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CHÄPTER I

ÏNTRODUCTION

1.1 Object of Study

During the past few decades, there has been a dramatic

increase in the volume of consÈruction of ta1I commercial and

residential buildings throughout the world. This has necessitat-
ed the development of methods for accurate analysis of such

structures.

One of t.he most important factors to be considered in
the design of a tal-l building is its lateral sÈability in all
directions when loaded by wind, earth tremors or blasts. Earry

in the twentieth century, tal1 structures generarry emproyed

rigid frames consisting cf corumns and beams. rn these struct-
ures lateral stiffness was achieved by frame action. Later,
flat slab and flat plate floor stn¡ctures r,rere adopted" Flat
plate floor structures have no girders and employ a slab of
uniform thickness which rests directly on columns. The frat-
slab structure is similar, except that either the slab, the

columnr or both are thickened at their junction. A common

procedure in the analysis of a ftat plate multispan structure
is to subdivide the whole structure into a series of paraller
planar frames and assume the portion of the floor slab between

the panel center lines on either side of the columns to be

1
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analogous to the beams j-n an ordinary frame. Each such

planar frame is analyzed separately and the frames are then

combined to form the complete structure. Assumj-ng the floor
slabs to act as rigid diaphragi'ms for distribuling in-plane

forces, a trial and error procedure is then used to distri-
bute the laterar loading among the frames in such a manner

that equilibrium is everywhere satisfied and the lateral dis-
placements of all frames at all floors are compatible.

Lateral stiffness in many ta1l buildings can be

achj-eved most efficiently by shear wall construction which

employs a combination of columns, floor systems and large

shear walls which have high in-plane stiffness. shear walrs

not onry serve a structural function but also provide more

flexibility in internal planning. Elevators, stairs and

mechanical and electrical servj-ces can be grouped inside a

central core which also acts as a shear wa1l and thus per-

mits most economical use of space.

The two most complex aspects in the analysis of shear

wall structures which employ flat plate floors are the shear-

wall-frame interaction, and the interaction between the floor
system (flat plate, flat slab, waffle slab, etc.) and the

shear walls and columns" The former type of interaction has

been thoroughly investigated and has been incorporated into
shear wall-frame analysis computer programs( 13)
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At one time, the practice was to design the shear

walls for fulI lateral loads and to assume that the frame

resisted only gravity loads. However, when shear wall-

frame interaction was considered, it was found that each

element obstructs the other from taking its natural free

deflected shape. Typical deflected shapes due to lateral

loading, for the frame onlyrthe shear wall only and for the

combined frame and shear waLl are shown in Figure 1 (a),

(b) and (c) respectively. Figure 1 (c) shows thai toward

the top of the strucÈure, the frame resists the lateral

deflection of the shear wall-, while the opposite phenomenon

occurs toward the bottom. Thus, resisting moments are

applied to the shear wall by the frame, with a resulting

significañt reduction in lateral deflection of the struct-

ure, and hence, increased lateral st,iffness.

The interaction between flat plate floors and

shear walls and columns in laterally loaded. structures has

not yet been adequately investigated- Several stud.ies (317,8'10)have

bee¡r 'cârried out to determine the moment-rotadion character-

istics for flat plate floors loaded by couples produced by

transverse shears applied to columns. In most cases the

investigators used effective slab width as a parameter for

indicating the effective stiffness of the flat plate. Gen-

erally, effective slab width has been defined as the width

of an imaginary beam with the same depth, span and stiffness

against rotation of Èhe columns, as those of the slab under



(a) Free Frame (b) Free WalI (c) Combined Fra¡ne & Fhear WalI

tateral Deflections for Elements in Shear
Wall-Frame Structure.

Fig. 1
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consideration. However, for shear wall structures this para-

meter is unsuitable because the resisting moment applied to

the shear wall by the floor slab is a function not only of

the slab thickness (its moment of ine¡Èia) but also of the

geometry of the floor plan. Its value is greatly affected. by

the shape, size and location of the shear wall and the columns"

Consequently, the objective of this study is to iso-

late the various geometric parameters which contribute to the

stiffness of a flat plate floor system as it interacts with

shear walls and colurnns in resisting lateral loading on the

structure. An at.tempt is made to express, in nondimensional

form, the effects of column size, shear wall shape and size

and panel shape and. size on the st,iffness coefficients for

flat plate floor systems. The mechanism by which the floor

system resists the moment applied by a laterally loaded shear

wa1I is examined and the moment resistance is subd^ivided in-

to contributions from the various floor panels. The resist.-

ance provided by a given panel depend.s on its location re-

lative to the shear wall, the direction of loading and the

presence or absence of adjacent panels. Nondimensional para-

meters are presented, which can be used to calculate the bend-

ing stiffness coefficients for floor plate systems for various

shear wall and column georcetries. Ir{oment-rotation character-

istic for flat plate-shear wall plexiglass models, determined

using the Moire technique, are presented. The values thus
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obt,ained are correlated. with corresponding relationships deter-
mine from finite element flat plate analyses.

1.2 Historical Background

The first. flat slab building was constructed in 1906

by C.A.P" Turner and by 1913 over one thousand such structures

had been constructed around the world.. The deÈails of deve-

lopment of flat slab design procedures given in different
codes have been summarized in papers by Dowell and Hammif (1)

and by sozen and sies= (2) 
.

Early investigations included analyses 6f flat slab

or flat plate structures for gravity load only and for moments

produced by unbalanced gravity loads. Very little was

said about 1ateral load analysis. During the past decad.e

however, a number of investigations dealing with lateral loads

have been carried out.

Frederic and Pu1l.r-,t(3) tested six reinforced con-

crete models of two way doubly reinforced square. slabs with a

six'inch column extending through the slab. The important

variable was distribution of reinforcement. Values of

effecËive width of slab were reported." The effective width

was defined. as the width of flat plat,e floor that acts with
the column in resisting the applied moment. It was noted.

that the effective width of the slab increased with a bunching

of the steel. However, the ultimate moment capacity

simultaneously decreased "
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The behavior of three experimental flat. plate struct-

ures under different types of loading was studies by the

Commonwealth Scientific and Industrial Research Organization

in Australia. Some of the interesting results have been

summarized by etatcey(4). The structures were designed accord-

ing to the empirical method. of the ACI building .od" (5). 
One

of the three structures was tested under lateral load, with

bare columns and short brick walIs in place on either side

of the columns. It was noted that the lateral rigidity of

the structure was increased by a factor of four by providing

simple brick walls. It was also found that the moments pro-

duced in the slab by lateral loads were confined essentially

to the column strips.

.An investigation was carried out, by Dista and

Vanguren(6) to d.etermine maximum unit shearing stresses in

the moment, transfer region between the column and the flat,

plate floor, due to flexure and punching shear. Th/o critical

sections were considered; one at a distance of t 1+" (where
¿

t represents the total slab thickness) from, and paralle1 to,

the column'faces for flexural shear, and one aÈ the perimeter

of the column for punching shear. RecommendaÈions were also

made for allowable stresses"

Tsuboi and Kawagrr"fri (7) tested nine mortar plate

floor models. Three were of plain mortar and the rest v/ere

reinforced in three different ways. The cross-sectional area

of the reinforcement was the same for all slabs but the dis-
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tribution of the reinforcement between column and middle

strips was different. Results \^rere reported in terms of
effective width and were in good agreement with those obt,ain-

ed using elastic finite difference analyses. The effective
width was defined here as the width of an imaginary beam with
the same depth, span and stiffness against rotation of the

columnr âs those of the slab under consideration. It was

noted that, in the elastoplastic regiòn, the distribution of
the reinforcement has considerable effect on the slab stiffness.

Khan and Sbarounis (8) irrrr"=tigated the problem of

shear waII-frame interaction and. suggested an iterative

method of analysis. The whole structure \^/as separated into

two distinct systems; a frame, and one or more shear walIs

acting in parallel. The tu¡o systems were then combined. in

such a way that compatibitity and equilibrium conditions

were fully sat,isfied. Influence curves, Èo estimate the

distribution of shear between the two systems, rÁ/ere developed

for approximately 150 separate combinations of the four

loadings considered (uniformly distributed, triangular, con-

centrated load at the top of the frame and base moment), for

structures with various stiffnesses. The problem of slab-

column interaction was also studied both analytically and

experimentally, and graphs for effective width were presented"

The findings of Khan and Sbarouni-s agreed^ quite well with

those of Tsoboi and Kawaguchi.
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arotchie (9) , who carried out an analytical study of

the elastic and elastoplastic behavior of flat plate floors,

summarized his findings in a series of papers" He assumed

the plate to be supported on a hypothetical elastic medium

whose modulus of elasticity could be varied at wi11. Each

loading and the corresponding column reactions \^/ere consider-

ed separately and the principle of superposition was used. He

suggested a simple analysís procedure accord.ing to which the

floor is subdivided into panel strips in each direction.

Then each panel strip is considered as a contj-nuous beam

supported at the column center lines and is analysed by

moment distribution. The relative stiffnesses of the slab

and columns are then modified by multiplying factors which

are given in tabular form. The procedure presumably could

be used for lateral load analysis.

. c.tp"nt"t(10) conducted an analytical stud'y of the

behavior oÏ a flat plate structure subjected to lateral loads

in the elastic range. He also tested two plexiglass models

and. reported stiffness and carry-over factors for individual

slab elements. The behavior of the structure as a whole was

found by superimposing the results obtained by loading in-

dividual columns, with all other columns fixed." His experi-

mental results agreed well with the analytical values. Car-

penter's sÈiffness values, obtained by using Brotchiers

stiffness definition, in which an entire transverse line of
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columns is rotated simultaneously, were in good agreement

with Brotchie's results. Stiffness values obtained. analyti-

calIy by Khan and Sbarounis also agreed reasonably well with

those presented by Carpenter.

Bernard and schw"igrrofut(11) studied plexiglass

models of coupled. shear waIls subjected to lateral loads and

concluded that the entire slab width should. be considered as

effectj-ve in coupling the shear wal1s.

Nantasarn(12) condrrcted Moirá tests on four I/24

scale plexiglass models. In addition, two similar L/L6 scale

microconcrete models \^/ere tested by Parnichkul(12). The pur-

pose of these tests was to obtain the values of effective

wid.th, stiffness and carry-over stiffness factors for flat

plate floor panels loaded by an interior column or shear

wall and by an exterior column. The loading was applied in

the form of couples produced by loads applied transversely

to columns and shear waIls. The main variable considered

ltras shape and size of the shear wall. The effective widLh

vras considered to be the width of a hypothetical beam whose

flexural stiffness is equal to thaÈ of flat plate floor

panel" Effective widths for the panels loaded through shear

walls ranged from 3 to 12 times the true panel width and it

was concluded that effective slab width is a-function not only

of the stab thickness and panel size, but also of the geometry

of the whole structure and therefore is not a suitable criter-

ion for specifying plate stiffness. The effective widths
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obtained using the concrete models rdere fairly close to the

values reported by Brotcrriu(9).

There is no mention in the ACï 
"od" 

(5) of effective

width of slab or stiffness and carry-over coefficients in

shear waII structures. However, recoflrmendations are made

regarding effective widths for flat slabs for transferring

bending moment between columns and sleb. Seetiør 2102 (g)

states that "A slab width between lines that are 1.5t each

side of the column may be considered effective. " !,lhe::e, t
is the thi-dmess of the floor slab.

1.3 Assumptions and Limitations

The assumpLions and. limit,ations employed in this

study are:

1. Linearly elastic hehavior has been assumed for

both experimental and analytical work" Hence, the principle

of superposition is assumed to be valid.

2. The finite element computer program, used for

analytical work, is based on classical thin plate bending

theory.

3" Externally applied momenÈs are simulated by

couples formed by concentrated point 1oads"

4. In both the analyt.ical and the experimental

models, the slab is extend.ed through_ the shear wa1l" Thusr

.the mod.els should exhibit, somewhat more continuity 'than the

corresponding actual structures in which stairs, elevators

and duct openings would occupy the space enclosed by the

shear wall.
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5" fn the finite element analysis, shear wal-l and

column elements have been represented by stiff beam elements.

6. Only flat plate floors (as opposed to fl-at slabs,

waffle slabs, etc.) havê been considered.

7. Neither possible shear failure of the slab (punch-

ing shear or diagonal tension) nor possible buckling of the

slab is considered in the analytical studies.



CHÃPTER ÏI

THEORETICAT CONS IDERATÏONS

2"I Stiffness Matrix

The analysis of a structure by the displacement

method requires the determination of force-displacement

relationships f or -each membdr in the f orm:

P=KD (2.1)

where,

P is a vector of force components applied at

the ends of the member,

D is a vector of correponding displacement.

components, and

K is the member stiffness matrix" Each element

K.. in the stiffness matrix pepresents the forcer-l

component in direction i corresPonding to a unit

displacement in direction j, with all other dis-

placement components equal to zero.

For example, the force-displacement relationships for

a prismatic bar AB from a planar structure, as i-llustrated

in Figure 2"1(a) , are:

13
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where t

Þ - modulus of elasticity

I = moment of inert,ia of member about bending axis,
and A = member cross sectional area.

In the above relationships, the effects of shearing

deformation are assumed t.o be negligible compared to those of
flexural deformat.ions .

The axial forces in floor members in a rectangular

frame, and consequently their axial deformations, are gen-

erally relatively small, and they are commonly assumed to be

negligible. When this assumption is made, the member force-
deformat.ion relationships can be reduced to:

(2.2)
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Tft furtherr the axial deformations of columns and vertical
displacements of shear walls are ignored, only the end moments

and end rotations need to be related in the structural
analysis, and the force-deformation relationships take Èhe

form:

(2.4)

the form:

(2" 5)
where,

MBA, MAB, 0A and 0B are end moments and rotations
for the memberr âs illustrated in Figure 2.1(b)"

K* and K"" may be Èermed, direct bending stiffness coefficients,
since they relate forces and displacements aÈ a single poinÈ,

and K* and K"o may be termed carry-over bending stiffness
coefficients, since ttrey relate forces at one point to dis-
placements at another,

{":1 ]:;: 
'^:il{:}

Equation 2"4 can be expressed in

{n} 
=[x :ï] {:+

iil

PA2

PAg

_tznlú
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2"2 Bending Stiffness Coefficients

The bending stiffness coefficients, KAA, the direct
stiffness coefficient at end A, and KBA, the carry-over bend-

ing stiffness coefficient, for the prismatic bar shown in
Figure 2"2.L are defined as follows i

Kee = *o"fo

Kee = *tofo
(2.6)

where,

M* is the counterclockwise moment applied at end. A

of the bar, 0A is the counterclockwise rotation at end A and

M"O is the counterclockwj-se moment induced at fixed end B.

t*

Fixed End Moment for A prismatic Bar

Fiq. 2.2.L
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AnalogousÌy, in this study the bending stiffness
coefficients for flat plate floor system shown in Figure 2.2.2
will be defined as follows:

The direct bending stiffness coefficient for the flat
plate at the shear wa1l is the ratio of the moment applied to
the shear wall to Èhe resulting rotation of the shear watl and

floor plate at B, normal to line ABC, when all columns are fixed.
The carry-over bending stiffness'from the-shear wall'to coLumns

A or c is the ratío of the fixed-end moment produced at the column

supports A or C due to the moment applied to the shear wal1, to the
resulting rotation of the shear waII and floor plate at B, normal
to line ABC.

Likewise, the direct bend.ing stiffness coefficient
for the floor at column A is the ratio of the moment applied to
the column to the corresponding rotatj-on of column A normal to
line ABC' when the shear waIl and all other columns are fixed..
Finallyrthe carry-over bending stiffness from column A to the
shear wal1 is the ratio of the fixed-end moment produced at the
shear wall when moment is applied to column A to the resulting
totation of column A normal to line ABC.

2"3 Measurement of Bending stiffness coefficients
While stiffness coefficienÈs can be readily calculat-

ed for a bar, those for flat plate erements such as are used

for the floors of shear waII-frame structures cannot, be easily
calculated. rt is therefore necessary to apply couples of
known magnitude to the shèar warl and columns and to measure
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Determination of .Direct Bending

Stiffness Coefficients

Fig. 2.2.2
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the resulting plate rotation in order to determine direct
bending stiffness coefficients for the flat plate elements.

The determination of carry-over stiffness coefficients re-
quires, in addition, the application of the pr.inciple of
superpositionr âs described in Section 2.3.2.

2.3.Ì Direct Bending stiffness coefficients.for Flat plate

The direct bending stiffness coefficient at the

shear wall for the flat plate floor shown in Figure 2.2.2

can be obtained by applying a known moment to the shear walr

u/ith all column supports f ixed, and. measuring the rotat,iôn

of the floor section ABC at the shear waIl. Similarly, the

direct bending st.iffness at, columns A or c can be obtained

by applying equal moments to columns ê, C, D and F shown in
Figure 2.2.2 and. keeping the other column and shear walI
supports fixed

2.3.2 Carry-Over Ben Stiffness Coefficients For FJ_at plate

Since it is difficult to measure directly the fixing
moments at the various support.s, the principle of superposi-

tion is used in obtaining the values. of carry-over stiffness
coefficients.

