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Abstract 
 The human olfactory system can classify new odors in a dynamic environment 

with varying odor complexity and concentration, while simultaneously reducing the 

influence of stable background odors. Replication of this capability has remained an 

active area of research over the past 3 decades and has great potential to advance medical 

diagnostics, environmental monitoring and industrial monitoring, among others. New 

methods for rapid dynamic temporal evaluation of chemical sensor arrays for the 

monitoring of analytes is explored in this work. One such method is high and low band-

pass filtering of changing sensor responses; this is applied to reduce the effects of 

background noise and sensor drift over time.  Processed sensor array responses, coupled 

with principal component analysis (PCA), will be used to develop a novel approach to 

classify odors in the presence of changing sensor responses associated with evolving odor 

concentrations. These methods will enable the removal of noise and drift, as well as 

facilitating the normalization to decouple classification patterns from intensity; lastly, 

PCA and artificial neural networks (ANNs) will be used to demonstrate the capability of 

this approach to function under dynamic conditions, where concentration is changing 

temporally. 

 

 

 

 

 

 

 



	
   3	
  

Acknowledgements 
 

There are many people whom I would like to acknowledge that have made important 

impacts on my experiences as a graduate student. I have had a lot of support and 

mentorship as a graduate student, from a great deal of faculty at the University of 

Manitoba as well from my fellow graduate students. I would like to thank past and 

present members of the Freund group: Dr. Mike McDonald, Dr. Ramesh Kumar, Dr. 

Kevin McEleney, Akin Iyogun, Jared Bruce, Megan, McClarty, Patrich Geisbrecht, 

Ehsan Tahmasebian, Dr. Onkar Kang, Heather Cavers. I would also like to thank Joey 

Lussier. Every one of them has made being graduate student an enjoyable experience in 

spite of the tough times.  

I have a lot of gratitude and high regard for such an amazing supervisor, Dr. 

Michael Freund who initially accepted me into his group over the summer as an 

undergraduate research student. I stayed on with his guidance foe a research course, and 

lastly he agreed to suffer through a M.Sc. with me. His insights and extensive knowledge 

guided and built confidence in my career as a scientist. 

 I would like to thank my Committee members Dr. Hélène Perreault and Dr. Neil 

D. B. Bruce for their assistance and attention in crafting this work. Dr. Neil D. B. Bruce 

had graciously set aside a lot of his time to assist me in building and tying together some 

of the more complex details in this work. 

 I would like to thank my Mom (Sylvia), my Dad (Ken), Sister (Shannon), 

Sister (Shayla), Sister (Shelby) and Sister (Sheena). They have always been there to 

encourage and support me in my endeavors. I cannot thank them enough. 

 



	
   4	
  

Last but not least I would like to thank my partner Kaitlyn for her seemingly 

endless care and support in helping me push through.  

 

 

 

 

 

 

 

 

  



	
   5	
  

Table	
  of	
  Contents	
  

ABSTRACT	
   2	
  

ACKNOWLEDGEMENTS	
   3	
  

THESIS	
  STATEMENT	
   7	
  

LIST	
  OF	
  TABLES	
   8	
  

LIST	
  OF	
  FIGURES	
   9	
  

LIST	
  OF	
  COPYRIGHT	
  MATERIALS	
   14	
  

CHAPTER	
  1:	
  INTRODUCTION	
  TO	
  MACHINE	
  OLFACTION	
   15	
  
1.1	
  –	
  IMPORTANCE	
  OF	
  CHEMICAL	
  SENSING	
   15	
  
1.1.1	
  –	
  MAMMALIAN	
  OLFACTION	
   19	
  
1.2	
  –	
  SENSOR	
  ARRAYS	
   21	
  
1.2.1	
  –	
  POLYMERS	
   24	
  
1.2.2	
  –	
  SENSING	
  MECHANISMS	
   25	
  
1.3	
  –	
  DATA	
  ANALYSIS	
  METHODS	
   27	
  
1.3.1	
  –	
  PRINCIPAL	
  COMPONENT	
  ANALYSIS	
  (PCA)	
   27	
  
1.3.2	
  –	
  ARTIFICIAL	
  NEURAL	
  NETWORKS	
  (ANNS)	
   28	
  

CHAPTER	
  2:	
  EXPERIMENTAL	
  TECHNIQUES	
   33	
  
2.1	
  –	
  MAKING	
  CARBON	
  BLACK	
  –	
  ORGANIC	
  POLYMER	
  COMPOSITE	
  SENSORS	
   33	
  
2.2	
  –	
  SOLVENTS	
   33	
  
2.3	
  –	
  INITIAL	
  CHARACTERIZATION	
  OF	
  THE	
  SENSOR	
  ARRAY	
   34	
  
2.4	
  –	
  TEMPORAL	
  ANALYSIS	
   34	
  
2.5	
  –	
  DYNAMIC	
  PATTERN	
  RECOGNITION	
   35	
  
2.6	
  –	
  ANN	
  ANALYSIS:	
  UNSUPERVISED	
  METHOD	
   35	
  
2.7	
  –	
  ANN:	
  SUPERVISED	
  METHOD	
   36	
  

CHAPTER	
  3:	
  CHARACTERIZATION	
  &	
  QUANTIFICATION	
   38	
  
3.1	
  –	
  NORMALIZED	
  RESISTANCE	
  (∆R/R)	
   38	
  
3.2	
  –	
  ∆R/R	
  PCA	
  CHARACTERIZATION	
   42	
  
3.3	
  –	
  CONCENTRATION	
  RAMPING	
  AND	
  INTENSITY	
  FACTOR	
   44	
  
3.4	
  –	
  QUANTITATIVE	
  PCA	
  CHARACTERIZATION	
   48	
  
3.5	
  –	
  SENSITIVITY	
   54	
  
3.6	
  –	
  CONCLUSIONS	
  &	
  FUTURE	
  WORK	
   55	
  

CHAPTER	
  4:	
  TEMPORAL	
  ANALYSIS	
   57	
  
4.1	
  –	
  TIME	
  CONSTANTS	
   57	
  
4.2	
  –	
  TEMPORAL	
  RESPONSE	
   59	
  
4.3	
  –	
  INTERACTIONS	
   64	
  
4.4	
  –	
  DYNAMIC	
  EQUILIBRATED	
  RESPONSES	
   66	
  
4.4.1	
  –	
  CONSTANT	
  TOTAL	
  FLOW	
  RATE	
  (400	
  à	
  420	
  SCCM)	
   66	
  
4.1.2	
  –	
  CONSTANT	
  TOTAL	
  FLOW	
  RATE	
  (400	
  SCCM)	
   69	
  



	
   6	
  

4.4.3	
  –	
  TIME	
  DELAY	
  IN	
  RESPONSE	
   70	
  
4.5	
  –	
  MULTIPLE	
  ODORS	
   71	
  
4.6	
  –	
  FILTERING	
   76	
  
4.7	
  –	
  CONCLUSIONS	
  AND	
  FUTURE	
  WORK	
   81	
  

CHAPTER	
  5:	
  ANN	
  &	
  REAL-­‐TIME	
  ANALYSIS	
   83	
  
5.1	
  –	
  ANN	
  &	
  SPARSE	
  FILTERING	
   83	
  
5.2	
  –	
  REAL-­‐TIME	
  PCA	
  &	
  ANN	
   86	
  
5.3	
  –	
  REAL-­‐TIME	
  ANN	
  ANALYSIS	
   92	
  
5.4	
  –	
  ADDITIONAL	
  CONSIDERATIONS	
   92	
  
5.4	
  –	
  CONCLUSIONS	
   93	
  

CHAPTER	
  7:	
  CONCLUSIONS	
  AND	
  FUTURE	
  WORK	
   95	
  

WORKS	
  CITED	
   99	
  
	
  
 

 

  



	
   7	
  

Thesis Statement 
 As of yet, there is no practical approach to monitoring, in real time and under dynamic 

conditions, the surrounding chemical environment using vapor sensor arrays. By using 

novel analysis methods of filtering, pattern recognition and pattern normalization, there is 

a greater capability for monitoring and understanding the temporal response; with this, 

vapors may be identified and quantified in real time, using a carbon black – organic 

polymer sensor array. 
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Chapter 1: Introduction to Machine Olfaction 

1.1 – Importance of Chemical Sensing 

Machine olfaction relies on pattern recognition of chemical sensor arrays; until 

recently, large amounts of data and low computing power hindered the advanced analysis 

of complex patterns and artificial intelligence.2 Machine sensing has grown in importance 

with the evolution of robotics and the drive to create humanoid robotics.3–5 This has come 

from both academic, industrial and domestic contributions towards the applicability and 

demand.2,6–8 Machine vision has led the field with the development of charge-coupled-

devices (CCDs) and artificial intelligence-based pattern analysis algorithms.9  

The introduction of the CCD chip in 1975, and its incorporation within cameras, 

enabled the first digital images to be taken. With digital photography came the 

manipulation of digital images, and the movement to more advanced imaging software, 

including facial recognition.4 Facial recognition technology has grown significantly over 

the last 20 years due to a several factors, including: an increased emphasis on research of 

neural network classifiers emphasizing real-time computation and adaptation, 

accessibility to hardware and an increased need for surveillance4 

Support vector machines are a type of neural network classifier that was 

developed in the mid 90's.10 This type of classifier minimizes the error in a set of vectors 

and uses a decision function to create the largest separation possible between separable 

classes; these networks were common in the initial analysis of digital facial recognition.10 

Further investigations into the coding of mammalian facial recognition lead to the 

discovery and the development of sparse coding recognition.11 Additional developments 

came from the need to find less computationally expensive methods, as well as, the need 
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to simplify the analysis. This can be done by reducing the tunable parameters. An 

example of such a method is sparse filtering12 (See section 1.3.4). These developments 

enabled the analysis of big data, with simpler and more efficient algorithms. The 

efficiency of the system is essential because the more data you have, the longer the length 

and larger the quantity of information that is required in order to train the network. The 

architecture, rate of learning, number of variables, number of layers and learning 

functions are just a few of the numerous factors which can affect the performance of 

Artificial Neural Networks (ANNs).13  

As the CCD chip and ANNs advanced, the cameras became smaller, yet the 

quality and functionality of the camera was able to become more advanced. Within this 

work, there is a similar vision; this vision is to lay the understanding and foundation, 

while involving the temporal analysis of a chemical sensor array.  

Current methods of analysis, within machine olfaction, focus on well-controlled, 

equilibrated sensor array responses. These responses use principal component analysis 

and linear discrimination analysis as the main pattern analysis method.14 Implementation 

of artificial intelligence within machine olfaction is a logical next step. While this is the 

obvious direction that needs to be taken, there are many challenges associated with the 

implementation of artificial intelligence. The challenges that need to be addressed include 

the fact that chemical interactions have many variables that need to be taken into 

consideration.14 Some of the variables that need to be addressed for the real-time analysis 

of vapors include drift, changing concentration and differing sensor/vapor time constants. 

Drift is the temporal shift in sensors’ response that is due to environmental conditions.15 

Within sensors this can be seen as a degradation of the sensors signal over time. 
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Chemical sensor drift and degredation can be due to aging16, poisoning17,18, thermal and 

memory effects, changes in the environment19,20 and odor delivery system noise.2,21,22 

Statistical analysis, which is the main method of correction, uses the following methods 

to aid in the identification and correction of sensor drift: reference vapors, multivariate 

component correction, multivariate component deflation, filtering, attuning methods, 

independent component correction, orthogonal signal correction, adaptive methods, 

neural networks and evolutionary algorithms.21,23 As well, the development of sensors 

that are more resistant to sensor degradation can also assist in reducing sensor drift. This 

is, however typically a more expensive method. Depending on the statistical methods and 

the types of sensors used, concentration variation can affect the output of the sensor 

response due to sample to sample variation.24 Some sensors respond to concentration 

changes with a linear signal (tin oxide, composite sensors24), while others are non-linear 

(surface acoustic wave sensors25). Some methods of managing the concentration variance 

have been applied to sensor arrays.25–27 Unique to my work is the separation of the data 

into a concentration dependent variable and a concentration-independent pattern. 

Correct categorization of vapors using carbon black – organic polymer composite 

sensors in uncontrolled environments must be able to handle variance, due to changes in 

rates of absorption Rates of absorption differ for each sensor, and also for each vapor 

exposed to the sensor, creating a large array of varying times. When performing real-time 

analysis, where identifying and quantifying a particular vapor are critical, time constants 

become an important component in the analysis. One time constant is defined as the time 

required for a particular sensor to reach 63.2% of its equilibrated response.28 

Incorporation of these factors could contribute to earlier identification and quantification 
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of vapors before equilibration has been reached. Some other methods for simultaneous 

quantification and identification have been demonstrated using exponential moving 

averages.29 

Little work has been done with chemical sensors to look at the temporal behavior 

in dynamic conditions.30 With many uncontrolled variables, when exposing sensors to 

realistic environments sensor performance is expected to decrease; this is due to the fact 

as the sensor responses need to be rapidly determined from a large pool of data, analyzed 

and categorized for the proper vapor.  

As devices continue to shrink in size, and computer power is increased, these 

devices could one day be seen within smartphones and other electronics. Applications for 

this technology could include medical diagnostics, where chemical markers in breath can 

signal liver problems or cancer.31,32 Correspondingly, environmental and industrial 

monitoring would help control exposure to toxic fumes, as well as quality control of food 

products.30,33–40 
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1.1.1 – Mammalian Olfaction 
 

 

Figure 1.1.1: Human olfaction in the detection of vapors: 1) Olfactory epithelium 
2) Olfactory bulb 3) Olfactory cortex 4) Thalamus 5) Orbitofrontal 
cortex.41(Copyright 2010 J. Exp. Brain. Res.) 

 

Odor recognition starts with the olfactory sensory neurons, within the epithelium 

of the nose (Figure 1.1.1). Vapor molecules absorb onto the sensors causing a response 

that is transmitted, and gathered from the same sensor type within the olfactory bulb. 

