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ABSTRACT

A 0 £ i AN A

The time-optimal control processes are considered for
a class of 1inéar time~invariant systems which are singular.
It is shown that singularity occurs when there 1s a
cancellation in the system transfer function. For single-
input systems, a unique solution exists which is bang-bang if
the controllable states are constrained. A generalized non-
unique bang-bang control law is shown to exist for multi-
input systems,

For fuel-optimal control processes, it is.proved that
for linear time-invariant systems, singular coﬁtrols cannot
be optimal. In the case of non-linear systems, optimal singular
controls may occur quite often; in particular, when the
problems considered are subjected to non-linear friction
forces.

Conditions characterizing singular problems are derived

and several examples are presented.
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CHAPTER 1
GINERAL INTRODUCTION

...;

The structure and synthesis of optimal control processes

is the subject of much current research, The Pontrvagin's
Maximum (Minimun) Principle (PMP) [28 7] has been one of the
main tools in these studies, This principle makes it possible

to find optimal control stecring functions for o wide class

of optimal processes in terms of a linear differential equation
called the adjoint system of the original system eqguation.

A difficulty arises when the control variable enters
linearly in the system equation or the index of performance
In such problems, situations may occur when PMP fails to
provide effective optimality conditions. The corresponding
Hamiltonian funf;ch ceascs to be an explicit function of the
control variables and thus yields no information about the ;
desired optimal control. This class of problems is referred
to as '"singular" problems or "non-ncrmal" problems , in the

sense of LaSalle.

In this thesis, the necessary and sufficient (if
possible) conditions are established for the existence of

singular problems., The optimization under study is time-optimal-

fuel-optimal and time-weighted fuel-optimal problems.
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REVIEW OF LITERATURE

In the earlier literature of the calculus of
variations, curves with singular subarcs received little
analytical attention except to be explicitly excluded from the

~

hypothesis of most of the established theorems. Evidently the
concept "singular control" is of a very recent origin.

LaSalle{20] (1960) observes the computational
difficulties in constructing optima] solutionstg a class of
time-optimal problems, for which there cxist many control
laws, each equally optimal, le establishes a set of theorems
which characterize a normal and a proper system,

At this stage, a carefully expressed definition of the
term "singular" extremals does not appear to exist in the
literature. Haynes;and Hermes[13] (1963) put forward a generai
definition of the singular problem using the associated Pfaffian
system approach., They are concerned only with problems which
are mildly nonlinear.

Following their works, a number of contributions (Kelly

16 ,17], Snow [30], Kopp and Moyer [18], Johnson et al. [14,157,

1

Athans et al. [4, 5], Thau (311, and Goh [8, 9] ) have appeared
which throw considerable light on the difficulties of these
problenms,

Kelly [17] produces a set of necessary conditions for




[3]
singular arcs via the sccond variation of the function to be

is

w
o

minimized, Ti

p)

t of necessary conditions is the generalized

Clebsch (Legendrc) necessary condition:

=3 '

gk 1 -

d T ALy 150
ou -

(1.1) B
u - dt
. k=2549.0.ﬁea,9,,q°,

Kopp and Moyer [18] extendédvthis result by éonsiderg
ing a speciaily cﬁosen class of perturbations on the singular
control U . They have shown that, for a‘special class of
piccewise continuous perturbations the second variation of the
index of performancé (Ir) along singular arés ié strictly
positive if and only if the inequality in (1.1) holds aloﬁg
the siagular arc.

Johnson et al work out a class of singular problems to .
illustrate the significante of singular solutions.

Goh extends the test of singular extremals for conventional
Rolza problems. In a series of papefs he indicates the
?rocedﬁres'for the derivation of singular extremals,

Most of the Qorks mentioned above consider problems in
which the IP is quadratic .

The works'éf Thau, Snow and Athans et al.are closest
to the material presented in this thesis . Some of their i
theorems are discussed, ampiified, and extended to cover

the problems considered here.
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CHAPTER 2

SINGULAR EXTREMALS IN THE PROBLEMS.

OF OPTIMAL CONTROL

The main objective of this chapter is to review and
discuss the fundamental relationships existing between the
extremal of PMP,the solution of the adjoint system equation

induced by PMP and the max or min Hamiltonian scalar function,

During the course of discussion a scheme is suggested for
classifying extremals of PMP, |

It is now necessary to formulate the control process:
to establish - a quantitative basis for discussion of the | 5
mateyial to follow,

The dynamical system which is controlled is assumed
to satify the following vector differential equation
(2.1) £(t) =£ [x(t);u(t) ]
w here x(t) is a vector with n compornents representing the state

of the system at time t, and u(t) is a vector with r components

representing the control input to the system at time t and
flx(t);u(t)] is a function of x(t) and u(t). For the remainder

of this thesis,X and u-or other symbols are functions of t

explicitly unless otherwise stated.

For reasons of mathematical expediency it is assumed
A 7y ,

~that
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(a) the function £ is continuous,
(b) for cach fixed (t,u) the function f is
differentiable and its derivatives are continuous,

The precisc statewment of optimization is as follows:

Given the system (2.1), the bhoundary conditions x(to)p
the constraint set Q2(where O is a s¢t of r-~dimensional space

of the contrcl variables u, usually closed, bounded and convex),

the target set S and the IP

(2.2) J(u) =

then find the control u that
(a) satisfies the constraint u & Q
(b)

of (Z.1) te x(T) so that x(T) ¢ S and in so doing

I

ransfers the state of the system from x(to)

(c) minimizes the IP (2,2)

1

The search for the optimal control u® is facilitated via
the PMP which will bs stated.

PONTRYAGIN'S MAXIMUM (MINIMUM) PRINCIPLE

<4

If u* is the optimal control and x* is the generated

optimal trajectory, then corresponding to u¥® and x* there

exists a co-state (adjoint) vector p* such that the following

relationships hold:

(a) Canonical equations

(2.3)

X, = . :
1 3pit & 1 dvi| =

-
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where H is the Hamiltonian function given by
o

Hx.p,su) = L(x,u) +<p, flx,u)>

ac3
=
¢

and |s means the partial derivatives must be evaluated at
optimal values.

(b) Boundary conditions

x®(t ) =&

204, =

x*(T) € §

pr(my s

(c) Minimization of the Hamiltonian

(2.4) H® =min H(x* pF,u) = H(x*,p%*,u*)s H(, *,p*,u)
for every t, tzguzT and V u.

The proof of the PIP can be found in 28],

The conditions provided by PMP are local in nature
and in general not sufficient,

Athans and Falb [4] have shown for u £1 and E*E%O):é

and x*(T) =0 the optimal control law is given by

(2.5) u*= -GN {BTp*}

= -SGN {g*} for time-optimal
(2.6) ut= -DEZ' (B p) |

z -DEZ {q*} for fuel;optimal

These equations provide a unique solution to time-
or fuel-optimal problems if q? # 0 in time-optimal and/q*|z1
: : , _ 3
~in fuel-optimal problems over any finite interval of positive

length, Such problems are called normal. If, however, g*= 0 in

t-The signum and deadzonn functions are defined in pp, 380 and
438 of Athasas and Falb [4]. .
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time-optimal oriqﬂi 1 in fuel-optimal problcms over some

finite interval of positive length, the signum and the
. fal 5 o

deadzone functicns are not defined, and .accordingly an arb-

itrary |u] <1 will satisfy PMP. The control problems are called

non-pormal in the sense of LaSalle,or totally singular.
With these preliminary facts in mind, a clear-cut

5 - (ad

finition of singularity for a class of control processes

L)

a
.1s advanced.

Before attempting this, the following definition and
theorem of Lebesgue measure are reviewed.

DEFINITION 1

Suppose M e B4, By a Lebesgue covering of a set M, it

is meant a countable sequence I ={Il,'12,a,,,ﬁg} of -open
intervals which covers M, If L(Ik) is the length of Ikg

covering L{I) is defined to be the number

e _
whenever the series on the right converges, The number

m(M) = inf{ L(I)] T is a Lebesgue covering of M}
is called the Lebescue measure of M,

“When M is bounded, say M =[a, b], then

0 < m(M) < b~a

f

If m(}) 0, ¥ is said to be a set of measure zero.

THEOREM 1.

pn
o3

If F is a countable collection of sets in E; say

{
t
1
1
1
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F:“{};l? Fzs easecsecno_Fn}
such that m(Fk) =0 for each k,let

M o= U

R,
k=1

then m(M) =0.

DEFINITION 2,

For cach value j, j=1l,2,.......7, designate
n
q.=% p.: b..
Jisqg™ ¥ 1)
to define a switching function and denote the set
I (X)) =Ip,x |q . =0 (time-optimal) or

lq ﬂ~1 =0 (fuel-optimal)}

N

and denote by T the set

then an extremal (p,x) given on an intérval I is called "totally
.singular" if the set
8 m-{ t | telandp,xeTl}

have positive Lebesgue measure in I, where I denotes the tinme
interval [t ,T]

In other words, a totally singular arc or subarc
occurs whenever the inequality in (2.4) becomes an equality
over a finite interval of time and Il thus becomes independent

H
of u . If for example H is linear in Uy s am vanishes over a

duk
finite interval; the PMP fails to select the optimal control
in this case. It is clear that if a u* exizt=z ,it must

satisfy the requirement that the system remains on a path




o

In gencral, the determination of whether or not a

Tz: control satisfies the necessary conditions of

totally =

14

PMP is not & difficult task; the difficulty is to prove

2
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APTER 3

[

51 i
It is well known thot

a limited sour

operated from

time from some initial state

minimum, t

power,

ct

For

singular, the validity of th
Moreover, the time-optimal =
the solution(s) exists., It i

conditions and restrictions

may be establishe

The problem posed

o £
em 17

steers the syst onm

EF( in particular,the origin

the dynamical system of the

(3.1)  x = Ax + Bu

y = &

ce of power, and if the transition
to some final state is to he
rategy is to utilize all available
iz called "The Bang-Bang Principle
ochblem the control law is uniquelf
ffewever, 1if the problem is

.
is hwgo

0t
$ found that under certain
2 generalized "Bang-Bang Princi
"+ the cingnilar - g_]ﬁm.
1o L LI 5,..~<‘_’ ttidl Tl OoLem,
The Zingular Problenm
b

the control law which

initial state to some final state
0) in minimum time satisfying

o
for

i
s

il
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where A is an nxn and B is  an nxr constant matrix -
constrained in magnitude by the relation
(3.2) I%ﬂél

Treating the problem via the PMP pethod of op

the Hamiltonian is

(3.3) H(x,p,u) =1 +<p,Ax>+<p,Bus
where p is the co-state vector satisfying the canoni
equation
5 L
(3.4 P Y
~op
= « A P

and the control law is given by

(3.5) u = -SGN{BTp}
= -SGN{q}
which can be written in component form as
n
(3.6) uj= -sgn{zx bi‘pi}

[}

i=1

= -sgn{ q.

J .

