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Abstract

Most studies on frequent itemset mining focus on mining precise data. However,

there are situations in which the data are uncertain. This leads to the mining of

uncertain data. There are also situations in which users are only interested in frequent

itemsets that satisfy user-specified aggregate constraints. This leads to constrained

mining of uncertain data. Moreover, floods of uncertain data can be produced in many

other situations. This leads to stream mining of uncertain data. In this M.Sc. thesis,

we propose algorithms to deal with all these situations. We first design a tree-based

mining algorithm to find all frequent itemsets from databases of uncertain data. We

then extend it to mine databases of uncertain data for only those frequent itemsets

that satisfy user-specified aggregate constraints and to mine streams of uncertain

data for all frequent itemsets. Experimental results show the effectiveness of all these

algorithms.
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Chapter 1

Introduction

Frequent itemset mining [AIS93] plays an essential role in data mining, which

looks for implicit, previously unknown, and potentially useful information from data.

Since Aggrawal et al. [AIS93] introduced the research problem of finding frequent

itemsets from traditional databases consisting of precise data, it has been the subject

of numerous studies [LNM02, LLN03, Leu04, Bod05, LIC08, YLL08, PG09, PLL+10].

These studies can be broadly divided into two categories: those that focus mainly

on performance and those that focus mainly on functionality. The studies in the

first category aim to explore how to compute the frequent itemsets as efficiently as

possible. The studies in the second category target the questions such as which kinds

of patterns to compute and where to mine frequent itemsets.

Regarding the studies that focus on performance, a well-known frequent itemset

mining algorithm, called Apriori algorithm [AS94], was proposed in 1994. It depends

on a generate-and-test approach. To find frequent itemsets from transaction database,

Apriori and its extensions [NLHP98, CKH07] (i.e., Apriori-based algorithms) first

1



2 Chapter 1: Introduction

generate candidates and then check the occurrences (supports) of these candidates

against the transaction database. The candidates with their supports over the user-

specified minimum support threshold are counted as valid frequent itemsets.

To avoid memory intensive candidate generation, Han et al. [HPY00] proposed

a tree-based frequent itemset mining algorithm called FP-growth (Frequent Pattern

growth). The algorithm first scans the transaction database once to find all frequent

1-itemsets and sorts them according to some criteria (e.g., in frequency descending

order). Then, it scans the transaction database again to construct an extended prefix-

tree, called FP-tree (Frequent Pattern tree), which captures all frequent items in

the transaction database. Based on the FP-tree, the FP-growth algorithm mines

frequent itemsets by a test-only approach, called frequent pattern growth, which

only tests the support for each itemset. As a result, all frequent itemsets are found

without candidate generation. As a preview, all the mining algorithms we are going

to propose in this thesis use variants of the FP-tree. Our algorithms also avoid

generating candidates and only test for support.

Regarding the studies that focus mainly on functionality, they aim to find in-

teresting patterns other than frequent itemsets. Examples of these patterns include

correlation [LCZ05], sequences [CWC09], maximal itemsets [Yan04] and closed item-

sets [JG06a]. Frequent itemset mining has played an important role in the mining

of these patterns. However, most of the studies on frequent itemset mining rely on

a computational model, in which data mining algorithm does almost everything and

human users are not engaged in the mining process. In other words, these data min-

ing algorithms provide little or no support for user focus. Note that in many real-life
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applications, the user may be only interested in a tiny portion of mined data. For

example, a user may only want to find the frequency information of the snow deeper

than 5cm. As another example, the supermarket owner may only want to know the

information of the customers with average monthly purchase more than $200. If we

apply the regular mining process in these cases, the users need to wait for a long

period of time to obtain a big number of frequent itemsets. Among these frequent

itemsets, only a tiny fraction may be interesting to the users.

To solve the above problem, constrained frequent itemset mining [BAG99,

GLW00, LKH06], which aims to find only those frequent itemsets that satisfy the

user-specified constraints, has been introduced. Some constrained frequent itemset

mining algorithms are based on the Apriori algorithm. For example, CAP [NLHP98]

pushes constraints into an Apriori-based algorithm and applies candidate generating-

and-testing approach to obtain all valid frequent itemsets. On the other hand, the

algorithms such as FPS [LLN02] and FIC [PHL01] first push the user-specified con-

straints into the FP-growth based algorithm and then mine frequent itemsets by the

frequent pattern growth (divide-and-conquer) approach. As a result, all frequent

itemsets which satisfy the user-specified constraints are obtained without candidate

generation.

Note that all the studies we have discussed so far are related to the mining of fre-

quent itemsets from traditional static databases. Over the past decade, the automa-

tion of measurements and data collection has produced tremendously huge amounts of

data in many real-life application areas. The recent development and increasing use of

a large number of sensors has added to this situation. Consequently, these advances in
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technology have led to a flood of data. Algorithms for mining these dynamic streams

are in demand. This calls for stream mining [GZK05, LK06a, JG06b, WF06, CH08,

LB08, LWW+10]. When comparing with mining from traditional static databases,

mining from data streams is more challenging due to the following two properties of

data streams:

1. Data streams are continuous and unbounded. To find frequent itemsets from

data streams, we no longer have the luxury of performing multiple data scans.

Once the streams flow through, we lose them. Hence, we need some techniques

to capture the important contents of the streams (e.g., to capture recent data

because users are usually more interested in recent data than older ones) and

ensure that the captured data can fit into memory.

2. Data in the streams are not necessarily uniformly distributed and their distri-

butions are usually changing with time. A currently infrequent itemset may

become frequent in the future, and vice versa. So, we have to be careful not

to prune infrequent itemsets too early. Otherwise, we may not be able to get

complete information such as frequencies of some itemsets (as it is impossible

to recall those pruned itemsets).

To find frequent itemsets from data streams, several stream mining algorithms have

been proposed. For example, Giannella et al. [GHP+04] proposed a tree-based al-

gorithm called FP-streaming for mining streams of precise data. Leung and Khan

[LK06b] proposed two algorithms approxCFPS and exactCFPS to mine constrained

frequent itemsets from streams of precise data.
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Note that all the aforementioned studies—regardless whether they are Apriori-

based or tree-based, mining with constraints or mining without constraints, mining

from static databases or mining from data streams—all handle precise data such as

databases of market basket transactions, Web logs, and sensor streams. When mining

precise data, users definitely know whether an item (or an event) is present in, or is

absent from, a transaction in the static databases or dynamic data streams. However,

there are situations in which users are uncertain about the presence or absence of

some items or events [Agg07, AY08b, CK08, ALWW09, AY09, BKR+09, LC10]. For

example, a detective may highly suspect (but not guarantee) that a thief breaks into

a house through the window. The uncertainty of such suspicion can be expressed in

terms of existential probability. Let us consider a concrete example. I find my car

having loud noise when accelerating, so I drive to a garage and seek for help. After a

brief check, an automobile mechanic tells me that my car has (a) an 80% likelihood

of having a leak in vacuum hose (b) a 30% likelihood of low in engine oil and (c) a

5% likelihood of having a blown exhaust. Each of the above cases is independent,

which means the chance of having a leak in vacuum hose is independent of whether the

engine oil is low or not. Here, in this uncertain database of car repairing records, each

transaction represents one visit of my car to a garage. Of course, my car may have

multiple problems at the same time (i.e., multiple items may appear together in the

same transaction). Each item (representing a potential problem) in the transaction is

associated with an existential probability expressing the likelihood of my car having

that problem in that visit. With this notion, each item in a transaction in traditional

databases containing precise data can be viewed as an item with a 100% likelihood
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of being present in the transaction.

In addition to the above examples, there are many other real-life situations (e.g.,

environmental surveillance, survey research, satellite imaging and candidate election)

in which data are uncertain. Hence, mining uncertain data [KP05, ZLY08, VRH+09]

is highly in demand. However, most of the previous studies on mining uncertain

data focused on data mining tasks like clustering and outlier detection of uncertain

data [KP05, AY08a, AY08b, VRH+09]. Recently, there are some studies mined uncer-

tain data for frequent itemsets. For example, Chui et al. [CKH07, CK08] proposed an

Apriori-based algorithm called U-Apriori which is a modification of the Apriori algo-

rithm [AS94]. To reduce the number of candidates that need to be counted during the

candidate generate-and-test process, the authors also introduced a trimming strat-

egy called LGS-trimming for local trimming, global pruning and single pass patch-

up. While the U-Apriori algorithm with LGS-trimming strategy handles uncertain

data, the algorithm is Apriori-based (i.e., relies on the candidate generate-and-test

paradigm). Hence, some natural questions are: Can we further reduce the number of

candidate itemsets to be counted? To a further extent, can we avoid generating candi-

dates at all? When handling precise data, FP-tree based algorithms [HPY00, LLN02]

are usually faster than their Apriori-based counterparts [AS94, LLN03]. Is this also

the case when handling uncertain data?

1.1 Problem Definition and Thesis Contributions

To answer the above questions, in this thesis, we first propose a tree-based al-

gorithm for further enhancing the performance of U-Apriori algorithm. The key
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contributions of this part of work include the following: (a) the proposal of an effec-

tive tree structure—called UF-tree—for capturing the contents of transactions con-

sisting of uncertain data, and (b) the development of an efficient algorithm—called

UF-growth—for mining frequent itemsets from the proposed UF-tree.

The UF-growth algorithm can find all frequent itemsets from uncertain data. How-

ever, as in the case for frequent itemset mining from traditional precise data, there

are many real-life situations in which the user is interested in only some subsets (and

may be some tiny subsets) of all the frequent itemsets. This phenomenon also widely

exists in the uncertain cases. For instance, in medicinal diagnosis, a physician may be

uncertain about the type of intracranial haemorrhage the patient suffered (uncertain

data about each disease). However, he may be only interested in those patients with

trauma (instead of all patients) for diagnosing epidural intracranial haemorrhage. As

another example, for a product survey, an analyst may be uncertain about the favors

of a participator (uncertain data about each reply) but the analyst may be interested

in only those replies with certain product or interested in those replies from certain

group of participators (e.g., interested in those replies from the participators under 18

years old). This calls for the mining of constrained frequent itemsets from uncertain

data [LB09b]. Recently, Leung and Brajczuk [LB09a] designed an algorithm—called

U-FPS—to mine uncertain data for frequent itemsets satisfying succinct constraints.

Since aggregate constraints like avg(X.age) ≤ 25 are widely applied in real life. A

natural question to ask is: Is it possible to mine uncertain data for only those frequent

itemsets that satisfy user-specified aggregate constraints? In response to this question

and following the work of developing UF-growth algorithm to mine all frequent item-
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sets from uncertain data, we propose a tree-based algorithm—called ACUF-growth

(indicates Aggregate Constraint UF-growth)—for mining from uncertain data those

frequent itemsets that satisfy user-specified aggregate constraints. The key contri-

bution of this part of work in my thesis is the non-trivial integration of (a) con-

strained mining, (b) mining uncertain data and (c) tree-based mining. The resulting

tree-based algorithm avoids the candidate generate-and-test paradigm. It effectively

pushes aggregate constraints in the mining process and explores properties of these

constraints.

All the above uncertain data mining algorithms—regardless of mining all frequent

itemsets or the frequent itemsets which satisfy the user-specified constraints—are

based on static databases of uncertain data. It is important to note that the wide use

of sensors provides us not only streams of precise data, but also streams of uncertain

data. Hence, the mining of frequent itemsets from steams of uncertain data is in

demand. In this thesis, we propose and develop two tree-based algorithms—called UF-

streaming and SUF-growth—for mining frequent itemsets from streams of uncertain

data. The key contributions of this part of work in my thesis include: (a) the proposal

of effective tree structures to capture the important contents of transactions in streams

of uncertain data and (b) the development of two efficient algorithms to mine frequent

itemsets from the transactions captured by these proposed tree structures.

1.2 Thesis Statement

Motivated by the problems and solutions from the previous section, my thesis

statement is as follows:
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We propose tree-based mining algorithms to fulfill the tasks of (a) finding

frequent itemsets from uncertain data, (b) finding from uncertain data

those frequent itemsets satisfying aggregate constraints and (c) finding

frequent itemsets from streams of uncertain data.

In this thesis, we first propose a UF-growth algorithm that aims to efficiently find fre-

quent itemsets from uncertain data, where each item in the transactions is associated

with an existential probability. Since the user may be only interested in some small

specific subsets of all the frequent itemsets mined from uncertain data, we then pro-

pose an ACUF-growth algorithm to find from uncertain data those frequent itemsets

that satisfy user-specified aggregate constraints. Besides the above two algorithms,

UF-streaming algorithm and SUF-growth algorithm have also been developed in this

thesis for handling frequent itemset mining from streams of uncertain data. Table 1.1

summarizes the salient differences between our algorithms and their most relevant al-

gorithms. Experimental results in Chapter 6 show the effectiveness of all our proposed

algorithms.

Table 1.1: Our proposed algorithms vs. the most relevant algorithms

Tree-based Uncertain Constrained Stream
mining mining mining mining

FP-growth [HPY00]
√

CAP [NLHP98]
√

FPS [LLN02]
√ √

FP-streaming [GHP+04]
√ √

U-Apriori [CKH07]
√

Our proposed UF-growth
√ √

Our proposed ACUF-growth
√ √ √

Our proposed UF-streaming
√ √ √

Our proposed SUF-growth
√ √ √
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1.3 Thesis Organization

This thesis is organized as follows. The next chapter gives background and related

work. In the chapter, we describe algorithms that mine frequent itemsets from tra-

ditional databases of precise data, provide background information about uncertain

data, and explain algorithms for mining uncertain data. In addition, we also discuss

the properties of different types of constraints and present constraint-based frequent

itemset mining algorithms. Moreover, we point out differences between traditional

static data and dynamic data streams, and present examine algorithms for mining

frequent itemsets from streams of precise data.

We propose our frequent itemset mining algorithms in Chapters 3–5. Chapter 3

focuses on the UF-growth algorithm, which is designed to mine frequent itemsets from

uncertain data. In the chapter, we discuss two major operations: the construction

of UF-trees and the mining of frequent itemsets from UF-trees. The contents of this

chapter have been partially published as a refereed paper in the Workshop on Data

Mining of Uncertain Data held in conjunction with the Seventh IEEE International

Conference on Data Mining [LCH07].

In Chapter 4, we extend the UF-growth algorithm to handle user-specified ag-

gregate constraints. Specifically, we start with a näıve approach and two improved

approaches that mine from uncertain data for those frequent itemsets satisfying user-

specified aggregate constraints. To make it easier for readers to understand our

approach, we present a general skeleton, which is followed by some specific details.

Our algorithm, called ACUF-growth, relies on the nice properties of aggregate con-

straints. To reduce user burden, we classify various aggregate constraints into four
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classes based on the constraint properties. This chapter has been partially published

as a refereed paper in the Proceedings of the 25th ACM Symposium on Applied Com-

puting [LHB10].

In Chapter 5, we extend the UF-growth algorithm in another direction—namely,

to mine data streams. Specifically, we propose two algorithms: UF-streaming and

SUF-growth. The former is an approximate algorithm, which applies an “immedi-

ate” mode for mining “frequent” itemsets from streams of uncertain data. The latter

is an exact algorithm, which uses an “delayed” mode for mining true frequent item-

sets from streams of uncertain data. This chapter has been partially published as

a refereed paper in the Proceedings of 25th IEEE International Conference on Data

Engineering [LH09].

We evaluate in Chapter 6 all these algorithms, which perform uncertain frequent

itemset mining, constrained frequent itemset mining from uncertain data and frequent

itemset mining from streams of uncertain data by sets of experiments.

Finally, in Chapter 7, we present the conclusions of this thesis and discuss future

research work such as the integration of uncertain mining, constrained mining and

stream mining.





Chapter 2

Background and Related Work

In this chapter, we provide some background materials and related work that are

relevant to the algorithms we propose in this thesis.

2.1 Mining Traditional Databases

Usually, data in traditional databases are precise and users are certain about the

contents of these databases. To find frequent itemsets from traditional databases

containing precise data, Apriori [AS94] and FP-growth [HPY00] are two popular

algorithms.

2.1.1 Apriori Algorithm

In 1994, Agrawal and Srikant [AS94] proposed an algorithm, called Apriori, to

find all frequent itemsets from a traditional database. An itemset X is considered

frequent if its support equals or exceeds the user-specified minimum support threshold

13
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called minsup. Here, the support of itemset X can be described as the frequency or

the number of occurrences of X in the transaction database. Given a transaction

database with precise data and a user-specified minimum support threshold minsup,

the Apriori algorithm follows a bottom-up generate-and-test framework to find all

frequent itemsets. The key ideas of the algorithm can be described as follows. First,

it generates set C1 of candidate itemsets of size 1 (singleton items). Then, it counts

the support of each candidate itemset in C1 to find set L1 containing all frequent

itemsets of size 1. From set L1, the Apriori algorithm constructs set C2 of candidate

itemsets of size 2 and determines frequent 2-item set L2 by counting the support

of each candidate itemset in C2. This process is repeated until there are no more

candidates (i.e., until Ck is empty for some k≥1). Finally, all frequent itemsets are

returned as the output of the Apriori algorithm.

2.1.2 FP-growth Algorithm

To improve the mining performance, Han et al. [HPY00] proposed the FP-growth

algorithm, which does not require candidate generation. The FP-growth algorithm

consists of two main operations: (a) constructing an FP-tree (which is an extended

prefix-tree structure that captures the contents of transaction database containing

precise data) and (b) growing frequent itemsets. To elaborate, the FP-growth algo-

rithm first scans the database once to obtain frequent items. All infrequent items are

removed and all frequent items are sorted in a decreasing frequency order so as to

minimize the size of FP-tree. The algorithm then scans the database again to con-

struct an FP-tree. Once the tree is constructed, frequent itemsets are formed by first
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finding the frequent itemsets of size 1 from the FP-tree and then recursively growing

them. In concrete terms, for each frequent item x in the FP-tree, the FP-growth

algorithm forms its projected database (i.e., a collection of transactions having {x}

as its prefix) and builds an {x}-projected tree for this projected database. Then,

for each frequent item y in the {x}-projected tree, the algorithm forms a projected

database for {x, y} and builds an {x, y}-projected tree. This process is then applied

recursively to each frequent item in the FP-tree for subsequent projected databases.

Hence, the entire mining process can be viewed as a divide-and-conquer approach

of decomposing both the mining task and the transaction database according to the

frequent itemsets obtained so far. This leads to a focused search of smaller data sets.

For better understanding of the structure of FP-tree and the mining approach of the

FP-growth algorithm, see Example 2.1.

Example 2.1 We apply the FP-growth algorithm with a minimum support

threshold minsup = 3 to the following transaction database to find all frequent item-

sets.

Transactions Contents
t1 {a, b, c, d, e}
t2 {a, b, c, d, f }
t3 {a, b, c, e}
t4 {a, c, d}

In the first step of the FP-growth algorithm, we count the support for each item

in the transaction database to get a:4 (which indicates that {a} occurs 4 times in the

database), b:3, c:4, d :3, e:2, and f :1. Then, we remove infrequent items e:2 and f :1

and sort the frequent items in a decreasing frequency order: a:4, c:4, b:3, d :3. Based

on these frequent items, we build a global FP-tree as shown in Figure 2.1(a). To mine

frequent itemsets from this global FP-tree, we first form the projected database for
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Figure 2.1: The global FP-tree and all projected FP-trees for Example 2.1.

itemset {d} and build the {d}-projected tree as shown in Figure 2.1(b). From this

tree, we find itemsets {c, d}:3 and {a, d}:3 are frequent. Furthermore, we form the

projected database for itemset {c, d} and build the {c, d}-projected tree which is

shown in Figure 2.1(c). From this tree, we obtain frequent itemset {a, c, d}:3. With

the same approach, we form the projected databases and build the projected trees for

itemsets {b}, {b, c} and {c}, which are shown in Figure 2.1(d), Figure 2.1(e), and

Figure 2.1(f) respectively. Finally, we find all frequent itemsets in the transaction

database. They are {a}:4, {c}:4, {b}:3, {d}:3, {a, c}:4, {a, b}:3, {a, d}:3, {c, b}:3,

{c, d}:3, {a, c, b}:3 and {a, c, d}:3. �

The FP-growth algorithm finds all frequent itemsets from static precise database.

