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CHAPTER I

INTRODUCTION

1.1 Object of Study

During the past few decades, there has been a dramatic
increase in the volume of construction of tall commercial and
residential buildings throughout the world. This has necessitat-.
ed the development of methods for accurate analysis of such
structures.

One of the most important factors to be considered in
the design of a tall building is its lateral stability in all
directions when loaded by;wind, earth tremors or blasts. Early
in the twentieth century, tall structures generally employed
rigid frames consisting of columns and beams. In these struct-
ures lateral stiffness was achieved by frame action. Later,
flat slab and flat plate floor structures were adopted. Flat
plate floor structures have no girders and employ a slab of
unifdfm thickness which rests directly on columns. The flat-
slab structure is similar, except that either the slab, the
colpmn,or both are thickened at their junction. A common
procedure in the analysis of a flat plate multispan structure
is to subdivide the whole structure into a series of parallel
planar frames and assume the portion of the floor slab between

the panel center lines on either side of the columns to be



analogous to the beams in an ordinary frame. Each such
planar frame is analyzed separately and the frames are then
combined to form the complete structure. Assuming the floor
slabs to act as rigid diaphragms for distributing in-plane
forces, a trial and error procedure is then used to distri-
bute the latefal loading among the frames in such a manner
that equilibrium is everywhere satisfied and the lateral dis-
placements of all frames at all floors are compatible.

Lateral stiffness in many tall buildings can be
~achieved most efficiently by shear wall construction which
employs a combination of columns, floor systems and large
shear walls which have high in-plane stiffness. Shear walls
not only serve a structural function but also provide more
flexibility in internal planning. Elevators, stairs and
mechanical and electrical services can be grouped inside a
central core which also acts as a shear wall and thus per-
mits most economical use of space.

The two most complex aspects in the analysis of shear
wall structures which employ flat plate floors are the shear-
wall-frame interaction, and the interaction between the floor
system (flat plate, flat slab, waffle slab, etc.) and the
shear walls and columns. The former type of interaction has
been thoroughly investigated and has been incorporated into

shear wall-frame analysis computer programs(l?)



At one time, the practice was to design the shear
walls for full lateral loads and to assume that the frame
resisted only gravity loads. However, when shear wall-
frame interaction was considered, it was found that each
element obstructs the other from taking its natural free
deflected shape. Typical deflected shapes due to lateral
loading, for the frame only, the shear wall only and for the
combined frame and shear wall are shown in Figure 1 (a),

(b) and (c) respectively. Figure 1 (c) shows that toward
the top of the structure, the frame resists the lateral
deflection of the shear wall, while the opposite phenomenon
occurs toward the bottom. Thus, resisting moments are
applied to the shear wall by the frame, with a resulting
significant reduction in lateral deflection of the struct-
ure, ana hence, increased lateral stiffness.

The interaction between flat plate floors and
shear walls and columns in laterally loaded structures has
not yet been adequately investigated. Several studies(3,7,8,10)have
been .carried out to determine the moment-rotation character-
istics for flat plate floors loaded by couples produced by
transverse shears applied to columns. In most cases the
investigators used effective slab width as a parameter for
indicating the effective stiffness of the flat plate. Gen-
erally, effective slab width has been defined as the width
of an imaginary beam with the same depth, span and stiffness

against rotation of the columns, as those of the slab under



‘v‘f\‘f"\

L]

A}

l‘?-ﬁlcm_cw Ay iy A,

\gu~

/

/
i
/

I

/

]
]
/

,/ ,
i / A
% J/ e —
/ A i 3
- o - < D
ﬁLI IIL . nr mr nnrrrrz7

(c) Combined Frame & Shear Wall

(a) Free Frame (b) Free Wall

Lateral Deflections for Elements in Shear
Wall-Frame Structure.

Fig. 1



5

consideration. However, for shear wall structures this para-
meter is unsuitable because the resisting moment applied to
the shear wall by the floor slab is a function not only of
the slab thickness (its - moment of inertia) but also of the
geometry of the floor plan. Its value is greétly affected by
the shape, size and location of the shear wall and the columns.
Consequently, the objective of this study is to iso-
late the various geometric parameters which contribute to the
stiffness of a flat plate floor system as it interacts with
shear walls and columns in resisting lateral loading on the
structure. An attempt is made to express, in nondimensional
form, the effects of column size, shear wall shape and size
and panel shape and size on the stiffness coefficients for
flat plate floor systems. The mechanism by which the floor
system resists the moment applied by a laterally loaded shear
wall is examined and the moment resistance is subdivided in-
to contributions from the various floor panels. The resist-
ance provided by a given panel depends on its location re-
lative to the shear wall, the direction of loading and the
presence or absence of adjacent panels. Nondimensional para-
meters are presented, which can be used to calculate the bend-
ing stiffness coefficients for floor plate systems for various
shear wall and column geometrieé; Moment-rotation character-
istic for flat plate-shear wall plexiglass models, determined

using the Moire technique, are presented. The values thus




obtained are correlated with corresponding relationships deter-

mine from finite element flat plate analyses.

1.2 Historical Background

The first flat slab building was constructed in 1906
by C.A.P. Turner and by 1913 over one thousand such structures
had been constructed around the world.' The details of deve-
lopment of flat slab design procedures given in different

codes have been summarized in papers by Dowell and Hammil(l)

and by Sozen and Siess(z).

Early investigations included analyses of flat slab
or flat plate structures for gravity load only and for moments
produced by unbalanced gravity loads. Very little was
said about lateral load analysis. During the past decade
however, a number of investigations dealing with lateral loads
have been carried out.

Frederic and Pullauf(3) tested six reinforced con-
crete models of two way doubly reinforced square. slabs with a
six'inch column extending through the slab. The important
variable was distribution of reinforcement. Values of
effective width of slab were reported. The effective width
was defined as the width of flat plate floor that acts with
the column in resisting the applied moment. It was noted
that the effective width of the slab increased with a bunching

of the steel. However, the ultimate moment capacity

simultaneously decreased.



The behavior of three experimental flat plate struct-
ures under different types of loading was studies by the
Commonwealth Scientific and Industrial Research Organization
in Australia. Some of the interesting results have been
summarized by ﬁlakey(4). The structures were designed accord-
ing to the empirical method of the ACI building code(5). One
of the three structures was tested under lateral load, with
bare columns and short brick walls in place on either side
of the columns. It was noted that the lateral rigidity of
the structure was increased by a factor of four by providing
simple brick walls. It was also found that the moments pro-
duced in the slab by lateral loads were confined essentially
to the column strips.

An investigation was carried out by Dista and

(6)

VanBuren to determine maximum unit shearing stresses in
the moment transfer region between the column and the flat
plate floor, due to flexure and punching shear, Two critical
sections were considered; one at a distance of t - l%" (where
t representé the total slab thickness) from, and parallel to,
the'column;faces for flexural shear, and one at the perimeter
of the column for punching shear. Recommendations were also
made for allowable stresses.

(7 tested nine mortar plate

Tsuboi and Kawaguchi
floor models. Three were of plain mortar and the rest were
reinforced in three different ways. The cross-sectional area

of the reinforcement was the same for all slabs but the dis-



tribution of the reinforcement between column and middle
strips was different. Results Qere*reported in terms of
effective width and were in good agreement with those obtain-
ed using elastic finite difference analyses. The effective
width was defined here as the width of an imaginary beam with
the same depth, span and stiffness against rotation of the
column, as those of the slab under consideration. Iﬁ was
noted that, in the elastoplastic region, the distribution of
the reinforcement has considerable effect on the slab stiffness.
Khan and Sbarounis(s)investigated the problem of
shear Wall—frame«interacfion and suggested an iterative
method of analysis. The whole structure was separated into
two distinct systems; a frame, and one or more shear walls
acting in parallel. The two systems were then combined in
such a Way that compatibility and equilibrium conditions
were fully satisfied. Influence curves, to estimate the
distribution of shear between the two systems, were developed
for approximately 150 separate combinations of the four
loadings considered (uniformly distributed, triangular, con-
centrated load at the top of the frame and base moment), for
structures with various stiffnesses. The problem of slab-
column interaction was also studied both analytically and
experimentally, and graphs for effective width were presented.
The findings of Khan and Sbarounis agreed quite well with

those of Tsoboi and Kawaguchi.



(9)

Brotchie , who carried out an analytical study of
the elastic and elastoplastic behavior of flat plate floors,
summarized his findings in a series of papers. He assumed
the plate to be supported on a hypothetical elastic medium
whose modulus bf elasticity could be varied at will. Each
loading and the corresponding column reactions were consider-
ed separately and the principle of superposition was used. He
suggested a simple analysis procedure according to which the
floor is subdivided into panel strips in each direction.

Then each panel strip is considered as a continuous beam
supported at the column center lines and is analysed by
moment distribution. The relative stiffnesses of the slab
and columns are then modified by multiplying factors which
are given in tabular form. The procedure presumably could
be used for lateral load analysis.

(10) conducted an analytical study of the

Carpenter
behavior of a flat plate structure subjected to lateral loads
in the elastic range. He also tested two plexiglass models
and reported stiffness and carry-over factors for individual
slaﬁ elements. The behavior of the structure as a whole was
found by superimposing the results obtained by loading in-
dividual columns, with all other columns fixed. His experi-
mental results agreed well with the analytical values. Car-

penter's stiffness values, obtained by using Brotchie's

stiffness definition, in which an entire transverse line of
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columns is rotated simultaneously, were in good agreement
with Brotchie's results. Stiffness valués obtained analyti-
cally by Khan and Sbarounis also agreed reasonably well with
those presentea by Carpenter.

Bernard and Schweighofer(ll)

studied plexiglass
models of coupled shear walls subjected to lateral loads and
concluded that the entire slab width should be considered as
effective in coupling the shear walls.

(12)

Nantasarn conducted Moiré tests on four 1/24

scale plexiglass models. In addition, two similar 1/16 scale

micrdconcrete models were tested by Parnichkul(lz)

. The pur-
pose of these tests was to obtain the values of effective
width, stiffness and carry-over stiffness factors for flat
plate floor panels loaded by an interior column or shear

wall and by an exterior column. The loading was applied in
the form of couples produced by loads applied transversely

to columns and shear walls. The main variable considered

was shape and size of the shear wall. The effective width

was considered to be the width of a hypothetical beam whose
flexural stiffness is equal to that of flat plate floor

panel. Effective widths for the panels loaded through shear
walls ranged from 3 to 12 times the true panel width and it
was concluded that effective slab width is a function not only
of the slab thickness and panel size, but also of the geometry
of the whole structure and therefore is not a suitable criter-

ion for specifying plate stiffness. The effective widths

¢
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obtained using the concrete models were fairly close to the

values reported by Brotchie(g).

(5) of effective

There is no mention in the ACI code
width of slab or stiffness and carry-over coefficients in
shear wall strﬁctures. Howevef, recommendations are made
regarding effective widths for flat slabs for transferring
bending moment between columns and sglgb. Seetion 2102 ()
states that "A slab width between lines that are 1.5t each
side of the column may be considered effective." VWhere, t

is the thickness of the floor slab.

1.3 Assumptions and Limitations

The assumptions and limitations employed in this
study are:

1. Linearly elastic hehavior has been assumed for
both experimental and analytical work. Hence, the principle
of superposition is assumed to be valid.

2. The finité element computer program, used for
analytical work, is based on classical thin plate bending
theory.

. 3. Externally applied moments are simulated by
couples formed by concentrated point loads.

4. In both the analytical and the experimental
models, the slab is extended through the shear wall. Thus,
‘the models should exhibit somewhat more continuity than the
corresponding actual structures in which stairs, elevators
and duct openings would occupy_the‘space enclosed by the

shear wall.
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5. In the finite element analysis, shear wall and
column elements have been represented by stiff beam elements.

6. Only flat plate floors (as opposed to flat slabs,
waffle slabs, etc.) have been considered.

7. Neither possible shear failure of the slab (punch-
ing shear or diagonal tension) nor possible buckling of the

slab is considered in the analytical studies.



CHAPTER II

THEORETICAL CONSIDERATIONS

2.1 Stiffness Matrix

The analysis of @ structure by the displacement

method requires the determination of force-displacement

‘relationships for each member in the form:

where,

P = KD (2.1)

P is a vector of force components applied at

the ends of the member,

D is a vector of correponding displacement
components, and

K is the member stiffness matrix. Each element
Kij in the stiffness matrix represents the force
component in direction i corresponding to a unit
displacement in direction j, with all other dis-

placement components equal to zero.

For example, the force-displacement relationships for

a prismatic bar AB from a planar structure, as illustrated

in Figure 2.1(a), are:
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E = modulus of elasticity

I moment of inertia of member about bending axis,

member cross sectional area.

and A

In the above relationships, the effects of shearing
deformation are assumed to be negligible compared to those of
flexural deformations.

The axial forces in floor members in a rectangular
frame, and consequently their axial deformations, are gen-
erally relatively small, and they are commonly assumed to be
negligible. When this assumption is made, the member force-

deformation relationships can be reduced to:
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(2.3)

If, further, the axial deformations of columns and vertical
displacements- of shear walls are ignored, only the end moments
and end rotations need to be related in the structural

analysis, and the force-deformation relationships take the

form:
PA3 4E}L ZE}L 6A3
Yen.( - |
. PB3 ZE}L 4E}L 6B3 (2.4)
L 4 L —
Equation 2.4 can be expressed in the form:
- q — .
) MAB ? _ KAA KAB 6A
6B
LMBA‘ KaB KB (2.5)
where,

MBA' M.~ 6A and 6B aré end moments and rotations
for the member, as illustrated in Figure 2.1(b)
KAA and Kpp may be termed direct bending stiffness coefficients,
since they relate forces and displacements at a single point,
and KAB and KBA may be termed carry-over bending stiffness
coefficients, since they relate forces at one point to dis-

placements at another.
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2.2 Bending Stiffness Coefficients

The bending stiffness coefficients, KAA’ the direct
stiffness coefficient at end A, and KBA’ the carry-over bend-
ing stiffness coefficient, for the prismatic bar shown in

Figure 2.2.1 are defined as follows:
Kap = Map/foR

BA MBA/@‘A

K
(2.6)

where,

MAB is the counterclockwise moment applied at end A

of the bar, 8A is the counterclockwise rotation at end A and

MBA is the counterclockwise moment induced at fixed end B.

MaB
¥ Aoa ‘:\\M -
VAN P BA
A B

Fixed End Moment for A Prismatic Bar

Fig. 2.2.1



18

Analogously, in this study the bénding stiffness
coefficienté for flat plate floor system shown in Figure 2.2.2
will be defined as follows:

The direct bending stiffness coefficient for the flat
plate at the shear wall is the ratio of the moment applied to
the shear wall to the resulting rotation of the shear wall and
floor plate at B, normal to line ABC, when all columns are fixed.
The carry-over bending stiffness from the shear wall to columns
A or ¢ is the ratio of the fixed-end moment produced at the column
supports A or C dué to the moment applied to the shear wall, to the
resulting rotation of the shear wall and flbor plate at B, normal
to line ABC.

Likewise, the direct bending stiffness coefficient
for the floor at column A is the ratio of the moment applied to
the column to the corresponding rotation of column A normal to
line ABC, when the shear wall and all other columns are fixed.
Finally, the carry-over bending stiffness from column A to the
shear wall is the ratio of the fixed-end moment produced at the
shear wall when moment is applied to column A to the resulting

rotation of column A normal to line ABC.

