
t.-.

A Prißary KÊy Relri+val System fcr the PÐP-11

Gregory A. I'latthaw

A Thesis
presented to t.he Ilniversity of Èlanitoba

in partial- fulfillment of the
ragui.rements for the d.egree of

tlaster of Scien:a
'ín

Conputen Science

l{innipeg, Illanitobr ' 1980

{c) Gregory A. l{atthe$, 1980

by

;Ììjl

l:ri:.'L-:: i::i1

A PRiMARY KEY RETRIEVAL SYSTEM FOR THE PDP-II

BY

GREGORY ARTHUR IqATTHE|,I

A thesis subniitted to the Faculty of Graduate Studies ol
:

the University of lv{anitoba in partial fulfillnlent of the reqttirenrerrts

of the degree of

MASTER OF SCIENCE

ou I 980

Pennissiort has been grauted to the LIBRARY OF THE Ul'r-IVER-

SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm tltis

thesis and to lend or sell copies of the film. and UNIVERSITY

MICROFILMS to publish an abstract of this thesis.

The author reserves other prrblicatioll rights, and ¡reither the

thesis no¡ extensive extracts front it ntay be printed or other-

wise re¡rroduced witltottt the at¡thor's writtetl pertttissiott.

ÀCKN OI'lT E DGEII E¡I I5

The author woulit like to eÍpress thanks L) his adviscr,

C"a" Zarnke, foÊ his pati+nce and. fcr his very many helpful

suggestions about the conl-ent anil uorcling of thi-s thesis. .

fha author alsc uj-shes to thank l'lrs. I,yn Burkosski for

h+r abili-ty to stretch otre lceêk into one month"

The author ¡rould like to thaak Peter Buhr fcr his hel,p in

th+ preparation of this nanuscript,

Finally, the author wishes to thank his pareats vithcuþ

whose constant nagging t.his thesis would, never have been

f i.nisheå.

i:,,:.'

- la

TABLE OF

aaala

CON?EN?S

alallaalACKNOWLE DGE fiENTS

thapter

r . t ..41

pa9e

Tr

ïr"
ïrï.

rv"

fNTRODIICîïON . ., r | t

CBJECTIVES OF THE KSÀU AECORD

Dttaal¡lat

ilA¡¡ÀGEIÍET{T SYSTEU

THE STßT'CTU8E OF THE KSAT{ FTLB . ., . . I I' I I

General- Descripti-on of Structure , r .
The KSAt't Recor¿l Structures r, . . . r

Thg Data Rêcord ' r . . ' .,. r r .
Thg Indgx Recorcl' .' r . r' r r r
The tiigb Value Intlex Record . r , .

the I(sAt{ Informati.on Blocks, r . . r .
The Free Space Coilnt r r, r' . r
Thg Ðata Block' . r

-
r . r . . .

The fnd.gx Block r . ' r . . | . . .
?he Root BlocJt r r ' ' . . ' . ù ' .

The KsAlll ?ile P¡ocessing strucÈurÊ . ,
The Internal Positional Pointers . ,
The Buffering Systen r . . ., . r .

t I t ... 9

r . r".-11
r r . .,11
r.. . , ,11
t r t -. - 14
r r . ..15
I t t . 15
ro.r16
. . . . 18
. . r*r 20
.r..23
t t .t , 23

?2
I a | ¡ LJ

r r . . ?5INfOAgÀTION AETRIEVÀT

Locat.j-ng a Recoril
locating the Next

Ðata Blcck Splits r
Index Block Splits
Root Blcck Splits .
Hultilevel Split-s .

at aÒa.ttt

tralrlrat

Sequential tecosd
2s
26

2B
31
3-l

4t

. . . r r . r r . 40
r r t . . r r t 45
r r t 50
¡ . ù r r r r t 53

I_a I I r."I

taatra

tataaoltltalal

aattlaatalltaat

t I t I,I a a I i a a I I.r

Vo HODTFYTNG THE KSA}1 FILE ataa r..r'28

Inserting a Reeord
Delet.ing a Recorcl
Reuriting a Record

INI'ORI|IATTON BTOCK SPTITS . ' r r r . r . ..r r .VT

a

t

t

t

trlta

Itlrt

aataa

lrttt

PROGRAHT{TNG ?HE KSAI{ 8ECO8D }IANÀGEÛiENl STSTE}f . . 54

General ÐescriptÍon of the KSAl,l Routines , n . , 54

:..:

':.

vïï.

L 3.1

KSÀ¡{ Rgturn Coclgs .' r . ., . . . t . r . r, 55
tlser Cod.g -1 . ' r . . | r t . ..,56
UserCode0 . r . . . r . . .,'56
{lsgr Codg 1 ' ù r . . r r r 56
USgr CodÊ 2 . r r . r t . r . r r, 57
User Coclg 3 " r r r " r r . r . r ., . 57

KSAI{ Fi-le t{anipulation Routines r r r r r ., . 5'l
KCREATE r' . ¡ . ' . t. r . r . t t . .. 57
KOPEN . r t . . t . . r . rt. 59
KCLOSE r r.... ... t r . t,. t t r ,62
KPTIBGE i r . . r r r r t... ' . . t . . , ..t.62

KSAI{ Record. ancl Pointer Uanj-pul-ation Routines , 63
Becorcl f,ocation Routines . r ., r . r . ¡ r 63

KPOTI{T I r r r . ¡ r . . . r r .-r . . t 63
I{RESBT . I r,r | . r . r r . . .-) t .,. 64
KPOINTN ¡ r . . . r) 64

Becord. t{oclifying Routines .,, . ., r r . 65
KRIÍRITE . r r . . . r . . r . r . . r . . - 65
.I(INSERT . . . ¡ r r . { r . . 66
KÐEtAfE. r i ¡ r I t r . . ':. . t . t...67

Recorcl Betrieval- Routinas r r , , . , Ð , , 68
.KBEAD . . r |t r t t . . t r . 68
KBEAÐN r ' . ' . . r t . r r t . t t ..t 69
KREÀDK . r . . r . r ¡ r ù . ' r ¡ r t " 69

yïII" CoNC titsloN . ataataaa ttaa 71

BIBITOGRÀPHY I . ' Itt aaaa Ð t t t.78

l_v

Figure

1 . The KSAI1 Da ta S tructure

2. the KSÀt'1 Data Record. , .

3 o th= KsÀÞÍ f ndex Record .

4. The KsÀ}l ÐaÈa Block r .

5, The KSAIE rndex Bl0ck r .

6. Tha KsAfl Root Bl-ock , .

7" Inserting a Dala Recorrl

tTST OF }'ÏGgBES

Deleting a Data Rêctrf, . .

taaatat¡

ttatalttl

aa¡aaa

alal

aaaoa

atta

aÐùl

araa

.aaôa

attt

tII.l

latl

itat

tt ta

aa

al

al

taa

ia

ùt

ta

t¡t

ta

at

pa ge

, 10

.12
,12
,17
. 19

,21
,30
r '33

.34
,35
.38
.42
,.4?

, 51

I

I

a

Õ Freeing an Empty Ðata Block r .

aatt

'l*" Freeing a Re¿lundant Index Block

11, R+oriÈing a Data Record

12, The Ðata Block Split . .

13, The Index Block Split r

14" The Root Block 5p1it t .

Ðl¡l taaÐtt

aaataat

taaaala¡a

tù¡aaataata

rtt

taa

t¡a

Chapter I

r N TBOD ÎICT trÛN

This thesis describes the architecture of a primary key

relríevaì- systeur f or the Dì-gite1 PDP- 11 uriniccmputer, â pri-

nary key retrieval systan is a ilata management sysÈem that

iilentifies data recorrls by a single or prímary key" The

acÈual primary key is a fielå cithin a data rêcf,rd that. can

ba usel to distingui-sh thaf particular itata racorcl from all-

other pcssible data rêcorËls.

fh= prlmary key retrieval systen nust be capable of

locating, by its key field., t particular ilata record witbin

th+ data structure and returninq or retrj-eving that itata

reccrd, The primary key retrieval sysleu must also be câpa-

bla of adðing data records to the data structure in such a

!'¡ay that the new clata record. f it,s ;asily and naturally into

th+ clata structurê. The prinacy key retri-eval system must

have the capabili-ty of deta record deletion. The flnal

ceguirement of a prírnary kev retrieval system is the abil-íty

to modif y clata racords withi-n the data struclure. A prirnary

k+y retrieval systen raTr optional-Iy, suppcrt seqEent!a1

ilaia prccessing furing uhich recorils arè accessed in orcler

by key.

i'll.: ìi:'r 'r'- J

ì..r:.].i:.j::..:

To srmmarize, a primary k*T retrieval- systeu ídeatifies
each ôata record by a uniquF key fiEld, The sys'tem nust be

capable of retriaving, adding, d.eI;ting, aad updatlng the

data reccrds in the clata structure, Cptionally, the primary

key retrieval system nay have the sapabitri-ty of procêssing

àhe d.ata records sequentially,

The keyed/sequential aceess nethoå, KSiIH, record fianage-

ment system describecl in this thasis is a primary key

retrievel systemo The KSÀt{ system identifies each data

recoril by a single key field and is capable of perfcrming

a1l of the cperational requì renents of a priurary key

retrieval system" As the namâ of the systein suggests" t,he

KSAtI record nanagemenl system suppcrts sequential date pro-

cessing as r+e1l" The KSAII ¡ecord nenagsment systen prcvides

a complete system for the creation and. uraintenance of dal.a

within operating system files based on primary key

retrig va 1"

Chapter II of this thesis contaj-ns a descri-plion cf the

objectives sought in the design of the KsAl{ record manlge-

ment system. These are the object,ivas considered in acldition

to the basis reguirements of a primary key retrieval systen.

This chap+-s¡ sets out the specifå: ûesign tescisioas ttrat

$er* in;orporated into t-he KSAIl rscord management system.

Some ccnsideraticn is given tcwards the ratioaale fcr oach

of these design desc j.si ons.

2-

¡?ì;;::.;:.;j

Chapler III contains a åescri.ption cf the antire KSÀl'l

data structure including lhe overall clata structure 1s wa11

as a iletailed description cf its various components, Brief

axplanations are offered +-o clamonstrate hoc bhe clata stcuc-

ture supports the clescisions aacl objecti-ves erpressecl ia the

previous chaptetr.

Chapter Iv ccntains clescriptions of the algorithms used

to locate data recorcls ryithi n th a KSAIr ilata strucLur e,

Algorithms are given for both methotls of record location:

location by key and locaticn by seguential posi-tion,

Chapter v contains descríptions of tha algoribhms used 'to

modify the contents cf the KSål{ file. Three algorithns arê

descri.becl; insertion, deletion, anô åata recoril modifica-

ti- on
"

Chapter VI is a ùetailed explanation of ths,procassing

raqnired to split an infornation block uithin lhe KSAIt data

structure. Since there are several diff+rent types of infcr-

nation blocks d.ifferent algoritbms ars used fcr splittíng

each "

In add.ition to the algorithms f or the splítting of indi-vi-

ilual information blocks this chapter contains a sectlon

äevotsd to t.he processing involvacl in a sìultip1e b3-rck

spl i t,

-3

Chapber VIT contains dasciptions ot the varì cus r:utines

that comprise tha ËSAtl record nanagÊnÊnt system,. À detaited

de.scription of each rou.+-j,ne, its arguments, and its eff,ects

on the åata structure forms the largest part cf this chap-

ter" These descriptions form a basic üserts Guitle for the

KSÀ¡{ recorð manag:nen:i: systen, Chapter VII alsc ccntains a

sectj-oa listíng the codes that can be returneil by the KSBlil

routines" , The circumstaneas that cluse each particular ccd.e

to be generat.ecl are explaíneil,

il':l'a 'fi!-.'l

;,:rt: r L,j.,ãi:r:lr.l

,4i , ;¡; :-\:t:
::: -.: r :_r : :::

Chapter VITI is a d.iscussion of

system meets the objectives set forth

uell the KSAl,l file

the seccnd chapler"

hotr

in

4-

ChaPf-er TI

OEJECTIVES OF lHE KSAI{ RÐCORD }lANAGET{ENT SYSTÉIY

In the implementation of the primary key retrieval sys-

tem, KSÀÞ1, sevan seconilary objectives were sel-ecteil ïn addi-

tion to the basic objecti.ves of all primary key retcievaL

syst+ms, As stated in the first chapter, a prinary key

retrieval system Ìnust be capable of identifyiag clata recsrds

by a key fi-elil and be capable of add!-ng, ileleting" retriev-

ing, and modifyi-ng th*se daLa trecorls' The KSAI'1 recorä aan-

agenent system attempts lc achi.eve alL of tha adcl!-tirnal

objectives without sacrifici ng the efficient ínplemeatation

of the basic objectivës,

The KSÀII reecrd nanagement systen had Èo be able to keep

track of nore than one data recorå uithin tha data slruc-

ture, The ability to guíckly locate more than one data

record at a tine facílitates many data processing tasks. For

exanple, suppose that one of several data recorils tttust be

selectel on the basis of JP,€ of the fields in the recorris

oiher thaa the key field. In this case the abålity to

locate aach d.ata record iactependently r+oulil be a ilefinite

asset.

