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Abstracf

Magnetic resonance imaging (MRI) is a preferred imaging modality due to its high
resolution images of ín vivo tissue. Functional MRI (fMRI) infers organ function using
blood flow intensities. However, multiple response models for hemodynamics and, more
specifically, neural activation, contend for widespread adoption. Development of
models, imaging techniques and various types of noise compound problems in analysis
and motivate the use of exploratory data analysis to elicit intrinsic data structure. This
work demonstrates the utility and efficacy of a novel exploratory data analysis technique
derived from a robust, unsupervised learning method, fuzzy C-means (FCM). The
algorithm, designated FCM with feature partitions (FCMP), integrates feature
relationships in the clustering process. one feature relation not widely exploited in fMRI
analysis is the high probability that temporally similar time courses are also spatially
proximal. FCMP has exploited this relation to generate both novel and robust data
inferences. Both synthetic and in vivo fMRI data are examined. FCMp is compared to
benchmarks from industry and academia, including FCM, cluster merging,
CHAMELEON and Evldent@. Ten distinct experiments examine aspects of FCMp with
respect to fMRI analysis, in particular, means to integrate distinct feature subsets and
feature relationships, sample membership in regions of interest, use of validation indices
for fMRI, and data-driven global thresholding. Efficacy of FCMp for fMRI analysis is
shown in terms of noise reduction, statistical specif,icity, and discovery of novel spatial
relations between time courses in regions of interest.
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There is no panacea in data analysis

P. Huber

One can show the following: given any rule,
however fundamental or necessary for science,
there are always circumstances when it is
advisable not only to ignore the rule, but to
âdopt its opposite.

P. K. Feyerabend
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1. Overview

[Kno|ledge ís] a rích storchouse for the glory of
the CreaÍor and the relíef ofrtan's estate.

Franc¡s Baco

Introduction

Magnetic resonance imaging (MRI) [Kupe] is a non-invasive medical imaging

technology that provides data concerning in vivo organ state and function. commercial

development of MRI has found many applications supplementing and replacing

traditional radiological modalities. MRI studies are, however, notorious fo¡ the

voluminous quantities of data produced. The challenge for MRI analysts is the detection,

extraction, and transformation of information from a large set of complex data. MRI data

consists of radio-frequency (rl) intensities at volume elements (vo.xels) having unique

spatial coordinates, thus providing organ state information. Functional MRI (fMRI) data

consists of a sequence of MRI acquisitions over altemating states of subject activity and

rest. Blood flow changes between these states, or the hemodynamic response, is the basis

of infening organ function. The time series of intensity values recorded at a single voxel

is called a time course (TC), When the sequence of rest ànd active states is known, it is

called the activation or stimulus paradigm. Correlation [Edwa] between the paradigm

and TCs defines regions of interest (ROI) in the active organ. Since fMRI datasets

contain unanticipated, yet desirable, information, exploratory data analysis (EDA) tTukel



l. Overyíew

techniques are used. These unsupervised pattem recognition techniques generate

hypotheses about the data that are ultimately validated by comparison to a gold standard,

often an expert in the field. The process of exploring the intrinsic str.ucture of a dataset

often leads to novel investigation.

Data Acquisition

In vivo data' acquisition inevitably contains undesirable characteristics attributable to the

subject, whether human or animal, or to the diagnostic equipment [Brow]. For example,

subject movement introduces ghosting artifacts while instrument instabilitv can câuse

voxel drift. Many methods are used to mitigate the effects of noise on analysis. For

example, image registration techniques re-align shifted and perturbed fMRI images. A

large variety of signal and image processing techniques [Gonz] are applied to recover and

to enhance fMRI datasets. However, amelioration can be limited by time, computational

costs, the small number of patienldisease cases, and uncertainty in the hemodynamic

model. other efforts to reduce noise in the data acquisition process have limited

application, such as contrast enhancement through suppression, weighting and absorption

methods. Attempts to acquire noise-free images include use of specialized rf-coils and

differentiated rf-echo sequences. Techniques to address noise continue to be develop and

15



l. Oven iew

can offer tissue or organ-specific solutions.

Neural Activation Studies

Neural activation studies represent one of the most challenging types of fMzu analysis.

As in other fMRI studies, a stimulus is applied to the subject. Neuron signal intensity

levels are then recorded for one or more coronal slices of the subject,s brain. These

studies are cha enging due to the limited body of knowledge of neural function and

interdependencies, the incompleteness of generalized hemodynamic response models

[Duann], and the presence of noise in the dataset. synthesized fMRI time series and in

vjvo neural activation data are examined. Synthetic data were generated to examine

specific hypothetical fMRI analysis scenarios. In vivo data, with visual and tactile

stimuli, were acquired at the Institute for Biodiagnostics (rBD) (www.ibd.nrc-cnrc.gc.ca),

a research institute of the National Research council (NRC) of canada (www.nrc-

cnrc.gc.ca).

Motivation

This research is motivated by the robust ÍMRI analysis of neural activation studies

deemed possible by an EDA algorithm that, while enunciating intrinsic data structure that

includes so-called unantícipated rcs, minimizes the impact of noise and incorporates

16



l- Overview

expert knowledge, especially in terms of feature relations, into the algorithm.

Modifications to fuzzy c-means (FCM) clustering are proposed due to the broadly based,

resilient performance of its objective function based optimization. A novel variant, FCM

with feature partitions (FCMP), is developed and applied to synthetic and .in vivo fMRI

datasets. An additional motivation is the clarity that a fi)zzy clustering algorithm, one

that considered relationships between features, would bring to the field as it would

encompass some mechanical aspects observable in many extent FCM adaptations.

Original Contributions and Benefi ts

Several original contributions are collected in this work. First, a mathematical

formulation of a generalized fuzzy clustering algorithm is derived which suggests a

novel, encompassing cluster algorithm taxonomy. one benefit of this formulation is the

succinct manner in which cluster analysis can now be expressed. Also, the generalized

algorithm is readily adapted to exploit unique situations not related to fMRI analysìs, and

defines a structured manner in which adaptation occurs. secondly, the application of the

generalized algorithm to spatio-temporal fuzzy cluster analysis is examined with respect

to various synthetic and in vivo fMRI datasets. Discovery of regions of interest is

examined and compared to benchmarks. Algorithm robustness is tested over a range of

t7
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noise levels, A method to define data-driven global thresholds for fMRI datasets using

bridge voxels is presented. Finally, visual cluster validity indices and spatial cluster-

assignment maps are demonstrated as visualization methods for use with FCMp and

fMRI datasets.

1.1 Preamble

In orde¡ to convey an overall thesis context, short comments on EDA, FCM, and fMRI

are presented with respect to the novelty and utility of FCMp.

Exploratory Data Analysis

scientific discovery involves a process of concept formation, measurement, and analysis.

Hypotheses are framed; instruments are devised and built; experiments are recorded and

analyzed. This process repeats itself with variations directed by the judgment of the

scientist. Many components of this process are challenging, for instance, determining

significant features for measurement beforehand, or deriving simple equations after the

fact. Therefore, algorithms have been developed that ope¡ate with agnostic attitudes

towards data organization and contain a minimal mathematical model. EDA algorithms

exhibit an exploratory character open to opportune solutions and elicit inherent data

structure. Parameters are rypically data-driven, beingbased on dataset properties and not

on a priorl knowledge.

t8



l. Overv¡ew

FCM as an EDA Technique

FCM [Bezdl] has proved to be both a highry successful and widely applicable EDA

technique. As it partitions the samples, FCM uses a data model that assumes only that c

spherical clusters exist in the dataset. However, FCM is also well suited to exploit

specialized data structures that limit accurate representation by spherical clusters.

va¡iations include hyper-ellipsoid clusters [Gust], modifying distance calculations based

on partial knowledge of sample labels [pedr5], and the use of robust metrics [Bobr].

since FCM is often modified to characterize such idiosyncrasies, the unmodified

algorithm, using c spherical clusters, is often referred to as vanilla FCM. when the

value of c is in question, validation indices [Höpp] [wei] quantify the fitness of FCM

parameters to dataset structure. However, it is an open question as to which adaptation of

FCM is preferable for any given dataset. The problem becomes more tractable when

datasets are restricted to a single problem domain. This thesis modifies FCM to develop

a fuzzy clustering algorithm specific to fMRI datasets.

In the development of a specihc FCM modification, it became apparent that a general

cluster analysis formulation would be beneficial in order to organize the many FCM

variants into a cluster analysis taxonomy. Fuzzy cluster.ing literature largely consists in

t9
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adapting FCM to dataset strxctural idiosyncrasies by modifying the objective function,

changing metrics, or ad hoc hewstics. A succinct characterizâtion of such variations

would make comparisons between variations more coherent and focus future variations.

one adaptation absent from the literature concems the explicit integration of distinct

feature subsets where plominence is given to inter-feature relationships. Implicit

integration, where specialized metrics replace the Euclidean metric, is awkward as a

general mechanism. Grouping features into subsets that distinctly contribute to the

convergence of the algoritfun has numerous justifications: features may be measured

through different modalities, contain different types and levels of noise, exhibit

specialized pattems, or prompt clarifying heu¡istics. This thesis describes a novel

modification to FCM for use with fMRI datasets, develops a general cluster fo¡mulation

useful for taxonomy, and provides a mechanism to integrate distinct feature subsets.

F'CMP

FCMP defines feature relationships using a formal structure, called a feature partition,

consisting of a triple:

a) a set of feature indices denoting the membership ofa feature in the partition.

b) a metric used to calculate distance between the features in the partition.

c) a weight calibrating the relevance of the feature partition to the objective function.

20



l. Oven iev

FCMP generalizes FCM; validation methods and visualizations for FCM can be retained

or extended for FCMP. The advantage of FCMp is that feature partitions can fuse

contributions (to sample-centroid distances) from sample features and calibrate the

objective function. Each such fusion incrementally constrains algorithm convergence

between that of FCM on individual feature subsets. In FCMp, feature-specific distances

are combined, or fi¡sed, at each algorithm iteration. Judicious selection of feature

subsets, metrics, and weights, allow FCMP to be tuned to elicit dataset structure within a

given set of feature relationships. Discrimination of the contributions of individual

features to the clustering process is a valuable tool when noise contaminates only some

features. Finally, feature partitions provide a means to normalize features with

disproportionate magnitudes, variance, or to maintain feature-metric associations.

FCMP and fMRI

Sample features in a fl\4RI study decompose into two categories:

1. spatial features that denote the position of the neural activity or the voxel location,
These features are represented as a triple, {x,y,z}; comparisons between locations use
the Euclidean distance.

2, Temporal features that record signal intensities at a specific location for each of , time
instances. Intensity feature is represented by the n+uple {tr, tr,..., t"}; comparisons
between time series commonly use Pearson correlation.

Most cun€nt fMRI analysis considers only the temporal intensities. However, an EDA

2t



l. Overyie$t

perspective suggests that all features be included. using only temporal intensities

excludes known feature relâtions in ÍMRI. when applying FCMp to flr4Rl, we adopt the

feature cleavage into spatial and temporal domains and form a feature partition for each

domain. Each partition retains the metric commonly associated with its features. The

remaining va¡iables, partition weights, are manipulated to exhibit known feature

relations, for example, temporal similarity of samples suggests spatial proximity of the

samples. This approach achieves the desirable result that increasing the spatial partition

weight causes fMRI ROIs to exhibit enhanced spatial connectivity, a measure of

robustness.

L.2 Scope

This thesis examines FCMP [Alex3], a generalization of FCM and its applications to

problems in fMRI analysis. FCM is a widely used data analysis technique that elicits

inherent structural information from a dataset. Problems in fMRI analysis are varied and

include: grouping of similar time courses, discriminating between novel and noisy time

courses, and defining spatial regions of interest, It is shown that FCMP exhibits critical

features of an EDA technique, since it:

Maintains implicit inter-sample relations through membership rnatrices;

Detects novel structure;

o

a

22
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. Represents groups of objects without masking the identity of components.

since FCMP is presented as a generalized cluster algorithm, several adaptations (or

specializations) of FCMP are applied to real-world datasets. An adaptation of the

generalized algorithm to a specific problem is termed a specializatiott. one

specialization examined in depth incorporates spatio-temporal information into the

FCMP objective function. In particular, the application and extension of FCM to the

following problems is examined:

. Incorporating spatial context into fuzzy clustering of fMRI time series;

r Discovering novel time courses in an fMRI neu¡al activation study;

r Making robust staristical statements about fÌr4RI ROIs.

Feature partition benefits are anticipated to be specific to datasets and objective functions.

Thesis Structure
The ¡emainder of this thesis conforms to the following structure. chapter 2 discusses

concepts in EDA, fundamentals of pattem recognition and classification. Chapter 3

provides details on cluster analysis, including formula comparisons between several types

of clustering algorithms. chapter 4 introduces FCMp as a novel generic clustering

formula as well as its specialization to fMRI problems. chapter 5 outlines the basic

theory behind MRI and neural activation studies. chapter 6 introduces benchmark

algor.ithms for the efficacy of FCMP. chapter 7 lists the experiments executed and

23



l. Oven'íev

discusses the results. chapter 8 draws conclusions from this investigation and points to

areas of future research. Appendices provide additional information on fundamental

concepts, formula derivations, glossarìes, acronyms, and symbols used in the thesis,



2. Exploratory Data Analysis

Far better an approxitnate answer to the right
questíon, .wlticlt ß often v.tgue,

lhan an etacl ansver to the wrong questio , wltich
can alvays be nade precise,

John W. Tukey

Exploratory data analysis (EDA) [Tuke] differs from model based analysis in that it

skeptically imposes only the sparsest mathematical models on the data. since skewed

data models misrepresent data structure, the sparsest models hide the intrinsic data

properties the least. Models used by EDA tend to be data-driven where model

parameters are determined solely by dataset statistics. EDA principles place high

importance on visualization of the data, examination of sample subsets, and

sample/feature inclusion. Robust statistical methods are commonly used in order that

even outliers or noisy samples can contribute to some degree [Bum] [Cove] [Hube]

[Krza] [Mart] [Rous]. Cluster analysis is a popular example of EDA [Baum3] [Demk]

[Fuji] [Mose].

The main benefit of EDA techniques is the characterization of intrinsic structure which

includes the possibility of useful, yet unanticipated, results. Data-driven algorithms are

ostensibly objective means to discover data structure since external models are

deprecated. In fact, the large field of unsupervised leaming has as its purpose the

elicitation of intrinsic data organization and includes: self-organizing maps [Koho], fuzzy
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clustering [Pizzil], visualization merhods [Kirb] [Van], Fuzzy Group Method of Data

Handling(GMDH) [Farl], and Higher Order Statistical Anatysis (HOSA) tNikiasl. EDA

is a critical tool in problem domains such as: biomedicine, cryptography, drug interaction

studies, and frnancial time series. This chapter discusses fundamentals of EDA,

classification, preprocessing, and metrics.

Justification for EDA

Pattem recognition systems must be able to operate when samples are contaminated by

noise o¡ unde¡ other non-ideal conditions. In order to capture pattems that are

generalizable, EDA methods are often preferred over model-intensive approaches,

especially under the following conditions:

Model Paucity or sparsityi No single mathematical model is accepted by the research
community for the data. The phenomenon underlying the data is poorly understood.

Arbitrary choice of Models: Lack of a príori information about the data makes the
choice of any one mathematicâl model unjustified.

Model Limitations: Linea¡ or low order models are insufficient for the final application.
It is difficult to combine local, simple classifiers or to achieve an acceptable
generalization error.

Noisy Samples: Samples are contaminated by noise.

Tarnished Class Labels: Classifiers map samples to class labels, which are the gold
standard for classification problems. However, labels are tarnished when they less than

26



2. Exploratory Data Analysís

1007o correct. Burnishing is the process of relabeling the samples to improve the label
accuracy. The detection of tamished labels and the selection of bumishing methods are
generally open problems.

Absence of Class Labels: Class labels do not exist at all for the dataset.

The possibility of these conditions should be evaluated before a model-intensive

algorithm is hamessed to the data. Re-evaluation should occur as additional samples are

acquired,

Model Benefits and Risks

Data models provide the opportunity to fit the data to the model, thereby determining

values which characterize the data. However, data can also be fit to the model through

the rejection of outlíers or questionable samples. When the data is fit to a model,

residuals of where the model and the dataset are at va¡iance can simplify any remaining

characterization tasks. A first order approximation may be defined and residuals

successively removed from the model by augmenting the model with higher order

approximations. However, a model places definite conceptuat limits on the parameter_

space, These limits may preclude the definition and execution of significant experiments,

This completes a brief summary of the benef,its and risks of data models.

27



2. Exploratory Data Anøb,sis

2.1 Principles of EDA

It has been previously noted that one possible undesirable result of using mathematical

models to describe data is a loss of access to novel information. For example,

summarizing a distribution as the mean and variance of a Gaussian distribution is a

suff¡cient characterization if and only if the distribution is in fact Gaussian. If it is not

Gaussian, higher order statistics or other descriptors must be used to differentiate the

distribution from a Gaussian one. The residual error between the model and the dataset

must be accounted for as its significance to problem solution has not yet been

determined. On the other hand, for purposes of pragmatism, datasets require a high

degree of summarization in order for the analyst to understand the structure. Thus,

insufficient summarization is one aspect of constraining the communication of data

characterization. Data characterization which observes the following principles reduce

the probability of mis-characterizations while summarizing.

¡ rnternal structure must determine the external model parameters are data-
driven.

r Samples must be included rather than excluded: Use all the data. Severe noise
may necessitate the use of robust measures. In this case, the weight of noisy
samples is decreased, but not nullified.

r Display structural information: use visualizations of the data and its associated

statistics. Augment traditional data displays to facilitate information

28



2. Exploraîory Data Anal¡,sis

cornmunication at an intuitive level. Use images to augment statistical
summaries. Images allow Iatent information (otherwise observable only in higher
order statistics or by heuristics) to be expressed or at least adumbrated, rather than
silenced in a truncated scâlar.

Model Free Analysis

Model free analysis is synonymous with EDA. ModelJight analysis refers to the use of

minimal, or general, models. Approaches to model-light analysis are often based on

different definitions of novelty: factor ânalysis and principal component analysis (pcA)

use (co-)variances [I,i]; cluster analysis examines localized structure; independent

component analysis (ICA) [Hyva] examines statistical independence [Duann]. All ofthe

model-light analysis approaches listed above have been used for fMRI. Discussions of

model based analysis methods and definitions of both novelty and noise follow.

Model Based Analysis

A common model based approach to fMRI analysis is the generalized linear model

(GLM) tKryzal which decomposes the measured TC y¡into the sum of a scaled true time

COurse x¡ and a reSidual errOr e¡

(l) Yi= É, x,*e,

GLM is ultimately unsatisfying as it rarely leads to the discovery of novel region of

interest (Rot) or TCs. However, it may be used to detect linear trends in the data and

29
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allow for trend correction. Trendy samples can also be removed from the dataset before

further analysis occurs.

Novelty and Noise

Definitions of novelty and noise are context dependent. Noise at high levels will entirely

mask novel pattems. Determining whether any single sample is noise or novel may

pragmatically be determined by statistical tests on the total population. This statistical

context determines whether an individual sample is, for example, an outlier and depends

upon hypotheses about the sample pool. This approach may also be followed for sub_

groups of samples. The set of all hypotheses about the novelty of a sample with respect

to the sample pool is the sample novelty context. Sjmjlarly, all hypotheses about the

novelty ofa collection of samples is the sample collection novelty conr¿rr. These novelty

contexts act as a null hypothesis to be rejected or accepted based on empirical distribution

probabilities.

The importance, or cost, of false negatives and false positives must also be weighed in

analyzing a classification or decision system. what is the cost of mis,classification? A

loss, or risk, matrix details penalties associated with different types of mis-classification

errors. Consider an example of determining novelty. Given a uni-modal Gaussian
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distribution, how can one determine which samples, if any, are novel? Measures of

novelty inevitably compare a single sample or a small group of samples against global

statistics. A novelty context must be constructed and its probability determined with

respect to the data distribution. Figure 1 shows a single cluster with possible outliers.

Group Representations

clustering, examined in chapter 3, involves the representation of a collection of samples

by a single archetype sample, the centroid. The centroid defines the centre of a cluster

with geometric characteristics derived from the samples in the cluster. Alternately, the

term cluster refers to a collection of similar samples, while centroid refers to a feature

vector representative of the cluster. lvhile many clustering algorithms define the centroid

to be the feature-wise mean of the cluster, altemate centroid definitions are beneficial.

For example, a weighted mean reduces the influence of outliers on the centroid value and

the cluster shape. A group representation problem requires that each sample in the

cluster be faithfully represented by the centroid and that the centroid minimizes an error

function in terms of the samples in the cluster. Note that error is accumulated over each

cluster and often considers residual e¡rors between samples and their associated

centroids.
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FíEure l. Structure aDúigu¡O,

A síngle cluster víth otttlíers or a spíral exíenditg fron a cluster?

The error function defines the centroids by its minimization. Common group

representatives, or centroid definitions, include: mean, median, heuristic based

representation where rules determine sample inclusion / exclusion.

All of the above group representations may also be weighted to modify sample

contributions. Common error firnctions are: mean square error (MSE), weighted mean

square error, distance metrics based on correlation, existence of the centroid in the

original dataset. It may also be significant that the centroid lie in a part of the feature

space satisfying external criteria. Given that samples may contain no.ise, robust statistics

are one way to increase confidence in centroid definition.
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Robust Statistics

Robust statistics have a significant tolerance to the contamination ofthe samples to which

they refer. That is, the addition of noise to the dataset will change the value of a robust

statistic (e.g. median) much less than that of a non-robust statistic (e.g. mean). statistics

may be characterized by their breakdown point. A breakdown point for a statistic is the

number of worst case samples required to generate an arbitrary value for the statistic

[Huber], see Table 1.

Heuristics for Group Representatives

consider the following example of a heuristic based centroid definition. Let the centroid

be the sample that, being present in the original dataset, also best characterizes the

neighbourhood around a sample. Let the neighbourhood around sample.x be defined

using distance and similarity th¡esholds (zdand Z,). The neighbourhood of .r is the set of

all samples which exceed the similarity threshold and are within the distance threshold.
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For x,yCX, consider a neighbourhood G, around x where yCG, if and only if y is

similar to x and y is close to x. A representative y, for the neighbourhood G may be

defined as the median of the samples in G*

(2) G" = {yls (x, y)'rrn d (x , y)< To}

(3) y,, =median (G" )

An extension of this for sulci may require that the representative be spatially located in a

region type shared by most of the samples in the neighbourhood (e.g. white or gray

matter). Since the sulci have irregular shape, small deviations from the centroid may

result in significant change in voxel characteristics (e.g. moving from gray matter to

white matter).

Table l- Statistical breakdotvn poittts,

Støtístìc Breakdotçn

poírtt

Equation Explanatìon

Mean I
N

x=l+,.
Nñ

Not robust. A single large

outlie¡ can cause the mean ofa
set to take on an arbitrary value.

Median N

2

X .. =Y.. if N is odd
2

Yr *Y **,
x^*,^=L; ifNiseven

Robust, Half of the samples in a
set rvould need to take on large
outlier values befo¡e the median
of the set would become an

a¡bilrary value. Note that
Y=sort(X).
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Relative Sample Importance

The detection of outliers in a dataset is important and samples near class boundaries may

have more signifrcance for classifier design than those around the class centroid or mode.

EDA pr.inciples suggest that all samples should normally be considered. Rejecting any

single datum should be temporary and generally used for the investigation of dynamic

properties of the membership values. This would occur in solution stability testing where

changes to the centroid are measured when one or more samples are excluded from

consideration.

2.2 P attern Recognition

Pattem recognition is the identification of recurring structure in a dataset [Alex2] dataset.

Pattem recognition is a challenging problem because sequences do not always contain

exact replicas of individual forms or pattern atoms. This is true whether the patterns are

simple or complex. Relations between individual samples are discernible by displaying a

table which quantifies the similarity of each pattern to every other. Intra-sample

distances, using one of a variety of metrics, may be substituted for a similarity measure.

Comparisons are relative, when only the samples are considered, or absolute, when the

comparison includes reference to an extemal standard. The respective merits of common

metrics and similarity measures w.ill be discussed later in this chapter. It is common to
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augment datasets with a single additional feature for each sample, called a class label.

which denotes an authoritative categorization of the sample. For example, samples may

be categorized as healthy or diseased tissue samples.

A common goal of pattern recognition is the design of an automated classifircation

system. classification requires that the relationsh.ip between discriminatory features and

given class labels be made explicit, either in the form of an equation, or given implicitly,

in a heuristic decision process. It is often desired to select the minimum number of

features possible that allow class-based discrimination of the samples. This feature

selection process determines the discriminatory ability of different feature subsets with

respect to the class labels. It is advantageous when a simple classifier design, with few

parameters, is being used or when over-fitting of the data to the model is to be avoided.

In the process of feature selection, a mapping between sample features and class labels is

optimized. Many techniques exist both to discover this optimal relationship and to

exploit it once it is discove¡ed. classifiers have many incamations, such as a rule base,

an algebraic equation to discriminate betrveen objects, or a neural network. classifier

implementations are generally selected to fit end use criteria such as:

1. Adaptation to additional, as yet unknown, samples.

2. Computational time of classification.

3. Memory use and access times.
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4. Hardware restrictions, e.g, weight, power, specialized transducers.

5. Environmental conditions, e.g. extreme temperatures.

Classifiers may also be combined into consensus groups lHoth] to improve overall

specificity or sensitivity. This section discusses only supervised classification where

class labels have been provided by a reliable authority. The identification of structure

can be aided by examining subsets of the data using domain-specific metrics, statistical

properties or heuristics. These subsets define local classification rules. For example, a

sample grouping having two different class labels may be separable or discriminated

using a linear decision rule. Such a rule would, most likely, be valid only for that

specific location. Many local, linear classifiers may be aggregated to define a global and

nonlinear decision rule. Partitioning the sample space, or considering local sample

groupings, along with a partition-induced reduction in samples, where a sample group is

replaced by a single representative, increases the feasibility of problem solution. Such

an approach also allows the designer to enhance or refine the classifier in a piece-meal

manner. When only representatives of the original samples are considered, the problem

is said to be a redacted, simplified or reduced problem. Reduced problems are generally

easier to solve and often may be mechanically extended to the original problem. A

solution to the reduced problem can be extended to the original problem by re_adding
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samples and refining any local classifiers affected. Reduced problems are also more

likely to be solved by simpler algorithms. one method of reducing a classification

problem considers discriminating between subsets of samples. Replacing classes of

samples by cluster centroids results in a trivial separâtion problem that can be

mechanically extended. The solution to the reduced problem is a first order

approximation to the solution of the original problem. Any reduced solution can be

subsequently supplemented by higher order terms and refinements to the discriminant

function affect a decreasing number of samplesr.

Figures 2-4 demonstrate various two class problems in classification. In Fig. 2, a linear

classifier discriminates between the dark (o) and light (x) samples. Figure 3 shows that a

classifier composed of the line segments is sufficient to discriminate between the two

classes. Finally, Fig. 4 shows a distribution in which no simple linear no¡ nonlinear

classifier separates the classes. one approach to discriminating the samples in Fig. 4 is

to tessellate the feature-space until a number of simple classifiers prove sufficient.

I Refining a classification system by modifying or adding local classihers ensures that the number of
samples affected is monotonic non-increasing.
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Figure 2. Linearly separable data Fígure 3, Nottlinearly separable clø,sses.

Fígure 4. Classes ínseparable by a single, global, línear classifier.

Alternately, transformations which map the samples into a more tractable feature space

may be sought, one transform method uses cross-products of feature pairs as additional

features. New features are nonlinear combinations of o¡iginal features and may enhance
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classification quality. Another transformation defines a mapping to a higher dimensional

space, for example in methods on differential manifolds, where discriminatory hyper_

planes may be found by routine methods, for example linear discriminant analysis

(LDA).

