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ABSTRACT

The feasibility of a microcomputer based myoelectric
limb controller is demonstrated. This 1limb controller
consists of two microprocessors; one responsible for data
acquisition and motor control and the other for use as a
signal processor. A four - function prosthetic 1limb (hand,
wrist, elbow, and humeral) intended for use by above elbow
amputees is controlled by the 1limb controller which uses
only 410 mA of cﬁrrent froma 7.2 wvolt battery. Software
implemented on the limb controller has duplicated the
present technology in clinical myoelectric limb controllers
(i.e. two and three state . control) and presents the
possibility for more advanced uses of the prosthetic limb
such as multifunction and preprogrammed movements. A four
coefficient autoregressive model of the electromyographic
signal is implemented on the limb controller, but it does
not presently provide sufficiently accurate control for use

in a clinical system.
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GLOSSARY

Analog to Digital Converter; a device
that converts a analog voltage input
into a digital output proportional to
its magnitude.

Aampere-hour; unit of electricity, equal
to 1 ampere of current delivered over
one hour,

Basic unit of measurement for computer
memories. One bit stores a single unit
of information.

A set of logic lines that transfer
information to various compecnents
within a computer.

A device which can transfer
information, in either direction, from
one computer bus to another computer
bus based on a control input.

A unit of size for computer memories
equal to 8 bits.

CMOS version of the popular Intel 8086
microprocessor manufactured by the
Harris Corporation. Used in this
project as the signal processor.

A device that transfers the information
present at its input to its output when
the control input changes logic state.

Complementary Metal Oxide on Silicon; a
method of chip fabrication that, along
with other differences, uses much less
power than other chip fabrication
processes.

Canadian Standards Association; a group
that sets specifications for
manufactured goods that will be used by
the public and industry.

Electromyogram; a signal that can be
detected on the skin surface when a
muscle is contracted.



EPROM

HC or HCMOS

Hz

MC146805E2

Memory bank

MOSFET

NMOS

Nygquist criterion

On-chip
On resistance

Otto Bock

Electrically Programmable Read Only
Memory; a nonvolitile computer memory
that can be programmed by electrical
pulses.,

High speed CMOS; an implementation of
CMOS logic that combines high speed
with low power usage.

Hertz; a unit of measurement equal to
the number of times an event occurs per
second. ,

A measure of computer storage capacity
equal to 1024,

Low power CMOS version of the MC6805
microprocessor manufactured by
Motorola. Used in this project as the
data acguisition supervisor, the motor
controller, and the controller
supervisor.

A designation for a block of computer
memory that acts as a single unit of
memory.

Metal ©Oxide on Silicon Field Effect
Transistor; a transistor with low
voltage drop and low gate drive current
{(i.e. high input impedance).

N carrier, Metal Oxide on Silicen; a
chip fabrication process that is used
in many modern miCcroprocessors.

A fundamental theory of signal
processing which states that a signal
must be sampled at a minimum sampling
rate of two times its maximum frequency
component to remove aliasing.

An indication that the device it refers

"to is physically contained on the chip

presently being discussed.

The resistance of a device when it is
turned on, this usually corresponds to
the voltage drop across the device.

A large manufacturer of orthopaedic
aids such as prostheses.
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RAM

TTL

usecs

VLSI

Word

Random Access Memory; a computer memory
that can be accessed in a random order.
Memcory data can be changed during
program execution so it 1is used for
variable storage but it is volitile in
nature,

Transistor Transistor Logic; a chip
fabrication process commonly found in
many digital logic circuits,

A unit of measurement egual toc one
millionth of a second.

Very Large Scale Integration; a
technigue wused in the manufacturing of
computer components that combines many
smaller components into one component.

When used in reference to computer

memory is a unit of size equal to 16
bits.
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CHAPTER 1

INTRODUCTION

From the beginning of time human beings have used tools
to overcome their deficiencies 1in dealing with their
environment. From the cutting edge of the knife to the
automobile these tools have become extensions of their
natural abilities. However, for the amputee, before many of
these tools can be fully used a more basic tool must be
made, a prosthetic limb to replace the natural limb that 1is

missing. These prosthetic limbs have ranged from the "peg

leg" of Treasure Island's Captain Long John Silver and the
hook of Peter Pan's Captain Hook to the complex .powered
upper and lower limb prostheses of today. While many
advances 1in the area of self contained limb prostheses have
occurred, it is generally agreed that there is still a great
deal of research and development that must be conducted into
the control and powering of prosthetic 1limbs to achieve
natural 1limb function and cosmetic appeal. This is
especially true for upper 1limb prostheses where the
functionality and cosmetics are more readily evident than in

the lower limb.

The design of an wupper limb prosthesis and 1limb
controller is a difficult task that must take into account

many different factors. An excellent discussion on the



problems associated with the development of an upper limb
prosthesis is given by Jacobsen et al. [1]. One of the most
promising areas of research for upper limb prostheses is the
use of biopotential signals, such as the electromyographic
signal, to control the prosthesis. This method uses muscles
that still are present on the arm, but can no longer perform
a useful function, to control the artificial 1limb. For
example, for a below elbow amputee, an artificial hand could
be controlled by the now useless hand and wrist flexors and
extensors. As either muscle group contracts the resulting
electromycgraphic signal can be detected and control
accomplished (i.e. open or close hand). The first
electromyographically controlled prosthesis was designed by
Reiter [2] in 1948. Since then many other attempts have been
made at achieving a more complete prosthesis but only a few
commercial systems are now in existence. Notable advances in
externally powered (i.e. battery or some other form of
energy) myoelectric artificial 1limbs since Reiter's first
attempt include: the IBM arm [3], the Boston elbow [4], the
Veteran Administration elbow [5], the Otto Bock hand [6],
the Fidelity hand [7], [8], the Italian arm [9], the New
York University elbow [10], the Variety Village elbow [11],
the University of New Brunswick hand [12], and the Utah Arm
[13]. Recent work to produce new commercial prostheses has
occurred in Japan [14], [15], [16], at the University of
Utah with the Utah elbow [17], and at several other centers

around the world [18], [19], and [20].



While all the above advances in powered upper limb
prosthetic limbs have increased either the availability,
functionality, or cosmetic appeal of prosthetic 1limbs they
all rely on essentially the same method of control when used
with myoelectric limb controllers. This control scheme
consists of amplifying the electromyographic signal of a
suitable muscle to a wuseable voltage, calculating the power
of the muscle activity using analog filtering technigues,
using a predetermined threshold to determine whether or not
there is muscle activity, and turning a joint motor on or
off based on the muscle activity. This makes the interface
between the user and the prosthetic limb essentially that of
an on/off switch (i.e. muscle contracts - joint motor turns
on, muscle relaxes - joint motor turns off)}. This technique
also implies the need for a second controlling muscle to
give joint motion in the obposite direction (i.e. "open" and
"close" motions are needed in a practical prosthesis).
Generally an antagonist pair of muscles, such as the biceps
and triceps, are used as the controlling muscles. A Dblock
diagram of a typical myoelectric prosthesis control system

is given in Figure 1.

some of the newer 1limb controllers use three state
control from each muscle (i.e. same muscle controls open,
close, and off) and some five state control schemes have
been proposed [21]. Yet, even with five reliable states of

control complete natural control of prosthetic 1limbs will
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never be achieved because of the many degrees of freedom
which exist in the natural human limb. In fact, the natural
human limb has approximately 87 gross degrees of freedom
with many more internal degrees of freedom [22]. In
addition, many amputees have problems with the remaining
musculature of the amputated limb (e.g. spasticity,
contractures, weakness, etc..) and cannot use the preéent
day myoelectric prostheses properly if at all. What is
needed is a control scheme that will allow the user to have
more complete control of the prosthesis ranging from the
direction of motion to the strength and speed of that
motion. Yet this control scheme must also be more robust to
problems that can affect the remaining musculature of the
amputee; This obviously implies that robust limb controllers
with many degrees of freedom must be developed for use with

prosthetic limbs.

At the present time there are many promising control
algorithms under development around the world ranging from
observations on the biomechanics of natural limb motion to
complex statistical methods that reguire a great deal of
computational power. More information on some of these new
technigques <can be found by consulting the following
references; Scott [23], Jacobsen [24], Wood [25], Simpson
[26], Childress ([27], Hogan [28], Deluca [29], Stein [301,
Graupe [31], Sardis [32], Jerard [33], and Shwedyk [34].

However, many of these control schemes are computationally,



or decision, orientated and cannot be wused in present
myoelectric limb controllers. This 1is because present limb
controllers use analog circuits, such as filters and
threshold detectors, to operate. What 1is needed 1is to
design, 1implement and test a prosthetic limb and limb
controller wupon which these control schemes can be
implemented without redesigning the 1limb controller each
time a new control algorithm is used. The obvious answer is
to design a microprocessor based computer interface between
the wuser and the prosthetic limb. This limb controller will
allow complex and simple control algorithms to be
implemented by merely changing the limb controller software
which is much more cost and time effective than changing the
limb <contreoller hardware‘ each time. The objective of ihis
thesis is the design, implementation, and demonstration of
such a myoelectric 1limb controller using microprocessor
based computer hardware powerful enough to implement most of
the above control algorithms. In addition, the feasibility
or infeasibility o©of wusing microcomputers as myoelectric

limb controllers is to be investigated.

1.1 Prosthetic Limb and Controller Overview

The goal of this thesis 1is to create the necessary
hardware and software to implement a variety of mocdern
myoelectric prosthesis control methods. The resulting

computer will be wused to show the feasibilty, or



infeasibility, of myoelectric prosthesis control using
computers. However, it should be remembered that the
resulting prosthetic limb and limb controller is created to
be wused as a demonstration project and design tool and not
as a final end product. This means that 1in the final
implementation of the prosthesis, sections of the present
limb controller may not be necessary. Yet, a final product
will not have to be redesigned. This is because the present
design is set up to allow the removal of sections of the
limb controller, that in the future may be deemed
unnecessary, without necessitating a complete redesign of

the limb controller.

The limE controller presently consists of five printed
circuit boards each approximately 23 cm. (9 in.) square;
These boards are stacked on top of each other creating final
dimensions of 23 x 23 x 21 cm.. The device can be powered by
any battery between 7.2 and 15 volts that can deliver at
least 1.2 ampere-hours (Ahrs) of current and can withstand a
maximal surge of 5 to 6 amps. There is an on/off switch that
can be easily modified into any other form of switch, such
as a microswitch, that can be installed in the prosthesis.
As well, the 1limb controller presently has an on board
battery charger with user adjustable output voltage and

current levels.



The controlling computer of the 1limb controller is
actually made from two microprocessors. One microprocessor,
a CD80C86, is dedicated to signal analysis while the second
microprocessor, a MC146B05E2, controls the data acguisition
of the myoelectric signal, controls the prosthesis motors,
and acts as the limb controller supervisor. This allows the
controlling computer to react much more quickly than if only
one microprocessor were used to gather the data, process the
data, and implement the desired control of the prosthetic
limb. The two microprocessors communicate via a shared
memory with the CD80C86 operating at a clock rate of 4.77
MHz and the MC146805E2 operating at 2.38 MHz. Memory
consists of 4k words of control memory and 2k words of local
variable memory for the signal microprocessor, 4k bytes of
control memory and 128 bytes of local variable memory for
the system supervisor and 4k words of shared variable memory
set up into two banks of 2k words each. Four channels of
myoelectric signals can be acquired at a maximum sampling
rate of 10 kHz for one channel to 2.5 kHz for all four
channels. The myoelectric signals are acquired using dry
electrodes and are amplified to about 10 volts peak to peak
before being digitized by a 12 bit analog to digital
converter. The digitized data are then stored in the
computer Memory. Motor control is presently only
"open/close" in nature but provisions have been made to
allow for proportional control to be used in the future.

This hardware allows the limb controller to operate in real



time running under most of the control algorithms mentioned

in the preceding and succeeding pages.

While almost any upper limb prosthesis will demonstrate
the principles needed for this thesis, an above elbow
prosthesis is used because this type of prosthesis is where
microprocessor control can provide the greatest increase in
function. The prosthetic limb allows the user the three most
used natural functions associated with the upper limb (elbow
flexion/extension, forearm pronation/supination, and hand
grasp/release). In addition, humeral rotation (normally
asséciated with the shoulder but 1lost with most above elbow
amputees [35] ) is included as a fourth motion. The limb
controlier is connectéd to the user and prosthetic limb by
an umbilical cord that passes the myoelectric signals to,
and control signals from, the limb controller. A picture of
the prosthesis showing both the prosthetic limb and limb

controller is shown in Figure 2.

At present, the user effects limb movement and control

in the following manner:

1. The user contracts or relaxes a muscle group{(s) in a
way that corresponds to the desired action.
2. The electromyographic signal(s) are digitized by

the data acquisition section and stored in memory.