2.3 Measurement of Bending Stiffness Coefficients

While stiffness coefficients can be readily calculat-
ed for a baf, those for flat plate elements such as are used
for the floors of shear wall-frame structures cannot be easily
calculated. It is therefore necessary to apply couples of

known magnitude to the shear wall and columns and to measure

&
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Determination of .Direct Bending :

Stiffness Coefficients

Fig. 2.2.2



- 20

the resulting plate rotation in order to determine direct
bending stiffness coefficients for the flat plate elements.
The determination of carry-over stiffness coefficients re-
qguires, in addition, the application of thé principle of

superposition, as described in Section 2.3.2.

2.3.1 Direct Bending Stiffness Coefficients for Flat Plate

The direct bending stiffness coefficient at the
shear wall for the flat plate floor shown in Figure 2.2.2
can be obtained by applying a known moment to the shear wall
with all column supports fixed, and measuring the rotation
of the floor section ABC at the shear wall. Similarly, the
direct bending stiffness at columns A or C can be obtained
by applying équal moments to columns A, C, D and F shown in
Figure 2.2.2 and keeping the other column and shear wall

supports fixed.

2.3.2 Carry-Over Bending Stiffness Coefficients For Flat Plate

Since it is difficult to measure directly the fixing
moments at the various supports, the principle of superposi-
tionis used in obtaining the values. of carry-over stiffness
coefficients.

The procedure used to obtain carry-over stiffness
coefficients can be illustrated with the help of Figure 2.3,

which shows cross sections along line ABC of the floor system
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shown in Figure 2.2.2. The support conditions at A and C for
each structure shown in Figure 2.3 are such that antisymmetrical
deflection patterns are obtained and the structure is symmetrical
about support B.

In=Figure 2.3 (a), a clockwise moment My is applied
at B. It causes a rotation 9B at B and equal clockwise moments

Man and M at the fixed supports A and C. By definition, the

carry-over bending stiffness coefficient for external moments
applied at the shear wall are:

K

=K, =M. (2.7)

ce = "ap T “2p = cp_
8B 8B
Since it is difficult to measure MAB or McB directly,

they can be determined using the principle of superposition, as
follows.

In Figure 2.3 (b) an external moment My is applied to
the structure with pinned supports at A, B and C, and rotations

OB1 and @Al = GCl are measured. Then the pin supported structure

is loaded by moment MA at A and moment M.C = MA at C as shown in

Figure 2.3 (c) and the corresponding rotations 0B, and OA. are

2 2
measured. Finally, if all moments and rotations for the structure
in Figure 2.3 (c) are multiplied by @Al/OA2 and added to those

in Figure 2.3 (b), a structure with a deflected shape that is
identical to that shown in Figure 2.3 (a) results. The final
rotations at A and C aré:

OA = - QA, + OA2 (GAl/OAz) =0

1

ec = - GCl + OC2 (OCl/@Cz) =0 (2.8)
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Also:

= * =
MAB MA OAl/OA2 MCB

Hence, from equation 2.7, the carry-over stiffness

(2.9)

coefficients for moment applied at the shear wall are:

K = K = (MA * OAl) / (6B * oA (2.10)

CB AB 2)

Similarly, the carry-over stiffness coefficient

for external moments applied at columns A or C. are:

Kpe = K, = 'Ba/? = Mpa/?
BA&  FA oCc (2.11)
where
MA = MC = external moments applied at columns A

and C for the structure shown in Figure 2.3 (d)

MﬁA = resisting moment at fixed support B.

OA = OC = rotations produced at support A and C.

R structure with a deflected shape that is identical
to that shown in Figure 2.3 (d) can be obtained if all moments
and rotations for the structure in Figure 2.3 (b) are multiplied

by OBZ/@Bl and added to those in Figure 2.3 (c).

Therefore,
= MB * OB,
"a T 1B 7 0P (2.12)
OBl

Hence, from eq (2.11), the carry-over stiffness

coefficient for moment applied at the éolumns are
K=K, = * 9B,

BC BA
2 * oA *<@Bl (2.13)
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Equation 2.10 can be used to determine the carry-over stiffness
coefficients from the shear wall to the column, while equation
2.13 can be used to determine the carry-over stiffness coeffi-

cient from the1column to the shear wall.

2.4 Behaviour of Flat Plate Floor Systems

Figures 2.4.1 (a), (b), (¢), and (d) show typical floor

plans for flat plate shear wall-frame structures. Such struc-
turesgenerally have one or more "box type" shear walls and
columns located approximately on a rectangular grid. This
arrangement of supporting members tends to subdivide the

floor slab into a series of rectangular panels. Wuen the
structure is subjected to lateral loads, transverse moments
are applied to the flat plate floor by the shear walls and
columns. The various floor panels offer different resistance
to these moments depending on their size, shape and location

relative to the shear walls.
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The basic flat plate floor plan considered in this
study is shown in Figure 2.4.1 (d). It is relatively simple,
but includes most of the possible positions of the rectangu-
lar flat plate floor panels relative to the shear walls and
columns. Assuming this basic flat plate floor to be subject-
ed to an external moment about an axis parallel to the ¥Y-Y
axis and applied by the shear wall, the whole flooxr can .
be subdivided into three types of floor panels,depending
upon their behavior. These will be referred to as
torsional panels, which are subjected mainly to torsion,
bending panels, which resist primarily bending, and corner
panels, which are subjected to both bending and torsion.

The resistance offered to transverse moment by the different
panel types is greatly affected by the continuity between
adjacent panels. For example, the torsional resistance of a
torsion panel is increased by the addition of a corner panel,
since the continuity between the two results in bending in
the corner panel. Similarly, the resistance of a bending
panel is increased by torsion in an adjacent corner panel.
In this study, the joint between a corner panel and a
torsional panel will be referred to as a torsion joint while
the joint between a bending panel and a corner panel will be
called a bending-joint.

The moment resistance offered by a given floor sys-

| tem is also highly dependent on the location of the support-
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ing columns, as demonstrated in Figure 2.4.2. The resistance
of the floor slab shown in Figure 2.4.2(a) to a shear wall
moment My will be less than that of the slab in Figure 2.4.2(b)
because of the absence of torsion panels in the former case.
The behavior of the latter system will be almost the same as
that of the floor slab shown in Figure 2.4.1(d). The presence
of the additional columns for the system in Figure 2.4.2(b)
will slightly increase the stiffness of the torsional panels
and hence the over all stiffness of the floor slab.

Further, the behavior of a particular floor panel
depends upon the direction of the external moment. For
example, if the flat plate floor in Figure 2.4.1(d) is sub-
jected to a shear wall moment parallel to the X-X axis, the
torsional panel will become a bending panel and the bending

panel will become a torsional panel.

2.5 Contributions to Bending Resistance of Flat Plate Floor

The stiffness contributions of individual panels of
the basic floor slab shown in Figure 2.5(a) and of continuity
between adjacent panels can be obtained by carrying out load-
displacement analyses for the basic structure and a series
of eight related structures. The related structures, which
are shown in Figure 2.5(b) to (j), are obtained by removing
various panels from the basic structure and by destroying con-

tinuity between adjacent panels.
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It is convenient to define the "direct stiffness co-
efficient" (the ratio of moment My applied through the shear
wall, to resulting rotation 6y of shear wall) for the basic
structure in Figure 2.5(a) as Kl' Similarly, the correspond-
ing direct stiffness coefficients for the related structures

S Sq in Figure 2.5(b) to J will be designated K, to

27 Sz
Kg,respectively.

The principle of superposition can be.used to estab-
lish relationships among the direct stiffnesé coefficients
for the wvarious structures shown in Figure 2.5 and to isolate
the stiffness contributions of the various elements in the
basic floor structure.

For example, the moment resistance of structure S7

can be obtained by superimposing those for structures 88 and

Sg. Hence

K7 = K8 + K9

(2.5.1)

Similarly, by considering the superposition of structures 89
and'SS, it can be seen that
K3 = K5 + Kg

(2.552)

Finally, the superposition of structures 88 and S4 leads to

the relationship

(2.5.3)

A



By considering structure.s8'only, it can be seen that the
direct stiffness coefficient for a single bending panel, with
no continuity with adjacent panels, is
Ky = %’ Kg
(2.5.4)
Likewise, considering structure Sg, it is seen that the
direct stiffness factor for a single torsion panel is
KT = —;—'— K9
By comparing structures Sl and 82, it can be seen that the
direct stiffness contribution due to a bending joint (due to
the continuity along a single boundary between a bending
panel and a corner panel) is
Kpe =7 (&K,
(2.5.5)
Similaxly,by considering structures S, and Sys it can be seen
that the stiffness contribution due to a torsion joint (due
to continuity along a single boundary between a corner panel
and a torsion panel) is
(2.5.6)
Finally, by comparing structures S3 and S7, the contribution
of one corner panel can be obtained as
(2.5.7)



34

It is convenient to express the direct stiffness
coefficients for various elements making up the floor system,
in terms of stiffness factors for equivalent beam elements.

Therefore, define for the panel contributions

3
KEB = 4§I _ E3;::, B
B B
3
KEC = 421 _ E3E L
C C
3
KET = f.%t__]i
T

and by analogy, for the joint stiffness contributions

3
Et Ly

B
3

KEBC =

Et Ly
b

KETC =

where,
E = modulus of elasticity

I = moment of inertia of beam

LB =.span\of bending panel
B = width of bending panel
LC = span of corner panel,
G = modulus of rigidity
b = width of torsion panel
t = floor thickness
LT = span of torsion panel

=1 (1- t
I, =3 (1- 0.63 )

(16)

shape factor

&
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The direct bending stiffness coefficients for
various elements of a basic floor plan can then be defined
as

(i) DIRECT STIFFNESS COEFFICIENT

FOR ONE BENDING PANEL = KB = FB*KEB
(ii) DIRECT STIFFNESS COEFFICIENT
FOR ONE TORSION PANEL = KT = FT*KET
(iii) DIRECT STIFFNESS COEFFICIENT
FOR ONE CORNERVPANEL = KC = FC*KEC
(iv) DIRECT STIFFNESS COEFFICIENT
DUE TO ONE BENDING JOINT = K = F_ _*KEBC
BC BC
(v) DIRECT STIFFNESS COEFFICIENT
DUE TO ONE TORSION JOINT = K = F__*KETC
TC TC
FB’ FT’ FC, FBC and FTC are dimensionless

multiplying factors.

| The values of these multiplying factors for a basic
flat floor with the geometry shown in Figure 2.5(a), can be
obtained by determining the direct stiffness coefficients

"for structures Sl' 84, SS' 88, and Sg, shown in Figure 2.5.



CHAPTER III
ANALYTICAL, AND EXPERIMENTAL STUDIES
- This chapter describes the analytical finite element
study and the Moiré experimental work carried out in order to
evaluate the bending stiffness properties for various geo-

metries of flat plate floors.

3.1 Introduction

The analytical study consisted of two phases. The
first of these dealt with the effects of column size and
shear wall size and shape on the bending stiffness of the
floor plate. The purpose of the second phase was to derive
values for the multiplying factors, described in Section 2.5,
for indicating the contributions of the various floor elements
to the bending resistance of a flat plate floor system. 1In
the first phase, direct bending-stiffness coefficients and
carry-over stiffness coefficients for both shear wall loading
and column loading were studied. The second phase was limit-
ed to the study of direct stiffness coefficients only, for
shear wall loading. The Moire experimental study was limited
to thé.second phase.

The basic prototype structure, on which both the

experimental and the analytical models were based is shown

36
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in Figure 3.1.1. Its proportions and dimensions were des-
igned to be within the practical ranges for flat plate struct-
ures of the type being considered. All columns were square.
For the first phase study, the coluﬁn size was varied from

12 inches to 36 inches while it was kept at 24ﬁinches for all
structures analyzed in the second phase. Both rectangular
and square shear wall shapes were considered. For both
phases, the shear wall size was varied from 4.5 feet to 48
feet in theX-X direction and 9 feet to 24 feet in the Y-Y
direction. The ratio of the shear wall size to total span
was varied from 1/5 to 1/2.5. A 6-inch slab thickness was

assumed throughout. In all cases moments were applied to

the structures about axes parallel to the Y-Y axis.

3.2 Analytical Procedure

| A computer program titled "The Finite Element Analy-
sis of Stiffened Plates", developed by Ian G. Buckle at the
University of California, was employed in the analytical
work. The principal features of this program have been
summarized in Appendix A. The double precision version of

the program was used.

3.2.1 Representation of Plate Model

The finite element grid for the typical model is
shown invFigure 3.2.1. Thercolumn and shear wall elements
were represented by stiff beam elements whose depths were

made larger than those of the plate elements. The thick-
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nesses of the beam elements were made sixteen times as large
as those for the plate elements. The purpose of using stiff
beam elements was to obtain a rigid bending behavior of the
shear wall and coiumns compared to that of the flat plate.

The external moment loading was simulated by a couple produced
by equal and opposite point loads as illustrated in Figure
3.2.2, Each column was represented by two beam elements and
three nodes as illustrated in Figure 3.2.1. The hinged support
at the column was obtained by restraining the transverse
deflection of the central node and leaving the other two nodes
completely free. For a fixed column support, all three move-
ments (trapsverse deflection and two rotations) were restrain-
ed for all three nodes.

To obtain the values of direct and carry-over stiff-
ness coefficients, the models were analyzed for four types of
loading as illustrated in Figures 3.2.2, 3.2.3, 3.2.4 and
3.2.5. However, for obtaining the values of multiplying
F

factors F F and FBC described in Chapter 2, the mod-

g’ Fps Fer Frc

els were-analyzed for type A loading only, . as shown in Figure 3:2:2.
All models analyzed were symmetrical about both X-X

and Y-Y axes passing through the centroids of the floor areas

and only one quarter of each model was analyzed. This re-

duced the number of elements and nodes to be dealt with in

the finite element analysis, hence reducing the cost of the

computational work. Each loading was symmetrical about the
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Y-Y axis and antisymmetrical about the X-X axis. Hence, the
transverse plate deflection, and the rotation 0X were zero along
the Y-Y axis passing through the centroid 6f the floor plan

and rotation 0X about the X-X axis was zero along the X-X axis
passing through the centroid. Locally, suitable boundary cond-

itions were adopted for obtaining fixed or hinged supports.

3.2.2 Description of Analytical Models

The first phase study involved ten finite element
representations of 1/24 scale plexiglass models, designated P1l,
P2, -—--——- P10, and analyzed for the four types of loading shown
in Figures 3.2.2, 3.2.3, 3.2.4, and 3.2.5. The dimensions of
these models are given in Tables 3.1, 3.2, and 3.3. In the
second phase, sixteen series of models were analyzed for Type A
loading shown in Figure 3.2.2. Nine 1/24 scale models corres-
ponding to the nine floor plans shown in Figure 2.5 were consid-
ered in each series. The models of each series were designated
using double subscripts, the first of which indicates the series
number while the second designates model number in that series.
For example, the models of the first series were designated as PSl-1,

PS1=2 —==-—- PS1-9. In fact, models corresponding to the shapes of .
models S1, S4, S5, S8 and S9 only, in Figure 2.3, were analyzed, as

the results for. the models ‘S2, S3, S6 and S7 were obtained by e
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TABLE NO. 3.1

DIMENSIONS OF MODELS FOR FFFECT OF COLUMN SIZE

For all Models,
Clear Span in Both X-X and Y-Y Direction = 9.0 Inch
Thickness of Floor = 0.25 Inch

Shear Wall

Size Total Span Column SX Column Size SY
Model SX SY TSX TSY Size sY Clear Span TSX
Pl 9" 9" 27" 27" 0.5" 1.0 0.0555 13
P2 9" 9" 27" 27" 0.75" 1.0  0.0833 1/3
P3 gn 9" 27" 27"  1l.0® 1.0 - 0.1111 e
P4 a" 9" 27" 27" 1.5" 1.0 0.1666 1/3
TABLE NO. 3.2
DIMENSICNS OF MODELS FOR EFFECT CF SHEAR WALL SIZE
For all Models,
Clear Span in Both X-X and Y-Y Direction = 9 Inch
Thickness of Floor = 0.25 Inch
Shear Wall
Size Total Span Column SX Column Size  _SY
Model SX SY TSX TSX Size sY Clear Span TSX
P5 4,5" 4.5" 22.5" 22.5" 0.5" 1.0 0.0555 l/5
P6 6" 6" 24" 24" 0.5" 1.0 0.0555 1,
Pl 9" 9" 27" 27" 0.5" 1.0 0.0555 1/3
P7 12® 12" 30" 30" 0.5" 1.0 0.0555 1/2 5
where,

SX and SY are shear wall size in the X-X and Y-Y direct-
ion respectively, TSX and TSY are total span in the X-X
and Y-Y direction respectively.