5-

Ðuring the eeurse of updating th+ KSAÈ1 fLLe, ilata records

woulcl be deleted from the KSAI4 data structure. FJhen a data

recc¡d i-s deleled fron the f i1e the KS.[l,t reeorl nanaqeaent-

systeril haå to be capable of reusing the spacÊ occupied by

the deleted trecord. This ryoulrl kaap the ratic cf unuseð

spacê tc usefuf information at

ratio the better the processing

a nininun. fhe lower this
of the file structure" The

i-ota1 spacê occupied by the f ile anil the time requi.reð to

process the file woulcl both be lessen+d. ?he recovêry of

unused space woul-d also faeilitate l-ater clata recorcl ins+r-

Èions,

as t.he KS All f i1+ is updated, data records woulð be

'i nserted into the KSA,5 clata structure, Event.ually the KSA¡ã

fil-e uould require expansion to aLlos for further ínsert

operations, Tha KSAIl recoril management systen should be able

to Êxpand. the l{SÀ}1 få1e wi.th little eff ort and with a mini-

ural anount of itis¡uption to the c¡:rrent KSA[1 data structure"

Eany indexed f ile syst.eurs operlte inefficieatly unless

i:h+ initial loaitin g of the f íle is done vlth the recrrds

sor'r-eå into descending order by key. In these systens if,

records are loaf,ed in ascending orlar by key then each ner*

rsccrd bas a higher key Èhan the last ¡ecord in the file and.

cotrseguantly forc+s a nev b3-ock to ba createdn PeopLe tend

to think in terms of ascenili-ng order; the nene AÐill{S conrês

b-.fore the nane BfiOlf N and the nunber -l before the number 9,

-6

?h+ KSAII file system had to b+ capable of)-oailing the KSAII

clar-a structu¡e uith reconds sorÈecl, by key, intc esceniling

ordsr without an excesslve amount of Hork"

fhe KSAPI record managenent system had to be capabla of

pcocessinq the KSAM f,ile both by k:y and by seqrreace with a

minimum amount of *rork, The conbinatíon of k+yeil anci sequÊn-

tj-aI accêss providas aitditiona!- f lexibillty. Ihe key can be

us+1 to locate a st.arting point lnywhera øithln tha KSÀH

filsn A series of ralatetl data records can then be ret-

ri.eved seguentially, ¡lost j-nformation systens reguire bcth

of these types of access, For exanple, most j-nfornation sys-

tems ar+ updateit by key but report-eil on sequenti-a11.y"

Input an d c ut put operation s are the sloi¿est anil mc sÈ

expensiv-o operaficns on any computer systen. this is parti-

cularly true on a minieomputar like the PÐP-11, üinicrnputer

5-nput aail output rperations are expÊnsive, in tarms of pro-

cessinq tÍme, because of lhe lack of channels to perfcrm the

aclual input and output operatS-ons. the KsÀlll recoral flanage-

nent system hacl to make an effort to nininize the number of

input ancl output operations raquíre1"

The KSÀ[t reccrtl nanagement sysleur had to provide data

i-nteqrity. Data integrity maans that the data returnecl to

the us3r is the sane data that the user put iato tha KSAI{

fi-l+, Data integrity also maans that the data vi-thin lhe

KSAII fj-le is safe. It wi-1l sot be lost clue tc system or

powêr failures"

,_:.: _ -::::1-. .i. i.r

7-

?o sumnari-ze, the KSA!! file systen is designed to meet

sÐven objecLives bey'ond the basic onês of any prinary kêy

retrieva l- system. The KS Al{ recorcl managemant syst+n is

des i gned:

1 " to k+ep track of mcre than onË data record at e

t ine;

2, to reusê free space created by the ilelete opera-

tion;

3, bo allow fcr êasy ccnsistent file expansion;

4" to al1or the KSÀliI fi1+ to be loaded in ascencling

orcler;

5. to support both indexacl ancl saquântial file

access;

6, Lo minimize the number of ínput ancl output cPêca-

tions required; anil

'1 . to provide data íntegrity.

1':;i::+1r-i

.:

.B

Chapt=r III

?HB STRUCTURE CF THE KSAI{ FIIE

3" 1 gEUEEA! Ð,ggi&IBgEgU qg. SgBgçgUtsE

A KSAM file is composeå of a series cf interrelated

nemcry blocks, These menoxy bl-ocks nay be one of three

typ*s: root., indexn or data. the blocks are linked trger,her

t.o form a tree structure with the data blocks at the botiom

of the structure, t.he index blocks in the niåclle' and the

root block on the top,

Hach type of menory block contains individual- information

reÇord,s. These information records nay contain either user

dala or KSAI¡! index i nfornation as wa11 es contrcl inf crma-

tion for use by the KSÀM systam"

The data blocks, at the lo¡¡ast leve1 of th+ tree, ccntain

inf ornati on recorcls containing ussr data; these ili-Il be

called üata recorils. The dala recorils contair¡ the KSAtq

us,erts information, The user has ilirect access to the dala

neccrås and may add, clelete, change, anil retrieve data

reccrüs in the KSAÌ{ f ile.

The ind+x blccks and the root block contain ind.ex

record.s, the index records are useå to provid.e a link fron

onã infcrmation block in the tree to another informaticn

,:.:¡::':i:l:'.-

9-

Roct Blocli

DaLa.Block ÐaLa Eiock Index El-cciiDAVé. !J-Uçí\

1-1^+^ L1"l ^^l-De.VÕ. iJJ-UUj! r-nd-ex El-ock Index El cchDaLa Ll-ocl.i

iat,a Bi-ock Data 3l ocliLa'Ye É-LocN ùaLa Bl ock

l,r ':

I-1gure i : The KSAì"i Data Structu.re

1C

block on ttre nêxt lowesl l-evel of the Lree. The índex

records arÊ not aceessable to the user" Index records are

ad.ded ar d deleted by KSA¡,1 tc reflect changes made to the

tr*e structurê.

3.2 THE KSÀ¡1 RECORD STBI'ClTRES

3,2,1 . gþe P,êLa Eegg,ÊÈ

A KSA¡{ data reccrcl is conposed of. fcrrr contigous fiel-ds.

These fielðs arÊ: the key Length, the ilata trength' the keyt

and tha itata, The keï length i-s a one byte fielil which con-

tai.ns the length" in bytes, of the key fielú. The data

length is anottrer orie byte f iel-d, It contains the length'in

by'r,€s, cf 'the clata field, The key is the f,ield which is used

to rrniquel-y identify the rÐcord" The data field. contains the

userrs data which is associateil with the key.

The size of bcth length fietls is oo? byte. The naxiutuut
i

i.
i-nteger r^rhich may be stcred in a one byte field is 255;

t-herefore the maxinum length f or the key field is 255 bytes
1,.,,,,,,;-,.;ir1,;
ì.: :: t:: :: :::.::

and th+ maxiururu length fcr the clata field is 255 bytes' ,,i,:,,,,,:.,,::i.

, '.

'

, ',

t
, r

'
,

t

, ',

t

, ,
t

-, ,

Thus ths maximun length for I ðata recoril is 512 byt.es. : : rl

3,2.2 Eþe IgåSE RgggrÈ

A KSAI{ index rsccrd is coutposeil of fcur contigcus flelds.

These f iel-ds are: the length, the displacement., the pointer

to the son bl-ock, and the non-redundant part of the key,

11

ilr::,::: :. : :': :)' :':

Data. LengLrt t ó- lJó-

r,engtir Disrl aceì'iierÌt Son ircinter ;.í ô -.t

iri 6ure Tne i{S.l.i.i rndex liecord

12. -

/

?be tr-ength, displaceneût, ancl key fields are all rela ted

to on+ another. In order lo conserve space flilhin the in'lex

bl-ccks a technique referrad lo as front key compression i.s

employed, using this technique the only part of the key that

neefls lo be storecl is that part of tbe key which is

dj-fferent f rom Llr.e previous key, For example, suppose tbat

two consecutive keys are ÀBCD ancl ABCEF. ThÈ iliff+rence

betseen these twc keys is tbat the character D in the f,irst

k*y has been replacecl by the characters EF in the second

key; t.he characters ABc are tha same Ln both recor¿ls. In

this axa.mple tbe only characters lhat need. to be st,orefl in

the kay field of the seconcl record are the characters EF,

The length anil tha displacement f iel-ds c:nlain b he

information required about *here these letters should he

placed to forrn the seco¡il key, The lengtb field contains lhe

number cf characters to he placeð; in this case the length

fielil n ould have the value 2, The rlisplacemenà f ieLd

d,e'rprmines the number cf characters fron the start cf the

pr*vicus key to be retainecl. In this. exaurple the value of

the displacement field. would be 3 because three characters'

ABc, f ro rn t he previo us key tri-ll be u sed ,

fhe son polnter is an integer that forms a link fron onÊ

leve1 of, the tree to the next level" Tha son block may be

eit,her an ind.ex block or e dat-a block,

- 13

Alignment constraints complrca+-e the mani-pulation tf lhe

son pointer, Bêcause recccds are of varÍable length there

is Do methorl of ensuri-ng that the son pointar uill ba at- an

even numbered address as lhe computer hard¡rare requires

without inserting unused bytes betllean reccrils to cause

prûper a.lignneot. fn ord.e¡ tc ileal with this problen the son

pointer is storecl as two singla bytes rathar than as a

single integer. llhen tbs son pointer ís requirecl the .i-nteger

form of the son point,er nust be re-treated.

3,2,3 3be Ëigb gÊLsg LsÈÊE Ecs.sgÈ

The high value inclex recorcl is åefiaecl tc be the index

recoril wit h the highest possi-ble key. This key never

appêars in a data blockn ia facÈ, thi.s k=y can nct be fcrned

try the usêr.

The main purpose of the high value Índex record is t.o

ÊnsurÊ that all index bLock searches lead. to another ilata or

index block. Each index block search is terninatedl shen an

inf,ex racord nith a hi-gher key'"han th'e search key is founcl'

For every possible search key the high value kay is greater"

?husr rìo index search êver proce+cls past Èhe hiqh value

reccrd end thercfore the inôex search always leacls to sone

itata blcck. The coubi,nation of thas= tvo results faci-Ii-

tates the search algoríthm and the insert operation'

't4

?he other purposÊ of the hígh valua index record is to

enable the user to load the KSitM file in ascendi.ng orrler. By

loading t he f iLe in a scendi-ng order t,be high value key wiLl-

caDSê each record to be aclcleci to the file at the end cf the

last tlata b1ock. This ninimizes tha amount of novemÞnt of

tha data cithin t.he data blocks, BT adiling records at Èhe

end of the last rlata block the KSAII f ile systarn ÐnsurÊs that

the reguestecl amount of free space is distributecl sit.hin the

f il-e,

The high value index record has ttre format of any ordi-
nary index recorû. To differentiate this reccrd fron other

index records the length field is set to be 255 ancl th* dis-
placement is also set to be 255, By cornbíniug these two

fi+lds ¡¡j-th ,these values it rould seÊm to be possì.ble to

cr*ate a key nith a length of 510 bytes, Becaus€ the maximun

key length is only 255 bytes thase values for the lenglh and

displacement fielils clearly inclicate that this record is the

special record containing the high value key,

3 EEE Es4E lEEqggÀ3ggE Egqg6Ê

3, 1 gþe EEee gPage E9,SLU

The free spacê count j.s an inlegar found at, the beginning

of each typê of infornation block. this i-ntegerr ðs the name

inpl5-es, is used to keep a count of the number cf unuserl

bytes within the trl-ock,

3,

3'

15

';::i :':.::: tt:,;:

The free spaca counter has e seconclary purpose. this
counter i-s also used ào distinguish between index blocks and.

dal:a blccks, Iû the root and ín +-ha inåex blocks l'-he free

space ccunt has a yalue that is less than zeror In the,lata
blocks the free space counter i-s greater than zerc, f0 crder

to Ênsure +.hat the free spacê counter ûêver becones egual to

zero special proeessing must be unclerÈaken. The space occu-

pieä by the nu11 record. ryhich is requi-red at thÈ end cf tbe

pertinent infornation in boih index and ilaÈa blocks is
in'cluded in the free spacÐ eount âven though that space is

not. free. This method of encoding the f3-ag used to d.ifferen-

tiate betneen typ*s of blocks is efficient bcth frcn a slc-

raq+ point of vi-ew and from a processing point of, view.

3.3.2 !,bË. gÊ1.Ê Þleg!
I KSAI{ data block contains: a positive free spacÊ coun-

ter, a series of ðata recorcls, and a null reeorcl, .