Figure 2 Picture of Prosthesis with Limb Controller.
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3. The signal microprocessor detects the change in the
muscle activity and informs the motor controller of
the change in action required.

4, The motor controller effects the desired action by

turning on or off the appropriate motor(s).

The following chapters describe the limb controller
construction .and operation in general terms. Three other
technical manuals, not released with this thesis, are
referenced in the Bibliography and give much more detailed
descriptions of the limb controller hardware and software. A
short overview of the research undertaken for this project

is given below.

1.2 Overview of Research

The research undertaken for this thesis does not
chronologically follow the order given in the following
chapters. The first part of the investigation involved an
extensive literature search to find other projects in the
myoelectric limb control area that had similar goals or
objectives. This survey revealed that very few attempts had
been made to incorporate microprocessor based technology
into a myoelectric 1limb controller. As well, any attempts
that been made wére dated by several years. This showed that
the research into the limb controller hardware could not

rely to any great extent on previous work. However, several
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promising control algorithms requiring computer based
decision and mathematical abilities were found. These were
more closely investigated by computer simulation and the
autoregressive model described in Chapter 3 was found to be
the most promising. In investigating the control algorithms
several programs were written to aid in future studies of
control algerithms before they are actually implemented on

the limb controller.

The next phase of the project involved the hardware
design of the 1limb controller. A first prototype was
designed and constructed. This prototype demonstrated that
the fundamental principles behind the hardware would work.
However, problems with the implementation necessitated the
design and construction of a second more robust prototype.
This is the limb controller presently available for use in

further research and investigation.

The third phase of the project involved the writing of
the limb controller software much of which was adapted from
the software written to investigate the control algorithms.
Original software included the operating system of the 1limb

controller and the multichannel variance control algorithms.

The final phase of the research involved verification
of the correct operation of the limb controller hardware and

software. This was not a complete test, because no clinical
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trials were made with the limb controller. However, these
tests conclusively verified the «correct operation of the
prosthesis hardware and software design and demonstrated the

potential of the limb controller.



CHAPTER 2

HARDWARE DESIGN

In designing a controller for any purpose the basic
system reguirements must first be defined. For this 1limb
controller there are several obvious reguirements and a few

other more subtle ones. These are summarized below:

i) Power - The limb controller power
requirement must be low enough to
allow it to be powered by portable

rechargeable batteries.
ii) Size - The limb controller must be small
enough to allow it to fit into a

prosthetic limb.

iii) Lightweight - The limb controller must be

lightweight because it will be
carried by the user for extended
periods of time and also the
connection between the user and
prosthesis, through the remaining
limb stump, can only bear loads not

exceeding a few kilograms.



iv) Natural

v) Flexible

vi) Powerful

vii) Responsive

The above

15

The limb controller must be natural
to operate, or easily 1learned,
because the user will not use the
prosthesis if it 1is difficult or

awkward to use.

The controlling output from the
limb controller control must be
flexible enough to allow the limb
controller to be used with most
types of externally powered upper

limb prostheses.

The limb controller must be capable
of handling the various processing
requirements that may be placed on

it by different control algorithms.

The limb controller must respond
quickly to the wuser's commands to
avoid any time lag that may detract
from the effectiveness of the

control algorithm.

requirements are all necessary in a final

version of the limb controller but some are not necessary in

a first prototype. In

this thesis the fundamental problems
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of the limb controller are addressed while those that are
not so fundamental are left to be done in further work. The
fundamental requirements are all of the above list except
that of the size requirement. A few years ago the size
constraint would have been a major constraint on the design,
but with the advances in very large scale integration (VLSI)
and hybridization techniques this has become a secondary
design problem. The above reguirements place some strong
constraints on the design and these will be discussed in the
following sections. What follows 1is not a detailed
discussion of the 1limb controller hardware, but rather a
more general discussion of the design of this myoelectric
limb controller. Details of the limb controller
implementation and operation are given in the 1limb

controller hardware manual given in the Bibliography.

2.1  Power Supply

One of the most crucial components in a myoelectric
prosthesis 1is the power supply to the contrelling
electronics and driving motors. An ideal power supply would
deliver power to the limb for an entire day and would be
able to be quickly recharged. Present myoelectric limb
controllers use power supplies derived from batteries that
last from 4 to 8 hours depending on the amount of use. These
batteries typically are rated at about 250 milliamphours

{mAhr) and deliver about 1 mA continuously to the
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controlling electronics of the limb controller. The motors
used to produce limb movement are the main power drains of a
myoelectric prosthesis. The current drains vary from 50 mA
under no load conditions for a hand motor to a maximum of
3500 mA when an elbow motor 1is in a stall condition.
Therefore, for present «clinical 1limb controllers the more
the limb is used the shorter the battery life (i.e. battery
life is heavily dependent on limb usage). However, for this
prosthesis, the constant current drain on the battery by the
limb controller is much larger than conventional limb
controllers. Therefore, for the designed prosthesis (limb
controller and prosthetic limb) the battery life 1s almost
independent of use. Thus, one of the major problems in this
project was to find a method. of supplying power to the limb
controller while still giving 1long battery life. An
additional constraint on the battery selecﬁion is the weight
and size of the battery. If a battery is too large or too
heavy the prosthetist cannot place the battery in the
prosthesis. In addition, the user of the prosthesis will
object because of cosmetic reasons or because the prosthesis

will be come too heavy to wear.

The battery selected for the prosthesis is a Saft Pack
Battery number 120-198 rated at 1.2 volts and 1.2 Ahr. Six
of these batteries were combined in series to form a 7.2
volt 1.2 Ahr batﬁery. The overall weight is 500 grams which

is just over the recommended maximum, of 450 grams,
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suggested by a prosthetist. The discharge curve of the
battery is shown in Figure 3. Notice that the battery
voltage drops off quickly when the battery is about to be
discharged. Thus, this choice of battery is good because the
operating voltage is present for a maximal length of time.
For prototype testing a stronger battery is used. This
battery is a gel cell battery number GC826 rated at 8.0
volts and 2.6 Ahrs. The weight of this battery, 1100 grams,

prohibits its use in clinical trials.

The limb controller reguires a fivé volt supply because
of the microcomputer components in it. This is generated by
a five wvolt regulator placed across the battery supply
lines. The regulator is rated to deliver 5 volts at 1.5 amps
and so can easily supply the current reguirements of the
limb controller. There are other technigues of supplying
power to a portable limb controller, such as running the
control circuitry directly from the battery. This was not
used in this 1limb controller for several reasons. The
primary reason is to maintain voltage supply accuracy to the
digital computer <circuitry. This is necessitated because
several of the computer components require the supply
voltage to be within 10 % of their nominal supply voltage of
5 volts. A secondary reason to use a regulated 5 volt supply
is to achieve some isclation between the joint motor voltage
supply and the computer voltage supply. The joint motors of

the prosthetic limb are powered directly from the battery



J8y30g s1say3soad jo aaung abapyastig g sunbry

Battery volatge

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

Battery voltage at 1.2 Amp load

\

[ T I N N O
0 5 10 15 20 25 30 35 40 45 50 55 60

time




20

and tend, like all dc motors, to produce electrical noise on
their voltage supply lines. This noise can be a problem for
digital circuitry and is disastrous for the accuracy of the
analog circuitry. Isolation through a five volt regulator
can help to remove this necise and so a regulated supply is
used. It should be noted that noise from the limb motors 1is
also present on the electrical ground of the limb controller
but can be sufficiently reduced by proper grounding

technigues.

It was found early in the development of the limb
controller that electrical isclation between the digital and
analog areas of the limb controller would be a problem.
Digital circuits set up a great deal of switching noise on
power supply lines that can reduce the accuracy cf an anélog
circuit. A simple way to reduce this problem 1is to use
separate power supplies for each area but this uses too
much space, increases weight, and also increases the
complexity. The best solution found was to use a dc~-dc
converter to isolate the two areas. Thé dc-dc power
converter used converts 5 volts to +15 and -15 volts with up
to 40 mA per supply line. This gives the isolation necessary
for accurate operation of the analog circuits and meets
weight and size constraints since the dc—dc converter is
only slightly larger than a standard 24 pin chip. However,
as shown in Figure 4, the converter is not very efficient at

low current levels and uses the most current of any
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component in the entire 1limb controller under static
conditions (i.e. when no motors are running). For a future
version of this limb controller a more efficient method of
generating +15 and -15 wvolts 1is needed. The author
experimented with several different dc-dc converters but
found that many of the more efficient dc—-dc converters
either could not supply the necessary maximum of 20 mA per

supply line, used tooc much space, or were too heavy.

For accurate digitization of the EMG signal a precision
voltage reference of about 0.01% 1is needed. A dc-dc
converter cannot supply this accuracy and so a 10 volt
precision regulator 1is used. In addition, the +10 volts is
also used to supply some of the motor on/off electronics,
but because the gate drive current of the motor control
MOSFETs (described later on in this chapter) is so low the

accuracy of the reference is not impaired.

The current drain of the various components of the limb
controller is outlined in Table 1. Notice that the dc-dc
converter for the +15 and -15 volts uses 110 mA or about 27%
of the current supplied to the limb controller compared to
the control microcomputers which use only about 120 mA.
Therefore, improvements in the power supply section to the
limb controller, especially in the supply to the data
acquisition section, will greatly increase the battery

lifetime and thereby the amount of time that the prosthesis
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is usable to the amputee between battery chargings.

An on board battery charger is included with adjustable
output voltage and current levels. This charger facilitates
ease of testing and increases portability of the limb
controller because all that 1is regquired to <charge the
battery is to plug the ac power pac into a standard 120 volt
ac outlet and place the 1limb controller into the charge

mode.

2.2 Electromyvographic Signal Acquisition

The electromyographic (EMG) signal 1is produced by
action potentials as4they pass along muscle fibers that have
been activated. As more and more action potentials are
evoked in the muscle (corresponding to a stronger
contraction) the measurable voltage from the EMG signal
increases. The freguency range of the EMG signal is on the
order of 5 to 2000 hertz (Hz), with the main power band of

the signal in the range from 20 to 200 Hz [36].

There are two ways of measuring the EMG signal. One
method 1involves the placement of intramuscular needle
electrodes. The other method involves the placement of
electrodes on the skin surface. For this project the use of
intramuscular needle electrodes was rejected mainly because

of safety reasons as well as the difficulty in finding test



Device

Static load dc-dc converter

Data acquisition board without electrodes
Data acquisition board with all electrodeé
Motor control board

MC146805E2 microcomputer board

Shared memory board

CD80CB6 microcomputer board

Total microcomputer load
Total limb controller load - without electrodes

Total limb controller load with all electrodes

Table 1 Limb Controller Current Usage.
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subjects for such a prosthesis. When surface electrodes are
used the levels of the EMG signals are 1low, having peak
amplitudes of 0.1 te 1.0 mV. Therefore, a device that
detects the EMG signal must have a fairly large gain and low
noise at the input stage over the bandwidth of the EMG
signal. As well, the interface at the skin surface must
conduct as little current as possible from the skin (i.e.
otherwise the current drain will, in effect, lcad the EMG
signal down) so that the measurement is as true as possible.
In addition, there are many safety factors set by the
canadian Standards Association (CSA) that are a reqguirement
in any electronic device that is to be directly connected to
a human being. For further information on these standards

the reader should consult CSA document 125-1979,

For this project it was decided that four EMG signal
channels would be made available to the limb controller. The
use of four channels provides more information than the
conventional single or dual channel mycelectric prostheses,
and also increases the number of movements that can  be
selected by the wuser. In addition, some of the new EMG
signal processing algorithms perform better with more
electrode sites [37]. Therefore, the use of four channels
will allow further research into multichannel EMG signal
processing. However, the use of more than four channels
creates a very complex electrode placement problem for the

prosthetist and also may provide too many variables for the
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limb controller to examine on a real time basis. Even the
use of four electrode sites creates severe problems, but
prosthetists have indicated that the problems could be
overcome if the increased functionality of the prosthetic

limb merited the extra effort.

The electrode at the skin interface is a standard
differential electrode made by Otto Bock (a large
manufacturer of artificial 1limbs and other aids for the
handicapped) and is used because of its proven durability,
low dc offset, availability, and its familiarity to medical
personnel working with amputees. As well, the electrode is
easily positioned in the prosthetic limb and can be modified
by attaching different elecfronic circuitry to the
electrode. All electrodes used in modern myoelectric
prostheses are dry electrodes (i.e. no conducting gel is
used between the skin surface and the electrode) because
prolonged use o¢f conducting gel may cause skin reaction
problems, not to mention the inconvenience of placing
‘conducting gel on the electrode each time it is to be used.
Dry electrodes are inherently noisy because of poor
electrical contact between the electrodes and the skin
surface. Therefore, good electrical contact to the skin
‘should be made by snugly pressing the electrode to the skin
surface. Noise problems can also be reduced to acceptable
levels by amplification right at the electrode site, thereby

removing the 60 Hz noise problems often associated with low
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impedance cables leading away from a high impedance source.