TABLE NO. 3.3

DIMENSICNS OF MODFLS FOR EFFECT COF SHEAR WALL SHAPE

For all Models,
Clear Span in Both X-X and Y-Y Direction = 8 Inch-
Thickness of Floor = 0.25 Inch

47

Shear Wall
Size Total Span Column SX Column Size Sy
Model SX SY TsX TSY Size SY Clear Span TSY
PS8  4.5" 9.0" 22.5" 27" 0.75" 0.5 '0.0833 1/3‘
P2 9.0" 9.0" 27" 27" 0.75" 1.0 0.0833 1,3
P9 13.5" 9.0"  31.5" 27" 0.75" 1.5 0.0833 1,3
P10 18" 9.0" 36" 27" 0.75" 2.0 0.0833 1/3

SX and SY are shear wall size in ¥X-X and Y-Y direction re-
spectively TSX and TSY are total span in X-X and Y-Y direct-

ion respectively.
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using the principle of superposition. The dimensions of the
first model of each series are given in Table 3.4. In the
Tables SX and SY represent overall shear wall dimensionsg in

the X-X and the Y-Y directions respectively while Toy and

TSY represent total span in the X-X and Y-Y directions respect-

ively as shown in Figure 3.1.1.



TABLE 3.4

DIMENSIONS OF MODELS FCR SECCND PHASE OF THE STUDY

For all Models,

(i) Column Size = 1 Inch Square
‘ (ii) Thickness of Floor = 0.25 Inch
Shear Wall Size Total Span SX sy _ _SX
Model SX SY TSX TSY | 5Y TSY TSX
PS1-1  2,.25" 4.5" 11.25" 22.5" 0.5 1/5
PS2-1  4.5" 4.5" 22.5" 22.5" 1.0 1/5
PS3-1  6.75" 4.5"  33.,75" 22.5" 1.5 1/5
PS4-1 9.0" 4.5" 45" 22.5" 2.0 1/5
PS5-1  3.0" 6" 12" 24" 0.5 1/4
PS6-1 6.0" 6" 24" 24" 1.0 1/4
PS7-1  9.0" 6" 36" 24" 1.5 1/4
PS8-1 12.0" 6" 48" 24" 2.0 1/4
PS9-1" 4.5" 9" 13.5" 27" 0.5 1/3
PS10-1  9.0" 9" 27" 27" 1.0 1/3
PS11-1 13.5" 9" 40.5" 27" 1.5 1/3
. PS12-1 18.0" 9" 54" 27" 2.0 1/3
- PS13-1  6.0" 12" 15" 30" 0.5 1/2.5
i PS14-1 12.0" 12" 30" 30" 1.0 1/2.5
PS15-1 18.0" 12" 45" 30" 1.5 1/2.5
PSle-1 24" 12" 60" 30" 2.0 1/2.5
where,

49

SX and SY are shear wall size in the X-X and Y-Y direct-

ion respectively, and TSX and TSY are total span in

the X-X and Y-Y direction respectively.
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3.3 Experimental Procedure

The Moire apparatus shown in Figure 3.3 .1 was used for
the experimental work. The principles of the Moire technique
have been summarized in Appendix B. Since, for all models,
£he variation of the plate slope about horizontal axes was
desired, the Moire screen was always positioned such that the

ruled lines were horizontal.

3.3.1 Description of Experimental Models

Seven 1/24 scale plexiglass models, designated ES1,
ES2, ES3, ES4, ESS5, ES6, ES7, were tested. These models were
similar to the analytical models of the tenth series of the
second phase study, designated PS10-1, PS10-2, PS10-3, PS10-4,
PS10-5, PS10-8 and PS10-9. The dimensions of the: experimental
models ére'shoWn in Figure5"3.3.3 t0 3.3.9. The models were fab-
ricated fromﬂ;/A inch thick black plexiglass (acrylic sheet) and
were designed in such a way that loading could be applied
through the shear wall, keeping all columns fixed. The
columns were cut from 1 inch square steel bar and 1/4 inch
diameter holes were drilled through their centers to clamp
them to the plate and the loading frame. The columns in the
line of loading were 3/4 inch in height while others were
1/2 inch in height. Eight plexiglass sheet panels, all of
the shape and size shown in Figure 3.3.2, were cut and cemented

together to form two boxes. These boxes were cemented to
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the top and the bottom of the plate to simulate a box tYpe
shear wall passing through a flat plate floor. Jaybond GC-2
acrylic adhesive cement, which produced the required strength
in 48 hours, was used for cementing all joints. Model ES1
was fabricated and tested first. Model ES2 was then
obtained by making saw cuts in the original model. Model

ES3 =~ was obtained by rotating model ES2 ° through 90° in

a vertical plane and thereby changing the direction of load-

ing. ES4 ' was then obtained by removing two panels from
model ES2. Model ES5 was obtained by rotating model
.ES4 to again change the loading direction. Similarly,
model ES6 and ES7 were obtained by removing panels.
;z " "
% X" hole
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3.3.2 Loading Procedure

Each model was loaded by a couple applied to the
shear wall, and produced by forces 6 inches apart as illustrated
in Figure 3.3.3. Since the models were mounted with the plate in
a vertical plane in the Moire apparatus, the loads were applied
vertically. The downward forces were provided by applying weights
to loading hangers which were attached to strings passing through
the holes in either side of the shear wall. The upward forces
were similarly applied using a simple lever system, as shown in
the Figure 3.3.10. Figure 3.3.11 shows the loading arrangement

for model ES9.

3.3.3 Photographic Technique

The Moiré screen, with the ruled lines in the horiz-
ontal position, was placed in the proper position at a distance
of 85 centimeters from the model. The screen was illuminated by
four R2 super flood DXC 120V lamps. The camera was focused by
viewing the image of the screen on the ground glass screen
with a magnifying glass. While focusing the camera, the diaphragm
was opened completely and photo flood lights were switched on.
After focusing, the diaphragm was set to its smallest opening (£:32)
to obtain good sharpness. The first exposure was taken with no load
applied to the model, and the second exposure was made on the same

negative after applying the loads. During exposure time, the room

lights were switched off. Different combinations of exposure
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and developing times for both prints and photographic plates
were tried and the combination yielding the best results was
chosen. Kodak metallographic plates were used. Kodak Bromide
F-3 single weight paper was used for all prints and Dektol
developer was used for both plates and prints. Prints were
made to one-half scale. The positions of the photo flood
lights were adjusted to obtain uniform illumination of the
screen. The most important precaution taken was to keep the
reflecting surface of the model clean and dust free, to obtain

sharp and clear fringe patterns.



CHAPTER IV

ANALYTICAL AND EXPERIMENTAL RESULTS
The results for both the analytical and experimental
studies are summarized in this Chapter. The complete listing of

the data is included in Appendix C.

4.1 Results for Analytical Study

The first phase study involved the determination of
the effects of column size and shear wall size and shape on the
direct and carry-over stiffness coefficients for the plate floor.
These coefficients were determined by applying known moments to
either the shear wall or to the external column for models Pl, P2
--—-P10 and measuring corresponding plate rotations.

The applied moments and resulting rotations for the
four loading conditions described in Section 2.3.2. for the first
phase of the analytical study are given in Tables Cl, C2 and C3
in Appendix C. The corresponding stiffness coefficients are pre-
sented in Tables 4.1, 4.2 and 4.3. Wherever possible, results
are presented in the non-dimensional form by using size parameters
such as column size to clear span ratio , ratio of shear wall size
in the X-X direction to that in the Y-Y direction and shear wall
size to total span ratio. Table 4.1 shows the calculated stiffness
coefficients for four different column size to clear span ratios
for a 9-inch square shear wall and a shear wall size to total span

ratio .of one third. Table 4.2 shows the stiffness coefficients
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for four different square shear wall size to total span ratios
for 0.5 inch columns. The values of stiffness coefficients for
four rectangular shear walls for 0.75 inch square columns are
given in Table 4.3. According to the Maxwell-Betti reciprocal
theorem the carry-over stiffness coefficients from the shear wall
to the exterior column are equal to the corresponding carry-over
stiffness coefficients from the column to the shear wéll. It can
be seen from Tables 4.1 to 4.3 that a good agreement between
corresponding values was obtained. Hence, the average of the

two carry-over stiffness coefficients for each model is listed

in the last column of each of Tables 4.1, 4.2 and 4.3.

The direct stiffness coefficients and the average carry-
over stiffness coefficients from Table 4.1 are plotted for each
column size to clear span ratio in Figures 4.1.1, 4.1.2 and 4.1.3.
While thé values from Table 4.2 are plotted for each shear wall
size to total span ratio in Figures 4.2.1, 4.2.2 and 4.2.3. Sim-
ilarly, the values given in Table 4.3 are plotted for each ratio
of shear wall size in the X-X direction to that in the Y-Y direct-
ion, in Figures 4.3.1, 4.3.2 and 4.3.3. These plots are approx-
imated by simple algebraic equations derived using the least square
method of curve fitting. The plots shown in Figures 4.1.1, 4.1.2,
4.1.3, 4.2.1, 4.2.2, 4.2.3, 4.3.1 and 4.3.3 are represented by straight lines
given by equations 4.1.1, 4.1.2, 4.1.3, 4.2.1, 4.2.2, 4.2.3, 4.3.1
and 4.3.3 respectively in Table 4.6. Figure 4.3.2 shows that
the direct stiffness coefficient when the floor is loaded through

the exterior column, does not vary with the ratio of the shear
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wall dimension in the X~-X direction to that in the Y-Y direction.
Hence, no attempt is made to approximate this curve by an algebraic
equation.

The analytical portion of the second phase study in-
volved the application of known moments to each of the analytical
models PS1-1, ----, PSl6-1 and the calculation of the resulting
plate rotations. The moménts and rotations were then used to
calculate direct stiffness coefficients which in turn were used
in obtaining the multiplying factors described in section 2.5.

The applied moments and resulting rotations (for load-
ing condition A, described in section 2.3.2), along with the cal-
culated direct stiffness coefficients for the phase two models
are included in Tables C4, C5, C6 and C7 in Appendix C.

The contribution of the various slab panels and joints
to the direct bending stiffness, calculated as described in section
2.5, are listed in Table 4.4.

Finally, the multiplying factors are given in Tables
4.5(a), (b), (C), (d) and (e) for models with four different shear
wall to total span ratios ranging from 1/5 to '1/2.5 for shear wall
size in the X-X direction to shear wall size in the Y-Y direction
ratios ranging from 0.5 to 2.0 and for 1 inch square columns;

The values of multiplying factor, Fq. given in Table
4.5 (a) are used to calculate the contribution of the torsional
panels to the total stiffness while the values of Fy in Table
4.5 (b) are used for calculating the contribution of bending pan-
els. Likewise, the values of FC’ FTC and FBC in Tables 4.5 (c),
4.5 (d) and 4.5 (e) are used for obtaining the stiffness due to

the corner panels, torsion joints and bending joints respectively.

&
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TABLE 4.4

CONTRIBUTION OF DIFFERENT PANELS AND JOINTS
TO THE TOTAL STIFFNESS WHEN SHEAR WALL LOADED

Contribution of Different Contribution of
Panels Different Joints
Torsional Bending Corner Bending Torsion Total
Model Panels Panels Panels Joints Joints Stiffness

PS1-1 580 8633 3758 1725 3968 ' 18666
PéZ—l 1171 4455 3130 2038 2847 13642
PS3-1 - 1980 3015 3437 . 2672 2339 13445
PS4-1 3033 2280 4078 3696 2201 15290
PS5-1 753 12321 4713 2210 4881 24880
PS6-1 1685 6666 4102 2580 3486 18521
PS7-1 3033 4604 4729 3482 2832 18782
PS8-1 4878 3529 5884 4947 2873 22113
Ps9~-1 1170 20547 7166 3239 6862 38986
PS10-1 3032 11934 6594 3882 4893 30336
PS11-1 6012 8555 ' 8153 5452 4316 32490
PS12-1 10364 6719 10751 8030 4501 40367
PS13~-1 1683 30003 10058 4670 9019 55435
- PS14~-1 4878 18312 9839 5418 6474 44923
PS15-1 10368 13501 12805 7786 5855 50316

PSl6-1 18750 10810. 17500 . 11747 6302 65111




TABLE 4.5(a)

Value of F

T
SH/pg
| s%/gy /5. - 1/4 - 1/3 1/2.5
0.5 1.467 1.330 1.377 1.486
1.0 1.50 1.487 1.78 2.15
1.5 1.55 1.785 2.358 3.05
2.0 1.784 2.15 3.04  4.136
TABLE 4.5(b)
Value of FB
SH/qs
SX/sy 1/5 1/4 1/3 1/2.5
0.5 1.879 2.01 2.236 2.450
1.0 1.939 2.177 2.598 2.990
1.5 1.97 '2.255 2.793 3.306
2.0 1.985 2.304 2.925 3.530
where,
SH Shear Wall Size,

TS Total Span, and
- SX and SY = Shear Wall Size in ¥-Y and X-X direction
: respectively.




TABLE 4. 5(c)

Value of FC

SH/ g
SX/sy 1/5 1/4 1/3 1.2/5
0.5 0.204 0.256 0.39 0.547
1.0 0.34 0.446 0.718 1.07
1.5 0.560 0.772 1.331 2.090
2.0 0.888 1.28  2.34 3:810
TABLE 4.5(d)
Value of FTC
SH/ g
5X/sy 1/5 1/4 1/3 1/2.5
0.5 0.0360 0.059 0.124 0.218
1.0 0..0516 0..0843 0.177 0. 313
1.5 0.0636. 0. 106. 0. 235 0. 425"
2.0 0.0798 0. 14 0. 326 0. 610
where,
SH = Shear Wall Size,
TS = Total Span, and

SY and SX = Shear Wall size in Y-Y and X-X direction
respectively.

80



TABLE 4.5(e)
vValue of F

BC
i
SH/ py
SX/sy 1/5 1/4 1/3 1/2.5
0.5 0.0626 0.107. 0.235. 0.452
1.0 0.037 0.0624 0.141 0.262
1.5 0.0323 0.0561 ' 0.132  0.251
2.0 0.0335 0.0598 0.145 0.284
where,
SH = Shear Wall Size,
TS = Total Span, and

SY and SX = Shear Wall size in ¥Y-Y and X-X direction
respectively.