The procedure used to obtain carry-over stj_ffness

coefficients can be illustrated. with the help of Figure 2.3,

which shows cross sections along line ABC of the floor system
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shown in Figure 2"2"2" The support conditions at A and C for

each structure shown in Figure 2.3 are such that antisymmetrical

deflection patterns are obtained. and the structure is slzmmetrical

about support B.

fn Figure 2.3 (a), a clockwise mome"t ¡48 is applied

at B" It. causes a rotation 0B at B and equal clockwise moments

Mag and lvl* at the fixed supports A and C. By definition, the

carry-over bending stiffness coefficient for external moments

applied at the shear wall are:

Kcg

Since it is difficult to measure M* ot tCB directly,
they can be determined using the principle of superposition, as

follows

In Figure 2.3 (b) an external inoment ¡{B is applied to
the structure with pinned supports at A, B and C, and. rotations
OBt and 04. = trt are measured. Then. the pin supported structure
is loaded by moment Ma at A and moment M" = MA at C as shown in
Figure 2.3 (c) and the corresponding rotations oB, and oA, are

measured. Finally ' if all moments and rotations for the structure
in Figure 2.3 (c) are mult,iplied by OAL/OA2 and added to those

in Figure 2"3 (b), a structure wit.h a deflected shape that, is
identical to that shown in Figure 2.3 (a) results. The final
roÈations at, A and C are:

0A + - 0.A'1 + 0oZ (04r,/0Ar) = 0

0C = - 0C, + ACZ (OcL/Oc) = 0

= KAB - vãB

êB-
= D'c"

-eB-

(2 
" 7')

.(2"8)
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Also:

Mag = MA * 0Al,/0.A'2 = MeB (2"9)

Hence, from eguation 2.7 r, Llne carry-over stiffness
coeffj-cients for moment applied at the shear wa.1l are:

KcB = KAB = ("o * 041) / (0e o 0A2) (2.10)

Simitarly, the carry-over stiffness coefficient
for external moments applied. at columns A or C. are:

(2.11)

where

M_ = M- = external moments applied at columns AA C -r-r- -- --

a¡d C for the st,rucÈure shown in Figure 2.3 (d)

Mga = resist.ing moment at f ixed support B.

0A = 0C = rotations produced at support A and C.

.t structure with a deflecÈed shape that is identical
to that shown in Figure 2.3 (d) can be obtained if all moments

and rotations for the st,ructure in Figure 2.3 (b) are multiplied
bV AB*/AB, and added Èo those in Figure 2.3 (c).

Therefore,

Mea=mo0"2
(2.]2:'

oBt

Hence, from eq (2.11), the carry-over stiffness
coefficient for moment applied at the columns are

KBC=KBA=Me*0BZ

KBc=KBA=W = W

2*0Ao0"1 (2.13)
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Equation 2"L0 can be used to determine the carry-over stiffness
coefficients from the shear wall to the column, while equation

2"L3 can be used to determine the carry-over stiffness coeffi-
g'ient from the column to the shear waII.

2.4 Behaviour of Flat Plate Floor Systems

Figures 2.4.L (a) , (b), (c), and (d) show typical floor
plans for flat plate shear walI-frame structures. such struc-
turesgenerally have one or more "box type" shear waIls and

columns located approximat,ely on a rect,angular grid. This

arrangement of supporting members tends to subdivide the

floor slab into a series of rectangular panels. lii'ien the

structure is subjected to lateral loads, transverse moments

are applied to the flat plate floor by Èhe shear waIls and

columns. The various floor panels offer different resistance

to these moments depending on their size, shape and location
relative to the shear walls.
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Typical Floor PLan For Flat plate
Shear IIaII-Fra;r¡e Structure.

Fig. 2.4.1. (a)
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Fig. 2"

Typical Floor Pl-an Eor
:iWaI1-Fra¡'re

4.1.(b)
Pl-at Plate Shear
S tructure.

Fig. 2.4.1,(c)
Qrpic¿1 Floor I,l-an For

IlalI-Franc Flat Þlate Shear
Struct.ure
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The basic flat plate floor plan considered j-n this
study is shown in Figure 2.4.I (d). It is relatively simple,

but includes most of the possible positions of the rectangu-

lar flat plate floor panels relative to the shear walls and

columns. Assuming this basic flat plate floor to be subject-

ed to an external moment about an axis parallel to the Y-Y

axis and applied by the shear wall, the whole floor can

be subdivided into three types of fl-oor panels, d.epending

upon their behavior. These will be referred to as

torsional- panels, which are subjected mainly to torsion,
bending panels, which resist primarily bending, and corner

panels, which are subjected to both bending and torsion.
The resistance offered to transverse moment by the different
panel types is greatly affected by the continuity between

adjacent panels. For example, the torsional resistance of a

torsion panel is increased by the addition of a corner paneI,

since the continuity between the two results in bending in

the corner panel. Similarly, the resistance of a bending

panel is increased by torsion in an adjacent corner panel.

In this study, the joint between a corner panel and, a

torsional panel will be referred t.o as a torsion joint, while

the joint between a bending panel and a corner panel will be

called a bending-joint.

The moment resistance offered by a given floor sys-

tem is also highly dependent on the location of the support-
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ing columns, as demonstrated in Figure 2"4.2. The resistance

of the floor slab shown in Figure 2.4.2(a) to a shear wal-I

moment M-ywi1I be less than that of the slab in Figure 2.4.2(b)

because of the absence of torsion panels in the former case.

The behavior of the latter system will be almost the same as

that of the floor sla-b shown in Figure 2.4.1 (d). The presence

of the additional columns for the system in Figure 2.4.2(b)

will slightly increase the stiffness of the torsional panels

and hence the over all stiffness of the floor slab.

Further, the behavior of a particular floor panel

depends upon the directi-on of the exLernal moment. For

example, if the flat plate floor in Figure 2.4.1 (d) is sub-

jected to a shear waIl moment paralIel to the X=K axis, the

torsional panel will becone a bending panel and the bending

panel will become a torsional panel.

2.5 ContribuÈions to Bending Resistance of Flat Pl-ate-Floor

The stiffness contributions of individual panels of

the basic floor slab shown in Figure 2.5(a) and of continuity

beËween adjacent panels can be obtained by carrying out load-

displacement analyses for the basic structure and a series

of eight related structures. The related structures, which

are shown in Figure 2.5(b) to (j), are obtained by removing

various panels from the basic structure and by destroying ccn-

tinìdty betvreen adjaænt panels



30

m
, (b)

Dif ferent Cofunrn Locations
Fig. 2 .4.2



31

Sarv

Cut

st
(a)

sz

(b)

S¡

(c)

c
"4

(d)

s5

(e)

se

(f)

BP î*l BP

sz

(s)

Determination of Contributions to Bending
Resistance of FLoor SysÈem

Bending Panel
Torsional Panel
Corner Panel

Fig. 2.5

sg

(j)

BP=
ÎP=
CP=

_i
BP

CP

!rr r¡D i r'¡
.v!

ffi;,I 1'l_
;;
irp icp
rl

CP 'cP

N"

CP CP

TP

SP Ì{} EP

TP



3.2

It is convenient to define the "direct stiffness co-

efficient" (the ratio of moment M-y applied through the shear

wall, to resulting rotaLion 0y of shear wal-l) for the basic

structure in Figure 2.5(a) as Kl. Similarly, the correspond-

ing direct stiffness coefficients for the related structures

SZ, 53, 59 in Figure 2"5(b) to J will be designated K, to

K9. respectively.

The principle of superposition can be used to estab-

lish relationships among the direct stiffness coefficients

for the various structures shown in Figure 2.5 and to isolate

the stiffness contributi-ons of the various elements in the

basic floor structure.

For example, the moment resistance of structure Sl

can be obtained by superimposing those for structures Sg and

59r Hence

K7= Kg+K9

(2.5. 1)

Similarly, by considering the superposition of structures Sg

and Sr, it can be seen that

K3= K5+K9

Finally, the superposition of

the relationship

(2.s "21

structures Sg and Sn leads to

KZ = K4 * Kg

(2.5.3)
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By considering structur. Sg'only, íL can be seen that the

d.irect stiffness coefficient for a single bending panel, with
no continuity with adjacent panels, is

1Ke =1Ka
(2.5.4)

Likewise, considering structure Sg, it is seen that the

direct stiffness factor for a single torsion panel is
1Kr = iKg

By comparing structures St and Sr, it can be seen that the
' direct stiffness contribution due to a bending joint (due to

the continuity along a single boundary between a bending

panel and a corner panel) is

Kec = å (Kr-K2)

(2. s.5)
SinilarlYrby considering structures Sl and sr, it can be seen

that, the stiffness contribution due to a torsion joint (due

to continuity along a sj-ngle boundary between a corner panel

and a torsion panel) is

Krc = å (K1-K3)

(2.5"6)

Finally, by comparing structures S¡ and S' the contribution
of one corner panel can be obtained as

1It= ä [K3-K7-4 *"c]
(2.5.7)
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It is convenient to express the direct stiffness
coefficients for various elements making up the floor sysÈem,

in terms of stiffness factors for equivalent beam elements.

Therefore, define for the panel contributions

*"" = nPt = ".!t "LB 3Le

t Efl _ 4Er E t3 r,a

4
B

KEC = -l- =Lc 3Lc

a

KET = llGt'b
Lt

and by analogy, for the joint stiffness contributions

KEBC =

=,.3tKETC = -t -T
b

v¡here,

E = modulus of elasticity

I = moment of inertia of beam

r. = .span of bending panel-B

B = width of bending panel

r' = span of corner panel,-c
G = modulus of rigidity

b = width of torsion panel

t - floor thickness

LT = span of torsion panel

rr = å (t- 0.63 
b!)

= shape f..tot(16)
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The direct bending stiffness coefficients for
various elements of a basic floor plan can then be defined

(i) DTRECT STTFFNESS COEFFTCTENT
FOR ONE BENDING PANEL = KB = F"*KEB

(ii) DrREcr STTFFNESS coEFFrcrENT
FoR oNE ToRSIoN PANEL = KT = F,*KET

(iii) DIRECT STIFFNESS COEFFICTENT
FOR ONE CORNER PANEL = KC = F"*KEC

(iv) DTRECT STTFFNESS COEFFTCTENT
DUE To oNE BENDING JoINT = KBc = F""*KEBC

(v) DIRECT STIFFNESS CoEFFICIENT
DUE To oNE TORSIoN JoTNT = KTc = F,"*KETC

FB' FT, FC, FeC and Fr" are dimensionless

multiplying factors.

The values of these multiplying factors for a basic

flat floor with ttre geometry shown in Figure 2.5(a), can be

obtained by determining the direct stiffness coefficients
for structures 51, 54, S5r Sg, and Sr, shown in Figure 2.5.



CIAPTER ITÏ

AI{AIYTICA], A}TD EXPERIIIENTAI STUDIES

this chapter describes the analytical finite element

study and the ¡{oirá experimental work carried out in order to

evaluate the bending stiffness properties for various geo-

metries of flat plate floors.

3.1 Introduction

The analytical study consisted of two phases. The

first of these dealt with the effects of column size and

shear wall size and shape on the bendi-ng st.iffness of the

floor plate. The purpose of the second phase was to derive

values for the multiplying factors, described in Sectj-on 2.5,

for indicating the contribuÈions of the various floor elements

to t'he bending resistance of a flat, plate floor system. In

the first phase, direct bending-stiffness coefficients and

carry-over stiffness coefficients for both shear wall loading

and column loading were studied" The second phase was limit-

ed to the 
*study of direct stiffness coefficients only, for

shear wall loading" The }{oirê experimental stud.y was limited

to the second phase.

The basic prototype structure, on which both the

experimental and the analytical mod.els were based is shown

36
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in Figure 3"1.1" Its proportions and dimensions \Árere d.es-

igned to be within the practical ranges for flat plate struct-

ures of the type being considered. All columns weïe square.

For the first phase study, the column size was varied from

LZ inches to 36 inches while it was kept at 24 inches for all

structures analyzed in the second phase. Both rectangular

and square shear wall shapes were considered. For both

phases, the shear waIl size was varied from 4.5 feet to 48

feet in theX-X direction and 9 feet to 24 feet in Ëhe Y-t

direction" The rat,io of the shear wal1 size to total span

$¡as varied from I/5 to L/2.5. A 6-inch slab thickness v¡as

assumed throughout. In aLl cases moments v¡ere applied to

the structures about axes paraIlel to the Y-Y axis.

3.2 Analyt,ical Procedure

A computer program titled. "The Finite Element. Analy-

sis of Stiffened Plates", developed by lan G. Buckle at the

University of California, was employed in the analytical

work. The principal features of this program have been

summarized in Appendix A. The double precision versd-on of
the progJram was used.

3.2.1 Representation of Plate Model

The finite element, grid for the typical model is

shown in Figure 3.2.1. The.êolumn and shear wall elements

were represented by stiff beam elements whose depths were

made larger than those of the plate elements. The thick-
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Finite Element Grid for Typical Plate Model-.

rig" 3 "2.L
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nesses of the beam elements were made sixteen times as large

as those for the plate elements. The purpose of using stiff
beam elements was to obtain a rigid bending behavior of the

shear wall and columns compared Èo that of the flat plate.

The external moment loading was simulated by a couple prod.uced

by equal and opposite point loads as illustrated in Figure

3.2.2. Each column was represented by two beam elements and

three nodes as illustrated in Figure 3"2.1. The hinged support

at the column was obtained by restraining the transverse

deflection of the central node and leaving the other two nodes

completely free. For a fixed column support, all three move-

ments (transverse deflection and. two rotations) were restrain-
ed for all three nod.es.

To obtaj-n the values of direct and carry-over stiff-
ness coefficients, the models were analyzed for four types of

loading as illustrated in Figures 3.2.2,3.2.3, 3.2.4 and

3.2.5" However, for obtaining the values of multiplying
factors FB, FT, FC, FfC and F"" described in Chapter 2, the mod-

els were-'analyzed. for type A loading onlyl as shown in Figure 3..2¿2.

AIl models analyzed were symmetrical about both X-X

and Y-Y axes passing through the centroids of the floor areas

and only one guarter of each model was analyzed.. This re-

duced the number of elements and nodes to be dealt with in

the finite element analysis, hence reducing the cost of the

computational work. Each loading was symmetrical about the
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Y-Y axis and antisymmetrical about the X-X. axis" Hence, the

transverse plate deflection, and the rotation 0X were zero along

the Y-Y axis passing through the centroid of the floor plan

and rotation 0X about the X-X axis was zero along the X-X axis

passing through the centroid. Local1y, suitable boundary cond-

itions were adopted for obtaining fixed or hinged supports.

3"2.2 Description of Analytical Mode1s

The first phase study involved ten finite element

representations of I/24 scal-e nlexiglass models, designated P1,

P2, P10, and analyzed for the four types of loading shown

in Figures 3.2.2, 3.2.3, 3.2.4, and 3.2.5. The dimensions of

these models are given in Tables 3.1, 3"2, and 3.3. In the

second phase, sixteen series of models lvere analyzed for Type A

loading shown in Figure 3.2.2. Nine I/24 scale models corres-

ponding to the nine floor plans shown in Figure 2.5 were consid-

ered in each series. The models of each series v/ere designated.

using double subscripts, the first of which ind.icates the series

number while the second designates model number in that series.