The above problems are inherent in dry electrodes
placed on the skin surface and will not be solved until a
better EMG detection technique for use with prostheses and
not requiring conducting gel is devised. An example of such
a technique 1is the implanting of electrodes in the muscle
site and transmitting the EMG signal to a receiver on the
prosthesis [38]. This method has been demonstrated in a
laboratory setting, but it is not yet clinically usable for

prosthetic devices.

All components used for amplifying the EMG signal must
have low power consumption and this necessitates use of CMOS
and other low power operational amplifiers. Initially it was
thought that an electrode amplifier from an existing
myoelectric 1limb controller could be used, but in these
amplifiers the EMG signal is filtered as it is amplified.
For this project it was decided that the filtering of the
EMG signal must be as flexible as possible so as not to
preclude an EMG signal processing technigue because of
filtering at the electrode site. An additional benefit is
the possibility of using digital filters implemented in the
software of the 1limb controller to aid in prosthesis
control. All this necessitated the desién of a custom dry
electrode amplifier. A standard instrumentation amplifier

with some minor modifications is used at the electrode site.
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A photograph of the designed EMG amplifier and Otto Bock
electrode is shown in Figure 5. Also shown in Figure 6 1is
the special electrode clip that was designed to aid in the
placement of the electrodes on the skin surface during

testing.

From the electrode site the amplified EMG signals are
transmitted to the limb controller via cabling. Cables have
a reputation for becoming a nuisance, but they were
considered to be adequate for demonstration and initial
testing purposes. In a future version of the limb controller
a less cumbersome way of connecting the electrodes to the
limb controller, such as radio transmission of the EMG
signals, will have to be devised. As well, the size of the
electrode amplifiers will have to be reduced to make the
package easier to place in a prosthesis. This could be
easily done by using smaller components (e.g. eighth watt

resistors) in the electrode amplifiers.

At the limb controller the four <channels of EMG are
further amplified and filtered. The filtering is necessary
to remove any extraneous low and high frequency waveforms
that may have been induced on the EMG signal as it was
acquired and amplified. 1In addition, filtering of the EMG
signal will remove any aliasing that may be caused by the
sampling rate of the analog to digital converter provided

that the sampling rate meets the Nyquist criteria. This



Figure 5 DOtto Bock Electrode and Designed Electrode Amplifier.

Figure 6 Picture of Electrode 1n Electrode Clip.
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allows the easy addition of any special hardware filtering
desired and makes a fully amplified EMG signal available at
all times to the analog to digital converter. The use of
four analog to digital converters 1is too inefficient from a
space and power use point of view so the signals are
multiplexed through an analog data selector before being
digitized. The chénnel to be converted 1is selected by
software in order to give 1increased flexibility to the
conversion process. This also eases the use of a different
number of channels between the different signal processing

algorithms.

The analog to digital converter must be accurate and
fast to give maximum signal processing ability to the limb
controller. While only . a few EMG signal processing
algorithms suggest a conversion accuracy, or bit width, it
was decided that a 12 bit analog to digital converter would
be necessary to give sufficient accuracy and dynamic range
to the conversion. Since four channels of EMG signal are
used, the analog to digital converter should ideally be able
to sample all four channels at the maximum frequency
component. This would mean a 4 kHz sampling rate since the
EMG signal has frequency components up to 2 kHz (i.e. must
satisfy the Nyguist criteria). For all four channels to be
converted this means that the analog to digital converter
should be able to operate at a minimum of a 16 kHz, or 62.5

usecs per conversion. This sampling rate 1is easily within
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the present technology for analog to digital converters, but
only for higher power devices. For CMOS and other low power
analog to digital converters the best available for this
project is an analog to digital converter that can operate
at a 10 kHz sampling rate. As well, the sampling rate can
not be significantly increased by reducing the accuracy and
using an 8 bit analog to digital converter. However, this
limitation of sampling rate does not create a loss in
performance of the limb controller. For single and dual EMG
signal channels the limb controller will sample at the
maximum rates needed and for four EMG signal channels valid
sampling up to the 1.25 kHz components of the EMG signal can

be given.

An obvious point comes into the picture at this time.
If the limb controller were able to sample all four channels
at 4 kHz what would happen to all the data? For a 1limb
controller that must operate in real time the obvious answer
is that 1t is wunlikely that the limb controller would be
able to do anything other than store this tremendous amount
of data in a memory, assuming that the available memory 1is
large enough for 16,000 twelve bit samples per second. As
well, filtering on the data acquisition board is presently
set up to output the main power band of the EMG signal (i.e.
20 to 200Hz). While this filtering can be easily adjusted it
shows that the maximum possible sampling rate provided is

fast enough to sample the EMG signal.



2.3 Limb Control Computer

Once the EMG signal has been acquired and digitized the
decision as to what it means (i.e. initiate an action,
complete an action, or remain dormant) must be made. For
this myoelectric prosthesis the decision is made by the limb
controller, The 1limb controller 1is divided into three

different areas:

1) the data acgquisition supervisory section.
2) the EMG signal processing section.
3) the motor controller section.

The data acquisition supervisor and the motor
controller use the same microprocessor, the MC146805E2,
while the signal processing uses a separate microprocessor,
the CDB0C86. The use of two microprocessors in a system such
as this with the low power and small space requirements may
seem somewhat extravagant, but the result is not as wasteful
as may be initially thought. The MC146805E2 is an eight (8)
bit microprocessor with sixteen (16) input/output lines.
Therefore, it is not hard to interface this device to other
digital devices because of the many control and data lines
available. However, 1its data processing ability 1is poor
because of a limited instruction set that is customized for

use in control applications. As a result, the MC146805E2 can
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become cumbersome and slow when doing any mathematical
analysis, such as the simple 4 channel variance calculations
or the complex autoregressive modelling described in Chapter
3. On the other hand, the CD80C86 1is a sixteen (16) bit
microprocessor that has no input/output lines but can do
many mathematical functions including multiplication and
division gquickly and efficiently. Therefore, while the
CD80C86 has good data processing abilities it requires
additional circuitry to interface to the motors and data
acguisition section because it has no input/output lines.
Thus, a combination of the two devices, where the MC146805E2
gathers the data and implements the control output that the
CDB0OCB6 has determined is actually an efficient system. A

block diagram of the limb controller is given in Figure 7.

Separating the 1limb controller into three different
sections is useful because of the prototype nature of the
device. In the future, if it 1s decided that only data
acquisition and a simple signal processing algorithm is all
that is really needed for a computer controlled myocelectric
prosthesis, these sections can be easily "copied" from the
present design without the need for redesigning the limb

controller.
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2.3.1 Data Acguisition Supervisory Section

The MC146805E2 as outlined above was selected primarily
because of its many input/output lines. However, it was also
selected because it has a 13 bit external multiplexed
address bus, 128 bytes of on-chip RAM, an on-chip timer and
is a CMOS device using only 35 mW of power at a full
operating speed of 5 MHz. The above attributes make it ideal
for use in a prototype system where external addressing of
the contrel memory is required to facilitate program
development, yet data storage is small and does not

necessarily require a separate data memory.

The MC146805E2 has complete -control over the data
acquisition section of the limb controller to give max imum
flexibility in EMG signal acquisition. Any combination of
the four signal channels may be used as well as different
sampling freqguencies for the four channels. While all of
these abilities will probably never need to be used it adds
to the potential of the 1limb controller to handle a variety
of signal processing algorithms. It was decided that the
internal timer of the MC146805E2 would be used to implement
the sampling rates. The «clock freqguency of the analog to
digital converter can be used to drive the internal timer
and knowing the freguency of sampling desired, the timer can
be set up to interrupt thé microprocessor at the rate of the

sampling freguency. The microprocessor will then output the
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start conversion pulse and also select the data channel to
be used. Three of the input/output lines are used to control

the data channel selection and start of conversion.

The completion of the data channel digitization
initiates a hardware interrupt of the microprocessor. This
interrupt is cleared by the hardware when reading the A/D
data register. The A/D data register is mapped to any odd
(high data byte) or even (low data byte) address in the
range 0000 to OFFF, This reduces the hardware necessary to
map the register to a unigue address. The A/D data register
is read from the data bus rather than from the input/output
lines in order to leave the lines free for use in other limb
controller interfacing (e.g. motor control). When the data
is read it may either be placed immediately into the shared

memory or be processed by the MC146805E2.

The MC146805E2 wuses a 4k x 8 CMOS electrically
programmable read only memory {(EPROM) as its control memory.
This is mapped to the upper 4k of memory and provides enough
control memory to handle most processing and control
requirements that may be placed on the MC146805E2. The
shared memory is mapped to the lower 4k of memory and shares
some locations with the on-chip RAM. Therefore, the internal
memory of the MC146805E2 is mirrored in the shared memory.
When reading the A/D data register the shared memory is

disabled by setting an input/output 1line, but it is not
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disabled when writing the data to the shared memory even if
the input/output line is set. This saves on interfacing
circuitry as well as time Dbecause the operation is
essentially: set control line, read data, write data, clear

control line.

Interfacing to the memories is done by clocked latches,
bus transceivers,4 and of course control logic. The
interfacing is over designed to protect the microprocessor
and other components from damage due to errors in design.
This was done in the prototype limb controller so that down
time from destroyed components could be minimized. However,
when the limb controller is to be implemented into another
form it is suggested that several interfacing circuits be

removed to save space and complexity.

2.3.2 EMG Signal Processing Section

The CD80CB6 microprocessor 1is wused as the signal
processor for the limb controller. In addition, it may also
be wused for any numerically intensive analysis of any limb
motion f(e.g. multifunction preprogrammed movements with
feedback) or for possible applications in robotics. The
CD80C86 was selected because 1its instruction set lends
itself to numeric processing (eg. built-in instructions for
signed and unsigned 16 bit multiplication and division) and

it also has a low power consumption of about 30 mA at © MHz.
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The signal processing software that has been developed for
the NMOS 8086 is quite extensive and all of this software
may, of course, be used on the CD80C86 because it is a plug
in replacement for the NMOS 8086. As well, the Harris
Corporation manufactures CMOS versions of the full MCs 86
microprocessor family line. Therefore, the clock, reset, and
other support circuitry needed by the CD80C86, or possibly
needed in the future (e.g. an interrupt handler or bus

arbitrator), are available in CMOS.

The CD80C86 uses a 4k x 16 control memory, made £from
two CMOS EPROMs, that is mapped to the upper 8k of memory.
This providés sufficient control memory for most signal
processing applications, but 1f more coqtrol memory is
needed several large (64 kbit to 256 kbit) CMOS EPROMs have
recently become available and these could easily be added to
the limb controller. A local memory is reguired because of
the interrupt table in the lowest 4 pages of memory needed
by the CDB80C86 for operation. It could be argued that this
extra local memory will waste space, but some local memory
is essential to give the CDB0OC86 some variable storage for
data that could not be stored in the shared memory (eg.
global wvariables, information about the last signal
processed, position of prosthesis variables, etc...). With
the size of memory storage that is now available in CMOS
RAMs this does not significantly add to the physical size

over using a microprocessor that would not need an interrupt
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table.

The CD80CB6 acts as a slave to the MC146805E2 in that
it will execute only when told to by the MC146805E2. This
may seem backward in that the low performance microprocessor
is supervising the high performance microprocessor, but
because of the dedicated nature of the task that 1is being
performed by the CDB0C86, this is in fact a logical choice.
The nonmaskable interrupt (NMI}) of the CDBOCB6 is used to
start the signal processing. This interrupt is used over the
maskable interrupt because when a maskable interrupt 1is
invoked the CD80CB6 requests an interrupt vector on the data
bus. This of course reguires additional support circuitry
that should be avoided. The oﬁly way to avoid this circuitry
is to use the nonmaskable interrupt which does not request

an interrupt vector to be placed on the data bus.

Shared memory allows the two processors to communicate
via variables in memory. This saves on additional circuitry
to inform the two microprocessors of what the other is
presently doing. Bus conflicts to the shared memory are
removed by wusing one of the contrel lines from the
MC146805E2 to switch the two microprocessors between the two
banks of shared memory. Therefore, the ﬂC146805E2 fills up
one bank with data, while the CD80C86 is processing the data
in the other bank of memory. This allows the two processors

to work completely in parallel without having to worry about
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bus conflicts. Since the shared memory is connected to each
microprocessor in a mutually exclusive fashion the EMG
signal data cannot be analyzed until all the data 1in the
sample has been gathered. The operation is essentially: the
MC146805E2 fills a bank of RAM with data; the CD80C86 is
then selected to the memory and begins to process the
signal, finally the MC146805E2 selects the bank back and
implements the control requested. This creates a weakness in
the limb controller in that EMG signal data cannot be
analyzed as it is gathered, but a full sample of data must
be available before analysis. However, the simplicity of
this solution over the hardware and software complexity of
having a large (4k x 16} CMOS two port shared memory makes
this limitation acceptable. In addition, the size of the
CD80C86 local RAM memory enables the CDBOC8B6 to store enough
information about the sample data that it is processing to
allow the MC146805E2 to store only a portion of the data
sample before switching memories and reguesting the CD80C86
to start processing the EMG signal data. When the shared
memory banks are switched, the CDB80C86 can continue with the
rest of the sample using the information stored in its local

RAM memory.