However, it cannot handle the situation in which data in transaction database are un-

certain. As a preview, our proposed mining algorithms—like FP-growth—also apply
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the tree-based divide-and-conquer mining approach to find frequent itemsets without

candidate generation. Nevertheless, our proposed algorithms are more powerful than

the FP-growth algorithm by (a) mining frequent itemsets from uncertain data, (b)

mining from uncertain data those frequent itemsets which satisfy user-specific aggre-

gate constraints and (c) mining frequent itemsets from streams of uncertain data.

2.2 Mining Databases of Uncertain Data

Both the Apriori algorithm [AS94] and the FP-growth algorithm [HPY00] were

designed to find frequent itemsets from transaction database with precise data—but

not uncertain data. A key difference between precise data and uncertain data is

that each transaction of the latter one contains items and additional information

called existential probabilities. The existential probability P (x, ti) of an item x in a

transaction ti indicates the likelihood of x being present in ti. Using the “possible

world” interpretation of uncertain data [DYM+05, CKH07, LCH07, LMB08], there

are two possible worlds for an item x and a transaction ti: (a) the possible world W1

where x ∈ ti and (b) the possible world W2 where x /∈ ti. Although it is uncertain

which of these two worlds is the true world, the probability of W1 to be the true world

is P (x, ti) and that of W2 is 1− P (x, ti).

To a further extent, there are usually more than one transaction in a transaction

database TDB. For instance, for an item x and a TDB consisting of two transaction

t1 and t2, there are four possible worlds: (a) W1 where x is in both t1 and t2, (b) W2

where x is in t1 but not t2, (c) W3 where x is in t2 but not t1, and (d) W4 where x

is neither in t1 nor in t2. Let prob(Wj) denote the probability of Wj to be the true
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world. Then prob(W1) = P (x, t1) × P (x, t2), prob(W2) = P (x, t1) × [1 − P (x, t2)],

prob(W3) = [1− P (x, t1)]× P (x, t2), and prob(W4) = [1− P (x, t1)]× [1− P (x, t2)].

Similarly, there are usually more than one domain item in each transaction in a

TDB. For instance, for two independent items x, y and a transaction ti, there are

also four possible worlds: (a) W1 where both x, y ∈ ti, (b) W2 where x ∈ ti but

y /∈ ti, (c) W3 where x /∈ ti but y ∈ ti, and (d) W4 where both x, y /∈ ti. Then

prob(W1) = P (x, ti) × P (y, ti), prob(W2) = P (x, ti) × [1 − P (y, ti)], prob(W3) =

[1− P (x, ti)]× P (y, ti), and prob(W4) = [1− P (x, ti)]× [1− P (y, ti)].

To generalize, there are many items in each of the n transactions in a transaction

database TDB (where |TDB| = n). Hence, the expected support of an itemset X in

TDB can be computed by summing the support of X in possible world Wj (while

taking into account the probability of Wj to be the true world) over all possible

worlds:

expSup(X) =
∑

j

[sup(X) in Wj × prob(Wj)], (2.1)

where sup(X ) denotes the support of X. The probability of Wj to be the true world,

denoted by prob(Wj), can be computed as prob(Wj) =
∏n

i=1(
∏

x∈ti in Wj
P (x, ti) ×∏

y/∈ti in Wj
[1− P (y, ti)]).

Note that Equation (2.1) can be simplified [DYMV05] to become the following:

expSup(X) =
n∑

i=1

(∏
x∈X

P (x, ti)

)
. (2.2)

With this setting, an itemset X is considered frequent if its expected support equals

or exceeds the user-specified minimum support threshold minsup.
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To extract implicit, previously unknown, and potentially useful information from

uncertain data, Chau et al. [CCKN06] proposed an algorithm, called UK-means clus-

tering, which enhances the traditional K-means algorithm to handle uncertain data.

The algorithm computes the expected squared distance for line-moving object uncer-

tainty and free-moving object uncertainty [CXP+04] separately and assigns an object

to the cluster whose representative has the smallest expected distance to the object.

As UK-means algorithm requires expensive integration computation to calculate the

expected distance between an object and a cluster for arbitrary probability density

functions, Ngai et al. [NKC+06] provided several pruning methods (e.g., min-max-dist

pruning) to avoid such an expensive expected distance calculation. Cormode and Mc-

Gregor [CM08] also did the similar work for proposing uncertain k -center, uncertain

k -means, and uncertain k -median algorithms to make all these traditional clustering

algorithms handle uncertain data. Besides uncertain clustering algorithms, Aggar-

wal and Yu [AY08b] examined a density based approach to uncertain data outlier

detection. Their approach constructs a density estimate of the underlying uncertain

data in various subspaces and uses the density estimate to determine the outliers in

the uncertain data. Their approach also removes some uncertainty from underlying

data. Although all the above studies apply data mining algorithms to the database

with uncertain data to explore useful information, they focus on the uncertain data

mining tasks (clustering and outlier detection) other than frequent itemset mining.

For mining frequent itemsets from transaction database with uncertain data, Chui

et al. [CKH07, CK08] proposed an Apriori-based algorithm called U-Apriori. Instead

of incrementing the support counts of candidate itemsets by their actual support
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(like the Apriori algorithm), the U-Apriori algorithm increments the support counts

of candidate itemsets by their expected support under the uncertainty model. As a

result, if the expected support of a generated candidate itemset is equal or higher

than the user-specified minimum support threshold minsup, the candidate itemset

with uncertain data is frequent. On the other hand, all those candidate itemsets with

expected supports less than the minsup can considered infrequent.

As indicated by Chui et al., their U-Apriori algorithm suffers from a few prob-

lems. First, inherited from the Apriori algorithm, U-Apriori algorithm does not scale

well when handling large amounts of data because it also follows a generate-and-test

framework. Second, if the existential probabilities of most items in an itemset X

are small, increments for each transaction can be insignificantly small. Consequently,

many candidates would not be recognized as infrequent until most (if not all) transac-

tions were processed. To improve performance, Chui et al. applied a local trimming,

global pruning and single-pass patch-up (LGS-trimming) strategy. The key idea of

this strategy is that the algorithm first trims from the original database those items

having expected supports less than minsup (i.e., trims an item x if expSup{x} < min-

sup) and then mines frequent itemsets from the resulting trimmed database. Since an

itemset X cannot be frequent if the sum of its expected support expSup(X ) and its

upper bound of an estimation error ε(X ) falls below minsup (i.e., X is infrequent if

expSup(X ) + ε(X ) < minsup), the algorithm prunes these infrequent itemsets during

the mining process. Finally, to avoid missing any frequent itemsets, the algorithm

performs the patch up by scanning the original (untrimmed) database one more time

to verify that those trimmed/pruned itemsets are indeed infrequent. Although the
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use of the LGS-trimming strategy in U-Apriori algorithm helps reduce the number of

candidate itemsets being counted during the mining process, the U-Apriori algorithm

still relies on candidate generate-and-test. As a preview, our proposed algorithms

avoid using candidate generate-and-test.

2.3 Mining Databases with Constraints

Constrained frequent itemset mining aims to find those frequent itemsets that

satisfy user-specified constraints. Regarding constrained mining, Ng et al. [NLHP98]

proposed a constrained frequent itemset mining framework, in which the user can use

a rich set of SQL-style constraints to guide the mining process. There is a wide range

of constraints which can restrict the mining space. Examples of these constraints

include the following: C1 ≡ max (X.Price) ≤ $100, C2 ≡ min(X.Distance) ≤ 60km,

C3 ≡ avg(X.Height) ≥ 180cm and C4 ≡ sum(X.Weight) ≤ 50kg. Here, constraint

C1 says that the maximum price of all items in a set X is less than or equal to $100.

Similarly, constraint C2 says that the minimum distance between all locations in a

set X is less than or equal to 60km. Constraint C3 says that the average height of

all individuals in a set X is at least 180cm. And, constraint C4 says that the total

weight of all shipping goods in a set X is lower than or equal to 50kg.

The constraints we discussed above can be categorized into several overlapping

classes. For example, constraints C1 and C2 are succinct constraints because one

can directly generate precisely all and only those itemsets satisfying the constraints

(e.g., by using member generating function [NLHP98], which does not require gen-

erating and excluding itemsets not satisfying the constraints). All constraints C1,
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C2, C3 and C4 are aggregate constraints because they involve aggregate functions

(e.g., max, min, avg, and sum). In order to find frequent itemsets that satisfy these

aggregate constraints, we explore properties (e.g., anti-monotonicity, monotonicity)

that are possessed by these constraints.

• Definition 1. (Anti-monotonicity [NLHP98, Leu09a]). An aggregate constraint

C is anti-monotone if and only if for any itemset X, whenever X violates C,

all supersets of X also violate C.

• Definition 2. (Monotonicity [BMS97, Leu09b]). An aggregate constraint C is

monotone if and only if for any itemset X, whenever X satisfies C, all supersets

of X also satisfy C.

Note that constraint C1 is an example of anti-monotone constraints. If X violates C1

(i.e., the maximum price > $100), all supersets of X also violate C1 (as adding more

items to itemset X will not lower the maximum price of the itemset). Conversely,

if X satisfies C1 (i.e., the maximum price ≤ $100), all subsets of X also satisfy C1

(as deleting any items from itemset X will not increase the maximum price to the

itemset). Constraint C2 is an example of monotone constraints. As a result, if X

satisfies C2 (i.e., the minimum distance ≤ 60km), all supersets of X also satisfy C2

(as adding more locations to X will not increase the minimum distance). Another

way to express monotone constraint C2 is that, if X violates C2 (i.e., the minimum

distance > 60km), all subsets of X also violate C2 (as deleting any locations from

X will not lower the minimum distance). The average constraint C3 is neither anti-

monotone nor monotone because it does not possess the properties in both Definition

1 (Anti-monotonicity) and Definition 2 (Monotonicity). The sum constraint C4 is an
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anti-monotone constraint because if X violates C4 (i.e., the sum of weights > 50kg),

all supersets of X also violate C4. It is important to note that the sum constraint C4

is an anti-monotone constraint if and only if items in itemset X are non-negative (e.g.,

shipping weight cannot be negative) or non-positive (e.g., diving distance underwater

is usually expressed as non-positive number). If items in X can be both positive and

negative (e.g., temperature can be both positive and negative), sum constraints may

not be anti-monotone.

Since its introduction, constrained frequent itemset mining has been the subject of

numerous studies. Ng et al. [NLHP98] introduced an Apriori-based algorithm called

CAP for mining frequent itemsets which satisfy user-specific constraints. The CAP

algorithm pushes constraints into an Apriori-based algorithm and applies candidate

generate-and-test approach to obtain all valid frequent itemsets. Although the CAP

algorithm achieves a high degree of pruning for constraints, it is still an Apriori-based

algorithm which relies on memory intensive candidate generate-and-test.

For improving performance, Leung et al. [LLN02] proposed and designed an algo-

rithm called FPS to mine frequent itemsets satisfying succinct constraints. The FPS

algorithm avoids the generate-and-test paradigm by exploring succinctness proper-

ties of the constraints in an FP-tree based framework. To elaborate, FPS algorithm

divides all succinct constraints into three subclasses: (a) succinct and anti-monotone

constraints (SAM constraints), (b) succinct but not anti-monotone constraints of a

form not equivalent to S.A ⊇ CS where CS is a constant set for the attribute A

of the set S (SUC constraints) and (c) succinct but not anti-monotone constraints

of a form equivalent to S.A ⊇ CS (superset constraints). For handling the SAM
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constraints, the FPS algorithm keeps only valid items in the initial FP-tree. All in-

valid items can be safely discarded due to the anti-monotone property (i.e., for any

itemset X, whenever X violates C, all supersets of X also violate C ). When dealing

with the SUC constraints, the FPS algorithm first divides all domain items into two

sets—the set ItemM consisting of all mandatory items and the set ItemO consisting

of all optional items. Since a valid itemset X is composed of mandatory items (i.e.,

items satisfying the SUC constraint) and possibly some optional items (i.e., items by

themselves not satisfying the SUC constraint), the FPS algorithm builds a modified

FP-tree. A key difference between the original FP-tree and our modified FP-tree is

that the latter divides items into two groups (mandatory items and optional items)

and put them in such a way that mandatory items appear below optional items.

Items within each group are then sorted in descending frequency order. In contrast,

the original FP-tree treats all items as one group. So, in our modified FP-tree, the

mandatory items are close to the leaves and the optional items are close to the tree

root. As a result, whenever the algorithm finishes mining the projected-trees for all

mandatory items, all frequent itemsets which satisfy the SUC constraint are obtained

because all other frequent itemsets are guaranteed not satisfying the constraint. For

better understanding how FPS algorithm handles the SUC constraints, let us see the

following Example 2.2.
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Example 2.2 Consider the following database:

Transactions Contents
t1 {a, b, c, d, e}
t2 {a, b, c, e}
t3 {a, b, c}
t4 {a, c, e}

with the following information for each item:

Items Price
a $100
b $40
c $65
d $30
e $15

Let the minimum support threshold minsup = 3 and the constraint CSUC be the SUC

constraint min(X.Price) ≤ $60. In the first step of FPS algorithm, it checks each of

the five domain items a, b, c, d and e against the constraint CSUC and partitions these

items into two sets: (a) the mandatory set containing items b, d and e (the prices

associated with these items are lower than or equal to $60) and (b) the optional set

containing items a and c (the prices associated with these items are higher than $60).

After that, the algorithm counts the support for each item in the transaction database

to get a:4, b:3, c:4, d :1 and e:3. Then, the FPS algorithm removes infrequent item

d :1 and sorts the frequent items in the descending frequency order: a:4, c:4, b:3, e:3.

Next, the algorithm builds a modified FP-tree (Figure 2.2(a)) for the frequent items.

In this modified FP-tree, all mandatory items b and e appear below optional items a

and c. Note that the mandatory item d is not in this modified UF-tree because it is

infrequent (i.e., the support of item d is lower than minsup—3 in this example). After

the global modified FP-tree is build, the FPS algorithm builds projected databases

and projected-trees for all mandatory items b and e (as shown in Figure 2.2(b) and
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Figure 2.2: The global modified FP-tree and the projected FP-trees for all mandatory
items for Example 2.2.

Figure 2.2(c)) and finds all frequent itemsets which satisfy the SUC constraint CSUC .

They are {b}:3, {e}:3, {a, b}:3, {a, e}:3, {c, b}:3, {c, e}:3, {a, c, b}:3 and {a, c,

e}:3. �

The approach to handle superset constraints is similar to the one to handle SUC

constraints. The key difference between them is the number of mandatory groups. In

SUC constrained frequent itemset mining, there is only one set for mandatory items.

However, the frequent itemset mining algorithm for superset constraints requires M

(M ≥ 1) sets for mandatory items. A valid itemset is composed of at least one item
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from each mandatory set and may or may not contain optional items.

To further enhance the functionality of constrained frequent itemset mining algo-

rithms (i.e., FPS algorithm), Leung [Leu04] built a system, called iCFP, for interac-

tive mining of constrained frequent itemsets. Similarly to FPS, the iCFP system also

uses a tree-based mining framework which avoids the generate-and-test paradigm.

In addition, iCFP system allows human users to impose a certain focus on the min-

ing process by permitting users to dynamically change their constraints (i.e., SAM

and SUC constraints) during the mining process. Two kinds of dynamic changes—

tightening change and relaxing change—are applied to SAM and SUC constraints

separately. The tightening change restricts the new solution space to be a subset of

the old space. The result of relaxing change is that the new solution space contains

the old space. Other than the above system which is interactive with the users, Le-

ung et al. [LKH06] also designed a tree-based system for mining constrained frequent

itemsets from a distributed environment. The system makes use of the constrained lo-

cal frequent itemsets and the FP-trees that keep all potential global frequent items to

efficiently find constrained global frequent itemsets. All constrained frequent itemset

mining algorithms we discussed above were designed to find from precise databases

those frequent itemsets which satisfy user-specific constraints. They do not focus on

(a) aggregate constraints and (b) databases containing uncertain data. As a preview,

our proposed algorithms deal with aggregate constraints and/or mine uncertain data.
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2.4 Mining Streams of Data

Data streams are different from traditional static data in the following two aspects:

(a) data streams are continuous as well as unbounded and (b) data in the streams

are not necessarily uniformly distributed. To mime frequent itemsets from streams of

precise data, Giannella et al. [GHP+04] proposed and designed a tree-based algorithm

called FP-streaming. Given an incoming batch of transactions in a data stream,

the first step of FP-streaming is to call the FP-growth algorithm [HPY00] with a

threshold that is lower than the usual minimum support threshold minsup to find

“frequent” itemsets. Let us call this lower threshold preMinsup. Then, an itemset is

“frequent” if its actual support is no less than preMinsup. Note that, although we are

interested in truly frequent itemsets (i.e., itemsets with actual support ≥ minsup >

preMinsup), FP-streaming uses preMinsup in attempt to avoid pruning an itemset too

early. An itemset X having preMinsup ≤ sup(X ) < minsup is currently infrequent

but may become frequent later. Once the FP-growth algorithm finds all “frequent”

itemsets, the second step of FP-streaming algorithm is to store and maintain these

itemsets in another tree structure called FP-stream. The key differences between an

FP-tree and an FP-stream structure include the following. First, each path in an

FP-tree represents a transaction, but each path in an FP-stream structure represents

a “frequent” itemset. Second, each node in an FP-tree contains one support value,

whereas each node in an FP-stream structure contains a natural or logarithmic tilted-

time window table which contains multiple support values, one for each batch of

transactions. Since users are often interested in recent data than older data, the FP-

stream structure captures only a few recent batches of streaming transactions. As a
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new batch of transactions flows in, the window slides and the support values of each

node shift as well.

Because FP-streaming algorithm uses preMinsup instead of exact minsup, it is

an algorithm for approximate stream mining. To improve performance, Leung and

Khan [LK06a] introduced a new tree structure called DSTree (Data Stream Tree) for

mining exact frequent itemsets from data streams. In the DSTree, each tree node

keeps an item with a list of frequency counts (for recording the frequency of an item

in each batch in current window). Items in the tree are arranged according to some

canonical order so that the ordering is unaffected by the changes in frequency caused

by the continuous nature of streams. When the window slides, transactions in the

oldest batch can be deleted by shifting the list of frequency counts. The DSTree also

uses a pointer at each node to help shift frequency list (without traversal of the entire

tree). Once the DSTree is constructed, it employs a divide-and-conquer approach

(similar to the FP-growth algorithm [HPY00]) to find all frequent itemsets from data

streams. To gain a better understanding of the DSTree, let us consider Example 2.3.

