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Abstract

Recurrent Neural Network is a well-established tool for sequential modelling. It

includes a variety of techniques and models to extract temporal information from a

sequence of data (e.g. frames of a video sequence).

This thesis presents novel end-to-end deep learning recurrent based architectures

for two computer vision problems: semantic segmentation prediction and camera pose

estimation. Firstly, we investigate the problem of extracting temporal information

in the context of semantic segmentation prediction. we demonstrate the capability

of recurrent architecture in feature prediction by presenting a novel encoder-decoder

convolutional LSTM architecture. We also utilize a bidirectional convolutional LSTM

as an extension of our work. Furthermore, we explore a step-by-step extraction of

spatial information in the problem of monocular camera pose estimation with an end-

to-end unsupervised training scheme which relies on a recurrent based pose estimator.

We illustrate the contribution of recurrent estimation (a.k.a step-by-step estimation)

in the estimation of large displacements and complex transformations. We also show

the impact of this process on the monocular depth estimation process.
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Chapter 1

Introduction

Recurrent architecture is extensively studied in deep learning. In this thesis,

we study the extraction of spatial and temporal information by recurrent based ar-

chitectures. We propose two novel recurrent architectures for two computer vision

problems.

We first consider a novel recurrent based approach for future semantic segmen-

tation in a video sequence. Given several frames in a video, our goal is to predict

the semantic segmentation of unobserved frames in the future (See Fig. 1.1). This

problem requires the extraction of temporal information. Therefore, we propose a

new approach for modeling temporal information of input frames for future semantic

segmentation. Our method is based on convolutional LSTM, which has been shown

to be effective in modeling temporal information [5; 6; 7]. Unlike the prior meth-

ods, our approach does not require the optical flow estimation. So it is conceptually

much simpler. Due to the impact of ConvLSTM based feature map prediction, our

model outperforms previous work even though we do not use additional optical flow

1



2 Chapter 1: Introduction

St−3 St St+1

...

...

Figure 1.1: Illustration of future semantic segmentation. The first two columns show

the input of the model. Given the semantic segmentation masks of several frames

(St−3...St) in a video, our goal is to predict the semantic segmentation of an unob-

served future frame St+1.

information. To achieve the best performance, we extend ConvLSTM based model

to a Bidirectional ConvLSTM. The bidirectional architecture plays as an additional

constraint on the output of model which eventually leads to a better performance.

Second, we explore the spatial pose refinement by using recurrent architecture in

visual odometry (VO) problem, where the goal is to estimate the camera poses (e.g.

motion) given a number of consecutive frames in a video sequence. In particular, we

tackle the problem of unsupervised camera pose estimation and depth estimation in

the presence of a single camera. In order to address the limitations of previous line

of work [1; 8; 9; 10; 11; 12; 13; 13; 14; 15] , we propose a new recurrent compositional

re-estimation approach that decomposes the camera pose estimation into a sequence

of smaller pose estimation problems. Therefore, we estimate the pose of the camera

in a recurrent manner.
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1.1 Contributions

The contribution of our work is as follows:

• We propose a multi-level feature prediction approach for future semantic seg-

mentation that incorporates convolutional LSTM (ConvLSTM) to capture the

temporal information of input frames while preserving the spatial information

through convolutional neural network architecture. We also present a Bidi-

rectional ConvLSTM module as an extension of our work to further capture

the temporal information from opposite directions. Our model simplifies the

pipeline of prior works by leveraging recurrent units and it outperforms the

state-of-the-art approaches without using complex pipelines (e.g. optical flow

as an additional information). In fact, recurrent unit enables us to implicitly

capture motion information through ConvLSTM units with no explicit use of

optical flow information.

• We introduce a recurrent based re-estimation process which pave the path for

estimating pose of the camera through sequence of frames in the presence of

large displacements between consecutive frames. The idea of compositional re-

estimation has been used for image alignment [16]. But this is the first work

using this idea for unsupervised deep camera pose estimation. Our model is

end-to-end trainable with no external supervision signal. As a by-product, we

also propose an unsupervised depth estimation model which works alongside

the camera pose estimation network. The experimental results demonstrate

that our approach significantly outperforms other state-of-the-art approaches.



4 Chapter 1: Introduction

1.2 Thesis Organization

The remainder of the thesis is organized as follows: In Chapter 2, we review the

most relevant work to future semantic segmentation and camera pose estimation. In

Chapter 3, we introduce a novel approach of multi-level convolutional LSTM for pre-

dicting the feature maps of the future segmentation maps. We continue by extending

the basic convolutional LSTM to a bidirectional Convolutional LSTM. In Chapter 4,

we propose a novel re-estimation module for camera pose estimation. We also discuss

depth estimation as a by-product of our model. In Chapter 5, we conclude our work

and we discuss possible directions for future work.



Chapter 2

Related Work

In this section, we review several lines of research closely related to ours. We

describe the most relevant work to future semantic segmentation and camera pose

estimation.

2.1 Future Semantic Segmentation Prediction

2.1.1 Frame Prediction

Recently, a line of research on future prediction in videos emerged. Some of these

work aim to predict the RGB values of future frames in a video. Ranzato et al [17]

propose the first RNN/RCNN based model for unsupervised next frame prediction.

Srivastava et al [18] utilize LSTM [19] encoder-decoder to learn video representation

and apply it in action classification. Villegas et al [20] introduce a motion-content

network to predict motion and content in two different encoders. Mathieu et al [21]

introduce a new loss function and a multi-scale architecture to address the problem

5



6 Chapter 2: Related Work

of blurry outputs in future frame prediction. Vondrick et al [22] predict feature map

of the last hidden layer of AlexNet [23] in order to train a network for anticipating

objects and actions. Villegas et al [24] first estimate some high-level structure (e.g.

human pose joints) in the input frames, then learn to evolve the high-level structure

in future frames. There is also work [25; 7] on predicting future optical flows.

2.1.2 Semantic Segmentation Prediction

future semantic segmentation prediction is introduced by Luc et al. [26] to address

the problems in future frame prediction. They present various baselines with different

configurations for this problem. They also consider several scenarios of future predic-

tion, including short-term (i.e. single-frame), mid-term (0.5 second) and long term

(10 seconds) predictions. An autoregressive method is designed to predict deeper into

the future in their model. Jin et al.[3] develop a multi-task learning framework for

future semantic segmentation. Their network is designed to predict both optical flow

and semantic segmentation simultaneously. The intuition is that these two prediction

tasks can mutually benefit each other. Furthermore, they introduce a new problem

of predicting steering angle of vehicle as an application of semantic segmentation pre-

diction in autonomous driving. However, their method requires ground-truth optical

flow annotations, which are difficult to obtain.
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2.2 Camera Pose Estimation

2.2.1 Structure from Motion

Simultaneous estimation of structure and motion is a long-standing and funda-

mental problem in computer vision. Traditional approaches rely on geometric con-

straints extracted from monocular feed to estimate motion. They commonly start

with feature extraction and matching, followed by geometric verification [27; 28; 29].