82

TABLE 4.6

EFFECT OF DIFFERENT PARAMETERS ON
BENDING STIFFNESS COEFFICIENTS

EFFECT OF COLUMN SIZE

KSs = 27535.6 + 28043.0 (C/S) (4.1.1)
ce = 1152.79 + 7454.25 (C/S) (4.1.2)
cs = Ksc = 1262.32 + 6446.44 (C/S) (4.1.3)

EFFECT OF SHEAR WALL SIZE

— _ SH .
as = 17148.9 + 144201.0 (TS) {4.2.1)
- SsH .
ch = 1181.22 + 1057.0 (TS) (4.2.2)
1 — — %—I.
cs KSc 141.05 + 5292.31 (TS (4.2.3)
EFFECT OF SHEAR WALL SHAPE
K = - 3993.63 + 36932.0 (%) (4.3.1)
SS - o SY £ 2 L ]
% = sx
Kcs = KSC = 646.82 + 1186.22 (SY) (4.3.3)
where,K and K are direct stiffness coefficients at shear

wall anﬁscolumn Fepectively,

K = carry-over bending stiffness coefficients from
shear wgil to one column

K = carry-over bending stiffness coefficient from one
column %g shear wall.

C = column size SH = size of square shear wall

S = clear span TS = total span

SY and SX = shear wall size in the Y-Y and X-X direction res-
pectively.
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4.2 Results for Experimental Study

The purpose of the Moiré experimental study was to
provide a check of the direct stiffness coefficients determined
in phase two of the analytical study. Known moments were applied
to the shear wail and the resulting shear wall rotations were
calculated for seven models, ES1 to ES7, which were similar in
geometry to analytical models PS10-1, PS1l0-2, PS10-3, PS10-4,
PS10-5, PS10-8 and PS10-9.

The values of the moments applied to the shear wall,
the resulting rotations and the calculated direct stiffness co-
efficients are tabulated in Table 4.7. The values of direct
stiffness coefficients were obtained by dividing the applied
moments by the corresponding rotations as described in Section
2.3.1. The experimental values of slopes and deflections were
plotfed along the vertical lines passing through edges of shear
walls and columns for the various models. These slope and deflection

curves are given in Appendix 'B'.



TABLE 4.7

" EXPERIMENTAL RESULTS
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’ Moment Applied Direct
Model  to the Shear Wall Rotation Stiffness
ES1 120 in. Lb. 0.0045 Rad. 26666.66
ES2 120 in. Lb. 0.00525 Rad. 22850.0
ES3 120 in. Lb. 0.00525 Rad. 22850.0
ES4 120 in. Lb. 0.090 Rad. 13333.3
ESS5 120 in. Lb. 0.006 Rad. 20000.0
ES6 60 in. Lb. 0.006 Rad. 10000.0
ES7 60 in. Lb. 0.02325 Rad. 2580.0




CHAPTER V

DISCUSSION OF RESULTS

This chapter contains a discussion of the analytical

and experimental.  results.

5.1 Effects of Column Size and Shear Wall Size

The first phase of the investigation was carried out
to study the effect of column size and shear wall size and shape
on the bending stiffness coefficients.

5.1.1 Direct Bending Stiffness Coefficients

It can be seen from Figures 4.1.1, 4.2.1 and 4.3.1
that the direct stiffness coefficiént for the floor loaded
through the shear wall is extremely sensitive to shear wall
shape and size and is relatively insensitive to column size.
The value of this stiffness coefficient is increased by approx-
imately 120 percent as the shear wall éize is’changed from
9' x 9' to 18' x 18' and by approximately 75 percent as the
shear wall dimension in the X = X direction is changed from
9 feet to 18 feet, with other dimensions kept constant. The
increase is only about 10 percent when the column size is
changed from 1 foot square to 2 feet square. This can be

explained by the fact that as the shear wall size is changed,

85
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the widths of both the bending and torsional panels change.
Hence the stiffness is also changed. However, when the column
size is changed only the clamped areas of the plate near the
column supports change, and then by a very small amount. This
does not affect the stiffness greatly.

The value of direct stiffness when the floor is loaded
through the exterior columns is more sensitive to variations
in column size relative to shear wall size and is independent
of the shape of the shear wall. The reason is that the portion
of the plate near the loaded coclumns, due to its free edges,
is more flexible than the portion near the shear wall. Hence
the deflections and rotations of the blate near the columns
are sensitive more to column size than to shear wall size
because any effect of change in shear wall size is absorbed
mainly in the comparatively stiff portion of the plate near
the shear wall. Further, this bending stiffness is mainly.
derived from bending and corner panels and changing the shear
wall dimension in the X - X direction only, does not change
the size of bending and corner panels. Hence the value of this
stiffness coefficient is not affected by shear wall shape.
The value of this stiffness is increased by approximately 30
percent as. the column size is changed from 1 foot square to
2 feet square and by less than 15 percent when the shear wall
size is changed from 9 feet square to 18 feet square.

Model Pl of this investigation is similar to model P4
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(12) The values of the

tested experimentally by Nantasarn.
bending stiffness coefficients for this model, obtained in the
present investigation by the finite element technique, are
compared in table 5.1, with those obtained experimentally by
Nantasarn. His experimental value for the direct stiffness
coefficient when the shear wall is loaded, is within 10 percent
of the analytical value. However, his value for the direct
stiffness coefficient when the exterior columns are loaded is
25 percent lower than the analytical value. This discrepancy
is probably largely due to the fact that true fixed shear wall

supports could not be achieved experimentally in the Moire'

apparatus - used by Nantasarn.
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5.1.2 Carry-Over Bending Stiffness Coefficients

Tables 4.1, 4.2 and 4.3 show that the value of the
carry-over stiffness coefficient from the shear wall to one
exterior column is quite close to that from the exterior column
to the shear wall. The maximum discrepancy is about 2 percent.
This is to be expected in view of the Maxwell-Bettl reciprocal
theorem. Figures 4.1.3, 4.2.3 and 4.3.3 show that the carry-
over stiffness coefficient is more sensitive to shear wall shape
and size than to column size. The value of the carry-over
stiffness is increased by approximately 70 percent as the shear
wall size is changed from 9' x 9' to 18' x 18' and by approx-
imately 45 percent as the shear wall dimension in the X -X
direction is changed from 9 feet to 18 feet. The increase is
only about 25 percent when the column size is changed from 1
foot square to 2 feet square. The reason is that as the shear
wall shape or size is changed, the clamped area of the plate
changes by a greater amount than when the column size is changed.
The average values of carry-over stiffness coefficients obtained

experimentally by Nantasarn (12)

differ by about 5 percent from
thoseobtained in this investigation.  The experimental value of
the carry-over stiffness from the exterior column to the shear

(12)

wall obtained by Nantasarn is quite low relative to the ex-
perimental value of carry-over stiffness from the shear wall
to the exterior column. It is again probably largely due to
the fact that true fixed shear wall could not be achieved ex-

perimentally.
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5.2 CONTRIBUTIONS OF FLOOR PLATE ELEMENTS TO DIRECT BENDING

STIFFNESS

The second phase of the investigation was concerned
with determining the contributions of the various panels (bend-
ing panels, torsion- panels and corner panels) and joints
(continuity between adjacent panels) to the direct bending
stiffness at the shear wall for the flat plate floor.

The percentage contributions of the various plate
elements were determined by first calculating the direct stiff-
ness coefficients at the shear'wall for each of the nine model
configurations show in Figure 2.5 . Then, by combining the cal-
culated stiffnesses for the various model configurations, as
described in Section 2.5, the contributions of the various
elements were determined. The above procedure was carried out
sixteen times, for four different shear wall/total span ratios
and four different shear wall shapes.

The percentage contributions of various elements are
summarized in Table 5.2, for the various shear wall sizes and
shapes, Figures 5.2.1 and 5.2.2 show the variation in the
contributions of the various elements with shear wall shape,
while Figures 5.2.3 and 5.2.4 show the variation with shear
wall size.

From Figure 5.2.1 it can be seen that the contribution

of the bending panel reduces rapidly, while the contribution



9l

GL'6 0°8T1 $8°9¢ 9° 9T 8°8¢ §°z/1 0°¢ T-91s4d

S9°1TT 06°ST 0v°SZ  $8°92 09°02 §°Z/1 S°T  1-9Tsd

/AR A "2t ’ 6°1¢ 8 0¥ 80T S°z/1 0°T T-¥1s4d

0€°9T 0v-°8 vI°8T  91°%§ 0°€ §°¢/1 §'0 T-€Tsd4

[N 86T 9°9¢ 8°9T 9742 €/1 0'¢ 1I-¢Isd

0Z°€T 0L°9T 7S¢ v9C 0681 £/1 S'T T-1Tsd

2791 Leet L*T1C v°6¢€ 0°0T €/T 0°T T1-0Tsd

’ 09°LT Se"8 0781 9°2S S0'¢g £/1 S°0 T-65d

0°€T 8e"¢e v9°9¢  86°ST 0°2e v/1 02 1-8s4

09°ST 86°81 02°sz  0s°¥¢ c1° 91 v/1 S'T T-Lsd

8°8T 0°%T 0T-2e 0°9¢ 1°6 v/1T 0°T T-984

69°6T 068 06°8T 6v°6¥ ¢0°¢ v/T §°0 T-6Sd

8y vT e 86°9¢  ¥6° VT 8761 S/1 0°¢ T-¥sd

07" LT G8°6T §GtZz  0s°ce L°vT S/1 ST T-€84d

8°0¢ 6°v1 6°2¢ 8°ce 9°8 S/1 0°'T T-2sd

€2°1¢ §T°6 €1°0C ST 9% vi°e S/T S0 T-Tsd

. s3jutop sjutop © sfsueg sTauedg sTaued uedg Te30L XS T9PON .
UOTSIOL butpusg I2ux0) Hurpusg TRUOTSIOL, ®2Tg TTEM Ie9ys Xs

SSSUIITIS Te30L
9Yy3 03 S3UTOL JUSIDIITA

SSaUJF138 Te3d0%

oYy 03 sToued JUBISIIIQ

JO uoT3INQIIIUOD dbevjusvasad FO ucC rIngtrajuo) sbejusdiaad

Qaavol TTIYM ¥VIHS NHHM SSANJAIILS 'TYIOL IHIL OL

SINIOL ANV STANVd INZEILIIA 40 NOILALGININOD ADYINIOUAI

2's qu<a




60

50

40

30

20

10

92

Percentage Contribution of Plate Elements
to Direct Stiffness at Shear Wall - Variation
with Shear Wall Shape.

T' 2 — I1
] $ ) ﬁ
b .
e—st
L SX o
I “1
TSX

Bending Panel
Corner Panel

Torsion Panel

0.5 1.0 1.5 2.0

Shear Wall Size in X-X Direction (SX)

Shear Wall Size in Y-Y Direction (Sy)

Fig. 5.2.1



60

50

40

30

20

10

93

ooy
—

Percentage Contribution of Plate Elements
to Direct Stiffness at Shear Wall - Variation
with Shear Wall Shape.

= g & ) . -T—
P . o
%
sx _ sy _ 1 a ) 1 T
TSX ~ TSY 3
A A B A ® =
5 SX o 1
" TSX '

- » -
O : . Torsion Joint

Bending Joint

—te

0.5 1.0 1!5 2.0 2.5

Shear Wall Size in X-X Direction (SX)
Shear Wall Size in Y-Y Direction (SY)

Fig. 5.2.2



70

60

50

40

30

20

10

94

Percentage Contribution of Plate Elements
to Direct Stiffness at Shear Wall - Variation
with Shear Wall Size.

o v L5 4
Clear Span in Y-Y Direction
b -
4 $ L}
Square Shear Clear Span in X=X Dirgction
Wall
K—i‘ﬂ‘—ﬁ—i—“ﬁ —
K » on Jall si
Total Span ear Wa Size
Q---. Lo alnhibid: B Biiatadelet S 20t
-
-———‘_—e"-——
o— -
Bending Panel
------------ Corner Panel
—————————-— TOrsion Panel
| | | | | |
I ] | 1 i '
0.1 0.2 0.3 0.4 0.5 0.6

Shear Wall Size
Total- Span

Fig. 5.2.3




70

60

50

40

30

20

10

95

Percentage Contribution of Plate Elements
‘to Direct Stiffness at Shear Wall - Variation
with Shear Wall Size.

S o AT

Shear Wall Size

LZ.

»i
71

# Clear Span in Y-Y Direction
2 l:
Square Shear
¥ . , .
L 2?11 . _Aj/ Clear Span in X-X Direction

s

K -
. Total Span
Torsion Joint
““““ - Bending Joint
] ] | ] | |
l ] | | ] |
0.1 0.2 0.3 0.4 0.5 0.6

Shear Wall Size
Total Span

Fig. 5.2.4



96

of the torsional panel increases, as the shear wall dimension
in the X-X direction increases. The reason is that as the
shear wall dimension in the X-X direction increases, the span
of the bending panel increases as does the width of the tors-
ional panel. It‘is a well known fact that as the span of a
panel increases, its bending stiffness gets reduced. Likewise,
the torsional stiffness of a panel is increased by increasing
the width of the panel. Figure 5.2.3 shows that for a floor
system with a square shear wall for which the torsional panel is
similar to bending panel in shape and siée, the major contribution
" to direct stiffness comes from the bending panels while the
torsion panels contribute little. It can be seen that the
contribution of the corner panel is independent of the shear
wall size. This is probably due to the fact that when the shear
wall size was varied, the clear spans in both X-X and Y-Y
directions were kept constant. Hence the dimensions of the
corner panel (whose width is equal to the clear span in the
Y-Y direction and whose span is equal to the clear span in
the X-X direction), did not change as the shear wall size
changéd. .It is evident from Figures 5.2.2, and 5.2.4 that the
effect of continuity between the various panels is quite sign-
ificant.

To corroborate the analytical results, Moire® experi-

mental © models ES1 to ES7 which correspond to analytical models
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pPsio0-1, pPS10-2, PS10-3, PS10-4,PS10-5,PS10-8 and P510-9, res-
pectively,were tested. The experimentally and analytically
obtained direct stiffness coefficients, and.their ratios, are
listed in Table 5.3.

It can be seen that the experimentally obtained stiff-
nesses are consistently lower than the analytical values. There
are several probable reasons for this. Firstly, the finite
element mathematical model of the structure is always stiffer
than the actual structure. Secondly, it is impossible, in the
experimental model to achieve truly fixed column supports. Hence
the experimental model is more flexible than if it were completely
fixed.

It should be expected that the analytical models would
yield more accurate results for the idealized structure because
of the various sources of experimental error associated with the

Moire technique.



TABLE 5.3
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COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS

Direct Stiffness Floor is Loaded by Shear Wall Analytical
Experimental Analytical Experimental
ES; 26666 30336 1.14
ES, 22850 26397 1.15
ES3 22850 25400 1.11
ES4 13333 14519 1.09
ES, 20000 22411 1.12
ES6 10000 11934 1.19
ES 2580 3032 1.17




CHAPTER VI
ILLUSTRATIVE EXAMPLES
In this chapter, examples are given to illustrate the
use of the analytically and experimentally obtained infor-
mation including multiplying factors defined in this study,
in calculating stiffness coefficients for a vaiiety of flat

plate floor systems.

6.1 Stiffness Coefficients For Basic Flat Plate Floor System

In this section, the use of the graphs shown in Figures
4,1.1, 4.1.2...4.3.3, in calculating the values of stiffness
coefficients is illustrated with the help of two examples.
In each example, stiffness values obtained by making use
of the graphs are compared with those obtained by direct
finite element analysis.

EXAMPLE 1

Tt is desired to calculate the direct stiffness coef-
ficient at the shear wall and external column and the carry
over stiffness coefficient for the floor system whose %Z
scale model is shown in Fig. 6.1.1. The procedure is to
firstly obtain the values of the stiffness coefficients
for model Pl from table 4.1 and then to modify them to
account for differenceé in column size, shear wall size and
shape, etc. to obtain the stiffness values for the floor
system considered. The stiffness coefficients for model Pl

from. table 4.1 are;

99
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Direct bending stiffness at shear wall, KSS=28915 lb.inch.
Direct bending stiffness at column, K..=1562 1b. inch.
Carry-over bending stiffness coefficient KSC=KC§q504 ~ 1b. inch.

