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Abstract

Fifth generation (5G) dense small cell networks are expected to meet the thousand-

fold mobile traffic challenge within the next few years. Due to the ever-increasing

popularity of resource-hungry and delay-constrained mobile applications, the compu-

tation and storage capabilities of remote cloud has partially migrated towards the

mobile edge, giving rise to the concept known as Mobile Edge Computing (MEC).

One application of MEC is computation offloading, where users offload computation-

ally expensive tasks to the edge nodes. Two main challenges of MEC are offloading

decision making problem and MEC server resource allocation problem. While MEC

servers enjoy the close proximity to the end-users to provide services at reduced

latency and lower energy costs, they suffer from limitations in computational and

radio resources. This calls for efficient resource management in the MEC servers.

This problem is challenging due to the ultra-high density, distributed nature, and

intrinsic randomness of next generation wireless networks. Thus, when developing

solution schemes, conventional centralized control may no longer be viable. Instead,

distributed decision making mechanisms with low complexity would be desirable to

make the network self-organizing and autonomous. Hence, it is imperative to develop

distributed mechanisms for computation offloading, such that the users’ latency con-

straints are fulfilled, while the computational servers are utilized at their best capacity.

Game theory is well-established as a classic tool to mathematically model the wire-

less resource allocation problems and to develop distributed decision making schemes.

Since game theory focuses on strategic interactions among players, it eliminates the

need for a central controller which is a major advantage. In this thesis, I investigate



two main challenges in computation offloading mentioned above: (i) computation

offloading decision making and (ii) energy efficient activation of MEC servers. For

both cases, I focus on the objective of achieving efficient resource allocation of MEC

servers while meeting users’ latency requirements. To this end, I develop distributed

decision making schemes to solve these problems using the theory of minority games.

I demonstrate the performance of the proposed methods using simulations.
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Chapter 1

Introduction

1.1 Computation Offloading

With the ever-increasing popularity of computationally intensive applications such as

augmented reality, online gaming and image processing (e.g., facial recognition), small

user devices often face with a particular challenge. This is because, such applications

are typically resource-hungry and delay-sensitive whereas the user devices have very

limited computation, battery and storage capacities. Therefore, user devices are not

always capable of performing the desired task locally, or doing so might become

inefficient. This gives rise to the idea of transferring such tasks to powerful remote

computing servers (e.g. the cloud), which typically have much higher computational

capability than local devices. This idea is referred to as computation offloading.

Computation offloading is expected to save the energy cost spent for local execution,

thereby saving the battery life of end user devices. Therefore, computation offloading

capability has become a prerequisite for next generation wireless networks.

1



Chapter 1. Introduction

1.1.1 Mobile Cloud Computing

The technology known as mobile cloud computing (MCC) can be considered as a

means of computation offloading. In MCC, the user devices are able to utilize the

resources of dedicated servers for executing their tasks. These servers are equipped

with high power, CPU and storage capabilities. Moreover, these servers are typically

located outsider the local network so that the users access these remote servers via

a mobile network [1]. Therefore, despite its higher resource capacity, remote cloud

may not be the ideal option for computation offloading, as the long distance between

the cloud server and the user device yields substantial communication costs in terms

of latency and energy. This is a major disadvantage of MCC since low latency is

a stringent requirement for many popular applications such as online gaming. An

illustration of computation offloading in MCC is given in Fig. 1.1. In addition,

in dense networks, excessive back-haul traffic might arise as a result of the large

number of offloading requests that are being sent to the cloud. Moreover, MCC

has a centralized architecture where the cloud server farms are located in relatively

few number of locations within the central core network. Therefore, solutions that

eliminate the above limitations of MCC are required.

1.1.2 Mobile Edge Computing

In contrast to the cloud servers, the small scale computing servers located in the

network edge are more likely to provide services at reduced latency and energy cost,

compared to the remote cloud. Therefore, in next generation networks, the computa-

tion and storage capabilities of the core network have partially migrated towards the

mobile edge, giving rise to the concept known as Mobile Edge Computing (MEC).

Some initial concepts related to edge computing are fog computing [2], cloudlets [3]

2



Chapter 1. Introduction

Figure 1.1: Mobile cloud computing.

and ad-hoc clouds formed by user devices [1]. However, all these concepts have shown

some drawbacks in integration and meeting users’ desired quality of service (QoS).

In order to alleviate these issues, MEC is proposed as a standardized solution by the

European Telecommunications Standards Institute (ETSI) and the Industry Specifi-

cation Group (ISG). MEC is also recognized as a key enabler for 5G networks by the

European 5G PPP (5G Infrastructure Public Private Partnership). MEC is expected

to integrate the computation and storage capabilities of the mobile edge such that

users’ QoS levels can be guaranteed [1, 4–6].

In short, MEC is implemented possibly by a dense deployment of computational

servers or by strengthening the already-deployed edge entities such as small cell base

stations (SBS) with computation and storage resources. In a MEC network, mobile

devices are able to offload their computationally expensive tasks to the edge servers

while requesting some specific QoS. This process is feasible due to the fact that edge

servers are deployed in close proximity of mobile users, specifically in comparison to

the remote cloud servers. Therefore, MEC is foreseen as a remedy to address the
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Chapter 1. Introduction

challenges of reducing the latency, energy cost and bandwidth consumption of mobile

users. Moreover, for dense networks, the amount of back-haul traffic generated due

to computation offloading is negligible in MEC compared to MCC. This is because,

the offloading requests are processed at each edge node itself rather than forwarding

to a central remote cloud. Hence MEC can enhance the user quality of experience

(QoE) and deliver higher user satisfaction in future wireless networks. Moreover,

unlike MCC, MEC follows a decentralized architecture since the edge servers are

deployed in a distributed manner. In MEC, there can be a variety of edge servers

such as SBS, macro base stations (MBS), wireless access points, peer user devices

(e.g., in device-to-device communication), etc. Moreover, the user devices can be

either mobile phones and/or IoT devices. An illustration of computation offloading

in MEC is provided in Fig. 1.2.

Figure 1.2: Mobile edge computing.

4



Chapter 1. Introduction

1.2 Challenges in MEC

Despite its great potential in improving the latency and energy consumption, realizing

the concept of MEC is associated with a variety of challenges. As previously men-

tioned, from the mobile devices’ perspective, the energy consumption and the latency

experienced should be minimized. Apart from that, resource scarcity and distributed

nature of MEC requires efficient resource management in the absence of centralized

control. In other words, the limited radio, power and computational resources of mo-

bile edge servers shall need to be efficiently utilized so that the users’ quality of service

requirements are met with the minimal effort. These problems become aggravated

when the randomness and dynamics of wireless networks are taken into account. The

factors that contribute to this include, but are not limited to, users’ mobility, random

channel quality, time-varying and random task-arrival and non-deterministic energy

resources (for instance in case of energy harvesting). In what follows, we briefly

discuss some important problems, including computation offloading and few other

closely-related issues.

• Computational Resource Allocation: As a result of being deployed at the

edge, MEC suffers from restrictions of computational resources, in particular

when compared to the central mobile cloud computing. As a result, it be-

comes imperative to allocate the limited resources in an efficient manner. This

includes, but is not limited to, efficient MEC server utilization, MEC server ac-

tivation and scheduling, load balancing, request management, task allocation,

and the like. At the same time, users’ latency requirements should be taken

into account. Therefore, addressing this trade-off is a major issue in developing

efficient MEC systems.

5



Chapter 1. Introduction

• Radio Resource Allocation: Enhancing the wireless network with MEC

complicates the radio resource management. For instance, the necessary up-

loading and downloading of task-related data results in radio bandwidth con-

sumption and interference. Consequently, smart bandwidth allocation shall

need to be performed for mobile devices/servers. Moreover, the energy con-

sumption at the servers should be kept at the minimum. To increase energy

efficiency, servers might share the energy resources and/or harvest ambient en-

ergy. Such remedies however introduce uncertainty in the system, in contrast

to using deterministic power resources such as a grid.

• Computation Offloading Decision: While the allocation of computational

resources is performed on the MEC servers’ side, mobile devices decide about

computation offloading. In essence, each device decides which and what part

of every task shall be offloaded to an edge server. In some cases, the specific

server to which the task is uploaded can be determined by the device as well.

Moreover, mobile devices might be able to demand a specific QoS guarantee.

Naturally, mobile devices might compete with each other for limited computa-

tional services, whereas each server would compete with others to increase its

number of offloaded tasks. Moreover, a conflict arises between the set of servers

and the set of devices, since the latter requests low prices for services, whereas

the former benefits from high service prices.

1.3 Motivation

Main motivation of this thesis is to address the challenge of efficient utilization of

MEC servers in next generation networks. The majority of the existing literature

in this regard focuses on the user-centric objectives such as meeting users’ delay

6



Chapter 1. Introduction

constraints and minimizing users’ energy consumption. On the contrary, this thesis

presents a hybrid view where both servers’ and users’ standpoints for a computation

offloading environment are considered. To elaborate, I focus on achieving a desired

latency threshold for the users. Meanwhile, I focus on achieving efficient utilization

of edge servers (chapter 3) and selective activation of edge computing servers that

ensure energy efficiency (chapter 4).

It is clear that the above cannot be addressed by conventional centralized resource

allocation schemes, since such mechanisms necessitate the availability of global infor-

mation at a central node. This is infeasible to acquire in ultra-dense distributed

networks with large number of users and/or servers. Moreover, for such networks,

the computational complexity becomes overwhelming as well. As a result, it is vi-

tal to develop distributed and autonomous approaches, where the individual mobile

devices and mobile edge servers make decisions for the system to settle at efficient

and stable operating points. Therefore, to develop such distributed schemes, tools

that eliminate the need of centralized controller are required. Therefore, I use game

theory to model the distributed resource allocation problem since game theory is a

well-established tool that focuses on strategic interactions among players without the

use of a central controller.

Game theory offers a variety of game models in which, each game has its own dis-

tinct set of properties, that make them suitable for different types of decision making

problems based on the context. In this thesis, I use the theory of minority games

to model the resource management problem in MEC. Motivation for using minority

game is mainly because of its straight-forward applicability as a tool for modeling

resource allocation problems. Minority game is a type of congestion game and thus

essentially models a number of players competing for a limited resource. In a MEC

7



Chapter 1. Introduction

system, the offloading users attempt to utilize the limited amount of available compu-

tational resources of the edge servers. Hence it is clear that, this scenario essentially

maps to a congestion problem and thus can be easily modeled using minority game.

Moreover, in a minority game, players make independent decisions with the availabil-

ity of very small amount of external information. Other advantages of minority game

such as simple implementation, low overhead, and scalability to large set of players

also make it ideal to model dense wireless MEC systems.

1.4 Related Work

In this section, we briefly explore the cutting edge research in the area of computa-

tion offloading and resource management for MEC. In doing so, we focus on com-

putation offloading and resource management methods that are developed based on

game theory and/or reinforcement learning. A summary is given in Table 1.1. A sig-

nificant number of detailed surveys on MEC that discuss the MEC architecture and

standardization, enabling technologies, MEC use cases/applications in future wireless

networks, challenges, state-of-the-art and future research directions, etc. are available

in [1, 4–6].