They are effective and powerful, yet computationally expensive and only focus on

salient features. They also need high-quality images, and the results can drift over

time due to factors such as low texture, stereo ambiguities, occlusions and complex

geometry. Recently, learning-based methods have become popular and raised the bar

on the performance [15; 30; 31; 32]. DeepVO [15] performs end-to-end visual odome-

try. PoseNet [30] learns 6 Degree-of-Freedom (6DOF) pose regression from monocular

RGB images. Encoder-decoder style Hourglass networks have also been proposed to

perform localization [32]. Increasing availability of single view datasets [33; 34; 35]

has made it possible to have significant improvement in depth prediction. Supervised

deep networks [4; 36; 37; 38; 39; 40; 41; 42; 43] have achieved a promising performance

and a variety of architectures have been proposed. Eigen et al. [4] demonstrate the

capability of deep models for single view depth estimation by directly inferring the

final depth map from the input image using two scale networks. Liu et al.[36; 37]

formulate depth estimation as a continuous conditional random field learning prob-

lem. Laina et al. [40] propose the Huber loss and a newly designed up-sampling

module. Kumar et al. [41] demonstrate that recurrent neural networks (RNNs) can
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learn spatiotemporally accurate monocular depth prediction from a video. Supervised

techniques are limited due to the difficulty of collecting expensive ground truth infor-

mation and impractical in applications as they often require data collection process

different from the target robotic deployment platform.

2.2.2 Warping-based View Synthesis

Rethinking depth estimation as an image reconstruction task allows to alleviate

the need for ground-truth labels. Self-supervised approaches for structure and motion

borrow ideas from warping-based view synthesis. The core idea is to supervise depth

estimation by treating view-synthesis via rigid structure from motion as a proxy task.

Recently, unsupervised single image camera pose estimation and depth estimation

techniques have shown remarkable progress [13; 44; 1; 45; 11; 46]. These methods are

mostly based on the photometric error which uses a Lambertian assumption. Garg

et al. [47] train a network for monocular depth estimation using a reconstruction loss

over a stereo pair with Taylor approximation to make the model fully differentiable.

Godard et al.[44] further improve the results by introducing symmetric left-right con-

sistency criterion and better stereo loss functions. Zhou et al. [1] propose a temporal

reconstruction error that is computed using temporally aligned snippets of monocular

images to deal with the limitation of having stereo images. The camera pose is un-

known and needs to be estimated together with depth. The learning loss is obtained

by combining a depth estimation network with a pose estimation network. This leads

to the loss of absolute scale information in their predictions. This is solved by Li et al.

[13] who combine both spatial and temporal reconstruction losses to directly predict
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the scale-aware depth and pose from stereo images. Proposed by Mahjorian et al. [9],

geometric constraints of the scene are enforced by an approximate ICP based loss.

On the other hand, Yin et al. [8] jointly learns monocular depth, ego-motion and

optical flow from video sequences. To handle occlusion and ambiguities, an adaptive

geometric consistency loss is proposed to increase robustness towards outliers and

non-Lambertian regions. Geometric features are extracted over the predictions of

individual modules and then combined as an image reconstruction loss.

2.2.3 Compositional and Transformer Networks

Spatial transformer networks [48] are developed to resolve the ambiguity of spa-

tial variations for classification. Jaderberg et al. [48] propose a novel strategy for

integrating image warping in neural nets. Inverse compositional spatial transform-

ers [16] further extends this work to remove the boundary artifacts introduced by

STNs based on intuitions from the Lucal & Kanade algorithm [49] that propagates

warp parameters rather than image intensities.



Chapter 3

Future Semantic Segmentation

with Convolutional LSTM

The ability to predict and anticipate the future plays a vital role in intelligent

system decision-making [50; 51]. An example is the autonomous driving scenario. If

an autonomous vehicle can correctly anticipate the behaviors of other vehicles [52] or

predict the next event that will happen in accordance with the current situation (e.g.

collision prediction [53]), it can take appropriate actions to prevent damages.

Computer vision has made significant progress in the past few years. However,

most standard computer vision tasks (e.g. object detection, semantic segmentation)

focus on predicting labels of observed images. As a result, predicting and antici-

pating the future is still challenging for current computer vision systems. Part of

the challenge is due to the inherent uncertainty of this problem. Given one or more

observed frames in a video, there are many possible events that can happen in the

future. Another difficulty is due to the lack of prior information about the shape and

10
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the structure of unobserved scenes (objects) which refers to generating future scene.

There are two lines of research on predicting RGB pixel values of future frames

in a video sequence [54; 21; 17; 18]. While predicting RGB values of future frames

is useful, it may not be completely necessary for downstream tasks. Another line

of research focuses on using temporal correlation to improve current frame semantic

segmentation stability [55; 56; 57; 7]. However, it only tries to predict a consistent

semantic segmentation of current frames rather than future frames. In this chapter,

we focus on the problem of future semantic segmentation prediction [26], where the

goal is to predict the semantic segmentation of future frames. We propose a novel

recurrent approach which is able to generate missing information and capture tem-

poral dependencies between frames while the only available information is semantic

segmentation maps of previous and current frames.

Future semantic segmentation is a relatively new problem in computer vision.

There has been only limited work [26; 3] on this topic. Luc et al [26] develop the

first work on future semantic segmentation. Their model directly takes the segmen-

tation masks of several frames as the input and produces the segmentation mask of

a future frame. It does not explicitly captures the temporal relationship of the input

frames. To address this limitation, Jin et al [3] propose a multi-task learning approach

that jointly predicts optical flow and semantic segmentation of future frames. Since

the optical flow captures the motion dynamics of adjacent frames, their approach

implicitly models the temporal relationship of the input frames. The limitation of

this approach is that optical flow estimation itself is a challenging task. In addi-

tion, it is more difficult to collect large scale dataset with ground-truth optical flow
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annotations. The method in [3] uses the output of another optical flow estimation

algorithm (Epicflow [58]) as the ground-truth. But this means the performance of

this method is inherently limited by the performance of Epicflow.

In the following, we first present an overview of the proposed model in Sec. 3.1.

We then describe our convolutional LSTM module in Sec. 3.1.1. Finally, we introduce

an extension of the ConvLSTM to bidirectional ConvLSTM in Sec. 3.1.2.

3.1 Our Approach

Figure 3.1 shows the overall architecture of our proposed model. Our proposed

network consists of three main components: an encoder, four convolutional LSTM

(ConvLSTM) modules and a decoder. The encoder takes the segmentation maps of

four consecutive frames at time (t, t− 1, t− 2, t− 3) and produce multi-scale feature

maps for each frame. Each ConvLSTM module takes the feature map at a specific

scale from these four frames as its input and captures the spatio-temporal information

of these four frames. The outputs of these four ConvLSTM modules are then used by

the decoder to predict the segmentation map of a future frame (e.g. at time t + 1).