Example 2.3 Consider the following stream of data:

Batch Transactions Contents
t1 {a, b, c, d}

First t2 {a, b}
t3 {a, c}
t4 {a, b, c}

Second t5 {b, d}
t6 {a, b, d}
t7 {b, d}

Third t8 {a, b, d}
t9 {a, c}

Let the minimum support threshold minsup be 3 and let the window size w be

2 batches (indicating that only two batches of transactions are kept). When the
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Figure 2.3: The DSTree for Example 2.3 (tree nodes with frequency count (0:0) have
been removed).

transactions in the first two batches in the data stream flow in (at time T ), they are

kept in the DSTree with a list of frequency count of 2 entries at each node (as shown

in Figure 2.3(a)). For example, the node a:3:2 in Figure 2.3(a) indicates that the

frequency of item a is 3 in the first batch and the frequency of item a is 2 in the

second batch. When the third batch of streaming data flows in (at time T ′), the new

transactions in the third batch are inserted into the DSTree. The list of frequency

counts is shifted and the frequency counts for the items in first batch are removed.

The resulting DSTree which captures the transactions in the second and third batches

at time T ′ is shown in Figure 2.3(b).

To find frequent itemsets at any point of time (i.e., at time T’ ), the FP-tree based

mining process can be used to the DSTree. For instance, at time T’, the FP-tree

based mining process finds all frequent itemsets {a}:4, {b}:5, {d}:4, {a, b}:3 and

{b, d}:4 from the DSTree which captures the transactions in the second and third

batches. �
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As a DSTree may consume a large amount of memory by storing all projected

databases and projected FP-trees to find frequent itemsets, Leung and Brajczuk

[LB08] proposed another tree structure called DSP-tree which employs the key idea

of the COFI-tree [EZ03] to find frequent itemsets from streams of precise data in a

limited memory space environment. To elaborate, the DSP-tree algorithm first builds

a global DSTree and uses it to store data stream information. Then, the algorithm

builds a DSP-tree for each frequent item to capture the transactions in each projected

database. In a DSP-tree, each tree node contains an item and a counter. Items are

arranged in descending local frequency order. The value of the counter for each tree

node is initially set to the frequency of the item. This value is decremented during the

mining process until it reaches 0. By such a way, the DSP-tree algorithm can find all

frequent itemsets from data streams without recursively constructing the projected

trees for projected databases. Although all the above algorithms—FP-streaming, the

algorithm that uses DSTree, and the algorithm that uses DSP-tree—can find frequent

itemsets from streams of precise data, they cannot handle the situation where the data

in the streams are uncertain.

2.5 Summary

In this chapter, we reviewed some related work and provided background that

are relevant to the remainder of this thesis. We also pointed out the deficiencies in

existing work, which motivates the current thesis work.

To mine frequent itemsets from traditional databases of precise data, the Apriori

algorithm follows a bottom-up generate-and-test framework. To avoid memory inten-
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sive candidate generation, the FP-growth algorithm was proposed. It constructs an

FP-tree to store database information and employs a divide-and-conquer approach to

find frequent itemsets. Both the Apriori algorithm and the FP-growth algorithm are

designed to find frequent itemsets from traditional precise databases. They do not

handle uncertain data.

In uncertain databases, each item is associated with an existential probability. To

mine frequent itemsets from databases of uncertain data, an Apriori-based algorithm,

named U-Apriori, was designed. Similar to the Apriori algorithm, the U-Apriori

algorithm also suffers from the memory intensive candidate generate-and-test process.

Constraints are widely used for refining searching space and enhancing user focus.

For constrained frequent itemset mining, an Apriori-based algorithm, called CAP,

pushes constraints deep inside the mining process and applies candidate generate-

and-test approach to obtain all valid frequent itemsets. To improve performance, the

FPS algorithm avoids such a generate-and-test paradigm by exploring succinctness

properties of the constraints in an FP-tree based framework. Although both CAP

and FPS work well with traditional databases of precise data, they cannot deal with

uncertain data.

Comparing with traditional static database, data streams are continuous and un-

bounded. Moreover, data in the streams are not necessarily uniformly distributed. To

mine frequent itemsets from data streams, a tree-based algorithm called FP-streaming

was proposed and designed. As an approximate algorithm, FP-streaming uses pre-

Minsup instead of minsup to avoid pruning an itemset too early. Moreover, it stores

and maintains all mined “frequent” itemsets in a tree structure called FP-stream.
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Since FP-streaming does not use minsup, it may return too many frequent itemsets

by the value of preMinsup. To return exact frequent itemsets, the DST algorithm

was proposed. However, both FP-streaming and DSTree were designed for streams

of precise data, but not streams of uncertain data.





Chapter 3

Mining Frequent Itemsets from

Uncertain Data

Recall that U-Apriori is an Apriori-based algorithm for mining frequent itemsets

from uncertain data. It is well-known that when handling precise data, the FP-based

algorithms are superior in performance to their corresponding Apriori-based counter-

parts. Hence, in this chapter, we investigate how tree-based frequent itemset mining

can be applied to uncertain data. Specifically, we propose a tree-based algorithm,

called UF-growth, for mining frequent itemsets from uncertain data. The algorithm

consists of two main operations: (a) the construction of a novel tree structure called

UF-tree and (b) the mining of frequent itemsets from UF-trees. We also investigate

the performance and functionality of our UF-growth algorithm when compared with

the U-Apriori algorithm.

35
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3.1 The Construction of UF-trees

The key for many tree-based mining algorithms is how to represent and store data.

In our case, how to represent uncertain data in each tree node and how to order these

tree nodes are two main challenges. Note that precise data and uncertain data are

different in many aspects. For precise data, each item in a database transaction is

implicitly associated with a definite certainty of its presence in the transaction. In

contrast, for uncertain data, each item is explicitly associated with an existential

probability ranging from 0 (indicating that the item is not present in the database

transaction) to a value of 1 ( indicating that the item is definitely present). When

this existential probability is close to 0, the chance of the item presented in database

transaction is quite small. On the other hand, the chance of the item presented in

database transaction is very high if this existential probability is close to 1. Moreover,

the existential probability of an item can vary from one transaction to another. For

example, the existential probability of an item a in transaction t1 may be 0.6 (i.e.,

item a having a 60% likelihood to be present in t1) and its existential probability in

transaction t2 may be 0.2 (i.e., item a having a 20% likelihood to be present in t2).

Furthermore, different items may have the same existential probability. For instance,

the existential probability of item b and item c in transaction t1 may be both at 0.3

(i.e., item b and item c both having a 30% likelihood to be present in t1).

To perform frequent itemset mining from uncertain data, the key modification

made by the U-Apriori algorithm to the Apriori algorithm is incrementing the support

count of candidate itemsets by the expected support instead of the actual support.

A natural question to ask is: Can we apply a similar approach? In other words,
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instead of storing and incrementing the actual supports of items in transactions at

tree nodes (as in FP-growth), can we store and increment the expected supports

for uncertain data? To answer this question, let us examine this approach. On

the surface, this approach appears to work. For instance, it finds frequent itemsets

of size 1 successfully. However, a close examination reveals that such an approach

does not completely find all frequent itemsets. Let us elaborate a bit. Recall from

Equation (2.2), expSup(X) =
∑n

i=1

(∏
x∈X P (x, ti)

)
. For any singleton itemset x

(i.e., itemsets of size 1), the equation can be simplified into the following:

expSup(X) =
n∑

i=1

P (x, ti). (3.1)

This means the expected support of a singleton itemset can be computed by using the

sum of expected support. So, the approach works when mining frequent itemsets of

size 1 because each tree node keeps the sum of expected support of an item. However,

the approach does not work when mining frequent itemsets of size greater than 1

because the expected support of any itemset is computed as the sum of products of

the expected support of items in such an itemset. If we only store and increment the

expected supports, we miss the information for the product. Therefore, to effectively

represent uncertain data and find all frequent itemsets, we propose a variant of the

FP-tree (i.e., a variant of an extended prefix-tree structure). We call it an UF-tree.

Each node in the UF-tree stores (a) an item, (b) its expected support and (c) the

number of occurrence of such expected support for such an item.

Now, let us turn our focus to the ordering of tree nodes in the UF-tree. From

Equation (2.2), we know that the expected support of any itemset can be computed
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as the sum of products of the expected supports of items in the itemset. Note that

the order of any portion in a product does not influence the result of the product.

From this point of view, no matter how we order the tree nodes in the UF-tree, we

can find the expected support of an itemset with the same efficiency. However, we

observed from many other tree-based mining algorithms (i.e., FP-growth) that the

ordering of tree nodes affects the tree size. Smaller trees consume less memory space

than bigger ones. Bigger trees require more computation to travel the tree nodes than

the smaller ones. We also know that when we handle precise data, ordering the items

with descending frequency order can increase the chance of tree path sharing, which

leads to reduction in the size of the tree. Applying a similar approach to our UF-tree,

we order the tree nodes in descending order of accumulated expected supports to

increase the chance of path sharing and reduce the size of the UF-tree.

With the above uncertain data representation and the ordering of the tree nodes,

let us take a close look at how our proposed UF-growth algorithm constructs the

UF-tree. The algorithm first scans the database once and accumulates the expected

support of each item. Hence, it finds all frequent items (i.e., items having expected

support ≥ minsup). It then sorts these frequent items in descending order of accu-

mulated expected supports. After that, the algorithm scans the database the second

time and inserts each transaction into the UF-tree in a similar fashion as in the con-

struction of an FP-tree. Specifically, for each transaction, frequent items are sorted

according to the descending global expected support order and infrequent items are

removed. New transactions are added at the root level. At each level, nodes of the

new transaction are compared with children (or descendant) nodes. If the same item
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and same expected support exist in both the new transaction and the children (or de-

scendant) nodes, the transaction is merged with the node at the highest support level.

The occurrence count of the merged node is then incremented by 1. The remainder

of the transaction (items with their expected support) is then added to the merged

node, and this process is repeated recursively until all common items and expected

supports are found. Any remaining items and expected supports of the transaction

are added as a new branch to the last merged node. It is important to note that

only the same items with same expected support can be merged in the UF-tree. The

same items with different expected supports have to be in the different branches. For

instance, there is a node a:0.9:2 (i.e., a indicates the item, 0.9 indicates the expected

support, and 2 indicates the count for the occurrence of the item in expected support

0.9) in the UF-tree. An incoming item a with expected support 0.9 may be merged

with this tree node. However, an incoming item a with expected support 0.6 or an

incoming item b with expected support 0.9 cannot be merged with it. With the above

tree construction process, our UF-tree processes the following nice property:

• The occurrence count of a node is greater than or equal to the sum of occurrence

counts of all its children nodes.

On the surface, the UF-tree may appear to require a large amount of memory. How-

ever, it is important to note that the UF-tree—like the FP-tree—is an extended

prefix-tree structure that captures the contents of transactions. In the worst case,

the number of nodes in a UF-tree is the same as the sum of items in all transac-

tions in the original database of uncertain data. Moreover, thanks to advances in

modern technology, we are able to make the same realistic assumption as in many
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studies [PHM00, CZ03, GHP+04] that we have enough main memory space in the

sense that the trees can fit into the memory. In the situations where the trees cannot

fit into memory, recursive projections and partitioning are required to break the trees

into smaller pieces.

To get a better understanding about the construction of a UF-tree, let us consider

the following example.

Example 3.1 Consider the following database transactions consisting of uncertain

data:

Transactions Contents
t1 {a:0.9, b:0.8, c:0.7, d :0.6, f :0.8}
t2 {a:0.9, c:0.7, d :0.6, f :0.1}
t3 {b:0.9, c:0.5, e:0.4}
t4 {b:0.9, e:0.2}
t5 {a:0.9, c:0.7, d :0.6, e:0.3}
t6 {a:0.3, b:0.2}

In this database of uncertain data, each transaction contains items and their corre-

sponding existential probabilities. For example, there are five items a, b, c, d and

f in first transaction t1, in which the existential probabilities of these items are 0.9,

0.8, 0.7, 0.6 and 0.8 respectively.

Let the user-specified support threshold minsup be set to 1.0. The UF-tree can

be constructed as follows. First, our UF-growth algorithm scans the database once

and accumulates the expected support of each item. Hence, it finds all frequent items

and sorts them in descending order of (accumulated) expected supports. Specifically,

we obtain frequent items a, b, c and d (with their corresponding accumulated ex-

pected supports of 3.0, 2.8, 2.6 and 1.8), which are sorted in descending order of their

expected support values. We represent these items and their expected supports as

a:3.0, b:2.8, c:2.6 and d :1.8. The expected support of each of these frequent items
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Figure 3.1: The UF-tree for Example 3.1.

≥ minsup = 1.0. On the other hand, items e and f having accumulated expected

support of 0.9 < minsup are removed because they are infrequent.

Then, our UF-growth algorithm scans the database the second time and inserts

each transaction into the UF-tree. The algorithm first inserts the contents of the

first transaction t1 into the tree, and results in a tree branch 〈(a:0.9):1, (b:0.8):1,

(c:0.7):1, (d :0.6):1〉. It then inserts the contents of the second transaction t2 into

the UF-tree. Since the expected support of item a in t2 is the same as the expected

support of item a in an existing branch (i.e., the branch for t1), this node can be

shared. So, the algorithm increments the occurrence count for the tree node (a:0.9)

to 2, and adds the remainder of t2—namely, 〈(c:0.7):1, (d :0.6):1〉—as a child of the

node (a:0.9):2. As a result, we get the tree branch 〈(a:0.9):2, (c:0.7):1, (d :0.6):1〉.

Afterwards, the UF-growth algorithm inserts the contents of the third transaction
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t3 as a new branch 〈(b:0.9):1, (c:0.5):1〉 because the node (b:0.9):1 cannot be shared

with the node (a:0.9):2. Transactions t4, t5 and t6 are then inserted into the UF-tree

in a similar fashion. For instance, for t4, the node (b:0.9) is incremented to 2; for t5,

nodes (a:0.9):2, (c:0.7):1 and (d :0.6):1 are all incremented by 1; for t6, the UF-growth

algorithm inserts a new branch 〈(a:0.3):1, (b:0.2):1〉 because the expected support of

the item a in t6 (equal to 0.3) is different from the expected support of the node

(a:0.9) in the tree. Consequently, at the end of the tree construction process, we get

the UF-tree shown in Figure 3.1 capturing the contents of the above database with

uncertain data. �

3.2 The Mining of Frequent Itemsets from UF-

trees

Once the UF-tree is constructed, our proposed UF-growth algorithm recursively

mines frequent itemsets from this tree in a similar fashion as in the FP-growth algo-

rithm except for the following:

• When forming a UF-tree for the projected database for an itemset X, we need

to keep track of the existential probability of X. The existential probability of

X can be calculated as the multiplying results of the existential probabilities of

each items in X.

• When computing the expected support of an “extension” of an itemset X (say,

X ∪ {y}), we need to first multiply the existential probability of X by the

existential probability of y, and then multiply this results by their occurrence
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in each tree path. Finally, we sum all the multiplying results. Note that, if

an itemset Z is an “extension” of an itemset X, then X is a prefix of Z. In

other words, the “extension” Z can be formed by appending items to X (e.g.,

if X = {a, c}, then {a, c, d}, {a, c, e} and {a, c, d, e} are some “extensions” of X

but {a, b, c} is not).

To elaborate, the algorithm first finds the frequent itemsets of size 1 (singleton

items) from the UF-tree, calculates the expected supports and keeps tracking the

existential probability for each of them. For each frequent item x in the UF-tree, the

UF-growth algorithm forms its projected database (i.e., a collection of transactions

having {x} as its prefix) and builds a {x}-projected tree for this projected database.

For each frequent item y in the {x}-projected tree, the algorithm forms the itemset {x,

y} and calculates the expected support for this itemset. Here, the expected support

for itemset {x, y} can be calculated as follows. In each path of the {x}-projected

tree, the algorithm multiplies the existential probability of item x by the existential

probability of item y. Then, the algorithm multiplies this result by the occurrence of

itemset {x, y}. Finally, the algorithm sums the multiplying results from all paths to

obtain the expected support of itemset {x, y}. If this expected support ≥ minsup,

itemset {x, y} is frequent. In contrast, if this expected support < minsup, itemset

{x, y} is infrequent.

Next, for each frequent item z in the {x, y}-projected tree, the algorithm calculates

the expected support using the same approach we discussed above. This process is

then applied recursively to each frequent item in the UF-tree for subsequent projected

database. Similar to the FP-growth algorithm, the entire mining process of UF-
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growth algorithm can be viewed as a divide-and-conquer approach of decomposing

both the mining task and the transaction database according to the frequent itemsets

obtained so far. This leads to a focused search of smaller data sets. For better

understanding the mining approach of UF-growth algorithm, let us see Example 3.2.

Example 3.2 Once the UF-tree for Example 3.1 is constructed, our proposed UF-

growth algorithm recursively mines frequent itemsets from this tree with minsup = 1.0

as follows. It starts with item d (with expSup(d) =1.8). The algorithm extracts from

two tree paths—namely, (1) 〈(a:0.9), (b:0.8), (c:0.7)〉 with the occurrence count of

(d :0.6) equal to 1 (implying that items a, b, c and d occur together once in the original

database) and (2) 〈(a:0.9), (c:0.7)〉 with the occurrence count of (d :0.6) equal to 2

(implying that items a, c and d occur together twice in the original database)—and

forms the d -projected database. The expected support of itemset {a, d} = 0.6×0.9×

3 = 1.62 ≥ minsup. Similarly, the expected support of itemset {c, d} = 0.6×0.7×3 =

1.26 ≥ minsup. So, both itemsets {a, d} and {c, d} are frequent. However, itemset

{b, d} is infrequent because expected support of itemset ({b, d}) = 0.6 × 0.8 × 1 =

0.48 < minsup. Thus, b is removed from the {d}-projected database, which then

consists of a single path 0.6× 〈(a:0.9):3, (c:0.7):3〉. The UF-tree for such a projected

database is shown in Figure 3.2(a).

Then, our UF-growth algorithm extracts from the UF-tree for the {d}-projected

database to form the {c, d}-projected database, which consists of item a (representing

the frequent itemset {a, c, d}) with expSup({a, c, d}) = 0.42 × 0.9 × 3 = 1.134,

where 0.42 represents expSup({c, d}) for each of the 3 occurrences of itemset {c, d}.

The resulting {c, d}-projected database and {c, d}-projected UF-tree are shown in
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Figure 3.2: The projected UF-trees for projected databases for Example 3.2.

Figure 3.2(b).

Next, the algorithm deals with item c. It extracts from three tree paths—

namely, (1) 〈(a:0.9), (b:0.8)〉:1, (2) 〈(a:0.9)〉:2 and (3) 〈(b:0.9)〉:1—and forms the

{c}-projected database. Note that items in the first two tree paths are both associ-

ated with the same item with the same existential probability (i.e., c:0.7), whereas

items in the last path are associated with c:0.5. All this information is captured

by a UF-tree shown in Figure 3.2(c). From this tree, the algorithm finds frequent

itemsets {a, c} and {b, c}, where expSup({a, c}) = 0.7 × 0.9 × 3 = 1.89 and

expSup({b, c}) = (0.7×0.8×1)+(0.5×0.9×1) = 1.01. After that, our proposed UF-

growth algorithm extracts from the UF-tree for the {c}-projected database to form

the {b, c}-projected database, which consists of item a. Next, the algorithm calcu-

lates the expected support for itemset {a, b, c} as 0.56× 0.9× 1 = 0.504 < minsup.

As a result, the itemset {a, b, c} is infrequent.