Computation Offloading

A large body of existing literature focuses on minimizing offloading users’ computa-

tion overhead in terms of energy and latency. To this end, researchers have developed

distributed decision making methodologies. Authors in [7, 8] presented a multi-user

computation offloading decision making mechanism using potential games. They pro-

posed distributed algorithms for the users to converge into a Nash equilibrium (NE)

solution. In [9], authors proposed a multi-user computation offloading scheme for

8



Chapter 1. Introduction

cloudlet based MCC network. The offloading decision making problem is modeled as

a potential game where existence of NE is proved. A distributed offloading algorithm

is proposed to achieve the equilibrium. Similarly, authors in [10] proposed a game

theoretic model for computation offloading in MCC. Therein, the mobile users choose

one of many wireless access points to offload their tasks such that the global offloading

cost defined in terms of energy and delay is minimized. Existence of NE is proven and

algorithms are provided to converge to the equilibrium. In [11], authors investigated

the same energy and latency cost minimization problem for offloading users. However,

they considered a drone (UAV) based network as the mobile edge and modeled the

offloading problem as a potential game to develop a decentralized offloading strategy

for the users. In [12], the authors considered a multi-cell, quasi-static environment,

and formulated the computation offloading problem as a dynamic sequential game.

They further established the existence of NE and develop a distributed convergent

offloading scheme. In [13], the authors considered the offloading problem with the

set of mobile devices varying randomly during the offloading period. The problem is

modeled using a stochastic game framework, which is afterward shown to be equiv-

alent to a potential game. The existence of NE is proved and a stochastic learning

algorithm is developed. For cloud-enhanced vehicular networks with edge comput-

ing capability, an offloading mechanism based on a Stackelberg game is proposed

in [14]. The servers and the offloading vehicles are modeled as the leaders and the

followers, respectively. Similar to the aforementioned references, the existence of NE

is proved and a distributed algorithm is designed that maximizes the edge server’s

utility while meeting the tasks’ latency constraints. In [15], the authors investigated

the multi-user offloading decision making problem in a dynamic environment, where

users’ states and offloading requests are time-variant. The number of tasks offloaded

9
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to each server (machine) is modeled as an a priori unknown time-varying Markov

process. The authors then formulated the offloading problem as a Markov decision

process. Online learning algorithms are developed to solve for the optimal offloading

policy for both centralized and decentralized scenarios.

Radio and Computational Resource Management

In [16], the authors applied coalitional game theory to solve a resource allocation

problem in MEC-enabled IoT networks with software-defined network (SDN) capa-

bility. In such a network, delay sensitive tasks are offloaded to the edge servers by

the IoT applications. The developed game-theoretical framework is guaranteed to

adaptively provision the available computational resources in the MEC servers in

order to satisfy the quality of service requirements of IoT applications. Moreover,

a deterministic algorithm is proposed to minimize the task processing cost and the

latency. Reference [17] investigated joint offloading decision making and dynamic

edge server provisioning in an offloading mobile edge network with energy harvesting

capability. They modeled the problem as a Markov decision process. A reinforcement

learning algorithm is developed for offloading computation jobs and activating edge

servers while minimizing the overall cost and delay. The authors of [18] proposed a

resource allocation mechanism using auction theory. Therein, service providers in the

mobile edge network design contracts with the edge node infrastructure providers.

The contracts enable the edge servers to efficiently provision their assigned compu-

tational resources and to schedule the offloaded tasks in a way that the latency is

minimized. In [19], the focus is on a dynamically-changing vehicular networks with

MEC capabilities including computation and caching. A network operator allocates

computation, caching and network resources to the vehicles for different vehicular ap-

10
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Table 1.1: A comparison of the state-of-the-art.
Reference Objective Model MEC type
[7], [8], [9],
[10], [11]

Minimize users’ energy
and latency cost

Potential game Quasi-static

[12]
Minimize users’ energy
and latency cost

Dynamic sequential game Quasi-static

[13]
Minimize users’ energy
and latency cost

Stochastic game Dynamic

[14]
Maximize utilities of
users and servers

Stackelberg game Vehicular

[15]
Minimize unprocessed
offloading requests

Markov decision process Dynamic

[16]
Optimize resource usage
and QoS guarantee

Coalitional game Edge IoT

[17]
Minimize overall cost
and latency

Markov decision process
Energy harvesting
MEC

[18] Minimize latency Auction theory
Dynamic workload
arrival

[19]
Efficient resource
allocation

Deep Q-learning Vehicular

[20]
Minimize servers’ energy
and QoS guarantee

Minority game Random

plications. To address high complexity, the authors developed a deep reinforcement

learning algorithm based on deep Q-learning.

1.5 Contributions and Scope of the Thesis

This thesis introduces minority games as a tool to mathematically model the dis-

tributed resource allocation problems in dense wireless networks. Furthermore, as

its main contribution, this thesis investigates the problem of efficient edge server

utilization problem in MEC networks. To this end, distributed algorithms are devel-

oped using the minority game for two different scenarios: (i) multiple user offloading

decision making problem and (ii) efficient edge server activation problem.

In what follows, I briefly discuss the main contributions of this thesis.

1. I provide a brief tutorial on minority games and how the theory of minority
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games is applicable to solve distributed decision making problems in wireless

networks, mainly focusing on dense small cell networks (SCN). I discuss the

state-of-the-art minority game applications and provide the future research di-

rections and open problems.

2. I investigate the distributed mobile computation offloading problem in an SCN

with MEC capability. In such networks, SBSs are provided with computational

capability and thus are capable of serving as MEC servers. I formulate the

offloading decision making problem of users accessing a given SBS. Therein, I

focus on how the computation resources of SBS can be utilized to its maximum

capacity while the users’ latency would remain below a specific threshold. I

consider how the total number of offloading users affect on users’ experienced

latency and investigate how the users would make the offloading decision based

on the base station being crowded vs uncrowded. Thus, in this work, both

users’ and server’s perspectives are considered. I cast the formulated problem

using a minority game theoretic framework and provide an offloading decision

making algorithm. The developed mechanism is distributed and hence does not

require communication among users. I numerically investigate the performance

of the proposed method.

3. Considering a pool of edge servers in a MEC network, I formulate the effi-

cient edge server activation problem. Therein, I address the uncertainty caused

by the randomness in channel quality and users’ requests. I first analyze the

statistical characteristics of the offloading delay. Based on this, I model the

computation offloading problem as a planned market, where the price of com-

putational services is determined by a central governor. Afterward, by using the

theory of minority games, I develop a novel approach for efficient mode selec-

12
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tion at the servers’ side. The proposed pricing framework in combination with

the designed mode selection mechanism guarantee a minimal server activation

to ensure energy efficiency, while meeting the users’ delay constraints with ad-

justable certainty. Thus, both users’ and servers’ standpoints are taken into ac-

count. The proposed mode selection scheme is distributed, and does not require

any prior information at the servers’ side. Moreover I apply different reinforce-

ment learning and stochastic learning methods to solve the formulated minority

game and numerically investigate their performances to examine which meth-

ods provide the best performance in terms of both users’ and servers’ utility.

Numerical results are presented to illustrate the trade-off between the efficient

server activation and meeting users’ expected latency threshold.

1.6 Organization of the Thesis

The remainder of the thesis is organized into four chapters as follows:

• Chapter 2 discusses the basic concepts, some variants, and equilibrium notions

of the minority game. Furthermore, the applicability of minority games for

modeling distributed decision making in wireless networks are discussed. To

this end, a brief review of the state-of-the-art applications of minority games

in communication networks is provided. Potential future applications and open

problems are also presented.

• Chapter 3 presents a minority game based distributed computation offloading

decision making scheme for offloading users in an SCN. Detailed system model,

assumptions and simulation results are given.

• Chapter 4 presents a minority game based distributed decision making scheme

13
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for energy efficient MEC server activation problem in mobile edge networks.

Moreover, numerous reinforcement learning and stochastic learning techniques

that are applicable to solve the formulated minority game model are discussed.

System model, assumptions and simulation results are given.

• Chapter 5 provides a summary of the research presented in this thesis along

with the future research directions and open problems.

Symbols and notations used throughout the chapters are given in a table at the

beginning of each chapter.
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Chapter 2

Minority Games With Applications

to Distributed Decision Making in

Wireless Networks

In this chapter, I provide an introductory tutorial of the minority game and discuss its

applicability as a mathematical tool to model wireless resource allocation problems.

Therein, I specifically focus on applying minority game (MG) to model the distributed

decision making/control problems that arise in dense small cell networks (SCN). To

this end, I provide a brief summary of the state-of-the-art, where MG is applied to

solve the problems that arise in communication networks. Finally, I provide the future

research directions and open problems.
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2.1 Distributed Decision Making in Dense Wireless Net-

works

The next generation of wireless networks, also known as 5G, is expected to face

a thousand-fold growth in mobile data traffic due to the increased smart device us-

age, proliferation of data hungry applications and pervasive connectivity requirement.

Since the existing traditional macro cellular networks are not designed to cope with

such large data traffic, network densification using small cell base stations (SBS) and

implementation of SCNs are proposed. In particular, SCNs are expected to improve

the efficiency of the utilization of radio resources, including energy and spectrum.

Although SCNs might become the key enablers of 5G, they impose some challenges

that need to be addressed. For instance, the typical wireless resource allocation prob-

lems become more complicated in a dense network. Since the SCNs are expected

to be hyper-dense and multi-tier, they must be self-organizing and self-healing, to

avoid high complexity and fault-intolerance of central management. In other words,

network management tasks such as resource allocation are preferred to be performed

in a distributed manner. Also, the unavailability of global and precise channel state

information in dense networks needs to be addressed. Moreover, feedback and sig-

naling overhead should be minimized. In order to address these challenges, in this

chapter, I focus on applying minority game (MG) to model the distributed decision

making/control problems that arise in 5G SCNs.

2.2 Overview of Game Theory

Game theory is well-established as a classic tool to mathematically model the wireless

resource allocation problems. Based on the fact that many of the wireless resource
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allocation problems can be reduced to distributed decision making problems, game

theory becomes an ideal fit. Game theory focuses on strategic interactions among

players and thus eliminates the need for a central controller which is a major advan-

tage. As it is well-known, game theory has two main branches: non-cooperative and

cooperative. Non-cooperative game theory studies the interactions of rational and

self-interested players that compete against each other, and the goal is to achieve

an efficient equilibrium point. Important notions of equilibrium include Nash, corre-

lated and Walrasian equilibrium. Cooperative game theory promotes a cooperative

behavior that is supposedly beneficial to all agents. In summary, game theory offers

a variety of game models in which, each game has its own distinct set of properties,

that make them suitable for different types of decision making problems based on the

context.

2.3 Minority Game for Dense SCNs

Minority game (MG) has recently gained attention of the research community as a tool

to model congestion problems encountered in wireless networks. MG is a type of non-

cooperative games that can be used to model distributed resource allocation problems.

In simple terms, in an MG, an odd number of players select between two alternatives in

the hope of being in the minority, because only the minority group receives a pay-off.

In other words, MG is a simple congestion game (CG) with a standard CG theoretic

framework. As in a typical CG, in an MG, the objective of each player is to maximize

her own pay-off, which depends on the number of players choosing the same option.

