A Primary Key Retrieval System for the PDP-11

by

Gregory A. Mattheow

‘A Thesis
presented to the University of Manitoba
" in partial fulfillment of the
raquirements for the degree of
Master of Scisnce
- in
Computer Science

Winnipeg, Manitoba, 1980

{c) Gregory A, Matthew, 1980

A PRIMARY KEY RETRIEVAL SYSTEM FOR THE PDP-T1

BY

GREGORY ARTHUR MATTHEW

A thesis submitted to the Faculty of Graduate Studies of

the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

©71980

Permission has been granted to the LIBRARY OF THE UNIVER- x
SITY OF MANITOBA to lend or sell copies of this thesis. to
the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis. ‘

The author reserves other publication rights, and neither the

thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

ACKNOWLEDGEMENTS

The author would 1like to express thanks t5 his advisor,
C.R, Zarnke, for his patience and for his very many helpful

suggastions about the content and wording of this thesis. .

The aunthor also wishes to thank Mrs. Lyn Burkowski for

her ability to stretch one week into one month.

The author would like to thank Pster Buhr for his help in

ths preparation of this manuscript.

Finally, the author wishes to thank his parents without

whosa constant nagging this thesis would never have been

finished,.

ACKNOWLEDGENENTS & 4 2 2 s s o o o s 3 ¢ s 2 s,

Chapter

I.
I‘Ia .

I11, .

Iv,

Vs .

VI.

VII.

TABLE OF CONTENTS

INTRODUCTION 4 4, o o o o o o o s o 2 9 o

DBJECTIVES OF THE KSAM RECORD MANAGEMENT
THE STRUCTURE OF THE KSAM FILE . . + « »

General Description of Structure
The KSAM Record Structures . .
The Data Record .+ o« o o . s .
The Index RecoTd + « » .»
The High value Index Record
The KSAM Information Blocks . .
The Free Space Connt . . .+ »
The Data BloCKk + s s s .2 s o

L
.

& L] - [4 » - L] -

The Index Block . .
The Root Block . . .
The KSAM File Processing Structure
Tha Internal Positional Pointers
The Buffering System o o+ o o o

LI

» & e & s & ® @

L] » L d *

INFORMATION RETRIEVAL o o o 2 o o o o »

Locating a RecCOTd + » o o s.3 2 s » s
Locating the Next Sequentlal Record .,

MODIFYING THE KSAM FILE & & o » 9.3 s »

Inserting a Record o+ + s s o o .9 s
Deleting a R2cord o« o o 2 2 ¢ o » -2

Rewriting a Record .+ « s s.5 o s . s

INFORMATION BLOCK SPLITS o s » .3 s s » s

Data Block Splits .

Index Block Splits .+ o o o 2 o.» »
Root Block SPLitS o s » o s s s . s =
Multilevel SPlitsS o o .5 o s o s 2

PROGRAMMING THE KSAM RECORD MANAGEMENT SYSTENM

General Description of the KSAM Routines

}Ji

-

- ii

B * & ¥ 8 v @

L4 - L] L 4 -

»
* B
»
.

» v

Ld

SYSTEM

* » »
* . »
T Y
» L] L]
. .»_»
= s s
* » s
s 5.
s e e
* . =
PR T
s » »
N
I T
. .
s e e
P
s .2 »
» - .
* » »
2 8 . »
[T
» 8 .
s .3 . »
I R
. » .8

*

¥ 8 ® * & 9 o B s s v

¢ ¢ & 9

*

-

* E] L] * . L4 L] * Ld -

11
Rk

"

1n
.15
15
16
18

20
23

.23
23

.25

.25
26

.28

28

31
37

40

40

45

50

53
53

54

KSAM Return Codes .

User Code -1 , .
User Code 0 . .
User Code 1 . .
User Code 2 .
User Code 3 . .
KSAM File Manipulatio;
KCREATE 1} . . .
KOPEN . » * - »
KCLOSE . 4+ » s o
KPURGE » » » » »
KSAM Record and Poin
Record Location R

KPOINT » »
KRESET . »
KPOINTN . .
Record Modifyin
KRWRITE . .
KINSERT . &
KDELETE . .
Record Retrieva
KREAD o+ o+ o
KREADN . .
KREADK . »

¢« 6 ¢ i s e g e ¥ e

VITI. CONCLUSION 4 + « » o

BIBLIOGRAPHY 2 0 8.8 2 e .2 »

16 » o le o &«
o) = o

« .
) .
LI~ T ST oS S

»*

L] -* » »

r*‘H"‘oi
oo

--iv—

o)

ot

$ e o o jihie 6 »

MR e ¥ e 0 e + e v
3 W =]

o e P s e e e e @

)

s D e
17}

t"“ L] L] - L] []

'.-h

.

fods - .
» L - . Q’U . . - L
: &

w -

e o & o & ¥

(]

L

Y1 v o & o & »

- [4 - - -* [. ® » L) L] L]

H...‘

¢H® % s 5 s s & s e s =

e
¥ 8 6 e * B s S e » 6 s e & 8 & ¢ ¥ s s * .

&

* ¥ g 4 & 4§ » 8 & @

L I
* 5 & &
e 3 s »
* 5 &
+ s .5 »
LR T}
* . » @
s a3 @
P R
s 3 .»
LI
tion RO
s % _ 0 . »
« 2 s e,
* s s e
« & s 8
s 2 s
[R N
.."'.
s 8 e @
» 8 2 . ®
[T
» % 8 @
» s s .»

@ -

* L L] - - . » @ L - .

Y1 ® & % & & o ¢ s o 8 o

& ® e & » & ®» @ ©° ¢ ¥ € 4 * ¥ © 3

* e ® & & ® g

.56

56
56

57

57

.57
57
.59

62

62
63
63
63
6l
1
65
. 65
.66
67

68
68

69
69

M

.78

KSAM

KSAM

KSAH

KSAM

KSAHM

KSAH

LIST OF

Data Structure
Data Record ., .
Index Record .
Data Block . .
Index Block . .

Root Block .+ »

Inserting a Data Record

Deleting a Data Record .

Freeing an Empty Data Block . .

FIGURES

» L d » »

Freeing a Redundant Index Block

Rewriting a Data Record

The Data Block Split . .

The Index Block Split .

Figurse
1. The
2. The
3, The
4, The
‘5, The
6, The
T

a,

9.

10,

11.

12,

13,

14,

The Root Block Split , .

-

page

. 12

Chapter I

INTRODUCTION

This thesis describes the architecture of a primary key
retrieval system for the Digital PDP-11 minicomputer., A pri-
mary key retrisval system is a data management system that
identifies data records by a single or primary key. The
actual primary key is a field within a data record that can
b2 usel to distinguish that .particular data record from all

other possible data rscords,

Thsz ﬁrimary key .retrieval system must be capable of
locating, by its key field, a particular data record within
the data structure and returning or retrieving thét data
record. The primary key retrieval systzm must also be capa-
ble of adding data records to ths data structure in such a
way that the new data record £fits 2asily and naturally into

the data structure., The primary key retrieval systsm must

»

have the capability of data record deletion. The final
'reguirement‘of a primary key retrieval system is the ability
+0o modify data records within the data struciure. A primary
kay retrieval systenm may, optionally, support sequential
data processing during which records are accessed in order

by key,

To summarize, a primary kay retrisval system ideatifies
2ach data record by a unique kesy field, The system must be
capable of retrisving, adding, delsting, and updating the
data rTecords in the data structure, Optionally, thes primary
key retrieval system mway have the capability of processing

the data records sequentially,

The keyed/sequential access methold, KSAM, record manage-
ment system described in this thassis 1is a primary Key
- retrizval system, The EKSAM system 3identifies each data
record by a single key field and is capable of performing
all of the operational requiremsnts of a primary key
retrisval system, As the name of the system suggests, the
KSaM record manag2ment system supports sequential data pro-
cessing as well, The KSAM record managzment system provides
a complste system for the creation and maintenance of data
within operating system files bassd on primary key

retrieval,

Chapter II of +this thesis contains a description of the
obijectives sought in the design of the KSAM record manage-
mant system. These are the obijectives cénsiderea in addition
Vto the basic reguirements of a primary key retrieval system.
This chapter sets out the specific design descisions that
were incorporated into the KSAM rzcord management system.
somz consideration is given towards ths ratiomnale for =ach

of these design descisions.

Chapter IIT <contains a description of the esntire KSAM
data structure including the overall data structure as well
as 3 detailed description of its various components, Brief
explanations are offered *to demonstrate how the data struc-
ture supports the descisions and objectives expressed in the

pravious chapter.,

Chapter IV contains descriptions of the algorithms used
to locate data records within the KSAM data structare.
Algorithms are given for both methods of record location:

location by key and location by sequential position,

Chapter V contains descriptions of ths algorithms ussd ‘to
modify the contents of the KSAM file, Three algorithms are
described: insertion, delestion, and data record modifica-

tion,

Chapter VI 1is a detailed explanation of th2 procassing
required to split an information block within the XKSAM data
structure. Since there are ssveral diffsrent tfpes of infor-
mation blocks differsat algorithms ares used for splitting
aach,

In addition to the algorithms for the splitting of indivi-
dual information blocks this chapter contains é section
devoted to the processing involvzd in a multiple block

split,

Chapter VII contains dasciptions of the varioué routines
that comprise thes KSAM record management systzm, A detailed
description of each routins, its arguments, and its effects
on the data structure forms ths largest part of this chap~
ter, These descriptions form a basic User's Guide for the
KSAM record managsment system, Chapter VII also contains a
section listing the <codes that can be returned by the KSAM

routines, The circumstances that cause sach particular code

to be generated are explained.