Finally, the algorithm deals with item b. The algorithm extracts from tree paths

and calculates the expected support of itemset {a, b} as expSup({a, b}) = 0.8× 0.9×

1 + 0.2× 0.3× 1 = 0.78 < minsup, which means itemset {a, b} is infrequent.
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To summarize, by applying our proposed UF-growth algorithm to the UF-tree

(shown in Figure 3.1) that captures the contents of uncertain database in Example 3.1,

we have found frequent itemsets {a}:3.0, {b}:2.8, {c}:2.6, {d}:1.8, {a, c}:1.89, {a,

d}:1.62, {a, c, d}:1.134, {b, c}:1.01 and {c, d}:1.26. �

3.3 Summary

In this chapter, we proposed the UF-growth algorithm, which is a tree-based

algorithm designed to mine frequent itemsets from uncertain data. Unlike the U-

Apriori algorithm relying on memory intensive candidate generate-and-test approach,

our proposed UF-growth algorithm can find all frequent itemsets from uncertain data

without candidate generation.

Our UF-growth algorithm consists of two major operations. First, it constructs

a UF-tree, which contains all frequent items from the uncertain database has been

constructed by two database scans. Each node in the UF-tree contains not only an

item and its expected support, but also the number of occurrence of such expected

support for such an item. In addition, we order the tree nodes in descending order of

accumulated expected supports to increase the chance of path sharing.

Second, our UF-growth algorithm recursively mines frequent itemsets from the

UF-tree by a divide-and-conquer approach. The algorithm first finds all frequent

items of size 1 from the global UF-tree. For each frequent item of size 1, the algorithm

then forms its projected database and builds its corresponding projected tree to find

its “extensions” of size 2 (i.e., frequent itemsets of size 2 using such an item as

prefix). This process is then applied recursively to find all frequent itemsets from the



Chapter 3: Mining Frequent Itemsets from Uncertain Data 47

UF-tree. Note that during the frequent itemset mining operation, we need keep track

the existential probability and the occurrence count for an itemset to compute the

expected support of its “extensions”.





Chapter 4

Mining Constrained Frequent

Itemsets from Uncertain Data

From the previous chapter, we know that the UF-growth algorithm can find all

frequent itemsets from uncertain data. However, in many real-life applications, a user

may be only interested in a tiny portion of frequent itemsets mined from uncertain

data. We also know that the aggregate constraints—min, max, avg and sum—are

widely used for specifying user interests. A natural question to ask is: Can we find a

way to mine from uncertain data for frequent itemsets that satisfy the user-specified

aggregate constraints?

49
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4.1 A Näıve Approach and Two Improved Solu-

tions

To answer the question, a näıve approach is to find all frequent itemsets first,

and then apply a post-processing step to check the frequent itemsets against the

user-specified aggregate constraints. All the frequent itemsets that do not satisfy

the constraints will be filtered out. Specifically, for finding the constrained frequent

itemsets (i.e., frequent itemsets that satisfy the constraints) from uncertain data, the

algorithm using the above approach needs to first compute the expected support of

each itemset and then compare these supports with the minsup to find those frequent

itemsets (i.e., itemsets with expected support ≥ minsup). After that, the algorithm

checks each of the frequent itemsets with the user-specified aggregate constraints to

find those frequent itemsets which satisfy the constraints.

One clear weakness associated with the näıve approach is that the algorithm needs

to compute the expected support of each itemset, regardless whether the itemset sat-

isfies the user-specified aggregate constraints or not. It is important to note that

expected support checking is orthogonal to constraint checking. As the algorithm

aims to find constrained frequent itemsets, checking the expected support for those

itemsets which do not satisfy the user-specified aggregate constraints wastes time and

resources. Hence, we propose an improved solution—called CBSChecking (indi-

cating Constraint checking Before applying the expected Support Checking)—which

performs constraint checking before the expected support checking. To elaborate,

for finding the constrained frequent itemsets from uncertain data, CBSChecking first
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computes the expected support of each itemset. Then, the algorithm checks these

itemsets with the user-specified aggregate constraints to find those itemsets which

satisfy the constraints. Finally, the algorithm checks the expected supports of those

constrained itemsets (i.e., itemsets that satisfy the aggregate constraints) with the

minsup to find those frequent itemsets (i.e., itemsets with expected support ≥ min-

sup) which satisfy the aggregate constraints.

Following the above direction and inspired by the U-FPS algorithm which han-

dles the frequent itemset mining with succinct constraints from uncertain data, we

could push the constraint checking earlier. We can apply constraint checking before

computing the expected supports for itemsets, which leads to a new solution, called

CBSComputing (indicating Constraint checking Before expected Support Comput-

ing), with the following operations:

1. For each itemset, check if it satisfies the user-specified aggregate constraints.

2. Compute the expected supports for all valid itemsets which satisfy the aggregate

constrains.

3. Check the expected supports of those valid itemsets with minsup to find those

frequent itemsets (i.e., itemsets with expected support ≥ minsup) which satisfy

the aggregate constraints.

Pushing aggregate constraint checking early could save lots of computational costs,

especially when the selectivity of the constraints is low (i.e., when a small portion

of frequent itemsets satisfies the constraints). However, we still need to perform

constraint checking for every itemset. Can we further reduce the computational costs
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by exploring the properties of the user-specified aggregate constraints so that we do

not need to check every itemset in order to determine whether or not it satisfies the

constraints? If we can, how to do it?

4.2 General Skeleton of the ACUF-growth Algo-

rithm

To answer the above questions, we propose a tree-based algorithm called ACUF-

growth (indicates Aggregate Constraint UF-growth) to efficiently mine from un-

certain data those frequent itemsets which satisfy the user-specified aggregate con-

straints. Our algorithm first scans the database with uncertain data once to accu-

mulate the expected support of each of the domain items and finds those frequent

ones. Then, the algorithm arranges these frequent items according to some order

R. After that, the ACUF-growth algorithm scans the database the second time to

build a modified UF-tree. Recall that the UF-tree is a tree structure to mine frequent

itemsets from uncertain data. In the UF-tree, each node stores (a) an item, (b) its

expected support and (c) the number of occurrences of such expected support for

such an item. The order of the tree nodes in the UF-tree is based on the descending

order of accumulated expected supports. In our modified UF-tree, each tree node

contains exactly the same contents as the UF-tree. However, the order of the tree

nodes is based on the order R, which is the only difference between a UF-tree and

our modified UF-tree.

During the modified UF-tree construction process, our ACUF-growth algorithm
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only inserts those frequent items in each database transaction into the tree. As

discussed above, the items in the tree are arranged according to some order R. Here,

a new transaction is merged with a child (or descendant) node of the root of the

modified UF-tree only if the same item and the same expected support exist in both

the transaction and the child (or descendant) node. Note that the occurrence count

of a node is at least the sum of occurrence counts of all its children nodes.

Once the modified UF-tree is constructed, our ACUF-growth algorithm recursively

mines constrained frequent itemsets from this tree in a depth-first divide-and-conquer

manner. Specifically, the algorithm first forms a modified UF-tree for the projected

database of an item x (according to the order R) and keeps track of the expected

support of x. From this tree, the algorithm recursively finds all constrained frequent

itemsets containing x in a similar manner (i.e., by recursively forming a modified

UF-tree for the projected database of {x, y} where y is an item in the {x}-projected

database). This process is repeated for other items. By exploring nice properties

of aggregate constraints, we avoid unnecessary constraint checking and formation of

projected databases.

4.3 Specific Details of the ACUF-growth Al-

gorithm

Note that examples of aggregate constraints include max, min, avg, and sum.

Here, we discuss specific details of applying our ACUF-growth algorithm on each of

them. For this part, we focus on (a) the order R for arranging domain items and (b)
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nice properties of different types of aggregate constraints based on R.

4.3.1 Applying the ACUF-growth Algorithm on Max and

Min Constraints

Max and Min Constraints with Anti-monotonicity Property

A max constraint CMAX can be presented as the form max (X.attr) θ const, where

attr is an attribute of an itemset X and const is a constant. The operator θ can be

≤, <, ≥ or >. For example, constraint max (X.Price) < $60 says the maximum price

of all items in a set X is less than $60 and the constraint max (X.Weight) ≥ 100kg

indicates the maximum weight of all individuals in a set X is at least 100kg.

For a max constraint CMAX , let us first consider the situation in which the operator

θ is ≤ or < (say, constraint CMAX1 ≡ max (X.attr) ≤ const). In such a situation,

for any itemset X, whenever X violates max constraint CMAX1 , all supersets of X

also violate CMAX1 (as adding more items to itemset X will not lower the maximum

attribute value to the itemset). In other words, if any itemset X satisfies the max

constraint CMAX1 , all subsets of X also satisfy CMAX1 (as deleting any items from

itemset X will not increase the maximum attribute value to the itemset). Based on the

above properties of the max constraint CMAX1 , we know that it is an anti-monotone

constraint.

Hence, for the max constraint CMAX1 , our proposed ACUF-growth algorithm

arranges the domain items in non-ascending order R− of attr values (e.g., xi.attr ≥

xi+1.attr). By such a way, our algorithm does not need to check constraint CMAX1

against all the items. It stops as soon as it finds the first valid item xi because all
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remaining items xi+j (for all j ≥ 1) are guaranteed to be valid (as they have lower attr

values due to the order of R−). Moreover, the ACUF-growth algorithm only needs to

“extend” (e.g., construct modified UF-trees for projected databases) valid items xi+j

(for all j ≥ 0) because any “extension” of an invalid item would have a higher attr

value due to the order of R−. Furthermore, no further constraint checking is required

for “extensions” of any valid items. These “extensions” are guaranteed to be valid as

they have the same maximum attr values as the valid item due to the order of R−.

Similar to max constraints, a min constraint CMIN can be presented as the form

min(X.attr) θ const, where attr is an attribute of an itemset X and const is a constant.

The operator θ can be ≤, <, ≥ or >. For example, the constraint min(X.Height) ≥

180cm indicates the minimum height of all individuals in a set X is more than or equal

to 180cm. When the operator θ is ≥ or > in a min constraint CMIN1 ≡ min(X.attr)

≥ const, the min constraint CMIN1 possesses the same anti-monotonicity property

as the max constraint CMAX1 . As a result, for the min constraint CMIN1 , when our

ACUF-growth arranges the domain items in non-descending order R+ of attr values,

we get exactly same benefits (i.e., does not need to check constraint CMIN1 against

all the items) as the max constraint CMAX1 to perform the frequent itemset mining.

For better understanding the procedures of our ACUF-growth algorithm handling

the max constraint CMAX1 and min constraint CMIN1 , let us see Example 4.1.
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Example 4.1 Consider the following transaction database consisting of uncertain

data:

Transactions Contents
t1 {a:0.8, b:0.7, c:0.8, d :1.0, e:0.5}
t2 {a:0.8, b:0.7, c:0.8, e:0.9, f :0.1}
t3 {a:0.7, c:0.6, d :1.0}
t4 {a:0.8, b:0.7, d :1.0}
t5 {a:0.7, f :0.3}

with the following information for each item:

Items Price
a $30
b $12
c $72
d $45
e $84
f $9

In the above database of uncertain data, each transaction contains items and their

corresponding existential probabilities (e.g., in t1, the existential probabilities of do-

main items a, b, c, d and e are 0.8, 0.7, 0.8, 1.0 and 0.5 respectively).

Let the user-specified threshold minsup be set to 1.0 and the aggregate constraint

be max (X.Price) < $60. To find all frequent itemsets which satisfy the aggregate

constraint, our proposed ACUF-growth algorithm first scans the database once and

accumulates the expected support of each domain item (a:3.8, b:2.1, c:1.4, d :3.0,

e:1.4 and f :0.4). Then, the algorithm builds a global modified UF-tree consisting of

only five frequent items (a, b, c, d and e). Item f is infrequent because the expected

support of f = 0.4 < minsup = 1.0. With the aggregate constraint max (X.Price)

< $60, our algorithm arranges the items in non-ascending order R− of price (i.e., e,

c, d, a, b) from leaves to the root in the modified UF-tree. The resulting modified

UF-tree is shown in Figure 4.1(a).
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Figure 4.1: The global modified UF-tree and all projected modified UF-trees for
Example 4.1.

Our ACUF-growth algorithm recursively mines frequent itemsets satisfying the

max constraint max (X.Price) < $60 as follows. It checks the constraint against all

items in the global modified UF-tree (i.e., e, c, d,...) until it finds the first valid

item d. Then, the mining process only needs to “extend” (i.e., to build the pro-

jected databases) all the valid items and no more constraint checking is required. To

elaborate, for the first valid item d, the algorithm extracts the following tree paths:

• 〈(b:0.7), (a:0.8)〉 with the occurrence count of (d :1.0) equal to 2, and

• 〈(a:0.7)〉 with the occurrence count of (d :1.0) equal to 1.
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With the above information, the ACUF-growth algorithm forms the {d}-projected

database and the corresponding {d}-projected modified UF-tree as shown in Fig-

ure 4.1(b). From this projected tree, the algorithm finds valid frequent itemsets {a, d}

with expected support expSup({a, d}) = (2×0.8×1.0)+(1×0.7×1.0) = 2.3. Next, our

ACUF-growth algorithm forms the projected database for itemset {a, d} by extract-

ing the tree path 〈(b : 0.7)〉 with the occurrence count of ({a, d}:0.8) equal to 2. The

resulting {a, d}-projected tree is shown in Figure 4.1(c). From this tree, the algorithm

finds the valid frequent itemset {a, b, d} with expSup({a, b, d}) = 2×0.7×0.8 = 1.12.

After that, our proposed ACUF-growth algorithm finds the valid frequent itemset

{b, d} from the {d}-projected modified UF-tree. The expected support of itemset {b,

d} can be computed as expSup({b, d}) = 2×0.7×1.0 = 1.4. Finally, the ACUF-growth

algorithm forms the {a}-projected database and constructs the corresponding {a}-

projected modified UF-tree (as shown in Figure 4.1(d)) which only contains the item b

with occurrence count of ({a}:0.8) equal to 3. From this tree, the algorithm finds the

last frequent itemset {a, b} with expected support expSup({a, b}) = 3× 0.7× 0.8 =

1.68. Consequently, our proposed ACUF-growth finds frequent itemsets {d}:3.0, {a,

d}:2.3, {a, b, d}:1.12 {b, d}:1.4, {a}:3.8, {a, b}:1.68 and {b}:2.1 that satisfy the

aggregate constraint max (X.Price) < $60. �

Max and Min Constraints with Monotonicity Property

Now, let us discuss the situation when operator θ is ≥ or > in a max constraint

CMAX . For a max constraint CMAX2 ≡ max (X.attr) ≥ const, any itemset X satisfies

constraint CMAX2 , all supersets of X also satisfy constraint CMAX2 (as adding more
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items to X will not decrease the maximum attribute value of the itemset). In other

words, if any itemset X violates constraint CMAX2 , all subsets of itemset X also

violate constraint CMAX2 (as deleting any items from itemset X will not increase the

maximum attribute value to the itemset). Based on the above properties of the max

constraint CMAX2 , we know that it is a monotone constraint.

Hence, for the max constraint CMAX2 , our algorithm arranges the domain items

in non-ascending order R− of attr values (e.g., xi.attr ≥ xi+1.attr). By such a way,

our ACUF-growth algorithm keeps checking constraint CMAX2 against the domain

items until it finds the first invalid one xk. All remaining items xk+j are guaranteed

to be invalid because they have lower attr values due to the order of R−. Like the

above procedures for CMAX1 , the ACUF-growth algorithm also only “extends” (e.g.,

constructs modified UF-trees for projected databases) valid items xj (for all 1 ≤ j

< k). Furthermore, as the “extensions” of these valid items are guaranteed to be

valid (due to the monotonicity property), no further constraint checking is required

for these “extensions”. Different from the constraints possessing anti-monotonicity

property, the invalid items in the tree are still useful because they can be parts of the

valid itemsets when our algorithm processes the monotone constraints. For example,

for monotone constraint max (X.Weight) ≥ 100kg, item a with weight equal to 120kg

is a valid item. Item b with weight equal to 70kg is an invalid item. We cannot delete

item b from the modified UF-tree because itemset {a, b} is a valid itemset (maximum

weight = 120kg ≥ 100kg). Same procedures apply to any constraint CMIN2 of the

form min(X.attr) ≤ const when items are arranged in non-descending order R+ of attr

values. Let us see the following example for mining from uncertain data those frequent
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itemsets which satisfy aggregate constraints possessing monotonicity property.

Example 4.2 Reconsider the transaction database consisting of uncertain data

in Example 4.1 with minsup = 1.0 and the following auxiliary information:

Items Weight
a 85kg
b 95kg
c 80kg
d 55kg
e 50kg
f 45kg

Let the user-specific aggregate constraint be min(X.Weight) ≤ 60kg. To find all

frequent itemsets which satisfy the above min constraint, our proposed ACUF-growth

algorithm scans the database once to accumulate the expected support of each domain

item (a:3.8, b:2.1, c:1.4, d :3.0, e:1.4 and f :0.4) and arranges the frequent items in

non-descending order R+ of weight (i.e., e, d, c, a, b). Then, the algorithm constructs

a modified UF-tree (as shown in Figure 4.2(a)) by inserting these frequent items as

the non-descending order R+ from tree leaves to tree root.

To mine frequent itemsets from the modified UF-tree, our ACUF-growth algo-

rithm first checks the constraint min(X.Price) ≤ 60kg against all items in the global

modified UF-tree (i.e., e, d, c, ...) until it finds the first invalid item c. Then, the

algorithm only “extends” (builds the projected databases) those valid items (i.e., item

e and item d). No more constraint checking is required because of the monotonicity

property and the non-descending order R+ of weight values.

For the first valid item e, the algorithm extracts the following tree paths:

• 〈(a:0.8), (c:0.8)〉 with the occurrence count of (e:0.5) equal to 1, and

• 〈(a:0.8), (c:0.8)〉 with the occurrence count of (e:0.9) equal to 1.



Chapter 4: Mining Constrained Frequent Itemsets from Uncertain Data 61

Figure 4.2: The global modified UF-tree and all projected modified UF-trees for
Example 4.2.

The ACUF-growth algorithm forms the {e}-projected database and constructs the

{e}-projected modified UF-tree as shown in Figure 4.2(b). From this tree, the algo-

rithm finds the frequent itemsets {a, e} and {c, e} which satisfy the min constraint

min(X.Price) ≤ 60kg. The expected support for itemset {a, e} can be computed as

expSup({a, e}) = (1× 0.8× 0.5)+ (1× 0.8× 0.9) = 1.12 and the expected support for

itemset {c, e} can be computed as expSup({c, e}) = ((1×0.8×0.5)+(1×0.8×0.9) =

1.12.

Next, our proposed algorithm extracts from the following tree paths to form {d}-

projected database and construct the corresponding {d}-projected modified UF-tree
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as shown in Figure 4.2(c):

• 〈(b:0.7), (a:0.8), (c:0.8)〉 with the occurrence count of (d :1.0) equal to 1,

• 〈(b:0.7), (a:0.8)〉 with the occurrence count of (d :1.0) equal to 1, and

• 〈(a:0.7), (c:0.6)〉 with the occurrence count of (d :1.0) equal to 1.

From this projected tree, the algorithm first finds valid frequent itemset {c, d} with

expSup({c, d}) = ((1 × 0.8 × 1.0) + (1 × 0.6 × 1.0) = 1.4. Then, it builds the {c,

d}-projected modified UF-tree for the {c, d}-projected database as shown in Fig-

ure 4.2(d). From this {c, d}-projected tree, our ACUF-growth algorithm finds valid

frequent itemset {a, c, d} with expSup({a, c, d}) = ((1× 0.8× 0.8)+ (1× 0.7× 0.6) =

1.06.

From the {d}-projected modified UF-tree (as shown in Figure 4.2(c)), the algo-

rithm also finds frequent itemset {a, d} with expSup({a, d}) = ((2× 0.8× 1.0) + (1×

0.7× 1.0) = 2.3. The algorithm then “extends” valid item {d} to itemset {a, d} and

constructs {a, d}-projected modified UF-tree as shown in Figure 4.2(e). From this

{a, d}-projected tree, our algorithm finds the valid frequent itemset {a, b, d} with

expSup({a, b, d}) = 2× 0.7× 0.8 = 1.12.