Signals are then transmitted to the brain where the majority of pattern response 

processing happens within the olfactory cortex. Processing also happens throughout other 

components of the brain, but to a lesser extent.42 These include the higher cortical areas 

that assist with odor discrimination. As well as the deep limbic areas that are 

hypothesized to be also involved in emotional and physiological odor responses.42 

There are approximately 12 million olfactory sensory neurons (OSN) and 400 

different types present in the olfactory epithelium.42 Each OSN has a response to a 

particular odor or molecular species; these responses form a pattern that are compiled and 
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organized within the olfactory bulb. The response of similar sensors is compiled into their 

respective glomeruli within the olfactory bulb. It is here that a spatiotemporal pattern is 

used for identity coding.41 The olfactory cortex is the core piece in decoding this pattern; 

it is to be retrieved from memory in order to form the vapors’ identity, along with 

associated experiences and emotional responses.43 The main function of the olfactory 

cortex is to perform odor classification and differentiation. From the olfactory cortex, the 

information is then distributed throughout the brain to regions such as the orbitofrontal 

cortex, where experience-dependent modulation, effective coding and influences from 

other senses shape the consciously experienced signal. Other regions such as the 

thalamus also participate in odor identification, hedonic processing (pleasantness), 

olfactomotor control (sniffing), and olfactory attention.41,44 

Odor identification has played an important role in human evolution with respect 

to communication, environmental monitoring and hunting/foraging.45 Although humans 

have a third of the receptors that mice have (~388:~1200), the breadth of tuning suggests 

that humans may be capable of detecting almost as many odors; due to the lack of 

variants though, there may be a disadvantage in discriminating certain similar odors.45 

Other factors affecting human olfaction include the emotional response. Emotional 

arousal has been shown to add to the quick identification of odors; pleasant and 

unpleasant odors were more often recognized than neutral odors.43 Emotional responses 

triggered by odors has been shown to increase odor recognition and the context in which 

the odor was previously recognized.43 This suggests that olfactory memory is closely 

linked to episodic retrieval. Thus, when the smell of a flower is recognized, we will recall 
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memories of a garden where we initially smelt the unique odor and, are more likely to 

accurately identify the odor if linked to an emotional response.43 

Using the human olfactory system as a model, it may be possible to develop a 

sensing system to differentiate, identify and quantify odors present in the surrounding 

chemical background. Current research efforts have concentrated more on a well-defined 

flow system with steady-state responses for pattern recognition without temporal or 

concentration fluctuations.34,46–52 Development of a novel method for the temporal 

analysis of the sensing system it may be possible to separate quickly changing chemicals 

from a drifting chemical background.  

 

1.2 – Sensor Arrays 

 There are many different types of available sensors that are for use in the 

detection of vapors. The choice depends mainly on the limitations of the system, 

availability, cost, and application. Other types of chemical sensors include metal oxide 

based, fluorescent based, resistance (polymer) and frequency base sensors.53 All of these 

sensors are relatively low-power and do not require a vacuum, as is the case for mass 

spectrometry, or high pressures with a gas flow, as needed for gas chromatography. The 

low cost and low operating requirements are attractive features of these chemical sensor 

arrays and make them more portable and accessible.53 Of all the sensor types, the 

composite sensor of non-conducting polymer carbon black was chosen because of its 

relatively simple design, its low maintenance, its cost effectiveness, its relatively simple 

processing, easy accessible and the fact that it has been well characterized in the past. 

Each type of sensor has a different mechanism of interaction. If these mechanisms are 
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used together this would yield great diversity among the sensor responses. Sensitivity, 

reproducibility, intensity and response time are characteristic of the sensor type used, as 

well as the vapor to be detected. 

 

Figure 1.2.1: [Left] Gold plated interdigitated array with a film of carbon black 

non-conducting polymer film. [Right] Actual sensors used, size is 8 mm tall by 3 

mm wide. 

 

Interdigitated arrays (IDAs') are commonly used in resistive sensor applications54 

(Figure 1.2.1). Resistance can be measured by deposition of the sensor matrix on the 

surface, by applying a small voltage and measuring the current that passes. As a vapor is 

passed across the surface of the sensor, some becomes absorbed and the resistance 

increases or decreases, depending. On what each vapor/sensor combination has a unique 

response. When used in an array a distinctive pattern much like a "fingerprint" is 

observed. Periodically applying this voltage gives a snapshot in time of the current state 

of the sensors.  
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 Increasing chemical diversity is essential for sensor performance to improve the 

performance of principal component analysis (PCA) by increasing the number of unique 

chemical interactions with each exposure. Therefore more information is captured by the 

sensor array as it is interacting with the analyte in a greater number of ways. Added 

diversity of the sensor array also has the added benefit of increasing the number of 

analytes that are detectable by having a wide selection of sensors. Additionally careful 

sensor choice can tailor the array to be more sensitive and respond faster to certain 

vapors. 

 For this work, resistive polymers were chosen because they are relatively quick to 

respond, cheap to produce, they can easily be made to be chemically diverse, and have 

been well characterized in the past. In particular Severin et al24 have used similar sensors 

in the development of analysis methods of vapors exploring some of the physical and 

chemical properties of the sensors relative to certain vapors.  

Chemical diversity of the sensors adds to the number of possible vapors and to the 

variety of responses of the sensor array, increasing the resolving power needed for 

classification.55 The resolution between analytes increases because there is additional 

information from each new sensor. This happens because resolution is typically measured 

using a form of linear discrimination analysis (LDA). The additional information from 

the sensors creates a larger matrix for larger dimensions within the analysis. Methods of 

diversification include: using chemically different polymers and doping of sensors56, 

different settings of the electrochemical potentials57 and different degrees of 

copolymerization58. This is only for polymer-based sensors; there are other alternatives to 

polymer sensors that have their own applications; such as metal-oxide sensors, optical 
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sensors, and gravimetric/acoustic sensors. Sensitivity, detection limits, and response 

times depend on the chemical makeup of the sensors and the method of detection. For 

this reason, one sensor type will be better than the other for a given analyte/application. 

The method of analysis, however, is relatively similar. Each sensor is set up in an array 

and from that array, a pattern unique to that chemical combination can be extracted, 

similar to that of a fingerprint. Using statistical methods like PCA, or similar methods 

(like linear discrimination analysis (LDA), etc..) similar “fingerprints” appear in similar 

places, depending on other variables such as noise.  

 

1.2.1 – Polymers 
 Non-conducting polymers consist of a series of repeating subunits that together 

make up a larger molecule. Different polymers are used within the sensor array as a 

means of increasing its chemical diversity. Increased diversity is useful for the larger 

number of dimensions to discriminate the complex responses occurring within the sensor 

array.59 Using PCA on such data, one would expect tighter clustering among similar 

responses and greater spacing between clusters with increased dimensionality. With 

increasing dimensionality the principal component space in which a cluster can appear is 

restricted, tightening the volume of the cluster.  

The polymers used in this sensors array (Table 1.2.1) were chosen based on the 

characteristics of the functional groups such as alcohols, acids, phenols, oxides to name a 

few, providing a wide range of diversity for selecting a wide range of analytes. An 

additional consideration is that these sensors are well characterized within the steady state 

equilibrated responses due to previous studies and they are in general fast responding 
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sensors.24,55,60–62 This provides a foundation to characterize the chosen sensors with 

further depth and complexity.  

 

Non-conducting polymer Acronym 
poly(4-vinyl phenol) PVP 
poly(styrene-co-allyl alcohol) PSA 
poly(N-vinyl  pyrrolidone) PVB 
poly(styrene-co-maleic anhydride) PSMA 
poly(sulfone) PS 
poly(methyl methalcrylate) PMMA 
poly(methyl vinyl ether-co-maleic anhydride) PMVEMA 
poly(ehtylene oxide) PEO 

 

Table 1.2.1: List of polymers used in carbon black – composite sensor array 

 

1.2.2 – Sensing Mechanisms 
 The carbon black - organic polymer sensors are conductive because of the carbon 

black matrix surrounding the non-conducting polymer.24 The mechanism of sensing is 

absorption of the vapor analyte within the composite matrix causing swelling.56,63 The 

swelling of the composite sensor strains the conductive carbon black matrix, increasing 

the resistance of the sensor. Absorption of the vapor is dependent on the partition 

coefficient, K, where Cs is the absorbed vapor and Cv is the analyte in the vapor phase.60 

K = Cs/Cv     (1.1) 

 The resistance of the sensor is proportional to the amount analyte absorbed into 

the sensor.60 

R α Cs              (1.2) 

The measured changing resistance is dependent on the partition coefficient. The 

sensor is then linearly responsive to changes in concentration when K is constant.60 When 
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the concentration of analyte is equal in the sorbent phase and vapor phase the sensor has 

reached equilibrium and will have the maximum response under constant temperature, 

vapor flow, pressure, and analyte partial pressure.  

 

 

Figure (1.2.2): Reversible vapor (dots) absorption in carbon black – organic 
polymer composite sensors (box). 
 

The resistance changes due to the increased separation in space between the 

conductive carbon black matrix are reversible. Once the analyte desorbs, the swelling 

decreases and the sensor relaxes back to its previous state (Figure 1.2.2).46 Relative 

concentrations of a vapor can be measured under identical conditions, where a standard 

curve is constructed for the sensor array because the composite sensors have been 

observed to increase in resistance with increasing partial pressure of the analyte.24 

Quantification methods can be used to determine the nature of vapor as well as the 

quantity from a quick set of measurements for analyzed vapors with a calibrated sensor 

array. Using more than one vapor at the same time, the sensors have been shown to have 

an additive ΔR/R response.24 A sensor array of this type is capable of identifying 

complex mixtures of analytes.  
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 An additional consideration for analysis methods using a carbon black – organic 

polymer chemical sensor array for more realistic environments is that vapor 

concentrations are typically not uniform in the open atmosphere. There are variations 

within the sensor array response pattern, as a breeze will catch a vapor and carry it 

towards and away from the detector.30 If the sensor is fast responding, there could be 

noticeable fluctuations in response from small changes in vapor flow but the pattern 

should remain the same. However sensors with longer time constants might observe 

fewer fluctuations within this type of environment, smoothing out the response if it has 

sufficient exposure length is used to elicit a measurable response.28,64 The resulting 

pattern in this case will be different as the sensors try to remain equilibrated with the 

dynamic environments.  

1.3 – Data Analysis Methods 

1.3.1 – Principal Component Analysis (PCA) 
Principal component analysis is used as a method of statistically separating the 

analyte response patterns. Pattern analysis is done by reducing the dimensionality within 

a complex multivariate data set, in this case, a matrix of the ΔR/R responses. The second 

step is to use a linear combination of variables to capture the most variance within the 

first component, and subsequent components within the newly formed orthogonal axis. 

However with increasing number of variables there are a greater number of components 

in PCA. This can dilute the variance by spreading it across more dimensions, but the 

variance should remain concentrated within the first principal component.  
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1.3.2 – Artificial Neural Networks (ANNs) 
 The first ANN was developed in 1943, to mimic the thought process of a human 

within robotics.65 The mathematical description for the excitation “all-or-none” response 

of nerve cells is mimicked in the ANN. Nodes in a ANN use linear, radial basis function 

or sigmoidal curves to act as a threshold to decide whether an excitatory response should 

occur.  

 

Figure 1.3.2: General ANN architecture 

 

Building an interconnected network in a pyramid formation is the general layout 

for ANNs. The firing of one neuron will pass on the information to be manipulated by 

other neurons and firing will cause a similar process to occur until the last neurons are 

reached. At this point, the ANN will output the data for interpretation. This a classic 

ANN with an input layer (first nodes at the bottom of the pyramid), hidden layer (a 

number of nodes making up the body of the pyramid, (which is typically 3, as it is 

sufficient for minimizing time and capable of handling the complexity for pattern 

recognition) and the output layer (last layer, top of the pyramid) which outputs the data13 

(Figure 1.3.2). The more hidden layers present within the ANN the more complex the 

pattern recognition capabilities.7 
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 Some parameters that are used to alter the performance of a ANN based on the 

needs are learning rate and momentum coefficient, transfer function, weight distribution 

factor, normalization of the input and output data sets and the number of hidden layers.13 

Normalization of the network data is done to level the significance across all variables 

and place them on an even scale. The learning rate of the ANN controls the acceleration 

of change within the weights. Where the weight is the numerical representation of the 

strength between neurons, the higher the weight the more it contributes to the analysis 

and final output from the network.The momentum coefficient specifies how quickly the 

network gets out of local minima and higher learning rates train the network faster 

however this may be unstable. Slower learning rates take longer to train the ANN and are 

less likely to become unstable, however they may also become trapped within local 

minima unable to find optimization.13 The number of hidden layers within the ANN can 

be determined by using a series of combinations of the number of nodes and the number 

of hidden layers to find the best combination yielding the lowest error. The weight 

distribution factor is the initial values set for the weight matrix. There are a few ways to 

go about this such, as randomly assigning values to each weight, a uniform distribution, 

or a Gaussian distribution. Once determined the weights of the neural network are 

adjusted to provide the optimal correlations and categorization output from the 

data.13,66Lastly there is the transfer function, this is a threshold placed on each neuron that 

will activate the node based on the sum of each weighted node. Transfer functions are 

non-linear and typically sigmoid, hyperbolic tangents or radial basis functions.  

ANNs are adaptable, able to retain information in this way through training as 

well as over time through repeated exposures. As the network receives more information 
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this will help improve its analysis, reducing the errors of prediction. This can be a 

problem if only small amounts of data are accessible as the network will not be properly 

trained and large variations within the results may be observed.7 

 

1.3.3 – Supervised & Unsupervised Methods 
 There are two main approaches to developing a method of statistical analysis 

using supervised or unsupervised techniques. A supervised learning technique uses 

additional information to instruct and guide the learning to know the right answer. The 

correct output is known and the weights are adjusted until the correct output is reached. 

The output consists of the classes associated with their numeric values. Examples of 

supervised learning are classification learning and regression.67 Classification learning 

focuses on separating data into categories based on the known associations. Regression 

analysis is to find hidden relationships. Support vector machines are a class of linear 

algorithm that maximally separate the classes of data using a hyperplane. A consideration 

when using supervised methods is the inherent bias that they add into the analysis.47 

Unsupervised learning is a more autonomous method where the learning is done 

without a correct answer provided. In the unsupervised output, known answers are only 

required to identify and label the output neurons. The benefit of this technique is the 

learned structure of the data.67 Examples include reinforcement learning, clustering, 

associated rules and self-organizing maps.68  

Semi-supervised learning is another type that blends the two methods by using the 

supervised knowledge together with information provided by the unsupervised sample 

distribution information.69 Applications such as news filtering, e-mail spam detection, 

document classification, image classification all use semi supervised methods.  
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1.3.4 – Sparse Filtering 
 Sparse filtering is an unsupervised feature learning method that is used to 

replicate the function of the intensity factor (see section 3.2) within an artificial neural 

network.12 The low number of tunable hyperparameters (number of features) allows for a 

simple and versatile feature-learning algorithm to scale well with larger data sets. The 

features for tuning include the population sparsity, lifetime sparsity, and high dispersal. 

Population sparsity is the large population of coding neurons with only some of the 

neurons active in response to a stimulus.70 Included within population sparsity is a 

different subset of neurons active within the population at any one time. This means that 

there is high population sparseness dispersed amongst the population of neurons.70 

Lifetime sparseness refers to neurons which do not often (or rarely) produce a response. 

But when the response is produced it is a large response. This means that when a neuron 

does fire it carries with it more information with its responses.70 Because of the 

population dependence, when applied to unsupervised feature learning the sparse filtering 

method provides good approximations of the true data distribution. 

Sparse filtering is calculated by first normalizing the feature distribution matrix 

by rows, then by columns and lastly summing up the absolute of all values.12 This sets 

each feature to be equally active within a l2-norm (a vector norm) where a penalty for 

sparseness is applied. If the features are more similar, the more severe the penalty. 

(Figure 1.3.4) 
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Figure 1.3.4: Left: Sparse filtering showing two features (f1, f2) and two 
examples (red and green). Each example is first projected onto the l2-ball and 
then optimized for sparseness. The l2-ball is shown together with level sets of the 
l1-norm. Notice that the sparseness of the features (in the l1 sense) is maximized 
when the examples are on the axes. Right: Competition between features due to 
normalization. We show one example where only f1 is increased. Notice that even 
though only f is increased, the normalized value of the second feature, fˆ 
decreases. (Copyright 2011 Jiquan Ngiam et al.) 
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Chapter 2: Experimental Techniques 

2.1 – Making Carbon Black – Organic Polymer Composite Sensors 

A sensor array consisting of eight chemically different sensors was constructed 

using PSA, PVP, PEO, PMMA, PSMA, PMVEMA, PS and PVB (see table 1.2.1). 