Chapter VITI is a discussion of how well the KSAM file

system meests the objectives szt forth in the second chapter.

Chapter II

OBJECTIVES OF THE KSAM RECORD MANAGEMENT SYSTEM

In the implementation of the primary key retrieval sys-
tem, KSAM, seven secondary objectives were selected in addi-
tion to the basic objectives of all primary key retrieval
systems, As stated in the first chapter, a primary key
retrieval system must be capable of identifying data records
by a key field and be capable of adding, deleting, retriev-
ing, and modifying these data rscords. The KSAM record‘man-
agement system attempts to achieve 2all of ths additional
objectives without sacrificing +the efficient implementation

of the basic obijectives,

The KSAM record management system had to be able to keep
track of more than one data rocord within the data struac-
ture, The ability to gqguickly locate more ‘than one data
record at a time facilitates many data processing tasks. For
exampls, suppose that one of several data records musﬁ ba
selected on the bﬁsis of one of the fields in ~the records
other than the kesy fi=1ld, In this case the ability to

loca*a sach data record independently would be a definite

Durinj the course of updating the KSAM file, data records
would be deleted from the KSAM data structurs., When a data
record is deleted from the file ths KSAM record manageament
system had to be capable of reusing the space occupied by
the deleted record., This would kszsp the ratio of unused
space to useful ‘information at a minimum. The 1lower this
ratio the better the processing of the file structure. The
total space occupied by the file and the time required to

process the file would both be lessened., The trTecovery of

unused space would also facilitats latzr data record inssr~

tions,

As the KSAM file is updated, data records would be
inserted into the KSAM data structure, Eventually the KSap
£ils would require expansion +to allow for further inssrt
copsrations., Tha KSAM record managemant system should be able

to =xpand the KSAM file with 1little e2ffort and with a mini-

mal amount of disruption to the current KSAM data structure. .

Many indexed file systems operate inefficiently unless
ths initial 1oadiﬁg of the file is dons with the records
sorted into descending order by key. In these systems if
racords are loaded in ascending ordzr by key then each new
racord has a higher key than the last record in the file and
consequently forcss a navw block to bes created. People t=2nd
to think in terms of ascending order; +the name ADANS comss

bafore the name BEOWN and the number 7 befors the number 9,

The KSAM file system had to be capable of 1oading thes KSAM
data structure with records sorted, by key, 4into ascending

order without an sxcessive amount of work,

The KSAM rescord management system had to be <capable of
processing the KSaAM file both by kéy and by sequence with a
minimam amount of work, The combination of keyed and ssquen-
tial access provides additional flexibility. The key can be
us2d to ‘locate a starting point anywhere within ths KSAM
fils, A series of related data records can then be ret-
rieved sequentially. Most information systems reguire both
of thess types of access., For example, most information sys-

tems are updated by key but reported on seguantially.

Input and output operations are 'the slowest and most
expansive operations on any computer system, This is parti--
cularly true on a minicomputer like the PDP-11. Minicomputer'
input and output operations are expeﬁsive, in térms of pro-
cessing time, because of the lack of channels to perfornm the
actual input and output operations, Th2 KSAM record manage-
ment system had to make an effort to minimize the number of

input and output operations requirei, .

The KSAM record management system had +to provide data
integrity., Data integrity means that the data returned to
the usar is the same data that the user put into the KSAH
fils. Data integrity also msans that the data within the
KsaM file is safe, It will not be 1lost dus to system or

powar failures,

To summarize, the KSA#M file system is designed to meet

seven objectives beyond the basic ones of any primary key

retrisval system. The KSAM rTecord managemant system
designed:
1, to k=zep track of more than one data record at a

time;

to reuse free space created by the delete opera--

tion;
to allow for easy consistent file expansion;

to allow the KSAM fils to bz 1oaded in ascending

order;

to support both indexed and ssqusntial fils

. access;

to minimize the number of input and output opsra-

tions required; and

to provide data integrity,

is

Chaptsr III

THE STRUCTURE OF THE KSAM FILE

3.1 GENERAL DESCRIPTION OF STRUCTURE

A KSAM file is composed of a series of interrelated
memory blocks, These mémory blocks may be one of three
types: root, index, or data. The blocks are linked together
to form a tree.structure,with the data blocks at the botiom
of the structure, the index blocks irn the middles, and the

root block on the top.

Fach type of memory block contains individual information
racords, These information records may contain either user
data or KSAM index information as w2ll as control informa-

tion for use by the KSAM systzn,.

The data blocks, at the lowsst lsvel of the tree, contain
information records containing usar data; these will be
called data records. The data records contain the- KSAM
usar's information. The user has direct access to the data
ercords and may édd, delete, change, and retrieve data

racords in the KSAM file,

The index blocks and the <root block contain index
records, The index records are unsel to provide a link from

ons information block in the tree to another information

Root Block
y 2 | t

.Block Data

-
©
o
W

Block Index Block
7 1

Tata Block

R

Figure 1: The XSAWK Data Structure

block on the next lowest level of the tree, The index’
racords are not accessable to the user, Index records are
added aad delsted by KSAM to reflect changes made to the

tree structure,.

3.2 THE KSAM RECORD STRUCTURES

G wae Wis e S mem WS WIS v e e Rat mme s A A TS TN (e S T A s

3.2.1 The Data Record

2 KSAM data record is composed of four contigous fields.
These fields are: the key length, the data length, the key,
and the data. The key length is a one byte field which con-
tains the 1length, in bytes, of the key field., The data
length is another one byte field., It contains the length,in
bytes, of -the data field, The key is the field which is used
to uniquely identify the record, The data field contains the

user's data which is associated with ths key.

The size of both length fields is one byte. The maximum
intsger which may be stored in a one byte field is 255;
therefore the maximum length for the kesy fisld is 255 bytes
~and the nmaximum length for the data field is 255 bytes.

Thus thz maximum length for a data record is 512 bytes.

3.2.2 The Index Record
A KSAM index rescord is composed of four contigous fields,
These fields are: the length, the displacement, the pointer

to the son block, and the non-redundant part of the key.

- /11 -

¢

*

N~ B
1‘-_60\7 R

[68)

h
s

Figure 2:

T
L

XSAM Data Record

Son Fointer

ey

Eope o
QO

4 -

5

index

Hec

mn
o

Py

ra

The length, displacement, and key fields are all related
to one another, 1In order to conserva space Within the index
blocks a technique referr=2d to as front key comprassion is
amployed, Using this technique the only part of the key that
na=zds +to Dbe stored is that part of the key which 1is
different from the previous key., For example, suppose that

two consecutive keys are ABCD and ABCEF, The dJdifference

between these two keys is that +the character D in the first:

key has been replaced by the characters EF in the second
key; the characters ABC are th2 same in both records. 1In
is example the 'only characters that nzed to be stored in

thi
+he key field of the second record are the characters EF.,

The 1length and +he displacemsnt fields contain the-

information required about where these 1letters should be

placed to form the second key., The length field contains the.

numnber of characters to be placed; in this case the 1length
fizld would have the value 2. The displacement field
determines the number of characters fron the'start of the
previous key to be retained, 1In this example the vaiua of
the displacement field would be 3Abecause three characters,

-ABC, from the previous key will be used.

The son pointer is an integer that forms a link from one
level of the tree to the next level, The son block may be

2ither an index block or a data block,

.,..13«.

Alignment constraints complicate thz manipulation 5f the
sor pointer, Because records are of variable length there
is no msthod of ensuring that the son pointer will b2 at an
even numbered address as the computer hardware requires
without inserting anused bytes betwesn records to cause
proper alignment, In order to deal with this problem the son
pointer 1is stored as two single bytes rather than as a
single integer, When the son pointer is required the integer

form of the son pointer must be re-created.

3,2.3 The Higk Values Index Record

The high value index record is defined to be the index
record with thes highest possible key,. This %ey never
appesars in a data block, in fact, this ksy can not be formed

by the user,

The main purpose of the high value index record 1is to
ensure that all index block searches lead to another data or
index block. Each index block search is terminated when an
index racord with a higher key than the search key is found..
For evary possible search key the high value k2y is greater,"
“Phus, no index search ever procesds past the high value
racord and therefore the index search always 1leads to sonme
data blbck. The combination of thaesz two results facili-

tates the search algorithm and the insert operation.

The other purpose of the high valuz index record 1is to
egnable the user to load the KSAM file in ascendiug order. By
loading the fils in ascending order thsz high value key will
canse s2ach record to be added to the file at the end of the
last data block, This minimizes th2z amount of movemsnt of

+the data within the data blocks. By adding records at the

end of the last data block the KSAM fils systam snsurss that.

the requested amount of free space is distributed within the

file,

The high value index record has the format of any ordi-
nary index record, To differentiate this record from other
index records the length field is set to be 255 and thz dis-
placement is also set to be 255, By combining +hese two
fields with /thess values it would seem to be possible to
create a key with a length of 510 bytes., Because the maximum
key length is only 255 bytes theses valuss for the length and
displacement fields clearly indicate that this record is the

special record containing thz high valus key.

