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Abstract

Magnetic resonance imaging (MRI) is a preferred imaging modality due to its high
resolution images of in vivo tissue. Functional MRI (fMRI) infers organ function using
blood flow intensities. However, multiple response models for hemodynamics and, more
specifically, neural activation, contend for widespread adoption. Development of
models, imaging techniques and various types of noise compound problems in analysis
and motivate the use of exploratory data analysis to elicit intrinsic data structure. This
work demonstrates the utility and efficacy of a novel exploratory data analysis technique
derived from a robust, unsupervised learning method, fuzzy C-means (FCM). The
algorithm, designated FCM with feature partitions (FCMP), integrates feature
relationships in the clustering process. One feature relation not widely exploited in fMRI
analysis is the high probability that temporally similar time courses are also spatially
proximal. FCMP has exploited this relation to generate both novel and robust data
inferences. Both synthetic and in vivo fMRI data are examined. FCMP is compared to
benchmarks from industry and academia, including FCM, cluster merging,
CHAMELEON and Evident®. Ten distinct experiments examine aspects of FCMP with
respect to fMRI analysis, in particular, means to integrate distinct feature subsets and
feature relationships, sample membership in regions of interest, use of validation indices
for fMRI, and data-driven global thresholding. Efficacy of FCMP for fMRI analysis is
shown in terms of noise reduction, statistical specificity, and discovery of novel spatial
relations between time courses in regions of interest.
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1. Overview

[Knowledge is] a rich storehouse for the glory of
the Creator and the relief of man's estate.

Francis Bacon

Introduction

Magnetic resonance imaging (MRI) [Kupe] is a non-invasive medical imaging
technology that provides data concerning in vive organ state and function. Commercial
de;lelopment of MRI has found many applications supplementing and replacing
traditional radiological modalities. MRI studies are, however, notorious for the
voluminous quantities of data produced. The challenge for MRI analysts is the detection,
extraction, and transformation of information from a large set of complex data. MRI data
consists of radio-frequency (if) intensities at volume elements (voxels) having unique
spatial coordinates, thus providing organ state information. Functional MRI (fMRI) data
consists of a sequence of MRI acquisitions over alternating states of subject activity and
rest. Blood flow changes between these states, or the hemodynamic response, is the basis
of inferring organ function. The time series of intensity values recorded at a single voxel
is called a time course (TC). When the sequence of rest ;nd active states is known, it is
called the activation or stimulus paradigm. Correlation [Edwa] between the paradigm
and TCs defines regions of interest (ROI) in the active organ. Since fMRI datasets

contain unanticipated, yet desirable, information, exploratory data analysis (EDA) [Tuke]



1. Overview

techniques are used. These unsupervised pattern recognition techniques generate
hypotheses about the data that are ultimately validated by comparison to a gold standard,
often an expert in the field. The process of exploring the intrinsic structure of a dataset
often leads to novel investigation.

Data Acquisition

In vivo data acquisition inevitably contains undesirable characteristics attributable to the
subject, whether human or animal, or to the diagnostic equipment [Brow]. For example,
subject movement introduces ghosting artifacts while instrument instability can cause
voxel drift. Many methods are used to mitigate the effects of noise on analysis. For
example, image registration techniques re-align shifted and perturbed fMRI images. A
large variety of signal and image processing techniques [Gonz] are applied to recover and
to enhance fMRI datasets. However, amelioration can be limited by time, computational
costs, the small number of patient/disease cases, and uncertainty in the hemodynamic
model. Other efforts to reduce noise in the data acquisition process have limited
application, such as contrast enhancement through suppression, weighting and absorption
methods. Attempts to acquire noise-free images include use of specialized rf-coils and

differentiated rf-echo sequences. Techniques to address noise continue to be develop and

15



1. Overview

can offer tissue or organ-specific solutions.

Neural Activation Studies

Neural activation studies represent one of the most challenging types of {MRT analysis.
As in other fMRI studies, a stimulus is applied to the subject. Neuron signal intensity
levels are then recorded for one or more coronal slices of the subject's brain. These
studies are challenging due to the limited body of knowledge of neural function and
interdependencies, the incompleteness of generalized hemodynamic response models
[Duann], and the presence of noise in the dataset. Synthesized fMRI time series and in
vivo neural activation data are examined. Synthetic data were generated to examine
specific hypothetical fMRI analysis scenarios. In vivo data, with visual and tactile
stimuli, were acquired at the Institute for Biodiagnostics (IBD) (www.ibd.nrc-cnre.ge.ca),
a research institute of the National Research Council (NRC) of Canada (www.nrc-
cnre.ge.ca).

Motivation

This research is motivated by the robust fMRI analysis of neural activation studies
deemed possible by an EDA algorithm that, while enunciating intrinsic data structure that

includes so-called unanticipated TCs, minimizes the impact of noise and incorporates
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L. Overview

expert knowledge, especially in terms of feature relations, into the algorithm.
Modifications to fuzzy C-means (FCM) clustering are proposed due to the broadly based,
resilient performance of its objective function based optimization. A novel variant, FCM
with feature partitions (FCMP), is developed and applied to synthetic and in vivo fMRI
datasets. An additional motivation is the clarity that a fuzzy clustering algorithm, one
that considered relationships between features, would bring to the field as it would
encompass some mechanical aspects observable in many extent FCM adaptations.

Original Contributions and Benefits

Several original contributions are collected in this work. First, a mathematical
formulation of a generalized fuzzy clustering algorithm is derived which suggests a
novel, encompassing cluster algorithm taxonomy. One benefit of this formulation is the
succinct manner in which cluster analysis can now be expressed. Also, the generalized
algorithm is readily adapted to exploit unique situations not related to fMRI analysis, and
defines a structured manner in which adaptation occurs. Secondly, the application of the
generalized algorithm to spatio-temporal fuzzy cluster analysis is examined with respect
to various synthetic and in vivo fMRI datasets. Discovery of regions of interest is

examined and compared to benchmarks. Algorithm robustness is tested over a range of
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1. Overview

noise levels. A method to define data-driven global thresholds for fMRI datasets using
bridge voxels is presented. Finally, visual cluster validity indices and spatial cluster-

assignment maps are demonstrated as visualization methods for use with FCMP and

fMRI datasets.

1.1 Preamble

In order to convey an overall thesis context, short comments on EDA, FCM, and fMRI
are presented with respect to the novelty and utility of FCMP.

Exploratory Data Analysis

Scientific discovery involves a process of concept formation, measurement, and analysis.
Hypotheses are framed; instruments are devised and built; experiments are recorded and
analyzed. This process repeats itself with variations directed by the judgment of the
scientist. Many components of this process are challenging, for instance, determining
significant features for measurement beforehand, or deriving simple equations after the
fact. Therefore, algorithms have been developed that operate with agnostic attitudes
towards data organization and contain a minimal mathematical model. EDA algorithms
exhibit an exploratory character open to opportune solutions and elicit inherent data
structure. Parameters are typically data-driven, being based on dataset properties and not

on a priori knowledge.
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1. Overview
FCM as an EDA Technique
FCM [Bezdl] has proved to be both a highly successful and widely applicable EDA
technique. As it partitions the samples, FCM uses a data model that assumes only that C
spherical clusters exist in the dataset. However, FCM is also well suited to exploit
specialized data structures that limit accurate representation by spherical clusters.
Variations include hyper-ellipsoid clusters [Gust], modifying distance calculations based
on partial knowledge of sample labels [Pedr5], and the use of robust metrics [Bobr].
Since FCM 1is often modified to characterize such idiosyncrasies, the unmodified
algorithm, using C spherical clusters, is often referred to as vanilla FCM. When the
value of C is in question, validation indices [Hopp] [Wei] quantify the fitness of FCM
parameters to dataset structure. However, it is an open question as to which adaptation of
FCM is preferable for any given dataset. The problem becomes more tractable when
datasets are restricted to a single problem domain. This thesis modifies FCM to develop
a fuzzy clustering algorithm specific to fMRI datasets.
In the development of a specific FCM modification, it became apparent that a general
cluster analysis formulation would be beneficial in order to organize the many FCM

variants into a cluster analysis taxonomy. Fuzzy clustering literature largely consists in
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1. Overview

adapting FCM to dataset structural idiosyncrasies by modifying the objective function,
changing metrics, or ad hoc heuristics. A succinct characterization of such variations
would make comparisons between variations more coherent and focus future variations.
One adaptation absent from the literature concerns the explicit integration of distinct
feature subsets where prominence is given to inter-feature relationships. Implicit
integration, where specialized metrics replace the Euclidean metric, is awkward as a
general mechanism. Grouping features into subsets that distinctly contribute to the
convergence of the algorithm has numerous justifications: features may be measured
through different modalities, contain different types and levels of noise, exhibit
specialized patterns, or prompt clarifying heuristics. This thesis describes a novel
modification to FCM for use with fMRI datasets, develops a general cluster formulation
useful for taxonomy, and provides a mechanism to integrate distinct feature subsets.
FCMP

FCMP defines feature relationships using a formal structure, called a feature partition,
consisting of a triple:

a) a set of feature indices denoting the membership of a feature in the partition.
b) ametric used to calculate distance between the features in the partition.

¢) a weight calibrating the relevance of the feature partition to the objective function.
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1. Overview

FCMP generalizes FCM; validation methods and visualizations for FCM can be retained
or extended for FCMP. The advantage of FCMP is that feature partitions can fuse
contributions (to sample-centroid distances) from sample features and calibrate the
objective function. Each such fusion incrementally constrains algorithm convergence
between that of FCM on individual feature subsets. In FCMP, feature-specific distances
are combined, or fused, at each algorithm iteration. Judicious selection of feature
subsets, metrics, and weights, allow FCMP to be tuned to elicit dataset structure within a
given set of feature relationships. Discrimination of the contributions of individual

features to the clustering process is a valuable tool when noise contaminates only some

features.  Finally, feature partitions provide a means to normalize features with
disproportionate magnitudes, variance, or to maintain feature-metric associations.

FCMP and fMRI

Sample features in a fMRI study decompose into two categories:

1. Spatial features that denote the position of the neural activity or the voxel location.
These features are represented as a triple, {x,y,z}; comparisons between locations use
the Euclidean distance.

2. Temporal features that record signal intensities at a specific location for each of 1 time
instances. Intensity feature is represented by the n-tuple {t,, t,..., tn}; comparisons
between time series commonly use Pearson correlation.

Most current MRI analysis considers only the temporal intensities. However, an EDA
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1. Overview
perspective suggests that all features be included. Using only temporal intensities
excludes known feature relations in fMRI. When applying FCMP to fMRI, we adopt the
feature cleavage into spatial and temporal domains and form a feature partition for each
domain. Each partition retains the metric commonly associated with its features. The
remaining variables, partition weights, are manipulated to exhibit known feature
relations, for example, temporal similarity of samples suggests spatial proximity of the
samples. This approach achieves the desirable result that increasing the spatial partition
weight causes fMRI ROIs to exhibit enhanced spatial connectivity, a measure of

robustness.

1.2 Scope

This thesis examines FCMP [Alex3], a generalization of FCM and its applications to
problems in fMRI analysis. FCM is a widely used data analysis technique that elicits
inherent structural information from a dataset. Problems in fMRI analysis are varied and
include: grouping of similar time courses, discriminating between novel and noisy time
courses, and defining spatial regions of interest. It is shown that FCMP exhibits critical
features of an EDA technique, since it:

e Maintains implicit inter-sample relations through membership matrices;

e Detects novel structure;

22



1. Overview

® Represents groups of objects without masking the identity of components.

Since FCMP is presented as a generalized cluster algorithm, several adaptations (or
specializations) of FCMP are applied to real-world datasets. An adaptation of the
generalized algorithm to a specific problem is termed a specialization. One
specialization examined in depth incorporates spatio-temporal information into the
FCMP objective function. In particular, the application and extension of FCM to the
following problems is examined:

e Incorporating spatial context into fuzzy clustering of fMRI time series;
e Discovering novel time courses in an fMRI neural activation study;
e Making robust statistical statements about fMRI ROIs.

Feature partition benefits are anticipated to be specific to datasets and objective functions.

Thesis Structure
The remainder of this thesis conforms to the following structure. Chapter 2 discusses

concepts in EDA, fundamentals of pattern recognition and classification. Chapter 3
provides details on cluster analysis, including formula comparisons between several types
of clustering algorithms. Chapter 4 introduces FCMP as a novel generic clustering
formula as well as its specialization to fMRI problems. Chapter 5 outlines the basic
theory behind MRI and neural activation studies. Chapter 6 introduces benchmark

algorithms for the efficacy of FCMP. Chapter 7 lists the experiments executed and
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discusses the results. Chapter 8 draws conclusions from this investigation and points to
areas of future research. Appendices provide additional information on fundamental

concepts, formula derivations, glossaries, acronyms, and symbols used in the thesis.
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2. Exploratory Data Analysis

Far better an approximate answer to the right

question, which is often vague,

than an exact answer to the wrong question, which

can always be made precise.

John W. Tukey
Exploratory data analysis (EDA) [Tuke] differs from model based analysis in that it
skeptically imposes only the sparsest mathematical models on the data. Since skewed
data models misrepresent data structure, the sparsest models hide the intrinsic data
properties the least. Models used by EDA tend to be dafa-driven where model
parameters are determined solely by dataset statistics. EDA principles place high
importance on visualization of the data, examination of sample subsets, and
sample/feature inclusion. Robust statistical methods are commonly used in order that
even outliers or noisy samples can contribute to some degree [Burn] [Cove] [Hube]
[Krza] [Mart] [Rous]. Cluster analysis is a popular example of EDA [Baum3] [Demk]
[Fuji] [Mose].
The main benefit of EDA techniques is the characterization of intrinsic structure which
includes the possibility of useful, yet unanticipated, results. Data-driven algorithms are
ostensibly objective means to discover data structure since external models are

deprecated. In fact, the large field of unsupervised learning has as its purpose the

elicitation of intrinsic data organization and includes: self-organizing maps [Koho], fuzzy
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clustering [Pizzil], visualization methods [Kirb] [Van], Fuzzy Group Method of Data
Handling(GMDH) [Farl], and Higher Order Statistical Analysis (HOSA) [Nikias]. EDA
is a critical tool in problem domains such as: biomedicine, cryptography, drug interaction
studies, and financial time series. This chapter discusses fundamentals of EDA,
classification, preprocessing, and metrics.

Justification for EDA

Pattern recognition systems must be able to operate when samples are contaminated by
noise or under other non-ideal conditions. In order to capture patterns that are
generalizable, EDA methods are often preferred over model-intensive approaches,
especially under the following conditions:

Model Paucity or Sparsity: No single mathematical model is accepted by the research
community for the data. The phenomenon underlying the data is poorly understood.

Arbitrary Choice of Models: Lack of a priori information about the data makes the
choice of any one mathematical model unjustified.

Model Limitations: Linear or low order models are insufficient for the final application.
It is difficult to combine local, simple classifiers or to achieve an acceptable
generalization error.

Noisy Samples: Samples are contaminated by noise.

Tarnished Class Labels: Classifiers map samples to class labels, which are the gold
standard for classification problems. However, labels are tarnished when they less than
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2. Exploratory Data Analysis
100% correct. Burnishing is the process of re-Jabeling the samples to improve the label
accuracy. The detection of tarnished labels and the selection of burnishing methods are
generally open problems.
Absence of Class Labels: Class labels do not exist at all for the dataset.
The possibility of these conditions should be evaluated before a model-intensive
algorithm is hamessed to the data. Re-evaluation should occur as additional samples are
acquired,
Model Benefits and Risks
Data models provide the opportunity to fit the data to the model, thereby determining
values which characterize the data. However, data can also be fit to the model through
the rejection of outliers or questionable samples. When the data is fit to a model,
residuals of where the model and the dataset are at variance can simplify any remaining
characterization tasks. A first order approximation may be defined and residuals
successively removed from the model by augmenting the mode! with higher order
approximations. However, a model places definite conceptual limits on the parameter-

space. These limits may preclude the definition and execution of significant experiments.

This completes a brief summary of the benefits and risks of data models.
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2. Exploratory Data Analysis
2.1 Principles of EDA

It has been previously noted that one possible undesirable result of using mathematical
models to describe data is a loss of access to novel information. For example,
summarizing a distribution as the mean and variance of a Gaussian distribution is a
sufficient characterization if and only if the distribution is in fact Gaussian. If it is not
Gaussian, higher order statistics or other descriptors must be used to differentiate the
distribution from a Gaussian one. The residual error between the model and the dataset
must be accounted for as its significance to problem solution has not yet been
determined. On the other hand, for purposes of pragmatism, datasets require a high
degree of summarization in order for the analyst to understand the structure. Thus,
insufficient summarization is one aspect of constraining the communication of data
characterization. Data characterization which observes the following principles reduce
the probability of mis-characterizations while summarizing.

o Internal structure must determine the external model: parameters are data-
driven.

e Samples must be included rather than excluded: Use all the data. Severe noise
may necessitate the use of robust measures. In this case, the weight of noisy
samples is decreased, but not nullified.

e Display structural information: Use visualizations of the data and its associated
statistics. Augment traditional data displays to facilitate information
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2. Exploratory Data Analysis

communication at an intuitive level. Use images to augment statistical
summaries. Images allow latent information (otherwise observable only in higher
order statistics or by heuristics) to be expressed or at least adumbrated, rather than
silenced in a truncated scalar.

Model Free Analysis
Model free analysis is synonymous with EDA. Model-light analysis refers to the use of
minimal, or general, models. Approaches to model-light analysis are often based on
different definitions of novelty: factor analysis and principal component analysis (PCA)
use (co-)variances [L_i}; cluster analysis examines localized structure; independent
component analysis (ICA) [Hyva] examines statistical independence [Duann]. All of the
model-light analysis approaches listed above have been used for fMRI. Discussions of
model based analysis methods and definitions of both novelty and noise follow.
Model Based Analysis
A common model based approach to fMRI analysis is the generalized linear model
(GLM) [Kryza] which decomposes the measured TC y;into the sum of a scaled true time
course x;and a residual error ¢;

N Y= BiXte
GLM is ultimately unsatisfying as it rarely leads to the discovery of novel region of

interest (ROI) or TCs. However, it may be used to detect linear trends in the data and
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allow for trend correction. Trendy samples can also be removed from the dataset before
further analysis occurs.

Novelty and Noise

Definitions of novelty and noise are context dependent. Noise at high levels will entirely
mask novel patterns. Determining whether any single sample is noise or novel may
pragmatically be determined by statistical tests on the total population. This statistical
context determines whether an individual sample is, for example, an outlier and depends
upon  hypotheses about the sample pool. This approach may also be followed for sub-
groups of samples. The set of all hypotheses about the novelty of a sample with respect
to the sample pool is the sample novelty context. Similarly, all hypotheses about the
novelty of a collection of samples is the sample collection novelty context. These novelty
contexts act as a null hypothesis to be rejected or accepted based on empirical distribution
probabilities.

The importance, or cost, of false negatives and false positives must also be weighed in
analyzing a classification or decision system. What is the cost of mis-classification? A
loss, or risk, matrix details penalties associated with different types of mis-classification

errors. Consider an example of determining novelty. Given a uni-modal Gaussian
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distribution, how can one determine which samples, if any, are novel? Measures of
novelty inevitably compare a single sample or a small group of samples against global
statistics. A novelty context must be constructed and its probability determined with
respect to the data distribution. Figure 1 shows a single cluster with possible outliers.

Group Representations

Clustering, examined in Chapter 3, involves the representation of a collection of samples
by a single archetype sample, the centroid. The centroid defines the centre of a cluster
with geometric characteristics derived from the samples in the cluster. Alternately, the
term cluster refers to a collection of similar samples, while centroid refers to a feature
vector representative of the cluster. While many clustering algerithms define the centroid
to be the feature-wise mean of the cluster, alternate centroid definitions are beneficial.
For example, a weighted mean reduces the influence of outliers on the centroid value and
the cluster shape. A group representation problem requires that each sample in the
cluster be faithfully represented by the centroid and that the centroid minimizes an error
function in terms of the samples in the cluster. Note that error is accumulated over each
cluster and often considers residual errors between samples and their associated

cenfroids.
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Figure 1. Structure ambiguity.

A single cluster with outliers or a spiral extending from a cluster?

The error function defines the centroids by its minimization. Common group
representatives, or centroid definitions, include: ~ mean, median, heuristic based
representation where rules determine sample inclusion / exclusion.

All of the above group representations may also be weighted to modify sample
contributions. Common error functions are: mean square error (MSE), weighted mean
square error, distance metrics based on correlation, existence of the centroid in the
original dataset. It may also be significant that the centroid lie in a part of the feature
space satisfying external criteria. Given that samples may contain noise, robust statistics

are one way to increase confidence in centroid definition.
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2. Exploratory Data Analysis
Robust Statistics
Robust statistics have a significant tolerance to the contamination of the samples to which
they refer. That is, the addition of noise to the dataset will change the value of a robust
statistic (e.g. median) much less than that of a non-robust statistic (e.g. mean). Statistics
may be characterized by their breakdown point. A breakdown point for a statistic is the
number of worst case samples required to generate an arbitrary value for the statistic
[Huber], see Table 1.
Heuristics for Group Representatives
Consider the following example of a heuristic based centroid definition. Let the centroid
be the sample that, being present in the original dataset, also best characterizes the
neighbourhood around a sample. Let the neighbourhood around sample x be defined
using distance and similarity thresholds (Tyand T;). The neighbourhood of x is the set of

all samples which exceed the similarity threshold and are within the distance threshold.
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Table 1. Statistical breakdown points.

2. Exploratory Data Analysis

Statistic

Breakdown

point

Equation

Explanation

Mean

K=

1
N iz

N

2%

Not robust. A single large
outlier can cause the mean of a
set to take on an arbitrary valuc.

Median

o[22~

=Y

median

N+1
2

if Nisodd

Robust. Half of the samples in a
set would need to take on large

outlicr values before the median

Y Y,
2

median 2

of the set would become an
arbitrary value. Note that
Y=sort(X).

if Niseven

For x,y&X, consider a neighbourhood G around x where y&G, if and only if y is
similar to x and y is close to x. A representative y, for the neighbourhood G may be
defined as the median of the samples in G,

(2) G,={yIS(x,y)>T Ad(x,y)<T,}
(3) Y =median(G )
An extension of this for sulci may require that the representative be spatially located in a
region type shared by most of the samples in the neighbourhood (e.g. white or gray
matter). Since the sulci have irregular shape, small deviations from the centroid may

result in significant change in voxel characteristics (e.g. moving from gray matter to

white matter).
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2. Exploratory Data Analysis
Relative Sample Importance
The detection of outliers in a dataset is important and samples near class boundaries may
have more significance for classifier design than those around the class centroid or mode.
EDA principles suggest that all samples should normally be considered. Rejecting any
single datum should be temporary and generally used for the investigation of dynamic
properties of the membership values. This would occur in solution stability testing where
changes to the centroid are measured when one or more samples are excluded from

consideration.

2.2 Pattern Recognition

Pattern recognition is the identification of recurring structure in a dataset [Alex2] dataset.
Pattern recognition is a challenging problem because sequences do not always contain
exact replicas of individual forms or pattern atoms. This is true whether the patterns are
simple or complex. Relations between individual samples are discernible by displaying a
table which quantifies the similarity of each pattern to every other. Intra-sample
distances, using one of a variety of metrics, may be substituted for a similarity measure.
Comparisons are relative, when only the samples are considered, or absolute, when the
comparison includes reference to an external standard. The respective merits of common

metrics and similarity measures will be discussed later in this chapter. It is common to
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2. Exploratory Data Analysis
augment datasets with a single additional feature for each sample, called a class label,
which denotes an authoritative categorization of the sample. For example, samples may
be categorized as healthy or diseased tissue samples.

A common goal of pattern recognition is the design of an automated classification
system. Classification requires that the relationship between discriminatory features and
given class labels be made explicit, either in the form of an equation, or given implicitly,
in a heuristic decision process. It is often desired to select the minimum number of
features possible that allow class-based discrimination of the samples. This feature
selection process determines the discriminatory ability of different feature subsets with
respect to the class labels. It is advantageous when a simple classifier design, with few
parameters, is being used or when over-fitting of the data to the model is to be avoided.,
In the process of feature selection, a mapping between sample features and class labels is
optimized. Many techniques exist both to discover this optimal relationship and to
exploit it once it is discovered. Classifiers have many incarnations, such as a rule base,
an algebraic equation to discriminate between objects, or a neural network. Classifier
implementations are generally selected to fit end use criteria such as:

1. Adaptation to additional, as yet unknown, samples.

2. Computational time of classification.

3. Memory use and access times.
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4. Hardware restrictions, e.g. weight, power, specialized transducers.
5. Environmental conditions, e.g. extreme temperatures.

Classifiers may also be combined into consensus groups [Hoth] to improve overall
specificity or sensitivity. This section discusses only supervised classification where
class labels have been provided by a reliable authority. The identification of structure
can be aided by examining subsets of the data using domain-specific metrics, statistical
properties or heuristics. These subsets define local classification rules. For example, a
sample grouping having two different class labels may be separable or discriminated
using a linear decision rule. Such a rule would, most likely, be valid only for that
specific location. Many local, linear classifiers may be aggregated to define a global and
non-linear decision rule. Partitioning the sample space, or considering local sample
groupings, along with a partition-induced reduction in samples, where a sample group is
replaced by a single representative, increases the feasibility of problem solution. Such
an approach also allows the designer to enhance or refine the classifier in a piece-meal
manner. When only representatives of the original samples are considered, the problem
is said to be a redacted, simplified or reduced problem. Reduced problems are generally
easier to solve and often may be mechanically extended to the original problem. A

solution to the reduced problem can be extended to the original problem by re-adding

37



2. Exploratory Data Analysis

samples and refining any local classifiers affected. Reduced problems are also more
likely to be solved by simpler algorithms. One method of reducing a classification
problem considers discriminating between subsets of samples. Replacing classes of
samples by cluster centroids results in a trivial separation problem that can be
mechanically extended. The solution to the reduced problem is a first order
approximation to the solution of the original problem. Any reduced solution can be
subsequently supplemented by higher order terms and refinements to the discriminant
function affect a decreasing number of samples'.

Figures 2-4 demonstrate various two class problems in classification. In Fig. 2, a linear
classifier discriminates between the dark (o) and light (x) samples. Figure 3 shows that a
classifier composed of the line segments is sufficient to discriminate between the two
classes. Finally, Fig. 4 shows a distribution in which no simple linear nor non-linear
classifier separates the classes. One approach to discriminating the samples in Fig. 4 is

to tessellate the feature-space until a number of simple classifiers prove sufficient.

I Refining a classification system by modifying or adding local classifiers ensures that the number of
samples affected is monetonic non-increasing.
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Figure 3. Non-linearly separable classes.
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Figure 4. Classes inseparable by a single, global, linear classifier.