2.3.3 Motor Control Section

The motor control is under the direct control of the

MC146805E2. Using the  input/output lines of the
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microprocessor the 81 (four joints each with three possible
motions) possible motions of the .prosthetic limb can be
selected. The motion selection output from the
microprocessor is placed into a latch so that the motion can
be frozen and the input/output lines used for another
purpose. External logic is used to decode the output of the
MC146805E2 and give proper joint motor direction. Eight
control lines are used to control the limb motion with each
joint motor using two lines. If both lines are high then an
open motion is selected, if both lines are low then a close
motion is selected and finally, if the two lines are unequal
{({i.e. one line high, the other 1low) then no motion occurs.
This is easy to program and will aid in future work by
allowing medical persoﬁnel, or otheré who are generally
inexperienced in microcomputer programming, to make motion

studies of the prosthesis.

The power to the motors is supplied through MOSFETs
which give low "on resistance", low gate drive current, and
high current carrying capability. This allows the motor
MOSFET switches to be turned on or off directly by the CMOS
decoding logic. The MOSFETs used were found to reguire an on
voltage higher than 5 volts at the gate input to give low
"on resistance™ so the on voltage 1is shifted up to 10 volts
to give the desired low "on resistance". The direction of
the motor can be controlled by switching the polarity of the

voltage that is supplied to the motor using the switching




technique shown in Figure 8. Therefore, each motor requires

4 MOSFETs to be operated.

A feature that will lead to improved controllability of
prosthetic limbs will be to have positional feedback from
the prosthetic limb. To aid in future studies in this area 4
analog to digital converters have been included to monitor
the position of the 1limb. Several different methods of
measuring the limb position were studied, but it was found
that none of the methods could give reliable and robust
feedback. Therefore, in the future, before the positiocnal
feedback capabilities of the limb contreller can be fully
used, a transducer to measure the limb position must be

designed.

Four CMOS analog to digital converters are used for
positional feedback. These are eight bit analog to digital
converters which are referenced to the digital five volt
supply. This leads to 1inaccuracies in the conversion, but
because the joint position does not need to be accurately
measured to eight bits of resolution these analog to digital
converters can be used without a precision reference. If, in
the future, Jjoint positions need to be accurately measured
then simply using a precision 5 volt reference across the
battery supply lines to power the analog to digital
converters will 1increase the accuracy to the full eight

bits.
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The motor position analog to digital converters are set
to continuously convert the Jjoint positions so that the
MC146805E2 does not have to wait for the conversion to be
completed when it reguests joint position information. The
conversion time is about 120 wusec at a clock rate of 600
kHz, Therefore, the conversion frequency is 8.3 kHz which is
more than adeguate to follow joint motor motion. Only 7 bits
of the analog to digital converter are fed into the
MC146805E2 because the inaccuracies of the 5 wvolt voltage:
reference reduce the accuracy to 7 bits (remember it is not
a precision reference but is the 5 wvolt supply line).
However, this is still more than adeguate to give accurate
positional information about the prosthetic limb. The hand
has a range of motion of about 135 degrees, giving a
feedback resolution of about 1 degree. The results are
similar for the elbow. For the humeral and wrist rotators
the range of motion 1is 360 degrees which gives a feedback

resolution of about 3 degrees.

The positional feedback data are fed back into the
MC146805E2 on the same input/output 1lines as the motor
control output, since the motor control can be frozen by the
motor control data latch. The positional feedback analog to
digital converters are not memory mapped because the address
decoding circuits required would use too much space. Instead

the analog to digital converter is selected.by two of the
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MC146805E2 input/butput lines and the selected Jjoint

position data are fed into the MC146805E2.

It should alsco be noted that incorporating positional
feedback capabilities into the limb controller opens the
door for use in robotic applications where feedback is a

necessary part of the control.

2.4 Limb Controller Implementation

The limb controller as seen from the above discussion
is simply one microcomputer built from two microprocessors
that wuses EMG signals to control four motors. The limb
controller could have been implemented with standard TTL and
NMOS computer components, but. because of the power
constraints these components c¢ould not be used. The
alternative 1is to use CMOS with its much Ilower power
consumption and larger noise margins. However, until
recently CMOS devices were slow and could not support the
operation of a microcomputer bus. New advances in the design
of CMOS «circuits have led to the development of high speed
series of CMOS products or the "HC" series as it is more
commonly known. These components use much less power than
TTL or NMOS devices and yet give approximately the same
performance. The power saving of HCMOS over TTL or NMOS
compeonents is shown graphically in Figure 9. Notice that the

HCMOS component's power consumption is dependent on the
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frequency of operation while the other forms of logic are
relatively fizxed. This shows that to reduce power
consumption by the limb controller only the speed of
operation needs to be reduced. Since both microprocessors
are CMOS they can be operated all the way down to static
opération (i.e. very low frequency). Yet even at the clock
rates of this limb controller the power consumption is about
a tenth of the consumption of the other logic
implementations. An excellent discussion of the relative
merits of HCMOS over other forms of logic is produced by the
Motorola Corporation [39] and the National Semiconductor

Corporation [40].

The limb controller was-initially implemented by a wire
wrap board. This proved that the design was workable, but
because of noise problems and also because the performance
of the limb controller was slowly being degraded by the
electrical problems inherent in wire wrap boards (eg. short
circuits between the wires) it was decided that a more
permanent and robust limb controller be implemented. This
should not be used to infer that the wire wrap board was
doomed to failure from the start because usually wire
wrapping is an excellent method of building a single
prototype system. An excellent discussion on the advantagés
and disadvantages of wire wrapped circuit boards is given in
[41]. In this case the wire wrapped board failed because the

layout of some of the circuits resulted in several potential
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short circuits. As can be expected, following Murphy's Law,

these potential short circuits began to short circuit.
Photographs of the first limb controller prototype are given

in Figures 10, 11, and 12.

A second prototype was designed and the result is the
set of five printed circuit boards pictured in Figures 13 to
17. These boards are stackea upon each other to give a more
workable size than if they are on one large printed circuit
board. The printed circuit board layout negatives and the
addendums for the layout are given in the limb controller
hardware manual given in the Bibliography. The boards are

stacked in order from top to bottom as:

1} CDBOCB6& computer boafd

2) Shared memory board

3) MC146805E2 computer board

4) Motor control and position feedback board

5) EMG signal acquisition and power supply board.

The boards communicate by using three vertical buses
made from ribbon cable. The first vertical bus connects the
EMG signal acguisition board to the motor control and
position feedback board. This vertical bus passes the power
and analog to digital converter data to the motor control
and position feedback board and receives control data for

the EMG signal conversion and data register output. The next
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Figure 10 Top Side of Wire Wropped Prototype 1.




Bottom Side of Wire Wropped Prototype 1.

Figure 11
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vertical bus connects the motor control and position
feedback board to the MC146805E2 computer board. This bus
connects the data and control lines needed by the two boards
to operate and also delivers the povwer lines to the rest of
the 1limb controller. The last vertical bus is also the
largest vertical bus. This bus connects the MC146805E2,
shared memory, and CD80C86 boards. It contains both the
MC146805E2 and the CDB0C86 address/data buses as well as all
the control signals that must be passed to the shared memory
board from the two computer boards. In addition, power lines

are passed by these vertical buses.

To aid in noise reduction the +5 volt and ground supply
lines are passed to the circuit boards by using 14 gauge
wire connected to terminal posts on each board. This
provides sclid voltage supply 1lines for each board and
significantly reduces the noise present. on the voltage

supply lines.



CHAPTER 3
LIMB CONTROLLER SOFTWARE

The software of the limb controller is as important to
its operation as the hardware. This is because the hardware
cannot be fully utilized without good software to control
its operation. It should be realized that the hardware was
not designed and then the software conceived. Like most
microcomputers and microcontrollers the hardware and
software were developed in tandem. Before any change in limb
controller hardware was made the effect on the operation of
the software was determined and the final decision was based
on the optimal system with both software and<hardware taken

into account.

As with the hardware design, before writing the system
software some basic system reguirements must be determined.
These basic software reguirements can be summarized as

follows:

i) Simple to use - The software must be simple to

operate because 1if the software
makes the prosthesis difficult to
operate the prosthesis will not be

used.
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ii) Flexible - The basic limb controller software
must be flexible enough to do a
variety of tasks with little or no

modification.

iii) Powerful - The software must be able to
implement a variety of control
algorithms without needing

extensive revisions.

The above reguirements are all necessary to the limb
controller software but some need to be more fully clarified
before the software design is discussed. The words "simple
to use" often give a general idea but not a specific idea of
what is meant. For this project "simple to use" is defined
as: the user needs to understand no more than to press the
reset switch to start operation of the limb controller. The
limb controller will either have no reguirements on power up
or will take the wuser through a calibration procedure by

modelling the actions necessary on the prosthetic limb.

Flexible is meant in the sense that for a variety of
signal processing algorithms to be implemented on the
CDB0C86 microprocessor the MC146805E2 microprocessor
software should need no, or very little, modification. This
requirement focuses on the MC146805E2 software more so than

on the CD80C86 signal processing software.
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The final basic requirement is that of powerful. This
is also a relative term but specifically for this thesis it
will be defined as how many different kinds of signal
processing algorithms can be operated within the basic
system software environment without needing to rewrite
portions of the software. This requirement centers on both
the framework around the signal processing software on the
CD80CB86 and the limb controller supervisory software on the

MC146805E2.

The following discussion concerns the various programs
that were written for the 1limb controller. Some of these
programs were written for direct implementation on the limb
controller while others were written‘to provide a framework
for future software development. All of these programs are
necessary to do present or future work with the Llimb
controller. The programs are categorized by the

microprocessor on which they operate.

3.1 Limb Controller Superviscory Software

The MC146805E2, as discussed previously, is used as the
limb controller supervisor in addition to its duties for
data acquisition and joint motor control. Its interface to
the 1limb controller 1is defined in Chapter 2 and so in
discussing the software the actual control line, or hardware

circuit, that 1is used to effect an action will not be
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mentioned. For example, when indicating that the 1limb
controller supervisor is about to start an analog to digital
conversion it will be stated that way rather than state that
the MC146805E2 is about to start an analog to digital
conversion by toggling input/output control line PB6 high
then low. This should aid in easing the wordiness of the

discussion.

The basic software requirements defined previously
weigh most heavily on the software written for the 1limb
controller supervisor. This is because of the basic nature
of the tasks performed by the limb controller supervisory
software. It could be thought of as being analogous to the
basic input and output software (commonly known as the BIOS)
of any microcomputer and 1is the most important piece of
software on the microcomputer because no other programs
could operate without 1it. Yet it is rarely, 1if ever,
changed. The 1limb controller supervisory software must
gather the EMG signal data for use by the signal processor,
output the motor control, and control the operation of the
limb controller. A general flowchart of the limb controller

supervisory software is given in Figure 18.

Any discussion of software must start at the beginning
and in this case the beginning will be defined as upon
reset. Once the limb controller has been reset the entire

limb controller configuration must be redefined. The
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input/output control lines must be redefined to output,
shared memory be reset to shared memory 0, system variables
reset to their starting values, and the system timer reset.
All the obvious tasks that a reset routine must do. As well,
the reset routine needs to ensure that no false analog to
digital conversions will be started so one analog to digital
conversion is done to clear any pending interrupts from the
conversion process. In order to allow the CDB80C86 to reset a
wait loop of about 0.5 seconds is executed. The processor
then moves on to the main routine of the limb controller

supervisory software.

