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ABSTRACT

A Finite Formulation technique, the Cell Method, is developed in the framework of an

incentric dual mesh and applied to the general problem of guided wave structures. cell

Method is a numerical technique which uses a primal-dual mesh complex and global

(integral) variables instead of field variables (densities). In the Cell Method, Maxwell,s

curl equations are exactly discretized as topological relations. Constitutive relations, on

the other hand, are approximately discretized by the use of a proper dual mesh. The

common choice for construction of the dual mesh is the barycentric scheme which

produces non-diagonal constitutive matrices. A new time-harmonic finite formulation

using a non-orthogonal dual mesh is presented which is based on choosing incenters of
primal triangles as an altemative to barycentric dual points. In the incentric fonnulation,

diagonal constitutive matrices are obtained which result in a syrnmetric positive definite

eigenvalue problem in the first step (zero-order approxirnation).A minimization

procedure is then utilized to take into account the non-orthogonality of the dual mesh and

efficiently improve the accuracy of the zero-ord.er solution. An eigenvalue system with

symmetric positive definite constitutive matrices assures the stability and convergence of

the solution while being computationally inexpensive.

In this thesis, the finite formulation for time-harmonic electromagnetic is described in

detail' This is followed by a comprehensive theoretical explanation about the proposed

incentric scheme. Several examples of electromagnetic problems including multi-scale

geometries and inhomogeneous media are presented. Results of applying the proposed

numerical technique are compared with the results obtained from a Finite Element

Method' Analytical solutions are also used for comparison wherever possible.
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Chapter 1 - Introduction

1. 1 Background

Observation of electromagnetic phenomena and consistent experimental results are the

starting point for the formulation of "electromagnetic laws". As in the case of all fields of

science, the results of real experiments are usually expressed in terms of measurable

(global) variables (charge, magnetic and electric flux and current). While the physical

law itself describes a unique relationship between global variables, there are different

ways for expressing the law. In almost all fields of science and engineering, the dominant

tool for formulating physical laws is differential calculus. The basis for differential

calculus is performing a limiting process on spatial (*,y,") and temporal (r) dimensions

and producing infinitely small objects (dx, dy, dz, dt). rJtllizing this procedure, the

physical law is applied on infinitesimal objects and the result is the "differential

expression of the physical law". The coÍìmon use for differential calculus and the strong

ties between physics and mathematical tools, however, make us believe that the

differential expression ¡s in fact the physical law itself. The following example explains

the journey from a physical law to its differential expression. Consider the electric

Gauss's law:

"The total electric flux leaving a closed surface is equal to the total electric charge

enclosed by the surface."

The above physical law is exact for any closed surface, regardless of dimensions,

material properties and the metric chosen. ln differential calculus, holever, we apply the



law on an infinitesimal volume as shown in Fig. l-i.

Figure l-1: The infinitesimal volume, V,withdimensions dx, dy, dz is enclosed by surfaces .S7-56 and

is used to derive the differential expression of Gauss's law.

By assuming the total charge inside the volume is Q(Z) and the total electric flux

leaving ( with respect to the volume) the surfaces of the volume is:

Y:Y(,S2)+ Y(,S)+ Y(.14)+ Y(S3)+ Y(S6)+ y(S¡),

where V(,S) is the total electric flux leaving the surface, S.

We can no\ry express the law in an exact form as e(Z):V. Introducing the field

variable D:D*â*+D yày+D.ã., electric flux density, for infinitesimal surface, d^S, we have

Y(dÐ:D"ldSl where ld,Sl is the area of surface dS and Dn is the normal (to the surface)

component ofD. Therefore:

Q(tr):(D** ¿* dydz - D* dydz)+( Dy+ay dxdz -D, dxdz)+ (D.+a. dxdy -D, dxdy).

Dividing both sides by lIt]:dxdydz g¡ves

Q/l rl A p: dD*/ dx+dDrl dy+dDl dz

where p is the electric charge density. The familiar expression in the right hand side of

the above definition is in fact divergence operator, V.D.

In this journey, we departed from physically meaningful global variables (total charge,

z

Î
IFyr

x



Q, and total electric flux, Y) and used field variables (charge density, p, and electric flux

density, D) instead. We also lost the geometrical objects associated with the global

variables (volume for charge and surface for eleckic flux) and instead obtained functions

defined on every spatial point. The advantage of using differential calculus is presumably

the "accuracy'' of an exact solution function, f(x,y,z,t).It is yet to be investigated and

determined how necessary and worthy this joumey is in reality when an exact analytical

solution does not exist. Even when an analytical solution exists, the accuracy of the

obtained solution is restricted since calculations need to be truncated at some point.

Forfunately, there are also other approaches developed for solving physical problems.

The practical answer to the significant problem of solving differential equations with

no analytical solution is "Numerical Techniques". fn these techniques, the spatial (and/or

temporal) domain is divided to many small (non-infinitesimal) elements (Fig. l-2). The

linear system of algebraic equations obtained from discretizationof domain is then solved

for a finite number of unknowns.

v
1

Infinite number
ofunknowns at

(¡y) points.

r..f(x,y)=s(x,y)
Ç"o'F¡" ¡=Gs o' 1

Figure 1-2: Left: Differential representation of a 2-D physical problem. Differential operator, f,

unknown solution function,l and the source function, gs, are all defrned on infinite number of points (¿y).

Right Numerical representation of the same problem. Matrix operator, L, unknown column vector, F, and

the source vector, G" in a mahix relation.



Experimental laws and relations in a physical field often result into one final equation

to be solved. Numerical techniques are developed to find an accurate approximation to

the solution of this (often differential) equation which is called the "fundamental

equation". A question might now arise: is a differential formulation the best basis for

starting a numerical technique? Finite Formuiation or Finite Integration Techniques (FIT)

are a successful NO answer to the above question. Starting from Maxwell's equations in

theír differential form is the basis for differential-based numerical methods such as

Finite-Difference-Time-Domain (FDTD), Finite Element Method (FEM) and

Transmission Line Matrix (TLM). Finite Volumes also uses differential equations in a

conservative form. Starting from the integral or finite form of Maxwell's equations is the

basis for Finite Integration Techniques (FIT) and the Cell Method.

Cell Method is a numerical technique based on exact discretization of physical laws

and on using global (integral) variables. While the field variables are a result of

performing a limiting process and defined at every point of the spatial domain, global

variables are defined and measurable on their corresponding geometrical elements. For

example, when describing "current", it is completely necessary to relate the concept to a

"surface" through which the current passes.

Cell Method is categorized as a Finite Integration Technique with respect to its use of

global variables. Some attractive features of a Finite Formulation as compared with a

differential formulation are its simple basis, separation of topological relations and

material and metric dependent (constitutive) relations, natural continuity of global

variables over material discontinuities and less spurious solutions.

Fig. 1-3 expresses a basic comparison between Finite Formulation and differential



formulation in [1] where the important bases for the Cell Method are stated as follows:

o Physical laws are topological relations and can be applied directly and exactly

on any discrete domain by using proper global variables.

o Material and metric dependent relations, constitutive relations, can be

approximated over the discrete domain.

o Discretization of constitutive relations can benefit from the use of a dual mesh

either explicitly (e.g. in the Cell Method and FIT) or implicitly (e.g. in Finire

Elements or Finite Volumes methods).

Physical problem:

Observation and experiment,
laws and relations.

Infinitesimal calculus:
differential equations

rarely Anal¡ical
""""""'> solution

''- .l Finite set 
"f "lr"brJ_l@"

Figure 1-3: Cell Method as a direct path from the physical problem to the final discrete matrix equation.

An important fact should be mentioned here: discretization of constitutive relations is

the only place that approximations are applied in all numerical techniques [l-3]. practical

differences between numerical techniques arise from the way that these relations are

approximated and constitutive matrices are built. This fact is clearer in the Cell Method

as topological and constitutive relations are distinguished by their different nature.

Cell Method:

Primal and dual meshes,
global variables,
topological laws,

constitutive relations.



The objective of this thesis is to:

o Explain the theory and attractive features of the Cell Method by utilizing the

method in modeling some applied electromagnetic problems

o lnvestigate the role and importance of having a dual mesh and the relation

between the dual mesh and interpolation or so called shape functions

e Propose a ne\ry scheme (lncentric Cell Method) for construction of the dual

mesh emphasizing its advantages over the existing schemes

o Report the results of applying the new scheme on some real complex guided

wave skucfures

o Compare the results of the proposed scheme with the results obtained from

other well known numerical schemes to show its effectiveness

1.2 Review

The term "Cell Method", as referring to a computational technique to solve physical

problems, was first originated in Tonti's publications on the use of direct discrete

formulation in electromagnetics [1,2]. The concept, however, was based on a long time

study of similarities between physical laws in different fields of science (see references to

Tonti's earlier publications from 1972 in [1,2]) which resulted in a functional

classification of physical variables and definition of two kinds of orientations (inner and

outer) for physical variables as given in 11,21. The similar idea of applyrng algebraic

topology to the analysis of other techniques, such as Finite Element Method, FEM, and

Finite Volume Method, FVM, was addressed by Mattiussi [3]. Bossavit's research on a

discrete Hodge operator and reinterpretation of FEM [4,5] also reveals the same concept



of different numerical treatments for topological relations and constitutive relations.

Finite Integration Techniques, FIT, although not under the same name, was introduced by

Weiland for solving Maxwell's equations as early as 1977 16l. His more recent

publication, including all details about using Finite Integration Technique in time-domain

for structured grids [7], is usually considered as the original reference for FIT in

electromagnetics. The results of applying FIT to a wide range of electromagnetics

probiems including S-parameters computations and time-domain applications validates

FIT and its accompanying code named MAFIA [7]. Schuhmann and V/eiland introduced

Finite Integration Technique on non-orthogonal grids with triangular fillings [8] and its

application to eigenvalue problems later [9]. Volume 32 of PIER, Progress In

Electromagnetícs Research, Monogrøph Seríes on "electromagnetism and geometry",

includes many papers on discrete electromagnetics, Finite Formulation, and geometry and

topology related considerations in computational electromagnetics.

When Tonti first presented Finite Formulation or the Cell Method [1], many

similarities with FIT put the Cell Method under FIT category of numerical techniques.

Bossavit uses the term, Yee-Like-Schemes, as referring to a category of numericai

techniques in which two meshes, dual to each other, are used to solve Maxwell's

equations [10,11]. The concepts and methodology of the Cell Method have been also

compared with, or explained in the context of, some other less familiar techniques such as

Domain-Integrated Field Relations approach [12] where it is concluded that the main

difference between the two techniques is the approach taken in the modeling of the

constitutive relations. Repetto and Trevisan have used the term "Global Formulation" as

referring to the same concept as Finite Formulation [13]. Comparisons between the



results obtained from a Finite Formulation and a Finite Element commercial code are

given in [13] for two magnetostatic examples.

The majority of the literature on the Cell Method concerns:

o The concept and fundamental theory

o Numerical issues: stability, accuracy, convergence and numerical expense

. Comparisons with other numerical techniques

o Variations and hybrid algorithms

o Applications

The essence of the "Cell Method" is to provide a direct discretization of field laws

without requiring a differential framework. Based on the frontier publications on Finite

Formulation and the Cell Method technique l7-3, 12,14], the computational procedure

can be summarized in the following steps:

o Discretization of the spatial domain (primal mesh)

o Definition of global variables on oriented primal geometrical objects

. Applyrng the proper physicai laws directly on the finite cells in the primal mesh

o Construction of the dual mesh and definition of the global variables on the

oriented dual geometrical objects

. Applyrng the proper physical laws directly on the finite cells in the dual mesh

o Discretization of constitutive relations as the link between primal and dual

variables

o Solving the final set of algebraic equations

Although the Cell Method is categorized as a Finite lntegration Technique, it does not



employ the integral of field variables as it is done in FIT. Instead, the Cell Method uses

global variables which are measurable physical quantities. The attempt to avoid the use of

field variables sometimes fails because constitutive relations are often stated in a point-

wise form compatible with differential formulation. It is also important to note that in ali

numerical techniques and only in the discretization of the constitutive relations, we use

approximations (interpolation or shape functions, even uniform ones) either explicitly or

implicitly. In our recent work [15] we discuss the finite framework for discretization of

constitutive relations. The premise is that constitutive relations are usually obtained based

on experimental data and measurements on global variables and hence can be expressed

in a finite framework.

While the first publications on the Cell Method U-121 mostly consider fundamental

concepts and the philosophy of the Cell Method, later works addressed important

computational issues such as the construction of proper constitutive matrices which

guarantee consistency, convergence and stability ofthe technique.

As was mentioned earlier, the Cell Method utilizes a primal-dual mesh framework.

The explicit use of a dual mesh enables one to properly define electromagnetic variables

on their corresponding geometrical objects. It also defines a robust geometrical base for

interpolation and averaging schemes. Characteristics of the dual mesh are directly

employed in the construction of the constitutive matrices, therefore, a good knowledge

about the construction of the dual mesh seems necessary. ln almost all related

publications, a barycentric dual mesh is considered. Delaunay-Voronoi, as an orthogonal

primal-dual mesh complex is a good choice with the advantage of producing diagonal

constitutive matrices, however, it is not always possible to achieve a Delaunay-Voronoi



tessellation especially in compiex geometries and inhomogeneous media [16].

The most challenging issue in all numerical techniques is building proper discrete

constitutive matrices, discrete Hodge operators, [4,5]. The order of accuracy in a

numerical technique, convergence, stability and consistency issues depend solely on the

properties of the constitutive matrices. It is only in the process of discretizing constitutive

relations that we need to apply approximations and interpolation schemes. A major

portion of research on the Cell Method has been carried out so far on the properties of the

constitutive matrices derived from different dual mesh construction schemes used and

different approaches to derive proper constitutive matrices. It has been proved that a

sufficient condition for a computational scheme to be consistent is to have synrmetric

positive definite constitutive matrices ll7-191. Microcell Interpolation Scheme, MIS, for

building constitutive matrices on a barycentric subdivision was proposed by Manone [6]

soon after the first publications on the Cell Metho d Ll,2l. Constitutive matrices derived by

MIS, in general, are non-diagonal and asymmetric. The results of applying MIS to solve a

resonant cavity problem show good agreement with an FDTD solver [6]. Later on, a new

consistent way to build symmetric constitutive matrices for 2-D grids called symmetrized

MIS, SMIS, was proposed by Manone [20]. The results reported in [20] show better

accuracy in comparison with MIS when applied to the 2-D Laplace equation and, a 2-D

circular cavity. In a further theoretical study on the properties of constitutive matrices

[21], Manone investigated constitutive matrices for elechostatic and magnetostatic cases

and stated that these properties can be used to provide an altemative sufficient condition

for the stability of a generalized hybrid FDTD algorithm. Two generalized hybrid

algorithms based on the Cell Method formulation were presented by Manone and Mitoa
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for 2-D l22l and 3-D l23l multiscale problems. The two algorithms were validated by

providing numerical examples and were compared in terms of accuracy and

computati onal effici ency.

The barycentric subdivision, as the most common choice for the construction of the

dual mesh in Finite Formulation, has been extensively studied. Bossavit discusses

Whitney Forms (node elements, edge elements and face elements) along with some

concepts of differential forms in [10]. Microcell Interpolation Scheme, MIS, has been

used for the construction of the constitutive matrices with FIT [19] and the Cell Method

formulation 120-251. Other general approaches to build constitutive matrices for a

barycentric dual mesh have been also proposed, investigated and applied to some

electromagnetic problems [26-31]. In [26], different shapes of primal cells, oblique

parallelepipeds or oblique triangular prisms, are considered with a barycenteric

subdivision. Novel discretization of constitutive relations has been deduced and

s)¡mmetric positive definite constitutive matrices are obtained. The proof of syrnmetric

positive definiteness is given. Numerical examples in the frequency-domain show an

expected O(h') error behavior. Comparisons between the results obtained from the

proposed scheme and the analytical solutions (or the results obtained from MicroWave

Studio) show good agreement.