For example, the mociels of the first series $/ere designated as psl-1,

PS'1:.2 -----PSl-9. ln- facÇ models correspondi.ng to tne shapes of
modefs 51, 54, 55, S8 and 59 onIy., in Figure 2"5, trere. analyzed, as

the results for. lh".models S?, 53, 56 ancì 57 werg. obtained by .:.....:..til
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TABLE NO. 3.I

DIMENSIuTT-S OF ¡4ODFr.q FOR EFffi CB- COLU¡,0{ SIZE

For all Models,
ClÞar Span in Both X-X and Y-Y Direction = 9.0 Inch

Thickness of Floor = 0.25 Inch

Shear l{al1
Size

Model sx ----EY Total Span
TSX TSY

SX Column Size
Sv cr-ìãaa$an-

Column
Size

SY
TSX

PI g" g" 27" 27" 0.5" r.0 0.0555 '/t

guP2 g" 2'7" 27" 0.75" 1.0 0.0833 t/t

9"P3 9" 27" 27" 1. 0r' 1.0 0.1111 ,i,

gttP4 gn 27" ¿l l.5" 1.0 0.1666 t/z

TABLE NO. 3.2

DIMENSICT\ÌS OF IqCDELSEORTEECA' CF STIRR TüiLL SIZE

For all Mode1s,
Clear Span in Both X-X and Y-Y Direction = 9 Inch

. thickness of Fl-oor = 0. 25 Inch

llodeI

Shear Wa1I
Size

SX SY
Total Span
TSX TSX

Column
Size

Column Size
SY Clear Span

SY
rsx

P5 4.5n 4.5" 22.5" 22.5" 0.5" 1.0 0.05ss
'/t

6"6"P6 24" 24" 0.5n 1.0 0.0555 t/a

P1 g" g" 27" 27" 0.5" r.0 0.0555 L/z

P7 L2" L2" 30n 30" 0.5 " 1.0 0.0555 L/ z.s

where,
SX and SY are shear wall size in
ion respectively, TSx and TSY are
and Y-Y direction respectively.

the X-X and Y-Y cìirect-
total span in the X-X
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, T-ABLE NO. 3.3

DIMEI¡SIC,ITS OF I"ODF[,S FOR trIErIf OF S}TEAR TGI;L STAPE

For all ModeJ-s,
Clear Span in Both X-X and Y-Y Direction = 9 Inch'

Thickness of Floor = 0.25 Inch

Shear WalI
Size

Model F-----=V-
Total Span CoLumn
TSX TSY Size

SX Column Size SY
W clear span Ttr

PS8 4.5" 9. 0 " 22.5" 27" O.75" 0.5 0.083.3 
'Ã

P2 9.0" 9.0" 27" 27" 0.75" 1.0 0. 0833 '/s

P9 13.5" 9.0" 31.5u 27" 0.75" 1.5 0. 0833
'/=

P10 18" 9.0" JO 27" 0.75n 2.0 0.0833 t/t

SX'and SY are shear wall size in
Qpectively TSX and TSY are total
íori respectively.

Y-Y direction re-
X-X and Y-Y direct-

X-X
span

ancl
in
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using the prínciple

first model of each

of superposition.

series are given

The dimensions of the

in Table 3.4. In the

Tables S* and S" represent overall shear wa1l dimensions in

the X-X and the y-y directions respectively while TSX and

Tr" represent total span in the X-X and Y-Y d.irections respect-

ively as shown in Figure 3.1.1.
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TABLE 3.4

D]}/IE¡TS]CDIS OF }NDFÍSì FOR SETÀ]D PIGSE OF THE SILÐY

For all Models,
(i) Column Size = 1 Inch Square

(ii) Thickness of Fl-oor = 0.25 Inch

Shear Wall Size Total Span SX
Fg

SX
SY

SY
=TSYModel QV TSX TSYSY

PSl-1 2.25" 4.5" 11.25" 22.5" 0.5 L/s

PS2-1 4. 5rt 4.5" 22.5" 22.5" 1.0 L/5

PS3-1 6.75" 4.5u 33.75" 22.5" 1.5 r/5
PS 4-1 9.0" 4.5" 45" 22 .5" 2.0 r/5
PS5-1 3.0" 6" 12" 24" 0.5 L/4

PS6-1 6.0t' 6" 24" 24" 1.0 L/4

PS7-1 g.0tt 6" 36" 24" 1.5 L/4

PS8-I 12. 0 " 6rt 4gu 24" 2.0 r/4
PS 9-1 4.5" grt 13.5" 27" 0.5 L/3

PS10-1 g.0t' 9" 27" 27" 1.0 r/3
PSlI-l 13.5" grt 40.5" 27" r.5 L/3

PS12-1 18. 0 " gtt 54" 27" 2.0 L/3

PS13-r 6.0" L2" 15" 30" 0.5 t/2.5
r PS14-l 12. 0 " L2" 30" 30 rt 1.0 L/2.s

PSl5-1 18.0" L2" 45" 30 t' 1.5 r/2.s
PS16-1 24" 12" 60tt 30 u 2.O L/2.5

where,

SX and SY are shear wal-I
ion respectively, and TSX

the X-X and Y-Y d.irection

size in the X-x and y-y direct-
and TSY are total span in
respectively.
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3.3 Experimental Procedure

The Moirä apparatus shown in Figure 3.3.1 was used for
the experimental work. The principles of the Moirå technique

have been summarized in Appendix B. Since, for all models,

the variat,ion of the plate slope about horj-zontal axes v/as

desired, the Moire screen was always positioned such that the

ruled lines \^rere horizontal.

3"3.1 Description of Experimental Models

Seven I/24 scale plexiglass models, designated ES1,

ESz, ES3, ES4, ES5, ES6, ES7, were tested. These models were

similar to the analytical models of the tenth series of the

second phase study, designated PS10-1, PSlO-2, PS10-3, PS10-4,

PS10-5, PS10-8 and PS10-9. The dimensions of the: experimental

models are- shown in Figures 3.3.3 to 3.3.9. The models were fab-

ribated r.rom _I/-4 inch thick black plexígIa.:s. (acrylic sheeË) and

were designed in such a v¡ay that loading could. be applied

through the shear wall, keeping all columns fixed. The

columns v/ere cut from 1 inch square steel bar and. I/4 inch

diameter holes $¡ere drilled through their centers to clamp

them to the plate and the loading frame. The columns in the

line of loading r¡¡ere 3/4 inch in height while others were

l/2 inch in height. Eight plexiglass sheet panels, all of

the shape and size shown in Figure 3.3.2 r \^/ere cut and cemented

together to form two boxes. These boxes were cemented to
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¡loi16 Apparatus

Fis.3.3.1
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the top and the bottom of the plate to simulate a box type

shear waII passing through a flat plate floor. Jaybond GC-2

acrylic adhesive cement, which produced the required st.rength

in 48 hours, was used for cementing all joints.. Model ESl

was fabricated and tested fi-rst. Model ESz was then

obtained by making saw cuts in the original modeI. Model

ES3 was obtained by rotating model ESz -. through 90" in

a vertical plane and thereby changing the direction of load-

ing. ES4 ' r¡/as then obtained by removing two panels from

model ES2. ¡4e¿s1 ES5 was obtained by rotating model

.ES4 to again change the loading direction. Similarly,

model ES6 ¿¡¿ ES7 were obtained by removing panels.

hole

Lr-F2t i.
2,62â"

I,87s"

Plate Section Used In Fabricating Shearwall
Fig. 3.3.2
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i/ a"

Model ES4

Fig. 3.3.6
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Model ES5

rig, 3.3.7
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3 "3 " 2 Loading Procedure

Each model was loaded by a couple applied to the

shear wall, and produced by forces 6 inches apart as illustrated

in Figure 3.3.3. Since the models were mounted with the plate in

a vertical plane in the i.loirê apparatus, the loads were applied

vertically. The downward forces were provided by applying weights

to loading hangers which were attached to strings passing through

the holes in either side of the shear wall. The upward forces

were similarly applied using a simple lever systemr âs shown in

the Figure 3.3.10. Figure 3.3"11 shows the loading arrangiement

for model ES9.

3.3.3 Photographic Technique

The ¡{oir'e screen, with the ruled lines in the horiz-

ontal position, was placed in the proper positj-on at a distance

of 85 centimeters from the model. The screen was illuminated by

four RZ super f lood DXC I20V lamps. The camera \^/as f ocused by

viewing the image of the screen on the ground glass screen

with a magnifying glass. While focusing the canera, the diaphragm

was opened completely and photo flood lights l¡¡ere switched on.

After focusing, the diaphragm was set to its smallest opening (f:32)

to obtain good sharpness. The first. exposure \^/as taken with no load

applied to the model, and the second exposure was made on the sane

negative after applying the loads" During exposure time, the roorn

lights \^rere switched off . Dif ferent combinations of exposure
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Stee

Fixed Column Support

Floor

ala.o

e

Loading Arangement

Fig" 3.3"10 .
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Loading Arrangement For

Fig.3.3.11

Model ES9
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and developing times for both prints and photographic plates

were tried and the combination yielding the best results was

chosen" Kodak metallographic plates were used. Kodak Bromide

F-3 single weight paper was used for all prints and Dektol

developer was used for both plates and prints. Prints were

made to one-half scale" The positions of the photo flood

lights !,/ere adjusted to obtain uniform illumination of the

screen. The most important precaution taken was to keep the

reflecting surface of the model clean and dust free, to obtain

sharp and clear fringe patterns"



CHÄPTER IV

AT{ATYTICAI AND EXPERTù1ENTAL RESULÎS

The results for both the analytical and experimental

studies are sumnrarized in this Chapter" The complete listing of

the data is included in ApPendix C.

4.1 Results fof Analytical StudY

The first phase study involved the determination of

ttre effects of column size and shear wall size and shape on the

direct and carry-over stj-ffness coefficients for the plate floor.

These coefficients were determined by applying knortn moments to

either the shear wal-1 or to the external column for models Pl, P2

----P10 and measuring corresponding plate rotaÈions.

The applied moments and resulting rotations for the

four loading conditions described in Section 2.3.2. for the first

phase of the analytical study are given in Tables Cl, C2 and C3

in Appendix C. The corresponding stiffness coefficients are pre-

sented in Tables 4.L, 4.2 and 4.3. Wherever possible, results

are p.resented in the non-dimensional form by using size parameters

such as column size to clear span ratio , ratio of shear wall size

in the X-X direction to that in the Y-Y direction and shear wall

size to total span ratio" Tab1e 4.L shows the calculated stiffness

coefficients for four different column size to clear sPan ratios

for a 9-inch square shear wall and a shear wall size to total span

ratio.of one third" Table 4.2 shows the stiffness coefficienÈs
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for four different square shear waII size to total span ratios

for 0.5 inch columns" The values of stiffness coefficients for

four rectangular shear walls for 0"75 inch square columns are

given in Table 4.3. According to the Maxwell-Betti reciprocal

theorem the carry-over stiffness coefficients from the shear wa1l

to the exterior col-umn are equal to the correspondi-ng carry-over

stiffness coefficients from the column to the shear walI" It can

be seen from Tables 4.1 to 4.3 that a good agreement between

corresponding values was obtained. Hence, the averagie of the

two carry-over stiffness coefficients for each model is listed

in the last column of each of Tabl-es 4.L, 4.2 and 4.3.

The direct stiffness coefficients and the averagie carry-

over stiffness coefficients from Table 4.1 are plotted for each

column size to clear span ratio in Figures 4.I.I,4.1.2 and 4.L.3.

Sthile the values from Tab1e 4.2 are plotted for each shear wall

size to total span ratio in Figures 4.2.I, 4.2.2 and 4.2.3. Sim-

ilarÌy, the values given in Table 4.3 are plotted for each ratio

of shear wa11 size in the X-X direction to that in the Y-Y direct-

ionr.in Figures 4.3.1, 4.3.2 and 4"3.3. These plots are approx-

imated by simple algeb::a:ic equations derived using the least square

method of curve fitting. The plots shown in Figures 4.I.L, 4.L.2,

4.L.3, 4 .2.I, 4.2.2, 4.2.3 | 4.3.1 and 4 .3 .3 a:e represented b¡z ser:aight lines

given by equations 4.1.1, 4.L.2, 4.1.3, 4.2"L, 4.2"2, 4"2.3, 4.3"1

and 4"3.3 respectively in Table 4.6. Figure 4.3.2 shows that

the direct stiffness coefficient when the floor is loaded through

the exterior column, does not vary with the ratio of the shear
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Effect of Shear IùalI Size on Direct
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Effect of Shear liall Size on Direct
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f¡ra1l dimension in the x-X direction to that in the Y-Y direction'

Hence, ro attempt is made to approximate this curve by an algebraic

equation"

Theanalyticalportionofthesecondphasestudyin.

volved the applicaÈion of known moments to each of the analytical

models PSI-I t ----t PS16-1 and the calculation of the resulting

plate rotations. The moments and rotations htere then used' to

calculate direct stiffness coefficients which in turn were used

in obtaining the multiplying facÈors described in section 2'5'

Theappliedmomentsandresultingrotations(forload-

ing condiLiofr Ar described in section 2.3.2), along with the cal-

culated direct stiffness coefficients for the phase two models

are incruded;: 

":::,,"-lr"l'",'l^:":":i":: "iï"'":",: and joinrs

to the direct bending stiffness, calculated as described in section

2.5, are listed in Table 4'4'

Finally, the multiplying factors are given in Tables

4.5(a), (b), (c), (d) and (e) for models with four different shear

wall to total span ratios ranging from L/5 Lo'L/2 's for shear walI

size in the x-X d.irection to shear waIl size in the Y-Y direction

rat'iosrangingfrom0.5t'o2.oandforlinchsquarecolumns.
The values of multiplying factor, FT' given in Table

4.5 (a) are used to calculate the contribution of the torsional

panels to the total stiffness while the values of F" in Table

4.5 (b) are used for calculating the contribution of bending pan-

els. Likewise, the values of FC' Fr" and 
""C 

it Tables 4'5 (c) '

4.5(d)and4.5(e)areusedforobtainingthestiffnessdueto

the corner panels, torsion joints and bending joints respectively'
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TÀBLE 4.4

CONTRTBUTTOI.¡ OF DIFFERENÎ PÀNELS ÀND JOINTS
TO THE TOTÀI STIFFNESS WHEN SHEAR ['¡ALL LOADED

Model

Panels

Torsional. Bending
Panels Panels

Contribution of Different Contribution of
Different Joints

Bending Torsion TotaL
Joints Joints Stiffness

Corner
Panels

PSI-I 580 863 3 3758 ]-725 3968 18666

pdz-r 117 I 4 455 313 0 2038 2847 13642

PS3-1 19 80 30 1s 3437 2672 2339 1344s

PS4-l 3033 2280 407 I 3696 220I L5290

PS5-1 753 L232r 4713 2210 4 88r 24880

PS6-1 16 85 6666 4102 25 80 3486 18521

PS7-I 3033 4604 4729 3482 2932 t8782

PS8-1 487 I 3529 s884 49 47 287 3 22rr3 -

PS9-1 1170 20547 7166 3239 6862 38986

PS10-1 3032 11934 6s94 3882 4893 30336

PSTI-1 60 12 8555 815 3 5452 4 316 32490

PS12-I 10364 67 19 l0 751 8030 4501 40367

PS13-t 16 83 3000 3 100s8 467 0 90r9 5543s

PSr4-1 4878 18 312 9 839 5 418 647 4 44923

PS15-1 10368 r3501 r280s 7786 5855 50 316

PS16-1 18750 10810 17500 rt? 47 6302 65111
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0"5 L.467 L.377 1.486

TÀBLE 4.5(a)

Value of F,

1.330

I.0 1.50 I.487 1.78 2.Ls

1.5 1.55 1.785 2.358 3. 05

2.O r-784 2.15 3.04 4.136

0.5 r. 879 2.236 2. 450

TABLE 4. 5 (b)

Value of F"

2.0L

1.0 1. 939 2.L77 2.598 2.990

1.5 L.97 2-255 2.793 3.306

2.0 1.98s 2 -304 2.925 3. 530

SH
TS
sx

= Shear WalI Size,
= Total Span, and
and SY - Shear !,Iall- Size in Y-Y and X-X direction

respectively.

srhere,



BO

0.5 0.204 0. 39 0.547

TABLE 4.5(c)

Value of F"

0.256

1.0 0.34 0 .446 0.718 1. 07

1.5 0.560 0.772 r. 33I 2.090

2.0 0.888 1. 28 2.34 3: 8r0

TABLE 4.5 (d)

Value of Fr"

0.5 0.0360 0.059 0. L24 0.218

1.0 0.0s16 0..0 843 o..J.77 0. 313

1.5 0. 0636. 0.106 0. 235 0.425

2.O 0. 0798 0. 14 o.326 0. 610

where,
SH = Shear WaIl Size,
TS = Total Span, and
SY and SX = Shear t{all size in Y-Y and X-X direction

respectively.
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TABLE 4.5(e)
Value of F""

0.5 0.0626 0.107. 0. 235 0.452

sHlrx

r.0 0.037 0.0624 0. 141 0.262

1.5 0.0 323 0.0 561 0.132 0" 2sr

2.0 0.0 335 0.0598 O. 145 O ..284

where,

SH
TS
SY

= Shear WaIl Size,
= Total Span, and
and SX = Shear lilall size

resPectivelY.
in Y-Y and X-X direction
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TABLE 4"6

EFFECT OF DTFFERENT PARAMETERS ON
BENDTNG STÏFFNESS COEFFICÏENTS

EFFECT OF COLU¡,O{ STZE

K
ÞÞ

Kcc
K

CS

= 27535.6 + 28043"0 (c/S)

= LL52 .79 + 7 454 .25 (C/S)

= K__ = L262.32 + 6446.44 (C/9',)sc

(4.1.1)

(4 " L.2)

(4"r.3)

EFFECT OF SHEAR WALL SIZE

^SS

K=cc
K=

CS

17L48.s + j44201.0 tÊål

1181 .22 + 1os7.o tÊäl

K=" = -141.05 + 52s2-3L t#l

(4.2.1)

(4.2.2)

(4.2.3)

EFFECT OF SHEAR I^7AIT SHAPE

K
SS

K
CS

= - 3ee3.63 + 36e32.0 t#'
= K=" = 646.82 + LL86.22 t#l

(4.3.1)

(4.3.3)

= size of square
= total span
size in the Y-Y

shear wall

and X-X direction res-

where'R^^ and K^^ are direct stiffness coefficients at shear
wall anàÐcolumnuYepectively,

K^o = carry-over bending stiffness coefficients from
shear wãÏt to one column

Ko.. = carry-over bending stiffness coefficient from one
column tð shear waIl.

