An investigation into the effects of L-Arabinofuranose \boldsymbol{O}-glycosylation of hydroxyproline

By

Venkata Ramana Murthy Mantha

Abstract

A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba

In partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

Department of Chemistry
University of Manitoba
Winnipeg, Manitoba, Canada

Copyright © 2014 by Venkata Mantha

Abstract

The amino acid ($2 S, 4 R$)-4-hydroxyproline (Hyp) plays a critical role in animal kingdom as structural protein collagen. It is ubiquitous in plant cell walls performing various functions such as structural assembly, plant hormones, plant growth, defense against pathogens, etc. Glycosylation of Hyp is often seen in plant cell walls with L-Arabinofuranose and DGalactopyranose and not in animal kingdom. Glycosylation is a post-translational modification, which affects characteristics of proteins and peptides.

The main objective of this thesis is to synthesize various L-arabinofuranosylated hydroxyproline model amides and investigate their thermodynamic and kinetic properties of cis/trans amide isomerization. These results are compared with the previous research of Dgalactopyranosylated hydroxyproline model amides, which may provide an insight to structural implications for their stability and conformations of peptides and specificity in plants.

Both α - and β-L-arabinosylation of Hyp resulted in the stabilization of trans rotameric state at room temperature while the α-anomer leads to cis rotamer stabilization at higher temperature. Similarly, both unnatural 4S-hydroxyproline (hyp) building blocks resulted in stabilization of trans rotamer but α-anomer shows exo configuration instead of endo. This result shows a reverse trend when compared to galactosylated hydroxyproline building blocks as previous research results in our group. Our results may provide further insight to the role of glycosylation on protein structure and stability in plants.

Acknowledgements

I would like to thank my supervisor Prof. Frank Schweizer for his enthusiasm for research, inspiration to exceed my expectations, and for his valuable support throughout this project. His mentorship is very important for me to complete my Master's degree for learning key concepts of Carbohydrate Synthesis, NMR analysis and various NMR techniques.

Thank you to my examining committee, Prof. Helene Perreault, Prof. Mazdak Khajehpour and Prof. Arthur Gilbert for your evaluation, comments and advice.

Thank you to members of department of chemistry especially Dr Kirk Marat for his exceptional advice with NMR analysis and mentorship for various types of NMR experiments, Dr Wayne Buchanan for Mass analysis for many helpful suggestions for the project. Thank you to Dr Joe O'Neil for his valuable mathematica programs for the amide isomerization and his continuous support through the project.

I would like to thank Prof. John Sorenson, Prof. Athar Ata, and Prof. Norman Hunter for the course works which I have taken from them.

I would also like to thank the members of Dr Schweizer's group: Brandon Findlay, Dr Srinivas Bommagani, Mrs Prasanna, Dr Ramesh Dhondi, Dr Neil Owens, Lynda, Paul Slemez, Riley Anderson, Ron Domalan; I really enjoyed working with all of you.

I would like to thank several people for inspiring me to carry out this work: my colleague Brandon Findlay, Rafeeq (a post-doctoral research scholar from Dr John Sorenson's group) for screening my thesis for mistakes.

Finally to my family and friends, my parents Mr Nageswara Sarma and Mrs Lakshmikantham, my sister Swapna Priya, cousin brother Raghu Mudhivarthi, thank you for your continued support, it has made all the difference.

Dedication

To my parents, Nageswara Sarma and Lakshmikantham

Table of Contents

		Page No
Abstract		2
Acknowledgements		3
Dedication		5
List of abbreviations		10
List of Figures		13
List of Tables		15
List of Schemes		16
List of Copyright figures / tables		17
Chapter 1: Introduction and Background		18
1.1	Introduction to carbohydrates, glycosylation and biological roles of carbohydrates in living systems	18
1.2	Glycosylation of sugars in living systems: Glycosylation reaction mechanism and their types	25
1.3	Glycosylation of sugars in living systems: plants and animals and subtle differences	32

1.4	-rich glycoproteins in living systems and their structural aspects: plants and animals	35
1.4.1	Occurrence of HRGPs in animals and humans	35
1.4.2	HRGPs in plants	36
1.5	Structural and conformational effects of hydroxyproline glycosylation	44
1.6	Ring Puckers of Hydroxyproline	46
1.7	Techniques used in laboratory experiments: Introduction	48
1.7 .1	Nuclear Overhauser Effect technique by NMR for finding out the configurations of sugars and population of rotamers around the peptide bond	49
1.7 .2	${ }^{13} C$ Inverse gated coupling, A quantitative experiment to find out the minor rotamer percentage	51
1.7 .3	Inverse magnetization experiments for finding out the rate constants of cis / trans isomerization around the peptide bond	52
Chapter 2:	Thesis Objectives	56
Chapter 3:	Experimental Details: Effects of L-arabinofuranose glycosylation of (2S,4R)-4-hydroxyproline and (2S,4S)-4hydroxyproline on the conformation, kinetics of prolyl	57

	amide isomerization	
3.1	Synthesis	57
3.2	Results	63
3.2.1	NMR Spectroscopic studies:	63
3.2.2	Prolyl side chain conformation:	66
3.2.3	C^{γ} Inductive Effect:	69
3.2.4	${ }^{13} \mathrm{C}$ Inverse gated Coupling	70
3.2 .5	Kinetics of cis / trans isomerization: rate constants determination	71
3.2.6	Measurement of $\mathrm{K}_{\text {cistrans: }}$	74
3.3	Discussion	76
Chapter 4: Conclusions and future work		82
Chapter 5: Supporting information for Chapter 3		84
5.1	Synthetic procedures with NMR \& Mass data - General Procedures:	85
5.2	General Preparation of Sugar glycosyl donor: Compound 3-2, 3,5 Tri- O-benzyl-L-arab- f-1-thiocresol (3):	85

