancet, a common cancer in women, are sobeting and

downright scary. The chance of tecovety (i.e., prognosis) and choice of treatment

unjustifiable (e.g., magnetic resonance imaging) for mass screening.  As such, other
Imaging modalities are being Investigated €.g., ultrasound, computerized tomography,

radionuclide scanning, and electrical impedance tomography.

Among the screening techniques under Investigation, electrical impedance
tomography (EIT) appears to offer the most promising solution. EIT offers several
advantages over other clinica] and experimental techniques. EIT's positive attributes
are its ability to produce images at teduced, if any, biological hazard, its relatively
inexpensive instrumentation requirements, and its physical ease of operation. Despite
these obvious advantages, EIT remains an experimental tool with little, if any,
importance to medicine yet. So far, from a medical betspective, the spatial resolution
of EIT is not as good as may be achieved by other techniques. The goal of this thesis

was to demonstrate otherwise.
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The original Wexler EIT algotithm was reviewed by petforming 2-D and 3.D
computer simulations of simplified breast cancer imaging. It was observed that the
algorithm satisfies most of the standard criteria expected of an EIT image—processing
scheme, with clinical potential in the eatly detection of breast tumours.  The
approaches utilized and the results obtained in this work, in an attempt to accomplish

the objective, are summarized as follows:

® On the basis of the alarming statistics for breast cancer and the ineffectiveness of
~fay mammography for catly detection, an alternate method (Electrical
Impedance Tomogtaphy, EIT) was investigated. The focus was to further the
development and tefinement of an existing EIT 'static' Image teconstruction
algotithm, namely, the Wexler algotithm. The inevitable question was posed. Can

an improved Wexler EIT 'static’ imaging algotithm be employed to image small

breast tumours of size 1 -2 mm in diameter?

® The rationale for choosing EIT, as an alternate breast cancer Imaging modality,
was discussed in Chapter 2. EIT is an imaging methodology that is based upon
electrical impedance (or 'dielectric) contrasts within the body. A review of
literature on the dielectric propetties of breast tissue was conducted. Generally,
differential dielectric properties (viz., conductivity or relative permittivity) between
normal and diseased breast tissue were observed. However, it was concluded that
despite the vatiability of dielectric propetties of tissues, more extensive studies of
diclectric measutements of breast tissue samples ate needed, in patticular, to
establish values more accurately from tissue to tigsue (i.e., inter-subject vatiability)
and to investigate the reality of any differences between tumours and normal
tissue. As far as EIT Imaging is concerned, the most crucial feature of tissue
impedance is the existence of sufficient variation between different tissue types to

allow appropriate Imaging.
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In Chapter 3, the original Wexler EIT algorithm was reviewed. A few advantages
were identified. In particular, the algorithm yields a sparse-matrix and thus
efficient finite-element method solution schemes could be employed, currents are
allowed to follow natural paths without constraining them to behave in beam-like
fashion, and image quality is not degraded by contact and spreading resistance as
is inherent in resistance projection techniques. However, eatly obsetvations of
two- and three-dimensional computer simulations on simple 3-D breast model
petformed appear to indicate two major difficulties that are crucial to the clinical
success of the algorithm in the imaging of breast cancer. The convergence rate
was too slow and the recovered spatial resolution, in particular at diseased-to-
normal tissue interface was not sufficient for eatly breast cancer Imaging (i.e.,

detection and diagnosis).

Mote detailed analyses were performed on the original Wexler 2-D and 3-D EIT
algorithm to determine its characteristics and ‘dynamics'. The purpose of the
analyses was to determine whether the original Wexler algorithm could satisfy the
stringent requirements expected of an established clinical imaging algorithm, and
to identify "areas needing improvement" in an attempt to image small breast
tumours. The ability to provide fast, accurate, repeatable, low-noise, and clinically
meaningful images were among the critetia of interest. Two- and three-
dimensional computer simulations indicated that, in general, the algorithm could
perform well in a clinical environment. Image quality was not affected with
patient motion and in the presence of noise, and reasonable images were
recovered when electrode-electrolyte impedance was taken into account. In brief,
the Wexler algorithm was obsetved to be stable and quite robust. However, two
crucial "areas needing improvement" were identified. These were the scan time
(or convergence rate) and the overall spatial resolution, in particular at diseased-to-
normal tissue interfaces. The focus of this thesis was on developing methods that