Alternately, transformations which map the samples into a more tractable feature space

may be sought. One transform method uses cross-products of feature pairs as additional

features. New features are non-linear combinations of original features and may enhance



2. Exploratory Data Analysis

classification quality. Another transformation defines a mapping to a higher dimensional
space, for example in methods on differential manifolds, where discriminatory hyper-
planes may be found by routine methods, for example linear discriminant analysis
(LDA).

2.3 Classification Fundamentals

Hoppner describes classification as the determination of a mapping from a feature space
to a classification space labels. Many methodologies may be used to determine the map,
or classifier, to implement sample decision rules. These rules assign class labels to each
sample or reject the sample from all classes whatsoever. A brief taxonomy of classifiers
follows with examples.

Classifier Taxonomy

A taxonomy of classifiers [Jain], see Fig. 5, may be based on the level and use of a priori
knowledge.  Given complete prior information, the Bayes classifier optimally
discriminates between samples. When one has incomplete statistical information,
supervised methods and unsupervised methods are considered. Supervised methods are
further subdivided into parametric classifiers, which determine optimal values for the

parameters based on the data distribution, and non-parametric techniques such as
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distribution estimation, for example maximum entropy, and artificial neural networks
(ANN). ANNs use a subset of the data as a training set to learn a discriminant function.
This discriminant function is then validated on the remaining samples. Unsupervised
methods attempt to resolve signals from mixed sources, as in blind source separation
[Amari]. In the absence of labels, cluster analysis is a common choice. This exhausts a
review of the first taxonomy.

Another classifier taxonomy may be constructed by considering the end result of
classification, see Fig. 6. The taxonomy is induced by considering the intermediate and
final organizations of the dataset, that is, how the samples are mapped to class labels.
Mappings of the samples to different classes may be hard, or exclusive, when a sample
belongs to only one subset. Mappings are soft, or non-exclusive, when a sample belongs
to one or more subsets. These in turn may be subdivided into extrinsic-goal-oriented
(supervised) methods and intrinsic-goal-oriented (unsupervised) methods. Finally, the
dyad hierarchical versus partitional is used to characterize the process of forming the
clusters. A hierarchical method imposes a top-down or bottom-up order while
partitioning is more general and may involve several clusters of comparable size. Other
possibilities for taxonomies exist, including those based on:

e Discriminant functions:
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m Linear, e.g. linear discriminant analysis (LDA) [Pizzi4].

m  Non-linear, e.g. quadratic discriminant analysis (QDA) [Croux].
e Mode of classification:

m Hierarchical, e.g. decision trees [Quin].

m  Non-hierarchical, e.g. multilayer perceptron [Bish].
e (lass label use:

m  Supervised, e.g. Bayes classifier.

m  Unsupervised, e.g. FCM.
e Classifier training/optimization:

m Iterative, e.g. self-organizing maps [Koho].

m  Non-iterative, which is often analytic, e.g. matrix inversion.

Classification performance measures, such as kappa scores or class label entropy, are
used to select specific algorithms for a dataset.

A final taxonomy for classifiers can be considered using the Vapnik-Chervonenkis (VC)
dimension [Schol]. The VC dimension considers the ability of classifiers to categorize
arbitrary class labels. All sample to label mappings for the dataset are considered. The
VC dimension for a set of classifiers F is the maximum number of vectors h that can be

divided into 2 classes in all 2" possible ways using any classifier f&F.
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Figure 6. Classifier taxonomy based on result structure.

After choosing a classifier, one must consider implementation details. Computer
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languages and libraries must be decided upon as well as whether a parallelization of the
algorithm [Ben] [Kita] [Pela] is required. Parallelization is paramount when algorithm
execution time is critical and execution on a multiprocessor system, such as a Beowulf

cluster, is possible.

2.4 Preprocessing

The crux of analysis is the decomposition of an object into its primary components or in
terms of first principles. Analysis is the process by which a complex agglomerate is
reduced to a series of fundamental descriptors. A set of descriptors is the qualitative and
quantitative values associated with an object. A discriminating descriptor is a descriptor
that can be used to distinguish samples from two or more classes. In this reductive
process, qualitative and quantitative descriptors characterize a complex object. For
example, consider a simple analysis of a sequence of ordered numbers. Essentially,
statistics are compufed and the sequence compared to archetypes in the domain of
interest. Goals of preprocessing include removing noise from the data and transforming
the data into a tractable feature space for the classifier. Transformations generate
discriminating descriptors for subsequent classifier design. Specific preprocessing steps
include: reducing the number of features [Bryl], transforming the features to aid human

expert intuition [Alex1], or high-lighting correlated variables [Cox1]. Feature selection

44



2. Exploratory Data Analysis

and preprocessing operations are guided by classification rules of thumb, e.g. the
minimum number of samples per feature per class required to design a robust classifier is
10. Perceptions on possibly contaminated data also figure prominently in the application
of preprocessing steps. The literature shows that genetic algorithms (GA) [Arei] [Band]
are commonly used to select features. Standard preprocessing operations accumulate as
heuristic rules of thumb in distinct application fields.

Signal Processing

The main task of signal processing is the transformation of the signal into a more
desirable space [Elli] [Fran] [Wangl]. Here, desirable may take on a variety of
meanings. If the signal is to be stored, the transformation may be compression. If two
signals are compared, perhaps only portions of the signals are relevant; a window may be
applied or an average value computed. Signal analysis is the reduction of the signal into
a small set of descriptors. This may be accomplished through a characterization of a
given signal in terms of another time series, or as a decomposition of the signal into
projections. The analyst modifies the signal processing operations used based on the
utility of the generated descriptors, such as residual errors between approximations.
Thresholding and filtering [Just] [Tyan] are common operations used to enhance signal

components, enable computation of more robust descriptors, or limit the total possible
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number of descriptors able to be generated. A common signal decomposition is its
Fourier transform or wavelet transform [Alex6]; a popular current descriptor for lung
sound signals is fractal dimension and Renyi entropy [Gnit]. Common signal processing
operations include detecting periodic components and reducing noise through filtering.
Image Processing

The purpose of image processing is similar to signal processing. It is the transformation
of a matrix of pixel values into a discriminatory descriptor, a summarizing feature or
statistic, such as texture, Some image features are: number of regions, region size, shape,
texture, and object placement. Common operations to facilitate these computations are:
image (2d) filtering [Gonz], segmentation [Hara] [Wooll, thresholding [Seul], and
mathematical morphology [Serr].

Preprocessing for Classification

Data preprocessing is a common precursor to classification. As an example, consider

concentric annuli, see Fig. 7, where samples in each annulus belong to different classes.
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Figure 7. A problematic dataset for a linear classifier solved by preprocessing.

No global, linear classifier exists for such a distribution: the best case may be that a
classifier is wrong® fully half of the time. However, using the transformation
fix,y)=x’+y* as a preprocessing step remaps the samples to a space where a linear
classifier exists. The samples in the inner annulus are transformed to the first quadrant
close to the origin. Samples in the outer annulus are also in the first quadrant but are
further from the origin than the other samples. The gap between the two distributions in
the transformed space is r; = ra - r1,, Where ry, is the outer radius of the samples on the
inner annulus and ry is the inner radius of the samples on the outer annulus. The

existence of a linear classifier now depends only on the gap r,,.

2 The assumption that the classifier will be wrong half the time follows under additional assumptions: the
samples for both annuli must be uniformly distributed with respect fo the radius; the discriminant line
must pass through the origin; the number of samples in each class must be the same.
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2. Exploratory Data Analysis

2.4.1 Normalization

Normalization is a critical preparatory step for generating generalizable inferences from a
dataset. Features that have different ranges, average values, variance, or other higher
order statistics can confound applications when assumptions about the dataset and the
mathematical model of the classifier are dissonant. Normalization strategies, for
example, remedy non-Gaussian distributions through a whitening transformation.

Many classification algorithms assume that each feature is equally relevant to
discriminating the samples with respect to the problem at hand. When normalization
does not occur, features with large values or ranges can dominate metrics, dwarfing
contributions from discriminatory features with smaller values or ranges. In such a case,
overall classifier performance is constrained below any intrinsic dataset limits. An
assumption of equal relevance between features is usually defensible as part of initial
experiment scaffolding, but should not be left unquestioned. Further, when
normalization transforms are used, it may be necessary to apply an inverse transformation
to the analysis before the results can be applied. Some common normalization elements
are:

+ subtracting the mean or median.

- dividing by variance, or median absolute deviation (MAD).
- scaling to [0,1], [-1,1], or [0, N] for NeR,.
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2.4.2 Transformations

Recall that a basis is a set of vectors which span a vector space. Transformations that
simply exchange the original basis for another projection maintain the intrinsic
dimensionality of the dataset. One problem related to the dataset dimensionality, or the
number of sample features, is the curse of dimensionality. This curse originally noted the
exponential growth of a hyper-volume as a function of dimensionality [Bellman]. In the
field of pattern recognition, the curse refers to the exponential increase in difficulty of
determining optimal discriminant functions when feature cardinality increases linearly.
To avoid this imprecation, data can be processed with the blessing of dimensionality
reduction, or feature selection, techniques. Adhering to robust design principles is one
motivation for feature selection in classifier design. One such design principle limits the
number of classifier parameters to a multiple of the number of samples per feature per
class in the dataset. Two examples of transforms that exchange bases are principal
component analysis and independent component analysis. A brief discussion of both
techniques follows.

Fuzzy Sets

Set theory is at the heart of classification since the fundamental question is: to what class
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does a sample or a group of samples belong? Fuzzy sets extend the binary categorization
of classical set theory, in which an object either is or is not a member of a set. In a fuzzy
set, objects are members fo a degree and an object may belong to multiple sets to
different degrees at the same time. This concept is explored more fully in the appendices.
Fuzzy sets [Pizzil] [Pedr2] [Wolf] [Zadeh] may be used to embed the samples into a
higher dimensional space. While this initially seems counter-intuitive with respect to the
preceding discussion on feature reduction, additional degrees of freedom in the resulting
space may have desirable properties, such as differentiability or piece-wise continuity.

These properties facilitate the determination of discriminative hyper-planes, with the
caveat that they may not generalize well. Embedding the original feature space in a high
dimensional manifold often enables simple discriminant function to be found through
analytic methods. Fuzzy encoding may be viewed as feature membership in a set of
feature groups. An obvious grouping uses membership in fuzzy sets based on feature
magnitude. The original feature value is encoded by a vector denoting degrees of
membership in a series of fuzzy sets, for ekample the fuzzy sets SMALL, MEDIUM or

LARGE shown in Fig. 8.
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{a) Gaussian fuzzy sets covering a value range. (b) Triangular fuzzy sets covering a value range.
Figure 8. Fuzzy sets denoting linguistic terms.

Removing Noise

Preprocessing operations may also expunge samples from the dataset in an attempt to
eliminate or reduce the presence of noise. Many strategies exist to detect noise and then
ameliorate the contaminated signals. Image filters can enhance contrast, detect edges, de-
trend, and de-blur. Statistical analysis on signal intensity can also detect noise. For
example, images with salt and pepper noise, isolated white and black pixels, can be
improved by replacing the extreme pixel values by the average value of their neighbours.
However, globally replacing pixel values by neighbour averages, as in lowpass filtering,
reduces the salt and pepper noise but introduces a global blur.

Linear trends are one type of noise that occur in one-dimensional signals and may be
addressed by de-trending, or removing the linear component of the signal. Identification

of the trend y=mx+b may be accomplished by linear regression.
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Noise can also be addressed in the frequency domain. The Fourier Transform transforms
the time series into the frequency domain of sinusoid amplitudes. Noise occurring at
certain frequencies or ranges can be reduced or eliminated by band-reject and bandpass
filters. Wavelet processing [Alex6] is also popular since wavelets provide a dual
representation with temporal-frequency localization. High resolution localization enables

the manipulation of frequency components at specific time intervals.

2.4.3 Metrics and Measures

Selecting an appropriate comparison method is critical in EDA. Metrics and measures
exhibit different cost-functions (loss matrices) associated in assigning samples to the
different possible classes. Metrics and measures can also embody relational rules
between samples in terms of class labels. In this case, the decision rules change from
general equations to heuristics dealing with sample cases.

As an example of Pearson correlation, Fig. 9 depicts a random sequence, a linear trend,
and a scaled combination of the two. Correlation coefficients for the random sequence,
with and without trend, are given between the random signal and the straight line. The
coefficients are p =0.09, for the random zero mean signal, and p =0.72 for the signal
combined with the trend. Others measures include: cosine, squared chord, squared chi

squared.
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Figure 9. Trends in data.
{(top} A random signal p =0.09, (middie) a linear trend p =1.0.
(bottom) a random signal with trend p =0.72.
Thresholds on distance or similarity are often used to reduce the number of samples in a
dataset or define a region of interest (ROI). A reduced dataset, X,, where each sample

has a minimum similarity to a prototype y is generated by a similarity threshold T

(4) Xs(y)’:{x|S(x,y)>T]

2.4.4 Experimental Concepts

Scientific theories are objective in the sense that the hypotheses and theorems are
falsifiable. Falsifiability is the ability to devise and implement a test that could show the
theory to be false. Hand in hand with falsifiability is the repeatability of experiments; an

experiment performed at one laboratory must be able to be replicated at another similar
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laboratory. When executing an experiment, the limitations or peculiarities of algorithms
must be considered and addressed. When algorithms use random initialization, the
initialization must be the same for comparable tests (the same random seed should be
used), or a large number of tests should be executed. In supervised learning with training
and test sets where the assignment of a sample to the training or test set is arbitrary,
multiple training and test sets should be used. Using multiple training and test sets is
called n-fold cross validation. The classifier design is validated by unique training and
test sets drawn from the same dataset. At its extreme, n-fold cross validation becomes
leave-one-out (LOO) cross validation and each validation uses all but one sample in the
training set. The remaining sample is the test set. Other approaches also use sampling to
form conservative estimates of results. Monte Carlo techniques use random sampling to
quantify properties. Sampling also takes place in the parameter space of the algorithm.
Since many parameters will be independent of each other, an exhaustive testing of each
combination may not be feasible. However, a grid may be constructed for integer or real
parameters and individual nodes (a set of parameter values) evaluated. Each method
above prepares to resolve the experiment hypothesis. Until an experiment has been
performed the hypothesis exists in a state of tension. Experiments must resolve the

hypothesis rejection/affirmation tension and decide whether the experiment supports the
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hypothesis and to what degree. An experiment can fail to resolve the tension if it fails to
reject or affirm the hypotheses at an acceptable level of confidence. Confidence intervals

quantify the degree to which a given hypothesis is supported.

2.4.5 Classification

Supervised classification refers to a mapping from the samples to a set of class labels.
Given class labels and unique samples, it is commonplace to design an exact mapping
such that features of the samples discriminate samples in the same manner as the class
labels’. A good classifier is distinguished from a mediocre or bad classifier by its ability
to classify previously unseen samples correctly. This generalized recognition ability of
the classifier signifies that the samples used to design the classifier contain generalizable
discriminating information. The standard procedure for designing a supervised classifier
is to divide two disjoint subsets: a training (design) set and a test set. The classifier is
designed using the training set and is justified (validated) using the test set. Inferences
are made about the relations of training sample features to the class labels. The veracity
of those inferences is quantified by applying these discovered relations to the test set. If
the relations also hold on the test set, a confidence level can be determined that the

relations will also hold for previously unseen samples. This is, of course, an invaluable

3 Alookup table is always possible.
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quality for field use of the classifier. The validity of feature-label relations, or the
generalization ability of a classifier, is the predictive error rate of the classifier. It can
occur that class labels are tarnished (samples have incorrect class labels). In such an

instance methods dealing with probabilistic learning [Greb] or burnishing tarnished gold
standards [Pizzil] will be required.
Classifier Design Considerations
Factors to consider when deciding which classifier to apply or adapt to a problem are:
- Number of classifier parameters.
+ Number of samples in each class.
+ Time and other constraints on implementing the classifier.
+ Generalization expectations.
+ Existence and quality of data labels.

+ End use conditions.

Design Demons

Two design problems are over-parameterization and over-generalization. Over-
parameterization occurs when the model used has more parameters than are justified by
the data [Tous]. A related problem is the curse of dimensionality; a small number of
samples with a large number of features have many different hyper-planes that correctly
discriminate between the samples classes. This is a common problem in sparsely

populated, high dimensional spaces. Since many hyper-planes are equally
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discriminatory, the risk of poor generalization is high. Small numbers of samples in
individual classes may necessitate use of robust measures or combining similar classes.
Over-generalization is the application of accidental correlations among features in the
dataset to unseen samples that may not exhibit this chance quality. This can occur if the
sampling for the training set is biased to one mode of what is in fact a multi-modal
distribution.

Iterative classification algorithms have additional design considerations. The
initialization procedure must be well-defined and lead to convergence without

compromising the expressiveness of the resultant discrimination function.

2.4.6 Implementation

Addressing a pattern recognition problem requires a careful selection of algorithms for
data processing, pattern discovery and classification. For EDA investigations, the
algorithms and their parameters should be guided by data-driven processes. Another
consideration is the manner in which results are presented. Confidence in the
generalization ability of the classifier is a critical factor before the system goes into field

or production mode. Cluster analysis is discussed next.
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As complexity rises, precise statements lose neaning

and meaningful statements lose precision.

Lotfi Zadeh
Clustering [Bezdl] [Rieg] partitions a dataset into subsets (clusters) and defines a
representative, or centroid®, for each cluster. Determining centroids is often the goal of
analysis. For accurate representation, low sample-centroid distances are critical,
regardless of cluster shape or sample density. Clustering algorithms can be divided into
hierarchical and C-means types’.
Hierarchical Clustering
Hierarchical clustering partitions a dataset using a splitting or merging heuristic.
Splitting a dataset begins with all samples in a single cluster and a distance matrix of
sample-centroid distances. At each step, the sample most distant from its centroid is split
from that cluster and defines a new, singleton, cluster. After hierarchical clustering, a
series of distance thresholds may be used to examine the induced clusters. Likewise,
testing a hypothesis about the number of clusters in the dataset yields a distance

threshold. The number of steps required for hierarchical clustering is the number of

samples less one.

4 Centroids are often defined as an aggregate value, and, although they represent a cluster of samples,
may, in fact, not occur in the dataset. This distinction is rarely crucial to experiments and vse of
medoids as centroids addresses the requirement to exist as a sample in the dataset.

5 K-means clustering is a hard clustering algorithm while C-means refers to fuzzy clustering.
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C-Means Clustering
In C-means clustering, functionals built around the sample-centroid distance form an
objective function, which is then iteratively optimized. While C-means algorithms have
C centroids throughout the optimization®, centroid values change, as does sample
membership in the clusters. Initial centroids are chosen to lie near the dataset centre of
mass, as random samples or points in the feature-space, or based on external factors. A
series of distinctly initialized runs is often used since C-means clustering is proven to
converge to a local optimum or saddle point’. The number of iterations for convergence
is not known beforehand, and termination criteria, such as U, may require tuning.
Figure 10 shows two sets of FCM clusters resulting from different parameters.
Criteria for determining convergence of the algorithm are monitored: the overall change
in the membership partition is compared to a threshold and the number of iterations
executed is compared to a maximum count. Either criteria terminates the algorithm.
Changing the number of clusters, or any other parameter, requires that the C-means
algorithm be re-executed. Benefits of C-means clustering with respect to hierarchical

algorithms include: faster convergence for datasets with high dimensionality and tighter

6 This is true unless merge or split heuristics are also used, as in ISODATA.
7 Superficial differences between clustering runs may include permutations of the centroid order,
alternately, the columns of membership matrix U are permuted.
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clusters for globular data distributions.

1, - 1
- - as
a8k S : ; I wo
. N T - A - R
P LR . . xx P
o6 - N = - . » v
Dz o W™ LEEY ,
< fa N
oz} \( . ezl " >
ot b e} B
wx - . ):-’,:. ~
< H
ozr [ = ozf R N .
. . o H . o hd
oal - L e o4l < <,
- - x B L3 - -
.. Eo . N - Wy x
o5y R . . T e " bt T e . 7 - T <. n
7N - . 3% e > -
osl L oz y ax L Y
. ¢ -
" L 1 L N L ' ' L 2 E} . L ' 1 L 1 ' 1
d o8 Toe 04 Tz o 02 o1 96 Ty 1 03 -06 04 -2 ¢ 0z 04 oE ()

(a) A single intrinsic cluster represented by two (b} A single intrinsic cluster represented by three
centroids. centroids.

Figure 10. Multiple representations of structure in a dataset.

3.1 Fuzzy C-Means Clustering

C-means clustering where samples have partial degrees of membership in clusters is
called fuzzy C-Means (FCM)*. FCM is:

1. objective-function based, minimizing sample-centroid distances.
2. Constrained such that sample membership in all clusters sums to unity.

3. an alternating optimization algorithm where two sets of equations, for centroids and
sample memberships, are updated in alternation.

4. unsupervised classification method (although supervised variants exist).

Recall that unsupervised refers to the case when only the data features, and not the class
labels, determine the resultant classifier design. Clustering notation follows that of

Bezdek [Bezl]. Let X be a nxf data matrix, n samples each with f features, with sample

8 Inthe literature, FCM is referred to as probabilistic clustering since the membership values sum to
unity and can be interpreted as probabilities. When FCM is used to cluster time series, data it is
referred to as fuzzy temporal clustering.
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Xi=[Xi1,Xiz--Xif]

(5) X=X, %,...x,} '€R®
There are C centroids

(6) V={v, v,..v ] cR"
A C-partition matrix, or membership matrix, is defined as the nxC matrix

0 U=[u,..u ]

The membership of sample x; in centroid v; is u; and indicates the degree to which sample
x; is associated with the cluster centre vi. The vector u=[u; u; ... ui] denotes the
membership of x; in all the C centroids. The maximum value of w; determines the
assignment of a sample to a cluster’. One benefit of allowing a sample to have partial
membership in multiple clusters occurs when samples lie mid-way between two or more
centroids. Sample-centroid distances will then be similar for two or more centroids;
memberships should be correspondingly similar.
Figure 11 shows samples that lie at equal distance from two cluster centroids. Samples

equidistant from both centroids have the same membership for each clusters.

9 Note that individual clusters may or may not correspond to sample classes. Samples with different class
labels may in fact belong to the same cluster due to similar feature values. An indicator that a complex
classifier may be needed to discriminate the samples occurs when class labels for a cluster are both trusted
and heterogeneous. Membership values ultimately define a centroid label for the sample. A further step
assigns class labels to clusters.
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Classification is ultimately decided on a coin-toss and no differentiation is made based on
overall distance between the samples located on the centre of mass mid-line.
FCM parameters, with default values, are shown in Table 2. Although m=2 is comnmonly

used for general data [Bezdek], for noisy fMRI data, 1.1<m<1.3, is recommended {Jarm].
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Figure I11. FCM outlier heuristics.
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Table 2. FCM Parameters.

Name Symbol Comment
Fuzzification exponent  [m=2 Controls shape of membership functions.
Number of clusters C=20 Use of large values of C is standard.
Membership change U,=0.001 Termination criteria for membership
threshold matrix.
Maximum iterations Trax=50 Termination criteria for iterations.
Distance metric lix, vl Euclidean distance.
Membership change 0, Ul Euclidean distance.
metric*

* Note that the membership-change values can be exchanged for centroid-change values.

It is worthwhile to discuss the effect the properties of the fuzzification factor m as it
relates to the metrics used in the algorithm. Let algpeyy(U) denote FCM as it iterates on
membership matrix U.

o lim__,alg. (U)=alg,. (U) Asm tendsto 0, FCM tends to hard

clustering.

o lim_, alg.., (U)=alg,(U) Asmtendsto I, FCM tends to a simple
weighted mean (WM) clustering.

o lim___alg., (U)= U" As m tends to o, FCM tends to assign equal

centroid membership for each sample. Then

1 .
®) u”:E YueU ,VxeX,VveV
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Algorithm Convergence
Bezdek [Bezd1] [Bezd2] {Hath1] [Kim] has shown that the convergence requirements for
alternating optimization {(AQO) of the cluster algorithm are the same as the Karush-Kuhn-
Tucker conditions. FCM is an alternating optimization problem because the optimal
centroids are obtained by alternately updating both the centroids and memberships. AO
requires that the objective function and any additional constraints be regular or
differentiable. Since FCM constrains centroid memberships of a sample to sum to unity,
Lagrange multipliers are used to convert the constrained optimization problem into an
unconstrained optimization problem.
The trajectory of the centroid paths can be graphed as the algorithm converges. For
datasets with globular sub-clusters and random initialization, the movement toward the
global centre of mass is immediately apparent. Note that each globular cluster defines a
convex region in the feature space. As multiple centroids converge to the same
distribution mode (sample-gravity attraction), further iterations distribute the centroids
within the mode (centroids repel each other). Algorithm iteration continues until
convergence (the centroids are no longer changing) or until heuristic stopping criteria are
met. Mathematically, the objective function reaches a local maximum or a saddle-point.

Figure 12 shows centroid convergence over time when the centroids were initially define
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near the dataset centre of mass.
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Figure 12. Centroid path convergence in feature-space.

FCM Algorithm

The iterative algorithm may be decomposed into two steps: initialization and
convergence. The terminology used is listed in Table 3 and the algorithm is detailed in

Table 4.
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Table 3. FCM Algorithm Variables

Unlabelied dataset; xe X with [X|=n Centroids: ve V withlVI=C, 1<C<n
Fuzzification exponent: m>1 Objective function: Jrcy

Iteration limit: Tirax Objective function norm: Hefl,,
Error termination criterion: Uy, V, Error norm: {lel}

Table 4 refers to updating the centroids and the memberships.

Table 4. FCM Algorithm

Given: X,c,m, T, €, [, |°|c

Initialization: choose C initial cluster centres V= [v,, Vo, ... vel

Loop:

fort=1to T
Update memberships U, using centres V,,
Update cluster centres V,using memberships U,
if Et=1IV-Vull<e

set Uspn = Uy, Vi = Vi, t=T
fi
end

Termination: Output final centres Vi, and memberships Ugpa.

Update Equations for Clustering

The following steps determine the equations used in the FCM algorithm:

Add Lagrange multipliers to remove any constraints on the objective function.
Differentiate the modified objective function.

Set the equation to 0 and solve for a system of equations in U and V.

Relate the equations in time so that the most recent updates of U and V are

O O O 0
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used. Iteration proceeds by updating U, using V,,. V, is updated using U.,.
The relationship between the clustering update equations, distance function, fuzzy

exponent m and convergence properties may now be stated: Given a general distance
function Dyea= || xi-v, || and m>1, the objective function Frem(U,V;X) is minimized by
(U,V)EMrcu iR only if the update equations in Table 44 are used.

Objective Functions

Optimization problems quantify the degree of success for any solution in terms of an
objective function. Optimization is straightforward when the objective function is
differentiable. Recall that cluster analysis is concerned with discovering an optimal
partition of the samples to a given number of clusters. The maximum number of
iterations is used in conjunction with U,=lU-U,,l to determine the number of iterations in
which the algorithm is allowed to converge. A decrease in the value of U, suggests that
few not samples changed primary membership. By the same token, a measurement on
the changes in the centroid values can also be used as a terminating  criteria.
Convergence is taken to mean that the centroids Vg, (membership partition Upg,,) defined
at the termination of the algorithm are sufficiently similar to the analytic solution V* .