Composite sensors were made by adding 160 mg one non-conducting polymer type 

dissolved using 20 mL of tetrahydrofuran. Then adding 40 mg of carbon black (black 

pearls 2000 from Cabot corp) were added. The solution was then sonicated for 15 

minutes. An interdigitated array (IDA) consisting of gold electrodes was cleaned in a 

solution of water and soap for 10 minutes, followed by sonicating for 10 minutes in 

ultrapure water (Milli-Q 18.2 MΩ cm at 25 ̊C) water, the array was then washed and 

sonicated in isopropanol for 15 minutes. 

Deposition of the carbon black non-conducting polymer solution onto the IDA 

was done using an aluminum mask to airbrush a controlled and confined area over the 

gold electrodes. The deposition was determined to be complete when the IDA electrode 

surface was completely covered and the resistance was below 100 kΩ. 

 

2.2 – Solvents 

Analytical grade toluene (Fisher Scientific Inc.), dichloromethane (Fisher 

Scientific Inc.), methanol (Fischer Scientific Inc.) and acetonitrile (EMD Chemicals) 

were used. Commercial grade nitrogen (>90% purity) from Praxair Canada was used as 

the carrier gas for all analytes. 
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2.3 – Initial Characterization of the Sensor Array 

An olfactometer was used as the controlled flow instrument, as well as a 

measurement device. Nitrogen is used as the carrier gas and its flow rate is regulated 

using mass flow controllers. There is a separate mass flow controller for each vapor. A 

standard glass bubbler was used for each vapor. This bubbler used a glass frit that helps 

disperse the carrier gas of nitrogen within each vapor. Electronic measurements were 

performed using a 34980A multifunction switch/measure unit from Agilent with a 3932A 

80 channel reed multiplexer. Two point resistance measurements are taken every 2 

minutes with a offset (B) of 0, a max current of 50 mA, direct current, Res of 5.5 and 

command execution times under 6 millisec for GPIB connection. 

For repeated exposures of the analyte vapors as well as a method for randomly 

exposing different vapors to the sensor array, the total vapor flow of the system is 

consistently set to 400 standard cubic centimeters per minute (sccm). This is usually 

tested at 5 % P/P0, as that concentration has been shown to respond well. 

 

2.4 – Temporal Analysis 

Within this work, a sensor array consisting of all 8 chemically unique sensors are 

used. Each sensor is exposed to the vapors using the olfactometer at 5% P/P0 for toluene, 

dichloromethane, methanol and acetonitrile. The ΔR/R at each point in time is used for 

the analysis, where ΔR,(Rt – Rb). Rt, is the maximum resistance at that point in time. 

Responses are normalized using the intensity factor. 
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2.5 – Dynamic Pattern Recognition 

 A	
  62	
  sensor	
  array	
  was	
  used	
  consisting	
  of	
  PVP,	
  PSA,	
  PVB,	
  PSMA,	
  PS,	
  PMMA,	
  

PMVEMA,	
  PEO.	
  Evaluation	
  of	
  the	
  response	
  to	
  a	
  gradually	
  changing	
  background	
  by	
  

slow	
  changes	
  in	
  the	
  flow	
  rate	
  should	
  let	
  the	
  sensor	
  array	
  stay	
  equilibrated.	
  Using	
  

toluene	
  the	
  concentration	
  was	
  gradually	
  increased	
  from	
  a	
  stable	
  background	
  in	
  

nitrogen	
  to	
  10.0	
  %	
  P/P0,	
  increasing	
  by	
  0.25	
  %	
  P/P0	
  every	
  300	
  seconds.	
  Flow	
  rate	
  for	
  

the	
  slow	
  gradual	
  increase	
  and	
  decrease	
  was	
  held	
  at	
  400	
  sccm.	
  For	
  another	
  test	
  the	
  

flow	
  rate	
  of	
  nitrogen	
  was	
  held	
  at	
  400	
  sccm	
  as	
  the	
  analyte	
  vapor	
  flow	
  was	
  slowly	
  

increased	
  by	
  0.25	
  %	
  P/P0	
  every	
  300	
  seconds	
  up	
  to	
  a	
  maximum	
  total	
  flow	
  rate	
  of	
  420	
  

sccm.	
  

 

2.6 – ANN Analysis: Unsupervised Method 

 Linear transformations of the sensor data are done using the ANN and sparse 

filtering.  

𝑓!
(!) = 𝑤!!𝑥(!)         (1.3) 

Where x(i) represents the input pattern and wj is the weights associated with j. 

Within sparse filtering, normalization is done across the sample population as well as the 

cell population, resulting in a normalized dispersion across the neurons. 

𝑓! = 𝑓!/ 𝑓! !
       (1.4) 

𝑓! = 𝑓(!)/ 𝑓(!)
!
         (1.5) 

minimize  𝑓
!

!
!!!            (1.6) 
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 After the linear transformation the neurons are all normalized. This is lifetime 

sparsity which reduces the number of nonzero elements within the matrix. 

 

2.7 – ANN: Supervised Method 

 ANN training is done using a subset of the data from the full data set. Training is 

required for supervised learning but for unsupervised learning. The training is continuous 

until the network becomes stable.71 This is the first full set of exposures (one of each 

vapor 5 times). The purpose of training the ANN is to set the weights of each node close 

to that of the ideal. The training of a neural network can be adjusted using larger or 

smaller data sets, there is no set standard. However a larger training set will provide 

better results for the analysis, but requires more time. 

 Additionally for real time analysis, the optimization of the network can happen 

periodically, as a recalibration step based on how the sensors are performing. This may 

help with problems such as drift, sensor failure and with possibly the addition of new 

sensors. 

 Supervised ANNs within this work are done using a feed forward neural network. 

Consisting of 63 sensor values for 5 sequential time samples (315 dimensions). Two 

hidden layers of 18 and 6 neurons respectively follow, with one neuron at the output layer 

per category of vapor. All layers are fully connected to adjacent layers. Error is based on 

mean-square-error and Levenberg-Marquardt optimization is used in training the 

network. For visualization, activation at the output layer on the test data is reduced to 3 

dimensions by PCA with the scatter plot showing values corresponding to the final 3 

principal components. 
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2.8 – Real-time analysis 

For real-time analysis, a seven sensor array was used. The non-conducting 

polymers used within the array include PSA, PVP, PEO, PMMA, PSMA, PS and PVB. 

Exposures were done within separate 50 mL beakers containing 5 mL of toluene, 

dichloromethane, methanol or acetonitrile. For a more dynamic environment, the lab air 

was used as the baseline vapor and once a stable baseline was achieved the analytes were 

presented to the sensor array one at time for a minimum of 5 minutes to a maximum of 10 

minutes. Room temperature was monitored to be at 25.0 °C ± 1.0. 

Electronic measurements were performed using a 34970A Multifunction 

switch/measure unit from Agilent with two point resistance measurements taken every 2 

minutes with a offset (B) of 0, a maximum input current of 50 mA, direct current. The 

number of power-line cycles (time during which an input measurement is samples) is 10 

which takes approximately 167 ms for integration time to average out spurious signals 

from the DC measurements. Measurements are made by applying a known dc current to 

an unknown resistance and measuring the dc voltage drop. The attachment used to 

measure resistance is the 34902A 16-channel reed multiplexer. 
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Chapter 3: Characterization & Quantification 

3.1 – Normalized Resistance (∆R/R) 

 Carbon black – organic polymer sensor arrays are known to have a response that 

scale linearly with concentration.24 The usefulness of this feature in a real world 

environment could be to monitor vapors and alert the user before they become harmful.30 

This is beneficial in today’s world, with rising integration of electronic devices around 

us, incorporated into our cell phones, clothing and skin.72,73 As these sensors become 

more available and less expensive to make, the quality and availability of applications 

would be expected to take a sharp increase, much like the camera did with the invention 

of cheaper electronics.74 

 The development of a gas sensor array that is capable of quantifying the vapor 

present within the atmosphere is not a new concept53; however, there is no system 

currently available that can identify and quantify multiple vapor species in real-time 

within the environment. Recent developments have shown promising results for the 

quantification of vapors in the steady state, or of a binary mixture of vapors using 

chemical sensors arrays.26 What is proposed here is a method in which the simultaneous 

quantification and identification of vapors can take place in real-time. 
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 Figure 3.1.0:	
  Temporal	
  resistance	
  response	
  of	
  Carbon	
  black-­‐Poly(ethylene	
  
oxide)	
  sensor	
  to	
  toluene(blue),	
  dichloromethane	
  (red),	
  methanol	
  (green),	
  
acetonitrile	
  (purple)	
  and	
  water	
  (orange)	
  over	
  20min	
  on/off	
  intervals.	
  Data	
  
recorded	
  at	
  25.0	
  ±	
  0.2	
  °C,	
  400	
  sccm	
  nitrogen	
  and	
  5	
  vol%	
  analyte	
  pressure. 
 

Exposures of the sensor array are done using 20 minutes on/off exposures to the 

analyte, using nitrogen as a background/carrier gas. (Figure 3.1.0) Each sensor is tested in 

controlled standard conditions using an olfactometer. The changing resistance is 

monitored and is different for each sensor and vapor combination. When exposing the 

sensor array to a vapor, a reproducible pattern is produced from the range of responses of 

the individual sensors. 

There are two challenges for characterizing this sensor array, which include 

analyzing the quantification capabilities of the sensor array as well as the temporal 

responses. An additional factor is background drift, one example is when the response is 

tested using repeated exposures and the baseline response can gradually increase with 

each exposure to the same vapor for some of the sensors. This drifting causes additional 

variation within the analysis that needs to be accounted in some manner (which is 
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addressed to some degree in section 4.6). Another similar problem occurs when there is a 

transition between vapors being exposed. Though the sensor array is equilibrated with 

nitrogen, there will be similar fluctuations in the baseline resistance of the sensor. These 

issues can cause a miss-classification of the vapor due to the resistance appearing to 

change either too little or too much. Due to the effect that one vapor has on the resistance, 

there may be an effect on the next vapors’ resistance response in different combinations. 

The result is some sensors may be affected by the order in which they are exposed to the 

analytes. For the following experiments of this thesis, some were done using random 

exposures to attempt to circumvent this problem. On certain occasions, repeated 

exposures were used. The main difference between these results is that the random 

exposures show slightly larger ΔR/R standard deviations but the PCA results show a 

similar classification of the analytes.57 

 

Figure 3.1.1: How ∆R/R is measured using standard methods. The baseline 
resistance is represented as R, the equilibrated peak response is the maximum at 
the end of exposure then subtracting the baseline resistance (∆R). 
 

Resistance-based chemical sensor responses have been found to scale according 

to the concentration of vapor present within the surrounding environment.24,26 As sensor 
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array is exposed to gradually increasing concentrations of each vapor, of the resistance 

response increases accordingly. The method of detection is based on the absorption of the 

vapor into the chemical sensor, the rate of which is dependent on the makeup of each 

chemical sensor.56,60,75  

Each sensor swells reversibly with the analyte(s) introduced and the resulting 

change in resistance is measured as the change in resistance from the baseline to the 

equilibrated response (∆R) divided by the baseline resistance (R). (Figure 3.1.1) This 

system works well in most cases to normalize for background variation, however, there 

are some situations where this method of analysis will give false readings, such as 

reducing the actual sensor response due to background drift. There are currently many 

attempts at developing a universal method of dealing with sensor drift; however, as of yet 

there is no ‘one fits all’ solution. With the advancements of ANNs, the ability to learn 

and adapt may be the best option to solve this problem.21–23,69,76–83 

 

Figure 3.1.2: ∆R/R equilibrated response to vapors of toluene (blue), 
dichloromethane (red), methanol (green) and acetonitrile (purple). The average 
∆R/R was taken over seven identical sensors with 5 exposures each. Exposures 
were random 20 min on/off exposures. 
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Characterization of the sensor responses is done using 5 sequential 20 minutes 

on/off exposures at a total of 400 sccm flow velocity to each vapor at 5 % P/P0 with 60 

minutes between changing vapors (Figure 3.1.2). Exposure to water showed very little 

change in the ∆R/R response of these sensors and, hovered around zero. Results from the 

PCA showed minimal variance and hovered around zero. Due to the lack of response of 

these sensors to water at 5 % P/P0 they were left out of most of this analysis. However 

there is a slight response to water at 10.0 % P/P0 indicating that the inclusion of water at 

higher concentrations will be necessary for the adaptation of this sensor array to a real 

world environment.20 (see Figure 3.3.0) The largest contribution to the observed variance 

between individual sensor responses was due to the noise within the sensors after 

equilibration had been reached. With a small ΔR/R for one sensor response, a small 

fluctuation in the equilibrated sensor response can cause large variations. 

 

3.2 – ∆R/R PCA Characterization 

  The sensor array response was tested looking for the clear distinction of the 

analytes, using the chosen composite sensors. Eight different sensors were tested with 

seven sensors for each type, for 55 sensors total. The one exception is for PSMA, of 

which one sensor did not produce a good response. Five exposures are repeated and it is 

expected that each exposure will produce similar patterns. When PCA is used to process 

the information, similar patterns should appear within the same principal component 

space, forming tight clusters. The larger the spread within the clusters, the greater the 
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variance associated with that vapor. Therefore, the ideal case is tighter clusters with a 

larger separation between them. 

Large separations between clusters are apparent after performing PCA on the 

equilibrated responses (Figure 3.2.0). Each vapor is showing a unique pattern that is 

significantly different from the others. Tight clustering within principal component space 

indicates that the sensor array response to each vapor is reproducible with small amounts 

of variation between the exposures. 

  

 

Figure 3.2.0: PCA response using the sensor arrays equilibrated ∆R/R response 
of toluene (blue), dichloromethane (red), methanol (green), acetonitrile (purple) 
and water (cyan). The vapor pressure of each analyte is 5 % P/P0 for 20 minute 
on/off exposures with 60 minutes separations between different vapors. 

 

 PCA initially included water within the analysis. But due to the very small, if any, 

ΔR/R response, water was not included in the determination of time constants. Water was 

also excluded from the PCA analysis for a better comparison of the principal components 

between experiments (Figure 3.2.1). 
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Figure 3.2.1: PCA response using the sensor arrays equilibrated ∆R/R response 
of toluene (blue), dichloromethane (red), methanol (green), acetonitrile (purple). 
The vapor pressure of each analyte is 5 % P/P0 for 20 minute on/off exposures 
with 60 minutes separations between different vapors. 