2,3 Classifi cation Fundamentals

Höppner describes classification as the determination of a mapping from a feature space

to a classification space labels. Many methodologies may be used to determine the map,

or classifier, to implement sample decision rules. These rules assign class labels to each

sample or reject the sample from all classes whatsoever. A brief taxonorny of classifiers

follows with examples.

Classifier Taxonomy

A taxonomy of classihers [Jain], see Fig. 5, may be based on the level and use of a priori

knowledge. Given complete prior information, the Bayes classifier optimally

discriminates between samples. when one has incomplete statistical information,

supervised methods and unsupervised methods are considered. Supervised methods are

further subdivided into parametric classifiers, which determine optimal values for the

parameters based on the data distribution, and non-parametric techniques such as
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distribution estimation, for example maximum entropy, and artificial neural networks

(ANN). ANNs use a subset of the data as a training set to learn a discriminant function.

This discriminant function is then validated on the remaining samples. unsupervised

methods attempt to resolve signals from mixed sources, as in blind source separation

[Amari]. In the absence of labels, cluster analysis is a common choice. This exhausts a

review of the first taxonomy.

Another classifier taxonomy may be constructed by considering the end result of

classification, see Fig. 6. The taxonomy is induced by considering the intermediate and

final organizations of the dataset, that is, how the samples are mapped to class labels.

Mappings of the samples to different classes may be hard, or exclusive, when a sample

belongs to only one subset. Mappings are soft, or non-exclusive, when a sample belongs

to one or more subsets. These in turn may be subdivided into extrinsic-goal-oriented

(supervised) methods and intrinsic-goal-oriented (unsupervised) methods. Finally, the

dyad hierarchical versus partitional is used to characterize the process of forming the

clusters. A hierarchical method imposes a top-down or bottom-up order while

partitioning is more general and may involve several clusters of comparable size. other

possibilities for taxonomies exist, including those based on:

¡ Disc¡iminantfunctions:
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r Linear, e.g. linear discriminant analysis (LDA) [pizzi4].

r NonJinear, e.g. quadratic discriminant analysis (eDA) [Croux].

¡ Mode of classification:

r Hierarchical, e.g. decision trees [Quin].

¡ Non-hierarchical, e.g. multilayer perceptron [Bish].

¡ Class label use:

r Supervised, e.g. Bayes classifier.

r Unsupervised, e.g. FCM.

¡ Classifier training/optimization:

r lterative, e.g. self-organizing maps [Koho].

I Non-iterative, which is often analytic, e.g. matrix inversion.

Classification performance measures, such as kappa scores or class label entropy, are

used to select specific algorithms for a dataset.

A final taxonomy for classifiers can be considered using the Vapnik-Chervonenkis (VC)

dimension [Schol]. The vc dimension considers the ability of classifiers to categorize

arbitrary class labels. All sample to label mappings for the dataset are considered. The

VC dimension for a set of classifiers F is the maximum number of vectors h that can be

div.ided into 2 classes in all 2h possible ways using any classifier f€F,
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Fígure 5. Class¡fier taxonon! based oü a pr¡ori k owled7e

Fígure 6, Classifier tatono|D) based on result structure,

After choosing a classifier, one must consider implementation details. computer
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languages and libraries must be decided upon as well as whether a parallelization of the

algorithm [Ben] [Kita] [Pela] is required. Parallelization is paramount when algorithm

execution time is critical and execution on a multiprocessor system, such as a Beowulf

cluster, is possible.

2.4 Preprocessing

The crux of analysis is the decomposition of an object into its primary components or in

terms of first principles. Analysis is the process by which a complex agglomerate is

reduced to a series of fundamental descriptors. A set of descriptors is the qualitative and

quantitative values associated with an object, A discriminating descriptor is a descriptor

that can be used to distinguish samples from two or more classes. In this reductive

process, qualitative and quantitative descriptors characterize a complex object. For

example, consider a simple analysis of a sequence of ordered numbers. Essentially,

statistics are computed and the sequence compared to archetypes in the domain of

interest. Goals of preprocessing include removing noise from the data and transforming

the data into a tractable feature space for the classifier. Transformations generate

discriminating descriptors for subsequent classifier design. Specific preprocessing steps

include: reducing the number of features fBryl], transforming the features to aid human

expert intuition [Alexl], or highJighting correlated variables [coxl]. Feature selection
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and preprocessing operations âre guided by classification rules of thumb, e.g. the

minimum number of samples per feature per class required to design a robust classif,ier is

10. Perceptions on possibly contaminated data also figure prominently in the application

of preprocessing steps. The literature shows that genetic algorithms (GA) [Arei] [Band]

are commonly used to select features. Standard preprocessing operations accumulate as

heuristic rules of thumb in distinct application fields.

Signal Processing

The main task of signal processing is the transformation of the signal into a more

desirable space [Elli] [Fran] [Wangl]. Here, desirable may take on a variety of

meanings. If the signal is to be stored, the transformation may be compression. If two

signals are compared, perhaps only portions ofthe signals are relevanti a window may be

applied or an average value computed. Signal analysis is the reduction of the signal into

a small set of descriptors. This may be accomplished through a characterization of a

given signal in terms of another time series, or as a decomposition of the signal into

projections. The analyst modifies the signal processing operations used based on the

utility of the generated descriptors, such as residual errors between approximations.

Thresholding and frltering [Just] [Tyan] are common operations used to enhance signal

components, enable computation of more robust descriptors, or limit the total possible
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number of descriptors able to be generated. A common signal decomposition is its

Fourier transform or wavelet transform [Alex6]; a popular current descriptor for lung

sound signals is fractal dimension and Renyi entropy [Gnit]. Common signal processing

operations include detecting periodic components and reducing noise through filtering.

Image Processing

The purpose of image processing is similar to signal processing. It is the transformation

of a matrix of pi-xel values into a discriminatory descriptor, a summarizing feature or

statistic, such as texture. Some image features are: number of regions, region size, shape,

texture, and object placement. com¡non operations to facilitate these computations ale:

image (2d) filtering [Gonz], segmenrarion [Hara] fWool], rhresholding [Seul], and

mathematical morphology [Serr].

Preprocessing for Classification

Data preprocessing is a common precursor to classification. As an example, consider

concentric annuli, see Fig. 7, where samples in each annulus belong to different classes.
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12315
(a) Data vith orígínal features vlrcre a línear (b) A transfonnatíon of rhe orígiøI dataset that

d í s c r ¡ùí n a n I fu nct ¡on fa í I s I o di sc r iùí nat e. penrits l¡near discríninatíon.

Figure 7. A problenntíc dataset Íor a líneor classifier solved by preprocessíttg-

No global, linear classifier exists for such a distribution: the best case may be that a

classifier is wrong2 fully half of the time. However, using the transformation

Í(x,y)=x'+Jt as a preprocessing step remaps the samples to a space whe¡e a linear

classifier exists. The samples in the inner annulus are transformed to the first quadrant

close to the origin. Samples in the outer annulus a¡e also in the first quadrant but are

further from the origin than the other samples. The gap between the two distributions in

the transformed space is r, = 12ì - rro, where &o is the outer radius of the samples on the

inner annulus and 12¡ is the inner radius of the samples on the outer annulus. The

existence of a linear classifier now depends only on the gap rr.

2 The assumption that the classifier will be wrong halfthe time follows under additional assumptions: the
samPles for both annuli must be uniformly distributed with rerpect to the radiusi the discriminant line
must pass through the origin; the number of samples in each class must be the same,

'ì,;'":i;'
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2.4.L Normalization

Normalization is a critical preparatory step for generating generalizable infercnces from a

dataset, Features that have different ranges, average values, variance, or other higher

order statistics can confound applications when assumptions about the dataset and the

mathematical model of the classifier are dissonant. Normalization strategies, for

example, remedy non-Gaussian distributions through a whitening transformation.

Many classifrcation algorithms assume that each feature is equally relevant to

discriminating the samples with respect to the problem at hand. when normalization

does not occur, features with large values or ranges can dominate metrics, dwarfing

contributions from discriminatory features with smaller values or ranges. In such a case,

overall classifier performance is constrained below any intrinsic dataset limits. An

assumption of equal relevance between features is usually defensible as part of initial

exper.iment scaffolding, but should not be left unquestioned. Fuúher, when

normalization transforms are used, it may be necessary to apply an inverse transformation

to the analysis before the results can be applied. some common normalization elements

aÍe:

. subtracting the mean or median.

. dividing by variance, or median absolute deviation (MAD).

. scaling to t0,11, t-l,11 , or [0, N] for NelR*.
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2,4.2 Transformations

Recall that a å¿s¡s is a set of vectors which span a vector space. Transformations that

simply exchange the original basis for another projection maintain the intrinsic

dimensionality of the dataset. One problem related to the dataset dimensionality, or the

number of sample features, is the curse of dimensionality. This curse originally noted the

exponential growth of a hyper-volume as a function of dimensionality [Bellman]. In the

field of pattern recognition, the curse refers to the exponential increase in difficulty of

determining optimal discriminant functions when feature cardinality increases linearly.

To avoid this imprecation, data can be processed with the blessing of dimensionality

reduction, or feature selection, techniques. Adhering to robust design principles is one

motivation for feature selection in classifier design. One such design principle limits the

number of classifier parameters to a multiple of the number of samples per feature per

class in the dataset. Two examples of transforms that exchange bases are principal

component analysis and independent component analysis. A brief discussion of both

techniques follows.

Fuzzy Sets

Set theory is at the heart of classification since the fundamental question is: to what class
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does a sample or a group of samples belong? Fuzzy sets extend the binary categorization

of classical set theory, in which an object either is or is not a member of a set. In a fuzzy

set, objects are members to a degrce and an object may belong to multiple sets to

different degrees at the same time. This concept is explored more fully in the appendices.

Fuzzy sets fPizzil] lPedr2l lWolf] [Zadeh] may be used to embed the samples into a

higher dimensional space. while this initially seems counter-intuitive with respect to the

preceding discussion on feature reduction, add.itional degrees of freedom in the resulting

space may have desirable properties, such as differentiability or piece-wise continuity.

These properties facilitate the determination of discriminative hyper-planes, with the

caveat that they may not generalize well. Embedding the original feature space in a high

dimensional manifold often enables simple discriminant function to be found through

analytic methods. Fuzzy encoding may be viewed as feature membership in a set of

feature groups. An obvious grouping uses membership in fuzzy sets based on feature

magnitude. The original feature value is encoded by a vector denoting degrees of

membership in a series of fuzzy sets, for example the fuzzy sets SMALL, MEDIUM or

LARGE shown in Fig. 8.
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(a) Gøuss¡an fuzq sets coveríng ayalue rarge, (b) Trìangularfu¿ry sels covefi g avahrc range,

Figure 8. Fuze sets denoting liqguistíc temls.

Removing Noise

Preprocessing operations may also expunge samples from the dataset in an attempt to

eliminate or reduce the presence of noise. Many strategies exist to detect noise and then

ameliorate the contaminated signals. Image filters can enhance contrast, detect edges, de-

trend, and de-blur. Statistical analysis on signal intensity can also detect noise. For

example, images with salt and pepper noise, isolated white and black pixels, can be

improved by replacing the extreme pixel values by the average value of their neighbours.

However, globally replacing pixel values by neighbour averages, as in lowpass filtering,

reduces the salt and pepper noise but introduces a global blur.

Linear trends are one type of noise that occur in one-dimensional signals and may be

addressed by de+rending, or removing the linear component of the signal. Identification

of the trend y=,r¡+å may be accomplished by linear regression.
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Noise can also be addrcssed in the frequency domain. The Fourier Transform transforms

the time series into the frequency domain of sinusoid amplitudes. Noise occurring at

certain frequencies or ranges can be reduced or eliminated by band-reject and bandpass

filters. wavelet processing [Alex6] is also pop'lar since wavelets provide a dual

representation with temporal-frequency local.ization. High resolution locafization enables

the manipulation of frequency components at specific time intervals.

2.4,3 Metrics and Measures

selecting an appropriate comparison method is critical in EDA. Metrics and measures

exhibit different cost-functions (loss matrices) associated in assigning samples to the

different possible classes. Metrics and measures can also embody relational rules

between samples in terms of class labels. In this case, the decision rules change from

general equations to heuristics dealing with sample cases.

As an example of Pearson correlation, Fig. 9 depicts a random sequence, a linear trend,

and a scaled combination of the two. correlation coefficients for the random sequence,

with and without trend, are given between the random signal and the straight line. The

coefficients are p =0.09, for the random zero mean signal, and p =O.j2 for the signal

combined wìth the trend. Others measures include: cosine, squared chord, squared chi

squared.
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Figure 9. Trends itt data.

(top) A randon sígnal p =0.09, (níddle) a lìnear trcnd p =1.0.
(botton) a randoù signalvith trend p =0-72,

Thresholds on distance or similarity are often used to reduce the number of samples in a

dataset or define a region of interest (ROÐ. A reduced dataset, X,, where each sample

has a minimum similarity to a prototype y is generated by a similarity threshold T

(4\ x, (y)={xls (x , y)>r}

2.4.4 Experimental Concepts

Scientific theories are objective in the sense that the hypotheses and theorems are

falsifiable. Falsifiability is the ability to devise and implement a test rhat could show the

theory to be false. Hand in hand with falsifiability is the repeatability of experiments; an

experiment performed at one laboratory must be able to be replicated at another similar
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laboratory. when executing an experiment, the limitations or peculiarities of algorithms

must be considered and addressed. when algorithms use random initialization, the

initialization must be the same for comparable tests (the same random seed should be

used), or a large number of tests should be executed. In supervised leaming with tr.aining

and test sets where the assignment of a sample to the training or test set is arbitrary,

multiple training and test sets should be used. using multiple training and test sets is

called n-fold cross validation. The classifier design is validated by n unique training and

test sets drawn from the same dataset. At its extreme, n-fold cross validation becomes

leave-one-out (Loo) cross validation and each validation uses all but one sample in the

training set. The remaining sample is the test set. other approaches also use sampling to

form conservative estimates of results. Monte carlo techniques use random sampling to

quantify properties. sampling also takes place in the parameter space of the algorithm.

Since many parameters will be independent of each other, an exhaustive testing of each

combination may not be feasible. However, a grid may be constructed for integer or real

parameters and individual nodes (a set of parameter values) evaluated. Each method

above prepares to resolve the experiment hypothesis. Until an experiment has been

performed the hypothesis exists in a state of tension. Experiments must resolve the

hypothesis rejection/affirmation tension and decide whether the experiment supports the
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hypothesis and to what degree. An experiment can fail to resolve the tension if it fails to

reject or affirm the hypotheses at an acceptable level of confidence. confidence intervals

quantify the degree to which a given hypothesis is supported.

2.4.5 ClassifÏcation

Supervised classification refers to a mapping from the samples to a set of class labels.

Given class labels and unique samples, it is commonplace to design an exact mapping

such that features of the samples discriminate samples in the same manner as the class

labels3. A good classifier is distinguished from a mediocre or bad classifier by its ability

to classify previously unseen samples conectly. 'îhis generalized recognition ability or

the classifier signifies that the samples used to design the classifier contain generalizable

discriminating information. The standard procedure for designing a supervised classifier

is to divide two disjoint subsets: a training (design) set and a test set. The classifier is

designed using the training set and is justified (validated) using the test set. Inferences

are made about the relations of training sample features to the class labels. The veracity

of those inferences is quantified by applying these discovered relations to the test set, If

the relations also hold on the test set, a confidence level can be determined that the

relations w.ill also hold for previously unseen samples. This is, of course, an invaluable

3 A lookup table is âlways possible.
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quality for field use of the classifier. The validity of featurelabel relations, or the

generalization ability of a classifier, is the predictive error rate of the classifier. It can

occur that class labels are tamished (samples have incorrect class labels). In such an

instance methods dealing with probabilistic learning [Greb] or burnishing tarnished gold

standards [Pizzil] will be required.

Classilier Design Considerations

Factors to consider when deciding which classifier to apply or adapt to a problem are:

. Number of classifier parameters.

. Number of samples in each class.

. Time and other constraints on implementing the classifier.

. Generalization expectations.

. Existence and quality ofdata labels.

. End use conditions.

Design Demons

Two design problems are over-parameterization and over-generalization. Over-

parameterization occurs when the model used has more parameters than are justified by

the data [Tous]. A related problem is the curse of dimensionality; a small number of

samples with a large number of features have many different hyper-plahes that correctly

discriminate between the samples classes. This is a cornmon problem in sparsely

populated, high dimensional spaces. Since many hyper-planes are equally
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discr.iminatory, the risk of poor generalization is high. Small numbers of samples in

individual classes may necessitate use of robust measures or combining similar classes.

over-generalization is the application of accidental correlations among features in the

dataset to unseen samples that may not exhibit this chance quality. This can occur if the

sampling for the training set is biased to one mode of what is in fact a multi-modal

distribution.

Iterative classification algorithms have additional design considerations. The

initialization procedure must be well-defined and lead to convergence without

compromising the expressiveness of the resultant discrimination function.

2.4.6 Implementation

Addressing a pattern recognition problem requires a careful selection of algorithms for

data processing, pattem discovery and classification. For EDA investigations, the

algorithms and their parameters should be guided by data-driven processes. Another

conside¡ation is the manner in which results are presented. confidence in the

generalization ability of the classifier is a critical factor before the system goes into field

or production mode. Cluster analysis is discussed next.
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3. Cluster Analysis

As co tplex¡ty ses, precíse sîatenents lose neaning
a d Drcan¡ Kfi state¡nents lose precision.

lntJi hdeh

Clustering [Bezdl] [Rieg] partitions a dataset into subsets (clusters) and defines a

representative, or centroida, for each cluster. Determining centroids is often the goal of

analysis. For accurate representation, lor.v sample-centroid distances are critical,

regardless of cluster shape or sample density. clustering algorithms can be divided into

hierarchical and C-means typess.

Hierarchical Clustering

Hierarchical clustering partitions a dataset using a splitting or merging heuristic.

splitting â dataset begins with all samples in a single cluster and a distance matrix of

sample-centroid distances. At each step, the sample most distant from its centroid is split

from that cluster and defines a new, singleton, cluster. After hierarchical clustering, a

series of distance thresholds may be used to examine the induced clusters. Likewise,

testing a hypothesis about the number of clusters in the dataset yields a distance

threshold. The number of steps required for hiera¡chical clustering is the number of

samples less one.

4 centroids aJe often defined as an aggregate value, a¡d, although they represent a cluster of samples,
may, in fact' not occu¡ in the dataset. This distinction is rarely crucial to experiments and use of
medoids as centroids addresses the requirement to exist as a sample in the dataset,

5 K-means cluste¡ing is a hard clustering algorithm while C-means refers to fuzzy clustering.
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C-Means Clustering

In C-means clustering, functionals built around the sample-centroid distance fo¡m an

objective function, which is then iteratively optimized. While C-means algorithms have

C centroids tfuoughout the optimization6, centroid values change, as does sample

membership in the clusters. Initial centroids a¡e chosen to lie near the dataset centre of

mass, as random samples or points in the feature-space, or based on external factors. A

series of distinctly initialized runs is often used since C-means clustering is proven to

converge to a local optimum or saddle point?. The number of iterations for convergence

is not known beforehand, and termination criteria, such as Ua, may require tuning.

Figure 10 shows two sets ofFCM clusters resulting from different parameters.

Criteria for determining convergence ofthe algorithm a¡e monitored: the overall change

in the membership partition is compared to a threshold and the number of iterations

executed is compared to a maximum count. Either criteria terminates the atgorithm.

Changing the number ofclusters, or any other parameter, requires that the C-means

algorithm be re-executed. Benefits of C-means clustering with respect to hierarchical

algorithms include: faster convergence for datasets with high dimensionality and tighter

6 This is true unless merge or split heuristics are also used, as in ISODATA.
7 superficial differences bet\ye€n clustering runs may include permutations of the c€ntroid order,

altemately, the columns of membership matrix U are permuted,
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3. Cluster Analysis

clusters for globular data distributions.

(a) A sittgle íntr¡nsíc chtster represented by t|o (b) A síttgle intrínsic cluster represented b)' three
centro¡ds. centro¡ds.

Figure 10, Muhíple representations oÍ srructure ¡n a daî.rset.

3,1 luzzy C-Means Clustering

c-means clustering where samples have partial degrees of membership in clusters is

called luzzy C-Means (FCM)8. FCM is:

1. objective-function based, minimizing sample-centroid distances.

2. Constrained such that sample membership in all clusters sums to unity.

3' an altemating optimization algorithm where two sets of equations, for centroids and
sample memberships, are updated in alternation.

4. unsupervised classification method (although supervised variants exist).

Recall that unsupervised refers to the case when only the data features, and not the class

labels, determine the resultant classifier design. clustering notation follows that of

Bezdek [Bezl]. Let X be a nxf data matrix, n samples each with f features, with sample

8 In the literature, FcM is referred to as probabilistic cluste¡ing since the membership values sum to
unity and can be interpreted as probabilities. when FCM is used to cluster time serier, dara it is
referred to as fuzzy temporal clustering.

60



3, Cluster Analysís

Xi=[X¡l,Xi2..,Xif]

(s) X ={x,.xr... x*}rclRD

There are C centroids

(6) V={v,,vr... v"lr clRD

A C-partition matrix, or membership matrix, is defined as the nxc matrix

(7) s =lu, ... u"lr

The membership of sample x¡ in centroid vj is uü and indicates the degree to which sample

Ìi is associated with the cluster centre v;. The vector ü¡=[urr u¡z ... uj"] denotes the

membership of x¡ in all the C centroids. The maximum value of ui determines the

assignment of a sample to a clustere. One benefit of allowing a sample to have paftiâl

membership in multiple clusters occurs when samples lie mid-way between two or more

centroids. sample-centroid distances will then be similar for two or more centroids;

memberships should be correspondingly similar.

Figure l1 shows samples that lie at equal distance from two cluster centroids. Samples

equidistant from both centroids have the same membership for each clusters.

9 Note that individual clusters may or may not correspond to sample classes. Samples with different class
labols may in fact belong to the same cluster due to simila¡ feature values. An indicator that a complex
classifier may be ne€ded to discriminate the samples occurs when class labels for a cluster are both trusted
and heterogeneous. Membership values ulÍimately define a cent¡oid label fo¡ the sample, A further step
assigns class labels to cìusters.
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classification is ultimately decided on a coin-toss and no differentiation is made based on

overall distance between the samples located on the centre of mass midline.

FCM parameters, with default values, are shorvn in Table 2. Although m=2 is commonly

used for general data [Bezdek], for noisy fMRI data, I. l<m<l.3, is recommended [Jarm].

Fígure I l- FCM outlier heuristìcs,
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Table 2. FCM Paraneters,

Name Synúol Conunent

Fuzziflication exponent m=2 Controls shape of membership functions.

Number of clusters C=20 Use of large values of C is standard.

Membership change

threshold
U¡=0.001 Termination criteria for membership

matrix.

Maximum iterations T.-=50 Termination criteria for iterations.

Distance metric llx,vll Euclidean distance.

Membership change

metric*
llu,,ur.rll Euclidean distance.

* Note that the membership-change values can be exchanged for centroid-change values.

3. Cluster Analysìs

It is worthwhile to discuss the effect the properties of the fuzzification factor m as it

relates to the metrics used in the algorithm. Let algrcrr(u) denote FCM as it iterates on

membership matrix U.

o lim, -o alg""" (U)=atg""" (U ) As m rends to 0, FCM tends to hard

clustering.

o lim._, alg o"n,{ 
(U)=alg,u* (U) As m tends to 1, FCM rends ro a simple

weighted mean (SM) clustering.

o lim,-_ algFcnn(U)=U' As m tends to co, FCM tends to assign equal

centroid membership for each sample. Then
1(8) u,."= 

" 
VueU',Vxe X,VveV
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Algorithm Convergence

Bezdek fBezd1] [Bezd2] [Hathl] [Kim] has shown thar rhe convergence requirements for

alternating optimization (AO) of the cluster algorithm are the same as the Karush-Kuhn-

Tucker conditions. FCM is an alternating optimization problem because the optitnal

centroids are obtained by alternately updating both the centroids and memberships. AO

requires that the objective function and any additional constraints be regular or

differentiable. Since FCM constrains centroid memberships of a sample to sum to unity,

Lagrange multipliers are used to convert the constrained optimization problem into an

unconstrained optimization problem.

The trâjectory of the centroid paths can be graphed as the algorithm converges. For

datasets with globular sub-clusters and random initialization, the movement toward the

global centre of mass is immediately apparent. Note that each globular cluster defines a

convex region in the feature space. As multiple centroids converge to the same

distribution mode (sample-gravity attraction), further iterations distribute the centroids

within the mode (centroids repel each other). Algorithm iteration continues until

convergence (the centroids are no longer changing) or until heuristic stopping criteria are

met. Mathematically, the objective function reaches a local maximum or a saddle-point.

Figure 12 shows centroid convergence over time when the centroids were initially define
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near the dataset centre of mâss

Figure 12. Centroid patlt cotwergence inÍeaho.eúpace.

FCM Algorithm

The iterative algorithm may be decomposed into two steps: initialization and

convergence. The terminology used is listed in Table 3 and the algorithm is detailed in

Table 4.



Table 3. FCM Algoríthn Variables

Unlabelled dataset: xe X w.ith lXl=n lentroids: ve V withlVl=C, 1<C<n

Fuzzification exponent: m>l Objective function: J¡çy

Iteration limit: T.", Objective function norm: lloll-

Error termination criterion: U¡, V6 Error norm: Il.ll,

3. Cluster Anal¡,sis

Table 4 refers to updating the centroids and the memberships.

Table 4. FCM Algorithnt

Update Equations for Clustering

The following steps determine the equations used in the FCM algorithm:

o Add Lagrange multipliers to remove any constraints on the objective function.
o Differentiate the modified objective function.
o Set the equation to 0 and solve for a system of equations in U and V.
o Relate the equations in time so that the most recent updates of U and V arc

Given: X, c, m, T, e, lol,, l.l.

Initialization: choose C initial cluster centres V0- [v¡, vr, ... vç]

Loop:
for t=1 to T

Update memberships U, using centres Vr-l

Update cluster centres V, using memberships

if Et = llv,-vr_rll<É

set U¡""1 = U', Vn*' = V,. t = T
fi
end

fermination: Output final centres Vnnar and memberships U¡""¡.
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used. Iteration proceeds by updating U, using V,.¡. V, is updated using U,.r.The relationship between the clustering update equation-s, distance function, fuzzy

exponent rz and convergence properties may now be stated: Given a general distance

function D""o= ll x¡.v* ll ¿¡¿rnt1, the objective function JFçM(U,V;X) is minimized by

(u,v)CMpçyllRD only if the update equations in Table 44 are used.

Objective Functions

optimization problems quantify the degree of success for any sorution in terms of an

objective function. optimization is straighrforward when the objective function is

differentiable' Recall that cruster analysis is concemed with discovedng an optimal

partition of the samples to a given number of clusters. The maximum number of

iterations is used in conjunction with UÂ=lUr_Ur_rl to determine the number of iteratio¡s in

which the argorithm is allowed to converge. A decrease in the value of ua suggests that

few not sampres changed primary membership. By the same token, a measurement on

the changes in the centroid values can also be used as a terminating criteria.

Convergence is taken to mean that the centroìds V¡".¡ (membership partition UÍ¡""ù defined

at the termination of the argorithm are sufficientry similar to the analytic solution v. (u.).