In the following, we describe the details of these components in our model.

The encoder takes the semantic segmentation map of an observed frame and pro-

duces multi-scale feature maps of this frame. Following previous work [3], we use

ResNet-101 [59] as the backbone architecture of the encoder. We replace the last

three convolution layers of ResNet-101 with dilated convolutions of size 2× 2 to en-

large the receptive field. We also remove the fully-connected layers in ResNet-101.

In the end, the encoder produces multi-scale feature maps on each frame. Features
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at four different layers (“conv1”, “pool1”,“conv3-3”,“conv5-3”) in the feature maps

are then used as inputs to the four ConvLSTM modules. Let (St, St−1, St−2, St−3) be

the semantic segmentation maps of the frames at time (t, t − 1, t − 2, t − 3), we use

(fk
t , f

k
t−1, f

k
t−2, f

k
t−3) (where k = 1, 2, 3, 4) to denote the feature maps at the k-th layer

for (St, St−1, St−2, St−3). In other words, f 1
t will be the feature map at the “conv1”

layer of the encoder network when using St as the input. The spatial dimensions of

(fk
t , f

k
t−1, f

k
t−2, f

k
t−3) are (480× 480, 240× 240, 120× 120, 60× 60) when the input has

a spatial size of 960× 960.

The k-th (k = 1, 2, 3, 4) ConvLSTM module will take the feature maps (fk
t , f

k
t−1, f

k
t−2, f

k
t−3)

as its input. This ConvLSTM module produces an output feature map (denoted as

gk) which captures the spatiotemporal information of these four frames.

We can summarize these operations as follows:

(fk
t , f

k
t−1, f

k
t−2, f

k
t−3) = Encoderk(St, St−1, St−2, St−3) where k =1,...,4

gk = ConvLSTMk(fk
t , f

k
t−1, f

k
t−2, f

k
t−3) where k = 1,...,4

(3.1)

Finally, the decoder takes the outputs (g1, g2, g3, g4) of the four ConvLSTM mod-

ules and produces the future semantic segmentation mask St+1 for time t+ 1 (assum-

ing one-step ahead prediction). The decoder works as follows. First, we apply 1× 1

convolution followed by upsampling on g1 to match the spatial and channel dimen-

sions of g2. The result is then combined with g2 by an element-wise addition. The

same sequence of operations (1 × 1 convolution,upsampling, element-wise addition)

is subsequently applied on g3 and g4. Finally, another 1 × 1 convolution (followed

by upsampling) is applied to obtain St+1. These operations can be summarized as
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Figure 3.1: Overview of our proposed network for predicting scene parsing for one

time ahead. Our network takes segmentation map (S) of video frames at t− 3, t− 2,

t − 1, and t as an input and generates the segmentation map of the future frame

t + 1 as an output. The network consists of three major components: an encoder,

convolutional LSTM (ConvLSTM) modules and a decoder. The encoder produces

feature maps (fk
t−3 : fk

t ) for the inputs which are exploited by the ConvLSTM modules

to predict the feature maps of future frame (gk). Finally, the decoder which mainly has

several deconvolution layers combines the outputs of different ConvLSTM modules

and generate the segmentation map for the next time-step.

follows:

z1 = g1, zk = Up(C1×1(z
k−1)) + gk, where k = 2, 3, 4

St+1 = Up(C1×1(z
4))

(3.2)

where C1×1(·) and Up(·) denote 1×1 convolution and upsampling operations, respec-

tively.
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3.1.1 ConvLSTM Module

ConvLSTM is a powerful tool for capturing the spatio-temporal relationship in

data [60], which is essential to predict the segmentation map of a future frame. We ex-

ploit this characteristic of ConvLSTM and introduce ConvLSTM modules at various

stages in the model. In contrast to the conventional LSTMs that use fully connected

layers in the input-to-state and state-to-state transitions, ConvLSTM uses convolu-

tional layers instead. As shown in Fig. 3.1 (left), we have four ConvLSTM modules in

our proposed network. The feature map from a specific layer in the encoder network

(denoted as fk
t−3 : fk

t in Eq. 3.1) are used as the input to a ConvLSTM module. We

set the kernel size to 3× 3 for convolutional layers in ConvLSTM1 to ConvLSTM3,

whereas the ConvLSTM4 has convolution with kernel size of 1×1. Since the feature

map of the future frame is based on the previous four consecutive video frames, the

ConvLSTM unit has four time steps. The output of each ConvLSTM module is a

feature map that captures the spatiotemporal information of the four input frames

at a particular resolution.

Figure 3.1 (right) shows the k-th ConvLSTM module. Each of the four input

frames (at time t − 3, t − 2, t − 1, t) corresponds to a time step in the ConvLSTM

module. So the ConvLSTM module contains four time steps. We use s to denote

the time step in ConvLSTM module, i.e. s ∈ {t − 3, t − 2, t − 1, t}. All inputs fk
s ,

gates (input (is), output (os) and forget (Fs), hidden states Hs, cell outputs Cs are

3D tensors in which the last two dimensions are spatial dimensions. Eq. 3.3 shows
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the key operations of ConvLSTM:

is = σ(Wfi ∗ fk
s +Whi ∗ Hs−1 +Wci ~ Cs−1 + bi)

Fs = σ(WfF ∗ fk
s +WhF ∗ Hs−1 +WcF ~ Cs−1 + bF )

Cs = Fs ~ Cs−1 + is ~ tanh(Wfc ∗ fk
s +Whc ∗ Hs−1 + bc)

os = σ(Wfo ∗ fk
s +Who ∗ Hs−1 +Wco ~ Cs + bo)

Hs = os ~ tanh(Cs) where s = t− 3, t− 2, t− 1, t

(3.3)

where ‘*’ denotes the convolution operation and ‘~’ indicates the Hadamard product.

Since the desired output is the feature map of future frame t+ 1, we consider the last

hidden state as the output of a ConvLSTM module, i.e. gk = Ht.

3.1.2 ConvLSTM to Bidirectional ConvLSTM

Motivated by the recent success in speech recognition [61], we further extend

the ConvLSTM module to bidirectional ConvLSTM to model the spatiotemporal

information using both forward and backward directions.

Figure 3.2 illustrates the bidirectional ConvLSTM module that we propose for

future semantic segmentation. Input feature maps fk
t−3, ..., f

k
t are fed to two Con-

vLSTM modules, ConvLSTM forward and ConvLSTM backward. ConvLSTM forward

computes the forward hidden sequence ~Ht+1 from time step t − 3 to t, whereas

ConvLSTM backward computes ~Ht+1 by iterating over inputs in the backward direction

from time step t to t − 3. Finally, we concatenate the output of ConvLSTM forward

and ConvLSTM backward and obtain feature map gk that is forwarded to the decoder

for the subsequent processing. We can write these operations within bidirectional

ConvLSTM as follows:
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Figure 3.2: Architecture of bidirectional ConvLSTM module for future semantic seg-

mentation.