 

3.3 – Concentration Ramping and Intensity Factor 

To better understand the temporal performance of the sensor and associated drift, 

detailed characterization of the sensor performance is required. For quantification of 

vapor analytes, the important variable is the partial pressure of the analyte (P/P0) for 

analysis and not just the vapor pressure of the analyte.55 This means that the sensors are 

vulnerable to changes within temperature, volume and pressure for quantification of gas 

vapors.61,84 Understanding the thresholds for which the sensors become responsive, as 

well as the latency response time, are critical for use of sensor arrays in a realistic 

environment. These features as well as the concentration responses of the sensor array are 

examined by separating the intensity from the data. This creates a concentration 



	
   45	
  

independent pattern that will be used for classification as well as a concentration 

dependent variable called the intensity factor. Determinations of quantification limits 

were done under equilibrated conditions at constant temperature and flow rate in a 

controlled system to remove as much external variability as possible. Each sensor was 

allowed to come to equilibration by exposing the sensor array to each vapor for 20 

minutes then off for 20 minutes (on/off exposures) for each analyte. In-between changing 

analytes, the sensor array was exposed to the nitrogen background for 60 minutes to 

eliminate any potential effects of a combined vapor response within the sensors. The 

nitrogen background flow rate was reduced in accord with the increase in flow rate of the 

analyte to maintain a vapor flow rate of 400 sccm. 

 

Figure 3.3.0: Temporal	
  resistance	
  response	
  of	
  Carbon	
  black-­‐Poly(vinyl	
  butyral)	
  
sensor	
  to	
  toluene(blue),	
  dichloromethane	
  (red),	
  methanol	
  (green),	
  acetonitrile	
  
(purple)	
  over	
  20min	
  on/off	
  intervals.	
  Data	
  recorded	
  at	
  25.0	
  ±	
  0.2	
  °C,	
  400	
  sccm	
  
nitrogen	
  and	
  0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 10.0 and 20.0 % P/P0	
  analyte	
  
pressure. 

 
 

Initial observations show that some sensors have a minimal response, if any 

response, to some of the analytes until a particular concentration is reached. (Figure 

3.3.0) When the vapor is turned off there is a small increase in the background resistance 

for most vapors, this is likely due to slow desorption of the vapor from the sensor before 
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the next exposure is reached. Water can be seen to have a minimal response to this sensor 

at 5.0 % P/P0 and below (Figure 3.2.0), but at a concentration of 10.0 % P/P0 there is a 

very small peak that can begin to be observed. This raises some concern for humidity 

interacting with some of the sensors during measurements in the open atmosphere, 

causing some additional variation in the pattern response.  

 

Figure 3.3.1: ∆R/R values for methanol with increasing concentration. Darker 
bars indicate increasing concentration corresponding to 0.5, 1.0, 1.5, 2.0, 2.5, 
3.0, 5.0, 10.0 and 20.0 % P/P0 respectively. 

  

As was seen with every analyte tested, the resistance responses scale linearly with 

partial pressure. (Figure 3.3.1) Each sensor responded with greater sensitivity to a 

particular analyte. Therefore, an approximate threshold response can be observed, where 

below a certain concentration the sensor has random fluctuations around zero. Above this 

threshold, the sensor array responds in a linear and reproducible manner. The simplest 

method for removing the partial pressure component of the sensor array is to divide each 

∆R/R response by the sum of the intensity, which we call the intensity factor (IF). 
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𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  𝐹𝑎𝑐𝑡𝑜𝑟 𝑡 =    ∆𝑅/𝑅  𝑉𝑎𝑝𝑜𝑟  (𝑡)       (1.7) 
 

This method of normalization separates the data into its concentration 

independent component, where ∆R/R is the change in response of a specific sensor with 

respect to its baseline and ∑∆R/R(t) is the sum of the response from each sensor within 

the array for the analyte at any point in time. This method allows the future use the 

intensity factor during real-time analysis to separate the data into these two respective 

components because, they are only dependent on the ΔR/R response of the sensor array.  

 

Figure 3.3.2: Concentration independent component is shown above after 
separation of the intensity factor from the original ∆R/R data. Preprocessed data 
from Figure 3.3.1. 

  

The concentration independent component does not respond linearly, unlike the 

unprocessed principal components, remaining at a constant ΔR/R (Figure 3.3.2). Each 

sensor responds with the same intensity for each increase in concentration. Variance in 

the ΔR/R can be seen where the sensor is below the threshold or, as in the case of 

PMMA, does not respond well to methanol. A sensor that does not respond isn’t a total 
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loss as it does increase the selectivity of the sensor array for classifying particular 

analytes that may help when separating the patterns of complex mixtures.85 To handle 

similar problems in real-time analysis a filtering method has been demonstrated to limit 

the noise from a sensor array by only considering fast changing responses that pass a 

designated threshold in the PCA (see section 4.6).  

 

3.4 – Quantitative PCA Characterization 

 PCA is used on the matrix of the equilibrated ∆R/R response for the sensor array, 

with each row being the ∆R/R with increasing vapor pressure of the analyte and each 

column a different sensor. As the concentration is increasing, the principal component 

also increases in a linear manner for concentrations tested (Figure 3.4.0). As the response 

increases, the points within principal component space expand outward, away from the 

center (approximately (0,0,0)). Weights used to calculate the principal components are 

determined from the averaged maximum equilibrated ∆R/R matrix for the 5 % P/P0 data. 

Auto scale mean centering was not used with this method, because of the effects of 

concentration response. Even when using the same weights, the effect of concentration 

scaling would be altered within the principal component space by rescaling the data to fit 

about its mean. 
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Figure 3.4.0: Principal component response of toluene (blue), dichloromethane 
(red), methanol (green) and acetonitrile (purple) with increasing concentration. 
Arrows show the direction of points with concentration increase of 0.5, 1.0, 1.5, 
2.0, 2.5, 3.0, 5.0, 10.0 and 20.0 % P/P0 respectively. 
 

The intensity factor has shown that the response of the sensors do scale linearly 

with increasing vapor concentration for the whole sensor array. The intensity factor 

separates the concentration component to maintain a consistent response for that vapor 

within principal component space. (Figure 3.4.1) At low concentrations, the noisy 

response from the sensor is visualized as random scatter. This is where a threshold can be 

set to identify a concentration limit where the sensor array will respond only when the 

intensity factor has reached a set response limit.  
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Figure 3.4.1: Normalized PC1 for methanol (Green) and intensity Factor (red) 
change with concentration. The green line represents the average response of 
PC1 determined for normalized data, and the intensity Factor (red) with an R2 of 
0.990. After the normalization of the response patterns, the increasing intensity 
factor as a function of increasing concentration, PC1 then becomes concentration 
independent. 
 

Using the intensity factor, the ∆R/R matrix is normalized to separate out the 

concentration independent pattern (Figure 3.3.2). Normalized principal component values 

used the weights determined from the normalized and equilibrated ∆R/R matrix values at 

5 % P/P0. By separating the data to represent only the concentration independent 

component, similar patterns appear in similar places when the same weights are used 

within PCA (Figure 3.4.2). A similar identification method has been demonstrated within 

the olfactory sense of the zebra fish. They generalize along some dimensions of a coding 

space features like concentration and fine details such as identification of an odor along 

others.86 
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Figure 3.4.2: Principal component response of the concentration independent 
pattern for toluene (blue), dichloromethane (red), methanol (green), acetonitrile 
(blue). Preprocessed data are shown in Figure 3.4.0. Four points are outside the 
range of this graph and excluded because they contain only random noise 
fluctuations. These points are dichloromethane at 2.0% P/P0 (0.84, 1.69, 3.07), 
acetonitrile 1.0% P/P0 (-0.49, -0.51, -1.11), acetonitrile 1.5% P/P0 (-0.44, -0.85, 
-1.78), acetonitrile 3.0% P/P0 (-0.35, -0.28, -0.64) 
 

Characterization of the sensor array responses to the chosen analytes shows clear 

separation and tight clustering within the principal component space. Detection limits are 

determined by when the principal components become linear (Figure 3.4.0) and when the 

normalized principal component responses become consistent (Figure 3.4.2). The 

threshold for detection of each vapor is 0.8, 11.8, 4.0, and 5.6 parts per thousand at 25C0 

and 1 atm for toluene, dichloromethane, methanol and acetonitrile, respectively. For each 

vapor, a safe limit of detection is found to be 5% P/P0. Even though some vapors can be 

detected at lower concentration (for example methanol at 2.5% P/P0), it is still uncertain 

if the response is becoming linear at that point. A safe limit is defined in a manner that 

the response is very stable and linear. A 5% P/P0 corresponds to 1.7, 19.7, 7.9, and 5.6 
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ppt for toluene, dichloromethane, methanol and acetonitrile, respectively. As a 

comparison, the human olfactory systems is capable of detecting methanol at a 

concentration of 0.141 ppt.87 However evaluation of smells by the human olfactory 

system is a very complex system and can vary with many factors such as previous 

exposure, age, mood, gender, habits and environment.88 

In response to more complex mixtures it can be expected that the formation of 

these response patterns and the observed trend of increasing ΔR/R with concentration, 

will hold even for different backgrounds.46 What might affect the ΔR/R however is a 

slowly changing background by a vapors slowly changing partial pressure in the 

background (see section 4.1). The order in which the different analytes are exposed to the 

sensor array may also alter their ΔR/R, because of the alterations in the background 

resistance for some sensors. (Figure 3.1.0) 

Identification of two or more vapors utilizing this method could also be possible. 

The intensity of the sensor response is linear to concentration and also previous studies 

have determined composite sensors to give additive signals to a mixture of vapors.24 The 

additive responses of two vapors would be expected to cause a fractional shift between 

the principal components based on the relative concentrations of each analyte.24 While 

using the same weights for PCA, the clusters within the principal component space would 

be monitored for changes in compositional analysis of the analyte vapor, while the 

intensity factor should be monitored for quantification. 

Normalized response patterns at low concentration have increased scatter, which 

is due to a small ΔR/R divided by a small ΣΔR/R for the array. This results in a larger 

number of the normalized ΔR/R  and, in PCA, this appears as random scatter throughout 
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the principal component space. Clustering of the analytes within the principal component 

space is more easily visualized by removal of the noisy and randomly scattered points for 

each vapor. (Figure 3.4.3) It is expected that using more broadly responsive sensors 

within the array will add to the resolution between the clusters.55 To improve sensor 

performance, additional sensors would be of benefit in distinguishing these vapors and 

may become necessary as the number of analytes increases. Mammals have a similar 

method that improves their ability to distinguish odors in a complex environment. It is to 

use many types of sensors (approximately 400) as well as many replicates of each type of 

sensors (12 million). 42 The added replicates and types of sensors help to control for such 

fluctuations as humidity, temperature, temporal responses, and handling sensor failure.46 

 

Figure: 3.4.3: PCA on the concentration independent patterns for toluene (blue), 
dichloromethane (red), methanol (green), acetonitrile (blue). Randomly scattered 
points below 2.5 % P/P0 for toluene, dichloromethane, methanol and points below 
5% P/P0 for acetonitrile have been omitted from the image. This is refined data 
from Figure 3.4.1.  
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3.5 – Sensitivity 

The sensitivity of the sensor array to a particular analyte is expressed as the slope 

of the intensity factor increasing with concentration. The higher the slope, the more 

sensitive the sensor is to that analyte. Changing the sensor types will alter the selectivity 

and sensitivity of the sensor array for the appropriate applications. This is much like the 

human nose, as it has adapted to be responsive to minute concentrations of 0.05 mM for 

4-hydroxyoctanoic acid lactone smells of coconut or 0.01 nM for 2-isobutyl-3-

methoxypyrazine, which smells of bell pepper.89 

 

Figure 3.5.1: Intensity factor of the sensor array as a function of concentration 
toluene(blue), dichloromethane(red), methanol(green) and acetonitrile(purple). 
Each vapor has a correlation coefficient >0.947. 
 

The chemical composition of this sensor array is mostly carbon black, a 

hydrophobic material that will dissolve in some organic solvents. This provides some 

basis for the sensitivity of the sensors to organic volatiles over other solvents types of 

solvents like water. Using the slope of the intensity factor, this sensor array is most 
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sensitive to methanol, then dichloromethane, followed by acetonitrile, toluene, and then 

water. 

The sensitivity of the sensor array is variable for each analyte. This sensor array is 

most sensitive to methanol, based on the slope of the intensity factor with increasing 

concentration. (Figure 3.5.1) Toluene is less sensitive than acetonitrile at lower 

concentrations. This is because initially at 3% P/P0 and lower, acetonitrile is not detected 

by the sensor array, and at 5% P/P,0 the intensity factor is roughly equal then surpassing 

it. 

 

3.6 – Conclusions & Future Work 

 Analysis of the summed response of the sensor array provides an easier method 

than just ΔR/R  or PCA for adaptation of the sensor array analysis into real-time 

monitoring. A threshold can be set using the intensity factor for monitoring the overall 

sensor array response to potentially filter out the background noise and drift from analyte 

peaks. (see section 4.6) 

Application of this technique could be simple to add quantification features to 

potentially any sensor array. Required is the calibration of the sensor array to each 

analyte of interest and a linear response with increasing partial pressure. Non-linear 

responses may require more complex methods of analysis to attain similar results. Using 

an ANN is a possible technique to deal with more complex problems involving 

quantification. Using this method of analysis to separate the intensity factor and 

concentration independent pattern will help to easily classify the analytes and reduce the 

variance caused by concentration fluctuations within the environment. 
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Future work includes utilizing the intensity factor by using more than one vapor. 

Separation of two vapors within a sensor array is possible and has been done before, 

however, not with the intensity factor method.26 Using multiple vapor (three or more) 

will be more of a challenge, and additional analysis methods may be necessary. 

Additional measurements for full classification of the sensor array such as the 

recovery time, resolution, and further characterization of selectivity for this sensor array 

would be beneficial to get a complete picture of the sensor array response to individual as 

well multiple analytes. 
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Chapter 4: Temporal Analysis 
   

4.1 – Time Constants 

Time constants of the sensors are calculated using a model to fit the experimental 

data. (Table 4.1.1) This model predicts the changing resistance over time, for the rising 

response of the sensors.28 An equation to model the recovery of the sensors is also 

described but is not covered within the scope of this work. Each sensor is analyzed 

independently for the rising time constants, where each time constant corresponds to 

~63.2% saturation.  

 
Average 
Response 

PSA PVP PEO PMMA PSMA PMVEMA PS PVB 

Toluene 7.00±2.21 5.05±3.38 0.93±0.30 6.76±5.16 5.29±2.23 3.55±2.02 3.47±0.46 9.78±1.04 
Dichloromethane 4.12±1.85 5.51±3.50 0.92±0.19 7.64±3.50 2.60±1.10 3.81±1.43 2.47±0.45 1.24±0.11 
Methanol 1.77±0.96 2.84±1.80 0.69±0.22 3.49±2.28 2.09±2.29 6.55±1.37 1.24±0.47 1.15±0.18 
Acetonitrile 2.82±1.02 5.25±2.71 0.81±0.27 6.34±3.22 1.64±0.94 5.09±0.91 1.48±0.21 2.05±0.20 

 
Table 4.1.1: Average rising time constants for all carbon black-organic polymer 
sensors in minutes. Each sensor type consisted of 7 replicate sensors with 5 
exposures each. 