That is, V¡".r and U¡"¡ converge asymptotically to y' and U.).
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3.2 FCM Extensions

As noted previously, the Iìterature on FCM is rich. There are a wide variety of both

applications and exrensions ro FCM. For applications, see [Alex3] [Alex4] [Bozi] [Bruz]

lDemil [Devi] tDimil tErmil [Fan] tliul [park]. For extensions, see [Atex5] [Bezd3]

lBobrJ fGath] [Gokc] [Gola] lcust] lHond] [Kote] [Kris] tNgl lpedr| [pedr2] [pedr3]

[Pedr4] [Pedr5] tsarkl tselil lSgar] [Wang2] twul j tWu2l. Two common themes of
variation are briefly noted that address critical rimitations of FCM: cluster shape and

relative sample importance.

Clustering Covariance Matrix

crusters in FCM are hyper-spheres of the same size and, wh'e it partitions the dataset,

the intrinsic dataset structure does not always correspond to such size and shape

assumptions' Elripsoid crusters have been incorporated into FCM using a cluster

covariance matrix '4' This matrix is unique for each cluster and effe{tively scales distance

along the axes fRaudl. Since á is used to compute distances, it is sensible that,4 be

positive definite.

secondly' recent clustering argorithms incorporate sample laber information [pedr3].

Since some sample labels are used, FCM becomes a partially superv.ised leaming

algorithm This approach .increases the conlribution, or weight, of labeled sampres to the
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3- Cluster Analysis

definition of the centroid. Both ideas, scaling distance and relative sample importance,

recur in the development of FCMP. Many other clustering algorithms exist, many with

adaptations that limit their utility for application to general data. Any one cluster

algorithm may differ from another in terms of these algorithmic degrees of freedom:

objective function, metric, centroid definition. A priori, dataset-specific knowledge may

justify additional constraints on the clusters, such as their shape, variance and even the

number of clusters. FCM is easily modified to add these constrâints and ultimately leads

to a more accurate representation of the data. For example, Gath and Geva introduced

ellipsoidal clusters, but spherical shells, lines, parallelograms etc are all able to be defined

by suitable objective functions [Höpp].

3.3 Cluster Validation

validation methods [Halk] [Hath2] quantify the fitness of specific cluster parameters to

the dataset and can be used to compare different parameter settings. unfortunately,

validation indices require that clustering be performed over a range of parameters (the

number of clusters). Recent studies have shown that the xie-Beni index consistently

corresponds to good partitions for general data [Xie]. othe¡ indices seem suited to

particular types of datasets, HCM has it own validation indices. For comparìson of

69
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centroids generated by HCM to those generated by FCM it is useful to fuzzify the hard

memberships (from HCM) or harden the fuzzy memberships (from FCM). Both HCM

and FCM indices measure the fitness of clustering parameters to the dataset.

HCM Validation

Hard clustering uses scatter matrices to express the goodness of fit between the data and

the parameters. These matrices measure the separability of the dataset and include the

scatter matrix (var.iance of samples in a cluster)

(9) s"= | (x" - v")(x"- v")'
x.€@.

the within cluster scatter matrix (sample-centroid variance over all clusters)

c

(10) S,r=I S"
c=l

the between cluster scatter matrix (centroid distribution in space)

c
(11) su=l(v.-v)(v"-v¡r

c=l

and the total scatter matrix

(12) Sr=S\u+S"

Figure 13 (a) shows the spatial distriburion of data wirh five clusters. Figure 13 (b)

shows scatter matrix values for the HCM algorithm. Note that the intrinsic number of
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clusters is not indicated by a global minimum on the plot. Rather it is near the saddle

point (point of diminishing returns). Adding another cluster decreases sample-centroid

distances for the new cluster while removing samples from other clusters.

t,z

I

0.8

0.0

-o.z o o.z oa 0.6 o.E .t lT t,q

o.2

0

o.?

ô

(a) Datafor HCM validatío¡t indíces.
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FCM and PCM Validation

validation indices have arso been developed to quantify the fitness ofFcM parameters to

the data. These indices are computed using the membership matrix. The Xie-Beni index

has consistently proved itself to indicate an accurate number clusters for general data.

\t*(r3) Var*u(u,v;X)=ffi#=**,,.,

whe¡e
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(14) sep (V)=min, {llv, _v;ll}

others FCM validation indices are the partition coefhcient (pc), partition exponent (px),

partition entropy (PE), Kwon (KW) and Fukuyama-sugemo (FS) indexes.

The PC index rewards crisp (most unambiguous) partitions.

(1s) ,",u,=àå"i'
IXI

The PE index interprets membership as a probability of class assignment. The entropy

formula is then applied to the membership matrix.

(r6) n",,r,=åàu*t',u-",
lxl

The FS index combines a compactness measure, J., with a degree of separation, K,

(17) FS(u)=r,'a¡ç^=f I u;¡¡*,u¡¡+f | ";¡¡*,V¡¡x€X v€V x€X v€V

where V'is the mean of all centroids.

The PX index is a measure for the number of partitions that classify all data better than

the considered parlition. An optimum is indicated for a single data assigned

unambiguously. For the PC and PE, indices an optimum is indicated only for all data

assigned unambiguously. whether all memberships values are used depends on the
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number of clusters. As the number of cluste¡s increases, the number of farge

memberships decreases. Therefore, only the maximum memberships for each datum are

used.

//f",1\ì(18) rx (u)=-rn lfl".* li{- r ),*'"{,-:u,1"-'ll
\ "-^\'=' j ll

where c=lxl, p *=max".v( u "") 
and [x'r] is the largest integer number smaller or equal to

1/ ¡r .. For PX, the use of all memberships depends on the number of clusters.

The KW index extends the Xie-Beni (XB) index to account for the monotonic decreasing

tendency ofXB with increasing c. This is implemented through a punishing function.

(1e)

Table 5 sumrnarizes the range and descriptions of different validation indices, The use of

these indices is examined in chapter 8. Figure 14 shows a dataset with two clusters, each

having a distinct cluster density. validation indices differ on the inhe¡ent number of

clustels on this dataset.

) ! ¡,1¡¡*,"¡¡+* I lt",oil
KW lU\='éx "ev lv I "€v

min.*.llv,,v,ll

74



3. Cluster Analys¡s

Table 5. FCM Validation Global hdices Sununary.

Valìdation

index

Range Descriptìon

FS Not given. Measures compactness and separation

KW Not given Adds punishing function to XB as C
increases.

PC 1.pc(u).r.0
K

Rewards crisp partitions or the most
unambiguous.

PE 0<PE(U)<ln (lXl)
0< 1-PC(U)<PE(U)

Membership is probability of class

assignment.

PX Not given. Requires large exponents. For uniform
membership, PX = 0.

XB Not given. Measures sample-centroid distance and

centroid distribution in sample-space.

Fígure 14, Dataset vith fieo ínÍr¡ns¡c chtsters oîdisti ct sanple densíty.
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Visual Cluster Validity

Another method to ascertain the number of intrinsic clusters in a dataset is to use

Hathaway and Bezdek's [Hath2] visual cluster varidity (vcv) index. VCV is a dis-

similarity matrix based on a specific re-ordering of the samples in the dataset. samples

âre associated with only one cluster (the firzzy membership matrix is hardened). vcV is

computed in two steps:

sl: A cluster (centroid) order is defined. The first centroid is chosen at random. An

inter-centroid distance matrix determines selection of successive centroids in that the

centroid closest to the prcvious selection is chosen. Ties are broken by a coin-toss.

s2: An ordering for the samples associated with each cluster is defined. samples in each

cluster are re-ordered ùsinr inter-da.twt distances. Hathaway and Bezdek note that the

use of pair-wise Euclidean distances for inter-datum disrances is best suited to well

separated (or volumetric cloud) data. Therefore, vcv uses a pair-wise dis-similarity

measure

(20) R,-* =-in,=,="(a,,* a,*)

while many other validation indices require that the clustering algorithm be executed

over a range of clusters, c€{2,3,...N-tJ, the vcv index describes the data structure

'16
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using a single set of centroids. It is suggested that a high value of C w.ill aid VCV in

depicting the intrinsic value of c. This intrinsic value is determined from the image by

counting the number of dark blocks along the diagonal. Recall that dark (low) values of

similarity are being depicted. A large (small) dark block on the diagonal indicates a

large (small) cluster. counting the number of dark blocks on the diagonal indicates the

number of clusters while comparing block sizes suggests cluster size variance. Cluster

overlap is indicated by dar* (low) pixels off of the main diagonal. This illustrates

samples between two clusters and can be used to identify clusters for merging.

The vcv index for a synthetic dataset composed of two distinct clusters (radius r=1, 100

samples per cluster, centres ¡¡y,¡ = (0,0) and (5,5) respectively) is shown in Fig. 15 and

clearly indicates two clusters. Hathaway and Bezdek's vcv [Hath2] is a prime example

of EDA visualization for clustering. The VCV image of the sorted samples is used in an

EDA manner; dark blocks (samples with low dis-similarity) suggest natural clusters.

3.4 FCM Analysis

For multi-dimensional data, the ability of a centroid to visually represent all samples in

the cluster in a single plot is one of its most useful features. FCM analysis often involves

plots of centroids, discovering the effect of adding more centroids, examining centroid

distribution in space, developing heur.istics for labeling samples, identifying outliers, and
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identifying ambiguous assignment of samples (equal memberships in multiple clusters).

Visualizations associated with FCM include: plots of validity indices vs. C, sample

membership graphs, centroid changes; and for ÍMRI: voxel assignment maps.

Figure 15. VCV irdet for dataset vith tvo vell defined clusters.



4. FCM with Feature Partitions

Facile est inve¡ttís a¿ldere.

(lt ís easJ to add to things i¡lr,ented already.)
Latfu proverb

FCM excels in eliciting intrinsic data structure, in part, because of the minimal

mathematical model it introduces. As an EDA method, FCM is often used when

authoritative data models do not exist, or are developing, and, despite varieties of FCM

that exploit specialized structure, e.g. hyper-ellipsoids, a variety of FCM that leveraged

known feature relationships was not found. when FCM lacks a mechanism to describe

and to integrate feature relationships, information critical to eliciting overall data

structure is omitted. In fMRI, and more generally, explicitly taking account of feature

relations is beneficial. For example, datasets often have features acquired through

different modalities, at different times, and under different conditions. Thus, individual

features belong to distinct statistical distributions, differ in observation error and noise,

and often have a de facto measurement or comparison method associated with them. In

addition, the discriminatory ability of feature subsets is not known a priori.

concentration of discrimination is the driving force behind feature reduction techniques,

especially in bioinformatics where less than one percent of sample features can

successfully discriminate high dimensionality data [pizzi5] [pizzi6] lpizziTl. Embedding

feature relationships in FCM can be used to consider features with respect to their
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acquisition environment, preserve associations between features and distance concepts,

and introduce nonlinearities that aid discrimination. A formalism to encode feature

relationships was developed to augment FCM with specific attention to fMRI analysis.

Background theory for this chapter may be obtained from literature on time series: [Box]

tchatl [Digg] [Geye] [Rein]; space-time analysis [Metg]; and finzy conceprs relating to

spatio-temporal models [Cous] [Jack2] [Lowe] [Royc] [Sinc] [Ton].

Feature Partitions

FCM with feature partitions (FCMP) [Alex5] is a generalizarion of FCM rhat describes

feature relationships and integrates contributions from distinct groups of feature. Due to

the general nature of FCMP, classical and more recent fuzzy clustering variations [pedrl]

may be expressed as specializations of FCMp. Like FCM, FCMp is an iterative

clustering algorithm that optimizes an objective function. Its novelty lies in the feature

relations that are integrated (defined, ranked and combined) into the objective function.

A feature partition is a formal mechanism that expresses relations between a single set of

features and between sets of features by means of a triple, rþ ={ p , v , p ), consisting of

a metric .F, a relevance weight v, and a set of feature indices p. particular features

included in the subset (group) are encapsulated in p; F defines distance between

samples having only features in p , and v is the weight, or relevance, of the distance u
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to the objective function. one benefit of using feature partitions is the ease at which

existing analysis can be extended by an explicit feature relation and the resulting clarity

of the effect of the relationship on the analysis.

4.1 Generalizing FCM

Pattem recognition literature abounds with FCM vaúations [Höpp]'0 due to the versatility

and robustness of FCM. However, individual variations may be understood as

specializations of a more general clustering algorithm. variations can then be considered

as specialized insrances of the general algorithm where algorithmic degrees of freedom

have been constrained or fixed. clustering notation is introduced which formalizes the

generalized clustering algorithm FCMP. Dataset x consists of n f-dimensional samples,

xcx, x=[xrx2 ...xr]. Denote by v the set of c f-dimensional centroids that define cluster

centres, which in turn partition dataset X. Thus, vCV, v=[vrvz ...vr]. Specific samples

are referred to as x¡, l(iln; specific centroids are referred to as v*, l<kSC. U is a

membership matrix, or cluster partition, detailing the (partial) membership of samples in

l0 Höppner provides a formalized notation for cluster analysis. For data space s, sÉ ø , and ¡esults space
P, I P | >2' A(s,P) is the analysis space defined as tho collecrion of mappings u from a specific dataset x
to a possible solution Y. That is, A(S,P):={f lU:X--JY,XcS,X*ø, Y€p}. Analysis spaces are evalua(ed
by an objective function J, J:A(S,P)-ìR and partial derivarives of J denne update equations which
converge to an optima. Both FCM and FCMP provide mappings from a data space to an analysis space,
resulting in the mappin9 U:X-)yeA(S,p). Despite the benefit of its formaliry, Höppner's notation
conflicts to some extent with other clustering notations and is not used in this thesis.
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the C clusters. Sample memberships are nonnegative and the memberships of a sample

considered in all the clusters sums to unity,

(21)

Noting the above constraints,

sample-centroid distances

(22)

Vxex ) u-"=l . Vv€V I u""tO
v€v ' ¡.ex

the FCM objective function minimizes the weighted

J,""=J (U,X,v)= ) | ula'(x,v)
xéX v€V

where d:Xxv-¿lR is a distance metric and m is the fuzzy exponent defining membership

function shape. FCMP extends this foundation using feature partitions as follows.

Define a set of h, 1<h<i feature partitions, \Ir={ ù,, rþr...r].r¡} where each feature

partition $¡={ [r¡, v; p¡] consists of a metric ¡r¡, weight v¡, and a set of feature

indices p r. Alternately, feature partitions can be considered as sets of metrics, weights

and feature indices as tlt*={M, N, p} where M={ U,, pr... pr}, N={ v ¡, vr... v¡},

P={pr,pz...pr}.

Partition Metrics and Weights

while FCM calculates distance using a single metric and considers all sample features,

FCMP uses a generalized distance metric composed of a weighted sum of metrics over

distinct feature indices. Each partition p€P uses a possibly unique distance function do.
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They are combined in the cluster algorithm using the weighting parameter

v =lv r... u r... v r7,V v,, 0 < v,< I . This results in a generalized distance

(23) o(x,t)=)vooi(x',v')
P€P

Partition Feature Indices

Feature indices

(24) r=[plp+Ø,pc{1,2,..f},up={1,2,..f}}

and a partition is said to be strict when Vp,qeP,pnq=/.

(2s) I uo=t', VP,v->o'pÉP'^P

The membership update equations exchanges its distance metric with a weighted sum of

distances on feature partitions

(26) 
/ >,,a;t*,,.,)\{.-'t I"-=ÞSÏ#l =Þ-il^
\l*oo' '/ '

The centroid update equation remains unchanged

\rm) tx
(27) "=+ .Lu*

x€X

The FCMP algorithm is the same as the FCM algorithm, given in Chapter 3 except that
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the membership update equation first compute a general distance over all the feature

partitions, see Table 6.

FCM equations are provided in Chapter 4. The following section discusses FCMp

parameters. Specific applications follow in this section on the utility of a general

formalization.

Table 6. FCMP Algorithnr

Given: FCM parameters, feature pârtitions y.

Initialization: Choose C centroids.

Loop:
fort= l toT

Update memberships, using centroids V,_r and

/l{'-,1
I " i u, ai(x,,v*) 

|u,*=lI;Ll
l*=' I ", 

al{*,, u*) 
|

I J=I I

Update centroids, using memberships U, and
N

I uT x.

v : ¡--l
KN

I "lli=l
if (terminating criteria == TRUE)

U¡"¿ = U,i V¡""¡ = !,; ¡=f;
fi

end

Iermination: Output final centroids V¡""¡ and membership values U¡n¡
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FCMP Parameters

In addition to the FcM parameters, FCMP includes a non-empty set of feature partitions.

FCMP uses the feature partitions to adapt to specific problems. vy'hen a feature partition

collection contains only one feature partition it is proper to describe the algorithm as

FCM. A feature partition is composed of a triple: a metric ¡:lRcxlRc-lR*, a weight v

elR, and a set of feature indices P={p}. This work was initiated by an investigation of

the proper initialization of FCMP parameters with respect to fMRI data. Initialization

concems the number of feature partitions to use, the assignment of weights to rank

partitions, and the assignment of metrics for each partition. Many methods may be used

to select feature partitions. They include:

1. Entropy based grouping - Appropriate for partially supervised leaming. Choose r¡

best discriminating features. Partitions may be formed using the increasing,
discriminatory ability of collections of features.

2. Statistical Heuristics - Best for unsupervised learning. Rank the features by
variance or other statistical properties.

3. Local domain - Useful for unsupervised or partially supervised leaming. An
example application is fMRI analysis. If there are time instances (temporal values),
form a partition by selecting activated and unactivated epochs. Allow Iag times for
the activated epochs and form another subset.

Metrics may be chosen to ameliorate noise detected in the data or by extemal associations

between features and metrics. For example, it is customary to use the pearson correlation
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coefficient fo¡ flr4Rl time series analysis. This completes our review of FCMP

parameters. Further examples demonstrate their use in practice.

4.2 F CIVIP Specialization

Moving from an abstract (general) formulation to a concrete (specific) adaptation is

known as specialization and eliminates algorithmic degrees of freedom from the abstract

formulation. Specialization constrains the formula in a particular application of the

algorithm. Expectations about the generalized performance of specializations should be

tempered by the fact that specialization is essentially a dataset-specific process. The

casting of the abstract (or meta-) formulation to a particular dataset aims at a local

optima. For example, feature partitions determined to be optimal for one dataset have no

necessary relation to optimal partitions in a different dataset. Several examples of

optimal pârameters are examined for specialization instances.

 .2,lUtility of a General Formalization

The utility of the algebraic expression of FCMp is shown in the following concrete

applications. The format of each application is summarized in Table z. Additional notes

and diagrams follow each example. These examples of utility deal with advantages of

using FCMP over FCM in problems of robust cluster.ing, preprocessing, and partial

supervision.
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Table 7. FCMP Utílity of Concept Outlíne

Application: Robust Clustering

Table 8 details the utility of FCMP specialization with respect to a robust clustering

application. Robust clustering is designed to reduce the effects of outliers or noise on

the centroids. This is done through preprocessing operations such as outlier detection

tests. Outliers can then be eliminated from the dataset.

Concept Name Topic area.

Problem

Description

A specific area where FCMP offers an advantage over FCM.

FCMP

Specialization

Details on the specialization of FCMP to fit the problem.

Utility of FCMP Description of advantages.

Example Joncrete application for the specialization of FCMp.



Concept Name Robust Clustering

Problem

Description

How to adapt FCM to use different, especially robust, metrics ?

FCMP

Specialization

Severaf cluster algorithms using robust metrics are formulated
rsing FCMP. Simple extensions exist using the feature partition
riple.

Utility of FCMP FCMP has a mechanism to substitute arbitrary metrics for
different feature subsets.

Example Several robust clustering algorithms described by Leski are
formulated using FCMP.

4. FCM vith Feat re paflítiotls

Table 8. Robust Chtsîer¡ g lJti!íty S),ttops¡s,

Norms and metrics can also be used to reduce the impact of outliers. one such metric is

the €-tolerant metric, which defines samples within a distance tolerance of e to be

equivalent. Leski [Lesk] presents the following approach to robust clustering. Define an

e-insensitive metric or norm where

Then the cluster objective function is

(zs) r.=))(u,*).1x._v,1.
¡-l k=l

This applies to each of the robust clustering algorithms fl-eski] which follow: .-FCM ,a-

FCM' É-FCM. It can arso be used w.ith Fuzzy c-median (FCMedian). The generar form

r28\ l,r =l o irltlse|'' Itl-e irltl>eJ
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of FCMP entails the specialization as follows: 1 feature partition contains all features; a

robust metric is used; the feature partition has a weight of l.

Application: Preprocessing

Table 9 details the utility of FCMP specialization with respect to a preprocessing

application.

Example 1: FCMP Incorporates Principal Component Analysis

Designing a pattern recognition or EDA system often requires manipulating the raw data

before the clustering process begins. PCA is one common transformation and projects the

samples onto axes of maximal variance. Preprocessing with pCA is incorporated by

FCMP through using the eigen-values À of the dataset eigen-vectors .4 as partition

89

Table 9. Preprocessing lJtílíty Stnopsís

Concept Name Inclusion of Preprocessing Operations in the Algo¡ithm Formula

Problem

Description

Incorporate algebraically common preprocessing strategies with
the cfustering algorithm.

FCMP

Specialization

Feature indices and weights correspond to standard pre-
processing operations.

Utility of FCMP The feature subsets and weighting of FCMp allow many
preprocessing steps to be modeled. A more compact notation for
preprocessing and clustering algorithms results,

Example 1. FCMP incorporates Principal Component Analysis
2. FCMP incorporates Independent Component Analysis
3. FCMP incorporates Feature Selection
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weights. In the notation of feature partitions: v=À. The number of partitions

corresponds to the number of principal components used. The number of components

used is often determined by

a) a goal of accounting for at least a certain percentage of the total variance.

b) isolating projection axes that disc¡.iminate between the samples.

Each feature partition contains all the feature indices and requires that the samples be

projected onto the principal components. of the triple r¿, only the metrics ¡r are left to

define as parameters.

Example 2: FCMP Incorporates Independent Component Analysis

ICA defines independent components and a mixing matrix which describes how the

original signals may have been combined. A whitening matrix, which makes the

distribution Gaussian, is often used. The mixing matrix can be used to define a partition

similar to that in the previous example using pcA. Each feature partition t¿ includes all

feature indices, pt={ 1,...f}vi}, and the ICA mixing matrix is used to transform the data

from the original feature space to the independent component space. Typically, the

number of independent components is much less than the number of features.

Example 3: FCMP Incorporates Feature Selection

Determining which features to use in a partition can be determined using an exhaustive
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search, heuristics, or randomized selection. Each method results in a binary value for a

feature (O=not selected, I = selected). A binary vector defines the selection of features.

This vector defines feature indices in the feature partition. Some methods. such as

GMDH [Farl], generate new features by including feature products in combination. This

new feature is the product of two or more existing features. The partition in both these

cases is the feature index vector multiplied element-wise by the feature selection mask.

Application: Partial Supervision

Tabie 10 details the utility of FCMP specialization with respect to a partial supervision

application.

9T



Concept Name Partially Supervised Clustering

Problem

Description

How can knowledge of class labels be exploited by FCMp?

FCMP

Specialization

Samples with labels have an increased weight or cause the
algorithm to switch from a robust metric to a regular metric.

Utility of FCMP Changing metrics for samples with trusted labels increases the
contribution of these samples to the centroid. Other methods can
be used such that samples with labels will receive a higher
weighting in the feature partition. Clusters that have samples

with a variety of trusted labels can be split into clusters with
samples having the same trusted label.

0xample Similar to partially supervised FCM of Pedrycz and Waletzky

4. FCM tvith Feature Partitions

Table 10. Partial Supenisiott Utìlíty Synopsís

Let A={u1.a2....roç} denote the set of C class labels. Let tr.rq denote the class assigned to

outliers, classification rejections, unknown and ambiguous samples. Let .f)*=f2Uoo be

the set of all possible class labels. Let (,.)(x) denote the class label associated with sample

x. Define a dataset of unlabeled samples X={x I (*)=(Ðol and a dataset of labeled

samples Y={ x | (x) e f: ). Consider the following metric lxy

(30)

Label information is integrated by switching between different metrics. Altemately,

consider feature subsets that âre discriminatory with respect to the labeled samples. L€t

|l 
p, (u, u) ifae x,beYl

r*"(a,b)=je,(a,b) if a,b€x 
I

[r,(a' 
b) ifa,b€Y 

J

92



4. FCM tvith Featurc pa ¡Íions

felyrlz,...!øl be the set of discriminating features. Let pr be the feature indices in

feature partition (./ | that are all discriminatory, pr={p I pCI}. Let feature partition q,

contain only indices of non-discriminatory features, pr={p I p1f =ø}. Let weights v¡,

v2 be associated with {r¡r, rl./2 and assign more weight to the discriminating features.

When this occurs, yr>vz and knowledge ofclass labels is effectively exploitedrr.

Application: Small Signal

Table 11 details the utility of FCMP specialization with respect to a small signal

detection application. The solution to small signal detection is similar to that of

exploiting class labels. It is a question of selecting the appropriate metric. A probe is

defined as a finely{uned fi-rnction which determines the presence or absence of a

localized signal. Probe localization may be spatial, temporal, in the frequency domain, a

combination of domains (space-time, time-frequency etc) or may be defined by

heuristics. Let us consider features acquired over a time interval. For example, a time

series of n instances from an ÍMRI study. Denote activated epochs as E¡ and the

unactivated epochs as Eg. Define feature partitions t¿,r, ç¡2with feature indices

I I Note that, depending on the relative number of features in p, and p2, even the case v¡<v may shorv
improvement in terms of disc¡imination. This can occur when there a¡e few discriminating features.
In general, the formula is lp¡lv¡ >lprlv, for two classes.
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(31) p, ={p lp eEo}

(32) p,={plpÉEo}

Assign weights such that lptlvÞlpzlvz to augment the activated epochs. This method can

also be used to discount features whose values have been contaminated. Fo¡ labels that

exhibit uncertainty, this method may also be applied,

Finally, consider a probe to be a thresholded metric or similarity function such that the

output is binary signifying presence (1) or absence (0) of a phenomenon. One difficult

problem in fMRI analysis is searching for small signals that are not be linearly related to

the paradigm. These small signals presumably reside in only a few percent of the time

Table 11. Snøll Sigtøl UtilitJ Synopsís

Concept Name Small signal discovery

Problem

Description

Detect a small signal only on the activated epochs tvhile also
clustering on the total temporal similarity of time courses and
spâtial proximity.

FCMP

Specialization

Focus on transient and minute phenomenon through the use of
probes can be implemented in FCMP by designer metrics.

Utility of FCMP FCMP extends its clustering scope by tuning metric sensitivity.

Example Feature partitions are: 1. spatial 2. temporal (all epochs) 3.
activated epochs. The activated epochs are correlated to the small
signal; time courses are measured against the stimulus paradigm
taking into account spatial proximity.
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courses and will not form their own cluster with a general cluster algorithm. Detecting a

cluster wilh a centroid highly conelated to the paradigm is insufficient to also identify

time courses containing this small signal. However, a series of probes may be assembled

to detect a variety of nonlinear small signals. when the signal is detected in the

clustering process (say, after a cluster has defined a centroid sufficiently similar to the

paradigm)' the probes, being based on the centroid, will be able to detect the small signal.

Heuristics can be devised to change metrics when the probe indicates that the small signal

is present. In this manner, the clustering process of the entire dataset is combined with a

sea¡ch for small related signals.