The condition for totally singular control

j= 192,-oe¢ntvooor

(]

occurs when.BTg =0 V tg¢ [tl’tz] e[0 ,T] ; then u is
may be optimal ifjuj<l. If for some j, j¥1,2,.;...r,
e [tl,t2 1 ¢ [0,T] then the problem is said to be

With these preliminaries the following definitions

" DEFINITION 3.Normal time-optimal problem

If for all j, j=1,2,.....7, qj.#‘O except at

where t. . is a countable set of times tl

Y3 t , t

I’ 7257 T35

with u

timization,

cal

arbitrary and

q;=0 Vvt
singular,

are made,
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ot

vi € [0,T] ' Y=1,2,ccc..m
i=l,2,.....1

then the problem is said to be normal time-optimal,

DEFINITION 4, Singular time~optim31 problem

Suppose in the interval I=[0,T] there is one or more
proper subinterval [tl,t2]§ s [tl,tzjjg [0,T] such that

quO for all t ¢ [tl,tz] and for some j, then the problem

is said to be singular time-optimal . If the condition holds

for all j then the problem is totally singular.:

§ 3. Controllability and Existence of Optimal

Controil

It has been shown [4] that a necessary and sufficient ?
condition that a linear system defined by (3.1) be completely |
~controllable at time t > t, is that the matrix

2

(3.7) G= [ B, AB, A‘B,.........;,.An'lB] has a rank n

for all t > t .,
o}

This condition can be shown to be equivalent to the
statement that the matrix [28]

. 1 . ’
(3.8) W(t,,t,) = @(to,t)BBT¢(to, t)T‘dt

be positive definite for some time t1 > t , where the super-
: : = o0

script T denotcs the transpose of the matrix. The matrix

o(t, to) is the fundamental transition matrix of (3.1) with
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the fecllowing propertieé;
(3.9) B(t,t,)

®(t0,to)

o(t,t Yo(t ,t)
[¢] [0}

i

A®(t,t )

I the identity matrix

I
and consequently @(to,t) satisfies the equation

(3.10) é(to,t)= -9 (tg s t)A

From linear algebra, in order that ﬁhe matrix W(to,tl)
be positive definite at time t

(3.11) Q?W(tostl); (where z is a constant vector) must

1 the quadratic form

be greater that zero for all z #0,
Substitute (3.11) into (3.8) this condition can be
written as

t, .
(3.12) s 17 T
t

2ot ,)mple(r , )Tz dt > 0 v z70
.0 S .
Now partition-the B matrix into column vectors, i.e.
B =[_t)i _‘bz c-oon-o:ootol?rﬂ]

or v T

and

T
iPi

(c?

T

BRT= ¥

i=1

and (3.12) reduces to

(3.13)

[

t .
(7 2%t ,00p1% dt > 0 ¥z #0
t

=1 o

i
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Note this condition implies that
(3.14)  zTo(t,,0b; 21,2, et
are not identically zerc over thc inferva1 [to,tl]. For linear
time invariant system there is no loss of generality if t, =0
and ty =T.

LaSalle [9¢0] in his treatment of time-optimal control
systems discusses the concept of normal system and proper
system. In the notation of the present'formulatiOﬂ the
following definitions are made,.

DEFINITION 5.

A system is called proper if gi@(O,T)B =0 on an interval
of positive length implies z =0, otherwise it is improper,

DEFINITION 6.

A system is called normal if for each i, E?Q(O,T)Pi =0

on an interval of pon-zers length implies z= 0 on that interval,

o}

etherwise it is non-normal or singular,.

From these definitions it is obvious that every normal
system 1s proper, but not every proper system is normal., Thus
a proper system is equivalent to complete controllability of
the system [20].

To relate the definition of normality of a linear system
to the definition of a normal time-optimal control problem,
take the transpose of (3.14) to obtain

(3.15) [sz.»(o,T)b_i] =0




Since z is any avhitrary vector, z may be viewed as the
initiél co-state vector ¥ which is also arbitrary as will
shown later in this chaprer.

Thus the system belng normal is equivalent to the

T,
Rl

normality of ti

{

«
o~ FER 2]
obhlen,

nr

A criterion for testing a linear syvstem described
(3.1) to be singular oy tdtally singular is given by the

following theorems.

THEOREM 1.

A 0 RS AT

The time-ont:

for certain real numbersc

Thus T Tn;l
z AR = z° )c A
. Ti=0 1

1

-t

1
7/

to

Py

-

e

[ R
mplet

¢lv controllable.

~

<

-

less than n.

z such that

et

I
S

P
Ui

oWn

>y
Py

O’l,eoet;aa»an-ls

i 1

singular if and
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et
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[o——

.
w'] ,x.x‘u]w’: e { A7 Yo q 3y
(Z_:’.‘\ i3 ; '-'A'”OgLS.-’—'.,cL(ae;»u‘uu-u<-z~w:s

Therefore

(3.17) zle-Aty =201 -« At 4

for all real .

Since z is non-zeroe {(3.17) implies that
e 8 J i

ol ~AT .
Bre z =0 or

Hence the time-optimnl problen is totally singular,
Assume the time-optinnl problem to be totally singular.
By definition

A

(3:18\ 9\:‘1 }j' = O “] t & [t

=

It follows that ¢ and its first n-j gy
i.e.
o )
B*p ={)
T, T
B*A ™ p ={)
T T2
(3.19) B"A " p =) Vte [ty,t,]
N2
T,
5 A D =(
N -~
BqﬂT v =0
Denoting G as the matrix defined (3.7), (3.19) can be
written as
(3.18) G D o= U
n . T ; .
Since p# 0, © & G => the system is uncontrollable.




[17]
A conjecoture that one might be tempted to make is that

if the system is completely controllable, then it admits no

totally singulay extremals. This is not true as shown in

53]

Example 2, ilowever, 1t may be asserted that totally singular

extremals cannot be optimal, This is because G has a rank=s n,

z nhas to be zero,Rut by PMP, the extremals arec
not optimai.-

In order to prove the next theorem, it is assumed that

matrix is of simple structure [33].In other words, the

(24

eigenvectors associated with each eigenvalue of A are linearly
independent, If A has distinct eigenvalues or if A has indistinct
eigenvalues which canbe linked in a Jordan chain, then their

eigenvectors ave linearly independent, and they constitute

a basis for the state space.

THEOREM.

Assume A is of simple structure . The time-optimal
problem is singular if and only if for some j, j=1,2,.....T
the matrix given by

3 ."}\L oe.»:uaae-aoa!\nml_b‘]
b7 .

1

(3.21) G= |

) . J

is singular.
Procf: Necessity-Mimic the proof of Theorem 1 using

(3.18) and re-writing it as

(3.22) g. =<b =0

to show G. has a rank less than n.
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[

Sufficicncy: Since

written as [26]
{L‘}:‘b,,. {."F\'}\ .‘-}E;\" L ow s 6 &t 6 £ T C 8 5 &
i k } 3
}is the ¥th eigenvalue and k= 1,72,
"
bys is the row component of the column
AN

Since G. has & vank less than n, it impl
certain recal numbﬁrscigi:L,E@ O
3.24 L T S SN (AT T U DU

(3.24) oK) I~ S
i e fc T + ~\°‘}\ I ';'1s,zaasnﬂe

t o 1C 1

X {A o .5
[COT 'C]'Kf\. >‘Zl) e 4 s 8 0 30 s
o o ¢ & & ¢« & &6 O £ 3 ¢ &

T E e (*"L Y -
t&:o_. r:‘;l\/\ )I}lj 2 0 60 6 9 & ¥ o
. . P 1.
By assumption , the matrices (Awki Iy, 1

linearly independent, the coeffici

em

unique in the sense that n-1 of th can
the remaining one.
The n equations [27] which determine the

be written in matrix form as

e r 1 -~ 2
F(Ap) 1 A S
(3.25) T (A7) 1 Xs A5
.,
PO ] B A A2
or Py =4a ¢

s of simple structure,

vector

....(A-x D)n-11yp

]

ki

N

n and

2 2 &6 &t 2 2 8 € € @

b
J

°©

ies that there exist
-1 such that
Es A= n“l}_ =
0 anl(\ )kI) ]jk
P o 1/'\“’ ) I L ],1{'," =
o1 A1 ]_’ 15
. - -k o
eczcnnl(!\ >\2].j Jsz =
n-1
veTC“ml(.(/\""ArlI) _}bnj -

eeooccﬂ"l are
arc uniquely determined;
be solved in terms of

coefficients ci can

n-i= r —
®* & 0 0 o O 9 >\l '1' CO

n-1

A c
s ¢ 0 0 8 @ 0 2 1

= {

"Oltttbxn—l

n o .fn—l_




Therefore

(3.26) c= M M)
A Bt i . .
Since e = ) o3 A7, the coefficients o, are preciszely those
j.::o ‘ "l\ )
cy when one computes e = by Sylvester's Theorem [26].
At T ~At
Thus ¢ bj =0 and for any non-zero z, 2Z € b = 0¥ t ¢ [t15t2]9

Therefore the time-optimal probiem is singular.

that the above proof uses the fact that the eigenvaules

are distinct. The same result can be obtained 1f the

eigenvalues are indistinct, provided that they can be linked

in & Jordan chain,

For properties of matrix A other than that A is of simple

structure, (3.21) is, in general, insufficient to guarantee that

the time-optimal

singular), there

problem is singular. In such problems(e.g. A is

exist some initial states for which the

time-optimal is normal, while for other initial states, it 1is

singular.

The fact that G or Gj is independent of x, p., u, and t

implies that a time-optimal problem is singular or totally

singular V¥ t, te

singular for all

[t;,t,] € [0,T], then it is singular or totally

t, t >0. The verification of this statement

may be made by invoking the DPrinciple of Optimality [4], which

states that any portion of the optimal trajectory.is alse optimal,

Regarding

=

the existence of singular optimal control, a

few facts and the terminology of linear algebra are used to

=

nrovide a framework to discuss the results which are to follow,
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Appendix A is devoted to basic definitions and
the Tundan o be used in this chapter,
T1 donoin of controllabi
given belowis {3 discussion on the
singulay controls,
DEFINITION
The domain of null controllability 7

eguation (3.1) and for the given > 1
. " . - 11 -
to consist of all points x e R for which there ex
: g '
measurable u{t)e € {defined on some finite

steers x_ to the origin 0.
—4,.-.0 .

controllability T is the

Contyollability of a system
sufficient to ensure the existence

[0,T]
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is observed that in ordey to

to find a control u

N

denoted by x for t T satisfies
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represent
regulate the ou

for t > T sucC
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Denote ¥ the set of all x for whick a control can be found
to drive the system to 0. I1f the system is-controllable then
a u certainly can be found. llowecver, the system may not be
controllable, vet it is conceivable that a control can be
found that will force 50 to 0, For this-the following definitioﬁ
is essential.

DEFINITION 8

A state Xq is controllalile if there exists a u such
that x(T) =0 for all t > T.

THEROREM 3

A state is controllable if and only if it is in the
range of G.

The proof of this theorem is presented: in Anpendix A,

Theorem 3 -states that the range of the matrix G denoted
by R(G) is the sulspace of all controllable states, If the
dimension of R(G) is r' such that r' < n , one can pick a new
basis for R"™. The first r' vectors constitute a basis for R(G)
aﬁd the (n-r') remaining ones constitute a basis for the null
space of G denoted by N(G).