would imptove these shortcomings.
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® One of the observations made in Chapter 4 was that with a knowledge of past
conductivity  distribution, future distributions could be determined by
extrapolating the modeled past conductivity disttibutions. Simply stated, if the
history of conductivity distributions is known at early iterations, it can be
modelled and used to estimate the distribution at later iterations. This is the
obsetvation, which was at the basis of the Modeller-Predictor-Cotrector MPC)
scheme. In brief, the MPC method involved modelling the past behavior of
conductivity and potential distributions at eatly stage. Subsequently, the fitted
equations wete used to detive a conductivity disttibution close to or at
convergence. To minimize error due to extrapolation, the derived conductivity
distribution was used to reinitialize the image reconstruction algorithm. When
implemented on 3-D computer simulations of eatly stage breast tumour imaging,
convergence rate appeats to improve dramatically,. As such, scan time was
relatively compatable to present breast cancer imaging modalities. This was

clearly identified as an improvement over the otiginal Wexler 3-D EIT algorithm.

* It was also observed in Chapter 4 that the spatial resolution of EIT is relatively
lower at the center than at an intermediate or petipheral location for a region.
Simply stated, EIT is space variant. Further, the resolution at diseased-to-normal
interface was determined to be telatively poor. On that basis, a Locatot-
Compensator (LC) scheme was developed and implemented on 3-D computer
simulations of eatly stage of breast tumour imaging. In brief, the L.C method
involved two major steps. In the first step, region(s) of interest was/wete
localized using a vatiant of the peak detection algorithm. Once localized, the
conductivity values of the peak(s) were compensated for loss in spatial resolution
using a combined conductivity-updating scheme. Results obtained with the LC

algorithm improved resolution at diseased-to-normal tissue interface considerably.

150



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

® In Chapter 7, a combined algotithm, incotporating the MPC and LC schemes with
the otiginal Wexler 3-D EIT algorithm, was developed and implemented on
simplified 3-D computer simulations of small breast tumour (benign and
malignant) imaging. The focus was to show that an improved Wexler 3-D
algotithm could be used to image small breast tumours. Results of simulations
indicated significant improvement in convergence rate and overall spatial
resolution. Detection and diagnosis of eatly breast diseased tissue (viz., benign
and malignant) of physical size 2.2 - 2.7 mm was demonstrated with the improved

algorithm.

In this thesis, an EIT image reconstruction algorithm, namely, the original Wexler
EIT algorithm was investigated to demonstrate its potential in the imaging of eatly
stages of breast cancer. The algorithm was tested rigorously, using simulations, to
assess some ctitetia expected of a clinical imaging tool. It was shown that the
algotithm is relatively stable and robust. However, initial scan time and spatial
resolution were not appropriate for medical applications. As such, methods were
devised to refine and improve the original algorithm. The improved Wexler 3-D EIT
algorithm was implemented on simplified 3-D computer simulations. It was observed
that the algorithm could resolve up to (2.2 - 2.7)% of the diameter of an imaging
region. For the simplified model of the breast adopted here, the improved algorithm

was able to detect and resolve tumour of size similar to an average duct size (1-2 mm).

The goal of this thesis was to demonstrate that an improved Wexler 3-D EIT
algorithm can be used to detect and diagnose breast tumour of size 1 - 2 mm in
diameter (i.e., the size corresponding to an average female human duct). The work

catried out here, was successful in demonstrating:

e The potential of EIT as a clinical tool in breast cancer imaging.

® That the continuous development of a clinical EIT system is justified.
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* The medical community will have at their disposal an inexpensive noninvasive
tool that will either replace ot complement mammography in the race for a

cure.

9.2 Future Work

The focus of this thesis was on the algotithmic development of an iterative EIT
image reconstruction algorithm, namely, the Wexler algorithm. It was demonstrated,
through realistic computer simulations, that the improved Wexler algorithm could be
employed to image small breast tumours. Ideally, for a proper clinical assessment of
the algotithm, real measurements on a statistically representative group of subjects
will have to be used. Consequently, this can only be accomplished with the use of

existing and/or development of an appropriate data acquisition system.

The clinical success of the improved Wexler EIT 'static' image reconstruction
algotithm will depend on the appropriate hardware. Though this work has
demonstrated the usefulness of a robust and fast algorithm, only with the proper
hardware, complementary with the algotithm developed here, will EIT be successful

in the detection of small breast tumours.