The last frequent itemset which satisfies constraint min(X.Price) ≤ 60kg can be

obtained from {d}-projected modified UF-tree. It is the itemset {b, d} with expected

support expSup({b, d}) = 2 × 0.7 × 1.0 = 1.4. Hence, our proposed ACUF-growth

finds all valid (i.e., satisfy the aggregate constraint min(X.Price) ≤ 60kg) frequent

itemsets as {e}:1.4, {c, e}:1.12, {a, e}:1.12, {d}:3.0, {c, d}:1.4, {a, c, d}:1.06, {a,

d}:2.3, {a, b, d}:1.12 and {b, d}:1.4. �
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4.3.2 Applying the ACUF-growth Algorithm on Average

Constraint

Now, let us discuss the average constraint CAV G. Similar to CMAX and CMIN ,

CAV G can be presented as the form avg(X.attr) θ const where attr is an attribute of

an itemset X and const is a constant. The operator θ can be ≤, <, ≥ or >. For

example, constraint avg(X.Temperature) ≥ −10◦C says the average temperature of

all locations in a set X is more than or equal to −10◦C and the constraint avg(X.Size)

< 200m2 indicates the average size of all houses in a set X is less than 200 square

meters.

For an average constraint CAV G, let us first consider the situation in which the

operator θ is ≥ or >. Normally, with any arbitrary item order, constraint CAV G1 ≡

avg(X.attr) ≥ const is neither anti-monotone nor monotone. However, if we arrange

domain items in non-ascending order R− of attr values (e.g., xi.attr ≥ xi+1.attr),

constraint CAV G1 would possess a nice property (i.e., convertible anti-monotonicity

property) where all “extensions” of an itemset X would violate CAV G1 whenever X

violates CAV G1 . With such a property, our ACUF-growth algorithm keeps checking

average constraint CAV G1 against the domain items until it finds the first invalid one

xk because all remaining items xk+j (for all j ≥ 1) are guaranteed to be invalid. Again,

the ACUF-growth algorithm only needs to “extend” (e.g., form modified UF-trees for

projected databases) valid items xj (for all 1 ≤ j < k) because any “extension”

of an invalid item would have a lower average attr value due to the order of R−.

However, further constraint checking is required in subsequent projected databases

of the “extensions” of these valid items because these “extensions” may be invalid.
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When the operator θ is ≤ or < in an average constraint (e.g., constraint CAV G2 ≡

avg(X.attr) ≤ const), the constraint CAV G2 is also neither anti-monotone nor mono-

tone. However, if we arrange domain items in non-descending order R+ of attr values

(e.g., xi.attr ≤ xi+1.attr), constraint CAV G2 would possess exactly the same con-

vertible anti-monotonicity property as constraint CAV G1 (i.e., all “extensions” of an

itemset X would violate CAV G2 whenever X violates CAV G2). As a result, our pro-

posed ACUF-growth algorithm performs the same procedures (as the procedures for

average constraint CAV G1) to the average constraint CAV G2 to find from uncertain

data those frequent itemsets which satisfy CAV G2 .

For better understanding how our proposed ACUF-growth algorithm handles av-

erage constraints, let us see Example 4.3.

Example 4.3 Consider the following transaction database consisting of uncertain

data:

Transactions Contents
t1 {a:0.8, b:0.7, c:0.8, d :1.0, e:0.2}
t2 {a:0.8, b:0.7, c:0.8, e:0.3, f :0.1}
t3 {a:0.7, c:0.6, d :0.9, e:0.4}
t4 {a:0.8, b:0.7, d :1.0, f :0.1}

with the following auxiliary information for each item:

Items Temperature
a –20◦C
b –35◦C
c +5◦C
d –5◦C
e –15◦C
f 0◦C

In the above database of uncertain data, each transaction contains items and their

corresponding existential probabilities (e.g., in t1, the existential probabilities of do-

main items a, b, c, d and e are 0.8, 0.7, 0.8, 1.0 and 0.2 respectively).
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By setting the user-specified threshold minsup be 1.0 and average constraint be

avg(X.Temperature) ≥ –10◦C, our ACUF-growth algorithm scans the database once,

accumulates the expected support of each domain item (a:3.1, b:2.1, c:2.2, d :2.9,

e:0.9 and f :0.2), and builds a global modified UF-tree (see Figure 4.3(a)) consisting

of only four frequent items a, b, c and d. With average constraint avg(X.Temperature)

≥ −10◦C, our algorithm arranges the items in non-ascending order R− of temperature

values (i.e., c, d, a, b) from leaves to root in the modified UF-tree.

Once the global modified UF-tree has been constructed, our ACUF-growth al-

gorithm recursively mines frequent itemsets which satisfy the average constraint

avg(X.Temperature) ≥ –10◦C from the tree as follows. It first checks the average

constraint against all items in the global modified UF-tree (i.e., c, d, a, ...) until it

finds the first invalid item a. Then, the algorithm “extends” (builds the projected

databases) only valid items. When “extending” valid item c, the algorithm extracts

the following tree paths:

• 〈(d :1.0), (a:0.8), (b:0.7)〉 with the occurrence count of (c:0.8) equal to 1,

• 〈(a:0.8), (b:0.7)〉 with the occurrence count of (c:0.8) equal to 1, and

• 〈(d :0.9), (a:0.7)〉 with the occurrence count of (c:0.6) equal to 1.

In addition, ACUF-growth also constructs a modified UF-tree for the {c}-projected

database as shown in Figure 4.3(b). The algorithm then checks the average constraint

avg(X.Temperature) ≥ –10◦C against itemsets {c, d}, which is valid with an expected

support expSup({c, d}) = (1 × 1.0 × 0.8) + (1 × 0.9 × 0.6) = 1.34. After “extending”

valid frequent itemset {c, d}, the algorithm constructs the {c, d}-projected database
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Figure 4.3: The global modified UF-tree and all projected modified UF-trees for
Example 4.3.

and its corresponding {c, d}-projected modified UF-tree as shown in Figure 4.3(c).

The ACUF-growth algorithm then applies constraint checking and finds valid frequent

{c, d, a} with expected support expSup({c, d, a}) = (1 × 0.8 × 0.8) + (1 × 0.7 ×

0.54) = 1.018 from {c, d}-projected tree.

Next, our ACUF-growth algorithm finds the frequent itemset {c, a} from the

{c}-projected modified UF-tree with expected support expSup({c, a}) = (2 × 0.8

× 0.8) + (1 × 0.7 × 0.6) = 1.7. After checking itemset {c, a} against the average

constraint avg(X.Temperature) ≥ –10◦C, we know that it is another valid frequent

itemset. However, the “extension” of itemset {c, a}—itemset {c, a, b}—is invalid.

Then, the algorithm checks the average constraint against the next item b in {c}-

projected modified UF-tree (Figure 4.3(b)) and finds itemset {c, b} is invalid. No

further constraint checking is required to any other itemsets in the {c}-projected

database because –10◦C > avg({c, b}.Temperature) > avg({c, x}.Temperature) for

any item x ordered after item b according to the non-ascending order R−.
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Afterwards, the algorithm checks the average constraint avg(X.Temperature) ≥

–10◦C against item d in the global modified UF-tree in Figure 4.3(a) and “extends”

it. However, none of its “extensions” is valid. Then, the ACUF-growth algorithm

checks item a in the global modified UF-tree against the average constraint and

finds item a is invalid. No further constraint checking is applied to other items in

the global modified UF-tree. Consequently, our proposed algorithm finds frequent

itemsets {c}:2.2, {c, d}:1.34, {c, d, a}:1.018, {c, a}:1.7 and {d}:2.9 that satisfy

aggregate average constraint avg(X.Temperature) ≥ –10◦C. �

4.3.3 Applying the ACUF-growth Algorithm on Sum Con-

straint

So far, we have discussed how our proposed ACUF-growth algorithm finds from

uncertain data those frequent itemsets which satisfy user-specific max, min and aver-

age constraints. Now, let us turn our focus to sum constraint CSUM . Similar to other

constraints, the sum constraint CSUM can be presented as the form sum(X.attr) θ

const, where attr is an attribute of an itemset X and const is a constant. The op-

erator θ can be ≤, <, ≥ or >. For example, constraint sum(X.Rainfall) ≥ 100mm

says the total rainfall of all locations in a set X is more than or equal to 100mm

and the constraint sum(X.Diving) ≥ –200m indicates the total diving distance of an

individual in all locations in a set X is more than or equal to 200 meters (under water

200m).

As we know, no matter what the attributes of domain items have positive, nega-

tive or mix (of positive and negative) values, the max, min and average constraints
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possess nice properties (i.e., anti-monotonicity, monotonicity, and convertible anti-

monotonicity) as long as we form the items with some specific orders (i.e., non-

descending order R+ or non-ascending order R− of the attribute values). However,

the property of the sum constraint is related to the values of the domain item at-

tributes. Specifically, the constraint CSUM possesses nice property if and only if the

values of domain item attributes are all positive or all negative. In other words, with

any arbitrary item order, constraint CSUM is not anti-monotone, monotone, convert-

ible anti-monotone or convertible monotone if the values of domain item attributes

are mixed with both positive and negative numbers. As a result, in this section, we

only consider the situations for the sum constraint in which the values of domain item

attributes are all positive or all negative.

Firstly, we consider a sum constraint CSUM1 of the form sum(X+.attr) ≥ const

(where X+ is an itemset with all positive attr values). If we arrange domain items

in non-ascending order R− of attr values (e.g., xi.attr ≥ xi+1.attr), sum constraint

CSUM1 would possess convertible monotonicity property. In such a situation, all “ex-

tensions” of an itemset X would satisfy sum constraint CSUM1 whenever itemset X

satisfies CSUM1 . Here, our proposed ACUF-growth algorithm keeps performing con-

straint checking until it finds the first invalid item xk because all remaining items xk+j

(for all j ≥ 1) are guaranteed to be invalid (as they have lower positive attr values).

Unlike the procedures for all max, min and average constraints, the ACUF-growth al-

gorithm “extends” (e.g., forms modified UF-trees for projected databases) valid items

as well as invalid items. While further constraint checking is unnecessary for “exten-

sions” of the valid items (because these “extensions” are guaranteed to be valid due
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to the convertible monotonicity property), further constraint checking is needed for

“extensions” of the invalid items (because some of these“extensions” may be valid).

Same procedures apply to a sum constraint CSUM2 of the form sum(X−.attr) ≤ const

(where X− is an itemset with all negative attr values) when items are arranged in

non-descending order R+ of attr values.

Now, let us consider a sum constraint CSUM3 of the form sum(X−.attr) ≥ const.

If we arrange domain items in non-ascending order R− of attr values (e.g., xi.attr ≥

xi+1.attr), constraint CSUM3 would possess convertible anti-monotonicity property

that all “extensions” of an itemset X would violate the sum constraint CSUM3 when-

ever X violates CSUM3 . With such a property, our ACUF-growth algorithm keeps

checking sum constraint CSUM3 against the domain items until it finds the first in-

valid one xk because all remaining items xk+j (for all j ≥ 1) are guaranteed to be

invalid. In this situation, the ACUF-growth algorithm only needs to “extend” (e.g.,

form modified UF-trees for projected databases) valid items xj (for all 1 ≤ j < k)

because any “extensions” of an invalid item would have a lower sum attr value due to

the negative values of all attributes. However, further constraint checking is required

in subsequent projected databases of the “extensions” of these valid items because

these “extensions” may violate the sum constraint CSUM3 . For a sum constraint

CSUM4 of the form sum(X+.attr) ≤ const, we can perform the same procedures (as

the procedures for CSUM3) when items are arranged in non-descending order R+ of

attr values because it also possesses convertible anti-monotonicity property.

For better understanding the procedures of our proposed ACUF-growth algorithm

handling the sum constraints in all positive domain item attributes and all negative
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domain item attributes, let us see the following two examples.

Example 4.4 Reconsider the transaction database in Example 4.3 with minsup

= 1.0 and the following auxiliary information.

Items Rainfall
a 60mm
b 50mm
c 100mm
d 105mm
e 110mm
f 115mm

Let the user-specific aggregate constraint be sum(X.Rainfall) ≥ 100mm. Here,

all the attr values (i.e., the rainfall) are positive. To find all frequent itemsets which

satisfy the above sum constraint, our proposed ACUF-growth algorithm scans the

database once to accumulate the expected support of each domain item a:3.1, b:2.1,

c:2.2, d :2.9, e:0.9 and f :0.2. Then, the algorithm builds a global modified UF-tree

(see Figure 4.4(a)) consisting of only four frequent items a, b, c and d. With sum

constraint sum(X.Rainfall) ≥ 100mm, our algorithm arranges the frequent items in

descending order R− of rainfall values (i.e., d, c, a, b) from leaves to root in the

modified UF-tree.

Our ACUF-growth algorithm recursively mines frequent itemsets satisfying the

sum constraint sum(X.Rainfall) ≥ 100mm as follows. It checks the sum constraint

against all items in the global modified UF-tree (i.e., d, c, a, b) until it finds the first

invalid item a. The remaining item (i.e., item b in this example) is guaranteed to be

invalid due to the non-ascending order R−. Then, the algorithm “extends” (builds

the projected databases) for all valid and invalid items. When “extending” valid item

d, the algorithm extracts the following tree paths:
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• 〈(c:0.8), (a:0.8), (b:0.7)〉 with the occurrence count of (d :1.0) equal to 1,

• 〈(a:0.8), (b:0.7)〉 with the occurrence count of (d :1.0) equal to 1, and

• 〈(c:0.6), (a:0.7)〉 with the occurrence count of (d :0.9) equal to 1.

From the information obtained above, the algorithm constructs a modified UF-tree

for the {d}-projected database as shown in Figure 4.4(b).

Note that for the sum constraintsum(X.Rainfall) ≥ 100mm, further constraint

checking for valid items (i.e., item d and item c) and their “extensions” is unneces-

sary because of the convertible monotonicity property. Hence, our proposed ACUF-

growth algorithm “extends” valid itemset {d, c} and calculates its expected support

as expSup({d, c}) = (1 × 0.8 × 1.0) + (1 × 0.6 × 0.9) = 1.34. After that, the algo-

rithm constructs the {d, c}-projected database and its corresponding {d, c}-projected

modified UF-tree as shown in Figure 4.4(c). The ACUF-growth algorithm then finds

valid frequent {d, c, a} with expected support expSup({d, c, a}) =(1 × 0.8 × 0.8) +

(1 × 0.7 × 0.54) = 1.018 from {d, c}-projected tree.

Next, our ACUF-growth algorithm “extends” valid itemset {d, a} and calculates

its expected support as expSup({d, a}) = (2 × 0.8 × 1.0) + (1 × 0.7 × 0.9) =

2.23. After that, the algorithm constructs the {d, a}-projected database and its

corresponding {d, a}-projected modified UF-tree which only contains one item b (as

shown in Figure 4.4(d)). Our proposed ACUF-growth algorithm then finds valid

frequent {b, a, d} with expected support expSup({b, a, d}) = 2 × 0.7 × 0.8 = 1.12

from {d, a}-projected tree.

Then, the algorithm extracts the following tree paths to form a modified UF-tree

for the {c}-projected database as shown in Figure 4.4(e):
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Figure 4.4: The global modified UF-tree and all projected modified UF-trees for
Example 4.4.

• 〈(a:0.8), (b:0.7))〉 with the occurrence count of (c:0.8) equal to 2, and

• 〈(a:0.7)〉 with the occurrence count of (c:0.6) equal to 1.

From this {c}-projected modified UF-tree, our algorithm finds the valid itemset {c,

a} and calculates its expected support as expSup({c, a}) = (2 × 0.8 × 0.8) + (1 ×

0.7 × 0.6) = 1.7. Note that the itemset {c, a, b} is valid with the sum constraint

sum(X.Rainfall) ≥ 100mm. However, it is infrequent because its expected support

equals to 2 × 0.7 × 0.64 = 0.896 which is lower than the user-specific minsup = 1.0.

From {c}-projected modified UF-tree, our algorithm also “extends” valid frequent

itemsets {c, b} with expected support expSup({c, b}) = 2 × 0.7 × 0.8 = 1.12.

Afterwards, the algorithm constructs a modified UF-tree for the {a}-projected
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database (as shown in Figure 4.4(f)) by extracting from tree path 〈(b:0.7)〉 with the

occurrence count of (a:0.8) equal to 2. Since item a is invalid for the sum constraint

sum(X.Rainfall) ≥ 100mm, the algorithm checks the sum constraint against its “ex-

tension” itemset {a, b} and calculates its expected support as expSup({a, b}) = 3 ×

0.7 × 0.8 = 1.68. Hence, our proposed algorithm finds frequent itemsets {d}:2.9, {d,

c}:1.34, {d, c, a}:1.018, {d, a}:2.23, {d, a, b}:1.12, {c}:2.2, {c, a}:1.7, {c, b}:1.12

and {a, b}:1.68 that satisfy aggregate sum constraint sum(X.Rainfall) ≥ 100mm. �

Example 4.5 Reconsider the transaction database in Example 4.3 with the fol-

lowing auxiliary information:

Items Diving distance (underwater)
a –260m
b –230m
c –60m
d –120m
e –100m
f –360m

Let the user-specific minimum support threshold minsup = 1.0 and aggregate sum

constraint be sum(X.Diving) ≥ –200m. All the attr values in this example are neg-

ative. To find all frequent itemsets which satisfy the above sum constraint, our pro-

posed ACUF-growth algorithm scans the database once to accumulate the expected

support of each domain item a:3.1, b:2.1, c:2.2, d :2.9, e:0.9 and f :0.2. Among them,

items a, b, c and d are frequent. Then, the algorithm builds a global modified UF-tree

(as shown in Figure 4.5(a)) consisting of only the frequent items. With sum constraint

sum(X.Diving) ≥ –200m, our algorithm arranges the items in non-ascending order

R− of diving distance values (i.e., c, d, b, a) from leaves to root in the modified

UF-tree.

In the next step, our proposed ACUF-growth algorithm recursively mines frequent
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Figure 4.5: The global modified UF-tree and all projected modified UF-trees for
Example 4.5.

itemsets satisfying the sum constraint sum(X.Diving) ≥ –200m. It first checks the

sum constraint against all items in the global modified UF-tree until it finds the first

invalid item b. The remaining item (i.e., item a) is guaranteed to be invalid due to

the non-ascending order R−. Then, the algorithm “extends” (builds the projected

databases) for only those valid items (i.e, items c and item d). When “extending”

valid item c, the algorithm extracts the following tree paths:
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• 〈(d :1.0), (b:0.7), (a:0.8)〉 with the occurrence count of (c:0.8) equal to 1,

• 〈(b:0.7), (a:0.8)〉 with the occurrence count of (c:0.8) equal to 1, and

• 〈(d :0.9), (a:0.7)〉 with the occurrence count of (c:0.6) equal to 1.

From the information obtained above, the algorithm constructs a modified UF-tree for

the {c}-projected database as shown in Figure 4.5(b). From this tree, the algorithm

finds frequent itemset {c, d} (with expected support expSup({c, d}) = (1 × 1.0 ×

0.8) + (1 × 0.9 × 0.6) = 1.34) satisfying constraint sum(X.Diving) ≥ –200m. None

of other frequent itemsets is valid.

Next, the algorithm extracts the following tree paths and forms a modified UF-tree

for the {d}-projected database as shown in Figure 4.5(c):

• 〈((b:0.7), (a:0.8)〉 with the occurrence count of (d :1.0) equal to 2, and

• 〈(a:0.7)〉 with the occurrence count of (d :0.9) equal to 1.