Q = column size SH
$ = clear span TS
SY and SX = shear waIl

pectively 
"
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4"2 Results for Experimental- Study

The purpose of the Moirâ experimental study was to

provide a check of the direct stiffness coefficients determined

in phase two of the analytical study. Known moments were applied

to the shear wall and the resulting shear waIl rotations v¡ere

calculated. for seven models, ESÌ to ES7, which were similar 1¡

geometry to analytical models PS10-1, PS10-2, PS10-3, PS10-4,

PS10-5, PS10-8 and PS10-9.

The values of the moments applied to the shear wall,

the resulting rotations and the câlculated direct stiffness co-

efficienLs are tabulated in Table 4.7. The values of direct

stiffness coefficients were obtained by dividing the applied

moments by the corresponding rotations as described in Section

2.3.L. The experimental values of slopes and deflections were

plotted along the vertical lines passing through edges of shear

walls and columns for th.e various models. These slope and deflection

curves are given in Appendix t Bt .
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TABLE 4 "7

EXPERT¡4ENTAÍ, RE STILTS

Model
Moment Applied
to the Shear Wall- Rotation

Direct
Stiffness

ES1 120 in. Lb. 0.0045 Rad. 26666.66

ES2 L20 in. Lb. 0.00525 Rad. 22850 .0

ES3 ]-20 in" Lb" 0.00525 Rad. 22850 .0

ES4 I2O in. Lb. 0.090 Rad. 13333.3

ES5 120 in" Lb" 0.006 Rad. 20000.0

ES6 60 in. Lb. 0.006 Rad.. 10000.0

ES7 60 in. Lb. 0.02325 Rad. 2580.0



CHAPTER V

DISCUSSTON OF RESULTS
Ì

This chapter contains a discussion of the analytical

and experimental' results.

5.1 Effects of Column Size and Shear tr{al-l Size

The first phase of the investigation was carried out

to study the effect of column size and shear wal1 size and shape

on the bending stif fness coef ficients.

5.1.1 Direct Bending St.if fness Coef f icients

It can be seen from Figures 4 "L.L, 4.2.L and 4 " 3.1

that the oirect stiffness coeffici-ént for the floor loaded

through the shear waIl is extremely sensitive to shear wall

shape and size and is relatively insensitive to column size.

The value of this stiffness coefficient is j-ncreased by approx-

imately 120 percent as the shear waIl size is changed from

9' x 9' to 18' x 18 ' and by approximately 75 percent as the

shear wall dimension in the X - X direction is changed from

9 feet to 18 feet, with other dimensions kept constant. The

increase is only about 10 percent when the column size is

changed from I foot square to 2 feet sguare. This can be

explained.by the fact that as the shear waLl size is changed.,

85
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the widths of both the bending and torsional panels change.

Hence the stiffness is also changed. However, when the column

size is changed only the clamped areas of the plaLe near the

column supports change, and then by a Very small amount. This

does not affect the stiffness greatIy.

The value of direct stiffness when the floor is loaded

through the exterior columns is more sensitive to variations

in column size relative to shear wall size and is independent

of the shape of the shear wall-. The reason is that the portion

of the plate near the loaded columns, due to its free edges,

is more flexible than the porLion near the shear waIl. Hence

the deflections and rotations of tfre pfate near the columns

are sensitive more to column size than to shear wall size

because any effect of change in shear wall size is absorbed

mainly in the comparatively stiff portion of the plate near

the shear wa1l. Further, this bending stiffness is mainJ.y_

derived from bending and corner panels and changing the shear

wall dimension in the X -'X direction on1y, does not change

the size of bending and corner panels. Hence the value of this

stiffness coefficient is not affected by s.hear wall shape.

The value of this stiffness is increased by approximaÈeIy 30

percent as. the column size is changed from I foot square to

2 feet square and by less than 15 percent when the shear walI

size is changed from 9 feet squa re to 18 feet square.

Model P, of this investigation is similar to model Pn
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tested experimentally by Nantasarn.(L2) ,h" values of the

bending stiffness coefficients for this model, obtained in the

present investigation by the finite element technique, are

compared in table 5.1, with those obtained experimenÈally by

Nantasarn. His experimental value for the direct stiffness

coefficient when the shear wall is loaded, is within 10 percent

of the analytical value. However, his value for the direct

stiffness coefficient when the exterior columns are l-oaded is

25 percent lower than the analytical value" This discrepancy

is probably largely due to the fact, that true fixed shear wal1

supports could not be achieved experimentally in the Moire'

apparatus .; u^sêd þr Nantasarn.
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-Over Bendinq Stiffness Coefficients

89

s"r"2

Tables 4.L, 4"2 and 4.3 show that the value of the

carry-over stiffness coefficient from Lhe shear wall- to one

exterior column is quite close to that from the exterior column

to the shear wal1. The maximum discrepancy is about 2 percent.

This is to be expected in viev¡ of the Maxwel-l--Betti reciprocal

theorem. Figures 4.I.3, 4.2.3 and 4.3.3 show that the carry-

over stiffness coefficienÈ is more sensitive to shear walI shape

and size than to column size. The value of the carry-over

stiffness is increased by approximately 70 percent as the shear

wall size is changed from 9'x 9' to 18'x 18' and by approx-

imately 45.percent as the shear wall dimension in the X -X

direction is changed from 9 feet to 18 feet. The increase is

only about 25 percent when the column size is changed from I

foot Square to 2 feet Sguare. The reason is that as the shear

wall shape or size is changed, the clamped area of the plate

changes by a greater amount than when the column size is changed.

The average values of carry-over stiffness coefficients obtained

experimentally by Nantasarn (tz¡ differ by about 5 percent from

thoseobtained in this investigaûion.' The experimental value of

the carry-over stiffness from the exterior col-umn to the shear

wal1 obtained by Nant.=u.trr(12) is quite low relative to the ex-

perimental value of carry-over stiffness from the shear walI

to the exterior column. It is again probabJ-1r largely due to

the fact that true fixed shear waIl could not be achieved ex-

perimentally 
"
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5"2 CONTRTBUTIONS OF FLOOR PLATE ELEMENTS TO DIRECT BENDTNG

STIFFNESS

The second phase of the investigation was concerned

with determinÍng the contributions of the various panels (bend-

ing panels, torsÍon.: panels and corner panels) and joints
(continuity between adjacent, panels) to the direct bending

stiffness at the shear waII for the flat plate floor.
The percentage contributions of the various plate

elements v/ere determined by first, calculating the direct stiff-
ness coefficients at the shear walI for each of the nine model

configurations show in Figure 2.5 . Then, by combining the car-
culated stiffnesses for the various model configurations r ërs

described in Section 2.5, the contributions sf the various

elements l^¡ere determined. The above procedure was carried out

sixteen times, for four different shear wal1/total span ratios
and four dif f erent shear wal_I shapes.

The percentage contributions of various elements are

summarized in Tabre 5.2, for the various shear waIl sizes and

shapes: Figures 5.2.r and s.2.2 show the variation in the

contributions of the various eLements with shear warl shape,

while Figures 5.2"3 and 5.2"4 show the variation with shear

wall size.

From Figure 5.2.I it can be seen that the contribution
of the bending panel reduces rapidry, while the contribution
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of the torsional panel incre.ases, as the shear wa]l dimension

in the X-X direction increases. The reason is that as the

shear waII dimension in the X-X direction increases, the span

of the bending panel increases as d.oes the wi.dth of the tors-
ional panel. It is a well known fact that as the span of a

panel increases, its bending stiffness gets reduced" Likewise,

the torsional stiffness of a panel is increased by increasing

tlre wid.th of the panel. Figure 5.2.3 shows that for a floor
system with a square shear wall for which the torsional panel is
similar to bending panel in shape and size, the major contribution

to direct stiffness comes from the bending panels while the

torsion panels contribute litt1e. It can be seen that the

contribution of the corner panel is ind.ependent of the shear

waI1 size. This is probabllr due to the fact that when the shear

wall size was varied, the clear spans in both X-X and y-y

directions \^/ere kept constant. Hence the dimensions of the

corner panel (whose width is equal to the clear span in the

Y-Y direction and whose span is equal to the clear span in
the X-X direction), did not change as the shear wall size

changed. It is evident from Figures 5.2.2, and 5"2.4 tl-at the

effect of continuity between the various panels is. quite sign-

ificant"

To corroborate the analytical results, Moirä '' experi-

nental models ES1 to ES7 which correspond to analytical models
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PS10-1, PS10-2, PS10-3, PS10-4,P510-5,PS10-B and PSI0-9, res-

pectively/were tested. The experimentally and analytically

obtained direct stiffness coefficients, and their ratios, atre

listed in Table 5.3.

It can be seen that, the experimentally obtained stiff-

nesses are consistently lower than the analytical values. There

are several probable reasons for this. Firstly, the finite

element mathematical model- of the structure is always stiffer
than the actual structure. Secondly, iE is impossible, in the

experimental model to achieve truly fixed column supports. Hence

the experimental- model is more flexible than if it were completely
fixed.

ft should be expected that the analytical models would

yield more accurate result,s for the j-dealized structure because

of the various sources of experimental error associated with the

Moire technique.



9B

TABLE 5"3

COMPARTSON OF EXPERTMENT"AT AND ANAIYTTCAL RESULTS

Direct Stiffness Floor is Loaded by Shear Wall
Experimental AnalYtical

Analytical
@

ES1

ES2

ESg

ES¿

T¡C
5

ES.
b

ESz

26666

22850

22850

13333

20000

10000

25BA

30336

26397

25400

14sl 9

224LL

11934

3032

1. 14

1. 15

1" 11

1.09

T.L2

1. 19

L"T7



CHAPTER VI

ILLUSTRJ\TIVE EXA}4PLES

In th.is chapter, examples are given to illustrate the

use of the analytically and experimentally obtained infor-

mation including multiplying factors defined in this study,

in calculating stiffness coefficients for t ,t-ii.ty of flat

plaÈe floor systems.

6.1 Stiffness Coefficients For Basic Flat plate Floor System

In this section, the use of the graphs shown in Figures

4.L.L, 4.I.2. . .4.3. 3, in calculating the values of stif fness

coefficients is illustrated with the help of two examples.

In each example, stiffness values obtained by making use

of ttre graphs are compared with ttrose obtained by direct

finite. element analYsis.

EXAIq,PLE 1

It is desired to calculate the direct stiffness coef-

ficient at the shear WaIl and external column and the carry

over stiffness coefficient for the floor system wftose fu

scale model is shown in Fig. 6.1.1. The procedure is to

firstly obtain the values of the stiffness coefficients

for model PI from table 4.L and then to modify them to

account for differences in column size, Shear wal} size and'

shape, etc. to obtain the stiffness values for the floor

System considered. The stiffness coefficients for model P1

from table 4.L are;

99
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34"

l all
J-O

" 40,,

Floor Thickness = 0.25 inches
Column Size = 0.75 inch square

All columns are of sa¡ne size.

Fig" 6.1.1



Direct bending stiff,ness

Direct bending stiffness

shear wal1. KSS=28915

column, Ka"=1562 1b.

at

at

Carry-over bending stiffness coefficÌent Kra=KcS=-1604

Correction For Clear SPan

Since the clear sPan for model Pl is 9 inches while that

for the structure considered is L2 inches, the dimensions of

the model P1, except for the floor thickness, are multiplied

by the ratio Clear Span of the {}oor sysÇem il Fig'-6=}'1 - 4ÈYstem of model- PI 9

A modified "basic floor systemr' \,fith the same slab thickness

as model PI but with the following dimensions, is obtained.

(a) Shear WaIl size = 12 inches square

(b) Total span in both d'irections= 36 inches

(c) Clear span in both directions= 12 inches

(d) Column size = 0.666 inches square

Let this model be designatea dr. Since, the bending

st,iffness of a plate panel does not change if all of the in-

plane dimensions of the panel are changed in the same pro-

portions, the stiffness coefficients of the model p'l will be

the Same as those for model Pl. Thereforer rlo correction

is required for th.e stiffness values in this step"

Correction For Shear Wall Size

The shear walt size for moder dr is next changed from

inches square to 10 inches square. Let this new model

designated ei.

101

}b . inch.

inch.

lb. inch.
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be



The. dimensions of Pï will be

(a) Shear wall size=lO inch square

(b) Total span in both. directions=34

(c) Clear span in both directions=l2
(d) Column size = 0.666 inches.

Hence,

the value of Shear WaIl Size (SH) for
Iotal Span

the value of På for model P"rD -1

Thus,

inches.

inches.

I02

& 0.333model el is 1
3

is * = 0.2s4

from graph 4.2.I, the ratio of the val-ue of KSS correspond-

ing to Fä: 0.294 Lo the value of K* corresponding." Ëä =0.333

is = 0.80

Therefore,

The value of K* for model Pi = 289L5.66 x 0.B0 = 23150.0

Similar1y, the value of direct stiffness at the exterior

column for Pi is obtained by applying a correction for shear
I

waII size with the help of graph in Fig. 4.2.2t to that for
ol* 1'
The value of Ka" for Pi = 1562"50 x 0.97 = 1519.0

Like wise,the value of carry-over stiffness for model Pl is modified

with the help of graph 4.2.3, to obtain that for Pi.

The value of Kra = KCS for el = 1604.55 x 0.875 = 1404.0
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Correction For Shear Wall- ShaÞe

The dimensions of the, shear wal1 for model PÏ. are changed

from 10" x 10" to 10" x 16". Let this new model be designated

D lt,'1
The dimensions for Pi will thus be

(a) Shear wall size in' y-ydirection is SX=16 inches.

(b) Shear wal1 size in y-ydirection is SY=10 inches.

(c) Tota1 span in x-x direction is TSX = 40 inches.

(d) Tota1 span in y-y direction is TSY = 34 inches"

(e) Clear span in both directions ' = L2 inches"

(f) column size is o.666 inch square.

Thus,

The value of H for Pi = 1.0

The value "f # for Pf = 1.6

From graph 4.3.1, the ratio of the value of K* correspond-

ing to H = t .U to the value of K* tor S = 1.0 is=1.67.

There fore,
The value of K* for Pi' = 23150.0 x L"67 = 38600"0

As indicated by graph 4"3.2 thre value of K"" is independent of

shear wa1l shape.

Therefore,

the value of K"" for Plt = 1519"0

Next,

From graph 4.3.3 the ratio of the value of Kr" ot KCS

for $ = 1.6 to the value of Kra ot Kcs for $ = 1.0 is * 1.40

Therefore,

th.e value of Kr" ot KCS for Pf = 1404 x 1.40 = 1969"0"



Correction For Co1umn Size

104

inches sqLrare

obtained be

those for the floor system

The column size ùs ne.xt changed f:¡om 0.666

to 0"75 inches square. Let the new model thus
'lv

desiqnated Pi-I

The dimensions of model rfv .r"
in Fig. 6.1.1.

Next t

rhe value of ffi for model *î is #= o.oss

The value of cglumn size (9) ro, plv 0.75
crear span (Þr i' is Ë = 0'0625

The values of the stiffness coefficients for Pr' are thus

modified for column size with the help of graphs in Figures

4.1.1, 4.I.2 and 4.1.3 to obtain the values for model plv''l
The final values of stiffness coefficients for model

tiu, the floor system shown in Fig 6.1.1, are thus

(a) Direct Bending Stiffness at Shear IrIa11,

K^^ = 38600.0 x 1.01ÞÞ = 39000.0 lb. inch.
(b) Direct Bending Stiffness at column

K^^=1519.0x1.05
-- = 1590.0

(c) Carry-over Bending Stiffness

Ksc=Kcs= 1969.0 x 1"03
= 2020"0 1b" inch.

The values of the direct and carry-over stiffness coef-

ficients for the structure in Fig. 6.L.1 were calculated using

finite element analysis. The values obtained are compared.

with the corresponding values calculated using the graphs,
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as described above, in Tahle 0.1(a) . Th.e stiffness coefficients
for the prototype of th.e model in Fig. 6.1.1 are obtained by

murtiplying the corresponding values for the model by the cube

of. the scale of the model.

Example 2 As a second example, a model of the floor system

similar to that shown in Fig. 6.1.1 is considered. The dim-

ensions of this model are,

(a) Shear waIl size in x-x direction = 10 inches.

(b) Shear waIl size in y-y direction = 12 inches.