The lata reccrds are sorted, by key, into ascen:líng

alphanuneric order. The kays xre of variable leagth; thece-

fore ttrc keys may be compared thab are of unequal length.

llhrn keys of uaequal length are compârêd the shortef Cf t he

t¡ro keys is considered to be extend.eal with the lcvest possi-

ble character to the length ¡f the longer key, Ûsing this
method of conparison key AB preceiles key À80"

- 16

I \] I

I'r
ee

 S
lta

c
e

C
ou

nt
D

at
a

.ì.
:ìe

co
rd

s

.Ir
j-

¡ç
nr

e

:':
t
i:;

T
lte

 I
iS

ltl
l D

ab
a

l:ì
-l-

oc
kliu
l-1

 li
at

a
Iìe

 c
 o

rd
l-r

ee
 S

pa
c

e

'.:
..ì ä; jii

The nu11

z?to" This

information

record consì sts of

byte is usefl to

in the block"

a singl: byte

nark lhe end of

with the value

the pertinent

3, 3. 3 3he IsÊeE g,lgg!

A KSAt'] inclex block contains: a nagative free spacê ccuÐ-

Leî, a series of lnclex records, and a nul1 recorcl,,

the f irst index recoril in an in:lax block eontains a csut-

plate ke y. In other words, the value of the di-splacenent"

fi-elrl of the first inilex recorå in the block Hill- altays be

?etro, Each subsequent recc,rû contains compressecl ka ys

sorted., by the original key" iato ascenåing orcler'

The son pointer in each j-ndex recorl points to a d.ata or

an inlex block on the next level of the tree, The son block

conlains alt recorrls ryhose keys are greater in valua than

th* key of the previous inclex recorcl and dhose keys are less

than or egual in value to the key of - the curren-t inâex

recc rd,

The null record used to mark the termination of tbÊ per-

iinent i-nformaticn i¡ the index block may be either the sPe-

cial bigh value index record or it may be an index recorcl

wirh a key length of zerc. The hiqh value index record

fnnctions as any other intlex recorcl. The sÊcond type of

null ind.ex recorô funcf ioú li.k* tha null r*cord in a data

bloc lc.

18

I \o ¡

Ir
re

e
S

¡r
ac

e
C

 o
ui

rt
lu

d.
ex

lì
ec

 o
ril

s

1,
'ig

ur
e

5:

'I'
lie

 I(
S

A
iÌ

ln
de

x
Lì

l-o
cì

.:

'':
:
.i

iiu
ll

In
rie

x
[ìe

 c
 o

rd
.l:

're
e

S
pa

ce

i.?
j

,tr
¡

Ì$
r

3,3. 4 gþe 899,! Elgg!
Tha K sAi'l rocj: block is a special *'yps of index block. It

is rlistinguished from other inclex blocks by its position,

The root block is always tha first blcck in t.be KSAil file

and" it always has the block number zero¡ In atlclition to

costaining al1 of the information founå in al-l inilex t¡locks

and serving as an index block i-tself, the rcct bl:ck has

four extra fields which are used throughout the KSAt'l systam.

these fou¡ extra fielits ere: the blocksize, the free chain

pointer, +,-hÐ end of file block number, and a pêrcêntage

indicrt.ing the anount ot free spacÐ to be 1ef,t as the fi.le

is loaded.

The blocksize i-s an integer whi-ch contains the size, in

bytes, of all of the information blocks in the KSÀl{ fj-Ie.

The blocksize must be a multiple of 512 grealer than or

egual i-n value tc 1A24" fhese contraints on the btrocksize

sere chosen to faciLitat.e ths interactlcn batween the KSAt'I

fil+ systen ancl the UNIï operating system.

The fre* chain pointen is an integer which points to a

linearly linked list of, +mpty blocks. These blccks arÊ

blccks that have been empiied by the delet+ operation ancl

reiurneå to the systen for reuse. I$ any sit.uation ryhere

the system requires an ernpty block, this list is checked and

the fírsi. block is reused before any other action is taken.

-24

F
re

e,
S

pa
ce

C
 o

un
'b

I N
J I

üf
oc

ks
iz

e
Ir

re
e

lil
oc

lc
C

ha
iri

i|n
d

of
 l

'il
-e

llf
oc

lc
 #

%
 Í'

re
e

S
pa

c
c

iì
e

c
or

cl
s

I¡
i 6

ur
e

T
he

 Ii
S

A
I'i

 R
oo

b
lll

-o
cl

i

lli
 g

ir
V

al
-n

e
fn

cl
ex

 I
ìe

co
rd

F
're

e
,:i

'o
ac

e

::ì
j
i:,

,.r
$ r¡
li .'i
!

The +nd of file block number is the nunber that the n+xt

block after the last block in bhe KSAII file should have, The

euil of file block nu¡nber is used to alloca'.e a aelr block

ryh+n ã nel¡ block is rêguirecl ancl an eupty block is not

available on the free block chain. ïn this case Èhe file

will ba expanclecl by reguesti-ng that the ttNIX operaLing

systern extend. the KSAI{ file by adding a block after the last

block in the KSAI{ fil-e,

fhe final extra field i-n the root block is useil to ensure

thaL a certain anount of frea spece will be distribuled.

throrrghrut the KSÀl'i file, This Hill allou f,or later

insertions and changes rn Èhe KsÀu fila and is intende'å to

reduce the numl¡er of clata and índex block splits requi-red.

The field contains an integer whosa value is between t anrl

50" This value stands for the pêrcentage of spac€ t be

left free i-n each clata block when adili-ng ilata records at the

end of the KSAt'l file.

?he rcot block flil1 always bave as its nul1 reccrd the

special high value record. In al.l other characteri-stics the

root block is organized and used in the same fashion as any

olher inilex block.

tr;¡:";";5

-22

3.4 THE KSAM FILE PBOCESSTNS STIìUCT{IRE

3,4.'l The rnternal- Positional Pointers

Each KSAä{ filg has asscciated with i-t a nunber of pcsi-

tional pointers, these pointers are createil iluri-ng the

opsration of opening the KSÀn file for processing. À pcsi-

tional pointer is used to locate a data record within the

KsAtl file, The pointer is used primarily when processing the

file sequentially.

Tbe positional poinler is conposeil of
"hree

integral

fåel.ds" These fi-e1cls are: the block number, the off,set fron

àhe beginning of the block, anil a pointer to the i-nilex block

which poÍnts to thj-s particul-ar clata bLock"

lhe block number in the positional pointer rÊfers to bhe

curre&t data block. The offset 1s t.he positíon of the cur-

rent record given as ihe number of bytes from the start of

th-o d.ata block tc the start of the reccrd, The f inal fielcl
is used to i-ndicate vhich inäex block is the inmediate pre-

clecessor in the tree of the curreñt åata block.

3.4.2 gbÊ EgËleEÈns ÞgÊ!?g

In order to recluce the nunber of input and output 3peca-

tions to the urinimum a bufferíng system j-s usecl. Several

infocnati-on blocks are kept in nain mencry simultanerusly.

!Íhen a block ís needed by the usÊr the KSAI|1 system first

searches for the regu*sted block among those hlocks which it

'23

1.'':1 _+) i:r

alreaåy has in" main mencrl. If the requested block is f,ounrl

r-hen no i-nput or output operation is requirerl.. The system

wa¡ks sit.h i,ha cf py of t.ha block in main nemory, If, tbe

block that was requestsd is not founð among the blocks in

main mÐnory then it will be reacl ini-o main memrry replacing
'

a block that is currently there. fhe block äo be replaced

wil-1 be the block that li¡as accessecl least recently, ff the

block tc be replaced has been nodifieil since the 1-ast lime

Ll- llas writ+-en cut then it vill be copied lo external sto-

rage before the neil bLock is reacl in to replaca it,

i':: ì: :rrj:

..:'.':]:

¡,ì.,t;:ì:ì1;:ì
':.! rlr.:: I ii:l

i.i'ì-.:.i:::ì':lilj

24

Chapter IV

II{FORI{AlIOII BETRIEVå¿

4.1 t_q,gÀg,Igg & EEggSp

?he search for any data record begins r¡ith the first

index record i-n the root block. Tha sBarch key is ccmpareü

to the key of tha fi¡st index recoril in the root block. If

the search key is greater tban the key of the first record

then the complete key of the seconil inåex recoril is created

using lhe ínformation in the second index rêcorcl. The search

key is then compared to tha key of the second inclex rec)rd.,

?his pr3cess is repeaieÉl until an inilex record. is found that

has a kay qreatar than or equal ín value to the s+arch key.

This search will a3-ways be successful because cf the hiqh

value in dex recocd which is considered Èo have a key rhich

ås greater in value than any other kay, Aft,er atr inrlex

record is found that has a key greater than or equal in

value tc the search key the son pointer is used to find t he

block at the next leveL in tha traê.

The ne:rt bl-ock d.own ihe tree may be either an index block

or a d.ata block. In the case of an inclex bloek, indicatecl by

a free spac€ eount less than zero, the processi-ng is the

sanâ as the processing in tha root block. This sequence uill-

be repeat-ed. thrcugh as nany leve1s of ind.ex blocks as

h: "-r- :: i

25

't.ti.:+t::j

regnirsl" Eventually the son block ryill ba a ilata block,

indicateü by a positive free space count, antl the search

rsi11 continue a+. the rlata block lev=I.

within the clata block a sinple linear search fcr the :: :,,

reguest.ed record is performed either until the rec¡rrl is
:i"::'.

found sr untj-l the systen recognizes that the lecord is

nonexistant. The recorcl j-s nonexist.ant if either tha nn ll-
,.,.,,

, 1 :: t.::j

data record at the enil of t-he block is encountered. or if â ':'

record with a key graater in value thnn the search key is ;,.:,,:...,,i

found"

The location pointer is set regardless cf whether the

search record is found or not. If the record is founil then

the pointer identifies the start cf the record" llhen lhe

record is not fcuntl the locat.ion pointer identi-fies Èhe

record wj-tl¿ the next hiqher key,

I+.2 LOCATTNG TIIE NEXT SEOTENÎIAL SNCORÐ

The POINTNEXI routine is usecl to advance an internal
pointer fron onÊ data record to tha data reccrå ryhich fol-

lows it sequentially" ?bis routine wil-l be used whenever

the KsAu file is processed saguentillly,

Tf the n+xt saguenti-al reeord i-s nithin tha safla ilata

block then the point+r may be advanced by changinq the poi n-

terts offset. The offset uill be incramentecl by th3 total

length rf the current record. The recorcl rhich follors the

i : i.:';.r

-26

eurr+nt rÊcord. ptrysically will be the next record

sequentially.

Tf lhe current record. is the final record in the data

block then the father inilex hlock will be used. The falher : -,.:.
,,.t.,t:t,,,,,,,,t.

inl=x block is .searched for the index record that points to
the current data block. As this search is beiag carried out

lh+ complete key for the index recorå is being rê-creaLed, _:.,:,..j
t,:. ':: 'a: ..

If the index reccrd. poi-nting to the current data block is ii,'''.l:'..'

not the hi-gb vaI-ue index record. then the nexÈ highest possi- ,,,,,-.,,,i,1
I r;:::: : i iì: .:

b1e key is created and thea searcheå fcr in the usual man-

ner" luhatever reccrd is founil as a result of this search :

ì

will be t.he recoril uilh the next highesÈ key, In the case
i

whare the index record of the current data bl-ock is the higte
i

value inilex recorcl '"hen the current data record. is the last
i

record in the file and the P0IN?NEXT routlne will inclicate
l

thai: che end of the file has been reacherl, i,

,t:i l.'::' 'ì

27

Chapter V

HODÏFYÏN5 ?HE KSÀU FÏtE

s'1 tu,EEEgÃ{g å BEç939

Data records are ad,iled to the KSA¡{ f i1e by the use of

i-h* ins+rt operation. The insert operation comprisas bcth

inserticn in the micldle of a bl-ock ancl also appending to the

end, used initially to loacl the l(sut file. fhe insert c:ut-
ina is capable cf recognizing the type of operation to be

performed by noting' shere withln the KSÀM file the ßelr

reccrd is to be added,

All insert operations begln Hith a search fcr the record

that is to be inserted, If this recorcl is found to a3-reaity

exist wi+-hin tha f il-e then an error has occurre¿l and t he

insert process uill be Èerminatecl. ïf the record is not

f,ouncl sithin the file then the insert may take place. It
should be noteil Lhat t,he search operation leaves the pcint.er

set to t,he location çhere Èhat record shoulrl be inserted.

If the search for the ínsert racorÉl ras ternínated. by

f inding a record ¡rith a higher key than the record to be
it:: ,,: ,
.j.:''.:

insertel then the insert takes place wi-thÍn the clata records

in the data block. The totll length of the record tc be

i-asertel i-s compared. to the amount of f,ree space available

-28

sith'in the data block, ff insufficient free space temains

t,hen a b lock split i-s requirecl before the insert Dperation

may ba completeð. If sufficient fsee space is available

within the data block then the j.nsert oparati-on rray proceile,

À11 reccrcls in lbe clata block that are above the i-nsert

point, including the null clata racorcl at the ead cf the

block, are shifted. to the righÈ by the length of the data

recorf, to be inserted, The new rlata record is then copiecl

ínÈo the data block startj.ng al t.he i-nsert pgint. fhe free

spacÐ ccunter is updated to reflect the change in the lmount

of free space available,

ff the search for the insert. rec_ord Tqas terminateil by

fínding the aulI data record at the enf, of the claÈa block

t.h+n the insert takes place at the encl of t,he block. This

ca;s* ås referred to as the load or appencl casÐ. thi-s opera-

tion dif f ers frorn t he ordinary f orn of th? insart oparat,i on

only with regards to t.he amount of free space avaåIal¡le" the

anount of free space avai-Iable Ís reducecl by the r¿umber of

bytes gi-ven by the percentage specified nhen the file was

createâ, This ÈnsurÈs that approximately the specifåeil per-

centage of free space is 3-eft in srery data block wit,hin t-he

f i.l-e "

fhe insert operat5-on sets the iatarnal- position pcinter.