4.3 fMRI Data Analysis with FCMP

The following applications of FCMP to problems using fMRI data show the versatility of

a generalized clustering algorithm and the practicality of various specializations,

including that of adding spatial context to fMRL Consider a partition of the sample

features into spatial (S=1a¡¿/) and temporal features (T={t¡ h, ... t"Ð for ¿ time

instances ofthe data. In our previous notation, the feature partition p is

(33) P={s,r}={(x,y,z},{t,,...t"}}

and the respective partition weights are v={vs, vr). Denote distances (metrics) for the
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partitions as ds and d¡. Substituting these specific values into the expanded formula, the

FCMP objective function adapted for ÍMRI is

(34) ¡=u,I ) ulo,'1x,r)+v,) ) uäai(x,k)-^1I I u,,-rì
xÉx vÊv x€X vev \-.)( *r 

* 
I

For a particular sample -r, the objective function is

J"=u, I ulo!(x,r<)+v, ) ulai(x, r)-rf ) u,_- r \tJJJ v€v vÉv \vev I

The membership update equation is

(3ó) 
", =f i '"'43(*" u*)+u'¿î(^"u*) 

l'"'-')'- [rii' vra!(x,, u**¡+vrotr(x,, v*)/

The interpretation of the objective function is this. Minimize the temporal distance of the

sample to the time centroid and minimize the spatial distance to the spatial centroid based

on the weights v5 ârrd v1. Spatial proximity and temporal similarity are considered at

each iteration of the cluster process at specified levels of integration.

Parameters and Typical Use

consider the remaining parameters of FCMP with spatial context. The euclidean metric

is riormally used with spatial features. A variety of metrics may be applicable to

temporal features. In practice, a distance metric based on the pearson co¡relation

coefficient is often used for temporal features. variations on the theme of temporal
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distance include considering only activated epochs (epochs where stimulus is being

applied), including anticipation and relaxation responses of the subject [this would

consider portions of the unactivated epochs both proceeding and following the

stimulation epochsl, or allocating increased weight to activated epochs.

A fuzzy exponent, m, close to but greater than 1, tends to reduce the effects of noise.

This is significant since common SNR values for ÍMRI studies are 2-5[Jarm]. Cluster

algorithms that use cluster merging (eg. Evldent@ [Pizzi3]) often initialize the algorithm

with more clusters than the analyst expects in the dataset. This ensures that a better local

optimum will be found by the algorithm as the sample space is searched more

extensively. Since FCMP extends FCM, default values for FCM parameteß are repeated

in Table 7.

Table 12. FCM fMRI Default Pa¡ameters

m = 1.1 to 1.3 C= l0 to 40

maximum iterations = 20 to 40 U =0.0001

Extending Spatial Context in FCMP

Additional information may be implicitly included in the FCMp functional by

considering the spatial neighbours of a sample time course. Consider the effect of

replacing the sample by a representative time course that shares both spatial proximity
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and signal similarity. Let ydenote a mapping from a given sample index i to the index of

a neighbour j which best represents the neighbourhood around sample ¿. For each

sample .r¡, form its set of neighbours, where the neighbourhood is defined in terms of both

spatial and temporal similarity. The functional now has the form

(37) J,(u,v;x)=I I uÏ,,r"Dí","
!ÉV x€X

where y(.r) is the neighbourhood (spatial) representative for sample ¿. Note that there

are two additional degrees of freedom in this modification, namely:

1. the deflnition of a neighbourhood for a sample time course
2. the selection ofa representative time course from the neighbourhood.

This alternate formulation appends a term to the FCMP objective function

KNN(38) J-,","(u,v;x)=fluf;ol*+alr1*",r.r"1n¡¡
k=t n=t n=t

where F(x",N"(n)) is a function of sample x" and its neighbourhood \(n).

one possible implementation of F is a weighted sum of the neighbourhood scatter matrix

tN.(i)l

(39) F=É, I (x,-x,)'(x,-x )=s"(N"(i))
j=l

Such an objective function is said to contain spatial and temporal terms.
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Incumbent Duties in Algorithm Development

When an algorithm is developed, or extended, the content and context it contributes to

data analysis must be examined, especially with respect to its implementation and

relevance. Some general content and context questions are posed with notes pertaining to

FCMP.

1. Is the algorithm restricted to specialized datasets? lceneral matrices.]

2. What is distinclnovel in the algorithm? [Encoding feature relationships.]

3. How can the algorithm be extended? [8.g. Dynamic partition weights, v (t).]
4. What implementation constraints exist? [FCMp is iterative; random

initialization.l

5. Can the algorithm be parallelized? [Yes, the distance calculations.]

6. In what sense is the algorithm optimal? [Results is intrinsic srructure guided by
feature relations.J

7. Can critical parameters be determined a priori? [Choice of fuzzy exponent, m,
can be guided by FCM studies on similar datasets.l

8. What parameter space region is critical for a robust analysis? [Examine each
feature partitions in isolation; combine partitions allowing different pa¡titions to
dominate the distance metric.l

9. What data-models informed parameter selection? [Use of pearson Correlation in
fMRI guided choice of spatial metric.l

10. Does the use of this algorithm impact experiment design? [No.]

11. What constitutes a valid benchmark for this algorithm? [Any algorithm that
partitions the datâset with or without feature relationships.l

12. Are there optimal parameters that are generalizable? [Unknown.]

13. In what sense is the algorithm, or subsequent analysis, sensitive o¡ robust?
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lRandom initialization, poor parameter space sampling; minimal data model.]

14. How can anomalous or spurious results be detected? [Examine validation indices
over multiple runs.]

From an engineering standpoint, developing or extending an atgorithm is driven by a

concrete application of the algorithm. FCMP was developed for the spatio_temporal

analysis of fMRI data. Chapter 5 describes the fMRI datasets examined.
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Nothítry exísis except alotns a ¿ enpty space;

everytlitry else is opiníon.

Dioge es Lqertíus

Magnetic resonance imaging (lr4RI) [Brow] [Kupe] is a non-invasive imaging modality.

The ability of MRI to contrast various soft tissues has led to new imaging applications of

the brain, abdominal organs, the musculo-skeletal system, breast, heart and blood vessels.

It is the de Íacto standard for biomedical imaging. Different echo sequences, magnetic

strengths, goal-specific techniques (e.g. contrast agents) and coils provide high resolution

spatial images. Functional magnetic resonance imaging (fMRI) examines blood flow

intensity changes produced by a structured stimulus. A stimulus may be any physical

change produced near, on, or in the subject. Common stimuli include cognitive, visual,

tactile, or auditory impressions. The stimulus is applied over an interval of time (the

activated epoch), and then the subject is allowed to rest (the unactivated epoch). Intensity

values are recorded continuously over the altemating epoch pairs. Typically active and

inactive epochs contain multiple intensity records. MRI and fMRI studies generate

voluminous amounts of data at each acquisition. A common dataset size is 60-100

megabytes. MRI and fMRI analysis tests for order and relation in the presence of

multiple noise sources with the cognizance that novel info¡mation underlies expected
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patterns. Since its commercial deployment, MRI and ÍMRI has become methodologies of

choice for investigating the structure of the human body and its functional behaviour

respectively. In particular, neural activation studies present challenges for both standard

pattern recognition and data analysis techniques. This chapter examines fMRI theory and

describes the datasets used in the exper¡ments.

Nuclear Magnetic Resonance

The phenomenon of nuclear magnetic resonance (NMR) involves the interaction of static

and oscillating magnetic fields. For a volume of tissue outside of a magnetic field, the

spin of constituent protons are randomly distributed and yield a near null net field.

Within a static magnetic fteld, Bo, the protons precess around Bo. perpendicula¡ to the

field, the spin orientations remain randomly distributed. Pa¡allel to Ba the coupling of

the static field and the spin orientations produces the so-called Zeeman interaction, an

energy difference between parallel and anti-parallel spins. The lower energy orientation,

parallel, has the larger proton population and is characterized as a Boltzmann

distribution. Equilibrium between the parallel and anti-parallel spins is known as the

induced magnetizat\on Mø Irradiation of an object in a static magnetic field by an

magnetic field, oscillating at precession frequency, rotates the magnetization of the object
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into the transverse rreld. Magnetic resonance occurs between an extemal magnetic field

and nuclei with non-zero magnetic moments or non-zero spinr,. Hydrogen (H)r3 has spin

712. Hydrogen has a high gyro-magnetic ratio y and is thus sensitive to magnetic fields.

The presence of hydrogen in both bloodra and fat makes imaging of in vjva tissues viable.

5.1 Image Acquisition and Noise

MRI data acquisition occurs while the subject lies in a static magnetic field generated by

a superconducting electromagnet. currently, clinical magnetic field strengths range from

I to 5 Tesla. The application of short radio-frequency (rf) pulses to the magnetized tissue

causes the tissue to absorb and subsequently re-emit the energy. Note that the frequency

of the rf pulse is matched to the energy difference between the spin up, parallel, and spin

down, anti-parallel, orientations. Energy absorption by the nuclei at the resonant

frequency is resonance absorption. The time between energy absorption and re-emission

is known as the relaxation time. Two main relaxation times are used to define imaging

intensities: Tl and T2, The ?,t, or spinJattice relaxation, time is the time necessary for

the z component of Mo to return to 637o of its original value foltowing an rf pulse. Z1

12 A non-zero magnçtic moment is equivalent to spin. All nuclei having an odd atomic numbe¡ or odd
atomic weight will have spin.

l3 The most abundant isotope of hydrogen, ¡H, accounts for 99.9852o of all hydrogen.
14 Blood is composed of a liquid called plasma and suspended cells such as ¡ed and white blood cells

(erythrocytes and leukocytes) and platelets. Approximately 90Zo ofplasma is water [Brow].
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measures the rate at which spins retum to their original configuration. The ZZ, or spin-

spin relaxation, time is the time required for the transverse component of Mo to decay to

377o of its initial value via irreversible processes. The TC activation levels acquired

relate the intensities of the deoxygenated blood to the stimulated activity. Figure 16

shows the mean intensity acquired from the s05 dataset. Regions of high average

intensity appear lighter in the image.

MRI Noise

There are many compromising factors in MR imaging:

1. Echo sequences, the patterns of rf pulses applied to the subject, have associated

noises.

2. Motion artifacts are introduced through various sources. Aperiodic motion
blurs image regions containing the moving tissue. peristaltic motion adds noise
to otherwise stationary tissue. Periodic motion generates ghost images. Flow
artifacts contort the image depending on their flow velocity.

3. Misregistration, or pixel misalignment, occurs as equipment bias drifts.

4. Radio-frequency transmitters or coils can introduce spurious signals. Magnetic
field inhomogeneities reflect, scatter and amplify spurious and legitimate
signals.

Reducing the Impact of Noise

For noise localized in the frequency domain, standard bandpass filters may be used.

Wavelets are also an effective signal representation for amelioration,
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Fígure 16. Mean ¡nte sity í¡nage ofdataset s05.

Exanple of single slice JMRI øcqu¡sitíon.

With respect to fMRI, a noise TC Ë(t) can be identified when a time_shifted copy of

itself, [ (t+ T), is not significantly correlated to the original rc. Therefore, a co'elation

threshold pois used to eliminare noise TC. If p(t(t), E(r+T)) < po, E(r)is purged

f¡om the dataset. considerâtion of a desired specificity and sensitivity determine the

value of p q. Another means of identifying noisy TC assumes that the TC has an

approximately uniform spectral density. A statistic Sp is defined as the power in the

spectral peak divided by the average power, which is a scaled Fisher's g statistic. A

threshold, SPq, is defined to determine which TCs are analyzed.

(40) Pr(SP>SPo)=1-[t-"-tt1'

Finally, noise TC can be identified by recourse to an expert who authoritatively defines

an activation paradigm. An ideal boxcar train demarcates time intervals where the
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subject is undergoing response to stimuli or is resting. Thresholding correlation

coefficients for TC based on the paradigm eliminates irrelevant TC from further

consideration.

5.2 MRI Analysis

MRI analysis is a complex and developing field. Some core concems of analysts are now

listed. Literature on neuron activation analysis has been specifically consulted. The

following are references of Mzu studies: lBitt] lBoak] [Bran] [Briel] [Brie2] [Chen]

[Clare] [Cox2] [Fort] [Hark] [Laza] [Jackl] [Miln] [Megal] [Mega2] [Mega3] [Sava]

lShenl lWall] [Wein]. A discussion of MRI analysis would be remiss if it did not

mention, however briefly, the biological background and several important developing

fields and concepts. Such topics as brain atlases, hemodynamic responses models, and

neural tissues are now briefly mentioned.

Viability of a General Brain Atlas

Human brains differ in size and neural composition, for example, grey and white matter,

change over time for individuals due to illness and disease. General brain models of

tissue types and functional inter-relations are being developed but are still at an early

stage and tend to be patient specific. Some, such as the Talairach-Toumoux system,
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utilize stereotaxic coordinates, which do not necessarily refer to a specif,ic sulcal locâtion.

Thus, an atlas for use with neural activation studies is not always available or advisable

[Coxl]. That said, the mapping of neural functions and understanding of sulci and gyri

are important auxiliary concepts with which to analyze fMRI data. As an example of

their future use, enhancement to region growing algorithms could be realized by

considering tissue-type directed growth vectors.

Tissue Topology

Another method to reduce noise considers the topological nature of biological tissues. It

assumes that no more than two types of tissue types overlap. This gives rise to 7 main

types of tissue present in a scan [Drebin] as shown in Table 13. The rf absorptive and

reflective properties of the various tissues and their interfaces can augment a HR model.

Table 13, Voxel Classes

Homogen€oüs

Voxel CoDtenl

Hele¡ogeneous

Yoxel Content

l) a¡r (2, ai lat

3) far (4) faulissue

5) tìssue (6) tissue/bone

7) bone

Robust Statistics

Finally, robust statistics are used to insure analytic inferences from noise. For example,
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the Pearson conelation coefficient and its associated metrics, which provide implicit

signal normalization, are commonly used to measure similarity for neural activations.

Basic Neurology

cument biological taxonomies list 18 classes of brain tissue [Berg]. As a resource for the

reader, brain tissues related to neural activation fMRI studies are listed in Table 14.

Table 14. Broí¡t Tìssue Classes

Brain Tissue Classes Fùnctíon

Bra¡n rem Motor and sensory pathway,

Cr¡ebellum Balance, posture, eye movement

Carpus callosum Message transmission from one side of the brain to the other,

F¡onlâl lob€ Abstract thought, emotion, attention, partial eye, muscle, smell.

Hypothalamus Physical reaction, sexual urge, temperature regulation, honnonal process.

)ccipiral lobe Reading / vision,

'arielal ìobe Tactile sensation, stereo-gnosis (understanding form through touch);
proprioception (acting on intemal stimulation); some visual functions.

;pinal cord Source of sensation and movement,

Music, some vision, memory (vision, auditory and other),

Neuron firings are oscillatory with an individual rate of 800 Hz and a group rate at 40 Hz

[Wang]. Consideration of local neuron fìring conditions may allow highly resolved

frequency ñltering for future studies.

5.3 fMRI Analysis

fMRI analysis extends MRI analysis, such as consideration of tissue types and noise
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reduction, to a temporal series of MR images. one popular fMRI analysis technique is

clustering [Bar] [Bauml] [Baum2] [Baum3] [Baum4]. The main purposes of fMRI

analysis are [Frist]:

1. Identification of areas reacting to stimulation.

2. Region growing.

3. EDA for novel activations relating to stimulation paradigm.

To these ends, a variety of signal and image processing operations are marshaled. These

operations include: trend removal, temporal-based noise reduction, outlier rejection,

thresholding, fitting of statistical moders, and paradigm matching. These operations

result in documentation as regions ofinte¡est, histograms, voxel assignment maps, typical

noise TC, outlier spatiar rocations, intensity images, TC crusters, trends, crusters, typicar

TC and novel activation candidates. A discussion of the main differences between MRI

and fMRI analysis is presented and brief discussions on several of the more comJron

operations follows.

Hemodynamic Response Models

consideration of both non-homogeneous hemodynamic responses (HR) fFord] and

acquisition-specific noise in hemodynamic response models is a formidable task. This

difficulty was previously given as justification for the use of EDA techniques, of which
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ICA has been used with some success [Duann]. The foltowing is presented as an

example of an HR model. The HR function is modeled as ålt) where the observed values

x(t), are given as

(4r) x1t¡= j n1u¡s(t-u)au

The noise-free response x(t) is the convolution of the hemodynamic response h(t) and an

extemal stimulation s(t) fWorsl. Noise remains to be included in the formula. An

example of the considerable effect of noise is shown in terms of the pearson correlation

of activated rcs. correlation coefficients for TCs with of 3 second scan intervals may

only be as high as 0.4 especially in relevant cortical regions. Using a correlation

threshold at that level tends to include many outliers and necessitates an augmenting

selection method for TC analysis. Filtering is a common method to reduce signal noise.

Low pass filtering, removing the low frequency components of a signal, can eliminate

interference from magnetic field inhomogeneities and rf coil noise. A high pass filter

reduces the impact of slower trends and shifts in bias. Filtering using an autoregressive

model is also used [Wors]. Filtering in the wavelet domain [Atexander] also increases

rhe sNR of fMRI signals.
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5.3,1 Trend Removal

Causes of trends in time series include instrument drift and patient movement such as

respiration and cardiac pulsation. Methods of dealing with drift include:

1. Identifying trendy TC by an EDA technique and removing them from the
dâtaset.

2. Correcting or de{rending the TC using linear or nonlinear methods.
Trends are detected by examining the correlation of the TC with a straight line of unity

slope [Jarm]. If the correlation magnitude is greater than a threshold, the TC is

determined to be trendy. For a straight line ¿ the correlation of the TC to the line is

given as p lIC, l,). When lp l> psrheZCis rejected. The threshold p ¿ is determined by

specifying a desired false positive rate using the student-t distribution.

(42)

and DRF is a dimensionality reducing factor, modifying the effective degrees of freedom.

Regions of Interest

An analyst often restricts her attention to a localized region in the dataset by defining one

or more regions of interest (ROD. fMRI allows definition of ROI corresponding to

anatomical structures. Altemately, TC that satisfy a heuristic may be examined, e.g. TCs

with activations in the 90Vo percentile of intensity. ROI are generated by thresholding

on= 

--|!- 
*h"r" D=.(I2- lr;+D DRF
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intensity statistics of the TCs, for example considering only TCs with above average

mean intensity. A correlation threshold may be used if a paradigm is associated with the

dataset. ROI may also be defined by a region growing algorithm that has been seeded at

specific spatial locations. Segmentation methods also may be used to partition the image,

for example the watershed algorithm.

5.3.2 Time Course Normalization

The stimuli of fMRI studies may elicit intensity pattems thât vary in magnitude and phase

depending on the nature of the stimulus, neural functionality and inter-connectedness,

tissue types, and signal path. In order to associate temporal response pattems in the

dataset that exhibit magnitude and phase variance, normalization methods are employed.

That Pearson correlation uses an implicit normalization parfially explains its popularity in

analysis. A brief note of explicit normalization methods is provided for completeness.

Normalization by Subtraction: Subtract a constant value from the ?C , for example, the
mean or the median. Comparison between ICs is then a baseline comparison.

Normalization by Division: Divide by median. Comparison is based on the percentage

of intensity values with respect to a baseline.

Composite Normalizâtion: Subtract median (mean) and divide by MAD (standard

deviation). This may increase noise (decrease SNR).

Order Normalization: Rank order theTC. Each IC is replaced by a sequence of
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integers which represent the relative magnitude order for the time instance. This process

tends to eliminate outliers.

5.4 Datasets

This study of the effectiveness of FCMP on fMRI datasets examines both synthetic and

in vivo data sets. The structure of the synthetic datasets âre discussed first, followed by a

discussion on the ir¡ viyo datasets. Table 15 describes the format used to summarize the

dataset.

Table 15. Dataset DescÍiptíon Fonrøt

)alåset Name used in thesis.

Mñbet olsanples total number in class I (detcription) : ... : number in clâss N (descrip(ion)

IabeIt Class descriptions

Descdp¡ion Sali€r¡t feåtur€s ofdÂra. Imponance of tùdy.

How was dala g€n€mred oracquired?

Addilional infomãrioñ

As an aid to understanding the datasets involved and the subsequent cluster analysis,

basic fMRI statistics are presented for each dataset. Descriptions of the datasets include:

mean intensity images, spatial distributions and regions of interest, intensity and

correlation histograms, typical time series, comrnents on noise and outliers, the activation

paradigm and the main focus of analysis with respect to the particular dataset.
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Synthetic Datasets

The following datasets were synthesized to demonstrate the feasibility of the FCMP

algorithm and to quantify its contribution to fMRI analysis.

r Synl demonstrates the spatio-temporal trade off possible with FCMp on a synthetic
ÍMRI dataset. By design, sample spatial coordinates belong to one of two r.vell

separated clusters. One spatial cluster has been associated with TCs correlated to
the paradigm while the other has been associated with noise TCs.

r Syn2 demonstrates the ability and distinctiveness of region growing algorithms.
Regions of interest with spatially unique descriptors provide a means to evaluate
region growth between the algorithms.

r Syn3 demonstrates clustering in two dimensions which facilitates the direct
viewing of the clusters and cluster partitions.

r Syn4 demonstrates basic fMRI clustering on a small scale. The dataset consists of
a small number of noise TCs and TCs correlated to a stimulus paradigm.

r Syn5 demonstrates a ÍI\{RI dataset where a small signal is present on some of the
TCs that are corelated to the paradigm but only on the activated epochs.

¡ BaumNull is a null (no activation stimulus or paradigm) fMRI data acquisition
where synthetic activated TCs have been added at specific locations. BaumNull is

a hybrid dataset (part synthetic, part in vivo) and serves as a transition point for
analysis of FCMP.

Synthetic datasets were generated by M. Alexiuk. Dr. R. Baumgartner generated the

BaumNull dataset. Each synthetic dataset is now discussed.

5.4,1 Synl Data

Synl is a synthetic fMRI dataset consisting of two spatial regions that are each associated

with only one tempolal characte¡istic. One region has only noise TCs. The other region
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only has TCs correlated to the activation pa¡adigm. These TCs are denoted as degraded

or paradigm-correlated. Multiple variants of this dâtaset have been generated at a

specific Slr'R levels. The noise TCs a¡e uniform random values in [0,I]. The Synl

dataset facilitates a controlled demonstration of feature partition interaction in terms of

signal degradation and spatial proximity since the spatial and temporal feanrre partitions

are independently generated and the spatial-temporal associations are correlated by

design. The degraded TCs are composed of a copy of the stimulus paradigm with

random additive noise. The spatial data is uniformly generated, with respect to radius

and angle, in two circular areas. Spatial centres, or region means, are c¡=(0.1,0.1) and

cr=(0.9,0.9). Both regions have the same radii, r¡=¡r-Q. 1.

synl consists of i00 noise TCs and 100 degraded rcs. FCMp uses two feah¡re

partitions with synl, consisting of spatial (x,y) coordinates and temporal intensities. The

activation paradigm is defined as t0i010101001. This paradigm is uniformly expanded

when the number of intensity values exceeds the number of paradigm epochs. Recall that

an epoch is either activated or unactivated and may contain multiple sampling instants. A

paradigm TC maps the stimulus to the number of sampling instants. Thus, successive

time instances may belong to the same stimulus epoch. The dataset is the concatenation

of the spatial data to the temporal data. The degraded rcs are spatially associated with
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cj,'noise TCs are spatially associated with cr. See Fig.

18 displays typical TCs for each spatial centre.
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17 For spatiaf coordinates. Figure

Figure 17. Spatíal d¡stt¡bution of Synl TCs,

(i) Typical TCs tlnt are cotelated to tlrc paradigm (íí) TypicalTCs rhat are correlqted to the paradígnr

at SNR=l0dB. at SNR=|íg.

Figure 18. Typical paradignt correlated TCs in Synl.

5.4.2Syn2Data

The Syn2 dataset is designed to evaluate region growing algorithms in an fMRI context.

That is, spatial regions of interest are defined and each spatial point has an associated TC.
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TCs are significantly correlated to an acrivation paradigm, [0101010101], and the TCs

are considered as part of the region growing process. The spatial regions used to

initialize the region growing algorithms are shown in Fig. 19 and represents a single z- or

xy-plane. Methods to generate a region of interest, or interest mask include thresholding

of intensity values or correlations in an in yivo dataset. The overall (X,y ,2,"1)

dimensions ofthe dataset are (100,i00,1,10).

5.4.3 Syn3 Data

The Syn3 synthetic dataset is used to demonstrate basic clustering principles by using

two dimensional samples. Thus, the data distribution in space and the cluster centres are

readily viewable and provide low-dimensional justif¡cation of such clustering concepts as

validation indices, objective functions, and distance measures. The data consists of xy

coordinates of samples belonging to two circular distributions, see Fig. 20. The two

Fígure 19. Syn2 ROL
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circular distributions are well separated in space, meaning that the distance between any

two samples in a single distribution is smaller than the distance between any two samples

in both distributions.

Fígure 20. Spat¡al disttibution oÍ Srr3.

This d¡str¡butíon correspo ds tor t.ãt of the spatí.tl

5.4.4 Syn4 Data

Syn4 is a synthetic fMRI dataset that has been significantly reduced, in terms ofnumbers

of samples, from the,n yiyo datasets examined in this thesis. Syn4 is used to demonstrate

basic clustering concepts, especially induced cluster hierarchy, with rcs representative of

the main TCs categories present of in vivo datasets. Syn4 consists of 5 pure noise TCs

and 5 TCs that are significantly conelated to an activation paradigm, [0101010]. The

TCs are shown in Fie. 21, (i) and (ii).
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(í) Noise TCs itr Syn4. (íi) Degraded TCs în S1vt4-

Figure 21. Typ¡cal TCs in Sln4.

5.4.5 Syn5 Data

Syn5 is a synthetic fMRI dataset that has many of the same parameters as Synl. The

dataset is composed of fifty noise TCs and fifty TCs that a¡e degraded with respect to the

activation paradigm. Each class of rcs is âssociated with 2-dimensional spatial features

located in a circular radii of 0.3 with centres (0.1,0.1) and (0.9,0.9) respectively. The

number of temporal features is 100. The SNR level of the degraded TCs is 5 with respect

to the activation paradigm [0101010101]. Epoch lengths span 10 sampling insrants.

The difference from the Synl dataset is that 10 degraded TCs have been modified to

include a small signal only on the activated epochs. Ten such TCs were selected with

random spatial coordinates and have had a ramp function added to their values, seen in

Fig.22 (l). A comparison between a degraded TCs with and withour the ramp function is
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seen in Fig.22(ii).

(í) Ranp small signal added to activated epochs of (íì) Conparíson ofdegraded TCs w¡th a4d y,¡thout

degradedTCs, the presence of the stnall síg al.

Fígure 22, Snall signals in Syn5

5.4.6 BaumNull Data

Dr. R. Baumgadner, of IBD, et al. synthesized the BaumNull dataset to demonstrate the

high typel (false positives) error rate associated with simple correlation analysis of fMRI

data [Baum4]. Two groups of TCs simulate the extreme case when TCs correlate highly

to an activation paradigm but when the groups do not correlate at all to each other. The

groups contain 46 and 26 TCs respectively and signal intensities over 120 time instants

are used. A simulated hemodynamic response used two parameter gamma functions to

generate responses to the activations in the respective TC groups. Thus, this dataset may

be considered to have two activation paradigms.

A mean intensity image for BaumNull is shown in Fig. 23. Figures 24 and 25 show the

mean intensity image after it has been thresholded at fifty and sixty percent of the
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maximum value, respectively. The elongated and convoluted regions of interest

generated by this thresholding are common in ÍMRI studies and correspond to the

anatomical sulci structure. When neural regions are stimulated, the maxim that spatially

proximal regions are temporally correlated must be modified to consider proximity in

terms of anatomical structure, and not simply Euclidean distance.

Fígure 23. BaunNull coronal plane, 7 = g. Figure 24. BaumNulL thresholded ¡ntens¡ty ¡MaBe

Threshold ofJìfty perce t lr,tít uu intensir!,
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Figure 25. BauuNull thresholded íntensíty iuage.

Threshold is set at síxty percent of the naxiìnutn i rensiry.