(c) Total span in x-x direction - 40 inches.

(d) Total span in y-y direction - 42 inches.

(e) Clear span in both direction = 15 inches

(f) Column size = 1 inch square.

(g) Floor thickness = 6 inches.

The values of the stiffness coefficients for this floor
system are obtained using the graphs given in Figures 4.I.1

...4.3.3r âs explained in s><ample I, and are compared. with
those obtained directly, by finite element analysis in
Iable 6.1(b) .

Tables 6.1(a) and 6.1 (b) show a

the values obtained. by making use of

by finite element analysis.

good agreement between

graphs and tlrose obtained
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6.2 Accuracy of Multiplying Factors

In this section two examples are presented to give an

indicat,ion of the accuracy with which the direct bending

stiffness coefficient at shear wall- can be calculated by

using the multiplying factors, listed in tables 4.5(a),
4.5(b), 4.5(e).

Example 3

In this example, the direct bending stiffness at the

shear waIl for the floor system shown in Fig. 6.2.1, is caI-
culated wittr the help of multiplying factors. The contr-

ibution of different panels and joints to the total stiffness,

obtained by making use of multiplying factors is compared

with those obtained by direct finite elemenÈ analysis.

The floor system in Fig 6.2.L can be subdivided into

eight different types of panels as described in section 2.4

Panels Lr 3, 6 and. I are corner panels, 2 and 7 are torsional
panels and 4 and 5 are bending panels. In additi-on, joints

.AB, CD, EF and GH ¿¡s hpnr{ing joints (joinÈ between corner

panels and ¡æ¡¿ing panels), while joints â8, bC, dF and cG

are torsion joints (Joints between corner panels and torsion

panels). The contribution of the different panels and joints

to the direct bend.ing stiffness coefficient at shear wall is

obtained employing multiplying factors as explained below.

Firstly, the value of tl.e shea¡ waIl size to total span

ratio, tÊË1, and the ratio of shear wal1 dimension in the
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t]re. x-x direction

caLculated- The

ponding to these

to that in the Y-Y directio"' tS)" are

values of the multiplying factors corres-

ratios, are obtained from tables ¿'5(a)

.. o4.5 (e). For the floor system shown in Fig ' 6'2'L

SH I Sx-rq
îS= ffi' 3-Y- LoJ

and the values of the multipl'ying factors from tables

4.5 (a) to +.5 (e) are f ound to be :

F = 2.033
T

FB = 2'488

Fc = o'959

Next, the values of KEB' the bending stiffness of a

beam r^¡hose width, depth and span are equal to the width'

tÏ¡.icknessandspanrespectivelyofthebendingpanel'KEc,
.tÏrebendingstiffnessofabeamwhosewidttr,deptlrandspan

areequaltotÏroseofthecornerpanelandKET,thetorsional

stiffnesS of a rectangular bar whose width, depth and span

areequaltothoseofttretorsional'panel'arecalculated

as described in section 2'5'

For the froor system shown in Fig- 6¿2.Lt the span bf

the bend'ing panel is LB = g '375 inches ' the span of

the corner panel is Lc = g '375 inches and the span

of t'he torsional panel is LT = 6 '25 inches '

The widths of the torsional, corner and bending panels are

7.5, 6"25 and 5 inch'es respectively' The modulus of elastic-

ityrn , for the material is assumed to be 441000'0 PSi'

FTC= 0.162

FBc- o'o89



Thus,
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4 x 441000.0 x å_-* sx(Q.25)3
L2 = L222"2 Ib. inch,

9.375
)4 x 441000.0 x L x 6.25 x (0.25)'

I2 = 1530.0
Ib. inchrand

I(EB = 4EI =
tB

I(EC = 4EI =

-
tc

9 "375
I(ET = (I,bt 3EI 

/LT

where,
b=width of torsional panel = 7.5"
c=thickness of the panel = 0.25n

441000.0==- U(l-fÐ- 2 (1+0.3) = 163333"4 7b"/ inenÍ

= shearing modulus for material

tr= å(t-0.63*i = å (1-0.36 " ffir
o.333 in.4

Therefore KET= 0.333 x 7.5 x (o.25)3 x 163333.4

. 6_25

= 1020.0 lb. inch.

Next, the contributions of the various paners and. joints, to
the total stiffness is calculated as explained in section
2"5 "

The contribution of a bending panel is
K =F'-xKEB"B -B -' '--

= 2.488 x L222.2

= 3040.0 lb. inch.

The contribution of' a torsional panel is

\=FrxKET
= 2.033 x 1020

= 2070.0 lb. inch
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The contribution of a corner. pane.l is
K"= F"x KEC

= 0.959 x 1530'

L470.0 lb" inch"

The contribution of a bending joint (a joint between a

corner and a bending panel) is

hc =FBcxL"xt3xa

-

where ' Þ - width of bend.ing panel = 5. o inchesÐ - w.Lu L¿l. (JJ- trçt.l'r

t = FLoor thickness = 0.25 inches

therefore,

K-^= 0.089 x 9.375 x 0.2S3x 44IC00.0 = 115C.0
ÞU

Finally,
the contribution of a torsion joint (a joint between

a corner and. a torsional panel) is

rr"*L**t3 g

'\c b

- ^ L6Zx6. 25xo. 253x44L000 . O"..

= 928.0

The floor system shown in Fig 6.2..I consísts of four corner

¡lanels, two bending panels, two torsional panels, four torsion
joints and four bending joints.

Thus, the total direct stiffness of the floor plate at

the shear waI1 is
= 4 x Ka * 2xKB + 2xKT + 4xK"" f #K'C

= 4 x L470 + 2x3040 + 2 x 2070 + 4x1150.0
+ 4 x IZB.O

= 24212"0 lb. inch
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The contributions of different panels and joints to the

total stiffness for the floor system shown in r'ig. 6.2.L,
obtained with the help of the multiplying factors and by

finite element analysis are given in table 6.2(a)

Table 6.2 (a)

CONTRIBUTÏON OF DTFFERENT PANELS AND JOINTS

TO THE TOTA], STIFFNESS

Different Obtained By
Panels and Finite Elem"
Joints Procedure

Obtained From Percentage
Multiplying Difference Difference
Factors

T\¿o Bend-
ing Panels 64I2.66 6080.Q 332.66 5.188

T\¡ro Tors-
ional Panels 4L7 8 . 4L7 4140.0 39"47 0.922

Four Corner
Panels 6L67 .45 s880.10 287 .4s 4.652

Four Bend-
ing Joints 4393.0 4600 .0 2O7:Q 4.72

Four Tors-
ional Joints 3479.0 3712.0 233.0 6.68

Total 24630.527 24212.0 418 "52 L.7Z
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Example 4

As a seccnd example, a model that is identical to that

shown in Fig 6.2.1rexcept for the plate thickness, is

considered. the floor thickness for the model of examples

4 is 0 " 3 inches. The values of the contributions for different

panels and joints to the total stiffness is calculated with

the help of the mùltiplying factors¿ âs in example 3. They

are also compared, in table 6.2(b) with ther¡a}:es cbtained

by direct finite element analysis.

Tab1e 6.2 (b)

CONTRIBUTION OF DTFFERNNT PANELS AND JOINTS

TO THE TOTAI STIFFNESS

Different Obtained By Oþtatned from Ðl.rrerence PercenËage
Panels and Finite EIem.¡rultiplying
Joints Procedure Fractors

Difference

T\¡¡o Bending 10909 .0 10500 . o 409.0 3.7s
Panels

Two Torsion-
aI Panels 7180. O 7 160.0 20 .0 0 -278

fäur Corner
Panels 10548.5 10160"0 388.5 3.68

{?ot !tl-. 7seg.3 79oo.o 30r.7 4"ozdrng Jornfs

Four Tors- . o128.3- 6400.0 27I.7 4.42r-onal- J or-nt's

TOTAL 42364.0 42120.0 244.0 1.05r
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Tables 6 .2 (a) and 6 " 2 (b) show

contributions of various panels to

fness at shear walI, obtained with
factors, are quite close to those

ite element analysis.

that the values of the

the total direct stif-

the help of multiplying

obtained by direct fin-
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6 " 3 Lateral Load .Ana1ysis of a Frame. Work

In this sectionr ên example is given to demonstrate

the use of the multiplying factors developed in this study, in
the lateral load analysis of a multistorey flat-plate shear

wall structure. The multiplying factors are used to determine

direct stiffness coefficients for the shear wa11. Procedures

formulated in previous stud.ies are used to determine the

direct stiffness coefficients at the columns r âs well as the

carry over stiffness coefficients.

Example 5

In this example, a typical intermediate floor of a taIl
building shown in Fig 6.3"1 is considered.. A common procedure

in the lateral load analysis of flat plate multispan structure

is to subdivide the whole structure into a series of paralle1

planar frames" Each such planar frame is analyzed seperately

and Èhen the frames are cornbined in such way that. compatibility
and equilibrium conditions are fully satisfied.

To carry out the lateral load analysis of the considered

structure, the structure is subdivided into three paralle1

planar frames, A, B and Cr âs illustrated in Fig 6.3.1.

Frame A, which is identical to frame C, and frame B are

shown in elevation in Figures 6.3.2 and 6.3.3 respectively.
The determination of the bending stiffness coefficients for
each structural element in each frame is essential for the

analysis
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6.3.1 Bending stiffness coefficients For the Floor Systems

Supported OnlY On Columns

The floor system of the planar frame A is supported

only on col¡¡mns and does not inc]-ude any shear walls. Let

it be assumed. that the sizes of the columns, thickness of the

slabs and floor plan are ttre same for each storey of the building.

Calculations for the bending stiffness coefficients for ttre

structural members in th.e first storey only are given below'

In order to simplify the calculations, the moment of inertia

of the uncracked sections h-as been used and at the same time

the effects of reinforcement have been neglected.

Direct Bending Stiffness Coefficients

In Fig 6.3.2, the direct bending stiffness coefficients

for columns ab, cd, ef and gh are equal to those for columns

Lr 2, and 3,4 respectively in the floor plan shown in Fig

6.3.1. Since all columns for the floor system shown in Fig

6"3.1 are of th-e same size, the stiffnesses of columns ab, cd,

êf, and gh will also be equal.

Each column is I foot squaÏe.- The moment of inertia of

each column about the bending axis is
r = *= * (12h (12) 3 = L728 inch4L2'

Trremodulusofelasticityforconcreteisassumedtobe
4 x 106 Psr.

The storeyheight is 96 inches.

Therefore, _the d.irect bending stiffness coefficient for each
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column is

4xExI= Fo6;ã-fgrtt
-4xax)rQ6 x1728

96

= 288 x 106 ]b. inch..

Next, the structural members bd, df and fh are assumed to be

identical and to represent the floor slab betlreen columns 1

and 2, 2 and 3, 3 and 4 respectively, in the floor system

shown in Fig 6.3.1. Thus the d.irect bending stiffness of the

floor member at b in Fig 6"3.2, will be equal to that at h,

the value at d will ber equal to that at f, and the total stiff-

ness of the floor members at d or f will be double that

at b or h. The reason is that at d or f two floor members

frame into each of joints d and f, while one structural member

frames into each of joints b and h. As the floor system in

the planar frame A is supported on columns on1y, the concept

of a reference beam, used by carperrt"t(10) can be employed.

Carpenter defined a reference beamr âS shown in Fig 6.3.4,

as a hypothetical wide, shallow structural member whose

width,, .depth and span are equal to the width, thickness -and 1êngth

of tlrê flat plate flocr paneI. He presented a gr,aph of

the variation of the stiffness of the floor Panel relative

to that of the reference. beam with. the ratio of column size

to span length. This graph has been reproduced in Fig 6.3.5"

The dimensions 6f the reference beam for member bd

in Fig 6"3"2 are:
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widttr of re.ference bearn, m = 12 .5 feet

span of reference beam, L = 15 feet,

depth of reference bean, fl = 6 inches

Therefore,

The direct bending stiffness of the reference beam is
4 x E * * x d3 4 x4 x i-06 x L2.5 x rzx 63
æ=

= 24.a x Lo7 lb. inch

Next,

column size 1
õFmgE=G=u'uoo'

. Thus, from the graph in Fig 6.3.5, the ratio of the direct

stiffness of the floor plate to that of the reference beam

for ttre present case is 1.0.

There,fore,

the direct bending stiffness at b or h in Fig 6.3.2 ís

24.0 x 107 x 1.0 = 24.0 x Lo7 lb. inch.

Consequently,

the direct bending stiffness at d or f in Fig 6.3.2

is 48.0 x Lo7 1b. inch.

Carry-Over Bending Stiffness Coefficients

Since columns rh, cd, ef and gh in Fig 6.3.2 are

prismatic members, the value of the carry-over bending

stiffness coefficient column is
2xExI=-- Storey height

I z x a x +o=6 x ;:-za

= L44 x ro36r¡. inch.
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As yet no direct information is available concerning

carry-ove.r bending stiffness coefficients for floor systems "

However, carry-over factors for floor systems such as

that in frame A, have been presented by carpenter(10¡.

He hae presented ê graph relating carry-over factors to

the ratio of column size to span length.

For the floor system of frame A

column size 1
õPan-G3¡m = i5 = u''u ooþ'

From Carp.e.nter's graph, reproduced in Fig 6 . 3.6 , the value

of the carry-over factor is 0.32.

Therefore,

th.e carry over bending stiffness coefficient for
' rnembers bd, df or fh, in Fig 6.3.2, is equal to the

direct bending stiffness coefficient times the carry-

over factor

=24.0xL07 x0.32

=7.67 x Lo7 lb. inch..
6.3"2 Bending" Stiffness Coefficients For FJoor Systems

With Shear !üa11

The floor system of planar frame B has a box type

shear wall and columns located on a rectangular grid,
as shown in Fig 6.3.1" Structural member oq of the frame

B, shown in Fig 6.3.3, represents the floor slab between

the first and third ro\^/s of colums in Fig 6.3.1, while

member qs in Fig 6.3"3 represents the floor slab between

the third and fourth rows.
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Direct Bending'stiffness Coe.fficients

In Fig 6.3.3, the direct bending stiffness coefficient
for columns pq and rs is equal to the sum of stiffnesses of

col-umns 5 and 7, 6 and 8, respectively, in tlre floor system

shown in Fig 6.3.1. Since all columns in the floor system

shown in Fig 6.3.1 are assumed to be the same size, the

stiffnesses for columns pq and rs also be the same.

The size of each column is I ft. square. The moment

of inertia of each column about its bending axis is
'1 

"r=iU * !2 x (tZ¡'

= L728 inch.4

The modulus of elasticity for concrete is again

4 x lo6 Psr

Also, ttre length of each column is 96 incheq

There fore ,

the direct bending stiffness coefficient for each
4xExI

COJ-UIûD IS =- span
,4x 4x106 x]r72B

96

= 288 x 106 lb. inch.

Thus, the direet bending stiffness coefficient for

structural member pq or rs in Fig 6"3.3 is

= 2 x 288 x 106

= 576 x 106 lb. inch.

Structural member qs of planar frame B shown in Fig

6.3.3 represents a floor system supported on columns on1y"

The direct bending stiffness coefficient can be calculated
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using the concept of the re.€erence beam as explained in

section 6 " 3. 1. rhe di¡tensions of the ref erence beam f,or

mernber qs in Fig 6 . 3.3 will be:

width of refe.rence beam, m = 50 feet

span of refe.rence beam , L = 15 feet

depth of the reference beam, fl = 6 inches

Therefore ,

the direct bending stiffness of the reference beam is
4x E xm x ¿3 4'x4 x lo6 x 50 x :*2* 63ffi=w
= 96.0 x 107 ]b. inch.

Next,

column size 1 ^
-Æ=;p=;.-ú;.span l.engEfr J-5

From the graph in Fig 6.3.5, the value of the ratio of

the direcÈ stiffness of the floor plate to that of the

reference beam is 1.0

Therefore,

.the direct bending stiffness at s ín Fig 6.3.3 is

96"0 x 107 x 1.0 = 96.0 x 107 b. inch.

Since two floor members meet at joint q, the direct

bending stiffness at q will be twice that at s"

Therefore,

the direct stiffness at q is = L92.0 x IO7 lb, inch.

The direct stiffness coefficient at the shear wa1l,

for member oq in frame B, can be calculated using

nultiplying factors. Fig 6.3"7 shows the portion of the
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original fl-oor plan extending one panel in each direction
from the shear wall. The various floor panels are next
classified according to their contributions to the d.irect
bending stiffness at the shear wall. panels ] and 2

will be torsional panels, panels 3 and. 5 will beÍ corner

panels and panel 4 will be a bending panel. rn additlon,
joints gk and f.j are bending joints, the joint between a

corner panel and a bending panel, while joints gh and ef
will be torsion joints, the joint between a corner panel

and a torsional panel.