List of Abbreviations

[θ]	Mean residue ellipticity
[α]	specific rotation
Ac	Acetyl
Ala	L-Alanine
Asn	L-Asparagine
Aq	aqueous
Bn	Benzyl
Bz	Benzoyl
Boc	tert-butoxycarbonyl
c	concentration in $\mathrm{g} / 100 \mathrm{~mL}$
CD	Circular Dichorism
CDCl_{3}	deuterated chloroform
COSY	Correlation Spectroscopy
δ	chemical shift in parts per million
$\mathrm{D}_{2} \mathrm{O}$	Deuterium oxide
DCM	Dichloromethane

EtOAc	Ethyl acetate
Fmoc	9-fluorenyl methoxycarbonyl
Gal	D-Galactose
Glc	D-Glucose
GlcNAc	N-acetyl-D-glucosamine
Gly	Glycine
GOESY	Gradient Enhanced Nuclear Overhauser Effect Spectroscopy
HRGP	Hydroxyproline-rich Glycoprotein
HSQC	Heteronuclear single quantum coherence
Нур	($2 S, 4 R$)-hydroxy-L-proline
hyp	(2S, 4S)-hydroxy-L-proline
J	coupling constant in Hertz (in NMR)
$\mathrm{k}_{c t}$	rate constant from cis to trans rotamers
$\mathrm{k}_{t c}$	rate constant from trans to cis rotamers
$\mathrm{K}_{\text {trans/cis }}$	Equillibrium constant of trans:cis amide isomers
Lys	L-Lysine
MeOH	Methanol

NHMe N-methylamide
nOe Nuclear Overhauser effect

NMR
Nuclear Magnetic Resonance

OMe methoxyl group
ppm
parts per million

Pro
L-Proline

Ser
L-Serine

TFA
Trifluoroacetic acid

Thr
L-Threonine

Tyr
L-Tyrosine

List of Figures

S.No	Title	Page no
1	D-glucose in open chain, 6-membered ring pyranose form and 5membered ring furanose form.	18
2	Most common monosaccharides present in biological systems in plants and animals	19
3	Assignment of $\boldsymbol{\alpha}$ - and $\boldsymbol{\beta}$ - anomers of D and L-Glucose	21
4	Depicting the anomeric effect where α-orientation (axial) is more stable than β-orientation (equatorial) in sugar moiety	22
5	Anomeric effect by gauche interactions	23
6	Anomeric effect explained by Hyperconjugation	24
7	ALPH (Antiperiplanar Lone Pair Hypothesis)	24
8	Glycosylation reaction mechanism	25
9	Glycosylated carbohydrates examples of L-arabinose with amino acids, non-amino acids in various combinations	27
10	The occurance of amino acid glycosylation with types of sugars is obtained with permission from the journal reference	28
11	Tryptophan C-glycosylation commonly seen with mannose in living systems	29
12	Origin of cis/trans rotamers in proline around peptide bond	44
13	Shows the A) proposed $n \rightarrow \pi^{*}$ electrostatic interaction present in the trans amide of N-formyl-L-proline methyl ester. B) Depiction of the n	45

	and π^{*} molecular orbitals	
14	Exo and endo forms of Hydroxyproline	47
15	Rotamers of hydroxyproline: cis and trans	
16	Schematic diagram of Streptococcus Group A trisaccharide-hapten (anterglycosidic NOE seen. This conformation present in aqueous solution and not bound by monoclonal antibody Strep 9. (b) The conformation of the trisaccharide when bound to antibody (NOE of interglycosidic linkage not seen)	50
17	Pattern of Inverse Magnetization experiment by NMR: Curve A: Pattern of the inverted pulse. Curve B: Pattern of the exponential recovery of another conformer.	53
18	Synthesis of mono-glycosylated L-Araf-hyp building blocks for study	57
19	Figure showing the four isomers of O-L-Arabinofuranosylated hydroxyprolines (Hyp \& hyp) with NOE data	68