Figure 26 shows the distribution of correlations throughout the BaumNull plane, z=0. It

is apparent that large numbers of noise TC, those outside of regions of interest and even

the entire brain, are significantly corelated to the activation paradigm.

Figure 26. BaunNull correlat¡o¡t plane, z = 0.

However, the distinguishing features of these voxels is the small number of thei¡
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neighbours that also share significant conelations to the paradigm. A correlation

histogram, sho.rn in Fig. 27, shows the positive values of correlation. Few of the TCs in

the dataset have correlation values that would be considered significant in fields outside

of fMRI analysis, which would lie in the range t0.4,0.81.

Basic statistics for BaumNull include: data value range: t0,10001, a mean value of

135.603, variance of 51305.7. The first stimulus paradigm is of length 12 ',vith panem

t0000010000001. The second stimulus paradigm is of length 12 with pattem

[000100001000]. The (X,Y,Z,T) dimensions ofrhe dataset are (128, 128, 1, 120) with a

corresponding number of elements, 1966080.

Noise TCs lie outside of the two artificial activated regions of interest. Outliers may be

considered to be TCs outside of the RoI but that are somewhat corelated to one of the

two activation paradigms. The focus of analysis for this dataset will be the interaction of

distinct activation paradigms, not correlated to each other, in a synthetic, but typical,

fMRI dataset,
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P.&r6Cnêlôltclir¡(E¡

Fìgure 27. Corrclatíol histogran for BaunNull, z= 0.

5,5 In vivo Datasets

Neural activation data has been acquired from various studies performed at IBD, as well

as at extemal locations. A list of all ¡r? yiyo datasets used in this study follows.

S05 - checkered visual stimulation.

Sample4d - tactile (finger-tapping) stimulation.

Halx - Tourette's syndrome study.

For consistency in inter-data comparisons, all lr¡ viya datasets have been scaled to

t0,10001. Each in vivo dataset is discussed in detail in the following pages.

5.5.1 S05 Data

s05 is an in vivo neural activation study acquired at IBD. The activation paradigm is

based on a checkered visual stimulation presented to the subject. Neuron activations for

a single z-plane or slice were recorded at 42 distinct time instants. The dataset is
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composed of TCs with (X,Y,Z,T) dimension of (128, 256, 1,, 42). A mean intensiry

image is shown in Fig. 28. The visual cortex, lower centre, and a lobe in the right hand

lower side, show high levels of signal intensity.

Fígure 28. Mean intetßíq, í ngefor 505.

A correlation histogram for S05, Fig. 29, shows significant correlation values rvith

respect to the activation paradigm, while a conelation image, Fig. 30, highlights

correlation in the visual cortex and a proximal lobe. The conelation plane, Fig. 31,

shows the spatial locations of high corelation, indicated by lighter values, which

significantly includes the visual cortex and the aforementioned lobe.
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Figure 30, Correlaîion locations ín 505,

LocaIíons wíth Peqrso| Corrclation
grester thar 0,3 øre slþren.

Fígure 3l, Correlaliott Plane for 505.

Thresholding the correlation plane, Figs. 32 and 33, generates regions of interest, spatial

regions where all voxels exhibit a significant level of correlation to the activation

paradigm. Typical TCs with above average intensity values for S05 are seen in Fig. 34.

There is obviously high levels of noise present.
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Figure 32. Thresholded correlalíon plane 505,

Pearson Correlstion threshold ís set at Tt =0.2

5- Magrtetíc Resonance Inaging

Fígure 33. Intensìty threslwlded ROI ofS05.

Threshold is síxty percent oÍ the tarinnr inte síty.

T¡nré

Figure 34. Typical TCs itt 505 ttith greater than avera?e ¡nîens¡ty,

Figure 35, which displays typical TCs with above average correlation values for S05, also

indicates the presence of high noise levels. Of interest in some fMRI analysis is the

variability, or intensity variance, of blood flow as indicated by intensity values, see Fig.

36. This variance may correspond to the repeating pattern of the stimulation. Changes in

variance between activated and unactivated epoch pairs can indicate learning mechanism

.-\--^-/\..^. ^=*..--l\/J\¡----¿. -- \./
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in the neural activations, such as anticipation.

40 .lB

/-"--\:^!---.v/.\ .-_\*^

Tlnrê

Typical TCs in 505 teith above average correlation to paradignr.

Fígure 36. Variance of it ensit1, for 505.

The (X,Y,Z,T) dimensionality of the dataset is (128, 256, 1, 42) and the number of

elements is 1376256. The activation paradigm is 010110. When considering noise and

outliers in the S05 dataset, note that significantly coffelated values are found outside of
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the visual cortex. The focus of analysis for S05 is the visual cortex and the adjacent lobe.

5.5.2 Sample4d Data

Sample4d is a neural activation study based on a motor stimulation, finger tappìng. It

was acquired at IBD and is different from S05 in that sample4d contains multiple Z

slices. A mean intensity image, for the xy-plane z=0, is given in Fig. 37. Only the

epochs corresponding to active epochs were considered for this rendering. Regions of

interest due to intensity variance are shown as light patches in Fig. 38. A correlation

image, Fig. 39, of sample4d indicates one large ROI at location (60,200). A correlarion

histogram for sample4d, Fig. 40, is comparable to the correlation histogram for S05.

Basic statistics for the intensity values include a range of t0,10001, a mean value of

56.0085, variance of 14327.4. The stimulus paradigm is [0101010101010]. The

(X,Y,Z,T) data dimension is (128, 128, 4, 110) and rhe number of elements is 7208960.

Noise and outliers in the dataset should be considered as in S05, namely, those samples

with significant mean intensity, high intensity variance, or high correlation values that are

spatially isolated.
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Figure 37, Mear ítúens¡ty for actíve epochs for Fígure 38, Sarnple4d intensíty varíance inage, ¿=4.

Fígure 39, Santple4d correlation plarre. Fígure 40. Sanple4d cotelatiotr histogram.

5.5.3 Halx Data

Halx is an in vivo dataset used at IBD that was acquired in a Tourette's syndrome study.

The dataset is composed of fMRI TCs wirh (X,Y,Z,T) dimension (IZg, tZB, 16, 12g).

The study poses challenging problems to analysis due to the variable, context-dependent

nature in which Tourette's syndrome is manifested, namely tics. Persons with tics

exhibit sudden, brief and isolated movements, and experience noises or sensations that

are involuntary. The most common cause of tics is Tourette's syndrome, which may also

be related to behavioural idiosyncrasies. Tics are variable in intensity, location and in
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their susceptibility to voluntary suppression, Tics increase with excitement and decrease

with distraction. While most cases of Tourette's syndrome are genetic, it can also be

caused by neuroleptics, head trauma, encephalitis and cocaine abuse. Mean intensity

images for the Halx dataset are given in Figs. 4I,42 and 43 for xy-planes z;0, z=5 and

z=14 respectively. These planes were chosen to sample the different cross-sections

acquired and the ROI associated with each plane. Figure 44 shows the intensity variance

for the xy-plane z=14. Note the highly localized, apparently symmetric structure of the

ROI.

Fígure 41, Actíve nean inîe síty for Halx, z=0.
Fígure 42, Active nean í te s¡tyforHalx,z=5

A correlation image for Halx is given in Fig. 45. Of note is the dark pattems apparent

around locations (60,20) and (60,80). The correlation histogram, Fig. 46, for Halx

shows that the this dataset does not have as many highly correlated TCs as did S05 and
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Figure 43. Hak aclíve near ítúensíq' plane, z = 14. Fígure 44. Hølx øctive var¡ance intensit, pla¡ß, z =
t4.

Fígure 45' Halx, correlor¡o, plane for ¿ = 14, Fígure 46. Halx, correlatíott histogratn for z= 14.

Typical TCs in the Halx dataset are seen in Fig. 47, where the TCs have high average

intensity, and in Fig. 48, where the TCs have high relatively conelation. As mentioned,

the (X,Y,Z,T) data dimension is (128, 256, 16, 110). The paradigm stimulus for rhis

Fígure 46. Hatx, )orr"-,.r,o,r i,ür,"rro,n for z= t4
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dataset is [010101010101].

Fígure 47. Typícal ligh intensîty TCs in. Halt

EDÄ and fMRI
Figure 48. Typical high corrclatiolTCs in Halx,

Neural activation studies examine the spatial regions (volume elêments or voxels)

associated with paradigm-correlated TCs. Regions of interest are defined in space for

time sequences of importance. Such a designation increases the importance of other

spatially proximal TCs. While clustering algorithms define centroids, they can also

define spatial partitions on the fMRI images, using the cluster membershìp values as

voxel memberships in various partitions.
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Test evetltlting.

Hold on to the good.

I Thessalonians 5:21

Since the scope of interest in fMRI analysis can vary, a wide variety of algorithms have

been developed to cover niche applications. The ability of the algorithm to address noise

in the dataset and to elicit meaningful relations from the data are fundamental

requirements for each niche. When developing an algorithm for a novel application, the

existing knowledge base of pattem recognition techniques is examined, as a rule. Pattern

recognition expefs do so because, as Hube¡ slated, "there is no panacea in data

analysis". This battery, or salvo, approach to problem solving proceeds despite the

foreknowledge that many algorithms in the knowledge base have limiting weaknesses.

However, each algorithm failure adds a point on a receiver operator characteristic (ROC)

curve for the problem that focuses both the adaptation of existing algorithms and new

development. In order to compose a set of benchmarks for FCMP, a number of basic

algorithms, industry standards and algorithms noted in recent literature have been

selected, namely:

Basic Benchmarks: Cluster Merging [Romes] and FCM fBezdl]

IndustryStandards: Evldent@[Jarm]



6. Bencltntarks

Academic and Research Literature:
CHAMELEON fKary] and

Fuzzy Seeded Region Growing (FSRG) [Viva].

Other notable algorithms include: model based fMRI approaches such as: AFNI [Cox2]

lcox3l, Statistical Pa¡ametric Mapping (SPM) Brisll, and Medx [Boak]; and model free

approaches such as algorithms in the FMRIB Software Library (FSL) [Smith]. Each

benchmark algorithm is examined in the following pages. Table 16 details a template

which is used to summarize benchmark characteristics.

An example use of the algorithm is provided for each benchmark algorithm. Related

notes and discussions follow in each section. For algorithms where it is appropriate, a

synthetic fMRI dataset, Syn4, is used. It consists of 10 samples: 5 noise, and 5 signals

Tøble 16. Benchnark Sunnøry Tenplate

Description A characterization of the algorithm.

Strengths Particular advantages of the algorithm for a specific task or in
general.

Weaknesses Particular dis-advantages of the algorithm for a specifrrc task or in
general.

Goal

Jrientation

The heuristic or objective function that guides the algorithm to
convergence and completion.

Degrees of
t'reedom

Algorithmic degrees of freedom. A description of the parameter

space of the algorithm.
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that are significantly correlated to a boxcar stimulus paradigm. To demonstrate algorithm

use, several measures are computed, among them the mean square error (lr4SE) and

Pearson correlation of the centroids to the paradigm. For Evldent@, results are shown for

s05, an in vivo dataset examined in Chapter 7. To demonstrate region growing on a small

scale, another dataset, Syn2, is used. Syn2 is a synthetic fMRI dataset with (X,Y,Z,T)

dimensions of (100,100, 1, 20). In the XY plane, four distinct regions are designated as

ROI, being correlated to a stimulus paradigm [0101010101]. Regions represenr spatialty

connected, temporally similar TCs. All other TCs in the dataset, in regions outside those

already defined, are noise TCs. FSRG and region growing processes, which utilize FCM

and FCMP, are demonstrated on Syn2. The spatial characteristics of the ROIs highlight

the abilities of the different region growing processes.

6.1FCM

FCM, as outlined in Chapter 3, is a robust algorithm well suited to unsupervised learning

problems. FCM|5 is used as a benchma¡k due to its successful history in discovering data

structure, its minimal mathematical model, the variety of validation methods for its

results, and its ease of adaptability to extemal constraints such as dependencies in the

data. Although non-convex regions pose problems for vanilla FCM, it is a standard

t5 When FCM is restricted to the standard spherical clusters, as it is in this thesis, the
algorithm is referred to as yanillaFCM.
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benchmark in pattem recognition. Recall that FCM can be considered a specialization of

FCMP where the following algorithmic degrees of freedom are fixed: only one feature

partition exists, and the Euclidean metric is used. Table 17 provides details on FCM.

Fig. 49 shows the distribution of samples for Syn3. Centroids are generated by FCM for

C=2,3,4 and l0 respectively and listed in Table 18. The VCV matrix for rhe dataset,

shown in Fig. 50 , displays two dark regions along the diagonal, indicating two inherent

clusters. Validation indices are another means to determine the most representative

number ofclusters. These indices are shown in Fig.5l and indicate two clusters.

Table 17. FCM Algoritltn Suunary

Description A clustering algorithm which defines C spherical clusters in a dataset

and assigns degrees of membership for each sample in every cluster.

Strengths Always finds C clusters. Iterative convergence often provides a fairly
representative partition after a small number of iterations.

Weaknesses The optimal value of C is unknown a priori. Use of validation
indices to confirm the optimal value of C are to some extent dataset-

dependent. Clusters are always spheres. Generally, only the
Euclidean metric is used.

Goal

Orientation

Maximizes the inter-cluster variance while minimizing the intra-
cluster variance.

Degrees of

Freedom

,lumber of clusters; fuzzy exponent; initialization.
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Fígure 49. SaûVle dístr¡butío¡t of dataset Syn3.

Table 18. FCM Centroid locatiorts for Syn3

Validation indices for clusters generated by FCM with C=2,3..20 are shown in Fig. 51,

The indices indicate from 2 to 7 clusters in the dataset, determined by points of

diminishing returns for each index over the range of C values,

C Centroid Locations

2 (0.175335, 0.130495), (0.821875, 0.814863)

3 (0.7 4M89, O.7 2867 ), (0. I 523, 0. l0ó273 ), (0.74304 l, 0.?3 138)

4 (0.821892, 0.81488 ), (0.821854, 0.81484 ), (0.175258 , 0.130414), (0.1?541?, 0.13058 )

10

(0.780952,0.77 t524), (0.782082,0.712724\, (0.157706, 0.1 1 l9l5), (0.15?709, 0.1r r 918), (0.78t896, 0]72527),
(0.157709, 0.1I l9l9), (0.78281, 0.773148), (O:182534, 0.773204), Q.782078,0.77272 ), (0.157715 0.I I 1925)



Fígure 50. VCV natrix asEoc¡ated fot daîaset

Sy¡3.
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Figure 51. Validatíott índicesfor Syn3,

The indíces PC, PE, FS andXB lnve been

nonnalízed to [-2,2].
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6.2 Basic Cluster Merging

Cluster merging considers the proximity between single samples, a sample and a group,

and groups of samples. Samples and groups of samples are merged until the total number

of desired clusters is met. This method was not discussed in Chapter 4 on clustering

since the algorithm is straightforward. A distance matdx is defined over the sample

space. Proximal samples are merged and their centroid is computed which replaces their

respective entries, rows and columns, in the original distance matrix, The algorithmic
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degrees of freedom of this basic hierarchical method are: choice of metric; centroid

definition. Adding new samples to the cluster requires that the cluster centroids be

updated. Hard cluster memberships are produced but thresholds are easily set to reveal

partitions for an arbitrary number of clusters. Table 19 provides details on the

benchmark basic cluster merging.

6.3 Evldent@

Evldent@, from EVent IDENTification [Jarm], is a curent research and industry tool for

the EDA of fMRI data. It is introduced in Chapter 7 as a state of the art algorithm for

fMRI analysis but is included here in order to consolidate the discussion of benchma¡k

algorithms. Evldent@ is a model-free, 3D, EDA application that locares regions of

îable 19. Basic Clttster Merge Algoriihn Sununary

Description Ihe dataset is merged sample by sample using a sample-centroid
listance. Centroid definitions are updated after each new merger.

Strengths After merging all samples, the cluster structure for an arbitrary number
of clusters, C, is determined simply by appropriate thresholding the
induced hierarchy. An added benefit for analysis is that the order.in
which samples are merged is preserved by the algorithm.

Weaknesses lard sample memberships

Goal

Orientation

Merge the sample closest to any centroid with the cluster of that
centroid. Update the centroid definition. Continue until all samples
are merged or until a specified number of clusters is achieved.

Degrees of
Freedom

Centroid definition; metric.
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activation, and detects artefacts and trends. It was developed at the National Research

Council, Institute for Biodiagnostics (NRC-IBD) and has found acceptance in the

¡esearch community. Numerous publications [Baum2] [Jarm] [pizzi2] attest to its

benefits. The featured analysis tool associated with Evldent@ is known as Exploring

Regions of Interest with Cluster Analysis (EROICA) Uarml. EROICA is a monolithic

crlgorithm which utilizes dataset-specific stâtistical pre-processing of the TCs. Such pre-

processing tasks as rejecting outliers and noisy time courses sometimes eliminates 95Zo

of the original TCs. This data-screening significantly reduces execution time. Fig. 52

shows a screen shot of Evldent@ after a dataset has been clustered with EROICA. Table

20 provides details on the benchmark Evldent@.

Table 20. Evldent@ Algorithnt S:¡l/nuaq,

Description FCM clustering is augmented by a complex of statistic-based pre-
processing heuristics which reduce noise and speed execution.

ìtrengths Irendy samples removed. Fast execution time. Industry acceptance.

Weaknesses Removes samples. Initial results can have significant false positive
rates.

Goal

Orientation

Remove trends; remove noise; produce cluster analysis on remaining
data.

Degrees of
Freedom

Preprocessing parameters. FCM parameters. EROICA parameters.
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Defaulî EROICA se ¡igs werc used to generate these results frotfi tlrc s05 dataset.

6.4 CHAMELEON

CHAMELEON [Kary] is a hyper-graph partitioning algorithm rhat uses a dynamic

cluster model. Karypis notes that existing hierarchical methods use static models or do

not take into account idiosyncrasies of individual clusters, Clusters are idiosyncratic

when they have unique shapes and size with respect to other clusters in the dataset

representation. He suggests that a dynamic method which considers how distances, and

nearest neighbours groupings, change as the algorithm converges, will capture such

cluster uniqueness. The CHAMELEON approach consists of iteratively comparing
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clusters c and cj in terms of their rerative interconnectivity, R1, and their rerative

closeness, RC. Table 2l provides details on the benchmark CHAMELEON.

Graph Theory Background

CHAMELEON is designed to partirion hyper-graphs. A hypergraph is a graph where

edges are shared by t\ryo or more nodes (vertices); both the edges and veftices may be

weighted. The min-cut bisector or a graph is the minimum sum of edge-weights cut

when the graph is partitioned into two sub-graphs and is used to define Rl and RC.

A graph is defined by how individuar rcs relare to each orher. The CHAMELEON

algorithm was designed for use with sparse graphs in fields such as very large scale

integrated (vLSI) circuit design and theoretical computer science. These sparse graphs

do not arise naturally in fMRI studies but may be constructed artificially as follows. A

parameter È is introduced which limits the definition of adjacency for zcs. This limit

constrains the topology to be sparse.
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The cliquish distance matrix (which relates each sample to every other) is replaced by a

k-nearest neighbour distance matrix which is comparable to those in circuit design. Thus,

a comparison between FCMP and cHAMELEoN considers the use of e-tolerant metrics,

such as

(43)
d.(x,y)=9,¡¡¿1*,r¡.u

d. (x, y )=d (x , y), otherwise

where d is a metric. In this way, the distance matrix commonly used in clustering is

replaced by a sparser matrix. The FCMP generalized metric is used to compute a sparse

version of the inter-sample distance matrix dm. This matrix is thresholded such that each

sample is connected only to its K nearest neighbours, and is denoted dm¡n". Thus, the

Tal¡le 21, CHAMELEON Algor¡tht,t Sunu ary

Description A heuristic based recursive partitioning algorithm which utilizes a

dynamic cluster model.

Strengths A dynamic cluster model has demonstrated the ability to châracterize
idiosyncratic cluster structure.

Weaknesses fhere are many parameters.

Goal

Crientation

Partition the dâtaset using a recursive splitting and agglomeration of
the samples using graph theoretic definitions of interconnectedness
and closeness.

Degrees of
Freedom

CHAMELEON parameters.
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nearest neighbour €-tolerant metric is

(44)
d. (x , y )=d*" (x , y), if x and y are nearest neighbours

d, (x , Y)=9, e1¡1"t*¡,"

CHAMELEON then recursively splits the dataset into sub-cluste¡s. Fragmented sub-

clusters are merged based on RC and RI thresholds. Readers inlerested in details on the

precise effects of CHAMELEON parameters are advised to consult [Kary]. The

following example shows results of CHAMELEON analysis on the Syn3 dataset.

Typical parameters used include: 10 desired clusters, separate threshold consideration in

merge mode, closeness threshold 0.4, connectivity threshold 0.4, number of nearest

neighbours 3, Euclidean metric, minimum cluster size in splitting phase 5. Due to the

heuristics involved in both the CHAMELEON algorithm and the current Scopira

interface for fMRI analysis, the desired number of clusters is not always achieved. Eight

clusters were defined by the algorithm with the clusters containing

[85, 10,7, 1 5, 1 9,6,30,28] samples respectively.

6.5 Fuzzy Seeded Region Growing

FSRG is a spatio-temporal, data-driven post-processing operation designed to enhance

the structural boundaries of activated regions. Fuzzy seeded region growing (FSRG) is

ons ofthe few methods which incorporates knowledge of spatial proximity between TCs.
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Th.is enhancement is gained without the cost of adding false positives or outliers to the

region of interest. Table22 deøils the FSRG algorithm.

FSRG incorporates this information in a tvr'o stage process. Stage 1 of FSRG is the actual

region growing where seeds are augmented into robust activation regions using spatio-

temporal considerations. The second stage produces fuzzy memberships of the samples

in the grown regions with respect to the ave¡age TC of the region. This fuzzy

membership provides a method to view the centre ofthe activated region using activation

similarity.

fable 22, Fuzzy Seeded Region Grotvittg Alqorithn Sumìnary

Description Region growing in 3d space based on temporal similarity and spatial
proximity.

Strengths Considers multiple domains (spatial and temporal) to provide a better

overall representation of the dataset.

Weaknesses Regions must be seeded by an independent method before they may be

grown.

Goal

Drientation

Grow regions of temporally similar samples based on heuristics for
growth size and direction.

Degrees of
Freedom

Regions seeds. Growth direction and size heuristics. Temporal
similarity metric. Spatial distance metric.

Figure 53 shows the initial seed regions and Fig. 54 shows the augmented regions after

FSRG has been applied. Note that the mean TC to which candidate voxels are considered
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changes as TCs are added to the FSRG ROI.

F¡gure 53, ÍSRc seed points. Fígure 54, ROI gercrcîed by FSRG.

Seed poínts to left were used.

A possible variant of region growing is noted here with a region growing process that

involves FCMP.

Region Growing Variant

Region growing methods require a seed, or sample, which serves as the initial point for a

collection of samples. A region representative is similar to a cluster centroid; it is a

sample used to characterize the region. A region descriptor is any value or statistic that

characterizes a two dimensional, three dimensional, region such as the Euler number or

chain code for a region, Region growing accuracy for fMRI may be defined as:

F¡gurc 53. FSRG seed poínts
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. Regions that correspond to anatomical components.
r Regions that supply important information to the researcher such as ROL
r Regions that meet the expectations ofan expert or gold standard.
¡ Alternate heuristic criteria. E.g. spatially proximar, temporally-similar TCs should

be clustered together.

Region Growing using FCMp

In order to compare FSRG with FCMp, it is necessary to formulate a region process that

involves the characteristics of FCMp with respect to its feature partition integration.

Table 23 outlines such a process.

The robustness of region growing algorithms may be defined as the degree to which the

regions do not significantry change as TC features vary slightly. Robustness courd be

measured in terms of SNR of the TCs to the stimulus paradigm. Besides using FCM

centroids as seeds, one may generate se€ds by thresholding the mean image intensity.

Table 23. Region Grotviug vtith FCMp

Description FCMP initializes seed voxels. Regions are grown based on a spatially-
ordered temporal similarity.

Strengths Spatiaf ordering of temporal information discovers local formations.

Weaknesses Jomputation associated with clustering is incurred before regions are
lrown.

Goal

Drientation

Grow spatial regions of temporally similar voxels.

Degrees of

Freedom

Temporal and spatial metrics. Region growing parameters such as
neighbourhood connectedness.
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Common pre-processing includes mathematical morphology, and image filters (high,

low, Sobel, median) [Gonz]. Region growing rules may be diverse. A dynamic region

growing heuristic may be defined where growing occurs only along the strongest path

from origin to edge. This method should map out sulci with coffelated activations.

The basic steps to region growing after FCMP are:

L Rules to generate neighbourhoods.

2. Similarity measure used in generating neighbourhoods.

3. Distance metric used for maximum radius of neighbourhood.

Neighbourhood Definition

A priori regions may be considered for potential sample substitutes. For example, a

polygon may be used, samples within a maximum radii may be considered, or a region

may be grown dynamically until a certain number of samples have accumulated. Let

N"(n) be the neighbourhood of sample xn, i.e.

(4s) N" (n)=[x,lS (x", x,)> T, nd (x", x,)<To]

where d(',") is a distance measure, Ts is the similarity threshold, T¿ is a distance

threshold-

(46) llN. (n )ll> r*
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Summary

This completes an examination ofthe benchmark algorithms used to quantify and qualify

the distinct contributions made by FCMP to fMRI daø analysis. The software

implementing the algorithms, library interfaces, data yO, synthetic fMRI dataset

generation, and related utilities was written in C++ as an apptication specific software kit

extension to the Scopira framework [Demk]. The Scopira framework is available under

the GNU Public License (GPL) from www.scopira.org.
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No auþunt of experínøntatíoù can ever prove ñe If ),our resuks need a stat¡stic¡an ther
ríght; a síngle e¡peri rcnt cai prove fie þrong- yon should àesign a better eÍperh¡rctú.

All)efl Einste¡n Ernest Rutherþrd

Ten experiments examine the use of FCMp on fMRI datasets and assume familiarity with

TC analysis [cox2] [Pres] [Royer] and fMRI, as per chaprer 5. Experiment structure

consists of: a general hypothesis, one or more datasets, a main algorithm with a set of

parameter values, one or more benchmark algorithms, with associated parameter values,

and a set of performance measurements. In all cases, FCMp is the main algorithm,

although in some experiments, such as region growing, it is followed by additional steps.

Thus, each experiment quantifies FCMp performance against one or more benchmarks,

using one or more datasets, over a defined set of parameters. comments follow on the

composition of the experiments.

Choice of Benchmark

Benchmarks represent basic and well understood algorithms, de facto industry standards,

and algorithms of note in recent literature and are listed in Table 24. some experiments

compare FCMP with a single benchmark with respect to FCMP while a sølva approach,

using many benchmarks, is also used. Evldent@, as an industry standard for ÍMRI

analysis, is a particularly important benchmark. Recalt that FCM using only temporal



Table 24. Sutunry of Algoritlms

4crortynt {lgoitltnt

FCM Fuzzy C-Means

FCMP 3uzzy C-Means with Feature Partitions

CHAMELEON ]HAMELEON

3luster Merging Basic cluster merging

Evldent@ Event Identification

FSRG Fuzzy seeded region growing

EROICA Exploring Regions of Interest using Cluster Analysis

7. Experimetús and Resuhs

features is the most common current use of fMRI dâta.