The algorithm checks the sum constraint sum(X.Diving) ≥ –200m against itemsets

{d, b} and {d, a} and finds both of them are invalid. No more itemsets should be

checked because the “extensions” of invalid items (itemsets) are guaranteed to be

invalid. As a result, our proposed algorithm finds all valid (satisfying the aggregate

constraint sum(X.Diving) ≥ –200m) frequent itemsets {c}, {c, d} and {d} with their

corresponding expected supports 2.2, 1.34 and 2.9 respectively. �
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4.4 The ACUF-growth Algorithm and Aggregate

Constraint Properties

In the previous section, we have discussed the detailed procedures of applying

our proposed ACUF-growth algorithm on max, min, avg and sum constraints to find

those valid frequent itemsets from uncertain data. Generally, there are four constraint

properties (i.e., anti-monotonicity property, monotonicity property, convertible anti-

monotonicity property and convertible monotonicity property) which can be possessed

by aggregate constraints. To get a clear view of how our ACUF-growth algorithm

achieves the above constraint properties, we classify the forms of aggregate constraints

into the following four constraint property categories:

• Category 1: Constraints with anti-monotonicity property. For max

constraints of the form max (X.attr) ≤ const and min constraints of the form

min(X.attr) ≥ const, when our proposed ACUF-growth algorithm arranges do-

main items in a monotonic increasing or decreasing order R1 of attr values such

that invalid items come before/below valid items in the modified UF-tree, these

constraints possess anti-monotonicity property.

• Category 2: Constraints with monotonicity property. For max con-

straints of the form max (X.attr) ≥ const and min constraints of the form

min(X.attr) ≤ const, when our proposed ACUF-growth algorithm arranges do-

main items in a monotonic decreasing or increasing order R2 of attr values such

that valid items come before/below invalid items in the modified UF-tree, these

constraints possess monotonicity property.
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• Category 3: Constraints with convertible anti-monotonicity prop-

erty. For average constraints of any form, the sum constraints of the form

sum(X−.attr) ≥ const (where X− is an itemset with all negative attr values)

and the sum constraints of the form sum(X+.attr) ≤ const (where X+ is an

itemset with all positive attr values), when our proposed ACUF-growth algo-

rithm arranges domain items in an order R2 of attr values such that valid items

come before/below invalid items in the modified UF-tree, these constraints pos-

sess convertible anti-monotonicity property.

• Category 4: Constraints with convertible monotonicity property. For

sum constraints of the form sum(X+.attr) ≥ const (where X+ is an itemset

with all positive attr values) and the form sum(X−.attr) ≤ const (where X−

is an itemset with all negative attr values), when our proposed ACUF-growth

algorithm arranges domain items in an order R2 of attr values such that valid

items come before/below invalid items in the modified UF-tree, these constraints

possess convertible monotonicity property.

We summarize our classification of aggregate constraints in Table 4.1. The above

classification can help users to easily determine the most suitable algorithm procedure

to handle aggregate constrained mining.

4.5 Summary

To find from uncertain data those frequent itemsets satisfying aggregate con-

straints, we first presented a näıve approach in this chapter. This approach finds all
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Table 4.1: The classification of aggregate constraints by constraint properties

Constraint The forms of The orders of domain items
properties aggregate constraints by ACUF-growth

anti-monotonicity max (X.attr) ≤ const Invalid items before/below valid items
min(X.attr) ≥ const in the modified UF-tree (order R1)

monotonicity max (X.attr) ≥ const
min(X.attr) ≤ const
avg(X.attr) ≥ const

convertible avg(X.attr) ≤ const Valid items before/below invalid items
anti-monotonicity sum(X−.attr) ≥ const in the modified UF-tree (order R2)

sum(X+.attr) ≤ const
convertible sum(X+.attr) ≥ const

monotonicity sum(X−.attr) ≤ const

frequent itemsets first, and then applies a post-processing step to check the frequent

itemsets against constraints to find the valid ones. One clear weakness for such an

approach is that, the algorithm computes the expected support for every itemset,

regardless whether it satisfies the constraints or not. To avoid the above weakness,

we proposed two improved solutions named CBSChecking and CBSComputing. Both

of them can save some computational costs by pushing the constraint checking early.

However, we still need to perform constraint checking for every itemset. Our ACUF-

growth algorithm can be a good solution. To make a clear view of our algorithm,

we discussed the general skeleton and the detailed procedures of applying it on max,

min, avg and sum constraints to find those valid frequent itemsets from uncertain

data. By utilizing the nice constraint properties (i.e., anti-monotonicity property,

monotonicity property, convertible anti-monotonicity property and convertible mono-

tonicity property), our algorithm does not need to check every itemset in order to

determine whether or not it satisfies the aggregate constraints, which saves a lot of

computational costs. By ordering the domain items based on their attribute values,
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we classified the forms of aggregate constraints into four different constraint prop-

erty categories. Such a classification helps us understand the relation between our

ACUF-growth algorithm and aggregate constraint properties. It also acts as a guide

to determine the most suitable algorithm procedure to handle aggregate constrained

mining.





Chapter 5

Mining Frequent Itemsets from

Streams of Uncertain Data

So far, we have discussed the procedures of applying our UF-growth algorithm to

find frequent itemsets from static uncertain data and the procedures of applying our

ACUF-growth algorithm to find from static uncertain data those frequent itemsets

which satisfy user-specific aggregate constraints (i.e., max, min, average and sum

constraints). Note that all the above algorithms we proposed work well when the

uncertain data are static. However, these algorithms cannot perform the frequent

itemset mining for uncertain data streams. In this chapter, we propose an approx-

imate algorithm called UF-streaming and an exact algorithm called SUF-growth to

efficiently find frequent itemsets from streams of uncertain data.

81
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5.1 An Approximate Algorithm for Mining

Streams of Uncertain Data

Recall that FP-streaming algorithm [GHP+04] is an approximate mining algo-

rithm to find frequent itemsets from streams of precise data. It mainly includes two

operations: (a) calling the FP-growth algorithm with a threshold preMinsup that is

lower than the usual minimum support threshold minsup to find “frequent” itemsets

and (b) storing and maintaining these “frequent” itemsets in a tree structure called

FP-stream. (Recall from Chapter 2.4 that an itemset is “frequent” is its support is

no less than preMinsup. Note that all truly frequent itemsets—i.e., itemsets with

support ≥ minsup > preMinsup—must be “frequent” , but not vice versa.) When

the focus turns to mining frequent itemsets from streams of uncertain data, some

nature questions to ask are: Can we use the similar approach to FP-streaming to

handle frequent itemset mining from streams of uncertain data? If it is possible, how

to perform the mining and where to store and maintain the “frequent” itemsets?

To answer the above questions, we propose an approximate algorithm—called

UF-streaming—for mining frequent itemsets from streams of uncertain data. This

algorithm can be described as follows. When the first batch of transactions in a

stream of uncertain data flows in, our proposed UF-streaming algorithm applies the

UF-growth algorithm to this batch. (Recall from Chapter 3 that UF-growth is an

efficient tree-based algorithm for mining frequent itemsets from static databases of

uncertain data.) Since data in the streams are not necessarily uniformly distributed,

an itemset X that is infrequent in the current batch may be frequent in subsequent
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batches in the current sliding window (which may make X a frequent itemset in the

current window). As data streams are continuous and unbounded, we can no longer go

back to the current batch and reconsider itemset X once we move to the subsequent

batches. Consequently, if the expected support of itemset X is currently slightly

lower than minsup, we better keep X. Otherwise, we may miss X (a possibly frequent

itemset). Hence, we apply the UF-growth algorithm with preMinsup (a threshold

that is lower than the usual minimum support threshold minsup) to find “frequent”

itemsets. Specifically, our proposed UF-streaming algorithm first constructs a UF-

tree with those “frequent” items and then recursively mines “frequent” itemsets from

this tree by divide-and-conquer approach. Note that in this process, an itemset

is “frequent” if its expected support is no less than preMinsup. Although we are

interested in truly frequent itemsets (i.e., itemsets having expected support expSup

≥ minsup > preMinsup), we use preMinsup to avoid pruning an itemset too early.

An itemset X having preMinsup ≤ expSup(X ) < minsup is currently infrequent but

may become frequent later. As a result, itemset X is not pruned.

After finding the “frequent” itemsets from incoming batch, our proposed UF-

streaming algorithm stores and maintains these itemsets in another tree structure

called UF-stream. In our UF-stream structure, each path represents a “frequent”

itemset. Common items in itemsets share the tree path in a similar fashion as in

the FP-tree or the UF-tree. Each node in this UF-stream structure contains (a) an

item and (b) a window table (containing a list of w expected support values, one for

each batch of transactions). As users are often interested in recent data than older

data, our UF-stream structure focuses on capturing only w most recent batches of



84 Chapter 5: Mining Frequent Itemsets from Streams of Uncertain Data

transactions in the stream. So, when a new batch of transactions flows in, the window

slides and the expected support value of each node in the UF-stream structure shifts.

We repeat the above mining process when each of the subsequent batches of

transactions in the stream of uncertain data arrives. In other words, our proposed UF-

streaming algorithm first calls UF-growth algorithm to compute “frequent” itemsets

from a new batch of streaming uncertain data. Our algorithm then stores those

“frequent” itemsets in the UF-stream structure, slides the window, and shifts the w

expected support values of each node in the UF-stream structure so as to ensure that

it always captures the contents of the w most recent batches of transactions in the

steam of uncertain data. To gain a better understanding of this algorithm, let us

consider the following Example 5.1.

Example 5.1 Consider the following stream of uncertain data:

Batch Transactions Contents
t1 {a:0.8, b:0.6, d:0.9, e:0.5, f:0.1}

First t2 {b:0.7, c:0.2, d:0.8, e:0.1}
t3 {a:0.8, b:0.6, e:0.6}
t4 {a:0.3, b:0.6, d:0.4, e:0.5}

Second t5 {a:0.8, b:0.6}
t6 {a:0.8, d:0.8, e:0.9, f:0.2}
t7 {a:0.8, b:0.6, e:0.1}

Third t8 {a:0.8, b:0.6, f:0.3}
t9 {b:0.2, d:1.0}

In the above database of uncertain data, each transaction contains items and their

corresponding existential probabilities. For example, in the first batch, the first trans-

action t1 includes 5 items a, b, d, e and f. The existential probabilities of these items

are 0.8, 0.6, 0.9, 0.5 and 0.1 respectively. Note that the existential probabilities of the

same item may vary from one transaction to another (e.g., the existential probability

of item d in transaction t1 is 0.9 whereas that in t2 is 0.8) and the different items may
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have the same existential probability in the same transaction (e.g., the existential

probabilities of item b and item e are both 0.6 in transaction t3).

UF-tree Constructing: Let the user-specified support threshold minsup be set

to 0.9. Our proposed UF-streaming algorithm applies UF-growth to the first batch

of transactions in the stream of uncertain data with a preMinsup lower than minsup.

In this example, let preMinsup be 0.8. Our UF-streaming algorithm constructs a

UF-tree for the first batch of the transactions as follows. First, it scans the current

batch and accumulates expected support of each item. It finds all “frequent” items

a, b, d and e (i.e., the expected support of each of these items ≥ preMinsup) with

their corresponding accumulated expected supports 1.6, 1.9, 1.7 and 1.2. Item c and

item f having accumulated expected supports 0.2 and 0.1 (lower than preMinsup) are

removed because they are infrequent in the first batch.

When scanning the current batch of transactions, our proposed algorithm also in-

serts the frequent items from each transaction into the UF-tree. Firstly, the algorithm

inserts the frequent items in t1 into the tree, and results in a tree branch 〈(a:0.8):1,

(b:0.6):1, (d :0.9):1, (e:0.5):1〉. It then inserts the frequent items in the second trans-

action t2 into the UF-tree. A new branch 〈(b:0.7):1, (d :0.8):1, (e:0.1):1〉 is added to

the tree. When we insert the frequent items in t3 into the tree, we find the expected

supports of items a and b in t3 are the same as the expected supports of them in the

tree branch for t1, which means these two nodes can be shared. So, the algorithm

increases the occurrence counts for the tree nodes (a:0.8) and (b:0.6) to 2. Item e

is the rest frequent item in t3 and we add it as a child of node (b:0.6). As a result,

we get the tree branch 〈(a:0.8):2, (b:0.6):2, (e:0.6):1〉. Now, all the transactions in
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Figure 5.1: The UF-trees and the UF-stream structure for the first batch for Exam-
ple 5.1.

the first batch are added into the UF-tree and we get the global UF-tree shown in

Figure 5.1(a) which captures all frequent items in the first batch of uncertain data.

“Frequent” Itemset Mining: Once the global UF-tree is constructed for the

first batch, our proposed UF-streaming algorithm recursively mines “frequent” item-

sets from this tree with preMinsup = 0.8. The procedures can be briefly described as

follows. The algorithm starts with item e (with expSup({e}) = 1.2). Note that item

e appears in all the three tree branches, as follows:

• 〈(a:0.8), (b:0.6), (d :0.9)〉 occurring once with (e:0.5),

• 〈(a:0.8), (b:0.6)〉 occurring once with (e:0.6), and

• 〈(b:0.7), (d :0.8)〉 occurring once with (e:0.1).
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Our algorithm forms the {e}-projected database and builds the {e}-projected UF-

tree (as shown in Figure 5.1(b)) with them. From the {e}-projected UF-tree, we can

calculate the expected support of itemset {a, e} as (1 × 0.8 × 0.5 + 1 × 0.8 × 0.6)

= 0.88 ≥ preMinsup. This means that itemset {a, e} is “frequent” (i.e., possibly

frequent because minsup > expSup({a, e}) ≥ preMinsup). The expected support of

itemset {b, e} = (1 × 0.6 × 0.5 + 1 × 0.6 × 0.6 + 1 × 0.7 × 0.1) = 0.73 < preMinsup

and the expected support of itemset {d, e} = (1 × 0.9 × 0.5 + 1 × 0.8 × 0.1) = 0.53

< preMinsup. As a result, itemsets {b, e} and {d, e} are infrequent in the first batch

(they are not shown in {e}-projected database).

Similarly, our UF-streaming algorithm extracts appropriate paths and forms the

{d}-projected database and {b}-projected database. With {d}-projected database

and {b}-projected database, the algorithm constructs {d}-projected UF-tree and {b}-

projected UF-tree as shown in Figure 5.1(c) and Figure 5.1(d). From these two trees,

we can calculate the expected support of the itemset {b, d} as expSup({b, d}) =

(1 × 0.6 × 0.9 + 1 × 0.7 × 0.8) = 1.10 ≥ preMinsup and the expected support of

itemset {a, b} as expSup({a, b}) = 2 × 0.8 × 0.6 = 0.96 ≥ preMinsup. Note that the

expected support of itemset {b, d} = 1.10 and the expected support of {a, b} = 0.96

are both higher than the minsup, which means the itemset {b, d} and itemset {a, b}

are true frequent (comparing with “frequent”). After computing expected supports

for all itemsets, our UF-streaming algorithm reports all “frequent” itemsets in the

first batch of the steam of uncertain data. They are {a}, {a, b}, {a, e}, {b}, {b, d},

{d} and {e} (with their corresponding expected supports of 1.6, 0.96, 0.88, 1.8, 1.10,

1.7 and 1.2 respectively).
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Let the window size w = 2 batches. In the second step of our proposed UF-

streaming algorithm, we store these “frequent” itemsets in a UF-stream structure

shown in Figure 5.1(e). The node a[1.6, 0] in this UF-stream structure represents

the “frequent” itemset {a} with an expected support of 1.6 in the first batch of the

stream of uncertain data (and an expected support of 0 in the second batch as we

have not yet read/mined the second batch). Similarly, the node b[0.96, 0] on the

leftmost path 〈a[1.6, 0], b[0.96, 0]〉 represents the “frequent” itemset {a, b} with an

expected support of 0.96 in the first batch of the stream of uncertain data.

When the second batch of the data flows in, our proposed UF-streaming algorithm

applies the same mining procedure as the first batch to this batch. To elaborate, it

first constructs a new global UF-tree (Figure 5.2(a)) with those “frequent” items (i.e.,

a, b, d, e) on the second batch. It then applies the UF-growth algorithm to this tree

as follows. It starts from item e (with expSup({e}) = 1.4). The algorithm extracts

the following two tree branches and forms the {e}-projected database:

• 〈(a:0.3), (b:0.6), (d :0.4)〉 occurring once with (e:0.5), and

• 〈(a:0.8), (d :0.8)〉 occurring once with (e:0.6).

After that, the algorithm constructs the {e}-projected UF-tree (as shown in Fig-

ure 5.2(b)). From this tree, our proposed the UF-streaming algorithm calculates the

expected support for itemset {a, e} as expSup({a, e}) = (1 × 0.3 × 0.5 + 1 × 0.8

× 0.9) = 0.87 and the expected support for itemset {d, e} as expSup({d, e}) = (1 ×

0.4 × 0.5 + 1 × 0.8 × 0.9) = 0.92. With the preMinsup = 0.8 and minsup = 0.9,

we know that itemset {a, e} is “frequent” and itemset {d, e} is true frequent. After

mining the entire UF-tree which captures the items in the second batch, our proposed
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Figure 5.2: The UF-trees for the second batch and the UF-stream structure for the
first and second batches for Example 5.1.

UF-streaming algorithm obtains the “ frequent” itemsets {a}, {a, e}, {b}, {d}, {d,

e} and {e} (with their corresponding expected supports of 1.9, 0.87, 1.2, 1.2, 0.92

and 1.4).

After finding all “frequent” itemsets from the second batch, our proposed UF-

streaming algorithm updates the existing UF-stream structure by inserting these new

“frequent” itemsets into it. The resulting UF-stream structure, as shown in Fig-

ure 5.2(c), consists of eight nodes. Note that the node for {a} is now changed from

a[1.6, 0] (as in Figure 5.1(e)) to a[1.6, 1.9] (as in Figure 5.2(c)) as we now know
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that the expected supports of {a} both batches: 1.6 in the first batch and 1.9 in the

second batch. A new node e[0, 0.92] represents a new “frequent” itemset {d, e} that

has no expected support in the first batch and an expected support of 0.92 in the

second batch. Similarly, the node b[0.96, 0] means the “frequent” itemset {a, b} has

an expected support of 0.96 in the first batch and no expected support in the second

batch.

Applying the similar approach to the first and second batches of stream of uncer-

tain data, our proposed UF-streaming algorithm constructs the UF-trees and updates

the UF-stream structure when the third batch of the data flows in. Specifically, it

first finds the “frequent” items a, b, d in the third batch and constructs a new global

UF-tree (Figure 5.3(a)) with them. Then, it forms the {b}-projected database and

constructs the corresponding {b}-projected UF-tree (as shown in Figure 5.3(b)). By

recursively growing “frequent” itemsets, the algorithm obtains all “frequent” itemsets

{a}, {a, b}, {b}, and {d} (with their corresponding expected supports of 1.6, 0.96,

1.4 and 1.0). After that, our proposed UF-streaming algorithm slides the window

(of size w = 2 batches) and shifts the expected support values of each node in the

UF-stream structure. The resulting UF-stream structure, as shown in Figure 5.3(c),

captures the expected support values for “frequent” itemsets found in the second and

third batches. (Note that nodes with zero expected support, such as d[0, 0], can be

removed from the UF-stream structure.) �
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Figure 5.3: The UF-trees for the third batch and the UF-stream structure for the
second and third batches for Example 5.1.