~Hs, ~Cs = ConvLSTM forward(fk
s−1,

~Hs−1, ~Cs−1)

~Hs, ~Cs = ConvLSTM backward(fk
s+1, ~Hs+1, ~Cs+1), where s = t− 3, t− 2, t− 1, t

gks = concat( ~Ht, ~Ht−3)

(3.4)

3.2 Experimental Evaluation

In this section, we first discuss the dataset and experimental setup. We then

present both quantitative and qualitative results.

3.2.1 Datasets and Evaluation Metric

We conduct our experiments on the Cityscapes dataset [62]. This dataset contains

2,975 training, 500 validation and 1,525 testing video sequences. Each video sequence

has 30 frames and is 1.8 sec long. Every frame in a video sequence has a resolution

of 1024 × 2048 pixels. Similar to previous work, we use 19 semantic classes of this

dataset.
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Following prior work [26; 3], we evaluate the predicted segmentation maps of our

method using the mean IoU (mIoU) on the validation set of the Cityscapes dataset.

3.2.2 Baselines

To demonstrate the effectiveness of our proposed model, we compare the perfor-

mance of our model with the following baseline methods:

i) Jin et al [3]: The key component of this method is that it combines optical

flow estimation and semantic segmentation in future frames. It uses the Res101-

FCN architecture (a modified version of ResNet-101 [59]) as the backbone network

and the segmentation generator for the input. Since the code of [3] is not publicly

available, we have reimplemented the method in PyTorch. Note that Jin et al [3] report

75.2% mIoU of Res101-FCN for the semantic segmentation task on the validation

of Cityscapes dataset. But our re-implementation obtains only 71.85% mIoU (see

Table 3.1). However, our implementation of the PSPNet gives semantic segmentation

performance similar to Res101-FCN reported in [3].

ii) S2S [26]: This is one of state-of-the-art architecture for the future semantic

segmentation.

iii) Copy last input : In this baseline, we copy the last input segmentation map

(St) as the prediction at time t+ 1. The baseline is also used in [3].

3.2.3 Implementation Details

We follow the implementation details of Jin et al [3] throughout our experiments.

Similar to [3], we use Res101-FCN as the backbone architecture of our model. We



Chapter 3: Future Semantic Segmentation with Convolutional LSTM 19

Model mIoU

Res101-FCN [3] 75.20

Res101-FCN [3]* (our implementation) 71.85

PSPNet [63] 75.72

Table 3.1: The performance (in terms of mIoU) of various backbone network archi-

tectures evaluated on the regular semantic segmentation task using the validation set

of the Cityscapes dataset. *Performance of our implementation of Res101-FCN (2nd

row) is lower than the original Res101-FCN reported in [3] (1st row). But the perfor-

mance of our PSPNet implementation (3rd row) is similar to Res101-FCN reported

in [3].

set the length of the input sequence to 4 frames, i.e., segmentation maps of frames at

t− 3, t− 2, t− 1 and t are fed as the input to predict the semantic segmentation map

of the next frame t+ 1. For data augmentation, we use random crop size of 256×256

and also perform random rotation. Following prior work, we consider the 19 semantic

classes in the Cityscapes dataset for prediction. We use the standard cross-entropy

loss function as the learning objective. The network is trained for 30 epochs in each

experiment which takes about two days using two Titan X GPUs.

3.2.4 Quantitative Experiments

In this section, we present the quantitative performance of our model for future

semantic segmentation and compare with other state-of-the-art approaches. Follow-
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ing prior work, we consider both one time-step ahead and three time-steps ahead

predictions. We also present some qualitative results to demonstrate the effectiveness

of our model.

Since the Cityscapes dataset is not fully annotated, we follow prior work [26; 3]

and use a standard semantic segmentation network to produce segmentation masks

on this dataset and treat them as the ground-truth annotations. These generated

ground-truth annotations are then used to learn the future semantic segmentation

model.

One Time-step Ahead Prediction

We first evaluate our method in one time-step ahead prediction. In this case, our

goal is to predict the future semantic segmentation of the next frame. Table 3.2 shows

the performance of different methods on the one-time ahead semantic segmentation

prediction.

Table 3.2 shows the performance when the ground-truth semantic segmentation is

generated by Res101-FCN (“Ours (Res101-FCN)” in Table 3.2) and PSPNet (“Our

(PSPNet)” in Table 3.2). Note that the backbone architecture of our model is Res101-

FCN in either case. The two sets of results (“Ours (Res101-FCN)” and “Our (PSP-

Net)”) only differ in how the ground-truth semantic segmentation used in training is

generated. The Res101-FCN network identical to [3] is used as the backbone archi-

tecture of our model in both cases.

We also compare with other state-of-the-art approaches in Table 3.2. It is clear

from the results that our method using ConvLSTM modules significantly improves
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Model mIoU

S2S [26] 62.60‡

Jin et al [3] 66.10

Copy last input 62.65

Ours (Res101-FCN)

w/o ConvLSTM 60.80*

ConvLSTM 64.82*

Bidirectional ConvLSTM 65.50*

Ours (PSPNet)

w/o ConvLSTM 67.42

ConvLSTM 70.24

Bidirectional ConvLSTM 71.37

Table 3.2: The performance of future semantic segmentation on the validation set of

the Cityscapes dataset for one time-step prediction. We show the results of using both

Res101-FCN and PSPNet for generating the ground-truth semantic segmentation. *

indicate that input sequence is generated using our implementation of Res101-FCN

(see Table3.1). ‡Results taken from Jin et al [3].

the performance over the state-of-the-art. When we use bidirectional ConvLSTM

modules in our model, we see further improvement in the performance (nearly 5

%). In addition, we also compare the performance of a baseline method where we

simply remove the ConvLSTM modules (i.e. Ours (w/o ConvLSTM)) from the pro-

posed network. Instead, we concatenate the feature maps (fk
t , f

k
t−1, f

k
t−2, f

k
t−3) after
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corresponding 1 × 1 convolution and upsampling to make their dimensions match.

Then we apply a simple convolution on the concatenated feature maps to produce gk.

These results demonstrate the effectiveness of the ConvLSTM modules for the future

semantic segmentation task.

Model mIoU

S2S(GT) [26] 59.40

Copy last input 51.08

Ours (w/o ConvLSTM) 53.70

Ours (ConvLSTM) 58.90

Ours (Bidirectional ConvLSTM) 60.06

Table 3.3: The performance of different methods for three time-steps ahead frame

segmentation map prediction on the Cityscapes validation set. We show performance

when using PSPNet to generate the ground-truth semantic segmentation.