The finite set of algebraic equations resulting from Cell Method formulation has been

compared, in different ways, to that obtained from other numerical techniques, FEM in

particular. It has been proved that the final coeffrcient matrices are the same for The Cell

Method with a barycentric subdivision L1,3,17,27,271 or aVoronoi dual mesh ll5,l7l,
and FEM with linear shape functions. The source vector (RHS vector), however, can be

11



different depending on the discretization of source functions.

Another major portion of research on the Cell Method is the application of the Cell

Method to different electromagnetic problems. Trevisan and other researchers have used

the Cell Method formulation in different electrostatic 132,331, magnetostatíc 1341, 2-D

and 3-D Eddy-Cunent problems [35-37]. In [32] two kinds of primal cells, triangular and

quadrilateral, are used to calculate the capacitance of a simple 2-D geometry. The results

are close to each other and to those obtained from FEM. A Delaunay-Voronoi cell

complex has been used in [33] to implement finite formulation for the computation of the

electric potential in a 2-D electrostatic probiem. A barycentric dual mesh has been

considered in [34] and the problem of a ferromagnetic sphere in a uniform fîeld is solved.

The results show good agreement with the analytical solution.

While there is a considerable number of publications on the application of the Cell

Method in electrostatics, magnetostatics and time-domain problems, frequency-domain

problems are studied only in a few publications. Manone applied the Cell Method

formulation to the analysis of 2-D photonic crystals [2a] nd compared the results to

those obtained from FEM. The comparisons show very good agreement. Application of

Finite Integration Technique to solving 3-D resonator problems and comparisons given in

[26] also validates the formulation in the frequency-domain. Marrone, Grassi and Mitra,

have used the Cell Method with MIS for calculation of the propagation constant of

inhomogeneous filled waveguides [38] where less accuracy for the barycentric Cell

Method, compared with FEM, is reported.

Application of the Cell Method to a wide range of electromagnetic problems and

comparisons with other numerical techniques, demonshates the abilities of the Cell
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Method in accurately modeling electromgnetics problems with complex geometries,

inhomogeneous and anisotropic media in both time and frequency domain .

Recent related research on the Cell Method includes extensions of the meshless

approach on Cell Method [39], implementation of different open boundary conditions

such as Perfectly Matched Layer, PML, 1301, boundary integral formulation [40] , and

surface impedance boundary conditions [41]. It is concluded in [40] that the proposed

procedure for implementation of the boundary integral formulation in Cell Method

converges to the exact solution (of the discussed example) even for coarse meshes. It is

also shown in [al] that very little computational effort is needed to find a very good

approximation of simple Surface Impedance Boundary Conditions, SIBCs, and that such

approximation is easily fitted into existing Cell Method codes.

The review of the research carried out about finite formulation suggests that this

framework is an easy to implement, effective and robust alternative to differential

framework.

1.3 Contribution and outline

In the new world of computational power and super fast computers, and in the era of

complicated applications requiring electromagnetic analysis, it is quite reasonable to

choose numerical techniques over analytical approaches because we often have to (as

analytical solutions do not exist for the majority of realistic problems).

Differential-based numerical techniques use a framework which is based on a limiting

process and point-wise approaches. A reasonable, attractive and natural choice to avoid

the unnecessary limiting process would be a Finite Formulation. In Chapter Two of this
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thesis, we explain Finite Formulation and compare it in detail with the Differential

Formulation using an electrostatic example.

Cell Method formulation for general 3-D time-harmonic electromagnetics is given in

Chapter Three. The discussion is then narrowed to the case of waveguide structures with

an extruded 2-D primal mesh. The final eigenvalue problem is derived for this case. In

the last section of Chapter Three we investigate the role of the dual mesh in the

construction of constitutive matrices. Two coÍrmon choices for the dual mesh on a primal

triangulation, Voronoi dual mesh and the barycenhic dual mesh are introduced along

with their characteristics, advantages and weaknesses. An interesting discussion is carried

out on the accuracy issue and how the order of accuracy is determined in the Cell Method

through discretization of constitutive relations. We also discuss and answer the question:

where is the dual mesh in other numerical techniques, e.g. Finite Element and Finite

Volume, and what is the relation between shape functions and the dual mesh?

Since there are only two schemes mainly used for the construction of a dual mesh,

Chapter Three leaves one with the question: Are there any other schemes available for the

construction of a dual mesh? To have a positive answer to this question, we have

proposed a new dual mesh construction scheme, Incentric Cell Method. The attempt in

this scheme is to retain the orthogonality of the primal-dual complex as in the case of an

orthogonal dual mesh while making it possible for arbitrary primal triangulation

including possible obtuse triangles. The proposed scheme is explained in complete detail

including simplified schemes for Transverse Electric, TE, Transverse Magnetic, TM, and

Hybrid cases in Chapter Four of this thesis.

Waveguide structures are a very common configuration in electromagnetics. The
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analysis of these structures is both interesting and useful because of their wide range of

application in common systems and circuits. Waveguide structures are a good choice for

applyng and examining a new numerical scheme as the analysis can be carried out in a

simplified 2-D extruded geometry.

A common issue in the analysis of unbounded problems in electromagnetics, e.g.

microstrip transmission lines, is the treatment of open boundaries. Chapter Five of this

thesis discusses the treatment of boundary conditions, particularly transverse open

boundaries, in the Incentric scheme .We inhoduce an adaptive mesh open boundary to

truncate the computational domain. An asymmetric coplanar waveguide is considered as

a numerical example to validate the adaptive mesh open boundary condition.

In Chapter Six, a variety of complex waveguide skuctures are examined. We present

the results of applying Incentric Cell Method scheme and comparisons are made with a

FEM solver, Comsol Multiphysics. The results are also compared to the available

analytical solutions, empirical formulations or the reported results of applying other

numerical schemes, e.g. barycentric subdivision, whenever possible. Explanations are

given on the results obtained from applying the lncentric scheme.

Results of applying the Incentric Cell Method to the problems in Chapter Six and

comparisons with other numerical techniques and analytical solutions validate the

accuracy and effectiveness of the proposed scheme. It is concluded that this scheme can

be effectively applied to complex multi-scale problems in elechomagnetics. Chapter

Seven concludes the thesis and discusses some open ateas of research on the related

topics.
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Chapter 2- Finite Formulation versus

Differential Equations

Physical laws are the result of consistent observations and experiments. The great

similarity between physical laws in different physical fields is an important fact

supporting the idea: discovering a physical law requires finding, defining and fifting

proper physical variables to a topological relation which by itsetf does not involve

any specific physical quantify. Due to the historical evolution of physics and

mathematics, topological relations have been expressed in a diflerential-integral form

(e.g. Stokes and Divergence theorems), however, they can be expressed directly and

exactly in a finjte framework il-71. For a brief description of finite topological relations

consider Fig. 2-l and the following notation and definitions for directed three

dimensional geometrical obj ects :

1- V, is an arbitrary volume in the spatial domain and its boundary is a closed

surface, ^L ô(vr) : s, ô(s):0. we can define a direction for v, arbitrarily as

being either a source (outward to its closed surface) or a sink.

2- Sp is an arbitrary surface in the spatial domain and its boundary is a closed line,

L: ô(Sp) : L' ô(L) :0. We can define a direction for ,Sp arbitrarily along its

closed boundary.

3- Lo is an arbitrary line in the spatial domain and its boundary is a set of two

directed points, P: ô(Là : P, ô(p) =0. We can define a direction for Lo

arbitrarily from one boundary point to the other.
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P¡ is an arbitrary point in the spatial domain and we can

direction far P¡ arbitrarily as being either a sink or a source.

define a positive

Figure 2-l:

Now we define the following generic global variables as línear functions operating on

the geometrical objects: K (Zr) on volumes, Õ (^tÐ on surfaces, V (zo) on lines and S @¡)

on points. The linearityproperty,F(aXi+bX,):aF(X¡)+bF(X) , where F is a global variable

defined on the geometrical object X, and a and b are scalars, allows us to add global

variables on the corresponding geometrical objects and define topological relations.

2.I Topological relations

Topological relations linearly (e.g. up to a scaling factor) relate the global variable on

any geometrical object (except points) to the global variable defined on its boundary as

4-

V(I") = ac þ(ô L"),

O(sp) = açY(ô Sp),

(2-r.a)

Q-l.b)

K(Vr): ân O (ôVr), (2-l.c)

where àG, âc, and ao are scaling factors. To illustrate the three relations in Q-l), consider
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the following examples.

2.1.1 Gradient relation

Given the global variable on points as shown in Fig. 2-2, we can define the global

variable on lines as in (2-1.a) with ac:-l:

v(4) =-(-0(4)+ô(P,))
v(Lr)=-(-ó(4)+0(P,)
v(¿,) = -(0(P,)-0(4))

or V=-G.0,

where '.' denotes matrix multiplication and V and

the finite equivalent of the gradient operator and

between directed points and lines as

( 0 ; if point i is not aface of line cr.

t_
e . :) i ; if point i is a face of line c withvctr ì tn" same direction. )

I

L-l ; if point i is a face of line cr with
the opposite direction.

where a"face" for a line is any of its boundary points.

0(Pr)

Figure 2-2: Topological relation between lines and points.

(2-2.a)

O *. column vectors. Matrix G is

represents the topoiogical relation

þ(Pz)
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2.I.2 Curl relation

Given the global variable on lines as shown in Fig. 2-3, we can

variable on surfaces as in (2-1.b) with aç:l:

qs') = V(¿r) -v(t) +v(r')
qE) = -v(¿, ) - v(¿, ) -v(¿,)

or O:C.V,

define the global

where (Þ is a column vector. Matrix C is the finite equivalent of the curl

represents the topological relation between directed surfaces and lines as

( 0 ; if line cr is not aface of surface B.
I

Coo: { I ; if line cx is a face of surface B with 
,

I the same direction.

L -l ; if line a is a face of surface B with
the opposite direction.

where a"face" for a surface is any of its boundary lines.

(2-2.b)

operator and

v(Lt)

Figure 2-3: Topological relation between surfaces and lines.

As an exercise, we can start from the values on the points in Fig. 2-2 and obtain the

finite equivalent of the vector analysis identity (V x (V$) = 0) as

V=-G.ö, õ= C.V =O ={.(G.O) =0, C.G= 0.

iotsro
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2.L .3 Divergence relation

Given the global variable on surfaces as shown in Fig.

variable on volumes as in (2-1.c) with a¡:l :

K(4 ) = qSr ) +(.S, ) -(^S, ) +(S¿)

or K=D.O,

2-4, we can define the global

(2-2.c)

where K is a column vector. Matrix D is the finite equivalent of the divergence operator

and represents the topological relation between directed volumes and surfaces as

( 0 ; if surface B is not aface of volume y
I

D,n:{ 1 ; if surface B is a face of volume y with

I the same direction.

[ -1 ; if surface B is a face of volume y with
the opposite direction.

where a"face" for a volume is any of its boundary surfaces.

K(r,r)

Figure 2-4: Topological relation for volumes and surfaces. The surfaces are arbinarily directed as:

S{1,2,4),52Q,3,4),.S3(1,3,4)J4(1,3,2). The volume is di¡ected as a source.

As an exercise, we can start from some values on the lines in Fíg. 2-4 and obtain the

finite equivalent of the vector analysis identity ( V .(V x A) : 0 ) as

I 
Ìrr'...:'-:*;...
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Õ=C.V, K=D. @ +K=D.(C.Ð=0, D.C=0.

Relations 2-I.a,2-1.b,2-L.c, are the finite equivalents of the "Fundamental lntegration

Theorem", "Stokes Theorem", and "Divergence Theorem", specified by the incidence

matrices, G, C, D, respectively. They do not contain any material and metric information.

To solve a physical problem, in addition to topological relations, we also need "physical

links" between variables which contain medium and metric information. These links are

usually called "constitutive relations" [3].

2.2 Constitutive relations

Having the spatial domain divided into a (primal) mesh consisting of geometrical

objects, proper global variables can be defined and topological relations stated. To use

global primal variables to describe a real physical system requires defining a set of "dual"

variables and forming a physical-based relation between primal and dual variables. For

example, the variables defined on surfaces (fluxes) are related to the variables defined on

dual lines (voltages). This relation is where all material and mehic-dependent information

appear. To formulate constitutive relations, we need to define a dual mesh. The minimal

requirement to construct a dual mesh is:

For any prímal (dual) volume, r, Û), there is one and only one dual þrimal) point,

F, (P) For any primal (duat) surface, sp 6r), there is one and only one dual þrimat)

line, ip (,).

The correspondence between primal and dual variables can be described as

F, <>Vr,Ïue SB, ^î* *+ L o, 7, ë I
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The dual geometrical objects for the primal mesh in Fig.2-I are shown in Fig. 2-5.

Figure 2-5: Dual geometrical objects for primal geometrical objects in Fig. L The dual volume for

the primal point (P) is not shown.

With the given definition for duality, it is easy to show the following relations between

incidence matrices for primal and dual meshes:

õ=-Dt , õ=C, , ñ=-G' ,

where superscript t denotes the transpose operator and õ, õ and ñ are Gradient, Curl

and Divergence incidence matrices for the dual mesh. The same topological relations as

(2-2) are aiso valid for the dual geometrical objects as

F = õ.ñ,

Y : õ.F,

Q: ñ.v,

whereÑ,F,V,Q are the column vectors containing the global variables

dual points, lines, surfaces and volumes, respectively.

(2-3.a)

(2-3.b)

(2-3.c)

defined on the

With definition of eight global variables on primal and dual geometrical objects and

six topological relations (2-2,2-3) we still need two more relations to be able to solve for
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any global variable.

The link between the variables for the primal lines and the variables for the dual

surfaces (and vice-versa) embody the physical system they are used to describe,

and are called constifutive relations.

Constitutive equations can be approximately expressed as a mapping from the space of

V to the space of V, and from the space of F to the space of (Þ as

W(,T) = M,V(¿),

o(Ð = tytuFlZ¡,
(2-4)

where M, and Mu are constitutive matrices.

In contrast to the exact and physically independent nature of topological relations,

constitutive relations (and therefore constitutive matrices) are dependent on the physical

properties of the media, construction of the dual mesh, metric and directions chosen. In a

physical link between global variables (as scalar numbers) all the above information are

included in the constitutive matrices. The results of experiment and measurement on a

defined physical system must be fit in the finite matrix forms of Q-$. In (2-4), global

variables defined on surfaces (fluxes) are considered as scalar numbers with an implicit

direction given to them as the normal to the surface. It is based on the physical concept of

'þassing through a surface" which automatically includes only the normal component of

a directional flow. The above concept is mathematically expressed using field variables

(e.g. magnetic flux density) as the inner product of a flow and the normal to the swface

1e.g.lJ; .as ¡.

Specific choices for the dual mesh might result in simple mapping firnctions from the
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primal variables to the dual variables. For example, if the physical link is a relation

between fluxes (which implicitly means normal flux) through the primal surfaces and

voltages on the dual lines in an isotropic linear media, an orthogonal dual mesh (if

possible) results in diagonal constitutive matrices. For a non-orthogonal dual mesh,

knowing the vaiue of the flux through a primal surface is not enough to obtain the voltage

on the dual line and an averaging procedure is needed using the neighbor fluxes. The

resulting constitutive matrix is therefore non-diagonal.

To understand how we can apply the discussed finite framework to solve a rcal

physical problem, we study the electrostatic case as an example in the following section.

2.3 Example: Electrostatic laws

Electrostatic laws are the statement of relations between global electromagnetic

quantities when ô / ôt + 0 and are known as: Faraday's law, Gauss's law and the electric

constitutive relation. We now study these laws in both finite and differential frameworks.