The posi tional poin t.er specified in'ùhe call to the i-nsert

-29

F
re

e
S

pa
ce

C
ou

iit

.''
:,,

:,,

I \¡
J C
) I

D
at

a
R

ec
or

d.
 1

Ir
re

e
S

pa
c

e
0o

un
t

In
se

rt

D
a'

La
 J

,ie
co

rc
i

1

D
at

a
iìe

co
rd

-
2

!:
:.|

,::

'1
,'t

,¡
)Ì

,:.
1;

,:

r,
;a

Lâ
 .

Lì
ec

or
d

2

1'
'i-

 g
ur

e

F
re

e
S

pa
ce

'Í-
:.t

:.
.:.

.:t
..:

.
i,:

:::
,1

':.
..

:
,1

,:
i

La
ta

 l-
ìe

co
rd

-
J

In
se

r''
bi

ng
 a

 .D
ab

a
lìe

co
rc

l0
lì'

re
e

S
pa

ce

,*
:

:+
:

.i: liì

roüi'inÞ is always set to lhe record. that was inserterl. All
othar internal pointers ere left pointing at the reccrds

thai thay pointed to before the insert operaticn uas carried

o ut,

ff necessary internal pointers are changert to reflect bhe

new datl structure to ensure that they point t,o the sane

recor<ls after the insert as they lid prior to the insert
operaticn,

3ne final difference between the tuo types of insert
operati ons should be noted. When the blocks ar€ split
because there is insuff,icient frea spac? avai-3-able the sptit

. poínt is selected in a different ¡nanner for each typâ of

insert. Fhen append.ing a recoril the split point is selecÞed

so that the current clata block ryi11 refiain unchanged aad the

nêw block" where the insert ryj-Il take place, uill be empty.

Hhen a record is i.nsertecl into the míddle of a data block

and a spli.t is requireil tbe sp1ít poi-at is selecteil so that

the current data block will- be split into tr¡o parts whi-ch

wi-ll ba approximately egual ia size after lhe recorrl is

í ns+rted,

s"2 D-SLESIUE 4 8Eçg&g

The Èlelete cperation is nseã to renove data reccrüs from

the KSA¡{ fil-en IB oriler to delete a ilata reconô a search

for a record ¡ùith the proper key nust be r¡ndertaken, If bhat

!¡j::::::l.i: ;;:ì-. : 'ì

31

':

'r'.1 ,
r'

E'ecoId is not

th+ KSAM file
record axists

uay be carried

The amount

increased by

racorås abcve

record at the

by the length

ilaletel reeorcl

founcl i.hen the ¡ecord does not exist wilhin
anil therefore an error has occurred. If the

vithin the KSÀ14 file then the d.elete oparation

out.

cf. free space in the current data block is
the total length of the clelete recorå. RL3-

-the clelete point, including the nu1l data

enil of the tlata block, arê noveil to th+ left
of t.he ileleted rêcorcl. This shift cverl*ys bhe

e
anf, thus elimi-nates i.t from the data hl-ock,

It i-s possible that after a series of cleler-e operatic ns

that a data bl-ock may be l.eft that contains no ilata reccrils

oth+r than the nul-l data record at the enil of the ilata

block, In thj.s situation the riata block no longer perf oras a

usef ul f uncti on. This Ê$pty ilata hlock uill be ailded t,o the

fr+e blcck chain yhåch is pointecl tG, in the root bl-ock, bT

the free chain pointer. Tn order to carry out this operaÐion

the i-nrlex record pointÍng to t.his dala block nust be cleLeted

from ihe father index block. The father inciex bbck is
searchel until the index recorcl pointing to the current clata

blcck is found. If an inrlex record f ollor¡s the inilex reccrd

to be cleleted it is moilified so that it çilI follor¡ the

inûex r=cord prior t.o the inilex re:orrl being ileletecl. the

index record pointing to the current data block is ilelet.ed

by shifting all records above it, inclucling the null inðex

32

F
re

e
S

pa
ce

C
ou

nt

I \N \^
r I

D
at

a
R

ec
or

d
1

F
re

e
S

pa
ce

C
ou

nt

D
at

a
R

ec
or

d
2

D
eL

et
e

D
at

a
R

ec
or

d
1

D
at

a
R

ec
or

d
J

D
at

a
R

ec
or

d
5

F
ig

ur
e

o

D
el

-e
tin

g
a

D
at

a
R

ec
or

d

F
re

e
S

pa
ce

F
re

e
S

pa
ce

:.
,1

 1
:-

,Ê ,.r

Ir
re

e
S

ita
ce

C
ou

nt

F
re

e
S

pa
ce

C
ou

nt

Ir
rc

le
x

Iìe
co

rc
l.

1

I \N + I

fn
de

x
lìe

co
rd

 2

T
'h

e
da

ba
 t

¡lo
cl

r
is

a<

j-c
le

d.
 to

 t
he

 f
re

e
bl

-o
ck

 c
ha

-i-
n

to
 p

ro
du

ce
:

F
re

e
S

pa
ce

C
ou

n
b

fn
de

x
Iìe

co
rc

l
1

fn
de

x
1ì

ec
or

d
]

S
pa

ce

fn
de

x
Iìe

co
rd

 J

iri
-

¿
r;

ur
e

Ir
re

 e

S
pa

c
e

1,
're

ei
-n

6
an

 E
in

p'
Ly

 '[
ta

La
 81

oc
l.;

o
F

re
 e

51

ra
c

e

rr
 :

.

f'r
e

e
,5

¡la
c

e
C

ou
nb

l"r
ee

 S
pa

ce
C

ou
nt

ïn
de

x
Iìe

co
rd

 I

I \¡
t

\tì I

Ir
re

 e
 ,5

 p
ac

 e
C

 o
ur

rt

J,
as

t
fir

c'
[e

v,
 il

ec
or

d

In
de

x
lìe

co
rd

 2

Ir
re

e
S

pa
c

e
C

ou
i-r

t

T
he

 r
ec

iu
nc

la
lrt

 i
nd

ex
 b

lo
cl

c
(l¡

lo
cl

c
¡)

:L

s
ai

ic
ie

d
to

 b
he

 fr
ee

 b
lo

cl
.,

ch
ai

rr
t<

¡
pr

od
-u

c
e

:

Ð
 a

ta

lìe
c

or
cl

s

tr
'r'

ee
 S

¡r
ac

e
C

ou
nt

fir
de

x
.l:

?e
co

rd
 J

fir
de

x
iìe

co
rc

ì.
1

.[n
cl

e>
l I

ìe
co

rd
 2

l-.
ra

 L
a

.lì
ec

 o
rd

s

S
pa

ce

I¡
re

e
S

pa
c

e

Iti
 6

ur
e

1O
 :

F
re

ei
irg

 a
 R

e
cl

un
d.

an
t

T
nd

ex
 B

lo
c]

'-

ln
cì

ex
 R

ec
or

d
J

lrr
ee

S

pa
c

e

:..
;..

.
I:

,l

1¡
rc

e
,S

ira
ce

I¡
re

e
,5

pa
c

e

t:.!i?":..?1

r?cord at th€ end of the j-nclex block, to the 1eft, Once the

ind.ex record that is pointing to the ßolt ampty d.ata blcck is

deleterl then the currÊnt data block may be acliled to th+ free

block chain,

T.f aßy d.elete cperation leaves an i-nlex block with cnly a

single index reccrcl in it, then that inclex block is no

Ionger necêssary anct it may be addei to the free block

chnin. In order to carry lhis out the i-nilex record for this

index block nust be located ancl updatecl, The father block

for this i-ndex block is searchecl until the inclex reeord

pointing to the unnêcessary i.ndex block i-s founil. The son

pointer of the index recorcl to be upitateil is changeit t.o the

son pointer cf the last renaåni-ng i-ndex record in the

unnecessary i,ndex block, 0nce this ;hange has been macle then

th+ unnscessary inüex bl-ock may be ácldecl to the free block

chain.

At the conclusion of the clel-ete operation the pointer

specifieil in the call to t,he delete rout,ine is left prinling

to the ila ta record w?¡i-ch f ol1ous the deleted recorcl

seguentiatr-ly. If the last record of a block is üeleted lben

th: poi-nter is changed to identify the next sequential

recordn All other internal pointers ara upilatecl to ensure

that they point to the same reeords after t.he delete

cp*ration as they pointed to before the delete o¡reraticn"

36

s..3 SgggI'glrq è BEç93Ð

Thp re¡¡rite routine is used to make changes to the data

portion of a alata reco¡d. This routina may change the ctn-

tents cf tlie data portion of the ilata recoril anil it nay

change the length of tlae datl pÐrtion of a data reccrrl, This

routj-ns rnay not be used to modify the key portion of a data

recoril !n any way,

In orcler to rewrite a data recorrl the recorcl must alreaily

exi-st uithin the KSA{rt file, The rewrite recorcl is searchecl

f,or in the usual- manner anil if it. is not found then an error

has occ{rrred. If the rewrite record is founil then the rêw-

ril-e oporati-on may take place.

The l.ength of the ner clata portiÐn is compareil yith the

l-enqth of the current data portion of the elata record.. If
t.he length of the ne$ data portion is less than or egual to

the length of thÊ current clata pof,tion then the rewrite is a

relativeJ.y straightf orwartl operation. If the length cf t he

new datr portion is longer than the length of the current

data portion then the resrit: operat,ion is a ncrê ccurp3-ex

task

In lhe case where the lengÈh of the neu ilata portion is
less than or equal to the length of the current ilata portion

then r-he existing d.ata portiron is ovsrrritten by lhe nen

ilata portion, If the lenglh of the new Étata portion is less

than the o1d data portion tb.en the ûiffarence is adcted to

tt.,,:,

37

I':
te

e
5¡

la
ce

C
 c

lu
"r

rt
lla

ta

llc
co

rc
l,

1

I'r
ee

 ij
pa

ce
C

 o
un

'b

Lì
e

lv
ri-

't
c

I \r
'j @ I

F
re

e
S

pa
ce

0c
un

t

D
at

a
Iìe

c
or

cÌ
 1

ua
ba

 lì
cc

or
d

?-

D
a

La
]-

le
c

or
d.

 2

.D
at

a
i:ì

ec
or

cL
 l

tr
're

e
,S

pa
ce

C
 o

un
'L

lJ
at

a
R

ec
or

ct
 2

l)a
ba

 .
[ìe

co
rc

ì
J

Iìe
iv

ri'
b

e

.D
¿

rt
a

Iìe
co

rd
 1

D
a'

ba
 t

:ìc
co

rd
 2

O

O
R

lla
ta

 J
ìe

co
rd

 J

F
re

e
S

i.r
ac

 e

ua
'b

a
Iìe

co
rc

l 2

D
a.

t-
a

lìe
co

rc
i
j

Iti
 g

r-
ire

0

D
at

a
lrì

ec
or

d
J

I¡
re

 e

S
pa

c
e

lìe
v¡

rit
in

g
a

l-r
at

a
tìe

co
rc

l

I¡
re

 e

Ijl
ra

c
e

o
l¡r

ee

S
pa

c
e

ü i't
::

l-È

Iths free space count anil all raeords abovc tha raurlte point

ar+ shif ted. à-o the l-eft by the numbe¡ of bytes freed.,

In the case where the leagth of the nes¡ data portion is

greater than the length of the existing d.ata porticn thea

the difference betryeen tbese lengths is comparecl to the

amount of f ree space available sithi.n th e clala bloek. If,

ther+ is suffj-cient f,ree space then all data recorils above

the r=write point are shiftecl t.o the right by the difference

in the number of bytes between the new ilata portion aad the

o1û ilata portíon, Àfter the records have been shifted then

the nê¡ù clata porti"on is writtan into the space ' created by

the shift, The free space counter is then ilecremented by the

differ+nce between the lengths of the new and the oLil ciata

portions. If a d.ata block splj.t i-s reguireil then the spì-it

is macle anrl then this proeass i-s uncl+rtaken.

Àt the conclusion of e reurit: operation the pcinler

specified. in the call- to the rawrite routi-ne is left
pointing to the ilata recorû that vas updateil, All other

intarnal poiaters are upclatecl to ensure that they point t,o

th* sane claÈa records afte¡ the rewrite operation as they

did before the rewrite operation,

r::.. r:i:t:j.1ll

3q

6,1

Chapter VI

INFORÞI.ATION BLOCK SPTTTS

gAg4 glgEË EP!I3Þ

Data block spli+-s are requi-red whenever either an insert
or rewrite operaf-ion can not be completecl ilue to insuffi-
cj-ent free space remaini-ng in the tata block. Ðuring the

coÌrrse cf a clata block spl-ià operation a flala block is added

to the KsAPl fi1e" Some of the data records that are in the

data block to be split are moved into the new data blcck.