In the new basis chosen, denote matrices by =z
prime. It is asserted that

-y

(3.28a) A AL

11




(3.28h) (ot g | o
11
A= and Bi=
B?
Y 2,.‘,
is vixin-rt}), A%¢ is (n-r")x
L28b)Y Af_is (n-r'ix{n-v'}, Al is
11 21
const svd T 18

(3.1) can be partitioned into

is zero because the columns are necessary in R(G) by
definition of G. The lower left hand submatrix of A' is zero
because R(G) is an invariant subspace under A. i.e. x' € R{G)

implies A'x' & R(G)

3 & ot e I .iri‘ T T -
Thus if x' = (2} ¢} , then for x',
cte £ . a3 T TT _» T TsT
s = { AT sta g i 1 1y =4 i
Atx'= LA RIVAL, 2007, (A x3) 30 ={(A L x1)7, 071 and

1
i
! =
therefore A;, =0. | |
The equation shows that whenever r' < n, any state
ve¢tor x' can be decomposed into a form [ vax’T]T where x'
172 ' 2

unaffected by the input u, whatever it may be. Futhermore x'

is controllable if and only if x5 at t=0 is ecual to zero,

It is of interest to note that.f' and‘i'ldepend 'for all t> 0
bn_fi(O)._The same argument can be made for the second of
(3.28) excépt_gjzis in the.range of G and ﬁf is on'the null
space of G.

In the fellowing corollary ,an explicit criterion
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for the existenceof an optimal control u for singular problem
is established.

COROLLARY 1

Assume A is stable i.e Re ) <0, 35(0)=0 and §i e R{G)
and u =0 is in the interior of § , then there exists a control
|u} <1 which steers io.to the drigin. I1f u satisfies the PMP
then u is a minimal time cohtroller; |

Proof: By Theorem 3 and Definition 7, the domain of

null controllability T is the subspace X5 =0. Thus there exists
a[%ﬂ <1 which steers x' to 0 in minimum time. If u satisfies
PMP then there exists an optimal controller u on the interval
[0; t < t* < t] steering 5; to the origin.

The existence of an optimal control for completely

controllable systems has been proved Ly Pontryagin et al [28].

5 4, The Synthesis of Singular Optimal Controls

The synthesis of optimal controls for singular time-optimal

problems is now considered.

In some cases, it is possible to use the transversality
condition to rule out the existence of singular arcs in the
optimal strategy. In time-optimal problems however, additional

difficulties spring frcem the fact that along an extremal the

Hamiltonian scalar function is constant for both normal [4]
‘and singular extremals. The constant is zero by the transversality

.condition,




4

THEOREM

For linear time-invariant systems, the Hamiltonian for
a totally singular time-optimal problem is constant alohg any
totally singular arc. The constant is zero.

Proof: H¥ = 1 + <p¥ Ax*> (totally singular condition)

Differentiate H® with respect to time to obtain

H# =<B$:’A“>g:’:> + <£>':’A§-7‘:>'
Since Ax®* = x* - Bu and

5 - T &

R : A’ p*

Substituting these equations into H®, one would obtain [ZSF'

. 3 .
H¥ = S <p*,B> u
dt B - .
The totally singular condition => <p%,B> =0, Therefore

0 . However, at t=T%, H*(T*) =0 => H* =0

v

H*¥ = constant

V.t e[0,T#].

§4,1 Single-input Systems

For single-input systems, matrix B is a column vector
with n rows. Note u is a scalar function. The condition for

singularity may be re-expresscd in the next theorem.

THEOREM 5

The time-optimal problem is singular if and only if
<p,yXx> =0,
Proof: Assume the problem is singular. The solution

to (3.1) is

7 The proof holds if u is piecewise constant and reference
28] proves that H is continuous and constant for the general
case. ' '
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t
(3.30) x(t) = o(t,1)x(7) +f &(t,x )Bu(r) di

T
For some T and for an admissible u(t') #0 t < t' < T with

x(T) =0,(3.30) reduces to

e T |

(3.31) x(t) = ~F &(1r,A)Bu(r) dxr
ST

where 1 1is some initial time.

Therefore
T
(3.32) <p(t),x(t)>= -7 <o(t,A)p(t);B> u(r) da
T
T T

"

-f <R(A)}B>u(k) dA since p = -A p
= 0T singular condition
The proof of'if' part is trivial since u(t) #0 ,(3.32)
necessarily implies the problem to be singular if «p(t),x(v)>=0.
Note that (3.32) implies that
(3.33) <m,E> =0

By Lemma 1 in Appoendix A, there exists a real, skew-symmetric

M such that
(3.34) mo=M where M is non-unique.

For n=2, M is of the form:

(3.35) 0 -1

M=z k k is a constant > 0

It can be shown that the hyperplane defined by (3.32) is in

the range of G and hence at least one of the states is

controllable,
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THEOREM ©

For.sing1e~inpuf systems, if A is stable i.e. Re X < O
and (3.32) holds, then the singular time-optimal éontrol
is unique. . ) |

Proof :Partition the state equation to obtain (3.28) -
and constrain the controllable étates to the hyperplane
defined by‘(3.32).Theféfore h»r',compoﬁents of the vectors
may be eliminated from the state equation tb-obtain,

3. L B ' ¥ 1
(3.36) §1 All X +B1 u

The matrix G' associated with this equation is of rank r'

which is precisely the dimension of the state equation (3.36),

Thus G' is non-singular in the new basis and an
optimal control 1is uniquely given by
(3.37) u* =- sgn{ <B; ,p'> }
It is_the"intent here to show that the singular

“problem arises because the systems have the property that their

transfer function contain zeros, with at least one zero
cancelling a pole,.

Consider again the system equation(3.1); Taking the
Laplace transform of (3.1) and solving forvX(s) one obtains
(3.38)  X(s) =(sI-A)" % (X, +BU(S)) |

Y(s) = CX(s)

Since the transfer function is the Laplace transform of the impulse

‘response of the system, i.e. the zero state response of (3.1)




[27]
to 6(t), and L{8(t)} =1, it follows that the transfer function
Z(s) of the.éystem is
(3.39) Z(s) = C (sI-A)"1 B,
Without loss of generality assume Y(s)=X(s), then

Z(s) = (sI- A) -1p

i

-nl(si
1 -
= —(;I_ A) nZ'(S)

.0

L{ln(s)_l

where n.,, i=1,2,.......n, are polynomials in s.

i!
Assuming the problem is singular implies G has a rank
~less than n. If the rank of G is less than n,then there exist

constants c., i= 0,1.....n- 1 such that

[COB+C1AB‘+ ..0......0.'.+Cn_1An-lB] =O )

Define J= (sI-A)"1B .=> B =(sI-A)J

Thus .
: n-1 . n-1 i o
(3.40) Y ciAl(sI-A)J (sI-A) Y -ciAlJ =0
- . i=0 i=0 ~

B

I

For s such that |sI-A{# 0, (3.40) implies that

n-1 .
) - cjAtT =0
i=0
Using the identities

J =J
AJ =sJ-B

e St S T Uk - SR
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one obtains

n-1 n-1 n-1 n-1

7 oc.aly= 7 sty - 7 caltlpos ¥ ¢ al-2p
i=0 % i=0 1 i=1 1 i=2 1
: ’ n-1 .
- ....-.."Sn-s.z CiAl-n+2B
i=n-3

n-1
= 0
Hence, n-1 n-2 . n-1 il
: J cystd = §sT 7 eatItip
i=0 - j=0 i=j+1
or ‘
n-2 :.n-1 .
E SJ Ci[\l-J-lB
(3.41) J = j=0 1i=j+1
n-1
2 Cisl
i=0

The denominator of (3.41 )} indicates that a cancellation
occurred, because it is of degree one less than n,

Now assume J has a cancellation. By expressing J as follows:
n-1 . n , L .

s] §  a;Aticlp

j=0 i=1+j (an=1)

[
B 1]

) n ..
and defining v, =) aiAl‘J‘lB
‘ J o1

where v. 1s an nXr matrix, and one can write J as follows:

n-1 .
SJVj
o i
Y a.s
i=o 1
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Suppose that J has a cancellation., Then the numerator of the
right hand side of (3.42)must have the following form:
n-1 n-2 .
(3.43) jZO szj= (s-s)) jEOstj
where sy is an eigenvalue of A, By equating the coefficients of"

si »1=0,1,2.....n-1 of both sides of (3.43) one obtains

) k“’o

V1= WO_ - skwl

(3.44) ‘ V2= ‘\71 'Sk“\rz

o . LR .

‘n-17 "n-2
Then ‘
(3045) VO + Sle + ¢ & & s 0 0

= -(sywg) +(skw0 -5

n-2 -1 -1
+*(sx "wp.3 - Sﬁ Wn.2) * Sk Twpo2

=0

which implies that

, n . ' n
(3.46) ) a.Allp s s 7
i=1 1 Ki=2
which can be written as

n-1 .
(3.47) ) k;A1B = 0
i=o

where, n-%-l i
K= [0 TS Sy,
i 350 i+j+1

Since the cdefficient of A" 1p is xy_q=a =1, [28],(3.47) implies
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that the vectors B, AJ’B,.......An—1

B are linearly dependent.
lence the rank of G is less than n and the probilem is
singular,

Example 1 is chosen to illustrate the techniques

discussed above.

§4,2. An Example
EXAMPLE 1
Consider the control system shown iﬁ Fig. 1. Assume
there is no input to the system and the system is subjected
to only initial_conditioﬁs. |
The problem to be solved is to determine the control

u(t) which will steer the system from z to 3 in minimum

o}

time, subjected to the magnitude constraint |u] <1.
The equivalent equation for the normal case (the

zero(s-1) is absent) , is

=2X =X _+u
2 1 2

The Hamiltonian is

H= 1 + PiX,

The co-state equation is

* P,2X) = PyX,* Pyu

- -2
Pp 7 7oy
Py, = -P1 * Py

Therefore




PR
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1/3 e2t 4+2/3 et -2/3 e2ts 2/3 et
p= , i
~1/3e2t 4173 et 273 &%ts 173 &7t

The optimal control is gifen'by
~u* = -sgn{ p }
o »
and is unique.

Fig. 2A is a state pléne diégram shdwing the saddle
point, separatrices and several trajectoriés correspond to
u=}.For u= -1 the state plane is identical to the foregoing
except it is shifted to the right by 1 unit;‘The domain of
null controllability T is the region boﬁnded by separatrices I
and 11 as shown in Fig. 2B, The 6ptimal paths are shown for
initial conditions in T . For initial conditions exterior

to T, nc solutions exist,

Now consider the non-normal case in which the zero
(s-1) is present.

The "equivalent system equation is

§1’= y2+ﬁ _
= o=y =2
yz Zyl yz .u

where yi= X and yz = X -u

The problem is singular because G is singular.
The Hamiltonian is

H= 1+ plYZ -P,Y,* szy1 + (pl -sz Ju
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The optimal control is

u¥ = -sgn {p,-2p_}= - sgn{[=r -2x ]eZt}
1 2 1 2 ,
If ﬂ1=2ﬂ2,then the control is undefined. From (3. 34)
* gz = +2g1 !

which is just a straight line passing through the origin with
slope = -2, Graphically it may be seen that the two separatrices
I and II approach one another resulting in a singular problem.
Because the zero is non-minimum phase the target set is the
origin in the y-plane [4].