Three Time-steps Ahead Prediction

Following Luc et al [26], we also evaluate the performance of our model in a much

more challenging scenario. In this case, the goal is to predict the segmentation map

of the frame that is three time-steps ahead. Table 3.3 shows the performance of

different methods on this task. For the results in Table 3.3, we have used PSPNet

to generate the ground-truth semantic segmentation. It is clear from the results

that our method with ConvLSTM modules performs very competitively. When we

bidirectional ConvLSTM modules in our model, the performance is further improved.
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In particular, our method with bidirectional ConvLSTM achieves the state-of-the-art

performance. Again, we also compare with the baseline “Ours (w/o ConvLSTM)”.

These results demonstrate the effectiveness of the ConvLSTM modules for the future

semantic segmentation task.

3.2.5 Qualitative Experiments

Figure 3.3: Qualitative examples for the one time-step ahead prediction: (top) base-

line Res101-FCN; (middle) our proposed model with ConvLSTM module; (bottom)

ground truth. We show the segmentation mask on the entire image (1st and 3rd

column) and the zoom-in view on a patch indicated by the bounding box (2nd and

4th column). This figure is best viewed in color with magnification.

Figure 3.3 shows examples of one time-step ahead prediction. Compared with

the baseline, our model produces segmentation masks closer to the ground-truth.

In fact, the temporal information leads to better segmentation of moving objects

such as motor cycle, cyclist and the car. Figure 3.4 shows examples of three time-
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Figure 3.4: Qualitative examples for the three time-steps ahead prediction: (top)

baseline Res101-FCN; (middle) our proposed model with ConvLSTM module; (bot-

tom) ground truth. We show the segmentation mask on the entire image (1st and

3rd column) and the zoom-in view on a patch indicated by the bounding box (2nd

and 4th column). This figure is best viewed in color with magnification.

steps ahead prediction, which is arguably a more challenging task. In this case, the

improvement of our model over the baseline is even more significant. Figure 3.4 is

another case where the left images are the prediction of one step ahead of time and

the right images are three steps predictions. The pedestrians and the small car are

tiny objects in the scene which can be better segmented by our model because each

feature map is incorporated in prediction instead of only one feature map.
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Figure 3.5: Qualitative examples for the one time-step ahead prediction (left) and

three steps ahead of time prediction (right): (top) baseline Res101-FCN; (middle)

our proposed model with ConvLSTM module; (bottom) ground truth. We show the

segmentation mask on the entire image (1st and 3rd column) and the zoom-in view

on a patch indicated by the bounding box (2nd and 4th column). This figure is best

viewed in color with magnification.



Chapter 4

Unsupervised Learning of Camera

Pose with Compositional

Re-estimation

Structure from motion is the problem of simultaneous recovery of 3D structure

and camera pose [64]. Camera pose estimation refers to determining the position and

orientation of the camera. This problem plays an important role in many real-world

applications, such as self-driving vehicles [65], obstacle avoidance [66], interactive

robots [67] and navigation systems [68]. In the presence of a single RGB camera (i.e.

monocular), this problem has been explored in [1; 8; 9; 10; 11; 12; 13; 13; 14; 15]

from various perspectives and under different assumptions. Our work is particularly

inspired by a recent line of work [1; 8; 9] on learning monocular camera pose esti-

mation and depth estimation in an unsupervised setting. The only available data in

this setting during training are monocular frames and camera intrinsics. The model

26
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Figure 4.1: An illustration of the problem of large displacement between two views

in pose estimation with the view synthesis formulation. The 3rd row shows three

consecutive frames in a video. The 1st row shows the difference between the left

and middle frames. The 2nd row shows the difference between the middle and right

frames. When the displacement of two views is large, the assumption made by the

view synthesis no longer holds. In this work, we propose an alternative approach that

splits the estimation into smaller pieces and re-estimate the transformation through

a compositional transformation estimation.

is learned to map the input pixels to an estimate of camera poses (parameterized as

transformation matrices) and scene structures (parameterized as depth maps). Dur-
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ing testing, the input to the model is the raw video. We will use the learned model

to produce the camera poses of the test video. As a by-product, we will also obtain

the predicted depth map on each frame of the test video.

Several previous works (e.g. [1; 8; 9]) have been proposed to estimate the relative

camera pose between consecutive frames in a video sequence using a view synthesis

formulation. These methods work by predicting the camera poses and the depth

maps, then using them to warp nearly frames to a target view using the predicted

camera poses and depth maps. The learning objective is defined using the photometric

loss between the predicted target view and the ground-truth target view. This view

synthesis formulation implicitly makes several assumptions: 1) the scene is static; 2)

there is no occlusion/disocclusion between two views; 3) there is no lighting change

between two views. These assumptions often fail in applications where there exists a

large displacement between the source view and the target view (see Fig. 4.1).

To address these limitations, we propose a new unsupervised camera pose estima-

tion approach using compositional re-estimation. Our proposed approach is partly

inspired by the inverse compositional spatial transformer network [16] being devel-

oped for image alignment. The idea of our approach is that instead of estimating the

relative pose between two frames in one shot, we consider the relative pose as being

composed of a sequence of smaller camera poses. These smaller camera poses are

estimated in a recurrent manner. The advantage of this compositional re-estimation

is that we can decompose the problem of estimating the camera pose with a large

displacement into several smaller ones, where each smaller problem satisfies the as-

sumption made by the view synthesis formulation of unsupervised camera pose esti-



Chapter 4: Unsupervised Learning of Camera Pose with Compositional
Re-estimation 29

 It

Compose

ΔT
i
t→s

,I
i
s It

Pose Estimation

Depth Estimation

Figure 4.2: The re-estimation process consists of the pose estimation network, the

depth estimation network and compositional variables which keep track of the trans-

formations. The circle indicates the inverse warping process. The recursive arrow

shows the warped sources passed to the pose net for the next step.

mation.

4.1 Our Approach

The basic components of our method are illustrated in Fig. 4.2. The input to our

model consists of N consecutive frames in a video denoted as < I1, I2, ..., IN >. We

consider one frame It as the target frame (also known as target view or target image)
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and the remaining frames Is (1 ≤ s ≤ N, s 6= t) as the source frames (also known

as source views or source images). Our model consists of a depth network, a pose

estimation network, and a warping module. The depth network produces a per-pixel

depth map Dt of the target frame. The pose estimation network learns to iteratively

produce camera relative pose T i
t→s (parameterized as a 6 DoF vector representing the

transformation) between the target frame It and source frames Is where i is the index

of the iteration. At each iteration, we also maintain a warped source image denoted

as I is. This warped source image is obtained by applying the transformation T i
t→s

on the source image Is. In other words, the pose estimation network takes a target

view It and N source views I i−1s at the i-th iteration as its input. It then produces

∆T i
t→s. This transformation is combined with previous transformations T i−1

t→s from

earlier iterations to be used for warping Is by incorporating the depth map Dt and

camera intrinsics K (see Sec. 4.1.2). Let r be the number of iterations of this re-

estimation process. The loss function is defined in the last step of the process where

i = r.