That is, Vi and Ug,y converge asymptotically to V" and U"),

67



3. Cluster Analysis

3.2 FCM Extensions

As noted previously, the literature on FCM is rich. There are a wide variety of both
applications and extensions to FCM. For applications, see [Alex3] [Alex4] [Bozi] [Bruz)
[Demi] [Devi] [Dimi] [Ermi] [Fan] [Liu] [Park]. For extensions, see [Alex5] [Bezd3]
[Bobr] [Gath] [Goke] [Gola] {Gust] [Hond] [Kole] [Kris] [Ng] [Pedrlj [Pedr2] [Pedr3]
[Pedr4] [Pedrs)] [Sark] [Seli] [Sgar] [Wang2] [Wulj [Wu2). Two common themes of
variation are briefly noted that address critical limitations of FCM: cluster shape and
relative sample importance,

Clustering Covariance Matrix

Clusters in FCM are hyper-spheres of the same size and, while it partitions the dataset,
the intrinsic dataset structure does not always correspond to such size and shape
assumptions.  Ellipsoid clusters have been incorporated into FCM using a cluster
covariance matrix A. This matrix is unique for each cluster and effectively scales distance
along the axes [Raud]. Since A is used to compute distances, it is sensible that A be
positive definite.

Secondly, recent clustering algorithms incorporate sample label information [Pedr3].
Since some sample labels are used, FCM becomes a partially supervised learning

algorithm. This approach increases the contribution, or weight, of labeled samples to the
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definition of the centroid. Both ideas, scaling distance and relative sample importance,
recur in the development of FCMP. Many other clustering algorithms exist, many with
adaptations that limit their utility for application to general data. Any one cluster
algorithm may differ from another in terms of these algorithmic degrees of freedom:
objective function, metric, centroid definition. A priori, dataset-specific knowledge may
Justify additional constraints on the clusters, such as their shape, variance and even the
number of clusters. FCM is easily modified to add these constraints and ultimately leads
to a more accurate representation of the data. For example, Gath and Geva introduced
ellipsoidal clusters, but spherical shells, lines, parallelograms etc are all able to be defined

by suitable objective functions [Hépp].

3.3 Cluster Validation

Validation methods [Halk] [Hath2] quantify the fitness of specific cluster parameters to
the dataset and can be used to compare different parameter settings. Unfortunately,
validation indices require that clustering be performed over a range of parameters (the
number of clusters). Recent studies have shown that the Xie-Beni index consistently
corresponds to good partitions for general data [Xie]. Other indices seem suited to

particular types of datasets. HCM has it own validation indices. For comparison of
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centroids generated by HCM to those generated by FCM it is useful to fuzzify the hard
memberships (from HCM) or harden the fuzzy memberships (from FCM). Both HCM
and FCM indices measure the fitness of clustering parameters to the dataset.

HCM Validation

Hard clustering uses scatter matrices to express the goodness of fit between the data and
the parameters. These matrices measure the separability of the dataset and include the

scatter matrix (variance of samples in a cluster)

©) Se= 25 (x,=v ) (x,~v,)"

X, Ew,

the within cluster scatter matrix (sample-centroid variance over all clusters)

(10) Se=2. S,

c=1

the between cluster scatter matrix (centroid distribution in space)
an =2 (v~ 9)(v,~9)'
and the total scatter matrix
(12) S;=S,+S,

Figure 13 (a) shows the spatial distribution of data with five clusters. Figure 13 (b)

shows scatter matrix values for the HCM algorithm. Note that the intrinsic number of
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clusters is not indicated by a global minimum on the plot. Rather it is near the saddie
point (point of diminishing returns). Adding another cluster decreases sample-centroid

distances for the new cluster while removing samples from other clusters.

1.4 T T T ) T T T ¥
1.2+ x -
xX X x % % x o ":
X% * * "* ¥ * x
* >3 x x =
R Y ]
x xi X x }:& X *
x x® - % = b E
98- x X -
x
x
X ox xx Xx
L x =X * i
05 x x x x % =
* x K xjé e s
04 )‘.‘x % % xx ~
x
x M
x
szl x 5T * < -
x> * o x* &xx
XK OB R, M G X X xﬁxx x X x
3r Tx x"x’%%;’;)oc x:x,"; x x B
k3 >
* 2 * : ¥ ¥ *x
D2t * x x o= N
04 L 1 1 3 L 1 L 1
~0.4 -0.2 [t} 0.2 04 0.6 0.8 1 iz 14

{a) Data for HCM validation indices.
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Figure 13. HCM Validation Indices.

IFCM and PCM Validation
Validation indices have also been developed to quantify the fitness of FCM parameters to
the data. These indices are computed using the membership matrix. The Xie-Beni index

has consistently proved itself to indicate an accurate number clusters for general data.

C N o
2

XYl ()

(13) Val. (U, V:X)m el _ oy
bl SV il i) sep(v)

where
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(14) sep (V)=min,{[lv,~v ||}
Others FCM validation indices are the partition coefficient (PC), partition exponent (PX),
partition entropy (PE), Kwon (KW) and Fukuyama-Sugemo (FS) indexes.

The PC index rewards crisp (most unambiguous) partitions.

22,
PC (U):xex veV
X

(15)

The PE index interprets membership as a probability of class assignment. The entropy

formula is then applied to the membership matrix.

Z Z u_Infu_ )
PE(U): XEX VEV IXI

(16)

The FS index combines a compactness measure, J,,, with a degree of separation, K,

an FS (U)=Jm+Km=Z Z u::”x,vll—!-z Z u [|x, V|

XeEX veV xeX veV

where V' is the mean of all centroids.

The PX index is a measure for the number of partitions that classify all data better than
the considered partition. An optimum is indicated for a single data assigned
unambiguously. For the PC and PE, indices an optimum is indicated only for all data

assigned unambiguously. Whether all memberships values are used depends on the
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number of clusters. As the number of clusters increases, the number of large
memberships decreases. Therefore, only the maximum memberships for each datum are
used.

]

(18) PX(U)=—In{ [T _ (2 (11" (1=ju )

i=1 J
where c=Ixl, 1 ,=max,ev( [ ) and [x'] is the largest integer number smaller or equal to
1/ . For PX, the use of all memberships depends on the number of clusters.

The KW index extends the Xie-Beni (XB) index to account for the monotonic decreasing

tendency of XB with increasing c. This is implemented through a punishing function.

2 2. il v+

KW (U)= x€EX vEV

2 v, vl

1
IVI veV

min#jllvi , VJ.”

19

Table 5 summarizes the range and descriptions of different validation indices. The use of
these indices is examined in Chapter 8. Figure 14 shows a dataset with two clusters, each
having a distinct cluster density. Validation indices differ on the inherent number of

clusters on this dataset.
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Tabie 5. FCM Validation Global Indices Surmmary.

Validation Range Description
index
FS Not given. Measures compactness and separation.
Kw Not given. Adds punishing function to XB as C
increases.
PC lsP C(U)<1.0 Rewar(.is crisp partitions or the most
K unambiguous.
PE 0<PE(U)=In(|X)) Membership is probability of class
0<1-PC(U)=<PE(U) assignment.
PX Not given. Requires large exponents. For uniform
membership, PX = 0.
XB Not given. Measures sample-centroid distance and
centroid distribution in sample-space.
°f °6§i‘go°oo
J B
zL * * ) ®
-4 =, = ” ) x:

Figure 14. Dataset with two intrinsic clusters of distinct sample density.
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Visual Cluster Validity
Another method to ascertain the number of intrinsic clusters in a dataset is to use
Hathaway and Bezdek's [Hath2] visual cluster validity (VCV) index. VCV is a dis-
similarity matrix based on a specific re-ordering of the samples in the dataset. Samples
are associated with only one cluster (the fuzzy membership matrix is hardened). VCV is
computed in two steps:
S1: A cluster (centroid) order is defined. The first centroid is chosen at random. An
inter-centroid distance matrix determines selection of successive centroids in that the
centroid closest to the previous selection is chosen. Ties are broken by a coin-toss.
S2: An ordering for the samples associated with each cluster is defined. Samples in each
cluster are re-ordered using inter-datum distances. Hathaway and Bezdek note that the
use of pair-wise Euclidean distances for inter-datum distances is best suited to well
separated (or volumetric cloud) data. Therefore, VCV uses a pair-wise dis-similarity
measure

(20) R:k:mjnlsjsc(dji+djk)

While many other validation indices require that the clustering algorithm be executed

over a range of clusters, C€{2,3,..N-1}, the VCV index describes the data structure
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using a single set of centroids. It is suggested that a high value of C will aid VCV in
depicting the intrinsic value of C. ‘This intrinsic value is determined from the image by
counting the number of dark blocks along the diagonal. Recall that dark (low) values of
similarity are being depicted. A large (small) dark block on the diagonal indicates a
large (small) cluster. Counting the number of dark blocks on the diagonal indicates the
number of clusters while comparing block sizes suggests cluster size variance. Cluster
overlap is indicated by dark (low) pixels off of the main diagonal. This illustrates
samples between two clusters and can be used to identify clusters for merging.

The VCV index for a synthetic dataset composed of two distinct clusters (radius =1, 100
samples per cluster, centres (x,y) = (0,0) and (5,5) respectively) is shown in Fig. 15 and
clearly indicates two clusters. Hathaway and Bezdek's VCV [Hath2] is a prime example
of EDA visualization for clustering. The VCV image of the sorted samples is used in an

EDA manner; dark blocks (samples with low dis-similarity) suggest natural clusters.

3.4 FCM Analysis

For multi-dimensional data, the ability of a centroid to visually represent all samples in
the cluster in a single plot is one of its most useful features. FCM analysis often involves
plots of centroids, discovering the effect of adding more centroids, examining centroid

distribution in space, developing heuristics for labeling samples, identifying outliers, and
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identifying ambiguous assignment of samples (equal memberships in multiple clusters).
Visualizations associated with FCM include: plots of validity indices vs. C, sample

membership graphs, centroid changes; and for f/MRI: voxel assignment maps.

Figure 15. VCV index for dataset with two well defined clusters.
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4. FCM with Feature Partitions

Facile est inventis addere.

{1t is easy to add to things invented already.)

Latin proverb
FCM excels in eliciting intrinsic data structure, in part, because of the minimal
mathematical model it introduces. As an EDA method, FCM is often used when
authoritative data models do not exist, or are developing, and, despite varieties of FCM
that exploit specialized structure, e.g. hyper-ellipsoids, a variety of FCM that leveraged
known feature relationships was not found. When FCM lacks a mechanism to describe
and to integrate feature relationships, information critical to eliciting overall data
structure is omitted. In fMRI, and more generally, explicitly taking account of feature
relations is beneficial. For example, datasets often have features acquired through
different modalities, at different times, and under different conditions. Thus, individual
features belong to distinct statistical distributions, differ in observation error and noise,
and often have a de facto measurement or comparison method associated with them. In
addition, the discriminatory ability of feature subsets is not known a priori.
Concentration of discrimination is the driving force behind feature reduction techniques,
especially in bioinformatics where less than one percent of sample features can

successfully discriminate high dimensionality data [Pizzi5] [Pizzi6) [Pizzi7)]. Embedding

feature relationships in FCM can be used to consider features with respect to their
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acquisition environment, preserve associations between features and distance concepts,
and introduce non-linearities that aid discrimination. A formalism to encode feature
relationships was developed to augment FCM with specific attention to fMRI analysis.
Background theory for this chapter may be obtained from literature on time series: {Box]
[Chat] [Digg] [Geye] [Rein]; space-time analysis [Melgl; and fuzzy concepts relating to
spatio-temporal models [Cous] [Jack2] [Lowe] [Royc] [Sinc] [Torr].

Feature Partitions

FCM with feature partitions (FCMP) [Alex5] is a generalization of FCM that describes
feature relationships and integrates contributions from distinct groups of feature, Due to
the general nature of FCMP, classical and more recent fuzzy clustering variations [Pedrl]
may be expressed as specializations of FCMP. Like FCM, FCMP is an iterative
clustering algorithm that optimizes an objective function. Its novelty lies in the feature
relations that are integrated (defined, ranked and combined) into the objective function.
A feature partition is a formal mechanism that expresses relations between a single set of
features and between sets of features by means of a triple, p={ 1L, v, p }, consisting of
a metric ‘u , arelevance weight v, and a set of feature indices p. Particular features
included in the subset (group) are encapsulated in p;  defines distance between

samples having only features in p, and v is the weight, or relevance, of the distance u
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to the objective function. One benefit of using feature partitions is the ease at which
existing analysis can be extended by an explicit feature relation and the resulting clarity

of the effect of the relationship on the analysis.

4.1 Generalizing FCM

Pattern recognition literature abounds with FCM variations [Hopp]' due to the versatility
and robustness of FCM. However, individual variations may be understood as
specializations of a more general clustering algorithm. Variations can then be considered
as specialized instances of the general algorithm where algorithmic degrees of freedom
have been constrained or fixed. Clustering notation is introduced which formalizes the
generalized clustering algorithm FCMP. Dataset X consists of n f-dimensional samples,
xEX, x=[Xx; ...x7. Denote by V the set of C f-dimensional centroids that define cluster
centres, which in turn partition dataset X. Thus, v&&V, v=[v,v, ...v{]. Specific samples
are referred to as x;, 1<i<n; specific centroids are referred to as v, 1k<C. U is a

membership matrix, or cluster partition, detailing the (partial) membership of samples in

10 Héoppner provides a formalized notation for cluster analysis. For data space S, S# @, and results space
P, | P|>2, A(S,P}is the analysis space defined as the collection of mappings U from a specific dataset X
to a possible solution Y. That is, A(S,P):=(fI U:X—Y,XcS§ X4, YEP). Analysis spaces are evaluated
by an objective function J, J:A(S,P)—R and partial derivatives of J define update equations which
converge to an optima. Both FCM and FCMP provide mappings from a data space to an analysis space,
resulting in the mapping U:X—YCA(S,P). Despite the benefit of its formality, Hoppner’s notation
contflicis to some extent with other clustering notations and is not used in this thesis.
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the C clusters. Sample memberships are nonnegative and the memberships of a sample
considered in all the clusters sums to unity,

2N VxEXZuX‘FE ’ VVEVZUXV>O

vEY xeX

Noting the above constraints, the FCM objective function minimizes the weighted

sample-centroid distances

(22) Teew=T(U,X,V)=2, > uld?(x,v)

xeXveY

where d:XXV—-IR is a distance metric and m is the fuzzy exponent defining membership
function shape. FCMP extends this foundation using feature partitions as follows.
Define a set of h, 1<h<f, feature partitions, ¥={,, ¥, ...\p,} where each feature
partition p={ i, v, p;} consists of a metric u;, weight v;, and a set of feature
indices p;. Alternately, feature partitions can be considered as sets of metrics, weights
and feature indices as ¥*={M, N, P} where M={p, u,. ), N={v,,va.vy),
P={p1,02..Pu}.

Partition Metrics and Weights

While FCM calculates distance using a single metric and considers all sample features,
FCMP uses a generalized distance metric composed of a weighted sum of metrics over

distinct feature indices. Each partition pEP uses a possibly unique distance function d,.
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They are combined in the cluster algorithm using the weighting parameter

v=[vi. v [V v;,0<v <1, This results in a generalized distance

(23) D(x,k):vadi(x',v')

pEP

Partition Feature Indices

Feature indices
(24) P=(plp=#&,pc{1,2,.f},Up={1,2,..f}}

and a partition is said to be strict when V p,q€P,pnq=4 .
(25) ZVPZI’, Yp,v >0
pEP r

The membership update equations exchanges its distance metric with a weighted sum of

distances on feature partitions

(26) 2 (m—il
d*{x',c’ .
u, = R I Dix.c)|"™
ey Z v, ds(x',v‘) vev D{x,v)
peP

The centroid update equation remains unchanged

2 unx

. x€X

2,y

xeX

27) v

The FCMP algorithm is the same as the FCM algorithm, given in Chapter 3 except that
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the membership update equation first compute a general distance over all the feature

partitions, see Table 6.

Table 6. FCMP Algorithm

Given: FCM parameters, feature partitions V.

Initialization: Choose C centroids.

Loop:
fort=1toT
Update memberships, using centroids V., and

g

C Zvj djz(xiavk)

u=| 2.
Kk =

[m-—]}

.
1]
—

M=
=
(=
¥
=
<
7

Update centroids, using memberships U, and

N
Z Uy X

i=1

vV E———
2 uy
ik

i=1

if (terminating criteria == TRUE)

Uﬁﬂal = Utg Vﬁﬂal = Vls t= T,
fi
end

Termination: Output final centroids Vi, and membership values Ug,q.

FCM equations are provided in Chapter 4. The following section discusses FCMP
parameters. Specific applications follow in this section on the utility of a general

formalization.
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FCMP Parameters
In addition to the FCM parameters, FCMP includes a non-empty set of feature partitions.
FCMP uses the feature partitions to adapt to specific problems. When a feature partition
collection contains only one feature partition it is proper to describe the algorithm as
FCM. A feature partition is composed of a triple: a metric 1r:IR°xR°—IR*, a weight v
€R, and a set of feature indices P={p}. This work was initiated by an investigation of
the proper initialization of FCMP parameters with respect to fMRI data. Initialization
concerns the number of feature partitions to use, the assignment of weights to rank
partitions, and the assignment of metrics for each partition. Many methods may be nsed
to select feature partitions. They include:
1. Entropy based grouping — Appropriate for partially supervised learning. Choose n

best discriminating features. Partitions may be formed using the increasing,
discriminatory ability of collections of features.

2. Statistical Heuristics — Best for unsupervised learning. Rank the features by
variance or other statistical properties.

3. Local domain — Useful for unsupervised or partially supervised learning. An
example application is {MRI analysis. If there are time instances (temporal values),
form a partition by selecting activated and unactivated epochs. Allow lag times for
the activated epochs and form another subset.

Metrics may be chosen to ameliorate noise detected in the data or by external associations

between features and metrics. For example, it is customary to use the Pearson correlation
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coefficient for fMRI time series analysis. This completes our review of FCMP

parameters. Further examples demonstrate their use in practice.

4.2 FCMP Specialization

Moving from an abstract (general) formulation to a concrete (specific) adaptation is
known as specialization and eliminates algorithmic degrees of freedom from the abstract
formulation.  Specialization constrains the formula in a particular application of the
algorithm. Expectations about the generalized performance of specializations should be
tempered by the fact that specialization is essentially a dataset-specific process. The
casting of the abstract (or meta-) formulation to a particular dataset aims at a local
optima. For example, feature partitions determined to be optimal for one dataset have no
necessary relation to optimal partitions in a different dataset. Several examples of

optimal parameters are examined for specialization instances.

4.2.1 Utility of a General Formalization

The utility of the algebraic expression of FCMP is shown in the following concrete
applications. The format of each application is summarized in Table 7. Additional notes
and diagrams follow each example. These examples of utility deal with advantages of
using FCMP over FCM in problems of robust clustering, preprocessing, and partial

supervision.
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Table 7. FCMP Utility of Concept Outline

Concept Name Topic area.

Problem A specific area where FCMP offers an advantage over FCM.
Deseription

FCMP Details on the specialization of FCMP to fit the problem.
Specialization

Utility of FCMP Description of advantages.

Example Concrete application for the specialization of FCMP,

Application: Robust Clustering

Table 8 details the utility of FCMP specialization with respect to a robust clustering

application. Robust clustering is designed to reduce the effects of outliers or noise on

the centroids. This is done through preprocessing operations such as outlier detection

tests. Outliers can then be eliminated from the dataset.
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Table 8. Robust Clustering Utility Synopsis.

Concept Name Robust Clustering

Problem How to adapt FCM to use different, especially robust, metrics ?

Description

FCMP Several cluster algorithms using robust metrics are formulated

Specialization using FCMP. Simple extensions exist using the feature partition
triple.

Utility of FCMP FCMP has a mechanism to substitute arbitrary metrics for
different feature subsets.

Example Several robust clustering algorithms described by Leski are
formulated using FCMP.

Norms and metrics can also be used to reduce the impact of outliers. One such metric is
the e-tolerant metric, which defines samples within a distance tolerance of € to be
equivalent. Leski [Lesk] presents the following approach to robust clustering. Define an

€-insensitive metric or norm where

(28) |t =

0 iflt|<e
[tl—e if|t|>¢

Then the cluster objective function is

C

(29) 1= 2 (u)"Ix v,

i=1 k=1
This applies to each of the robust clustering algorithms [Leski] which follow: e-FCM -

FCM, B-FCM. It can also be used with Fuzzy c-median (FCMedian). The general form
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of FCMP entails the specialization as follows: 1 feature partition contains all features; a
robust metric is used; the feature partition has a weight of 1.

Application: Preprocessing

Table 9 details the utility of FCMP specialization with respect to a preprocessing

application.

Table 9. Preprocessing Utility Synopsis
Concept Name Inclusion of Preprocessing Operations in the Algorithm Formula
Problem Incorporate algebraically common preprocessing strategies with
Description the clustering algorithm.
FCMP Feature indices and weights correspond to standard pre-
Specialization processing operations.

Utility of FCMP The feature subsets and weighting of FCMP allow many
preprocessing steps to be modeled. A more compact notation for
preprocessing and clustering algorithms results.

Example 1. FCMP incorporates Principal Component Analysis
2. FCMP incorporates Independent Component Analysis
3. FCMP incorporates Feature Selection

Example 1: FCMP Incorporates Principal Component Analysis

Designing a pattern recognition or EDA system often requires manipulating the raw data
before the clustering process begins. PCA is one common transformation and projects the
samples onto axes of maximal variance. Preprocessing with PCA is incorporated by

FCMP through using the eigen-values A of the dataset eigen-vectors A as partition
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weights. In the notation of feature partitions: v=A. The number of partitions
corresponds to the number of principal components used. The number of components
used is often determined by

a) a goal of accounting for at least a certain percentage of the total variance.
b) isolating projection axes that discriminate between the samples.

Each feature partition contains all the feature indices and requires that the samples be
projected onto the principal components. Of the triple , only the metrics u are left to
define as parameters.

Example 2: FCMP Incorporates Independent Component Analysis

ICA defines independent components and a mixing matrix which describes how the
original signals may have been combined. A whitening matrix, which makes the
distribution Gaussian, is often used. The mixing matrix can be used to define a partition
similar to that in the previous example using PCA. Each feature partition t includes all
feature indices, pi={1,...f}Vi}, and the ICA mixing matrix is used to transform the data
from the original feature space to the independent component space. Typically, the
number of independent components is much less than the number of features.

Example 3: FCMP Incorporates Feature Selection

Determining which features to use in a partition can be determined using an exhaustive
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search, heuristics, or randomized selection. Each method results in a binary value for a
feature (O=not selected, 1 = selected). A binary vector defines the selection of features.
This vector defines feature indices in the feature partition. Some methods, such as
GMDH (Farl], generate new features by including feature products in combination. This
new feature is the product of two or more existing features. The partition in both these
cases is the feature index vector multiplied element-wise by the feature selection mask.
Application: Partial Supervision

Table 10 details the utility of FCMP specialization with respect to a partial supervision

application.
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Table 10. Partial Supervision Utility Synopsis

Concept Name Partially Supervised Clustering

Problem How can knowledge of class labels be exploited by FCMP?
Description

FCMP Samples with labels have an increased weight or cause the
Specialization algorithm to switch from a robust metric to a regular metric.

Utility of FCMP Changing metrics for samples with trusted labels increases the
contribution of these samples to the centroid. Other methods can
be used such that samples with labels will receive a higher
weighting in the feature partition. Clusters that have samples
with a variety of trusted labels can be split into clusters with
samples having the same trusted label.

Example Similar to partially supervised FCM of Pedrycz and Waletzky.

Let 2={w;, w,, _wc} denote the set of C class labels. Let w, denote the class assigned to
outliers, classification rejections, unknown and ambiguous samples. Let 2*=0Uw, be
the set of all possible class labels. Let w(x) denote the class label associated with sample
x. Define a dataset of unlabeled samples X={x | (x)=twy} and a dataset of labeled

samples Y={x | (x) € 2}. Consider the following metric pxy

i {a,b) ifaeX,bey
(30) Hyy(a,b)=(p (a,b)  ifa,beX
p,a,b)  ifa,bey

Label information is integrated by switching between different metrics. Alternately,

consider feature subsets that are discriminatory with respect to the labeled samples. Let
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I'e{y:.yz...yn} be the set of discriminating features. Let p: be the feature indices in
feature partition ¢/, that are all discriminatory, p,={p | pCI}). Let feature partition ¢,
contain only indices of non-discriminatory features, p,={p | p( =8}, Let weights v,
v, be associated with ¢, ¢, and assign more weight to the discriminating features.
When this occurs, v,>v, and knowledge of class labels is effectively exploited"',

Application: Small Signal

Table 11 details the utility of FCMP specialization with respect to a small signal
detection application. The solution to small signal detection is similar to that of
exploiting class labels. It is a question of selecting the appropriate metric. A probe is
defined as a finely-tuned function which determines the presence or absence of a
localized signal. Probe localization may be spatial, temporal, in the frequency domain, a
combination of domains (space-time, time-frequency etc) or may be defined by
heuristics. Let us consider features acquired over a time interval. For example, a time
series of n instances from an fMRI study. Denote activated epochs as E, and the

unactivated epochs as Ey. Define feature partitions ,, y, with feature indices

11 Note that, depending on the relative number of features in p, and p,, even the case v<v may show
improvement in terms of discrimination. This can occur when there are few discriminating features.
In general, the formula is |p;]v, >|p.|v, for two classes.
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Table 11. Small Signal Utility Synopsis

Concept Name Small signal discovery
Problem Detect a small signal only on the activated epochs while also
Description clustering on the total temporal similarity of time courses and

spatial proximity.

FCMP Focus on transient and minute phenomenon through the use of
Specialization probes can be implemented in FCMP by designer metrics.

Utility of FCMP FCMP extends its clustering scope by tuning metric sensitivity.

Example Feature partitions are: I. spatial 2. temporal (all epochs) 3.
activated epochs. The activated epochs are correlated to the small
signal; time courses are measured against the stimulus paradigm

taking into account spatial proximity.

(31) p,={plp€E,]

(32) p,={pIp£E,]
Assign weights such that Ip,lv,>|p,lv, to augment the activated epochs. This method can
also be used to discount features whose values have been contaminated. For labels that
exhibit uncertainty, this method may also be applied.
Finally, consider a probe to be a thresholded metric or similarity function such that the
output is binary signifying presence (1) or absence (0) of a phenomenon. One difficult
problem in fMRI analysis is searching for small signals that are not be linearly related to

the paradigm. These small signals presumably reside in only a few percent of the time
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courses and will not form their own cluster with a general cluster algorithm. Detecting a
cluster with a centroid highly correlated to the paradigm is insufficient to also identify
time courses containing this small signal. However, a series of probes may be assembled
to detect a variety of non-linear small signals. When the signal is detected in the
clustering process (say, after a cluster has defined a centroid sufficiently similar to the
paradigm), the probes, being based on the centroid, will be able to detect the small signal.
Heuristics can be devised to change metrics when the probe indicates that the small signal
is present. In this manner, the clustering process of the entire dataset is combined with a

search for small related signals.