This operation wiLl leave nore free spacÊ in the clata block

that Has sptr-it. The frçe space in the data bl-ock has

increased therefore t,he insert or reurite operation fhat is
requi-rei can noï be completed" This split point is selected

so thaà t.he exact, mÌ-dpoint of the ilata to be split ¡yil1 be

loea+oed within the first recoril to be moveil into th** ne¡r

d.ata block.

In order to split a d.ar-a block into two parts the first
consideration must be the selection of the point at whieh

the clata bl-ock j-s to be split. This split point ryiLl be at

th+ start of the first data racord to be movecl i-ato the new

ilata blrck. ThÊ selection of the split point occurs in two

different vays.

-40

¡1.,.13;,itÌ,1

The first method of selecting the point at shich the data

blnck is to be split is used in the append form cf the

i-nsort- operation, In this situation the data recf,rd is tc be

insertel at the end of the ilata blcck ancl the spLit point is
selecled so that the d.ata recorcl to he inserteci flil1 be the

firsr- ¡ecord in the nerù data block ancl the exi.sting data

block will be left. unchanqecl. The data block tc be split
tloes not change but the index record. pointing to the sp1!-t

block will be moclified to reflect the neH situation"

Th= seconcl methorL of seleetin.g the point at whích the

data block is to be split is used. in the insert and the reu-

rj.-t-e operati.ons, The sptr-it point is select.ed so that bhe two

data hlocks ¡rilt have approximately the same amount of free

space in each after Èhe ins*rt or rscrite operation is ccm-

pI.?tedl

The cperaÈi-on of spLittÍ-ng a data block into tuc parts

reguíres that the father inilex bl-ock be moilifiecl. A rielr

index recorô must be created to point to the split block.

Thi.s inilex record ci1l have as its key the key of t,he ðata

record innediat+ly prior to the spl-it point, A second neu

index record. nust be created to point to the nefl clata block.

Th+ key for t,his inilex recorcl !riI1 be the key that rras in

tha index record i.hat pointed to the split bLock before the

Élata hlock split Fas requirei. This t+i-lL ensure that the

keys of all of,, the dala recorils in the split block are less

.:. -:,I

41

F
re

e
,S

pa
ce

C
ou

nt

F
re

e
,li

lta
c

e
C

ou
nt

In
de

x
lle

c.
or

cl
 1

I à n) I

F
re

e
S

pa
ce

C
ou

nt

D
at

a
lìe

co
rd

s
i

fn
de

x
R

ec
or

cl
.

2

F
re

e
S

pa
ce

C
ou

nt

fn
de

x
iìe

co
rd

 1

D
at

a
lle

co
rc

ls
 2

I¡
re

e
S

pa
ce

C
ou

nt

S
1:

1i
t

P
oi

nt

D
at

a
lle

co
rd

s
1

In
de

x
iìe

co
rd

 I

Ln
cl

.e
x

iìe
co

rd
 J

D
ab

a
R

ec
or

ds
 2

fn
de

x
R

ec
or

d
/¡F
re

e
,S

pa
c

e

F
re

e
S

pa
ce

F
i6

ur
e

12
:

T
he

 D
at

a
t.l

lo
cl

.;
S

pl
iL

f¡
re

e
S

pa
c

e

.ln
de

x
,R

ec
or

d
)

I¡
re

e
S

pa
c

e

1¡
re

e
S

pa
ce

::.

;,
t

.
.'j

!.t

:,.
 .

ì.:
Í

ì.r
ii

Èhan or equal to the key of the index recor¿l poiating to the

sptit block" It will also ensure that the keys of the data

records in the new clata block wiJ-l be tress than or egual to

the key of the inilex recoril pointing to the new clata blcck.

These t wo inclex records are createÉl ancl if there ís

sufficient free space available to acconodate the neï

recorils in the faLher index block then the ilata block spl-it

operati-on may be conrpleterl, If thera is not sufficient free

space avail-able in the falher i-ndex block for the tïo neTr

index recorrls than the father i-nilex bl-ock must be splä-b

b+fore th+ data hlock split can be cornpleteil,

The actual opêration of splitting a data block is divicled

into three parts. Firstly, the new data bLcck uust be

createC, S econrlly, the father index block must be mocl j,fi-ed

by t-he creatioa and insertion of the tso nery i,nilex recorcls,

Finally, the split block must be upttatecl to inilicata the nêu

end of the ðata records and the nev auount of free space

availabl e,

In orcler to create a nerr ilata block a block must eittler
he obtained fron the free block chain or adiled to the entl cf

the KSAIî file. Ihe ner data block is loaAea with copies of

all of the clata records in th= sp15.t bl-ock that arÊ found

above t.he split point. In the case cf r-he appencl forn cf the

insert ope¡ation there are no data records above fha split
point except t,he nu1l data recorcl at the end of the split

l=r:ì;ll:;lì,r
;.,¡:;r':iìil

i:r'i :+î
t.:t:,;a:ì::

t¡3

clata blcck. The free space counter of the ner block is
calculat-^d and written into the n=w ilata blcek. At t he

conclusion of the creatlon of the nery itata block th* nes

data block is written onto the axternal storage device ¡rhere

the KSAI{ file is stored,

fhe father inilex block is rrpilatecl by replacing the inclex

record that points to the split. blo:k with the two nen index

recorils createrl for the split clata block anrd, the neu clata

bl-ock. All other inclex recorils in the father i.ndex bl-ock

r*il1 ba shifted if nêcessaf,y to accomoclate the new index

records. The fcee space counter i-n the father inclex blcck

uil1 be updaterl ancl the fatber inäex block vill be writlen
onLo the external storage ilev!-ce,

To ccmpl-ete the data block splít the split block itself
must be updated, The new value for the f,ree space counter ås

calculated anci written j-nto the split block. A nu11 necord

is inserted into the split data b1o:k at the nes end cf the

clat.a ,bIock, the split poi.nt. Fhen the split ilai.a blcck has

been updated it yill be sritten onto ihe external storage

clevice.

Tha final operation involved ín the data block splitting
process concerss the inÈernaI positional poÍ-nters" å11 of

the intarnal positional pointers are tested and upctated. if
necessary to ensürè that they point to the same d.ata records

af+,er the d.ata block split as they pointeil to befcre the

dara block spiit,

44

The data block splitting process ís nou complete and the

original insert or rewrite reguest may be com¡rtr-eteil. Bêcluse

data recorils are at nost 512 bytes in length and blocks are

at j-east 1024 bytes long l split ensurãs that enouqh space

Hill be made available for the recorfl.

6.2 lgpEr, glqgs ËEåIgs

An index block split is nequirecl uhen an atLempt to splít

a son data or inilex block fails bacause there is insuff i--

ci-ont free space remaining in the current inilex block to

accomoilate the t wo nerd index recorcls required , During the

course cf an index block spliÈ a new index block Ís acldeil to

th+ KSAM file. Some of the i.ndex recorils that are in the

index bLock to be split are movecl into the nec ind.ex blrck.

Thís cperation increases the anount- of free space remeining

ín tha split index block. The increase in the anounf of

free space availabLe in the split ialex block +¡å11 allor¡

sufficient free space to acconodate the tllo nÊ¡r index

reeords requi.recl by the splitting process for the sptitEing

of the son block.

The selection of the split point in tle case of aB index

block split is a much simpler situation than in the case of

a data block split. only one nethocl of selecting the point

at r¡hich the index block is to be splít is used. the split
point is select.eil so that the spJ-it inåex bloch ancl lhe new

index block r{i1l have approximltely the sane amcunt of free

.;,ì..,';,,:
't:. .lt .:
. - .: :.'

45

¡1.::.1'l:l',':

space available in them after the

inserteå,

two nev index recocils arÊ

The inclex block splitting operation requires that lhe

father inclex block be moclified by replaciag the index record.

that points to the split block by two n-^w ind.ex recorrls, The

second ¡f the tno aew j-ndex reeorcls sill have the sama key

as th¿ index recoril shich currently poiats to the split
inüex block. the son pointer of Èhe seconcl rf the tryo nes

inåex records uilL poi"nt tc the nÊÐ inclex block, A totally
rer.l i-nilex recoril must be createil f or the first of the t¡Eo

new index records, the first ûec ind.er recoril siIl have es

its key the ksy of the inilex record innedialely prior to the

sp3-it poi-nt ia lhe spli-t index blo:k. This first nê$ index

reccrd will point to the sp!-it inclex block.

This method of creating the two nes irrilex recorcls ryíll
ensurË t¡vo things, The keys of all of the inilex recrrüs in
th*o sptr-it index block are less than or egual to the key of

the Índex recortl pointiug to the split inôax bloch" fhis
neihoö also Ðnsures that the keys of all of the inrlex

records in the new index block are less than oE equal to the

key of the inclex record pointing to r,he nÐlr index U1cct.

ThÊse ttlo new index recorús are createil and if suf,ficient

fr*a spece remains in the father index block to accomoåatê

Èh* nefl records then the index block splitting process can

proceda. If there is not srrfficient free space available in

r:,ì.::;ì,:,' . r:.

46

Ir
re

e
S

pa
ce

C
ou

nt
In

de
x

Iìe
co

rc
i 1

I

t -.
J I

F
re

e
S

pa
ce

C
ou

nt

In
de

x
R

ec
or

ds
 1

ln
de

x
iìe

co
rd

 2

F
re

e
S

pa
ce

C
ou

nt

In
de

x
lìe

co
rd

 1

1¡
re

e
S

pa
ce

C
ou

nt

S
pl

i'b
 P

oi
nt

-L
nd

ex
 I

ìe
co

rd
s

1

In
de

x
iìe

co
rd

 5

In
de

x
lìe

co
rd

 ,

In
de

x
R

ec
or

ds
 2

lJ
ot

e:
 T

he
 fi

rs
t

in
de

x
re

co
rd

l¡j
-g

ur
e

13
2

T
he

,i:
 i

fn
de

x
R

ec
or

d
l¡F

re
e

S
pa

ce

F
re

e
S

pa
ceB
lo

c]
<

fn
de

x
R

ec
or

d
þ

1n
 b

lo
ck

 C
 w

il-
l-

co
nt

ai
n

fn
de

x
B

lo
ch

 S
pl

it

S
pa

ce

F
re

e
S

pa
ce

F
re

e
S

pa
ce

a
co

rn
pl

e'
be

 k
ey

.

:lì
ì

the father index block to acconodate the tuo new index

records then the father index block must be split befcre lhe

inde x bl ock split can be compJ-eted.

The actual index block splitting prccess can be

sul¡diviled into three parÈs, The first part of the index

block splitting process is tbe creati-on and, loadi-ng cf the

nev inlex blcck, The second part of the inclex block

splittina process is the moclj-f ication of the fat.her inôex

block by the insertion of the tryo ner inclex record.s, lhe

final phase of +-he index block sp3-itting process is the

Bod.lfication of the spl1,t inclex b1o=k to indicate the end of

thæ inclax records in the índex block and t,he amount of free

space availabl-e.

fhe creation cf a new inclex block nust be begun with the

aLlocation of an empty ínfornation block. This *mpty

information blcck is ei-t.her obtaÍned from the free block

chain or is appeadeil to Lhe KSAI'í file. The fi-rst inclex

reccril in any index block must contai-rr the conrplete key for
that recorcl. The conplete key f or the first inclex reccril in
the nel¡ inilex b,lock is created using the complete key of the

last record to rena in j"n the split lndex blcck ancl the

j-nforrnation +,ç be found. in the inilex EÊcorcl that 5-nnediately

follo'rs the splil point in the split inðex bl-cck. Aft.er the

first index reccrd is $ri.tten ínto the new index block then

the remaining index recocils above the split point are copied

-48

into the new index block, The free space counter for the nev

inðex block is calculatecl ancl vritten into the ne¡g index

block, once the ne¡r ind.ex block eontains all of the

n€cêssary information it i-s r¡ritten onto the external

storage ilevj-ce which contains the KSÀtI f i1e,

The f ather index bl-ock is upclatecl by the replacenent, of

the index recorå ryhich points to tha split indax blcck by

ths two nên index recorils pointi-ag to t,he spli-t inilex block

antl the neï¡ intlex bl-ock. The free space counter in i.he

father inclex block is updat.ed ancl the f ather inclex block is
written onto the external st.orage devica,

The f inal- stage in the index bl-ock splitting process is
th+ modificatio:r of tlre split ind.ex block. The free space

eounter is calculateil anil wrítten into t.he splít inclex

block, The null index record is insertecl intc the spti-t

block at the new end of the inilex block, t.he split poÍ-nt,, Àt

the conclusion of the uodifj-cation of the split inilex block

it is ¡sritten onto the ext,ernal storage device,

The index block splitting process is non complete. The

d.ata or index block split required at the next levet dorn

th+ tree may noil be completacl.