However, MG carries its own unique properties and learning model and thus differs

from other variants of CG such as route-choice games. For instance, a main difference

between route-choice games and MG is that the former has strict pure strategy Nash
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equilibria (NE) while none of the pure strategy NEs of the latter is strict [21]. An

MG is able to model a congested system with a large number of agents competing

for shared resources, where pair-wise communication between agents does not take

place. This finds application in 5G SCNs that accommodate a large number of users,

where congestion can occur due to the scarcity of the (radio and/or computational)

resources. In such scenarios, users would naturally prefer to select the less-crowded

option. Moreover, MG involves self-organized decision making with minimal external

information available to the agents as desired in dense SCNs.

MG proclaims its own unique characteristics that make it a more suitable model

to apply in wireless networking problems compared to traditional non-cooperative

games. For instance, unlike many game models, MG involves players with bounded

rationality using inductive reasoning to make decisions [22]. Moreover, the players

are anonymous in MG, making it ideal to model wireless problems where the user

identity should not be compromised, for instance, in crowdsourcing and recommender

systems. In addition, MG benefits a variety of settings that can be useful to model

many different types of resource management problems.

When developing distributed solution schemes for wireless resource allocation

problems, conventional distributed approaches (e.g. those based on traditional game

theory) are not always applicable, since such models become increasingly complex for

systems with large number of agents. In essence, many such game models require

pairwise interactions among the agents. In contrast, the agents’ interaction in MG

exhibit mean field like behavior [22], i.e., an individual agent interacts with the aggre-

gate behavior of all other agents. This makes MG a promising technique, especially

since mean field-based models are widely used as fitting tools to model large systems

that are often studied in distributed resource allocation problems. With such char-
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acteristics, MG is an emergent tool that can be used to model distributed decision

making problems in wireless networks. The main motivations of this chapter are to

study MG and to investigate the applicability of MG in wireless networks.

I will first describe the basic concepts, some variants, and equilibrium notions

of MG. Then, the state-of-the-art applications of minority games in communication

networks will be discussed.

2.4 Minority Games: Basics, Equilibrium, Solution Ap-

proaches, and Variants

2.4.1 Basics of a Minority Game

The concept of MG stems from El Farol bar problem [23], and was initially formulated

and presented in [24]. In the most basic setting of such a game, an odd number of

players choose between two actions while competing to be in the minority group

through selecting the less popular action, since only the minority receives a reward.

After each round of play, all players are informed of the winning action, which is then

used as history data by the players to improve the decision making in the upcoming

rounds. Let us denote the two actions by 0 and 1. Moreover, the action of player

i at time t is shown by ai(t). The number of players (N) is required to be an odd

number to avoid ties. Each player has a given set of decision making strategies that

help her select future actions. A strategy predicts the winning action of the next

round based on the previous m number of winning actions, with m being the size

of memory, also known as the brain size. In other words, a strategy is essentially a

mapping of the m-bit length history string (µ(t)) to an action. An example strategy

table for an agent is given in Table 2.1, where the agent has two strategies S1 and
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S2. Since there are two actions to select from, it is clear that the strategy space

consists of 22m total number of strategies, which become very large even for small

m. Thus, reduced strategy space (RSS) is introduced to make the strategy space

remarkably smaller without any significant impact on the dynamics of the MG. RSS

is formulated by choosing 2m strategy pairs so that in each pair, one strategy is anti-

correlated to the other. In other words, the predictions given by one strategy are the

exact opposites of the predictions given by the other strategy [25]. An example for

two anti-correlated strategies is shown in Table 2.1. Thus RSS constitutes of 2m+1

total number of strategies, which is much smaller than the size of universal strategy

space 22m .

Table 2.1: An example strategy table for an agent.
History string Predicted winning action

S1 S2

00 1 0
01 1 0
10 0 1
11 0 1

At the outset of the game, each agent randomly draws S strategies from the

strategy space which remain fixed for each player throughout the game. There is no

a priori best strategy. Intuitively, if such strategy exists, all agents would use it and

therefore lose due to the minority rule, which contradicts the initial assumption. As

the game is played iteratively, each player evaluates her own strategies as follows:

The strategies that make accurate predictions about the winning action are given a

point and the poorly performing strategies are penalized. In other words, strategies

are reinforced as they predict the winning action over a number of plays. Note that

all strategies are scored after each round regardless of being used by the agent or not.

Thus the score of each strategy is updated after each round of play according to its
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performance and the players use the strategy with the largest accumulated score at

each round. Each player’s objective is to maximize her utility over the time as she

plays the game repeatedly. In MG, often the players compete for a limited resource

without communicating with each other. Consequently, since players do not have

any knowledge about other players’ decisions, the decision making becomes almost

autonomous [22].

2.4.2 Properties of a Minority Game

The properties of a minority game are described by the following parameters and

behaviors:

• Attendance: One of the most important parameters of an MG is the collective

sum of the actions of all players at a given time t, known as the attendance,

A(t).

• Volatility: Basically, the attendance value never settles but fluctuates around

the mean attendance (i.e. cut-off value) [22]. The fluctuation around the mean

attendance is known as volatility, σ. Volatility is an inverse measure of the sys-

tem’s performance and hence, the term σ2/N corresponds to an inverse global

efficiency. When the fluctuations are smaller, that implies that the size of the

minority, thus the number of winners, is larger. Hence, smaller volatility corre-

sponds to higher users’ satisfaction levels along with better resource utilization.

It is known that volatility depends on the ratio α = 2m/N , which is commonly

referred to as the training parameter or control parameter [22] [25] [26].

• Phase transition: Using the variation of the global efficiency w.r.t. α, the game

can be divided into two phases by the minimum value of α (denoted by α∗),
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namely crowded phase and uncrowded phase. MG is said to be in the crowded

phase when α < α∗. This is because, for smaller m, the number of strategies,

22m , is quite smaller compared to the number of agents N , thus many agents

could be using the same strategy, leading them to make the same decision.

This then creates a herding effect, causing the MG to enter the crowded phase.

Once α > α∗, the m values are large enough to make the strategy space larger

than the number of agents N , so that the probability of any two agents using

identical strategies diminishes, thus making MG enter the uncrowded phase.

Note that, α∗ corresponds to the minimum volatility indicating the system’s

ability to self-organize into a state where the number of satisfied agents and the

resource utilization are maximized. Moreover, it is shown that the performance

of MG surpasses that of the random choice game (where all agents choose each

action with a probability = 0.5) for a certain range of α values. This is referred

to as the better than random regime [22] [25] [27] [28]. Variation of σ/N w.r.t

α is illustrated in Fig. 2.1.
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Figure 2.1: Variation of inverse global efficiency w.r.t. α.

• Predictability: This is an important physical property of MG. It measures the

information content in the previous set of attendance values, that is available to
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agents. Predictability is denoted by H, where H = 0 corresponds to the situa-

tion in which the game outcome is unpredictable. Moreover, the predictability

is the parameter that characterizes the two phases in the MG. In MG, H = 0

for α < α∗ and H 6= 0 for α > α∗. This implies that during the crowded phase,

the game outcome is unpredictable and when MG enters the uncrowded phase,

the game outcome becomes more predictable [25].

2.4.3 Equilibrium Notions for an MG

In this section, I provide a brief introduction to the notion of equilibria of MG. More

details can be found in [27], [28].

Assuming the number of agents is an odd number equal to N , an MG is in an

equilibrium if each of the two alternatives is selected by (N − 1)/2 and (N + 1)/2

agents. Then, no agent would gain by unilaterally deviating from its state since, if

any of the agents in majority group does so, the groups would switch thus the state

of the deviated agent would not improve. In an MG stage game, three types of Nash

equilibria (NE) are applicable. Note that the NE corresponds to the local minima of

volatility values [28].

• Pure strategy Nash equilibria: If there are N agents playing the MG and (N −

1)/2 of them choose to select one alternative with probability = 1 while the

other (N +1)/2 agents select the other alternative with probability = 1, system

is said to be in a pure strategy NE. There are
(
N
N−1

2

)
number of such NEs that

exist. These NEs are considered the globally optimal states [27].

• Symmetric mixed strategy Nash equilibria: There exists only a single symmetric

mixed strategy NE to the MG. It corresponds to the so called random choice
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game where, all agents choose between each of the two alternatives with a

probability of 0.5 [27].

• Asymmetric mixed strategy Nash equilibria: If (N−1)/2 agents select one alter-

native with probability = 1, another (N−1)/2 agents select the other alternative

with probability = 1 and the remaining agent selects an alternative with an ar-

bitrary mixed probability, the MG stage game is said to be in an asymmetric

mixed strategy NE. There can be an infinite number of such NEs [27].

2.4.4 Solution Approaches

Both qualitative and analytical approaches have been studied in the literature to solve

an MG. The qualitative approach investigates how the volatility of the system varies

with respect to the brain size and the population size. Moreover, it interprets the

phase transitions of MG from the crowded phase to the uncrowded phase along with

the volatility variation. Hence, this approach is also referred to as crowd-anticrowd

theory in the literature [25]. A brief overview of the phase transition in MG in relation

to the variation of volatility is given in Section 2.4.2. Rigorous explanations can be

found in [28].

The analytical solution of MG obtains its statistical characterizations of the sta-

tionary states and the NE. In MG, the stationary states correspond to the minima

of predictability whereas the NE of the MG correspond to the minima of volatility.

In order to derive the analytical solutions, numerous mathematical techniques are

used, including reinforcement learning, replicator dynamics, and tools from statisti-

cal physics of disordered systems (e.g., Hamiltonian, replica method, spin glass model,

Ising model). Reference [27] includes a rigorous analysis on the solution of MG where

aforementioned techniques are employed to derive the solution. Therein, complete
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statistical characterizations of the stationary state of MG are realized. First, the

authors use multi-population replicator dynamics technique to obtain some evolution-

arily stable NEs of the stage game. Then, a generalized version of the repeated MG

model is analyzed where exponential learning is used by the agents to adapt their

strategies.

For this scenario, analysis is done considering two different types of agents, namely

naive1 and sophisticated.2 In their analysis the authors show that for the repeated

MG with naive agents, stationary state is not a NE. Moreover, authors show that for

the systems with sophisticated agents and exponential learning, the system converges

to a NE.

2.4.5 Variants of Minority Game

In this section, I briefly introduce few different variations of MG beyond the basic

form described before. Comprehensive discussions can be found in [25], [26] and [29],

among many others.

1. MG with arbitrary cut-off : A generalized version of the basic MG, referred to

as MG with arbitrary cut-offs is introduced in [26]. In such games, the minority

rule is defined at an arbitrary cut-off value (φ) rather than the 50% cut-off

used in the seminal MG. In [26], authors show the behavioral change of MG

when the cut-off value is varied. In brief, it is shown that the attendance values

fluctuate around the new cut-off, exhibiting the adaptation of the population.

Furthermore, the analysis shows that when the cut-off φ is decreased below N/2,

1In seminal MG, the agents are naive, since they only know the pay-off received by the played
strategies.

2Unlike naive agents, sophisticated agents are assumed to have the knowledge of the pay-off they
would receive for any strategy that they play (including the strategies that are not played). More
details on naive and sophisticated agents can be found in [27].
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the brain size yielding the minimum volatility is also decreased. This variant is

particularly useful to model some resource allocation problems where the cut-off

(also known as the comfort value) of the capacity of a particular resource is a

value other than 50%.

2. Multiple-choice MG (Simplex game): This variant is introduced in [29] as a

direct generalization of the basic MG where every agent might select among

K different choices (K > 2). Thus, a simplex game is defined by the set of

N players, the set of K choices and the history winning actions (m-bit long).