Correction For Clear Span

Since the clear span for model Pl is 9 inches while that
for the structure considered is 12 inches, the dimensions of
the model P1l, except for the floor thickness, are multiplied

by the ratio Clear Span of the floor system in Fig. 6.1.1 _ 12
Clear Span of the floor system of model Pl 9

A modified "basic floor system" with the same slab thickness
as model Pl but with the following dimensions, is obtained.
(a) Shear Wall size = 12 inches square

®) Totél span in both directions= 36 inches

(c) Clear span in botﬁ directions= 12 inches

(d) Column size = 0.666 inches square

Let this model be designated P1. Since, the bending
stiffness of a plate panel does not change if all of the in-
plane dimensions of the panel are changed in the same pro-
portions, the stiffness coefficients of the model ﬁl will be
the same as those for model P1l. Therefore, no correction
is required for the stiffness values in this step.

Correction For Shear Wall Size

The shear wall size for model Pl is next changed from
12 inches square to 10 inches square. Let this new model

be designated Pi.
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The dimensions of Pi will be

(a) Shear wall size=10Q inch square

(b) Total span in both directions=34 inches.,
(c) Clear span in both directions=12 inches.

(d) Column size = 0.666 inches.

Hence,

the value of Shear Wall Size (SH) for model Pi is % = 0.333
Total Span (TS)

kthe value of SH for model P! is 2 = 0.294
TS 1 .4 :

Thus,

from graph 4.2.1, the ratio of the value of KSS correspond-

. SH _ : SH _

ing to TS = 0.294 to the value of KSS corresponding to TS =0.333

iz =.0.80

Therefore,
The value of KSS for model PE = 28915.66 x 0.80 = 23150.0

Similarly, the value of direct stiffness at the exterior

column for PI is obtained by applying a correction for shear

wall size with the help of graph in Fig. 4.2.2, to that for

V4
Pl.
The value of KCC for Pi = 1562.50 x 0.97 = 1519.0

¢

Like wise,the value of carry-over stiffness for model Pl

with the help of graph 4.2.3, to obtain that for Pi.

The value of Kgo = Kog for Py = 1604,55 % 0.875 = 1404.0

is modified
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Correction For Shear Wall Shape

The dimensions of the shear wall for model Pi are changed

from 10" x 10" to 10" x 16". Let this new model be designated
1t

Pl - ‘

The dimensions for Pf will thus be

(a) Shear wall size in y-ydirection is SX=16 inches.
(b) Shear wall size in y-ydirection is SY=10 inches.
(c) Total span in x-x direction is TSX = 40 inches.

(d) Total span in y-y direction is TSY = 34 inches.

(e) Clear span in both directions ' = 12 inches.

(f) Column size is 0.666 inch square.

Thus,

The value of 55 for P! = 1.0

' ' SY 1 *
SX o -
The value of SY for Pl = 1.6
From graph 4.3.1, the ratio of the value of KSS correspond-

ing to g% =1.6 to the value of KSS for g% = 1.0 is=1.67.
There fore,

The value of KSS for Pi’ = 23150,0 x 1.67 = 38600.0

As indicated by graph 4.3.2 the value of K. is independent of

C

shear wall shape.

Therefore,
L J—
the value of KCC for Pl 1519.0
Next,
From graph 4.3.3 the ratio of the value of KSC or KCS
SX _ SX _ :
for Sy = 1.6 to the value of KSC or KCS for Sy = l.o is = 1.40

Therefore,

, L - = ,
the value of KSC or KCS for Pl 1404 x 1.40 1969.0.
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Correction For Column Size

The column size is next changed from 0.666 inches square

to 0.75 inches square. Let the new model thus obtained be

designated Piv.

The dimensions of model Piv are those for the floor system

in Fig. 6.1.1.

Next,

column size (C) W s 0.666_
clear span (S) for model Py 1s ==35~= 0.055

The value of

. column size (C) v . 0.75 _ .
The wvalue of clear span (3) for Pl is 47 = 0.0625

The values of the stiffness coefficients for PT are thus

modified for column size with the help of graphs in Figures
1v
l -

The final values of stiffness coefficients for model

4,1.1, 4.1.2 and 4.1.3 to obtain the values for model P

v
Pl

(a) Direct Bending Stiffness at Shear Wall,

, the floor system shown in Fig 6.1.1, are thus

38600.0 x 1.01
39000.0 1b. inch.

KSS

(b) Direct Bending Stiffness at column

1519.0 x 1.05
1590.0

K
cC

(c) Carry-over Bending Stiffness

1969.0 x 1.03

K
C5_ 2020.0 1b. inch.

|

Ksc
The values of the direct and carry-over stiffness coef-
ficients for the structure in Fig. 6.1.1 were calculated using
finite element analysis. The values obtained are compared

with the corresponding values calculated using the graphs,
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as described above, in Tahle 6.1(a). The stiffness coefficients
for the prototype of the model in Fig. 6.l1.1 are obtained by
multiplying the corresponding values for the model by the cube

of the scale of the model,

Example 2 As a second example, a model of the floor system
similar to that shown in Fig. 6.1.1 is considered. The dim-
ensions of this model are,

(a) Shear wall size in x-x direction = 10 inches.

(b) Shear wall size in y-y direction = 12 inches.

(c) Total span in x-x direction = 40 inches.

(d) Total span in y-y direction = 42 inches.

(e} Clear span in both direction = 15 inches

(£f) Column size = 1 inch square.

(g) Floor thickness = 6 inches.

The values of the stiffness coefficients for this floor
system are obtained using the graphs given in Figures 4.1.1
.e.4.3.3, as explained in example 1, and are compared with
those obtained directly, by finite element analysis in

Table 6.1(b).

Tables 6.1(a) and 6.1(b) show a good agreement between
the values obtained by making use of graphs and those obtained

by finite element analysis.
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6.2 Accuracy of Multiplying Factors

In this section two examples are presented to give an
indication of the accuracy with which the direct bending
stiffness coefficient at shear wall can be calculated by
using the multiplying factors, listed in tables 4.5(a),
4.5(), ... 4.5(e).

Example 3

 In this example, the direct bending stiffness at the
shear wall for the floor system shown in Fig. 6.2.1, is cal-
culated with the help of multiplying factors. The contr-
ibution of different panels and joints to the total stiffness,
obtained by making use of multiplying factors is compared
with those obtained by direct finite element analysis.

The floor system in Fig 6.2.1 can be subdivided into
eight different types of panels as described in section 2.4
Panels 1, 3, 6 and 8 are corner panels, 2 and 7 are torsional
panels and 4 and 5 are bending panels. In addition, joints
AB, CD, EF and GH are bending Jjoints (joint between corner
panels and kending panels), while joints aB, bC, dF and cG
are torsion joints (Joints between corner panels and torsion
panels). The contribution of the different panels and joints
to the direct bending stiffness coefficient at shear wall is
obtained employing multiplying factors as explained below.

Firstly, the value of the shear wall size to total span

ratio, (%g), and the ratio of shear wall dimension in the
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the x-x direction to that in the y~-y direction,(géx, are
calculated. The values of the multiplying factors corres-—
ponding to these ratios, are obtained from tables 4.5(a)

...4.5(e). For the floor system shown in Fig. 6.2.1

-S—I_-Iz —-—l -S-}—-<=
TS  3.57 SY

and the values of the multiplying factors from tables

1.5

4.5(a) to 4.5(e) are found to be :

FT = 2,033 Foc™ 0.162
Fgp = 2.488 FBC- 0.089
FC = 0.959

Next, the values of KEB, the bending stiffness of a
beam whose width, depth and span are equal to the width,
thickness and span respectively of the bending panel, KEC,
the bending stiffness of a beam whose width, depth and span
are equél to those of the corner panel and KET, the torsional
stiffness of a rectangular bar whose width, depth and span
are equal to those of the torsional panel, are calculated
as described in section 2.5.
For the floor system shown in Fig. 6.2.1, the span of
the bending panel is LB = 9,375 inches, the span of
the corner panel is Lo = 9.375 inches and the span
. of the torsional panel is LT = 6.25 inches.
The widths of the torsional, corner and bending panels are
7.5, 6.25 and 5 inches respectively. The modulus of elastic—

ity,E, for the material is assumed to be 441000.0 PSi.
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Thus,
A 3
= gmn = 4RO X B OB e e,
9.375
KEC = 4EI = 4 x 441000.0 x 1 x 6.25 x (0.25)°
I Iz : = 1530.0
9.375 l1b. inch,and

_ (1.pe3
KET = (I,bt G)/LT

where,
b=width of torsional panel
c=thickness of the panel =

= 7.5"
0.25"

G = :E. = 441000.0
2(1+v) ~ 2(1+0.3)
= shearing modulus for material

0.25)
7.5

4

= 163333.4 1b./ incn?

= L = L (12
I,;= 3(1-0.635) = 5 (1-0.36 x

0.333 in.

Therefore KET= 0.333 x 7.5 x (0.25)° x 163333.4
625
= 1020.0 1b. inch.

Next, the contributions of the various panels and joints, to
the total stiffness is calculated as explained in section
- 2.5,

The contribution of a bending panel is
KB = FB X KEB
= 2,488 x 1222.2

3040.0 1b. inch.

i

The contribution of' a torsional panel is

KT = FT X KET

= 2.033 x 1020
2070.0 1b. inch

-
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The contribution of a coxnex . panel is

K= F.x KEC

= 0,959 x 1530
= 1470.0 lb. inch.

The contribution of a bending joint (a joint between a

corner and a bending panel) is

KBC —:FBC.X LB X t7 X E
B
where, B = width of bending panel = 5.0 inches
t = Floor thickness = 0.25 inches
therefore,
K,~= 0.089 x 9.375 x 0.253X 441300.0 = 1153.0
BC £
Finally,

the contribution of a torsion joint(a joint between

a corner and a torsional panel) is

]

| P LgEtT E
e = b
3

0.162X6.25X0.25"x441000.0
7.5

= 928.0
The floor system shown in Fig 6.2.1 consists'of four corner
panels, two bending panels, two torsional panels, four torsion
joints and four bending joints.
Thus, the total direct stiffness of the floor plate at

the shear wall is
C
= 4 x 1470 + 2x3040 + 2 x 2070 + 4x1150.0
| + 4 x 928.0

=4 x K, + 2XKB + 2XKT + 4XKBC + 4xKTC

= 24212.0 1b. inch.
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The contributions of different panels and joints to the
total stiffness for the floor system shown in Fig. 6.2.1,
obtained with the help of the multiplying factors and by

finite element analysis are given in table 6.2 (a)

Table 6.2 (a)
CONTRIBUTION OF DIFFERENT PANELS ‘AND JOINTS

TO THE TOTAL STIFFNESS:

Different Obtained By Obtained From =~ . " . Percentage

Panels and Finite Elem. Multiplying Difference Difference

Joints Procedure Factors. . , L

Two Bend- 6412.66 6080.0Q 332.66 5.18%

ing Panels

Two Tors-

ional Panels 4178.417 4140f0 38.47 0.92%

gour'corner 6167.45 5880.10 287.45 4.65%
anels

Four Bend- .. o 4600.0 207.0 4.7%

ing Joints

Four Tors- 3,49 ¢ 3712.0 233.0 6.6%
- ional Joints

. Total 24630.527 24212.0 418.52 1.7%
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Examgle 4

As a second example, a model that igs identical to that
shown in Fig G.é.l,except for the plate thickness, is
considered. The floor thickness for the model of examples
4 is 0.3 inches. The values of the contributions for different
panels and joints to the total stiffness is calculated with
the help of the multiplying factors, as in example 3. They
are aléo compared, in table 6.2(b) with thevalues obtained

by direct finite element analysis.

Table 6.2 (b)
CONTRIBUTION OF DIFFERENT PANELS AND JOINTS

TO THE TOTAL STIFFNESS
Different Obtalned By Obtained from Difference Percentage

Panels and Finite Elem.multiplying Difference
Joints Procedure Fractors

Two Bending 149q9,¢ 10500.0 409.0 3.75
Panels

T™wo Torsion-

al Panels 7180.0 7160.0 20.0 0.278
Foar Corner 45435 10160.0 388.5 3.68

Panels

Four Ben- 7598.3 7900.0 301.7 4,0%

ding Joints

Four Tocrs- a -
ional Joints6128'3 6400.0 271.7 4.,4%

TOTAL 42364.0 42120.0 244.0 1.05%
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Tables 6.2(a) and 6.2(b) show that the values of the
contributions of various panels to the total direct stif-
fness at shear wall, obtained with the help of multiplying
factors, are quite close to those obtained by direct fin-

ite element analysis.
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6.3 Lateral Load Analysis of a Frame Work

In this section, an example is given to demonstrate
the use of the multiplying factors developed in this study, in
the lateral load analysis of a multistorey flat-plate shear
wall_structure.‘The multiplying factors are used to determine
direct stiffness coefficients for the shear wall. Procedures
formulated in previous studies are used to determine the
direct stiffness coefficients at the columns, as well as the
carry over stiffness coefficients.

Example 5

In this example, a typical intermediate floor of a tall
building shown in Fig 6.3.1 is considered. A common procedure
in the lateral load analysis of flat plate multispan structure
is to subdivide the whole structure into a series of parallel
planar frames. Each such planar frame is analyzed seperately
and then the frames are combined in such way that compatibility
and equilibrium conditions are fully satisfied.

To carry out the lateral load analysis of the considered
structure, the structure is subdivided into three parallel
planar frames, A, B and C, as illustrated in Fig 6.3.1.

Frame A, which is identical to frame C, and frame B are
shown in elevation in Figures 6.3.2 and 6.3.3 respectively.
The determination of the bending stiffness coefficients for
each structural element in each frame is essential for the

analysis.
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6.3.1 Bending Stiffness Coefficients For the Floor Systems

-Supported Only On Columns

The floor system of the planar frame A is supported
only on columns and does not include any shear walls. Let
it be assumed that the sizes of the columns, thickness of the
slabs and floor plan are the same for each storey of the building.
Calculations for the bending stiffness coefficients for the
structural members in the first storey only are given below.
In order to simplify the calculations, the moment of inertia
of the uncracked sections has been used and at the same time
the effects of reinforcement have been nreglected.

Direct Bending Stiffness Coefficients

In Fig 6.3.2, the direct bending stiffness coefficients
for columns ab, cd, e £ and gh are equal to those for columns
1, 2, and 3, 4 respectively in the floor plan shown in Fig
6.3.1. Since all columns for the floor system shown in Fig
6.3.1 are of the same size, the stiffnesses of columns ab, cd,
ef, and gh will also be equal.

Each column is 1 foot square. The moment of inertia of

each column about the bending axis is

1= x 12k (12)° = 1728 inch®
The modulus of elasticity for concrete is assumed to be

4 x 10° psI.

The storeyheight is 96 inches,

Therefore, the direct bending stiffness coefficient for each

)
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column is

. 4xEXTI
~ storey height

4 x 4 x 10° x 1728

96

288 x 10° 1b. inch.

Next, the structural members bd, df and fh are assumed to be
identical and to represent the floor slab between columns 1
and 2, 2 and 3, 3 and 4 respectively, in the floor sysﬁem
shown in Fig 6.3.1. Thus the direct bending stiffness of the
floor member at b in Fig 6.3.2, will be equal to that at h,

~ the value at d will be: equal to that at £, and the total stiff-
ness of the floor members at d or £ will be double that

at b or h. The reason is that at d or f two floor members
frame into each of joints d and £, while one structural member
frames into each of joints b and h. As the floor system in
the planér frame A is supported on columns only, the concept

(10)

of a reference beam, used by Carpenter can be employed,
Carpenter defined a reference beam, as shown in Fig 6.3.4,

as a hypothetical wide, shallow structural member whose -

width, .depth and span are equal to the width, thickness and length
of the flat plate flocr panel. He presented a graph of

the variation of the stiffness of the floor panel relative

to that of the reference beam with the ratio of column size

to span length. This graph has been reproduced in Fig 6.3.5.