Next, the value of the shear waIl size to total span

ratio tñËl and the shear watl d.imension in the x x

direction to shear walI dimension in the y - y direction
ratio tffl are calculated. The values of the multiplying
factors corresponding to these ratios are obtained from

tables 4.5 (a) t . .4.5 (e) . For the f loor system shown in
Fig 6 "3.7 sH1

-=-TS3
SXr$! = o.6

from tables

0.134

0.2t6

and the values of the multiplying factors
4.5(a) "".4.5(e) are found to be:

F- = 1.457 n'-T ' E TC -
F = 2.308 r,-B V IBC -
Ea = 0.445-c

Now the values of I€8, the bending stiffness of a beam

whose width, depth and span are equal to the width, thick-
ness and span, respectively, of the bending panel, KEc, the



bending stiffness of

equal to these of the

ness of a rectangular

equal to those of the

described in section

For the floor system

span of bending

span of corner

t3r

a beam whose width, depth and span are

corner paneJ- and KET, torsional stiff-
bar wh-ose width, depth and span are

torsional panel are calculated as

2.5 
"

considered,

pane1, LB= 180 inches

panel, LC= 180 inches

of

of

elasticity,E-4x
Risiditir, " =:Tl+;l

= 1.54 x

4x4x!06 x J(25x12) (6)

T
4xto7 ta., ft..
4x4x10ox# er*rr) (u)r

106 PSi

- 4 x .l.C6- :-gç53¡
to6 PSï

J

= 48xL07 lb. inch.

3 = 48 x to7 lb. inch.

inches.

6 inches.

0.333

5.4 x to7 lb" ft.

KEC

Therefore,

KET =
0 . 333x180* (O ) 

3*1. 54xI0

span of torsion pane1, LT= 300 inches

l"lodu1us

Modulus

Thus

xnn =EtB

-4EILc

= 4xLQ7 lb. ft.
ar bt'G
\-T

"T

where,

b= width of torsional panel = 180

l= thickness of torsional panel =

tr=å (1-0.63å) =å (1-o.osx1ftt=

300
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ïtr,¡"î.* ri;r contributions of the various panels and joints
x,i ",:.Ë íl.oor system to the total direct stiffness are

r i î +:r"ed as exPlained in section 2"5"

i I ; "ï:"* contribution of one bending panel is

^u ] ,:r,,T", - Lo7

= g.232 x Io7 ¡-b. ft.
(riiîTr* contribution of one corner panel is

KC=FaxKEC

= 0.445 x 4xLO7

= L.7B x l:O7 1b" ft.
t¿iliîhe contribution of one torsional panel is

Kf=FrxKET
= I.457 x 5.4 x j:O7

= 7.gs x 107 ta. ft.
(i'¡l Tht: contribution of a bqnding joÍnt is

KBc-F""xr'"xt"xE

gl7*: IÊ ¡
å* * width of the be nding panel = 300 inches
Fu æ floor thickness = 6 inches

t-¿'¡esefcre,

8.,..-Q.21G x IB0 x 63 x 44IOOO.0¿:{

.¡ l.o3 x 106 lb. ft.
t"tþ ?Y:* contribution o{ a torsion joint is¡rr *:-lcxLrxt'xE

-

**ål13{_¡f 300 x 63 x 44L000.0
190 .0& å.?6 x 106 lb. ft.
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Finally the contributions of the various panels and joints,
in the floor system are summed to obtain the total_ stiff-
ness " since the floor system consists of two torsional_
panels" two corner panelsrcne bending panel, two torsion
joints and two bending joints,

The total direct bending stiffness at the shear waI1

is KSS=2 xKr*2 xK"rKg*2*\"* 2*KBC

=zx 7.g5x ro7 + 2xL.7g x :ro7 +9.232xL07
+zxI.76 x106+ zx 1.o3x106

= 2g.os x Io7 lb. fr.
since tables 4.5(a) , 4.5(b)...4.5(e) for the multiplying

factors are developed for a 2 tæL square corumn, whereas

the floor system consid.ered had I foot square columns,

the value of K* must be corrected for the effect of column

size. The correction can be determined. from table 10. Tal¡le
10 shows that the value of Kss reduces from 3L4zl to
28915 as the column size changes from 2 feet square to
I foot square.

Thus the value of Kss shoutd be reduced in tJ:is case,

by )x.I0O=Bt

Therefore

for the floor system considered, the corrected value
of K* will be

= 29..05 x 107 x O.g2

= 26.7 x 107 lb. f t.
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Carry-Ovêr Bending Stiffnêss Coêffiiients

Since the frame in Fig 6.3.3 consists of the shear

waII, â 50 ft," wide section of the floor slab and two column

lines para11e1 to the plane of the frame, the carry-over

bending stiffness coefficients for structural members pq

or rs in Fig 6.3.3 are each twice the value for a single

column.

Since ttre columns are prismatic, the carry-over

stiffness ooefficient for one column is
_ 2 x E x I.

storey height

-2x4x]106x172896

= 144.0 x 106 lb. inch.

Therefore,

the carry-over bending stiffness coefficient for

member pq or rs is 288 x 106 i-b. inch.

Member qs in Fig 6.3.3 is simiLar to member bd

in Fig 6.3.2 and iepresents a floor system supported on

columns onIy. Therefore, the value of carry-over stiffness

for such a member can be obtained as explained in section

6.3.1.

For this floor system
column size _ += = Q.0666total span 15

Thus from Fig 6.3.6, the value of the carry over factor

is 0"32, and the value of direct bending stiffness for

member qs from section 6.3.2 is 96.0 x LO7 lb" inch.
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Therefore,

the carry over bending stiffness for member qs is
equal to the direct stiffness x carry over factor

= 96.0 x 106 x 0.32

= 30.8 x to6 t¡. inch

The member oq of planar frame B, shown in Fig 6.3.3
represents a floor system shown in Fig 6.3"7" A general

procedure for calculating carry-over stiffness coefficient
for such members in situations when one or. ,rnore f loor panels

are missirg, can not be established with the help of the

available information. However, the member is similar to
member qs except that it's one end is supported on shear

wa1l rather than two columns. Therefore, the carry-over

stiffness for oq is approximately equal to that of member

qs.



CHÄPTER VÏÏ

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

7 "I Conclusions

In this investigation, the bending stiffness charact-

eristics of flat plate floor systems in laLerally loaded shear

wall-frame structures have been studied and the following con-

clusions reached.

1. The direct bending stiffness coeffi cients when the

floor is loaded through the shear wall are highly

sensitive to shear walI shape and sj-ze and are rel-

atively insensitive to the column size.

2. The direct bending stiffness coefficients when the

floor is loaded through exterior columns are indep-

endent of the shear waII shaPe

3. The carry-over bending stiffness coefficients are

more sensitive to the shear wa1l shape and size

than the column size"

4. The experimental models used in determining some of

the stiffness coefficients are 10 to 20 percent more

flexible than the corresponding analytical models-

5" The direct bending stiffness coefficients for a

variety of flat plate floor plans can be easily

calculated with reasonable accuracy using the

multiplying factors defined and evâluated in this

studY "

" 136
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7"

8.

I37

For a flat plate structure with a square shear

wall, the major contributions to total direct bend-

ing stiffness at the shear wall comes from the

bending panels (as defined in this study), while

the contribution of the torsional panel is minimal.

The effect of continuity between the different

fl-oor panels has a very significant effect on the

stiffness of the floor sYstem.

The bending stiffness coefficients for the basic

flat plate floor plan with square corner panels,

but a wide range of dimensions, can be calculated

with reasonable accuracy with the help of graphs

given in the fourth chapter of this study.
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7"2 RECOM},IENDATIONS FOR FURTHER STUDY

The primary purpose of this study has been to devel-

oPe. shear wall stiffness coeffícients for use in ana-

lyzing shear waII-frame structures. The ulÈimate

objective of further work in this area should be to

permit the calculaÈion of these coefficients for

structures with arbitrary floor plans and shear waIl

shapes and sizes and for flat slab and waffle slab as

well as flat plate floors to be usefully applied, the

coefficients should then be incorporated into a struct-

ural analysis computer program.

Non-dimensional factors for use in determining direct

bendJ-ng stiffness coefficients at the shear walls hrere

evaluated in this study. A further study should be

carried out to establish similar multiplying factors

for carry-over stiffness coefficients and direct bend-

ing stiffness coefficients at exterior columns"

Tn this study, structures with plates extending a

maximum of three panels in each direction \,vere con-

sidered. Further studies should be carried out to

investigate the effect of continuity when addit.ional

panels are added.

4" The behaviour of Èhe flat plate floor systems with

shear wa1ls in the inelastic region is stiIl an inter-

esting area of research"

5" Possible failures of ùhe floor slab due to punching

1"

2"

3"
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shear and diagonai tension at the junction of the

shear wall and the floor slab and the possible buck-

ling fail-ure of the slab requires considerabty more

study.

6" The dynamic behaviour of floor systems with shear

wal1s should be studied.



1.

2.

3.

Sozen, Mete A., and Siess, Chester p., ,,ïnvestigation ofMulti-paner Reinforced concretå Floor sráus: DesignMethods Their Evorution and comparison,,, Journal ofthe American Concrete Institute, Þro". OO, ffit

Frederick, G. R. and pollauf , . F.p. , "Experimental Determi-n-ation of the Transmission 
"i c"iã*n Moments to Fr_atplate F1oors", University of rãi.a", (urrpù¡ri=fre¿Report, May, tgffi

Blakey, Frank 4., "Australian Experiments with Frat prates,,,Journar of the American concrete rnstitute, proc . 60,No. 4, pp.515-523.

Dowell, Henry D., and Hamil,
Supporting Col-umns and
ate Structural Frames",
crete ftsti_tute., proc.
F3E.

American Concrete InstituÈe,
Reinforced Concrete",

REFERENCES

F., and Russell , J.J.,
Jour:na1 of the American

No. 8, augusÇ

Harold 8., "Flat Slabs andWalls Designed as Indetermin_
Journal_ of the American Con_: aTy,

"Building Code Requirements forACf Standard 3l_B-q3, June, 1963.

^

5.

6.

7.

8.

9.

Di stasio, Joseph and van Buren, M.p., ,,Transfer of BendingMoment Between Flat plate Fl_oor and Col_umn,,, Journal ofthe American Concrete Institute, proc. 57, moff,

Tsuboi and Kawaguchi, "on Earthquake Resistant Design of Flatslabs and concrete sherr s't=,r"trrres", The second l¡forldConference on Earrhquake ungineãri.,g; T;ky;;-iöao.
Khan Fazlur, R., and sbarounisr_John A., ,,rnteraction of shearwal's and Fram€s", Journcl of the structurar Division,ASCE proceedingS, V

Brotchie, Johnpart I. ,Proc.61,
"Flat Plate StructurêS",
Concrete fnstitute,

64.
Part rr, availabre from American concrete rnstitute, Detroit,Michigan 

"

140



T4L

10" Carpenter J. E., "Flexural- Characteristics of Flat Plate
Floors in Buildings Subjected to Lateral Loads ",
Ph. D. Thesis, Purdue University, June, 1965.

11. Bernard, P. R., and Schweighofer, J., "Interaction of Shear
Walls Connected So1ely to S1abs", The International
Symposium on Tall- Buildings, University of Southampton,
London, Apri1, 1966.

1-2. Nantasarn, R., and Parnichkul, 4., "Effective Stiffness and
Carry-Over Factors for Flat Plates", I4aster of Science
Thesis, University of }4anitoba, April, 1969.

13. Gouwens, Albert J., "Latera1 Load Analysis of I'fultistory
Frames with Shear lfalls", Portland Cement Association,
July,1968.

14. Wiebe, J. D., "Preparation of Influence Surfaces for a Simply
Supported Squãre Plate by the Moirá Method," M. Sc. Thesis,
University of Manitoba, L967.

15. Ligtenberg, F. K., "The tuioirâ l'lethod, a New Experimental Method
for the Determination of Moments in Small Sl-ab Models, "
Proc. Soc. Exp. Stress Analysis, XII (2), 1954.

16. Timoshenko, S., and Goodier, J. N., "Theory of Elasticity",
(second edition) New York, McGraw-Hill Book Company, 1951.



APPSTDICES



IDEl{ÎIFICATTON

PROGRAIôæD

{]I,GANIZATIOI{ GUIDE

APPENDX( A

COMPIJTER PROGRA}f USER'S GUIDE

GEIÍDEK 3 - Finíte ElemenË Analysis
Sriffened plaEes

Ian G. Buckle, July 1969

of

OF

1.0 Program Purpose anC SËructure Ideeliza,cÍon

2,0 Program Input Data

3.0 Explanatory NoËes

3.1 NQUAD Significance

3.2 Coordinate Systems and Sign Convention

3.3 Nodal Point CocrdinaÈe Generation

3.4 Ele¡c.ent Nodal point Array Generation

3.5 Slab Elastic Axes and properties

4.0 Output Description

5.0 Program Restrictícns and Capacity Changes

Page

143

L44

rs?

L52

153

154

155

156

156

l-57

L42



143

]..0 PROGRAM PURPOSE AND STRUCTTIRE IDEALTZATTON

The priroary purpose of this prograu is the anarysis of highwaygfrder bridge decks cf arbitrary geoneEry. The program may, however,be used for the anarysis of generãl slab systems under latãrar load,fncluding slabs vhich are stiffened by discrete ribs.
The deck slab is idealfzed b¡r a nesh of plate bending finÍËeeLements' The stiffness of each quadrilaterai el.*ent is cornputed andassembled into the structure stiffness matrix. Variation in deck slabproperties from elenent to element is perniEted. The program makes useof the Felippa Q-19 plate bending elemànt r.rirh orthorropic elasric

ProperEies.

Ttre girders aad diaohragms áre ideal ízeð by bean finiau uL"n"*a"Joining the noúai poÍnts of the deck sla-o elements. Again, each elementsËiffness is incirvÍ<iual1y computed and assem'oieci Ínto the structurestiffness matrix. The beaurs are assurned to be in lhe pl.ate midsurfacefor the purDoses of idealizatÍon and ana11,sis. äoçrever, eccenEricariv
. connect.ed ribs can be consiciered by assigning appropriate effectivestfffnesses. These effective stiffnessuÀ 

""r, be specified as Ínputdata or they can be computed autonatically r¿ithin Ëhe program. Ribs v,,h1chare too closeI.'' spaceri to be ,represented as indivicìual beams can be'smeared" by assigning appropriate anisotropic properÈies to the prateelements

I.Irítten ín FORTRAN IV, Ëhe program presently usesfeature to econo'iize computer storage requireniìents. rfstitution of "subroutinel' for "overiay" staternents wirlprogram to the standard subrouÈÍne form.

Ëhe overlay
necessary, sub-
convert the

Other fmportant features of the.program are:

(a) For regular meshes, automatic
poínÈ coordinaEes, nodal point
data. Data preparation efforÈ
options are used.

generation Ís available for nodal
arrays, supDort ccnditions, and load
may he considerably reduced if these

(b) Multiple load cases can be consídered without redefiníng thestructure data for each case. Five load options are ".'äilrbr.,which Ínclude single roads, uniformry distributed roads, truckloading, and any combination of these

(c) Internal hinge lines can be specified.

(d) the program can be used directly for the analysis of arbitraryanisoÈropic s1abs, arbiÈrary beam gridworks, and arbitrary combina_tfons of slabs and bea-..

\

\
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2"0 PROGRA}Í IMIJ"I DATA

Input to the program is by punched cards.
has been used throughouÈ, and is identified for
I specifications

þ

Standard FORTRÁN format
each card by A, E, F or

Baslcally the data deck will consist of ooeratÍon control cards,structure definiÈion cards, and load case cards. The organízatÍon ofdata on each Èype of card is described in the following f,aragraphs.

A. start card (AB) - one card at the beginning o, "r"n problen.Cols 1-5 punch the r¡ord 'STARTT

B. litle card (1048) - one card for each new probrem.
cols 1-80 any heading to be printed at beginning of output,all keypunch symbols are acceptable.

C. Sasic Control Card (1015) - One card for each problern.
Cols 1-5 NPEL number of plate elements

6-10 IIBEL nunber of beam elements
, 11-15 NJ ur¡caber of nodal points

L6-20 NJBC nr¡mber of supoorted nodal

2L-25 NPT nr¡mber of different plate

points

element types

26-30 NBT number of different. beam element types

31-35 ISO.if seÈ to O, Èhe elasti.c properries of the
plate elemenÈs will be defíned
directly by the thickness,eJ-astic
moduli and poisson's ratio. of the
plate material

if set to 1, these properties will be detined by

;ff" :Tï:: "i 
" 
i':îï I. l.iä.., 

. 
3 i 

= 

; î : :: .

36-40 NHNP nr:unber of nodal point pairs which are connected
by hinges (see Card L ).