 
 

To control for other contributing effects that could alter the time constants the 

temperature was kept constant at 25.0 C° ± 0.2 C° and the flow rate was held at 400 

sccm. Both temperature and flow rate can contribute to the exposure-to-exposure 

variability their contributions are typically negligible compared to the ΔR/R sensor 

response and appears to be random.57 Additional variations for reaction time may be from 

the varying sensor-sensor thickness.62,84 The thickness of the sensors were not measured, 

but the best efforts at maintaining a consistent and reproducible preparation method were 

applied to all sensors by using a stencil and limit on the number of coatings applied to a 

sensor to attain conductivity across the IDA. 
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The majority of the time constants (62.5 % of them) within this sensor array for 

the vapors used are below 4 minutes. (Figure 4.1.1) Higher time constants indicate that 

absorption is slower, the slowest being PVB exposed to toluene with a time of 9.78 

minutes to reach ~63.2 % of its maximum equilibrated ΔR/R. The fastest sensor observed 

is PEO exposed to methanol with a time of 0.69 minutes to reach ~63.2% of its maximum 

equilibrated ΔR/R. PVP is the fastest sensor overall, for all the vapors tested within this 

work. 

 

Figure 4.1.1: Distribution of response time within this sensor array for each 
vapor.Response time is determined from 1 time constant, which is the time to 
reach ~63.2% of the saturated response. 
 
 
Each vapor and sensor combination has a different time constants this is 

dependent on the combination of the two chosen. (Table 4.1.1) The variation of the 

sensor time constants can be quite extensive between sensors; an example of a large time 

difference would be 0.93 minutes to reach ~63.2% saturation for PEO and methanol, as 

compared to 9.78 minutes for PMVEMA and methanol. As it can vary quite a lot within a 

sensor as well, looking at PSA the time constant jumps from 7.00 minutes for toluene to 

1.77 minutes for methanol. (Table 4.1.1) With varying time constants, the equations used 
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to calculate the theoretical resistance over time follow the trends of the experimental data. 

Vapor to vapor variation for the same sensor is typically on the order of a few minutes. 

The exception to this observation is PEO, which has a variation in response time of 0.24 

minutes. This is most likely due to the analytes chosen; with a greater variety of vapors it 

could be expected that a wider spread of time constants are present for all sensors. 

The Pearson’s chi-squared (X2) test is used as a measure of fit between the 

experimental and theoretical results. (Table 4.1.2) The lower the X2 value, the better the 

fit of the theoretical model to the experimental data.90 Visual comparison of X2 values 

showed that the points deviated from the experimental model if the X2 value went above 

0.3. This is well within the X2
0.995 test statistic limit of 1.735, meaning that within the 

experimental data the probability of getting a value more extreme than 1.735 is greater 

than 95%.91 There is no statistical difference between the experimental resistance over 

time and the theoretical temporal resistance. 

 
Average 
Response 

PSA PVP PEO PMMA PSMA PMVEMA PS PVB 

Toluene 0.73 0.43 0.01 0.32 0.20 0.83 0.02 0.17 
Dichloromethane 0.14 0.56 0.11 0.26 0.24 0.19 0.18 0.11 
Methanol 0.06 0.29 0.06 0.58 0.66 0.08 0.05 0.02 
Acetonitrile 0.10 0.19 0.02 0.22 0.17 0.08 0.11 0.09 

 
Table 4.1.2: Calculated Pearson’s chi-squared test values. X2 values less than 0.3 
are considered to provide a good fit of the theoretical simulation to the 
experimental data 

 

4.2 – Temporal Response 

 Temporal ΔR/R changes of each sensor and the theoretical model show the lag in 

response between sensor types to the same vapor. (Figure 4.2.1) In the context of a sensor 

array with all the varying degrees of response the ΔR/R pattern becomes distorted. The 
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pattern is not corrected until all sensors are equilibrated. (Figure 3.2.1) Of interest is the 

effect of such changes on the pattern and the resulting PCA response. 

 

Figure 4.2.1: Comparison of rates between PEO (Blue), PMVEMA(Orange). 
Black lines represent the theoretical fit between the data points. Error bars 
represent the standard deviation of 5 exposures to methanol. 

 

PCA was done using the weights calculated using the equilibrated ΔR/R response 

pattern. With the determined weights the principal components were calculated for each 

ΔR/R pattern every 2 minutes. The temporally changing ΔR/R patterns of the sensor 

array traces out the time-loops for the different vapors. (Figure 4.2.2) The time-loops all 

originate close to the (0,0,0) point for the principal components as ΔR/R for each vapor is 

also hovering close to zero. As the ΔR/R begins to increase a pattern starts to emerge and 

the sensors with the faster time constants are the first to become equilibrated. This is 

likely the best explanation for the kinks observed within the time-loops. Much like the 

quantitative PCA characterization (Figure 3.4.0) the vapors extend outward from the 

origin towards their respective distributions within the principal component space. A real-

time scenario using a similar method would make quantification extremely difficult 
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unless the sensors are allowed to equilibrate. It is possible to follow a chemical trail using 

a ANN and fast responding sensors in a structured environment.85 With more analytes 

present within complex and dynamic environments, a more advanced sensor array and 

method of analysis will be required to obtain meaningful results. 

 

Figure 4.2.2: 3D plot of the averaged temporal response from the sensor array to 
the 4 vapors toluene(blue), dichloromethane(red), methanol(green) and 
acetonitrile(purple). Each point indicates 2 minutes up to the maximum ∆R/R.  

 

The temporally changing ΔR/R patterns of the sensor array are then normalized 

using the intensity factor to obtain the concentration independent pattern. (Figure 4.2.3) 

This removes the variance, causing the pattern to move and not settle until equilibrium is 

reached. The normalized response patterns for each of the four vapors are clustered 

within the principal component space. Random points are scattered throughout the 

principal component space, representing the ΔR/R patterns below the sensor array 

threshold response. To clearly see the clustering that is going on in principal component 

space and not the random scatter coming from the low responses below the sensor arrays 
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threshold (Figure 3.5.1), randomly scattered points are cleared away (Figure 3.4.3). 

 

Figure 4.2.3: Normalized temporal response from Figure 4.2.2 using the Intensity 
Factor. Data points close to zero have been omitted from the image because they 
are randomly scattered within principal component space. The removed data 
points coincide with the first 4 minutes of analysis and the last 16 minutes after 
the equilibrated response.  

 

 Removal of the points below the threshold reveals the tight clustering and 

separation between vapor response patterns within principal component space. (Figure 

4.2.4) A much clearer picture for the classification of the vapors is obtained 

demonstrating the potential use of a threshold function within real-time analysis. The 

point at which the principal components start to cluster is at the equilibrated response of 

the sensors. The sensor array data for repeated exposures (Figure 3.2.1) were used as the 

equilibrated standard. If the points fall within the cluster, the sensor array could likely 

identify the vapor using these methods under similar conditions. With this method the 

vapor clusters first appear and hold within the principal component space after 4 minutes 
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of analysis. (Table 4.2.1) Clustering of all the points within the principal component 

space for each vapor becomes stable at 10 minutes after the exposure. (Table 4.2.1) That 

is the time for equilibration of all the sensors within the sensor array measured when the 

principal component points start to cluster. (Figure 4.2.3) Tailoring the chosen sensors to 

minimize the time constants for the analyte vapors would increase sensitivity and could 

further accelerate the classification and quantification process.29 Separation between the 

different analytes could further be improved (Figure 4.2.3) by using a filtering method to 

sort out the random noise. (Figure 4.2.4) Additional sensors with increased diversity 

would also be expected to add to the resolution of the analytes within the principal 

component space.55 

 

Figure 4.2.4: Normalized temporal response from Figure 4.2.2 using the Intensity 
Factor. Data points close to zero have been omitted from the image because they 
are randomly scattered within principal component space.   
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Vapor PCA PCA + IF 

Toluene 10 min 2 min 

Dichloromethane 8 min 2 min 

Methanol 8 min 4 min 

Acetonitrile 10 min 4 min 

Table 4.2.1: Time before clustering within principal component space for PCA 
and normalized PCA (PCA + IF). 

 

4.3 – Interactions 

 Interaction within the sensor array can be measured from the intensity of response 

of an analyte for a sensor, the selectivity of an analyte for a particular sensor and the 

temporal response. In determining the different levels of interaction of an analyte, the 

sensor array should be diverse and large to capture many interactions. The advantage of 

carbon black – organic polymer composite sensors is that they can be made to increase 

the diversity of the sensor array. They have also shown the of being more diverse and 

having a larger resolution factor than a comparable tin oxide sensor array of equal size.46 

A higher resolving sensor array is preferred because it can probe deeper into the different 

chemical properties brought about by the different chemical interactions within the sensor 

array.55 

 Sensitivity and selectivity are controlled by the favorability of interactions 

between the analyte and the sensor through chemical and physical properties.75 Where 

strong interaction will produce larger signals but there will likely be more hysteresis, 
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conversely weak interaction will have little hysteresis but weaker signals.75 Favoring 

absorption of the analyte is dependent on the chemical interactions which will be in favor 

of absorbing the analyte into the sensor, these interactions are called solubility factors.92 

Solubility factors, affecting the sensors themselves, are selected based on the range of 

vapors that are fairly accessible within the environment and industry. The variety of 

patterns that can come from a given sensor array are extensive and demonstrated above. 

(Table 4.3.0) Ranges for each vapor cover a large portion of the spectrum, as defined by 

the five different solvation parameters. These parameters help define the contributing 

factors and effects of solvent – solute interactions, as well as solvent – solid phase 

interactions. PSA, for example, has separate repeating monomers with either a phenyl, or 

hydroxymethyl bonded to a carbon backbone through a C-C bond. The fastest response 

time is to methanol, that is very similar to the hydroxymethyl group. This suggests that 

some hydrogen bonding occurring between the two molecules and, with methanol being 

small, there would presumably be low steric hindrance. Toluene is the slowest to reach 

equilibration with PSA; it is significantly larger than methanol with its own phenyl ring 

connected to a –CH3. Looking at the solvation parameters, PSA responds better to 

molecules with a lower R2, a lower p2H, a higher a2H, a higher b2H and a lower logL 

(these parameters are defined in Table 4.3.0).  Similar functional groups within sensors 

would therefore be expected to respond with a similar pattern, but with different 

intensities and time constants.92,93 This raises the possibility of using these time constants 

within the analysis to obtain further information about the analytes under study. A much 

more versatile method of analysis, such as ANNs, will need to be used to account for 

large number of variables in real-time. 
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Average	
  Response	
   R2	
   p2H	
   a2H	
   b2H	
   logL	
  
Toluene	
   0.601	
   0.520	
   0.000	
   0.140	
   3.325	
  
Dichloromethane	
   0.387	
   0.570	
   0.100	
   0.050	
   2.019	
  
Methanol	
   0.278	
   0.440	
   0.430	
   0.470	
   0.970	
  
Acetonitrile	
   0.237	
   0.900	
   0.070	
   0.320	
   1.739	
  
Water	
   0.000	
   0.450	
   0.820	
   0.350	
   0.260	
  

 
Table 4.3.0: Solvation parameters of different solvents used in all the 
experiments.1 R2 is the excess molar refraction that can be calculated form 
refractive index or can rather be easily estimated and ranges from -
0.240(Isoflurane)à2.29(Anthracene). p2H is the solute dipolarity-polarizability 
obtained to date from gas-liquid chromatography of solutes on polar stationary 
phases and ranges from -0.20(Sulfur hexafluoride)à1.72(4-Nitrophenol). a2H is 
the solute hydrogen bond acidity and ranges from 
0.00(Cyclopentane)à0.95(Trichloroacetic acid). b2H is the solute hydrogen 
bond basicity and ranges from 0.00(Cyclopentane)à1.21(Tri-n-butyl phosphate). 
lastly logL is the solute-gas-hexadecane partition coefficient at 298K and ranges 
from -0.120(Sulfur hexafluoride)à7.632(Phenanthrene) 

 

4.4 – Dynamic Equilibrated Responses 

4.4.1 – Constant Total Flow Rate (400 à 420 sccm) 
Subtle	
  changes	
  in	
  vapor	
  concentration	
  mimic	
  the	
  gradual	
  changes	
  that	
  we	
  

experience	
  moving	
  towards	
  or	
  away	
  from	
  an	
  odor	
  source	
  to	
  replicate	
  the	
  slow	
  

changes	
  that	
  are	
  perceived	
  in	
  the	
  background.86	
  (Figure	
  4.4.1a)	
  The	
  intensity	
  factor	
  

follows	
  the	
  concentration	
  changes	
  over	
  time.	
  (Figure	
  4.4.1b)	
  When	
  PCA	
  is	
  applied	
  to	
  

the	
  ΔR/R	
  matrix	
  (using	
  the	
  same	
  weights	
  determined	
  for	
  the	
  equilibrated	
  5	
  %	
  P/P0	
  

ΔR/R	
  data)	
  the	
  response	
  extends	
  linearly	
  outwards	
  and	
  returns	
  back	
  to	
  the	
  (0,0)	
  

origin.	
  (Figure	
  4.4.1c)	
  R2	
  values	
  for	
  the	
  principal	
  components	
  are	
  0.974	
  (Figure	
  

4.4.1c)	
  compared	
  to	
  an	
  R2	
  of	
  0.895	
  for	
  the	
  equilibrated	
  temporal	
  responses	
  (Figure	
  

4.2.2).	
  Using	
  the	
  intensity	
  factor	
  to	
  separate	
  out	
  the	
  concentration	
  variable,	
  the	
  



	
   67	
  

result	
  is	
  a	
  stable	
  concentration	
  independent	
  response.	
  (Figure	
  4.4.1d)	
  By	
  this	
  

technique,	
  the	
  seemingly	
  low	
  and	
  less	
  linear	
  portion	
  of	
  the	
  intensity	
  factor	
  is	
  

responding	
  linearly	
  with	
  concentration	
  (Figure	
  4.4.1b)	
  and	
  this	
  corresponds	
  well	
  

with	
  the	
  majority	
  of	
  the	
  scattered	
  points	
  within	
  the	
  concentration	
  independent	
  

principal	
  components	
  (Figure	
  4.4.1d).	
  As	
  stated	
  earlier,	
  the	
  sensors	
  within	
  this	
  work	
  

do	
  not	
  typically	
  respond	
  well	
  below	
  concentrations	
  of	
  2.5	
  %	
  P/P0	
  for	
  methanol	
  and	
  

the	
  quantitative	
  response	
  cannot	
  be	
  deemed	
  reliable.	
  Compared	
  to	
  other	
  forms	
  of	
  

correction,	
  this	
  method	
  is	
  simple	
  and	
  based	
  on	
  the	
  input	
  intensity	
  of	
  the	
  sensor	
  

array	
  at	
  each	
  individual	
  measurement.	
  It	
  does	
  not	
  overcorrect	
  the	
  gradual	
  

responses	
  for	
  concentration	
  drift	
  over	
  time.21	
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Figure	
  4.4.1:	
  a)[top	
  left]	
  Partial	
  pressure	
  applied	
  over	
  time	
  to	
  the	
  sensor	
  array.	
  