5.2 An Exact Algorithm for Mining Streams of

Uncertain Data

In the previous section, we proposed the UF-streaming algorithm for mining fre-

quent itemsets from streams of uncertain data. There are some potential problems

associated with such an approximate algorithm. First of all, the UF-streaming algo-

rithm calls the UF-growth algorithm with preMinsup which is lower than the actual

minsup. As a result, the algorithm finds “frequent” itemsets (i.e., itemsets with ex-

pected support expSup ≥ preMinsup). And we know that some of these itemsets are

not truly frequent (e.g., some itemsets may have expected support expSup < minsup).
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Consequently, to find truly frequent itemsets, one needs to apply a post-processing

step. Moreover, the success of UF-streaming strongly depends on the value of pre-

Minsup. If it is too high (e.g., too close to minsup), we may lose frequency information

of some itemsets. To another extreme, if it is too low, a lot of redundant itemsets

(e.g., those itemsets with expected support higher than preMinsup but lower than

minsup) may be generated and stored. So, similar to minsup, it is not easy to find

an appropriate value for preMinsup. Second, the UF-streaming algorithm requires an

extra data structure (the UF-stream structure) to store the mined itemsets. Third,

the UF-streaming algorithm uses an “immediate” mode for mining, which leads to

lots of computation wasting, especially when many batches flow in before the user

requests for the mining results (frequent itemsets). Let us consider an example with

a sliding window of size w = 3 batches. If the user requests the mining results at

the end of the 100th batch, the UF-streaming algorithm has already computed “fre-

quent” itemsets for each of the 100 batches, out of which only those from the last

three batches are needed for the mining results. Computation on the first 97 batches

is wasted.

In this section, we propose an exact algorithm, called SUF-growth, which fur-

ther improves our UF-streaming algorithm (by avoiding the aforementioned potential

problems) for mining frequent itemsets from streams of uncertain data. Our proposed

algorithm not only returns to the user all and only those true frequent itemsets (i.e.,

those with expected support expSup ≥ minsup) by using minsup instead of preMinsup

but also saves the memory space which is used to save the UF-stream structure by

using only one new tree structure called SUF-tree to perform the frequent item-
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set mining. Unlike the UF-streaming algorithm that uses the “immediate” mode for

mining, the new SUF-growth algorithm applies a “delayed” mode for mining. With

such a mode, a lot of computation could be saved, especially when many batches

flow in before the user requests for the mining results (frequent itemsets). To better

understand the advantage of the “delayed” mode, let us revisit the aforementioned

example with a sliding window of size w = 3 batches. If the user requests the mining

results at the end of the 100th batch, when we apply “immediate” mode based mining

algorithm such as UF-streaming, we know that the algorithm has already computed

“frequent” itemsets for each of the 100 batches, out of which only those from the last

three batches are needed for the mining results. Computation on the first 97 batches

is wasted. However, when we apply “delayed” mode based mining algorithm such

as our proposed SUF-growth algorithm, we only focus on the last three batches of

uncertain data. As a result, a lot of unnecessary computation has been saved.

Now, let us explain how our proposed SUF-growth algorithm finds all the fre-

quent itemsets from streams of uncertain data using the SUF-tree. The key idea of

our proposed SUF-growth algorithm can be described as follows. The algorithm first

constructs an SUF-tree, and then extracts relevant paths from this SUF-tree (which

is a global tree) to recursively form smaller UF-trees for projected databases. Be-

cause the data streams are dynamic and not necessarily uniformly distributed (their

distributions are usually changing by time), expected supports of items are continu-

ously affected by the arrival of new batches and the removal of the contents of older

batches. Arranging items in frequency-dependent order in the SUF-tree may lead

to swapping—which, in turn, can cause merging and splitting—of tree nodes when
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the global frequencies of items change. Hence, in the SUF-tree, items are arranged

according to some canonical order (e.g., lexicographic order), which can be specified

by the user prior to the construction of the SUF-tree or the mining process. Because

the data streams are continuous and unbounded, the SUF-tree can be constructed

using only one scan of the streams of uncertain data, and the resulting SUF-tree cap-

tures the contents of the streams. Moreover, the SUF-tree preserves the usual tree

properties. They are: (a) the occurrence count of a node is at least as high as the

sum of occurrence counts of its children and (b) the ordering of items is unaffected

by the continuous changes in the expected support values of items.

To record and update the information at each tree node, the SUF-tree keeps a list

of occurrence counts (instead of only one occurrence count as in the UF-tree). Each

count in this list captures the occurrence of the item in each of the corresponding

batch. By doing so, when the window slides (i.e., when new batches arrive and older

batches are deleted), information can be updated easily. Specifically, whenever a new

batch of transactions flow in, the occurrence count of the node (x :expSup(x )) in the

new batch is appended to the list for such a node. In other words, the last entry of

the list for such a node then shows the occurrence of such a node in the current batch.

Afterwards, when the next batch of transactions flow in, the contents in the list are

shifted forward. The last entry shifts and becomes the second-last entry. This shifting

leaves room (the last entry) for the newest batch. At the same time, the occurrence

count corresponding to the oldest batch in the window is discarded. This has the

same effect as deleting from the window those transactions in the oldest batch.

Theoretically, to effectively shift the list of occurrence counts, one may need to
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traverse all the tree nodes and shift the list of entries in each node. Practically, we

do not need to do so. Instead, we use a pointer to indicate the last update of each

node. For example, let us consider a node (x :expSup(x )). Suppose we are processing

the j -th batch of the streaming uncertain data. If the pointer in the node points to

the entry representing the (j− 1)-th batch, then this indicates that the node has just

been visited when processing the (j− 1)-th batch. Otherwise, the pointer points to a

much earlier entry representing the (j − k)-th batch for some k > 1, which indicates

that the node has not been visited since then and the occurrence count of such a node

for the entries in-between should be 0 (i.e., the node does not occur in (j− k + 1)-th,

..., (j−1)-th batches). By doing so, we avoid traversing all the nodes in the SUF-tree.

Next, let us focus on how to perform the actual mining with our SUF-growth

algorithm. With the SUF-tree, the actual mining of frequent itemsets from streams

of uncertain data is “delayed” until it is needed. In other words, once the SUF-tree is

constructed, it is always kept up-to-date when the window slides. Consequently, one

can mine frequent itemsets from this up-to-dated SUF-tree in a fashion similar to the

UF-growth algorithm using an appropriate minsup. More specifically, mining with

the SUF-tree employs a divide-and-conquer approach. The algorithm forms projected

databases (e.g., {d}-projected database, {d, c}-projected database, {d, b}-projected

database, etc.) by traversing the paths upwards only. Since items are consistently

arranged according to some canonical order, one can guarantee the inclusion of all

frequent items using just upward traversals. There is also no worry about possible

omission or doubly-counting of frequent items during the mining process. As the SUF-

tree is always kept up-to-date, all frequent itemsets in current stream can be found
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effectively. To get a better understanding of our proposed SUF-growth algorithm, let

us consider the following example.

Example 5.2 Reconsider the stream of uncertain data as shown in Example 5.1.

Let minsup be 0.9 and the window size w be 2 batches (indicating that only two

batches of streaming transactions are kept in the tree at each time point T).

In the first step, our SUF-growth algorithm constructs an SUF-tree by inserting

the items in the first and second batches of transactions into it. Figure 5.4 shows the

resulting global SUF-tree at time T which captures the transactions in the first and

second batches. Note that each node in the SUF-tree contains (a) an item, (b) its

expected support and (c) a list of occurrence count (instead of just one occurrence

count). For instance, tree node (b:0.6)[2,1] means with expected support 0.6, item b

occurs in the first batch two times and occurs in the second batch one time. Also,

we keep all (both frequent and infrequent) items. For example, item f is infrequent

in the first batch and in the second batch. However, we still keep it in the SUF-tree

for transactions in the first and second batches (at time T). As discussed above, the

order of items in the SUF-tree is based on some canonical order. In this example, we

use the lexicographic order (i.e., item a, item b, item c, ..., item f ) from the tree top

to the tree leaves.

When the third batch of transactions flow in, our proposed SUF-growth algorithm

updates the list of occurrence counts by discarding the occurrence count corresponding

to the oldest batch (i.e., the first batch) and adding the occurrence count correspond-

ing to the new batch (i.e., the third batch) to the last entry of the list. The resulting

SUF-tree which captures the transactions in the second and third batches at time T ′
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Figure 5.4: The global SUF-tree for the first and second batches for Example 5.2.

is shown in Figure 5.5(a). Note that all tree nodes with occurrence count [0,0] have

been removed from the SUF-tree which captures the transactions in the second and

third batches.

After the SUF-tree is constructed, our focus turns to how to discover the frequent

itemsets from the tree. Note that our proposed SUF-growth algorithm is “delay”

mode based mining algorithm, which means we are only interested in the current

SUF-tree (i.e., in this example, the SUF-tree which captures the second and the third

batches at time T ′). Now, let us recursively apply the divide-and-conquer based

mining approach to find all frequent itemsets for this tree. Firstly, our proposed

SUF-growth algorithm calculates the expected support for each item in the global

SUF-tree. Note that the occurrence of any tree node can be computed by summing

the occurrence counts in the list for that tree node. For instance, the occurrence of
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Figure 5.5: The global SUF-tree for the second and third batches and all its projected
UF-trees for Example 5.2.

the first tree node ((a:0.8)[2,2]) can be computed as 2 + 2 = 4. Consequently, the

expected support of item a can be computed as expSup({a}) = [(2 + 2) × 0.8] + [(1

+ 0) × 0.3] = 3.5. With such a way, the algorithm finds the expected supports for

all other single itemsets. They are expSup({b}) = [(1 + 2) × 0.6] + [(0 + 1) × 0.2]

+ [(1 + 0) × 0.6] = 2.6, expSup({d}) = [(1 + 0) × 0.8] + [(0 + 1) × 1.0] + [(1 + 0)

× 0.4] = 2.2, expSup({e}) = [(0 + 1) × 0.1] + [(1 + 0) × 0.9] + [(1 + 0) × 0.5] =

1.5 and expSup({f }) = [(0 + 1) × 0.3] + [(1 + 0) × 0.2] = 0.5. Since the minsup is

equal to 0.9, we know that items a, b, c, d and e are frequent at time T ′. Item f is
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not frequent at time T ′ because its expected support (0.5) is lower than the minsup.

Next, our proposed SUF-growth algorithm forms projected databases by travers-

ing the paths upwards (from tree leaves to tree root). It first forms the {e}-projected

database by traversing relevant tree paths which contain e node. Here, the {e}-

projected database contains the items from the following three tree paths:

• 〈(a:0.8), (b:0.6)〉 occurring once with (e:0.1),

• 〈(a:0.8), (d :0.8)〉 occurring once with (e:0.9), and

• 〈(a:0.3), (d :0.4)〉 occurring once with (e:0.5).

With the above information, our proposed SUF-growth algorithm constructs the {e}-

projected UF-tree as shown in Figure 5.5(b). From this {e}-projected UF-tree, the

algorithm calculates the expected supports for itemsets {e, a} and {e, d} as exp-

Sup({e, a}) = [1 × 0.8 × 0.1] + [1 × 0.8 × 0.9] + [(1 × 0.3 × 0.5] = 0.95 and

expSup({e, d}) = [1 × 0.8 × 0.9] + [(1 × 0.4 × 0.5] = 0.92. Since the minsup is

equal to 0.9, we know that both of them are frequent. Similarly, our SUF-growth

algorithm extracts appropriate paths and forms the {b}-projected database which

only contains one item a. The algorithm then builds the {b}-projected UF-tree (as

shown in Figure 5.5(c)) and uses it to calculate the expected support for itemsets {b,

a} as expSup({b, a}) = [3 × 0.8 × 0.6] + [(1 × 0.3 × 0.6] = 1.62. As a result, our

proposed SUF-growth algorithm reports all true frequent itemsets in the second and

third batches of the stream of uncertain data at time T ′. They are {a}, {b}, {b, a},

{d}, {e}, {e, a} and {e, d} (with their corresponding expected supports of 3.5, 2.6,

1.62, 2.2, 1.5, 0.95 and 0.92 respectively).�
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5.3 Summary

In this chapter, we proposed two algorithms, named UF-streaming and SUF-

growth, for mining frequent itemsets from streams of uncertain data. Among them,

UF-streaming is an approximate algorithm which applies the UF-growth algorithm

with preMinsup (which is lower than actual minsup) to find “frequent” itemsets and

uses a tree-structure called UF-stream to store and maintain mined “frequent” item-

sets. As an “immediate” mode based mining algorithm, UF-streaming completely

performs the mining process since the stream of uncertain data flows in.

Unlike the UF-streaming algorithm, SUF-growth is an exact algorithm to mine

true frequent itemsets from streams of uncertain data. SUF-growth algorithm con-

structs SUF-tree to store information (i.e., items, their expected supports and a list of

occurrence counts) from data streams and applies divide-and-conquer approach (by

building projected databases and their corresponding projected trees) to find frequent

itemsets. As a “delayed” mode based mining algorithm, SUF-growth only performs

the mining process when users request the mining results. With such a way, the

algorithm saves a lot of unnecessary computation. Table 5.1 summarizes the major

differences between our UF-streaming algorithm and SUF-growth algorithm.

Table 5.1: UF-streaming algorithm vs. SUF-growth algorithm

UF-streaming algorithm SUF-growth algorithm

Algorithm property approximate algorithm exact algorithm
Tree structure UF-tree and UF-stream SUF-tree

Mining threshold preMinsup minsup
Mining mode “immediate” mode “delayed” mode
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Experimental Evaluation

To evaluate our proposed algorithms that perform uncertain frequent itemset min-

ing (i.e., UF-growth algorithm), constrained frequent itemset mining from uncertain

data (i.e., ACUF-growth algorithm) and frequent itemset mining from streams of un-

certain data (i.e., UF-streaming algorithm and SUF-growth algorithm), we performed

several experiments. The experimental results cited in this chapter are based on the

data generated by the program developed at IBM Almaden Research Center [AS94].

The data contain 10k to 1M records with an average transaction length of 10 items,

and a domain of 1,000 items. We assigned an existential probability from the range

(0,1] to each item in each transaction. In addition to this database, we also con-

ducted the following experiments using some other databases such as UCI real-life

databases [FA10] and FIMI databases [GZ03, BGZ04]. The observations or trends

were consistent.

All experiments were run in a time-sharing environment in a 2.4 GHz machine.

The reported figures are based on the average of multiple runs. Runtime includes

101



102 Chapter 6: Experimental Evaluation

CPU and I/Os; it includes the time for both tree construction and frequent itemset

mining steps. In the experiments, we mainly evaluated the efficiency of the proposed

algorithms.

6.1 The Mining of Frequent Itemsets from Uncer-

tain Data

First six experiments are designed to evaluate the algorithms which mines frequent

itemsets from uncertain data. We focus on our proposed UF-growth algorithm and

its Apriori-based counterpart, namely the U-Apriori algorithm.

Experiment 6.1 In the first experiment, we tested the effect of minsup. We fixed

the database size as 10k records with an average transaction length of 10 items and

a domain of 1,000 items and varied the minsup. We compared the runtimes of two

Figure 6.1: Runtimes of the UF-growth and U-Apriori algorithms with varying minsup
for Experiment 6.1.
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algorithms: (1) the U-Apriori algorithm [CKH07] and (2) our UF-growth algorithm.

As shown in Figure 6.1(a), with minsup increasing, runtimes for both U-Apriori and

UF-growth algorithms decreased. From this figure, we observed that the runtime for

our UF-growth algorithm is lower than the runtime for the U-Apriori algorithm. The

U-Apriori algorithm relies on the costly candidate generation process. It explains

why the experimental result showed that our UF-growth algorithm required much

less runtime. We also repeated the same experiment with a database which contains

100k records with an average transaction length of 10 items and a domain of 1,000

items. As shown in Figure 6.1(b), the experimental result presented exactly the same

trends as the previous experiment. �

Experiment 6.2 In the second experiment, we tested scalability with the number of

transactions for our UF-growth algorithm. We fixed the minsup and the distribution

of existential probability. The variant in this experiment is the size of transaction

Figure 6.2: Runtime of the UF-growth algorithm with varying database size for Ex-
periment 6.2.
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database. Specifically, we varied the size of transaction database from 10k transac-

tions to 100k transactions. The experimental result showed that when the number of

transactions increased, the runtime for our UF-growth algorithms increased. More-

over, the mining with our proposed algorithm had linear scalability. See Figure 6.2(a)

with minsup equal to 0.01 and Figure 6.2(b) with minsup equal to 0.02. �

Experiment 6.3 In the third experiment, we tested the effect of the distribution of

item existential probabilities by varying the average value of existential probabilities.

Here, we fixed the database size as 100k records with an average transaction length

of 10 items and a domain of 1,000 items and the minsup. The experimental result

showed that with the average value of existential probabilities increased, the runtime

of our UF-growth algorithm increased. See Figure 6.3(a) with minsup equal to 0.01

and Figure 6.3(b) with minsup equal to 0.02. An explanation for such an experimen-

tal result is that, when the average value of existential probabilities was small, the

Figure 6.3: Runtime of the UF-growth algorithm with varying average value of exis-
tential probability for Experiment 6.3.
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itemsets had less chance to be frequent. This led to low computation cost and small

number of frequent itemsets (i.e., the number of frequent itemsets is only 1,742 when

the average value of existential probabilities is equal to 0.2 and the minsup is equal

to 0.01). As a result, the runtime for our UF-growth algorithm was short. When

the average value of existential probabilities became higher, the itemsets had more

chance to be frequent. The computation cost and the number of frequent itemsets

increased (i.e., the number of frequent itemsets reaches 735,672 when the average

value of existential probability is equal to 0.8 and the minsup is equal to 0.01), which

required longer runtime. �

Experiment 6.4 The fourth experiment also tested the effect of the distribution of

item existential probabilities. This time, we varied the number of unique existential

probability values. In this experiment, We fixed the database size as 100k records with

an average transaction length of 10 items and a domain of 1,000 items and the minsup.

We also fixed the average value of existential probabilities as 0.5. The experimental

Figure 6.4: Runtime of the UF-growth algorithm with varying number of unique
existential probability for Experiment 6.4.



106 Chapter 6: Experimental Evaluation

result showed that when the number of unique existential probability values increased,

the runtime of our UF-growth algorithm increased. See Figure 6.4(a) with minsup

equal to 0.01 and Figure 6.4(b) with minsup equal to 0.02. An explanation for such

an experimental result is that, when the distribution of existential probability was

sparse (i.e., items took on a few unique existential probability values), the UF-tree

was small due to a high chance for path sharing. A small UF-tree resulted in a short

runtime. On the other hand, when the distribution of existential probability was

denser (i.e., items took on a large number of unique existential probability values),

the UF-tree was larger and it required longer runtime to mine. �

Experiment 6.5 In the fifth experiment, we evaluated the relation between the

distribution of item existential probabilities and the number of nodes in the UF-

tree. Here, we fixed minsup as 0.01 and the average value of existential probabilities

as 0.5. We varied the number of unique existential probability values from 1 to

10. The experimental result showed that when the number of unique existential

probability values increased, the number of nodes in global UF-tree increased. See

Figure 6.5(a) with a transaction database containing exactly 10k items, Figure 6.5(b)

with a transaction database containing exactly 20k items and Figure 6.5(c) with

a transaction database containing exactly 30k items. An explanation for such an

experimental result is that, with the number of unique existential probability values

increased, the chance for path sharing in an UF-tree decreased. As a result, the

number of nodes in global UF-tree increased. �
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Figure 6.5: Number of nodes in global UF-tree with varying existential probability
for Experiment 6.5 and Experiment 6.6.