2.3.1 Faraday's law

In its general time dependent form, Faraday's law is a curl relation, (2-l.b), and relates

the value of changes (in time) in magnetic flux, O, for a surface, ,S, to the value of the

electric voltage, V, on the boundary of the surface, ô,S. Since the time variation of

magnetic flux is zero in electrostatics; the electrostatic Faraday's law states:

"The electric voltage for any closed line is zeÍo.,'
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Fínite formuløtion:

Using global variables on the primal geometrical objects, Faraday's law in

electrostatics is

Õ(.Sp)--V(L)=s, L=õSp. (2-5)

By defining a global variable on primal points (electric potential, $) it is guaranteed that

the value of Õ is zero for all surfaces. This yields the equivalent gradient form of

Faraday's law asY = -G.0 . The minus sign is the scaling factor in Equation (2-1.a) due

to experimental convention. Fig.2-6 illustrates Faraday's Law.

Pz
"" -'l}...........

ji 1v (r")=-(Ö(Pr- ó(Pr))
'""41 Õ('tß)=0 i{-\... i

ii ôPt
V(ô.çß)=0 .a. j

t"..........j

Figure 2-6: Faraday's law for the surface, Sp, enclosed by the line, ô,Sp .

D iffe r e ntí a I fo r m u I øt í o n :

Differential equations are the result of performing a limiting process on global

variables and using field variables. Based on the defined global variables ín (2-l), we can

obtain electric field intensity, in a specific direction, o, as

Eo A n,o ry¿ e_6)
La-+o Lo

If a potential function, {, is defined on the points, as shown in Fig. 2-6, then (2-6) can

be rewritten as
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e"A ri* Y+)= lim -(ø\Pr)-!lP,Ð =-voþ" Lo-o Lo Pr-+P2 lPt - Prl

which results in the definition of gradient operator, V, and

Faraday's law as Æ = -V0.

(2-7)

differential expression of

2.3.2 Gauss's law

Gauss's law is a balance or divergence relation, Equation (2-3.c), and relates the value

of the charge, Q, in a volume, i¡, to the value of the electric flux, Y, passing through the

boundary of the volume, ôt,. The electrostatic Gauss's law states:

"The electric flux leaving a closed surface is equal to the electric charge in the volume

enclosed by the surface."

Finíteformulation:

Using global variables on the dual

e(ç)=Y(S) ; S=ôV,,

or in its equivalent matrix form

Q= õ.V.

geometrical objects, Gauss's law is written as:

(2-8)

The scaling factor is equal

illustrates Gauss's law.

to one in (2-3.c) due

(2-e)

to experimental convention. Fig. 2-7

Figare 2-7: Gauss's law for a volume, (, enclosed by the surface, ô/, states that: qç/,¡=v ¡61 ¡.
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D íffer e nti a I fo r m u I øtí o n :

Performing a limiting process on the defined global variables in

electric charge density and electric flux density, respectively, as

p,ltirn g , o"1li* *9-) 
,

l,+o Vi 3o+o S"

(2-8), we obtain

which, referring to the example in Chapter One, on Page 2, results in the

(and/or integral) form of Gauss's law:

p=y.D o ffr.as=[[[0d,,ôvv

where V. is the divergence operator.

(2-10)

differential

(2-tt)

2.3 .3 Constitutive relation

The electrostatic constitutive relation is a physical relation between the electric voltage

and the electric flux in a physical medium. For simple isotropic linear media [42], this

relation is described by a constant number, e, relating the electric flux density to the

electric field intensity at a point. Perhaps the most important problem in the finite

expression of constitutive relations is that these relations are available using point-wise

constants, e.g. e and ¡r. Since constitutive relations are found experimentally and involve

global variables, finite formulation is also a valid expression of these relations.

Finite formuløtion:

The electric constitutive relation can be approximated directly (not uniquely) as

Y(S") = M,(a,a).V(L,), (2-12)
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where M, is a matrix factor to be found experimentally. This factor depends on material

properties, geometrical primal-dual relation and the metric chosen. For an orthogonal

primal-dual relation, as shown in Fig. 2-8, and in a simple analogy with the concept of

the electrostatic capacitance, (2-12) can be rewritten as:

ffi=ï",":, lÍ1 W M,(a,o)='l*1 ,ffi=,ffi

metric and primal-dual mesh

or volume of the geometrical object, A.

relation (through tr'. t.'-l|f l. Lrl

(2-r3)

refers to the length, area

(2-6) for E,

becomes:

and (2-10)

(2-14)

point P(x,y,z) as in

where e, electric permittivity, is a constant solely dependent on the material's electric

properties. It can be seen that M. depends on both material properties (through e) and

Figure 2-8: Electric constitutive relation for a homogeneous region.

D iffe r e n t í ø I fo r m u I øt i o n :

Performing a limiting process on (2-13) and using definitions

for D, the differential form of the electrostatic constitutive relation

D (x,y,z):eØ(x,y,z)

where e is the permittivity of the infinitesimal volume around the

Fig.2-8.
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2.3.4 Poisson's equation

Using global variables and finite formulation, (2-2.4 2-9,

from of Poisson's equation as

G'.M" G.0 =8 .

The differential expression of electrostatic laws (2-7 ,2-11,2-14)

form of Poisson's equation as

V.eV$--p.

2-12), we obtain the finite

(2_rs)

results in the familiar

(2-16)

The finite form of Poisson's equation, (2-15), is applicable to a discrete spatial domain

directly and results in a set of algebraic equations. In cases with no exact analytic solution

(almost all cases), however, numerical techniques are needed to solve the differential

form (2-16) which, after the appropriate discretization, also lead to a set of algebraic

equations.

Differential equations are, with no doubt, very powerful tools for analyzing and

solving physical problems. It should be noted that the discussion in this thesis is not about

the usefulness of differential equations. The discussion here is about the necessity of

using differential equations while we often have to use numerical techniques for solving

real physical problems. It is reasonable to consider the effectiveness of a discrete

framework when using numerical techniques.
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Chapter 3- Finite Formulation for Time-

Harmonic Electromagnetics

Finite formulation of physical laws leads us to a computational framework which does

not require the use of differential calculus. A finite formulation can be generally applied

in both time-domain and frequency-domain analysis of inhomogeneous electromagnetic

problems with irregular geometries. In this chapter a finite formulation technique, the

Cell Method, is explained and applied to formulate a general 3-D source-free

inhomogeneous problem in the frequency-domain (time-harmonic). To establish the finite

framework we shall define and address:

1-Time-harmonic global variables and topological relations for the primal mesh

2-Time-harmonic global variables and topological relations for the dual mesh

3-Finite form of constitutive relations, the link between primal and dual variables

The third issue, without doubt, is the most important and challenging aspect of all

numerical techniques including finite formulation [ 1 -7, I 0- 1 2].

Practical problems in electromagnetics can be categonzed in main classes such as:

antennas and radiation, scattering, EM imaging and detection techniques, and

transmission lines and guided wave structures. Guided wave structures are specifically

considered in this thesis because of the wide range of applications and instructive

purposes. In the numerical analysis of a guided wave structure, the 2-D cross section is

discretized and a 2-D extruded mesh is used to simplify the 3D formulations. Complete

Cell Method formulations are given for this class of problems which result in an

eigenvalue equation.
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In the last section of this chapter, conskuction of a dual mesh is discussed in detail.

We also briefly explain how the explicit construction of a dual mesh in the Cell Method

is related to the implicit use of a dual mesh througþ shape functions or interpolation

functions in other numerical techniques.

3. 1 General time-harmonic electromagnetics

Maxwell's equations are a set of four topological and material-independent laws

(Faraday's law, Maxwell-Ampère's law, Gauss's electric law and Gauss's magnetic law)

goveming the behavior of electromagnetic waves. Maxwell's equations are usually

expressed as a set of differential or integral equations in the time-domain or frequency-

domain.

In frequency-domain (time-harmonic) analysis, we assume that the variation in time

for any electromagnetic variable, F, obeys the exponential relation: F(x,y,z,t):Fr(*,y,t)'

d'' wherc li is the spatial component of the variable, F. This assumption results in time-

harmonic Maxwell's equations and the familiar difFerential and integral expressions are

yxE=_jaB,
yxH=jaD+J,
V'.8 = 0,

Y.D=p

respectively, where .l9 is

Ji ,,B is the magnetic

f r.u = -¡roJJn.os,
L=ôS S

f H .ar : j'lJD . as + lJr 
.a+

L=AS S S

ff B.ds = o,
S=ôV

ffo.4, = ffio 
.d",

, (3-2)

the angular frequenc52nf, j is

field intensíty, D is the electric

(3-i) or

the electric field intensity, ro is

flux density, H is the magnetic
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flux density, "I is the electric current density and p is the electric charge density. When al

is not zero and along with current continuity enforcement (conservation of charge) the

first two equations in (3-l) or (3-2) known as Maxwell's curl equations, automatically

result in the last two equations (Maxwell's divergence equations) and hence we only

consider the first two equations in (3-1) or (3-2) as the fundamental time-harmonic

electromagnetic laws.

Maxwell's curl equations are mathematical expressions of topological relations

between electromagnetic global variables as

Faraday's law

The electric voltage measured for any closed line is proportional to the change (in

time) of the total magnetic Jhu passing through the surface enclosed by the line.

The scaling factor for this proportionality is found, by experiment and measurement, to

be (-õ / ôt) in general and (-jor) in the time-harmonic case.

Maxwell-Ampère's law

The magnetíc voltage measured þr any closed line is proportional to the change (in

time) of the total electríc fltn passing through the surface (including the conduction flux)

enclosed by the line.

The scaling factor for this proportionality is found, by experiment and measurement,

tobe (ô / ôt) in general and (jco) in the time-harmonic case.

It is apparent from the above expressions that the only geometrical objects we need in

order to apply Maxwell's curl equations on a spatial domain are primal and dual lines and

surfaces. The lines and surfaces, however, should be members of a meaningful complete

primal-dual relation as was defined in Chapter Two.
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The first step to start a numerical procedure is discretization of the spatial domain (see

an example of mesh-less approaches in [43]). In mathematics, discretization concerns the

process of transferring continuous models and equations into discrete counterparts. This

process is usually carried out as a first step toward making them suitable for numerical

evaluation and implementation on digital computers. Different standard mesh generating

programs are available and can be used to divide the spatial domain into small elements.

The mesh can be either regular, same cell size and shape everywhere, or irregular with

different cell size and cell shape. The advantage of having an irregular mesh is greatly

appreciated in multi-scale problems when there are regions with very fine details as well

as in problems with curved boundaries.

Triangular 2-D meshes and tetrahedral 3-D meshes are the most common form of

spatial discretization. The unit cells in these meshes have the least possible number of

sides and are called simplex [10]. For a 3-D tetrahedral mesh, a simplex consists of a

volume (tetrahedron), four surfaces (hiangles), six lines and four points as shown in Fig.

3-1.

Figure 3-l: A 3-D inegular (tetrahedral) mesh and a tetrahedral unit cell (a 3-D simplex).

Referring to Fig. 2-1, all geometrical objects in a 3-D mesh (points, lines, surfaces and

volumes) are oriented as
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1- Points (P¡) are considered as "sink".

2- Lines (L") are oriented arbitrarily.

3- Surfaces (^1B) are oriented arbitrarily.

4- Volumes (Vr) are oriented as "source" (i.e. their surfaces' outwards).

Following the definitions given in Chapter Two, we can readily build the incidence

matrices (G, C, D) for the primal mesh. These mahices are utilized in the exact finite

expression of Maxwell's equations.

3.1.1 Primal global variables and topological relations

To apply Faraday's law on primal mesh, we define the following primal global

variables:

1- Electric voltage, V, is defined on primal lines and, based on the familiar differential-

integral point of view, can be expressed as

V(¿)= !n-at,(volt), (3-3)
L

where I represents any primal line.

2- Magnetic flux, O, is defined on primal surfaces and, based on the familiar differential-

integral point of view, can be expressed as

O(S) = II U .Ot, (volt.second), (3-4)
,s

where S represents any primal surface.

Using these global variables, V and (Þ, and the definition of curl incidence mahix, C

(see equation. 2-2.b), we are able to write the exact finite form of Faraday's law as a

topological relation
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C.V = _jco(Þ (3-s)

where V is the column vector consisting of electric voltages defined on all primal lines

and Õ is the column vector consisting of magnetic fluxes defined on all primal surfaces.

3.1.2 Dual global variables and topological relations

For any given primal mesh, a dual mesh can be constructed to fulfili the minimum

requirements mentioned in Chapter Two (see section 2.2). The center of each primal

volume is a dual point. The choice of a "center" for primal volumes or surfaces is

determined by the chosen dual mesh construction scheme. The last section of this

chapter concerns the construction of the dual mesh, its effect on the accuracy of the

scheme, and its relation to the shape functions used in Finite Element Method [44]. Dual

lines connect dual points in adjacent primal volumes through their common surface and

in general do not need to be one-piece straight lines. Fig. 3-2 depicts dual geometrical

objects for the simplex in Fig. 3-1.

To apply Maxwell-Ampère's law on the dual mesh, we define the following dual global

variables:

1- Magnetic voltage, F, is defined on dual lines and, based on the familiar differential-

integral point of view, can be expressed as

F(Z) : !n.at, (ampere), (3-6)
L

where -Ûrepresents any dual line.
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Figure 3-2: a) Dual geometrical objects for the 3-D simplex

point in a 2-D mesh.

o)

in Fig. 3-1, b) Dual surface for a primal

based on the familiar differential

(3-7)

I
I
I
I

2- Electric flux, Y, is defined on dual surfaces and,

integral point of view, can be expressed as

Y(.ç) : ll r. ds, (ampere.second),
s

where ,S represents any dual surface.

Using these global variables and the definition of dual curl incidence matrix, Õ:Ct,

(see section 2.2) we are able to write the exact finite form of Maxwell-Ampère's law as a

topological reiation

ç. p: jrrly (3-8)

where F is the column vector consisting of magnetic voltages defined on all dual lines

and Y is the column vector consisting of electric fluxes defined on all dual surfaces.

The two matrix equations, (3-5) and (3-8), are the exact finite form of Faraday's law

and Maxwell-Ampère's law, respectively. They do not depend on material properties or

the metric chosen. To be able to solve for any unknown variable we need physical lirks

36



between global variables defined on the primal and dual meshes. These links are called

"constitutive relations".

3.1.3 Constitutive relations

Based on the discussion in Chapter Two, in a very general form, we express the finite

form of the electric and magnetic constitutive relations, respectively, as

Y=M..V , o=Mu.F (3-e)

where M, and Mu are square matrices dependent on the material properties and metric

and geometrical information. Fig. 3-3 illustrates how the global variables (for time-

harmonic electromagnetics) defined on primal and dual meshes are related thorough

topological (curl) relations and constitutive relations.

Dual Cell 
.&-.-...... 

.............----À Primal Cell

Electric flux (Y) Constitutive relation, M, Electric voltage (V)

Topologícal
relation (Õ\

Topological
relation (C)

Magnetic voltage (F) Constitutive relation, M, Magnetic flux ((Þ)

Figure 3-3: Global variables (for time-harrnonic EM) defined on primal and dual meshes are related

thorough topological relations (on the same mesh) and constitutive relations (on different meshes).
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Substituting (3-9) in (3-5) and (3-8) results in the finite form of the wave equation for

a general 3-D problem as

vt;'õv;'cV = r,r2V (3-10)

It is apparent from (3-i0) that, in general, inverses of M, and Mu are required in the

computational procedure. This raises a concern in the efficiency of the numerical

technique. These matrices should also satisfy some necessary conditions in order to

ensure the stability and convergence of the time-domain schemes [7,11,17,20-231.