Similar to the seminal MG, a strategy is a mapping of the history data to one

of the K choices, and each player is given a set of S strategies.

Moreover, the strategy space of the simplex game is associated with probability

values pis, which indicates the satisfaction of the ith agent with her sth strategy.

Each player’s choice is referred to as a bid and a quantity called aggregate bid

is defined as the sum of the choices of all agents. Similar to the attendance

property in the basic MG, the aggregate bid contains the information about the

number of agents that select a given choice and determines the pay-off that each

user receives. As the game is played iteratively, after scoring the strategies, the

probability values (pis) are updated using the exponential learning3 method.

Thus, although the players start out naive, they become sophisticated as the

game evolves. Therefore, unlike basic MG, the simplex game exhibits evolu-

tionary behavior. In [29], it is shown that compared to playing an MG with

few options, in a game with a large action set, the overall system performance

improves, resulting in higher resource utilization.

3In exponential learning, the probability values are modified by following a logit model -like for-
mula. This formula contains exponential functions of strategy score and the agent’s learning rate,
which is a numerical constant that might differ for each agent [27].
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3. Evolutionary MG (Genetic model): In this version of MG, unlike the basic case,

all users apply a single strategy. Each agent i chooses the action predicted by

the strategy with some probability pi referred to as the agent’s gene value. Each

agent selects the opposite action with probability 1 − pi. At each play, +1 (or

−1) point is assigned to each agent in the minority (or majority). As the game

evolves, if the accumulated score falls below a certain threshold, a new gene

value is drawn (known as mutation of gene value) [25].

4. Grand canonical MG (GCMG): In this type of MG, the number of players who

participate in the game can vary since the players have the freedom of being

active or inactive at any round of the game. More precisely, in a GCMG, agents

would score their strategies as usual and if the highest strategy score falls below

a certain threshold, agents would abstain from playing the game for that round

of play. Any inactive agent re-enters the game when participation becomes

profitable. Consequently, the attendance is calculated based on active players

only [25].

2.5 MG Models in Communication Networks: State-of-the-

Art

In this section, I provide a brief summary of the state-of-the-art, where MG is applied

to solve the problems that arise in communication networks.

• Backhaul management in cache-enabled SCNs : In [30], authors provide a MG

based framework for distributed backhaul management in cache-enabled SCNs.

They model the SBSs as the players where the players are required to determine

the number of predicted files to be cached from the core network. The total
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number of predicted files should be kept under a given threshold since the

number of predicted files affects the allocated backhaul rate for the SBSs.

• Interference management : In [31], the authors investigated distributed interfer-

ence management in Cognitive Radio (CR) networks using a novel MG-driven

approach. They proposed a decentralized transmission control policy for sec-

ondary users, who share the spectrum with primary users thus causing interfer-

ence. In this work, secondary users play an MG, selecting between two options,

namely transmit or not transmit. The winning group is determined based on

the interference experienced by the primary user. For instance, if the majority

transmits, the interference power measured at the primary receiver exceeds the

threshold so that the minority who does not transmit become the winners and

vice versa, ensuring that the minority always wins. At each round of play, the

primary receiver announces the winning group through sending a control bit to

secondary transmitters.

• Wireless resource allocation and opportunistic spectrum access : An example of

wireless channel allocation using MG can be found in [32] and [33] where an

MG-based mechanism for energy-efficient spectrum sensing in cognitive radio

networks (CRNs) is presented. The authors emphasized how the MG, due to

its self-organizing nature, befits to model such problems to achieve cooperation

and coordination gain without causing a large signaling cost in a CRN. In the

applied MG model, the agents are the secondary users, who choose between

sensing or not sensing, in the process of detecting an idle channel. Two dif-

ferent distributed learning algorithms are then developed that are applied by

the agents to converge into equilibrium states characterized by pure and mixed

strategy NE. The authors in [34] developed an MG-based slotted ALOHA chan-
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nel allocation mechanism along with a traffic rate adaptation scheme for CRNs.

In [35], multiple-choice MG was used for dynamic channel allocation in self-

organizing networks. Therein, the set of transmitter and receiver pairs in the

wireless network behave as players who attempt to access a channel from a

limited number of available channels. In this model, each player is assigned a

weight to account for different types of players. In [36], a multiple-choice MG

(simplex game) was used to model the resource allocation problem in hetero-

geneous networks, where a large number of non-cooperative users compete for

limited radio resources. The existence of correlated equilibrium was proved.

Moreover, the authors compared the equilibria with the optimal states using

the concept of the price of anarchy.

• Coordination in delay tolerant networks : In [37], an MG-based model was ap-

plied to coordinate the relay activation in delay tolerant networks in order to

guarantee an efficient resource consumption. In the MG model, relays act as the

players who decide to transmit (participate in relaying) or not to transmit (not

to participate in relaying). In their work, the authors developed a stochastic

learning algorithm that converges to a desired equilibrium solution.

2.6 MG in Next Generation Networks: Potential Applica-

tions and Open Problems

Although the applications of MG for 5G SCNs remain unexplored in the existing liter-

ature, such models can be well-justified. For instance, a variety of resource allocation

problems in 5G SCNs can be considered as congestion problems. There, wireless users

often attempt to either maximize a certain utility or minimize a certain cost rather
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than achieving a certain quality of service (QoS). Moreover, such systems typically

involve a large number of users and hence, when modeled as large games, it is difficult

to figure out an option that would necessarily yield a particular QoS. Thus, the users’

best alternative is to opt for a less ambitious goal, for instance to be in the minority.

This strategy increases the probability of achieving the required QoS. Consequently,

the MG appears to be an appropriate tool to model such problems. In what follows,

I discuss some possible applications of MG as well as open theoretical issues.

• Transmission mode selection: Device-to-Device (D2D) communication is con-

sidered as a building block in 5G networks. In D2D network underlaying an

SCN, users have two modes of transmission: (i) direct communication without

using the core network infrastructure, (ii) communication with the aid of the

base station as in regular cellular networks. Clearly, the transmission mode

selection problem can be modeled as an MG, where users are modeled as agents

and the two options correspond to transmission via D2D mode or cellular mode.

Given limited resource, the reward of each mode (for instance the throughput)

then depends on the number of users selecting that mode. Thus, the cut-off

value that defines the minority depends on factors such as number of interfer-

ers, number of available direct channels, etc.

• Multiple-choice games: It is clear that the current state-of-the-art mostly use

the basic MG, which limits the agents to select between only two alternatives.

Nonetheless, in many practical resource allocation problems, the decision is

made among multiple choices. Examples include the channel selection or com-

putation offloading problems where a channel/computational server is selected

from many potential options.

• Evolutionary variations of MG: In a basic MG, the agents’ selected set of strate-
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gies do not evolve. In other words, they stay fixed through out the iterations

and are only scored in each play so that the agents can learn the best strategy

for them. Hence, the basic iterated MG cannot be classified as an evolutionary

game, making it inapplicable to model the problems where users should have

the capability of altering their given strategies. On the other hand, complex

dynamic systems require the agents to not only learn the best strategy but

also to adjust the strategies as the game advances in a dynamic manner. To

accomplish this, the modified versions of the seminal MG such as evolutionary

MG (EMG) can be used. Other options include MG models that use learn-

ing methods such as exponential learning to adjust the strategies. The current

state-of-the-art consists of very few applications of such evolutionary variations

of the MG, thus it can be noted as a potential research direction.

• MGs for players with heterogeneity: From a practical point of view, it is very

likely for the SCN users to be heterogeneous and to have diverse QoS require-

ments (e.g. in terms of delay, rate and energy efficiency). However, in the basic

MG, every player is assumed to have similar capabilities and uses identical in-

formation and learning methods. Thus, generalization of the basic MG model

to include such heterogeneities among users can be considered as a potential

line of research.

The theory of MG introduced in this chapter will be used throughout this thesis.

The following two chapters present the main contributions of the thesis.
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Chapter 3

Computation Offloading in Small

Cell Networks: When Minority

Wins

3.1 Introduction

3.1.1 Overview

In this chapter, I provide a minority game (MG) based distributed computation of-

floading decision making mechanism for users in a small cell network (SCN). I consider

multiple users accessing a single small base station (SBS) with edge computation

capabilities. In other words, the small base station is equipped with computation

resources, so that users attached to it compete for its computational resources by

offloading their computationally expensive tasks. The users have the two options of

either (i) offloading their task to the SBS or (ii) to execute it locally. Obviously, each

user wants to make the more beneficial option out of the two, in terms of latency.
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However, the more beneficial option varies with the total number of offloading users

in each offloading period. For instance, if more users than the allowed capacity of

SBS decide to offload, the SBS will become crowded and thus all offloading users will

experience higher latency. Using the proposed scheme, the users are able to make

offloading decisions in such a way that they can eventually coordinate to a state where

the SBS is utilized with its maximum capacity, while the users’ also achieve desired

latency. It should be noted that using the MG-based method, users achieve this with

no information exchange among them while using a minimal amount of external in-

formation. In other words, users learn from the environment and each user interacts

with the aggregate behavior of all other users. This allows the decision making pro-

cess to become almost autonomous. It is also shown that when users are coordinating,

the SBS utilization is near maximum and users’ utility is also comparatively higher

than that of a random offloading decision making scenario.

3.1.2 Contribution

The main contributions of this chapter can be summarized as follows:

1. I modeled the computation offloading decision making problem considering a

multi-user, single edge server (SBS) system as a minority game.

2. I developed a distributed offloading decision making algorithm for mobile users

that enables users to make decisions almost autonomously by learning from the

environment.

3. I provided simulation results for the given system model to show that the users

reach a coordinated state where the the SBS utilization reaches near maximum,

while meeting their required latency constraint.
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Table 3.1: Symbols used in this chapter.
Symbol Description
φ System threshold for number of offloading users
ai(t) Action of user i at time t
b(t) Control information (Winning choice)
Cb Computational capability of SBS
Cu Computational capability of local user device
L(t) Latency experienced by an offloading user at offloading period t
Lth Latency experienced by a locally computing user (Latency threshold)
M Number of CPU cycles required to complete the task
n(t) Number of offloading users at time t
S Number of strategies per user
T Number of offloading periods
Ul(t) Utility received by a locally computing user
Uo(t) Utility received by an offloading user
Vi,s(t) Score of the strategy s of ith user at time t

3.2 System Model and Assumptions

In order to increase the readability, all the symbols that are used throughout this

chapter are gathered in Table 3.1.

Figure 3.1: System model.

I use a minority game with an arbitrary cut-off. Consider an SBS serving N

number of homogeneous (with respect to both computational capability and the task
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potentially to be offloaded) users. Each computational offloading period t is consid-

ered to be a round of play of the MG. All users participate as the players of the

game and individually decide whether they offload the task to the local SBS or they

execute it locally using their own resources. Users select one of these two options

simultaneously within each offloading period and they have no information about

other users’ actions. Note that users naturally prefer to offload to the local SBS

rather than executing the tasks locally, provided that the local SBS does not become

crowded with offloading requests. The reason is as follows. Analogous to the original

bar problem [23] where the customers naturally like to go to the bar than staying

home if the bar is uncrowded, I assume that by offloading to an uncrowded SBS,

users can experience lower latency. The SBS supports all of the computation offload-

ing requests it receives, by completing all tasks in a TDMA manner. (This can be

done using virtual parallel processing, where the time slot given to each task is small

enough to assume that all tasks are performed simultaneously.) Therefore, if the

number of offloading requests exceeds a certain threshold, the latency experienced by

users would increase, making local computation to become the preferred option. Note

that, for the sake of simplicity, here I only focus on the users’ objective of meeting

the latency requirements. Hence, for this case, I do not consider the other objective

of users, which is minimizing the energy cost. Therefore, to make the analysis simple,

I assume the amount of energy required for the local computation is approximately

equal to the amount of transmission energy required for the offloading. Thus I omit

the energy parameter in this model. An illustration of the system model is given in

Fig. 3.1.