:l^ _:r':i.!:l

49

6,3 EA,gg, ElgqE Ê!!IEã
A rool block split is required. when an attempt tc split a

son data or inciex block has failed because there is insuffi-
cir,nt free space rema5-ning in the root block lo accomodate

the two nery inclex recorcls requirecl. During tha root split-
ting operation a ne$ inilex block is adctecl to the KSÀu file.
Approximately half of t.he inilex records in the root blcck

arê noved into the n€w inclex blo:k. This operaticn sill
increase the anount of free space available in the root

block. The root block split also adcls another l-evel of iaclex

blocks to the KSAtt ile, Àt the conclusion of the root block

split the split requirecl at the next level of the tree can

be perfcrmed.

As Híth all block splits the first step in the splitting
of the root block is the selection of the point at whåch the

roct block is to be split. The split point is selecleü i-n

the sama manner as the split point is selecÈeil for any other

index bloek.

The root blcck is the topmost block in the KSÀn file. It
does not have an ínclex record that points tc it ther*fcre
t-here is no father ind*x block to be moåifieit and no ne$

ind.ex recorûs to be created.

The operation of splitting the root block has only Lwo

parts to it, fhe fi-rst phase of the root block split is the

creaiion and l-oading of a new inctex block. The sêcond and.

50

l::,r.r

F
re

e
S

pa
ce

C
ou

nt

I \n I

Ilo
ot

 B
l-o

cl
<

P
re

 fi
 x

F
re

e
S

pa
ce

C
ou

nt

F
re

e,
S

l,¡
ac

e
C

ou
nb

In
de

x
lìe

co
rd

s
1

Ilo
ot

 I3
l-o

ck
P

re
 fi

x

l,:
.:,

,;

In
de

x
lìe

co
rd

s
1

iJ
ot

e:
 T

he
 fi

rs
t

in
de

x

F
iþ

ur
e

fn
de

x
R

ec
or

ds
 2

S
pi

-i.
b

P
oi

nt

.j,
.

I'l
ig

h
V

al
ue

In
de

x
iìe

c
or

d

l{i
gh

 V
al

ue
In

de
x

Iìe
co

rd

IIi
gh

 V
al

-u
e

ïn
de

x
R

ec
or

d

re
co

rd
 in

bl

oc
k

A
 t

¡¡
ill

-
co

nt
ai

n
a

co
m

pJ
-e

te
 k

ey
.

1l
¡:

T

he
 Iì

oo
t

lll
oc

l<
 ,

S
pl

it

I¡
re

e
S

pa
ce

F
re

e
S

pa
ce

Ir
re

e
S

lla
c

e

|: I i' |: lj i: i. i: l; rl il I iÌ il !. t I lì I I il I I t; ii ll ii t :ii ;{
i

.\¡
l

.f,
!

last phase of tha root block

th* rcot block.

spli-t is the modificaticn cf

The actual splitting process for
the sams algorithn as that followed

the root blcck fcllocs
for the splltting of an

blcck yilI be crealed,

storage,

ordinary index block. A ne¡r i-ndex

filled in, anil written onto external

The Last stage j-n Èhe root bloek splitting process is the

mod.ification of the root block. The f¡ee space counter is
calculateil and uritten into the root block. The hì-qh valua

index record is usecl as the nul1 inclex recoril in the rcot

block. This recorrl is inserleil into the root block at the

split point. The son pointer of the high val-ue index cecortl

will be set to pcint at tt¡e nafl inflex block.

The high value inclax recocil nay appear several bå¡res

¡rii-hin a KSÀM file. Oû each level of the inilex the high

value record si3-1 be the rightmost index recorrl, lhis
arrangement of the high vaLua i.ndex recorcl occurrences will
form a path fron the root block cloryn the right sid.e cf the

tree tc the block which contains the clata ¡ecorcl flíth the

hiqhest key in the KSÀt{ file. This arrangement ensurÊs fhat

all- index block searches will be successful antl^ that. a 11

search operations nill terminate in a ilata block. this
arrangement of the high value record also facilitates the

append forn of the insert operation,

-52

The root block spl-i'"ting prccess is nolr complete, the

tlata or intlex block spli-t requirecl et the next level- of the

trea nay no$ be ccnpleted,

6. 4 UU!!I rg! gg!r.39

A multil-evel split occurrs whenevar more than one infcr-
nati-on block must be split in order to couplete an insert or

reurite reguest. In thi-s situation the block tbat is near-

est the rooi- blcck ancl requi.res splitting wíll be split
first, then i+*s son block, ancl so forth untíl Êventually the

ilata blcck ås split anil the iasert or rewrite operation can

be compl.eted. f or exarnple, in the case r¿here the root. blcck,

an index block, anci a ilata bl-ock all reguire splitting the

or,íer 1n which thç blocks woulcl be split is: root, then

index" and finally the daÈa block"

Ì: : :.: :
- j . .. ì :. : ;

ii:!i 1r.ì:. i

53

Chapter VIT

PROGRAMUING T IIE KSÀI{ AECOBD IIANAGEH ENg STSTPH

7 " 1 ÊEUSB4L Ð.gggBÃgglg,U 'qg, EEg EgaE BqggIgEä

KSAI'I is written 1n C tanguage anil is clesigneit to be used

on the PDP-11 with the ItNIx operating system" It occup5-es

approximately 15K bytes of nenory. The KSAtl reecrd aanagÊ-

ment system takes aclvantage of nany of the special features

avai,lable when using the ttNfX operating system, For exanple,

nany of the possible êrrors that can be made by the KSÀU

ussr are detected by the {INIX operating system whi.ch will
either correct the error or provirle iliagnostic nessages anrt

coães for the prcgraBnerrs use. The UNfX operat,lng systeur

also places a fery'restrictions on the ussr. The blccksize

best suited to uNIx is 512 bytes therefore the KSÀt{ system

enforces that optíma1 blocksize, or. a multiple of it, ?n bhe

systern rser. The flexibility anil aase of use of the ttNIÍ

operating system makes it. Ícleally suited to the KSAII recortl

maÐageüent systen,

fhe KSÀiil recorcl managenent systeur is composecl of thirteen
routines. These thirteen routines are iti-vid.ed into t¡rc cate-
gorias" In one category are those routines ¡rhictrr are used to

nanlpulale +*he KSÂl{ file as a shole. The rcutiaes whi ch

operate on the entire KSA¡{ file as a sj-ngle enti-ty are:

,..1t.!1 ... i,

- 5tr

KCEEAtB, KOPBN, KCTOSE? and KPtJRGE, The second category of

KSÂU rcutines are those routines vhích manipulate either

single åata reccrcls or single positional- pointers, The rout-
ì nes included in the seeoncl category are: KPOII{T, KRESET,

KPOINTN, KRWRITE, KINSERT, KÐ8LETE, KREå0, KREÀÐN, ancl

KRFADK. this second cateqory is further subd.i-viited into
three parts: the routi-nes whi:h locate a recorrl, the rcut-
inas which modify the fi le, ancl the routines ahich are usecl

to ret.ríeve a recorclr

7 "2 6gÀg BEggE{ q9Pg5

There are a number of coåes which are returned as lhe

value f¡r the various KSAl.l rcutines used ¡¡ithi.n the KSAI{

r+cord management system. There are fiva coûes Èhat may be

erlcountered by the user and these codes are calleil user

coiles,

Every routine in the KSÀ[1 recoril Ranagement systen is a

user callable f unctj-on" This irnplias that each cf the KSÀu

routines returns a value. litith t.he exception of tha KOPEN

routine which returns a pointer to a control block which it
craates chen it teruinates successfulLy all KSÂu r¡utines
return one of the five posÈible integral codes.

55

7.2,1 gFgr_ ç,9,Êg

The user cod.e is usetl to indicate thai sone sort of

unrecovèrable error has been cletected by the ITNIX operating

system, By itself this is not sufficient j-nformation to form

anl¡ sort of a neaningful diagnosis of tha errcr, UNIX maio-

tains a system of error hanclling that is very useful in this
situation. The ITNIX error systen sets the global variable

ERRNO to an error code of its orn, This coria may be used to

clatermi.ne the nature of t,he êrrotr ancl corrective action nay

be taken, In practi.ce, thi.s coile shoulll ouly be encountereil

when using the rcutines: I(CREATE, KOPENT âilcl KCLOSE, åny

other occurrencê of the coile -'l intlicates an error in tb.e

Ksill{ system 1tse1f . ID this situation tha error causing pro-

grarn should be exaninecl by a systems programmer for the

nÈcessary corrective action,

:1
-1

? ,2.2 ggg,g. gg¿g g

lhe ¡¡ser cod.e of 0 is usecl by

to indicate that the reguesteil

oui successfully.

all routines except KOPEII

op*ration has been carried

7,2,3 Ugeg

Thê user

data record.

ç,sgÊ L

code of 1 is usecl to inclicate that the request.ed

cloes not exist vitbin the KSAI'f f,i-Ie.

56

7 .2, 4 gsgË gq,¿g ?

The user code of 2 is usecl to inlicale t,hat the requestecl

ilata record dces not exist ¡vithin the KSAü file, This corle

further indícates that th+ r=questari clata recoril is beyond

tbe end of the file.

7.2,5 U,ggg çe.49 3

The user cocle of 3 is oaly returnecl by the KïNSERÎ rout- i:-',.',';1.i,::.,

i-ne" The code 3 is usecl to i-ndi.cate that a data aeccrô can ""rì1::'j''':"'
r:r.::i:;ì..ì.t:.::.:

not be inserlecl into the KSAH f,ile because it alreatty exists i,'',¡:'.:'j;i'1',,

witnin the file,

7.3 SEAS gIlg UAgæg_LAgr,gE BggglggÞ

7. 3, 1 É,gEgÀgE

The KCREATE rrutine is useil to =reate a KSÀt{ f ile, Ihis
routine is al-sc used to specify the attributes of Èhe fi.3-e,

thâ KCREATE routine accepts three arguments: a poånter to

th= UNIX nane of the fj-le to be createil, an integer contai-n-

ing the size of the i-nfornation blocks to be useil, ancl a

seconil integeq specifyi-ag the amount of free spacê to be

left in each ilata block during tha initial lcading cf t,he

f i'l o

the namê of the file must be in standard üNIX fornat. The

f u1ly qualified name is storecl as a character st.riag and a

pointer to thj-s strinq is used as the parameÈer tc the

KCfEÀTE routine.

-57

..3::r.itri+4

The second parameter is 1n integer that speci-fies the

blocksize to be usecl in the crea+-ion of the KSAM file. This

blocksize must be a multiple of. 512 qreater than cr equal to

1024. :f an incorrect value i-s speclfiel 1024 is used.,

fhe r,hird ancl fisal parameter is another integer used to

specify what percentage of each data block shculcl be left
free +¡hen a clata record or d.ata records arê appended to the

file, Íhis integer must be betueen 0 anù 50, Any incÐrrect

value fcr this argument is assumed to be 0. It Ís recon-

mendeil that a non-uero number be specifiecl for thj-s paramê-

ter, If no free space is left ì ¡ ths data blocks then later
morlifåcatì ons of the fil-e wíl} resuLt in a large number of

ôata block splits.

the KCREÀTE rcutine creales a UNIX f,i-Ie yith the nane

specified by the firsÈ arqumant. this file appears tc the

ttNIï operati-ng system to be the sa¡ne as aay other file. This

¡ri1l allos the Brogramner to usÊ the trNIX system rcutines

for ilunping, rnovi.ng, aail copying the KSA!{ fil+. Íhe user is
cautionerl that the I(SAÈ1 file should not be rnoÉlified with any

routines other thaa the KSAI! recorð narragement system,

The KCREATE rcutine creates and urites into t,he KSÀl{ file

tha first two bl¡cks of, the fiLe. fhe first of these t*o

blocks will be the root bLock, The second block ryil1 be Èhe

fi-rst data block of the file. The fields in the prefix of

the root block arê filled in in tha fcl3-oring manner: Tbe

5B

blocksize is taken fron the paramater List ancl is sritten
i.nto the root block prefix. In the same ray the percentage

of free space to be left is copied intc t.he root block pre-

fi.x, The free block chain is marltecl to inilicate that the

free bleck chain is empty. The enil of fi-le block is set to z

iadicating that the next block past the end of tbe file is
block number 2. The final piece of information iasertecl into
the root block is the high vatr-ue recoril. This inilex ¡ecord

is set to point to t,he last clata bloch in the KSÀü file,
block nu¡nber 1. the free space count is calculateil and the

root block is sritten ontc the external storage clevice where

the KSAtt file yiLl resiôe. The first data block, block num-

ber 1, is markeil cith a null recoril lo initicate that the

bl-ock is entirely empty, The f,ree space count is filled j.n

and tha block is written onto the external storage device,

7,3,2 6ggE!

the fioPEN routine is usecl to preparê a KSAM file for pro-

cessing. The roui-ine perforns tlro functions: the openinq of

the KSÀM fíle for boÈh 5-nput anil output and the creation of
the control block that ¡riIl be n.ecled for all subseguen+-

calls to the KSAI: routines.