Diagonal constitutive matrices are the most convenient choice to ensure all computational

requirements for a consistent and efficient numerical technique.

3.2 Finite formulation for guided wave structures

Guided wave structures refer to a category of electromagnetic problems where wave

propagation in a specific direction is supported by the geometry and specifications of the

problem. Examples of this category are waveguide and multiconductor transmission line

configurations. In a guided wave problem, the foansverse cross section is perpendicular to

the direction of propagation and is invariant with respect to the direction of propagation.

Consider the transverse cross section of a wave gurde structure as an arbitrary 2-D

surface in the x-y plane. Variation of all electromagnetic variables with respect to z is

assumed as e-Ï' and F(x,y,z):F, (*,y) e-v' , where F represents an arbitrary electromagnetic

variable and ¡'r is its transverse component. Fig. 3-4 shows the 2-D cross section of the

primal mesh and an extruded triangle. A dual volume (an extruded dual surface) for a

primal point in a triangular mesh is shown in Fig. 3-5. The relation between primal and
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dual geometrical objects and incidence matrices are simplified for a

structure as:

î,<+L,, l*4 , õ=G' , õ=C

where G and C are incidence matrices for the2-D primal mesh.

guided wave

(3-1 1)

transverse triangular longitudinal
reclangular surface

Figure 3-4: The general 2-D geometry for wave propagation problem and a unit extruded cell showing

the transverse and longitudinal surfaces.

Figure 3^5: A dual ltne, io(for the primal line, L) and a dual surface, .í, (ør tne primal point, P¡) in the

2-D cross section ofa guided wave struch¡re.

The key to obtaining the final eigenvalue equation for a waveguide structure is

apply topological laws on transverse triangles and longitudinal rectangles (as shown

Fig. 3-a) separately.

Application of Faraday's law (3-3) on primal transverse and longitudinal surfaces

results in two equations as

to

in
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CV,e = -jco(Þi ; for transverse surfaces,

TV,o + GE: = -jor(Þl ; for longitudinal surfaces,

where superscript p refers to the primal mesh and

longitudinal components, respectively. E! is the

yFd +C'ãj : -jrY,o for longitudinal surfaces,

(3-12.a)

(3-12.b)

subscripts t or z, refers to transverse or

longitudinal component of the electric

(3-13.a)

(3-13.b)

field defined on primal points.

In the same manner, application of Maxwell-Ampere's law (3-4) on dual transverse

and longitudinal surfaces results in two equations as

GtFd = jr¡Yj for transverse surfaces

where superscript d refers to the dual mesh and subscripts t or z, refers to transverse or

longitudinal components, respectively. H: is the longitudinal component of the

magnetic field defined on dual points. Some important points in deriving (3-12) and (3-

13) are noted:

1- The final equations are independent of Lz andE! ,H: are therefore field

variables (V/m and A,/m, respectively). This is the result of our use of ea'

function and elimination of Az in the formulation

2- G is the gradient incidence matrix for the 2-D primal mesh

3- C is the curl incidence matrix for the 2-D primal mesh

4- We have used the approximation 1 -e-T* =yM

Figure 3-6 demonstrates in detail how different components in (3-12) and (3-13)

obtained.

For the 2-D case, constitutive relations can be rewritten as
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Of : M,,F,' ; electric constitutive relation in transverse direction, (3-14.a)

Qf, =M,,ÍIj ; electric constitutive relation in longitudinal direction, (3-14.b)

Yf = Mu,V,o ; -ugretic constitutive relation in transverse direction, (3-1a.c)

Yl = M*Hj ; magnetic constitutive relation in longitudinal direction. (3-14.d)

Substituting (3-1a) in (3-12) and (3-13) and eliminating the longitudinal field

components, E! ,H!, we obtain the final finite eigenvalue problem for the guided wave

structure as

(y' - (2,Y, + ztc'z|c+ GY;'GtYr))v,o = o,

for primal electric voltages or

(y' - (Y,2, + c'z;tcz, + YrGY;'G')){ = o,

(3-l s.a)

(3-1s.b)

for dual magnetic voltages. In (3-15), Y1:jolMrl andZ+:jcoM¡.,t , are transverse admittance

and impedance matrices, respectively and Y, :jroM* and Zr:jrrrMp, , are longitudinal

admittance and impedance matrices, respectively.

The first term in the inner bracket in the LHS of (3-15) is related to the transverse

fields, the second term to the z component of the magnetic field, and the third term to the

z component of the electric field. Therefore, in the case of a Transverse Magnetic (TM)

problem the second term, and in the case of a Transverse Electric (TE) problem the third

term, will not exist in the final eigenvalue equation. It is noted that only the longitudinal

impedance and admittance matrices are inverted.

In the following sections and chapters of this thesis, the waveguide structure case with

an invariant 2-D cross section perpendicular to the direction of propagation, z, and a

triangular primal mesh is considered.
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CV,e = -Z,H:
GE:

(a)

C, H:
primal point

dual lines

(b)

Dual surface

Figure 3-6: Surfaces used to derive: a) (3-12) forprimal surfaces, b) (3-13) for dual surfaces.

3.3 Dual mesh and constitutive relations and matrices

The importance of constitutive relations as material and metric dependent relations has

been extensively discussed in the literature. A major complexity in discretization of these

relations is their conventionally specified continuous þoint-wise) form, D:aE and

B:pIf , which is compatible with the differential expression of Maxwell's equations. For

any physical material (excluding vacuum) these relations, however, are usually obtained

based on experiment and measurements involving global variables. To appreciate the

importance of the constitutive relations, it seems necessary to have a more detailed

discussion on how construction of a dual mesh in FIT and the Cell Method helps in the

construction of constitutive matrices.

GtF,o = Yr¡'

-yÂzçÞrt
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The role of a dual mesh in the Cell Method can be summarized in the following

important characteri stics :

1- The dual mesh defines the "center" for each primal element

2- The dual mesh defines the relation between primal and dual lines (in an extruded

mesh)

3- The geometrical properties of the dual mesh are used to average the constitutive

relations when adjacent primal surfaces have different material properties

4- Using the primal-dual framework and definition of the incidence matrices (G, C,

D) is convenient when assembling the coefficient matrices as well as in

interpolation schemes

5- The actual existence of the dual mesh makes the computational procedure more

reliable in terms of accuracy and stability

6- The primal-dual framework enables one to separately consider topological and

constitutive relations. This is especially attractive when we need to squeeze,

expand or scale the geometry of a problem while keeping the topology unchanged

It is assumed in this thesis that the primal mesh triangulation is always based on

considering material discontinuities. Therefore any primal volume (extruded surface) is

filled with one and only one specified material (e,p,o') while the dual volumes (extruded

surfaces) may consist of difflerent materials.

The orthogonal dual mesh and the barycentric dual mesh, as the most common choices

for a dual mesh, are described in the following sections.
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3.3.1 Orthogonal and barycentric dual mesh

In an orthogonal primal-dual cell complex, dual lines are orthogonal to primal surfaces

and vice-versa. Consider the primal surface in Fig. 3-7 arrd the orthogonal and non-

orthogonal dual lines. The global variable defined on the primal surface is the (magnetic)

"flux" passing through it. This flux implicitly includes only the perpendicular (to the

surface) component and is independent of the tangential component of the (magnetic)

field. The global variable, magnetic voltage, for the orthogonal dual line is also

dependent solely on the orthogonal (to the surface, tangential to the line) component and

therefore can be related uniquely to the (magnetic) flux in a scalar reiation. For any non-

orthogonal dual line the (magnetic) voltage is dependent on the tangential (to the surface)

component of the field while the (magnetic) flux is not. Therefore, for a non-orthogonal

dual line, a well-conditioned scalar relation (diagonal matrix) can not be found between

primal and dual global variables. To approximate the value of the (magnetic) voltage for

the non-orthogonal dual line, we need to use information about the neighbor primal

(magnetic) fluxes, which results in a non-diagonal matrix relation.

Figure 3-7: A primal surface and the orthogonal and non-orthogonal dual lines.
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Examples of orthogonal 2-D dual meshes are a regular rectangular mesh and

Delaunay-Voronoi triangulation as shown in Fig 3-8. In a 2-D Delaunay-Voronoi

triangulation, each dual point is the circumcenter of the primal triangle and each dual line

is the orthogonal bisector of a primal line.

primal line

dual line

(b)

a) 2-D regular primal-dual mesh b) Delaunay-Voronoi triangulation.

(a)

Figure 3-8:

A rectangular regular grid, as shown in Fig. 3-8, is not a good choice for multiscale

problems or curved geometries since the grid size can not be adjusted to match fine

details. ln an irregular mesh, on the other hand, the size of cells can change to provide the

proper resolution in different regions.

While an irregular mesh in general can consist of cells with different shapes and sizes,

2-D triangular and 3-D tetrahedral meshes are especially interesting since they are

simplicial meshes [10]. Delaunay-Voronoi triangulation, is a good choice as an

orthogonal dual mesh in multi-scale problems, but it is not always possible (especially in

3-D case) to build the Voronoi dual mesh since the circumcenter of an obtuse triangle

(tetrahedron) is not inside the triangle (tetrahedron). A Delaunay-Voronoi tessellation can

not guarantee the exact reconstruction of physical boundaries inside inhomogeneous

media [16]. In the case of other arbitrarily chosen dual points, the orthogonality property
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is not guaranteed and special averaging and interpolation techniques would then be

necessary to build non-diagonal constitutive matrices.

As an example of a non-orthogonal dual mesh, a barycentric dual mesh is

considered. In a barycentric dual mesh, each dual point is the barycenter (centroid) of the

primal surface (volume) and dual lines are two-piece lines connecting adjacent dual

points passing through the barycenter of primal lines (surfaces) as shown in Fig. 3-9. A

barycentric dual mesh has unique attractive characteristics in interpolation and averaging

schemes which will be mentioned later. Barycentric subdivision is a common choice in

FIT where Whitney forms (node elements, edge elements and face elements [5,i0,11])

are used in interpolation schemes. The Microcell lnterpolation Scheme, MIS [6,17] has

been used with the Cell Method formulation for construction of non-diagonal constitutive

matrices in a barycentric subdivision.

primal line
dual line

Figure 3-9: A 2-D barycentric dual mesh.

3.3.2 Order of accuracy and shape functions

In a real physical problem the constitutive characteristics of a physical medium are

often considered "continuous" and expressed in a point-wise format in spatial

.--"4
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dimensions. We assume that a homogeneous physical media is continuous in comparison

with the resolution of the spatial discretization, even in the case of a very fine mesh.

While discretization of the spatial domain does not affect topological laws, the

discrete constitutive relations, which depend on the material and geometrical objects, are

affected by the approximations used in the discretization process. "shape function" is the

familiar name for these approximations as used in Finite Element Method, FEM.

The spatial acçuracy issue arises from the fact that, in the discretization of a spatial

domain, an infinite number of unknowns associated with each cell are replaced by a finite

number of unknowns or Degrees of Freedom (DoF). The behavior of the solution

function inside each cell is approximated based on DoF. For example, if we represent

each cell by one unknown, a uniform (zero-order) shape function is obtained as the

approximation to the solution inside each cell. Consider the l-D example of Fig. 3-10.

For the continuous function on the left, different DoF result in different approximations

to the unknown function.

Zero-order shape functions are a low-accuracy, low-cost choice but they do not satisff

the continuity of the function on two adjacent elements. Higher-order shape functions

require much more computation, memory and time, and significantly increase the

complexity of the numerical procedure.

Constitutive relations are the only components in a discrete framework affected by

discretization. Although constitutive relations are often obtained based on experiments

and measurements, the result of these measurements on global variables is considered a

"material property'' (e.g. permittivity) with a continuous nature.
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! recond-order i
3 DoF

continuous function approximation

Figure 3-10: DoF and the order ofaccuracy.

As mentioned previously, a triangle is a simplex in 2-D space. This means that, as a

closed curve defining a surface, it has the minimum number of sides (straight lines). The

value of an unknown function can be linearly approximated inside the triangle based on

the values of the function on the vertices of the triangle. Fig. 3-11 indicates the linear

interpolation function for a triangle. The linear approximation can not be uniquely

defined for surfaces with more than three sides.

þ(xz,yz) ö¡(x:,y¡)

Figure 3-11 A linear shape function defined inside a triangle.

0r(xr,yr)
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Referring to Fig. 3-1i, the unknown function, $(x,y), is linearly approximated as

ô(x,y) - 
A,Ô(x,,Y') + ArÖ(xr,Yr) + ArÖ(x,,Yr)

A (3-16)

= $rdr + þzdz + $,crr,

where (x,y) is any point inside the triangle , A:41f,{2+As is the area of the triangle and

ct¡ âre the shape functions.

Integration of a linear approximation over the triangle results in an attractive property

of the barycentric dual mesh as follows;

IJo(*, Y)ds = 
q*-9t^ 

= or,oA, (3-t7)

(3-1 8)

(3-1e)

where M is the barycenter of the triangle. This implies that, for a linear shape function,

the primal constitutive matrix in the z direction (Mu, in 3-14.d) will be diagonal as

o(^s) = ![ n6, y¡as =l[rr, ,¿' +.lsu lø1 {Fu = v,, )

M*(þ,þ)=ffi=psp,

where MB is the barycenter of the primal surface, Sp. This however does not hold for the

dual constitutive matrix in the z direction (Mrr). This matrix has to be constructed using a

zero-order approximation.

It is important to note that the numerical order of accuracy in the finite formulation

directly reveals itself in the construction of the constitutive matrices. It should also be

noted that employrng a linear shape function for z component of the fields, implies a

uniform approximation for the transverse vanables over their corresponding geometrical

objects.

sn
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3.4 Finite Formulation, Finite Element and Finite Volume

Many different types of numerical techniques are available to provide accurate

approximations to the solution of physical problems. Although the results obtained using

different numerical techniques can be similar or even exactly the same, each technique

has its own attractive features or drawbacks which should be considered when choosing

the proper technique to solve a specific problem. Numerical techniques, in general, have

similarities and differences in the approach taken to model a physical problem.

In this section we

i- Compare Finite Formulation with Finite Element Method and Finite Volume

Method in modeling a homogenous Helmholtz problem

2- Investigate the impiicit use of a dual mesh in FEM and FVM

3- Explain why we prefer a Finite Formulation for modeling electromagnetic

problems

Finite Element Method (FEM) and Finite Volume Method (FVM) were first

introduced and applied in Computational Fluid Dynamics, CFD. Applications of these

techniques in electrical engineering began later in the 1960s for FEM [45] and 1990s for

FVM [46].

As it was mentioned earlier, Finite Formulation utilizes a discrete framework which is

not based on a differential formulation. FEM and FVM, however, are considered

difFerential-based techniques and do not explicitly employ a dual mesh. The word

"Finite" in FEM and FVM refers to the finite elements in the spatial discrete domain. In

FEM and FVM, topological relations are not distinguished from constitutive relations and

the fact that discretization only affects the constitutive relations is not straightforward to
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understand. Comparisons between Finite Formulation and other techniques, FEM in

particular, have been made as early as the beginning of Finite Formulation itself 1I,3, 5,

1 1, 151.

Numerical techniques such as FDTD and Finite Integration Techniques, FIT, which

benefit from a primal-dual framework, owe their noticeable success in Computational

Electromagnetics to the duality concept hidden in the governing electromagnetic

relations. In our comparison between the Finite Formulation technique and other "finite"

techniques, FEM and FVM, we consider the role of a dual mesh in Finite Formulation

and how it is implicitly constructed and used in FEM and FVM with linear shape

functions. We use the example of the solution to the homogeneous Helmholtz wave

equation, V'V + k?,V = 0 , (k: = -yz), for a rectangular waveguide geometry.