The problem described above is a distributed resource allocation problem where I

analyze how to optimally utilize the computational resources of the local SBS while
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the latency remains below a specific threshold. As conventional, I assume that the

local SBS has a fixed computational capability. In each round, users have the two

options of either offloading or locally computing. The number of offloading requests

that the SBS can handle is an arbitrary cut-off value denoted by φ. Clearly, this

offloading threshold (φ) counts as the minority rule of the game. Note that φ remains

unknown to the users throughout the game. For every user, Lth (in seconds) is the

maximum tolerable latency, which is experienced if the computation is performed

locally. Then the cut-off value φ is defined such that, when the number of offloading

users approaches φ, the latency for offloading users reaches the threshold, Lth. Thus,

for a user to benefit from offloading, the number of offloading users should not exceed

the limit of φ. As a result, being in the population minority (defined by φ) is always

desired. After each round of play, one of the outcomes mentioned below would occur.

• If minority chooses to offload and majority chooses to compute locally : In this

case, the minority is rewarded since offloading yields lower latency than local

computation since the local SBS is uncrowded.

• If minority chooses to locally compute and majority chooses to offload : In this

case, the number of offloading requests exceeds the threshold φ so that the SBS

becomes too crowded. Consequently, the latency for the offloading users would

exceed the allowable latency threshold. Thus minority who did not offload, wins

and is rewarded.

36



Chapter 3. Computation Offloading in Small Cell Networks: When Minority Wins

3.3 Minority Game Model

3.3.1 Attendance

Conventionally in MG, the winning choice is announced to all users after each round

of play, so that users take advantage of this information to score their strategies.

Accordingly, in our model, after each round of play, the SBS broadcasts the winning

group by sending an one-bit control information b(t) defined as

b(t) =


1, if n(t) < φ

0, if n(t) ≥ φ

(3.1)

where n(t) = number of offloading users at offloading period t.

In accordance with the MG terminology, I refer to this n(t) as the attendance.

Given the control information, users evaluate their strategies to improve decision

making in the next round of play.

3.3.2 Reward

The reward of each winning user is defined based on the computation latency expe-

rienced by the user. Note that the transmission delays and propagation delays are

considered negligible compared to computation latency. Thus the reward depends

on the number of other users who select the same option, be it offloading or local

computation.

• L(t) = Latency experienced by an offloading user at offloading period t (in

seconds),

• Cb = Computation capability of SBS (in number of CPU cycles per unit time),
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• Cu = Computation capability of local user device (in number of CPU cycles per

unit time),

• M = Number of CPU cycles required to complete the task.

Thus the latency experienced by an offloading user yields L(t) = n(t) ·M/Cb, and

the latency experienced by a locally computing user is given as Lth = M/Cu. For L(t)

= Lth, n(t) = φ, hence φ = Cb/Cu. If L(t) ≥ Lth (equivalent to n(t) ≥ φ), offloading

users (majority) lose and locally computing users (minority) win. In contrast, when

L < Lth (i.e. n(t) < φ), offloading users (minority) win and locally computing users

(majority) lose. Let Uo(t) and Ul(t) denote the utility that each user respectively

receives, in case of offloading and local computing. Thus

Uo(t) = b(t) =


1, if n(t) < φ

0, if n(t) ≥ φ

(3.2)

and

Ul(t) =


0, if n(t) < φ

1, if n(t) ≥ φ.

(3.3)

3.3.3 Distributed Learning Algorithm

To solve the designed MG, I use the seminal reinforcement learning technique [24,

25, 38] proposed in the original MG. For comparison purpose, MG-based method is

compared with a random selection scenario.
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Algorithm 1 Distributed learning algorithm to solve offloading MG [24]

Initialization : Each user i randomly draws S strategies.
for t = 2 : T do

Each user i selects action ai(t) predicted by the best strategy.
SBS broadcasts the control information b(t).
for s = 1 : S do

Each user i updates the score of the strategy s, Vi,s.
if prediction of s = b(t) then Vi,s(t+ 1) = Vi,s(t) + 1,
elseVi,s(t+ 1) = Vi,s(t).
end if

end for
Each user i selects best strategy si(t), defined as arg max

s∈S
Vi,s(t)

t← t+ 1
end for

Table 3.2: Simulation parameters.
Parameter Value
φ 20
Cu 0.5 GHz
Cb 10 GHz
M 10
N 31
S 2
T 10000

3.4 Simulation Results and Discussion

For numerical analysis, I consider an SBS serving N = 31 users. The task that the

users have to perform is assumed to require M = 10 Megacycles of CPU cycles. The

CPU capacity of each user device is Cu = 0.5 GHz. Moreover, the SBS allocates

Cb = 10 GHz of CPU capacity to serve users’ offloading requests. Hence the system’s

cut-off value becomes φ = Cb/Cu = 20. Thus, if the attendance is less than 20, the

offloading users win, and vice versa. I simulate the system for different brain sizes

(m) to observe the system behavior. For each m value, 32 runs are carried out, where

each time, users randomly draw a new set of strategies (S = 2). In each of the 32
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runs, T = 10000 offloading periods (rounds of MG) are executed. For comparison, I

also implement the random choice game where users select one of the two actions (to

offload or not) with equal probabilities at each round of the game.

The variation of attendance over time for different brain sizes (m) is shown in

Fig. 3.2. From the figure it is clear that the number of offloading users always

fluctuates near the cut-off value, when users play an MG. It implies that, the system

self-organizes into a state where the number of users, who experience a latency less

than the threshold, is near its maximum value, thereby maintaining the optimal SBS

utilization. This is interesting since the users are not given any prior information

about the exact cut-off value of the system. As mentioned earlier, fluctuation of the

attendance (i.e., the standard deviation) is known as the volatility in MG literature.

It is clear that for different m values, the amount of fluctuation differs as explained

in Fig. 3.3 (see below). Note that the fluctuations correspond to the amount of

cooperation in the MG. They provide a measure for the number of users who could

have offloaded if the attendance is lower than the cut-off or for the number of agents

who could have not selected offloading option, if the attendance exceeds the cut-off.

From the attendance figures, it can be seen that, even though the cut-off value is not

advertised to the agents, the population adapts to the cut-off value of the system. The

reason for this behavior is the agents’ adaptation to the environment they collectively

create.

Fig. 3.3 shows that the variation of the standard deviation (σ/N) of the number of

offloading users over differentm values follows the expected MG behavior [22] [25] [26],

described in the following. As discussed, the volatility corresponds to the fluctuations

of the attendance and serves as an established measure for the system performance.

Lower volatility values mean that the fluctuations around the cut-off decrease. This
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Figure 3.2: Time evolution of attendance.

corresponds to the size of the minority being larger, resulting in a larger number

of winners, thus a better performance. Accordingly, lower volatility corresponds to

better resource utilization and higher user satisfaction. From Fig. 3.3, for almost all

values of m, volatility is lower than that of the random choice game. Hence one can

conclude that the resource utilization is improved when MG-based offloading method

is used. This shows the self-organizing nature of the MG, where agents coordinate

to reduce the fluctuations in the absence of any communication or information other

than the history data. It can also be seen that a minimum of the average volatility

occurs at m = 3, where the phase transition from the crowded phase to the uncrowded

phase occurs.

To investigate the improvement in the latency experienced by the users, average

utility is shown in Fig. 3.4. It is clear that for MG, the utility achieved by individual
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Figure 3.3: Variation of volatility with m.

users is better than that of the random choice game. However, it can be seen that the

average utility received by a user who applies MG-based offloading is still lower than

that of an optimal situation, where the number of offloading users is always equal to

φ− 1 (here 19). This is the price of the lack of coordination between agents and the

use of minimal external information. Fig. 3.5 depicts the influence of the brain size

on the average utility achieved per user. As expected, for larger volatility values, the

achieved utility is substantially smaller. Roughly speaking, Fig. 3.5 is approximately

an inverse of the volatility figure (Fig. 3.3). Therefore, the volatility is indeed an

inverse performance measure for the MG-based system.

In Fig. 3.6, I illustrate the benefit of MG-based offloading. When the MG-based

offloading mechanism is used, the number of users who experience latency below the

threshold fluctuates near its maximum value (φ−1 = 19, in this example), compared
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Figure 3.4: Average utility received by users.

to the two general cases where all users simply offload or compute the task locally. In

the last two cases, none of the users is able to achieve a latency below the threshold.

Using our defined model, if all users offload, the latency experienced by each user

yields 31 milliseconds. Similarly, if all users choose to compute locally, the latency

is 20 milliseconds. Since the threshold latency is 20 milliseconds, it is clear that

none of the above two methods would allow the users to experience latency values

below the threshold. Consequently, using an MG-based approach results in achieving

some latency below the threshold for a larger number of users, thereby utilizing the

available SBS resources in a productive manner.
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3.5 Summary

In this chapter, I have investigated the distributed mobile computation offloading

problem as a potential application of MG in 5G SCNs. I considered a multi-user, single

SBS system where the users attached to the considered SBS competing for its CPU

resources. Therein, I developed a distributed offloading decision making algorithm

using MG. This scheme achieves better SBS resource utilization while keeping the

users’ experienced latency below a desired threshold. Moreover, simulation results

show that the MG-based learning method provides better performance compared to

random offloading decision making method.
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Chapter 4

Efficient Activation of MEC

Servers Using Minority Games and

Reinforcement Learning

4.1 Introduction

4.1.1 Overview

In MEC, efficient utilization of MEC servers is vital, since they have limited computa-

tional resources and power, compared to the traditional centralized cloud computing

servers. To this end, one solution is to activate only a specific number of servers,

while keeping the rest in the energy saving mode. At the same time, users’ latency

requirements should be taken into account, as overloading the servers with computa-

tional tasks can result in unacceptable delay. Therefore, addressing this trade-off is

a major issue in developing efficient MEC systems. This becomes challenging in the

presence of uncertainty in task arrival and/or in the absence of any central controller.
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Therefore, in this chapter, I formulate the efficient edge server activation problem

for a MEC network considering a pool of edge servers. To date, the great majority

of the existing literature focuses on the user-centric objectives of efficient computa-

tion and radio resource allocation for multiple users, meeting users’ delay constraints,

and minimizing users’ energy consumption. On the contrary, this work presents a

hybrid view where both servers’ and users’ standpoints for a computation offloading

environment are considered.

4.1.2 Contribution

Below I summarize the main contributions of this chapter.

1. First, I address the uncertainty caused by the randomness in channel quality

and users’ requests in an MEC offloading environment. There, I analyze the

statistical characteristics of the offloading delay.

2. Then, I model the computation offloading system as a planned market, where

the price of computational services is determined by a central governor.