List of Tables

S.No	Title	Page no
1	The occurrence of these glycosylations in biological systems along with stereochemical descriptors are also shown in this review but for convenience only few examples are reproduced with permission from the paper for which stereochemical anomeric descriptors are available	30
2	Classes of HRGPs with their structural features, sequences in some plants and applications	40
3	Table showing the chemical shifts of C^{δ} carbon chemical shifts of $7 \boldsymbol{a}, 7 \boldsymbol{b}$, $12 a, 12 b$	63
4	NOE studies: The NOE studies after irradiating the H_{1} of the anomeric carbons of $7 \boldsymbol{a}, 7 \boldsymbol{b}, 12 a, 12 b$ and results are tabulated below indicating the rotameric state	64
5	Showing the NOE interactions of H_{γ} with ${ }^{I} H$ (anomeric carbon) from spectra	65
6	Prolyl side chain conformation of exo and endo configurations	66
7	Comparision of C" L-arabinofuranose glycosylated compounds with Dgalactopyranose glycosylated compounds	69
8	${ }^{13} \mathrm{C}$ inverse gated coupling results of 7a, 7b, 12a, 12b at RT i.e $24.8^{\circ} \mathrm{C}$	71
9	Equillibrium constants and rate constants of cis-trans isomers of the compounds researched till now	72

List of Schemes

\left.| S.No | Title | Page no |
| :---: | :--- | :---: |
| 1 | Preparation of 2,3,5 Tri-O-benzyl-arab-f-1-thiocresol 3 | |
| Ac-Hyp-OMe | | |$\right)$

List of Copyright Figures / Tables / Illustrations

S.No	Source	Page no
1	Table 1: R. G. Spiro, Glycobiology 2002, 12, 43R-56R.	30
2	Figure 13: M. P. Hinderaker and R. T. Raines, Prot. Sci. 2003, 12(6), $1188-1194$	45
3	Figure 14: N. W. Owens, A. Lee, K. Marat and F. Schweizer, Chemistry $\mathbf{2 0 0 9}, 15,10649-10657$	47
4	Figure 15: C. M. Taylor, C. V. Karunaratne and N. Xie, Glycobiology $\mathbf{2 0 1 2 ,} 22, ~ 757-767$	48
5	Figure 16: T. Weimar, S. L. Harris, J. B. Pitner, K. Bock and B. M. Pinto, Biochemistry 1995, 34, 13672-13681	50
6	Figure 17: J. R. Alger and J. H. Prestegard, J. Mag. Reson. (1969) 1977, $27,137-141$	53
7	Equations / Illustrations used for calculations: J. R. Alger and J. H. Prestegard, J. Mag. Reson. (1969) 1977, 27, 137-141	54 - 55

Chapter 1: Introduction and Background

1.1 Introduction to carbohydrates, glycosylation and biological roles of carbohydrates in living systems

Carbohydrates are important compounds of biological systems and generally regarded as polyhydroxy aldehydes or ketones which are hydrolysed to simpler monomers (monosaccharides) units. These exist in various chains of monosaccharides, cross linking chains of monomers in plants and animals mostly in ring forms. These compounds are classified as monosaccharides, disaccharides, trisaccharides and polysaccharides based on the linkage of one unit or multiple units of monomers. They may exist in open chain and ring forms and are interconvertible. The ring forms are mostly in 5 membered (furanose) or 6 membered (pyranose). Most of the monomers have a potential carbonyl group (ex: aldehyde in glucose and ketone in fructose) and exist in open chain or ring forms. Figure 1 shows the D-glucose in open chain and ring structure. The ring structure which contains 6 membered rings adopts the more stable chair conformation.

Figure 1: D-glucose in open chain, 6-membered ring pyranose form and 5-membered ring furanose form.

In most of living systems, these carbohydrates exist as chains of monomers linked to one another in various positions ${ }^{[1]}$. The most common examples of sugars in living systems are blood sugar glucose (monomer), table sugar is sucrose (disaccharide) and polysaccharides are starch, chitin and amylase. Monosaccharides which are commonly found in Nature are given in Figure 2.

Figure 2: Most common monosaccharides present in biological systems in plants and animals

α-D-GaINAc

$\alpha-N e u 5 A c$

α-D-Mannose

α-L-Arabinofuranose

β-L-Arabinofuranose

β-D-Ribose

β-D-Glucose

β-D-Xylose

Monosaccharides are characterized by

- Placement of carbonyl group: If on first or last carbon carbonyl group if present it will be an aldehyde as in glucose a 6 carbon aldehyde.
- Number of carbon atoms: 5 membered sugars are called pentoses, 6 membered hexoses and so on.
- The chiral handedness: Each carbon atom has a hydroxyl group with exception of first are asymmetric and more than 2 isomers are possible for any given monosaccharide. For example glucose has 4 hydroxyl groups and the number of possible isomers are $16=8$ enantiomeric isomers.

Also, the ring forms exist in 2 anomeric forms i.e. alpha (α) and beta (β) defined by the position of hydroxyl group on the anomeric carbon which is shown for D-glucose in Figure 3. These anomers are based on the following description and the anomeric ${ }^{2}$ effect. Carbohydrates and some heterocyclics exhibit anomeric effect. The anomeric effect, originally defined as the preference of an electronegative substituent at the anomeric position of a carbohydrate to be axially rather than equatorially oriented, is now understood to be the result of multiple steric and stereo electronic interactions ${ }^{[2]}$. Nucleotides and proteins are linear polymers that can each have only one basic type of linkage called peptide bonds. Not many variations possible with few numbers of amino acids. In fact each monosaccharide theoretically generates an α or a β linkage to any one of several positions on another monosaccharide / amino acid in a chain or to another type of molecule (5 or 6 carbons for ring structures). For example, three nucleotide bases or
amino acids can only generate six variations, three hexoses could produce anywhere from 1,056 to 27,648 unique trisaccharides and 6 hexoses with more than a trillion unique possible combinations. As the number of carbohydrate units in the polymer increases, this difference in complexity becomes even greater. Thus, an almost unimaginable number of possible saccharide units could be theoretically present in biological systems. Thus we can conclude that carbohydrates combinations are immense and it is difficult to ascertain completely their functions in biological systems. Carbohydrates have many roles in living systems from energy storage (glycogen, starch, etc.) to structural components (celluloses in plants, chitin in some organisms) and they play important role in biosynthesis of various molecules.