4.3 fMRI Data Analysis with FCMP

The following applications of FCMP to problems using fMRI data show the versatility of
a generalized clustering algorithm and the practicality of various specializations,
including that of adding spatial context to fMRI. Consider a partition of the sample
features into spatial (S={x,y,z}) and temporal features (I={t, &, .. t,J) for n time
instances of the data. In our previous notation, the feature partition P is

33 P=(S,TI={(x,y.2h{t,,..1,))

and the respective partition weights are v={vs, vr}. Denote distances (metrics) for the
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partitions as ds and dr. Substituting these specific values into the expanded formula, the

FCMP objective function adapted for fMRI is

ey ITver D undixk)+v, 2 Y undi(x,k)- (Zzu )

xeEX veV x€EX veV xeEX veEY

For a particular sample x, the objective function is

=veou mdi(x,k)+v, Y, ul d )—A(Z uxk—l)

(35) veEY vev vEY

The membership update equation is

{m-1)
C vsdz(xi,v J+v. dz(x.,v

36 w=|2
S Pt vsdg(xi,vk )+v,di(x,

k

I\k)

The interpretation of the objective function is this. Minimize the temporal distance of the
sample to the time centroid and minimize the spatial distance to the spatial centroid based
on the weights vs and vy. Spatial proximity and temporal similarity are considered at
each iteration of the cluster process at specified levels of integration.

Parameters and Typical Use

Consider the remaining parameters of FCMP with spatial context. The euclidean metric
is niormally used with spatial features. A variety of metrics may be applicable to
temporal features. In practice, a distance metric based on the Pearson correlation

coefficient is often used for temporal features. Variations on the theme of temporal
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distance include considering only activated epochs (epochs where stimulus is being
applied), including anticipation and relaxation responses of the subject [this would
consider portions of the unactivated epochs both proceeding and following the
stimulation epochs], or allocating increased weight to activated epochs.

A fuzzy exponent, m, close to but greater than 1, tends to reduce the effects of noise.
This is significant since common SNR values for fMRI studies are 2-5[Jarm]. Cluster
algorithms that use cluster merging (eg. EvIdent® [Pizzi3]) often initialize the algorithm
with more clusters than the analyst expects in the dataset. This ensures that a better local
optimum will be found by the algorithm as the sample space is searched more
extensively. Since FCMP extends FCM, default values for FCM parameters are repeated
in Table 7.

Table 12. FCM fMRI Default Parameters

m=111t013 C =101t 40

maximuin iterations = 20 to 40 U =0.0001
Extending Spatial Context in FCMP

Additional information may be implicitly included in the FCMP functional by
considering the spatial neighbours of a sample time course. Consider the effect of

replacing the sample by a representative time course that shares both spatial proximity
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and signal similarity. Let ydenote a mapping from a given sample index i to the index of
a neighbour j which best represents the neighbourhood around sample x;. For each
sample x;, form its set of neighbours, where the neighbourhood is defined in terms of both

spatial and temporal similarity. The functional now has the form

(37) SO ViX)=20 > b, D2

veVxeX
where y(x)} is the neighbourhood (spatial) representative for sample x;. Note that there
are two additional degrees of freedom in this modification, namely:
1. the definition of a neighbourhood for a sample time course

2. the selection of a representative time course from the neighbourhood.
This alternate formulation appends a term to the FCMP objective function

K N N
(38) Jm,aF (U,V;X) =ZZu$D§k+aZF(xn,Nc(n))

k=1 n=I n=1
where F(x,,Ne(n}) is a function of sample x, and its neighbourhood N.(n).

One possible implementation of F is a weighted sum of the neighbourhood scatter matrix:

N (i)}
(39) Z JT(x=x,)=8 (N, (1))

Such an objective function is said to contain spatial and temporal terms.

98



4. FCM with Feature Partitions
Incumbent Duties in Algorithm Development
When an algorithm is developed, or extended, the content and context it contributes to
data analysis must be examined, especially with respect to its implementation and
relevance. Some general content and context questions are posed with notes pertaining to

FCMP.

f—

Is the algorithm restricted to specialized datasets? [General matrices.]

2. What is distinct/novel in the algorithm? [Encoding feature relationships.]

3. How can the algorithm be extended? [E.g. Dynamic partition weights, v (1).]

4. What implementation constraints exist? [FCMP is iterative; random
initialization.]

5. Can the algorithm be parallelized? [Yes, the distance calculations.]

6. In what sense is the algorithm optimal? [Results is intrinsic structure guided by
feature relations.] ‘

7. Can critical parameters be determined a priori? [Choice of fuzzy exponent, m,
can be guided by FCM studies on similar datasets.]

8. What parameter space region is critical for a robust analysis? [Examine each
feature partitions in isolation; combine partitions allowing different partitions to
dominate the distance metric.]

9. What data-models informed parameter selection? [Use of Pearson Correlation in
fMRI guided choice of spatial metric.]

10. Does the use of this algorithm impact experiment design? [No.]

11. What constitutes a valid benchmark for this algorithm? [Any algorithm that
partitions the dataset with or without feature relationships.]

12. Are there optimal parameters that are generalizable? [Unknown.]

13.In what sense is the algorithm, or subsequent analysis, sensitive or robust?

99
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[Random initialization, poor parameter space sampling; minimal data model.]

14. How can anomalous or spurious results be detected? [Examine validation indices
over multiple runs.]

From an engineering standpoint, developing or extending an algorithm is driven by a
concrete application of the algorithm. FCMP was developed for the spatio-temporal

analysis of fMRI data. Chapter 5 describes the fMRI datasets examined.
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5. Magnetic Resonance Imaging

Nothing exists except atoms and empty space;
everything else is opinion.
Diogenes Laertius

Magnetic resonance imaging (MRI) [Brow] [Kupe] is a non-invasive imaging modality.
The ability of MRI to contrast various soft tissues has led to new imaging applications of
the brain, abdominal organs, the musculo-skeletal system, breast, heart and blood vessels.
It is the de facto standard for biomedical imaging. Different echo sequences, magnetic
strengths, goal-specific techniques (e.g. contrast agents) and coils provide high resolution
spatial images. Functional magnetic resonance imaging (fMRI) examines blood flow
intensity changes produced by a structured stimulus. A stimulus may be any physical
change produced near, on, or in the subject. Commeon stimuli include cognitive, visual,
tactile, or auditory impressions. The stimulus is applied over an interval of time (the
activated epoch), and then the subject is allowed to rest (the unactivated epoch). Intensity
values are recorded continuously over the alternating epoch pairs. Typically active and
inactive epochs contain multiple intensity records. MRI and fMRI studies generate
voluminous amounts of data at each acquisition. A common dataset size is 60-100
megabytes. MRI and fMRI analysis tests for order and relation in the presence of

multiple noise sources with the cognizance that novel information underlies expected
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patterns. Since its commercial deployment, MRI and fMRI has become methodologies of
choice for investigating the structure of the human body and its functional behaviour
respectively. In particular, neural activation studies present challenges for both standard
pattern recognition and data analysis techniques. This chapter examines fMRI theory and
describes the datasets used in the experiments.

Nuclear Magnetic Resonance

The phenomenon of nuclear magnetic resonance (NMR) involves the interaction of static
and oscillating magnetic fields. For a volume of tissue ouiside of a magnetic field, the
spin of constituent protons are randomly distributed and yield a near null net field.
Within a static magnetic field, By, the protons precess around B,. Perpendicular to the
field, the spin orientations remain randomly distributed. Parallel to By, the coupling of
the static field and the spin orientations produces the so-called Zeeman interaction, an
energy difference between parallel and anti-parallel spins. The lower energy orientation,
parallel, has the larger proton population and is characterized as a Boltzmann
distribution. Equilibrium between the parallel and anti-parallel spins is known as the
induced magnetization M, Trradiation of an object in a static magnetic field by an

magnetic field, oscillating at precession frequency, rotates the magnetization of the object
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into the transverse field. Magnetic resonance occurs between an external magnetic field
and nuclei with non-zero magnetic moments or non-zero spin'’. Hydrogen (H)"* has spin
1/2. Hydrogen has a high gyro-magnetic ratio y and is thus sensitive to magnetic fields.

The presence of hydrogen in both blood' and fat makes imaging of in vivo tissues viable.

5.1 Image Acquisition and Noise

MRI data acquisition occurs while the subject lies in a static magnetic field generated by
a superconducting electromagnet. Currently, clinical magnetic field strengths range from
1 to 5 Tesla. The application of short radio-frequency (rf) pulses to the magnetized tissue
causes the tissue to absorb and subsequently re-emit the energy. Note that the frequency
of the rf pulse is matched to the energy difference between the spin up, parallel, and spin
down, anti-parallel, orientations. Energy absorption by the nuclei at the resonant
frequency is resonance absorption. The time between energy absorption and re-emission
is known as the relaxation time. Two main relaxation times are used to define imaging
intensities: 77 and 72. The 71, or spin-lattice relaxation, time is the time necessary for

the z component of M, to return to 63% of its original value following an tf pulse. 71

12 A non-zero magnetic moment is equivalent to spin. All nuclei having an odd atomic number or odd
atomic weight will have spin.

13 The most abundant isotope of hydrogen, 'H, accounts for 99.985% of all hydrogen.

14 Blood is composed of a liquid called plasma and suspended cells such as red and white blood cells
(erythrocytes and leukocytes) and platelets. Approximately 90% of plasma is water [Brow].
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measures the rate at which spins return to their original configuration. The 72, or spin-
spin relaxation, time is the time required for the transverse component of My to decay to
37% of its initial value via irreversible processes. The TC activation levels acquired
relate the intensities of the deoxygenated blood to the stimulated activity. Figure 16
shows the mean intensity acquired from the s05 dataset. Regions of high average
intensity appear lighter in the image.

MRI Noise

There are many compromising factors in MR imaging:

1. Echo sequences, the patterns of rf pulses applied to the subject, have associated
noises.

2. Motion artifacts are introduced through various sources. Aperiodic motion
blurs image regions containing the moving tissue. Peristaltic motion adds noise
to otherwise stationary tissue. Periodic motion generates ghost images. Flow
artifacts contort the image depending on their flow velocity.

3. Misregistration, or pixel misalignment, occurs as equipment bias drifts.

4. Radio-frequency transmitters or coils can introduce spurious signals. Magnetic
field inhomogeneities reflect, scatter and amplify spurious and legitimate
signals.

Reducing the Impact of Noise

For noise localized in the frequency domain, standard bandpass filters may be used.

Wavelets are also an effective signal representation for amelioration.

104
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Figure 16. Mean intensity image of dataset s05.

Example of single slice fMRI acquisition.
With respect to fMRI, a noise TC £ (¢) can be identified when a time-shifted copy of
itself, & (z+7), is not significantly correlated to the original TC. Therefore, a correlation
threshold pois used to eliminate noise TC. If p (E(t), £ (+T)) < po, £ (t) is purged
from the dataset. Consideration of a desired specificity and sensitivity defermine the
value of po. Another means of identifying noisy TC assumes that the TC has an
approximately uniform spectral density. A statistic SP is defined as the power in the
spectral peak divided by the average power, which is a scaled Fisher’s g statistic. A

threshold, SPy, is defined to determine which TCs are analyzed.
(40) Pr(SP>SP,)=1-[1—¢ """
Finally, noise TC can be identified by recourse to an expert who authoritatively defines

an activation paradigm. An ideal boxcar train demarcates time intervals where the
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subject is undergoing response to stimuli or is resting. Thresholding correlation
coefficients for TC based on the paradigm eliminates irrelevant TC from further

consideration.

5.2 MRI Analysis

MRI analysis is a complex and developing field. Some core concerns of analysts are now
listed. Literature on neuron activation analysis has been specifically consulted. The
following are references of MRI studies: [Bitt] [Boak] [Bran] {Briel] [Brie2] [Chen]
[Clare] [Cox2] [Fort] {Hark] {Laza] [Jackl] [Miln] [Megal] [Mega2] [Mega3] [Saval
[Shen] [Wall] [Wein]. A discussion of MRI analysis would be remiss if it did not
mention, however briefly, the biological background and several important developing
fields and concepts. Such topics as brain atlases, hemodynamic responses models, and
neural tissues are now briefly mentioned.

Viability of a General Brain Atlas

Human brains differ in size and neural composition, for example, grey and white matter,
change over time for individuals due to illness and disease. General brain models of
tissue types and functional inter-relations are being developed but are still at an early

stage and tend to be patient specific. Some, such as the Talairach-Tournoux system,
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utilize stereotaxic coordinates, which do not necessarily refer to a specific sulcal location.
Thus, an atlas for use with neural activation studies is not always available or advisable
[Cox1]. That said, the mapping of neural functions and understanding of sulci and gyri
are important auxiliary concepts with which to analyze fMRI data. As an example of
their future use, enhancement to region growing algorithms could be realized by
considering tissue-type directed growth vectors.

Tissue Topology

Another method to reduce noise considers the topological nature of biological tissues. It
assumes that no more than two types of tissue types overlap. This gives rise to 7 main
types of tissue present in a scan [Drebin] as shown in Table 13. The if absorptive and

reflective properties of the various tissues and their interfaces can augment a HR model.

Table 13. Voxel Classes

Homogeneous Heterogeneous
Voxe! Content Voxel Content
(1) air (2) air/fat
(3) fat (4) fat/tissue
(5) tissue {6) tissue/bone
(7) bone
Robust Statistics

Finally, robust statistics are used to insure analytic inferences from noise. For example,
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the Pearson correlation coefficient and its associated metrics, which provide implicit
signal normalization, are commonly used to measure similarity for neural activations.
Basic Neurology

Current biological taxonomies list 18 classes of brain tissue [Berg]. As a resource for the

reader, brain tissues related to neural activation fMRI studies are listed in Table 14.

Table 14. Brain Tissue Classes

Brain Tissue Classes Function
Brain stem Motor and sensory pathway.
Cerebellum Balance, poslure, eye movement.
Carpus callosum Message transmission from one side of the brain to the other.
Frontal lobe Abstract thought, emotion, attention, partial eye, muscle, smell.
Hypothalamus Physical reaction, sexual urge, temperature regulation, hormonal process.
Occipital lobe Reading / vision.
Parietal lobe Tactile sensation, stereo-gnosis {understanding form through touch);

proprioception (acting on internal stimulation); some visual functions.

Spinal cord Source of sensation and movement.
Temporal lobe Music, some vision, memory (vision, auditory and other),

Neuron firings are oscillatory with an individual rate of 800 Hz and a group rate at 40 Hz
[Wang]. Consideration of local neuron firing conditions may allow highly resolved

frequency filtering for future studies.

5.3 fMRI Analysis

fMRI analysis extends MRI analysis, such as consideration of tissue types and noise
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reduction, to a temporal series of MR images. One popular fMRI analysis technique is
clustering [Barr] [Bauml] [Baum2] [Baum3) [Baum4]. The main purposes of fMRI
analysis are [Frist]:

1. dentification of areas reacting to stimulation.
2. Region growing,
3. EDA for novel activations relating to stimulation paradigm.

To these ends, a variety of signal and image processing operations are marshaled. These
operations include: trend removal, temporal-based noise reduction, outlier rejection,
thresholding, fitting of statistical models, and paradigm matching. These operations
result in documentation as regions of interest, histograms, voxel assignment maps, typical
noise TC, outlier spatial locations, intensity images, TC clusters, trends, clusters, typical
TC and novel activation candidates. A discussion of the main differences between MRI
and fMRI analysis is presented and brief discussions on several of the more common
operations follows.

Hemodynamic Response Models

Consideration of both nen-homogeneous hemodynamic responses (HR) {Ford] and
acquisition-specific noise in hemodynamic response models is a formidable task. This

difficulty was previously given as justification for the use of EDA techniques, of which
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ICA has been used with some success [Duann]. The following is presented as an
example of an HR model. The HR function is modeled as A(t) where the observed values

x{t), are given as

oc

41) x(t)=J h(u)s(t—u)du

0
The noise-free response x(t) is the convolution of the hemodynamic response h(t) and an
external stimulation s(t) [Wors]. Noise remains to be included in the formula. An
example of the considerable effect of noise is shown in terms of the Pearson correlation
of activated TCs. Correlation coefficients for TCs with of 3 second scan intervals may
only be as high as 0.4 especially in relevant cortical regions. Using a correlation
threshold at that level tends to include many outliers and necessitates an augmenting
selection method for TC analysis. Filtering is a common method to reduce signal noise.
Low pass filtering, removing the low frequency components of a signal, can eliminate
interference from magnetic field inhomogeneities and rf coil noise. A high pass filter
reduces the impact of slower trends and shifts in bias. Filtering using an autoregressive
model is also used [Wors]. Filtering in the wavelet domain [Alexander] also increases

the SNR of fMRI signals.
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5.3.1 Trend Removal

Causes of trends in time series include instrument drift and patient movement such as
respiration and cardiac pulsation. Methods of dealing with drift include:

1. Identifying trendy TC by an EDA technique and removing them from the

dataset.

2. Correcting or de-trending the TC using linear or non-linear methods.
Trends are detected by examining the correlation of the TC with a straight line of unity
slope [Jarm]. If the correlation magnitude is greater than a threshold, the TC is
determined to be trendy. For a straight line L, the correlation of the TC to the line is

givenas p (7TC, L). Whenlp|> pthe TC is rejected. The threshold p ,is determined by

specifying a desired false positive rate using the student-t distribution.

(42) po=— where D={T=2)
- whnere -
* Jé+D DRF

and DRF is a dimensionality reducing factor, modifying the effective degrees of freedom.
Regions of Interest

An analyst often restricts her attention to a localized region in the dataset by defining one
or more regions of interest (ROI). fMRI allows definition of ROI corresponding to
anatomical structures. Alternately, TC that satisfy a heuristic may be examined, e.g. TCs

with activations in the 90% percentile of intensity. ROI are generated by thresholding
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intensity statistics of the TCs, for example considering only TCs with above average
mean intensity. A correlation threshold may be used if a paradigm is associated with the
dataset. ROI may also be defined by a region growing algorithm that has been seeded at
specific spatial locations. Segmentation methods also may be used to partition the image,

for example the watershed algorithm.

5.3.2 Time Course Normalization

The stimuli of fMRI studies may elicit intensity patterns that vary in magnitude and phase
depending on the nature of the stimulus, neural functionality and inter-connectedness,
tissue types, and signal path. In order to associate temporal response patterns in the
dataset that exhibit magnitude and phase variance, normalization methods are employed.
That Pearson correlation uses an implicit normalization partially explains its popularity in
analysis. A brief note of explicit normalization methods is provided for completeness.

Normalization by Subtraction: Subtract a constant value from the TC, for example, the
mean or the median. Comparison between TCs is then a baseline comparison.

Normalization by Division: Divide by median. Comparison is based on the percentage
of intensity values with respect to a baseline.

Composite Normalization: Subtract median (mean) and divide by MAD (standard
deviation). This may increase noise (decrease SNR).

Order Normalization: Rank order the 7C. Each TC is replaced by a sequence of
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integers which represent the relative magnitude order for the time instance. This process
tends to eliminate outliers.

5.4 Datasets
This study of the effectiveness of FCMP on fMRI datasets examines both synthetic and
in vivo data sets. The structure of the synthetic datasets are discussed first, followed by a

discussion on the in vivo datasets. Table 15 describes the format used to summarize the

dataset.

Table 15. Dataset Description Format

Name Dataset Name used in thesis.
Number of samples total: number in class 1 (description) : ... : numiber in class N (description)
Labels Class descriptions.
Description Salient features of data. Tmportance of study.
Source How was data generated or acquired?
Comments Additional information.

As an aid to understanding the datasets involved and the subsequent cluster analysis,
basic fMRI statistics are presented for each dataset. Descriptions of the datasets include:
mean intensity images, spatial distributions and regions of interest, intensity and
correlation histograms, typical time series, comments on noise and outliers, the activation

paradigm and the main focus of analysis with respect to the particular dataset.
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Synthetic Datasets

The following datasets were synthesized to demonstrate the feasibility of the FCMP
algorithm and to quantify its contribution to fMRI analysis.

e Synl demonstrates the spatio-temporal trade off possible with FCMP on a synthetic
fMRI dataset. By design, sample spatial coordinates belong to one of two well
separated clusters. One spatial cluster has been associated with TCs correlated to
the paradigm while the other has been associated with noise TCs.

e Syn2 demonstrates the ability and distinctiveness of region growing algorithms.
Regions of interest with spatially unique descriptors provide a means to evaluate
region growth between the algorithms.

e Syn3 demonstrates clustering in two dimensions which facilitates the direct
viewing of the clusters and cluster partitions.

o Syn4 demonstrates basic fMRI clustering on a small scale. The dataset consists of
a small number of noise TCs and TCs correlated to a stimulus paradigm.

e SynS demonstrates a fMRI dataset where a small signal is present on some of the
TCs that are correlated to the paradigm but only on the activated epochs.

e BaumNull is a null (no activation stimulus or paradigm) fMRI data acquisition
where synthetic activated TCs have been added at specific locations. BaumNull is
a hybrid dataset (part synthetic, part in vivo) and serves as a transition point for
analysis of FCMP.

Synthetic datasets were generated by M. Alexiuk. Dr. R. Baumgartner generated the

BaumNull dataset. Each synthetic dataset is now discussed.

5.4.1 Synl Data

Syn1 is a synthetic fMRI dataset consisting of two spatial regions that are each associated

with only one temporal characteristic. One region has only noise TCs. The other region
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only has TCs correlated to the activation paradigm. These TCs are denoted as degraded
or paradigm-correlated. Multiple variants of this dataset have been generated at a
specific SNR levels. The noise TCs are uniform random values in [0,1]. The Synl
dataset facilitates a controlled demonstration of feature partition interaction in terms of
signal degradation and spatial proximity since the spatial and temporal feature partitions
are independently generated and the spatial-temporal associations are correlated by
design. The degraded TCs are composed of a copy of the stimulus paradigm with
random additive noise. The spatial data is uniformly generated, with respect to radius
and angle, in two circular areas. Spatial centres, or region means, are ¢=(0.1,0.1) and
¢;=(0.9,0.9). Both regions have the same radii, r;=r,=0.1.

Synl consists of 100 noise TCs and 100 degraded TCs. FCMP uses two feature
partitions with Synl, consisting of spatial (x,y) coordinates and temporal intensities. The
activation paradigm is defined as [0101010100]. This paradigm is uniformly expanded
when the number of intensity values exceeds the number of paradigm epochs. Recall that
an epoch is either activated or unactivated and may contain multiple sampling instants. A
paradigm TC maps the stimulus to the number of sampling instants. Thus, successive
time instances may belong to the same stimulus epoch. The dataset is the concatenation
of the spatial data to the temporal data. The degraded TCs are spatially associated with

115



5. Magnetic Resonance Imaging

cy; noise TCs are spatially associated with ¢;. See Fig. 17 For spatial coordinates. Figure

18 displays typical TCs for each spatial centre.
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Figure 17. Spatial distribution of Synl TCs.
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(i) Typical TCs that are correlated to the paradigm (i} Typical TCs that are correlated to the paradigm
at SNR=10dB. at SNR=1dB.

Figure 18. Typical paradigm correlated TCs in Synl.

5.4.2 Syn2 Data

The Syn2 dataset is designed to evaluate region growing algorithms in an fMRI context.

That is, spatial regions of interest are defined and each spatial point has an associated TC.
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TCs are significantly correlated to an activation paradigm, [0101010101], and the TCs
are considered as part of the region growing process. The spatial regions used to
initialize the region growing algorithms are shown in Fig. 19 and represents a single z- or
xy-plane. Methods to generate a region of interest, or interest mask include thresholding
of intensity values or correlations in an in vivo dataset. The overal X, Y,Z, 1)

dimensions of the dataset are (100,100,1,10).

Figure 19. Syn2 ROL

5.4.3 Syn3 Data

The Syn3 synthetic dataset is used to demonstrate basic clustering principles by using
two dimensional samples. Thus, the data distribution in space and the cluster centres are
readily viewable and provide low-dimensional justification of such clustering concepts as
validation indices, objective functions, and distance measures. The data consists of Xy

coordinates of samples belonging to two circular distributions, see Fig. 20. The two

117



5. Magnetic Resonance Imaging

circular distributions are well separated in space, meaning that the distance between any
two samples in a single distribution is smaller than the distance between any two samples

in both distributions.
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Figure 20. Spatial distribution of Syn3.

This distribution corresponds fo that of the spatial
coordinates in Synl.

5.4.4 Syn4 Data

Syn4 is a synthetic fMRI dataset that has been significantly reduced, in terms of numbers
of samples, from the in vivo datasets examined in this thesis. Syn4 is used to demonstrate
basic clustering concepts, especially induced cluster hierarchy, with TCs representative of
the main TCs categories present of in vivo datasets. Syn4 consists of 5 pure noise TCs
and 5 TCs that are significantly correlated to an activation paradigm, [0101010]. The

TCs are shown in Fig. 21, (i) and (ii).
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Figure 21. Typical TCs in Synd.

5.4.5 Syn5 Data

Syn5 is a synthetic fMRI dataset that has many of the same parameters as Synl. The
dataset is composed of fifty noise TCs and fifty TCs that are degraded with respect to the
activation paradigm. Each class of TCs is associated with 2-dimensional spatial features
located in a circular radii of 0.3 with centres (0.1,0.1) and (0.9,0.9) respectively. The
number of temporal features is 100. The SNR level of the degraded TCs is 5 with respect
to the activation paradigm [0101010101]. Epoch lengths span 10 sampling instants.

The difference from the Synl dataset is that 10 degraded TCs have been modified to
include a small signal only on the activated epochs. Ten such TCs were selected with
random spatial coordinates and have had a ramp function added to their values, seen in

Fig.22 (i). A comparison between a degraded TCs with and without the ramp function is
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seen i Fig.22(ii).

(i) Ramp small signal added to activated epochs of  (ii) Comparison of degraded TCs with and without
degraded TCs. the presence of the small signal.

Figure 22. Small signals in Syn5

5.4.6 BaumNull Data

Dr. R. Baumgartner, of IBD, et al. synthesized the BaumNull dataset to demonstrate the
high typel (false positives} error rate associated with simple correlation analysis of fMRI
data [Baum4]. Two groups of TCs simulate the extreme case when TCs correlate highly
to an activation paradigm but when the groups do not correlate at all to each other. The
groups contain 46 and 26 TCs respectively and signal intensities over 120 time instants
are used. A simulated hemodynamic response used two parameter gamma functions to
generate responses to the activations in the respective TC groups. Thus, this dataset may
be considered to have two activation paradigms.