1t was decided that updating the Jjoint ﬁotor control
every tenth of a second would be sufficient to achieve good
joint motor control. This is because of the reaction time of
the user is of course much slower than one tenth of a second
an& also because some possible preprogrammed motions may
need this rapid updating time in order to achieve sufficient
resolution in their movements. However, a technigue to allow
ﬁreprogrammed and/or multifunction movements and movements
superimposed on other movements had to be developed. The
solution was to define a set of pass motor control variables
from the signal processor and a set of internal motor
control variables. An illustration to show the wuse of the
pass variables is given in Figure 19. The pass motor control
variables will request a new action for a joint motor only

if the most significant bit (i.e. bit 7) of the variable is
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high, otherwise the control request will be ignored. The
internal variables keep track of the joint motor direction
and the time left for its operation. Bit 6 of the internal
variables defines the joint motor direction with a 1low
indicating a close motion and a high indicating an open
motion. The remaining bits 0 to 5 are used to time the joint
motor control action. The signal processor when reguesting a
joint motor control action sets bit 7 in the pass variable
as well as bit 6 for direction and controls the duration of
the action by wusing bits 0 to 5. Since each action is
updated every tenth of a second this gives a minimum action
duration of a tenth of & second and a maximum action
duration of 6.4 seconds. Sufficient resolution for fine
joint motor control will be available because a joint motor
will only move a small distance in a tenth of a second, but

in 6.4 seconds the full range of motion can be executed.

The strength of this technigue for joint motor control
becomes evident when it is realized that this meéns
automatic shut off of a joint motion is accomplished saving
on battery life. As well, once an action is started it
cannot be stopped until it times out or another request for
motion of that joint motor occurs. This means actions can be
superimposed upon one another. For example, if the user
requests 1.5 seconds of elbow flexion (approximately 90
degrees) and as the motion is executing it is also decided

that the hand must be opened. The user reguests this action
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and the hand is opened as the elbow is flexing, thereby

superimposing the hand motion ontc the elbow movement.

For preprogrammed movements this technigue 1is also
easily applied. The preprogrammed pass variable from the
signal processor must have bit 7 set to indicate a new
preprogrammed motion request and then wusing bits 0 to 5
select the preprogrammed movement desired. This gives a
range of 64 possible preprogrammed movements. The program
upon detection of a preprogrammed movement request enters a
routine which will select the preprogrammed movement. This
is done by replacing the values in the pass variables from
the signal processor with values that select the action
desired. For example, if preprogfammed motion 9 éorresponded
to elbow.flexion for 2.0 seconds, wrist supination for 1.6
seconds, and hand <closing for 0.5 seconds, then upon a
request for preprogrammed motion 9 the values corresponding
to the above action would be placed into the pass variables
for the elbow, wrist, and hand joint motors. These joint
motor actions would then be carried out until they timed out

or a new reqguest for a joint motor action is given.

Multifunction movements are simply simultaneous
implementations of superimposed actions. For example, if the
user selects wrist pronation with hand opening, the two pass
variables for wrist and hand are set to the corresponding

values for that action. The two actions will carry on
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individually wuntil they time out or a new action for that

joint motor is reguested.

The timer of the MC146805E2 is wused to interrupt the
limb controller supervisory software whenever a new sample
of EMG data 1s to be taken. The timer value can be set to
any value desired based on an input frequency of either the
MC146805E2 clock or the analog to digital converter clock.
For example, if a sampling rate of 1 kHz were desired this
could be done by selecting 130 kHz clock of the analogrto
digital converter, setting the prescaler to 32 and setting
the timer to the wvalue 4. The timer interrupt would then
occur every 985 usecs or about 1.016 kHz. The timer routine
'first resets the timer to the starting value and restarts
it., Next, the timer 1interrupt routine resets the channel
count to start at the first channel and initiates the
conversion immediately. This produces one limitation in that
channel 0 is always converted first but this should not
cause any problems and if it does the change is very simple
to make. The timer routine also <checks if the reguired
number of data samples has been taken, and if so, resets the
data count and data storage variables and executes the
signal processor interrupt procedure. If there are still
‘more data samples to be taken the routine returns to the

main program.
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The signal prbcessor interrupt procedure must load the
pass variables to the signal processor with the required
values. For example, 1in three state EMG control the two
power ratios and the number of data samples are passed to
the signal processor. The shared memory is then toggled and
the nonmaskable interrupt of the CDBOC86 asserted, thereby
interrupting the signal processor. The final action 1is to
load the pass variables from the signal processor into a
temporary set of local variables. At this location the
meaning of the pass variables from the signal processor can
be redefined if necessary by either modifying the pass
variable value or storing it in another location. The

routine then returns execution to the main program.

The MC146805E2 is interrupted whenever an analog to
digital conversion has been completed. This invokes the limb
controller supervisor interrupt routine, which first checks
if there are more channels to be converted and if so,
selects the next channel and starts the conversion. Next,
the routine reads the high and low data bytes of the analog
to digital converter and stores them in témporary variables.
The MC146805E2 does not provide a convenient way to store a
large amount of incoming information because 1t assumes a
small data memory requirement. This problem can be overcome
by specialized subroutines corresponding to each page in
memory. Therefore, once the data bytes have been read the

subroutine corresponding to the current page of data storage
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is invoked and the data stored. After execution the
interrupt routine returns to the main program. It should be
noted that an analog to digital conversion takes
approximately 100 usecs or about 212 machine cycles.
Therefore, the interrupt routine should execute in that time
period or the analog to digital data may be overwritten. At
present, the ' interrupt routine taﬁes about 137 machine
cycles or about 64 usecs, well within the necessary time

limit.

If the reader desires more information about the
operation of the limb controller supervisory software please
consult the limb controller software manual given in the

Bibliography..

3.2 Signal Processing Software

The basic software reguirements mentioned at the start
of this chapter do not apply to the signal processor
software as strictly as to the limb controller supervisory
software. This is because each new unigue signal processing
and decision algorithm will need to be implemented in a
different way. The 1limb controller supervisory software
provides all the utilities that the signal processor needs
to invoke action requests of the joint motors without
needing to be actually interfaced to the joint motors.

Therefore, all that the signal processing software needs to
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do 1is determine actions and output the results to the pass

variables.

The programs for the signal processor were all
developed on an IBM Personal Computer or related compatible.
This microcomputer uses an Intel 8088 as the microprocessor
and uses dynamic RAM for memory. However, this does not
cause any compatibility problems between the limb controller
and the IBM PC because the 8088 is simply an eight bit data
bus version of the 8086. This means that the instructions
are the same. It merely takes longer to read from and write
to memory using an 8088 instead of an 8086 because 8 bits
instead of 16 bits of data are used at a time. The wuse of
dynamiq RAM necessitates a refreéh cycle every 2 msecs,
thereby causing a delay in processing every 2 msecs. This is.
invisible to the programmer and program so it also does not
present any visible incompatibilities with the limb
contfoller CD80CB86 setup. In fact the only difference will
be the speed of execution. The clock rate of the IBM PC/XT
is 4.77 MHz; the same as the limb controller. Therefore,
since the CDB0CB6 wuses a 16 bit data bus and the limb
controller uses static RAM memory requiring no refresh
cycle, programs will execute faster on the 1limb controller
CDB0OCB86 than on the IBM PC/XT 8088. It would be difficult to
say how much faster, but they will definitely execute
faster. This means that if the program execution time on the

IBM PC/XT during development is fast enough, then it will be
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even faster on the limb controller. Therefore, the IBM PC/XT
gives what could be compared to a worst case execution time
for any signal processing software developed on it. The IBM
PC/XT used for development also has a multichannél analog to
digital converter as a peripheral device, thereby permitting
full testing of the signal processing software before being

used in the limb controller.

The limb contreoller signal processing. software 1is
contained within a shell program that 1is used only on limb
controller reset. The program is called FRAME. The purpose
of the FRAME program is to provide a standard reset seguence
for use by all signal processing programs. A general.
flowchart of the FRAME program is given in Figure 20. Its
execution is very simple. On limb éontroller reset the
signal processor must assume that it must reconstruct its
processing environment by rebuilding the interrupt table
located in the four 1lowest pages of memory. The FRAME
program sets any flags that need to be set as an indicator
of 1limb controller reset and then begins to rebuild the
interrupt table. There are 256 interrupt vectors in the
interrupt vector table with only a few being predefined. The
predefined interrupts consist of a divide by 0 error
interrupt for use with the DIV and IDIV instructions, a
nonmaskable interrupt vector, an overflow interrupt for use
with the INTO instruction, and three other vectors that are

used with debugging programs. The rest of the interrupts are
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accessed with either the INT instruction for software
interrupts or are used on maskable processor interrupts.
Since there are no maskable interrupts in this system and no
debugging program is in operation, all the vectors are
defined to a return from interrupt instruction except the
divide by zero, the overflow, and nonmaskable interrupts.
The divide by 0 and the overflow interrupts are vectored to
a routine that will process the error condition. The
nonmaskable interrupt is used to start the signal processing
algorithm and so its vector points to the signal processing
software., After the interrupt vector table has been loaded
the signal processor waits for a nonmaskable interrupt to
occur and then begins execution of the signal processing
software. After completion of the signal processing program
the execution is passed back to wait for another nonmaskable

interrupt to occur.

3.2.1 EMG Signal Power Processing

The EMG signal may be modelled as a zero mean Gaussian
process with a controllable variance [42]. Therefore, most
myoelectric 1limb controllers wuse the variance as the
parameter to be used for contrel., It should be noted that
the variance of the EMG signal 1is also the power of the EMG
signal. For this limb controller the variance is calculated
rather than derived by filters as in present day analog limb

controllers.
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The mean of the measured EMG signal should be zero
except that some offset may be introduced by the measurement
system. The mean of the measured EMG signal may be

calculated as:

N
u =1 Z s [1]
N i=1
where u - mean of EMG signal
s;, — EMG signal at time i
N - number of samples taken

The mean may then be used to calculate the variance as

follows:
N -
62 =% (s —u }? [2]
i=1 N-1 -
where o2 - variance of EMG signal
u - mean of EMG signal
s; - EMG signal at time i
N - number of samples taken

This wvalue may then be used to control the prosthetic limb.
For example, if the power increases over a certain threshold
then the 1limb 1is activated; 1if it has not reached the
threshold value then no action is taken. This models two
state EMG control. For three state control two thresholds
are used to give two stages of activation for each EMG
signal. This extends over any number of control states, but
as the number of control states is increased the difficulty

of prosthetic limb control is increased. Present clinical
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systems use a maximum of three state control.

Two signal power processing programs were written for
the limb controller signal processor. These were for two and
three state control. The two programs operate in a similar
manner, but the exact method of implementation is different
in order to test various aspects of the 1imb controller.
These differences are not important to this discussion and
can be found in the limb controller software manual given in

the Bibliography..

The first signal power processing program that was
written was the two state control program called STATEZ and
this was followed by the three state control program called
STATE3. For this discussion only the STATE3 program will be
discussed because the two programs are very similar. A
general flowchart of the STATE3 program is given in Figure
21. The first task that the STATE3 program must perform is
to clear its own internal joint variables and get the pass
variable parameters passed to it from the limb controller
supervisory program that runs on the MC146805E2 (remember
that the STATE3 program does not begin execution until the
signal processor is interrupted by the 1limb controeller
supervisory program)}. The parameters passed to the signal
processor are the two signal power threshold values, the
number of channels of EMG signal used, and the number of

data items in the sample. After setting the pass variables
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to the limb controller supervisory pfogram to the default
values the STATE3 program calculates the sample mean using
the method of equation [1]. Next the variance is calculated
as described using equation [2]. The variance is then stored
using the channel number as an offset into an array. For
normal operation this is done into a general array, but for
the first few passes through this routine the variance is
stored in a comparison array. This is needed to give a base
value for relaxed EMG signal power corresponding to each EMG
signal channel. The program then checks if more channel

variances are to be calculated and if so, calculétes them.

The STATE3 program must then determine if an action has
been requested by the operator. This 1is done by comparing
the base variances determined in the first few passes of the
program to the variances just calculated. If the ratio of a
channel variance 1is 1less than the first power ratio value
then no action is taken. If the ratio falls between the two
power ratio values then a close action is taken and 1if the
ratio is greater than the second power ratio then an open
action is taken. The results corresponding to each channel
are then stored in the return pass variables. Once the
program has outputted all the actions for the number of EMG
signal channels used then the signal processing returns to
the FRAME program and waits for the next interrupt to

restart the STATE3 program.
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3.2.2 EMG Autoregressive Model

The final program to be implemented on the limb
controller signal processor is an autoregressive model of
the EMG signal. The use of an autoregressive modelrto
identify unique temporal parameters of the EMG signal was
first proposed by Graupe in 1973 [43], [44], and [45]. The
control algorithm was implemented on a microprocessor based
limb controller dedicated to this control algorithm. An 8080
was used for this work. While the 8080 was a powerful
microprocessor . in 1973, today it 1is considered a low
performance microprocessor and is rarely wused in newly
designed systems. This device is also not a CMOS device so
its final implementation into a limb controller would create
power supply problems. Graupe found that the response time
of the 1limb controller was much too slow {around 2.5
seconds) because the 8080 could not calculate the
autoregressive coefficients gquickly enough. He is presently
implementing the control algorithm on a 68000 based
microcomputer and estimates the response time to be reduced

to an acceptable 200 to 300 msecs.