The	
  concentration	
  was	
  gradually	
  raised	
  to	
  a	
  maximum	
  of	
  5	
  %	
  P/P0	
  at	
  a	
  rate	
  of	
  
0.25	
  %	
  P/P0	
  every	
  5	
  min.	
  b)	
  [top	
  right]	
  Intensity	
  factor	
  changes	
  with	
  
concentration.	
  Rise	
  (green)	
  R2	
  =	
  0.921,	
  fall	
  (red)	
  R2	
  =	
  0.847.	
  c)	
  [bottom	
  left]	
  PC1	
  
and	
  PC2	
  response	
  of	
  ∆R/R.	
  d)	
  [bottom	
  right]	
  Response	
  of	
  PC1	
  and	
  PC2	
  for	
  
normalized	
  data	
  using	
  the	
  Intensity	
  factor.	
  Noisy,	
  randomly	
  scattered	
  data	
  
points	
  below	
  the	
  threshold	
  intensity	
  are	
  marked	
  in	
  pink.	
  Significant	
  variance	
  
ensues	
  below	
  2.5	
  %	
  P/P0	
  (3.95	
  ppt)	
  at	
  25	
  C% 	
  and	
  1	
  atm.	
  Points	
  at	
  (-­‐0.049,	
  1.20)	
  
and	
  (6.56,	
  2.73)	
  are	
  randomly	
  scattered	
  within	
  principal	
  component	
  space	
  and	
  
have	
  been	
  omitted	
  from	
  the	
  image	
  for	
  a	
  better	
  visual	
  of	
  the	
  cluster.	
  

	
  
	
  
	
  
	
   Gradual	
  ramping	
  up	
  and	
  down	
  of	
  the	
  concentration	
  changes	
  the	
  resistance	
  

up	
  to	
  a	
  maximum	
  of	
  5	
  %	
  P/P0.	
  (Figure	
  4.4.1a)	
  The	
  gradual	
  change	
  in	
  concentration	
  

can	
  also	
  be	
  seen	
  as	
  a	
  replication	
  of	
  moving	
  towards	
  and	
  away	
  from	
  an	
  odor	
  source.	
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The	
  intensity	
  factor	
  follows	
  the	
  concentration,	
  increasing	
  up	
  to	
  a	
  maximum	
  at	
  5	
  %	
  

P/P0	
  and	
  returning	
  back	
  close	
  to	
  the	
  origin	
  (0,0)	
  at	
  0	
  %	
  P/P0	
  (Figure	
  4.4.1b).	
  PCA	
  of	
  

the	
  ΔR/R	
  data	
  is	
  then	
  performed	
  on	
  the	
  ΔR/R	
  matrix	
  using	
  the	
  weights	
  determined	
  

from	
  the	
  maximum	
  ΔR/R	
  of	
  each	
  vapor	
  at	
  5	
  %	
  P/P0	
  (Figure	
  4.4.1c).	
  Normalization	
  

using	
  the	
  intensity	
  factor	
  then	
  PCA	
  shows	
  the	
  changing	
  response,	
  below	
  a	
  given	
  

concentration.	
  Even	
  at	
  equilibrated	
  values,	
  the	
  points	
  are	
  scattered	
  within	
  principal	
  

component	
  space.	
  At	
  approximately	
  2.0	
  %	
  P/P0	
  the	
  points	
  in	
  the	
  principal	
  

component	
  space	
  begin	
  to	
  cluster	
  within	
  the	
  normalized	
  PCA.	
  (Figure	
  4.4.1d)	
  	
  

	
  

4.1.2 – Constant Total Flow Rate (400 sccm) 
	
  

	
   Comparison	
  of	
  a	
  varying	
  flow	
  rate	
  (Figure	
  4.4.1),	
  where	
  the	
  vapor	
  might	
  be	
  

caught	
  within	
  a	
  breeze,	
  compared	
  to	
  a	
  more	
  static	
  flow	
  rate	
  test	
  (Figure	
  4.4.2),	
  

where	
  the	
  vapor	
  is	
  present	
  within	
  the	
  current	
  flow	
  demonstrated	
  characterization	
  

under	
  different	
  dynamic	
  conditions.	
  With	
  increasing	
  flow	
  rates	
  the	
  vapor	
  does	
  not	
  

get	
  caught	
  up	
  on	
  the	
  first	
  few	
  sensors	
  as	
  much,	
  which	
  initially	
  depletes	
  it	
  from	
  the	
  

vapor	
  trail.	
  Once	
  the	
  sensor’s	
  absorption	
  rate	
  decreases	
  as	
  it	
  becomes	
  more	
  

saturated,	
  the	
  responses	
  of	
  the	
  other	
  sensors	
  then	
  also	
  increase,	
  as	
  more	
  analyte	
  is	
  

available	
  downstream.	
  93	
  Similar	
  effects	
  are	
  observed	
  within	
  olfactory	
  sense	
  of	
  

human	
  when	
  sniffing.94–96	
  This	
  experiment	
  differs	
  in	
  that	
  it	
  is	
  slowly	
  changing	
  only	
  

the	
  odor	
  rather	
  than	
  a	
  slight	
  increase	
  with	
  flow	
  rate	
  to	
  simulate	
  a	
  “sniff”.	
  The	
  

implications	
  of	
  this	
  test	
  represent	
  the	
  effects	
  of	
  flow	
  rate	
  on	
  the	
  perceived	
  odor.	
  	
  The	
  

effect	
  of	
  increasing	
  flow	
  rate	
  is	
  that	
  it	
  increases	
  the	
  rate	
  of	
  equilibration.97	
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Figure	
  4.4.2:	
  a)	
  [top]	
  Intensity	
  factor	
  changes	
  with	
  concentration.	
  Rise	
  (blue)	
  
R2	
  =	
  0.0.738,	
  fall	
  (red)	
  R2	
  =	
  0.759.	
  b)	
  [bottom	
  left]	
  PC1	
  and	
  PC2	
  response	
  of	
  
∆R/R.	
  c)	
  [bottom	
  right]	
  Response	
  of	
  PC1	
  and	
  PC2	
  for	
  normalized	
  data	
  using	
  the	
  
Intensity	
  factor.	
  Points	
  at	
  1.5	
  %	
  P/P0	
  (-­‐13.173,	
  30.878)	
  on	
  the	
  rise	
  as	
  well	
  as	
  	
  
0.25	
  %	
  P/P0	
  (-­‐0.15539,	
  5.2457)	
  and	
  0.0	
  %	
  P/P0	
  	
  (0.057149,	
  -­‐1.2535)	
  on	
  the	
  
return	
  have	
  been	
  omitted	
  from	
  the	
  figure	
  as	
  they	
  are	
  randomly	
  scattered	
  (pink	
  
points).	
  (48	
  sensor	
  array)	
  

	
  

4.4.3 – Time Delay in Response 
	
  
	
   The	
  calculated	
  theoretical	
  resistance	
  at	
  different	
  time	
  constants	
  is	
  plotted	
  

against	
  the	
  concentration	
  as	
  a	
  measure	
  of	
  ensuring	
  that	
  the	
  rate	
  of	
  concentration	
  

increase	
  is	
  allowing	
  the	
  sensor	
  arrays	
  to	
  equilibrate.(Figure	
  4.4.3)	
  The	
  calculations	
  

were	
  done	
  using	
  different	
  saturation	
  times	
  based	
  on	
  the	
  sensor	
  arrays	
  time	
  

constants.	
  The	
  longest	
  time	
  to	
  reach	
  one	
  time	
  constant	
  is	
  9.78	
  minutes	
  for	
  PMMA	
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exposed	
  to	
  toluene.	
  The	
  longest	
  time	
  constant	
  including	
  standard	
  deviation	
  is	
  11.92	
  

for	
  PMMA	
  exposed	
  to	
  DCM.	
  (Table	
  4.1.1)	
  Comparisons	
  of	
  the	
  calculated	
  resistance	
  to	
  

the	
  concentration	
  rise	
  and	
  fall	
  maintain	
  the	
  same	
  profile	
  over	
  time.	
  There	
  is	
  no	
  

significant	
  difference	
  between	
  the	
  time	
  constants	
  used	
  of	
  1,	
  6,	
  or	
  12	
  minutes	
  for	
  this	
  

rate	
  of	
  increasing	
  the	
  partial	
  pressure.	
  

	
  
Figure	
  4.4.3:	
  Theoretical	
  modeling	
  using	
  the	
  time	
  constant	
  with	
  the	
  slow	
  
changing	
  flow	
  rate	
  used	
  in	
  the	
  gradually	
  changing	
  partial	
  pressure	
  of	
  
methanol.	
  The	
  concentration	
  profile	
  (blue)	
  is	
  plotted	
  over	
  time.	
  Time	
  constants	
  
1	
  minute	
  (red),	
  6	
  minutes	
  (green)	
  and	
  12	
  minutes	
  (purple)	
  are	
  used	
  to	
  calculate	
  
the	
  ΔR/ΔRsaturated	
  over	
  time.	
  

	
  

4.5 – Multiple odors 

	
   Exposure	
  to	
  multiple	
  vapors	
  simultaneously	
  adds	
  complexity	
  to	
  the	
  temporal	
  

identification	
  of	
  analytes.	
  This	
  is	
  done	
  here	
  by	
  building	
  on	
  the	
  slow	
  exposure	
  of	
  one	
  

analyte	
  with	
  a	
  quick	
  exposure	
  of	
  a	
  second	
  analyte	
  (Figure	
  4.5.1).	
  The	
  sensor	
  array	
  is	
  

initially	
  exposed	
  to	
  toluene	
  using	
  the	
  same	
  weights	
  as	
  the	
  equilibrate	
  sensor	
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response	
  at	
  5	
  %	
  P/P0	
  so	
  all	
  vapors	
  should	
  place	
  the	
  equilibrated	
  toluene	
  response	
  

within	
  the	
  same	
  position	
  in	
  principal	
  component	
  space.	
  (Figure	
  3.2.1)	
  The	
  addition	
  

of	
  a	
  second	
  vapor	
  on	
  top	
  of	
  the	
  first	
  is	
  predicted	
  to	
  move	
  the	
  principal	
  components	
  

to	
  a	
  fractional	
  distribution	
  between	
  the	
  two	
  (methanol	
  and	
  toluene)	
  roughly	
  where	
  

acetonitrile	
  is	
  positioned	
  at	
  its	
  equilibrated	
  value.24	
  

	
  

	
  
Figure	
  4.5.1:	
  Concentration	
  profile	
  of	
  gradual	
  exposures	
  of	
  toluene	
  up	
  to	
  a	
  
concentration	
  of	
  5	
  %	
  P/P0	
  with	
  a	
  fast	
  changing	
  exposure	
  of	
  methanol	
  at	
  5	
  %	
  
P/P0.	
  
	
  

	
  
	
   An	
  analysis	
  of	
  the	
  intensity	
  factor	
  demonstrated	
  that	
  the	
  sensor	
  array	
  

responds	
  quickly	
  to	
  toluene	
  once	
  it	
  passes	
  the	
  detection	
  threshold	
  of	
  the	
  sensor	
  

array	
  becoming	
  fairly	
  linear,	
  as	
  it	
  is	
  able	
  to	
  keep	
  up	
  with	
  the	
  slowly	
  changing	
  

background.	
  (as	
  demonstrated	
  in	
  Figure	
  4.5.2)	
  Three	
  peaks	
  of	
  methanol	
  can	
  be	
  seen	
  

as	
  the	
  sensor	
  array	
  is	
  exposed	
  to	
  5.0	
  %	
  P/P0	
  methanol.	
  The	
  methanol	
  peaks	
  do	
  not	
  

appear	
  to	
  reach	
  saturation,	
  but	
  it	
  is	
  difficult	
  to	
  be	
  sure	
  with	
  the	
  changing	
  toluene	
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background	
  adding	
  to	
  the	
  peak	
  height	
  are	
  making	
  the	
  peaks	
  look	
  more	
  pointed	
  

rather	
  than	
  flat	
  near	
  the	
  equilibration	
  point.	
  

	
  

	
  
	
  
Figure	
  4.5.2:	
  Temporal	
  response	
  of	
  intensity	
  factor	
  when	
  exposed	
  to	
  a	
  slow	
  
background	
  of	
  toluene	
  up	
  to	
  5	
  %	
  P/P0	
  and	
  a	
  quick	
  changing	
  vapor.	
  

	
  
	
   	
  

Using	
  PCA	
  on	
  the	
  ΔR/R	
  matrix	
  the	
  principal	
  components	
  they	
  are	
  initially	
  

spread	
  out	
  in	
  principal	
  component	
  space	
  as	
  expected	
  for	
  the	
  equilibrated	
  toluene	
  

exposure	
  at	
  5	
  %	
  P/P0	
  (as	
  seen	
  in	
  Figure	
  3.2.1).	
  A	
  mixture	
  of	
  the	
  two	
  vapors	
  does	
  

produces	
  a	
  fractional	
  mixture	
  of	
  the	
  vapors	
  principal	
  components.26	
  (Figure	
  4.5.3)	
  

The	
  fractional	
  mixtures	
  within	
  the	
  principal	
  component	
  space	
  form	
  with	
  a	
  roughly	
  

equal	
  proportion	
  of	
  the	
  two	
  analytes.	
  To	
  compare	
  responses	
  within	
  principal	
  

component	
  space	
  half	
  of	
  the	
  methanol	
  response	
  from	
  Figure	
  3.2.1	
  are	
  -­‐0.09,	
  0.25,	
  

0.01,	
  while	
  for	
  toluene	
  it	
  is	
  in	
  0.06,	
  0.02,	
  0.02	
  in	
  PC1,	
  PC2,	
  and	
  PC3	
  respectively.	
  The	
  

equilibrated	
  response	
  within	
  the	
  principal	
  component	
  space	
  of	
  the	
  mixture	
  of	
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vapors	
  is	
  0.08,	
  0.17	
  and	
  0.04	
  in	
  PC1,	
  PC2,	
  and	
  PC3.	
  Half	
  of	
  the	
  combined	
  methanol	
  +	
  

toluene	
  responses	
  give	
  -­‐0.03,	
  0.32	
  and	
  0.02	
  in	
  PC1,	
  PC2	
  and	
  PC3	
  which	
  are	
  fairly	
  

close	
  to	
  the	
  actual	
  movement	
  within	
  the	
  principal	
  component	
  space.26	
  	
  	
  

The	
  results	
  show	
  a	
  potential	
  that	
  there	
  is	
  a	
  misclassification	
  by	
  PCA	
  because	
  

location	
  of	
  the	
  points	
  within	
  PCA	
  when	
  using	
  the	
  same	
  weights	
  appear	
  where	
  

acetonitrile	
  is	
  0.038,	
  0.27	
  and	
  -­‐0.10	
  in	
  PC1,	
  PC2	
  and	
  PC3	
  respectively.	
  (Figure	
  3.2.1)	
  

The	
  largest	
  separation	
  of	
  the	
  points	
  is	
  within	
  the	
  3rd	
  principal	
  component	
  to	
  

distinguish	
  them,	
  but	
  in	
  a	
  more	
  complicated	
  mixture	
  this	
  becomes	
  an	
  even	
  more	
  

complex	
  problem.	
  	
  Incorporating	
  time	
  constants	
  into	
  the	
  analysis	
  as	
  an	
  added	
  

distinguishing	
  feature	
  could	
  separate	
  more	
  complex	
  vapor	
  mixtures.	
  