3.4.1 Helmholtz equation, Finite formulation

The finite form of Helmholtz wave equation for a waveguide geometry was derived in

section 3-2 as in (3-15) and can be rewritten as

(Cr. + k]I¡v¡ = ¡, (3-20)

whereCn = ZrYr+ZrC'Z;tC+GY;tGtYt , k1.=-y' and Vf is the array of DoF forthe

primal edges. In Cee , the G and C matrices are material and metric independent matrices

defined only by the topology of the primal mesh. These matrices remain unchanged when

the geometry is scaled or when the material or frequency change. kl is found from (3-20)

as the eigenvalue of (- Crr ).
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Geometrical characteristics of the dual mesh and the assumptions about the order of

accuracy were utilized directly in the construction of Y and Z matrices in (3-20). For an

orthogonal dual mesh and first order accurate longifudinal components, all Z and Y

matrices in (3-20) are diagonal and consequently symmetric positive definite matrices

which guarantees the consistency, convergence and stability of the schemefi0,17,20,21f.

In the case of a non-orthogonal dual mesh or higher order of accuracy, the Y and Z

matrices are not diagonal in general and different approaches are used to make alternative

diagonal or symmetric positive definite Y and Z matnces or otherwise prove the

consistency of the scheme U7,20,23,291.

3.4.2 Helmholtz equation, Finite Element Method

In the Finite Element Method, the homogeneous Helmholtz wave

equation, V'V + k3V = 0, is solved by minimizing a functional, F'. It is shown in [44] that

solutions of Helmholtzwave equation render stationary the functional

1 ---r(u) = irlJJvu 
vu. dç¿ -k:l$"'. del, (3-2r)

The functional F in

the solution of the

provided the U functions are continuous within the problem region.

(3-21) attains its minimum (stationary point) at U¡:ry which is

Helmholtz wave equation.

To minimize (3-21), the spatial domain, O, is divided into many finite elements. The

solution function is then approximated over each element in terms of the unknown values

of the solution at the vertices of the elements (or more points as in higher order schemes).
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We consider the components of the functional h (3-2I) for a 2-D triangular element as

shown in Fig. 3-1 1:

U=ö,0, +þzdz+$rcrr,

VU : ö,Vcr, + QrVa, + $rVor, (3-22)

r(u) = (1/2)[o: .S.@. -k: .o: .r.o"],

where S", the element stifÊress matrix, Tr, the element mass matrix, and @., the anay of

DoF on nodes, are defined as

S.,ù = JOo, 
.Vcr, ds , 1,¡ : f o, .a, ds , Õ.' = [0, ö, 0r]. (3-23)

Ac Ac

Here A" refers to the area of the triangle. Minimization of the value of the functional (in

terms of $'s which are free to vary) over the whole region and assembling all element

matrices together, result in the following matrix equation:

s@ - klr@ = o. (3-24)

Equation (3-24) can be rewritten as an eigenvalue equation as

(T-'S-t]r¡o=o (3-zs)

This equation can be compared to (3-20) for the Finite Formulation.

We have proved [15] that for linear shape functions the matrices, S and T, which are

dependent on the shape functions chosen, implicitly define dual lines as perpendicular

bisectors and the dual points as barycenters. It is also important to note that the inverse of

T matrix in (3-25) represents the dual surfaces around primal points in the finite

formulation. The finite equivalent of the cartesian Laplacian operator, v' ,( crr), is also

equivalent to the stiffüess matrix in FEM when linear shape functions are used. For a

complete geometrical proof see [15].
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As a conclusion it can be stated that shape functions are needed in both FEM and

Finite Formulation. Dual mesh exists implicitly in FEM at least for first order shape

functions, and it is defined by the integral of shape functions or their derivatives over the

triangles. Having an explicit dual mesh, as in finite formulation, however, is beneficial

regarding the points mentioned in the beginning of section 3-3.

3 .4.3 Helmholtz equation, Finite-Volume Method

Finite Volume Method was originated in Computational Fluid Dynamics (CFD). In

CFD, the governing equations are often expressed in a conservative (balance or

divergence) form. The concept of control volumes was used in CFD instead of

infinitesimal volumes in order to apply the balance equation.

Finite Volume Method did not receive attention in computational electromagnetics

until 1990 1461. Frequency-domain Finite Volume Method has received even less

attention and has not been widely used in computational electromagnetics. Finite volumes

does not offer a primal-dual framework and shape functions are not explicitly employed.

The technique, however, is extensively based on averaging and interpolation schemes.

For time-harmonic electromagnetics, Maxwell's curl equations, which naturally

involve lines and surfaces, need to be converted to a divergence form using volumes and

surfaces. The six Cartesian components of E and H fields are lumped together in a vector

form as: u=(¿', E.E,H,H.H,) and Maxwel|s curl equations are rewritten in a

compact divergence form as [47]

jroÛ+V.1¡4-t .G(Û¡=6,
(3-26)

where the term,V'G(U), coresponds to the curl of-lg and H in the curl equations (3-1)
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and M is a diagonal matrix specif,iing the material parameters. Integration of (3-26) over

prisms with triangular bases (SB) and height Az, results in

jroüu=ü[,åv'r1ñ"¡ù"lr-"|)+yMrF1ã,lu,ls,l], (3-2i)

where Úu is the collocated field vector computed at the barycenter of triangle B and

F(ñ")Ü" = G(Ú")ñ". Ù" is the collocated field vector computed at the barycenter of the

edge cr of triangle B. This vector is interpolated using the value of U in the two adjacent

triangles sharing the edge ø as indicated in Fig. 3-I2.It is important to note that the

fluxes in the RHS of (3-27) are not independent variables, DoF, as is the case in the

Finite Formulation (where fluxes associated to the faces are independent variables).

-lU" =t(Up,+Upr)

Figure 3-12 Interpolation of the field vector for the edge cr shared between two triangles B I and B2.

The field vectorÛ, in general, has six independent components which should be

calculated for each kiangle. The FVM works better for time-domain schemes where the

field components are updated in each time step. Although the FVM does not use shape

functions, interpolation of the field vector, U, for calculating the flux on faces as in Fig.

3-12, is a poor approximation and can be improved by using more accurate interpolation

schemes (or shape functions). The FV scheme described here implicitly defines a

barycentric dual mesh with orthogonal dual lines (used to calculate fluxes).
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Chapter 4- Incentric Cell Method

The explicit use of a dual mesh is one of the important features of the Cell Method

formulation. Two different dual mesh construction schemes, Delaunay-Voronoi tessellation as an

orthogonal dual mesh and barycentric dual mesh as a non-orthogonal dual mesh, were introduced

in the previous chapter. In this chapter, we propose a new dual mesh construction scheme for an

arbitrary triangular primal mesh which can be used for solving two dimensional electromagnetic

problems and guided wave structures. This dual mesh construction scheme can be extended to

three dimensional tetrahedral meshes.

As discussed in Chapter Three, a good choice for construction of the dual mesh is a Voronoi

dual mesh, which uses the circumcenter of the primal elements as dual points. This choice

maintains the orthogonality between primal and dual geometrical objects but also imposes an

additional condition on the primal mesh. The circumcenter for any obtuse triangle falls outside

the triangle making it impossible to have a well-defined dual mesh.

The existence of a Delaunay-Voronoi tessellation for an arbitrary inhomogeneous region is

not guaranteed [16]. The interior boundaries of the region, in general, do not coincide with the

edges of Delaunay triangles or Voronoi polygons. Even for a homogenous 2-D region, building a

Delaunay-Voronoi tessellation, with no obtuse triangles, is not an easy task. In multiscale

problems when the size of cells changes drastically over the region, obtuse triangles can not be

avoided in most coÍtmon mesh generation algorithms. Table 4-1 reports the percentage of obtuse

triangles in some of the examples studied in Chapters Five and Six. The meshes are obtained

using FEMLAB (COMSOL, [4S]) mesh generator. Even for triangles with angles close to 90",
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the circumcenter is very close to the longest side, as shown in Fig. 4-1, and is not a good choice

for a "center" in interpolation schemes.

Table 4-l: Percentage of obtuse triangles in different geometries described in Chapter Six.

(c)

Figrue 4-1: a) Incenter, b) circumcenter and c) barycenter for a triangle.

The barycenter of a triangle is always inside the triangle and also features interesting

properties such as dividing the area of the triangle into three equal parts as shown in Fig. 4-1.

The barycentric dual mesh has been used with the Finite Formulation using Whitney forms

[10,11,i3] or with the Microcell Interpolation Scheme, MIS 117,21-241 and produces non-

diagonal constitutive matrices.

An Incenhic dual mesh construction scheme is an attempt to achieve the advantages of an

orthogonal dual mesh while making it possible to use any kind of triangular primal mesh,

including obtuse triangles. This scheme is introduced and explained in detail in this chapter.

(b)(a)

Geometry Waveguide CPW ACPW Buried cable Microstrip

Percentage of
Obtuse triangles

7 t2 t2 i5 10
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4. 1 Geometrical objects

We consider a two-dimensional triangular primal mesh as shown in Fig.

points, P¡, nl primal (straight) lines, Io, and ns primal surfaces (triangles),

consists of ns dual points, Fp, nl dual lines, ioand np dual surfaces, ,í;.

4-2, with np pnmal

Sp. The dual mesh

Primal geometrical objects do not depend on the choice for the dual mesh and remain the

same as already explained. Dual geometrical objects, however, are introduced for the Incentric

scheme as follows.

4.1.1 Dual points

In the incentric dual mesh construction scheme, we use the incenter of primal triangles as dual

points. The three angle bisectors of a triangle meet in one point called the incenter. It is the

center of the incircle, the circle inscribed in the triangle as shown in Fig. 4-3.Thereasons for this

choice are:

o The incenter of any triangle is always inside the triangle.

o The perpendicular lines drawn from the incenter to the sides are completely inside the

triangle.

o The distances from the incenter to the sides are equal.

Figwe 4-2: A 2-D triangular mesh
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C

Figure 4-3: The incenter of a triangle, O. The radius of the incircle is r:29/(a+b+c) where 
^S 

is the area of the

¡-iengle.

4.1.2 Dual lines

In a Voronoi dual mesh, dual lines simply connect the dual points for two adjacent

triangles. In a barycentric dual mesh, dual lines are not straight lines but two-piece lines

consisting of the shorter parts of the medians in two adjacent hiangles.

Incenteric dual lines, in general, consist of three pieces, two orthogonal components and

one tangential component as shown in Fig. 4-4. An important parameter in the incentric scheme

is the length ratio of the tangential portion of the dual line to the primal line.

We define the diagonal "Ratio Matrix" as

,R(a,ø) :H, a:1: nl , (4-1)

where nl is the number of primal (or dual) lines and Lo and L'o are indicated in Fig. 4-4. Mesh

generating algorithms usually avoid having "bad" triangles in the mesh and maintain the

triangles as close as possible to an equil ateral triangle which results in a Ratio Matrix with a
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small nonn. This

plays an irnportant

diagonal matrix appears in the final eigenvalue equation and as shown later

role in the incenhic scheme.

''"'*... Primal line (2")
Dual line

- 

Primal line

Orthogonal components

Figure 4-4: In the incentric scheme, dual lines consist of three components: the tangential component is a

portion of the corresponding primal line and two orthogonal components are orthogonal to the corresponding primal

line.

4.1.3 Dual surfaces

Dual surfaces are the areas enclosed by intersecting dual

Fig.4-5 illustrates a dual surface in an incentric dual mesh.

matrix, ,Sp¿, related to primal and dual surfaces as

S"r(F,i) = Sp ô3,; for B:1:ns, and.i:l:np,

lines and surrounding a primal point.

We now introduce another important

(4-2)

surface, ,i¡ as shown in

of the z components of

which indicates the portion of the primal surface, ^lp, shared by the dual

Fig. 4-5. This matrix is used in the incentric scheme in the interpolation

EM variables.

From the definition of the incentric dual lines and surfaces it is deduced that the global

variables defined on transverse dual lines and longitudinal (extruded) dual surfaces need to be

corrected for the'hnwanted tangential component".
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- 

Dual line

-.......-.. Primalline

Figure 4-5: A¡ incentric dual surface and ,S¡¿ matrix elements.

4 .2 Incentric formulation

The general time-harmonic formulation for waveguide structures was given in Chapter Three,

(3-12) to (3-15). In the incentric scheme with the geometrical objects defined as in section4.l,

special considerations are required for the proper treatment of the tangential component of the

dual lines. The global variables defined on the tangential component do not exist in the general

formulation (3-12,3-13). In order to take into account the effect of the global variables defined

on the tangential part of dual lines, we introduce a set of two dual formulations as follows.

In the V-formulation, elecffic voltage is defined on the primal lines (Vf ,Ej) and magnetic flux

is defined on the primal surfaces (Af ,@: ). This set of variables was previously defined and used

in the general formulation given in section 3-2, (3-12) to (3-15).

In the F-formulation, we switch the global variables defined on the primal and dual geometrical

objects. Magnetic voltage is now defined on the primal lines (,{p,H:) and electric flux is

defined on the primal surfaces (Yi,y:).

In comparison with the equations given in Chapter Three, primal equations in V-formulation

remain exactly the same as in (3-12) because the primal geometrical objects have not changed.
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Primal equation in F-formulation can be also written in the same manner as in (3-I2). Equations

for the dual variables, (3-13), however, need to be modified to include the tangential components

in both formulations.

Based on the assumption of linear shape functions for z components (which imply a uniform

approximation for the transverse variables), the global variables associated with the tangential

parts are proportional to the same variable defined in the dual formulation. The coefficient for

this proportionality is the couplíng, cPL(ø,a), as indicated in Fig. 4-6.

Electric voltage, V,o (g), is def,rned on primal

lines, Io, in the V-formulation.

1--...-..>

..\:7
.i

ti
The rnagnetic voltage on the tangential
part of the dual Iine is proportional to Fte (o)

Magneric voltag", ¡,0 (o) , is defined on

. dual lines, å, in the V-formulation..:
.i

a:'
.j

.' <-..........-'j

î

" --.. Magneric vottage, t'f (¡r) , is defined on

primal lines,I", in the F-formulation

Figure 4-6: The coupling between dual variables in V-formulation and the corresponding primal variables in

F-for¡rulation is taken into account through the coupling matrix, CPL.Magnetic voltage defined on the tangential

part of the dual line, Zo, is proportional to Ff (q) as CpL(c, o) x F,o (.,) .

The coupling is related to the Ratio Mahix, (4-1), as

cPL(a,a): { 
R{o'tt¡ ; casel

' 
L-R(cr,a); case2

(4-3)

Here, case 1 is the case when going in the direction of the dual line, the tangential part is in the

same direction as the primal line. Case 2 is the case when going in the direction of the dual line,

the tangential part is in the opposite direction of the primal line. In Fig.4-6 case2 is depicted

where CPL(qa):-R(a,ø)
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Recalling (3-I2) and modifliing (3-13) to include the coupling, V-formulation for an incentric

dual mesh can be written as

where the numbers one and two in the subscripts refer to the V- or F- formulation, respectively.

F-formulation is obtained from (4-4) by changing all Z matrices to -y, changing all F

variables to V,Ilvariables to E and vice versa. The numbers in the subscripts change as 1++2. F-

formulation is then written as

CV,e = -Z.rH!
ivi +GE: = -ZuFl
G'(F,o + CPL.F,p) = YoE! )

- y(F: + CPL . F,') + C'H: = Y.V,o - CPL. y,rv,o

CFf = Y,rE!