The improved Wexler EIT algotithm, as demonstrated in this thesis, can be of
potential in the imaging of eatly stage of breast cancer. Howevet, it is evident that
what has been achieved hete is only a2 demonstration of feasibility, requiting further
development to meet the ultimate goal of a clinical EIT-based breast cancer imaging
system (i.e., to be able to detect and diagnose breast tumour of size 1.0 mm? in
volume). As such, the focus of future developments, complementaty to the improved
Wexler EIT algorithm, would most likely be in the following areas, outlined here as

questions:

o How best to take measurements on the breast? Would a plastic breast holder

fashioned in the shape of a brassiere cup with the appropriate types, sizes, and
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placements of electrodes be more effective than immersing the breast in a
container of electrically conductive fluid with the inner surface of the container
supporting the electrodes? Can the algorithm be implemented with existing, i.e.,

off-shelf hardware?

® How will the improved Wexler 3-D EIT algorithm petform in real clinical
situations? 'This can only be known if a clinical EIT machine is built in the very
near future. The works carried out in this thesis justifies the feasibility of

developing such a unit.

® If a clinical unit is developed, more studies on larger groups of subjects and
comparisons with existing techniques need to be performed to cortectly assess the

potential of EIT as a clinical tool.

These and other questions will need to be fully addressed before a clinical EIT
system, utilizing the improved Wexler image reconstruction algorithm, can be
developed. It is anticipated that with the algorithmic development presented here,
along with the future wotks outlined above, the transition of EIT from the laboratory

to the clinic would become a reality.
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Appendix I

Wexler EIT Algorithm for the Novice

In 1985, Wexler ef 4l [Wexl85] proposed an iterative reconstruction algorithm
commonly called the "double-constraint method" ot the "Wexler Algorithm", to solve
for the nonlinear inverse problem in electrical impedance tomography. A discussion
of the Wexler EIT algorithmic approach was provided in Chapter 3. The basics
mathematics of iterative image reconstruction algorithm, using the Wexler algorithm
as an example or the ART algorithm, is described Appendix II and Appendix III
respectively. Here a discussion of the simplistic physical approach of the Wexler
iterative EIT algorithm is provided. The purpose is to show that the Wexler
algorithmic approach can be easily understood with as simple a concept as Ohm's

Law, a concept commonly found in any undergraduate physical sciences cutticula.

Ohm's Law deals with the relationship between voltage and curtent in an ideal
conductor. This relationship states that the potential difference (voltage, V) across an

ideal conductor is proportional to the current I through it,

V=IR [AL1]

where R is the constant of proportionality, called the resistance, V is the potential
difference between two points that include a resistance R, and I is the current flowing
through the resistance. For biological work, it is often preferable to use conductance

G, the inverse of R. In this form Ohm's Law is given as:

I=GV [AL2]
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In the Wexler EIT algorithm potentials (voltages) are measured on the surface of
the object being imaged using a multi-probe extension of the fout-probe technique.
In the four-probe technique (or tetrapolar configuration), cuttent enters the object via
two injecting electrodes (current electrodes) while the signal (potential difference) is
picked up by a second pair of electrodes (voltage electrodes) attached to the surface

of the object (see Figure ALQ below).

—{ 0—
(D

Figure ALO: A simplified four-probe measurement configuration. Current I, is
injected via a pair of electrodes through the continuous object (e.g., cylinder)
and voltage V measurements are made on the surface with the other pair of
electrodes. In the Wexler algorithm, a multi-probe extension of the four-probe
technique is employed to produce sets of currents and voltage measurements.

To produce an acceptable conductance map of the object, lineatly independent
multiple current and voltage measurements are employed. These measurements are
made at low frequency and using high impedance probing electrodes. Since no
current leaks across the object, contact tesistance for the continuous object (in this
example, 2 cylinder) is of minimal, if not any, importance. This provides true voltage

measurements that are used to determine the conductance of the object.

With potentials as measured by application of Neumann (i.e., cutrent) and

Dirichlet (i.e., voltage) boundary conditions, Ohm's Law is generally not satisfied

within the whole imaging region and a residual R is obtained,

R = (I-GV) [AL3]

175



APPENDIX I. WEXLER EIT ALGORITHM FOR THE NOVICE

To enforce compatibility, the minimization of the squate of the residual over the

whole imaging region is sought,

R* = (1-GV)? [AL3]
2

B;G =2(1-GV)- V=0 [AL4]

G= _\_‘/’_i_ [AL5]

X7 voa

K, = [3.5]
>[I, vo-voav
5 ;
Equation ALS5 yields,
GV=I [AL7]

which is Ohm's Law. Note that if one substitutes V for V¢ and I for J in [ALS],

one gets equation 3.5 in Chapter 3. Equation 3.5 is the revised conductance for the

imaging region.

176



Appendix II

Basics of the Iterative Technique

Generally, there are a few steps that ate common to most iterative methods. These

are outlined below:

a)
b)

Assume an initial value for conductivity distribution.