	
  
	
  

	
  
	
  

Figure	
  4.5.3:	
  Principal	
  components	
  of	
  sensor	
  array	
  exposed	
  to	
  a	
  slow	
  
background	
  of	
  toluene	
  (blue)	
  up	
  to	
  5	
  %	
  P/P0	
  and	
  a	
  quick	
  changing	
  vapor	
  of	
  
methanol	
  (green)	
  at	
  the	
  same	
  time.	
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Using	
  the	
  intensity	
  factor	
  to	
  separate	
  the	
  concentration	
  dependent	
  

component,	
  the	
  normalized	
  data	
  appear	
  to	
  cluster	
  tightly	
  near	
  the	
  origin.	
  The	
  

methanol	
  peak	
  forms	
  a	
  tight	
  cluster	
  at	
  the	
  center	
  of	
  the	
  toluene	
  peak.	
  (Figure	
  4.5.4a)	
  

These	
  data	
  demonstrate	
  the	
  need	
  for	
  some	
  form	
  of	
  filtering	
  or	
  removing	
  additional	
  

points	
  within	
  PCA	
  for	
  a	
  clearer	
  picture	
  to	
  apply	
  this	
  method	
  of	
  analysis	
  to	
  real-­‐time	
  

data.	
  As	
  the	
  quantity	
  of	
  data	
  becomes	
  scaled	
  up,	
  a	
  better	
  method	
  for	
  cleaning	
  up	
  the	
  

data	
  is	
  needed	
  so	
  that	
  the	
  system	
  and	
  the	
  user	
  are	
  not	
  overwhelmed	
  with	
  

information	
  on	
  the	
  sensor	
  array	
  response.	
  

Enhancing	
  the	
  image	
  over	
  the	
  cluster	
  shows	
  the	
  temporal	
  response	
  within	
  

the	
  principal	
  component	
  space.	
  (Figure	
  4.5.4b)	
  The	
  toluene	
  cluster	
  is	
  clearly	
  

separated	
  from	
  the	
  methanol	
  cluster,	
  except	
  for	
  the	
  gradual	
  transition	
  to	
  and	
  from	
  

the	
  methanol	
  cluster.	
  Comparison	
  of	
  these	
  components	
  within	
  principal	
  component	
  

space	
  methanol	
  is	
  0.211,	
  -­‐0.027,	
  0.010	
  PC2	
  and	
  for	
  toluene	
  is	
  -­‐0.084,	
  -­‐0.089	
  and	
  -­‐

0.011	
  for	
  PC1,	
  PC2	
  and	
  PC3	
  respectively.	
  (Figure4.2.3)	
  The	
  combined	
  methanol	
  +	
  

toluene	
  exposure	
  is	
  0.001,	
  -­‐0.067	
  and	
  0.001	
  in	
  PC1,	
  PC2	
  and	
  PC3	
  respectively.	
  

(Figure	
  4.5.4b)	
  This	
  is	
  also	
  close	
  to	
  the	
  expected	
  values	
  of	
  a	
  combination	
  of	
  the	
  two	
  

being	
  0.065,	
  -­‐0.058	
  and	
  0.010	
  in	
  PC1,	
  PC2	
  and	
  PC3	
  respectively.26	
  A	
  better	
  

separation	
  of	
  the	
  components	
  is	
  observed	
  within	
  the	
  normalized	
  PCA	
  space	
  as	
  the	
  

analytes	
  are	
  clustered.	
  Removal	
  of	
  slow	
  changing	
  data	
  points	
  should	
  help	
  the	
  

analysis	
  by	
  better	
  defining	
  the	
  clusters	
  and	
  potentially	
  removing	
  the	
  toluene	
  peak	
  

entirely.	
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Figure	
  4.5.4:	
  a)	
  [top]	
  Concentration	
  independent	
  component	
  of	
  gradual	
  
exposures	
  of	
  toluene	
  (blue)	
  up	
  to	
  a	
  concentration	
  of	
  5	
  %	
  P/P0	
  with	
  a	
  fast	
  
changing	
  exposure	
  of	
  methanol	
  (green)	
  at	
  5	
  %	
  P/P0.	
  b)	
  [bottom]	
  zoomed	
  in	
  
profile	
  of	
  the	
  normalized	
  concentration	
  independent	
  pattern	
  of	
  a.	
  

4.6 – Filtering 

	
   Filtering	
  the	
  data	
  is	
  a	
  method	
  of	
  drift	
  compensation	
  for	
  the	
  variable	
  

background	
  changes.	
  (Figure	
  4.6.1)	
  A	
  filtering	
  method	
  was	
  formulated	
  for	
  real-­‐time	
  

analysis	
  applications	
  using	
  two	
  separate	
  goals.	
  The	
  first	
  is	
  to	
  reduce	
  or	
  eliminate	
  the	
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randomly	
  fluctuating	
  points	
  within	
  the	
  principal	
  components.	
  (see	
  Figure	
  4.4.1c)	
  

The	
  second	
  is	
  to	
  account	
  for	
  the	
  baseline	
  changes	
  after	
  exposure	
  to	
  a	
  vapor.	
  (see	
  

Figure	
  3.1.0	
  before	
  toluene	
  and	
  after	
  DCM)	
  

	
   Finding	
  the	
  maximum	
  and	
  minimum	
  of	
  the	
  intensity	
  factor	
  sets	
  provides	
  the	
  

boundaries	
  for	
  the	
  threshold	
  response.	
  For	
  this	
  experiment	
  the	
  threshold	
  response	
  

was	
  set	
  to	
  1.0	
  %	
  of	
  the	
  intensity	
  factor	
  difference.	
  For	
  noisier	
  data	
  or	
  less	
  responsive	
  

sensors,	
  the	
  threshold	
  can	
  be	
  increased	
  to	
  only	
  identify	
  intense	
  responses	
  if	
  the	
  

background	
  is	
  noisier.	
  Alternatively	
  the	
  threshold	
  can	
  be	
  lowered	
  to	
  be	
  more	
  

sensitive	
  to	
  smaller	
  variations	
  in	
  sensor	
  response.	
  	
  	
  

The	
  threshold	
  filter	
  works	
  by	
  monitoring	
  the	
  intensity	
  factor	
  and	
  if	
  it	
  is	
  

below	
  the	
  set	
  threshold	
  response,	
  then	
  the	
  ΔR/R	
  values	
  at	
  that	
  time	
  are	
  set	
  to	
  zero.	
  

If	
  the	
  intensity	
  factor	
  goes	
  above	
  the	
  threshold,	
  the	
  ΔR/R	
  remain	
  the	
  same	
  (Figure	
  

3.1.0).	
  The	
  filtered	
  ΔR/R	
  can	
  then	
  be	
  used	
  in	
  PCA	
  as	
  well	
  as	
  for	
  normalized	
  PCA	
  

using	
  the	
  intensity	
  factor.	
  This	
  method	
  of	
  filtration	
  is	
  similar	
  to	
  the	
  way	
  by	
  which	
  

mammals	
  have	
  evolved	
  to	
  separate	
  out	
  background	
  and	
  only	
  observe	
  immediate	
  

changes	
  within	
  the	
  environment.98	
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Figure	
  4.6.1:	
  a)	
  [top]	
  unfiltered	
  ΔR/R	
  data	
  are	
  5	
  %	
  P/P0	
  at	
  a	
  total	
  flow	
  rate	
  of	
  
400sccm	
  for	
  4	
  vapors	
  of	
  toluene	
  (blue),	
  dichloromethane	
  (red),	
  methanol	
  
(green)	
  and	
  acetonitrile	
  (purple).	
  b)	
  [bottom]	
  Filtered	
  ΔR/R	
  data	
  using	
  the	
  
threshold	
  set	
  with	
  the	
  intensity	
  factor.	
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The	
  advantage	
  of	
  this	
  method	
  is	
  that	
  it	
  can	
  be	
  readily	
  applied	
  in	
  the	
  

processing	
  of	
  data	
  or	
  for	
  real-­‐time	
  analysis.	
  (See	
  section	
  5.2)	
  However,	
  upon	
  

applying	
  PCA	
  to	
  the	
  data,	
  there	
  are	
  still	
  large	
  fluctuations	
  within	
  background	
  that	
  

the	
  filter	
  will	
  need	
  to	
  be	
  accounting	
  for	
  to	
  get	
  a	
  more	
  accurate	
  classification	
  of	
  the	
  

analytes.	
  The	
  points	
  within	
  the	
  principal	
  component	
  space	
  spread	
  out	
  from	
  the	
  

origin	
  (0,0)	
  and	
  show	
  a	
  large	
  separation	
  between	
  them	
  once	
  they	
  have	
  reached	
  their	
  

equilibrated	
  values.	
  (Figure	
  4.6.2)	
  Comparing	
  these	
  data	
  to	
  the	
  unfiltered	
  data	
  

(Figure	
  3.1.0)	
  all	
  the	
  vapors	
  are	
  within	
  similar	
  points	
  in	
  principal	
  component	
  space.	
  

Classification	
  between	
  the	
  analytes	
  and	
  the	
  background	
  in	
  principal	
  component	
  

space	
  can	
  slightly	
  overlap	
  as	
  the	
  vapor	
  desorbs.	
  Some	
  sensors	
  desorb	
  certain	
  vapors	
  

faster	
  than	
  others	
  as	
  demonstrated	
  by	
  the	
  different	
  time	
  constants	
  of	
  the	
  sensor	
  

array.	
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Figure	
  4.6.2:	
  Filtered	
  principal	
  component	
  data	
  using	
  the	
  threshold	
  set	
  with	
  the	
  
intensity	
  factor.	
  Data	
  is	
  5	
  %	
  P/P0	
  at	
  a	
  total	
  flow	
  rate	
  of	
  400sccm	
  for	
  4	
  vapors	
  of	
  
toluene	
  (blue),	
  dichloromethane	
  (red),	
  methanol	
  (green),	
  acetonitrile	
  (purple)	
  
and	
  black	
  (background).	
  

	
   	
  
	
   Normalization	
  of	
  the	
  filtered	
  data	
  shows	
  the	
  separation	
  between	
  all	
  of	
  the	
  

vapors	
  at	
  their	
  equilibrated	
  values.	
  (Figure	
  4.6.3)	
  There	
  is	
  some	
  crossover	
  between	
  

clusters	
  in	
  the	
  principal	
  component	
  space	
  (Figure	
  4.6.2)	
  between	
  the	
  un-­‐

equilibrated	
  ΔR/R	
  of	
  methanol	
  and	
  the	
  acetonitrile	
  cluster.	
  The	
  misclassification	
  

within	
  the	
  normalized	
  ΔR/R	
  PCA	
  are	
  caused	
  by	
  the	
  filtering	
  method	
  being	
  too	
  rigid	
  

in	
  its	
  method	
  of	
  handling	
  the	
  changing	
  baseline.	
  By	
  further	
  making	
  the	
  baseline	
  

more	
  adaptive	
  the	
  pattern	
  can	
  be	
  identified	
  in	
  principal	
  component	
  space.	
  This	
  

should	
  reduce	
  the	
  contribution	
  of	
  the	
  slow	
  responding	
  sensors	
  creating	
  a	
  partial	
  

pattern.	
  This	
  should	
  reduce	
  the	
  noise	
  seen	
  between	
  clusters	
  in	
  PCA	
  and	
  potentially	
  

increase	
  the	
  separation	
  between	
  the	
  analyte	
  clusters.	
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Figure	
  4.6.3:	
  Filtered	
  normalized	
  principal	
  component	
  data	
  using	
  the	
  threshold	
  
set	
  with	
  the	
  intensity	
  factor.	
  Data	
  is	
  5	
  %	
  P/P0	
  at	
  a	
  total	
  flow	
  rate	
  of	
  400sccm	
  
for	
  4	
  vapors	
  of	
  toluene	
  (blue),	
  dichloromethane	
  (red),	
  methanol	
  (green),	
  
acetonitrile	
  (purple)	
  and	
  background	
  (black).	
  

4.7 – Conclusions and Future Work 

Time constants are a unique characteristic to each sensor and vapor combination. 

Within an equilibrated sensor array, time constants are not necessary. When looking at 

dynamic environments, categorization and identification of similar points within the 

principal component space can be very challenging, due to drift. By developing a system 

that is capable of incorporating, understanding and learning the different time constants 

of each vapor, the time required for analysis, as well as the accuracy required will be 

greatly improved.  

Slow gradual changes of an analyte to maintain equilibration of all sensors within 

the array do not exhibit the time-loops as discussed in section 4.2. The results 

demonstrate the effect of a concentration drift that could affect the sensor array and how 
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PCA on its own is capable of identifying the odor because it does not form a consistent 

response. The normalized principal components are able to separate the concentration 

dependence and maintain a tight clustering of the analyte in the principal component 

space. A more complex scenario causes large crossovers between the analytes that are not 

always identifiable through PCA (Figure 4.5.4a). This is largely due to noise that is 

present from the background. A effective method of separating out these slow changes in 

the peaks is potentially found in filtering the data. Filtering is able to remove the small 

fluctuations within the background using the intensity factor. (Figure 4.6.1) However, the 

determination of the changing background is not sufficient and more flexibility needs to 

be added to the filter to adjust to a new background after an analyte peak. 

 Further testing of each sensor array with different vapors could also provide more 

information on the solvation parameters. Correlations and patterns determined from 

comparing solvation parameters of different sensor array responses to each analyte will 

give further insight into using the sensor array as a potential method of chemical analysis. 

 Future work for this chapter will be needed for testing of two or more analyte 

vapors that are slowly changing as well as fast changes in concentration. Additional 

analysis and development are also required for a filter that is able to adjust and separate 

the changing background from quick changes within the sensors. 
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Chapter 5: ANN & Real-time analysis 
  

5.1 – ANN & Sparse Filtering 

An unsupervised ANN utilizing sparse filtering is analyzed and trained using data 

collected from a random exposure to 4 different vapors at 5 % P/P0 (Figure 5.1.1). 

Additional factors for analysis within the ANN include the sparsity of the sample. The 

features are first divided by their norm, constraining them to fit within the l2-ball (Figure 

1.3.4). The sparsity factor then normalizes the features of the data for sparseness using a 

penalty that divides each feature by its mean square deviation.  

The ANN is able to clearly separate out all 4 vapors from the background. There 

is also tight clustering with each designated vapor response, indicating associated spatial 

similarities for the data.14 The exception is the nitrogen gas background that has a larger 

degree of uncertainty, causing the larger spread around the cluster. The variance within 

the nitrogen background is most likely caused by the ANN deciding when and where the 

pattern has changed enough, so that it is no longer in the same class. This can be seen as 

faint black points between the nitrogen cluster and the other vapor clusters in Figure 

5.1.1. Additional variation in the baseline resistance due to effects from the other vapors 

slightly shifting the baseline resistance are not fully understood but is a common problem 

causing sensor drift.59 Ideally the baseline resistance could be manipulated to normalize 

out the changes, keeping a consistent baseline.86  
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Figure 5.1.1: Sensor array was exposed to 5.0 P/P0 in 20 min on/off of 
toluene(blue), dichloromethane(red), methanol(green) acetonitrile(purple) 
and no analyte(grey) using ANN and a sparse autoencoder. Opacity 
represents the sum of responses where stronger measurements and 
increased point density are more visible. 