3. Next, by using the theory of MG, I develop a novel distributed approach for

efficient mode selection at the servers’ side.

4. Then, using the proposed pricing framework in combination with the designed

mode selection mechanism, I guarantee a minimal server activation to ensure

energy efficiency, while meeting the users’ delay constraints with adjustable

certainty.

5. Numerical results are presented to illustrate the trade-off between the efficient

server activation and meeting users’ expected latency threshold.
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6. Furthermore, formulated model is used to study the performance of different

distributed learning methods including reinforcement learning and stochastic

learning algorithms in an MG-setting. The performances of the learning algo-

rithms are compared in terms of social and individual welfare of the servers as

well as the QoE measure of the users.

4.2 System Model and Problem Formulation

Figure 4.1: System model.

In order to increase the readability, all the symbols that are used throughout this

chapter are gathered in Table 4.1. System model is illustrated in Fig. 4.1.

I consider an MEC system consisting of a virtual pool of M edge computational

servers (e.g., small base stations), denoted by a setM, and a set of users (e.g., mobile
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Table 4.1: Symbols used in this chapter.
Symbol Description
β Desired QoE level for users
θ Offloading delay
τ Offloading delay for the last job in the

queue of any active server
ai(t) Action of server i at time t
c(t) Number of active servers at time t
cth System threshold for number of active servers
ef Fixed activation cost
ej Cost spent by a server per job
ep Price charged by a server per job
h Channel power gain
KT Total number of offloaded jobs at every

offloading period
k(t) Number of jobs per active server at time t
kmin Minimum required number of jobs per

active server
kmax Maximum allowed number of jobs per

active server
M Set of servers in the pool
M Number of servers
N Set of users
N Number of users
R(t) Reward received by a server at time t
Rth Minimum desired reward
S Number of strategies per server
tc Processing time, Truncated normal

with parameters µ and σ.
t0 Transmission time
T Job deadline (maximum acceptable delay)
Ui,a(t) Utility received by active servers
Ui,p(t) Utility received by inactive servers
w(t) Winning choice
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devices). Each user has some delay sensitive computational jobs to be completed in

consecutive offloading periods. Each offloading period is referred to as one time slot.

In every time slot t, the users offload a total number of KT computational jobs to the

edge server pool. Prior to job arrival, every server independently decides whether to

• accept computation jobs (active mode); or

• not to accept any computation job (inactive mode).

To become active, each server incurs a fixed energy cost represented by ef (dimen-

sionless value). In addition, doing each job yields an extra ej units of energy cost. By

processing each job, a server receives a reimbursement (benefit) equal to ep > ej. Let

c(t) be the number of servers that decide to become active at time slot t. The total

KT jobs are equally divided among the active servers, so that the number of jobs per

active server is given by

k(t) = KT/c(t). (4.1)

Hence, each active server processes k(t) jobs, and thus earns a total reward given by

R(t) = k(t)(ep − ej)− ef. (4.2)

For each server, being in active mode is attractive only if a minimum desired reward,

denoted by Rth > 0 can be obtained. Then each active server has to receive at least

kmin =
Rth + ef

ep − ej

(4.3)

jobs to achieve the minimum desired reward. Each computational job requires a

random time to be processed by a server, denoted by tc. I assume that tc lies within

the interval (0, T ) and has a truncated normal distribution with parameters µ and σ.
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Moreover, considering Rayleigh fading, the channel power gain (h) is exponentially

distributed with parameter ν. I model the round trip transmission delay (from the

user to the server pool) as a linear function of the channel gain. The channel gains

in both directions are assumed to be equal. Thus formally,1

t0 = 2(ah+ b), (4.4)

where a < 0 and b > 0 are constants chosen such that, t0 ≥ 0.

The total offloading delay θ is, the sum of processing delay at the server tc and

the round trip transmission delay t0. Thus,

θ = tc + t0. (4.5)

The following proposition characterizes θ statistically.

Proposition 4.2.1. The probability distribution function (pdf) of offloading delay θ

can be calculated as

fΘ(θ) =

Ων

2a
e

− ν(θ−2b)
2a

−
µ2−

(
µ− νσ

2

2a

)2

2σ2


×

(
Φ

(
T − µ+ νσ2

2a

σ

)
−Φ

(
−µ+ νσ2

2a

σ

))
(4.6)

Moreover, the mean and variance of θ can be derived as,

µθ = µ+ σ
φ(−µ

σ
)− φ(T−µ

σ
)

Φ(T−µ
σ

)− Φ(−µ
σ

)
+

2(a+ bν)

ν
, (4.7)

1Assuming a normal distribution for the time required to perform each job does not limit the
applicability, and similar analysis can be performed with any other distribution. The same holds for
the linear model of the transmission delay. Any other model can be used at the expense of additional
calculus steps. Also, note that since the required energy to perform each job is proportional to the
required time to perform that job, one might consider ej ∝ κµ with κ > 0.
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and

σ2
θ = σ2

(
1 +

(
−µ
σ
φ(−µ

σ
)− T−µ

σ
φ(T−µ

σ
)

Φ(T−µ
σ

)− Φ(−µ
σ

)

)
−

(
φ(−µ

σ
)− φ(T−µ

σ
)

Φ(T−µ
σ

)− Φ(−µ
σ

)

)2)
+

4a2

ν2

respectively where Ω = 1

σ(Φ(T−µ
σ

)−Φ(−µ
σ

))
, and Φ(ε) = 1

2

(
1 + erf

(
ε√
2

))
is the cumula-

tive distribution function (cdf) of a standard normal distribution.

Proof. The proof follows by simple probability rules given the independence of tc and

t0. The pdf of processing delay tc is given by

fTc(tc) =


φ( tc−µ

σ
)

σ(Φ(T−µ
σ

)−Φ(−µ
σ

))
, if 0 < tc < T

0, otherwise

(4.8)

where, φ(ε) = 1√
2π

exp(−ε
2

2
) and Φ(ε) = 1

2

(
1 + erf

(
ε√
2

))
are the pdf and cdf of

the standard normal distribution respectively. Moreover, by using simple probability

rules, the pdf of the round trip transmission delay t0 yields

fT0(t0) =


νe−

ν(t0−2b)
2a

2|a| , if 2b
a
− t0

a
≤ 0

0, otherwise

(4.9)

Let Ω be

Ω =
1

σ
(
Φ(T−µ

σ
)− Φ(−µ

σ
)
) . (4.10)

Since tc and y are independent random variables, the pdf of offloading delay θ = tc+t0
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can be calculated as

fΘ(θ) = fTc(θ) ∗ fT0(θ)

=

∫ T

0

Ω
1

σ
√

2π
e−

(tc−µ)2

2σ2
ν

2a
e−ν( θ−tc−2b

2a
) dtc

=

Ων

2a
e

− ν(θ−2b)
2a

−
µ2−

(
µ− νσ

2

2a

)2

2σ2


×

(
Φ

(
T −

(
µ− νσ2

2a

)
σ

)
− Φ

(−(µ− νσ2

2a

)
σ

))
.

(4.11)

Given the pdf of tc, the expected value and variance of tc can be derived as

E[tc] = µ+ σ
φ(−µ

σ
)− φ(T−µ

σ
)

Φ(T−µ
σ

)− Φ(−µ
σ

)
(4.12)

and

Var[tc] = σ2

(
1 +

(
−µ
σ
φ(−µ

σ
)− T−µ

σ
φ(T−µ

σ
)

Φ(T−µ
σ

)− Φ(−µ
σ

)

)
−

(
φ(−µ

σ
)− φ(T−µ

σ
)

Φ(T−µ
σ

)− Φ(−µ
σ

)

)2)
. (4.13)

Similarly, using pdf of t0, the expected value and variance of t0 are given as

E[t0] =
2(a+ bν)

ν
(4.14)

and

Var[t0] =
4a2

ν2
. (4.15)

Therefore, due to the independence of tc and t0, the mean and variance θ are given
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as

µθ = E[tc + t0]

= E[tc] + E[t0] (4.16)

and

σ2
θ = Var[tc + t0]

= Var[tc] + Var[t0]. (4.17)

Every user requires its offloaded job(s) be completed by a deadline T . Therefore,

in every round t and for every server, the total processing time of all jobs, i.e.,

τ =

k(t)∑
i=1

θi, (4.18)

should be less than T , so that the delay experienced by the last user in the queue does

not exceed the deadline T as well. In other words, the condition τ ≤ T ensures that all

users receive their jobs completed before the deadline. Since θi are independent and

identically distributed (i.i.d.), τ is the sum of k(t) i.i.d. random variables. Therefore,

the expected value and variance of τ are given by k(t)µθ and k(t)σ2
θ , respectively.

For large enough k(t) (e.g., k(t) ≥ 30), and by using the central limit theorem, the

distribution of τ can be approximated as

τ ∼ Nor(k(t)µθ, k(t)σ2
θ). (4.19)
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Due to the uncertainty caused by the randomness, deterministic performance guar-

antee in terms of delay is not feasible. Thus I resort to a probabilistic guarantee of

users’ QoE requirement. Formally, let Pr[τ > T ] be the probability that τ exceeds

T , i.e., the likelihood that the delay requirement of some offloading user(s) is not

satisfied. It is required that Pr[τ > T ] remains below a predefined threshold β. That

is,

Pr[τ > T ] ≤ β. (4.20)

Considering both the servers’ and users’ perspectives, the trade-off in the system can

be seen as follows: On one hand, for each server it is beneficial to be active only

if the number of active servers is less than a certain threshold cmax, so that every

active server receives the minimum number of jobs required to achieve the threshold

reward (as stated by (4.3)). On the other hand, the users prefer that the number of

jobs per server k(t) is small enough so that their desired QoE is fulfilled with high

probability, i.e., the number of active servers shall be larger than a certain threshold

cmin. In what follows, I will derive the values of cmin and cmax analytically. Therefore,

for the offloading system to perform efficiently, the number of active servers at any

offloading round t, i.e., c(t) should be determined in way that both servers and users

are satisfied. I denote this value by cth.

4.2.1 Condition for Servers

Recalling (4.3), to achieve minimum desired reward Rth, each active server has to

receive at least kmin jobs. Consequently, at most

cmax = KT/kmin (4.21)
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servers can be in the active mode so that every active server receives the threshold

reward Rth, while inactive servers receive no reward. Thus, the condition below should

be satisfied when selecting the cut-off cth:

Condition I: cth ≤ cmax. (4.22)

4.2.2 Condition for Users

Recall that the users’ QoE requirement given by (4.20). Then, from (4.19) and (4.20),

I have

1− Φ

(
T − k(t)µθ√

k(t)σθ

)
≤ β, (4.23)

which, by definition, is equivalent to

erf

(
T − k(t)µθ√

2k(t)σθ

)
≥ 1− 2β. (4.24)

Since erf(x) is an increasing function, erf−1(x) is also an increasing function. There-

fore, (4.24) results in

k(t)µθ +
√

2k(t)σθerf−1(1− 2β)− T ≤ 0. (4.25)

Solving the quadratic inequality, I obtain;

−
√

2σθerf−1(1− 2β)−
√

∆

2µθ
≤
√
k(t) ≤ −

√
2σθerf−1(1− 2β) +

√
∆

2µθ
(4.26)
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where ∆ = 2σ2
θ

(
erf−1(1− 2β)

)2
+ 4µθT . Since k(t) ≥ 0, considering only the right

hand side of the inequality (4.26), I have

k(t) ≤

(
−
√

2σθerf−1(1− 2β) +
√

∆

2µθ

)2

. (4.27)

Therefore,

kmax =

(
−
√

2σθerf−1(1− 2β) +
√

∆

2µθ

)2

(4.28)

is the maximum allowable number of jobs per active server so that the users’ QoE

(i.e., latency) requirement is satisfied with probability 1 − β. Thus by (4.1), the

minimum number of active servers cmin to guarantee the users’ QoE satisfaction is

cmin =
KT

kmax

. (4.29)

Therefore, the condition below should be satisfied when selecting the threshold cth.