Solve the forward problem to calculate sutface voltages ¢ from the assumed
conductivity distribution. The Finite Difference Method (FDM) or Finite
Element Method (FEM) is normally used to solve the forward problem.
Applying the results from the Forward problem to determine how close the
assumed conductivity distribution is to the real (i.e., measured) conductivity
distribution.

Improve conductivity distribution tecutsively.

Repeat from (b) until convergence, i.e., the difference between measured and

predicted ¢ is zero or suitably small.

It is primarily steps (c) and (d) which distinguishes one iterative reconstruction

method from another.

Most of the iterative algorithms, e.g., the Wexler algorithm, employ Poisson’s

equation (1.0) to describe the continuous electtical field problems and solve surface

potential distributions with numerical techniques. The finite element method (FEM)

is usually the numerical technique used in solving electric field equations to obtain the

potential distribution within a region of interest under an assumed conductivity

distribution and boundary conditions. These techniques provide the ability to generate
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estimates of boundary potential measurements for a given impedance distribution and

are the basis of most iterative techniques.

The first step of the numerical solution of Poisson’s equation with FEM involves
dividing the region of interest into many smaller regions called elements. The total

region is then described on an element-by-element basis (Figure AIL1).

77 7T

[TT7T 777/

A 4

Figure AIL1: An arbitrary 2-D region divided into some finite
quadrilateral elements. K;, is the conductivity of element i and j
represents a node of an element.

The FEM uses the variational principle, in which the field is represented using a
piecewise continuous function and the variational integral is minimized with respect
to the residual or functional to best approximate the actual field. The variational

method is fully described in [Berr92].
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If the region is divided into smaller elements the values of conductivity &, within

each element are assumed to be constant. The field ¢ is given by

o= o;(x y)e, [ALL1]
i=]

where ;(x,y), is the interpolation polynomial defined over the x-y sutface, and 7 is
the total number of nodes within the element. Equation (AIL.1) can also be rewritten

as,
¢p=a'¢p=¢"ct [ATL2]

The appropriate functional for the solution of the Poisson’s equation is

F= H {( ) ( ”dxdy 2j¢hds-2jj¢fdxdy [AIL3)]

where A is the Neumann condition on the boundaty. Equation (AIL3) is minimized by

differentiating with respect to the variational parametetr ¢ , and set to zero

F _, [AIL4]

op
Upon substitution of (AIL2) into (AIL4) and differentiating with respect to the new

variational parameter ¢,, one yields,

J do, oo, dor, (da, o, J
o e e

—2f hads-2f] fo,ddy=0 i j=12...n [AILS]

The first integral yields a square # x # matrix whete # is the number of variational
nodal points and the latter two integrals can be summed to yield a vector of length 7.

The resulting set of linear equations can be put in standard matrix form as,
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Sp=b [AIL6]
where,
do, da;  Jor, dot
S,= JJBK( FRRE S ay’]dxdy [AIL7]
b= hoc,.ds+”3 for, dxdy [AILS]
B

where, i,j=1,2,....,n and ¢, are the unknowns to be solved.

Subsequently, the integration is performed using a standard procedure. One such
procedure is to map a standard square element into a general quadtilateral before
integration [Berr92]. An appropriate transformation is used to map a squate element
in local coordinates to the general quadrilateral in global cootdinates. By introducing

new variables of integration,

x=x(&mn) and y=y&,mn)

and using the Jacobian transformation to map the element in local space to global

space,
& o
£ odn
J = AIL9
o on

equation (AIL7) can be simplified as,

[I, £ yydrdy =[] flx&m), y&m)] 1| dédn [AIL10]
whereby, the values of %O;ci and % can be determined from,
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da, ox
a 0
8; = [J] af / 1J] [AIL11]

o 23
and this provides a desired result to perform the integration over a square element
using numerical quadrature schemes, e.g., the generalized Gaussian Quadrature
methods for two-dimensional and three-dimensional approximations [Berr92]. For

multiple integration over 2-D or 3-D, the Gaussian quadrature formulae for
estimating an integral of a function f () on the interval -1 < & < 1 is simply the
generalizations of those for 1-D respectively. In 1-D, the Gaussian quadrature
formula for estimating an integral of a function f(£) on the interval -1 < & < 1 is

given by,
fllf(é)dé = iW,-f(f,-) [AIL12]

whete &; is some point located in the interval, W; is a weight associated with the i-th

point, and 7 is the total number of points. The weights and points are determined by
assuming that / is a polynomial of degree 2-1 and then computing the points and
weights that guarantee an exact result for such a polynomial. Similatly, integration

over 2-D and 3-D is given by equations (AIl.13 and AII.14) respectively.