‘The dimensions 6f the reference beam for member bd

in Fig 6.3.2 are:
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d (Beam depth)

= (Slab thickness)

Reference Beam

Fig. 6.3.4
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width of reference beam, m = 12.5 feet

span of reference beam, g = 15 feet

depth of reference beam, d = 6 inches
Therefore,

The direct bending stiffness of the reference beam is

A xExmxd _ 4x4x10° x 12.5 x 12 x 6°
L 0x 12 - 15 x 12 x 12
= 24.0 x 10’ 1b. inch.

Next,

column size _ 1 __
span length = 15 0.066.

Thus, from the graph in Fig 6.3.5, the ratio of the direct
stiffness of the floof plate to that of the reference beam
for the present case is 1.0,
Therefore,

the direct bending stiffness at b or h in Fig 6.3.2 is

7 %« 1.0 = 24.0 x 10’ 1b. inch.

24.0 x 10
Consequently,

the direct bending stiffness at d or £ in Fig 6.3.2
is 48.0 x 10’ 1b. inch.

Carry-Over Bending Stiffness Coefficients

Since columns ab, cd, ef and gh in Fig 6.3.2 are
prismatic members, the value of the carry-over bending
stiffness coefficient column is

_2xE=x1I
" Storey height
2 x 4 x 10° x 1728

: 86
144 x 10" 1b

. inch,.
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As yet no direct information is available concerning
carry-over bending stiffness coefficients for floor systems.
However, carry-over factors for floor systems such as
that in frame A, have been presented by carpenter(lo).

He has presented @ graph relating carry-over féctors to
the ratio of column size to span length.

For the floor system of frame A

column size _ 1 0.0 666.

span length = 15

From Carpenter's graph, reproduced in Fig 6.3.6, the value
of the carry-over factor is 0.32.
Therefore,

the carry over bending stiffness coefficient for
members bd, df or fh, in Fig 6.3.2, is equal to the
direct bending stiffness coefficient times the carry-
over factor

=24.0 x 10’ x 0.32

=7.67 x 107 1b. inch. -

6.3.2 Bending. Stiffness Coefficients For Floor Systems

With Shear Wall

The floor system of planar frame B has a box type
shear wall and columns located on a rectangular grid,
as éhown in Fig 6.3.1. Structural member og of the frame
B, shown in Fig 6.3.3, represents the floor slab between
the first and third rows of colums in Fig 6.3.1, while
member gs in Fig 6.3.3 represents the floor slab between

the third and fourth rows.
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Direct Bending Stiffness Coefficients

In Fig 6.3.3, the direct bending stiffness coefficient
for columns pg and rs is equal to the sum of stiffnesses of
columns 5 and 7, 6 and 8, respectively, in the floor system
shown in Fig 6.3.1. Since all columns in the floor system
shown in Fig 6.3.1 are assumed to be the same size, the
stiffnesses for columns pg and rs also be the same.

The size of each column is 1 ft. square. The moment
of inertia of each column about its bending axis is

I=15 x 12 x (12)°

= 1728 inch.?

The modulus of elasticity for concrete is again

4 x 106 PSI
Also, the length of each column is 96 inches

There fore,

the direct bending stiffness coefficient for each

column is =4 XxExI
span
- 4 x 4X106 x 1728
36
= 288 x 10° 1b. inch.

Thus, the direet bending stiffness coefficient for

structural member pg or rs in Fig 6.3.3 is

2 x 288 x 106

576 x 10° 1b. inch.

1l

Structural member gs of planar frame B shown in Fig
6.3.3 represents a floor system supported on columns only.

The direct bending stiffness coefficient can be calculated
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using the concept of the reference beam as explained in
section 6.3.1, The dimensions of the reference beam for
member gs in Fig 6.3.3 will be:

50 feet

width of reference beam, m

span of réference beam, & = 15 feet

depth of the reference beam, d = 6 inches
Therefore ,

the direct bending stiffness of the reference beam is

4 x FE xm X d% _ T 4-x 4fx¢106 x 50 x 12 x 63
2 x 12 - 15 x 12 x 12
= 96.0 x 10’ 1b. inch.
Next,
column size. _ 1 _ 0.066.

span length =~ 15
From the graph in Fig 6.3.5, the value of the ratio of

the direct stiffness of the floor plate to that of the
referencé beam is 1.0
Therefore,

the direct bending stiffness at s in Fig 6.3.3 is

7 7 1b. inch.

96.0 x 10" x 1.0 = 96.0 x 10
Since two floor members meet at joint g, the direct
bending stiffness at g will be twice that at s.
Therefore,
the direct stiffness at q is = 192.0 x 10’ 1b. inch.
The direct stiffness coefficient at the shear wall,
for member og in frame B, can be calculated using

multiplying factors. Fig 6.3.7 shows the portion of the
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original floor plan extending one panel in each direction
from the shear wall. The various floor panels are next
classified according to their contributions to the direct
bending stiffness at the shear wall. Panels 1 and 2

will be torsional panels, panels 3 and 5 will b€ corner
panels and panel 4 will be a bending panel. In addition,
joints gk and fj are bending joints, the joint between a
corner panel and a bending panel, while joints gh and ef
will be torsion joints, the joint between a corner panel
and a torsional panel.

Next, the value of the shear wall size to total span
ratio (%%) and the shear wall dimension in the x - x
direction to shear wall dimension in the y - y direction
ratio (2%) are calculated. The values of the multiplying
factors corresponding to these ratios are obtained from

tables 4.5(a) ,..4.5(e). For the floor system shown in

Fig 6.3.7 SH _ 1 SX _ o6
TS 3 ’ sy & ¢

and the values of the multiplying factors from tables

4.5(a) ...4.5(e) are found to be:

FT = 1.457 FTC = 0.134
FB = 2.308 FBC = 0.216
FC = 0.445

Now the values of KEB, the bending stiffness of a beam
whose width, depth and span are equal to the width, thick-

ness and span, respectively, of the’bending panel, KEC, the
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bending stiffness of a beam whose width, depth and span are
equal to these of the corner panel and KET, torsional stiff-
ness of a rectangular bar whose width, depth and span are
equal to those of the torsional panel are calculated as
described in section 2.5.

For the floor system considered,

span of bending panel, Lg= 180 inches

span of corner panél, LC= 180 inches

span of torsion panel, LT= 300 inches
Modulus of elasticity, E = 4 x lO6 PSi

E 4 x 19°

= 1.54 x 10°% psr

Thus ax4x10° x_1(25x12) (6)° ;
wmp MBI _ 12 = 48x107 1b. inch.
I 180
= 4x107 1b.,ft.
me 4BL = X410 %75 (55419) (6)7 = 48 x 107 1b. inch.
2 180
Lc
= 4x107 1b. ft.
T 3
KET= —* gt ¢
T
where,

b= width of torsional panel = 180 inches.,

t= thickness of torsional panel = 6 inches.

=1 (1-0.63%) = % (1- 5
I,= 3 (1-0.637) = 5 (1-0.63x335) = 0.333

Therefore, 3 6
- 0.333x180x(6) "x1.54x10

300

= 5.4 x 107 1b. ft.

KET =




Pa Y, vhg
LR
t 5638 as explained in section 2.5.

LT

{1j 7Tne contribution of one bending panel is

Ao} »

KB = FB X KEB
= 2.308 x 4 x 10/
= 9.232 x 10/ 1b. ft.
(1i1}7ne contribution of one corner panel is
KC = Fc X KEC
= 0.445 x 4 x 10/
= 1.78 x 10/ 1b. ft.
(1i1)The contribution of one torsional panel is

KT = F,_ x KET

T
=1.457 x 5.4 x 10/
= 7.85 x 10/ 1b. ft.

(iv} The contribution of a bgnding joint is

X - FBC X LB X t7 x R

BC , B

whayre ¢

¥ = width of the be nding panel = 300 inches

t = floor thickness = 6 inches

th@!efere,
v 20.216 x 180 x 6° x 441000.0
e 300

= 1.03 x 10° 1b. ft.

The co;tribution of a torsion joint is
# B b
=-2:134 x 300 x 6°

180.0

X 441000.0

« contributions of the various panels and joints

¢ ::e floor system to the total direct stiffness are

132
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Finally the contributions of the various panels and joints,
in the floor system are summed to obtain the total stiff-
ness. Since the floor system consists of two torsional
panels, two corner panels,cne bending panel, two torsion
joints and two bending joints,

The total direct bending stiffness at the shear wall

is KSS= 2 X KT + 2 x KC+ KB + 2 x KTC + 2 x K

BC
= 2% 7.85 x 107 + 2 x 1.78 x 107 + 9.232 x 107
+2x 1.76 x 10° + 2 x 1.03 x 10°
= 29.05 x 10’ 1b. ft.

Since tables 4.5(a), 4.5(b)...4.5(e) for the multiplying
factors are developed for a 2 foot square column, whereas
the floor system considered had 1 foot square columns,
the value of KSS must be corrected for the effect of column
size. The correction can be determined from table 10. Table
10 shows that the value of KSS reduces from 31421 to
28915 as the column size changes from 2 feet square to
1 foot square.

Thus the value of KSS should be reduced in this case,

hy (31421 - 28915 ) x 100 = 8%
31421

Therefore
for the floor system considered, the corrected value

of KSS will be

= 29.05 x 10’ x 0.92

7

]

26.7 x 10" 1b. ft.
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......

Since the frame in Fig 6.3.3 consists of the shear
wall, a 50 ft. wide section of the floor slab and two column
lines parallel to the plane of the frame, the carry-over
bending stiffneés coefficients for structural members pq
or rs in Fig 6.3.3 are each twice the value for a single
column.

Since the columns are prismatic, the carry-over

stiffness coefficient for one column is

_2xEx1T
storey height

_ 2 x 4 x 10° x 1728
56

144.0 x 10° 1b. inch.

Therefore,

the carry-over bending stiffness coefficient for
member pg Or rs is 288 x lO6 1b. inch.

Member gs in Fig 6.3.3 is similar to member bd
in Fig 6.3.2 and represents a floor system supported on
columns only. Therefore, the value of carry-over stiffness
for such a member can be obtained as explained in section

6.3.1.

For this floor system

- column size _ 1
total span 15

= 0.0666
Thus from Pig 6.3.6, the value of the carry over factor

is 0.32, and the value of direct bending stiffness for

7

member gs from section 6.3.2 is 96.0 x 10" 1lb. inch.
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Therefore,
the carry over bending stiffness for member gs is
equal to the direct stiffness x carry over factor

= 96.0 x 10° x 0.32

= 30.8 x 10° 1b. inch.

The member oqg of planar frame B;‘shown in Fig 6.3.3
represents a floor system shown in Fig 6.3.7. A general
procedure for calculating carry-over stiffness coefficient
for such members in situations when one or. more floor panels
are missing, can not be established with the help of the
- available information. However, the member is similar to
member gs except that it's one end is supported on shear

wall rather than two columns. Therefore, the carry-over

stiffness for og is approximately equal to that of member

qs.



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

1

7.1 Conclusions

In this investigation, the bending stiffness charact-
eristics of flat plate floor systems in laterally loaded shear
wall-frame structures have been studied and the following con-
clusions reached.

1. The direct bending stiffness coefficients when the
floor is loaded through the shear wall are highly
sensitive to shear wall shape and size and are rel-
atively insensitive to the column size.

2. The direct bending stiffness coefficients when the

' floor is loaded through exterior columns are indep-
endent of the shear wall shape.

3. The carry-over bending‘stiffness coefficients are
ﬁore sensitive to the shear wall shape and size
than the column size.

4. The experimental models used in determining some of
the stiffness coefficients are 10 to 20 percent more
flexible than the corresponding analytical models.

5. The direct bending stiffness coefficients for a
variety of flat plate floor plans can be easily
calculated with reasonable accuracy using the
multiplying factors defined and evaluated in this

study.

136
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For a flat plate structure with a square shear
wall, the major contributions to total direct bend-
ing stiffness at the shear wall comes from the
benéing panels (as defined in this study), while
the contribution of the torsional panel is minimal.
The effect of continuity between the different
floor panels has a very significant effect on the

stiffness of the floor system.

The bending stiffness coefficients for the basic

flat plate floor plan with sguare corner panels,
but a wide range of dimensions, can be calculated
with reasonable accuracy with the help of graphs

given in the fourth chapter of this study.

&
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7.2 RECOMMENDATIONS FOR FURTHER STUDY

The primary purpose of this study has been to devel-
Ope. shear wall stiffness coefficients for use in ana-
lyzing shear wall-frame structures. The ultimate
objéctive of further work in this area should be to
permit the calculation of these coefficients for
structures with arbitrary floor plans and shear wall
shapes and sizes and for flat slab and waffle slab as

well as flat plate floors to be usefully applied, the

coefficients should then be incorporated into a struct-

ural analysis computer program.

Non-dimensional factors for use in determining direct
bending stiffness coefficients at the shear walls were
evaluated in this study. A further study should be
carried out to establish similar multiplying factors
for carry-over stiffness coefficients and direct bend-
ing stiffness coefficients at exterior columns.

In this study, structures with plates extending a
maximum of three panels in each direction were con-
sidered. Further studies should be carried out td
investigate the effect of continuity when additional
panels are added.

The behaviour of the flat plate floor systems with

shear walls in the inelastic region is still an inter-

-esting area of research.

Possible failures of the floor slab due to punching



139

shear and diagonal tension at the junction of the
shear wall and the floor slab and the possible buck-
ling failure of the slab requires considerably more
study.

The dynamic behaviour of floor systems with shear

walls should be studied.
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1.0 PROGRAM PURPOSE AND STRUCTURE IDEALIZATION

The primary purpose of this program is the analysis of highway
girder bridge decks cf arbitrary geometry. The program may, however,
be used for the analysis of general slab systems under lateral load,
including slabs which are stiffened by discrete ribs.

The deck slab is idealized by a mesh of plate bending finite
- elements. The stiffness of each quadrilateral element is computed and
assembled into the structure stiffness matrix. Variation in deck slab
properties from element to element is permitted. The program makes use
of the Felippa Q-19 plate bending element with orthotropic elastic
properties. : .
A The girders and diaphragms are idealized by beam finite elements
joining the nodal points of the deck slab elements. Again, each element
stiffness is individually computed and assembied into the structure
stiffness matrix. The beams are assumed to be in the plate midsurface
+ for the purposes of idealization and analysis. However, eccentrically
.connected ribs can be considered by assigning appropriate effective
~stiffnesses. These effective stiffnesses can be specified as input
data or they can be computed automatically within the program. Rihs which
are too closely spaced to be .represented as individual beans can be
"smeared" by assigning appropriate anisotropic properties to the plate
eleuments.

Written in FORTRAN IV, the program presently uses the overlay
feature to economize computer storage requirements. If necessary, sub-
stitution of "subroutine! for "overlay" statements will convert the
program to the standard subroutine form.

Other important features of the -program are:

(a) For regular meshes, automatic generation is available for nodal
point coordinates, nodal point arrays, support conditions, and load
data. Data preparation effort may be considerably reduced if these
options are used.

- (b) Multiple load cases can be considered without redefining the
structure data for each case. TFive load options are available,
which include single loads, uniformly distributed loads, truck
loading, and any combination of these.