41'-45 NQUAD if set to o, plates specified to have identical
elastic properties (see Card D ) are
also assumed to have identical shape.

ff set to 1, all plates are assumed to be of
different shape. See l{ore 3.1 for .

discussion of significance

Þ
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Cols 45-50 MPRINT if set to 0, only Ëhe average value of the
plate element moments at each

. nodal poinÈ are printed.

ff set to 1, not only the average moments
but also Ehe moments from each
contributing element at each
nodal point are printed.

1 A value of O is recournended.

Plate Properties Card - Variation in plare properties from
elemenÈ to elemenÈ Ís defined by assignrnent of plate property
type nurnbers to elements of differenÈ properties. For uniform
properties (no variation) the number of different plate
elernent types GPT, Card C) is I, for non-uniform properEies
NPT will be greater than l, and it l¡ilI be necessary t.o input
one plate property card for each plate type.

ELther: OrËhotropic plate properries - (IS0 = 0, Card C)
(F10.5, 2E10.4, 3F10.5) - one card for each plate rype.

Cols 1-10 T' slab thickness

El elastic modulus in principal direction I

Cols 1-10 E

11-20

21-30

31-40

elastic rnodulus in principal direetion 2

PoÍssonfs raÈio in príncipal direction I

Poissonrs ratio in principal direction 2

torsion parameter, if not specified it 1s
set to 1.0, the correct value for a solid
slab.

elastic modulus of slab material

Poissonrs ratio of slab material

slab thickness

equivalent flexural inerLia per unit
length in principal directÍon I

11-20

21-30

31-40

41-50

51-60

tJ2

AI.PHAT

E2

U1

Or: Equivalent plaÈe properries - (tSO = 1, Card C)
(810.4, 6F10.5) one card for each plate type.

U

T

I1



l46

41-50 12 equivalent flexural inertia per uniE
length in principal direcÈion 2

51-60 Jl equivalenÈ torsional inertla per unit
length in principal direcrion I

6L-70 J2 equivalent torsional LnerËia per uniÈ
length in principal direction 2

Note thåt in cases where several property cards are necessary,
only a few parameters may vary. rn this event Èhose that are
consÈanE nay be left blank on the second and succeeding cards.
The progran will then seE these parameters equal Èo thãse
specified on the first property card.

E. Plate Properties Distribution Cards (4OtZ¡ - as mâny cards asneeded. OniÈ Íf there is onry one plate rype (Npr:1).

Cols 1-80 plate elemenE Èype nurrbers,
40 type nunbers per card in nt¡merical order
of element number.

F. Beam Properties cards (8E10.4) - one card for each beam type.

Either - for beams eccentric to plate midsutface

Cols 1-10 A cross secÈional area 
)

11-20 I flerural momenË of inertia with respect to
the bearcts neutral axis

21-30 J torsional moment of in-erÈia

31-40 Ð(EN eccentricity of beam neutral axis fron
plate midsurface

41-50 D distance from beam neutral axis to lower
fiber

. '51-60 l{ effective r¡Ídth of slab rhaÈ can be
assumed Eo acE as an upper flange to the
beæ.

61-70 BE elasÈic modulus of beam ¡oaterial

71-80 BNU Poissonts ratio of beam material

Or - for þs¡mc syrroetric abouÈ plate nidsurface

Cols 1-10 A cross sectÍonal area

)

11-20 I flexural rooment of fnertla
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Cols 21-30 J torsional xooment of fnertla

31-40 Yl distance from neutral axis Eo lower fiber

41-50 12 distance from neutral axis to upper ffber

51-60 blank

61-70 , BE elastic modulus of beam material

71-80 BNU Poissonrs ratio of beam rnaterial

rf there is a varÍation in the beam properties, several property
cards nay be necessary. rn this event, a beam erement Èype number
fs assigned to each element to descrLbe the distribution of these
proPerties. NoEe Èhat these property cards are inpuE in numerical
order of the type nurnber; and furÈher note thaÈ if either BE
or BNU are omitted from the second and succeeding cards, the
value(s) from the fÍrsE card will be assumed by the program.

G. Beam Properties Dj'stribution cards (40t2¡ - as many cards as
needed. Onlt Íf there is only one beam type (l¡St = 1).

Cols 1-80 beam elemenÈ Èype numbers,
40 type nuobers per card, in numerical order
of elemenË. nu¡nber.

H.' Nodal Point Coordinate Cards (I5, 2F10.5, 2I5,2F10.5) - one
card for each nodal point unless the generation opEÍons are used.

Cols 1-5 nodal point number

6-15 x-coordinaËe of polnt

. L6-25 y-coordinate of point

.. 26-55 used for layered generatfon, othe:*rise leave
blank

These cards are input in numerical sequence. If any card
Ís oniÈted, straight line equal increment generation of coordin-
ates takes placer or¡ if cols 26-55 have been used, layered
generaËions occur'. Refer to Note 3.2 fot explanation of the
coordinate sysÈem Èo be used and to Note 3"3 for details of
generaËíon optfons. . :



I. Plare Nodal Poinr Array Cards (5I5, 2F5.0r ZI5) - one card for
each elenent unless the generation opEions are used.
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element number

nodal poinÈ I

nodal point J

nodal poinË K

nodal point L

angle ó in degrees

angle G in degrees

used for layered generation, otherwise leave
blank.

element number

ncial point I

nodal poinÈ J

used for line generaEion, otherwise leave blank,
refer Noce 3.4.2 Eor details.

Cols 1-5

6-10

11-15

L6-20

2L-25

26-30

31-35

36-45

These cards are also inpuE in numerical sequence. If a
card or group of cards is oniLted, iayer generation takes place
(refer to NoEe 3.4.1). The four aodal ooint numbers I, J, K
and L musE be input in counter-clockwise sequence. The angle ó
1s the angle betr¿een the global x-axis and rhe direction of the
principal orthotropic axis (l-axis) of the plate rnaterial.
The angle d is the angle between the principal axes of the
plate material. rf cols 31-35 are left blank, angle q,is assumed
Ëo be 90 degrees (refer to Fig. 3).

J. Beam Nodal PoínÈ Array cards (4r5) - one cargl for each elemenE
unless the generation opÈion is used.

)

K.

Cols 1-5

6-10

11-15

16-20

Cols l-5

6

nodal point

set to 1 if
restrained;

set to 1 Lf

SupporÈ Conditfon Cards (I5,
supported nodal point unless

311, 22X, 2I5) - one card for each
generation option is used.

number

verEical deflection ís Eo be
othen¡ise leave blank

rotaËion about x-axis (fig. 1)

)
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fs to be restrained, othen¡ise leave blank

I set to 1 if rotation about y-axis (fÍg.l) is
to be restrained, otherwise leave blank

Cols 9-30 blank

31-40 ffi:ii:"ti::":ïi:ii'on as noted be10w'

31-35 fncrement between LI.lo successive nodal point
numbers which have same support condition as
that Just described

36-40 number of the last nodal point ín this sequence
Èo have this support condition

L" Itlnge Llne ¡¿¡¿ Cards

First Card (EtO.3)

cols 1-10 spring consËanË approximating stiffness of
hinge linkage. For an assumed rigid linkage

a
enter 10"k/in. A larger value may cause
numerical ins tabilitY.

Each hinge 1s defined by tr¿o nodal poinËs located on either side
of the hinge. These pairs of nodal points are identified on Ehe

follorring set of cards.

Remaíning Cards (1615) - as nany cards as needed

Cols 1:5 nurnber of first nodal point in first hinge paír

6-10 number of second nodal point in first hinge pair

11-15 number of first nodal point in second hinge pair

and so on for as meny hinges as specified.

M. Load Card (AB) - one card at beginning of each new toà¿ ""r.
Cols L-4 punch the word "LOAD"

9-SO any tÍtle describing this loadcase - all key-
punch symbols are acceptable-

.N. Basic Load Data card (5I5) - one card for each load case.

' Cols 1-5 - number of single loads applied at nodal points
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Cols 6-10 number of uniforml.' l-r¡adcC ar,:as for r'rhich the
load is to be distributed to Ehe nodal points
in proportion to the tributary erea of each
poinÈ.

11-15 number of single loads applied at arbitrary '

1 
poÍnts (xry)

L6-20 nurnber of unifonaly loarled areas for which
the load is to be distributed to Ehe nodal
poinÈs by consisËent load theory

2L-25 nr¡mber of trucks

o. sfngle, Nodal Poinr Load cards(rS, 3E10.3) - one card for each
loaded nodal point

Cols 1-5 nodal point number

6-15 applied vertical load

L6-25 applied momenÈ about global x-axis

26-35 applied moment abour global y-axis

P. uniform TribuEary Area Load cards (r5, F10.5, 3r5) - one card
for each uniforrnly loaded area

Cols 1-5 elemenE nu¡nber

6-15 intensity of uniforra load expressed in uniËs
of load per uniE area.

L6-20 N2 \
I

2L-25 MOD | ,r""a for generarion as descrÍbed
| --- o----'

I26-30 NLIU / below, otherq¡ise leave blank.

N2 is the number of Èhe last ele¡nent, in the direction of
element numbering, Èo have the same load intensity.

MOD is the element number dÍfference across elemenÈ layers
r¡ithin the sane area.

I)

)

NLIM is the lasÈ element nr¡nber in the area.
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a" Single, Arbitrary Load Cards (3E10.3) - One card for each load.

Cols 1-10 x - coordinate of load

L1-20 y - coordinare of load

21-30 applied verrical load

R. Uniform, Consistent Load (I5, FlO.5, 3I5)

Cols 1-5 element nu¡uber

6-1s 
:î'i::å';":t":Ïlt::m 

load expressed in units

L6-20 N2 used for generation as described
for Card P

2L-25 MOD

26-30 NLTM

S. Truck Load Cards - one set for each truck

Vehfcle Identity (48,2X, F10.5)

'cols 1-8 Punch identity of vehicle, Ewo options are
presently av,ailable:
If HS20 is used: program assuìDes that the
standard AASHO HS20 vehicle, has been
requested, and does not require the dimensions
or wheel loads t.o be input. These are avaÍlable
to the program in units of inches and kips.
If SPCIÄL is used, program requÍres that rhe
vehicle dimensiorrs and rvheel loads be specified
as noted below.

I

11-20 rf Hs20 option has been requested, Èhe v¡heer
base length for the rear axle must be punched
fn these colurnns, otherwise leave blank.

Vehicle Properties

These cards are omitted if HS20 vehicle has been requested
on the previous card.

(a) one card for each truck (I5)

Cols 1-5 nuuber of axles
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(b) one card for

Cols 1-L0

11-15

(c) one card for
I

Cols 1-10

11-20

Cols 1-10

11-20

21-30

T. Next OperaEion

Cols 1-6

each axle (E10.3, 15)

v¡heel base lengÈh (for first axle this
length is zero)

nu¡nber of pairs of wheels on axle

each wheel pair on each axle (2ElO.3)

axle lengÈh between wheels in eacú pair

v¡heel load (both wheels in pair are assumed
to have equal load)

Vehicle coordinares (3F10.5)

x - coordinaÈe of cent.er of front axle

y - coordinaÈe of center of fronÈ axle

angle of attack of vehicle wÍth respect Eo
posiÈive direction of x-axis

Card (eA¡ - one card

Sel-ect next operation and punch appropriate
word. Possible operations are:

START: cormen". " ï"* analysis r¡ith a nev¡

. data deck.

LOAD: rerun the åmö'problen fcr a new
load case

STOP: stop program execution

3.0 EXPLANATORY NOTES

3.1 NQUAD Significance

The variable ìIQUAD has been defined on card, c of the rnpur DataDeck" If seÈ Èo O, plate eleu,ents which have consecuEive elernent nunbers andalso have identical PlaËe Ëype numbers are assuned ro be of identical shape.The program does not re-co:npute the ele¡sent st,iffness, and hence coaputertime Ís saved. rf NQUAD is seË to 1, each element is assumed to bedifferent and a new stiffness rnat.rix is conputed for each element.

In casäs v¡here Èhere are fer¿ geornetrically differenÈ elenents it wlllbe advantageous Èo assign separate plate prop"ity nuubers Eo plaÈes ofLdentical shape, even if they acEually rrave tne same proper¡ies, sinceby setting ìiQUAD to 0, the sEructure sÈiffness formaÈion tine is reduced.

)

\
)
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3"2 Coordinate Svsteros and Sign Convention

The slab is referenced by a global rfghr-handed carresian (x-y-")
systen of axes r¿ith the x-y olane lying in the midsurface of the s1ab.
Positive sign convenËions for displacements and rotations of this nid,
surface are indicated in Fig. 1.

Applied concentrated loads have the same
corresponding displ acements .

sÍgn convention as Èhe

zn lI (positíve downwards)

fag 1. Glohal CoordinaËe Sysrem and
Displacement Sign ConventÍon

Sf.gn conventions for slab nonents are shor^¡n in Fig. 2. PosiÈive bending
Eoment,s produce conpression in lower fibers.
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ìEnglneering conventlon has been used for the signs of the beam monenËs
and stresses. ThaÈ is, a positive benciing moment causes a positive
(tenstle) sEress in Èhe lower fibers of the beam.

3.3 Nodal Point Coordinate Generation

Two types of coordinate generation are available:

3.3.1 Straight line generaÈion

If the (l-f) nodal cards for points N*1, N+2 N*L-l are
o¡oitted and cols 26-55 of the N-th Card are left blank, the missing
coordinates r+il1 be generaEed as Ehose of (L-1) equally spaced points
on a line joining N and (N+L). That is

\+k=\*t-t+d*

Y¡+k=Y¡+¡-1+dY

r¡here dx = (x**r-xrr)/r. dy = (r**r-f*)/L for k = LrZ... L-l

3.3.2 Layer generation

This can be used afÈer two "linest' of sequentlål nodal points have
been previously defined, to construcE the complete mesh or part of
it by extrapolaE,ion. If on the card for point l{ we specify

Col 26-30 MOD module rn>O

31-35 NLIII lintt. of generation (>N) -

36-45 FACX amplification factor f* (set to 1 if blank)

'46-55 FACY ampliflcation factor f,

the x-y coordinates of-points N+1, N+2 NLIII will be generated
by the formulas

*t = *t -r o f* (*t-r - *t-zr)

Yk = Yk_, * t" (tn-¡ - Y¡-2r)

for k = N*1, ...." NLIM. If NLIM = NJ no more nodal cards are
needed. If NLIM<NJ, the card ^for point (NLIlf+l) must foIlow.

)



3.4 ålement Nodal Point Array Generation

3.4. L Plate Elements

Two types of plate elemenÈs generaÈion are also available

3"4"1"1 Layer generation

rf element cards N+1, N+2 N+L-r are left out and cols 36-45
the card for element N are teft blank, the missing (L-l) elements
r¡ill be generated by increasíng the nodal numbers l, J, K, L of
the preceding elernenr by 1, ending with CN+L-l). The plare rype
number and angles Ô anci ct are set equal to those read for elenent

3.4.L.2 Modular generation

Thls option can be used wt¡en two "1ayers" of sequentially nunbered
elements have been previously defined. rf on the card for element
N we specify

Cols 36-40 MOD module n>O

4l-45 NLIM 1imít of generation (>N)

Èhe I-J-K-L nodal numbers of elements N*1, N+2
generated by the fornula

If the beam eleuents in the structure
defined lines, generation is possible
provided the nodal poÍnt difference is
the line-

15s

. NLII1 v¡i1l be

are arranged in clearly
for a complete line of elements
the same for each element in

of

N.

t = rk-, * (tt-r* - rt-zr) |

(where I¡ neans nodal nurnber I for Ëhe k-th element) and sÍrcilarly
for J-K-L, for k = N*l NLIM. The plate type number and the
angles Q and c are set equal to their values f or ele¡¡lent (k-m).

3.4.2 Beam Elements

In this event, for Card J:

Col 16-2A last
nodal

Note that Èhe beam elenents
line to be generated.

ele¡nent number in
point difference

rnust be numbered

line to have sarne
as first elenent

sequenLially along the
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3.5 Slab Elastic Axes and ProperËies

The principal elastic axes are assumed to be 1, 2, z, vhere the
l-axis forms an angle Ô with rhe grobal x-axis, and the 2-axis forms
an angle o e¡ith the l-axis, as shown in Fig. 3.

Fig. 3.

v

Princípal ElastÍc Axes for Orthotropic ÈlaÈerial

The plate propertíes, input on Cards D and E, xnust be relative to these
axes ' If angle 0 (card t ) is zero and ansle cr is 90? the principal and globalaxes coincide.

Note that if the slab is isotropiJ, E1=E2=E, U1=U2=U and the angles ôand a have no significance. (Leave blank on Cará l).

Estinatíon of the eguivalent flexural and torsiona.l inerti¿s (I1, TZ,JL' J2 - Card D) for a beam sLi.ffenea slab is rnade by spreading the bean¡properties over an assumed effeccive width cf slab. The ptogrår approxi-
maLes the reduced torsional stiffness in the equivalent slab by deiining
a torsion Parameter (ALFTIAT). Nevertheless, unreliable resul.ts uay occurr
Farticularly if the spacing betwo-en bean centerlines is large. In this
evenË,, the discreEe beam represent¿,tion should be used.