 

  Changes in concentration (Figure 3.3.0) add additional variance for each analyte 

cluster within the ANN.(Figure 5.1.2) A comparison of the repeated exposures at 5.0 % 

P/P0 (Figure 5.1.1) to the ramping of concentration for each vapor (Figure 5.1.2) shows 

less separation between analyte clusters, but a relative invariance vs. concentration 

changes. Analyte clusters are less defined and for some analytes there are multiple 

clusters. The largest difference is in the nitrogen clustering characteristics. Nitrogen 

clusters have decreased definition as well as 3 widely separated clusters. By looking at 

the temporal resistance data, there are different levels of nitrogen background through all 

the sensors that are perceived as a new odor to the unsupervised ANN. (Figure 3.3.0) 
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Figure 5.1.2: Sensor array exposed to toluene(blue), dichloromethane(red), 
methanol(green), acetonitrile(purple) and nitrogen(black) with increasing stepped 
saturated concentration responses of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 10.0 and 20.0% 
P/P0. A scatter plot is shown wherein the opacity points spotted is a sum of the responses 
elicited by the sensor.  

  

With supervised ANNs separation is much larger and clearer (Figure 5.1.3) 

compared to the unsupervised method (Figure 5.1.1). There is tight clustering and very 

little random scattering. Acetonitrile tends to have a smaller response compared to the 

other analytes using this sensor array, this could be a portion of the cause for some of the 

increased variation number of points between acetonitrile and the background vapor. 

(Figure 5.1.3) The artificial neural networks are capable of performing with greater 

amounts of data on a much higher level of analysis than using PCA alone, as shown by a 

quick comparison of Figure 4.2.2 (partial data set, using ΔR/R) and Figure 5.1.1 (full data 
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set). Further still to improve analysis is the use of the supervised method with sparse 

filtering (Figure 5.1.3), incorporation of multiple inputs (ex. machine vision) to speed up 

and guide the analysis will greatly improve the identification within chemical sensor 

arrays. A biologically comparable method of analysis is using our nose as well as our 

eyes to identify a potential odor.99  

 

Figure 5.1.3: Sensor array was exposed to 5.0 P/P0 in 20 min on/off of 
toluene(blue), dichloromethane(red), methanol(green), acetonitrile(purple) and 
nitrogen(black) using ANN and with a supervised method. The weights were 
initially seeded using the sparse autoencoder. A scatter plot is shown wherein the 
opacity of points plotted is a function of the sum of responses elicited by the 
sensor. This has the impact of making stronger measurements more visible, and 
also provides a stronger sense of point density in the projected space. 

 

5.2 – Real-time PCA & ANN 

 A carbon black – organic polymer sensor array exposed to open atmosphere 

within the laboratory is able to maintain a stable baseline with minor fluctuations. 
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Exposures to vapors were done at 25 °C ± 1 and 101 kPa ± 1. The sensor array used 

within this portion of the experiment consisted of seven sensors, one sensor of each type 

except for PMMA. The sensors were chosen for this sensor array because they are faster 

to most of the analytes (Table 4.1.1) and better behaved (Table 4.1.2) than PMMA. Using 

the filtering method described in section 4.6, the principal components of the filtered 

ΔR/R were then calculated. The analysis was done in real-time using Matlab as the data 

collection and processing program for the filtering and PCA. Data points were collected 

every 5 seconds over a period of one hour. 

 All sensors responded to the vapors with varying degrees of ΔR/R. (Figure 5.2.1) 

Some sensors were noisy such as poly(n-vinyl pyrrolidone), possibly due to variations 

within the real-time, dynamic environment. Further analysis is required to determine the 

true cause of these variations. 
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Figure 5.2.1: Filtered ΔR/R data for the real-time analysis of 4 vapors (toluene, 
dichlorormethane (DCM), methanol and acetonitrile) over one hour with a 
measurement every five seconds. A 1 % threshold response (difference between 
the maximum and minimum of the intensity factor) was applied to the ΔR/R data. 

 

 Vapor clusters within the principal component space did not show large 

separation except for methanol from the other vapors, they instead formed wide clusters 

that partially overlapped with each other. (Figure 5.2.2a) This is likely because of the less 

controlled sampling method and this adds additional fluctuations within the sensor 

resistance response. This less controlled method of sampling means the analyte is not 

passed across the sensor in a steady flow. Instead the analyte vapor drifts across the 

sensor gently, with the possibility of a cross breeze disturbing the steady absorption into 

the sensor. The added variation in sampling methods as well as the sensor responses 

(dynamic background vapor) inherently add fluctuations in the vapor that need to be 

accounted for by using a filtering method. The filtering method used (see section 4.6) was 

not able to account for the level of dynamic variation that was seen based on the lack of 
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separation. The background vapor is tightly clustered around (0,0) because of the filtering 

method used. (Figure 5.2.2b) The characteristics of the methanol cluster gradually 

separated from the (0,0) origin and settled in a cluster near (0.5, 6). The characteristics of 

dichloromethane are quite different, probably due to the large variations that were seen 

within poly(n-vinyl pyrrolidone). This caused the resulting principal component variation 

to spread out to (-3.2, 80), then return to form a cluster between 10-35 within the first 

principal component. Variations of this nature within sensor array analysis are not 

uncommon and may be due to the size of the sensor and the vapor interaction.46 Because 

sensors will exhibit more noise with large polymer/vapor partition coefficients that will 

strongly sorb the analyte and deplete the surrounding area. With uncontrolled vapor flow, 

the analyte is dependent on the environmental (breeze) and physical (pushing the air, 

convection) effects.46 
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Figure 5.2.2: a) [top] PCA for the real-time analysis of four vapors within the 
open air of the laboratory for toluene (blue), dichloromethane (red), methanol 
(green), acetonitrile (purple) and nitrogen (black). Flow rate is uncontrolled as 
well as the concentrations of the analytes. b) [bottom] The enhanced image of the 
central cluster. 

 

 PCA of the concentration independent response pattern shows the clustering of 

the vapor analyte patterns in principal component space (Figure 5.2.3a). There is a large 

spread of the analytes along the diagonal axis through (0,0) showing the low signal and 
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large variation for those points. They are likely caused by noise within the sensor array 

and are just above the threshold value. Increasing the threshold value of the filter from 

1.0% by a few percentage points should eliminate the additional noise. 

 

 

Figure 5.2.3: a) [top] PCA using the normalized ΔR/R for the sensor array in real-time 
analysis. b) [bottom] The Enhanced image for viewing of central cluster of points in the 
PCA of the real-time analysis. 

 

At the center of the grouping of all the clusters within principal component space 

the separation of individual anlaytes is masked by the drifting of the background ANN 
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response. Surprisingly it is the dichloromethane that has the largest within cluster scatter 

of the four analytes and not methanol (as expected from the poly(n-vinyl pyrrolidone 

response (Figure 5.2.1) as well as the principal component scatter (Figure 5.2.3b)). A 

potential artifact within the real-time analysis (Figure 5.2.3b) is the drifting baseline  

which results from the different time constants of the sensors. The slow responding 

sensors take a while to desorb the analyte and the drifting response is observed (Figure 

5.2.3b).   

5.3 – Real-time ANN analysis 

	
   Analysis	
  of	
  the	
  ANN	
  was	
  not	
  achieved	
  within	
  this	
  work	
  due	
  to	
  a	
  shortage	
  of	
  

time.	
  Future	
  studies	
  could	
  apply	
  the	
  characterization	
  methods	
  learned	
  and	
  applied	
  

within	
  this	
  work	
  into	
  the	
  ANN	
  for	
  real-­‐time	
  analysis.	
  With	
  ANNs	
  operating	
  in	
  real-­‐

time	
  there	
  will	
  be	
  a	
  larger	
  influx	
  of	
  data	
  that	
  is	
  streaming.	
  The	
  larger	
  amounts	
  of	
  

data	
  would	
  better	
  train	
  the	
  ANN	
  and	
  improved	
  performance	
  in	
  pattern	
  recognition	
  

and	
  classification	
  would	
  be	
  expected.	
  

 
	
  

5.4 – Additional Considerations 

 Considerations that can be included within a ANN for improved classification and 

function include using a method for improved filtering methods15,29, sensor selection27, 

sensor replacement and the addition of new sensors to the array.100,101 Improved filtering 

methods using ANN and sparse filtering will assist in the removal of unwanted noise and 

drift due to sensor degradation or variation from external factors (humidity, additional 

vapors). Selection of different sensors using ANN to determine which are responding 



	
   93	
  

first and the delay between responses can give additional information for analyte 

classification27,102 as well as directional information for tracking an odor plume as 

demonstrated in mammals94,96 and some robots52,85. Additionally monitoring and 

identifying sensor behaviors within a ANN will aid in the long term use of the sensor 

array. 

5.4 – Conclusions 

ANN using sparse filtering are used to address and demonstrate the function of 

this architecture within the application of machine olfaction. Unsupervised methods  with 

sparse filtering have shown a large improvement in the separation of vapor clusters 

(Figure 5.1.1) compared to PCA alone (Figure 4.2.2). Upon switching to the supervised 

method of analysis, the results further improved with a very low variance within the 

vapor clusters and far fewer points scattered randomly. 

Unsupervised concentration ramping using the ANN and sparse filtering has 

shown that the added variance from concentration does not cause a drift outwards (Figure 

3.2.1) but instead remains tightly clustered (Figure 5.1.2). The clustering is a large 

improvement to the normalized PCA alone (Figure 3.2.2) as it incorporates all of the raw 

data and not just the ΔR/Rsaturated. 

Unsupervised methods demonstrated the effectiveness of this method even with a 

small sensor array (48 sensors) and using a small sample size (~600 data points). As 

ANNs obtain an increasing number of samples the average performance error should 

decrease, meaning that the ANN is getting closer to the desired output value.13 It would 

be expected that this ANN architecture’s pattern analysis would only get better with more 

information presented to it. In addition the inclusion of such variables as additional 
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filtering methods, sensor selection, sensor replacement and addition of new sensors to the 

array would increase the functionality and versatility of a sensor array incorporating such 

a ANN with sparse filtering. 

ANN and sparse filtering was measured using real-time analysis. PCA results 

show that using the filtering method as well as the intensity factor as a method to separate 

out concentration is possible. Consideration of using multiple inputs for supervised 

methods of combined olfactory response mechanisms in ANNs. 
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Chapter 7: Conclusions and Future Work 
 

 In the work presented within this thesis, temporal responses of chemically diverse 

arrays are a complex and information rich area that can be analyzed in real-time with 

application in ANNs. Temporal responses within sensor arrays are a large barrier in early 

identification of vapor analytes. This is especially true in dynamic environments where 

the sensor may never be at an equilibrated state and will dramatically slow and cripple 

the accuracy of the identification and quantification of the analyte. 

 Using the intensity factor to quantify the vapors the detection limits for each 

vapor were found to be to 1.7, 19.7, 7.9, and 5.6 ppt at 5 % P/P0. Using this method in 

more complex scenarios such as real-time analysis within a dynamic environment will 

improve the classification process because it removes the concentration variation from 

the ΔR/R of each sensor to give the concentration independent response pattern. This 

method works well but the changing shifts in the baseline resistance cause additional 

variance that can alter the ΔR/R. A filtering method to remove such variations has been 

proposed but this method requires further work to fully reduce the large changes in 

background resistance. The design of the threshold function is flexible so that if the peak 

is positive or negative ΔR/R it will be able to filter out the response. Additionally by 

using the intensity factor the filter is flexible to any sensor because it uses the relative 

percentage of the sensors response. An additional feature that would enhance the filters 

function is using a more flexible variable that is able to change and reset the baseline 

when a new one is encountered.  

Temporal analysis of the changing analytes has shown that there are unique time 

constants that can be attributed to each sensor and vapor combination. Incorporation of 
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the time constants within the analysis will benefit the analysis in a minimum of two ways. 

First by reducing the time for analysis by monitoring the ΔR/R over time. Using the time 

constant equations and ΔR/R the time constant can be predicted as the analysis is 

proceeding. Secondly by knowing the time constant potentially the future behavior of the 

system can also be predicted.  The purpose of using the time constants of vapors is to 

speed up the classification and identification of analytes as well as handling the 

complexity of multi-vapor dynamic system. 

Testing of the sensor array using dynamic analysis demonstrates the impact of a 

slowly changing background on the principal component response. Using the intensity 

factor the concentration variance for classification is able to be controlled above the 

detection threshold. This is a similar exposure profile to the slow leak of a gas, a gentle 

breeze carrying the vapor, or slowly moving towards and away from a vapor source. 

Applying filtering methods to this type of exposure in the future will hopefully remove 

the slow changing responses of the background leaving the fast changing ΔR/R responses 

for identification. Variations in the flow rates will affect the responsiveness during the 

analysis. Faster flow rates are better for analysis because this increase the rate of 

equilibration of the sensors. The intensity factor is able to control the concentration 

variance in both the higher flow 420sccm and lower flow 400sccm systems maintain a 

tight clustering of the analyte response.  

Moving to a mutli-vapor system with slow and fast variations in analyte partial 

pressures the sensor array is able to capture both analytes simultaneously. With the slow 

increasing response of toluene and methanol are captured by the sensor array and 

separated from the concentration independent component. Comparison of the principal 
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components shows that the mixture (methanol + toluene) is close to the predicted 

fractional movement of the principal components for the cluster. Further analysis is 

needed to determine the effect of filtering and separation of the points when time 

constants are included within the analysis. It may be possible to use only the time 

constants alone to identify methanol from toluene in a two vapor system but further 

testing is needed. 

Incorporation of the ANN and sparse filtering into the pattern analysis proved to 

be better at analyzing both the random exposure data (at 5 % P/P0) and concentration 

ramping data. Using unsupervised techniques demonstrated that some of the baseline data 

is classified as a peak due the changes after an exposure. Application of a filter as 

described in section 4.6 and then ANN with sparse filtering will remove or at least reduce 

the number of false peaks. The use of a filter should also clean up any stray points that 

may appear within the ANN response as this is likely random noise within the sensor 

array. Supervised data had much less variance within vapor clusters (Figure 5.1.3) than 

the unsupervised method (Figure 5.1.1). Future work involving the use of a supervised 

method with another form of vapor identification such as machine vision may prove to be 

a very accurate efficient way of identifying vapors.  

A more sophisticated analysis such as ANN with sparse filtering and 

incorporating the time constants may help for the identification of analytes. Seeing as the 

ANN with sparse filtering is already able to separate the analytes used in this work it 

would be of interest to use it in a ever increasing complexity of vapors. The addition of 

the time constant will add an extra degree of differentiation of the vapors because of the 

different polymer and analyte interactions. 
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Transition of the ANN to real-time analysis was not completed due to the longer 

than anticipated timeframe for characterization and development of analysis methods for 

the sensor array. However the application of such should be fruitful as the ANN collects 

very large samples of data for analysis it can be trained on the streaming data. Use ANNs 

to incorporate additional features into the analysis (time constants, sparse filtering). The 

last step is to move the system to a real-time method using an ANN. 
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