Investigatjons into the existence of optimal solutions
with |u| <1 show that the target will never be reached. The only
optimal solution is found forinitial states constrained in
the hyperplane <p,x> =0 (which is the line vy =—2yl)with

2

lu] =1. The optimal strategy is depicted in Fig. 3.

0Q
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r=0 ﬂ - 1 1 ), -
”\F/ Contvolley = T X >
j s+2)(s-1)
\ 4
Normal case
1A Plock diagram from Exanmple 1
r=0 ' u s-1 X
><:\L’ —ontroller > ( ) aad
[/ (s+2)(s-1)
Y

Non-normal case

Fi., 1B Block diagram for Example 1.
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§4.3 Multiple-input systems

In gencral, the optimal solution to Singular multiple-
input systems 1s non-unique. Thau [33] has repgrfed-é technique
by which a unique time-optimal may be obtained. He reformulates
the problems using the reserve forte apbroach. fe aésumes that

"the system (331) is non-normal with <bj ,P> =0 and us , 177 are

then uniquely determined by (3.6).The control u.is found such that

(a) x(0) is brought to 0 in minimum time.

(b) u(t®),0 <ttt <T, ié chosen so that uj(t;) ig, for t> t!

and ¢ is the smallest positive real number possible for fhe given x(OL
Condition (b) rgquires that at each instant, the jth

component be chosen so that in the remaining control interval
the maximum magnitude is as small as possible. The result'of
this supposition is that a unique control iaw éan be derived.
The problems,hé considered are systems with Rel <0, (ftable). ' L
The smallest possible value for c in this case is 0. Thus
in the singular region an analogous minimum time-minimum

fuel solution exists which will drive the system to the origin.

-This approach must be used with caution because in some cases
it fails to éccount for optimal solution in éertain region, as
will be demonstrated in Example 2,

It will be shown that a generalized non-unique "Bang-
Bang Principle'" may be derived which is-applic@ble fo singular

problems.
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The set R(t) is defined by

(3.48)  R(£)={x(t): x(t)= a(t){x, +

Ot

®-1(s)BE(s) ds}

[ujlél; §21,2,...0,7}

‘where R(t) is the set ofvall points to which zo can be transferred
in t second using an admissible control.

Thau[31] has shown that for a non-normal problem}if x(0)
can reach 0 in time t but not at.any time prior to t, then gvis
on the boundary of R{t}. The optimal control law is not unique.

Consider now the system equafion (3.1) and assume A isA
of simple structure. The solution of the adjoint system is

i ATtE. If the problem is non-normaly namely for some

ATt

initial conditions, <§j e >0 on proper interval [t1,ty],

——

then the optimal control u? is not unique on t] <t< tz,where

the PMP fails to select an optimal u
: J

. The optimal control

u*, outside [t ,t.] is given by
J. 1772 n .
O * - - A .= .
It is clear that the singularity conditions occur when all
: -At
bij or my is zero. Define e hj =h(t}. If h(t)z 0, then 0
onAR(t) can be reached with an arbitrary uj, |uj| <1l. Assume-

h(t) #0 and consider two controls u? and u;:SUCh that on

[tl,tz]; u?=0 and }u%]gl. These two cdntrols are uniquely

J = -
defined by (3.49)outside [tl,tz]; and they 1¢ad to two
points on R(t), fl(t) and 52(t) respectively in the interval

ti; t<t Clearly

2 *
, . t

ax(t) = x_(t) -x_(t) = S h(t,s)u;(s) ds and

= =1 =2 t. = j .

1
[uji;l on [ty,t,].
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[

For all ju.] <1, x{t) is not zerc. The assumption that h(t)#0
implies that w.=0. Then an orthogonal matrix P exists such
that the first r' components of the column vector Ph(t) are

non-zero, and the remaining n-r' components are zero. Denote’

the first rv' cemponents of Ph(t) by h (t), then the control
- L

[

>
¢

e Pt

.50) u? = -sgn {<bh. ., e

] _ P . on [tl,tz].

Since a problem is singular for all te [0,T], then
a non-~unigu¢ Banc-Rang Principle exists for all t ¢ [0,T].
LaSalle®s Fang-Bang Princinle [21] is generalized to
extend to singular problems by Yalkin [10] with the additional
assumptions that a bang-bang stecering function be plecewise
continuous, i,e. continuous at all hut a finite number of
points, Halkin proves:

THECRIM 7 , If of all piccewise continuous bhang-bang steering

oo s o

functions, therc is an optimal relative to 2'( where Q' is the
set of all bictcwise constant hang-bang steering functions),
then it is optimal relative to Q.
THEORPEM 8, Tf there is an optimal steering function there 1is
always a piecewise continuous bang-hang control that is optimal.
Falkin's results can be summarized as follows:
Anything that can be doﬁe with an arbitrary control can
be done with a relay control with a finite number of switching

times.,
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bang principle holds for a proper system, he can only assert
that:

THEORE' §

L AT A et ST

If a control system is proper and if € is a bounded
convex set, then the optimal steering function has values on
the boundary of @, and mcre precisely if u* is optimal, then
3* cannot be in the interior of g for a positive interval of time,

THEOREM 10

If the system is proper, then the optimal steering
function for tﬁe special problem (i.e. the target set is the
origin) has values on the boundary of @,

To show that for some systems whose eigenvectors do
not span the state space, (3.21) is only a necessary condition,

denote X to consist of all initial states which are sincular
o

and L to consist of all initial states which are non-singular,

It is clear that
(a) KaL =¢ (the empty set)

(b) KUL =S the entire space.

(c) L is a closed subset of S (possibly the empty set)
(d) X is an open subset of S (possibly the enpty set)

Consider further the set T(k) such that Ay #0. Note

that T(k) is the complcment of set I'(k) of Definition 2, 1i.e,

T(K) = {(p,x)| ap F0r = C(r (X))

then
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If T= L, and T =K, then the set I'n L may be non-empty. If
this is the case, the problem may be normal. |

The non-uniqueness of the control uj in (3.50) may be
be deduced from the relation [4]
(3.51) <n,E>=constant> 0
By Lemma 2 of Appendix A, there exists a real, skew-symmetric

D such that

]

g
¢

(3.52) m =[BI + Dig where constant/}[é[[z and D is not
unique.,

It appears that 4y can be chosen arbitrarily as long as (3.52) is
satisfied, The non-uniqueness of (3,50) follows from the
non-uniqueness of D,

In general, there exist no analytical techniques for
synthesizing multiple-input fime-optimal problems, All that
is known is that there exists a non-unique bang-bang control
which is time-optimal. The synthesis methods are, in most
cases, by means of graphical procedures rather than by
analytical techniques,

The techniques are illustrated in Examples 2 and 3 in

e

he next section.

§4.4 Further anmples
EXAMPLE 2

Consider the following second order linear time-invariant

system where




R
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i

A = and B

0 -1 1 1

Since A is diagonalizable, then the conditions of Theorem 2 are

satisfied and the problem is singular time-optimal, The

control problem thern consists of deriving a control law u*

that transfers any initial state X, to the origin, in minimum

time, subjected to the constraint |u_ | <1, j=1 and 2.
jho=
The time-optimal problem is totally singular because

Gq and GZ are singular matrices. Note that the system is
proper.
The formal solution via the PMP is given by
| up = -sgnl p* p,}
| ug = ~sgn{'p }
where et O’
= 0 ot I

For any initial co-state vector m# 0, the solution is

normal, Because u cannot change sign, therec exists no normal
soluti>n which will steer the system from x, to 0 unless & is
on the y _ and y_ curves. For m=0 , the problem is totally

singular. However, the PMP [4] asserts that for optimality

there must exist a non-zcro solution of the co-stafe equation.
Hence this case (v =0) is impossible. |

Ifﬂ1#0 and ﬁ2=0, then Uy is constant and cannot change
sign, and u, is arbitrary. Since.the system is proper, by Theorem

L
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10, the possible values of u are restricted to +1 and -1,
2

The non-unique bhang-bang control is shown to be optimal in

Fieg, 4, for £ in the repion bounded by the curves vy
o 3 S-S s / : 42 Y_

and the axis x7=0;

On the other nand, if 7n = Ty s then u; is arbitrary snd u; .
i
cannot change sign., The non-uniqueness of bang-bang control
is shown to be optimal in Fig. 5, for £ in the region bounded

by the axis x,=0 and the curves vy and Y, -

j o]

Us

]

ng Thau's method, one would consider the reduced

system equation

y =\
172
Y, =y tu
2 2 2
where y = XX and x corresponds to the trajectcry having u,=0.
DA %o v
The problem is then reduced to determine u, SO that y=0 in
minimum time or equivalently X=X in minimum time, From 4,1

the states y which are controllable (i.e. all those with y1=0)
correspond to those states for which the minimum time condition

is insufficient to determine U, uniquely. Clearly in this

2

This method fails to account for a solution 1in the

t
context u,= -sgn {ﬁze }o.

state plane exterior to the curves y , vy and o , since in
+ .

these regions u cannot change sign. (see Fig. 6)

<

The curve v, (v ) is defined as the locus of all points

X  which can be forced to 0 by the control u1=u7=+1
(u1=u7=~1), and the curve ¢ is similarly defined but for u1= 1

and u,=0, : T
& - -
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EXAMPLE 3

Consider the problem whosc A and B matrices are

1"1

0

h
A
o -1

B=[b « 11 |
L9y

R

and |ul<l, j=1 and 2.
Jbﬁ

The system is proper but non-normal because

1 0 -
Go= » is a-singular matrix,
10 0.
The adjoint sytem 1is
p,=0
= - +<n
Pm P T

and the solution is

IS

p = i H
& i1~et etj T

e i)

The controls uy and u; which minimize H are given by

ul..= -sgn pz
u_ = -sgn y
e T | B
If ™ # T, #0, uy can change sign at most once and u, cannot

‘change sign, If ™ ;O'and nz.#o_then; the problem becomes

5 is arbitrary.

Since the matrix A is singular, and by Theorem 3, the

singular : u; must not change sign and u

condition that a time-optimal problem is singular is not
sufficient. Therefore there exist initial states for which the
problem is normal. Denote the sets X_ and X, to consist of

=-1 (Ju,|<1) and u1=+1 (u,[<1)

all initial states for controls u1
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respectively such that x(T) =0. Thén the union of sets X. and

X consists of all initial states which are singular (see Fig.7).
+ .

The set of singular states is open. It is ciear tﬁat the
complement of the singular region is the non-singular'regibn
which is closed. | |

The optimal control laws are illustrated in Fig.S8. The
solutions'iﬁ X+UX_ are singular solutions and they are non- .
unique, bang-bang steering functions. The solution exterior

to X UX is unique.
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CHAPTER 4

SINGULAR TUEL-OPTIMAL PROBLEMS

§1. Introduction

Singular fue1~optima1 problems arise quite frequently
in optimal control processes. Investigations into thé nature
of singularity in the formulgtion of fuel-optimal problems
have been carried out by se?eral'éuthors( Snow [32]; Athans
and Falb [4]j. The-direction this chapter will take is to
examine the general.soiution if it exists, to a class of
fuel-optimal problems. A necessary condition for singularity
td occur is established in a manner like that of Athans
~and Falb [4]. It is shown that for linear timé—invariant
systems, singular controls cannot be optimal.»However, for
time-invariant non-linear systems, singular controls may be

optimal,

§2, Choice of Index.bf Performance

There is at present a wide choiéebof pefformancé
criteria for fuel optimization. The parficular'chioce of
performance criterion rests with tHe designers. In this papér.
the following cost  functions are used. |

(4.1) T .
Y Luj] dt - T may be free or fixed

i
[ |

J (u)

(4.2) T r
S(k + ¥ Ju.Ddt T is free and k>0
9 :

J=1_ J

i

J(u)
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where Upsy Uy, we.... ., are components of vector u and u € Q.