Condition II: cth ≥ cmin. (4.30)

By conditions (4.22) and (4.30), the optimal number of active servers, cth, is deter-

mined by solving the following equation:

cmin = cmax. (4.31)

Or equivalently, the system performs optimally in terms of servers’ energy and users’

delay when cth servers are active so that

kmin = kmax. (4.32)
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Thus, I obtain the threshold cth using (4.21), (4.29), and (4.32) as

cth =
KT

kmax

. (4.33)

4.2.3 Modeling as a Planned Market

I model the proposed offloading system by a planned market, where the buyers corre-

spond to the offloading users and the sellers map to the active servers. Unlike a free

market, the demand of buyers is fixed here, since the total number of jobs offloaded

at every time slot is equal to KT. Moreover, the price of receiving computing services,

i.e., ep does not result from a competition among the sellers, but is determined by a

central controller (for instance, macro base station or network planner) to ensure that

the entire system works efficiently, i.e., (4.32) is satisfied. More precisely, by (4.2), if

the price is too high, a server can achieve the threshold reward Rth, even by working

under capacity. However, the network planner would like to determine the price so

that the minimum number of servers are active. Therefore, the planner desires to

ensure that every active server receives enough jobs (K) to fulfill its capacity, while

keeping K under the maximum value allowed by the users’ QoE requirement. More-

over, every active server working at its capacity should achieve Rth. To address this

trade-off, ep is determined by a central controller with respect to the the ideal number

of sellers (cth) to ensure system efficiency, i.e., to ensure that (4.32) is satisfied. Then,

using (4.3), I have

ep =
Rth + ef

kmax

+ ej, (4.34)

with kmax given by (4.28).

Now the challenge is to activate cth servers in a self-organized manner, which is

addressed in the following section.

58



Chapter 4. Efficient Activation of MEC Servers Using Minority Games and
Reinforcement Learning

4.3 Modeling the Problem as a Minority Game

I model the formulated server mode selection problem as an MG, where the M servers

represent the players, with a cut-off value cth for the number of active servers. In

each offloading period, the servers decide between the two actions, i.e., being active

or inactive, denoted by 1 and 0 respectively. I denote the action of a given player i

in the time slot t by ai(t). The number of active servers c(t) maps to the attendance.

Each player has S strategies. According to our formulated servers’ mode selection

problem and analysis in Section 4.2,

• If c(t) ≤ cth, each of the c(t) active servers (the minority) earns a reward higher

than or equal to the minimum desired reward, Rth.

• If c(t) > cth, c(t) active servers cannot achieve Rth. In this case, inactivity (i.e.,

the action of the minority) is considered as the winning choice, since inactive

servers spend no cost without being properly reimbursed.

4.3.1 Control Information

After each round of play, a central unit (e.g., a macro base station) broadcasts the

winning choice to all servers by sending a one-bit control information:

w(t) =


1, if c(t) ≤ cth

0, otherwise.

(4.35)

Note that neither the actual attendance value c(t) nor the system cut-off cth is known

by the players.
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4.3.2 Utility

Let Ui,a(t) and Ui,p(t) denote the utility that server i receives for being active and

being inactive, respectively. Based on the discussion above, I define

Ui,a(t) =


1, if c(t) ≤ cth

0, otherwise

(4.36)

and

Ui,p(t) =


1, if c(t) > cth

0, otherwise.

(4.37)

4.3.3 Distributed Learning Algorithm

Every player applies the seminal strategy reinforcement technique [24] given in the

original MG formulation. The algorithm is summarized in Algorithm 2 for some

Algorithm 2 Distributed learning algorithm to solve server mode selection MG [28]

1: Initialization: Randomly draw S strategies from the universal strategy pool,
gathered in a set S. Moreover, For every s ∈ S, set the score Vi,s(0) = 0.

2: for t = 1, 2, ... do
3: If t = 1, select the current strategy, si(1), uniformly at random from the set S.

Otherwise, select the best strategy so far, defined as

si(t) = arg max
s∈S

Vi,s(t). (4.38)

4: Select the action ai(t), predicted by si(t) as the winning choice.
5: The central unit broadcasts the control information (winning choice), w(t).
6: Update the score of the strategy si(t) as

Vi,s(t+ 1) =

{
Vi,s(t) + 1, if ai(t) = w(t)

Vi,s(t), otherwise
(4.39)

7: end for
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Table 4.2: Simulation parameters.
Parameter Value
β 0.05
µ 7
ν 1
σ2 2
a −1
b 2.5
ef 50
ej 5
KT 500
M 21
Rth 100
S 2
T 0.35s

player i. Details can be found in [28].

4.4 Numerical Results

For numerical analysis, simulation is carried out for 32 runs and in each run, the

servers randomly draw S strategies and repeatedly execute the MG for 10000 offload-

ing periods. All simulation parameters are given in Table 4.2. For these values, using

(4.33), the cut-off value yields cth = 15. Random choice game where each server

selects its action uniformly at random is also simulated for comparison purposes.

In Fig. 4.2, I present the variation of important system parameters as a function of

users’ QoE index β (see Section 4.2). From the figure, the following can be concluded:

As β increases, the number of required active servers (cth) decreases, thereby allowing

a larger number of offloading tasks to be processed per server. Similarly, the maximum

allowable number of tasks per active server (kmax) increases with increasing β. In fact,

with larger β, larger delay (τ) is tolerable, or in other words, longer task queue (kmax)
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is allowed. Naturally, in this case, the price per task, ep, reduces, as intuitively

expected for a weaker service.

-
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Figure 4.2: Variation of cth, kmax, and ep as a function of β.

Figure 4.3 shows the fluctuation of the attendance around the threshold cth for

different β values. From the figure, it can be seen that the servers are able to self-

organize so that the attendance remains near the maximum allowed number of active

servers (i.e., cth), although this value is unknown to servers. Thus, the computational

pool operates at an energy-efficient point while the delay requirement of users are

satisfied with high probability.

In MG, the fluctuation of attendance around the threshold is quantified using a

parameter known as the volatility, formally defined as the standard deviation of the

attendance. As mentioned previously, this value also corresponds to the social welfare

of the system. In Figure 4.4, the variation in volatility is shown as a function of the
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Figure 4.3: Chapter 4: Time evolution of attendance.

brain size (m). Naturally, it is desired to have small volatility, implying that the

fluctuations near cth is small, and the number of winners is very often close or equal

to the maximum possible number of active servers (cth). A more detailed explanation

on how the brain size affects volatility can be found in [22,38].

Figure 4.5 illustrates that as the number of active servers in the pool increases,

users’ probability measure, i.e., Pr[τ > T ] decreases. This is because when a larger

number of servers choose to become active, the number of tasks per server becomes

smaller thus making the offloading delay for the last task in the queue become smaller.

The figure also shows that when the number of active servers exceed the cut-off

cth = 15, the desired β = 0.05 can be achieved.

Fig. 4.6 shows the changes in users’ probability measure, i.e., Pr[τ > T ]. The

users meet their QoE certainty requirement whenever c(t) > cth. As the attendance

fluctuates near cth, the probability value also remains near the desired certainty.
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The average utility per user is depicted in Fig. 4.7. It can be seen that the

utility of MG-based strategy is higher than that of random selection. Yet, it is below

the average utility of the optimal scenario. This is due to the fact that in MG-based

method, servers make decisions under minimal external information, and without any

coordination with other servers.

Figure 4.8 shows the average number of servers that achieve a reward greater than

or equal to the desired threshold reward, Rth. According to the numerical analysis,

while the maximum possible number of servers that can obtain R ≥ Rth remains

cth, MG based procedure performs superior to the random selection though it is still

less than the desired maximum. Moreover, alternative approaches such as all servers

choosing to become active or all servers choosing to become inactive result in zero

servers being able to receive R > Rth. In other words, if all servers make the same
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Figure 4.5: Variation of users’ QoE measure vs number of active servers.

decision to be either active or inactive, all servers land in the majority thus resulting

them to lose.

4.5 Applying Different Learning Algorithms

In an MG, the agents apply an algorithm to learn the best action to be played in

the next round of play. Apart from the seminal reinforcement learning mechanism

(given in Algorithm 2), a variety of learning algorithms are available in the MG

literature that can be used by agents to learn the best action. Many of these al-

gorithms fall into the category of reinforcement learning, where the learners balance

the exploration-exploitation trade-off in order to maximize their utilities. In addition,

learning methods based on stochastic strategies are also available where agents choose

their actions with some probability.
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Reinforcement learning is a well-known technique applicable to distributed deci-

sion making. In reinforcement learning, autonomous agents learn the best action by

using the rewards and penalties received in each round of play. Since agents do not

know which action is the best, they learn by balancing exploration of unknown actions

and exploitation of the current knowledge of used actions. In other words, agents use

trial and error approach to maximize their utilities over the horizon. Reinforcement

learning mechanisms are very-well suited for learning in MG, since adaptation to the

collective action of the other agents in the presence of information scarcity can be

achieved using such methods. In what follows, I introduce some of these algorithms

and their applicability in an MG setting using the same system model given in Section

4.2.
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4.5.1 Exponential Learning

In [27], exponential learning is applied in MG. Each agent is given S strategies, and

the agent scores each of these strategies based on the accuracy of its prediction of

the winning action. Each agent i selects a strategy s with some probability pi,s(t),

defined as: pi,s(t) = eγiVs,i(t)/(
∑S

s′=1 e
γiVs′,i(t)), where Vs,i(t) is the score of strategy s

at time slot t. Moreover, γi is the learning rate of each agent. Note that, γi = ∞

corresponds to selecting the strategy with the highest score which is the seminal MG

learning algorithm.

4.5.2 Q-Learning

In [39], Q-learning is applied in an MG, where each agent keeps track of the Q-value

of two actions. Every agent i uses the following rule to update the Q-values, where
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Ui,a is the utility received by agent i as a result of some action a. This rule makes

use of the utility information (Ui) possessed by the agents in order to learn the best

action (i.e., exploitation of the available information). The Q-learning in MG is two

fold; (i) Q-values are determined for the two actions (I refer to this as Action-based

Q-learning ) and (ii) Q-values are determined for agents’ strategies (I refer to this

as Strategy-based Q-learning). In the second scenario, an agent keeps track of the

Q-values for each of her strategies :

Qi,a(t+ 1) =


Qi,a(t) + γi(Ui(t)−Qi,a(t)), ai,t = a

Qi,a(t), O.w.

Given Q-values and some ε > 0, every agent selects the action with the highest Q-

value with probability 1 − ε, and with probability ε selects an action uniformly at
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random (i.e., exploration).