A mean intensity image for BaumNull is shown in Fig. 23. Figures 24 and 25 show the

mean intensity image after it has been thresholded at fifty and sixty percent of the
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maximum value, respectively. The elongated and convoluted regions of interest
generated by this thresholding are common in fMRI studies and correspond to the
anatomical sulci structure. When neural regions are stimulated, the maxim that spatially
proximal regions are temporally correlated must be modified to consider proximity in

terms of anatomical structure, and not simply Euclidean distance.

Figure 23. BaumNull coronal plane, z = 0. Figure 24. BaumNull thresholded intensity image.

Threshold of fifty percent maximum intensity.
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Figure 25. BaumNull thresholded intensity image.

Threshold is set at sixty percent of the maximum intensity.

Figure 26 shows the distribution of correlations throughout the BaumNull plane, z=0. It
is apparent that large numbers of noise TC, those outside of regions of interest and even

the entire brain, are significantly correlated to the activation paradigm.

[av

Figure 26, BaumNull correlation plane, z = 0,
However, the distinguishing features of these voxels is the small number of their
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neighbours that also share significant correlations to the paradigm. A correlation
histogram, shown in Fig. 27, shows the positive values of correlation. Few of the TCs in
the dataset have correlation values that would be considered significant in fields outside
of fMRI analysis, which would lie in the range [0.4, 0.8].

Basic statistics for BaumNull include: data value range: [0,1000], a mean value of
135.603, variance of 51305.7. The first stimulus paradigm is of length 12 with pattern
[000001000000].  The second stimulus paradigm is of length 12 with pattern
[000100001000]. The (X,Y,Z,T) dimensions of the dataset are (128, 128, 1, 120) with a
corresponding number of elements, 1966080.

Noise TCs lie outside of the two artificial activated regions of interest. Outliers may be
considered to be TCs outside of the ROI but that are somewhat correlated to one of the
two activation paradigms. The focus of analysis for this dataset will be the interaction of
distinct activation paradigms, not correlated to each other, in a synthetic, but typical,

fMRI dataset.
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Figure 27. Correlation histogram for BaumNull, z= 0.

5.5 In vivo Datasets

Neural activation data has been acquired from various studies performed at IBD, as well
as at external locations. A list of all in vive datasets used in this study follows.

S05 - checkered visual stimulation.
Sampledd - tactile (finger-tapping) stimulation.
Halx - Tourette's syndrome study.
For consistency in inter-data comparisons, all in vivo datasets have been scaled to

[0,1000]. Each in vive dataset is discussed in detail in the following pages.

5.5.1 S05 Data

S05 is an in vivo neural activation study acquired at IBD. The activation paradigm is
based on a checkered visual stimulation presented to the subject. Neuron activations for

a single z-plane or slice were recorded at 42 distinct time instants. The dataset is
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composed of TCs with (X,Y,Z,T) dimension of (128, 256, 1, 42). A mean intensity
image is shown in Fig. 28. The visual cortex, lower centre, and a lobe in the right hand

lower side, show high Ievels of signal intensity.

Figure 28. Mean intensity image for S05.
A correlation histogram for S05, Fig. 29, shows significant correlation values with
respect to the activation paradigm, while a correlation image, Fig. 30, highlights
correlation in the visual cortex and a proximal lobe. The correlation plane, Fig. 31,
shows the spatial locations of high correlation, indicated by lighter values, which

significantly includes the visual cortex and the aforementioned lobe.
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Figure 29. Correlation histogram for S05.

Figure 30. Correlation locations in S05. Figure 31, Correlation Plane for S05.

Locations with Pearson Correlation
greater than 0.3 are shown.

Thresholding the correlation plane, Figs. 32 and 33, generates regions of interest, spatial
regions where all voxels exhibit a significant level of correlation to the activation
paradigm. Typical TCs with above average intensity values for SO5 are seen in Fig. 34.

There is obviously high levels of noise present.
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Figure 32. Thresholded correlation plane 505, Figure 33. Intensity thresholded ROI of S05.

FPearson Correlation threshold is set at Ty =0.2.  Threshold is sixty percent of the maximum intensity.
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Figure 34. Typical TCs in S05 with greater than average intensity.
Figure 35, which displays typical TCs with above average correlation values for S05, also
indicates the presence of high noise levels. Of interest in some fMRI analysis is the
variability, or intensity variance, of blood flow as indicated by intensity values, see Fig.
36. This variance may correspond to the repeating pattern of the stimulation. Changes in

variance between activated and unactivated epoch pairs can indicate learning mechanism
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in the neural activations, such as anticipation.
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Figure 35. Typical TCs in 805 with above average correlation to paradigm.

Figure 36. Variance of intensity for 805.
The (X,Y,Z,T) dimensionality of the dataset is (128, 256, 1, 42) and the number of
elements is 1376256. The activation paradigm is 010110. When considering noise and

outliers in the SO5 dataset, note that significantly correlated values are found outside of
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the visual cortex. The focus of analysis for S05 is the visual cortex and the adjacent lobe.

5.5.2 Sampledd Data

Sample4d is a neural activation study based on a motor stimulation, finger tapping. It
was acquired at IBD and is different from SO5 in that sample4d contains multiple Z
slices. A mean intensity image, for the xy-plane z=0, is given in Fig. 37. Only the
epochs corresponding to active epochs were considered for this rendering. Regions of
interest due to intensity variance are shown as light patches in Fig. 38. A correlation
image, Fig. 39, of sample4d indicates one large ROI at location (60,200). A correlation
histogram for sampledd, Fig. 40, is comparable to the correlation histogram for S05.
Basic statistics for the intensity values include a range of [0,1000], a mean value of
56.0085, variance of 14327.4. The stimulus paradigm is [0101010101010]. The
(X,Y,Z,T) data dimension is (128, 128, 4, 110) and the number of elements is 7208960.
Noise and outliers in the dataset should be considered as in SOS5, namely, those samples
with significant mean intensity, high intensity variance, or high correlation values that are

spatially isolated.
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Figure 37. Mean intensity for active epochs for

sampledd, z = 0.
R UL
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Figure 39. Sampledd correlation plane. Figure 40. Sampledd correlation histogram.

5.5.3 Halx Data

Halx is an in vivo dataset used at IBD that was acquired in a Tourette's syndrome study.
The dataset is composed of fMRI TCs with (X,Y,Z,T) dimension (128, 128, 16, 128).
The study poses challenging problems to analysis due to the variable, context-dependent
nature in which Tourette's syndrome is manifested, namely tics. Persons with tics
exhibit sudden, brief and isolated movements, and experience noises or sensations that
are involuntary. The most common cause of tics is Tourette's syndrome, which may also
be related to behavioural idiosyncrasies. Tics are variable in intensity, location and in
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their susceptibility to voluntary suppression. Tics increase with excitement and decrease
with distraction. While most cases of Tourette's syndrome are genetic, it can also be
caused by neuroleptics, head trauma, encephalitis and cocaine abuse. Mean intensity
images for the Halx dataset are given in Figs. 41, 42 and 43 for xy-planes z=0, z=5 and
z=14 respectively. These planes were chosen to sample the different cross-sections
acquired and the ROI associated with each plane. Figure 44 shows the intensity variance
for the xy-plane z=14. Note the highly localized, apparently symmetric structure of the

ROL

w0

. ) ) Figure 42. Active mean intensity for Halx, 7 = 5.
Figure 41. Active mean intensity for Halx, z =0, 8 vJ z

A correlation image for Halx is given in Fig. 45. Of note is the dark patterns apparent
around locations (60,20) and (60,80). The correlation histogram, Fig. 46, for Halx

shows that the this dataset does not have as many highly correlated TCs as did S05 and
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sampledd.

Fd 90 L] L] ™w

Figure 43. Halx active mear intensity plane, z = 14. Figure 44. Halx active variance intensity plane, 7 =
14,
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Figure 45. Halx, correlation plane for z = 14, Figure 46. Halx, correlation histogram for z= 4.

Typical TCs in the Halx dataset are seen in Fig. 47, where the TCs have high average
intensity, and in Fig. 48, where the TCs have high relatively correlation. As mentioned,

the (X,Y,Z,T) data dimension is (128, 256, 16, 110). The paradigm stimulus for this
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Figure 47. Typical high intensity TCs in Halx.

EDA and fMRI

Figure 48. Typical high correlation TCs in Halx.
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Neural activation studies examine the spatial regions (volume elements or voxels)

associated with paradigm-correlated TCs. Regions of interest are defined in space for

time sequences of importance. Such a designation increases the importance of other

spatially proximal TCs.

While clustering algorithms define centroids, they can also

define spatial partitions on the fMRI images, using the cluster membership values as

voxel memberships in various partitions.
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Test everything.
Hold on to the good.
1 Thessalonians 5:21

Since the scope of interest in fMRI analysis can vary, a wide variety of algorithms have
been developed to cover niche applications. The ability of the algorithm to address noise
in the dataset and to elicit meaningful relations from the data are fundamental
requirements for each niche. When developing an algorithm for a novel application, the
existing knowledge base of pattern recognition techniques is examined, as a rule. Pattern
recognition experts do so because, as Huber stated, “there is no panacea in data
analysis”. This battery, or salvo, approach to problem solving proceeds despite the
foreknowledge that many algorithms in the knowledge base have limiting weaknesses.
However, each algorithm failure adds a point on a receiver operator characteristic (ROC)
curve for the problem that focuses both the adaptation of existing algorithms and new
development. In order to compose a set of benchmarks fo; FCMP, a number of basic
algorithms, industry standards and algorithms noted in recent Hterature have been
selected, namely:

Basic Benchmarks: Cluster Merging {Romes] and FCM [Bezdi]

Industry Standards:  Evldent® [Jarm]
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Academic and Research Literature:
CHAMELEON [Kary] and
Fuzzy Seeded Region Growing (FSRG) [Viva).

Other notable algorithms include: model based fMRI approaches such as: AENI [Cox2]

[Cox3}, Statistical Parametric Mapping (SPM) [Fris1], and Medx [Boak]; and model free

approaches such as algorithms in the FMRIB Software Library (FSL) [Smith]. Each

benchmark algorithm is examined in the following pages. Table 16 details a template

which is used to summarize benchmark characteristics.

Table 16. Benchmark Summary Template

Description A characterization of the algorithm.

Strengths Particular advantages of the algorithm for a specific task or in
general,

Weaknesses Particular dis-advantages of the algorithm for a specific task or in
general.

Goal The heuristic or objective function that guides the algorithm to

Orientation convergence and completion.

Degrees of Algorithmic degrees of freedom. A description of the parameter

Freedom space of the algorithm.

An example use of the algorithm is provided for each benchmark algorithm. Related

notes and discussions follow in each section. For algorithms where it is appropriate, a

synthetic fMRI dataset, Syn4, is used. It consists of 10 samples: 5 noise, and 5 signals
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that are significantly correlated to a boxcar stimulus paradigm. To demonstrate algorithm
use, several measures are computed, among them the mean square error (MSE) and
Pearson correlation of the centroids to the paradigm. For EvIdent®, results are shown for
s05, an in vivo dataset examined in Chapter 7. To demonstrate region growing on a small
scale, another dataset, Syn2, is used. Syn2 is a synthetic fMRI dataset with (X,Y,Z,T)
dimensions of (100,100, 1, 20). In the XY plane, four distinct regions are designated as
ROI, being correlated to a stimulus paradigm [0101010101]. Regions represent spatially
connected, temporally similar TCs. All other TCs in the dataset, in regions outside those
already defined, are noise TCs. FSRG and region growing processes, which utilize FCM
and FCMP, are demonstrated on Syn2. The spatial characteristics of the ROIs highlight

the abilities of the different region growing processes.

6.1 FCM

FCM, as outlined in Chapter 3, is a robust algorithm well suited to unsupervised learning
problems. FCM" is used as a benchmark due to its successful history in discovering data
structure, its minimal mathematical model, the variety of validation methods for its
results, and its ease of adaptability to external constraints such as dependencies in the

data. Although non-convex regions pose problems for vanilla FCM, it is a standard

15 When FCM is restricted to the standard spherical clusters, as it is in this thesis, the
algorithm is referred to as vanilla FCM.
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benchmark in pattern recognition. Recall that FCM can be considered a specialization of
FCMP where the following algorithmic degrees of freedom are fixed: only one feature
partition exists, and the Euclidean metric is used. Table 17 provides details on FCM.
Fig. 49 shows the distribution of samples for Syn3. Centroids are generated by FCM for
C=2,3,4 and 10 respectively and listed in Table 18. The VCV matrix for the dataset,
shown in Fig. 50 , displays two dark regions along the diagonal, indicating two inherent
clusters. Validation indices are another means to determine the most representative

number of clusters. These indices are shown in Fig. 51 and indicate two clusters.

Table I7. FCM Algorithm Summary

Description A clustering algorithm which defines C spherical clusters in a dataset
and assigns degrees of membership for each sample in every cluster.

Strengths Always finds C clusters. Iterative convergence often provides a fairly
representative partition after a small number of iterations.

Weaknesses The optimal value of C is unknown a priori. Use of validation
indices to confirm the optimal value of C are to some extent dataset-
dependent.  Clusters are always spheres. Generally, only the
Euclidean metric is used.

Goal Maximizes the inter-cluster variance while minimizing the intra-
Orientation cluster variance.

Degrees of Number of clusters; fuzzy exponent; initialization.

Freedom
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Figure 49, Sample distribution of dataset Syn3.

Table 18. FCM Centroid Locations for Syn3

C Centroid Locations
9 (0.175335 , 0.130495), (0.821875, 0.814863)
3 (0.740489, 0.72867), (0.1523, 0.106273 ), (0.743041, 0.73138)
4 (0.821892, 0.81488 ), (0.821854, 0.81484 ), (0.175258 , 0.130414), (0.175417, 0.13058 )
(0.780952, 0.771524), (0.782082, 0.772724), (0.157706, 0.111915), (0.157709, 0.111918), (0.781896, 0.772527),
10 (0.157709, 0.111919), (0.782481, 0.773148), (0.782534, 0.773204), (0.782078, 0.77272 ), (0.157715 0.111925)

Validation indices for clusters generated by FCM with C=2,3...20 are shown in Fig. 51.

The indices indicate from 2 to 7 clusters in the dataset, determined by points of

diminishing returns for each index over the range of C values.
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Figure 50. VCV matrix associated for dataset 45 L ] ;
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Two intrinsic clusters are indicated.
Figure 51. Validation indices for Syn3.
The indices PC, PE, FS and XB have been
normalized to [-2,2],

6.2 Basic Cluster Merging

Cluster merging considers the proximity between single samples, a sample and a group,
and groups of samples. Samples and groups of samples are merged until the total number
of desired clusters is met. This method was not discussed in Chapter 4 on clustering
since the algorithm is straightforward. A distance matrix is defined over the sample
space. Proximal samples are merged and their centroid is computed which replaces their

respective entries, rows and columns, in the original distance matrix. The algorithmic
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degrees of freedom of this basic hierarchical methed are: choice of metric; centroid
definition. Adding new samples to the cluster requires that the cluster centroids be
updated. Hard cluster memberships are produced but thresholds are easily set to reveal
partitions for an arbitrary number of clusters. Table 19 provides details on the

benchmark basic cluster merging.

Table 19. Basic Cluster Merge Algorithm Summary

Description The dataset is merged sample by sample using a sample-centroid
distance. Centroid definitions are updated after each new merger.

Strengths After merging all samples, the cluster structure for an arbitrary number
of clusters, C, is determined simply by appropriate thresholding the
induced hierarchy. An added benefit for analysis is that the order in
which samples are merged is preserved by the algorithm.

Weaknesses |Hard sample memberships.

Goal Merge the sample closest to any centroid with the cluster of that
Orientation centroid. Update the centroid definition. Continue until all samples
are merged or until a specified number of clusters is achieved.

Degrees of Centroid definition; metric.

Freedom

6.3 Evldent®

Evldent®, from EVent IDENTification [Jarm], is a current research and industry tool for
the EDA of fMRI data. It is introduced in Chapter 7 as a state of the art algorithm for
fMRI analysis but is included here in order to consolidate the discussion of benchmark

algorithms. Evldent® is a model-free, 3D, EDA application that locates regions of
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activation, and detects artefacts and trends. It was developed at the National Research -
Council, Institute for Biodiagnostics (NRC-IBD) and has found acceptance in the
research community. Numerous publications [Baum?2] [Jarm] [Pizzi2] attest to its
benefits. The featured analysis tool associated with EvIdent® is known as Exploring
Regions of Interest with Cluster Analysis (EROICA) [Jarm]. EROICA is a monolithic
algorithm which utilizes dataset-specific statistical pre-processing of the TCs. Such pre-
processing tasks as rejecting outliers and noisy time courses sometimes eliminates 95%
of the original TCs. This data-screening significantly reduces execution time. Fig. 52
shows a screen shot of EvIdent® after a dataset has been clustered with EROICA. Table
20 provides details on the benchmark Evlident®.

Table 20. Evident® Algorithm Summary

Description FCM clustering is augmented by a complex of statistic-based pre-
processing heuristics which reduce noise and speed execution.

Strengths Trendy samples removed. Fast execution time. Industry acceptance.

Weaknesses |Removes samples. Initial results can have significant false positive
rates.

Goal Remove trends; remove noise; produce cluster analysis on remaining
Orientation  |data.

Degrees of Preprocessing parameters. FCM parameters. EROICA parameters.

Freedom
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Figure 52. Evidemt® display in Scopira.

Default EROICA settings were used to generate these results from the s05 dataset.

6.4 CHAMELEON
CHAMELEON [Kary] is a hyper-graph partitioning algorithm that uses a dynamic

cluster model. Karypis notes that existing hierarchical methods use static models or do
not take into account idiosyncrasies of individual clusters. Clusters are idiosyncratic
when they have unique shapes and size with respect to other clusters in the dataset
representation. He suggests that a dynamic method which considers how distances, and
nearest neighbours groupings, change as the algorithm converges, will capture such

cluster uniqueness. The CHAMELEON approach consists of iteratively comparing
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clusters C; and C; in terms of their relative interconnectivity, R/, and their relative
closeness, RC. Table 21 provides details on the benchmark CHAMELEON.

Graph Theory Background

CHAMELEON is designed to partition hyper-graphs. A hypergraph is a graph where
edges are shared by two or more nodes (vertices); both the edges and vertices may be
weighted. The min-cut bisector of a graph is the minimum sum of edge-weights cut
when the graph is partitioned into two sub-graphs and is used to define RJ and RC.

A graph is defined by how individual TCs relate to each other. The CHAMELEON
algorithm was designed for use with sparse graphs in fields such as very large scale
integrated (VLSI) circuit design and theoretical computer science. These sparse graphs
do not arise naturally in fMRI studies but may be constructed artificially as follows. A
parameter k is introduced which limits the definition of adjacency for TCs. This limit

constrains the topology to be sparse.
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Table 21. CHAMELEON Algorithm Summary

Description A heuristic based recursive partitioning algorithm which utilizes a
dynamic cluster model.

Strengths A dynamic cluster model has demonstrated the ability to characterize
idiosyncratic cluster structure.

Weaknesses There are many parameters.

Goal Partition the dataset using a recursive splitting and agglomeration of
Orientation the samples using graph theoretic definitions of interconnectedness
and closeness.

Degrees of CHAMELEON parameters.

Freedom

The cliquish distance matrix (which relates each sample to every other) is replaced by a
k-nearest neighbour distance matrix which is comparable to those in circuit design. Thus,
a comparison between FCMP and CHAMELEON considers the use of e-tolerant metrics,
such as

d_{x,y)=0,ifd(x,y)<e
d_(x,y)=d(x,y),otherwise

(43)
where d is a metric. In this way, the distance matrix commonly used in clustering is
replaced by a sparser matrix. The FCMP generalized metric is used to compute a sparse

version of the inter-sample distance matrix dm. This matrix is thresholded such that each

sample is connected only to its K nearest neighbours, and is denoted dmy,,. Thus, the
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nearest neighbour e-tolerant metric is

d (x,y)=d,, (x,y),if xand yare nearest neighbours

44
(44) d_{(x,y)=0,otherwise

CHAMELEON then recursively splits the dataset into sub-clusters. Fragmented sub-
clusters are merged based on RC and RI thresholds. Readers interested in details on the
precise effects of CHAMELEON parameters are advised to consult [Kary]. The
following example shows results of CHAMELEON analysis on the Syn3 dataset.
Typical parameters used include: 10 desired clusters, separate threshold consideration in
merge mode, closeness threshold 0.4, connectivity threshold 0.4, number of nearest
neighbours 3, Euclidean metric, minimum cluster size in splitting phase 5. Due to the
heuristiés involved in both the CHAMELEON algorithm and the current Scopira
interface for fMRI analysis, the desired number of clusters is not always achieved. Eight
clusters were defined by the algorithm with the clusters containing

[85,10,7,15,19,6,30,28] samples respectively.

6.5 Fuzzy Seeded Region Growing

FSRG is a spatio-temporal, data-driven post-processing operation designed to enhance
the structural boundaries of activated regions. Fuzzy seeded region growing (FSRG) is

one of the few methods which incorporates knowledge of spatial proximity between TCs.
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This enhancement is gained without the cost of adding false positives or outliers to the
region of interest. Table 22 details the FSRG algorithm.,

FSRG incorporates this information in a two stage process. Stage 1 of FSRG is the actual
region growing where seeds are augmented into robust activation regions using spatio-
temporal considerations. The second stage produces fuzzy memberships of the samples
in the grown regions with respect to the average TC of the region. This fuzzy

membership provides a method to view the centre of the activated region using activation

similarity.
Table 22. Fuzzy Seeded Region Growing Algorithm Summary

Description Region growing in 3d space based on temporal similarity and spatial
proximity.

Strengths Considers multiple domains (spatial and temporal) to provide a better

overall representation of the dataset.

Weaknesses Regions must be seeded by an independent method before they may be

grown.

Goal Grow regions of temporally similar samples based on heuristics for
Orientation growth size and direction.

Degrees of Regions seeds. Growth direction and size heuristics. Temporal
Freedom similarity metric. Spatial distance metric.

Figure 53 shows the initial seed regions and Fig. 54 shows the augmented regions after

FSRG has been applied. Note that the mean TC to which candidate voxels are considered
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changes as TCs are added to the FSRG RO

Figure 53. FSRG seed points. Figure 54. ROI generated by FSRG.

Seed points to left were used.

A possible variant of region growing is noted here with a region growing process that
involves FCMP.

Region Growing Variant

Region growing methods require a seed, or sample, which serves as the initial point for a
collection of samples. A region representative is similar to a cluster centroid; it is a
sample used to characterize the region. A region descriptor is any value or statistic that
characterizes a two dimensional, three dimensional, region such as the Euler number or

chain code for a region. Region growing accuracy for fMRI may be defined as:
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o Regions that correspond to anatomical components.
® Regions that supply important information to the researcher such as ROL
o Regions that meet the expectations of an expert or gold standard.

Alternate heuristic criteria. BE.g. spatially proximal, temporally-similar TCs should

be clustered together.

Region Growing using FCMP

In order to compare FSRG with FCMP, it is necessary to formulate a region process that

involves the characteristics of FCMP with respect to its feature partition integration,

Table 23 outlines such a process.

Table 23, Region Growing with FCMP

Description FCMP initializes seed voxels. Regions are grown based on a spatially-
ordered temporal similarity.

Strengths Spatial ordering of temporal information discovers local formations.

Weaknesses Computation associated with clustering is incurred before regions are
grown.

Goal Grow spatial regions of temporally similar voxels.

Orientation

Degrees of Temporal and spatial metrics. Region growing parameters such as

Freedom neighbourhood connectedness.

The robustness of region growing algorithms may be defined as the degree to which the

regions do not significantly change as TC features vary slightly. Robustness could be

measured in terms of SNR of the TCs to the stimulus paradigm. Besides using FCM

centroids as seeds, one may generate seeds by thresholding the mean image intensity.
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Common pre-processing includes mathematical morphology, and image filters (high,
low, Sobel, median) [Gonz]. Region growing rules may be diverse. A dynamic region
growing heuristic may be defined where growing occurs only along the strongest path
from origin to edge. This method should map out sulci with correlated activations.

The basic steps to region growing after FCMP are:

I. Rules to generate neighbourhoods.
2. Similarity measure used in generating neighbourhoods.
3. Distance metric used for maximum radius of neighbourhood.

Neighbourhoed Definition
A priori regions may be considered for potential sample substitutes. For example, a
polygon may be used, samples within a maximum radii may be considered, or a region
may be grown dynamically until a certain number of samples have accumulated. Let
N.(n) be the neighbourhood of sample x,, i.e.

(45) Ne(n)={xjiS(x“,xj)>Ts/\d(xn,x}.)<Td}

where d(°,°) is a distance measure, Ts is the similarity threshold, Tyis a distance

threshold.

(46) [IN, (n)][> T
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Summary

This completes an examination of the benchmark algorithms used to quantify and qualify
the distinct contributions made by FCMP to fMRI data analysis. The software
implementing the algorithms, library interfaces, data /O, synthetic fMRI dataset
generation, and related utilities was written in C++ as an application specific software kit
extension fo the Scopira framework [Demk]. The Scopira framework is available under

the GNU Public License (GPL) from www.scopira.org.
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No amount of experimentation can ever prove me If your results need a statistician then
right; a single experiment can prove me wrong. you should design a better experiment.

Albert Einstein Ernest Rutherford

Ten experiments examine the use of FCMP on fMRI datasets and assume familiarity with
TC analysis [Cox2] [Pres] [Royer] and fMRI, as per Chapter 5. Experiment structure
consists of: a general hypothesis, one or more datasets, a main algorithm with a set of
parameter values, one or more benchmark algorithms, with associated parameter values,
and a set of performance measurements. In all cases, FCMP is the main algorithm,
although in some experiments, such as region growing, it is followed by additional steps.
Thus, each experiment quantifies FCMP performance against one or more benchmarks,
using one or more datasets, over a defined set of parameters. Comments follow on the
composition of the experiments.

Choice of Benchmark

Benchmarks represent basic and well understood algorithms, de JSacto industry standards,
and algorithms of note in recent literature and are listed in Table 24. Some experiments
compare FCMP with a single benchmark with respect to FCMP while a salvo approach,
using many benchmarks, is also used. Evldent®, as an industry standard for fMRI

analysis, is a particularly important benchmark. Recall that FCM using only temporal
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features is the most common current use of {MRI data.

Table 24. Summary of Algorithms

Acronym Algorithm

FCM Fuzzy C-Means

FCMP Fuzzy C-Means with Feature Partitions
CHAMELEON CHAMELEON

Cluster Merging Basic cluster merging

Evldent® Event Identification

FSRG Fuzzy seeded region growing

EROICA Exploring Regions of Interest using Cluster Analysis
Choice of Datasets

A variety of synthetic and in vivo datasets, see Table 25, are used to compare the efficacy
and robustness of FCMP and the benchmarks. Synthetic datasets were designed to
accentuate differences between algorithms through use of somewhat idiosyncratic
structures, a range of mnoise levels, partially correlated feature npartitions, and
superimposed, unanticipated novelty. In vivo datasets provide industry-norm data

acquisitions with concomitant noise types and levels.
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Table 25. Summary of Datasets

Name Type Comments
Synl Synthetic  |Dataset with correlated features.
Syn2 Synthetic  |Data to demonstrate region growing.
Syn3 Synthetic  |Data to demonstrate basic clustering concepts.
Synd Synthetic  |Small scale fMRI data.
SynS Synthetic  |Small, unanticipated signal on the activated epochs.
BaumNull Hybrid Gamma function activation injected into a null fMRI
scan.
S05 Invivo Checkered visual stimulus.
Sampledd In vivo Tactile stimulus.
Halx In vivo Tourette's syndrome study.