The free space count is an integer found at the beginning
of each typs of information block, This integer, as the name
implies, 1is used to keep a count of the numbar of unused

bytes within the block,

The free space counter has a sscondary purpose, This

counter is also used to distinguish betwesn index blocks and
data blocks, In the root and in thes index blocks the free
space count has a value that is less than zero, In the data
blocks the free space counter is greater than zero., In order
to snsure that the frese spacé counter never becomes egual to
zaro‘spacial processing must be undertaken, The space occu~-
pied by the null record which is r2quirsd at the end >f the
pertinant information in both index and data blocks is
included in the free space count sven though that space is
not‘free. This method of encoding the flag used to differen-
tiate between types of blocks is efficisnt both from a sto-

rage point of view and from a processing point of view.

3.3.2 The Data Blogk

B KSAM data block contains: a positive fres space coun-

ter, a series of data records, and a null record. .

The lata records are sorted, by key, 1into ascending
alphanumeric order, The keys are of variable length; thsre~
fore twd keys may bea compared +that are of unsqual length,
"When keys of unsgual length are compared the shorter of the
two keys is considered to be =xtended with the lowest possi-
ble character to the length of the longer key., Using this

method of comparison k=2y AB precesdes key ABO.

YOOI ®yed WYSY oul h edand g

DJI0D8Y 2UN0Y >~

syoedao > DI &
ooedg oodg ereq TTON SPJI0DaY eled soeda sodg

The null record consists of a singls byte with the value
zaro, This byte is used to mark the end of the pertinent

information in the block,

W
L]
LU
L]
W
-3
28
o)
(T

ndex Block
A KSAM index block contains: a nzgative free space coun-

tar, a series of index records, and a null record.

The first index record in an 1index block contains a com-
plate kzy, In other words, the value of the displacement
field of the first index record in the block will always be
ZEero, Each subsequent record contains compressed k2ys

sorted, by the original key, into ascending order,

The son pointer in each index recorl points to a data or
‘an index block on the next level of the tree, The son block
contains all records whosz keys are gresater in wvaluz than
ths key of the pravious index record and whose keys are 1less
than or equal in valus %o the key of - the current index

record.

The null record used to mark ths termination of the per-
+inent information in the index block may be either the spe=-:
cial high value index record or it may be an 1index record
with a key length of zero, The high value index record
functions as any other index record. The second type of
null inaex record functiodé 1ik2 th2 null record in a data

block,

AO0TH Xapur HNysy ouf

G 2and T

aoedg sada,g

PI0OOY
Xapul TTnl

SPI028)]

XopUT

1UN0N
soeda soag

[O)

oot Block

The KSAM root block is a special typs of index block., It
is distinguished from other index Dblocks by its position,
The root block is always the first block in the KSAM file
and it always has the block number zero. In addition to
containing all of the information found in all index blocks
and serving as an index block itseslf, +the root blsck has
four extra fields which are used throughout the KSAM systaem.
These four extra fields are: the blocksize, -the>free chain
pointer, +he end of file block number, and a percentage
indicating the amount of free space to be left as the file

is loaded,

Tha blocksize is an integer vwhich contains the size, in
bytes, of all of the information blocks in the KsSaW file,
The blocksize must be a multiple of 512 greater than or
eéual in value to 1024, These contraints on the blocksize
-§gare éhosen to facilitate the interaction between the KSAN

file system and the UNIX operating system.

The free chain pointer is an integer which points to a
linearly 1linked list of empty blocks, These blocks are
blocks that have been emptied by the delete operation and
returned to the system for resuse, In any situation where
the system requires an empty block, this 1list is checked and

the first block is reusad before any other action is taken.

- 20 =

)

00T 3004 HWVGH 9aUd

19 edand T,

aowvdy

00d,]

pPI009Y Xapufl
enTep UdTH

XoDUuUT

ooedg
99d4d %

3100Td
STT JO pud

Eanclify
OO @8

9ZTSHO0Td

1UNoY
sovdg seag

21

The end of file block number is the number that the nsxt
block after ths last block in the KSAM file should have, The
and of file block number is used +o allocate a new block
when a new block is required and an empty block is not
available on ﬁhe free block chain. In this case the file
will b2 expanded by reguesting that the UONIX op=arating
system =2xtend the RKSAM file by adding a block after the last

block in the EKsap file,

the fipnal extra fi=ld in the root block is used to snsure

that a certain amount of fres space will be distributed

throughout the KSAM file, This will allow for later

KSAM fils and is intended to

4}

ingsrtions and changes in th
raduce the number of data and index Dblock splits reguired,
The field contains an integer whose value is between 0 and
50, This wvalue stands for the p2rcentage of space to be
left free in each data block when adding data records at the

end of the KSAM file,

The root block will always have as its null record the
special high value record. 1In all other characteristics the

root block is organized and used in the same fashion as any

other index block.

-.22 -

3.4.1 The Internal Positiopal Pointers

— o e > o T i, T

Each KSAM file has associated with it a nuamber of posi-
tional ©pointers, These pointers are created during the
operation of opening the KSAM file for processing. A posi--
tional pointer is used to locate a data record within the-
KSAM file, The pointer is used primarily when processing the

file sequentially.

The positional pointer 1is composed of three integral
fields, These fislds are: the block number, the offset from
the beginning of the block, and a pointer to the index block

which points to this particular data block,

The block number in the positional pointer refers to the
current data block, The offset is the position of the cur--
rent record given as the number of bytes from the start of
the data block to the start of the record, The final field
is used to indicate which index block is the immediate pre-

decessor in the tree of the curreht data block.,

3.4,2 The Buffering Sysiesn

i ———— - - i i

In order to reduce the number of ipput and output opera-
tions to the minimum a Dbuffering system is used, Several
information blocks are kept in main mzmory simultanesusly.
When a block is needed by thé user the KSAM system first

searchas for the requssted block among those blocks which it

- 23 -

‘alreaay has inkmain memory. If the requested block is found
then no input or output operation is required. The systenm
works with the copy of +the block in main memory., If the
block that was requested is not found among the blocks in
main m2mory then it will be read into main memory replacing
a block that is currently there.; The block to be replaced
will be +the block that was accessed lsast recently., If the
block to be «replaced has been modified since the 1ast.time
it was wriiten out then it will be copied to external sto-

rage before the new block is read in to replacs it,

- 284 -

Chapter IV

INFORMATION RETRIEVAL

4.1 LOCATING A RECQRD

The search for any data record begins with the first
index record in the root block, The sesarch k=2y is compared
to the key of ths first index record in the root block. If
the search key 1is greater than the key of the first record
then the complete key of the second index record is created
using the information in the second index record. The search
key is then compared to ths key of the second index record. .
This process is repeated until an index record is found +*hat
has a k2y greater than or aqual in value to the search key.
This search will always be successful bescause 2f the high
value index record which is considered to have a key which
is greatser in value than any other kay. After an index
record is found that has a key greater than or equal in

value to the search key the son pointer is used to find the

block at the next level in tha tres.

The na2xt block down the tree may be either an index block
or a data block, In the case of an index block, indicated by
a free space counrt less than zero, the processing is the
same as the processing in the root block. This sequence will

be rzpeated through as many 1levels of index blocks as

- 25 -

regnirsi, Eventually the son block will b2 a data block,
indicated by a positive free space count, and the search

will continue at the data block levsl,

Within +*he data block a simple linear search for the
requested record is performed either until the record is
found or until the system recognizes that the record is
nonexistant, The record is nonexistant if either th2 null
data record‘at the end of the block is encountered or if a
record with a key greater in value than the search ke? is

fourd,

The location pointer is set regardless of whether the
search record is found or not, If the record is found then
the pdinter identifies the start of the record. When the
record is not found the 1ocation pointer identifies the

record with the next higher key.

4.2 LOCATING THE NEXT SEQUENTIAL RECORD

The POINTNEXT routine is used +*co advance an internal
pointer from one data record to the data record which fol-
lows it sesguentially, This routine will be used whenzsver

tha KSAM file is procsessed saquentially.

Tf the next segquential record is within the same data
block then the pointer may be advanced by changing the poin-

ter's offset. Th2 offset will be incrsmented by th2 total

"length >f the current record, The record which follows the

currant record physically will be the next record

sequentially,

If the current record 1is the final record in the data
block then the father index block will be used, The father
index block is searched for the index record that points to
ths current data block. As this search is being carrizd out
the complete key for the index record 1is being re-creat=d..
If the index record pointing to the current data block is
not the high value index record then the next highest possi~
ble key is created and then searchzd for in the usual man-
na2r, Whatever record is found as a result of this search
will be the record with the next highest key. In the case
where the index record.of the current data block is the high
value index record then the current data record is the last
record in the file and ths POINTNEXT routine will indicate

that the end of the file has been reached,

- 27 -

Chapter V

MODIFYING THE KSAM FILE

5.1 INSERTING A4 RECORD

Data records are added to the KSAM file by the use of
the inssrt operation, The 1insert operation comprises both
insertion in the middle of a block and also appending to the
end, used initially to load the XSaM file. The insert rout-
ins is <capable of recognizing the type of operation +to bé
performed by noting whers within the KSAM file the new

record is to be added,

311 insert operations bagin with a search for the record
ihat is to be inserted, If this record is found to already
exist within the file then an error has occurred and the
insert process will be terminated.,‘ "Tf the record gs not
found within the file then the insert may take place, It
should be noted that the search operation leaves the pointer

set to the location where that record should be inserted. .