(c) 1Internal hinge lines can be specified.
(d) AThe program can be used directly for the analysis of arbitrary

anisotropic slabs, arbitrary beam gridworks, and arbitrary combina-
tions of slabs and beams.
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2.0 PROGRAM INPUT DATA f - | o E ?

Input to the program is by punched cards. Standard FORTRAN format
has been used throughout, and is identified for each card by A, E, F or
I specifications. :

Basically the data deck will consist of operation control cards,
structure definition cards, and load case cards. The organization of
data on each type of card is described in the following paragraphs.

A. Start Card (A8) - One card at the beginning of each problem.
Cols 1-5 punch the word 'START'

B. Title Card (10A8) - One card for each new problem.
Cols 1-80 any heading to be printed at beginning of output,
all keypunch symbols are acceptable. :

C. Basic Control Card (10I5) - One card for each problem.
Cols 1-5 NPEL number of plate elements
' 6-10 NBEL number of beam elements
»11-15 NJ number of nodal points

16-20 NJBC number of supported'nodal points
21-25 NPT number of different plate element types ' _ >_:_ -
26-30  NBT number of different -beam element types o

31-35 ISO'if set to O, the elastic properties of the
‘ plate elements will be defined
directly by the thickness,elastic
moduli and Poisson's ratio. of the
plate material.

if set to 1, these properties will be detined by
equivalent flexural and torsiomal 00
inertias per unit length of plate.
36-40 NHNP number of nodal point pairs which are connected
by hinges (see Cardl).

41-45 NQUAD if set to O, pléﬁes specified to have identical
elastic properties (see Card D.) are
also assumed to have identical shape.

if set to 1, all plates are assumed to be of
different shape. See Note 3.1 for
discussion of significance.

R
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Cols 45-50 MPRINT if set to 0, only the average value of the
plate element moments at each
nodal point are printed.

if set to 1, not only the average moments
but also the moments from each
contributing element at each
nodal point are printed.

A value of 0 is recommended.
Plate Properties Card - Variation in plate properties from
element to element is defined by assignment of plate property
type numbers to elements of different properties. For uniform
properties (no variation) the number of different plate
element types (NPT, Card C) is I, for non-uniform properties
NPT will be greater than 1, and it will be necessary to input
one plate property card for each plate type.

Either: Orthotropic plate properties - (ISO = 0, Card C)
(F10.5, 2E10.4, 3F10.5) - one card for each plate type.

Cols 1-10 T slab thickness
11-20 El elastic modulus in principal direction 1
21-30 E2 elastic modulus in principal direction 2
31-40 Ul Poisson's ratio in principal direction 1
41-50 . U2 Poisson's ratio in principal direction 2
51-60 ALPHAT torsion parameter, if not specified it is

set to 1.0, the correct value for a solid
slab.

Or: Equivalent plate properties - (ISO = 1, Card C)
(E10.4, 6F10.5) one card for each plate type.

Cols 1-10 E elastic modulus of slab material
11-20 U Poisson's ratio of slab material
21-30 T siab thickness
31-40 I1 equivalent flexural inertia per unit

length in principal direction 1




41-50

51-60

61-70

12
J1

J2
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.

equivalent flexural inertia per unit ,
length in principal direction 2 : ’ ’:>

equivalent torsional inertia per unit
length in principal direction 1

equivalent torsional inertia per unit

‘length in principal direction 2

Note that in cases where several property cards are necessary,
only a few parameters may vary. In this event those that are
constant may be left blank on the second and succeeding cards.
The program will then set these parameters equal to those
specified on the first property card.

E. Plate Properties Distribution Cards (40I2) - as many cards as

needed.

Cols 1-80

plate element type numbers,

Omit if there is only one plate type (NPT =1).

40 type numbers per card in numerical order -
of element number.

F. Beam Properties Cards (8E10.4) - one card for each beam type.

Either - for beams eccentric to plate midsurface

Cols 1-10

11-20

21-30

31-40

41-5Q

51-60

61-70

71-80

A

I

J

EXEN

BE

BNU

cross sectional area ')

flexural moment of inertia with respect to
the beam's neutral axis

torsional moment of inertia

eccentricity of beam neutral axis from
plate midsurface

distance from beam neutral axis to lower
fiber :

effective width of slab that can be
assumed to act as an upper flange to the
beam.

elastic modulus of beam material

Poisson's ratio of beam material

Or - for beams symmetric about plate midsurface

Cols 1-10

11-20

A

1

cross sectional area

flexural moment of inertia
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Cols 21-30 ~J torsional moment of inertia
31-40 ‘ -Yl .aisﬁéncé>from neutral axis to lower figer
41—50- Y2 distgnce from neutral axis to upper fiber
51-60 blank |
61-70 ‘ BE elastic modﬁlus of beam material
71-80 BNU Poisson's ratid of beam material

If there is a variation in the beam properties, several property
cards may be necessary. 1In this event, a beam element type number
is assigned to each element to describe the distribution of these
properties. Note that these property cards are input in numerical
order of the type number; and further note that if either BE

or BNU are omitted from the second and succeeding cards, the
value(s) from the first card will be assumed by the program.

Beam Properties Distribution Cards (40I2) - as many cards as
needed. Omit if there is only one beam type (NBT = 1).

Cols 1-80 beam element type numbers,

40 type numbers per card, in numerical order
of element number. :

Nodal Point Coordinate Cards (I5, 2F10.5, 215, 2F10.5) - one
card for.each nodal point unless the generation options are used.

Cols 1-5 | .nodal point number
6-15 x~-coordinate of point
16-25 : y-coordinate of point
26-55 : used for layered generation, otherwiseuléave
blank

These cards are input in numerical sequence. If any card
is omitted, straight line equal increment generation of coordin-
ates takes place, or, if cols 26-55 have been used, layered
generations occur. Refer to Note 3.2 for explanation of the
coordinate system to be used and to Note 3.3 for details of
generation options. : i :
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I. Plate Nodal Point Array Cards (5I5, 2F5.0, 2I5) - one card for
each element unless the generation options are used.

Cols 1-5 element number

6-10 nodal point I
11-15 : nodal point J
16-20 nodal point K
21-25 nodal point L
26-30 angle ¢ in degrees
31-35 angle ¢ in degrees
36;45 used for layered generation, otherwise ieave
' blank. :

These cards are also input in numerical sequence. 1If a
card or group of cards is omitted, layer generation takes place
(refer to Note 3.4.1). The four nodal point numbers I, J, K
and L must be input in counter-clockwise sequence. The angle ¢
is the angle between the global x-axis and the direction of the
principal orthotropic axis (l-axis) of the plate material.
The angle O is the angle between the principal axes of the
plate material. If cols 31-35 are left blank, angle ¢ is assumed
to be 90 degrees (refer to Fig. 3).

J. Beam Nodal Point Array Cards (4I5) - one card for each element
' unless the generation option is used.

Cols 1-5 element number
6-10 ncdal point I
11-15 nodal point J
16-20 used for line generation, otherwise leave blank,

refer Note 3.4.2 for details.

K. Support Condition Cards (I5, 3I1, 22X, 2I5) - one card for each
supported nodal point unless generation option is used.

Cols 1-5 nodal point number

6. set to 1 if vertical deflection is to be
restrained; otherwise leave blank

7 set to 1 if rotation about x-axis (fig. 1)
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is to be restrained, otherwise leave blank

8 set to 1 if rotation about y-axis (fig.l) is
to be restrained, otherwise leave blank

Cols 9-30 blank

31-40 used for line generation as noted below,
otherwise leave blank

31-35 increment between two successive nodal point
numbers which have same support condition as
that just described

36-40 number of the last nodal point in this sequence
to have this support condition

L. Hinge Line Data Cards

First Card (EL0.3)

Cols 1-10 spring constant approximating stiffness of
hinge linkage. For an assumed rigid linkage

8
enter 10 k/in. A larger value may cause
numerical instability.

Each hinge is defined by two nodal points located on either side
of the hinge. These pairs of nodal points are identified on the
following set of cards.

(Remaining Cards (16I5) - as many cards as needed

Cols 1-5 number of first nodal point in first hinge pair
6~10 number of second nodal point in first hinge pair
- 11-15 number of first nodal point in second hinge pair

and so on for as many hinges as specified.

M. Load Card (A8) - one card at béginning of each new loéd case

Cols 1-4 punch the word "LOAD"
9-80 any title describing this loadcase - all key-

punch symbols are acceptable.

N. Basic Load Data Card (5I5) - one card for each load case.

Cols 1-5 - number of single loads applied at nodal points
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Cols 6-10 number of uniformly loadcd areas foar which the
load is to be distributed to the nodal points
in proportion to the tributary area of each
point.

11-15 number of single loads applied at arbitrary -
points (x,y)

16--20 number of uniformly loaded areas for which
the load is to be distributed to the nodal
points by consistent load theory

21-25 number of trucks

0. Single, Nodal Point Load Cards(I5, 3E10.3) - one card for each
loaded nodal point

Cols 1-5 nodal point number
6-15 applied vertical load
16-25 applied moment about global x-axis
26-35 applied moment about global y-axis

P. Uniform Tributary Area Load Cards (I5, F10.5, 31I5) - one card
for each uniformly loaded area

Cols 1-5 élement number

6-15 intensity of uniform load expressed in units
of load per unit area.

16-20 N2
21-25 MOD used for generation as described
26-30 NLIM below, otherwise leave blank.

N2 is the number of the last element, in the direction of
element numbering, to have the same load intensity.

MOD is the element number difference across element layers
within the same area.

NLIM is the last element number in the area.

P
| S

o,
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Q. Single, Arbitrary Load Cards (3E10.3) - One card for each load.

Cols 1-10
11-20

21-30

x - coordinate of load
y - coordinate of load

applied vertical load

R. Uniform, Consistent Load (I5, F10.5, 3I5)

Cols 1-5

6-15

16-20
21-25

'26-30

element number

intensity of uniform load expressed in units
of load per unit area

N2 used for generation as described
for Card P

MOD

NLIM

S. Truck Load Cards - one set for each truck

Vehicle Identity (A8, 2X, F10.5)

"Cols 1-8

11-20

Vehicle Properties

Punch identity of vehicle, two options are
presently available:
If HS20 is used, program assumes that the

'standard AASEO HS20 vehicle, has been

requested, and does not require the dimensions
or wheel loads to be input. These are available
to the program in units of inches and kips.
If SPCIAL is used, program requires that the
vehicle dimensions and wheel loads be specified
as noted below.

1
If HS20 option has been requested, the wheel
base length for the rear axle must be punched
in these columns, otherwise leave blank.

These cards are omitted if HS20 vehicle has been requested
on the previous card.

(a) one card for each truck (I5)

Cols 1-5

number of axles
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(b) one card for each axle (E10.3, 15) . i:>

Cols 1-10 wheel base length (for first axle this
length is zero)

11-15 number of pairs of wheels on axle
(c) one card for each wheel pair on each axle (2E10.3)
Cols 1-10 ‘ axle length between wheels in eacﬁ pair

11-20 wheel load (both wheels in pair are assumed
to have equal load)

Vehicle coordinates (3F10.5)

Cols 1-10 X - coordinate of center of front axle
11-20 . y = coordinate of center of front axle
21-30 angle of attack of vehicle with respect to

positive direction of x-axis
T. Next Operation Card (A8) - one card

Cols 1-6 Select next operation and punch appropriate : )
word. Possible operations are: ’

START: commence a new analysis with a new
data deck

LOAD: 'rerun'théugémé“broblem fer a new
load case

STOP: stop program execution
’3.0 EXPLANATORY NOTES

3.1 NQUAD Significance

The variable NQUAD has been defined on Card C of the Input Data
Deck. If set to O, plate elements which have consecutive element nurbers and
also have identical plate type numbers are assumed to be of identical shape.
The program does not re-compute the element stiffness, and hence computer
‘time is saved. If NQUAD is set to 1, each element is assumed to be
‘different and a new stiffness matrix is computed for each element.

In cases where there are few geometrically different elements it will
be advantageous to assign separate plate property numbers to plates of
identical shape, even if they actually have the same properties, since
by setting NQUAD to O, the structure stiffness formation time is reduced.

NG,
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3.2 Coordinate Systems and Sign Convention

The slab is referenced by a global right-handed cartesian (x-y-2z)
system of axes with the x-y plane lying in the midsurface of the slab.
Positive sign conventions for displacements and rotations of this mid-
surface are indicated in Fig. 1.

Applied concentrated loads have the same sign convention as the
corresponding displacements.

6x
L

z, W (positive downwards) 5o I X

&y

Y

Fig 1. Glohal Coordinate System and
’ Displacement Sign Convention

Sign conventions for slab moments are shown in Fig. 2. Positive bending
moments produce compression in lower fibers.

Fig. 2. Slab moments per unit length
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Engineering convention has been used for the signs of the beam moments
and stresses. That is, a positive bending moment causes a positive
(tensile) stress in the lower fibers of the beamn.

3.3 Nodal Point Coordinate Generation

Two types of coordinate generation are available:

3.3.1 Straight line generation
If the (L-1) nodal cards for points N+1, N+2 ..... N+L-1 are
omitted and cols 26-55 of the N-th Card are left blank, the missing

coordinates will be generated as those of (L-1) equally spaced points
on a line joining N and (N+L). That is '

Xtk © X1 T

Ytk = Iyl T Y

h dx = - L dy = - L £ k = ess L-
where dx (XN+L xn)/ y (yN+L yN)/ o# 1,2 L-1

3.3.2 Layer generation

This can be used after two "lines" of sequential nodal points have
been previously defined, to construct the complete mesh or part of
it by extrapolation. If on the card for point N we specify
Col 26-30 MOD module m>0
31-35 NLIM limit. of generation (>N) -
36~-45 FACX amplification factor fx (set to 1 if blank)
"46-55 TFACY amplification factor fy

the x-y coordinates of points N+1, N+2 ..... NLIM will be generated
by the formulas

%= Fem T 5 B T eow)
Yk © Yk-n + fy (yk—m - ykam)

for k = N+l, ..... NLIM. If NLIM = NJ no more nodal cards are
needed. If NLIM<NJ, the card for point (NLIM+1l) must follow.

*y
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3.4 Element Nodal Point Array Generation

3.4.1 Plate Elements

Two types of plate elements generation are also available

3.4.1.1 Layer generation

If element cards N+1, N+2 ..... N+L-1 are left out and cols 36-45 of
the card for element N are left blank, the micsing (L-1) elements
will be generated by increasing the nodal numbers I, J, K, L of

the preceding element by 1, ending with (N+L-1). The plate type
number and angles ¢ and O are set equal to those read for element N.

3.4.1.2 Modular generation

This option can be used when two "layers'" of sequentially numbered
elements have been previously defined. If on the card for element
N we specify

Cols 36-40 MOD module m>0
41-45 NLIM 1linit of generation (ON)

the I-J-K-L nodal numbers of elements N+1, N+2 ..... NLIM will be
generated by the formula

Ik = Ik—m + (Ik-m - Ik—Zm) !

{where I, means nodal number I for the k-th element) and similarly
for J-K-L, for k = N+1 ..... NLIM. The plate type number and the
angles ¢ and ¢ are set equal to their values for element (k-m).

3.4.2 Beam Elements

If the beam elements in the structure are arranged in clearly

defined lines, generation is possible for a complete line of elemente
provided the nodal point difference is the same for each element in
the line.

In this event, for Card J:

Col 16-20 last element number in line to have same
nodal point difference as first element

Note that the beam elements must be numbered sequentially along the
line to be generated.
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3.5 Slab Elastic Axes and Properties

The principal elastic axes are assumed to be 1, 2, z, where the
l-axis forms an angle ¢ with the global x-axis, and the 2-axis forms
an angle @ with the l-axis, as shown in Fig. 3.

i Ty S

(ﬁ % 1, lv.

y

Fig. 3. Principal Elastic Axes for Orthotropic Material

The plate properties, input on Cards D and E, must be relative to these

axes. If angle ¢ (Card I) is zero apnd angle o is 90% the principal and global
axes coincide. ! .