Figure 3: Assignment of $\boldsymbol{\alpha}$ - and $\boldsymbol{\beta}$ - anomers of D and L-Glucose

β-D-Glucose

Same side of the ring β

β-L-Glucose

Opposite side of the ring α

α-D-Glucose

Opposite side of the ring $\boldsymbol{\alpha}$

α-L-Glucose

As it is a well-known fact that monosaccharides are polyhyroxy aldehydes or ketones with at least three carbons, one of which is a carbonyl and each remaining carbon bares a hydroxyl group. In aqueous solution, carbohydrates exist in equilibrium between their open chain and cyclic forms. Aldose sugars containing 5 or more carbons or ketoses containing 6 or more carbons cyclize to form hemiacetals in solution. Consider glucose to form a pyranose-based 6 membered ring. It will have 2 possibilities. The carbonyl carbon in the open chain becomes the anomeric carbon (*) in the cyclized structure, which is the most oxidized carbon of the ring. Cyclized aldose and ketose carbohydrates can adopt either α or β anomeric configuration depending on the orientation of the group. A simplified approach for the degree of contribution from dipole-dipole and molecular orbital interactions is depicted by Figure 4. The alpha- anomer has bond dipole moments anti parallel (stable) but equatorial have parallel (unstable). This figure also explains the preferred stability of α-orientation of carbohydrates.

Figure 4: Depicting the anomeric effect where α-orientation (axial) is more stable than β orientation (equatorial) in sugar moiety due to bond dipole moments antiparallel to each other

[^0]β orientation - equatorial -
equatorial-bond dipole moments parallel

A glycosidic linkage involves the attachment of a monosaccharide to another residue of carbohydrate, peptide or lipid, typically via the hydroxyl group of this anomeric center, which can be α-linkages or β-linkages depending on the relationship of the oxygen to the anomeric carbon. Also during glycosylation reaction, the ratio of anomers α and β are unequal due to the anomeric effect.

Anomeric Effect ${ }^{[3]}$:

The generalized anomeric effect is a special case of general preference of gauche conformations (Figure 5) around the bond $\mathrm{C}-\mathrm{Y}$ in $\mathrm{X}-\mathrm{C}-\mathrm{Y}-\mathrm{C}$, where X and Y are heteroatoms with non-bonding pairs of electrons and one of them is nitrogen, oxygen or sulphur. It is affected by the solvent dipole moment as decrease of polarity increases the anomeric stabilization ${ }^{[4]}$.

Figure 5: Anomeric effect by gauche interactions

One gauche
Two Gauche

Preferred by Anomeric effect as this form is more stable

The most widely accepted definition of the anomeric effect is explained by hyperconjugation and antiperiplanar lone pair hypothesis (ALPH).

a) Hyperconjugation ${ }^{[5]}$: Figure 6: Anomeric effect explained by Hyperconjugation

b) ALPH (Antiperiplanar Lone Pair Hypothesis) ${ }^{1 \S}$

There is a stabilizing 2 electron interaction by the closer examination of orbitals of HOMO (nonbonding orbital of $\left(n_{\text {Oxygen }}\right)$) and LUMO (antibonding orbital of ($\left.\sigma^{*} \mathrm{C}-\mathrm{o}\right)$ bond which is referred as ALPH and represented in the Figure 7:

Figure 7: ALPH (Antiperiplanar Lone Pair Hypothesis)

[^1]
1.2 Glycosylation of sugars in living systems: Glycosylation reaction mechanism and their

types

Meaning of the term glycosylation:

Glycosylation is a chemical reaction between a glycosyl donor and a glycosyl acceptor which forms a bond between the anomeric oxygen and another moiety (OH of sugar, amino acid, peptide, or lipid). A sample glycosylation is shown in Figure $\mathbf{8}^{\mathbf{2}}$.

Figure 8: Glycosylation reaction mechanism:

Formation of oxa-carbenium ion

Axial linkage α-product

[^2]P refers to the Protecting group of OH of carbohydrate which often is benzyl, benzoyl, and Acetyl. LG refers to the leaving groups which are mostly associated with OAc or $S R$ where $R=$ Ph, Tol, SOPh etc.