Experiment 6.6 In the sixth experiment, we measured the number of nodes in a

UF-tree. The result showed that the number of nodes in the global UF-tree repre-

senting a database is no more than the number of items in all transactions of such a

database. From Figure 6.5, we observed that the number of tree nodes is less than

the number of items for all transaction databases with 10k items (Figure 6.5(a)), 20k

items (Figure 6.5(b)) and 30k items (Figure 6.5(c)). �
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6.2 The Mining of Constrained Frequent Itemsets

from Uncertain Data

Recall that aggregate constraints mainly possess four types of properties. They

are anti-monotonicity property, monotonicity property, convertible anti-monotonicity

property and convertible monotonicity property. To clearly show the results of our

experiments, we name the aggregate constraint possessing anti-monotonicity property

as C1 (i.e., max (X.Price) < $60), the aggregate constraint possessing monotonicity

property as C2 (i.e., min(X.Weight) ≤ 60kg), the aggregate constraint possessing

convertible anti-monotonicity property C3 (i.e., avg(X.Temperature) ≥ −10◦C) and

the aggregate constraint possessing convertible monotonicity property as C4 (i.e.,

sum(X.Rainfall) ≥ 100mm). All five experiments showed in this section are based on

these four types of aggregate constraints.

Experiment 6.7 The seventh experiment was designed for our ACUF-growth algo-

rithm. We tested the effect of selectivity in this experiment. We fixed the database

size as 100k records with an average transaction length of 10 items and a domain

of 1,000 items. We first set the minsup as 0.01 and varied the percentage of items

selected (selectivity). The result showed that when the selectivity increased, the run-

times for all C1, C2, C3 and C4 increased. For verifying our observation, we also set

the minsup to 0.02 and 0.03. All experiments indicated that the trend was consistent.

Figure 6.6(a) showed the result of our experiment with minsup = 0.02. Since this fig-

ure cannot clearly show the increasing trend for constraint C4, we zoomed y-axis and

obtained Figure 6.6(b) which clearly presented the relationship between selectivity

and runtime for C4. �
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Figure 6.6: Runtime of the ACUF-growth algorithm with varying selectivity for Ex-
periment 6.7 and Experiment 6.8.

Experiment 6.8 In the eighth experiment, we evaluated the performance of our

proposed ACUF-growth algorithm on four types of aggregate constraints. From Fig-

ure 6.6(a), we observed that C4 incurred the highest runtime because the algorithm

“extended” both valid and invalid items when handling convertible monotone con-

straints. The runtimes for C2 and C3 were in the middle because for both of them,

only valid items were “extended”. Among them, C2 incurred more runtime than C3

when the selectivity was low and C3 incurred more runtime than C2 when the selec-

tivity was high. When selectivity was low (i.e., the set of valid items was small and

the set of invalid items was large), monotone constraint C2 “extended” valid items

with all these large amount of invalid items to form the valid frequent itemsets. On

the other side, convertible monotone constraint C3 only “extended” valid items with

part of invalid items to form the potential valid frequent itemsets and then checked

constraint against them to find those frequent itemsets satisfying the constraint. At

this moments, the runtime required for additional frequent itemset forming for C2
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was more than the runtime for the additional constraint checking for C3. However,

when selectivity was high (i.e., the set of valid items was large and the set of invalid

items was small), monotone constraint C2 “extended” valid items with small amount

of invalid items to form the valid frequent itemsets. On the other side, the set of

potential valid frequent itemsets for further constraint checking by convertible mono-

tone constraint C3 was large. At this moments, the runtime required for additional

constraint checking for C3 was more than the runtime for additional frequent itemset

forming for C2. As a result, the runtime for C2 and C3 had a cross point at around

70% selectivity. Anti-monotone constraint C1 incurred the lowest runtime because

the algorithm only “extended” valid items and the valid frequent itemsets did not

include any invalid items. �

Experiment 6.9 In the ninth experiment, we compared the performance of our

proposed ACUF-growth algorithm with the U-FPS algorithm on anti-monotone con-

straint C1 and on monotone constraint C2 separately. When mining frequent itemsets

from uncertain data with anti-monotone constraint C1, both our ACUF-growth al-

gorithm and the U-FPS algorithm “extended” only valid items. Moreover, all valid

frequent itemsets were formed only with valid items. As shown in Figure 6.7(a), the

runtimes for two algorithms were very close. Our ACUF-growth algorithm incurred

slightly lower runtime than the U-FPS algorithm because U-FPS checked all items

to distinguish invalid items from valid ones. However, due to the item ordering, our

ACUF-growth algorithm stopped checking constraints whenever it detected the first

valid item. The following table illustrates the slight difference of the runtimes between
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Figure 6.7: The performance comparison of the ACUF-growth and U-FPS algorithms
for Experiment 6.9.

our ACUF-growth algorithm and U-FPS algorithm when mining with constraint C1

(as shown in Figure 6.7(a)).

Selectivity Runtime for ACUF growth Runtime for U-FPS
10% 2.04s 2.19s
20% 3.56s 3.72s
30% 5.73s 5.85s
40% 8.19s 8.29s
50% 11.71s 12.12s
60% 16.27s 16.72s
70% 22.31s 23.08s
80% 28.06s 28.70s
90% 37.26s 37.94s

When mining frequent itemsets from uncertain data with monotone constraint

C2, both our ACUF-growth algorithm and the U-FPS algorithm “extended” only

valid items. Moreover, all valid frequent itemsets were formed by valid items together

with invalid items. As shown in Figure 6.7(b), our ACUF-growth algorithm required

slightly higher runtime than the U-FPS algorithm because U-FPS mined constrained

frequent itemsets from a more compact UF-tree (as U-FPS arranged items in non-
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ascending frequency order from leaves to root) than the modified UF-tree built by

our ACUF-growth algorithm. The following table illustrates the slight difference of

the runtimes between our ACUF-growth algorithm and the U-FPS algorithm when

mining with constraint C2 (as shown in Figure 6.7(b)).

Selectivity Runtime for ACUF growth Runtime for U-FPS
10% 8.67s 8.56s
20% 14.60s 14.33s
30% 19.06s 18.41s
40% 22.81s 22.47s
50% 27.02s 26.24s
60% 30.72s 30.04s
70% 34.39s 33.30s
80% 37.93s 37.28s
90% 42.45s 41.93s

�

Experiment 6.10 In the tenth experiment, we tested the effect of minsup for our

ACUF-growth algorithm. We fixed the database size as 100k records with an average

transaction length of 10 items and a domain of 1,000 items. We first set the selectivity

as 20% and varied the minsup. The result showed that when the minsup increased,

the runtimes for all C1, C2, C3 and C4 decreased. For verifying our observation, we

also set the selectivity as 40%, 60% and 80%. All experiments indicated that the trend

was consistent. Figure 6.8(a) showed the result of our experiment with selectivity =

20% and Figure 6.8(b) showed the result of our experiment with selectivity = 80%.

From Figure 6.8(a), we also observed that when selectivity was low (i.e., selectivity

= 20%), C4 incurred the highest runtime, C2 incurred the second highest runtime, C3

incurred the third runtime and C4 incurred the lowest runtime. From Figure 6.8(b),

we found that when selectivity was high (i.e., selectivity = 80%), C4 incurred the
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Figure 6.8: Runtime of the ACUF-growth algorithm with varying minsup for Exper-
iment 6.10.

highest runtime, C3 incurred the second highest runtime, the runtime for C2 was

slightly lower than C3, and C4 incurred the lowest runtime. This observation proved

that the result for our performance evaluation (Experiment 6.8) was correct. �

Experiment 6.11 In the last experiment for our ACUF-growth algorithm, we tested

the scalability with the number of transactions. We fixed the minsup as 0.02 and

selectivity as 50%. As shown in Figure 6.9, when the number of transactions increased,

the runtimes for all C1, C2, C3 and C4 increased. �
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Figure 6.9: Runtime of the ACUF-growth algorithm with varying database size for
Experiment 6.11.

6.3 The Mining of Frequent Itemsets from

Streams of Uncertain Data

For evaluating the algorithms mining frequent itemsets from streams of uncertain

data (i.e., our UF-streaming and SUF-growth algorithms), we used the dataset con-

taining 1M records with an average transaction length of 10 items, and a domain of

1,000 items. We assigned an existential probability from the range (0,1] to each item

in each transaction. We also set each batch to be 0.1M transactions and the window

size to be w = 5 batches.

Experiment 6.12 We tested the effect of minsup in the twelfth experiment. We

fixed the database size and the distribution of item existential probabilities. Theoret-

ically, the runtimes for both UF-streaming and SUF-growth algorithms decrease when
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Figure 6.10: Runtimes of the UF-streaming and SUF-growth algorithms with varying
minsup for Experiment 6.12 and Experiment 6.13.

minsup (or preMinsup) increases. Experimental result (as shown in Figure 6.10) con-

firmed that, when minsup increased, fewer itemsets had expected support ≥ minsup,

and thus shorter runtimes were required. �

Experiment 6.13 In the thirteenth experiment, we measured the efficiency of pro-

posed UF-streaming and SUF-growth algorithms. The result showed that the UF-

streaming algorithm responded to the user quicker than the SUF-growth algorithm

because the former used the “immediate” mining mode so that it just needed to re-

trieve relevant paths from the UF-stream structure when the user asked for the mining

result. However, the result also showed that the total execution costs for the SUF-

growth algorithm was shorter than that for the UF-streaming algorithm (as shown in

Figure 6.10), especially when the user requested for the mining results infrequently or
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near the end of a long data stream. It was because the SUF-growth algorithm used

the “delayed” mining mode so that mining was done only when it was needed. �

Experiment 6.14 In the fourteenth experiment, we evaluated the scalability of our

UF-streaming and SUF-growth algorithms. We fixed the minsup and the distribution

of item existential probabilities. From Figure 6.11, we knew that when the size of

transaction database increased, the runtimes for both UF-streaming and SUF-growth

algorithms increased. Moreover, the runtimes of our algorithms were linear with

respect to the number of transactions. �

Figure 6.11: Runtimes of the UF-streaming and SUF-growth algorithms with varying
database size for Experiment 6.14.

Similarly as what we did for our UF-growth algorithm, we also tested the effect

of existential probability distribution by varying the number of unique existential

probability values and the average value of the existential probabilities for the UF-

streaming and SUF-growth algorithms. The experiment results showed: (1) when the
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number of unique existential probability values increased, the runtimes of both our

UF-streaming and SUF-growth algorithms increased; (2) when the number of unique

existential probability values increased, the number of nodes in the global UF-tree

(or the SUF-tree) increased and (3) when the average values of existential probabil-

ities increased, the runtimes of both our UF-streaming and SUF-growth algorithms

increased.

6.4 Summary

In this chapter, we evaluated the algorithms which perform uncertain frequent

itemset mining (i.e., UF-growth algorithm), constrained frequent itemset mining

from uncertain data (i.e., ACUF-growth algorithm) and frequent itemset mining from

streams of uncertain data (i.e., UF-streaming and SUF-growth algorithms) by sets of

experiments. For our UF-growth algorithm, we compared it with the U-Apriori algo-

rithm and showed that our algorithm is more efficient than U-Apriori by consuming

less runtime. The experimental results also showed that when the size of transaction

database, average value of existential probabilities or number of unique existential

probability increased, the runtime for our UF-growth algorithm increased. However,

when the value of minsup increased, the runtime for our algorithm decreased. More-

over, when the number of unique existential probability increased, the number of the

tree nodes in global UF-tree increased. Nevertheless, the number of tree nodes in

global UF-tree was no more than the number of items in the transaction database

(which was used to build the global UF-tree) in all situations.

For our ACUF-growth, UF-streaming and SUF-growth algorithms, we did the
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similar experiments and received the similar results such as when the size of trans-

action database increased, the runtime for all these algorithms increased. Since our

ACUF-growth algorithm was a constraint based algorithm, we also evaluated it by

selectivity. The result showed that when constraint selectivity increased, the run-

time for our ACUF-growth algorithm increased. The experiment results cited in

this chapter showed the properties of our proposed algorithms and demonstrated the

effectiveness of them.
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Conclusions and Future Work

7.1 Conclusions

Frequent itemset mining plays an essential role in the mining of various patterns

and is in demand in many real life applications. However, there are many real-life

situations in which the data in transaction databases are uncertain. This calls for

uncertain frequent itemset mining. In uncertain frequent itemset mining, the user may

be only interested in some small specific subsets of all frequent itemsets. This calls

for constrained frequent itemset mining of uncertain data. Moreover, due to advances

in technology, a flood of uncertain data can be produced in many situations. This

leads to frequent itemset mining from streams of uncertain data. To deal with these

situations, we proposed in this M.Sc. thesis the following four algorithms:

• UF-growth algorithm, which efficiently finds frequent itemsets from uncertain

data;

• ACUF-growth algorithm, which mines from uncertain data for those frequent

119
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itemsets which satisfy user-specified aggregate constraints;

• UF-streaming algorithm, which is an approximate algorithm designed to find

frequent itemsets from streams of uncertain data; and

• SUF-growth algorithm, which is an exact algorithm designed to find frequent

itemsets from streams of uncertain data.

Among them, the UF-growth algorithm constructs a UF-tree to capture the impor-

tant contents of uncertain data where each item is associated with an existential

probability. Each node in the UF-tree not only contains an item and its expected

support, but also the number of occurrence of such expected support for such an item.

After the UF-tree is constructed, the algorithm recursively mines frequent itemsets

from this UF-tree by a divide-and-conquer (by building projected databases and their

corresponding projected trees) approach.

The ACUF-growth algorithm builds a modified UF-tree in which the order of

the tree nodes is based on a specific order R. Here, the order R is closely related

to the forms of aggregate constraints handled by the algorithm to make sure the

constraints possessing nice properties (e.g., anti-monotonicity property, monotonicity

property, convertible anti-monotonicity property, and convertible monotonicity prop-

erty). These constraint properties helps our ACUF-growth algorithm efficiently mine

constrained frequent itemsets from uncertain data without checking every itemset to

determine whether or not it satisfies the aggregate constraints.

UF-streaming is an approximate algorithm, which applies the UF-growth algo-

rithm with preMinsup (which is lower than actual minsup) to find “frequent” itemsets

and uses a tree-structure called UF-stream to store and maintain mined “frequent”



Chapter 7: Conclusions and Future Work 121

itemsets. Moreover, UF-streaming is an “immediate” mode based mining algorithm

which starts mining “frequent” itemsets as soon as streams of uncertain data flow in.

Differing from the UF-streaming algorithm, SUF-growth is an exact algorithm which

mines truly frequent itemsets with actual minsup. The SUF-growth algorithm first

captures uncertain data stream in a SUF-tree where each tree node contains the item,

its expected support and a list of occurrence count for the item with such an expected

support. The algorithm then applies a divide-and-conquer approach (similar as the

UF-growth algorithm) to find frequent itemsets from the SUF-tree. As an “delayed”

mode based mining algorithm, SUF-growth only performs the mining when the user

requests. With such a way, the algorithm saves a lot of unnecessary computation

comparing to the “immediate” mode based mining algorithm (i.e., UF-streaming).

We evaluated the algorithms which perform uncertain frequent itemset mining

(i.e., UF-growth algorithm), constrained frequent itemset mining from uncertain data

(i.e., ACUF-growth algorithm) and frequent itemset mining from streams of uncertain

data (i.e., UF-streaming and SUF-growth algorithms) by sets of experiments. The

experiment results showed the behaviors of our proposed algorithms and illustrated

the effectiveness of them.

7.2 Future Work

In this thesis, we have proposed, developed and evaluated four algorithms, namely

UF-growth, ACUF-growth, UF-streaming and SUF-growth algorithms. Among them,

UF-growth is designed for mining frequent itemsets from uncertain data; ACUF-

growth is proposed to mine from uncertain data for those frequent itemsets which
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satisfy user-specific aggregate constraints (i.e., min, max, average and sum); UF-

streaming and SUF-growth can efficiently find frequent itemsets from streams of un-

certain data. When mining frequent itemsets from streams of uncertain data, the

user may be only interested in a tiny portion of mined data. In other words, mining

constrained frequent itemsets from streams of uncertain data is in demand. As fu-

ture work, we plan to design a tree-based system which integrates uncertain mining,

stream mining and constrained mining. The resulting system would fulfill the task

of efficiently mining from streams of uncertain data for those frequent itemsets which

satisfy user-specific constraints.

To elaborate a bit, based on principles of our UF-streaming and ACUF-growth al-

gorithms, we could first do constraint checking on the domain items in the transactions

of current batch and order these domain items in a specific order (i.e., non-descending

order R+ or non-ascending order R− of attribute values). We could then construct

a modified UF-tree for the current batch of streaming uncertain data. The structure

of this modified UF-tree would be exactly same as that of the modified UF-tree we

built for our ACUF-growth algorithm. Next, we could recursively grow the valid “fre-

quent” itemsets from this modified UF-tree with a preMinsup which is lower than the

actual minsup. Finally, we would store all valid “frequent” itemsets in a UF-stream

structure.

As discussed in this thesis, our SUF-growth algorithm improved our UF-streaming

algorithm by (1) returning to the user all and only those truly frequent itemsets, (2)

avoiding the additional UF-stream structure to store mined itemsets and (3) reducing

unnecessary computation by using a “delayed” mode for mining. For our planed



Chapter 7: Conclusions and Future Work 123

system, we could also take these advantages by integrating our SUF-growth algorithm

with our ACUF-growth algorithm. Specifically, we could first do constraint checking

on the domain items in the transactions of current batch and order these domain

items in a specific order (i.e., non-descending order R+ or non-ascending order R−

of attribute values). Then, we could construct a modified SUF-tree in which the

items would be arranged in non-descending order R+ or non-ascending order R− of

attribute values from tree leaves to tree root based on the forms of constraints. In

the last step, we would recursively mine from this modified SUF-tree for those truly

frequent itemsets that satisfy the user-specific constraints by using the same approach

as our SUF-growth algorithm.

Like many other frequent itemset mining algorithms, all algorithms we proposed

in this thesis assume that the UF-trees (or the modified UF-trees) used in the mining

process can all fit in memory. While the available memory space is sufficient in many

situations, there are still some other situations where the available memory space

is quite limited. As future work, we plan to upgrade our system to handle these

situations. Specifically, we plan to to find from streams of uncertain data for those

constrained frequent itemsets in a limited memory environment. Inspired by the

ACoCo algorithm (which is an approximate algorithm for mining from streams of

precise data those constrained frequent itemsets in a limited memory environment)

and the ECoCo algorithm [LBY08] (which is an exact algorithm for mining from

streams of precise data those constrained frequent itemsets in a limited memory

environment), one possible solution is proposing a new tree structure called UCoCo

tree (indicates uncertain CoCo tree) which would be a modification of CoCo tree.
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Similar to our UF-tree, each node in an UCoco tree would store (1) an item, (2) its

expected support, and (3) the number of occurrence of such expected support for

such an item. Except for this modification, the UCoCo tree would keep all other

characters of the original CoCo tree [LBY08]. By building a global UF-tree (modified

UF-tree) and using UCoCo trees, our system would fulfill the task of finding from

streams of uncertain data those constrained frequent itemsets in a limited memory

environment.

Note that all algorithms we proposed in this thesis—UF-growth, ACUF-growth,

UF-streaming, and SUF-growth algorithms—returned resulting frequent itemsets as

textual lists. It is well known that “a pictures is worth a thousand words”. With a

visual representation of frequent itemsets, the users could easily find the information

(i.e., the relations among mining results) in which they would be interested. As

another future work, we plan to build a visualization system which could be used to

visualize and analyze the mining results of our algorithms.
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