7,Fi+GHi:Y,rV,o
Gt(V,o + CPL. V,o) = -Z,rH !
-y(V: +CPL.V,.)+ C'Ed =-Z,rFl +CpL.ZuFl

Figure 4-7: Different components aad geometrical objects used in equations (4-4).

using the second equation in (4-5), we can simplify the last equation in (4-4) as

f! + GH ! : Y,rV,o -+ CPL .(yli + GH:) = CpL .TrV,o

-yri +C'H: +CPL.c.H: =v.V,o

(4-4)

(4-s)

Different variables and components in (4-4), except those related to the tangential parts, were

depicted in Fig. 3-6. Fig. 4-7, in a similar manner, depicts different components in the primal and

dual equations, (4-4). zut cv¡
it-tr '1...

Y,'V,o

"ï'T'=:iii]l'r

fr;,.ìì'..ï,i'l
CPL'F';P r"

Dual relations

C,H:
Y'-'. /L - -, 1\., t

Primal relations
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Similarly, using the second equation in (4-4), we can simplifu the last equation in (4-5) as

TV,o + GE: = -ZuF! -+ CPL.(yV,' + GEI) = -CPL .ZrFl

- TV,t + C'E j + CPL .G .E: = -Z,.,FT

The simplified V-formulation is then written as

CVI = -ZoH!
TV,o+GE: =-ZuFl
G'(F,o +CPL.F,o) = YoE!

- TF,o + C'H: + CPL .G . H: = Y'V,o

and in a similar manner, the simplifred F-formulation is written as

CFf = YuE!

yF! +GH! = Y,rV,o

G'(V,o + CPL.V,o) : -Z.rH !
-yv,t +C'ø! +CPL.G.E: =-Z,rFl

(4-7)

(4-8)

(4-e)

The CPL matrix, represents the effect of the coupling between variables in one formulation

into the other formulation. After some manipulations, (4-8) and (4-9) result in the following final

V- and F-formulations, respectively:

þr'-{v,.,.z,rtc'z;lc.z,rty,r .Gy;lG'))q' = y.cpL.G.Hj +\,.G.yr'.G,.cpL.F¡, (4-10)

Q,' -{2,r.y,, +C'y;C.y,, + ztr.GZ;LG'i)v,' = y.CpL.G. E! +Z,r.G.Z;:.G,.CpL.v: . (4-11)

A few important points should be noted in (a-10) and (4-11). The left hand side in both

equations is in the form of a normal eigenvalue problem as in (3-15). The CPL matrix appears

only in the left hand side of the equations. In a zero-order approximation this matrix (and

consequently the left hand sides of (4-10) and (4-11)) is considered zero which results in the

following zero-order V0- and F0- formulations :
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(r' -Y uz u- Y,,GY;'G' - c' z.lcz,, )F,o = o

(y' - z,.rY 0 - z ncz;jc' - c'Y;cY,, )vd -0,

(4-r2)

(4-13)

respectively. Close results are expected for the propagation constant, y, obtained from (4-12) and

(4-13). We also expect that the field distribution obtained from the two formulations agree well

up to a scaling factor. These expectations are verified through examples and results given in

Chapter Six. Equations (4-10) and (4-I1) can be further simplified in the case of Transverse

Electric (TE) or Transverse Magnetic (TM) propagation, respectively as explained in section 4.4.

It is noted that all Z and Y matrices in the L.H.S of (a-12) and (4-13) are diagonal and therefore

the eigenvalue problems are in the convenient form involving synmetric positive definite

constitutive matrices which guarantees stability and convergence of the schemefl0,17,20,21f.

In the next section construction of Z and Y matrices in (4-10) to (4-13) are explained.

4.3 Constitutive matrices and interpolation functions

In the Cell Method, DoF are global variables assigned to edges and faces in the primal and

dual meshes. This guarantees the continuity boundary condition at the interface of different

material since there is only one number assigned to a line (the tangential voltage) or a surface

(the normal flux). Constitutive mahices are built based on this natural continuity of tangential

voltages and normal fluxes in the Cell Method formulation. ln the construction of the transverse

constitutive matrices, Zt, Yú 2,2, Ys, we consider a uniform field distribution (zero-order

approximation) over primal or dual lines. Referring to Fig. 4-8, transverse constitutive makices

are defined as follows.
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Fdra) =11*1.g'(1)* l''"1. oo(G) 7 (a

Fr ll-"l Ë Ti ' Z"(u'u)=¡r'{L

vo(q.) = lI'"1 . Yo(a) * lI'"1 .yþ)þ - 
", 

.J,rq Iu-- "" 
+ioe, 

' 
ItJ '

x,(cr,c¿) : ¡r.¡[-J!!-* lt"l 
'l-"

'[o, + Jorr 6" + Joel )

,,,(u,u)=rrtE]#U Y,, (cr, a) =

,llt,"l lt,"ll-'
oll 

-*- 
I 'IF, p, 

)

(4-14)

(o, + jr¡a,).lf,"l + (o, + jole,). li,"l
lr"l

Figure 4-8: A primal line, Lo, is located on the interface of two different materials. Construction of the

constitutive matrices in the Cell Method is based on the natural continuity of the tangential voltages and normal

fluxes at the interface of the two materials, I and 2.

For constitutive matrices in the z direction, we consider a first-order (linear) approximation

for z components of the fieids over triangular elements. Based on (3-19), if the barycenter is

considered, this assumption results in diagonal primal constitutive matrices in the z direction for

Z¡ andY¿.kt order to maintain the simplicity of the procedure, we ignore the distance between

the incenter and the barycenter in the construction of these matrices. This assumption is validated

through investigation of different triangles. The reason for choosing the incenter is that the

perpendicular lines from the incenter to the sides of a triangle are always inside the triangle

making it possible to have the incentric dual mesh for any arbitrary primal triangulation. 2.1 and

Ypare then obtained as

2
_..o

', Lz"
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Zo$) = jopplspl , Y,r(p) = (oB * ¡rrreu) .lSul (4-1s)

For the dual constitutive matrices in the z direction, hovrever, a linear interpolation function

cannot be defined as the dual surfaces are polygons having more than th¡ee vertices. A linear

interpolation over primal triangles also results in non-diagonal dual constitutive matrices inthe z

direction. A uniform approximation over dual surfaces results in diagonal dual constitutive

rnatrices in z-direction as

Y,, (i) = I (op + jroeu ) . S", (Þ,Ð
Êea

Z,r(l)= | (jroru ) . S", (F, i)
Êeo

Ç) = {primal surfaces sharing node i}

ç = {primal surfaces sharing node i}
(4-16)

where Sp¿was defined as n (4-2).

We shall now introduce two other interpolation functions that have been utilized in the

incentric scheme. When the z components of the fields, E, or Hr, are obtained (either for the

primal points or for the dual points), from (4-10) and (4-11), the value of the variables for any

point in the 2-D region can be approximated using appropriate interpolation functions. We can

approximate the value of the z components of the fields at the dual points in terms of the values

at the primal points based on a simple linear approximation as

Eo =TooE , H::TooH , Too :JFilOl , (4-r7)

where E: ,H: are column vectors containing all E, and Hrcomponents on the dual points and

E:,E: are column vectors containing all E, and, H, components on the primal points. T¿o

represents a simple linear interpolation of the fields (E , , H , ) on three vertices of each primal

triangle to obtain a value for the fields on the corresponding dual point. T¿o is expressed in terms

of the curl matrix, c, and the gradient matrix, G, defined in chapter Two.
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In a same manner, we approximate the value of the fields at each primal point based on an

equal weighting interpolation between all dual points surrounding the primai point. This

interpolation can be written as

Eo =T*E! , u1 =TøH! , lo =sigR(Spr') . (4-lg)

Note that equations (4-I7) and (4-18) also resemble a local approximate pseudo-

inversion,(Tro)-t=T¿p , (Too)-t=10. This approximation has been validated in different

examples by reconstruction of E, and H, vectors.

4.4 Transverse Electric, Transverse Magnetic and Hybrid
Formulations

In this section we propose a scheme to solve the coupled V- and F-formulations, (4-10) and

(4- 1 1) in the case of TE (8,:0), TM (1{¿:0) and hybrid (when both ,8, and, H, exist) modes. Note

that all terms containing the matrix Y.are related to the z component of the electric field and will

be deleted in the case of TE propagation. In the very same manner, all terms containing the

matrix Z, are related to the z component of the magnetic field and will be deleted in the case of

TM propagation. Recalling (4-10) and considering the facts mentioned above, the simplified V-

formulation for the TE case is written as

(r' -(",r.2,,tc'z;lc.z,)) F! = y.cPL.G.H:

and the simplified F-formulation for the TM case is written as

þr' -{z,r.y,z*c'y;;c.\r)) yd : y.cpL.G.E:. ( 4-20)

'We now explain the procedure for solving TE case, (4-19). The procedure for solving TM case,

(4-20) is carried out in the very same matìner.

(4-te)
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In the case of TE modes, (4-19) is first solved as a normai eigenvalue problem with CPL=O. The

zero-order eigenvalue obtained as above is called, To. In order to take into account the non-zero

right hand side of (4-19), we use the interpolation relation (4-18) and the first two equations in

(4-8) with E: --0 as follows:

yCPL.G.H? = yCPL.G -T*.H!

H! = -z;lcv i = ç!¡z;lcz,,r!
v

yCPL.G.H I : CPl,.G .\o .z; -C.Zu,.Fl

--.-.---\_J ^l

Minimize 
Int 

.ri - tv' .F,ol , At.F¡ = ay' .F,o

[yt - (Y,rz,, + c' z;lcz,, )]. F,o : 
^yt 

. F,o

l0' - ny') - (zuY, + z,,c'z-)c)1. F,o = 0\______-v_
2

The right hand side of (a-19) is now written in terms of the eigenfunction Fd. In order to

maintain simplicity and advantages of solving the eigenvalue problem for diagonal constitutive

matrices (in the LHS of (4-19), we use a mirumization procedure to modiS the propagation

constant y6 as (V1-formulation)

(4-21)

(4-22)

The same procedure (F1-formulation) can be applied b @-20) in the case of TM modes to

improve the accuracy of the zero-order solution (4-13). The results of applying this scheme are

given in Chapter Six, examples 6.1 and 6.2 (for Vl-formiulation) and 6.3 (for Fl-formulation).

In a full wave (Hybrid) analysis of electromagnetic problems, we consider both transverse and

longitudinal components of electric and magnetic voltages and fluxes. In this case, the two

coupled equations, (4-10) and (4-11) should be solved together. Since the reported results in

chapter Six show that the propagation constant, y, obtained from (4-12) and (4-13) agree well,
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the results from one of these equations can be used to estimated the R.H.S. of the other equation

and modify the zero-order solution. This procedure is explained in Fig. 4-9.

1-Solve (4-12) and (4-13)

I

+
2-Use E! and H! tocalculateE! and H!

I

+
3-Use y, Ff and H! to calculate RHS of (4-10)

I

t
4-Minimize l*q-^ F,'lto obtain a

I

+

5 - (r' - (Y,, . 2,, + c' z;lc - z u+ y,,' Gy;rG' )) F,o = A . F,'

6-Modify y as: y'** = y2 - L

Figure 4-9: The proposed scheme to improve the accuracy ofthe zero-order solution ofthe uncoupled
equations (4-12) and (4-13).

In the second step in the above diagram, interpolation functions are used as defined in

Equation (4-17) and (4-18). In the third step Ff is obtained from the solution of g-12) in the

first step. This value is used to calculate the RHS of (a-10). The minimization used in step four

can be the Least Squares Minimization (LSM) which results in A as a complex number, or the

backslash operator (in Matlab) which results in Â as a matrix with minimum non-zero elements

minimizinglnUs - ^ 
V.tl . When the size of the problem is large, this minimi zationtakes a long

time. If LSM is used, only y can be modified. The result of applying this iterative procedure is

reported in Chapter Six.
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4.5 Series Impedance and Shunt Admittance

For a transmission line configuration and the Transverse Electric Magnetic (TEM) wave

propagation, line voltage and line current are defined and definitions for series impedance , shunt

admittance and characteristic impedance are given accordingly in different references (see 142,

49]). For a general waveguide structure, however, the line voltage and current are not uniquely

defined. Other approaches (e.g. quasi-TEM approximations, loss calculation and energy

approaches l49l) are then used to derive equivalent R, L, G, C, parameters for different modes in

a waveguide structure.

In a quasi-TEM approximation, the characteristic impedance, Zo(Q), p.u.l. series impedance,

2..(Q/m), and p.u.l. shunt admittance, yrr,(Ç)m)-I, are related to each other and to the propagation

constant, y(m-t), as 142]

J¿,.%;, z-,H, i;:=äli:: (4-23)

Matrix equations for a general waveguide structure in time-harmonic, (3-I2) to (3-15), were

given in section 3.2. The following matrix relations between hansverse components of the

electric and magnetic voltages can be derived from the above mentioned equations as

v¡ =1q2, + cy;rct).F¡
v

, F¡ =l1Y, +c,z;tc¡.vy
v

(4-24)

To obtain expressions for series impedance and shunt admittance comparable with the

differential expression, we rewrite (4-2Q in terms of the transverse electric and magnetic fields

AS
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_l
Ef =--' .L-.j .Ø,+GY;rG').Lo.Hl

1/,'-
z*

*i =ï.!ì .(v, + c'z;'c).Lo .El, (4-2s)
Y.¡

where El , Hl are transverse electric and magnetic field vectors and h and L¿ are diagonal

matrices containing the length of primal and dual lines, respectively. Note that the field

variables, Ei :I;;V: , Hl :Lo'F!, are not directly dependent on the length of the primal and

dual lines. Equations in(a-25) suggest a definition for the series impedance and shunt admittance

for a general waveguide problem as

Series impedance:2,, which minimizes 
I 

Z,,HI - ,",Hll,

Shunt admittance:¡¡ which minimizeslY,n4o - y,n4ol,

(4-26)

(4-27)

Equations (4-26) and (4-27) with a Least Square Minimization have been used to obtain p.u.l. R,

L, G, C parameters for a CPW structure in Chapter Six, example 6-4.

The theoretical framework for the lncentric Cell Method is now completed and ready for

realization and performance test. The Incentric scheme described in this chapter is expected to be

computationally inexpensive, easy to implement, accurate and converging. The main advantage

of this scheme is to provide with an eigenvalue system with diagonal (and therefore symmetric

positive definite) constitutive matrices. These expectations will be examined in Chapter Six of

this thesis.
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Chapter 5- Boundary Conditions

Numerical techniques need to properly address the implementation of specific

boundary conditions. Dirichlet boundary condition (where the value of the unknown

function is known at the boundary) and Neumann (the derivative of the unknown

function is known at the boundary) or combinations of these, are usually straightforward

and efficiently implemented in most numerical techniques. Perfect Electric Conductor

(PEC) and Perfect Magnetic Conductor (PMC) boundary condition are examples of

Dirichlet and Neumann BCs, respectively, when the electric field is considered. A wide

variety of applied electromagnetic phenomena (e.g. antenna and radiation, scattering,

microstrip transmission lines, and overhead cables), however, occur in a physically

unbounded region, usually free space. Possible approximate analytical solutions for this

kind of problems include a condition on the behavior of the solution at infinity. This

condition (e.g. Radiation Boundary Condition [50,51] ) ensures the stability and well-

posedness of the solution.

The term "open boundary" refers to the unbounded source-free region surrounding the

"region of interest" including all EM structures, sources and excitations, as illustrated in

Fig.5-1.

When using numerical procedures, regardless of the category of the problem, the

computational domain must be finite. An infinite open boundary therefore, should be

truncated and its effect on the solution should be formulated in the form of an ,,Open

Boundary Condition". The computational domain in this case is terminated by an

artificial boundary with an open boundary condition.
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Different approaches are available today for the truncation of open boundaries in EM

area in both time and frequency domain analyses. Although most boundary truncation

techniques were first introduced for Finite-Difference Time-Domain algorithms,

generalized and hybrid versions became available later and could be utilized in other

numerical techniques as well. Except for Integral Equation Boundary Condition which is

a very accurate and computationally expensive approach based on uniqueness theorem I

42f, most other open boundary conditions are local discretization of the behavior of the

approximate solution at infinity.