Activators are reagents which make the leaving group leave to form an oxo-carbenium ion for resonance stabilization. Some of them are N -Iodo succinamide, AgOTf (promoter), $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$ etc. As there are 2 orientations of attack of OH by Nucleophile to the oxo-carbenium ion, α and β, a mixture of anomers are formed. These reactions yield α - and β-anomers unequal ratios and sometimes exclusively one form either α or β governed by anomeric effect and solvent dipole moment. Most probably axial anomer is formed more than equatorial. For example, Figure 9 shows the glycosylation of L -arabinose with another L-arabinose moiety or hydroxyproline or a non-carbohydrate moiety like the n-hexyl group. If a sugar is linked to a peptide chain or protein it is referred to as a glycopeptide or glycoprotein.

Figure 9: Glycosylated Carbohydrates examples of L-arabinose with amino acids, nonamino acids in various combinations:

L-Arabinose glycosylated with another L-arabinose at $1 \rightarrow 2$ glycosylation

L-Arabinose glycosylated with Hydroxy proline(amino acid)

L-Arabinose glycosylated with n-Hexyl group(as in lipds)

There are major five types of glycosylation ${ }^{[6]}$ found in living systems and the majority of them involve linkages to amino acids and some other carbohydrate sugars in linear and cross-linking fashion with a few peptides (in plants) observed in biological systems. They are C-glycosides, Oglycosides, N-glycosides, phospho serine and threonine glycosylation and GPI anchor lipid glycosylation. Some of the examples are shown in the Figure 9. O-glycosylation and N -
glycosylation are common and uncommon ones are C-glycosides and GPI anchor lipid glycosylation in living systems. Few examples with references of each and every type of glycosylation are presented below focussing on the type of anomeric and sugar linkages. Figure 10 explains the types of linkages with types of sugars from an excellent review by Spiro et al ${ }^{[1]}$.

Figure 10:The occurrence of amino acid glycosylation ${ }^{[l]}$ with types of sugars is obtained with permission from the journal reference

a) C-glycosides: C -glycosides are common and usually involve a α-mannosidic linkage to C-2 of tryptophan ${ }^{[7]}$. These are present in RNase2, Interleukins ${ }^{[8]}$, properdins ${ }^{[9]}$.

Figure 11: Tryptophan C-Glycosylation commonly seen with Mannose in living systems.

b) N-glycosides: The β glycosyl amine (GlcNAc) linkage as well as mannose with asparagine (Asn) forms an N -glycosidic bond and they belong to class of N -glycosides. Asparagines linked glycosylation is the most common linkages found in many living systems ${ }^{[10]}$. These are mostly present along with O-glycosides too. They are present mostly in eukaryotes, plasma proteins, thryoglobulins ${ }^{[10]}$, immunoglobulins, lectins etc.
c) O-glycosides: Linkages between hydroxyl group of amino acids like serine / threonine / hydroxy proline ${ }^{[11]}$ with sugars form O-glycosides usually exist in both α and β-forms. In some plants and animals only one anomeric form is present. GalNAc- α-Serine linkages are predominant in mucins ${ }^{[12]}$. Variety of glycoproteins contains these linkages as in human gonadotropins, glycophorins, antifreeze glycoproteins, etc. and also show diversified linkages.
d) P-glycosides: The glycosidic bond which involves the phosphodiester linkage with the sugar and the protein are called P-glycosides. These are predominant in biological systems ${ }^{[13]}$ in which sugar linkages of GlcNAc, Man, Xyl, and Fuc have been found to be
involved (Table 1). The GlcNAc- $\alpha-1-\mathrm{P}-$ Ser linkage has been found in various proteins from Dictyostelium ${ }^{[14]}$ including proteinase-1. Man- $\alpha-1-\mathrm{P}-$ Ser has been observed in several major proteins of Leishmania species ${ }^{[15]}$, and Xyl-1-P-Ser has been found in T. $c_{c u z i}{ }^{[13]}$. Furthermore, evidence for the presence of Fuc- β-1-P-Ser in Dictyostelium has also been obtained ${ }^{[16]}$.
e) Glypiated linkage: Other carbohydrate-protein connection is the GPI anchor which occurs in various biological systems ${ }^{[17]}$. In this linkage mannose is linked to phosphoethanolamine, which in turn is attached to the terminal carboxyl group of the protein. This linkage is widely distributed among biologically important cell surface glycoproteins of eukaryotes, including the Variant Surface Glycoproteins (VSGs) of trypanosomes and the Thy- 1 antigen ${ }^{[17 b]}$.

Table 1: The occurrence of these glycosylations in biological systems along with stereochemical descriptors are also shown in this review ${ }^{[1]}$ but for convenience only few examples are reproduced with permission from the paper for which stereochemical anomeric descriptors are available.:

	Linkage			Phylogenic Distribution			
Type of bond	$\underline{\text { Amino }}$	$\underline{\text { Sugar }}$	$\underline{\text { Configurati }}$	Eukaryotes	$\underline{\text { Archaea }}$	Bacteria	$\underline{\text { Examples }}$
N-	Asn	GlcNAc	β	$\underline{\text { on }}$			
	Asn	Glc	β	+	+	Ovalbumin, fetuin, insulin receptor	

							layer
$\begin{aligned} & \text { O- } \\ & \text { glycosyl } \end{aligned}$	Ser/Thr	GalNAc	α	+	-	-	Mucins, fetuin, glycophorin
	$\mathrm{Ser} / \mathrm{Thr}$	GalNAc	β	-	+	-	A. thermoaerophilus Slayer
	Ser/Thr	Gal	α	+	-	+	Nuclear and cytoplasmic proteins
	Ser/Thr	Man	α	+	-	-	Yeast mannoproteins
	Ser/Thr	Fuc	α	+	-	-	Coagulation and fibrinolytic factors
	Ser	FucNAc	β	-	-	+	P. Aueruginosa pili
	Ser	Xyl	β	+	-	-	Proteoglycans
	Thr	Man	α	+	-	-	Cell walls of plants
	Thr	GlcNAc	α	+	-	-	Dicostelium T. Cruzi
	Hyp	Gal	β	+	-	-	Collagen, $\quad \mathrm{c} 1 \mathrm{q}$ complement, core specific lectin, wheat endosperm
	Hyp	L-Ara	α	+	-	-	Plant cell walls
	Hyp	L-Ara	β	+	-	-	Potato Lectin
	Tyr	Glc	α	+	-	-	Muscle and liver glycogenin
	Tyr	Glc	β	-	-	+	C and T. thermohydro

C- Mannosyl ation	Trp	Man	α	+	-	-	RNAse 2, Interlukin 12, properdin
Phosphog lycosyl	Ser	GlcNAc	$\alpha-1-\mathrm{p}$	+	-	-	Dicostelium Proteinases
n							
Ser	Man	$\alpha-1-\mathrm{p}$	+	-	-	L Mexicana Phosphatase	
Glypiatio	Pr-(C-O)-EthN-6-P-Man	+	+	-	-	Dicostelium proteins	

1.3 Glycosylation of sugars in living systems: plants and animals and subtle differences

A) Importance of glycosylation of sugars in animal kingdom:

Glycosylation in animals is a post-translational modification ${ }^{[18]}$ which has diverse functions and is important in the regulation, disease management etc. Few examples for N-glycosylation effects are quoted below:

- Human acid β-glucosidase ${ }^{[19]}$ enzyme is important for cleaves the glucoceramic bonds and synthetic β glucosides ${ }^{[20]}$ of peptides in humans. The deficiency of this hydrolase leads to Gaucher disease which is also called lysosomal disease where the peptide is
glycosylated with sugars. Grace et al ${ }^{[21]}$ have concluded that glycosylation is required for catalytic activity and non-glycosylation results in complete loss of activity.
- Haptoglobin is a protein present in humans which forms a complex with free bloodplasma protein hemoglobin, allows degradative enzymes to access hemoglobin, and prevents the loss of iron through kidneys, protecting them from damage by hemoglobin. Mutations in this gene and/or its regulatory regions cause haptoglobinemia or hypohaptoglobinemia. Haptoglobin has carbohydrate moieties of Mannose, Galactose, Nacetyl galactosamine, N -acetyl glycosamine, N -acetylneuraminic acid (sialic acid) in various cross linking chains. Vesa Kaartinen et al ${ }^{[22]}$ in 1988 have conducted experiments to remove the carbohydrate portions of Haptoglobin protein using exo-glycosidases and studied their binding capacity for hemoglobin. Removal of Sialic acid diminished the haptoglobin-hemoglobin complex formation to 15%. Further removal of 25% galactose residues diminished i.e. 40% of carbohydrate by weight resulted in complete loss of binding of hemoglobin by haptoglobin.
- Hepatic lipase (HL) is a secretory protein present in hepatocytes and bound to liver endothelium. The N -glycosylated carbohydrates are responsible for the catalytic activity of the hydrolysis of mono, di, tri glycerides and phosphoglycerides of circulating lipoproteins, very low density and high density lipoproteins ${ }^{[23]}$ and important in lipid metabolism ${ }^{[24]}$. Rat Hepatic lipase has two N-glycosylation sites to Asn-57 and Asn-376 positions (similar humans have Asn-55 and Asn-374). This rHL N-glycosylation is a post translational step for the enzyme activity. Gisala Stankhe et al altered one of the glycosylation site by oligonucleotide directed mutagenesis and incorporated into the
native HL of rat and found that there is a decrease secretion of this protein ${ }^{[25]}$ and in turn lipid metabolism affected.

B) Importance of glycosylation of sugars in plant kingdom:

Glycosylation in plants is also a post-translational modification ${ }^{[26]}$ which have diverse functions in plants which mainly have important role in defense mechanisms. Few examples are quoted below:

- Pearce and Ryan ${ }^{[27]}$ have isolated three hydroxyproline systemin (plant hormones) from tomato plants belonging to Lycopersicon esculentum. These proteins have hydroxyproline and are glycosylated by secretory pathways and are important in helping young tomato plants in defense signalling in wounded conditions (i.e cut by stem). Comparision of these peptides by synthesis without glycosylation showed 1000 times less activity in defense signalling in these plants when wounded than the glycosylated counterparts.
- Pearce et al ${ }^{[28]}$ also isolated tobacco systemins which is a 18 peptide amino acid and hydroxyproline is glycosylated with L-arabinose. This peptide is important for cell-cell signalling of tobacco plants. Synthetic peptide without the appended carbohydrates is 10000 times less active than normal glycosylated peptide.
- Root hairs ${ }^{[29]}$ are specialized cells which help in nutrients absorption and water for plants. Their cell walls are composed of hydroxy rich glycoproteins, Extensins and Arabinogalactan proteins. These proteins are all glycosylated. Velasquez et al ${ }^{[30]}$ studied the implication of prolyl 4-hydroxylases in the cell walls of Arabidopsis Thaliana for proline hydroxylation and believed to be catalyzing the arabinosylation of these proteins.