The autoregressive model coefficient determination used
is the method of least sqguares. This method is similar to
the one used by Graupe [46]. The autoregressive model of a
signal 1is based on the following eguations taken from

Makhoul [47] where the signal at time n is estimated as a
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linear combination of past values:

5 g [3]
- 8y, = - aks,,
k=1
where Sn - estimated EMG signal at time n
n - discrete time
P - model order
k - coefficient number
a - autoregressive coefficients

The error between the actual value of the signal and the

predicted value is given by:

. p
el = 8;- 5, = 5,* L s, [4]
k=1
where s, - value of the BMG signal at time
n
el - error at time n

Obviously, in order to make the model as accurate as
possible the error must be minimized. For a random signal,
such as the measured EMG signal the total mean squared error

can be stated as:

P

E=Ee} =£1{ (s, + Z a,5,)2} [5)
k=1

where E - total mean sguared error

It is clear that E can be minimized by:
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Partial differentiating eguation [5] with respect to a , the

following is derived:

A
-
IA

o)
o
=

p
i:?"s { 8. 8p.,1 = -€ (5,8, 1

Therefore, we now have a set of p eguations with p unknowns
which, when solved, will give a minimum value for the total
squared error E as defined in equation [5]. The error for
each coefficient wvalue can then be stated by expanding

eguation [5] and substituting in equation [7]:

p
E =& (s?) + L 1a,{ € (s,8,., ) [8]
k=

The EMG signal can be considered a stationary random
signal as long as its mean and variance are not changing
with time. For the EMG signal it has already been stated
that it is a =zero mean Gaussian process. However, for the
limb controller a slight offset is introduced by the
measurement system. This offset is constant and therefore
the mean does not change over time. Since the variance of
the EMG signal can be controlled it can be stated that for a
given contraction the variance will not be changing over

time. This, of course, assumes a constant contraction where
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the limb is not moving, a situation which is especially true
for the amputee where the muscle insertions are missing for
the muscle being measured and so no limb motion can occur.
In addition, present limb controllers, especially those
using three state control, use a constant EMG signal power
or variance for «control. Thus, for further discussion the

EMG signal will be considered as a stationary signal.

For a stationary random process the autocorrelation of

that process is equal to:

R(i-k) = € (sp_y 54, ) [9]
where R{i) - autocorrelation of the process

Using equation [9], equations [7] and [8] can be reduced to:

p
L g R{i-k} = - R{i) 1<ic<p [10]
k=1
D
E = R(0) + Z a R(k) [11]
k=1

It should also be noted that the autocorrelation function is

alsc an even function i.e.

R(-i) = R{1i) ' [12]
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Expanding eguation [10] we obtain its matrix form:

Ro Rl R;L LR ] RP..( a, Rf

R: Ro R1 . e Rp -1 az R;

R’L R' RO LI RP-_; ag R3

. . . . . = - . [ 1 3 ]
i R.g..j RP‘2 RP_S e e Ro | a{ _Rf

Equation [13] can be sclved in a variety(of ways such
as the Gauss reduction method or Cholesky decomposition.
However, these methods are general and require a great deal
of computations. If we examine the autocorrelation matrix it
can be seen that it is symmetric and the elements along the
diagonal are identical. In addition, the column vector on
the right hand side of [13] uses the Same elements as the
autocorrelation matrix. Using these facts Durbin [48]
derived a quick and efficient algorithm to solve for the
autoregression coefficients. This method requires only 2p
storage locations and p? + O(p) operations. This is a big
saving over the Gauss reduction method which requires p?
storage locations and p3/3 + 0O(p?) operations and the
Cholesky method which reguires p?/2 storage locations and

p3/6 + 0{(p?) operations. Durbin's recursive method can be

specified as:



83

Eo = RO ) [148..]
i-1

ki = - [ R(1)+ Z (g * R(i-§)] / E, [14b]
i=1

e}

a, = kL [?4‘:]

%) (30 (1) . . s

ap = aj ¥ ;aj 1 <3 2 i-1 : [144d]

E, = {( 1-k? ) * B, [14e]

Equations [14b] to [14e] are solved recursively for i=1,2,
...,p and the final solution is given by:
) ) ‘
a; = a; 1< 3j<p [15]

The major computational load in the calculation of the
autoregressive coefficients 1is the calculation of the
autocorrelation coefficients provided N>>p which is wusually
the case. Therefore, any method that may reduce the number
of computations, especially those of multiplication,
required to calculate the autocorrelation coefficients would
speed up the processing. One of the more common methods has
been attributed to Kendall. The results of his work show
that if we assume N {the number of samples) even, then the

expression for autocorrelation can be expressed as:
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{N-k)/2-
R{k) z [s (2m)+s(2m+k+1)] * [s{2m+1)+s(2m+k) ]
m=0 -A(k)-B(k) k even [16]
(N-k-1)/2-1
R(k) = £ [s(2m)+s(2m+k+1)] * [s(2m+1)+s(2m+k)} ]
m=0 -A(k)-B(k)+s(N-1-k)*s(N-1) k odd [17]
vhere k ~ coefficient number
s - EMG signal
A(k)Y - correction factor
B(k)}) - correction factor
R(k) - autocorrelation coefficient
N - number of data samples

a{k) and B(k) can be obtained by the recursive relations:

A(k) = A(k+2) + s(N-2-k) * s(N-1-k)} k even [18]

with initial condition: A(N)=0.

A(k) = A(k+1) k odd {19}

with initial condition: A(N-1)=0.

B(k) = B(k+2) + s(k) * s(k+1) k even [20]

with initial condition: B(N)=0.

B(k) = B(k+2) + s(k) * s(k+1) k odd (211

with initial condition: B(N-1)=0.

Using equations [16] and [17] it can be shown that the

number of multiplications reqguired to compute R(k) Iis
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approximately (N-k-1)/2, about half the number normally
required by direct evaluation. This decrease in
multiplications is done at the expense of about 50% more
additions, but since addition is a much gquicker operation
than multiplication the overall result 1is significantly

faster computation of the autocorrelation coefficients.

While the claims of Graupe to have achieved reliable
control of prosthetic limbs with up to 6 degrees of freedom
have been verified by Doerschuk et al [49], it was decided
to do a preliminary investigation of the possibilities of
using an autoregressive model for this limb controller. If
this method would be reliable it would be an ideal
demonstration of the abilities of this 1limb .controller to
advance the state of the art in clinical myoelectric limb

controllers.

A PDP 11 minicomputer with an analog data acquisition
subsystem was used to gather EMG signal data from 7 test
subjects. These subjects were all physically normal young
persons in the age range from 19 to 26 years of age. Six
males and one female were used. The age and sex should
create insignificant changes in results, but the use of
physically normal people was selected because of ease in
finding test subjects and because this would be a comparison
of fairly similar subjects. Data were taken for six

movements and a relaxation «calibration trial £from an
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electrode situated at approximately -the insertion of the
deltoid muscle on the lateral side of the left arm. The six
actions were divided into two sets of three similar actions.
Low power and high power contractions for elbow extension,
elbow flexion, and wrist supination were measured and the
EMG signal data gathered. The subject's arm was fixed 1in
place so as not to allow any movement and thereby introduce
nonstationary properties into the measured EMG signal. The
data were filtered to give a bandpass of 10 to 1000 Hz and
was sampled at 2500 Hz for 820 msecs. The subjects were
tested five times each with a rest period of 5 minutes in
between tests to allow testing for repeatability. It should
be realized that this was not the most stringent of test
éonditions but was adeguate for preliminary investigation.
After gathering of the EMG signal data, the. data were
transferred to the university mainframe computer for
analysis. The program called ARTEST (found in the limb
controller scoftware development manual given in the
Bibliography) was used to analyze the data and output the
coefficients. Tests were done to simulate various sampling
rates and sampling periods. The results varied widely
between subjects, but for each subject the results were
consistent with the exception of the first subject used in
the test procedure. The discrepancy could be explained by
the fact that this was the first test subject used so that,
in fact, the testing procedure was not as controlled as for

the later subjects. The results for one of the subjects is
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given in Tables 2 to 6.

Graupe found that when using four coefficients the best
muscle discriminations patterns were found for a sampling
frequency of 500 Hz and a sampling duration of about 200
msecs [50]. From the data given in the tables it can be seen
that for this sampling fregquency and duration good
discrimination between actions can be obtained. For example,
if the results of 500 Hz for 204 msecs (table 6¢) are
examined, the 1low power actions can be distinguished from
the high power actions by the lower variance value. Action
EE-LP is uniquely defined by much more negative al and a3
coefficients; action EE-HP 1is unigquely defined by a
moderately negative al coefficient and a high positive a4
coefficient; action WS-LP is uniquely defined by a positive
al coefficient and a high positive a4 coefficient. For high
power actions the coefficients used to distinguish actions
are different, but the method of analysis is the same. It is
interesting to note that for all sampling rates and
durations, except for those of B19 msecs, good
discrimination between actions could be obtained; unlike
Graupe's results where he found 500 Hz and approximately 200
msecs to give best discrimination. Additional tests were
performed to check on the effects of using different numbers
of autoregressive coefficients. It was found that reducing
the number of coefficients sometimes would not yield

sufficient information on which to uniguely define an



EE-Elbow Extension

Action:

al
a2
a3
ad
var

EE-LP

-0.390
-0.126
-0.050
-0.055
+0.020

EF- Elbow
EF-LP WS-LP
-0.225 -0.127
-0.118 ~0.032
-0.068 +0.002
-0.038 +0.020
+0.018 +0.026

Flexion

EE-HP

-0.524
+0.362
-0.080
+0.066
+0.161
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WS- Wrist Supination

EF-HP

-0.391
+0.111
+0,072
+0.047
+0.046

WS-HP

-0.260
+0.221
+0.028
+0,094
+0.059

Table 2a Data sampled at 2500 Hz for 819 msecs. -

Action:

al
az2
a3
ad
var

EE-LP

-0.404
-0.177
-0.077
-0.067
+0.025

EF-LP

-0.283
-0.099
-0.056
-0.057
+0.027

WS-LP

-0.225
-0.039
-0.019
+0.057
+0.014

EE~HP

-0.528
+0.349
-0,089
+0.054
+0.196

EF-HP

-0.338
+0,123
+0.066
-0.004
+0.051

Table 2b Data sampled at 2500 Hz for 409 msecs

Action:

atl
a2
a3
a4
var

Table 2c Data sampled at 2500 Hz for 204 msecs.

Action:

al
a2
a3
ad
var

Table 23 Data sampled at 2500 Hz for 102 msecs.

Table 2 Results for data sampled at 2500 Hz with various

EE-LP

-0.535
-0.192
+0.001
-0.080
+0.038

EE-LP

-0.661
-0.159
+0.014
-0.042
+0,063

EF-LP

-0.260
-0.106
-0.067
-0.061
+0.038

EF-LP

-0.458
-0.082
-0.044
~0.025
+0.047

WS-LP

-0.221
-0.047
+0.021
+0.028
+0.014

WS—-LP

-0.290
-0.078
+0.08%
+0.051
+0.014

sampling durations.

EE-HP

~0,532
+0.374
-0.086
+0.055
+0.181

EE-HP

-0.507
+0.332
~0.154
+0.079
+0.173

.EF-HP

-0.246
+0.100
+0.112
-0.041
+0.054

EF-HP

-D.121
+0,053
+0,114
-0.068
+0.0658

WS—-HP

-0.265
+0.179
+0.039
+0.067
+0.047

WS-HP

-0.250
+0,214
+0.044
+0.067
+0.060

WS—HP

-0.303
+0.177
+0.048
+0.025
+0.065



EE-Elbow Extension

Action:

al
az
a3
ad
var

‘Table 3a Data sampled at 1250 Hz for 819 msecs.

Action:

al
a2
a3
ad
var

Table 3b Data sampled at 1250 Hz for 409 msecs.

Action:

al
a2
a3
a4
var

Table 3¢ Data sampled at 1250 Hz for 204 msecs.

Action:

al
a2
a3
a4
var

Table 3d Data sampled at 1250 Hz for 102 msecs.

Table 3 Results for data sampled at 1250 Hz with various

EE-LP

-0.317
-0.110
-0.008
+0.010
+0.019

EE-LP

-0,335
-0.148
-0.050
~0.004
+0.026

EE-LP

-0.482
-0.166
-0.014
+0.016
+0.036

EE-LP

-0.607
~-0.140
+0.046
+0.006
+0.061

EF-LP

~0.168
-0,106
+00.023
+0.021
+0.020

EF-LP

-0.148
-0.120
+0.022
-0.015
+0.028

EF-LP

-0.156
-0.141
+0.060
-0.080
+0.041

EF-LP

-0.259
-0.161
+0.138
~0.113
+0,053

EF-

Elbow

WS-LP

-0.033
+0.008
-0.064
-0.079
+0.026

WS-LP

~0.073
-0.004
-0.037
-0.214
+0.014

WS-LP

-0.087
-0.015
-0.021
-0.255
+0.013

WS-LP

~0.185
+0.049
-0.047
-0.373
+0.013

sampling durations.