Note that if the slab is isotropic, E1=E2=E, Ul=UZ=U and the angles ¢
and a have ro significance. (Leave blank on Card I).

Estimation of the equivalent flexural and torsional inertizs (11, 12,
J1, J2 - Card D) for a beam stiffeneé slab is made by spreading the beam
properties over an assumed effective width e¢f slab. The program approxi-
mates the reduced torsional stiffness in the equivalent slab by defining
a torsion parameter (ALPFAT). Nevertheless, unreliable results may occur,
particularly if the spacing between beam centerlines is large. In this
event, the discrete beam representztion should be used. )

4.0 OUTPUT DESCRIPTION
The following is output by the program:

1. A complete printout of all input data, including all quantities
calculated by the varicus generation routines.

2. A listing of the applied loading for every load case.

"~ 3. The displacements (vertical deflection, and rotations about the
two global axes) for all nodal points. Included here are the
reaction forces at each supperted node.

4. The moments M, My and MXy (Fig. 2) at the center of each plate

element, are listed.
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The moments MX, My and Mxy (Fig. 2) at each nodal point are
listed (oﬁ control of MPRINT, Card C of the Input Data Deck).

6. The shear force, torsion moment and bending moments acting on
each beam element are listed. Further, the stresses at two
fibers (distance Yl and Y2 from the neutral axis of the combined
section, Card F of the Input Data Deck) are computed and listed.

5.0 PROGRAM RESTRICTIONS AND CAPACITY CHANGES
" Apart from restrictions impcsed by the structure idealization and
the wethod of analysis, the program is also restricted by the size of

problem it can analyze. .

Dimensioned arrays in labelled COMMON blocks have presently set the
following restrictions on the finite element mesh:

Meximum number of plate elements (NPEL) is 551
Maximum-numbér of beam elements (NREL) is 648
Maximum number of nodal points (xJ) is 1225
Maximum number of supported nodal points (NJEC). is 200
Maximum number of plate element types (NPT) is 20
-Maximum number of beam elerment types (NBT) is 30

Maximum nodal point difference in one element (MAXPD) is 18
Maximum number of hinges (NﬁNP) is 50
To change these limits the following cards should be repunched:

COMMON  /MESH/ XORD (NJ), YORD (NJ), CONLD (34NJ) NDBC (3xNJBC),
: NPH (NHNP,2)

COMMON /PLATE/ NP (NPEL, 4), NPTYP (NPEL), PHGL (NPEL, 2)
PPROP (NPT, 7), ZPB (19, 19)

COMMON /BEAM/ NB (NBEL, 2), NBTYP (NBEL), EPROP (NBT, 8), ZB (6, 6)
COMMON /BANAB/ B (2%BW), A (2%BW, BW)

. where BW = one half of the bandwidth of the structure stiffness
matrix = 3 (MAXPD + 1)



in subroutine SETUP:
in overlaf STIFF:
in overlay LDSL:
in subfoutine‘BANSOL:

in overlay STRESS:

In addition the following statements should be changed:

MAXPD = MAXPD
NX = MAYPD + 1

DO 100I = 1, NJ

NN = 3% (MAXPD + 1)

COMMON /BANAR/ STRESS (3,4, NPEL)

158



APPENDIX B

B -~ 1 Basic Principle of the Moiré Method. The Moiré Method is an

experimental procedure for measuring the slopes of a deflected plexiglas
plate model. If the slopes are established along a set of parallel lines,
a slope diagram can be drawn. The slope curve along any given line can
then be integrated to cbtain a deflection diagram along that line.

A model plate with a reflecting surface is clamped to a loading
frame in front of a ruled screen, as shown in Fig. Bl. The unloaded model
is photographed through a small opening in the screen, and a reflected
image of the ruled dark and light lines on the screen cbtained. For
example, the image of a dark line at point Q would be reflected fram
point P on the plate and would appear at point S on the film. The
model is then loaded and rephotographed. 1If point P on the model ro-
tates through an angle ¢, the image of a new point R appears at S.

If point R on the screen coincides wiﬂ1 a dark line, point S on the
photo will be dark. Otherwise it will be samewhat lighter in color. This
gives interference patterns on the photographic plate and produces Moire'
fringes as shown in Figs. B2(a), B3(a), B4(a), etc. These fringes re-
present contours of constant slope, and since the slope along each fringe
is constant, it follows that the change of slope between the contours
corresponding to two consecutive fringes must also be constant. This
constant "C" is dependent on the interval of ruling screen, "d" and on the
distance between the screen and the model plate, "a" shown in Fig. Bl.

The evaluation of the constant "C" is described by J. Weibe (14)

and for the M 1/03 apparatus used in this study C = 0.0015.

159



Reflective Plate Model

a
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Camera

L
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P

Jﬁk\\\ ‘
Loading Frame

‘Basic Principle of Morie Method

Fig Bl

Ruled Screen
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B - 2 Determination of Slope Curve from Moiré Photographs. If a Moire

photograph of a model plate is taken with the rulings of the screen in the
y- direction (horizontal), a curve of 3w/3x along a line parallel to the
¥~ direction (vertical) may be cbtained as follows:

A line is drawn parallel to the X -axis as shown in Figs. B2(a),
B3(a), B4(a), eté. , this line intersects a nurber of fringes. The cen-
tres of the fringes along the line are then projected downward and plotted
as shown in Figs. B2(b), B3(b), B4(b), etc. Values of slope are then
plotted to obtain a curve of slope qu vs distance along the line. ’

The fringes are numbered starting from the zero fringe, which re-
presents zefo slope (i.e. a zero value for QR in Fig. Bl). 1In Figs.
B2(a), B3(a), B4(a), etc., for example, the zero fringe is the one that
extends from the exterior fixed colums. The slope (in a direction per-

pendicular to the ruled lines on the screen) at any point is thus the

fringe order at the point times C.
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Deflection (W * 0.001)
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Photograph of Model ES2

Fig. B3(a)
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. Photograph of Model ES4

Fig. B5(a)
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Photograph of Model ES5S

Fig. B6(a)
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APPENDIX C

Tables For Applied Moments and Resulting Rotations
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TABLE Cl

APPLIED MOMENTS AND ROTATIONS
'EFFECT OF COLUMN SIZE

LOAD
TYPE A B [ b
‘MODEL
M_=120 in.-Ib. M =120 in.-Lb. M,=M_=15 in.-Lb.  M,=M =15 in.-Lb.
p1 o8.=0.0056 Rad. e%2=8c =0.0126 Rad.
8B=0.00415 Rad.  6By=0.0054 Rad. 6B2=O.8028 Rad. 04=0C=0.0096 Rad.
M =120 in.-Lb. M =120 in.-Ib. M,=M = 15 in.-Lb. M =M =15 in.-Lb.
P2 ' eRl=ec =0.0054 Rad. eﬁ2=§c2=o.01147 Rad.
6B=0.00405 Rad. eBl=o.6053 Rad. eB2= 020027 Rad. 0A=60=0.0085 Rad.
M;=120 in.-Lb. M_= 120 in.-Lb. M, =M =15 in.-Lb. M, =M.=15 in.-Lb.
P3 eRl=ec =0.0053 Rad. e%2=8c =0.0103 Rad.
8B= 0.00382 Rad. eBl-o.&osz Rad. 9B2=0.8026 Rad. 62=0,=0.0074 Rad.
M= 120 in.-Lb. M_=120 in.-Lb. =M =15 in.-Lb. =M =15 in.-Lb.
P4 B 6R_=6C,=0.0051 Rad. e

6B=0.00376 Rad.

ea}=o.8052 Rad.

M
oR.=BC,=0.0089 Rad.
682-0 %0

B§=o. 25 .Rad.

6A=6C=0.0063 Rad.

€8T
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TABLE C4
& e L
Shear Wall Size in
X-X Direction (8X) Direction
Shear Wall Size in Applied Moment Stiffness !
Model X-X Direction (SY) to the Shear Wall Rotation Coefficient !
PS1-1 0.5 120 in. Lb. 0.00643 Rad. 18666.92 3
PSi-4 0.5 . 120 in. Lb. 0.0144 Rad. 8308.26 i
PS1-5 0.5 120 in. Lb. 0.0085 Rad. 14117.64
PS1l-8 0.5 60 in. Lb. 0.0069 Rad. 8633.09
Ps1-9 0.5 60 in. Lb. 0.1033 Rad. 580.45
Ps2-1 1.0 120 in. Lb. 0.0088 Rad. 13642.56
PsS2-4 1.0 120 in. Lb. 0.0168 Rad. 7149.24
pPsS2-5 1.0 120 in. Lb. 0.0124 Rad. 9623.86
pPs2-8 1.0 60 in. Lb. 0.0134 Rad. 4455.0
" pPs2-9 1.0 60 in. Lb. 0.0512 Rad. 1171.53
PS3-1 1.5 120 in. Lb. 0.0089 Rad. 13445.37
pPS3-4 1.5 120 in. Lb. 0.0154 Rad. 7757.55
PS3-5 1.5 120 in. 1b. 0.0131 Rad. 9125.47
PS3-8 1.5 60 in. Ib. 0.0199 Rad. 3015.22
PS3-9 1.5 60 in. Lb. 0.0302 Rad. 1980.26
PS4-1 2.0 120 in. Lb. 0.0078 Rad. 15290.71
PS4-4 2.0 120 in. Lb. 0.0129 Rad. 9314.10
PS4-5 2.0 120 in. Lb. 0.0119 Rad. 10055.51
PsS4-8 2.0 60 in. Lb. 0.0263 Rad. 2280.62

PS4-9 2.0 60 in. Lb. 0.0198 Rad. 3033.36




TABLE CS5

Shear Wall Size _
Total Span 174
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Shear Wall Size in

_ X-X Direction (SX) Direction
Shear Wall Size in Applied Moment . Stiffness
Model Y-Y Direction (SY) to the Shear Wall Rotation Coefficient

PS5-1 0.5 120 in. Lb. 0.0048 Rad. 24880.78
PS5-4 0.5 120 in. Lb. 0.0116 Rad. 10348.39
PS5-5 0.5 120 in. Lb. 0.0062 Rad. 19246.19
PS5-8 0.5 60 in. Lb. 0.00487 Rad. 12321.83
PS5-9 0.5 60 in. Lb. 0.0796 Rad. 753.20
PSe-1 1.0 120 in. Lb. 0.00648 Rad. 18521.37
PS6~4 " 1.0 120 in. Lb. 0.0129 Rad-. 9274.28
PS6~-5 1.0 120 in. Lb. 0.0089 Rad. 13349.64
PS6-8 1.0 60 in. Lb. 0.0090 Rad. 6666.66
PS6-9 1.0 60 in. Lb. 0.0356 Rad. 1685.39
PS7-1 1.5 120 in. Lb. 0.0064 Rad. 18782.57
PS7-4 1.5 ) 120 in. Lb. 0.0112 Rad. 10695.18
PS7-5 1.5 120 in. Lb. 0.0093 Rad. 12816.4
PS7-8 1.5 " 60 in. Lb. 0.0130 Rad. 4604.76
Ps7-9 1.5 60 in. Lb. 0.0197 Rad. 3033.36
PS8-1 2.0 120 in. Lb. 0.0054 Rad. 22113.30
PS8-4 2.0 120 in. Lb. 0.0088 Rad. 13636.36
PS8-5 2.0.¢ 120 in. Lb. 0.0083 Rad. 14361.12
PSg-8 2.0 60 in., Lb. 0.0170 Rad. 3529.41
PS8-9 2.0 60 in. Lb. 0.0123 Rad. 4878.44
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TABLE C6

Shear Wall Size

Total Span

= 1/3
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Shear Wall Size in

X-X Direction (SX) Direction

Shear Wall Size 1in Applied Moment Stiffness
Model Y-Y Direction (SY) to the Shear Wall Rotation Coefficient
PS9-1 0.5 120 in. ILb. 0.0031 Rad. 38986.35
PS9-4. .. .. . .. 0.5 ... © 120 in. Lb.. .. .. 0.0079. Rad. . 15099.27
PS9-5 0.5 120 in. Lb. 0.0039 Rad. 30953.36
PS9-8 0.5 60 in. Lb. 0.0029 Rad. 20547.94
PS9-9 0.5 60 in. Lb. 0.0512 Rad. 1170.85
PS10-1 1.0 120 in. 1Lb. 0.0039 Rad. 30336.97
PS10-4 1.0 120 in. 1Lb. 0.0082 Rad. 14519.92
PsS10-5 1.0 120 in. Lb. 0.0053 Rad. 22411.46
Pslo-8 1.0 60 in. Lb. 0.0050 Rad. 11934.12
PS10-9 1.0 60 in. Lb. 0.0198 Rad. 3032.29
PS11-1 1.5 120 in. Lb. 0.0037 Rad. 32490.40
Ps1i-4 1.5 ' 120 in. Lb. 0.0065 Rad. 18482.86
PsS11-5 1.5 120 in. Lb. 0.0054 Rad. 22160.66
PsSli-8 1.5 60 in. Lb. 0.0070 Rad. 8555.53
PS11-9 1.5 60 in., Lb. 0.009% Rad. 6012.8
PSi2-1 2.0 120 in. Lb. 0.0029 Rad. 40367.33
PSl2-4 2.0 120 in. Ib. 0.00468 Rad. 25617.00
Psl2-5 2.0 120 in. Lb. 0.0047 Rad. 25501.52
PS12-8 2.0 60 in. Lb. 0.0089 Rad.  6719.67
P812f9 2.0 60 in. Lb. 0.0053 Rad. 10364.48




TABLE C7

Shear Wall Size

! Total Span

= 1/2.5
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Shear Wall Size in

" X~X Direction (SX) Direct

: Shear Wall Size in Applied Moment Stiffness
Model Y-Y Direction (SY) to the Shear Wall Rotation Coefficient
PS13-1 0.5 120 in. Lb. 0.0022 Rad. 55435.95
PS13-4 0.5 120 in. Lb. 0.0058 Rad. 20761.24
PS13-5 0.5 120 in. Lb. 0.0027 Rad. 44732.88
PS13-8 0.5 60 in. Lb. 0.0020 Rad. 30003.74
PS13-9 0.5 60 in. Lb. 0.0356 Rad. 1683.88
PS14~1 1.0 120 in. Lb. 0.0027 Rad. 44923.28
PSl4-4 1.0 120 in. Lb. 0.0056 Rad. 21192.8
PS14-5 1.0 120 in. Lb. 0.0036 Rad. 33570.18
PS14-8. 1.0 60 in. Lb. 0.0033 Rad. 18312.22
PS14-9 1.0 60 in. Lb. 0.0123 Rad. 4878.44
PS15-1 1.5 120 in. Lb. 0.0024 Rad. 50316.57
PS15-4 1.5 ) 120 in. Lb. 0.0041 Rad. 29028.99
PS15-5 1.5 120 in. Lb. 0.0035 Rad. 34092.94
PS15-8 1.5 60 in. Lb. 0.0044 Rad. 13501.35
PS15-9 1.5 60 in. Lb. 0.0058 Rad. 10368.24
PsSle-1 2.0 120 in. Lb. 0.0018 Rad. 65111.22
PSle-4 2.0 120 in. Lb. 0.0028 Rad. 42553.18
PS16-5 2.0 120 in, Lb. 0.0030 Rad. 40058.75
PS16-8 2.0 60 in. Ib. 0.0055 Rad. 10810.80
PS16-9 2.0 60 in. Lb. 0.0032 Rad. 18750.00