Biochemical inhibition or genetic disruption of the enzyme reduced arabinosylation and prolyl hydroxylation. This shows that O-glycosylation is essential for root hair growth.

1.4 Hydroxyproline-rich glycoproteins (HRGPs) in living systems and their structural aspects: plants and animals

Hydroxyproline and L-arabinose (particularly arabinofuranose) are present in plant cell walls as hydroxyproline rich glycoproteins (HRGPs), secreted peptide hormones, and extensins. These have the functions to protect the plant cells, control reproductive system, carrying out specific functions like cell-cell signalling ${ }^{[31]}$ etc.

1.4.1 Occurrence of HRGPs in animals and humans:

Humans and mammals do not have HRGPs as O-Glycosylation of Hydroxyproline is not seen in animals and humans. Hydroxyproline is present as chains with many other amino acids in the sequence glycine-proline- X and glycine-X-hydroxyproline where X is any other amino acid other than proline and hydroxyproline in collagens of living organisms. It is believed that hydroxyproline is important for the construction of the human body's structural protein, collagen. Deficiency in collagen synthesis by human body leads to easy bruising, breakdown of ligments, increased blood vessel damage etc. Proline hydroxylases present in liver of humans requires Vitamin C as co-factor ${ }^{[32]}$ for hydroxylation of proline (which can be obtained from diet) in human body. So deficiency of Vitamin C causes a disease called scurvy and poor production of hydroxyproline and in some cases it is excreted ${ }^{[33]}$ in large amounts from human body due to this imbalance. Also improper production of hydroxyproline leads to defective collagen which
leads to the previous effects. Though hydroxyproline does not have any therapeutic use and is a non-essential amino acid, it has indirect effects on human body.

1.4.2 HRGPs in plants:

HRGPs are present in extracellular matrix of the plant cell wall ${ }^{3}$ discovered by Lamport ${ }^{[11]}$ in 1971. They are responsible for the strength of the plant cell wall and as a result are often referred to as proteins of plant cell wall. These glycoproteins contain long chains of repetitive hydroxyproline motifs with various amounts of O-glycosidic linkages to L arabinofuranose and D-galactopyranose. In plant kingdom, proline is hydroxylated by an enzyme called proline-4-hydroxylase ${ }^{[34]}$ and it has the capacity of hydroxylating polyproline motifs. In most of the plants $4 R$ hydroxyproline is formed. But unnatural $4 S$ hyp isomer is rare but found to be in free state in plant sources like Santalum Album and reported in 1970 by Radhakrishnan ${ }^{[35]}$ and Chinese researchers ${ }^{[36]}$ in some species of India and Middle east Asian countries. It is not much known by these researchers about $4 S$ Hyp whether it is in free or bound state and still investigations are going on.

The plant cell wall is the most important for carrying out the metabolic activities. It is the source for food storage, biosynthesis of compounds required for cell growth, expansion and reproduction. HRGPs are important components of the plant cell wall and regarded as the proteins of the plant cell wall. There are more than 50 different plant cell walls but all of them fall into type I and type II cell walls. Type I cell walls are found in grasses, mosses and some algae (non flowering plants). Most of the flowering plants have type II cell walls. These two

[^3]important models of plant cell wall have been assumed and studied by Carpita ${ }^{[37]}$ in 1993 for the organization of these proteins and polysaccharides in plant cell wall. HRGPs location, composition and function may be understood by below brief description of structure and organization of plant cell walls. Plant cell walls of type II consists of 3 layers:

- Middle lamella: This is the first layer formed during cell division. It makes up the outer wall of the cell and is shared by adjacent cells. It is composed of mainly pectic compounds and some glycoproteins. These pectic compounds are polymers of hundreds of poly-galacturonic acids (PGAs) cross linked by Ca^{+2} or Mg^{+2} salt bridges ${ }^{[38]}$. These are found as insoluble gels and are soluble in water. These PGAs can exist as weak acids and are pH dependant and play an important role in ion balance in plants. Many of the carboxyl groups are methylated to prevent hydrolysis ${ }^{[37,38 b]}$.
- Primary wall: This is formed after the middle lamella and consists of a rigid skeleton of cellulose microfibrils embedded in a gel-like matrix composed of pectic compounds, hemicellulose, and glycoproteins. Cellulose is a polymer of glucose-typically consisting of 1000 to 10000β-D-glucose residues. These polymers associate through hydrogen bonding in large amounts and results in the formation of micro fibers. As the hydrogen bonds are enormous between the layers of cellulose, it gives necessary tensile strength to the plant cell wall. The primary wall of cultured sycamore cells ${ }^{[39]}$ for example is comprised of pectic polysaccharides (30\%), cross-linking glycans (hemicellulose; ca 25%), cellulose ($15-30 \%$) and protein (20%). The actual content of the wall components varies with species and age. All plant cells have a middle lamella and primary wall. Cell enlargement ${ }^{[38 \mathrm{a}, 40]}$ occurs till all the components are held together in cell walls.