A formulation of the fuel-optimal problem involving
(4.1) with no restrictions placed on the response time T often
results in undésirable.transition tire., On the other hand, if
T is fixed a priori, (4.1) allows the minimization of fuel
only for some initial conditions less than some maximum, This
unattractiveness of fuel optimization of (4.1) is overcome
by defiring the performance index as a weighted sum of time
and fuel., Such a formulation allows fuel to be minimized for
all initial states yvet bounds the response time. Towardsvthe
latterhalf of this chapter,.the cost function (4.2) is used

entirely.

§ 3, The Singular Problem for a class

of Linear Time-Invariant Systems

Consider the linear time-invariant system described by
(4.3)  x =Ax +Bu lugl 21 =12, .01
It is desired to find a u which steers the system from an
arbitrafy state to the origin and in so doing minimizes either
(4.1) or (4.2).

‘The Hamiltonian for fuel optimization is either

(4.4) T ,
g | +<p, Ax+Bu> or

o]
it
"3
o
r~1
o

(4.5) T
H=p (k+ 7 Ju.] )+ <p, Ax+Bu>
© 521 J = - -
for the cost function (4.1) or (4.2).

i}
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The canonical equations are identical with those of the
minimum time problem. The formal solution via the PMP is given

by

(4.6) -
u* = -DEZ {B'p*}

=
b3
11

-DEZ {g*}

or in component form

(4.7) | | -
ug = -dez {<Ej,2f>} |
= -dez {qj} ’jzl’z’oncbocoorn
where the deadzone function is defined as follows:
1 if g > 1
-1 if q <-1
dez q=
0 if ]q’< 1
| undefined if jqlz 1

The optimal control u* must satisfy the condition

(4.8) T T
u%|+ <p¥*, Ax*+DBu*> < fu + <p¥*, Ax¥+Bu
Lluglr <pts AXTRET Lty R, AXTHRU>

for ali admissible u and for all t_SLO,T]' and * denotes the
optimal solution, and Py =1 by PMP [2Z] .
B The-condition for singularity occurs when
(4.9) |<Ej,£f>j51 - for some j and
for a finite interval of time , i.e. ¥ t elt),t,] e [0,T].

DEFINITION 9

Suppose that in the interval [0,T] or in the interval

‘[O,Tf] for fixed time case, there are one or more subintervals
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ft.,t_ 1. such that for all j

17273 _
i 1=1,2, . .01,
then a totally singular fuel-optimal problem is said to exist,

(4.10) lg.]= 1 and ¥ t ¢ [t,,t,]
If (4.10) holds for some j,j=1,2,....r, then the problem is
said to be singular fucl-optimal.

The implication of this condition about the structure
Qf the system may be underS{ood.by‘proceeding along the lines

as in the time-optimal case. By repeated time differentiation

of 73.98) and usine the fact that p=-AT Athans [2] obtains
4 g o Do

(4.311) GTATR=-O ¥ te [tl,tz] or in component form
6.TATp= 0 Vv te [t ,t
where G and G. are the same matrices as the ones used in the

J :
time-optimal problem in Chapter 3.

The next theorem proves the necessary condition for
fuel-optimal problem to be singular or totally singular,

THEOREM 1 [4]

A necessary condition for the fuel-optimal tc be
“singular (totally singular)is that either G.(G) and/or A is
singular matrix.

Proof: |qj151 Vte [tl’t“] => p #0, then (4.11)

L

implies that |
det G?AT(GTAT}=O implies that either

Gj (G) and /or A must be a singular matrix

for all t « [t ,t 1.
1 2
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Thus, if the system is non-normal or completely

uncontrollable, thern the problem is necessarily singular. However,

if the condition of normality is assumed, it is still possible

to have a sincular problem if A is sinoular.
& &

It will be shown that if A is a non-singular matrix and

if Gj(G) is singular, then there are no singular (totally
singular) controls for the fuel-optimal problem. So the
problem is normal.
If det A #0, then there exists a non-singular matrix

P such that

A= p iap
For simplicity, éssume the eigenvalues are distinct . The
‘solution to the adjoint syétem is

p= oMt

The components of p are either monotone increasing or
decreasingf?Therefore there are no initial co-state vectors
m satisfying the singularity condition for any linear
combination of P - Hence the problem is normal. This proof
can be extended to any non-singular‘matrix A, but the steps
involved will be lengthy and cumbersome,

ThEOREM 2 [2]

If the problem is singular (totally singular) V t €
[tl,tz], then it is singular (totally singular) ¥ t €[0,T].
Proof: Let t3 be any time such that 0§=t§it1’

Then for every te [tl,tz] the solution df the adjoint system

T The eigenvalues of A are assumed to be real.
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T

3)

Substituting in (4.11) one obtains

T
TaATnTATy A=A (t -t3) - r
GjA (G*'A")e 3 B(ts) VO Vte [tl,tz]
Since the matrix A | and exp(-AT(t -t )) commute, and
3
exp(«AT(t -ts))is non-singular, it follows that
G"JFAT(GTAT) p__(tB) =0

which impies that R(ts)'belongs to the null space of G?AT(GTAT).

This means that the problem is singular (totally singular) for
all ts e [O,tl] .

Similar reasoning can be used to show that V t, E'ItZ;T]»
R(tg} also belongs to the null space-of_GjA.T(GTAT)e hence the
problem is still singular{totally singular).

Since the Sufficiency‘condition implies the existence of
a solution, the lack of it in the formulation of fuel-optimal
presents additional computational and theoretical difficulties.

~

It is conjectured that, if there exists a nonFempty set N

A

(of positive measure) such that £eN, then the extremals

are normal even though A is singular. To show this , V is
denoted to be the set of all admissible extremal controls, i.e.

V= {u(t): -1 < uft) < +1 ¥ te [0,T]}
J -] -

In view of Theorem 2, the extremal control is singular
¥ te [0,T]. By denoting V., and V_ the sets of extremal

controls that satisfy
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0 ;g#t) < +1 when qu—l
-1 ;%(t) <0 when q _=+1
or more precisely :
v, ={ u(t): 0 <u(t) <+, te [0,T] }
Vo ={ u(t): -l 2u(t) <0, te [0,T] }
one may show that
(4.12) V+UV_8V and
V-(V,UV ) # ¢ i.e V,UV_ is a proper subset of V,

Note that V4UV. is the subset of all singular controls,
The general solution of (4.3) is

t
(4.13) x(t)= At g + f e'ATBu(T) dt ]
=70 e

Now define the set of all initial states that can be forced to 0 by%

T
X ={ €: &= - 5 ™At Byu(t) dt, u(t) ¢ V }
2f &7 -/ v u
T
X ={ g: £= - f e At Bu(t) dt, u(t) ¢ V.}
+ = = 0 -— — +
T
X ={ g: &= - J e At Bu(t) dt, u(t) ¢ vV }
2P ET u alt) e v,

It can be shown from (4.12) that
N o= X-(LUX) # ¢
Thus the interior of X,UX_ is the region of all singular states.
The same reasoning holds also for totally singular problems.
A similar theorem to Theorem 5 of Chapter 3 is

established for the fuel-optimal totally singular problem,

This theorem may be used to relate the initial co-state vector s

with the initial state vector §. It should be noted the this

theorem is only a necessary condition,
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THEOREM 3
If the fuel-optimal problem is totally singular, then
<p,Ax> =0 | |
Proof:‘The solufion‘to (4.3) can be ekpressed as

(4.14) | ‘.
x(t) = o(t,T)x(t) + fo(t,\)Bu()) dr

_ - 1 a—
where T is arbitrary in the whole interval [0,T]. If for

T and for an admissible u(t’)'# 0, t < t' < T x(T)=0, then
. = = 9 e

(4.14) reduces to

(4.15) | T
x(t) = -f o(t,A)Bu()) dA
Premultiplying (4.15) by A and taking the scalar product of

_the'resulting equation with p(1) one would obtain

(4.16) T |
' <p(t), Ax(t)>= -f <p(1), Ad(7,A)Bu(r)>dxr
- T

T 7 T o
= -/ <@ (T,M)A p(t),Bu(r)> di
~ Since @T(T,X) and AT commute, (4.16) can be written as

S (4.17) , T ' o

L <p(1), Ax(1)>= -5 <aTeT(t,\)p(r),Bu(r)>d)

BRI _ T A ) |
‘Using (3.9) and (3.10),(4.17) may be rewritten in a simpler form

(4.18) - T
T ), axs - T, B>
' T T T . o
A = -/ <B"A'p(N),u(x)> dA
: B ¥ . .
CNow PO = -ATp(d)

Therefore
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S . _
RHS = + [ <BTp(A),u(r)> da
T
The totally singular condition implies that

N

T v . _
B p(a)=a over the whole interval (by Theorem 2)

x

, J

Therefore %T (BTB(A)) =0
s

Hence the right h

v

and side of_(4.18) is

T
RIS= + [<0,u(A)> dr =0 or
T - : .
(4.19) <p(t), Ax{(t)>= 0 over the whole interval [0,T].

Thus the theorem is proved.

84, Linear Single-Input Systems

For single-input systems, the assumption that the systenm
is completely contfollable is asserted for the material to
be presented in this section. The coﬁdition that the problem
is singular reduces to A being a singularrmatrix. A convenient
characterization of the admissible cOntrol can be derived in

terms of thé initial states [4],by_denoting

(4.20) T
F(&)= s u(t) dt
.
HF@I=I ucr) at]
T .
[FE) < g lu(t)| dt = J(u)

~with u(t) £ Q.
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This means that the fuel required to force £ to 0 cannot be
smaller than [F(g)lsince J(u) > [F(&)].Note |F(8) |gives a

lower beound for J(u) for a given initial state. If a control u
&

can be found which forces & to 0 with fuel |F(§)|, then

this control is indeed optimal. Though |F(£)|does not guarantee
that it is the greatest lower bound for the fuel consumption,

it is indeed so,as shall he demonstrated later.

THEOREM 4 [30]
An admissihle contyol wu in V is optimal if it does not
chénge sign,
Proof: The  equality in (4.20) holds if u does not

»change sign., Since [F(§)]is the lower bound for J(u), any such

u must be optimal,

Ifké is in the interior of the subset X, UX_ there are
infinitely many extremal controls,each of which is admissible
so long as they satisfy |ul] <1,

It has been shoﬁn [4] that the Hamiltorian along an

extremal is zero for time not fixed and is constant >0 for

time fixed a priori. This transversality condition may be used
to rule out the possibility of singular arcs in the fuel-optimal

problem.