If the search for +the insert ra2cord was terminated by
finding a reéord with a higher key than ths record to be
inserted then the insert takes place within the data records
in the data block., The total length of the record t5 be

insarted is compared to the amount of free space available

- 28 -

within the data Dblock, If insufficient free space remains
then a block split is required before +the insert opsration

may be completed, If sufficient free space is available

vt

within the data block then ths insert opsration may proceds.
A1l records in the data block that are above the insert
point, including +the null data rscord at the end of the
block, are shifted +to the right by the length of the data
record to be inserted, Thes new data record is then copied
into thes data block starting at the insert pgint._ The free

space counter is updated to reflect the change in the amount

of free space available,

If the search for the insert record was terminated by
finding the null data record at ths end of thes data block
then the insert takes place at the end of the block. This
‘case is referred to as the load or append case., This opera-
tion differs from the ordinary form of thg insert operation
only with regards to the amount of fres space available, The
amount of free space available is reduced by the number of
bytes given by the percentage specified when the file was
created, This ensures that approximately the specified per-
—centage of free space is left in every data block within the

file,

The insert operation sets +the intsrnal position pointer..

The positional pointer specified in the call to the insert

- 29 -

pIoo8y BRI ®© FUTIILSUT /) oIS T

J
aoedy 23] ¢ pI009Y evaR(|2 DPIODSY vlreT | | PJI0D9Y ejye(AUNoOD
el [Z ClL 1 -t ¢ - A =} O.@QJ@ mwm.u,HﬁH
2 PJI0O8Y wvie(] 1JI9sUT
h 2
_ 1u
aorvdy o0Jdd 0 | pI0o9oay eae(d U007

¢ pxoosy wie(

oorvdg ooag

- 30 -

routine is always set to the record that was inserted., A1l
othar internal pointers are 12ft pointing at the records
that they pointed to before the inssrt operation was carried

out,

If necessary internal pointers are changed to reflsct the
new data structure to ensure that they point to the sane
records after the insert as they 3id prior to the insert

opsTration.

Jne final difference betwesn thz two types of vinsert
operations should be noted. When the blocks are split
because there is insufficient freé spacs available thas split
.point is selected in a differant manner for each typsz of
insert. When appending a record ths split point is selected
so that the current data block will remain unchanged and the
naw block, where the insert will take place, will be empty.
When a record is insertad into the middle of a data block
and a split is required the split point is selected so that
the current data block will be split into two parts which
will be approximately egqual in size after the record is

inserted,

The delete operation is us2d to remove data records from
the KsaM file, In order to delets a data record a search

for a record with the proper key must bes undsrtaken. If that

- 31 -

racord is not found then the record does not axist within
+hz KSAM file and therefors an error has occurred, If the
r2cord s2xists within the KSAM file then the delete operation

may be carried out,

The amount of free space in the .cnrrent data block is
increased by the total 1length of +the delete record. 2all
records above the delete point, including the null data
racord at the end of the data block, are moved to the left -
by the 1ength of the deleted record, This shift overlays the
dsleted recoré ang thus eliminates it from the data block,

It is possible that after a seriss of delete operations
that a data block may be left that contains no data records
other than the null data record at the end of the data
block, In this situation the data block no longer pérforms a
nseful function, This empty data block will be added %o the
free block chain which is pointed to, in the root block, by
the fres chain pointer., In order to carry out this Qperation
the index record pointing to this data block must be deleted
from the father index block, The father index block is

searched until the index record pointing to the current data

block is found, If an index record follows the index record
to be deleted it 1is modified so that it will follow the
index r=cord prior to the index record being deleted. The:
index racord pointing to the current data block is deleted

by shifting all records above‘it, including the null index

Y

- 32 -

pIoo9ay eyed e SutierTed :§ eaIndTJ

4UN0D
soedg oodg O | € PI029Y B3e(| | PL020Y BB | shuda goag
9319T9(
W
1UN0YH
eoevdg eoJag 0O } ¢ pxoosy ezeqg | 2 pIoooy elR(| PI0O8Y ejzed aoedg eodg

- 33 -

MooTg eaeq Aqdws ue JuToeedd 6 oInId T

1UNoN

._‘AJ < 4 AT 'Y T .
soedq 29d,] 0 ¢ PJI0ODY Xapurf [DIOOO ooeda obd

A

1 XopuT

- 3L -

toonpodd 07 UTRYD O0TQ 98JJ 9YL 03 Poppe ST MOOTq eiep ayf

1uNnoy

>l
80w 5 W@hh 0 aoedg 9oay

\\\\\\\

eoedg ooy O | £ PI0O2Y Xepul |2 PJIODdY Xopujl | | PJIOd8Y Xepul 1Unoyn

aoedg ood,

MOOTH XOpuyl juepunpsy e JuTesd] 0] oIng Tl

ooredyg 90d,] o) SDJI00OY eyed unon
’ soedg eadr
O AP0Td
ooedg eaa] | o ¢ paoooay xepul |2 paoooy x@dzaN‘ | PI0DOY Xopuf FInoH
he) [(&8 A i y Ra 3 Ci by R o) O;ma\w...ﬁw @@.HG._.
V ¥M20Td
zoonpoxd 09
UTeYO 3j00Tq 204 8y 073 Pappe ST (g O0TH) 300Tq XopUT JUBPUNPSI S,

adedg ead] 0 gpJI0oay wvjled

1UN0YH
ooedg aedaid

D PIP0TH

aorvdg 99T : -0

4

PI0DOY XOPUT 1SeT

unoy
“aoedg sady

g 300TY

L

'

aowvdyg Z PJI0O8y] %opuj L

89d, 0 ¢ PIOO9Y XepuT

PIOOI XepuT

3uUNo N
aovdg eaay

V HooTd

record at the end of the index block, to the left, Once the
index record that is pointing to ths now smpty data block is
dzleted then the current data block may be added to the free

block chain,

If any delete operation lzaves an index block with only a
singls index record in it, then that index block is neo
longer necessary and it may be added to the free block
chain;, In order to carry this out the index record for this
index block must be located and updated. The father block
for this index Dblock is searched until the index record
pointing to the unnecessary index block is found. The son
pointer of the index record t§ be updated is changed to the
son pointer of the last remaining index record in the
unnscessary index block, Once this changs ‘has been made then
the unnscessary index Dblock may be added to the free block

chain.,

At the <conclusion of the delete operation the pointer
specified in the call to0 the delete routine is left pointing
to thz data record which follows the deleted record

sequentially, If the last record of a block is deleted then

thz pointer is changed to identify the next seguential
record, All other internal pointers ars updated +to esnsare
that they point +to the same records after the delete.

operation as they pointed to before the delete operation.

—

-3 -

5.3 REWRITING A RECORD

[I2v}

The rewrites routine is used to make changes to the data
portion of a data record, This routinz may change the con=-
tants of the data portion of the data record and it may
change the length of the data portion of a data record. This
routin2 may not be used to modify the key portion of a data

‘record in any way.

In order to rewrite a data record the record must already
exist within the KsAM file, The rewrite record is searched
for in the usual manner and if it is not found then an error
has occurred, If the rewrite record is found then the rew- -

rite operation may take place.

The lenéth of the nevw data portion is compared with the
length of the «current data portion of the data record., If
the length of the new data portion 1is less than or equal to
the length of the current data portion then the rewrite is a
relatively straightforward operation, 1If +the length of the
naw data portion is longer than the length of the current
daté portion then the rewritia operation is a more complex

task,

In the case where the length of the new data portion is
less than or equal to the length of the current data portion
then the existing data portjon is overwritteh by the new
data portion, If the length of the new data portion is less

than the 0ld data portion then the d4iffarence is added to

- 37 -

PX0d9Yy eyed © FUTITIMOYN || oInITjg

¢ PIooay evle(d

eleqd

2 pIooay

| PIoo8y eaw(

1UN0Y
oorvdg ood,

2 DI0O3Y
eled

99 TIMaY

MY

NIODBY vlR(]

PIoOeT vle(d

| PIOD9Y eae(q

1UnNcH
aoedg eoay

ooedg

- ¢ PI0OaY evie(

PIOO9Y vle(]

| PJI0D8Y BRE(]

3UN0YH
aoeda soa,

PIOI3BE ejye(g

D) TINOY

pIooay elye(d

PIOODY wvRwR((T

| DIOCODY ejye(

1NN
oovda sad,

X

/ .
the free space count and all rscords above the rewrits point

are shifted to the left by the number of bytes freed.,

In the case where the length of the new data portion is
greater than the length of the sxisting data portion then
the difference between these lengths is compared to the
amount of free space availabls within the data block, If
there is sufficient free space then all data records above
the r2write point are shifted to the right by the difference
in the number of bytes between thé_naw data portion and the
0ld data portion, After the records have been shifted then
ths new data portion is written into the space ' created by
the shift, The free space counter is then decremented by the
differsnce between the 1lengths of the new and the old data
portions, If a data block split is reguired then the split’

is made and then this process is undasrtaken.