Phe KOPEN routine requires Èhree arguments: a pointer to

the character string which contains the same Ulrrx file nâ.me

as specified when the file r+as creatad" ât integer specify-
ing the number cf internal position pointers to be created,

59,

and a sscond integer specifying i:he

buffers to be created.

number of lnput/output

Th+ name of the fi.le nust be i-n stanåard ttNIX format. The

fu1ly qualified nane is stored as a character string ancl a

pointer to this string is useil as the parameter to the KOPEN

routine, This namÊ uust be be t he sane Darne that sas used by

the KCREATE routine to create the fi1e.

The nunbei of internal positiÕn pointers to be createtl

must be a posi.tive integer greater than or eguaL to 1. If an

åncorrect argument is öetected then the value is assumeil to

be 1n

The third parameter to the KOPEII routine is a seccnd

integer ryhich spacifies the nunber of input/output buffers

to be aLlocated, This p3.rameter nust be a pcsitivÊ irÀt+gêr

greater than or equal to 2. If an incorrect argument is
supplied then. the KOPEN routi-ne assumes tbat the nunber of

buff ers requicecl is 2.

The KO.PEN routinç opêns t

input and output. ?his noda

to be bcth read and upclatecl

The KOPEN routine

pointers reguested.

trol blcck crêated by

UNIX file specifíed for both

eommunication allcws tha file
the sane time"

he

of

at

creates the nunber

These pointers arê

Èhe KOPEN routíne.

of j.nternal position

incluileil in the con-

- 60

the KOPEU rcutine is also responsible for the creation of

lhe i-npuÈ¿output buffers reguired. In the saaâ Hay as lhe

interaal position pointers Lhe input,¿output buffers are

inclucled in the control block craatecl by KOPEN.

The control block created by tha K0PEN routine c)ntains

flelds that are reguired by all of the other KSAI{ routines

except, of course, KcBEâTE. The information in this ccntcol

block is extracted, from the root block ancl when coqrbinecl

with positional pointers and input,zoutput buf,fers prcvides

all- of the inforrnation requíreil to process the KSÀ,tlt file.

The KOPEN routine r*turns one of t¡rc values. The first
val-ue is the add.ress of the cont-rol block created. This

value nust be stored ancl provid.ed shen calJ-ing the other

KSÂM routines. $hen a vali.it aildress is returned this indi-
cates that the K0PEN routine has openeil the fiLe ancl created

the control block suceessfully, A raturn cocle of -1 is used

to incli:ato that an uaacceptable UNIX error has occurred. , ïn

this cese thÊ ttNïX error hanrlli.ng routines should be useil,

Thê most comrnonly occurring errors ara: trying to Ðpen a

fil+ that cloes nct exist, trying ùo open as a KSAtt fiLe a

f,ile that is not a KSAI{ fiLe, ancl ntÈemptinq ào open e file
that ¡.s already operr.

51

7.3.3 ËqlggE

The KCLOSE routíne is useil to encl the processing of a

KSAI4 file. This routine raguires only one argument, the

pointer to the control block createcl by the KCPEN routine.

The KCIOSE routine examines all of the input/output buf-

fers i.n tbe control block. If any of these buffers have been

changed since the last time that they trer€ r¿rj.tten onto the

external storage device shere t-he KSAt{ fila resiiles lhen

th+y are written sut into the KsÀI,t fi"le. After all necassary

output has been completed lhe ITNIX file containing the KSAU

file is closetl, The final operation perf ormail by t.he KCLOSE

routine is the rêLea'se of Èhe space occupied by the control
block c¡eateil by the K0PEN routine,

't.3,4 Egg&gE

Tha KPURGE routine is useil to force the KSAI'I recorcl man-

agement systen to vriÈe out onto the external storage clevice

any input/output buffers t,hat have been changed since the

last time they were writÈen out j-nto the KSût{ file. This

rontår¡e negui-res only one argument, the pointer to the con-

trol block created by the KOPEN routine.

The KPUBGE routine may be callecl at anïtine rluríng the

processing of the KSAM file. Thís routine rill ênsuce that

the version of the file on the external sÈorage clevice is
conpletely up to d.ate with the version of th+ file in main

i:::i, r-:.i::

62

nemory. fn the case of a power or system failure this nil,l
reduce the anount of sork that ¡rill have to be redone,

't,t+ 6s_Àg EEgqgÐ gg! Es_rsgE3 gêuIpglagIgE BqgEr[Es

7.4.1 Eeggrê lgsaliog Eeglleeg
7 ,4,1,1 KPOTNT

The KPOINT routine is useð to locate a particular reccrcl

or the l-ocation where that recorcl shoulct appearN This rout-

ine sets the specifieil pointer to the clesi-red. record. îhis
routine reguires three arguuents: the pointer to the control

bl-ock created. by the KTPEN routi-ne, an integer contai-ning

the number of the pointer to be set, and a poi-uter to t he

key of the recoril to be searcheil for.

The pointer nunber incli.cates rhich of the positi.cnal

pointers is to be set to the locatåon of the sought after
record, If the recocd ís founcl then the positional poi.nter

is set to the start of that recoril, Tf the search recorcl is
not found. then the posítå-onal pointer is set to poi-nt to the

record rith the next higher key,

i:.;: -:.:.';f,

The third parameter is a pointer to the hey cf the

desireil record.. This key is storeit in t¡yo contigous parts:

Èhe first part is a one byte field flhich costains the length
i,;:,.rjr;:rrr..=;

of i,he key; the second part is a series of bytes containing.
iii:iìr::riìì'ir!;':::::

the actual key.

63 -

Tbe point routine conclucts a search fo¡ the reguested

record. This search begins in the root block and prccecles

do¡+n through the tree until tbe clata trlock chich shouLcl con-

t,ain lha requested recortl is locateil. Once the tlata blcck

has been locateil a lisear search for tha reguested reccrcl is
initiatecl. If t,he record is fonntt then the pointer is set to
point to the start of the recorrl. If tha record. i.s not founil

then the pointer is set to the recorct vith the aext higher

key.

i':,:

.l .4.1.2 KR ESET

The KRESET rcutine is used to set a posi-tional poì-nter to

the first recorcl in the KSÀt{ fiJ.e. This routi-ne reguires two

arguments: the pointer to t,he coatrol block createil by the

KOPEN routine ancl an integer containingr the number of the

polnter to be reset,.

Thê KRBSET routine resets the requi-recl pointer by con-

ducting a search foc the reco¡å nit.h the least possible key"

I{hatêver recorrl is locateà by the search yil1 be the firsb
racorrl. in t.he KSAtt fi1e.

?n11 ,1,3 KPOTNTN

The KPOINTN rcutíne is used to advance a positional poi.n-

ter from the record that it is currently pointing at to the

next sequential recorô. The routine requires two arguments:

th+ pointer to the coutrol block createcl by tire KOPEN rout-

64-

| . ;.i:::l

in* anil aû integer containing t.he nunher of t.he pointer to

be aclvan ceil,

7. 4. 2 BesgrÉ EeÈåg,gåeg, Eq,gglgÊ.g

7 . 4, 2.1 KR HRïTE ',".t.

fhe KRSRITE routine is used to upclate a clata recorrl ít a

KSAI4 file. Tbis routine requiras three argunents: the pcin-
:,Èer to the controL bloc|r createil by KoPEll, âñ ínteger con-

,1,,,,,,,f,,';.

taining the nunber of the poíntar to ba set, ancl a pcinter
".,. ,., ,'

to the neu version of the recorõ. ;;'."i

The ner version of the recoril is conposecl of four conbi-

qons fields" These fielils are: a onÐ byte fielrl f,or the key

length, a Ðne byte field for the length of t.he öata fielct,
the key, and the clatar

The rout,ine usÊs the key portioo of the new version of

the record to search for the record. in tha KSAI{ file, If lhe

reccrd i-s founcl then the ilata portion of the existing record

i-s replaced by tbe clata portion of tbe nÊr version of the

rêeorcl. The other clata records in the åata blcck are shifterl
t,o nake roon fcr the ney version of the rlata portåon or to

reuse space that is left free by the nelr version cf the ilata

port,i-on. If there i.s insufficient free space available in
the clata block fon the neu version of the data pcrtirn then

tha data block is spli-t aacl then the reurite operation is
completef,, After the conpletion of the reflrite operaticn all

-65

of the positional point.ers Í-n

ailjusteå it necessary to ensure

point to the same records after
to before the re*rite.

tha file are exanined. and

that all of t.he pointers

the rer¡ri te as they point ed

7,4,2,2 KTNS8Rt

The KINSBRî routine is usecl to actil a data record tc a

KSAU fj.le" ?his routine requires tbree argunents: the poi-n-

ter to the control- block createil by the KOPEN routine, atr

integar contaíning the nunber of tbe pointer to be setr ârld

a pointer to the clata recorcl t,o be inserted.

The d.ata recorcl to be aclíled. to the KSAII file is crmpcseil

of four contigous fielcls, Ttrese fíelðs arel a one byte fi-eld

for the'length of the key, a o$e byte field. for t.he length

of the lata fie3-cl, the key, ancl the {lata.

The KINSERT routine uses th,e key portlon to search for
the record to be inserteil, If the recortt is not. founcl then

the insertion may proceeil, The other ôata reccrils in the

clata bLock into ¡vhich the nÊw recorcl is to be insert,ed are

shifted to allow room for the neïr recoril. The neu reccrd. is
then inserteil into the data brock. rf there is insufficient
free space available in the d.ata block for the insert to

take plece then the clata block is spl-it and then ttre i-nsect

takes place, The pointer specífieä is set to point tc the

reccrrl j ust adclecl to the f ile. All other 'posi_ti-onal poin-

66

t-ers ars examin eil

t.hey point to the

pointecl to before

and if necessary acljusteil

same clata record.s af ter the

the new recoril was aclileil.

to ensure that

insert as they

trn the case Hhere the insertion is at the encl of the

file, the appencl case, then the frea space to be left within
tha data block must be at least as large as the percentage

requestecl ¡rhen tbe fiLe r{as createil. rf thi.s j-s not pcssible

then a neï bl-ock is aclilecl to t,he end of the file and the nelt

r+cord. i-s inserted. into the new clata block,

1,4r 2.3 KDETE TE

Tha KDELETE rcutine is useð lo reßovÊ a clata record. from

a KSAL*I file. This routíne requices three argunents: Èhe

pointer to the control block created by the KOpgN routi_ne,

an inleger containing t.he number of the poinLer to be set,
anrl a point,er to lhe key of the record to be rleletefl.

fhe key of the record to be ileletect is stored as tno con-

tigous fåelils. These fialds ere: a onâ byte fielcl contain-

ing the length cf the key aarl a series of bytes containing

i-he actual key.

The KÐELATE rcntine searches for the rtelete reco¡d using

the supplied. key; If the recorcl is founil then i_t is rencvecl

frrm the Ksr.tl fiLe by shiftíng the other ilata recorrts in the

block to recover the space formerly oceupåeel by th+ delebed

record, rf the ilata block i-s empt,åert by the ûelete operation

6-t

7,

7.

and./or â.n index block is na¿le re¿luûilant then these blocks

are freeå anil aild.ecl to the frae block chain" The pointer is
set to point to tbe record rhich seguentially follous the

dal:a record just deleted. À11 of the other positional poin-

ters ars testerl and ailjustecl if required so t-hat they point

to the same recorcls after the ilelBte as they did befsre the

rlelete c peration.

4,3 Record Retri.eval Rout,ínes

4, 3,1 KRE AD

îhe KRE¡,Ð routine is useil to copy e clata reconil in the

KsÀM file into a usêr suppLieit clata arean fhis routíae

requ5.res three argunents: the pointer to tha control bloek

created by the KoPEtt routine" an integer conÈaining the num-

ber of the point.er to the record to be copieil, anä the

address of the clat.a area into whieh the recoril ls to be

copied,

?he KRBÀD routine uses bhe poinÈer to locate the required

ilata recorcl. ?he routine then copies the reccrcl into the

aËea specifiecl. Ihe recorcl i.s copied i.n the form of a one

byte fielcl for the key leagth t a ona'byte fiel-d frr the

length cf the data portion, the key" anit the clata.

6B

1.4.3.2 KnEADN

The KBEADN routine ¿s used to advance the given posi-
tional pointer fron the current ctata record. to the next

seguential clata record and to copy the ngxt saquential data

recorå intc the user supplied clala arear This routine
requ5-res three argrunents: the pointar to the,control block

cr*ated by the KopEN routiner tû integer containing the num-

ber of the pointer to be ailvanced to find. the reguestecl

recorcl, and the aclclress of the deta area into which the

reccrd is tc be copieil,

The KaEÀDN ¡outine uses the giv*n pointer to lccafe fhe

requestetl data record, Ths given pointar i-s advanced to the
nexf sequentiaS- d.ata recorcl" trf the next record. exists then

it is copS-ed into the specified rtrata area i-n the form of a

on* byte length field for the key, a oae byte field fcr the
tLata lenEÈh, the key, and the d.aLa. The poiater is left
pointing at the record copieil.