THEOREM 5

For linear time-invariant systems, there exist no singular
extremals for the cost functions (4.1) with T fixed a priori and

for (4.2).
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Proof: The HMamiltonians for these cost functions are

iy

(4.21) = |ul + <p, Ax+Bu>

(4.22) =k + ju| + <p, Ax+Bu>

By using the results of Theoren 3 and the singularity condition
(4.21) and (4.22) reduce to

(4.23) H%=0 and

(4.24) H#=k respectively.,

For a singular control to be extremal, say the control given by
(4.25) u = -sgn {BTE} v(t)

where v(t) = {v(t) : v(t) € V_ and v(t) 20}, (4.23) nust be a
constant > 0 and (4.24) nmust be zerov. Therefore there are no
singular extremals and the problem is normal,

Thié theorem indirectly proves that singular controls
may be extremals if the cost function is (4.1) with T free.
However for such extremals, Athans and TFalb [4] indicate that
singular controls cannot be optimal.The next theorem proves
this fact.

THEOREM 6

For linear time-invariant systems and the cost function
(4.1) with the response time unspecified, singular extremals
Cannof te optimal. |

Proof: The control given by (4.25) satisfies
equation- ( 4.8) .. Assume it to be optimal, then by
Theorem 2 and Theorem 4, this control is an admissible extremal

control for all t € [0,T] and cannot change sign. It should be
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observed that (4.25) gives the polarity of the control but not
its magnitude.

Since the system is linear and time-invariant, the
trajectories are smooth and well-behaved towards the origin .

The optimal-control sequence to the origin must be of the type

ot

{ e, +1} or{ ....,-1} or{ "f’us}’If a control sequence
{0, ug is applied and the switching occurs at the instant the
path reaches the v curve(where v is the locus of all states
that a control u=+1 or u=-1 will force the system to the
origin), the origin will always be missed. The same argument
holds if the switching is applied after the path crosses v.
lowever,if the control switches before the y curve is reached,
there are many admissible controls which get the system to the
origin. If these controls are checked by substituting into
(4.20) they are found to consume more fuel than the normal
control sequence bLucause F* is a function of g only.

The control u=0 will force the system to the origin with
T = » (A is singular) and strictiy speaking, such a u is not

optimal, Thus the theorem is proved.

§5. Multiple-Innput Systems

The necessary condition for singularity to occur in
multiple-input systems is identical with that of the single-
input systems.

Theorem 5 may he reworded to include multiple-input
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systems. A conjecture one will make is that singular controls

cannot be optimal. A general proof of this statement is tedious

if not impossible, It is asserted that there are no adjoint
initial conditions that give an optimum by DPMP,
Assume A to hbe singular and in the diagonal form,

then osne of the co-state variables is constant, Moreover, the

N

components of p are strictly monotone increasing or decreasing

unless the initial conditions are chosen such that one of p's

: , i
is identically euaual ¢, plus or minus one, and the remaining

pis = constant #0.
For simplicity, consider a system of order 2. In order
to satisfy the IHamiltonian which must be identically zero

along an extremal, Py and p, can only have two values, namely

c#0 or+l identically.These values are dictated by the structure

of A, depending on how the state variables are defined,
Assume B is an identity matrix. If, for example the

initial conditions are chosen such that p_=1 and pl=c# 1,

2
then it is clear that up is constant and_cannot_change sign.
‘The problem may then be vieved as a single-input system
which hasibeen shown to he ndn-optimal. Iowever,‘if n is such
that the problem becomes totally singular, u is arbitrary
though the polafify Qf.the controls are known, and luj! <1,
j=1 and 2. If the initial state is in the interior of X+UX
the only optimal cont¥ol is 0 or i, which has ét Zlea;t
two jumps; namely the sequences { 1, 0, 1 } or {1, 0, 1, 0},

To obtain these Sequences,'pl.and,pz-would have to change
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the sign of their slopes at least once. This
in view of Theorem 2 and Theorem 4 and p1=p2=1. Therefore
the target 0 will never be reached. The same reaéoning can
be applied to the case when P=Py =-1 of P1= Py =il;

Another technique,'using the Principle of Optimality
and its'geometric interpretation, may be easily used to

verify that singular controls cannot be optimal,

§6. Examples on Singular Fuel-Optimal

Problems

EXAMPLE 4

The systeh described by the followingxdifferential

equation is considered for fuel optimization.

X +ax= u lul <1

The cost function is

J(u)= [ |u(t)]dt where T may be free or fixed.
) _

The equivalent system equation is

X 7%

i XZ

The Hamiltonian for this problem is

-aXZ +U .

H = |u] +.p1X2 - p, ax, * pyu
The co-state variables Py and P, are the solutions of the

canonical equation

p, =0

p; = -P1 * ap2

is impossible
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and :
) o |
p::) 4. 1
‘L(I-GJL) et 1

3
The control which absolutely minimizes the FHamiltonian

is given by

u =0 if 1p2§ <1
=-san{ if 1

u sgn{pz} i gpzi >

0 <ugl if p, = -1

-1< u < 0 if p, =+l

For u=0, the curve o that goes through the origin is the
equation x, + axy =0. The y curve as defined in §4.4 is
deduced to be a function of X4 and x, and is given as follows:

log(1+ a|x,[)}

X
vy o= {(%1’X Y: x_ = = "2+ sgn { xz} lzx

2 1 T a
These curves are shown in Fig. 9.
Case 1:Normal Solution=-(T free)

A unique solution exists for initial states in the region

bounded by the curves y and a(shaded area). The optimal sequence

is {0,1} for x,

< 0 aﬁd {0,-1} for X, > 0. For initial states
outside the shaded area a control sequence {-1,0} is applied,
switching at the instant the curve a is reached. The response
time to the origin is infinite. Strictly speaking, a fuel-
optimal solutioﬁ does not exist; however an e- fuel-optimal
solution exists.

Case 2 : Singular Solution --(T free)

Since A i1s a singular matrix, the problem is necessarily

singular,
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If ]ﬂll = a and 7,= m%% , then [pzlzl V.t e [0,T]. The control
u5 defined by (4.25) is a candidate for fuel optimal control.

The sequence {0, -sgn{ p,}v(t) }for x belonging to the shaded
i ’ p2 o~ ?

area will take the system to the origin. In fact, there
appears thatmany admissible controls exist. Investigations are
carried out to check which centrol,among those that are
admissibleuses the least fuel. The ideal minimum fuel F*(x) is

[x_ + axll(from the system equation). It is clear that none

2
of these singular extremal controls consumes less fuel

than the normal control. Hence singular solutions are non-optimal,
Case 3: T fixed a priori.
The possiblity of singular controls being extremals
has been excluded by Theorem 5. The purbose of presenting
this example is to verify the theorem.
| The detailed solution to this problem is given in
Snow's paper [32]. Fig 10 depicts the optimal trajectory for
T = 1 second. It is shown that even though the trajectory

enters the singular region (unshaded area) the optimal control

is uniquely defined and the solution is therefore essentially

normal,
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EXAMPLE 5

[

-

The system considered for time-optimal case in Example
3 will be solved for fuel—optimal solution. The cost function
T
Cis J(u)= ﬁ!uli +{u, ) dt with the response time unspecified,
: yJ
The Hamiltonian for this problem 1s

= ‘u1|+[u2| *P1Xy ~PoXpt PpUyt Pouy

The controls which absolutely minimize the Hamiltonian
are given by

u, =-dez {pl}

where Py=Ty and 2P =(1—et)ﬂ1+ eth.
|

If |n_|=Lthen the problem is singular.The Hamiltonian

it

_ 1
must be identically zero along an extremal, The substitution
oflﬂllil into H gives

i |uy [+x,sgn {pq}

Py

-ul

For ul=0, pzis identically sgn {pl} which implies that the

problem is totally singular. Similarly,for'ul=-1 and p1=+1 =>p =1

and for u1=+1 and pl=-1 => p2=-1, total singularity is

) - ) _ t t L. . o
possible, However, because pz—(l'e )W1+er » it is either

monotone increasing or decreasing depending on the signs of

ﬂl and wz,Therefore these sub-cases are impossible unless

TFa= Ta,= ]

or u,= 1 and p1=+l,PHP requires p, <-1 and

2
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consquently the above relation requires that, 0 < x2< +1 if
the necessary conditions of PMP are to be satisfied. For uj;=-1
and !p1]=~13 it is required that, -1< xz<l 0. Since uj is
specified aﬁd is constant in this restricted region,_i.e.

]le <1, the problem may be viewed as a single-input system
‘which is shown to be singular non»optimal in Example 4,

Now, if TyosT, =%], then the problem becomes totally
singular, It seems there exist many controls such tnat[ull <1
‘and qulébl, that will drive the system to the origin. However
these controis use more fuel than the normal control sequences
as shown in Fig. 11, Thus they are non-optimal,

On the other hand, if m;,m, #+1, then fhg solution 1is
non-singular. H=0 yields [uq] +|u2| +n2.u1 +mu, =0, Thus uy
and u, are constant and‘cannot'change~sign. Therefore, unless
~the initial conditions are on the switching curve corresponds
to u,=u,=4, there exist no controls that téke tho'system to 0,

It is observed that u, can switch at most twice, for the
nérmal case. Where wl%ﬂz #Fx1 . The uniqueneSsbof the normal

solution follows the condition of normality [2],
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§7. Singular Fuel-Optimal Problems for Non-Linear Systems

A characterization of a class of linear singular fuel
optimal problems has been examiﬁed. Tt has been demonstrated
by various examples, that for some problems, though there
exist initial states for which the problems are essentially
singular, singular solution cannot be optimal.

This section explores some nonlinear systems for which
singular extremals may be optimal. The derivation of a necess-
ary condition for singularity for nonlinear systems is, in
general, tedious and 1aborious. It suffices to prove here the
necessary condition for the singular fuel-optimal problem to
a class of second order nonlinear systems,in particular, one
described by thé Lienard's equation:

(4.26) x + f(x,£)= u or equivalently in the state space
form of
(4.27) X1 = X2

X

, = -f(xi,xz) +u

Questions regarding existence of an optimal solution
for second order nonlinear‘systems have been treated in detail
by Lee and Markus [25] in their paper concerning nonlinear time-
optimal problems. Some of their theorems are adapted and
modified to extend to fucl-optimal problems.

It isassumed that f(x,x) satisfies the following:

(a) £(0,0) =0
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of . of . L2
(b) E;CX,X) > 0 and §§(x,x) > 0 in R

If condition (a) is satisfied, then the domain of null
controllability T is an open subset of RZ; If conditions (a)
and (b) are satisfied,then the domain of null controllability T
is the whole state plane RZ and moreover, there exiéts an .

. ’ . 2
optimal u € @ which steers £ € R

to 0. The proof of these

assertions may be found in [23].,

§ 8. Necessary Conditions for Singularity

The singular fuel-optimal problem for nonlinear systems
was first reported by Athans and Canon [3]. Their technique
is extended to the problem posed in this section.