At the conclusion of a rewrit® operation the pointer
specifisd in the call to the rTewrite ;outine is left
pointing to +the data record that was updated. 311 other
intarnal pointers are updated to ensure that they point to

the same data racords after the rewrite operation as they

did before the rewrite operation,

- 39 -

Chapter VI

INFORMATION BLOCK SPLITS

Dat e reguired whenever either an insert

o
o
ot
o]
(9]
~
U
e
i)
’..n
ot
n
23]
H

or rewrite operation can not be completed due to insnffi-
cient free space remaining in the data block. During the
course of a data block split operation a2 data block is added
to the KSAM file, Some of the data records that are in the
data block +to be split are noved into the new data block.
This operation will leave more free space in the data block
that was split, The free séace in the data block has
increased therefore the insert or rewrite operation that is
required can now be completed, This split point is selected
€0 that the exact midpoint of the data to be split will be
located within the first record to be moved into the new

data block,

In order to split a data block into two parts the first
—consideration must - be the selection -of the point at which
the data block is to be split, This split point will be at

the start of the first data racord to bes moved into the new

i

data block, The selection of the split point occurs in two

different wavys.

- 40 -

The first method of selecting tha point at which the data
block is to be split is used in the append form of the
insert opsration, In *this situation the data record is t> be
inserted at the end of the data block and the split point is
selected so that the data record +o be inserted will be the
first record in the new data block and ths existing data
block will be left unchanged. The data block to be split
dozs not change but the index record pointing to the split

block will be modified to reflect the naw situation.

Thz secornd method of .selecting the point atb which the
data block is to be‘split is used in ths insert and the rew-
rite operations, The split point is selected so that the two
data blocks will have approximately the same amount of free
space in each after the insert or rawrite operation is com-

platead,

The operation of splitting a data block into twd parts
reqguires that the father index block be nodified. A new
index record must be created to point to the split block.
This index record will have as its Xey the key of the data
record immediately prior to the split poipt. A second new
'index racord must be created to point to the new data block.
The key for this index record will be the key that was in
the index record that pointed to the split block bafore the
data block split was raquired, This will ensure that the

keys of all of the data records in the split block are less

- 3] -

i

- L2

1UNon
soedg eodg O | € SPI0988 B3®(| 55udg soag
0 YO0 \.
_ 1unon
aoedyg 90d] 0 l SPI0d9Yy ele(d soedg eoug
TIO0TH \ |
aoedyg T won .\ J0O8y XepurT’ 1Umon
&m 0 | ¢ paxooey xepury 1 pPIOD9Y XopuT ¢ PJIODBY Xopur | P el pur ooedy oo
290d Y
¥ 3O0Td
JuTod 3TTdg
1unon
eoedg souag O] < spJodad eqed | | SPI029d ©I8A | shpda soay
g 3o0Td 1\\\&
! . 1UNnoY
sovdyg SR G PJIOOT X8PUT | 2 PI028Y Xopurl | L0009y Xapury soedg oad]

v HMo0Td

thanr or equal to the key of the index record pointing to the
split block, It will also ensure that the keys of the data
records in the new data block will be less than or egual to
the key of the index record pointing to the new data block,
These two index records are <created and 3if there is
sufficient free space available to accomodate the new

records in the father index block then the data block split

opsration may be completed, 1If ther=s is not sufficient free

space available in the father index block for the &two new
index records then the father 1index block 'must be split

befors the data block split can be completed.

The actual operation of splitting a data block is divided
into three parts, Firstly, the nsw data block must be
crzated, Secondly, the father index block must be modified
by the creation and insertion of the two new index rescords,
Finally, the split block must be updated to indicats the new
end of +the data records and the new amount of free space

available,

In order to create a new data block a block must either
be obtained from the free block chain or added to the end of
rrtha KSAM file, The new data block is loaded with copies of
all of the data records in thz split block that are found
above the split point, In the case of the append form of the

insert operation there are no data records above thes split

point except the null data record at the end of the split

- 43 -

data block, The free space counter of the new block is
calculated and written into the n=w data block., At the
conclusion of the creation of the new data block the new
data block is written onto the axternal storage device whers

the KSAM file is stored.

The father index block is updated by replacing the index
record that points to the split blozk with the two new index
records created for the split data block and the new data
block., All other index records in the father index block
will be shifted if necessary to ‘accomodate the new index
records, The free space counter in ths father index block
will be updated and the father index block will be written

onto the external storage device,

To complete the data block split the. split block itself
must be updated., The new value for the free space counter is
calculated and written into the split block. A null record
is inserted into the split data block at the new end of the

data block, the split point, When the split data block has

besn updated it will be written onto the external storage

davice,

The final operation involved in the data block splitting
process concerns the internal positional pointers.. 'All of
the internal positional pointers are tésted and updated if
necessary to ensur2 that they point to the same data records
after the data block split as they pointed %o before the
data block split.,

- 44 -

The data block splitting process is now complete and the
original insert or rewrite request may be completed. Besciuse
data records are at most 512 bytes in length and blocks are
at least 1024 bytes long 3 split ensures that enough space

will be made availables for the record.

6.2 INDEX BLOCK SPLITS

An index block split is required when an attempt to split
a son data or index block fails bzcause there is insuffi-
cisnt free space remaininq’ in the <current index block to
accomodate the two new index records raquired, During the
course of an index block split a new index block is added to
+he KSAM file, Some of the index records that are in the
index block to be split are nmoved into the nsv index block..
This oparation increases the amount of free space remaining
in the split index block. The 1increase in the amount of
free space available in the split index block will allow
sufficisnt free space té accomodate the two new index

records required by the splitting process for the splitting

of thes son block.

The selection of the split point in the case of an index
block split 1s a much simpler situation than in the case of
a data block split, only ons method of selecting ths point
at which the index block is t0o be split is used.. Thes split
point is selected so that the split index block and the new

index block will have approximately the same amount of free

- 45 =

space available in them after the +two new index records are

insearted,

The 1index block splitting operation requires that the
father index block be modified by replacing the index record
that points to the split block by two naw index records. The
second of the two new index records will have the same key
as +the index record which currently points to the split
index block. The son pointer of the second >f the two new
index records will point to the new index block., A totally
new index record must be created for the first of the two
new index records., The first new index record will have as
its key the key of the index record immediately prior'to the
split point in the split index block, This first new index

record will point to the split index block.

This method of creating the +two new index records will
ensure two things, The keys of all of the index records in
th2 split index block are less than or egual to the key of
the index rtecord pointing to the split index block., This
method also ensures that the keys of all of the index

records in the new index block are less than or egqual to the

key of the index —record pointing to the new index block.
These two new index records are created and if sufficient
free space remains in the father index ©block to accomodate
the new records then the index block splitting process can

proceds, If there is not sufficient free space available in

- 46 -

1TTdg 300Tg xX8pul oYy

1¢L eaInd g

*Loy 999Tdwoo ¥ UTLIUOD TTTIM 0 ¥OO0TG UT PJIOOS8J XOPUT 3SITI O :910Q

- 47 -

1Unon
ooedg ooug O | ¢ SPI0984 XOPUT | 55udg eaayg
0 O0Tg
uno
ooedg o8dq O | | spaooay xepufv modwa m%h@
d M90Td
soedg 4 r 1UN0N
soag|0 | & PIOO8Y XOPUT | % PI0O8Y XPUI | ¢ PIOOSY XOPUL | | PIOD8Y Xopuj ooedg soad
¥V ¥o0Td
jutod 3TTdg
aoevdyg CENN 0 2 SpJooey Xapurt .l SPJ0ooeYy Xepu] mo@%Mﬁmw&a
g MO0Td
{ 1UNoY
oordyg =ERN 0 G PI028Y XspuT 2 DPJ0OD8Y Xapufl | PJOId9Y Xopufj soedg eod,]
D d

¥ H{o0Td

+hz father index block to accomodate the two new index
racords then the father index block must be split before the

index block split can be completed,

The actual index block splitting process can be
subdiviiled into three parts, The first part of the index
block éplitting process 1s the creation and 1loading 5f the
new index block, The second part of +the index block
splitting process is the modification of the father index
block by the insertion of the two new index records, The.
final phase of the index blockqsplitting process is the
modification of the split -index block to indicats the end of

thes index records in the index block and the amount of free

space available,

The creation of a new index block must be begun with the
allocation of an empty information block. This empty
information block is either obtained from the free block
chain or 1is appended +to the KSAM file, The first index.
record in any index block must contain the complete key for
that record, The conmplete key for the first index record in
the new index block is created'using the complete key of the
last record to rehain in the split index block and the
information to be found in the index record that immediately
follows the split point in ths split index block., After the.
first index record is written into the new index block then

the remaining index records above the split point are copied

- U8 -

16 M B 5 ol ¢ e 7 e w3 80 0 i N TR IR B S5 R e DTt KA VTR R P

into the new index block, The free space counter for the new
index block is calculated and written into the new index
block,. Once ths new index block contains all of the

necessary information it is written onto the external

storage device which contains the KSAM file.

The father index block is updated by +he replacement of

the index record which points to the split index block by

the two new index records pointing to the split index block

and the new index block. The frss space counter in the

father index block is updated and the father index block is

written onto the external storage devica.

The final stage in the index block splitting process is
the modification of the split index block., The free space
counter is calculated and written into the split index
block, The mnull index record is inssrted into ths split
block at the new end of the index block, the split point. At
the conclusion of the modification of the split index block

it is written onto the external storage device.,

The index block splitting process is now complete. The
~data or index block split required at the next ~level down

the +ree may now be completed.