Artificial boundary
for implementation

ofOpen BC.

Figure 5-1: Unbounded open region surrounding the interior region is considered as an open

boundary condition on an artificially boundary.

In this chapter we shall discuss the treatment of boundary conditions in the Incentric

scheme' We also explain "the adaptive mesh open boundary' as our approach for the

treatment of transverse open boundaries in waveguide structures. The theoretical basis for

this approach is given and the reported results are justified in comparison with the results

obtained from the implemented pML boundary condition in coMSoL.

74



5.2 PEC and PMC boundary conditions

Recalling the incentric dual formulations, (4-10) and (4-11), PEC and PMC boundary

conditions are implemented in a dual manner. ln V-formulation, electric voltage is

defined on the primal lines. The PEC boundary condition is thus impiemented as

Vf (c¿) = 6; for line cr e PEC boundary

E: (l) = 0: for point i e PEC boundary
(s-1)

This implementation produces a reduced eigenvalue problem where the points and lines

on the PEC boundary are removed from the original system of equations. The columns

and rows corresponding to the removed lines and points are removed in all matrices in

the LHS of (a-10).

In F-formulation, magnetic voltage is defined on the primal lines. In a very same

manner, the PMC boundary condition is implemented as

Ff (a) = 6; for line cr e PMC boundary

H: (i) = 0; for point i e PMC boundary
(s-2)

The implementation of a PEC boundary condition in F-formulation or a PMC boundary

condition in V-formulation is also straightforward. Considering the half-surfaces on the

PEC boundary as shown in Fig. 5-2, all the matrices in (4-10) and (4-11) remain

unchanged. The same applies for the V-formulation and a PMC boundary condition. It is

expected that PEC and PMC boundary conditions will be implemented more accurately

within V- and F-formulations, respectively. This is because the primal point, P¡, does not

represent the center for the dual halÊsurface on the boundary as it is assumed in the Cell

Method formulation.
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í pnc
boundary

Figure 5-2 PEC boundary in F-formulation. The half-surface arouud P¡ is considered as the dual surface

and the electric voltage on the boundary lines is zero.

It is important to note that in general, the elements of CPL matrix are zero for all

boundary iines. This implies that there is no additional consideration on the boundary

conditions caused by the incentric scheme. General treatment of boundary conditions

used in other numerical techniques, including the Cell Method and Finite Integration

Technique with barycentric subdivision, can be utilized within the Incenhic Cell Method

as well.

5.2 Open boundary condition

Open boundary conditions are often considered and utilized in solving radiation,

scattering and guided wave problems. In a guided wave problem, however, the open

boundary condition can be applied in both the direction of propagation (which is the most

common case) and the direction transverse to the structure's cross section. ln a

waveguide with PEC walls and invariant cross section, no boundary condition is applied

in the propagation direction and an eigenvalue problem is solved to obtain the
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propagation constant. If a material discontinuity (e.g. an air gap or a material change)

occurs along the line, and we investigate the behavior of the fields close to discontinuity,

we need to apply a proper open boundary condition to truncate the computational domain

in the direction of propagation.

Berenger's Perfectly Matched Layer [52] has been the dominate approach in modeling

open boundaries since 1994. This technique is based on insertin g alayer of artificial lossy

material around the region of interest to absorb an outward propagating electromagnetic

wave without significant reflections. The technique was originally introduced for finite

difference algorithms. Numerous references can be found on PML and its application in

guided wave structure [see 53 and the references therein, 54]. We shall mention the

following points about the performance of a PML especially in guided wave structure

applications:

1- PML is very efficient in absorbing normally incident (to the boundary)

propagating waves 152-5 51.

2- P}l4,L is less efficient in absorbing non-propagating (evanescent) waves [56].

3- PML introduces additional losses in a waveguide structure which is important

when the losses are considered (e.g. parameter extraction, attenuation constant,

finite conductivities. . .) [56,57].

4- PML's thickness, conductivity profile, cell size and number of cells are important

and case-sensitive parameters which need to be determined by (performing many)

numerical experiments [5 6, 5 7].

Based on the above consideration, it can be concluded that PML is not an efficient choice

to truncate the transverse boundaries in a waveguide structure.
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The use of PML has been reported with the cell Method formulation in

problems in the time-domain l25l and in the frequency domain 1301.

Another interesting approach for modeling open boundaries is "squeezing open

boundaries, [58]" which is based on transformation of coordinates and an inverse

transformation for the material properties which keeps the Maxwell's equations invariant.

In the next section we consider a guided wave structure with transverse open

boundaries (in x-yplane) and a cross section invariant with respectto z coordinate. An

adaptive mesh open boundary is introduced and its performance is compared with the

PML boundary condition implemented within COMSOL.

5.2.1Adaptive mesh open boundary condition

The adaptive mesh open boundary is an approach similar to squeezing the open

boundaries. We consider a PEC boundary far from the structure. The region between the

structure and the PEC boundary is then coarsely meshed as depicted in Fig. 5-3. The

coarseness of this mesh and the distance between the PEC boundary and the structure are

important issues that shall be addressed.

scattering

....r,:i..:.:,..,... \- .-, "..l ....j. ,......:jþa"t:..:,1:.'i:.::.:tt. :'
i...r,'1,',.1.'':j,r,,.,.'t, --=--\Li Tt¡]:t;,rj,],,..,.|:11'.'i

The adaptive mesh open boundary condition refers to a coarse mesh between the interior

region ofinterest and a PEC boundary placed far from the structure

Figure 5-3:
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The behavior of the transverse field depends on the

following characteristic equation define the relation

propagation constant:

kl +ki:kl

transverse wave number, k1 .The

between this number and the

(5-3)

(s-4)

'Where ko is the wave number of free space. If we consider a far circular boundary in free

space, the behavior of the transverse wave can be estimated by the Hankel function of the

second kind as [42]:

kÍ = ko' -k: .

The above wave vanishes atk,r -+ co. r is the radius of the artificial circular boundary.

It is clear from the above relation that for smaller values of k, (lower frequencies) we

need larger values for r to satisff the "far enough condition in (5-4). In the common

waveguide problems solved in this thesis, k^ B is about 2k0-8k0. In the case of k :2.5 (as

for the example in this chapter at Ft0GHz) kt: -2jh. This value with (5-4) implies a

attenuating transverse wave which vanishes at approximately

k¡ø -j7, F 7 lkr = 7 1 (2.5 Itu ) = 2 cm.

The above approximate calculations can be used as a guide for choosing the boundary

far enough to have an accurate solution.
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The adaptive mesh open boundary condition is suitable for techniques which use

irregular mesh. The adjustable cell size in an irregular mesh allows having a fine mesh in

the interior region and a coarse mesh in the exterior region in order to save computational

requirements. The perforrnance of the adaptive mesh open boundary condition is

investigated through an example described in the next section.

5.2.2 Example: Asymmetric CPW structure

The structure used to investigate the performance of the proposed adaptive mesh

boundary condition is an asymmetric CPW studied in [57] where a PML is used as the

open boundary condition. The geometry and the specification of the problem are

depicted in Fig. 5-4. Details of the different study cases and the obtained results are given

in Table 5-1.
*l sl w3

;-"" " --'- ----- --- "":
i Conducto¡s: o=4*107, thickness:20pm, i

i w1=0.3 mm, sl:O.2mm, w2=0.6mm, 
¡

i t2:0.4rrun, w3:1.2mm. 
i

::
Substrate: e.:9.8, h=0.635mm

Figure 5-4: The geometry and description of the asymmetric coplanar waveguide being studied.

The quasi-TEM mode supported by this structure is the mode with the lowest propagation

constant which is more sensitive to the boundary condition applied. Table 5-1 reports the

value of the complex propagation constant for different cases when the PEC boundary

surrounding the structure is moved further. The details about the mesh in each case is also

given. Figs. 5-4 to 5-7 depict different meshes used in the cases reported in Table 5-1.
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Table 5-1 Details about different cases studied to investigate the performance of the adaptive mesh open
boundarv condition.

8.mrir

ffiItïiùlìii*i,,-'.iit i t', 
,1, 

1.:,ï['::,1'¡i::lii+i:f,l
'1". 

':.r.r.-t,..,;,..,,i¡', , .tr. . 'l:"l.if;'iii

Figure 5-5: The mesh used in COMSOL simulation with an implemented PML.

Figure 5-6: The mesh used as the adaptive mesh open boundary condition.

v

1
II,

Case No. Dimension
(x, mm)

Dimension
(v. mm)

No. of
elements F (--')

- _1.q,(m ')

1 -2 <-> 2 -0.635 ++1.5 10845 2.5723 0.00236

2 -2.5 <-+ 2.5 -0.635 -+ 2.5 I 1040 2.6582 0.00225
J -3++3 -0.635 <-+ 2.5 109i3 2.7060 0.00218
4 -4 <-+ 4 -0.635 ++ 3.5 11150 2.7532 0.002i5
5 -5++5 -0.635 ++ 5 t1268 2.7738 0.00213
6 -7 ++7 -0.635 <-+ 7 I 1601 2.785 0.002i
7 -10 <+ 10 -0.635.+ 10 r1741 2.788 0.0021
8 -15 +-' 15 -0.635 +' 15 12570 2.789 0.0021

9 freference) -30 <+ 30 -0.635 <--+ 30 14860 2.789 0.0021
PML(FEMLAB) 2mm

thickness
2mm

thickness
TT378 2.954 0.026

Adaptive
Mesh

-10 ++ 10 -0.635 +' 10 6747 2.791 0.0022
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t.,
'i j :

Figure 5-7: The mesh used in the reference case (case No. 9).

In table 5-1, cases 1-8 are the cases when \t/e have increased the dimensions of PEC

boundary from 4 mm to 30 mm. Case 9 is the reference case when a very far PEC

boundary (60mm) and a fine mesh (15000 elements) is used. The propagation constant is

reported for all 9 cases as well as the results of implemented PML in COMSOL and the

proposed adaptive mesh. The PML feature implemented in COMSOL Multiphysics is an

automatic feature which does not give user many options to choose the parameters. The

thickness of the PML and the direction of the conductivity profile can be chosen by user.

A thicker PML results in better absorption and less reflection at the interface. While the

physical dimension of the problem being simulated is not an issue in a computer code, the

computational dimension is important. As it is seen in Table 5-1, the computational size

of the problem in the case of an adaptive mesh open boundary condition is almost the

same as the size of the problem when a PML is used.
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Figure 5-10: Normalized propagation constant (B/80) of the ACPW for close pEC boundary

compared with the results of applying an adaptive mesh open boundary.

The example presented in this chapter and the reported results verify that for common

waveguide structures a "far enough" PEC boundary with a coarse mesh between the

structure and the PEC boundary (Adaptive mesh open boundary condition) works very

well without the problems of choosing a proper PML absorbing boundary.
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Chapter 6- Examples and Results

In the previous chapters of this thesis, we discussed Finite Formulation as a robust

framework for expressing electromagnetic laws. Finite Formulation utilizes a primal-dual

mesh complex and therefore requires a proper construction of the dual mesh. The most

common choice for the construction of a dual mesh is the barycentric subdivision. A

barycentirc dual mesh results in non-diagonal constitutive matrices which make the

computational procedure more complicated in comparison with having diagonal

constitutive matrices. A new scheme for the construction of the dual mesh, the lncentric

Cell Method, was proposed as an alternative to the barycentric subdivision in Chapter

Four. In order to validate the proposed Incentric Cell Method formulation and to

understand the capability of this scheme in modeling complex structures, some cornmon

and practical waveguide structures were examined. The results are compared with those

obtained from a commercial FEM solver, COMSOL. Analytical solutions were also

presented when applicable. The reported parameter is a coÍìmon expression of the

propagation constant or the attenuation constant. Field distributions are also reported

whenever it has been helpful in clarifying the comparisons.

The proposed Incentric Cell Method is expected to:

1- make the construction of the dual mesh possible for any primal triangulation

2- be computationally efficient by building diagonal constitutive matrices even

when an orthogonal dual mesh cannot be built

3- efficiently produce a fast solution for any primal triangulation. This solution can

be used as the first approximation in higher order schemes
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4- improve the accuracy of first approximation

5- be able to model fairly complex electromagnetic structures (inhomogeneous,

anisotropic and multi-scale structures)

In this chapter, a variety of examples are chosen to validate the above

expectations and to examine convergence, accuracy and efficiency of the proposed

scheme in comparison with well known numerical (or analytical) solutions.

In all examples, the mesh used for Cell Method simulations are imported from

COMSOL program in order to have a fair comparison. In general the ouþut of the

cofiìmon mesh generator progam can be used as the primal mesh for lncentric Cell

Method simulations. The largest mesh size used in the Inceteric simulations is 50000

primal triangles.

6.1 Rectangular Waveguide, TE modes

A rectangular waveguide with PEC walls and dimension of a:10cm arñ b:20 cm is

considered. The empty waveguide geometry is chosen since it supports TE and TM

propagation and therefore is suitable to confirm the simplified TE and TM equations, (4-

19) and (4-20).In order to investigate the convergence of the scheme with respect to the

cell size, and to validate the minimization process, Vl-formulation (4-22), we analyzed

the problem with 9 different meshes. The first mesh, the extremely coarse mesh, consists

of only 26 elements and the last mesh, the extremely fine mesh, consists of 21258

elements. Fig. 6-1 depicts the waveguide cross section with the two mentioned meshes.

The cell size in the fust mesh (extremely coarse, Fig. 6-1.a) is about 5 cm, and in the last

mesh (extremely fine, Fig 6-1.b) is about 1 mm. The results of this study for TE¡ mode
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are reported in Fig. 6-2. In Fig. 6-2

analyical solution for the propagation

for TElr mode is: f,:I.67 GHz and

(k¡:41.8879 m-1).

the percentage error is calculated relative to the

constant (þt¡: 22.823 t m-t¡.the cut off frequency

the operating frequency is considered tlZGHz

.é
ìc)
:O
'N!ll

.:
.-'l

.. 1/l

à=

Figure 6-l:

a) b)

Transverse dimensions of the rectangular waveguide and a) exhemely coarse mesh, b)

extremely fine mesh.

The results reported in Fig 6-2 show that the minimization process for TE modes (Vl-

formulation, (4-22)) efFectively improves the accuracy and convergence of the solution. It

is also observed that for coarse meshes the Incentric Cell Method scheme results in more

accurate solution compared with COMSOL solution. It is seen that Vl- Formulation

gives better results for very coarse meshes compared with COMSOL, however, the

solution does not converge to a more accurate result by refining the mesh to exhemely

fine meshes. It is also the case with the COMSOL solution. Cell Method shows a greater

error for fine meshes compared with COMSOL which is expected due to different order

of accuracy for the two methods.
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V0-formulation
'--" F0-Íormulation
""""" Vl-formulatíon

coMsoL

COMSOL
.a

V1-Formulation
-a

567891011121314
Natural logarithm of the number oÍ the elements in the mesh

Figure 6-2: Relative error for zero-order solutions (V0- and F0-) and Vl- formulation with respect to the

number of the elements in the primal mesh for TE1¡ mode in a rectangular waveguide. The operating

frequency is t2 GHz.

6 .2 P artially-filled Waveguide

This example is particularly chosen to compare the results of the Incentric Cell

Method with the reported results in [38] for a barycentric dual mesh. The geometry and

the specification of the problem are given in Fig. 6-3. We consider TEls mode (with

respect to z direction). In [38], the relative error is reported for the barycentric Cell

Method, HFSS and a FEM solver in comparison with analytical solution. The reported
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results show that HFSS produces the most accurate results and FEM works considerably

more accurate than the barycentric Cell Method.

b:l0.33 mm

Figure 6-3:

a:22.I6 mm

Dimensiors and specifications of the partially filled waveguide chosen as a test case for

barycentric Cell Method in [38].