4.5.3 Adaptive Strategy

Authors in [40] developed an adaptive learning strategy for MG. Therein, for each

actions a, each agent i calculates a parameter called attractiveness (ti,a) defined as:

ti,a = (1 − xi,a)ha + xi,aUi,a, where xi,a is the attitude of action a, which is initially

selected randomly from [0, 1]. Moreover, ha is the fraction of rounds in which action

a has won in a given history of the game. The action with the highest attractiveness

is chosen by the agent in the next round of the play. As the game evolves, in each

round of play, an agent adapts her attitude values such that if agent selects action a

and wins, xi,a will be increased by some constant a+ whereas if agent selected action

a and lost, xi,a will be decreased by some constant a−.

4.5.4 Win-Stay Lose-Shift Strategy

In [41], this learning method is presented as a simple behavioral model for the agents

playing an MG. This is a stochastic strategy-based learning method. If an agent wins

in the current round of the game, she selects the same action in the next round. In

contrast, if the agent loses, she will choose the other action with some probability p.

Authors analytically showed that for small enough p values, the social welfare (i.e.,

volatility) of the system approaches the optimal value. More precisely, for the MG

with N odd players and N/2 cutoff value, p is chosen such that p = x/(N/2) where

x� N .
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4.5.5 Roth-Erev Learning

This learning method is applied in MG in [39]. Similar to the Q-learning, an agent

determines a weight for each of her actions, denoted by qa and referred to as action

weights. However, unlike Q-learning, qa is defined as the sum of the initial action

weight and the discounted sum of all past utility values received for playing action a

(λ is referred to as the discount factor). Agents use the following rule to update the

actions’ weight:

qa(t+ 1) =


λqa(t) + Ui,a(t), ai,t = a

λqa(t), O.w.

Given the values of qa, the selection probability of action a is defined as pa = qa∑
a′ qa′

.

4.5.6 Learning Automata

According to [39], learning automata can be applied as an MG learning mechanism,

by using the following rule to update the probability of playing every action a, denoted

by pa, after each round of play:

pa(t+ 1) =
pa(t) + γUi,a(1− pa(t))− δ(1− Ui,a)pa(t), ai,t = a

pa(t)− γUi,apa(t) + δ(1− Ui,a)(1
2
− pa(t)), O.w.

Here γ and δ are known as the reward rate and penalty rate, respectively.

4.5.7 Random selection

In a random selection scenario, agents simply select one of the two actions uniformly

at random.
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4.5.8 Numerical Results for Different Learning Algorithms

I choose M = 21 and cth = 10. Simulations are carried out for 32 runs and in each

run, the servers repeatedly execute the MG for 10000 offloading periods. I compare

all aforementioned learning methods based on the social- and individual welfare of

servers as well as users’ QoE measure. For different learning schemes, the parameters

are selected as follows, using the best values as suggested in the literature:

• Exponential learning: γ = 100.

• Q-learning: γ = 0.1, ε = 0.01.

• Adaptive strategy: Initial attitude values xi,0 = xi,1 = 0.5, and a+ = a− = 0.5,

∀i ∈ {1, ...,M}.

• Win-stay lose-shift strategy: p = 0.005.

• Roth-Erev learning: λ = 0.2.

• Learning automata: γ = 0.2 and δ = 0.3.

• Seminal MG: S = 2.

In Fig. 4.9, I show the variations in the volatility (i.e. inverse global efficiency)

as a function of the parameter α = 2s/M , with s being the memory size, i.e., the

length of the historical data used by the agents for learning. It can be seen that

exponential learning method achieves the best social welfare (inversely proportional

to the volatility), with its lowest volatility approaching to 0. In addition to examining

the social welfare of the system, I also investigate the performance of each learning

method in terms of individual welfare of the servers. In doing so, I illustrate the

average utility per server during the entire the game for each learning algorithm in
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Figure 4.9: Performance comparison in terms of (inverse) global efficiency.

Fig. 4.10. Moreover, in Fig. 4.11, I compare the performances of algorithms in

terms of the average utility. It can be concluded that using an appropriate learning

method, a near-optimal average utility is achievable by the servers, despite not having

any prior information.

In Fig. 4.12, I present the performance of each learning algorithm in terms of the

users’ experienced QoE measure. Finally, in Fig. 4.13, I compare the performance of

different learning methods in terms of users’ experience. To this end, I simulate the

probability that the total time required by each server to perform all tasks, denoted

by τ , exceeds the deadline T . Naturally, Pr[τ ≤ T ] is then the probability that no

user, even the last one in the queue, would experience a delay larger than T to have

its offloaded task done.

The learning methods such as exponential learning, adaptive strategy, win-stay
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Figure 4.10: Average utility per server for different learning algorithms

lose-shift strategy and Q-learning that exhibit better performance than the seminal in-

ductive learning method help servers achieve better coordination and thus form larger

minorities. This reduces wastage of computation server resources and hence improves

the resource allocation efficiency. Therefore, these methods can be recommended as

more efficient and sophisticated learning rules for the formulated MG-based server

selection problem.

4.6 Summary

This chapter presents an energy efficient, distributed edge server activation scheme

focusing on the perspectives of both servers and users. In doing so, I address the

uncertainty caused by the randomness in channel quality and users’ requests. I first

analyze the statistical characteristics of the offloading delay. Based on this, I model

the computation offloading problem as a planned market, where the price of computa-

tional services is determined by a central governor. Afterward, by using the theory of

MG, I develop a novel approach for efficient mode selection at the servers’ side. The
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Figure 4.11: Performance comparison in terms of average utility for each server.

proposed pricing framework in combination with the designed mode selection mecha-

nism guarantee a minimal server activation to ensure energy efficiency, while meeting

the users’ delay constraints with adjustable certainty. Moreover, the mode selection

scheme is distributed, and does not require any prior information at the servers’ side.

Numerical results are presented to illustrate the trade-off between the efficient server

activation and meeting users’ expected latency threshold. Then, I apply a number

of different distributed learning algorithms to solve the formulated MG. I obtain the

simulation results to compare the performance of these learning methods in terms of

the social and individual welfare of servers as well as the QoE measure of users.
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Figure 4.12: Users’ QoE measure for different learning algorithms
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Chapter 5

Conclusion and Future Directions

5.1 Conclusion

In this thesis, I have provided a brief tutorial on minority games and discussed the

applicability of the minority game as a tool to mathematically model the distributed

resource allocation problems in dense wireless networks. As its main contributions,

this thesis provided distributed solutions for the problem of efficient edge server uti-

lization problem while focusing on both users and servers perspectives. To this end,

distributed algorithms have been developed using the minority game for two different

scenarios: (i) multiple user offloading decision making problem and (ii) efficient edge

server activation problem.

I have investigated the distributed mobile computation offloading problem in a

small cell network with MEC capability. I have formulated the offloading decision

making problem of users accessing a given SBS such that the computational resources

of the SBS are utilized to its maximum capacity while the users’ latency remain be-

low a specific threshold. Thus, in this work, both users’ and server’s perspectives

have been considered. I have formulated the problem using a minority game theo-
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retic framework and provide a distributed offloading decision making mechanism that

does not require any amount of communication among users. I have numerically in-

vestigated the performance of the proposed algorithm against the random offloading

decision making mechanism.

I have formulated the efficient edge server activation problem for a MEC network

considering a pool of edge servers. Therein, I have analyzed the statistical charac-

teristics of the offloading delay. Based on this, I have modeled the computational

offloading system as a planned market, where the price of computational services is

determined by a central governor. Afterward, by using the theory of minority games,

I have developed a novel approach for efficient mode selection at the servers’ side. The

proposed pricing framework in combination with the designed mode selection mech-

anism has been shown to guarantee a minimal server activation to ensure energy

efficiency, while meeting the users’ delay constraints with adjustable certainty. Thus,

both users’ and servers’ requirements have been taken into account. The proposed

mode selection scheme is distributed, and does not require any prior information at the

servers’ side. Moreover I have applied different reinforcement learning and stochastic

learning methods to solve the formulated minority game and numerically investigate

their performances to examine which methods provide the best performance in terms

of both users’ and servers’ utility. Numerical results have been presented to illus-

trate the trade-off between the efficient server activation and meeting users’ expected

latency threshold.
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5.2 Future Research Directions

5.2.1 Edge Server Resource Utilization in MEC

The edge server resource utilization problem is multi-faceted and it is a fundamental

problem in the next generation of MEC networks. Related to the proposed models

given in the Chapter 3 and Chapter 4 of this thesis, below we provide few possible

extensions and improvements as future research directions.

• Apart from meeting the desired latency threshold for the users, minimizing

users’ offloading energy cost need to be addressed for different MEC offloading

use cases.

• In MEC offloading, users typically have access to multiple computational re-

sources such as, local device, SBS, MBS, D2D offloading or even the remote

cloud [42]. To model such multi-option offloading decision making scenarios,

multiple option MG (simplex game) [29] can be used.

• Though we consider homogeneous user devices, in practice, different types of

devices are available with varying computational and battery capacities (e.g.,

smart phones, tablets, laptops); thus MG models that incorporate different

user types can be employed to model such scenarios. Moreover, the offloading

tasks can also be heterogeneous and also users may have the options of full and

partial offloading. Hence, the system model can be extended to accommodate

such requirements.

• Since MEC networks typically consist of a variety of edge nodes such as SBS,

MBS, wireless access points, etc., the edge servers are not homogeneous in

practice. Therefore, heterogeneities in their computational capability, power
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and storage should be taken into account when developing efficient resource al-

location mechanisms. To model such scenarios, games that incorporate different

types of players could be applied.

• In addition, to ensure fairness among the servers, analyses using various equi-

librium notions need to be carried out.

• Moreover, mathematical tools such as queuing theory and Markov decision pro-

cesses can be used to more accurately model the randomness in the offload-

ing system such as random arrival of computation tasks and the users’ status

change.

5.2.2 Other Potential Research Areas for MEC

Below we point out some potential research directions for the area of MEC.

• Information-Centric MEC: Inspired by the concept of caching of popular files,

in information-centric MEC, the data and/or services can be saved at different

edge servers to promote an efficient computation. In fact, by using this concept,

the amount of data which should be uploaded/downloaded dramatically reduces.

Naturally, not all the data/services can be cached at every server. In addition,

the service demand for users might change over time. Thus the problem to

address is as follows: How much and which data/services shall be saved at

each server? In addition, the servers should be motivated to cooperate with

each other, so that if necessary, the tasks/data/services can be exchange among

servers. Such problems can be addressed by using cooperative game theory,

repeated auctions, and exchange economy.
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• Economics of MEC Server Virtualization: Mobile network operators (MNOs)

or service providers (SPs) may lease the MEC servers/resources from infras-

tructure providers (InPs). The InPs then will need to virtualize their MEC

resources among different MNOs/SPs. The economics of the virtualization of

MEC resources can be modeled and analyzed using game theory models. As an

example, for a scenario with multiple InPs and multiple MNOs/SPs, a multi-

leader and multi-follower Stackelberg game model can be formulated to deter-

mine the equilibrium prices that the MNOs/SPs need to pay to the InPs. In

a more general scenario, virtualization of MEC resources/servers can be com-

bined with virtualization of other resources including infrastructures (e.g., base

stations), spectrum resources, as well as caching storage. Modeling and analysis

of such a general virtualized network under users’ quality of experience (QoE)

constraints is an interesting research problem.
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