4.1.1 Compositional Re-estimation

The goal of the compositional re-estimation module is to estimate the transfor-

mation T r
t→s ∈ SE(3) from the target frame to a set of source frames. Instead of

estimating the transformation in one shot, we use an iterative process that estimates

this transformation incrementally. In each iteration i, we estimate an incremental

transformation ∆T i
t→s ∈ SE(3). We use T i

t→s to denote the transformation after the

i-th iteration. T i
t→s can be obtained by adding the effect of ∆T i

t→s ∈ SE(3) to the
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transformation matrix T i−1
t→s from the previous iteration, i.e.

T i
t→s = ∆T i

t→s ⊕ T i−1
t→s (4.1)

where T 0
t→s includes rotation, translation. It is initialized by transformation zero and

the rotation identity matrix and a row of 0 and 1 to make the matrix squared, here,

⊕ denotes a composition operator in SE(3) pose space. Let r be the number of this

compositional re-estimation steps, T r
t→s will be used as the final transformation.

The intuition behind this process is that by obtaining T r
t→s from ∆T i

t→s (i =

1, 2, ..., r), we allow the model to solve the camera pose estimation problem by split-

ting it into simpler pieces. Since each step in this process only needs to estimate a

small amount of transformation, the assumptions commonly made in camera pose

estimation algorithms are more likely to hold. We can unfold this process of compo-

sitional re-estimation over time steps as depicted in Fig. 4.3.

4.1.2 Warping Module

In each estimation step i, a warped view I is is generated by projecting each pixel

pt in the target view It to the corresponding position ps in the source view (for

each source view in I i−1s ) and inversely warp them. This process is done for each

estimation step i ∈ {1, ..., r}. Since the process is the same throughout these time

steps, we explain this warping module in one time step.

As shown in Fig. 4.4, each pixel pt ∈ It must be mapped to the corresponding

ps ∈ I i−1s . This process requires the camera intrinsics K, the estimated depth Dt and

transformation T i
t→s (see Eq. 4.2). Each ps ∈ I i−1s is warped to position pt ∈ It to
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Figure 4.3: Our process is unfolded over time steps. The pose estimation network

(green) estimates ∆T i
t→s in every steps by receiving I i−1s and It. ∆T i

t→s is then

composed to create the final T r
t→s. The loss functions will be calculated only in

the last step. Warped source views Ir+1
s from transformation T r

t→s will be used for

calculating the loss.

produce I is.

ps ∼ KT i
t→sDt(pt)K

−1pt (4.2)

In the above equation, K is a matrix of camera intrinsics and Dt(pt) is the corre-

sponding depth of pt and T i
t→s ∈ SE(3).

Since some pixels are not mapped to regular grids, we reconstruct the value of

pt with respect to the projection by a weighted sum of pixel neighbourhood through

bilinear interpolation (Eq. 4.3) similar to [1].

I is(pt) =
∑

k∈t,b,j∈l,r

wk,jI is(p
k,j
s ) (4.3)

In this equation, t,b,l and r denote top,bottom,left and right. wk,j is the weight of

the neighbor pixel k,j with respect to its distance from the pixel ps. For example, a
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single pixel coordinate (x,y) and the corresponding pixel intensity f(x, y) with four

closest neighbours Q1,1 = (x1, y1), Q1,2 = (x1, y2), Q2,1 = (x2, y1) and Q2,2 = (x2, y2)

to pixel (x,y) will be calculated as follows:

f(x, y) =
1

(x2 − x1)(y2 − y1)
[x2 − x, x− x1]

f(Q1,1) f(Q1,2)

f(Q2,1) f(Q2,2)


y2 − y
y − y1


4.1.3 Training Losses

Training the re-estimation process requires a supervision signal in the form of a

loss function. This loss function consists of four main components.

Photometric Difference (Lph): This loss function plays a vital role in our frame-

work. Like [1; 8; 9], Lph is an L1 loss between the warped source views Ir+1
s and the

target view:

Lph =
∑

I∈Ir+1
s

∑
p

|It(p)− I(p)| (4.4)

where p represent a pixel in an image.

Multi Scale Dissimilarity: This term is known as DSSIM (structural dissimilarity)

which was firstly used in [8]. It is resilient to outliers as well as being differentiable.

It calculates the dissimilarity in multi-scales of the Ir+1
s and It. We incorporate this

term with the photometric loss to form a rich dissimilarity loss. Therefore, we define

it as follows:

Ld =
n∑

i=1

∑
I∈Ir+1

s

1− SSIM(I, It)

2
(4.5)

where n denotes the number of scales in the prediction and SSIM (structural similar-

ity) for a two windows x and y of size N ×N is calculated as follows:
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pt ps pt

pt

ΔT
1
t→s

ΔT
2
t→s

pt
pt

T
3

t→s

It Is I
3
s

ps

Figure 4.4: The impact of two steps re-estimation is illustrated. The 2nd and 3rd

rows are decompositions of the 1st row. The 1st row shows how transformation T 2
t→s

leads to warping ps ∈ Is to pt ∈ It. It consists of 2 steps of estimation. In the first

step (2nd row), the pixel ps is warped to pt, but the transformation is not exactly

correct. The next step (3rd row) corrects the mistake of the previous step by adding

a complementary transformation to the previous step. As a result, T 2
t→s is obtained

which is a true transformation from the target view to the source view. Note that

although we estimate T 2
t→s, we inversely warp source views to target view by the

inverse of this transformation.



Chapter 4: Unsupervised Learning of Camera Pose with Compositional
Re-estimation 35

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

where µx and µy are average of x and y respectively and σ2
x and σ2

y are variance

of x and y. σxy is the covariance of x and y.

Smoothness: This term keeps sharp details by encouraging disparities to be locally

smooth. It mainly contributes to the quality of the disparity map. As most of the

work on monocular depth estimation such as [8], we find this term very helpful in our

method. We defined this term as Ls.

Principled Mask: The term of principled mask refers to an attention mechanism

which ensures that out of bound pixels do not contribute to the loss function. This

term is used in [1; 9]. In our work, this mask only contributes to the last step (r) of

estimation. In order to avoid the trivial attention of zero for all pixels, we also use

a regularization term (Lreg(E)) in [1] in our loss function on the mask. As a result,

the final photometric term in our loss function is as follows:

Lph =
∑

I∈Ir+1
s

∑
p

E(p) |It(p)− I(p)| (4.6)

where Es is pixel-wise predicted principled mask for the target and source and p

denotes a pixel.