Relatiw error reported in [38] for the barycentric
Cell Method with respect to a FEM soller
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Figure 6-4: Relative error of the Incentric Cell Method solution (V1-fonnulation) with respect to the

COMSOL solution. The approximate reported error for the barycentric Cell Method in t38l is also shown.
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Fig. 6-4 shows that the Incentric Cell Method solution is considerably more accurate in

comparison with the barycenhic Cell Method solution. This problem is discussed and the

anallical solution is driven in[42, p 158] .

6.3 Buried and Overhead Cable

The determination of the propagation constant and fields for systems of conductors

located above or embedded in a lossy half-space is of interest for low frequency radio

transmission and in the power engineering field for transmission line network analysis. It

is important to accurately determine the effect of the air-earth interface on the dispersion

and loss characteristics of a given geometry. Most studies still utllize Carson's quasi-

TEM formulation for overhead lines at power frequencies [59], but this becomes

inaccurate at high frequencies. Furthermore, unlike the overhead case, the behavior of a

buried cable system is more strongly influenced by the electrical properties of the earth

and approximate methods do not work as well. Exact analytical formulations for the

overhead [60] and buried [61] cases are available for simple geometries and under special

assumptions (cylindrical thin-wire approximation), but they cannot be used for general

conductor geometries or when the conductor is near the interface.

In this example, the lncentric Cell Method formulation is used to solve for the

propagation constant of the geomefy shown in Fig. 6-5. A thin insulated wire located

above earth interface is moved towards the interface, passes through the interface

becoming an insulated cable and then moved to a depth of several skin-depths in the

earth.
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r'v,

h>0 c air ( e6)

h<0

Figure 6-5: section of a thin insulated and its location either over a lossy ground or buried in

the lossy ground. The conductor can be partially buried.

We consider a thin insulated wire with inner conductivity, o", and insulation dielectric

constant, e¿. To investigate the effect of the earth, we assume a perfect conductor

(o" =.o) and an air insulating region (e.¿:1). The conductor and insulation radius are

a:5 cm and b=6cm, respectively. The electrical parameters of the lossy ground are err:l0

and or:0.05 (O.m)-r, tlpical of moist earth. The ground acts as afairlygood conductor in

the frequency range below 9 MHz and we choose ÈlMHz in our example. For this case

the depth of penetration (skin-depth) is ôr:5.033m.

For the truncation of open boundary, the adaptive mesh is used (as described in Chapter

Five) which consists of a fine mesh near the conductor and a progressively coarser mesh

extending to a far (d:25m) PEC boundary, as shown in Fig. 6-6. The distance from the

center of the conductor to the air-ground interface, h, is varied from h:10m (overhead

wire) to h: -10m @uried cable). The behavior of lE,l for the case when the cable is at the

interface, h:0, is depicted in Fig. 9. Although lErl vanishes in the earth at a distance of d

= -10m from the interface, lE"l it the air region is still significant. This suggests that the

distance to the PEC truncation boundary should be increased. Figs. 6-7 and,6-8 show that

a PEC truncation boundary with d:25m is a good choice considering the convergence of

@ih
ground (og, srg) @
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the calculated propagation constant with respect to the distance between the cable and the

PEC truncation boundary.

The propagation constant (y = d + jB),was calculated using V0- and F0- formulations

(4-12) and(4-13) as well as Vl-Formulation and is reported in Figs. 6-9 and 6-10. for

varying distance from the interface.

,' PEC

Figure 6-6: Geometry of the above-ground or buried cable and the adaptive mesh open boundary.

y (m)

Figure 6-7: Magnitude of the z component of electric field for the vertical cross section (x:0) when

the conductor is at the interface (h=0) for different distances between the cable and the pEC truncation

boundary.
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These results clearly confirm the effectiveness of Fl-Formulation in improving the

accuracy of the incenhic solution. In this example COMSOL uses a full-wave analysis. It

is shown that the rapid change in the propagation constant as the conductor is moved

through the interface can be accurately calculated using this technique.

To investigate the range of validity for available analytical solutions, the behavior of

these solutions as well as numerical solutions is illuskated when the conductor is very

close to the interface (-0.5mch<0.5m) . The results depicted in Figs.6-11 and 6-12 show

that thin-wire based analytical approach fails when the conductor is very close to or at the

interface. The Incentric Cell Method scheme proves effective and accurate in modeling

the complex problem of overhead or buried cables close to the interface of a lossy

medium.
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6.4 CPW structure, RLGC parameters

As an example for application of the Cell Method, an inhomogeneous lossy CpW

structure is chosen. The geometry and specifications of the problem are given in Fig. 6-

13. Co-Planar Waveguide (CPW) structure is a common configuration in Integrated

Circuits technology and simulation is useful for investigating the effect of different

materials, geometries and etching profiles [62].

The propagation constant for the quasi-TEM mode is calculated and compared to those

obtained from coMSoL for the exact same geometry. A pEC box, 500 pm by 300 ¡rm,

surrounds the structure. For the CPW geometry, three different propagating modes are

distinguished. The quasi-TEM mode (lowest propagation constant) is studied where the

fields are concentrated between the center and outer conductors.

,K

Silicon Substrate H": 385pm, e,:12.7
o:100 S/m

Conductors (Gold)
o:4x107 S/m, Thickness=5¡rm,

The geometry and specifications of the CpW structure.

The calculated complex propagation constant for the CP'W geometry of Fig.6-13,

obtained using lncentric Cell Method formulation (V0- and Vl-formulations) is reported

in Figs. 6-14 arrd 6-15. It should be mentioned that having an appropriately dense mesh,

ï[

Figure 6-73:
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especially in the conductor regions is necessary for
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It is seen from Figs. 6-14 and 6-15 that Incentric Cell Method is capable of accurately

simulating the complicated structure of Fig. 6-i3. It also shows the effect of the

minimization procedure (-22) and Vl-Formulation. For this geometry, we have also

applied equations (4-26) and (4-27) to calculate the series impedance and shunt

admittance of the CPW geometry. Fig. 6-16 depicts the results of this application. The

behavior of calculated series impedance and shunt admittance seems reasonable and in

agreement with the results reported in162l.

Real(Z.r¡.r), KÇl/m

Real{Yr¡un,), S/m

t5 20 25 30 35 4g 45 50 55 60

Frequency (GHz)

Figure 6-16: Extracted series impedance and shunt admittance for the CPW geometry. Equation (4-26)

and (4-27) are used to calculate the parameters.
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6.5 Microstrip structure with amagnetic conductor

Microstrip transmission line is a common and wildly used component in

communication engineering and Integrated Circuits. In this section, we consider an

interesting application of microstrip configuration. The use of a microstrip configuration

to extract magnetic parameters of magnetic ribbons has been reported in the literature

[63-65]. In [66], we used a microstrip configuration to measure and study Giant

Magneto-Impedance, GMI, effect on Co-based magnetic ribbons in the high-frequency

regime. GMI can be explained as huge changes in the permeability of the ribbon (

resulting a change in the impedance of the ribbon) when a static magnetic field is applied

and changed [63].The magnetic material, available in the form of a thin ribbon, acts as

the center conductor of a terminated microstrip transmission line as shown in Fig. 6-18.

Ribbon:

Width: 1.056 mm
Height: 34 mm

o:5.8 xI05 S/m

ç:?
Dielectric:

Thichtess (h): 0.35 mm
c:) t

H¡6, magnetic field intensity:

varying from 0 to 23 Oe.

Zc= , y =ltanh-t(

y=u+jp

Figure 6-17: A magnetic ribbon is used as the center conductor of a microstip transmission line in

order to extract the magnetic parameter of the ribbon. The complex propagation constant is calculated

based on the given formulation using measured values for Zr"andZoc.

OC!SC Ioad

Zr"Zo"
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Scattering parameters of the open-ended andlor short-ended line are measured using a

Vector Network /lnalyzer, \rNA. The measurement results are then used in an empirical-

analytical model based on the skin effect lagl b extract the equivalent circuit parameters,

R, L, G, C. The complex permeability of the lossy magnetic material is then extracted

based on the skin effect and internal impedance of the center conductor. The calculated

attenuation constant (based on measured data) for various H¡s values is reported in Fig.

6-t9.

o
0.1 0.5 I 1.5 2 2.5

Frequency (GHz)
Figure 6-18: Measured attenuation consúant of the hansmission line shown in Fig.6-18, as the Dc

magnetic freld intensity changes from 0 to 23.6 Oe.

The behavior of the extracted complex permeability (real and imaginary parts)for the

magnetic ribbon at H¡6:0 Oe is shown in Fig. 6-20.

12

- 
H=0 Oe

- 
H=1.9 Oe

---. H=3.3 Oe
'------ H=5.7 Oe
-.-.. H=I 4 Oe
..., H=23.6 Oê
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Figure 6-19: Real and imaginary parts of the extracted permeability for the magnetic ribbon.

In the next step, the circuit of Fig.6-18 is simulated with the proposed Incentric Cell

Method. The specification of the mesh is reported in Fig. 6-21.

Figure 6-20: The primal triangulation used to simulate the ci¡cuit of Fig. 6-18. An adaptive mesh open

boundary is used as described in Chapter Five.
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The extracted magnetic parameters shown in Fig. 6-20 arethen used in the simulation.

The results of Cell Method simulation (V0-, F0-formulations) are reported in Fig. 6-21.

The results obtained from COMSOL and measurements are also given for comparison.
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The Incentric cM sorution in Fig. 6-2r is simply obtained

v0- and F0-formulation results. It is in a vety good agreement

lncentric CM
COMSOL
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Frequency (GHz)
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Figure 6-21: complex propagation constant for the magnetic conductor in a microstrip configuration.

The results of the Incentric cell Method are compared to coMSoL solution and the measurement

results.
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from COMSOL. The discrepancy between the measurement results and simulation results

is expectable regarding the conditions of the experiment. The magnetic material was an

unknown material and the electric parameters for that were measured for low frequencies.

The complex and anisotropic permeability is another complexity in this experiment. The

magnetic material was glued to the substrate which increases the inaccuracy of the results

considering possible air gaps. This example is an interesting mixture of measurements, a

proposed theoretical model for magnetic parameter exkaction, application of a new finite

formulation scheme and is considered successful based on the results presented in Fig. 6-

2t.

Different examples investigated in this chapter were meant to validate the Incentric

Cell Method formulation, its capability in modeling complex geometries, inhomogeneous

media, implementation of different boundary conditions, convergence and accuracy. The

presented results are considered encouragrng and positive, however, there is still a lot to

be done. There is a possibility to construct an iterative scheme as V0- VI-YZ-... to obtain

better accuracy for the Incentric solution which we did not consider in this thesis. There

were no comparisons about the time and memory use between the Cell Method and

COMSOL. This is because the code in this thesis is written in Matlab and is not

optimized for memory usage and time. The comparisons are only done regarding the type

of the constitutive matrices involved as diagonal or non-diagonal constitutive matrices.

The next chapter of this thesis, Conclusion, closes this phase of the research on the

Incentric Cell Method.
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Chapter 7 -Conclusion

The Incentric Cell Method was introduced in details in Chapter Four of this thesis. The

results of applying this scheme for solving a vanety of complex electromagnetic

structures were given in Chapter Six. The major motivation behind proposing the

Incentric scheme was "being able to construct diagonal constitutive matrices (therefore

an eigenvalue system with s1'rnmetric positive definite matrices) and overcome the

aaauracy issue caused by the non-orthogonal dual mesh". The results of applying the

Incentric scheme presented in Chapter Six show good agreement with those obtained

using a FEM solver and available analytical solutions. This validates the correctness and

effectiveness of the proposed scheme including the zero-order solutions and the

minimization procedure to improve the accuracy of the solution.

Finite formulation benefits from a simple but robust framework which does not use

any differential calculus or variational techniques. In Finite Formulation, we start from

the physical law and express them directly for the discretized spatial domain. This

procedure results in separate topological and constitutive relations where approximations

and discretization only affect the constitutive relations. Since the matrices (topological

and constitutive) are also built independently, changes in material properties or frequency

does not change topological matrices. In fact, topological matrices remain unchanged

even when the geometry is changed (scaled) as long as the topology of the connections

between the points, lines and surfaces has not changed. From the computational point of

view, there is no need to update all matrices when one of the changes mentioned above

takes place in the problem under study.
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Finite formulation does not require any special condition for the spatial domain (for

example rectangular mesh as in the originai FDTD). In general, it is applicable on multi-

scale inhomogeneous and anisotropic problems. Another advantage of finite formulation

is implementation of continuity boundary condition. Since global variables are

continuous on their geometrical objects, this condition is always satisfied on the interface

(lines or surfaces) between two different materials filling adjacent primal cells.

Finite formulation benefits from the existence of the dual mesh in many ways. A dual

mesh is used to assign global variables on proper geometrical objects which is an asset as

it is seen in other staggered grid schemes like FDTD. It also allows easier implementation

of PEC or PMC boundary conditions. An explicit dual mesh provides with clear and

more understandable interpolation schemes as discussed in Chapter Three. It was also

discussed in Chapter Three that FEM formulations implicitly resembles a non-orthogonal

dual mesh. It is interesting that using a simple framework as Finite Formulation results in

the same final algebraic equations as a variational technique does after using a good

amount of differential calculus and manipulations. A dual mesh is also beneficial when

introducing higher order interpolation schemes as it provides with additional points and a

geometrical projection of the interpolation scheme.

The advantage of having diagonal constitutive matrices was already discussed in

Chapters Three and Four. Having diagonal constitutive matrices guarantees stability and

convergence of the system. The time required to solve a symmetric positive definite

system reduces considerably by using previously defined functions (e.g. in Matlab). In

the Incentric Cell Method this point is considered as a great advantage for the

computational pro cedure.
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The dual mesh introduced for the Incentric Cell Method is not orthogonal. To take into

account the non-orthogonal components of the dual lines, we have used the variables

which are not defined in one set of formulation but in the other. lntroducing two sets of

formulations (V-formulation and F-formulation) provides the opportunity to choose the

suitable formulation based on the boundary conditions or the existing field's components

This allows us to use Maxwell's equations (defined in the other formulation) in a dual

sense, as an interpolation tool. ln a zero-order approximation the effect of the tangential

components is ignored and a simple symmetric positive definite system is solved. In the

next step, a minimization procedure (Least Squares) is used as an efficient (validated in

Chapter Six) way to improve the accuracy of the zero-order solution. ln fact, a symmetric

positive definite system and an additional Least Squares Minimization are all we need to

solve instead of solving a non-symmetric non-positive definite system. Even the zero-

order solutions from V0- and F0-formulations agree well with COMSOL solutions and in

some cases this zero-order solutions can be used as a starting point in iterative schemes.

Waveguide structures are very coÍrmon and practical components in communication

systems and electronic devices. Calculation of p.u.l. parameters for such a widely used

structure is always advantageous. It is often important to investigate the effect of different

parameters (e.g. losses in the ground for overhead cables, etching profile in CpW

structures) on the p.u.l. parameters of the line. An interesting advantage of using Finite

Formulation and having separate (topological and constitutive) matrices is the possibility

to define series impedance and shunt admittance as presented in Chapter Four. This

enables one to calculate p.u.l parameters for any given geometry by using the matrices

and the proposed scheme in Chapter Four.

106



Although there is still a long way to go to improve and develop the proposed scheme,

the results are encouraglng and positive. The advantage of this scheme may be more

appreciated when solving complicated large sized problems in 3 Dimensions and time-

domain.

The simple basis of Finite Formulation is an attractive alternative to the conventional

framework of differential equations which unnecessarily seems to be a part of any

electromagnetic analysis. This feature can also illuminate the way electromagnetic is

understood with a different light.
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