Flexion

EE-HP

+0.136
+0.088
+0.078
+0.088
+0.171

EE-HP

+0.116
+0.060
+0.092
+0.110
+0.206

EE-HP

+0.199
+0.060
+0.086
+0.094
+0.200

EE-HP

+0,187
+0.021
+0.088
+0,152
+0.205
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WS- Wrist Supination

EF-HP

-0.009
+0.070
+0.081
+0.013
+0,045

EF-HP

+0.046
-0.006
+0.052
+0.064
+0.052

EF-HP

+0.082
-0.078
-0.008
+0,113
+0,057

EF-HP

+0.083
-0.154
-0.035
+0.174
+0.060

WS—-HP

+0.203
+0,129
+0.055
-0.010
+0.061

WS—-HP

+0.183
+0.077
-0.004
-0.047
+0.048

WS—-HP

+0.204
+0.,058
-0.029
-0.012
+0.061

WS—-HP

+0.127
+0.024
-0.007
-0.008
+0.067



EE-Elbow Extension

Action:

al
a2
al
a4
var

Table 4a Data sampled at 833 Hz

Action:

al
az2
a3
ad
var

Table 4b Data sampled at 833 Hz

Action:

at
az
a3
a4
var

Table 4c Data sampled at 833 Hz

Action:

al
az
a3
ad
var

Table 4d Data sampled at 833 Hz

EE-LP

-0.299
-0.117
+0.029
+0.030
+0.019

EE~-LP

-0.386
-0.006
-0.033
+0.015
+0.025

EE-LP

-0.447
-0.034
-0.049
+0.010
+0.038

EE-LP

~-0.598
+0.059
-0.076
+0,047
+0.063

EF- Elbow
EF-LP WS-LP
-0.158 -0.022
-0.025 -0.021
+0,036 -0.054
+0.138 +0.021
+0,017 +0.029

EF-LP

~0.163
+0.000
-0.018
+0.111
+0.024

EF-LP

-0.176
+0.034
-0.040
+0.084
+0.036

EF-LP

-0.168
+0.050
-0.083
+0.079
+0.050

WS-LP

-0.033
+0,013
-0.216
+0.078
+0.015

WS-LP

-0.050
+0.,044
-0.147
+0.144
+0.015

WS-LP

-0.042
+0,036
-0,352
+0.075

"+0.014

Flexion

EE-HP

+0.,174
+0.089
+0.139
+0.063
+0.147

for 819

EE-HP

+0.210
+0.136
+0.201
+0.072
+0.174

for 409

EE-HP

+0.171
+0.067
+0.242
+0.128
+0,151

for 204

EE-HP

+0.111
+0.161
+0.190
+0.079
+0,152

for 102

Table 4 Results for data sampled at 833
sampling durations.
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WS- Wrist Supination

EF-HP

+0.131
+0.084
-0.041
+0.029
+0.049

msecs.

EF-HP

+0,125
+0,043

--0.013

+0,103
+0.055

msecs.

EF-HP

+0.175
-0.051
~0.121
+0.158
+0.059

msecs.

EF-HP

+0.105
-0.028
~-0.043
+0.107
+0.059

msecs.

Hz with

WS-HP

+0.138
+0.012
-0.001
+0.027
+0.056

WS-HP

+0.178
-0.062
+0.028
-0.005
+0.045

WS—-HP

+0,166
-0.12¢%
+0.103
-0.059
+0.056

WS—HP

+0.127
-0.033
+0.082
-0.048
+0,049

various
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EE-Elbow Extension EF- Elbow Flexion WS- Wrist Supination

Action: EE-LP EF-LP WS-LP EE-HP EF-HP WS~HP

al -0.187 -0.092 +0.011 +0.,051 +0.077 +0.042
az +0,002 +0.026 -0.082 +0.088 +0.010 +0.015
a3 +0.015 +0.089 +0.,021 -0.036 -0.008 -0.034
a4 -0.106 +0.123 -0.151 +0.024 +0.000 -0.013
var +0,022 +0.023 +0.031 +0.165 +0.042 +0.062

Table 5a Data sampled at 625 Hz for 819 msecs.

Action: EE-LP EF-LP WS-LP EE-HP EF-HP WS—HP

al -0.225 -0.108 +0.003 +0.032 +0.027 +0.060
a2 -0.064 +0.,038 -0.184 +0.093 +0.013 -0.027
a3 +0,044 +0.046 +0.033 +0.013 +0.050 +0.040
a4 -0.098 +0.142 -0.112 +0.033 +0.022 +0.086

var +0.031 +0.035 +0.015 +0,202 +0.047 +0,051

Table 5b Data sampled at 625 Hz for 409 msecs.

Action: EE-LP EF-LP WS-LP EE-HP EF-HP WS—-HP

al -0.383 -0.114 -0.051 +0.050 +0.032 +0.052
a2 -0.015 +0.001 -0,189 +0.088 +0.025 +0.020
a3 +0.037 +0.089% +0.094 -0.027 +0.115 +0.068
at -0.123 +0.166 -0.123 +0,040 -0,027 +0.160

var +0.043 +0,050 +0.015 +0.,206 +0.051 +0.062

Table 5¢ Data sampled at 625 Hz for 204 msecs.

Action: EE-LP EF-LP WS-LP EE-HP EF-HP WS-HP

al -0.448 -0.192 +0.001 -0.037 +0.,010 -0.009
a2 +0.026 +0.134 -0.346 +0.122 +0.122 -0.035
a3 +0.018 +0.002 +0.193 -0.024 +0.143 +0.074
ad -0.089 +0.256 -0.033 +0.030 -0.153 +0.314
var +0.075 +0.059 +0.016 +0.195 +0.047 +0.067

Table 5d Data sampled at 625 Hz for 102 msecs.

Table 5 Results for data sampled at 625 Hz with various
sampling durations.,.
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EE-Elbow Extension EF- Elbow Flexion WS- Wrist Supination

Action: EE-LP EF-LP WS-LP EE-HP EF-HP WS-HP

al -0.164 -0.191 -0.006 +0.123 +0.100 +0.071
a2 -0.008 +0.013 +0.045 +0.177 +0.035 -0.048
a3 -0.153 +0.047 -0.053 -0.042 -0.081 -0.024
ad -0,001 +0.077 +0.047 -0.015 +0.010 -0.022

var +0,018 +0.021 +0.029 +0.163 +0.041 +0.059

Table 6a Data sampled at 500 Hz for B19 msecs.

Action: EE-LP EF-LP WS-LP EE-HP EF-HP WS-HP

at -0.312 -0.246 +0.096 +0.174 +0.097 +0.090
a2 -0.045 +0.004 +0.010 +0.178 +0.087 -0.014
a3 -0.215 -0.013 -0.054 -0.042 -0.076 +0.080

al +0.106 +0.170 +0.196 +0.001 +0.045 +0.143
var +0.021 +0.031 +0.014 +0.210 +0.050 +0.,.047

Table 6b Data sampled at 500 Hz for 409 msecs.

Action: EE-LP EF~-LP WS-LP EE-HP EF~HP WS-HP

al -0.489 -0.320 +0.102 +0.167 +0.020 +0.021
a2 ~0.013 -0.024 -0.096 +0.134 +0.048 +0.028
a3 _0.186 -0.062 -0.034 +0.034 -0.046 +0.186

a4 +0.168 +0.224 +0.248 +0.043 +0.064 +0.11S
var +0.030 +0.045 +0.015 +0.1999 +0.052 +0.06T

Table 6c Data sampled at 500 Hz for 204 msecs.

Action: EE-LP EF-LP WS-LP EE-HP EF-HP WS-HP

al -0.590 -0.459 +0.131 +0.287 -0.141 +0.072
a2 +0.051 -0.121 -0.071 +0.089 +0.023 -0.017
a3 -0.225 -0.024 +0.001 +0.086 -0.038 +0.186

a4t +0.231 +0.123 +0.335 +0,176 -0.142 +0.074
var

Table 6d Data sampled at 500 Hz for 102 msecs.

Table 6 Results for data sampled at 500 Hz with various
sampling durations.



93

action. Using more coefficients yielded more information,
but the discrimination between actions was not increased
enough to justify the extra processing time needed to

calculate the extra autoregressive coefficients.

The results as a whole were encouraging enough to try
to implement the autoregressive model on a microcomputer to
test its response time and susceptibility to a smaller word
length. The program was implemented on an IBM PC
microcomputer because, as discussed previously, it gives a
similar environment to that of the limb controller. Four
programs were used to test the autoregressive model on the
IBM PC and are called EMGDISK, EMGHEX, EMGAR, and ARVERIFY.
These progfams are discussed more completely later on in

this chapter.

3.2.3 EMG Autoregressive Model Processing

After testing of the autoregressive model was completed
it was decided to implement it on the limb controller. The
resulting program 1s called ARMODEL and its general
flowchart 1is given in Figure 22, This program was mainly
implemented to show the processing power of the 1limb
controller's signal processor. The program begins in a
similar manner to the STATE3 program by resetting and
clearing pass and internal control variables. ﬁext, the

program takes the data sample and using the method outlined
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above calculates the autocorrelation and autoregressive
coefficients. The control output is determined by £finding
what action the resulting coefficients most closely
resemble, provided that they fall within a certain range of
the action coefficients. The reference action coefficients
are calculated each time the limb controller is reset. In a
clinical limb controller it may be adequate to store the
coefficients in perménent memory, but for this demonstration
device it is best that a calibration run be executed on
reset to allow easy modification of electrode placement and
test subject usage. The calibration run requests the action
that it wishes the user to execute by outputting the same
action on the prosthetic 1limb. This creates a simple
learning process because all the user has to do is imitate
the actions of the prosthetic 1limb. It should be remembered
that for normal subjects the limb on which the electrode is
placed should be made immobile so as not to introduce

nonstationary properties to the EMG signal.

3.3 EMG Signal Processing Development Software

A variety of programs were needed to test the proposed
use of the autoregressive model of the EMG signal. It is not
the intention of the author to discuss the operation of
these programs at length in this section, but rather, to
give the reader a general impression as to the operation and

relationship between these programs. A more detailed
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discussion of these programs is given in the limb controller

software development manual given in the Bibliography.

The development programs create the shell for the
development of a full EMG signal processing test network of
possible control algorithms before they are implemented for
clinical testing on the limb controller. The programs are
written mostly 1in assembler because of the speed advantage
and also because there 1is presently no higher language
support that makes it convenient to down load the program
code to the limb controller from the IBM PC used to develop
the software. Any programs used for software development
that were written in a higher language were not intended to

be used on the limb controller.

The first program is the ARTEST program. This program
was used for the initial testing of the autoregressive model
on the university mainframe computer and a general flowchart
describing its operation is given in Figure 23. The program
calculates the autoregressive coefficients using the method
given in Section 3.2.2. The program simulates different
sampling rates and sampling durations by selecting data from
the EMG data files in differing orders. For example, knowing
that the sampling rate used was 2500 Hz a rate of 1250 Hz
can be simulated by selecting every second data item.
Differing rates can be simulated by similar techniques.

Counting the number of data items selected and knowing the
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sampling frequency being simulated, the sampling duration
can also be varied. The results of the program are outputted
to a data file for possible further study. The results given
in Tables 2 to 6 show an example of the output from this

program.

After initial testing it was decided to do further
tests on a microcomputer to simulate the model's performance
on the limb controller. The computer selected was an IBM
PC/XT for reasons outlined previously. Two data acgquisitions
programs were written to acquire EMG signal data and store
it on disk for further analysis by other programs. The first
data acquisition program is the EMGHEX program whose general
flowchart is given in Figure 24.‘The program first reguests
the sémpling rate and duration desired for sampling as well
as the data file to be used for storage. Next, the analog to
digital converter 1is setup for the sampling rate and
duration requested and the EMG signal data are acguired. For
this program the EMG signal data are stored on disk exactly
as it would\be in memory. This data can then be used by the

EMGAR program.

The second data acquisition program is the EMGDISK
program and a general flowchart is given in Figure 25. This
program operates in a similar manner to the EMGHEX program
for acquiring the data but the storage on disk is in a much

different manner. The data are converted to a binary coded
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data (BCD) form before it 1is stored on disk. This allows
testing by higher language programs without necessitating a
conversion routine from hexadecimal to BCD. The resulting
data can then be used by programs similar to the ARVERIFY

program.,

The EMGAR program is used to test the autoregressive
mpdel coefficient calculation and decision algorithms. A
general flowchart of the EMGAR program is given in Figure
26. The program first requests the sampling rate and
duration desired and also, whether the data are to be
acquired directly from a test subject or if the data are to
be taken from disk. In addition, the program reguests
.whether a debugging output is to be given or a feédback
display. The debug display outputs the autoregressive
coefficients along with the action selected on screen while
the feedback display gives a bar graph display of the action
selected versus other actions for +training purposes. The
EMGAR program then sets up the analog to digital converter

and acquires the EMG signal data or gets the data from disk.