?.4.3" 3 KREADK

rhe KREAÐK rcutine is usecl to locate a racoril by key and

t.o copy it into a user supplied åata area. rhe rcutine
reguires three argunents: the pointer t.o the control block
createcl by tl're KOPEN routiner atr integer specifying the nun-

ber of the pointer to be çet, and the add.ress r¡here the key

of the requesteci record is to be fouad ancl to where t.he com-

plete recoril and key is to be copiecl.

69

The k.ey of the requested record is in the form of a one

byte key length follorsed by the actual key,

Tha KfrEÀDK rcutine uses Lhe key supplietl to search for
the raquested clata recoril. If the record. is founil theu. the

poinÈer is set to the start of the requested recorcl. The

ilata recor¿l is then copied into 'the supplied clata arêa in
tba foru of a one byte key length, a one byte tlata length,

the key, and the clata.

i. :: : ,..

70

Chapter VIII
coNctltsIoN

Pha KsÀs record nanagenent systen was ilesignect to satisfy
th+ basic requS-reurents of a primary key retnievar systen.

Th* Ksal't recorcl managenent system is capable of id.entifying
each clata record. by a singre uaique key fiçld. This key is
used to insert, delete, upilata, anl search for any particu-
l-ar data record. A priurary key retríeval systen nust have

the capability of acliling itata recorils to the file and the

KSÀs routine, KTNSERT, provirles th.is faciliÈy. Ã primary key

retrieval sTstem requÍres the ability to clelete ilata reccrils
frcm the file; The KSail routinÐ, KDtsLETE, may be used to
reaove ilata records from t,he KsÀH file, The abiLity to
update clata records within tbe file is a reguirement of a

primary key retri-eva1 system" This ability is provided by

the I(sAûl routine, KRtiRrrE. The retnj-eval capabilities of the
pri-mary key retrieval system are provicteil by the six KsÀt{

routi-nes: KPOlNl, KPOINtt[, KRESET, ffREÀ0, KREADN, ancl

KEEaÐK' The KsÀt{ recorcl managenent. systen provides all of
th+ basic requirements of a prinary tey retrieval system.

a primary key retrier¡al system nlyr optÍonaJ.ly, prcviile
sequÊntial- data processing support, The KsÀ$ recorcl Banage-

ment system is desi-gned. to support sequential data process-
,.:i ;:i^Jsr: : .,

ì Ì:r : ì,.1.".

71

ing. Seguential data processing is enhanced by the

orgânization of the data reco:rds r+ithin the KS.[H clata

blocks. The ilata recorcls axe sorted, by ltey, into ascending

orrlBr çithin each data block. This uethoit of storing the

data reeords ensures that, for nost of the data recorils, the

next re:ord physicaLly is also the next record. sequentially.
This provides for an êasy nethotl of progressing frcn one

recoril to tbe next seguential recorcl within a ilata blcck.
The KsÀ!{ routines which are usecl for sequentåar ctata pro-

cessing are KPOINTN anil KREÀDN.

the KSÀt{ reccrcl management

sÐyen objectives in adclition

pråmary key retri-eval systen,

record nanagement system meets

1o ¡¡s,

system sas dasigned to neet,

to the basic object.ives of a

A d.iscussion of hoy the KSAH

each of thase objectives fcl-

!;ç;r¡:;ù:,
..: a:.i.:r:
ì :' -i: ::'

i:

The first arl.ilitíoaaL clesign objective sas that t,he KSAI{

record managênent system shoulct hnve the ability to keep

track of rnore than one clata reeord at a tj-me. räi"s abi-lity
is proviclecl by means of the positional- pointers" The rser
speci-fies, with the call to the KopEN routina, exactly hon

nany racorils nay be kept track of sinurtaneously, Each posi-

tional pointer may be set to point, to a clifferenl itata

reeortl.

rhe KsÀ,Fl recoril managenent system also had to recover ancl

reuse Èhe space freecl by ilel-ete oparations. As an indivi-

i,;::::::.;f:
ir.,- :.1

72

.:|l::.j:i:;t:"la::ì,1-:.U.Eie??-4¡L:|:4t:a:i:.:1.:.a.::.a:-:^a,:."':Q:¿)i9ititLr:..:ia,-,,-,'-"-:,--a-:l:-:!--l'ii

ilual data reco¡d. is deleted from the KSAM fiLe the space

that that particular recoril occupieil is recoverert simultane-

ously, The records nithin the data block are shifted to

rensê tha space freed ancl tha anount of avaílable space

within the block is i-ncreasecl by tlie anount freecl, If enough

data records are deleted from a clata block eventually lhat
data block rvilL becone empty. In this case Èhe errnpty ilata

b!-ock is ¡emoved fron the KSAü ilata structure anä is actclecl

to rhe list of blocks available for reuse. If encugh scns of

an inilex block are freetl by delete operations eventually

that inder block ryill contaS-n only one index reccrd. and t.hus

Ís no longer necessary" In this case the redundant index

block is removed fr-on the KSAI{ ilata structure anil added to

tha l-ist of blocks available for reuse. In this nanner all
space freed by itel-ete operations, both at the record lavel
and at the block level, is recovered aûd natle avaålable fo¡
reuse. The KSÀlq recoril uanagement systern makes no attempt

to free up blocks coataining only one or tyo records. fhis
woulil require a far more sophísticaÈecl algcrithm than the

onÊ employed,

KSÀl.l had to allow for lhe easy and cousistent expansioa

of ihe fi1e. The KSAI{ file nay he axpancled by a ilata blcck

split which aclds a nêH clata block to the KSÀt{ file. ?he nery

data block is addecl at the point where it is naerleil s¡t sin-
ply at the end of the KSÀH file" During the course of a itata

block split only two iafornation blocks alreacly present irr

- 73 -

tha KSA|{ file need Èo be moclif,ieil" the father index blcck

anå the clat.a block to be split are changecl in ninor says,

This process may be usecl to adtl bolh clata an¿l inilex blocks

t-o tha KSAII data strucluren This capabiliÈy of aclding bot,b

clata and inrlex blocks to the KS.[]l file provir:les a coasistent

anil straightforrEarcl nethocl of file expansion,

?he f ourth aclËlitíona1 design obiective of the KSÀIl recorð

nanagenenÈ system was to allou the KSAtt file to be initi.ally
l-oeileil uith d.ata recorils sorteil" by key, into asceniling

ordetr. the high value inclex recoril is usatl to ilirect lcacting

at" the end of the file intc the last ilata block in the KSål{

data structure. fhis implies tbat, all records added af the

end of the file are atttted. to ttre enå of a ilata b1ock. îhe

add.iti-on of a racocil at the encl'of a ilata block does not

require the movement of any of the other ðata reccrd.s within

t.h+ ilata block, Data recorils may be adctecl to the KSAM file
i-n ascencling order uithout an excessí.ve anount of ¡Íork.

Th+ K SÀ¡l recorcl nanagement systen also hail to proviile

support for both inclexad and seçuentj-al access to the ilata

ãecords. Indexed. accÐss to the data ¡ecorals is proviileil by

the KSAII routines KPOINT anil KREAÐK. ?he KSÀH rcutines

KPOïNTN ancl KREADN are used to proviile sequential clata pro-

cessing capability. ?hese access routinas may be useil in any

combinalion to provicle a mi.xture of inderetl dala processing

and sequential d.ata processinq,

ii ::
iir:Ì:,4,ìt

?rt

lhe KsAH record naaagement system also hail to minimize

the number of input anrl output operations requirecl, The use

of ihe buff ering system allor¡s f or access to severel I(SAI{

infornation blccks sithout an input or an output oparatioa

being parformeil. ?his 5-urplies tbat only blocks ryhich have

been change d neecl to be rritte n on to e x tern al" st.orage a nd

only blocks that are requirecl but not alreaily present aeeil

to be read. The copy of the block in nain neßory is useil

until al1 of t,he processing chieh requires that block has

been completecl, rhe number of input ancl outprÍt operaticns

requi-red for each bloclr has beea helil to a nini-mum.

rhe f inal aclilitional riesign objective of Èhe KSA[! record
nanagement systen lras to pcoviile data integrit-y, Each cf lhe

algorithms that change Èhe structure of the Ksalt file $as

createil ¡*it,h this objective in mind, Each algorilhm is cerê-

fu11y ilesignecl so that, a system or poryer failure at any

stage will aot result in the loss or change of the ilaÈa

necord.s' rn the rorst possible siLuations an enpty clala or

i-nilex block may be freed ancl not aildecl to the free block

chaån or one oc more reeorils nay appêar norÐ than once if a

split operation is interrupteil but unclar Ðo circumstances

¡¡il1 data records be inailvertently lost or changecl,

The KSÀûl record nanagement system raquires only a sma11

overhead for the naintenance of control infornation aad i-nd-

ices. Tests have shosn that inclex blocks accoust fcr less

-15

than 61" of the total nunber of blo:ks in a file, althcugh

this depends on the sizes of the keys and the data records.

The KSAt{ recorcl managenent systen rlces coutaia tsc not-
iceable areas where the solution to the ites!-gn objectives
may not bo the b+st. rnÊr the splitting algorithns terrcl to
produce an unbalanced clata structure with nore levers of

ínf,ex blocks on the right hanil sicle of the tree. This j"s

causeil by the root split algorÍthm r¡hich leaves the first
few index records,in i.he root, block ancl moves the upper balf
of the index records tc the new block. This coulð craate

probleus if all clata record searches nust tak+ apprcximaLely

the sane anount of time. This probl,em vilt t¡e especillly
acute if the tree ís of a very large sise. The npoint-¡çstrr

algorithm is a very eff,icj-ent a3-gorithn except uhen the next

segnantial data recorrl is outsicle of the current data block"

ïn this case the next tlata racorcl i-s founct using the search

algorithrn. There rill- be a large tine itisparity betfleen

these ti¡o typ€s of poíni next operations,

fhe first of these t*o problems could be alleviateil by a

change to the rooÈ block split algorithn. This change ryculd

result in the creation of a balancecl tree at the expense of

a nore courplicated. root block split algorit.hm ïrhich lrculcl

create two nen inclex blocks. The diff ÍcultÍ-es ¡lith the point.

next algorithn could be reiluced Híth the aclclition of, a

brother pointer between clata blocks, This, honever, can Leatl

-76

to data record duplication prcblenrs anil a

data block spliÈ algorÍt,hn.

more complicated

Ths KSåu recoril management system ueets all of, the desiqn

objectives originally desirecl. rn ailrtltion to the basic

requirements of a priuary key retrieval systeur the KSÀH

record. nanagenent system also meets the other seconclary

objectives that make the systan more conreûient anil more

efficient than a basi-c system,

t. t;
, :::

:.t:.ì.i.r :

ii:.a

!j,ì.rr.:

77

BTBI,TOGRÀPHY

BríllingerrPeterrC. and cohenrDorenrJ. ; ggtsgÈgg,tågg Lg g4te
g!€,ggÈgggs eng Sqq.EuggE¿g ggÐgulgllgg Englewood criffa;-N.J,: Prentice Hal_l , 1972

Ferch,Hcward,J. ; ggigg gþÊ EÐE:lL g¿Èb gglð $innipeg, lran.:
The üniversity of t{aaitoba Dept. of computer scåence11976

ï,Bnlq,; gå¿95? AggesË gg!þ9,9 gggvlggg san Jose, cali.f. IL B. tt. Programming PublS-shíng, 1978

r. B. Ho ; Eu.hêggeg g5Àg gIEleB I¡leggAÈåee san Jose, cali.f ,;
f . B. [f . Progranning Publisbing, 19?5

r,Ð.H.; qg¿JÞ-l gulsql ålsEsss, ÀscsÞ,Ë, gg.gþq,g(gãag) Lggis san
Jose, Ca1if.; I"B,!tr. Frogramming pubLishing, 1g7S

r. B. 1!!' ; gg¿yg g.lEgssl glstsse asseeg gsgbsg {gEAg) QpËisss
ËgE. L{g.ggge,å LgplåggllgBg san JosÐ, Catif.: r,B.¡i!,
Programning eublishing, 1975

r. B, tr. ; gs¿gg vigËuså ÞËggeg,Ê, Àç,g,gEg, Eg,!bg,¿ {g54gt
gEgg€anqgE,:g. gglqÊ San Jose, Calif,: I"B.¡!t. prograruming
PubLishiug, 1978

Knur,h , Dr nal d , E, ; gþe ÀE! gÊ ggtspgåeE greg¡aegågg gg¿, 1, .

EggÈggeAlel Algggålbme, 2$ EÉ. Readins, üass.i Ãititison
!f esley , 19'13

Knuth,oon1ld,E. ; Eþg ått g! qqgpgleg Bgggr-agglg.g, !.g,1.3,
Ëgggqllgg, eqg S,gg!!ng Reattíng, ¡[ass.: Aitctison westey,
1975

Ritchie, Dennis" l{. ; ç Bgfelgggg BggggI Hurray Hj-11, N,J.:
BelJ- Telephone taboratories" 1g7q

weitznao,cay ; glgigenggtgr 5JgÈens g.!lgg!gtg,
Inp,l?.qeg!A!!gg, egg Apg!ågq!åeg Engleuooit clif f s¡ N. J. iFrentice Hall , 19711

i :.1,l - ll -:

r.t l.ì

78