4.0 O1ITPUT DESCRTPTION

The followÍng is output by the program:

1. A complete printout of all input oata, including all quantities
calculated by the varicus generation routines.

2. A listing of the applied loading fcr every load case.

3. The dísplacemenÈs (vertical deflection, and rotations abouÈ the
Èwo global axes) for a1l nodal points. rncluded here are Ehe
reaction forces at each supported node.

4. The mornents M--, M and M (Fig. 2) at th.e cent,er of each platex- y xy
eletrent, are listed.

)

)
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5. The momenl" **, ìL and M*, (fig. 2) ar each nodal point are
llsted (on control of MPRrNl, card c of the rnput Data Deck).

' 6. The shear force, torsion noment and bending nor.ents actÍ.ng on
each bearo element are listed. Further, the stresses at tr^ro
fÍbers (distance Yl and Y2 froro the neutral axÍs of the combined
section, Card F of the Input DaEa Deck) are cornputed and listed.

5.0 PROGRAM F.ESTRICTIOì{S AND CAPACITY CHÐIIGES

' .Apart frorc restrictions inpcsed by Èhe. structure
the nethod of analysis, the progran is also restricted
problem iE can analyze

Dimensioned arrays in labelred colftloN brocks have
following restrictions on the fínite element mesh:

ídeaLization and
by Èhe size of

presently set the

Maxiuum number of plate elements

Maximum number of bea¡n elements

Maximum number of nodal points

(¡¡"EL) Ís 551

(NBEL) is 649

(NJ) is 1225

Maxfmum number of supported nodal poin-ts (NJBC) fs ZOO

Maximu¡¡ nu¡.ber of plare eleuent types (\?T) is ZO

Maxlmum number of beam eleæent types (Xnf¡ Ís 30

Haxlmun¡ nodal point dif ference fn one. ele¡ient (MÐipD) is 18

Maximun number of hinges tf.flnfl is 50

To change these linits the folLowir,g cards shourci be repunche<i:

coMMoIr hßSH/ xoRD (NJ), yoRD (NJ), CoNID (3*NJ) ì,DBC (3*NJBC) ,
NPH (NI{ì{P,2)

co¡ßfolr lpL^TEl ìIp (MEL, 4), NpTl? (NPEL), PHGL (NPEL, 2)
PPROP (tiPT, 7), ZPB (19, 19)

c¡MMoN /BEAM/ NB (NBEL, 2), NBTyp (ììBEL), ppRop (uBT, g), zB (6, 6)

COMMON /¡a¡¿¡/ B (2*Bw), A (2*Er^r, BW)

where 3W = one half of the bandwidth of the structure stiffness
maÈri.x=3 (lrAxPD+1)
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In addltion the following statements should be changed:

ln subroutine SETUP: Ì'ÍAXPD = HAXPD

fn overlay STIEF: lü = MATJD + 1

in overlay LDSL: DO 1OOï = 1, NJ

f.n subrourÍne BAIISOL: . NN = 3* CMAXPD + l)

in overlay STRESS: COì&ÍON /Btu\AB/ STpJSS (2,r, , ¡¡pEL)

)

I

I

,)



APPEIDD( B

B - 1 gasic Principle of the Moirå Method. The l4oi-ré ¡4ethod is an

oçerinental procedure for neasr:ri-:rg the slopes of a deflected plexiglas

plate mcdel. If the slcpes are est¡blished along a set of para1le1 lines,

a slcpe d.iagrmt can be drav'¡n. Ttre slcrpe surve along arry given line can

then be iategrated to cbtain a deflection diagram atc'ng that line.

A rcdel plate with a reflecting surface is clalrped to a loadi-ng

frare in front of a ruled screen, as shcr,¡n in Fig. 81. The r:nloaded nndel

is photographed tJ:rough a snall cpening in tåe screen, and a reflected

image of the ruled dark and light lines on the sceen cbtained. For

oranple, the image of a dark lire at poixt 0 r,rculd be reflected frcrn

poj¡t P on the plate and would æpeil at point S on the film. The

Íþdef is then loaded and rephotogrephed. If point P cn the nodel ro-

tates through an angle 0, the image of a new point R appears at S.

If ¡rcint R on tlre scx.een coincides with a dark line, poht S on tlre

pütoto wilI be dark. Obherwise it w-i1l be scnewhat lighter j¡r color. This

gives interfe::ence patterns on t}re photographic plate ard produces Moi-ret

fringes as shcx¡m in Figs. e2(a), B3(a), e4(a), etc. These fringes re-

present contcn-lrs of constanÈ slcpe, and since the slcrpe along each fringe

is constant, it follq¿s that the drarrge of slope between the contours

corzespcrrding to tr¡Io crcnsecutive fringes nnrst also be ccnstant. Ttris

constanL I'C' is dependent cn the j.:rte::lal of nrling seeen, I'drr ând on the

d.istance between the sseen a¡rd the rcdel pIate, "a" shcnnr in Fig. el.

The er¡aluation of tfie constant "C" is desæibed by J. 1^6i¡"(14¡

and for the M /03 apparatus r:sed in this strdy C = 0.0015.

159
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I

P

-/

Reflective Plate ì.iodet

FrameLoading
Ruled Screen

B-asic Principle of }foriä Method

Fig 81
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B ' 2 Deterrni¡lation of Slcpe Curve frcm Moirê Photographs. If a Moirê

photograph of a mcdel plate is tal<en with the ruIì¡gs of the screen i¡r tlre
y- direction (horizontal-), a cu:r¡e of àw/à.x along a line parallel to the

x- direction (verlical-) rnay be cbtai¡red as follc¡¿s:

A line is draun parallel to thex-axis as shcn¡n in rigs. e2(a),

æ (a) , 84 (a) , etc. , ttris line intersests a nr¡rf,cer of frj:rges. The cen-

tres of the frilges along the U¡re are tfien projected dcn¡nward and plotted.

as shcn¡n i.:r Figs. B2(b), B3(b), B4(b), etc. Values of slcrpe are then

plotted to cbtajJr a surye of slcrpe ó*vs distance along tl-e line. 
/

lhe fringes are nr¡rücered starting frcm ttre zero fringe, whidr re-

presents zero slope (i.e. a zero value for eR in Fig. B1). Trr Figs.

e2(a), B3(a), B4(a), etc. , for exarq>le, tle zero fringe is the one ttrat

extends from the exberior fixed cohnns. Ttre slcpe (j¡r a directi_on ¡:er-

pendicular to the n led lines on the screen) at any pojrrt is thus the

fringe order at tfie pojnt tjrres C.
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Photograph of Moclel ESI
N

Fis. 82 (a)
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Photogrraph of l{oclel ES2

Fiq. 83 (a)
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Photcgraph of l4ode1 ES3

Fiq. s4 (a)
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Photograph of llodel ES5
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Tables For Applied Moments and Resulting Rotations
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LOAD
TYPE

'MODEL

P1

TABI,E C}

ÀPPI,IED MOMENTS AND ROTÀTIONS
.EFFECT 

OF COLUMN SIZE

Mu=120 in.-rJc.

0B-o.oo415 Rad.

À

P2
M"=120 in.-Lb.
0B=0.00405 Rad.

P3

Mo=120 in.
0ë.=0.0056
oBi=6. oos4

Mu=120 in.-Lb.

0B= 0.00382 Rad.

P4

Br

I,f_=120 in. -Lb . M- =M = 15 in. -Lb .
eä,=oc,=0.0054 Rad. 0å.=þic.=0.01147 Rad.
oaf=o.ôoss nad. øB;= ofoozz nad.

M"= 120 in ' -!'b '
0B=0 .00 376 Rad.

-Lb.
Rad.
Rad.

M-= 120 in.-Lb. M-=M^=15 in.-Lb.
€ä.=0c.=0.0053 Rad. 0fì^=bc^=0.0103 Rad.
oBi-o.òosz n.d. aB;=o.Úoze naa.

M,=M^=15 in.-Lb.
0år=b9.,=6.0126 Rad.
0B;=0. Û028 Rad.

M^=120 in.-Lb. M"=1,1^=15 in.-Lb.
0å,=0c,=0.0051 Rad. 94"=bcr=0.0099 Rad.
oBï=o.0os2 nad. oni=s.fJsrt 'Rad-

MO=Ma=IS in.-Lb.

0fr=0C=0.0096 Rad.

I\ =1"1"=15 in.-Lb.

0À=0C=0.0085 Rad.

tN=Ma=15 in.-Lb.

0À=0"=0.0074 Rad.

\=Ma=r5 in'-Lb '

0A=0c=0.0063 Rad.

Ê
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T.ABLE C4

Shear Wall- Size = L/5Tota1 Span

Shear Wall Size in
X-X Direction (Sx)
Shear Wall- Size in

Mod.e1 X-X Direction (SY)
Àpplied Moment
to the Shear Wa1l

Direction
Stiffness

Rotation Coefficient

PSl-1 0.5 120 in. Lb. 0.00643 Rad. 18666.92

PSl-4 0.5 120 in. Lb. 0.0144 Rad. 8308.26

PS1-5 0.5 120 in. Ib. 0.0085 Rad. I4]-l-7.64

PSl-8 0.5 60 in. Lb. 0.0069 Rad. 8633.09

PSl-9 0.5 60 in. Ib. 0.1033 Rad. 580.45

PS2-1 1.0 120 in. Lb. 0.0088 Rad. L3642.56

PS2-4 I.0 120 in. Lb. 0.0168 Rad. 7r'49 .24

PS2-5 1.0 120 in. Lb. 0.0124 Rad. 9623.86

PS2-8 1.0 60 in. I,b. 0.0134 Rad,. 4455.0

PS2-9 1.0 60 in. Lb. 0.0512 Rad. 1171.53

PS3-1 1.5 120 in. ],b. 0.0089 Rad. 13445.37

PS3-4 1.5 I20 in. Lb. 0.0154 Rad. 7757.55

PS3-5 1.5 120 in. Lb. 0.0131 Rad. 9125.47

PS3-8 1-5 60 in. Lb. 0.0199 Rad. 3015.22

PS3-9 1.5 60 in. Lb. 0.0302 Rad. 1980.26

PS4-1 2.0 120 in. I,b. 0.0078 Rad. L5290.7L

PS4-4 2.O 120 in. Lb. 0.0129 Rad. 9314.I0

PS4-5 2.0 120 in. Lb. 0.0119 Rad. 10055.51

PS4- 8 2.0 60 in. Lb. 0.0263 Rad. 2280.62

PS4-9 2.0 60 in. Lb. 0.0198 Rad. 3033.36
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TABLE C5

Shear l{all Size- = .t ln
-TõEãTTPan '- ¿la

Ít

Shear Wall Size in
X-X Direction (SX)
Shear f'JaJ-I Size rn

Model Y-Y Direction (SY)
Applied Moment
ùo the Shear WalL

tDirection
. Stiffness
Rotation Coefficient

PS5-1 0.5 120 in. Lb. 0.0048 Rad. 24880.'18

PS5-4 0.5 120 in. Lb. 0.0116 Rad. 10348.39

PS5-5 o.5 I20 in. Lb. 0.0062 Rad. 19246.L9

PS5-8 0.5 60 in. Lb. 0.00487 Rad. 1232I.83

PS5-9 0.5 60 in. Lb. 0.0796 Rad. 7 53.20

PS6-1 I.0 120 in. Ib. 0.00648 Rad. 18s21.37

PS6-4 1:0 I20 in. Lb. 0.0129 Rad'. 92'14.28

9S6-5 1.0 120 in. Ib. 0.0089 Rad. 13349.64

PS6-8 1.0 60 in. Lb. 0.0090 Rad. 6666.66

PS6-9 1.0 60 in. Lb. 0.0356 Rad. 1685.39

PS7-I 1.5 120 in. Lb. 0.0064 Rad. I8782.57

PS7-4 1.5 120 in. Lb. 0.0112 Rad. 10695.18

PS7-5 1.5 120 in. Lb. 0.0093 Rad. 12816.4

PS7-8 1.5 60 in. Lb. 0.0130 Rad. 46O4.76

PS7-9 1.5 60 in. I,b. 0.0197 Rad. 3033.36

PS8-1 2.0 I20 in. Lb. 0.0054 Rad. 22113.30

PS8-4 2.0 120 in. Lb. 0.0088 Rad. I3636.36

PS8-5 2.A 120 in. Lb. 0.0083 Rad. 14361.12

PS8-B 2.0 60 in. ¡,b. 0.0170 Rad. 3529.41

.l PSB-9 2:O 60 in. Lb. 0.0123 Rad. 4878.44

'\\

t -t*J--'.r'

-t



188

TÀBLE C6

Shear Wa11 Sizeffi=r/3

Model

Shear WalI Size in
X-X Direction (SX)
Shear Watl slZe-f¡
Y-Y Direction (Sy)

Applied Moment
to the Shear Wall

Direction
Stiffness

Rotation Coefficient

PS9-1 0.5 120 in. tb. 0.0031 Rad. 38986.35
PS9-4 0.5 120 .in.. Iò-. 0.0079. Rad. L5099.27
PS9-5 0.5 l-20 in. Lb. 0.0039 Rad. 309s3.36
PS9-8 0.5 60 in. Lb. 0.0029 Rad. 20547.94
PS9-9 0.5 60 in. Ib. 0.0512 Rad. 117C. S5

PS10-1 1.0 120 in. Lb. 0.0039 Rad. 30336.9?
PS10-4 1.0 120 in. Lb. 0.0082 Rad. L45L9.92
PSI0-5 1.0 120 in. Lb. 0.0053 Rad. 224II.46
PS10 -8 1.0 60 in. Lb- 0.0050 Rad. 11934.12
PS10-9 1.0 60 in. Lb. 0.01-98 Rad. 3032.29
PS11-1 1.5 120 in. Lb. 0.0037 Rad. 3249O.40

PSlt-4 1.5 120 in. Lb. 0.0065 Rad. 18482. B6

PS11-5 1.5 120 in. Lb. 0.0054 Rad. 2216A .66
PS11-8 r.5 60 in. Lb. 0.0070 Rad. 8555. 53

PS11-9 1.5 60 ii1 . Lb. 0.0099 Rad. 6012.8
PS12-1 2.0 I20 in. l,b. 0 .0029 Rad. 40367. 33

PSl2-4 2.0 L20 in. Lb. 0.00468 Rad. 25617.00
PS12-5 2.0 120 in. Lb. 0.0047 Rad. 2550I.52
PS12-8 2.0 60 in. Lb. 0.0089 Rad. 6719 -67
PS12-9 2.0 50 in. Lb. 0.0058 Rad. 10354.48
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TABLE C7

Shear Wa1l Size : 1 /) q.

-õEãI-EFan 
- - LlL'r

Shear Wal1 Size in
'X-X Direction (Sx)

' Shear ?lall Size in
Model Y-Y Direction (SY)

Applied Moment
to the Shear !.lal-I

Direct
Stiffness

Rotation Coefficient

PSr3-1 0.5 t20 in. ¡b. 0.0022 Rad. 55435.95

PS13-4 0.5 120 in. Lb. 0.0058 Rad. 2076I.24

PS13-5 0.5 120 in. Lb. 0.0027 Rad. 44732.88

PS13-8 0.5 60 in. Lb. 0.0020 Rad. 30003.74

PS13-9 0.5 60 in. Lb. 0.0356 Rad. 16 83. 88

PS14-1 1.0 120 in. Lb. 0.0027 Rad. 44923.28

PS14-4 1.0 120 in. Lb. 0.0056 Rad. 2LL92.8

PS14-5 1.0 120 in. Lb. 0.0036 Rad. 33570.18

PS14-8 1.0 60 in. Lb. 0.0033 Rad. L83L2.22

PSI4-9 1.0 60 in. Lb. 0.0123 Rad. 4878.44

PS15-1 L.5 120 in. l,b. 0.0024 Rad. 50316.57

PS15-4 1.5 120 in. I,b. 0.0041 Rad. 29028.99

PSI5-5 1.5 120 in. Lb. 0.0035 Rad. 34092.94

PS 15- I 1.5 60 in. I,b. 0.0044 Rad. 13s01.35

PS15-9 1.5 60 in. Lb. 0.0058 Rad. 10368.24

PSI6-l 2.0 120 in. IJ¡. 0.0018 Rad. 65Ir.]-.22

PSl6-4 2.O 120 in. Lb. 0.0028 Rad. 42553.]8

PS16-s 2.0 120 in. Lb. 0.0030 Rad. 40058.75

PS16- I 2.0 60 in. Lb. 0.0055 Rad. I08I0.80

PS16- 9 2.0 60 in. Lb. 0.0032 Rad. 18750.00