- 49 -

6.3 BOOT BLOCK SPLITS

A root block split is required when an attempt to split a
son data or index block has failed because thzre is insuffi-
cient free space remaining in the root block to accomodate
the two new index records required. During the root split-
ting oparation a new index block is added to the KSAM file,
Approximately half of the index records in the root block
are moved 1into the new index block., This operation will-
increase the amount of free space available in the réot
block, Thé rooct block‘split also adds another lasvel of index
blocks to the KSAM file, At the conclusion of the root block
split the split required at the next level of the tree can

be performed,

As with all block splits ths first step in the splitting
of ths root block is the selection of the point at which the
root block is +to be split. The split point is selectsd in
the same manner as the split point is sslected for any other

index block.

The root block is the topmost block in the KSAM file. It
does not have an index record that points to it therefore
there igs no father index block *o be modified and no new

index records to be created,

The operation of splitting the root block has only two
parts to it, The first phase of the root block split is the

creation and loading of a new index block., The ss2cond and

- 50 - .

3TTdg o0Td 300¥ oyl :ty oandig

*Koy 0q0T7dwod B UTRQUCD TTTM V MOOTQ UT PIOOSI XOPUT ASJITI OUJ :990)

PI0O8Y Xo8puUuT
anTepn UITH

—

: . PIODOY Xopuj XTloddg qunon —
| aordg ERR) snTe) U TH | SPJI0O9Y X8purl S00TH 300 ooedg esaj | 0

o0 Td 3004 :

1UN0Y

aordg soa, soedg ooa4d

Z SpJoosyg .N.OGQH

V Ho0Td

qutod 471Tdg

PI008Y XOPUL § - gpaoosy xepur | | spxoosey xepul X TJodd 3unoy

| ooedy o811 enTep UdTH 00T 1003 eordg esadg

HOO0TH 300y

last phase of th2 root block split is the modification of

the root block,

The actual splitting process for the root block follows
the same algorithm as that followed for the splitting of an
ordinary index block, A new index block will be created,

filled in, and written onto extsrnal storage.

The last stage in the root block splitting process is the
modification of the root block, Thes free space counter is
calculated and written into the root block., The high value
index record 1s used as the null index record in the root
block, This record is inserted into the root block at the
split point., The son pointer of the high value index record

will be set to point at the new index block.

The high value index record may appear several times
within a KSAM file, on each 1level of the index +the high
value record will be the rightmost index record. This
arrangement of the high valus index record occurrences will
form a path from the root block down the right side of the
tree to the block which contains the data record with the
highest key in the KSAM file, ~This arrangement ansures that
all indax block searches will bs successful and that all
s2arch operations will terminate in a data block. This
arrangement of the high value record also facilitates the

append form of the insert operation,

The root block splitting process is now complete. The
data or index block split required at the next level of the

tre2 may now be completed,

A mpultilevel split occurrs whenever more than one infor-
mation block must be split in order to complete an insert or
rewrite reguest, In this situation ths block that is near-
ast ths rqot block and requires splitting will be split
first, then its son block, and so forth until eventually the
data block is split and the insert or rewrite operation can
be completed, For example, in the case where tha root block,
an index block, and a data block all require splitting the
order in which the blocks would be split is: root, then

index, and finally the data block.

- 53 -

Chapter VII

PROGRAMMING THE KSAM RECORD MANAGEMENT SYSTEHM

KSAM is written in C Language and is designed to be used
on the PDP-11 with the UNIX operating system. It occupies
approximately'1SK bytes of memory. Th2 Ksa¥ record manage-
ment system takes advantage of many of the special features
available when using the UNIX operating system. For example,
many of the possible errors that can be made by the KSAHM
ussr ars detected by the UNIX operating system which will
either correct the error or provids diagnostic messages and
codes for the programmer's use, The UNIX operating systen
also places a few restrictions on the user, . The blocksize’
besst suited to UNIX is 512 bytes therefore the KSAM systenm
enforces that optimal blocksize, or a multiple of it, 2n the.
system user, The "flexibility and sase of use of the ONIX
opesrating system makes it ideally suited to the KSAM record

management systen,

Tha KSAM record management system is composed of thirteen
routines, These thirteen routines are divided into two cate-
goriss, In one category are those routines which are used to
manipulate theA KSAM file as a whole, The routines which

operate on the entire KSAM file as a single entity are:

- 54 -

KCEEATE, KOPEN, KCLOSE, and KPURGE, The second category of
KSAM routines are those routines which manipulate either
single data records or single positional pointers, The rout-
ines included in the second category are: XPOINT, KRESET,
KPOINTN, KRWRITE, KINSERT, KDELETE, KREAD, KREADN, and
KREADK, This second category is further subdivided into
three parts: the routines which locate a record, the rout=-
ines which modify thé file, and the routines which are used

to retrieve a record.

7.2 KSAM RETURN CODES
There are a number of codes which are returned as the
value for +the various KSAM routines used within the KSAM

racord managenment system, There are five codes that may be

“encountared by the nuser and these codes are called user

codes,

Every routine in the KSAM record management system is a
user callable function, This implies thatleach of the KSAHM
routinss returns a value. With the exception of thes KOPEW
routine which returns a pointer to a control block which it
creates when it terminates -successfully-all ~KSaM routines

return one of the five possible integral codes.

- 55 -

7.2.1 User Code =1

The user cecde -1 is used +to indicate that some sort of
unrecoverable error has been detected by the ONIX oéerating
system, By itself this is not sufficient information to form
any sort of a meaningful diagnosis of the error., UNIX main-
tains a system of error handling that is very ﬁseful'in this
situation., The UNIX error system sets the global variable
ERRNO to an error code of its own, This codz may be used to
datermine the nature of the =arror and corrective action may
ba-taken, In practice, this.code should only be encountered
when using the routines: KXCREATE, KOPEN, and KCLOSE. Any
other occurrence of the code -1 indicates an error in the
KSAY system itself, In this situation the error causing pro-
gram should be examined by a systems programmer for the

necessary corrective action,

7.2,2 User Code 0.
The nser code. of 0 is used by all routines except KOPEN
to indicate that the reguested operation has been carried

out successfully,
7.2.3 Uger Code 1

The user code of 1 is used to indicate that the reguested

data record does not exist within the KSAM file,

- 5H -

7.2.4 User Code 2

The user code of 2 is used to indicate that the reguested
data record does not exist within the KSAM file, This code
further indicates that ths rsquest2d data record 1is beyond

the end of the file,

7.2.5 User Code

(198

The user code of 3 is only returned by the KINSERT rout--
- ine, The code 3 is used to indicats that a data record can
not bes inserted into the KSAM file because it already exists

within the file.

7.3 KSAM FILE MANIRULATION RQUTINES

The KCREATE routine is used to create a KSAM file, This
routine is also used to specify the attributes of the file,

Th

B

KCREATE routine accepts three arguments: a poianter to

the UNIX name of the file to be created, an integer contain-

v

ing the size of the information blocks to bs used, and a
second integer specifying the amount of <£ree space +to be
left in each data block during ths initial loading of the

file,

The name of the file must be in standard ONIX format. The
fully gqualified name is stored as a character string and a
pointer +to this string is used as the parameter to the

KCREATE routine,

- 57 -

The second parameter is an integer that specifies the
blocksize to be used in the creation of the KSAM file. This
blocksize must be a multiple of 512 greater than or egual to

1024, If an incorrect value is specified 1024 is used.

The third and final parameter is another integer used to
specify what percentage of sach data block should be left
free whan a data record or data records are appended to the
file, This integer must be between 0 and 50, Any incorrect:
value for this arqgqument is assumed +o be 0., It is recon-
mended that a non-zero number be specified for this parame-
ter, If no free space is left in the data blocks then later
modifications of the file will result in a vlarge nuamber of

data block splits,

The KCBEATE routine creates a UNIX file with the nanme
specified by the first argument, This file appears to the
UNIX op=arating system to be the same as any other file. This
¥ill allow the programmer to use ths UNIX system routines
fof dumping, moving, and copying ths KSAM filsz, The user is
cautioned that the KSAM file should not be modified with any

rontines other than the KSAM record management systenm,

The KCREATE routine creates and writes into the KSAM file
ths first two blocks of the file, The first of these two
blocks will be the root block, The second block will be the
first data block of the file, The fields in the prefix of

the root block are filled in in ths following manner: The
- 58 =

blocksize is taken from the ©parameter list and is written

[

nto the root block prefix, 1In the same way the percentage
of free space to be left is copied into the root block pre-
fix, The free block chain is marked to indicate +that the
free block chain is empty; The end of file block is szt to 2
indicating that the next block past the end of the file is
block number 2, The final piece of information inserted into
the root block is the high value record. This index record
is set to point to the last data :block in the - KSAM file,
block number 1. The free space count is calculated and the
root block is written onto the external storage device where
the XKSAM file will reside, The first data block, block num-
‘ber'1, is marked with a null record to indicate that the
block is entirely empty. The free space count is filled in

and thes block is written onto the external storage device, .