E f: gEm)dedn = Y wwgle.n;) [AIL13]
i,j
fll fll th(g’”@) dédndg = Y WWW,hE n;.c,) [AIL14]
i,j.k

Gaussian quadrature uses the fact that the choice of abscissas at which to evaluate
the function to be integrated can substantially conttibute to improving the accuracy of
the result. Further accuracy can be obtained by using higher order approximations,

for example, by adding more nodes to the elements. In the Wexler 2-D EIT
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algorithm, the degree of approximation is improved from linear to quadratic by using

9-node quadrilaterals as shown in Figure AIl2a.

() (b)
Figure AIL2: (a) Higher-order elements employed in the 2-D Wexler algorithm. Element
has 9 nodes quadrilateral, (b) the standard element in 3-D, obtained by adding depth to 2-D

element.

Higher-order elements can produced better results, however, increasing the
number of nodes is equivalent to increasing the number of unknowns which in turn
would require more computational effort. As such, the elements employed in the 3-D
Wexler algorithm atre created by adding depth to elements of 2-D. The standard
elements in 3-D is linear with 8 nodes as shown in Figure (AIL.2b). Justifications for
the choice of elements configuration employed in this thesis are provided by

Berryman 1992 [Berr92].
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Appendix III

Algebraic Reconstruction Techniques (ART): Its Relation to EIT

Gordon, Bender, and Herman introduced algebraic reconstruction techniques
(ART) in 1970 for solving the problem of three-dimensional reconstruction from
projections in electron microscopy and x-radiology [Gotd70]. In x-ray computer
tomography (CT) for example, ART is a conceptually simple method of
reconstructing the attenuation matrix from the measured ray sums (or projections)
[Maco83]. It is an iterative apptoach where the matrix of x-ray attenuation values is
first assigned a random value. Thereafter, a sequence of steps is performed where
sums along the paths through the mattix are given new values to match the
corresponding measuted ray sums. The literature on ART and variants are numetous.
Gordon, 1974 gave a comprehensive tutorial on ART [Gord74], Macovski, 1983
provided simple illustrations and examples of the method. Recently, Guan and
Gordon, 1996, using different projection schemes, demonstrated the potential of

ART in computed tomography [Guan96].

Barber and Brown developed one of the first in vivo EIT image reconstruction
algorithms [Barb83]. The algorithm was an adaptation of the filtered-backprojection
method used in computed tomogtaphy [Maco83]. In EIT, the ray sums are the
measured voltage differences between the adjacent electrodes for each pair of cutrent
electrodes. The images produced by each current configuration are summed and
filtered as in CT imaging, to form the tomographic image. Realizing that EIT is a
nonlinear invetse problem, tequiring an iterative approach for the correct solution, an
attempt was made here at adapting a CT-based algorithm, ART, to solve the EIT

problem.



APPENDIX Ill. ALGEBRAIC RECONSTRUCTION TECHNIQUE (ART): 1T'S RELATION TO EIT

Two- and three-dimensional computer simulations were employed to access the
potential of the basic ART algorithm in producing tomographic impedance images.
In ART, the resistivity of each element is corrected at evety projection angle (or view).
Here the term projection angle describes the procedure of solving Laplace equation,
or measuring voltage on the electrodes (voltage electrodes), with a specific active

electrode pair (current electrodes).

The impedance images recovered using the basic ART algorithm were
disappointingly of low quality. The poor quality of the recovered image, using the
basic ART algorithm, is the result that at every cottection, the number of unknowns
(number of elements) is usually greater than the number of lineatly independent
measurements (i.e., number of equations). This caused the method to diverge unless
some restrictions to the number of the unknowns are placed. One possible solution

would be to maintain the resistivity of some elements at a constant value? For the
two-dimensional simple simulation model employing 9x9 elements with 18
electrodes, one has 81 unknowns and only a maximum of 17 unique measurements
for a single view. This scenario is equivalent to a determinacy of 17/81 = 0.21 (i.e., a

very underdetermined problem).

With SIRT (Simultaneous Iterative Reconstruction Technique), all the lineatly
independent measurements are collected first by taking all the possible projection
angles (this is called an iteration). Subsequently, the elements resistivity cotrection ate
made. This algorithmic approach is similar to that employed by the Wexler EIT
algorithm.  Using the previous example, the total number of independent
measurements, using SIRT, is N (N-1)/2 = 153, which is much gtreater than the total
number of unknowns for a determinacy of = 1.89. This is an approptiate determinacy

for avoiding divergence.
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