Choice of Parameters

Parameters constitute degrees of freedom for the experiment that may constrain the
optimization of the algorithm. This is significant when parameter optimization tends to
be dataset-specific. Exhaustive examination of parameter-spaces is rarely feasible and
extends far beyond the thesis scope. Limiting parameter evaluations does have the
benefit of simplifying the variables in the investigation. Justification for the parameters
evaluated is given in each experiment synopsis. Details on algorithm parameters are

given in Chapter 4 for FCMP and Chapter 6 for the benchmarks.
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Experiment Synopsis
Each experiment is characterized by its hypothesis. In order to provide a consistent
structure for experiment synopses, a common table format is used, see Table 26. Each
experiment augments its synopsis with further relevant details, and introduces functions,
statistics, and plots requisite for interpretation of the experiment results.

Table 26. Experiment Synopsis Format

Experiment Component Description

Name Uniquely describes the experiment in the thesis and is used to relate the
description with the results and accompanying figures and tables.

Description Adds details as to method, dataset, and algorithm parameters.

Independent Variables List of the experiment factors, typically the parameters used and any
preprocessing. Details the parameter sampling grid, if one was used,

Dependent Variables List of dependent measurements of performance measurements.

Hypothesis Postulates an expected outcome of the experiment.

Main algorithm Details any auxiliary processing used with FECMP.,

Benchmarks List of algorithms used for comparative purposes to FCMP.

Datasets List of datasets used.

Validation Provides an explanation or interpretation of the performance measures with

respect to the experiment. Fixes the means by which different algorithms are
to be compared,

Tables 27 lists the experiments conducted in this thesis. Detailed experiment descriptions

are provided sequentially in this chapter.
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Table 27. Summnary of Experiments

Index Datasets Benchmarks Comments

Synl FCM Concept partition with respect to various SNR levels.
1

Syn! Syn3 FCM Utility of validation indices: PC,PE,FS,XB, as well as
2 HCM metrics.

Synl Syn3 FCM Utility of VCV matrix for determining the number of

BaumNull inirinsic clusters.
3 in vivo

S05 FCM Optimal partitien weights with respect to validation
4 Sampledd indices on in vivo datasets.

Synl Syn2 Syn3 | Cluster Merging | Examination of induced cluster hierarchy.
5 [s05 CHAMELEON

Syn2 BaumNuli |Evident® Region definition test the algorithm robusiness with
6 in vivo respect to outliers and spatial distribution metrics.

Syn2 Invivo ESRG Region growing based on TC sceds generated by FCM,
7 EvIdent® FCMP and global statistics.

Invivo Evldent® Activated epochs have increased weight and a separate
8 partition in the clustering process.

Syn5 FCM Test of ability to detect novelty, eg of small signals on
9 Evident® activated epochs.

In vivo Evldent® Bridge voxels define global thresholds for fMRI
10 FSRG datasets.

Discussion of the experiment results conforms to the following format:

Executive Summary: A concise rendering of experiment significance.

Contribution: Components of original work are noted.

Overview: Extends the experiment synopsis.

Validation:

Describes the method by which the experiment results are evaluated,

confirming or countering the hypothesis. It may also impose a caveat on interpretation of
the results.

Discussion: Experiment results, such as notes, tables and figures, are integrated,
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The order of the experiment results are:
(1) Concept Partition, (2) Validation Indices, (3) Utility of VCV,
(4) Optimal Partitions, (5) Induced Hierarchy, (6) Region Definition,
(7) Region Growing, (8) Activated Epochs, (9) Novelty Detection, (10) Bridge Voxels.

Generally, results for a single experiment are nested in the following structure:
e According to dataset, with order: focus, synthetic, hybrid, in vivo.
¢ According to algorithm, with order: FCMP, benchmarks.

e According to algorithm parameter values, with order: increasing resolution or
specificity.

As a rule, in depth details and analysis are provided for only one dataset per experiment,
the focus item above, while results for other datasets are summarized in a few sentences.
Comments that extend beyond a single experiment are noted at the end of this chapter.

Experiments are now discussed in turn.

7.1 Concept Partitions

The concept partition experiment, see Table 28, examines Synl, a synthesized fMRI
dataset where spatial features form two distinct clusters. Each spatial cluster corresponds
to a specific set of TCs. One set of TCs are pure noise while the other is composed of
TCs that are correlated to the paradigm at a specific SNR level.

Executive Summary At high SNR levels spatial and temporal features can, individually,

discriminate the two classes of samples. Integrating both types of features in FCMP
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marginally enhances centroid-paradigm MSE and correlation. However, as SNR levels
decreased, an optimal feature partition integration of the spatial and temporal features
was observed.

Contribution An optimal feature partition integration, [ vs v4] = [0.1, 0.9], was found
for FCMP, as measured by MSE and the centroid-paradigm correlation.

Overview This experiment examines a parameterized synthetic dataset, Synl, over a
range of SNR values: {50,30,20,10,5,2,1}. See Fig. 55 for typical TCs.

Validation MSE and correlation of the centroids are compared to the paradigm.

Discussion

Syn1 Results Several expected trends were confirmed by this experiment. As parameter
C increases, the overall MSE decreases, regardless of SNR for the correlated TCs and the
spatial weight vs. As the noise in the dataset increases, the minimum MSE of the
resulting centroids increases. However, for an increase in the number of clusters, both
FCM and FCMP are more likely to generate additional noise clusters. The following
relation is noted between SNR, MSE and vs: as v s—0 the MSE depends increasingly
on the SNR. That is, TCs with higher temporal SNR have lower MSE for the same

values of vg.
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Table 28. Concept Partition Synopsis

Experiment Description
Component
Index: 1 Coneept partition.
Comment For the synthetic dataset described above, how does FCMP compare to FCM over a
range of SNR values?
Independent SNR value of degraded TCs {2,5,10,20,30,40}.
Variables Number of samples in the two clusters { 100}.
Spatial distance between spatial cluster centres {1).
Metric applied to each partition {Euclidean, Pearson distance).
Weight applied to each partition {0, 0.1, 0.9, 1.0}.
Dependent The mean square error (MSE) of the centroid from the cluster of degraded TCs to
Variables the stimulus paradigm. Same as above but using the Pearson Correlation of the
centroid {o paradigm.
Hypothesis FCMP will achieve a lower MSE and a higher correlation,
Main algorithm |FCMP
Benchmarks [FCM
Datasets Synl
Validation Minimum MSE of centroid to paradigm. Maximum correlation of centroid to
paradigm.

As reliance on the low noise feature partition is increased, that is v s— 1, MSE decreases.

This occurred for almost all cases; for the synthetic dataset at low SNR, a local optima

was noted. At this combination of feature partitions the incorporation of degraded

signals is beneficial. This inflection point, against the general trend of decreasing MSE

for increasing Vs, was noted for low SNR and occurred at v s=0.9 as shown in Fig. 56.

Significantly, a range of SNR values exhibit this inflection and v =0.9 seems optimal for
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this particular dataset and feature partitions. The slope of the trends in Fig. 56 suggest a

critical SNR value at which v shas a significant ameliorative effect, 2-5 SNR.
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Figure 55. TC in Synl,

top) paradigm TC. middle} degraded TCs.

bottom) noisy TCs.
14 S S—
RIUENSEY
- BNRAO
s GANIEID
s ol - SRS
» —e— SNRLbL
- R ounl- 10 |5 24
.
—
L e
‘-\““‘\.5,
“\'N.
v.ef- T
—
b7 T,
« T
nal e
S
e
I SNR
“m\wl‘ decreasing
- 'y . —
——— S
*“'—'“:‘—"M"‘%&;-"—H_’—&_. e, ~ — o
. - m— R amd
. . iy L
D o.8 oas Do vos )

Spatial Welght Valye

Figure 56. Partition weights vs MSE,

159



7. Experiments and Results

7.2 Validation Indices

Chapter 4 introduced several cluster validation indices. We now determine their
application with respect to fMRI datasets, see Table 29. Synthetic and in vivo datasets
are examined.

Executive Summary Validation indices are used to compute the optimal number of
clusters in an fMRI dataset. The Xie-Beni index, XB, is shown to be most efficacious at
indicating intrinsic structure.

Contribution Validation indices are evaluated on FCMP centroids of fMRI data,

Overview The utility of validation indices in conjunction with FCMP is examined on
fMRI datasets. The Xie-Beni index, which has shown most potential for validation of
general data with FCM, also shows the most potential with FCMP and fMRI data.

Validation The number of clusters indicated by the validation index is compared to a

gold standard or to the designed structure of the synthetic datasets.

Discussion

For each dataset, plots of the validation indices, {PE, PC, PX, FS, XB}, are presented for

different number of clusters and different feature partitions.
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Table 29. Validation Indices Synopsis

Experiment Description
Component
Index: 2 |Validation Indices
Comment |Interpret how the various validation indices should be used on fMRI datasets. Determine
the relation of clustering algorithms to validation indices generally.
Independent |FCM parameters, FCMP parameters,
Variables
Dependent | Validation indices: FS, PC, PE, PX, XB.
Variables
Hypothesis | The commonly uscd set of FCM validation indices are not general enough to give
consistent resuits for both synthetic and in vivo JMRI datasets.
Main FCMP
algorithm
Benchmarks | FCM
Datasets |Syn!, Syn3.
Validation | Validation index corresponds to an expert opinion {or gold standard) relating to the data.

Synl Results As the SNR between the paradigm prototype and the correlated TCs

decreased, the validation indices diverged in their agreement as to the

intrinsic structure

(number of clusters) in the dataset. XB was the preferred index and was most consistent

with respect to changes in SNR.

Syn3 Results For the simple two cluster structure in Syn3, all validation indices

performed well and correctly indicated the presence of two clusters.
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7.3 Visual Cluster Validity

The visual cluster validity (VCV) [Hath2] index is an indicator of data structure. By first
sorting the samples based on their cluster assignment, a matrix of all inter-sample
relations reveals dataset structure. The experiment is outlined in Table 30.

Executive Summary The VCV index displays intrinsic cluster structure and is
compared to other validation indices. The VCV index corresponds well to gold standard
clusters.

Contribution Evaluation of VCV on FCMP clusters of fMRI data.

Overview The VCV index uses sorted, inter-sample relations to visually represent data
structure.

Validation Correspondence of the VCV index to gold standard cluster structures.
Discussion

Basic pre-processing operations reduce the number of TCs under consideration.

Thresholds for average intensity and correlation to a stimulus paradigm are used.
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Table 30. VCV Synopsis

Experiment Description
Component
Index: 3 | Visual cluster validity.
Comment |Determine the effectiveness of the VCV index for clustering fMRI data.
Independent |FCM, FCMP parameters.
Variables
Dependent |VCV index,
Variables
Hypothesis [The VCV index detecis the intrinsic data structure for FMCP centroids more accurately
than for FCM centroids (since the FCM centroids ignore the spatial features).
Main FCMP
algorithm
Benchmarks |[FCM
Datasets Syn3, BaumNull, in vivo.
Validation |Correspondence of the data structure as suggested by the VCV index and the parameters
used to generate the synthetic data.

Figure 57. VCV mairix for two distinct clusters.

Dark regions on diagonal indicate two inherent clusters.

Thresholds for average intensity are set as percentages of the maximum intensity in the

dataset. Thresholds for TC correlation are set to select only those TCs with marginal and
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significant correlation. The number of samples in SO5 remaining after intensity and
correlation thresholding are shown in Tables 31.

For each reduced dataset, two VCV matrices are computed, using FCM and FCMP
centroids respectively, and the number of inherent clusters determined by heuristics.
Recall that, unlike other validation indices, the VCV index is computed once per cluster
algorithm, usually with a large number of clusters (20).

S05 Results Figures 58 and 59 show the VCV ’matrix for intensity thresholded samples
where the initial centroids were defined using FCM and FCMP respectively. Figures 60
and 61 show the VCV matrix for correlation thresholded samples with initial centroids
were defined using FCM and FCMP.

FCM Results Intensity thresholds produced consistent VCV indicators for two clusters,
of unequal sizes, over all threshold values. Correlation thresholds produced a large dark
region indicating a single cluster. It is noted that this single cluster is slightly larger than
the largest indicated by the intensity thresholds. As the number of samples increases, that

is the intensity threshold becomes lower, the single cluster grows in size.
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Table 31. Thresholding Effect on S05

Correlation Number of Intensity Number of

Threshold samples Threshold (%) samples
0.18 4397 0.34 4103
0.25 2015 047 2054
0.27 1585 0.51 1507
03 1085 0.55 1056
0.35 537 0.61 519

FCMP Results Intensity thresholds exhibited resolution control in the number of
clusters for FCMP results, see Table 32. At high thresholds only one cluster was
discernible; at lower thresholds, with more samples, two clusters were indicated. Use of
correlation thresholds, also in Table 32, show similar results.

FCM vs FCMP The dark regions in the FCMP VCV images were generally more
homogeneous, meaning that light lines, indicating outliers, were less common, than for
FCM. FCMP also provided useful information for cluster merging. As noted, dark
patches off the diagonal indicate overlap between sample groups. These off-diagonal
regions appeared more often using FCMP,

Intensity vs Correlation For both FCM and FCMP, VCV generated from correlation
thresholds showed greater cluster size variance. VCV is efficacious in determining the

number of sub-clusters in fMRI datasets. FCMP was shown to produce
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Figure 58. VCV Intensity image FCM, v s =0.59. Figure 59. VCV Intensity image FCMP, v ;=0.4.

Figure 60. VCV Correlation image FCM, v 3=0.35. Figure 61. VCV Correlation image FCMP, v 5

=0.35.
Table 32. VCV Indices for FCMP Clusters
Intensity FCM FCMP Correlation FCM FCMP
Threshold Threshold
0.34 2 1 0.18 1 I
0.47 2 1 0.25 1 |
0.51 2 1 0.27 1 1
0.55 2 2 0.3 1 1
0.61 2 2 0.35 1 1

finer structure that related to the level of integration of spatial context. A binarized VCV
matrix (bVCV), seen in Fig. 62, is constructed by thresholding similarity values in the
VCV matrix and allows the analyst to estimate size robustly since the cross-hatching

noise is reduced.
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il 16t L2 R 1] (=2 o 30 HY

Figure 62. Binarized image of VCV,

Synl Results As the SNR decreased, the VCV mairices indicated the presence of an
increased number of clusters along with a corresponding decrease in cluster size.

Syn3 Results VCV correctly indicated the presence of two clusters.

Baumnull Results The spatial localizations of the synthetic activations were detected in
the VCV matrix.

Sampledd Results The VCV matrix indicated four main clusters over the time periods.
Halx Results One z-plane (z=14) was examined for this dataset. Six clusters were

indicated by the VCV matrix. The clusters were fairly consistent in size and shape over

all time periods.
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7.4 Optimal Partitions

In order to determine the existence of optimal weighting between feature partitions, a

series of weight combinations is examined for each dataset, see Table 33.

Table 33. Optimal Partition Synopsis

Experiment Description
Component
Index: 4 Optimal Partitions
Comment The partition weight parameter offers a continuous method of integrating feature
partition information (and minimizing feature partition noise) when two partitions
exhibit correlation.
Independent |Dataset. Number of samples in the clusters. Weight and metric applied
Variables to each partition.
Dependent | MSE of centroid to paradigm, Correlation of centroid to paradigm.
Variables
Hypothesis  |FCMP will exhibit a dataset-specific optima with respect to the partition weights.
Main algorithm | FCMP
Benchmarks [FCM
Datasets 505, Sample4dd.
Validation Minimum MSE of centroid to paradigm.
Maximum correlation of centroid to paradigm,

Executive Summary A high resolution parameter-space for FCMP partition weights is

examined with respect to the SO5 and sample4d datasets.

Contribution It is shown that an optimal partition weight exists for a particular dataset.

See the SNR table in experiment 1 results.

Overview The partition weight parameter offers a continuous method of integrating
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feature partition information, as well as minimizing feature partition noise, when the two
partitions exhibit correlation.

Validation MSE and correlation compare centroids to the paradigm.

Discussion

S05 Results The optimal two-feature partition consisted of a spatial features with weight
0.8 and temporal features with weight 0.2, using the Euclidean and Pearson Correlation
metrics respectively.

Sampledd Results The optimal two-feature partition consisted of a spatial features with
weight 0.7 and temporal features with weight 0.3, using the Euclidean and Pearson
Correlation metrics respectively. The change in weights with respect to the results from

S05 may be related to the increased number of z-planes available for sample4d, (4 vs 1).
7.5 Induced Hierarchy

In fMRI region growing, temporal cluster analysis and region (spatial) analysis can be
integrated to determine a hierarchy for region growth. Spatial and temporal features are
integrated in that temporal similarity directs spatial association. Details are provided in

Table 34.

Executive Summary Hierarchies induced by different clustering algorithms are
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compared. FCMP shows versatility in integrating feature relevance with respect to the
objective function. FCMP shows an intermediate performance, between that of FCM and
CHAMELEON, in characterizing the idiosyncratic nature of individual clusters in a
dataset.

Contribution Sample hierarchies from FCMP and CHAMELEON are compared.
Overview Comparison of partition matrices generated by basic cluster merging,
CHAMELEON and FCMP.

Validation Correspondence of induced hierarchy to a gold standard organization.

Discussion

It was noted that phase II of the CHAMELEON algorithm, the agglomeration phase, was
infrequently used as the parameters specified a maximum graph partition size. This is
due to our clustering objectives which specify a range for the allowable number of
clusters and was true for all datasets examined.

Synl Results With respect to the designed association between spatial coordinates and
temporal intensity patterns, decreases in SNR had the expected outcome of increasing the

mixture (entropy) of the sample hierarchies.
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Table 34. Induced Hierarchy Synopsis

Experiment
Component

Description

Index: 5

Induced hierarchy.

Comment

Comparison of induced hierarchies in the clusters and partition matrices as generated by
basic cluster merging, CHAMELEON and FCMP.

Independent
Variables

FCMP parameters; CHAMELEON parameters; basic merging parameters.

Dependent
Variables

Hierarchical organization. Ability to express idiosyncratic structure of individual clusters.

Hypothesis

FCMP generates a hierarchical organization of the data that more accurately corresponds
to a conceptual understanding of the data. FCMP captures idiosyncratic structure across
feature partitions.

Main
algorithm

FCMP

Benchmarks

FCM, basic cluster merging, CHAMELEON.

Datasets

Synl, Syn2, Syn3, BaumNull, in vivo.

Validation

Correspondence of resultant hierarchy to inherent organization of samples.

Syn2 Results Due to the geometric structure of the ROI in this dataset, FCMP results

could be enhanced through the use of a metric that exploited the spatial distribution of the

ROL

however, even if the structure was known a priori, such results would be

ungeneralizable to the other datasets in this study. For this dataset, CHAMELEON

generated sample hierarchies with fewer errors than FCMP across the feature partitions

studied.

Syn3 Results FCMP outperformed CHAMELEON using the Euclidean / Pearson

correlation metrics. The Buclidean metric was advantageous for use with ECMP as a
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radially symmetric distance measure was optimal for the circularly distributed spatial
coordinates.

S05 Results FCMP again outperformed CHAMELEON using the Euclidean / Pearson
correlation metrics over a range of spatial weight values (0.7-0.9). While the clusters in
s05 do not have a circular shape, the can be well approximated by the FCM default
cluster shape and the large number of clusters used generated a sample hierarchy with

fewer errors than CHAMELEON.
7.6 Region Definition

Regions of interest generated by different algorithms are compared with respect to neural
activation studies with known stimuli, see Table 35. The main algorithm pseudo-code is:
FCMP generates centroids. For each centroid, its surrounding neighbourhood is grown.
If not all samples are captured, remove all samples in the region from consideration and
cluster again. Grow from the resulting centroid.

Executive Summary A comparison of ROIs generated by FCMP and FSRG is made.

Region growing using FCMP show exclusion of spatial outliers.
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Table 35. Region Definition Synopsis

Experiment Description
Component
Index: 6 Region definition.

Comments  |Compare RO associated with the dataset as they are generated by different
algorithms. Examine the EDA potential and robustness of FCMP versus an indusiry
benchmark.

Independent |Region seed generation; method of representing regions; region growing algorithms;

Variables region growing algorithm parameters; definition of accuracy.

Dependent Resultant regions.

Variables

Hypothesis  |Region seeds generated by spatio-temporal clustering provide a more accurate region,
in terms of region representation, than FCM on TC data only.

Main algorithm |FCMP
Benchmarks |{FCM for seed generation. Mean intensity for seed generation.
FSRG.
Datasets Syn2, BaumNull, in vive.
Validation MSE and correlation of region representative to paradigm.

Compare region representatives for all region growing algorithms for all datasets.

Contribution A comparison of FCMP to FSRG.

Overview Compare the regions of interest, e.g. visual cortex, associated with the dataset

as they are generated by different algorithms. Examine the EDA potential and robustness

of FCMP versus an industry benchmark. FCMP generated regions of interest that

compared well those generated by FSRG.

Validation Compare region representatives for all region growing algorithms for all
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datasets.

Discussion

S05 Results An intensity image, Fig. 63, shows regions with high average intensity as
dark. Notable is the visual cortex region and a motor or memory region located closer to
the bottom of the image. A histogram of the correlation values, Fig. 64, of the TC to the

paradigm TC show the significant Ievel of noise in the dataset.

Figure 64. 805 correlation histogram.

Figure 63. S05 Mean intensity coronal image.

An examination of the histogram values in SO5 shows that regions with TCs highly
correlated to the paradigm will be small. Also, that any region growing operations in the
region of interest will suffer loss of continuity (will have a number of included holes / a

higher Euler number) unless they accept marginally correlated TCs that are nonetheless
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are spatially proximal. Examining the spatial distribution of correlated voxels, Fig. 65, a
correspondence is seen between the high average intensity voxels. Note that (i) the visual
cortex has a significant number of highly correlated voxels, (ii} some noise TCs {outside
of the subject’s body} have a significant correlation, see Fig. 66, and (iii) a second
separate region of correlated voxels exists, again, near the bottom of the image. Several
TCs are displayed in Fig. 67. They show the stimulus paradigm (010110) mapped to the

42 sampling instants, TCs in the visual cortex and noise TCs.

Figure 65. 805 TCs with significant correlation. Figure 66. SO5 outlier and missed TCs.

Dilation of coordinates from FCM are shown.

Using mathematical morphology, the spatial locations of significant correlation in the
dataset can be dilated. This dilation takes into account only spatial topology. Thus
voxels with lower temporal correlation have been included in the darker areas. Such an

operation has increased the spatial continuity of the region of interest.

175



7. Experiments and Results

Figure 67. fMRI TCs (s05).

top) paradigm. middle) visual cortex TCs.
bottom) noisy TCs.

Applying FCMP to SO05 Previously the SO5 dataset was examined at a general level
using basic pre-processing operations. It was seen that spatial continuity of the ROI
could be achieved using spatial topology without any consideration for temporal
similarity. FCMP will address this by defining spatial and temporal feature partitions.
One problem for FCMP is that it is not obvious how to relate the spatial and temporal
domains. This is solved by executing a series of cluster experiments, each with a
different weight between the partitions. Results are shown in Fig. 68. Note that when one
feature partition weight is O and there are only two weights, the results are exactly that of
FCM with the same metric function. When vs=0 one expects to have spatially

disconnected regions; when v s=1 one expects to have spatially convex regions, Fig. 68d.
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When 0< v <1 interesting affects can be observed in the resulting voxel assignment
maps. Temporal similarity and spatial proximity combine to produce spatial regions that
exhibit degrees of spatial continuity. The centroids of these regions show corresponding
increasing correlation (for regions correlated to the visual cortex) or decreasing
correlation (for noise regions). Based on MSE of the centroids to the paradigm,
0.6<vs<0.9 values gave best results. Examining just the visual cortex region, Fig. 69,
one can detect the increase in spatial continuity as the spatial feature partition weight
increases.

Syn2 Results Each ROI was enhanced by an increased spatial weight with the effect
being most noticeable at the interior and exterior corners respectively.

Baumnull, Sampledd, Halx Results  Increasing the contribution of spatial features
enhances spatial continuity and size of‘ ROI related to areas of maximum intensity,
intensity variance and correlation. Also, spatial outliers were noticeably reduced as

spatial weightings increased in all datasets.
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{c) C=15, vs=04. (f) C=15, v=0.9.

Figure 68, 805 FCMP spatial maps with various parameters.
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Figure 69. Visual cortex voxels (S05) as spatial weight increases.

7.7 Region Growing

Consideration of fMRI ROI is often based on methods that pare down the dataset to
exclude TCs when they no longer meet inclusion criterion. On the other hand, region
growing processes extend consideration to unselected voxels and TCs implementing a
dynamic inclusion criterion with respect to region growth. Table 36 outlines a
comparison of different region algorithms on fMRI data.

Executive Summary FCMP is adapted as a region growing processes to use its spatio-
temporal integration as a dynamic inclusion criterion.

Contribution The results of FCMP are compared to an indusiry standard, Evident®.
Overview The utility of using FCMP as part of a region growing process is compared to

industry benchmarks.

Validation Comparison of ROI to gold standards.

179



7. Experiments and Results

Table 36. Region Growing Synopsis

Experiment Description
Component
Index: 7 |Region growing
Comment |Compare regions grown by different methods on fMRI datasets.
Independent |Region seeds. FSRG parameters.
Variables
Dependent |Generated ROL
Variables
Hypothesis |The region growing method using FCMP will be comparable to FSRG since they both
take into account spatio-temporal information.
Main FCMP based region growing.
algorithm
Benchmarks |FSRG
Datasets  {Syn2, in vive.
Validation [ROI analysis of gold standard.
Discussion

S0S5 Results TCs proximal to the ROI are seen in Fig. 70. They were not associated with

the visual cortex by Evldent® but were by FCMP over a range of partition weights, v 5,

0.6< v s<0.9.
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Figure 70. TCs not in 805 visual cortex.
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TCs spatially proximal to the RO, in this case the visual cortex, but that were not
selected as significant by Evident® are shown in Fig. 71. These TCs are denoted as

proximal rejections.
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Figure 71. TCs proximal to ROI but not selected by Evideni®,
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Figure 72 shows TCs that Evldent® identified as being significantly related to the
stimulus paradigm although they were not spatially proximal to the ROI. These TCs are
denoted outlier inclusions. Table 37 provides coordinates and correlation values for both
the proximal rejections and outlier inclusions of Evldent® with respect to ECMP. Given
the histogram of correlation values for the datasets, these TCs can be considered
significant. This correlation coupled with spatial proximity to the ROI make them

excellent candidates for further examination. Therefore, FCMP has a role to play in the
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EDA of IMRI not yet filled by industry standards.
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Figure 72. Outlier TCs selected by Evident®.