7.3.2 EQPEN
The KOPEN routine is used to prepare a KSAM file for pro-
cassing, The routine performs two functions: the opening of

th

v

KsAM file for both input and output and the creation of
the control block that will be n22ded for all subseguent

calls to the KSAM routines,

The KOPEN routine requires three arguments: a pointer to
the character string which contains the same UNIX file name
as specified when the file was createsd, an integer specify-

ing the number of intsrnal position pointers to be created,

- 59 -

and a sscond 1integer specifying the number of input/output

buffers to be created,

The name of the file must be in standard UONIX format., The
fully qualified name 1s stored as a character string and a
pointer to this string is used as the parameter to the KOPEN
routine, This name must be be the same name that was used by

t*he KCREATE routine to create the file,

The number of internal position pointers to be created
must be a pbsitive integer greater than or equal to 1. If an
incorrect argument 1s detected then the value is assumed to

be 1,

The third parameter to the KOPEN routine is a second
integer which specifies the number of vinput/output buffers
to be allocated, This paramster must be a positive intzager
greater thar or egual to 2. If an incorrect argument is
supplied then the KOPEN routine assumes that the number of

buffers required is 2.

The KOPEN routine opens the UNIX file specified for both
input and output, This mode of communication allows the file

to be both read and updated at the same time,

The KOPEN routine creates the number of internal position
pointers requested, These pointers are included in the con-

trol block created by the KOPEN routine,

- 60 -

The KOPEN routine is also responsible for the creation of
the input/output buffers required., 1In the same way as the
interral position pointers the dinput/output buffers are

inclnuded in the control block crezated by KOPEN.

The control block <c¢reated by the KOPEN routine contains
fislds that are required by all of the other KSAM routines
except, of course, KCREATE., The information in this control
block is extracted from the root block and when combinea
with positional pointers and input/output buffers provides

all of the information required to process the KSAM file,

The KOPEN routine returns one.of two values,. The first
value is the addrgss of the <control block created, This
value must be stored and provided when calling +the other
KSAM routines, When a valid address is returnzd this‘iudi—
cates that the KOPEN routine has opened the file and created
the control block successfully, A Treturn code of -1 is used
to indicate that an unacceptable UNIX error has occﬁrred.ﬁln
this case the UNIX error handling roﬁtines should be used,

The most commonly occurring srrors ars: trying to open a

+h
pde
foud
v

that does not exist, trying to open as a KsaM file a
file that is not a KSAM file, and attempting to open a file

that is already open.

- 61 -

7.3.3 KCLOSE
The KCLOSE routine is used to end the processing of a
KSAn file, This routine requires only one argument, the

pointsr to the control block created by the KOPEN routine,

The KCLOSE routine examines all of the input/output buf-
fers in the control block., If any of these buffers have been
changed since the last time that they were written onto the
external storage device where the KSAM files resides then
they ars written out into the KSAM file._Aftér all necassary
output has been completed the UNIX file containing the KSAM
file is closed, The final-opsration performed by the KCLOSE
rountine is the release of the space occupied by the control

block created by the KOPEN routine.

7.3.4 EPURGE

The KPURGE routine is used to force the KSAM record man-
égement system to write out onto the external storage device
any input/output buffers that have besn changed since the
last time they were written out ' into the KSAM file." This
routine requires only one argument, the pointer to the con-

trol block created by the KOPEN Toutine,

The KPURGE routine may be called at anytime during the
processing of the KSAM file, This routine will ensure that
the version of the file on the external storage device is

completaly up to date with the version of ths file in main

- 62 -

memory. In the case of a powsr or system failure this will

reduce the amount of work that will have to be redone,

7.4 KSAM RECORD AND POINTER MANIPULATICN RQUTINES

T e A e A s WES e Hm R S Sme s e TER S U Gem W MR R A S A M R WP R S e W e MR e e e S A S

7.4.1 Record Location Routine

n

7.48,1.1 KPOINT

The KPOINT routine is used to locatsz a particular record
or the location where that record should appear., . This rout-
ine sets the specified pointer +to the desired record. 6 This
routine requires three arquments: the pointer to the control
block created by the RKOPEN routine, an integer containing
the number of the pointer to be set, and a pointer to the

kazy of the record to be searched for. .

The pointer number indicates which of the positional
pointers is to be set to the location of the sought after
record, If the record is found then thz positional pointer
is set to the start of that record, - If the search record is
not found then the positional pointer is set to point to the

record with the next higher key. .

The +third parameter 1is a pointar to the key of the.
Vdesireﬁ record, This key is stored in two contigous parts:
the first part is a one byte field which contains the length
of the key; the second part is a series of bytes containing -

the actual key.

- 63 -

The point routine condugts a search for the requested
record, This search begins in the root block and pfacedes
down through the tree until the data block which should con-
tain ths reguested record is located. Once +the data block
has been located a linear search for ths requested record is
initiated, If the record is found theh the pointer is set to
point to the start of the record. If th2 record is not found
‘then the pointer 1is set to the record with the next higher

kevy.

Tol.1,2 KRESET
The KRESET routine is used to set a positional pointer to
the first record in the KSAM file, This routine requires two

arguments: the pointer to the control block created by the

KOPEN routine and an integer containing the number of the

pointer to be reset,

The KRESET routine resets the required pointer by con-

ducting a search for the record with the least possible kevy. .

¥hatever record is 1located by the ssarch will be tha first-

record in the KSAM file,

7.4,1.3 KPOINTN

The KPOINTN routine is used to advance a positional poin-

ter from the record that it 1is currently pointing at to the
next sequential record., The routine requires two argumentss:

the pointer to the control block created by the KOPEN rout~

- fl -

inz and an integer containing the number of the pointer to

be advanced,

T.4,2,1 KERWRITE

The KR¥RITE routine is used to update a data record in a
KSAM file, This routine requires three argumsnts: the poin-
ter to the control block created by KOPEN, an integer con-
taining the number of the pointar to bz set, and a poinﬁer

to the new version of the record.

The new version of the record is composed of four conti-
gous fislds, These fields are: a on2 byte field for the key
length, a one byte field for ths langth of the data field,

the key, and the data.

The routine usés the key portion of the new version of
the record to search for the record in the KSAM file, If the
record is found then the data portion of the existing record
is replaced by the data portion of the new version of the
record, The other data records in ths data block are shifted
to maks room for the new version of the data portion or to
rause space that is left free by the new version of the data
portion, If there is»insufficient free space available in
the data block for the new version of the data portion then
the daﬁa block is split and then the rewrite operation is

completed, After the completion of the rewrite operation all

- 65 -

of the positional pointers in +the file are examined and
adjusted if necessary to ensure that all of the pointers
point to the same records after ths rewrite as they pointed

t0 bzsfore the rewrite,

7.48.2,2 KINSERT

The KINSERT routine is used +to add a data record to'a
KsaH file., This routine reguires three arguments: the poin-
ter to the coﬁtrol block created by the KOPEN routine, an
integer containing the number of the pointer to be set, and

a pointer to the data record to be inserted.

The data record to be added to the KSAM file is composed
of four contigous fields, These fields are: a one byte field
for the length of the key, a one byte field for the length

of the data field, the key, and the data,

The KINSERT routine uses the key portion to search for
the record to be inserted, If the record is not found then
the insertion may proceed, The other data records in the:
data blbck into which the new record is to be inserted are
shifted to allow room for the new rescord. The new record is
then inserted into the data block, If there is insufficient
free space available in the data block €£or the insert to
take place then the data block 4is split and then the insert
takes place, The pointer specified is sgt to point to the

record just added to the file, All other positional poin-

- hH -

tars arz examined and if necessary adjusted to ensure that
they point to the same data records after the insert as they

pointed to before the new record was added.

In the case where +the insertion 1is at the end of the
file, the append case, then the fres space to be left within
tha data block must be at least as large as the percentage
requested when the file was created, If this is not possible-
then a new block is added to the end of the file and the new

record is inserted into the new data block.,

Te04.2.3 KDELETE

The KDELETE_routine is used to remove a data record from
a KSAM file, . This routine requires three arguments: the.
pointer to the control block created by the KOPEN routine,
an integer containing the number of the pointer +to be set,

and a pointer to the key of the record to be deleted,

The key of the record to be deletad is stored as two con-
tigous fields, These fields are: a onz byte field contain--
ing the length of the key and a series of bytes containing

the actual key.

The XKDELETE routine searches for the delete record using
the supplied key. If the reéord is found then it is removed
from th2 KSAM file by shifting the other data records in the
block to recover the space formerly occupied by the deleted

record, If the data block is emptied by the delete operation

- (T -

andsor an index block is made redundant then these blocks
are freed and added to the frse block chain, The pointer is
set to point to the record which sequentially follows the
data record just deleted, 2al1ll of the other positional poin~-
ters are tested and adjusted if required so that they point
to the same records after the delets as they did before the .

delete operation.

7.4.3 Regord Retrieval Routines
Te4,3.1 KREAD

The KREAD routine is used to copy a data record in the
KsAM file into a user supplied data area, This routine
requires three arguments: the pointsr to tha2 control block
created by the KOPEXN routine, an integer containing the num-
ber of the pointer to the record to be copied, and the

address of the data area into which the 7Tecord is %o be

copied,

The XREAD routine uses the pointer to locate the‘reguired
data record. The routine then copies the record into the
arsza specified, The record is copied in the form of a one
byte field for the key 1length, a one byte field for the

length of the data pcrtion, the key, and the data.

Tolhe3,2 KREADN

The KREADN routine is used to advance the given posi-
tional pointer from the current data record +o the next
sequential data record and to copy the n2xt ssquential data
record into the wuser supplied data area. This routine
requires three arguments: the pointsr to the\control block
created by the KOPEN routine, an intsger containing ths nun-
ber of - the pointer to be advanced to find the requested
record, and the address of the data area into which the

record is to be copied.