Choice of Datasets

A variety of synthetic and ir¡ viyo datasets, see Table 25, are used to compare the efficacy

and robustness of FCMP and the benchmarks. Synthetic datasets were designed to

accentuate differences between algorithms through use of somewhat idiosyncratic

structures, a range of noise levels, partially correlated feature partitions, and

superimposed, unanticipated novelty. 1r¿ yiyo datasets provide industry-norm data

acquisitions with concomitant noise types and levels,
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Choiee of Parameters

Parameters constitute degrees of freedom for the experiment that may constrain the

optimization of the algorithm. This is significant when parameter optimization tends to

be dataset-specific. Exhaustive examination of parameter-spaces is rarely feasible and

extends far beyond the thesis scope. Limiting parameter evaluations does have the

benefit of simplifying the variables in the investigation. Justification for the parameters

evaluated is given in each experiment synopsis. Details on algorithm parameters are

given in Chapter 4 for FCMP and Chapter 6 for the benchmarks.

Table 25, Sutrfinry oJ Datasets

Natne Type jottunents

Synl Synthetic Dataset with correlated features.

Syn2 Synthetic Data to demonstrate region growing.

Syn3 Synthetic Data to demonstrate basic clustering concepts.

Syn4 Synthetic Small scale fMRI data.

Syn5 Svnthetic Small, unanticipated signal on the activated epochs

BaumNull Hybrid Samma function activation injected into a nult fMRI

ìcan.

s05 Itt vivo lheckered visual stimulus.

Sample4d In vivo Iactile stimulus.

Halx In vivo fourette's syndrome study
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Experiment Synopsis

Each experiment is characterized by its hypothesis. In order to provide a consistent

structure for experiment synopses, a cornmon table format is used, see Table 26. Each

experiment augments its synopsis with further relevant details, and introduces functions,

statistics, and plots requisite for interpretation of the experiment results.

Tables 27 lists the experiments conducted in this thesis. Detailed experiment descriptions

are provided sequentially in this chapter.

Table 26. Experirnent Synopsis Fomnf

Exper¡rrterú Contpo ertl Descríptiott

Name Uniquely describes the experiment in the thesis and is used to relate the
description with the results and accompanying figures and tables.

Description Adds dctails as to method, dataset, and algorithm paramete¡s.

Independent Variâbles List of the experiment factors, typically the paramete¡s used and any
preprocessing. Details the parameter sampling grid, if one was used.

DeÞendent Variables List of dependent measurements of performance measuremenls.

Hypothes¡s Postulates an expected outcome of the experiment.

Main algorithm Details any auxiliary processing used with FCMp,

Benchmarks List of algorithms used for comparative purposes to FCMP.

)atasets List of datasets used.

Validation P¡ovides an explanation or interpretation of the performance measures with
respect to the experiment. Fixes the meåns by which different algor¡thms are
to be compared.
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Table 27. Sunnnary of Experinents

Discussion of the experiment results conforms to the following format:

Executive Summary: A concise rendering of experiment significance.

Contribution: Components oforiginal work are noted.

Overviery: Extends the experiment synopsis.

validation: Describes the method by which the experiment results are evaluated,
confirming or countering the hypothesis. It may also impose a caveat on interpretation of
the results.

Discussion: Experiment results, such as notes, tables and figures, are integrated.

Index Datasets Bencl¿ntarks Conunents

I
Synl FCM Concept partition with ¡espect to various SNR levels.

2

lynl Syn3 FCM Utility of validat¡on indicesr PC,PE,FS,XB, as \vell as

HCM met¡ics.

3

Synl Syn3

BaumNull

ín vivo

FCM Utility of VCV matrix for determining the number of
int¡insic clusters,

4
s05

Sample4d

FCM Optímal partition rveights with respect to validation
indices on ¡i¡ viyo datasets.

5
Synl Syn2 Syn3

s05
Cluster Merging

CHAMELEON
Examination of induced cluster hierarcl¡y.

6

Svn2 BâùmNull

itt tivo
Evldent@ Region definítion test the algorithm robusrness with

respect to outliers and spatial dis(ribution met¡ics.

7
)ynz bt t ivo FSRG

Evldent@
Region growing based on TC se€ds generated by FCM
FCMP and global statistics.

8

EvIde¡t@ Actiyated epochs have increased weight and a separate

partition in the clustering process.

9
Syn5 FCM

Evldent@

Test of ability to detect noyelty, eg of small signals on
activated epochs.

l0
Itt vit o lvldent@

ISRG
Bridge voxels define global thresholds for fMRI
dalasets.
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The order of the experiment results are:

(l) Concept Partition, (2) Validation Indices, (3) Utility of VCV,

(4) Optimal Partitions, (5) Induced Hierarchy, (6) Region Definition,

(7) Region Growing, (8) Activated Epochs, (9) Novelty Detecrion, (10) Bridge Voxels.

Generally, results for a single experiment are nested in the following structure:

r According to dataset, with order: focus, synthetic, hybrid, ll vlvo.

r According to âlgorithm, with order: FCMP, benchmarks.

r According to algorithm parameter values, with order: increasing resolution or
specificity.

As a rule, in depth details and analysis are provided for only one dataset per experiment,

the focus item above, while results for other datasets are summarized in a few sentences.

Comments that extend beyond a single experiment are noted at the end of this chapter.

Experiments are now discussed in tum.

7.1 Concept Partitions

The concept partition experiment, see Table 28, examines Syn1, a synthesized fMRI

dataset where spatial features form two distinct clusters. Each spatial cluster conesponds

to a speciñc set of TCs. One set of TCs are pure noise while the other is composed of

TCs that are correlated to the paradigm at a specific SNR level.

Executive Summary At high SNR levels spatial and temporal features can, individually,

discriminate the two classes of samples, Integrating both types of features in FCMP
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marginally enhances centroid-paradigm MSE and correlation. However, as SNR levels

decreased, an optimal feature partition integration of the spatial and temporal features

was observed.

Contribution An optimal feature partition integration, I v 5 v .I] = t0.1, 0.91, was found

for FCMP, as measured by MSE and the centroid-paradigm correlation.

Overview This experiment examines a parameterized synthetic dataset, Synl, over a

range of SNR values: { 50,30,20,10,5,2,1}. SeeFig.55 for typical TCs.

Validation MSE and correlation of the centroids are compared to the paradigm.

Discussion

Synl Results Several expected trends were confirmed by this experiment. As parameter

C increases, the overall MSE decreases, regardless of SNR for the corelated TCs and the

spatial weight v 5. As the noise in the dataset increases, the minimum MSE of the

resulting centroids increases. However, for an increase in the number of clusters, both

FCM and FCMP are more likely to generate additional noise clusters. The following

relation is noted between SNR, MSE and v5: as vs-+0 the MSE depends increasingly

on the SNR. That is, TCs with higher temporal SNR have lower MSE for rhe same

values of v s.
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As reliance on the low noise feature partition is increased, that is v s--+ i, MSE decreases

This occurred for almost all cases; for the synthetic dataset at low SNR, a local optima

was noted. At this combination of feature partitions the incorporation of degraded

signals is beneficial. This inflection point, against the general trend of decreasing MSE

for increasing v s, was noted for low SNR and occurred at v s=0.9 as shown in Fig. 56.

Signihcantly, a range of SNR values exhibit this inflection and v s=0.9 seems optimal for

Table 28. Concept Partitíon Synopsis

Expefiüeßt
Corrtpone t

Description

Index:1 Concept partition

Commenl For the synthetic dataset desc¡ibed above, how does FCMp compare to FCM over a
range ofSNR values?

Independent

Variables

SNR value ofdegraded TCs {2,5,10,20,30,40}.

Number of samples in the two clusters { 100).

Spatial distance between spatial cluster centres { I }.

Met¡ic applied to each partition (Euclidean, Pearson distance).

Weight applied to each partition (0, 0.1, 0.9, 1.0).

Dependent

Variables

The mean square e¡ror (MSE) of the centroid from the cluster of deg.aded TCs to
the stimulus paradigm. Same as above but using the pearson Correlation of the
centroid to paradigm.

Hypothesis FCMP rvill achieve a lower MSE and a highe¡ conelation,

Main algor¡thm FCMP

Benchmarks FCM

Dafasets Synl

Validation Minimum MSE of centroid to paradigm. Maximum correlation of centroid to
paradigm.
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this particular dataset and feature partitions. The slope of the trends in Fig. 56 suggest a

critical SNR value at which v5has a significant ameliorative effect.2_5 SNR_

Figure 55. TC itt Synl.

top) paradigü TC. tiddle) degradedTCs.
bo on) nois¡ TCs,

I :Ës=ñáso. I lt+ âNÊ3o I !
¡ -.!- laNrrrD I I
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Figure 56. Parlítio,t we¡ghts vs MSE,
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7.2 Validation Indices

Chapter 4 introduced several cluster validation indices. We now determine their

application with respect to fMRI datasets, see Table 29. Synthetic and in vjyo datasets

are examined.

Executive Summary Validation indices are used to compute the optimal number of

clusters in an fMRI dataset. The Xie-Beni index, XB, is shown to be most efficacious at

indicating intrinsic structure.

Contribution Validation indices are evaluated on FCMP centroids of ÍMRI data.

Overvierv The utility of validation indices in conjunction with FCMp is examined on

fMRI datasets. The Xie-Beni index, which has shown most potential for validation of

general data with FCM, also shows the mosr potential with FCMp and fMRI data.

Validation The number of clusters indicated by the validation index is compared to a

gold standard or to the designed structure of the synthetic datasets.

Discussion

For each dataset, plots of the validation indices, {PE, PC, PX, FS, XB }, are presenred for

diffe¡ent number of cluste¡s and different feature partitions.
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synl Results As the sNR between the paradigm prototype and the co'elated rcs

decreased, the varidation indices diverged in their agreement as to the intrinsic structure

(number of clusters) in the dataset. XB was the preferred index and was most consistent

with respect to changes in SNR.

syn3 Results For the simple two cluster structure in syn3, a validation indices

performed well and correctly indicated the presence of two clusters.

Table 29, Validatiott Indices Synopsis

Experimerú

Compo erú
Description

Index:2 Validation Indices

Intery¡et how the various validation indices should be used on fMRI datasets. Determine
the relation of clustering algorithms to validafion indices generally.

Commenf

lndepend€nt

Variables

FCM parameters, FCMp parameters.

Dependent

Variablas

Validation indices: FS, pC, pE, pX, XB.

Hypothesis The commonly used set of FCM validation indices are not general enough to give
co¡rsistent results fo¡ both synthetic and ¡i¡ vivoI¡ZRI datasets.

Main

algorithm

FCMP

Benchmarks FCM

Datasets Synl, Syn3.

Validation Validation index conesponds to an expert opinion (o¡ gold standard) ¡elating to the data.
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7.3 Visual Cluster Validity

The visual cluster validity (VCV) tHath2l index is an indicator of data structure. By firsr

sorting the samples based on their cluster assignment, a matrix of all inter-sample

relations reveals dataset structure. The experiment is outlined in Table 30.

Executive Summary The VCV index displays intrinsic cluster structure and is

compared to other validation indices. The VCV index corresponds well to gold standard

clusters.

Contribution Evaluation of VCV on FCMP clusters of fMRI data.

Overvierv The VCV index uses sorted, inter-sample relations to visually represent datâ

structure.

Validation Corespondence of the VCV index to gold standard cluster structures.

Discussion

Basic pre-processing operations reduce the number of TCs under consideration.

Thresholds for average intensity and conelation to a stimulus paradigm are used.
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Figure 57. VCV øtîÌ for heo dislittct cluste$.

Dork regíons on diqgonal índicare heo ¡nlterent clusteß,

Thresholds for average intensity are set as percentages of the maximum intensity in the

dataset, Tfuesholds for TC conelation are set to select only those TCs with marginal and

Table 30. VCV Syttopsis

Erper¡metú

Contpo ent

Descriptíott

Index:3 Visual cluster validity

CommÊnt Determine the effecliveness of the VCV index for clusteling fMRI data.

Independent

Variables

FCM, FCMP parameters.

Dependent

Va¡iables

VCV index.

Hypothesis The VCV index detects the intrinsic data structure for FMCP centroids more accurately
than for FCM centroids (since the FCM centroids ignore the spatial features).

Main
algorithnr

FCMP

Benchmarks FCM

Dâtasets Syn3, BaumNull, i¿ vivo.

Validstion Correspondence of the data structure as suggested by the VCV index and tlìe paranleters
used to generate the synthetic data.
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significant corelation. The number of samples in S05 remaining after intensity and

correlation thresholding are shown in Tables 3 i.

For each reduced dataset, iwo VCV matrices are computed, using FCM and FCMp

centroids respectively, and the number of inherent clusters determined by heuristics.

Recall that, unlike other validation indices, the VCV index is computed once per cluster

algorithm, usually with a large number of clusters (20).

S05 Results Figures 58 and 59 show the VCV matrix for intensity thresholded samples

where the initial centroids were defined using FCM and FCMp respectively. Figures 60

and 6l show the vcv matrix for correlation thresholded samples with initial cen¡.oids

were defined using FCM and FCMP.

FCM Results Intensity thresholds produced consistent vcv indicators for two clusters,

of unequal sizes, over all threshold values. Conelation thresholds produced a large dark

region indicating a single cluster. It is noted that this single cluster is slightly larger than

the largest indicated by the intensity thresholds. As the number of samples increases, that

is the intensity threshold becomes lower, the single cluster grows in size.
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T¿åle 31. Thresholding Effect on S05

Correlation

Threshold

Number oJ

sanples

I letß¡ty

Threshold (Vo)

Number of
santples

0.18 4397 0.34 4103

o.25 2015 o.47 2054

o.z'l 1585 0.51 1507

0.3 1085 0.55 1056

0.35 537 0.61 519

FCMP Results Intensity thresholds exhibited resolution control in the number of

clusters for FCMP results, see Table 32. At high thresholds only one cluster was

discemible; at lower thresholds, with more samples, two clusters were indicated. Use of

correlation thresholds, also in Table 32, show similar results.

FCM vs FCMP The dark regions in the FCMP VCV images were generally more

homogeneous, meaning that light lines, indicating outliers, were less common, than for

FCM. FCMP also provided useful information for cluster merging. As noted, dark

patches off the diagonal indicate overlap between sample groups. These off-diagonal

regions appeared more oÍïen using FCMP.

Intensity vs Correlation For both FCM and FCMP, VCV generated from conelation

thresholds showed greater cluster size variance. VCV is efficacious in determining the

number of sub-clusters in fMRI datasets. FCMP was shown to produce
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Fígure 58. VCV Itúensítt iñage FCM, v s=0.59- Fígure 59. VCV Itúensíît inage FCMP, v s=0.4.

Figure 60. VCV Correlatíott ímage FCM, v s=0.35, Figure 6L VCV Correlatio¡t ínage FCMp, v 5

=0.35.

Table 32. VCV htdíces for FCMP Ch$ters

finer structure that related to the level of integration of spatial context. A binarized VCV

matrix (bVCV), seen in Fig. 62, is constructed by thresholding similarity values in the

VCV matrix and allows the analyst to estimate size robustly since the cross-hatching

noise is reduced.

Intensíty

Threslnld
FCM FCMP Correlation

Tltreshold

FCM FCMP

0.34 2 0.18 I

0.47 2 o.25 I

0.5r 2 o.2'l 1

0.55 2 2 0.3 I

0.61 2 2 0,35 I
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Figure 62. Binarized image ofVCV.

Synl Results As the SNR decreased, the VCV matrices indicated the presence of an

increased number of clusters along with a corresponding decrease in cluster size.

Syn3 Results VCV correctly indicated the presence of two clusters.

Baumnull Results The spatial localizations of the synthetic activations were detected in

the VCV matrix.

Sample4d Results The VCV matrix indicated four main clusters over the time periods.

Halx Results One z-plane (z=14) was examined for this dataset, Six clusters were

indicated by the vcv matrix. The clusters were fairly consistent in size and shape over

all time periods.
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7.4 Optimal Partitions

In order to determine the existence of optimal weighting between feature partitions, a

series of weight combinations is examined for each dataset, see Table 33.

Tabte 33. Optimal Partition Synopsis

Executive Summary A high resolution parameter-space for FCMp partition weights is

examined with respect to the S05 and sample4d datasets.

Contribution It is shown that an optimal partition weight exists for a particular dataset.

See the SNR table in experiment 1 results.

overvierv The partition weight parameter offers a continuous method of integrating

168

Experime,ú

Compone l
Description

Index:4 Optimal Partitions

Comment The partition weight pa¡amete¡ offers a continuous method of integ¡ating feature
partition information (and minimizing feature partition noise) when two partitions
exhibit conelation.

lndependent

Variâbles

Dataset. Number of samples in the clusters. Vy'eight and metric applied
to each pa¡tition.

Dependent

Var¡ables

MSE of cent¡oid Lo paradigm. Correlation of centroid to paradigm

Hypothesis FCMP will exhibit a dataset-specific optima with respect to the partitiorÌ weights.

Main algorithm FCMP

Benchmårks FCM

Datasets S05, Sample4d.

Validation Minimum MSE of centroid to paradigm.

Maximum cor¡elation of centroid to paradigm,
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feature partition information, as well as minimizing feature partition noise, when the two

partitions exhibit conelation.

Yalidation MSE and correlation compare centroids to the paradigm.

Discussion

s05 Results The optimal two-feature partition consisted of a spatial features with weight

0.8 and temporal features with weight 0.2, using the Euclidean and pearson conelation

metrics respectively.

sample4d Results The optimal two-feature partition consisted of a spatial features with

weight 0.7 and temporal features with weight 0.3, using the Euclidean and pearson

corelation metrics respectively. The change in weights with respect to the results from

s05 rnay be related to the increased number of z-planes available for sample4d, (4 vs 1).

7.5 Induced Hierarchy

In fMRI region growing, temporal cluster analysis and region (spatial) analysis can be

integrated to determine a hierarchy for region growth. spatial and temporal features are

integrated in that temporal similarity directs spatial association. Details are provided in

Table 34.

Executive summary Hierarchies induced by different clustering algorìthms are
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compared. FCMP shows versatility in integrating feature relevance with respect to the

objective function. FCMP shows an intermediate performance, between that of FCM and

CHAMELEON, in characterizing the idiosyncratic nature of individual clusters in a

dataset.

Contribution Sample hierarchies from FCMP and CHAMELEON are compared.

Overvierv Comparison of partition matrices generated by basic cluster merging,

CHAMELEON and FCMP.

Validation Correspondence of induced hie¡archy to a gold standard organization.

Discussion

It was noted that phase II of the CHAMELEON algor.ithm, the agglomeration phase, was

infrequently used as the parameters specified a maximum graph partition size. This is

due to our clustering objectives which specify a range for the allowable number of

clusters and was true for all datasets examined.

synl Results with respect to the designed æsociation between spatial coordinates and

temporal intensity patterns, decreases in sNR had the expected outcome of increasing the

mixture (entropy) of the sample hierarchies,
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Syn2 Results Due to the geometric structure of the ROI in this dataset, FCMp results

could be enhanced through the use of a metric that exploited the spatial distribution of the

ROL however, even if the structure was known a priori, such results would be

ungeneralizable to the other datasets in this study. For this dataset, CHAMELEON

generated sample hierarchies with fewer errors than FCMP across the feature partitions

studied.

Syn3 Results FCMP outperformed CHAMELEON using the Euclidean / pearson

correlation metrics. The Euclidean metric was advantageous for use with FCMp as a

Table 34. ht¿luced Hierarchy Synopsis

Experi,flent

Compotrcnl

Desc ptio

Index:5 Induced hierarchy.

Commenl Somparison of induced hierarchies in the cluste¡s and pa¡tition matrices as generated by
)asic cluster merging, CHAMELEON and FCMP.

Independent

Variables

FCMP parameters; CHAMELEON parameters; basic merging parameters.

Deperdent

Variâbles

Iierarchical organization, Ability to express idiosyncratic structure of individual clusters

Hypolhesis FCMP generates a hierarchical organization of the data that more accurately coÍesponds
to a conceptual understanding of the data. FCMP captures idiosyncratic structure across
feáture partitions.

Main

algorithm

FCMP

Benchnrarks FCM, basic cluster merging, CHAMELEON.

Dâtâsets Synl, Syn2, Syn3, BaumNull, i¡¡ vilo

Validation CoEespondence of resultant hierarchy to inherent orgariization of samples,
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radially symmetric distance measure was optimal for the circularly distributed spatial

coordinates-

s05 Resulh FCMP again ourperformed CHAMELEON using the Euclidean / pea¡son

correlation metrics over a range of spatial weight values (0.7-0.9). while the clusters in

s05 do not have a circular shape, the can be well approximated by the FCM default

cluster shape and the large number of clusters used generated a sample hierarchy with

fewer errors than CHAMELEON.

7.6 Region Definition

Regions of interest generated by different algorithms are compared with respect to neural

activation studies with known stimuli, see Table 35. The main algorithm pseudo-code is:

FCMP generates centroids. For each centroid, its surrounding neighbourhood is grown.

If not all samples are captured, remove all samples in the region from consideration and

cluster again. Grow from the resulting centroid.

Executive summary A comparison of RoIs generated by FCMp and FSRG is made.

Region growing using FCMP show exclusion of spatial outliers,
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Contribution A comparison of FCMP to FSRG.

Overvierv Compare the regions of interest, e.g. visual cortex, associated with the dataset

as they are generated by different algorithms. Examine the EDA potential and robustness

of FCMP versus an industry benchmark. FCMP generated regions of interest that

compared well those generated by FSRG.

Validation Compare region representatives for all region growing atgorithms fol all

Table 35. Region Definition Synopsis

Exper¡nent

Compoßent

Descrìptìo

Index; 6 legion definition.

Comments Compare ROI associated with the dataset as they are generated by differen
algorithms. Examine the EDA potential and robusrness of FCMP versus an industr,
benchmark-

Independent

Vâriables

Region seed generation; method of representing regions; region growing algorithms;
region growing algorithm parameters; definition of accuracy.

Dependent

Variables

Resultant regions.

Hypotheris Region seeds generated by spatio-temporal clustering provide a more accurate region,
in terms of region representation, than FCM on TC data only.

Main algorithm FCMP

Benchmarks FCM for seed generation. Mean intensity for seed generation.

FSRG.

Dâtasets Syn2, BaumNull, rìi vivo

Validation MSE and conelation of region representative to paradigm.

Compare region representatives for all region growing algorithms for all datasets.
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datasets.

Discussion

S05 Results An intensity image, Fig. 63, shows regions with high average infensity as

dark. Notable is the visual cortex region and a motor or memory region located closer to

the bottom of the image. A histogram of the correlation values, Fig. 64, of the TC to the

paradigm TC show the significant level of noise in the dataset.

Figure 63, 505 Mean intensíty coronal hnage. Figure 64. 505 correlation hìsrograu,

An examination of the histogram values in S05 shows that regions with TCs highly

correlated to the paradigm will be small. Also, that any region growing operations in the

region of interest will suffer loss of continuity (will have a number of included holes / a

higher Euler number) unless they accept marginally corelated rcs that are nonetheless
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are spatially proximal. Examining the spatial distribution of conelated voxels, Fig. 65, a

conespondence is seen between the high average intensity voxels. Note that (i) the visual

cortex has a significant number of highly comelated voxels, (ii) some noise TCs (outside

of the subject's body) have a significant comelation, see Fig. 66, and (iii) a second

separate region of correlated voxels exists, again, near the bottom of the image. Several

TCs are displayed in F.ig. 67. They show the stimulus paradigm (010110) mapped ro the

42 sampling instants, TCs in the visual cortex and noise TCs.

., 
"::r-i.¡.:*- .. .-ï'ì .. "lri" .,.-. -1 :! 'ii¿:"::r.i-',. j li."r'r;l¡!:l

. ''- : jii''riii.$;'¡

)t'ç.:j ¿

Figure 65. 505 TCs tvith sigttifícafit correlatío . Fígure 66, 505 outlier and uíssed TCs.

Dílation of coordûMtes front FCM are slrctw.

Using mathematical morphology, the spatial locations of significant correlation in the

dataset can be dilated. This dilation takes into account only spatial topology. Thus

voxels with lower temporal correlation have been included in the darker areas. Such an

operation has increased the spatial continuity of the region of interest.
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¡!ii
iI

I
I

Figure 67. fMRI TCs (s05).

top) paradig t. t,tiddle) v¡s al corterTCs.
bouon) noísy TCs.

Applying FCMP to S05 Previously the S05 dataset was exâmined at a general level

using basic pre-processing operations. It was seen that spatial continuity of the ROI

could be achieved using spatial topology without any consideration for temporal

similarity. FCMP will address this by defining sparial and temporal feature parririons.

one problem for FCMP is that it is not obvious ho\ry to relate the spatial and temporal

domains. This is solved by executing a series of cluster experiments, each with a

different weight between the partitions. Results are shown in Fig. 68. Note that when one

feature partition weight is 0 and there are only two weights, the results are exactly that of

FCM with the same metric function. When v s=0 one expects to have spatially

disconnected regions; when v s=l one expects to have spatially convex regions, Fig. 6gd.
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When OlvsSl interesting affects can be observed in the resulting voxel assignment

maps. Temporal similarity and spatial proximity combine to produce spatial regions that

exhibit degrees of spatial continuity. The centroids of these regions show comesponding

increasing correlation (for regions correlated to the visual cortex) or decreasing

correlation (for noise regions). Based on MSE of the centroids to the paradigm,

0.6< v s10.9 values gave best results. Examining just the visual cortex region, Fig. 69,

one can detect the increase in spatial continuity as the spatiâl feature pârtition weight

increases.

Syn2 Results Each ROI was enhanced by an increased spatial weight with the effect

being most noticeable at the interior and exterior comers respectively.

Baumnull, Sample4d, Halx Results Increasing the contribution of spatial features

enhances spatial continuity and size of ROI related to areas of maximum intensity,

intensity variance and correlation, Also, spatial outliers were noticeably reduced as

spatial weightings increased in all datasets.
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(b) C=15, v s=0.2. (e) C=15, v 5=Q.9.

(c) C=15, v 
'=0.4

(fl C=15, v 5=Q.P.

Figure 68. 505 FCMP spatial ùqps te¡th various par.tlrcters

(a) C=15, v 5=0.
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F¡gure 69. Visual co ex voxels (505) as spatíal weígltt i creases,

7.7 Region Growing

Consideration of fMRI ROI is often based on methods that pare down the dataset to

exclude TCs when they no longer meet inclusion criterion. On the other hand, region

growing processes extend consideration to unselected voxels and TCs implementing a

dynamic inclusion criterion with respect to region growth. Table 36 outlines a

comparison of different region algorithms on fMRI data.

Executive Summary FCMP is adapted as a region growing processes to use its spatio-

temporal integration as a dynamic inclusion criterion.

Contribution The results of FCMP are compared to an industry standard, Evldent@.

Overview The utility of using FCMP as part of a region growing process is compared to

industry benchmarks.

Validation Comparison of ROI to gold standards.
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Experinrcnt

Compo etú

Descript¡o

Index:7 ìegion growing

Comment Compare regions grown by diffe¡ent methods on fMRI datasets,

Independent

Vaúables

Region seeds. FSRG parameters.

Dependent

Vâriâhl¿c

Gene¡ated ROL

Hypothesis The region g¡owing method using FCMP will be comparable to FSRG since they both
take into account spatio-temporal information.

Main

algorithnr

FCMP based region growing.

Benchmârks FSRG

Dâtâsets jyn2, ítt vívo.

Validation ROI analysis of gold standard,

Discussion

7, Experintents atrd Ren ts

S05 Results TCs proximal to the ROI are seen in Fig. 70. They were not associated with

the visual cortex by Evldent@ but were by FCMP over a range of partition weights, v s,

lo 20 30 40
TitÎt ê
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TCs spatiâlly proximal to the ROI, in this case the visual cortex, but that were not

selected as significant by Evldent@ are shown in Fig. 71. These TCs are denoted as

proximal rejections.