As part of this experiment, the average distance from a sample assigned to the visual
cortex cluster over the partition weights was measured. This distance was also
considered when the furthest 10% of the samples in that cluster were ignored. The
average distance decreases as Vv sincreases and that ignoring the farthest samples in that
cluster has an appreciable effect on the distance computation over all feature partition
weight values.

FSRG is well suited to growing regions that matched gold standard ROI and is
constrained to grow in a spatially contiguous manner; clustering algorithms such as

Evldent® and FCMP may group temporally similar samples that are not contiguous.
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Table 37. Evident® Test Cases in S05 TCs

{x,¥) coordinates Pearson Correlation

Qutliers (87,196) 0.4043
(89, 210) 0.4022

(95, 58) 0.4156

(104, 179) 0.4097

(108,189) 0.4001

Missed (57, 185) 0.4780
(60, 204) 0.4529

(64, 197) 0.5309

(76, 205) 0.4071

One method of incorporating the spatial-temporal tuning advantages of FCMP with the
region growing ability of FSRG is to use FCMP as a seed generator for FSRG. Seeds
generated in a default manner, that is, by thresholding intensity or correlation values, and
seeds generated by first running FCMP on the dataset, generated seeds in the same
general regions while the optimal feature partitions of FCMP tended to better match the
gold standard regions. However, optimal partitions are not known a priori.

Syn2 Results EvIdent® was able to detect the correct ROI and should be considered
better than FCMP on this dataset as the appropriate feature partition values that one
should use with FCMP are not known beforehand. FSRG correctly discovered the ROI
and using FCMP as a seed point generator did not improve results. However, on a
dataset with a less structured geometry, FCMP will tend to find similar regions across

bridge voxels, as mentioned in the next section.
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7.8 Activated Epochs

Interest in the activated epochs of an fMRI study are significant since the discovery of
novelty related to the stimulus enhances understanding of the complex functional
relationships present in neural activation studies. Since the signal characteristics of the
novelty are not known a priori, analysis algorithms must allow general detection of
unspecified relationships, or allow rapid and flexible tuning of their objective functions
allowing the analyst to direct the objective function. This second case is examined with
respect to FCMP where the objective function is progressively modified in order to
highlight novelty in the dataset. Table 38 details the experiment and comparison will be
made between FCMP and FCMP with increased weight on the activated epochs.
Executive Summary The flexibility of FCMP feature partitions are used to enhance
sensitivity of the clustering algorithm to sample properties in the activated epochs.

Contribution Demonstration of selective sensitivity augmenting normal analysis,

Overview Feature partitions in this experiment include: spatial coordinates, activated
temporal features, and unactivated temporal features. Activated epochs are determined
with reference to the paradigm and receive an increased weight with respect to the

unactivated epochs.
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Validation Identification of a centroid corresponding to the paradigm.

Discussion

Sampledd Results When only the activated epochs are examined, a slight change in the
range of spatial weights that produce ROI, comparable to gold standard ROI, is
observed. While activated epochs seem of some benefit to generating ROI from an fMRI
dataset, it is conceivable that unactivated epochs may at times contain significant
identifying characteristics, for clustering or classification. Activation or stimulus type is
one possible criterion for determining whether the unactivated or activated epochs is

more significant for the analysis at hand.
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Table 38. Activated Epochs Synopsis

Experiment Description
Component
Index: 8 |Activated epochs.

Comment |Consideration of data acquisitions should be weighted according to their relevance in the
study. Blood flow during activated epochs can be more informative in many
circumstances.

Independent |FCMP parameters.

Variables [Evldent parameters.

Dependent | Cluster results.

Variables

Hypothesis |FCMP returns significant benefits when integrating the activated epochs at a higher fevel
of relevance to the clustering process.

Main FCMP
algorithm
Benchmarks |Evident®
Datasets  |in vive
Validation |MSE of centroid to paradigm. Correlation of centroid to paradigm.
7.9 Novelty Detection

The ability of different algorithms to detect a novel signal in an fMRI dataset is

examined, see Table 39. Only a few TCs in the dataset will contain the novel signal and

detection will be confounded in that TCs will be spatially distributed.

Background

| A novel TC refers to one in relation to an external standard (eg, the applied stimulus) and

which does not account for, or occur in, the majority of the samples in the dataset.

Novelty can also refer to the existence of properties of which the researcher had not
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anticipated and for which the experiment was not intentionally designed to capture. In
Syn5, the presence of a small signal on the activated epochs is examined. Its discovery
under a fine parameter grid approach using FCMP is detailed.

Table 39. Novelty Detection Synopsis

Experiment Description
Component

Index: 9 |Novelty detection.

Comment |[Determine whether the given algorithms can capture a novel 7C. Under what conditions
is this possible?

Independent | Algorithm parameters.
Variables |Number of novel TCs in the dataset.
Significance of novelty with respect to the metric used.

Dependent |The clusters containing novel TCs as determined by the various algorithms.
Variables

Hypothesis |FCMP can be tuned to capture novel TCs more effectively than the other algorithms.
FCMP will capture more novel TCs more often.

Main FCMP

algorithm

Benchmarks |FCM, Evident, CHAMELEON.

Datasets  |{Syn5

Validation |MSE and correlation comparisons of the centroid of the cluster containing the most novel
TCs and the novelty paradigm.

Executive Summary EDA is challenging when the analysis modes of pattern matching
and novelty discovery are conflated. Novelty may be characterized as existing among
only a small number of samples and as being derived through a higher order

transformation from a basic archetype. Both characterizations are explored on synthetic
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fMRI data.

Contribution A special instance of FCMP is tested which compares favorably to other
methods.

Overview Determine whether given algorithms can capture a novel TC, and under what
conditions. FCMP is shown to be able to detect novel small signals at low SNR levels.
The performance of FCMP surpasses that of FCM and EvIdent®.,

Validation A centroid is detected that correlates to the novelty.

Discussion

Note that the varying SNR relates to the novel signal only and not to the TCs that are
correlated to the paradigm, as was the case in other experiments.

Syn5 Results EvIdent® demonstrated the ability to detect the presence of novel signals
in a small number of locations over a range of SNR values (40-2 dB). FCMP
demonstrated a comparable ability only when the novel signals existed in a single
location and shows the limit of a global spatial constraint on the distance measure. It is
proposed that, when pattern matching and novelty discovery are being pursued
simultaneously, the objective functions or distance metrics associated with the novelty

contain the fewest number of constraints. In this case, the distance metric for the novel
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TCs should have ignored spatial location and attempted to match only temporal similarity
while the distance metric for the correlated TCs was correct in constraining the TCs to

also be spatially proximal.

7.10 Bridge Voxels

FMRI analysis of activated regions found by FCM in neural activation studies often
detects distinct yet proximal areas with similar centroid 7Cs. When spatial information is
incorporated into a region generating analysis, as in the FCMP algorithm, these regions
are often merged. It is of interest to what degree the spatial features must be integrated
into the region generating algorithms before they are merged. Alternately, a
mathematical morphology approach can determine bridge voxels. Table 40 outlines the
experiment.

Current fMRI analysis generally depends on user-defined intensity thresholds or spatial
locations to define regions of interest (ROI). Mean intensity values are commenly used
to generate candidate ROI for subsequent analysis. The general validity of such methods
suffer from the variety of circumstances under which fMRI data may be acquired. We
examine a data-driven method to determine global fMRI thresholds using bridge voxels

from intensity and correlation thresholded ROL

189



7. Experiments and Results

Pre-defined intensity and correlation thresholds are used to generate initial ROI which are
subsequently eroded using a mathematical morphology erosion operator. Successive
erosions either decrease the ROI area or shatter the ROI into proximal sub-regions.
When an ROI shatters, a bridge voxel is said to have been eroded. That is, bridge voxels
are the structurally significant voxels that connect the erosion-susceptible components of
the imtial ROI. Erosion continues until all ROI are completely eroded or shattered. At
this stage, the intensity and correlation values of the TC associated with the bridge voxels
are computed. These derived intensity and correlation values provide a data-driven
global threshold with which to reveal intrinsic ROI in the dataset. Initial ROI are
generated by a pre-defined set of of intensity and correlation thresholds. Each ROI is
then eroded using a 3 by 3 structuring element and the existence of any bridge voxels are
recorded. The mean intensities of the bridge voxels, and their correlation to the stimulus
paradigm, are used to generate a set of so-called data-driven thresholds. This second set
of thresholds is then used to generate the data-driven ROI. The two sets of ROI may be

compared in terms of voxel intersection, and average intensity and correlation values.
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Table 40. Bridge Voxel Synopsis

Experiment Component

Description

Index: 10 Bridge Voxels
Comment What is the relationship of proximal regions as determined by a FCM analysis
of activated regions? When these regions are merged by alternate methods,
what 7Cs are added to the activated region and what are their characteristics?
Independent Variables | CHAMELEON, FCM, FCMP parameters.
Dependent Variables |Voxels associated with the activated region.
Hypothesis The voxels that will be added by CHAMELEON and FCMP will exhibit high

temporal similarity. It is not obvious that voxels in the direct line of path
between the activated regions centre of mass will be included (this reflects the
nature of sulci and the contorted gray-white matter interface in the brain).

Main algorithm FCMP
Benchmarks Evldent
Datasets in vive
Validation A description of the voxels added to the activated region.

Executive Summary An investigation into the data-driven derivation of global

thresholds for fMRI has been described and initial results provided. The bridge voxel

thresholds were consistently higher than the pre-defined thresholds and the existence of

holes in the bridge voxel ROI was unexpected.

Contribution Definition and demonstration of data-driven ROI generation for fMRI.

Overview Analysis of functional magnetic resonance imaging data is challenging since

both inclusive and exclusive modes of analysis are being used. Patterns are being

matched while an attempt is also made to discover unknown novelties. Default regions

of interest are often defined by analyst-directed thresholding of intensity and correlation
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values. This experiment examines a method by which thresholding is directed by the
intensity and correlation values of voxels which are structurally significant to the default
regions of interest.

Validation Correspondence of ROTI with respect to gold standards and region metrics.

Discussion

S05 Results - ROI Composition The experiment consists of the following steps: for
cach intensity and correlation threshold,
e Pre-defined initial ROI are generated based on the threshold.

e The average intensity, mean square error (MSE) and correlation of the initial ROI
are compuied using a gold standard activation paradigm.

e Bridge voxels of the initial ROI are computed.

e Data-driven ROI are determined given the intensity and correlation values of the
bridge voxels.

e The average intensity, MSE and correlation of the data-driven ROI are computed.
To determine the initial ROI, intensity thresholds of {0.6, 0.7, 0.8, 0.85, 0.9} of the
maximum intensity value were used as were correlation thresholds of {0.05, 0.1, 0.15,
0.2, 0.25}. For each threshold, only the largest four-connected region was kept and the
bridge voxels discovered by the noted erosion process.

S0S Results The initial ROI generated by intensity and correlation thresholds are seen in
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Figs. 73-76. Figures 73 and 74 show typical ROI when a Pearson correlation coefficient
of 0.05 and 0.15 is used as a threshold. Figures 75 and 76 show typical ROI when an
intensity threshold of 60% and 70% of the maximum intensity value is used. The initial
ROI exhibit irregular structure, roughly corresponding to anatomical structure of the
visual cortex, and often contain holes of low average intensity or low correlation. A
previous study [Alex5] has shown that similarity of intensity values, meaning the
temporal features, are not always a good indicator of spatial proximity between voxels.
As expected, the erosion process leaves remnants that are much smaller, and that have
fewer holes, than the initial ROIL

The following heuristic was found useful in defining bridge voxels in the erosion process:
the eroded voxels in the image are designated as candidates for the bridge voxel. The
largest two subregions of the shattered initial ROI define a directed line segment,
terminating in the centre of mass of each subregion. This line segment is dilated by a
structuring element. Finally, the voxels in the intersection of the dilated line segment and
the eroded voxels are selected. When more than one voxel is selected, the average
intensity or correlation value of the group is used. Groups of bridge voxels were

generated in this manner and tended to be small in size and fairly compact (hole-free).
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Figure 73. Initial ROI Figure 74. Initial ROI
based on correlation value  based on correlation value
of 0.05. 0.15,
Figure 75. Initial ROI Figure 76. Initial ROI
based on intensity threshold based on intensity threshold
at 60% of maximumn. at 70% of maximum.

It was noted that some ROI derived from correlation thresholds eroded without leaving

any bridge voxels, that is, they eroded without shattering. When this occurred, the centre

of mass of the ROI was substituted for the bridge voxel.

Using the bridge voxels, or the centre of mass substitutes, to generate data driven ROI

resulted in ROI that were substantially smaller in area than the ROI used to initiate the

process. Reconstructed ROI areas were typically 25% or less of the original areas. Also,

although some of the reconstructed areas were fairly small, consisting of 7-29 voxels,

the regions often exhibited one or more holes (Euler numbers of 0 or more). Since the

global threshold derived from the bridge voxels is generally higher than the initial
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threshold, the reconstructed ROI are voxel subsets of the initial ROI.

7.11 Overall Results

The results from individual experiments are briefly re-iterated and conclusions drawn.
The experiments noted that:
For high SNR values, the feature partition weight contributed little additional

enhancement in terms of MSE and correlation. As the SNR decreased, there is an
optimal weighting pair for the spatial and temporal feature partitions.

An optimal partition weight was discovered for the dataset Synthetic].
FCMP generated ROI that compare well with those generated by FSRG.

FCMP is shown to be able to detect novel small signals at low SNR levels. The
performance of FCMP surpasses that of FCM and Evldent.

FCMP shows an intermediate performance (between FCM and CHAMELEON) in
characterizing the idiosyncratic nature of individual clusters in a dataset.

It is apparent that FCMP has relevance as an analysis tool at low SNR levels where
features exist in distinct conceptual groups that exhibit cross-information (meaning that
one partition can be used to inform the organizational structure in the other (noisier)
partition). A fine sampling in the parameter space may bring out beneficial weight
combinations for feature partitions that improve global measurements of accuracy such as
MSE and correlation. FCMP is effective in dealing with region growing and small signal
detection when the paradigm of the small signal is known in advance, or when its

location in time is known in advance. FCMP is partially effective in introducing a
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hierarchy of idiosyncratic clusters. This completes the experiment review. A concluding

chapter summarizes the thesis and details possible extensions to each experiment.
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Reasoning draws a conclusion but it does not
make the conclusion certain, unless the mind
discovers it by the path of experience.

Roger Bacon

In order to appreciate the significance of FCMP, the challenges to fMRI data analysis,
introduced in Chapter 1, are reviewed. To address these challenges, a summary of
experiment results is provided and other contributions associated with this thesis are
mentioned. Finally, the benefits of an abstracted clustering equation are listed and an
explanation is provided regarding the incumbent duties associated with algorithm
development. It is important to keep in mind that when FCMP was developed, traditional
approaches to fMRI clustering analysis used only temporal intensities.

Challenges in fMRI Analysis

Challenges in fMRI data analysis revolve around the detection, extraction, and
transformation of information from a large set of complex data. FCMP, or the use of
bridge voxel derived thresholds, addressed these challenges. More specifically, analysis
enhancement required:
¢ Incorporating spatial information, or spatial context, into the temporal fuzzy
clustering process. FCMP addressed this by integrating distance measures in

two feature domains, spatial and temporal. Further, the feature partition
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mechanism in FCMP can be generalized to an arbitrary number of feature
partitions with partition relationships that can be ordered or weighted and
applied to fields outside of fMRI analysis.

Discovering novel TCs to trigger further analytic investigation. Novelty
elicitation is related to minimizing the mathematical data model and requires
an inclusive balance to outlier rejection preprocessing. FCMP uses the
minimal mathematical model of FCM and shares the sample partitioning power
of FCM on general data.

Reducing the impact of outlier samples on ROI definition or reducing the false
positive rate. FCMP combines spatial and temporal distances to include in the
ROI regions only TCs that have both high temporal similarity and spatial
proximity. This was shown to significantly reduce the false positive rate.
Ensure that ROI-proximal voxels with correlated TCs be included in the ROI,
reduce the false negative rate. The integration of both spatial and temporal
distances, as mentioned above, addressed this problem.

Providing a visual means to determine intrinsic structure in fMRI datasets. The
use of the VCV matrix, originally developed for use with FCM, allows visual
inspection of TC cluster size and the degree to which samples are members of
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multiple clusters.

It was seen as significant to set fMRI fuzzy clustering analysis within the larger
context of fuzzy clustering, including the use and relevance of validation
indices. This thesis contains experiments that compare the validation indices
commonly used in FCM analysis and show a preference for the Xie-Beni
index.

It is important to have a data-driven method to define ROI in a dataset without
a gold standard, or to have an independent standard to complement, or burnish,
a tarnished gold standard. The use of bridge voxels provides an independent
means to generate intensity and correlation thresholds, which in turn, define
data-driven ROI in the dataset.

To develop an algorithm capable of discerning novelty among a small set of
TCs, even when most TC in the dataset are noise or are correlated to the
stimulation paradigm. FCMP captures novel intensity signatures by adjusting
the distance metrics and weights in the feature partitions. Using a signature
probe to trigger use of a different metric facilitates novelty discovery among a
small number of samples while still capturing dataset structure. A priori

knowledge of spectral properties, occurrence in activated (unactivated) epochs,
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or spatio-temporal heuristics can all be integrated in the FCMP objective
function using feature partitions.

e Making robust statistical statements about the data. This is important since
hemodynamic response models are developing and can be expected to be
idiosyncratic (unique for each individual).

FCMP was developed with these challenges in mind and the popular FCM approach was
extended. FCMP incorporates spatial information by defining multiple feature partitions.
For fMRI analysis, it is common to use one partition for temporal features, intensities and
another for spatial features. As a generalization of FCM, advantages and experience
accumulated from FCM and its many variants can be extended to FCMP.

FCMP discovers novel TCs for further analysis by calibrating the contribution to
objective function optimization from the different feature partitions. Extreme weight
values correspond to considering only a single feature partition. Thus the original FCM
analysis is preserved as an option in all FCMP analysis. Novelty was defined in terms of
results with current industry standard cluster analysis algorithms. The novel TCs
discovered by FCMP had significant temporal correlation as well as spatial proximity to
regions of interest (e.g. visual cortex).

FCMP makes robust statements about fMRI data, for example: FCMP had a lower false
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positive rate than an industry standard for the determination of correlated voxel regions
(spatial outliers were rejected; FCMP returned more stable spatial regions of interest than
the vanilla FCM for fMRI data. This was true with respect to both changes in SNR
values for temporal features and distance for spatial features.

Experiment Result Summary

Experiments were conducted in order to examine conditions for general use of FCMP,
evaluate cases of FCMP specialization, quantify FCMP and benchmark comparisons,
quantify the utility of FCM cluster validation indices with respect to FCMP, determine
the efficacy of preprocessing methods when used in conjunction with FCMP, determine
the required resolution of FCMP parameter-space sampling to achieve an optimal
performance with respect to a specific dataset. From the series of experiments
conducted, it has been shown that:

+ A generalization of FCM facilitates adaptation of a popular EDA clustering

technique to particular datasets.

- An optimal spatio-temporal weighting exists for synthetic fMRI signals.

- FCMP reduces the false positive rate in the identification of visual cortex regions.

- FCMP maintains critical features of an exploratory data analysis (EDA) technique

such as FCM, namely: maintaining implicit inter-sample relations through
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membership matrices; the ability to detect novel structure; the ability to represent

groups of objects without masking individuality.

Summaries of the knowledge gained from the ten experiments in Chapter 7 are listed in

Table 41.
Table 41: Experiment Knowledge Contributions
Index Knowledge Contribution

Concept Partition: FCMP provides a means for the fMRI analyst to integrate

temporal features information with spatial feature information. This is of

benefit when one feature domain has been contaminated by noise or side-
1 information about feature inter-relations is available.

Validation Indices: The XB index is preferable for fMRI data and is able to be
2 |used with FCMP.

VCV: The VCV matrix may be successfully used to make accurate statements
3 |about intrinsic data structure in fMRI datasets.

Optimal Partitions: A set of feature partitions, and a range of feature partition

weights, were evaluated that demonstrate a superior ROI with respect to a
4  |dataset gold standard.

Induced Hierarchies: Optimal partitions for FCMP generate accurate sample-
5  |hierarchies for fMRI datasets.

ROI: Optimal partitions FCMP reduce the number of outliers presented to the
6  |fMRI analyst and increase the size and spatial continuity of ROIL.

Region Growing: FCMP can be combined with region growing methods to
7  |enhance the spatial-temporal associations in the fMRI datasets.

Activated Epochs: FCMP can be tuned to various temporal and spatial subsets

in the data to enhance sensitivity to a pattern critical for overall sample
8  |grouping.
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Index Knowledge Contribution

Novelty Detection: FCMP can be tuned to simultaneously pattern matched and
9  |discover novelty.

Bridge Voxels: Erosion of default ROI generates data-driven intensity and

correlation thresholds for fMRI datasets that correspond well to gold standard
10 |ROI.

Benefits of an Abstracted Clustering Equation

An important contribution of this thesis is the facility of the developed terminology and
equations to express a multitude of specializations, or adaptations, of FCM. Several
mappings (or specializations) from the generalized cluster analysis formula have been
shown which include preprocessing operations (ICA and PCA), express robust metrics,
and combine multiple criteria for clustering (detection of small signals during only
activated epochs). This algebraic flexibility suggests a new taxonomy for clustering
algorithms based on algorithmic degrees of freedom. Such a taxonomy provides
mechanisms to explore the degrees of freedom of an algorithm and can be used to suggest
future development, to quantify the degree of adaptation of an algorithm, and to define
regions of specialty for algorithms. Regions of specialty are datasets for which
algorithms are particularly suited.

Contributions and Publications

Original contributions by the author include:
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e Generation of synthetic data for investigating salient features of the FCMP
algorithm,

e Theoretical derivation of formulas, terminology and investigation of use for the
FCMP algorithm.

e Experiments executed with the purpose of investigating and comparing the efficacy
of the FCMP algorithm on synthetic and in vivo datasets.

e Comparison of a novel clustering algorithm with an industry standard.

Public access to the synthetic and in vivo datasets, as well as the FCMP source code, will
be made available at the website www.scopira.org/~alexiuk/fcmp.

Partial results and a discussion of cluster analysis concepts and development of the
FCMP algorithm have been presented at various conferences, in particular: the North
American Fuzzy Information Processing Society (NAFIPS) in 2003, 2004, 2005, and at
the University of Manitoba Graduate Conference (GradCon) 2002, 2003, 2005, Human
Centric Computing 2004, Canadian Applied and Industrial Mathematics Society
(CAIMS) in 2005, and the Canadian Medical and Biological Engineering Society
(CMBES) in 2006. A journal publication on FCMP occurred in Pattern Recognition
Letters in 2005. Finally, a book chapter, co-authored with Dr. N. Pizzi, on advances in

fuzzy clustering is in press.

8.1 Recommendations

It is recommended that a new taxonomy for fuzzy clustering analysis be based on the
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realized possible specializations of the more general FCMP algorithm. Both degrees and
types of specialization can be considered. FCMP should be used more extensively as an
EDA technique and specifically as an analysis tool for fMRI. As a recent publication
[Chua] has shown, FCMP is also valuable as a segmentation tool for biomedical data

analysis.

8.2 Future Work

Many opportunities exist for this work to be extended. They include comparing FCMP
against more of the many variants of FCM, developing a set of heuristics to initialize the
feature partitions (feature indices, weight and metric triple), develop alternate robust
metrics for use with topological and topographic properties such as sulci and gyri
regions, incorporating knowledge of tissue classes in analysis, expanding the set of
feature partitions considered, and extending the class of transformations used in auxiliary
data processing.

Extending Proof of Concept: Determine the are optimal weight combinations for more
than two partitions with respect to synthetic and in vivo fMRI datasets.

Extending Validation Indices: Generate a FCMP-specific validation index.

Ixtending Visual Cluster Validity: A heuristic method by which the VCV matrix may

be interpreted as an indicator for the number of inherent clusters in the dataset is

205



8. Conclusion

provided. Define a dis-similarity threshold 7" and use it to convert the VCV matrix into a
binary matrix where dis-similarity values less than 7 are set high (1). Denote this matrix
bVCV (binarized VCV). The number of clusters inherent in the data is the minimum
number of different sized squares that, when located along the diagonal of #VCV, cover
all the high elements in bVCV. It is to be expected that these covering squares will cover
holes (0) in bVCV and that singleton high values will exist (causing perhaps unjustified
extension of the covering block sizes). However, a process of mathematical
morphological closing operations (erosion and dilation) should address this. Covering
blocks are computed starting with a 2x2 block template. The template is moved along
the bVCV diagonal until the template captures all high values in the rows and columns it
currently occupies. A covering block is defined at each such location and the high values
set low. Repeat with templates of increasing nxn size until all values are set low. The
number of defined blocks is the number of inherent clusters. Note that size information
is gained as well.

Extending Optimal Partitions: Test other datasets for the existence of optimal partition

weights.

Extending Induced Hierarchy: A metric for comparing hierarchies, and permutations in
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a hierarchy, may be developed specifically for fMRI. The metric may consider whether
or not the TC in question is part of the gold standard ROI and its temporal similarity.
Exploring minimum spanning trees of TC, using spatial distance, temporal correlation,
and combinations, may also prove fruitful.

Extending Region Definition: The use of a cluster membership map can be explored
with respect to region growing. That is, can cluster assignment inform growth directions,
say in terms of replacing correlation values with membership values ? Good measures
for the spatial distribution of TCs in the spatial plane need to be determined. In addition,
a data-driven approach to determine paradigms in activation studies is required, possibly
to burnish tarnished gold standards. Thresholded distance matrix, or the use of ¢ -
insensitive metrics, needs to be explored.

Extending Region Growing: A consideration of the dynamic qualities of region growth
should be considered. For example, if the region growing process is prematurely
terminated in some use-case, can methods be adapted to include the most critical TC for
that case analysis?

Extending Activated Epochs: Determining a advantageous weightings between

activated and unactivated epochs, especially in a general stimulation sense, would
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increase the robustness of FCMP analysis.

Extending Novelty Detection: Different types of novelty should be investigated and a

GMDH type of infrastructure devised to discover the presence of novelties.

Extending Bridge Voxels: Of interest is the case where a threshold derived from bridge
voxels is less than that of the initial threshold, as this has been the pattern to date. Also
of interest extending the bridge voxel approach to incorporate a spatio-temporal region
growing approach [Viva]. Finally, an examination of the interdependence between
intensity value and correlation in the bridge voxel process is needed. That is, what effect
do predefined intensity thresholds have on the correlation values of the data-driven ROI,
and vice versa.