Next the program calculates the autoregressive
coefficients using the technique described in Section 3.2.2.
After the coefficients have been calculated they are readied
for output. If this is a calibration run then the program
exits to this procedure. However, for normal operation if

the debug display has been selected the coefficients are
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outputtéd. an example of the debug display output 1is given
in Figure 27. Two action decision algorithms are available
for use as selected by the wuser. Decision type 1 bases its
decision on finding which action the coefficients just
calculated correspond most closely, while decision type 2
counts the number of times that each coefficient came within
the range of the action coefficients as célculated by the
calibration procedure. The action to which the most
coefficients came within range is outputted as the decision.
If the feedback display is selected the bar graph output is
loaded with the various action counts from either one of the
two decision algorithms. The results outputted to the screen
allow the user to see what action is selected and also how
closely the actions were to being classified as another

action. An example of this display is given in Figure 28.

The calibration procedure of the EMGAR program is used
to allow the user to calibrate the various autoregressive
coefficients for each action. The user may select the number
of trials the calibration is to be taken over and also has
control over when the EMG signal data are to be taken. After
all the coefficients have been calculated the EMGAR program
calculates the average coefficient value, the power level to
define low and high power actions and finally the range
around the calculated average coefficient. The results may
then be outputted to the printer for a hard copy of the

calibration procedure or for further testing. An example of
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Low power ELEOW EXTEMEION test ‘

VAR= Q001 Al= OCO& AZ= DFEDE A= EE08 A= EOOR
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VAR QOG22 Al= OO7H AZ= 0061 A= O&DA Pds Q&R

Figure 28 Example EMGAR Calibration Output.
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the calibration output is given in Figure 29.

The final program, ARVERIFY, 1is 1in 1itself not wvery
useful, but is included as an example of how a higher level
language program can use the data files created by the
EMGHEX and EMGDISK program. The ARVERIFY program was used to
verify the correct operation of the EMGAR coefficient
calculation and a general flowchart is given in Figure 30.
Notice that to read data from data files created by the
EMGDISK program only a standard read process is needed
because of the way the data has been formatted by the
EMGDISK program. In addition, the sampling rate and duration
are given in the first two data items respectively. However,
as shown in the ARVERIFY program, data files created by the
EMGHEX program can also be wused as long as the.EMG signal
data are converted féom hex to decimal when it is read f£from

the data file.
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CHAPTER 4

TESTING: RESULTS AND DISCUSSION

The testing and evaluation of the limb controller was
based on the controller's ability to effect the required
function than on some numerical performance criteria because
numerical results would be inapplicable here. This is
because this limb controller is at a very preliminary stage
of design and will need many refinements before it will be
ready to be implemented for full «clinical trials. It was
decided that meeting the goal of developing a computer based
. myoelectric 1imb.controller would be shown if the following

criteria could be met:

1) it could be demonstrated that all sections of the limb

controller operated as designed.

2) that the software could duplicate the present technology
of clinical myoelectric 1limb controllers {(i.e. two and

three state control from several muscle sites).

3} correct operation could be accomplished for several

users.
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The second goal of examining the feasibility or
infeasibility of wusing microcomputers as myoelectric limb
controllers will be discussed more on the basis of the
author's experiences in the design of this limb controller
“than on a full-fledged evaluation procedure. The projects
that will follow this initial development project will need
to include a more complete evaluation of the adequacy of

using microcomputers in myoelectric limb controllers.

The limb controller presently available is the second
prototype of a computer based myoelectric limb controller.
The first prototype discussed in Chapter 2 wunder Limb
Controller Implementation was also designed and built as
part of this thesis and so in the discussion of test results

both controllers will be included. '

4,1 Test Procedures

As mentioned above the limb controller was tested on
the basis of "Does it work?". That 1is, all possible
operations and modes of the limb controller hardware and

software were tested. The order of testing was as follows:

1. wverification of the operation of each microcomputer
within the limb controller both separately and together

using the shared memory.
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2. verification of the operation of the data acquisition

subsystem, testing both the analog and digital circuits.

3. verification of the operation of the joint motor control
and limb position feedback subsystem with and without

microprocessor control.

4, selection of limb actions wusing a variable voltage
supply to select the desired actions; - single function,

multifunction, and preprogrammed movements.

5. implementation of two state control, three state

control, and autoregressive model control algorithms.
4,2 Results and Discussion

The first four test procedures deal with verifying the
operation of the hardware of the limb controller. This was
accomplished by running test programs on the limb controller
computers and insuring that the microprocessors, memory
(both shared and local), and coﬁtrol‘circuitry opérated in a
correct manner. The hardware could be easily tested by using
logic analyzers, oscilloscopes, multimeters, and a variety
of other test eguipment, but the correct operation of the

limb controller software demands closer scrutiny.
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Testing o¢f two and three state control was done by
first wverifying that the control algorithm could be
implemented and then operated by the author. After it was
found that these control algorithms could be operated by the
author, several subjects were used to verify that the device
could be operated by a wide range of users, most with little
or no technical knowledge as to the operation of the limb
controller. Two state control was the easiest of the two
control methods, with the subject typically able to move the
prosthetic limb at will after only a few tries. Three state
control was more difficult to learn, but after several
minutes most subjects could operate the prosthetic limb with
a reasonable degree of accuracy. For three state control it
was found that the two power thresholds had to be cusﬁomized
to each user. This is similaf to clinical three stafe limb
controllers where the threshold values must be adjusted for

each individual.

The autoregressive model provided 1less than desirable
control because even the best user could only attain up to
50% accuracy on the EMéAR program written on the IBM PC and
less ﬁhan this wusing the ARMODEL program on the limb
controller. This is much less than expected from the tests
done initially. However, this could be explained by the fact
that fixed point arithmetic was used in the autoregressive
coefficient calculation instead of floating point

arithmetic. Fixed point arithmetic speeds up the coefficient
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calculation, but allows 1inaccuracies to creep 1into the
calculation. Fixed point 1is necessary to maintain the
processing speed because floating point calculations take
much more time than fixed point calculations. Therefore,
until these problems with the autoregressive model can be
addressed and solved the autoregressiQe model will not
provide good prosthesis control. However, the potential is
there and it 1s suggested that further work on the

autoregressive model be done.

The autoregressive model running on the limb contrcller
does display one very important characteristic. This the
ability of the limb controller to implement computationally
orientatea algorithms and execute them in real time. It also
shows that the control memory 1is large enough to haﬁdle

complex control programs.

The limb controller does demonstrate that a computer
based myéelectric limb controller 1s feasible and, in fact,
is a very desirable device. The 1limb controller provides
many facilities that conventiocnal myoelectric limb
controllers do not; and never will be able to. Once the
hardware on this controller was debugged and operational the
present technology for limb controllers {i.e. two and three
state control) was implemented in software in approximately
three days. As well, this could be customized for each user

with quick and relatively simple software changes. This
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development time for software is of course much faster than
for comparable hardware development. The limb controller
provides facilities that cannot be duplicated by any other
non-computer based limb controller such as preprogrammed
multifunctional movements, superimposed movements, and limb
position feedback. These potential advances in myoelectric
prosthesis control were barely utilized in this project and
the potential for the limb controller is almost limitless.
There are some problems such as power consumption and size,
but as discussed previously these can be overcome, the power
’consumption by some design changes and miniaturization of
sections of the limb controller by using VLSI,

hybridization, and other miniaturization technigues.

The author is quite convinced from his experiences in
designing the 1limb controller, and from observing the
prosthetic limb industry as an electrical engineer in a
medical world, that clinical computer based myoelectric limb
controllers will occur within.the next several years. These
devices will probably not be as sophisticated as this limb
controller, but they will incorporate many of the ideas and
control advantages presented in this project. It 1is the
author's hope that this project may be used to help in
creating more advanced myoelectric 1limb controllers that
will provide amputees with improved prostheses, allowing
them a chance to better utilize those tools that normal

human beings take for granted.



CHAPTER 5

RECOMMENDATIONS

The microcomputers of the limb contrecller work as
designed, but there are several things that must be
corrected in a third prototype of the limb controller. There
is a large amount of noise on the power supply lines of the
computers. This noise enters the data acquisition subsection
despite its 1isolation through two dc-dc converters. This
causes additional inaccuracies to those normally present in
the measurement of the EMG signal. The inaccuracies are not
largé because the ndise is of very high frequency, but it is
conceivable that the analeg to digital converter gives
occasional incorrect measurements because of this high
frequency noise. It was found that the noise 1is caused by
the 82C84 <c¢lock driver chip used to supply the clock
frequencies for the limb controller. This noise seems to be
inherent in the 82C84 because several chips were tried. The
noise 1is ©peculiar because it has a large fundamental at 20
MHz. In the third prototype it is suggested that a different
method of clock generation be examined so as to remove this

noise.

A great deal of logic is needed to control thé

operation of the limb controller support circuitry. In the
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future, programmable array logic (PAL) should be used to
reduce the chip count and thereby save space and possibly

pover.

The data acquisition subsection works well and is very
accurate considering the noise problems on the power supply
lines. However, as mentioned previously it accounts for most
of the power usage by the limb controller. Therefore, in the
future a method of data acquisition using less power should
be developed. This should involve some of the expensive very
low power CMOS operational amplifiers rather than the less

expensive low power JFET operational amplifiers.

The electrode interface to the 1limb controller
presently consists of shielded cables. This is awkward and
should be replaced by a less cumbersome technigue which
could include transmission of the EMG signals by small

transmitters.

The joint motor control subsection operates as it
should except that there 1is at present no method for
implementing proportional control of the Jjoint motors.
Proportional control is an up and coming feature of clinical
myoelectric 1imb controllers and so in a third 1limb
controller prototype the ability to implement proportional

control should be included.



Limb position feedback data acquisition works as it
should. However, there is presently no transducer to measure
the position of each joint. Therefore, a transducer to
measure the position of each joint should be developed to

make use of the limb position feedback abilities.

Software additions should include the implementation of
several practical preprogrammed and multifunction movements.
This should involve research to find several practical
preprogrammed movements as well as developing an easy to use
technigque for invoking those actions. As well, several
promising new control algorithms should be implemented and
tested, in addition to refining the autoregressive model

technigue already implemented.

There is also a need to develop a model to make the
prosthetic limb motion more natural. This could be done by
examining models of human limb motion and developing a model
of the prosthetic limb motion and then correlating the two

models.,



CHAPTER 6

SUMMARY AND CONCLUSIONS

To ‘summarize a large and extensive project, such as
this one, 1is never an easy task for an author. The
temptation to gloss over wvwhat to the author is obvious is
continuous as is the temptation to move to the other extreme
and explain everything in detail to the reader: Throughout
this thesis the author has attempted to shy away from the
detail and present the overall concepts and results of the
work. In summarizing this project this too is the author's

desire.

The most important result of the work 1is the
demonstration of the feasibility of using both low computing
power and high computing power microcomputers in clinical
myoelectric prostheses. This feasibility ranges £from the
power consumption of less than 500 mA (with the very real
possibility of reducing this substantially) to the increased
functionality of the prosthesis that this limb controller
provides. The advantages that this type of 1limb controller
provides over present analog myoelectric limb controllers
are; increased availability to previously medically

ineligible amputees {eqg. spastics, etc...); easy
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implementation of custom prosthesis control algorithms
through software; provisions for a variety of preprogrammed
movements; ability to give superimposed movements; joint
position feedback; and easier development of new clinical

prosthesis control algorithms.

The limb controller in its present form is designed to
be used as a developmental tool for future prosthesis
control algorithms and also for hardware development of new
microcomputer based mycelectric limb controllers. It allows
the implementation and testing of wvarious 1limb control
algorithms in real time rather than in computer simulation
and shows the hardware processing reguirements needed for
real timé implementation of these control algorithms on
microprocessors. Since the control algorithms are developed
in software the development time for new control algorithms
is relatively quick as compared to hardware development. A
demonstration of the above was the implementation of the two
and three4 state control algorithms in just three days and
also the implementation of the autoregressive model control

algorithm in several weeks.

The two and three state control algorithms worked as
well as those 1in use in present cliﬁical limb controllers
thereby demonstrating that the limb controller can already
provide as good control as any present clinical myocelectric

limb controller. However, the autoregressive model of the
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EMG signal did not provide sufficiently accurate control to
be presently considered for implementation in a <c¢linical
device. The algorithm does show great promise and continued

work should provide better control.
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