1

0.8

06

o.¡l

o.2

0

1
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0.2

0

I

0.8

OG

04
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Figure 72 shows TCs that Evldent@ identified as being significantly related to the

stimulus paladigm although they were not spatially proximal to the ROI. These TCs are

denoted outlier inclusions. Table 37 provides coordinates and correlation values for both

the proximal rejections and outlier inclusions of Evldent@ with respect to FCMp. Given

the histogram of correlation values for the datasets, these TCs can be considered

significant. This corelation coupled with spatial proximity to the ROI make them

excellent candidates for further examination. Therefore, FCMp has a role to play in the
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EDA of f\4RI not yet filled by industry standards.

0,Ê

0€

0.2

0

f

08

06

0.4

o2

0

Figure 72. Outlier TCs selected b)' Evlde t@.

As part of this experiment, the average distance from a sample assigned to the visual

cortex cluster over the partition weights was measured. This distance was also

considered when the furthest 107o of the samples in that cluster were ignored. The

average distance decreases as v s increases and that ignoring the farthest samples in that

cluster has an appreciable effect on the distance computation over all feature partition

weight values.

FSRG is well suited to growing regions that marched gold standard ROI and is

constrained to grow in a spatially contiguous manner; clustering algorithms such as

Evldent@ and FCMP may group temporally similar samples that are not contiguous.
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Table 37. Evid,ent@ "lest Cases in S05 TCs

(x,!) cootdirates Pearson Correlatìott

Oùtliers (87, r96)
(89, 210)

(9s, s8)
(104, 179)

0 08,189)

0.4043

o.4022

0.4156

0.4097

0.4001

Missed (57, r85)
(60,204)
(64, t97)
(7 6,20s)

0.4780

o.4529

0.s309

0.40'11

7. Experittents and Results

One method of incorporating the spatial-temporal tuning advantages of FCMp with the

region growing ability of FSRG is to use FCMP as a seed generator for FSRG. Seeds

generated in a default manner, that is, by thresholding intensity or correlation values, and

seeds generated by first running FCMP on the dataset, generated seeds in the same

general regions while the optimal feature pârtitions of FCMp tended to better mâtch the

gold standard regions. However, optimal partitions are not known a priori.

Syn2 Results Evldent@ wâs able to detect the correct ROI and should be considered

better than FCMP on this dataset as the appropriate feature partition values that one

should use with FCMP are not known beforehand. FSRG conectly discovered the ROI

and using FCMP as a seed point generator did not improve results. However, on a

dataset with a less structured geometry, FCMP will tend to find similar tegions across

br.idge voxels, as mentioned in the next section.
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7.8 Activated Epochs

Interest in the activated epochs of an fMRI study are significant since the discovery of

novelty related to the stimulus enhances understanding of the complex functionar

relationships present in neurar activation studies. since the signar characteristics of the

novelty are not known a priori, analysis algorithms must allow general detection of

unspecified relationships, or alrow rapid and flexibre tuning of their objective functions

allowing the analyst to direct the objective function. This second case is examined rvith

respect to FCMP where the objective function is progressivery modified in order to

highlight noverty in the dataset. Table 3g deta s the experiment and comparison will be

made between FCMP and FCMp with increased weight on the activated epochs.

Executive summary The flexib'ity of FCMp feature pârtitions are used to enhance

sensitivity of the clustering algorithm to sampre properties in the activated epochs.

contribution Demonstration of selective sensitivity augmenting normal anarysis.

overvierv Feature partitions in this experiment include: spatial coordinates, activated

temporal features, and unactivated temporal features. Activated epochs are determined

with reference to the paradigm and receive an increased weight with respect to the

unactivated epochs.
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Validation Identification ofa centroid coresponding to the paradigm.

Discussion

sample4d Results when only the activated epochs are examined, a slight change in the

range of spatial weights that produce ROI, comparable to gold standard ROI, is

observed. while activated epochs seem of some benefit to generating RoI from an fMRI

dataset, it is conceivable that unactivated epochs may at times contain significant

identifying characteristics, for clustering or classification. Activation or stimulus type is

one possible criterion for determining whether the unactivated or activated epochs is

more significant for the analysis at hand,
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Table 38. Actívated Epochs Synopsís

7.9 Novelty Detection

The ability of different algorithms to detect a novel signal in an fMRI dataset is

examined, see Table 39. Only a few ZCs in the dataset will contain the novel signal and

detection will be confounded in that ICs will be spatially distributed.

Background

AnovelTC rcfets to one in relation to an external standard (eg, the applied stimulus) and

which does not account for, or occur in, the majority of the samples in the dataset.

Novelty can also refer to the existence of properties of which the researcher had not

Expe nrcnl

Conpotrcnt

Descrìptiou

Index:8 Activated epochs,

Comment Conside¡ation of data acquisitions should be weighted according to their relevance in the
study. Blood flow during activated epochs can be more informative in many
circumstances.

Independent

Vâriâhles

FCMP parameters,

Evldent parameters.

Dependent

Variables

Cluster results,

Hypothesis FCMP ¡etums significant benefits when integ¡ating the activated epochs at a higher level
of ¡elevance to the clustering process.

Main

algorithm

FCMP

Benchmarks Evldent@

Datasets ut vtvo

Validatíon MSE of centroid to paradigm. Correlation of centroid to paradigm.
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anticipated and for which the experiment was not intentionally designed to capture. In

Syn5, the presence of a small signal on the activated epochs is examined. Its discovery

under a frne parameter grid approach using FCMP is detailed.

Executive Surnmary EDA is challenging when the analysis modes of pattem matching

and novelty discovery are conflated, Novelty may be characterized as existing among

only a small number of samples and as being derived through a higher order

transformation from a basic archetype. Both characterizations are explored on synthetic

Table 39. Novelty Detection Synopsis

ExpeÌ¡netú

Compone t
Descriptìon

Index:9 \,lovelty detection,

Comment )etermine whether the given algorithms can capture a novel TC, Under tvhat conditions
s this possible?

Independent

Variâbles

Algorithm parameters.

Number of novel lcs in the dataset,

Significance of novelty with respect to the metric used.

Dependent

Variables

The clusters containing novel TCs as determined by the various algorithms.

Hypothesis FCMP can be tuned to capture novel TCs more effectively than (he other algorithms,
FCMP \vill capture more novel TCs mo¡e often,

Main

algorithm

FCMP

Benchmarks FCM, EvIdenI, CHAMELEON.

Dâtasets Syn5

Validation MSE and correlation compadsons of the centroid of the cluster containing the most novel
TCs and the novelty paradigm.
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fMRI data.

contribution A special instance of FCMP is tested which compares favorably to other

methods.

overvierv Determine whether given algorithms can capture a novel rc, and under what

conditions. FCMP is shown to be able to detect novel small signals at low SNR levels.

The performance of FCMP surpasses thât of FCM and Evldent@.

Validation A centroid is detected that correlates to the novelty.

Discussion

Note that the varying SNR relates to the novel signal only and not to the TCs that are

correlated to the paradigm, as was the case in other experiments.

synS Results Evldent@ demonstrated the ability to detect the presence of novel signals

in a small number of locations over a range of SNR values (40_2 dB). FCMP

demonstrated a comparable ability onty when the novel signals existed in a single

location and shows the limit of a global spatial constraint on the distance measure. It is

proposed that, when pattern matching and novelty discovery are being pursued

simultaneously, the objective functions or distance metrics associated with the novelty

contain the fewest number of constraints. In this case, the distance metric for the novel
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TCs should have ignored spatial location and attempted to match only temporal similarity

while the distance metric for the co¡related TCs was correct in constraining the TCs to

also be spatially proximal.

7.10 Bridge Voxels

FMRI analysis of activated regions found by FCM in neural activation studies often

detects distinct yet proximal areas with similar centroid ICs. When spatial information is

incorporated into a region generating analysis, as in the FCMP algorithm, these regions

are often merged. It is of interest to what degree the spatial features must be integrated

into the region generating algorithms before they are merged. Altemately, a

mathematical morphology approach can determine bridge voxels. Table 40 outlines the

experiment.

Cunent ÍMRI analysis generally depends on user-def,rned intensity thresholds or spatial

locations to define regions of interest (ROI). Mean intensity values are commonly used

to generate candidate ROI for subsequent analysis. The general validity of such methods

suffer from the variety of circumstances under which flvfRl data may be acquired. V/e

examine a data-driven method to determine global fMRI thresholds using bridge voxels

from intensity and correlation thresholded ROI.
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Pre-defined intensity and correlation thresholds are used to generate initial ROI which are

subsequently eroded using a mathematical morphology erosion operator. Successive

erosions either decrease the ROI area or shatter the ROI into proximal sub-regions.

When an ROI shatters, a bridge voxel is said to have been eroded. That is, bridge voxels

are the structurally significant voxels that connect the erosion-susceptible components of

the initial ROI. Erosion continues until all ROI are completely eroded or shattered. At

this stage, the intensity and correlation values of the TC associated with the bddge voxels

are computed. These derived intensity and corelation values plovide a data-driven

global threshold with which to reveal intrinsic ROI in the dataset. Initial ROI are

generated by a pre-defined set of of intensity and conelation thresholds. Each ROI is

then eroded using a 3 by 3 structuring element and the existence of any bridge voxels are

recorded. The mean intensities of the bridge voxels, and thei¡ correlation to the stimulus

paradigm, are used to generate a set of so-called data-driven thresholds. This second set

of thresholds is then used to generate the data-driven ROI. The two sets of ROI may be

compared in terms of voxel intersection, and average intensity and correlation values.
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Executive Summary An investigation into the data-driven derivation of global

thresholds for fMRI has been described and initial results provided. The bridge voxel

thresholds were consistently higher than the pre-defined thresholds and the existence of

holes in the bridge voxel ROI was unexpected.

Contribution Dehnition and demonstration of data-driven ROI generation for fMRI.

Overview Analysis of functional magnetic resonance imaging data is challenging since

both inclusive and exclusive modes of analysis are being used. patterns are being

matched while an attempt is also made to discover unknown novelties. Default regions

of interest a¡e often defined by analyst-directed thresholding of intensity and correlation

Table 40. Bridge Voxel Synopsis

Exper¡nent Conpone t Descrìptiol

Indexr 10 Bridge Voxels

Comment What is the relationship of proximal regions as detennined by a FCM analysis
of activated regions? When these regions are merged by alternate methods,
what fcs are added to the activated region and what are their characteristics?

Independent Variables CHAMELEON, FCM, FCMP paramerers.

Dependent Variables Voxels associated with the activated rcgion.

Hypothesis The voxels that will be added by CHAMELEON and FCMP will exhibit high
temporal similarity. It is not obvious that yoxels in the direct line of path

betwe€n the activated regions centre of mass will be included (this refteÆts the
nature of sulci and the contorted gray-white matter interface in the brain).

Main algorithm FCMP

Benchmarks Evldent

Datasets

Validation A description of the voxels added to the activated region
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values. This experiment examines a method by which thresholding is directed by the

intensity and correlation values of voxels which are structurally significant to the default

regions of interest.

Validation Corespondence ofROI with respect to gold standards and region metrics.

Discussion

S05 Results - ROI Composition The experiment consists of the following steps: for

each intensity and correlation threshold,

¡ Pre-defined initial ROI are generated based on the threshold.

r The average intensity, mean square error (MSE) and correlation of the initial ROI
are computed using a gold standard activation paradigm.

o Bridge voxels of the initiaì ROI are computed.

¡ Data-driven ROI are determined given the intensity and corelation values of the
bridge voxels.

r The average intensity, MSE and conelation of the data-driven ROI are computed.

To determine the initial ROI, intensity thresholds of {0.6, 0.7, 0.8, 0.85, 0.91 of the

maximum intensity value were used as were correlation thresholds of {0.05, 0.1, 0.15,

0.2, O.25]. For each threshold, only the largest four-connected region was kept and the

bridge voxels discovered by the noted erosion process.

S05 Results The initial ROI generated by intensity and conelation thresholds are seen in
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Figs.73-76. Figures 73 and 74 show typicat ROI when a Pearson correlation coefficient

of 0.05 and 0.15 is used as a threshold. Figures 75 and 76 show typical ROI when an

intensity threshold of 607o and'70Vo of the maximum intensity value is used. The initial

ROI exhibit irregular structure, roughly corresponding to anatomical structu¡e of the

visual cortex, and often contain holes of low average intensity or low correlation. A

previous study [Alex5] has shown that similarity of intensity values, meaning the

temporal features, are not always a good indicator of spatial proximity between voxels.

As expected, the erosion process leaves remnants that are much smaller, and that have

fewer holes, than the initial ROI.

The following heuristic was found useful in defining bridge voxels in the erosion process:

the eroded voxels in the image are designated as candidates for the bridge voxel. The

largest two subregions of the shattered initial ROI define a directed line segment,

terminating in the centre of mass of each subregion. This line segment is dilated by a

structuring element. Finally, the voxels in the intersection ofthe dilated line segment and

the eroded voxels are selected. lvhen more than one voxel is selected, the average

intensity or correlation value of the group is used. Groups of bridge voxels were

generated in this manner and tended to be small in size and fairly compact (hole-free).
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Fígure 73. Initial ROI Figure 74. htitial ROI
based on correlatio¡t value based on correlatío\ vølue

of0.05. 0.15.EIE
Figure 75. htitial ROI Figure 76. hlítial ROI

based on ¡!úensil! threshold based on íntens¡ô, threstþld
ar 60Eo of marinuut. at 70Eo of nøt¡ntuùt.

It was noted that some ROI derived from corelation th¡esholds eroded without leaving

any bridge voxels, that is, they eroded without shattering. When this occured, the centre

of mass of the ROI was substituted for the bridge voxel.

Using the bridge voxels, or the centre of mass substitutes, to generate data driven ROI

resulted in ROI that were substantially smaller in area than the ROI used to initiate the

process. Reconstructed ROI areas were typically 257o or less of the original areas. Also,

although some of the reconstructed areas were fairly small, consisting of 7-29 voxels,

the regions often exhibited one or more holes (Euler numbers of 0 or more). Since the

global threshold derived from the bridge voxels is generally higher than the initial
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threshold, the reconstructed ROI are voxel subsets of the initial ROL

7.11 Overall Results

The results from individual experiments are briefly re-iterated and conclusions drawn.

The experiments noted that:

. For high SNR values, the feature partition weight contributed little additional
enhancement in terms of MSE and corelation. As the SNR decreased, there is an

optimal weighting pair for the spatial and temporal feature partitions.

' An optimal partition weight was discovered for the dataset Synthetic 1.

. FCMP generated ROI that compare well with those generated by FSRG.

. FCMP is shown to be able to detect novel small signals at low SNR levels. The
performance of FCMP surpasses that of FCM ând Evldent.

. FCMP shows an intermediate performance (between FCM and CFIAMELEON) in
characterizing the idiosyncratic nature of individual clusters in a dataset.

It is apparent that FCMP has relevance as an analysis tool at low SNR levels where

features exist in distinct conceptual groups that exhibit cross-infonnation (meaning that

one partition can be used to inform the organizational structure in the other (noisier)

partition). A fine sampling in the parameter space may bring out beneficial weight

combinations for feature partitions that improve global measurements of accuracy such as

MSE and correlation. FCMP is effective in dealing with region growing and small signal

detection when the paradigm of the small signal is known in advance, or when its

location in time is known in advance. FCMP is partially effective in introducing a
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hierarchy of idiosyncratic clusters. This completes the experiment review. A concluding

chapter summarizes the thesis and details possible extensions to each experiment.



8. Conclusion

Reasoning draws a conclusion but iÍ does not
make the conchtsiott cerîain, unless the mind
díscovers it by the path of experience.

Roger Bacon

In order to appreciate the significance of FCMP, the challenges to fMRI data analysis,

introduced in Chapter 1, are reviewed. To address these challenges, a summary of

experiment results is provided and other contributions associated with this thesis are

mentioned. Finally, the benefits of an abstracted clustering equation are listed and an

explanation is provided regarding the incumbent duties associated with algorithm

development. It is important to keep in mind that when FCMp was developed, traditional

approaches to fMRI cluster.ing analysis used only temporal intensities.

Challenges in fMRI Analysis

Challenges in flVfRI data analysis revolve around the detection, extraction, and

transformation of information from a large set of complex data. FCMp, or the use of

bridge voxel derived thresholds, addressed these challenges. More specifically, analysis

enhancement required:

r Incorporating spatial information, or spatial context, into the temporal fuzzy

clustering process. FCMP addressed this by integrating distance measures in

two feature domains, spatial and temporal. Further, the feature partition
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mechanism in FCMP can be generalized to an arbitrary number of feature

partitions with partition relationships that can be ordered or weighted and

applied to fields outside of ÍMRI analysis.

Discovering novel TCs to trigger further analytic investigation. Novelty

elicitation is related to minimizing the mathematical data model and requires

an inclusive balance to outlier rejection preprocessing. FCMp uses the

minimal mathematical model of FCM and shares the sample partitioning power

of FCM on general data.

Reducing the impact of outlier samples on ROI definition or reducing the false

positive rate. FCMP combines spatial and temporal distances to include in the

ROI regions only TCs that have both high remporal similariry and spatial

proximity. This was shown to significantly reduce the false positive rate.

Ensure that ROl-proximal voxels with correlated TCs be included in the ROI,

reduce the false negative rate. The integration of both spatial and temporal

distances, as mentioned above, addressed this problem.

Providing a visual means to determine intrinsic structure in fMRI datasets. The

use of the VCV matrix, originally developed for use with FCM, allows visual

inspection of TC cluster size and the degree to which samples are members of
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multiple clusters.

It was seen as significant to set fMRI fuzzy clustering analysis within the larger

context of fuzzy clustering, including the use and relevance of validation

indices. This thesis contains experiments that compare the validation indices

conìmonly used in FCM analysis and show a preference for the Xie-Beni

index.

It is important to have a data-driven method to define ROI in a dataset without

a gold standard, or to have an independent standard to complement, or burnish,

a tamished gold standard. The use of bridge voxels provides an independent

means to generate intensity and correlation thresholds, which in turn, define

data-driven ROI in the dataset.

To develop an algorithm capable of disceming novelty among a small set of

TCs, even when most TC in the dataset are noise or are correlated to the

stimulation paradigm. FCMP captures novel intensity signatures by adjusting

the distance metrics and weights in the feature partitions. Using a signature

probe to trigger use of a different metric facilitates novelty discovery among a

small number of samples while still capturing dataset structure. A priori

knowledge of spectral properties, occurrence in activated (unactivated) epochs,
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or spatio-temporal heuristics can all be integrated in the FCMp objective

function using feature partitions.

r Making robust statistical statements about the data. This is important since

hemodynamic response models are developing and can be expected to be

idiosyncratic (unique for each individual).

FCMP was developed with these challenges in mind and the popular FCM approach was

extended. FCMP incorporates spârial information by defining multiple feature partitions.

For fMRI analysis, it is coñmon to use one partition for temporal features, intensities and

another for spatial features. As a generalization of FCM, advantages and experience

accumulated from FCM and its many variants can be extended to FCMp.

FCMP discovers novel TCs for further analysis by calibrating the contribution to

objective function optimization from the different feature partitions. Extreme weight

values corespond to considering only a single feature partition. Thus the original FCM

analysis is preserved as an option in all FCMP analysis. Novelty was defined in terms of

results with 
"urr"nt 

indurtry standard cluster analysis algorithms. The novel TCs

discovered by FCMP had significant temporal correlation as well as spatial proximity to

regions of interest (e.g. visual cortex).

FCMP makes robust statements about fMRI data, for example: FCMp had a lower false
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positive rate than an industry standard for the determination of correlated voxel regions

(spatial outliers were rejected; FCMP retumed more stable spatial regions of interest than

the vanilla FCM for fMRI data. This was true with respect to both changes in SNR

values for temporal features and distance for spatial features.

Experiment Result Summary

Experiments were conducted in order to examine conditions for general use of FCMp,

evaluate cases of FCMP specialization, quantify FCMP and benchmark comparisons,

quantify the utility of FCM cluster validation indices with respect to FCMP, determine

the efficacy of preprocessing methods when used in conjunction with FCMP, determine

the required resolution of FCMP parameter-space sampling to achieve an optimal

performance with respect to a specif,ic dataset. From the series of experiments

conducted, it has been shown that:

. A generalization of FCM facilitates adaptation of a popular EDA clustering

technique to particular datasets.

An optimal spatio-temporal weighting exists for synthetic fMRI signals.

FCMP reduces the false positive rate in the identification of visual cortex regions.

FCMP maintains critical features of an exploratory data analysis (EDA) technique

such as FCM, namely: maintaining implicit inter-sample relations through
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membership matrices; the ability to detect novel structure; the ability to represent

groups of objects without masking individuality.

Summaries of the knowledge gained from the ten experiments in Chapter 7 are listed in

Table 41.

Table 41: Eryerínent Knowledge Contr¡buîions

Index Krtow le il ge C o nt ríb utio n

Concept Partition: FCMP provides a means for the fMRI analyst to integrate

temporal features information with spatial feature information. This is of
benefrt when one feature domain has been contaminated by noise or side-
information about feature inter-relations is available.

Validation Indices: The XB index is preferable for fMRI data and is able to be

used with FCMP.

4

VCV: The VCV matrix may be successfully used to make accurate statements

about intrinsic data structure in fMRI datasets.

4

Optimal Partitions: A set of feature partitions, and a range of feature partition
weights, were evaluated that demonstrate a superior ROI with respect to a

dataset gold standard.

5

Induced Hierarchies: Optimal partitions fo¡ FCMP generate accurate sample-

hierarchies for ÍMRI datasets.

6

ROI: Optimal partitions FCMP reduce the number of outliers presented to the

fMRI analyst and increase the size and spatial continuity of ROI.

7

Region Growing: FCMP can be combined with region growing methods to

enhance the spatial-temporal associations in the fMRI datasets.

8

Activated Epochs: FCMP can be tuned to various temporal and spatial subsets

in the data to enhânce sensitivity to a pattem critical for overall sample

grouping.
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Benefits of an Abstracted Clustering Equation

An important contribution of this thesis is the facility of the developed terminology and

equations to express a multitude of specializations, or adaptations, of FCM. Several

mappings (or specializations) from the generalized cluster analysis formula have been

shown which include preprocessing operations (ICA and PCA), express robust metrics,

and combine multiple criteria for clustering (detection of small signals during only

activated epochs). This algebraic flexibility suggests a new taxonomy for clustering

algorithms based on algorithmic degrees of freedom. Such a taxonomy provides

mechanisms to explore the degrees of freedom of an algorithm and can be used to suggest

future development, to quantify the degree of adaptation of an algorithm, and to define

regions of specialty for algorithms. Regions of specialty are datasets for which

algorithms are particularly suited.

Contributions and Publications

Original contributions by the autho¡ include:

Index Kt ow le d g e Contri butio tt

9

Novelty Detection: FCMP can be tuned to simultaneously pattem matched and

discover novelty.

10

Bridge Voxelsl Erosion of default ROI generates data-driven intensity and

correlation thresholds for fMRI datasets that correspond well to gold standard
ROI,
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. Generation of synthetic data for investigating salient features of the FCMp
algorithm.

r Theoretical derivation of formulas, terminology and investigation of use for the
FCMP algorithm.

r Experiments executed with the purpose of investigating and comparing the eff,rcacy

of the FCMP algorithm on synthetic and in viyo datasets.

e Comparison of a novel clustering algorithm with an industry standard.

Public access to the synthetic and in vivo datasets, as well as the FCMP source code, will

be made available at the website www.scopira.org/-alexiulc/fcmp.

Partial results and a discussion of cluster analysis concepts and development of the

FCMP algorithm have been presented at various conferences, in particular: the North

American Fuzzy Information Processing Society (NAFIPS) in 2003, 2004, 2005, and at

the Univefsity of Manitoba Graduate Conference (GradCon) 2002,2003,2005, Human

Centric Computing 2004, Canadian Applied and Industrial Mathematics Society

(CAMS) in 2005, and the Canadian Medical and Biological Engineering Society

(CMBES) in 2006. A joumal publication on FCMP occurred in Pattem Recognition

Letters in 2005. Finally, a book chapter, co-authored with Dr. N. Pizzi, on advances in

fuzzy clustering is in press.

8.1 Recommendations

It is recommended that a new taxonomy for fuzzy clustering analysis be based on the
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realized possible specializations of the more general FCMP algorithm. Both degrees and

types of specialization can be considered. FCMP should be used more extensively as an

EDA technique and specifically as an analysis tool for fMRI. As a recent publication

[Chua] has shown, FCMP is also valuable as a segmentation tool for biomedical data

analysis.

8.2 Future Work

Many opportunities exist for this work to be extended. They include comparing FCMP

against more of the many variants of FCM, developing a set of heuristics to initialize the

feature partitions (feature indices, weight and metric triple), develop alternate robust

metrics for use with topological and topographic properties such as sulci and gyri

regions, incorporating knowledge of tissue classes in analysis, expanding the set of

feature partitions considered, and extending the class of transformations used in auxiliary

data processing.

Extending Proof of Concept: Determine the a¡e optimal weight combinations for more

than two partitions with respect to synthetic and jn vjyo fl\4RI datasets.

Extending Validation Indices: Generate a FCMP-specific validation index.

Extending Visual Cluster Validity: A heuristic method by which the ycy matrix may

be interpreted as an indicato¡ for the number of inherent clusters in the dataset is
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provided. Define a dis-similarity threshold 7 and use it to convert the VCV matrix into a

binary matrix where dis-similarity values less than I are set high ( 1). Denote this matrix

UVCV (binarized VCV). The number of clusters inherent in the data is the minimum

number of different sized squares that, when located along the diagonal of \VCV, cover

all the high elements in bVCV. It is to be expected that these covering squares will cover

holes (0) in UVCV and that singleton high values will exist (causing perhaps unjustified

extension of the covering block sizes). However, a process of mathematical

morphological closing operations (erosion and dilation) should address this. Covering

blocks are computed stafing with a 2x2 block template. The template is moved along

the UVCV diagonal until the template captures all high values in the rows and columns it

currently occupies. A covering block is defrned at each such location and the high values

set lo\¡/, Repeat with templates of increasing nxn size until all values are set low. The

number of defined blocks is the number of inherent clusters. Note that size information

is gained as well.

Extending Optimal Partitiors: Test other datasets for the existence of optimal partition

weights.

Extending Induced Hierarchy: A metric for compar.ing hierarchies, and permutations in
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a hierarchy, may be developed specifically for fMRI. The metric may consider whether

or not the TC in question is part of the gold standard ROI and its temporal similarity.

Explor.ing minimum spanning trees of TC, using spatial distance, temporal correlation,

and combinations, may also prove fruitful.

Extending Region Definition: The use of a cluster membership map can be explored

with respect to region growing. That is, can cluster assignment inform growth directions,

say in terms of replacing correlation values with membership values ? Good measures

for the spatial distribution of TCs in the spatial plane need to be determined. In addition,

a data-driven approach to determine paradigms in activation studies is required, possibly

to bumish tarnished gold standards. Thresholded distance matriK, or the use of e -

insensitive metrics, needs to be explored.

Extending Region Grorving: A consideration of the dynamic qualities of region growth

should be considered, For example, if the region growing process is prematurely

terminated in some use-case, can methods be adapted to include the most criticat TC for

that case analysis?

Extending Activated Epochs: Determining a advantageous weightings between

activated and unactivated epochs, especially in a general stimulation sense, would
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increase the robustness of FCMP analysis.

Extending Novelty Detection: Different types of novelty should be investigated and a

GMDH type of infrastructure devised to discover the presence of novelties.

Extending Bridge Voxels: Of interest is the case where a threshold derived from bridge

voxels is less than that of the initial threshold, as this has been the pattem to date. Also

of interest extending the bridge voxel approach to incorporate a spatio-temporal region

growing approach [Viva]. Finally, an examination of the interdependence between

intensity value and correlation in the bridge voxel process is needed. That is, what effect

do predefined intensity thresholds have on the correlation values of the data-driven ROI,

and vice versa.