Putting all the pieces together, the final loss function for training our model is

then computed as a weighted summation of aforementioned loss functions:

Lfinal = λphLph + λdLd + λsLs + λe

n∑
i=1

Lreg(E
i) (4.7)

where λph, λs, λd and λe are loss weights. Note that following [1], the final loss is

computed over different scales.
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Since our method estimates the relative pose in multiple steps in a recurrent

manner, the vanishing gradient may become an issue. To overcome this, we use

residual connections and memory mechanisms in our model shown in Fig. 4.3. The

depth estimation network has residual connections to every differentiable warping

module to alleviate the vanishing gradient problem. On the other hand, compose ∈

SE(3) is a variable which preserves the compositional transformation for the warping

module. This variable is updated at each step so that the warping module always has

access to the most updated version of transformations.

All in all, the re-estimation process can be summarized in Algorithm 1.

Algorithm 1 Re-estimation Process

Dt ← depth-estimation(It)

Initialize T 0
t→s

Camera intrinsics K

for i = 1 to r do

∆T i
t→s ← pose-estimation(It, I

i−1
s )

T i
t→s ← ∆T i

t→s ⊕ T i−1
t→s

I is ← warp(It, Is, Dt, T
i
t→s, K)

end for

Lfinal = λphLph + λsLs + λcLc + λe
n∑

i=1

Lreg(E
i)

...
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4.1.4 Model Architecture

Pose Estimation Network: The pose estimation network is an encoder. Each layer

is a convolution followed by a ReLU activation for non-linearity. The inputs to the

encoder are It, I
i
s. The encoder outputs n 6DOF vectors corresponding to each source

view to represent camera relative poses ∆T i
t→s from target view It to source views I is.

In the last step of the re-estimation process, this network behaves differently, and

it outputs ∆T r
t→s and an attention mask denoted as Er. This attention mask is

generated using a sequence of deconvolution (convTranspose) followed by sigmoid.

This attention mask is used to exclude out of boundary pixels [9]. Note that it is

acceptable that some pixels may not contribute to the loss function because they

are not in target view. However, one step estimation excludes some pixels that are

supposed to be in the target but are warped out of boundary due to the wrong

estimation. Since we estimate the pose in multiple steps, the out of boundary pixels

of ours and previous methods are different.

Depth Estimation Network: The depth estimation network outputs the disparity

map of It. Pixel-level depth estimation provides a rich source of information to resolve

scale ambiguity of camera motion estimation [10]. In order to be consistent with both

[8] and [10], we report the results of using both VGG-based and ResNet50-based depth

estimation networks.
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4.2 Experimental Evaluation

We evaluate the performance of the proposed method on two complementary

tasks: camera pose estimation and depth estimation. Our experiments on these tasks

demonstrate that the proposed formulation leads to state-of-the-art performance for

estimating the camera pose while obtaining comparable results for estimating the

target frame’s depth.

In the following, we first describe the implementation details of training and give

details of the benchmark dataset used in the experiments. Then we present both quan-

titative and qualitative results. We also investigate the impact of the re-estimation

process on the performance by performing ablation studies.

4.2.1 Dataset and Training Details

Dataset: We evaluate our pose estimation network on the KITTI Odometry bench-

mark [69]. KITTI Odometry contains 22 sequences of frames recorded in street scenes

from the egocentric view of the camera. Among the 22 sequences, IMU/GPS ground

truth information of the first 11 sequences (seq. 00 to seq. 10) is publicly avail-

able. For the pose estimation task, we use the same training/validation splits used

in [1; 8; 9; 10]. For pose estimation, we train the networks on seq. 00 to seq. 08 in

the official odometry benchmark of KITTI dataset. Sequence 09 and sequence 10 are

reserved for evaluating the performance of camera pose estimation. Besides, we pro-

vide qualitative outputs of our approach on sequences 11 and 15, though the ground

truth is not available on these sequences. For depth estimation, we use 40k frames

for training and 4k for validation in order to be consistent with previous work. We
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evaluate the depth estimation on the split provided by Eigen et al. [4]. It consists of

697 frames for which the depth ground truth is obtained by projecting the Velodyne

laser scanned points into the image plane.

Training Details: The training procedure is performed in an end-to-end fashion

by jointly learning camera pose and depth estimation at the same time. Monocular

frames are resized to 128 × 416 and the network is optimized by an improved variation

of Adam optimizer [70]. The optimizer parameters are set to β1 = 0.9 and β2 = 0.999.

The learning rate is adjusted at 2e−4 and loss weights are set to be λph = 0.15,

λd = 0.85, λs = 0.1 and λe = 0.1. In all of our experiments, we use a batch size of 4

and set the input sequence to be 3 frames for training.

Network Architecture: The pose estimation network consists of 7 convolution

layers followed by ReLU. The last convolution is a 1 × 1 convolution to produce 6

DoF vectors. This 6 DoF vector corresponds to 3 Euler angles and 3-D translation

which are then converted to SE(3) format for composition. In the last step of the

re-estimation, the decoder of pose estimation is activated to produce the principled

masks. In order to compare the depth estimation with previous work, we have experi-

mented with using both VGG and ResNet50 as the backbone architecture in the depth

estimation network. The VGG-based network is used in [1], while the ResNet50-based

network is used in [8].
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4.2.2 Quantitative Experiments

Monocular Pose Estimation

As discussed before, the input to the pose estimation network is a sequence of 3

consecutive frames. We follow [1] to split the long sequences into chunks of 3 frame.

The middle frame in each chunk is considered as the target frame and the other two

frames as source frames. Since our work is a monocular-based system, the frames are

obtained from one camera in training and testing. In [9; 8; 1], the pose estimation

network generates the camera pose vector in one step. In contrast, our approach

uses the re-estimation process through composition. As a result, we achieve camera

poses in a step-by-step fashion (see Sec. 4.1.1). The performance of pose estimation is

measured by the absolute trajectory error (ATE) over 3 and 5 frames snippets. Table

4.1 compares the result of our method with other approaches. It is noteworthy that

our method does not use any external supervision signal during training. Instead,

it leverages a re-estimation process which leads to a better estimation of the camera

pose. Also, note that our model even outperforms other baselines that use auxiliary

information. For example, ORB-SLAM [2] benefits from loop closure techniques

and GeoNet [8] utilizes the optical flow information in training. In contrast, our

model does not use any of this auxiliary information. In order to evaluate the global

consistency of the proposed method, we also evaluate ATE on the full trajectory

which is described in [71] as another measurement. Table 4.2 shows the comparison

with ORB-SLAM [2] without loop closure and SFMLearner [1].
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Figure 4.5: Dissimilarity loss (photometric loss + DSSIM loss) over training epochs.

The loss of our approach (blue) is lower than that of the network without the

re-estimation (orange) throughout the epochs. This shows that by using the re-

estimation process, our model generates images that are more similar to the target

frame.

Monocular Depth Estimation

We follow [1; 8] in setting up the training and testing sets for the depth estimation

task. More specifically, we first filter out all the testing sequence frames and frames

with a very small optical flow (with magnitude less than 1) from the training set.