The adjoint system induced by the PMP is

(4.28) Py = fxlpz
S c
P2 7 01T NP |
where f and fX denote the partial differentiation of f(xl,x
1 2 |
with respect to x; and x, .

y

The optimal control which abéolutely minimizes H is
(4.29) uE = ~dei{p2 } [ﬁzli 1. | | |
If JpZIEl Vte [tl,tz], u®* is not uniquely defined
and the problem ig said to be singular,
Assuming p, 1 ¥ t ¢ [tl,tz] implies

(4.30)  =pye p,f = 0 v t_s'[tl,t ]

27X, 2
Differentiating (4.30), one obtains

(4.31) -py* pof

'2‘X2+ pzfxz =0 . ¥V te [tl,tz]

)
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Substituting (4.27) and (4.28) in (4.31), one obtains

(4.32) )
plfx P, {fe —fv +x2f - £f ]»+p f u=0
. ’ 2 X, X xle XZXZ 2 XZXZ
if pzfx . 7 0, then
272
p.f_-p,[f -f_ +x,f -ff
(4.33) . 1 sz’[ Xy Xy T2 XXy szz]
p')f\_: X
“ T2
If, on the other hand, p2£X2X2=O, and since u # 0 , then
(4.32) reduces to
4 .34) pE -p L, [f2 -f ex,f ] =0
1x, 2 X, Xq 2 xle

Taking (4.30) and (4.34) and because these . relations are

linear in Py, One may write in compact form, the following

@ .35) ( y
-1 f 'p—]
' X !
2 |
: , | = 0
-f f“+x_£ -f ip |
X, X, 2 X, Xy Xlk %J

0T in vector form
(4.36) Gx)p =0
To be optimal, PMP asserts that p must be a non-zero vector,

For non-trivial solution of p, (3.36) indicates that p must

s
belong to the null space of G(x) ,implying that G(x) is
a singular matrix. |

Suppose that the time differentiations lead to an
equation in which the coefficient of u is non-zero as assumed

in (4.33).In such cascs (4.33) provides a necessary condition

on the extremal singular control; in essence, a relation

i




(71]

w1

, 7 ois

x . J . - - i
between u, P1op, and Xp,x, has been found. Ez. (4.3

o o
oot s
B

¢

ies the magnituds constraint |ul| <1.

o
o3

by
&b

admissible only ii it sati

¥

In any given problem, all the relaticns must be examined

t
[

to see whether or not they are satisfied; if any of the relations
are violated, then this represents a violation of the necessary
conditions, and so singular controls cannot occur. Theorem 7
establishes the form of the nonlinear element necessary for
singularity to occur.
THEOQREM 7

A necesﬁary condition for (4.27) to be singular fuel-
optimal is that f is of the form :
,)

where g(xz) is function of x

(4.37) f= X %, +o (X

20

Proof:G(xy 1is singular implies

(4.38) fx - xpfx x =0

1 21
A sclution to this partial differential equation is
(4.39) f= x1x2+g(x2)

In general, it is not possihle to prove that (4.37) is
also a sufficient conditicnfor the fuel-optimal problem to be
singular, Since sufficiency conditions imply the existence of
a solution, it is still regquired to show that singular extremals
exist in this formulation of fuel optimization., Using again
the min I! function, a sequence of lemmas and theorems is
presented to test for the possibility of singular extremals

B o o 1o e A
to occur o The Cost

T

o
]
(@
i
=
o}
oo
€3]
ot
N
Ll
H
-

and (4.2).
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LEMMA 1

Assume f(x_,x.) =x_X then there exist no. singular

X H
172 12
extremals for the cost function J(u) =

S 3

(k + [u]) dat, k=c>0,

Proof: The Hamiltonian for this problem is

H=%k + |u] + ~P.X_X_+p_u

P12 PN D,
Since T is unspecified H*=0 alongan extremal.
The adjoint system is |
Py " Py
P, = Pyt Py¥ |
By hypothesis, Ipzlil Vte [t),t,] =p; = px;Vte [ty,t,]
Substituting this relation into H*», one would have |
H% = k> 0, a contradiction
therefore the problem is normal unless k =0
Lemmé 1 shows that if k=0, then there may exist singular
extremals, To prove that such singular extremals cannot be
fuel-optimal, the following lemmas are verified.
LEMMA 2 |
If 'pZI =1 Vte [tl’tZ]’ the control u defined by
(4.25) is:a candidate for fuel-optimal control,
Proof: _|p2151 => p.1 = sgn {pi} x, Vte [tl;tz].
Therefore B*=  |v(t)] + sgn {p;dx;x; = sgn {pydx xye[p, v (D)
=0 Vite [ty,t,] ‘

Thus the control (4.25) can be extremal.
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CLEMMA 3

[T —

Denote T¥ (& ) the minimum fuel (if it exists)

l”
Tequired to stecer £ to 0 in some (unspecified time) T, then

i
i

the minimun F*(€1,€ ) satisfies the relation
. . 1 2 ‘
1,39 FR(E. > £
(4.39) (81580 2 15 87 + &,]
It follows that if there exists a control u*(t) that forces
¢ to 0 and requires fuel (3£ 45259 then u*{t} is optimal and
5 1 -2 '
P# = | + .

Proof: TFrom the system eguation

X1

X, = =X.X, * U
2 172

it is deduced that u= Xy * X%,

X
(4.40) 2

Therefore

(4.41) T .
Ju(t)dt = Xy =Eo *+ m{xi-
0 £z

‘—“[\)
Y
|l AN ]
—

Since at t = T,x(T) =0, it follows that

(4.42) T l.l

2
‘é u(t) dt} = |5 g7 + g,

v

T
; 1
F* = [ Ju(t)|dt £2 +
(858 = J lute)lde 2 |32 « |
If this is so, it is necessary that
F*(Ei,éz) = | %~€% * &, ! for»optimality.
LEMMA 4

F*(il,gz) is the greatest lower bound on the fuel,

hence it is the minimum fuel.




Proof: To establish this, it is necessary that the

minimum fuel as a function of state 1is a sclution te the

Hamilton- Jacobi cquation {see Athans and Falb [4] section

/

5-20) -
In other words, the Euncﬁion P*(xl,x2)= l% x%+ xzj
is a solution to ,
9F% 2 20 F¥ T B o JE®
4,43 S5 4+ JuE(t) ] ex®FIL - x®x®I o+ u*(t = 0
( ) ot | (L) zoxy 1 23x§ ( )Sx"
If x=0, then F*(0,0) =0 and us(t)= 0, so that (4.43) is

satisfied., If x#0, then

A apx Fr

Q

(4.44) 227 =0 8F = xx 8%% = sgnix*)
ot ax¥ 1 oXE 2
u*{t) = v(t) - and u®(t) = —sgn{x%} v(t)

Substituting (4.44) into (4.43), one would obtain for x;> 0

' ‘ s ot B3 ar 37 % P o _
iv{t)] + xi Xéusgn{XE} x§ x3 -sgni{x3} sgn{x3} v(t)= 0
Thus it is verified that F*(xl,xzj = ]i}x% + x,|is the greatest
2 4

lower bound on fuel and that u*(t) is a fuel-optimal solution,.

Therefore, if the initial conditions are such that F% =0
then a control u(t)=0 is to be used to get the system to 0.
If u(t) =0 Vv t e [0,T], then the origin cannot be reached
except on the curve B (where B is defined as the set of all
states satisfying the equation % X% + X, =0). However, as time
progresses the system departs from the origin because there
aré no controls that will maintain,it at the origin. This 1is
obvious, by rewriting the equation as follows:
(4.45)

dxz "X4X, *+u

R e

dxl X5




For u=0 and x; =x, =0, the slope is zerc. Thus the trajectory

will move away if uv (sce Fig. 12). Therefore, a
minimun fuel deoes not exist for all initial states such that
?El +§, =0, As can be sscn from Fig. 15, there are additional
states for which, strictiy speaking, a fuel-optimal solution
does not exist,
LEMMA S

If p, # sgn {pz}Y19 then ]p2[= 1 at most at two isolated
times.The &ig} 1t contrel sequences
(4.40) (-1}, {+2}3,{-2,0},{+1,0} ,{0,-1} ,{0,+1} ,{-1,0,+1},

{+1,0,-1}

—rt

can be candidates for the fuel-optimal contrel,

Proof:The solutions of (4.27), (4.28) and(4.29) give

\_/

.'._a

the sequences of (4,¢
From these lemmas,it is now possible to prove the

statement that for the cost function (4.2) with k =0, there

are no singular extremals which are optimal.

THEOREM 8

- T
T £(x),x x,and the cost function is 6 lu(t) |dt

2) = %1%
with T unspecified, then singular controls cannot be optimal,
Procf:Denote the Y, curve to be the locus of all
states which can be forced to the origin by the control u=+1
and also denote the y_ curve to he the locus of all states
which can be forced to the origin by the control u=-1,in

T4
LIRS

. 15)

see

Fon
et

positive time |,
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“Suppose pl# sgn {p7}x1,so that Lemma 5 holds; then among
the control scauences of (4.46), only the control

sequence {+1} will force the state (£1587) ¢ vy, to the origin,

If Lemma 2 holds, then the control u(t) must be given by (4.25).

Further, supposce that x;(t) and xi(t) arc the solutions of (4.40)

with the initial state 51,52) e vy, and with the control given
by (4.25)., Clearly, from {(4.41), x'(t) can be written as
2t
(4.47)  x2(t) = £ - 207 (t)2-22) + f [-sgn {p,}v(r)]dt
2 2 7 1 0 Z
However x! = x! '
? 1 2
and therefore x! may be expressed as

1
t T
(4.48)  x{(t) = Y(E.t) + [ drf [-sgn {p,y)v(a)]da
. 0 0

t

a
s}
cu

where Y (£,t) is some function of £

Similarly the resronse due to control u=+1 can he written as

, t T
(4.49) xl(t) = Vg, t) + JSoodtf 1 da
- 0 0
From (4.48) and (4.49), it follows that
t T

(4.50) xl(t)~xi t) = dr [1 + sgn {pz}v(a)] do > 0

( J S
0 0
wat the trajectory generated by the control of

bt

which means t

(4.25) will always be to the left of Y, » and so it will miss
the origin. By process of elimination, it is concluded that
u=+1 is the only control sequence that gets the sytsem to 0

for (gl,gz) € v,. In view of Lemmas 4 and 5, u=+1 is the

fuel-optimal sclution.
If & is in the region bounded by y,and B, there arc

‘many controls such that, 0< u(t) < +1 will get the system

iy

these many controls

to the origin, lowever, by Lemma 4noneo
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consumes less fuel than the sequence {0,+1 }. The same is
true for (& EZ) €Y and for (gl,gz) in the region bounded by
y_ and B . TFor (&;,£,) exterior to the region bounded by the
curves vy and B (Y=Y+Uy_), there exist no fuel-optimal solutions;
however an g-optimal solution exists.
The optimal scolution is shewn in Fig. 15. It should be
remarked that the effect of this nonlinear elemernt f(x;,x,)=
X %, can be kest visualized by comparing the system with the
linear double integral plant solved in [4].
Thus,if has been shown that singular extremal controls
T
for the cost function fiu(tn dt with T free are non-optimal,
. 0
Lemma 1 has shown that for f(xl,x2)=.xlx2 and the cost
function (4.2}, singular extremals ¢o not exist..The next
lemma proves that for the nonlinear element f(xl;x2)= X1X2+%Kg
the same conclusion can be rcached.
LEMMA 6.