General Extensions

Future work includes the examination of an expanded set of in vivo fl\4RI datasets. A

method to deal with integrating activation pattems in different z-planes, for example,

which corresponds to integrating feature relations would be benehcial since for some

datasets such as Halx, each of the sixteen planes contributes different levels and types of

information to the clustering task at hand. Knowledge elucidation or collaborative

clustering [Pedr6] is also a field where FCMP can contribute. These studies consider
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independent parties pooling information at a high abstract level (to maintain

confidentiality regarding individuals or proprietary merhods). [Pedr]. Use of FCMp is

advantageous in that the trust and feature associated with each information repository, or

database, is different and should be integrated in an optimal fashion. .Other possible

investigations using FCMP include the following preprocessing operations and

approaches: principal component analysis @CA), independent component analysis

(ICA), fuzzy inter-quantile, encoding, entropy-based label adjustment, robust clustering,

and alternate group or centroid representations.



Glossary

Algorithmic degrees of freedom are the manners in tvhich a basic algorithm can be

adapted while remaining fit to execute the purpose of the original algorithm. Limiting
an algorithmic degree of freedom results in a modified algorithm which remains

faithful to the objective of the original.

Analysis is the resolution of obtained datâ back to first principles.

An anomaly is an irregularity or deviation from the rule.

A basis is a set of vectors which span the space.

A centroidlabel is the index of the cluster to which a sample has maximum
membership. See also cluster-homogeneity.

A class-label is the true category of a sample.

Cluster analysis is the result of any data categorization algorithm which produces a hard

or soft partition of the samples. Partitions of the data into groups corresponds to a

clustering of samples to representative proto-types.

Cluster-homogeneity is a measure of diversity in the class labels of samples associated

with a single cluster. A clustet that has samples with only a single same classlabel
will have the highest cluster-homogeneity. If a cluster has only (or mostly) samples of
a single classJabel, the centroid-label will correspond to a single class label and will
be called a (fairly) homogeneous cluster.

The convergence point of a clustering algorithm is the membership-centroid pair

{U*,Vx) to which successive iterations membership-centroid pairs {U",V"} approach.

Convergence proceeds as iterations increase. The {U*,V+} pair is dependent on
initialization and is often never determined in practice. Termination criteria are used

to approximate {U*,V*) by {U",V"} for sufficiently large n since the convergence

process is asymptotic.



Glossary

In reference to an algorithm, data-driven means that algorithm parameters are

preferentially determined by the data using intrinsic, usually statistical, properties of
the dataset, Extrinsic parameter values from an analyst or mathematical model are

deprecated, if they are used at all. The data is explored; residuals with respect to a

mathematical model âre not deemed significant, since the model itself is in question.

A cluster v¡ is said to have the exclusive membership of a sample x if x has a

membership value of unity for v¡ and a membership value of zero v; for all i+j.

Exploratory data ânalysis is a mode of data analysis which limits the use of
mathematical models in order to elicit the data structure mostjustified by the data

itself.

Features are qualitative or quantitative cha¡acteristics of an object or sample. Samples,

considered as a set of features, order the features to faciliate comparison between

samples. In supervised learning, discrimination between samples from different
classes is achieved through characteristics of a feature or groups of features. In
unsupervised learning, feature characteristics are examined for overall structure

between the samples.

A feature partition is a triple composed of a set of features indices, a metric associated

with the features, and a weighting. A strict feature partition is a feature partition in
which a feature index may be present in only one set of features indices.

The feature-space is the vector space containing all possible combinations of features.

A framed hypothesis is a hypothesis regarding a dataset which has been made explicit

by an analyst and which is undergoing verification by experiment.

The generalized recognition ability of a classifier is its ability to classify previously

unseen samples correctly. The classification rate of new samples is used as a

predictive error rate for the classifier. The actual value depends on the degree to

which the the training and test sets are representative of the actual sample distribution.

A measure is a quantity determined by comparison to a standard. It may be a metric or a

measure of similarity. The standard may be explic.itly or implicitly defined.
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The membership partition of a dataset with r samples in c clusters is the ¡rxc matrix
that quantifies the degree of membership of each sample in each cluster. Element
U(i,j) is the degree to which sample xi belongs to cluster yj.

For a non-empty set x, a metric is a real function of ordered pairs of elements ofx which
satisfies lsimm]:

1. d(x,y)>0 and d(x,y)=6<+*-t

2, d(x,y)=¿1t,x) (transitivity)

3. d (x, y )< d (x , z)+a(z,y) (triangle inequality)

A system is modular if it is constructed with standardized units which facilitate
flexibility and variety in use fMerr]. Modular systems contribute to component re-use.

A basic algorithm is, or becomes, monolithic when it has become so encumbered with
pre-processing and other conceptually distinct functions that the algorithm can no
longer be considered modular or basic. Monolithic algorithms resist decomposition
and often produces software known as legacy code.

Noise is meaningless interference in a signal transmission or record. The information
content of noise is zero. when statistical attributes of the noise are known, actions
may be taken to remove or reduce noise effects on the signal of interest. use of the
data for analysis may be precluded entirely by sufficiently high levels of noise.

The non-exclusive membership of a sample in a cluster indicates that the sample is a
partial membership in one or more clusters. The sample is a member of multiple
clusters to a specified degree between zero and unity. The sum of all partital
memberships of a sample is unity.
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A norm is a real-valued non-negative function defined on a vector space and where the

function is zero if and only if the vector is zero, the function of the product of a scalar
and a vector is equal to the product of the absolute value of the scalar and the function
of the vector, and the function of the sum of two vectors is less than or equal to the

sum of the functions of the two vectorsi specifically : the square root of the sum of the

squares ofthe absolute values of the elements ofa matrix or of the components ofa
vector [Merr].

A novelty is an unusual appearance. A new, strange or different sample in a collection

would constitute a novelty.

Ordering a collection ofobjects is the process by which each element is assigned a

unique index.

Pattern recognition is the body of knowledge dealing with the automated

characterization, categorization, and subsequent clâssification of a collection of
samples.

A poset is a partially ordered set. A poset is defined by the following properties [Roit]:
Vx,y,zeX

l. x<x (reflexive)

2.if x<y and y<x then x=y (antisymmerric)

3. if x<y and y<z then x<z (transitive)
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A nxn matrix A is positive defTnite if, for any vector x of length n, the vector-matrix

product xAx is non-negative,

The primary membership of a sample in a cluster is the cluster to which a sample most
belongs. It is the maximum membership value for a sample over all the clusters.

Proximal refers to a location near the centre oi or closer to the origin, of a body or
structure.

Samples are a collection of objects that are comparable and undergo analysis.

The sample-space is the vector span of all the samples in the dataset. The sample-space

may be a sub-space of the feature space since not all combinations of features may be

realized in the dataset.

Supervised learning is the collection of discrimination techniques used to distinguish

between groups of objects when the classes of the objects are known a priori.

A tarnished gold standard is an authoritative set of class labels which has become

corrupt.

Unsupervised learning is the collection of discrimination techniques used to distinguish

between groups of objects when the classes of the objects are not known a priorì.

A voxel is a volume element.

214



Glossary

Acronyms

Acrottym Expansion

AFM Software for analysis and display of fMRI data.

EDA Explo¡atory dala analysis.

EROICA Exploring Regions oflnterest with Cluster Analysis.

Evldent@ Event lDENTificatio¡.

FCM Fuzzy c-means.

FCMP FCM with Featu¡e Panirions.

FMRIB Oxford C€ntre for Functional Magnetic resonance Imaging of the Brain.

FSL FMRIB Softwa¡e Libnry.

FSRG Fuzzy Se€ded Region crowing.

GA Genetic algorithm.

GPL GNU Public Licence.

HCM Hard c-means.

IBD Institute for Biodiagnostics (National Research Council).

ICA Independent component analysis.

LOO Leave one out.

MedX Medical Image Processing Application.

MRI Magnetic resonance imaging,

MSE Mean square error.

NMR Nuclear magnetic resonance.

NRC-CNRC National Research Council.

PCA Principal component analysis,

PCM Possibilistic c-means.

¡f Radio-frequency electromagneric radiation (l-500 Mhz).

ROI Region of interest.

SNR Signal to noise ratio [dB].

TC Ti¡ne cou¡se.

VCV Visual cluster validity.
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Symbols

The following table lists symbols that appear in the text

Synúol Definition

D A generalized metric

t\ Ihe number of clusters; the number of classes.

d A distance metric for a single feature partition.

L" lhe Minkowski norm.

A A general nxn matrix used in metric definitions

x,y€x ìamples in a dataset.

S iimilarity measure. A fuzzy S-norm

T { fuzzy T-norm

p Pearson correlation

À Lagrange multiplier; eigenvector.

N*.nt Membership values classes for fuzzy clustering

M*c¡,r Membership matrix classes for fuzzy clustering

U¡;, U Membership of a sample x¡in cluster v¡; the matrix of all memberships.

vj€V A particularity centroid; the set of centroids.
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Appendices

The following topics are covered briefly:

A: Metrics and Measures

B: FCMP Algorithm and Derivation

C: Fuzzy Sets

D: Clustering Algorithm Comparisons
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Al Metrics and Measures

Quantification of the distance (similarity) between two objects, x,yCX, is defined by a

metric (measure). All metrics have the following properties:

1. A metric is non-negative and has a self-distance of zero: d(x,y)>O¡,,d(x,y)=O iff x=y.

2. A metric exhibits symmetry: d(x,y)=d(y,x;.

3. A metric obeys the triangle inequality: d(x,y)+d(y,z)>d(x,z).

Similarity measure have the properties:

1. A similarity measure has self-similarity of unity: S(x,x)=1.

2. A similarity measure is transitive: S(x,y)=S(y,x)

3. A similarity measure obeys the similarity translation for some function g;

S(x,y), S(y,z)>T--+S(x,z)>g(T).

Since a similarity measure is a function of a metric d, S=f(d), the triangle inequality also

follows: S(x,y) + S(y,z) > S(x,z). Several metrics and sirnilarity measures are discussed.

Metrics

Metrics [Simm], also known as distance functions, map a relation between two samples

into R*. The Minkowski metric, Lo, is commonly used since it is parameterized on q and

different values of q have wide applications.

(47) 
'"=[it*,-r,rl"'' [i=r I
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For q=1, the Min-kowski metric is known as the Lr metric, or Manhattan (ciry-block)

distance,

(48) L,=I l*,-y,l
i=l

For q=1, the Minkowski metric is known as the l¿ or Euclidean distance.

[o 1|z(4s) r-,=l)(*,_r,),1
[¡=r j

In the limit as q--rco, the Minkowski equation is known as the chebychev metric and the

metric has enhanced sensitivity to outliers.

(50) limo--Lo=limo--Ë(*,-y,)',0:tøux,l*,-y,l
i=l

A generalized metric considers the samples in light of additional factors. one type of

generalized metric scales the features through multiplicâtion by a positive definite pxp

matrix A. Such a scaling constitutes a transformation and may in practice be a pcA or

ICA transform. The transformation introduces p'? additional parameters or degrees of

freedom. The metric is denoted

(sI) llxll^=lfix,xL=,Â'Ax

when the matrix A is the cova¡iance matrix of the dataset, A=M'r, the metric is called
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the Mahalanobis metric

(s2) ¡¡^-u¡¡",=fi*-¡'rø'1*-u¡

When A is required to be diagonal, A=D, the number of parameters in the classification

system is reduced from p2 to p. Note that only the trace of A is non-zero.

(53) ll"-ull"-,=il^-uf o1*-")

A final example metric is the Canberra, which is sensitive to small changes around 0,

I l*u,-*.,1(54) r--r-tt^tt- 
l*o*\i

Fig. 77 displays how different metrics compute distance from the origin over a small

Crid.

Measures

When the definition of similarity is based on a metric, similarity measures induce a

partially ordered set (poset) [Roit] on the samples. For x,y,zcX, X is a poset if the

relation < is

1. Reflexive; ¡3.
2. Anti-symmetric; x<y, y<x, then x=y.

3. Obeys the triangle inequality; xly, y<2, then x<2.
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(c) Mittko¡vski netric, q=0.4.(a) Manhaltan Metríc.

(d) Minkotski netríc, q=1.1

(b) Euclídean metric.

(fl Minkou'skí netrìc, q=5.

(fl) Iniìníq' ¡¡¿1¡¡ç.

Fígure 77. Distance fron tlß orig¡n, usírtg dílferent netrics.

One similarity measure of interest is the Pearson Correlation p for time series

x =[xr, ..., xJ and y=[yr, ..., yn].

I (* -rxv,--v)(ss) of-,tl=Effi
l.-. l.-

where X=-À x, and i=-Àyi.nn

(e) Mínkotski nrctríc, q=3,
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4.1 Binary Similarity Measures

Similarity measures for binary data exhibit a variety of measures for data structure and

relations. Binary similarity measures use the cross tabulation, orjoint occurrence matrix,

tl
rs6ì ro=lu bl

L" al

where, for sets X and Y, the coeffiicients represents the number of: items held by both X

and Y (a), items held only by X (b), items held only by Y (c), and items held by neither X

or Y (d).

Table 42. Binary Met¡cs

Anderberg

aadd

Anti-Dice

a

a+2(b+c)a+b a+c c*d b+d

4

Gower

ad
-7¡--
V((a + b)(a +c)(d +b )(d +c ))

Hamann

(a +d)-(b+c)
(a+b+c+d)

Kulcuynski

tl a " \

2la+b a+c/

Matching

a*d
a+b+c+d
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Pearson binary

(ad - bc)ffi
Rogers and TanÍmoto

(a+ d)

(a+d)+2(b+c)

Sneath and Sokel

2(a+d)
2(a+d)+b+c

Yule

(ad-bc)
ad* bc

Dice

2a

2ã+ h +c

Jaccard

a

a+b+c

Russell and Rao

a

a+b+c+d

Ochiai

a-]--
{((a+ u)(a +c))
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B: Derivation of FCMP Equations

The FCM objective function measures the weighted sum of sample-centroid distances

over all sample-centroid combinations. It maximizes inter-centroid distances and

minimizes intra-cluster variance. The FCM objective function is partially differentiable

and the constrained optimization problem is converted to a corresponding unconstrained

optimization problem using Lagrange multipliers. Partial derivatives of the objective

function define equations which, when algebraically manipulated, relate the centroids, V,,

and memberships, U,, at successive time steps t. Iteration of the algorithm proceeds until

convergence, which is defined as a change in memberships or centroids below a specified

threshold. Both initialization of the centroids and the choice of metric can have

consequences on FCM convergence'u. The fuzzy set requirement on the memberships

constrains the memberships of a sample in all centroids to sum to unity. This

requirement appears in the unconstrained objective functions with the Lagrange

multiplier Â . Formally, for each sample xi, l<i<N

(s7) r¡=I uiDi-À I (uü- 1)

Taking partial derivatives of J¡ with respect to ui* and À and setting the resulting

l6 FCM is often executed multiple times to avoid convergence to objective function saddle points, which
can be caused by an inauspicious random initialization. Exchanging the Euclidean distance for, say the

L, does not guarantee conyergence,
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equations to 0 generates two equations in two unknowns. This system of equations is

then solved to dete¡mine the update equations used iteratively in the algorithm.

Isolate u¡¡ as a preparatory step. Also, it is common to set m=2 to simplify the algebra.

(s8)

(s9)

(60)

(61)

(63)

aJ. s
_=0=) u,*-l

*=o='nuli-"oí-n

rL
¡ = (--Jl-)n-r
'* 'tDÍo'

å"*='=å*'

À1z€r
/ , -----
i= Dí

11uo=q'**il
?-û

=l$ 4l-'
l*4t ¡î_l
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Sumrning u .over all clusters replaces an unknown value with a known value, unity,

In order to substitute a known value for À/2, isolate À/2 in the above equation

(62)

and substitute the right hand side into the previous equation for u¡¡.
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The centroid equation that results is a normalized, weighted sum ofthe samples.

N
\-m
LÙ¡^X¡

(64) v*=5i-
I "il¡=l

The possibilistic and various spatio-temporal equations are all derived in a similar

manner.

Derivation of FCMP

Given a dataset X, with n samples x€X, and a set of C centroids keK, where samples

indices run from i=l...n, and centroid indices run from j=k...C. For q partitions \Ir, the

feature partition weights for a vector v=[vrv2...vol which sums to unity

(65) ) vr=l'o<v*< l'Y qeY

The generalized distance is composed as the sum of weighted distance functions on the

partitions

(66) D'z(x'v)=) v*df (x*' v*)

where the x$ indicates that only the feâture indices in the feature partition rþ are

considered in the distânce calculation.
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FCMP Equations Applied to ÍMRI

When adapting the generâl FCMP model to a two-partition model, in particular one that

uses spatial and temporal domain, the weights may be referred to as v s and v r

respectively. The objective function of this algorithm can now be differentiated and the

necessary update equations, for sample memberships and centroids, derived. The FCMp

objective function, for spatial and temporal domains

respectively, is:

NC NC
(6'.1)

And for a particular sample x¡, the objective function is:

,=",ì¿ uii'aft+",) | u;'ai-rf 
_-) {u,*-r)

uslng distances 
td,* and td,u

NC

Again, partial derivatives of the objective function generate a system of equations which

provide the centroid and membership update equations. These equations are iteratively

solved and updated until the algorithm converges. Differentiating the objective function

with respect to the constraint on the membership values to sum to unity generates

ccc
J,=v,I ujisal+v, I u jirafi-a ) (u,*- r 

)k=l k=t !r=t

(6e) #=å(un-r)=o

(68)
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and with respect to the membership value u.* generates

(70)
dJt ñ-rs ,2 m-r'
ãl=m v'u*'td"*+ mv' uSIrdf"-a=o

Rearranging,

t II(7r) """=l fi+ '', l'-''* 
lmvr'd'+mvr'd'I

where m, v, , vr, td,* 
, 

sd,* 
are constant with respect to À and u,,,. Factor out À/m,

I 1llÀ I l.-r(72) r"=l;¡0,.,* 
|

t ùss

Let m=2, for simplicity and sum over all clusters

(73) å"."='=å*Taïq1
Solve the above for À/m.

Àl
(74) n$ I

/- -----:--:-------

'=t v ^"d' +v-' d¿

Note that the sample / centroid indices in the above are arbitrary and should be changed

before we substitute the solved equation for À/m into the update equation. Replace

indices srv with iw, Now, substitute our e4uation for À/m into the original formula for u.."
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",'J^______L_ _ l = . l{.ì)(75) "" l$ I v,'a,'*+ri'a]. 
1

I L ---E:i-:--- r ¿ |

fi=r vr"d*+vt'd; 
J

And the fìnal membership update equation is:

" J----J-ï;!)(76) *"" 
l$ "r'al*+u"ol" I

I L --- s-r--.---=-:T I

Li=r Ys oiw+vr o¡w 
I

Applicability

FMCP is applicable to the same set of problems as FCM; collections of (partially) labeled

or unlabeled data where hypotheses about inherent (or justifiably expedient) global

structure is examined. By justifiably expedient it is understood that it is not critical that

class labels are homogeneous in different clusters but simply that an administrative order

is being imposed on the data and that it is to some extent data-driven. FCMP extends this

problem domain by adding those problem sets where features are known a priori to have

distinct relations and hypotheses about the priority or weighting are being tested in

addition to inherent global structure.

FCMP differ from its original form, FCM, in its dehnition and use of feature partitions

(FCM has only one), weightings that rank the importance of feature subsets (FCM has

none), and the expectancy thât different metrics may be appropr.iate for various feature
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partitions GCM most often uses the Euclidean metric). FCMP can be modified for

future use in several ways. The equations can be extended to take into account

covariance matrices for different feature partitions. The algorithmic equations can be

expanded to take into account pre-processing operations typical in practice in the

particular problem domain. Auxiliary rules of thumb can be developed to optimize

FCMP in certain manners to specific types of datasets. Such rules would relate to

qualities of the parameter space (the number and types of feature partitions, the relative

weights between the pârtitions, the types of metrics, effects ofcombining metrics...).

Implementation

FCMP is constrained in its implementation in that it is iterative. Since FCM can be

optimized and the core update equations in FCMP are algebraically the sâme as those in

FCM, it follows that FCMP can also be optimized. (Such optimization removes the

requirement to update the membership matrix.) This formula needs to be developed for

FCMP,

For FCMP, once the partitions have been determined (the number of sets of feature

indices and their particular conrtguralìon (a feature pafül.Jron configurafior? lists which

features are in which partitions) ), the parameter space may initially be evaluated over a
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rough set of weights for the different partitions. For two partitions, these weighrs form a

pair of intersecting lines in weight space (intersecting where both partitions have value

0.5). For multiple partitions, a grid in weight space is evaluated. These sampling points

may then be expanded in regions in the parameter space where the objective function

indicates inflection points and optima. Procedures on increasing sampling in these

parameter space regions are common in texts on optimization.

FCMP parameters that can be determined a priori are mainly the feature partitions and the

relative weights between the pârtitions, both being determined by conceptual analysis of

the problem or expert intuition. Analysis that leads to the initial FCMP parameters and

the initial sampling points in the parameter space should be formulated as hypotheses and

tested in the accompanying experiments.

FCMP can use data-driven statistics to determine parameters such as the feature partitions

(using variance as in the PCA approach, using the mixing matrix for independent

components as in the ICA approach). An experiment using FCMP should evaluate FCM

on each of the single partitions as well. This incorporates a classical approach to the

problem and provides an important parameter-space evaluation for the experiment (the

point where all partitions except one have a partition weight of 0). A valid benchmark

for FCMP is FCM, since FCMP generalizes FCM. Optimal parameter values for FCMp
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are dataset specific, since they exploit feature relationships, though further analysis may

define problem sets where valid parameter rules of thumb exist. Current rules of thumb

for FCM may be extended for FCMP parameters.

Analysis

FCMP results be interpreted as:

r Membership assignment maps in the different feature-partition spaces. As an

example, consider the voxel assignment maps for fMRI dâta. This considers only
the spatial feature partition.

¡ Trends in a higher dimensional parameter space. Since FCMp has more
algorithmic degrees of freedom than FCM, trends in the objective function are

evaluated along more axes. Such flexibility may lead to enhanced performance
when compared to FCM. At worst, it retum a result with the same optimality as

FCM. Note that increasing degrees of freedom is not sufficient to provide
enhanced performance. Rather, it is the increase of degrees of freedom that mirror
feature relationships that provide enhanced analysis. Thus, having more feature
partitions is a more significant axes of freedom than having another parameter

corresponding, say, to a fvzzy exponent.

A study to discover problematic datasets for FCMP has not yet been completed, Since

attempts to optimize the objective function may lead to saddle points, repeated FCMP

runs that converge to the saddle points may constitute an anomaly in a collection of

FCMP results. Detection of such an anomaly has yet to be examined.
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C: Fuzzy Sets

Fuzzy sets can quantify degrees of membership of samples in subsets (clusters). In 1965,

Zadeh lZadehl published a method of modeling imprecision in mathematicaf equations.

The fuzzy prefix is associated with the mathematics of imprecision and is a common

thread through fuzzy sets, fuzzy logic, and luzzy reasoning. Membership of objects in a

cefiain class is considered with the novelty that membership could be partial and non-

exclusive. Hard, or classical set membership, has the membership, b, of x in set A as

ba(x)e{0,11, while fuzzy membership has bA(x)€[0,1]. For example, a single objecr

could be hot to some degree while simultaneously being cold to another degree. In this

case hot and coid are simply two sets to which objects may partially belong. Fuzzy sets

have become widely used in analysis, industry and research due to the facility of fuzzy

sets to capture plain-language concepts in its mathematics. Fuzzy sets have well defined

operations for addition/subtraction, multiplication/division. However, once a fuzzy

operation has taken place, it is necessary to convert the fuzzy degrees of membership into

a real world quantity before the computation can be acted on. De-fuzzification refers to

the mapping from a fuzzy set back into a world where actions must be specified

precisely. S-norms and T-norms define the properties of fundamental fuzzy set
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operations. An S-norm (or T-conorm) operator is a binary mapping S(",") satisfying

conditions:

boundary: S(1,1) = 1, S(a,O) = S(O,a) = a

monotonicity: S(a,b)<S(c,d) iff (a<c) A (b<d)

commutativity: S(a,b) = S(b,a)

associativity: S(a,S(b,c))=S(S(a,b),c)

A T-norm (or co-norm) operator is a binary mapping r(", ") satisfying conditions:

boundary: T(0,0)=0, T(4,1) = T(1,a) =¿

monotorìicity: T(a,b)<T(c,d) iff (a<c) A (b<d)

commutativity: T(a,b) = T(b,a)

associativity: T(a,T(b,c))=T(T(a,b),c)

Figures 78-77 show examples of an s-norm, or maximum, intersection, and a t-norm, or

minimum.

Figure 78. FuuJ Set M.L\. FíBure 79. Fuz4' Set

húerseclíon-

Figure 80. Fuzq Set Mìn.
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D: Clustering Algorithm Comparisons

The following discussion examines FCM but includes accounts of two closely retated

algorithms: hard C-means (HCM) and possibilistic C-means @CM). Both HCM and

PCM are variations on FCM incorporating modified definitions of membership.

Examining the trio of clustering algorithms, HCM, FCM and PCM, illuminates the

novelty of FCMP.

Note that in Table 43 a generalized distance function is used for PCM: Dft=llx*-v,l[

where matrix A denotes the covariance matrix. Update equations are listed in Table 44.

The equations describing the family of membership matrices assocìated with the various

clustedng algorithms are shown in Table 45,

Table 43. HCM, FCM and PCM Objective Functions

Algorithnt )bjective Functiotts

HCM r(v;x)=I Io1"

FCM l.(u,v;x)=) I "i.Pi"véV xÉX

PCM r,,,(u,v;x)=l I u|llx-vlli+l É"I (1-u
v€V r€X v€V xÉX

,")'
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Table 44. Cl stering Algorithns Update Equatíons

Ckßtet
Method

Menbership Apdøte Equat¡o,t Ce îroíd Update Equat¡ott

HCM u.k=1;Dik<Dij, j+iVi,k
uik=0;otherwiseVi,k Iun** I *u

u =¡<=r = 
x'Êx, 

=¡ y¡'+n'
àun
k=l

FCM

"*=[¿H-]
I tu )'*

""=îr* o'

PCM I /or \=i-'
u,*=l r +l---r I I Vi,k

[\*'/]

Fm.2 U.. X.

V.=- V I
\-m)ll
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HCM, when augmented by speciflrc merge and split heuristics, is known as ISODATA.

PCM has an additional parameter with respect to FCM. The bandwidth, or resolution,

parameter Ê , fl ¡>0Vi, is estimated as

Table 45. Clusteritry Algorîthms Menùership Matríces

Algorithnt Mernbershìp Matrices

HCM MHcM={U € Mr". : Uu eNn"V k}

FCM M."n = {U€Mo"n : U*eNr"v k}

PCM
Mpcìr= [U€lR'" : U*eN* V k ; 0 <f u,t. Vi]



c

I u}lx"-v"ll
(77) É,=a= 

"Iu'
¡=l

where Q is a scaling factor.

The membership values that result from these clustering algorithms are listed in Table 46

Table 46, Clustering Algorithns Menbership Values

Algorithm Membership VøIues Notes

HCM N""nn = [ú e Nr": ur€[0,1]V i I

:lê ê ê I
tvl ,v2 .. vci

Membership in one cluster

only.

FCM c
Nr"nn={ue No": I u,= 1]

¡=l

Sum of centroid memberships

for each sample is unity.

PCM NpcÀr ={i€lRc : yt€[0,1 ]V i,ur> 03il
=f 0,1f -0

Label vector is non-zero for
each cluster centre.
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