The KREADN routine wuses the givan pointer +to 1ncate the
requested data record., The given pointa: is advanced to the
next sequential data record, If the next record exists then
it is copied into the specified data area in the form of a
onﬁ‘bfte length field for the key, a one byte field for the .
data length, the key, and the data. The pointer is left

pointing at the record copied.

7.4,3.3 KREADK

The KREADK routine is used to 1locate a record by key and
to copy it into a user supplied 3ata area. The routine
requires ;hree arguments: the pointer to the control block
created by the KOPEN routine, an integer specifying the nun-
ber of the pointer to be set, and the address where the key
of the requested record is to be found and to where the conm-

plete racord and key is to be copied.
- 69 -

B e e

The key of the requested record is in the form of a one.

byte key length followed by the actunal key.,

The KBEADK routine uses the key supplied to search for
the rsquested data record, If the record is found then the
?ointer is set to the start of ths requested record. The
data rscord is then copied into the supplied data area in
thes form of a one byte key 1length, a one byte data length,

the key, and the data. .

- 70 -

Chapter VIIT

CONCLUSION

The 'KSAM record management systen ﬁas-aesigned to satisfy
the basic requirements of a primary ksy vretrieval systenm.
The KSAM record management system is capable of identifying
each data record by a single unique key field, This key is
used to insert, delete, update, and search for any particu-:
lar data record, A primary key retrieval system must have
the capability of adding data records to ths file and the
KSAM routine, KINSERT, provides this facility. A primary key
retrieval system requires the ability to delete data records
from the file; The KSAM routins, KDELETE, may be used to
remove data records from the KSAM file, The abilityv to
update data records within the file is a reguirement of a
primary key retrieval system, This ability is provided by
the KSAM routine, KRWRITE, The retrisval capabilities of ihe
primary key retrieval systen are. provided by the six KSaM
routines: KPOINT, KPOINTN, KRESET, XREAD, KREADN, and
KREADK, The KSAM record management system provides all of

the basic requirements of a primary key retrieval systenm,

A primary key retrieval system may, optionally, provide
sequential data processing support, The KSAM record manage-

ment system is designed to support sequential data process~’

- 71 -

ing, Sequential data processing 1is enhanced by the
organization of the dJdata records within the KSAM data
blocks. The data records are sorted, by key, into ascending
order within each data block, This method of storing the
data records ensures that, for most of the data records, the
next record physically is also the next record sequentially.,
This provides for an easy method of progressing from one
record to the next sequential record within a. data block.
The KSAM routines which are used for sequential data pro~

cessing are KPOINTN and KREADN,

The KSAHM fecord manageMeht system was designed to nmeet
seven objectives 1in addition to the basic objectives of a
primary key retrieval system, A discussion of how the KSAM
record management system meets sach of these objectives fol-

lows.

The first additional design objective was that the KSAM
racord manégement system should have the ability to keep
track of more than one data record it a time. This ability
is provided by means of the positional pbinters.‘ The aser
specifies, with the call to thes KOPEN routine, exactly how
many reéords may be kept track of simultaneously., Fach posi-
tional pointer may be set to point to a different data

record,

The KSAM record management system also had to recover and

reuse the space freed by delete opsrations, As an indivi-

- 72 -

dual data record is deleted from ths KSAM file the space
that that particular record occupied is recovered simultane-
ously, The records within the data block are shifted to
reuase the space freed and the amount of available space
within the block is increased by the amount freed, If enough
data records are deleted from a data block eventually that:
data block will becone empty. In this case the zmpty data

block is removed from the KSAM data structure and is added
to the 1list of blocks available for reuse, If 2nough sons of
an index Dblock are freed by delets operations eventually
that index block will contain only one index record and thus
is no 1longer necessary. In this case the redundant index
block is removed from the XSAM data structure and added to
the list of blocks available for reuse;_'In this manner all
space freed by delete operations, both at the record lsvel

and at the block level, is recovered and made available for
reuse, The KSAﬁ record management system'makes no attempt
to frees up blocks containing only one or two records. This
yould require a far more sophisticated algorithm than the

one emploved,

~KSAM had to allow for the sasy and consistent expansion
of the file. The KSAM file may be =xpanded by a data block
split which adds a new data block to &he KSAM file. The ﬁew
data block is added at the point where it is neseded n>t sim-
ply at the end of the KSANM file. During the course of a data

block split only two information blocks already present in

- 73 -

+th2 KSAM file need to beAmodified, The father index block

and the data block to be split are changed in ninor ways,..
This process may be used to add both data and index blocks
+o the KSAM data structure, This capability of adding both
data and index blocks to the KSAM file provides a consistent

and straightforward method of file expansion.

The fourth additional design objective of the KSAM record
management system was to allow the KSAM file to be initially
1oadéd with data records sorted, by key, into ascending
order, The high value index record is used to direct loading\
at the z2nd of the file into the last data block in the XKSaM
data structure, This implies that all records added at the
end of the file are added to the end of a data block. The
addition of a record at the end of a data block dozs not
require the movement of any of the other data records within
ths data block., Data records may be added tovthe KsaMm file

in ascending order without an sxcessive amount of work.

The KSAM record management system also had to provide-
support for both indexed and sequential access to the data
records, Indexed access to the data racords is provided by
the KSAM routines KPOINT and KREADK, The KSAM routines
KPOINTN and KREADN are used to provide se@uential data pro-
cessing capability. These access routinas may be used in any
combination to provide a mixture of indexed data processing

and sequential data processing,

The KSAM record management system also had to minimize .

thz number of input and output operations required, The use
of the Dbuffering system allows for access to several KSAM

information blocks without an input or an output operation

being parformed, This implies that only blocks which have

been changed need to bs writtan onto 2xternal storage and
only blocks that are required but not already present need
to be read, The copy of the block in main memory 1is used
until all of the processing which reqﬁires that block has
been completed, The number of input and outpit operations

required for each block has been held to a minimum.

The final additional design objective of the KSAM record
management system was to provide data integrity. Each 5f the
algorithms that change the structure of the KSAM file was
created with this objective in mind, Rach algorithm is care-
fully designed so that a system or power failure at any
stage will not result in the 1loss or change of +the data
records, In the worst possible situations an empty data or
indax block may be freed and not added to the free block
chain or one or more records may appear more than once if a
split operation is interrupted but under no circumstances

will data records be inadvertantly lost or changsad.

The KSAM record management system raquires only a small
overhead for the maintenance of control information and ind-

ices, Tests have shown that index blocks account for less

- 75 -

than 6% of the total number of blocks in a file, although

this depends on the sizes of the keys and the data records.

The KSAM record managem=nt systsm does contain two not-
iceable areas where the solution to the design objectives
may not be the best one, The splitting algorithms tend to
produce an uhbalanced data structure with more levels of
index blocks on the right hand side of the tree, This is
caused by the root split algorithm which leaves the first
few index records in the root block and moves the upper half
of the index records to the new block., . This could create
problems if all data record searches must taks approximately
the same amount of time, This problem will be especially
acute if the tree is of a very large sizs, The "point-next®
algorithm is a very efficient algorithm except when the next:
sequential data record is outside of the current data block.
In this case the next data record is found using the search
algorithm, There: will be a large time disparity between

these two types of point next operations,,

The first of these two problems could be alleviated by a
'changevto the root block split algorithm, This change would
r2sultin the creation of a balanced tree at the expense of
a more complicated root block ‘split algorithm which would
crzate two new index blocks, The difficulties with the point
next algorithm could be reduced with the addition of a

brother pointer between data blocks. This, however, can lead

-76 -

to data record duplication problems and a more complicated

data block split algorithm,

Th2 KSAM record management system meets all of the design
objectives originally desired, In additiorn to the basic
requirements of a primary key retrieval system thes KSAM
record management system also mests the other secondary.
objectives that make the system more convenient and more.

efficient than a basic systen,

BIBLIOGRAPHY

Brillinger,Peter,C. and Cohen,Doren,J.; Introduction to Data
Structures and Non-Numeric Computation Englewood Cliffs,

N.Jd,:; Prentice Hall, 1972

Ferch,Howard,d.; Using the PDP-11 with UNIX Winnipeq, Man.:

T A W man e e e e -

The University of Manitoba Dept. of Computer Science,1976

T.B.M.; 08/¥S2 Access Method Services San Joss, Calif.:
I.B.M, Programming Publishing, 1978

S M S A . i . > o S . N T o - W M 0 o PO '

- - L g - -

T.B.M.; 0OS/¥S Virtual Storage Access Hethod(VSAM) Options
for Adyvanced Applications San Jos2, Calif.: I.B.M,
Programming Publishing, 1975

I.B.M.; 0S/¥S Virtual Storage Access Method (YSAM)

Programmer's Guide San Jose, Calif.: I.B,M. Programming
Publishing, 1978 '

aping ¥ol.1
, Mass.: Addison

T i T . W USRS TS WO S W i i s W WD S 790 4. WD S oD — .

¥esley, 1973

Knuth,Donald,E.; The Art of Computer Programming V¥ol.3-

e et s i Y

Searching and Sorting Reading, Mass.: Addison Wesley,

- — 1 —— -

1975

Ritchie,Dennis,M.; C Reference M
Bell Telephone Laboratories,

1l Murray Hill, W.J.:

Structure, :
Englewood Cliffs, WN.J.:

Weitzman,Cay; Minicomputer Systenm
Implementation, and Applicatio

Prentice Hall, 1974

=i

- 78 -