If £(xy,%,) + % x™ and the cost function (4.2),

X, X

172 2
then there cxist no singular extremals; and so the problem is
normal,

Proof: Mimic the proof of Lemma 1 to show that

H%¥= k >0, so the lemma is proved.
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§9. Minimization of Time-Weighted Fuel

for Plants Subjected to Monlinear Friction Forces

The material presented so far indicated that singular
controls cannot he optimal for plants subjected to linear

P . 1
friction forces or nonlinear drag of the form f= xyXx,+ X5,

m
This section deals exclusively with plants subjected to
nonlinear friction forces, which are proportional to velocity

only. In general, the motion of the system is governed by the

differential equation
(4.51) x + L x™=u lu] <1
- =

Iflis assﬁmed that the drag is always in oppcsition to the
directidn of the motion., The singularity established in (4.35)
is automatically satisfied. It is shown here that singular
'éontr015‘may be optimal,

THEOREM 9
Consider the control system described by (4.51) and the
T
cost function S (k +|u(t)|)t , with T unspecified and k> 0.

If k £ m-1 and if lpzlzl ¥V t e [ty,ty], the singular control

u, given by

(4.52) u, = - E¥ﬁ" sgn {p,}

is a candidate for fuel-optimal control,

Proof: The equivalent system for (4.52) is

(4.53) X1% X2

X = = «~ X +1
2 o2
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The Pamiltonian function is
4.54 Ho= k +ju] + p.x,- P2 xT + pu
The optimal control via the PMP is

(4.54) u® = -dez {pz}

and the co-state variables are the solutions cf the canonical

(4.56) :
p; = 0
: -1
Py = Pyt PYy

Singularity condition occurs if there is a svbinterval t ¢ [tl,

e [0,T] such that] pzlzl.

Assume |p,|21l, ¥ t ¢ [tl,tz], then r,=0. This implies

2 F
that
e Y, =] m-1 YV ot t
Since Py is constant, (4.57) implies that X, is constant which

.

in turn implies that x2=O for all t e[tl, t,)]. If x2=0, then
L

(4.53) implies that the control u is a constant given by

(4.58) u

1 .m
S = ,\2 v t €[tl_,t2]

Substituting (4.57) into (4.54), one obtains

(4.59) knm 1

= . i}
X, [“ﬁTT“ Sgﬁ{Pz}]
It follows then

(4.60)

P

ug = - =5 sgn{ pZ }

Tf hs is to be a candidate for fuel-optimal control, then

(4.61) k < m-1.

2]
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If k¥ > m-1, the singular control cannot he optimal because
lu| <1 which centradicts the magnitude constraint on u.

The synthesis problem may be facilitated,if one defines

(4.62) w = ~sgn{§7}
. h lpzl =1

If for example, w= 1 at every point in the state space,
then as t increases, the control can only switch from u®=-1

to »uskor to 0.7f the control u® is initially 1,then no switch-

ing is allowed. Similar reasoning holds for w=-1.
Athans and Canon [3] have proved that P, is a continuous
function ¥ t € [0,T] and p, can be zero at most once. They

also established that the optimal sequences to the origin must f

be of the type {+e22e22,0,1} or of the type {eecveceseees 0,-1}

As a further demonstration that linear friction forces é
blay a very insignificant role in the structure of singular
fuel-optimal solutions, Example 6 is presented for comparison
with the example solved by Athans and Canon [3]. |

In general, the existence of singular controls for

fuel-optimal problems is an inherent property of nonlinear
systems. It appears, therefore, that the exclusion of singular

controls in the hypothesis of the theorems is unjustifiable,

The possibility of singular controls must also be investigated

for any given nonlinear problem for fuel minimization,
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§10. An FExamplec

EXAMPLE 6

s e

Consider the nonlinear system with linear friction and

quadratic drag. The dynamic equation describing the system is

X1 7 %X

i

Xy = -ax,|x,|- bx, + u  where a and L > 0 and

lul <1

The index of performance is J(u) = f(k + Ju(t)]ydt, k > 0 and
v 0 '

the terminal time is free. The only difference hetween this
problem and the one solved by Athaﬁs and Canon{3] is in the
linear friction bng Proceeding along the lines as indicated
in Theorem 9, the singular condition implies

p1’=(2 Vak + b) sgn {p,}

X, =//§ sgn {p,}

sgn {p,l= sgn {x,} ‘ | s

The control corresponds to singular extremals is given by.

ug= (k¢ }/g ysgn {x,}

Thus it is clear the
-

By means of (4. 62), the state spaée is subdivided into regions

1.

K

corresponding to k
-sgn {ajx |- &} for p_ =+1

ws-sgn {p,}| = §2 2
-sgn {-alx |-=} for p,  =-1
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In each of the regions the allowable switching direction is
uniquely defined.Tt is clear that if u®* =-1 at any time
while the reéresentative points are in the upper plane x,>C,
then as t increases u®=-1, as long as X 5> 0. In fact, this
control is maintained until x,= - g as hay be seen from the
equation. A similar remark holds for the case u®=+1 in the

lower half plane x, < 0.

The optimality of the family of trajectories shown in

Fig, 20 is identical with those established in [3].
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CHAPTER §

CONCLUSIONS AND REMARKS

It has been shown that for a class of optimization of
control processcs, singularity is an inherent property of the

dynamical system and the function or functional to be minimized.

In any given problem, the possihility of singular solution(s)

should always be investigated especially in problems where the

control variables appear linearly in the system equation or
the performance criterion.

The optimum solutions for minimum time problems arc
obtained, For single-input systems, there exists no solution
for some initial states (the uncontrollable states) and if
all controllable states are constrained in the hyperplane
<p, x> =0, then a unique bang-bang solution is found. The

existence of several contrcl laws is characteristic of

multiple-input systems when the systems do not satisfy the

normality conditions, For some plants, there exist initial

states for which the problems are essentially normal, in

which case, the solution is unique bang-tang control.

The considerations given in the fuel-optimal problem

lead to the conclusion that for nonlinear systems, singular
optimal controls may appear frequently in contradistinction

to their non-occurrence in linear time invariant systems

in
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for which the problem is singula

In conclusion, it iz remarked thet one cannoit state

a priori that singularity condition necessza

the singular arc or subarc fov
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especially in fuel-optimal prob
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APPENDIX A

The purpose of this appendix is to review the termino-
logy and to present a number of results necesséry for the
development of the material in the thesis.

LINEAR TRANSFORMATION

DEFINITION: A linear transformation (L.T.) E is a function yhose.

dOmaln 1s a linear vector space X and whose range is ip a linear

vector space Y such that for any Xq and xzin X and any scalar o

y1= :xl =>0Ly1 = Eaxl

Yi= Exi,l=1,2 :(Xl + Xz) =>Y1 + YZ

For example consider the equation

Ax=y

n

Here x= C" is the usual n-dimensional vector space and Y is

~an m-dimensional vector space. If m=n, Y is usually identified

with . In many awnplications where m<n Y is considered to
X Y- ar ’

to a subspace of x.

DFFTNTTIQN;’The range cr image of a L.T. R is the set R(R)
defined by |

R(R) ={ yeY |y=Rx for some xex }

DEFINITION: The null space or kernel of a L.T. is the set
N(R) defined by |

N(R) ={ xex |Rx=0 }
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DIETINITION: The rvank of R is defined to be the dimension of

its range or image and the nullity of R is defined to be the
dimension of its kernel or nullity space.
The following fundamental relatienship holds
Rank{R} + Mullity(R) = Dimensional (R)
Consider again the matrix equation
Ax=y
The solution of the equation may beviewed as the image of yeVY
under L.T. Furthermore the scluticn of-the associated homogenous
equation Ax=0 ﬁay be viewed as the kernel of linear mapping.

THEOREM A1

The dimension {dim) of the solution space W of the
homogenous systcm of linear equation Ax=0 is n-r where n is the

number of unknowns and r is the rank of the matrix A.

Proof: Since dim{kerA)= dim(A) -Rank((A)

= n-r

PRQOF OF THIOREM 3.3

Proof: The sclution of (3.1) is

t
x(t) = ¢ At(go + f e'ATBg(T) dt

o)
At t = T*, x(T) =0 ., Therefore
, _— >,
T# -AT
x = -f e “'Ru(r) dr
X5 . u

-AT

o]

By the Caylev-Hamilton Theorem [26]. e may be expressed as
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Thus
T# n-1 .
X® - S ) oy (DATBu(r)  dr
; o . i=0
or
n-1 ; T*
x =- ¥ AB  rq.(7) u(y) do
° ot
T N
oy (1) Q(T%
) THy (1) u(t)
=- [ B | AB|ec-v-- A" 1p 1 512 - l dr
(o] . ¢

o (1) Q(T)%
| n-1. ?

t

If matrix A is of simple structure as assumed in previous
derivation, then its characteristic pol&nomial is identical
with jtg minimal polynomialé‘Since %ﬁT) are linearly independent
[33], the above relation is truc and implies the matrix G
defined by (3.7) has a rank =n, By definition of the range

of a L.T., u has a solution if and only if it is in the range

i of G.

TWO LEMMAS ON INNER PRODUCTS

LEMMA 1

Let y and z be any two real r-vectors and assume y#0. Then
z satisfies the condition <z, y>=0 if and only if there exists

a real skew-symmetric, rxr A, such that z=Ay,




Proof; Sufficiency is trivial. To show necessity,

let B be a rxr orthogonal matrix and y' be a column vector

such that y’= By = col.(lIvlil , 0,0,.......0). Let z' =Pz

= col, (Zi’ veeieeeeeas2t) where z' is the ith component of z',
T i

Since B is orthogonal, <z, y> z',y"'> =0 which implijes that
1 =0‘
“1
Denote Q to be

0 "Z:7 'Z, acoo-oooz_‘;‘

Q= |z5 0 A
L—nzl"‘ O O ...‘.‘..0 ]
. =nrAP/ vl ! : T T_p-

and define A =B°QB/||y||. Since Q+0 =0, then A +A =0=
= 8T¢0+0Ty ||y|| =0. Further ||y]|]Ay=RTory=Toy® =3T||y]||2'=
[[y]]BTBz=||y 2. Thus A is skew-symmetric rxr matrix such that

z=Ay
LEMMA 2

!

Let y and z be any two real r-vector and assume y#0,.

Then, if ais any scalar, <z,y> =a if and only if there exists

a real skew-symmetric rxr matrix A such that z= [BI +A]y, where

B= a/l

Yllz and I is the identity matrix,

Proof: As in Lemma 1, the sufficiency condition

follows by direct evaluation. To show necessity, let z be

decomposed asz=z'+z",wvhere <z', y>=0 and z'"= yy, with y

being some.scalar .
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Since <z, y> = o= <z", y> =Y]|y||2, It follows that

y = o/]|yl]?

where A is a skew-symmetric matrix, so z= [BI +A] y

i1

B. Furthermore Lemma 1 implies that z'= Ay

The Lemmas give explicit (non-unique) solutions ef the
implicit algebraic equation <z, y> =a for y#0. When y=0
a must be zero for a solution to exist and z is arbitrary in

this case, Of course, A is not unique.