In the end, we obtain 44540 sequences. We use 40109 of them for training and the

remaining 4431 for evaluation. Note that for the task of depth estimation, the input

in the training and testing phases consists of only one frame (i.e. the target frame,

It).

Similar to previous work, we multiple the predicted depth map by a scalar scale

s defined as s = median(DGT )/median(Dpredict) [1].
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Method seq. 9 seq. 10

ORB-SLAM [2] 0.014 ± 0.008 0.012 ± 0.011

SFMLearner [1] 0.016 ± 0.009 0.013 ± 0.009

GeoNet [8] 0.012 ± 0.007 0.012 ± 0.009

3D ICP (3 frames)[9] 0.013 ± 0.010 0.012 ± 0.011

EPC++(mono) [11] 0.013 ± 0.007 0.012 ± 0.008

Ours (2 steps) 0.009 ± 0.005 0.009 ± 0.007

Table 4.1: Quantitative results for the camera pose estimation task. We compare

our model with existing state-of-the-art approaches. Following prior work, we report

the mean and standard deviation for Absolute Trajectory Error (ATE) over 3 and 5

snippets of sequence 9 and sequence 10 of KITTI odometry benchmark.

Method seq. 09 seq. 10

ORB-SLAM[2] 54.94 26.99

SFMLearner [1] 31.21 28.36

Ours (2 steps) 28.38 10.25

Table 4.2: Odometry evaluation on KITTI odometry benchmark sequence 09 and

sequence 10. The error refers to the translational ATE error over full trajectories.

For a fair comparison, we compare with other monocular depth estimation ap-

proaches that use VGG and ResNet as the backbone architectures separately. Since

the maximum depth in the KITTI dataset is 80 meters, we also limit the distance
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to 80 meters. The results are shown in Table 4.3. Although the results are compa-

rable on the depth estimation task, our model does not outperform state-of-the-art

on monocular depth estimation. This is expected since the re-estimation does not

directly affect the depth estimation because it does not re-estimate the predicted

depth map. This also confirms that the improvement of our method on camera pose

estimation (see Table 4.1 and Table 4.2) is due to the compositional re-estimation.

Ablation Study

In order to further investigate the relative contribution of each module in our

model, we perform additional ablation study. In each experiment, we remove the re-

estimation process in our model and train the rest of the network. We then measure

the performance on the evaluation set. To do so, we set the maximum step (r) to 1

to assess the relative contribution of the re-estimation process. Table 4.4 (2nd row)

shows that removing this process profoundly impacts the overall performance. The

estimation accuracy drops on seq. 09 is particularly significant. This might be due to

the fact that seq. 9 is more complicated than seq. 10 and requires more refinement

for estimating the camera pose.

Another important aspect of our method is that it leads to better image recon-

struction. In Fig. 4.5, we visualize the re-construction loss (photometric and DSSIM)

over training epochs to show how our method is better at re-construction than the

baseline after a few epochs. We can see a noticeable gap between the loss of our

model and the model without the re-estimation process.
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Method Supervised Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Cap 80m

Eigen et al. [4] Coarse Depth 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. [4] Fine Depth 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [37] Depth 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Godard et al. [44] Pose 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhou et al. [1] No 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. [1] updated No 0.183 1.595 6.709 0.270 0.734 0.902 0.959

GeoNet [8] No 0.164 1.303 6.090 0.247 0.765 0.919 0.968

ICP [9] No 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Ours VGG (2 steps) No 0.170 1.384 6.247 0.255 0.758 0.913 0.962

Godard et al. [44] Pose 0.124 1.076 5.311 0.219 0.847 0.942 0.973

GeoNet [8] No 0.153 1.328 5.737 0.232 0.802 0.934 0.972

Ours ResNet (2 steps) No 0.160 1.195 5.916 0.245 0.774 0.917 0.964

Table 4.3: Quantitative results on the depth estimation task. We compare our model

with other state-of-the-art monocular depth estimation approaches. Depth estimation

is trained on the KITTI dataset. Evaluation is performed using the training/test

split in [4]. “Depth” and “Pose” indicate using the ground truth depth and pose as

supervision during training.

4.2.3 Qualitative Experiments

We provide qualitative examples for camera ego-motion estimation as the main

contribution of this work. We visualize the full trajectories on sequence 9 and 10 (Fig.
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Figure 4.6: Full trajectories of our method (solid orange), SFMLearner [1] (solid

blue), ORB-SLAM [2] (solid green) on the sequence 9 of KITTI Visual Odometry

benchmark. Ground truth is shown in the dotted gray line.

4.6 and 4.7, respectively). Compared with [1], our trajectories are visually better

and closer to ground truth. To further demonstrate the impact of the re-estimation

process, we also show the performance of our method on official test sequences (seq.

11 and seq. 15) of KITTI in Fig. 4.8. Since the ground truth of these sequences is
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Figure 4.7: Full trajectories of our method(solid orange), SFMLearner [1] (solid blue),

ORB-SLAM [2] (solid green) on the sequence 10 of KITTI Visual Odometry bench-

mark. Ground truth is shown in the dotted gray line.

not publicly available, we only compare them qualitatively.
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Method seq. 9 seq. 10

ours (2 steps) 0.009 ± 0.005 0.009 ± 0.007

w/o re-estimation 0.011 ± 0.006 0.009 ± 0.007

Table 4.4: Results of ablation study of the proposed method on the pose estimation

task. The 1st row shows the result of the network using the re-estimation process for

2 steps. The 2nd row shows the performance when removing it.

(a) Sequence 11 (b) Sequence 15

Figure 4.8: Qualitative examples of our method on seq. 11 and seq. 15 of KITTI

odometry benchmark. Note that the ground truth trajectory of these sequences is

not publicly available.
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Conclusion

In this thesis, we have demonstrated the impact of recurrent neural network for

the extraction of both temporal and spatial information. The temporal information

has studied in the context of future semantic segmentation prediction where the goal

was to estimate the optical flow of the current scene by observing previous scenes in

order to predict the semantic segmentation of future scene(s). Our recurrent modules

(ConvLSTM and Bidirectional ConvLSTM modules) have been capable of extracting

temporal information as well as spatial information. We have shown an extension

of recurrent module to bidirectional recurrent module which is able to consider the

flow of information in both direction. In the experiment section, we have illustrated

the efficiency of our model in better predicting the future semantic segmentation.

Another underlying problem that we have addressed was camera pose estimation

where the goal was to estimate the rotation and translation of the camera in a sequence

of consecutive frames. This time, we have considered a recurrent training scheme

which enables the network to re-estimate its estimation for multiple times. We have

48
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shown that even two steps re-estimation leads to better performance in camera pose

estimation. As a by-product, we also have reported the performance of our model on

depth estimation.
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