General Extensions

Future work includes the examination of an expanded set of in vivo fMRI datasets. A
method to deal with integrating activation patterns in different z-planes, for example,
which corresponds to integrating feature relations would be beneficial since for some
datasets such as Halx, each of the sixteen planes contributes different levels and types of
information to the clustering task at hand. Knowledge elucidation or collaborative

clustering [Pedr6] is also a field where FCMP can contribute. These studies consider
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independent parties pooling information at a high abstract level (to maintain
confidentiality regarding individuals or proprietary methods). [Pedr]. Use of FCMP is
advantageous in that the trust and feature associated with each information repository, or
database, is different and should be integrated in an optimal fashion. .Other possible
investigations using FCMP include the following preprocessing operations and
approaches: principal component analysis (PCA), independent component analysis
(ICA), fuzzy inter-quantile, encoding, entropy-based label adjustment, robust clustering,

and alternate group or centroid representations.
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Algorithmic degrees of freedom are the manners in which a basic algorithm can be
adapted while remaining fit to execute the purpose of the original algorithm. Limiting
an algorithmic degree of freedom results in a modified algorithm which remains
faithful to the objective of the original.

Analysis is the resolution of obtained data back to first principles.
An anomaly is an irregularity or deviation from the rule.
A basis is a set of vectors which span the space.

A centroid-label is the index of the cluster to which a sample has maximum
membership. See also cluster-homogeneity.

A class-label is the true category of a sample.

Cluster analysis is the result of any data categorization algorithm which produces a hard
or soft partition of the samples. Partitions of the data into groups corresponds to a
clustering of samples to representative proto-types.

Cluster-homogeneity is a measure of diversity in the class labels of samples associated
with a single cluster. A cluster that has samples with only a single same class-label
will have the highest cluster-homogeneity. If a cluster has only (or mostly) samples of
a single class-label, the centroid-label will correspond to a single class label and will
be called a (fairly) homogeneous cluster.

The convergence point of a clustering algorithm is the membership-centroid pair
{U*,V*} to which successive iterations membership-centroid pairs {U,,V,} approach.
Convergence proceeds as iterations increase. The {U*,V*} pair is dependent on
initialization and is often never determined in practice. Termination criteria are used
to approximate {U*,V*} by {U,V,} for sufficiently large n since the convergence
process is asymptotic.
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In reference to an algorithm, data-driven means that algorithm parameters are
preferentially determined by the data using intrinsic, usually statistical, properties of
the dataset. Extrinsic parameter values from an analyst or mathematical model are
deprecated, if they are used at all. The data is explored; residuals with respect to a
mathematical model are not deemed significant, since the model itself is in question.

A cluster v; is said to have the exclusive membership of a sample x if x has a
membership value of unity for v and a membership value of zero v, for all ij.

Exploratory data analysis is a mode of data analysis which limits the use of

mathematical models in order to elicit the data structure most justified by the data
itself.

Features are qualitative or quantitative characteristics of an object or sample. Samples,
considered as a set of features, order the features to faciliate comparison between
samples. In supervised learning, discrimination between samples from different
classes is achieved through characteristics of a feature or groups of features. In
unsupervised learning, feature characteristics are examined for overall structure
between the samples.

A feature partition is a triple composed of a set of features indices, a metric associated
with the features, and a weighting. A strict feature partition is a feature partition in
which a feature index may be present in only one set of features indices.

The feature-space is the vector space containing all possible combinations of features.

A framed hypothesis is a hypothesis regarding a dataset which has been made explicit
by an analyst and which is undergoing verification by experiment.

The generalized recognition ability of a classifier is its ability to classify previously
unseen samples correctly. The classification rate of new samples is used as a
predictive error rate for the classifier. The actual value depends on the degree to
which the the training and test sets are representative of the actual sample distribution.

A measure is a quantity determined by comparison to a standard. It may be a metric or a
measure of similarity. The standard may be explicitly or implicitly defined.
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'The membership partition of a dataset with n samples in C clusters is the nxC matrix
that quantifies the degree of membership of each sample in each cluster. Element
U(i,j) is the degree to which sample x; belongs to cluster v;.

For a non-empty set X, a metric is a real function of ordered pairs of elements of X which
satisfies [Simm]:

1. d(x,y)=0 and d{x,y)=0ex=y
2. d(x,y)=d(y,x) (transitivity)
3. d(x,y)=d(x,z}+d(z,y) (triangle inequality)

A system is modular if it is constructed with standardized units which facilitate
flexibility and variety in use [Merr]. Modular systems contribute to component re-use.,

A basic algorithm is, or becomes, monolithic when it has become so encumbered with
pre-processing and other conceptually distinct functions that the algorithm can no
longer be considered modular or basic. Monolithic algorithms resist decomposition
and often produces software known as legacy code.

Noise is meaningless interference in a signal transmission or record. The information
content of noise is zero. When statistical attributes of the noise are known, actions
may be taken to remove or reduce noise effects on the signal of interest. Use of the
data for analysis may be precluded entirely by sufficiently high levels of noise.

The non-exclusive membership of a sample in a cluster indicates that the sample is a
partial membership in one or more clusters. The sample is a member of multiple
clusters to a specified degree between zero and unity. The sum of all partital
memberships of a sample is unity.
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A norm is a real-valued non-negative function defined on a vector space and where the
function is zero if and only if the vector is zero, the function of the product of a scalar
and a vector is equal to the product of the absolute value of the scalar and the function
of the vector, and the function of the sum of two vectors is less than or equal to the
sum of the functions of the two vectors; specifically : the square root of the sum of the
squares of the absolute values of the elements of a matrix or of the components of a
vector [Merr].

A novelty is an unusual appearance. A new, strange or different sample in a collection
would constitute a novelty.

Ordering a collection of objects is the process by which each element is assigned a
unique index.

Pattern recognition is the body of knowledge dealing with the automated
characterization, categorization, and subsequent classification of a collection of
samples.

A poset is a partially ordered set. A poset is defined by the following properties [Roit]:
Vx,y,ze€X

1. X=X (reflexive)
2.if X<y and y=<X then X=Y (antisymmetric)
3.if X=y and y=2Z then X<z (transitive)
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A nxn matrix A is positive definite if, for any vector x of length n, the vector-matrix
product xAx is non-negative,

The primary membership of a sample in a cluster is the cluster to which a sample most
belongs. It is the maximum membership value for a sample over all the clusters.

Proximal refers to a location near the centre of, or closer to the origin, of a body or
structure.

Samples are a collection of objects that are comparable and undergo analysis.

The sample-space is the vector span of all the samples in the dataset. The sample-space
may be a sub-space of the feature space since not all combinations of features may be
realized in the dataset.

Supervised learning is the collection of discrimination techniques used to distinguish
between groups of objects when the classes of the objects are known a priori.

A tarnished gold standard is an authoritative set of class labels which has become
corrupt.

Unsupervised learning is the collection of discrimination techniques used to distinguish
between groups of objects when the classes of the objects are not known a priori.

A voxel is a volume element.
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Acronym
AFNI
EDA
EROICA
Evident®
FCM
FCMP
FMRIB
FSL
FSRG
GA
GPL
HCM
131
ICA
LOO
MedX
MRI
MSE
NMR
NRC-CNRC
PCA
PCM
of
ROI
SNR
TC
VCv

Glossary

Expansion
Software for analysis and display of fMRI data.
Exploratory data analysis.
Exploring Regions of Interest with Cluster Analysis.
EVent IDENTification.
Fuzzy c-means.
FCM with Feature Partitions.
Oxford Centre for Functional Magnetic resonance Imaging of the Brain.
FMRIB Software Library.
Fuzzy Seeded Region Growing.
Genetic algorithim.
GNU Public Licence.
Hard c-means.
Institute for Biodiagnostics (National Research Council).
Independent component analysis.
Leave one out.
Medical Image Processing Application.
Magnetic resonance imaging.
Mean square error.
Nuclear magnetic resonance.
National Research Council.
Principal component analysis.
Possibilistic c-means.
Radio-frequency electromagnetic radiation {1-500 Mhz).
Region of interest.
Signal to noise ratio [dB].
Time course.

Visual cluster validity.
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Symbols

The following table lists symbols that appear in the text.

Symbol Definition
D A generalized metric.
K The number of clusters; the number of classes.
d A distance metric for a single feature partition.
L, The Minkowski norm.
A A general nXn matrix used in metric definitions.
x,yeX Samples in a dataset.
S Similarity measure. A fuzzy S-norm
T A fuzzy T-norm
D Pearson correlation
A Lagrange multiplier; eigenvector.
Necn Membership values classes for fuzzy clustering
Macum Membership matrix classes for fuzzy clustering
u;, U Membership of a sample xiin cluster v;; the matrix of all memberships.
vieV A particularity centroid; the set of centroids.
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Appendices

The following topics are covered briefly:
A: Metrics and Measures
B: FCMP Algorithm and Derivation
C: Fuzzy Sets

D: Clustering Algorithm Comparisons



Appendices
A: Metrics and Measures
Quantification of the distance (similarity) between two objects, x,y&X, is defined by a
metric (measure). All metrics have the following properties:

L. A metric is non-negative and has a self-distance of zero: d(x,y)20Ad(x,y)=0 iff x=y.
2. A metric exhibits symmetry: d(x,y)}=d(y,x).

3. A metric obeys the triangle inequality: d(x,y)+d(y,z)>d(x,z).
Similarity measure have the properties:

1. A similarity measure has self-similarity of unity: S(x,x)=1.
2. A similarity measure is transitive: S(x,y)=S(y,x)
3. A similarity measure obeys the similarity translation for some function g:

S(x,y), S(y,2)>T—=S(x,z)>g(T).
Since a similarity measure is a function of a metric d, S=f(d), the triangle inequality also
follows: S(x,y) + S(y,z} 2 S(x,z). Several metrics and similarity measures are discussed.
Metrics
Metrics [Simm], also known as distance functions, map a relation between two samples
into R,. The Minkowski metric, L, is commonly used since it is parameterized on q and

different values of q have wide applications.

ilq

-

@D L= Y (x-y,)
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For g=1, the Minkowski metric is known as the L, metric, or Manhattan (city-block)

distance,
p
(48) L= Ix-yl
i=1
For g=2, the Minkowski metric is known as the L, or Euclidean distance.

(49) L,=

ij(xi —yi)zJ

In the limit as g—oo, the Minkowski equation is known as the Chebychev metric and the

metric has enhanced sensitivity to outliers.

p
(50) ]imq—om Lq:HmQ"mZ (Xi_yi)”q:Maxilxi—in

i=1
A generalized metric considers the samples in light of additional factors. One type of
generalized metric scales the features through multiplication by a positive definite pXp
matrix A. Such a scaling constitutes a transformation and may in practice be a PCA or
ICA transform. The transformation introduces p’ additional parameters or degrees of

freedom. The metric is denoted

1) Jixll, =v(x, x), =Vx" Ax

When the matrix A is the covariance matrix of the dataset, A=M", the metric is called
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the Mahatanobis metric

(52) Ix=vl =V(x=v)" M (x—v)

M
When A is required to be diagonal, A=D, the number of parameters in the classification

system is reduced from p” to p. Note that only the trace of A is non-zero.

(53) lIx=vll_.=V(x—v)"D" (x—v)

A final example metric is the Canberra, which is sensitive to small changes around 0,

Z |in_xkj|
Ixl|l=————

Ixﬁ+xkj|

(54

Fig. 77 displays how different metrics compute distance from the origin over a small
grid.

Measures

When the definition of similarity is based on a metric, similarity measures induce a

partially ordered set (poset) [Roit] on the samples. For x,y,2&X, X is a poset if the

relation < is

1. Reflexive; x<x.
2. Anti-symmetric; x<y, y<x, then x=y.

3. Obeys the triangle inequality; x<y, y<z, then x<z.
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g ? 3 g g g . n

{b) Euclidean metric. (c) Minkowski metric, g=0.4.

*

(d) Minkowski metric, g=1.1. () Minkowski metric, g=5.

(g) Infinity metric.

Figure 77. Distance from the origin, using different metrics.
One similarity measure of interest is the Pearson Correlation p for time series
X =[Xy, ..., Xo] and y=lyy, ..., val.

p(x y): Z(Xi"i)(yi“—f’)
T k-0 Y (-3 )

(35)

where lez X, and 37:}*2 Y.
n n
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A.1 Binary Similarity Measures
Similarity measures for binary data exhibit a variety of measures for data structure and

relations. Binary similarity measures use the cross tabulation, or joint occurrence matrix,

a b

56 JO=
(56) e d

where, for sets X and Y, the coefficients represents the number of: items held by both X
and Y (a), items held only by X (b), items held only by Y (c), and items held by neither X
or Y (d).

Table 42. Binary Metrics

Anderberg Anti-Dice
a . a + d + d a
a+b a+c c+d b+d a+2(b+c)
4

Gower Hamann
ad (a+d)—(b+c)
V((a+b){a+c){d+b)(d+c)) (a+b+c+d)

Kulczynski Matching

[ a a a+d
J— +.___ —_—
2la+b a+c at+b+c+d




Pearson binary

Rogers and Tanimoto

Appendices

(ad —bc) {a-+d)
V((a+b)(a+c)(d+b){d+c)) (a+d)+2(b+c)
Sneath and Sokel Yule
2(a+d) (ad—bc)
2(a+d)+b+c ad+bc
Dice Jaccard
2a a
2a+b+4c a+b+c
Russell and Rao Ochiai
a a
a+b+c+d J{(a+b)(a+c))
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B: Derivation of FCMP Equations
The FCM objective function measures the weighted sum of sample-centroid distances
over all sample-centroid combinations. It maximizes inter-centroid distances and
minimizes intra-cluster variance. The FCM objective function is partially differentiable
and the constrained optimization problem is converted to a corresponding unconstrained
optimization problem using Lagrange multipliers. Partial derivatives of the objective
function define equations which, when algebraically manipulated, relate the centroids, V,,
and memberships, U,, at successive time steps t. Iteration of the algorithm proceeds until
convergence, which 1s defined as a change in memberships or centroids below a specified
threshold. Both initialization of the centroids and the choice of metric can have
consequences on FCM convergence'®, The fuzzy set requirement on the memberships
constrains the memberships of a sample in all centroids to sum to unity. This
requirement appears in the unconstrained objective functions with the Lagrange

multiplier A . Formally, for each sample x;, 1<i<N
C C
67 =2 ugDi-a ) (u, 1
k=1 k=1

Taking partial derivatives of J; with respect to uy and A and setting the resulting

16 FCM is often executed multiple times to avoid convergence to objective function saddle points, which
can be caused by an inauspicious random initialization. Exchanging the Euclidean distance for, say the
L., does not guarantee convergence.
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equations to 0 generates two equations in two unknowns. This system of equations is

then solved to determine the update equations used iteratively in the algorithm.

a7 <
—=0=> u, —1
(58 0=l w
olJ.
(59) L=0=muj "Dj—2a

Ouy

Isolate uy as a preparatory step. Also, it is common to set m=2 to simplify the algebra.

(60) u, =(

(63) = Pi
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The centroid equation that results is a normalized, weighted sum of the samples.

N

Z Uy X;

(64) v=
i

2. u

m
K

The possibilistic and various spatio-temporal equations are all derived in a similar

manner.
Derivation of FCMP

Given a dataset X, with n samples x€X, and a set of C centroids k€K, where samples
indices run from i=1...n, and centroid indices run from j=k...C. For q partitions ¥, the
feature partition weights for a vector v=[v,v,.. Vq] which sums to unity

(65) Y v,=1,0<v, <1,V ye¥

wey
The generalized distance is composed as the sum of weighted distance functions on the

partitions

(66) DZ(X’V):Z dei(xw,vq,)

yey
where the x, indicates that only the feature indices in the feature partition ) are

considered in the distance calculation.
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FCMP Equations Applied to fMRI

When adapting the general FCMP model to a two-partition model, in particular one that
uses spatial and temporal domain, the weights may be referred to as vg and vy
respectively. The objective function of this algorithm can now be differentiated and the

necessary update equations, for sample memberships and centroids, derived. The FCMP

objective function, for spatial and temporal domains using distances Sdik and Tduc

respectively, is:

C

N C
(67) J :Vsz Z u?):sdizk+VTZ Z uiT(Td'zk_’\ Z Z (uik_l)

i=l k=1 i=l k=1 i=1 k=1

And for a particular sample x;, the objective function is:
[o4 C C
_ mS 42 T 42
(68) Ji_vszuik dik+VTZu;;: dik“_AZl“ik_l)
k=1 k=1 k=1
Again, partial derivatives of the objective function generate a system of equations which
provide the centroid and membership update equations. These equations are iteratively
solved and updated until the algorithm converges. Differentiating the objective function

with respect to the constraint on the membership values to sum to unity generates

8l. &
(69) 5—;‘:2 [0, —1)=0

k=1
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and with respect to the membership value u,, generates

(70}
al,

a uS\V

_ m—1S 42 m=1T 42 _
=mvglg, dsw+ mvas U, dsw—;\—o

Rearranging,

A m—1
71 uSW':
1) mvssd:w+m vTTd:w

T S .
where m, Vg, V4, d., "d, are constant with respect to A and ug,. Factor out A/m,

m—1

A 1

72 u =S|
( ) m VSSd::w-i_VTTd:w

S\W

Let m=2, for simplicity and sum over all clusters

C [
73) 2 ==

Solve the above for A/m.

Note that the sample / centroid indices in the above are arbitrary and should be changed

before we substitute the solved equation for A/m into the update equation. Replace

indices sw with iw. Now, substitute our equation for A/m into the original formula for u,,
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. 1 1 -]

W (4 S42 T 42
(75) Z ____1— VS dsw+VT dsw
S 42 T 42

i=1 Vg dtvyd

iw

And the final membership update equation is:

- ! o=
2

uS“’ C

(76) Z Vg Sdzw-l_ V’I‘Tdsw
i=1 Vssdlzw-f' VTTd2

iw

Applicability

FMCP is applicable to the same set of problems as FCM; collections of (partially) labeled
or unlabeled data where hypotheses about inherent (or justifiably expedient) global
structure is examined. By justifiably expedient it is understood that it is not critical that
class labels are homogeneous in different clusters but simply that an administrative order
is being imposed on the data and that it is to some extent data-driven. FCMP extends this
problem domain by adding those problem sets where features are known a priori to have
distinct relations and hypotheses about the priority or weighting are being tested in
addition to inherent global structure.

FCMP differ from its original form, FCM, in its definition and use of feature partitions
(FCM has only one), weightings that rank the importance of feature subsets (FCM has

none), and the expectancy that different metrics may be appropriate for various feature
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partitions (FCM most often uses the Euclidean metric). FCMP can be modified for
future use in several ways. The equations can be extended to take into account
covariance matrices for different feature partitions. The algorithmic equations can be
expanded to take into account pre-processing operations typical in practice in the
particular problem domain. Auxiliary rules of thumb can be developed to optimize
ECMP in certain manners to specific types of datasets. Such rules would relate to
qualities of the parameter space (the number and types of feature partitions, the relative
weights between the partitions, the types of metrics, effects of combining metrics...).
Implementation

FCMP is constrained in its implementation in that it is iterative. Since FCM can be
optimized and the core update equations in FCMP are algebraically the same as those in
FCM, it follows that FCMP can also be optimized. (Such optimization removes the
requirement to update the membership matrix.) This formula needs to be developed for
FCMP.

For FCMP, once the partitions have been determined (the number of sets of feature
indices and their particular configuration (a feature partition configuration lists which

features are in which partitions) ), the parameter space may initially be evaluated over a
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rough set of weights for the different partitions. For two partitions, these weights form a
pair of intersecting lines in weight space (intersecting where both partitions have value
0.5). For multiple partitions, a grid in weight space is evaluated. These sampling points
may then be expanded in regions in the parameter space where the objective function
indicates inflection points and optima. Procedures on increasing sampling in these
parameter space regions are common in texts on optimization.

FCMP parameters that can be determined a priori are mainly the feature partitions and the
relative weights between the partitions, both being determined by conceptual analysis of
the problem or expert intuition. Analysis that leads to the initial FCMP parameters and
the initial sampling points in the parameter space should be formulated as hypotheses and
tested in the accompanying experiments.

FCMP can use data-driven statistics to determine parameters such as the feature partitions
(using variance as in the PCA approach, using the mixing matrix for independent
components as in the ICA approach). An experiment using FCMP should evaluate FCM
on each of the single partitions as well. This incorporates a classical approach to the
problem and provides an important parameter-space evaluation for the experiment (the
point where all partitions except one have a partition weight of 0). A valid benchmark
for FCMP is FCM, since FCMP generalizes FCM. Optimal parameter values for FCMP
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are dataset specific, since they exploit feature relationships, though further analysis may
define problem sets where valid parameter rules of thumb exist. Current rules of thumb

for FCM may be extended for FCMP parameters.
Analysis
FCMP results be interpreted as:

e Membership assignment maps in the different feature-partition spaces. As an
example, consider the voxel assignment maps for fMRI data. This considers only
the spatial feature partition.

e Trends in a higher dimensional parameter space. Since FCMP has more
algorithmic degrees of freedom than FCM, trends in the objective function are
evalvated along more axes. Such flexibility may lead to enhanced performance
when compared to FCM. At worst, it return a result with the same optimality as
FCM. Note that increasing degrees of freedom is not sufficient to provide
enhanced performance. Rather, it is the increase of degrees of freedom that mirror
feature relationships that provide enhanced analysis. Thus, having more feature
partitions is a more significant axes of freedom than having another parameter
corresponding, say, to a fuzzy exponent.

A study to discover problematic datasets for FCMP has not yet been completed. Since
attempts to optimize the objective function may lead to saddle points, repeated FCMP
runs that converge to the saddle points may constitute an anomaly in a collection of

FCMP results. Detection of such an anomaly has yet to be examined.
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C: Fuzzy Sets
Fuzzy sets can quantify degrees of membership of samples in subsets (clusters). In 1965,
Zadeh [Zadeh] published a method of modeling imprecision in mathematical equations.
The fuzzy prefix is associated with the mathematics of imprecision and is a common
thread through fuzzy sets, fuzzy logic, and fuzzy reasoning. Membership of objects in a
certain class is considered with the novelty that membership could be partial and non-
exclusive. Hard, or classical set membership, has the membership, b, of x in set A as
ba(x)€{0,1}, while fuzzy membership has bs(x)€[0,1]. For example, a single object
could be hot to some degree while simultaneously being cold to another degree. In this
case hot and cold are simply two sets to which objects may partially belong. Fuzzy sets
have become widely used in analysis, industry and research due to the facility of fuzzy
sets to capture plain-language concepts in its mathematics. Fuzzy sets have well defined
operations for addition/subtraction, multiplication/division. However, once a fuzzy
operation has taken place, it is necessary to convert the fuzzy degrees of membership into
a real world quantity before the computation can be acted on. De-fuzzification refers to
the mapping from a fuzzy set back into a world where actions must be specified

precisely. S-norms and T-norms define the properties of fundamental fuzzy set
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operations. An S-norm (or T-conorm) operator is a binary mapping S(°,°) satisfying

conditions:

boundary: S(I,L1) =1, S(a,0) = S(0,a) =a
monotonicity:  S(a,b)<S(c.d) iff (a<c) /\ (b<d)
commutativity:  S(a,b) = S(b,a)

associativity: S(a,S(b,c)) = S(S(a,b),c)

A T-norm (or co-norm) operator is a binary mapping 7T (c,°) satisfying conditions:

boundary: T(0,0)=0, T(a,])=T(1,a) =a
monotonicity:  T(a,b)<T(c,d) iff (a<c) /\ (b<d)
commutativity: T(a,b) = T(b,a)

associativity: T(a,T(b,c)) = T(T(a,b),c)

Figures 78-77 show examples of an s-norm, or maximum, intersection, and a t-norm, or

minimum,
l 13 A /3 A
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Figure 78. Fuzzy Set Max. Figure 79. Fuzzy Set Figure 80. Fuzzy Set Min.
Intersection.
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D: Clustering Algorithm Comparisons

The following discussion examines FCM but includes accounts of two closely related
.algorithms: hard C-means (HCM) and possibilistic C-means (PCM). Both HCM and
PCM are variations on FCM incorporating modified definitions of membership.
Examining the trio of clustering algorithms, HCM, FCM and PCM, illuminates the

novelty of FCMP.

Table 43. HCM, FCM and PCM Objective Functions

Algorithm Objective Functions
HCM IViX)=2 ) D,
vEY x€X
FCM 1.(U,ViX)=3, > unDj,
veVY xeX
PCM LU ViX)=2 > ulllx=vIE+> 8. > (1-u_)"
veVY xeX vEY xeX

Note that in Table 43 a generalized distance function is used for PCM: D} =||x, —v,|}

where matrix A denotes the covariance matrix. Update equations are listed in Table 44.
The equations describing the family of membership matrices associated with the various

clustering algorithms are shown in Table 45,
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Table 44. Clustering Algorithms Update Equations

Cluster Membership Update Equation Cenfroid Update Equation
Method
.. sy n
HCM u,=1;D, <D, j#iVik 3 x
. . Uy Xy k
u, =0;otherwise Vi ,k kel % EX, .
V.= = =y Vi
1 n n 1
u i
ik
k=1
FCM [ 2 -1 N
—_— m
— i DniA (m—1) Z(unc) X,
T v =221 Vi
c=1 D“cA c Z(u )m
ne
PCM [ Lt n
D lm-i| . 2 urx,
u, = 1+|— Vi, k k=1 .
ik W, V= Vi
1
m
Ui
k=1

Table 45. Clustering Algorithms Membership Matrices

Algorithm Membership Matrices
HCM M, ={UeM,, U eN, Vk}
FCM M, ={UeM,_:U €N Vk]
PCM

M, =(UER™:U,EN_Vk;0<) u, Vi}
k=1

HCM, when augmented by specific merge and split heuristics, is known as ISODATA.

PCM has an additional parameter with respect to FCM. The bandwidth, or resolution,

parameter 5, p>0Vi, is estimated as
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> wllx, v,
a7 B=Q
2 un

n=

where Q is a scaling factor.

The membership values that result from these clustering algorithms are listed in Table 46

Table 46. Clustering Algorithms Membership Values

Algorithm Membership Values Notes
HCM N, ={0EN_:u €[0,1]V i) Membership in one cluster
=(¢&,¢,...6 ) only.
FCM ~ < Sum of centroid memberships
Neow={u€ Npe: E u=1] for each sample is unity.
PCM NPCM={ﬁelRC 1y, €[0,1]Vi,u>03i} |Label vector is non-zero for
=[0,1F-0 each cluster centre.

237




Electronic Resources

URL Description
math.york.ca/SCS/Gallery/accent.htm! ACCENT
afni.minh.nih.gov/afni AFNI
medx.sensor.com/productsfmedx/documentation.hitml Medx
scopira.org Scopira
fil.ion.ucl.ac.uk/spl SPM
fmrib.ox.ac.uk/fsl/melodic2.html FSL and Melodic
www scopira.org/~alexiuk/fcmp FCMP

WWW.NIC-CNIc.ca National Research Council
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