Secondary wall: It is formed after cell enlargement ${ }^{[38 a]}$ is completed. The secondary wall is extremely rigid and provides compression strength. They also play an important role in plant defense, reproductive systems and some special functions. It is made of cellulose, hemicellulose and lignin. The secondary wall is often layered in structure.

Thus the whole cell wall network is surrounded with a variety of structural proteins and glycoproteins and is partially cross-linked by aromatic substances ${ }^{[41]}$ called lignols (monolignols). These lignols are believed to be formed by biosynthesis of enzymes by radical mechanisms in plants and are the cross-linking polymers of p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. These provide strength to cell walls, facilitate water transport, and impede the degradation of wall polysaccharides, thus acting as a major line of defense against pathogens, insects, and other herbivores. So these lignols are the basis for the woody tissue of plants and serve as fuel.

This hemicellulose is a polysaccharide comprising of a variety of sugars including β-Dxylose, α-L-arabinose, β-D-mannose. In most of the plants, these xyloses and arabinoses are the only sugars present. So they are called as xyloglucans or arabinoglucans etc. Hemicelluloses are often branched with cross-linking galactose / xylose with arabinoses reported by Carpita ${ }^{[37]}$. These are very hydrophilic and form gel like structure. Hemicellulose is abundant in primary cell walls but is also found in secondary cell walls.

In addition to polysaccharide carbohydrates, cell walls contain a variety of glycoproteins in which various carbohydrates are linked to hydroxyproline, serine, threonine, alanine, tyrosine, tryptophan etc. These are called Hydroxyproline Rich Glycoproteins (HRGPs). In these
glycoproteins, the carbohydrate moiety weight is around 80% but different amounts of carbohydrates are present in different classes of HRGPs. All of these components contain many glycosylated and non-glycosylated hydroxyproline repeating motifs. In these proteins glycosylation is not well ascertained and investigations are going on. Hydroxyproline is less glycosylated in another structural cell wall protein called extensin, which is capable of forming covalent bonds with other extensin proteins through amino acid tyrosine. In these extensins, the tyrosines are evenly spaced and they wrap around other cell wall constituents like "knitting" the wall together. The amount of extension produced is dependent on mechanical wounding, infection and these responses are mediated by plant peptide hormones ${ }^{[42]}$.

Enzymes needed for the biosynthesis or modification of the network (e.g peroxidase, xyloglucan, endo transglycosylase, α-fucosidase and glucanase) or for the modification of metabolites (invertase, phosphatase and ascorbic acid mutase) may be ionically or covalently bonded to the hemicelluloses network or the pectin matrix.

[^4]Table 2: Classes of HRGPs with their structural features, sequences in some plants and applications:

S.No	Types of HRGPs	Structural Features	Example with peptide sequences	Uses / Applications
1	Extensins	Least glycosylated linear chains of Hyp, Serine as tetra and pentapeptide sequences as Ser(Hyp)4. Glycosylation is seen with β-L-Ara $f(90 \%)$ and β-D-Gal $p(10 \%)$ as Ser-D-Gal. Extensins exist as PPII helixes ${ }^{\text {[44] }}$ with α-L-Araf glycosylation. These extensins are held together in cell walls by Iso-dityrosine linkages in plants like tomato ${ }^{[45]}$, peanuts ${ }^{[46]}$	General Sequence-Hyp-(L- β-Araf) $)_{1-4}^{[47]}$ and Ser-Gal. Examples: a) SPPPPVKSPPPP- Maize ${ }^{[48]}$ b) SPPPPYYYH- Rape ${ }^{[49]}$, Soybean ${ }^{[50]}$ c) SPPPPVP*SPPPPVA- Tomato ${ }^{[51]}$ General sequence in Tomato Extensin Sequence of Chlamydomonas ${ }^{[47,52]}$ of extensins by ${ }^{13} C$ NMR is having Serine is linked to α-D-galactose and the Ser$(\mathrm{Hyp})_{4}$ linkages are $2-\beta$ except the $4^{\text {th }}$ residue is $\alpha-3$ furanose linked.	a) Provide impenetrable physical barrier or immobilize the pathogens by binding to their surfaces. ${ }^{[43 a]}$ b) contribute to plant defense by providing protection against pathogens, elicitation and mechanical wounding ${ }^{[53]}$.
2	Arabinogalactan Proteins ${ }^{[54]}$	Primarily O-linked with Hyp residues (90% to 98%) and proteins (1 to 10%). Linkages of (1-3)- β-D-		a) Plant growth (reproductive issues) and development ${ }^{[60]}$. By

		Gal p residues with substitutions of $\mathrm{C}(\mathrm{O})_{6}$ by galactosyl side chains and terminate with α-L-Ara f, Rhap and Gal p residues ${ }^{[55]}$. β-Yariv reagents ${ }^{67}$ (brown-red coloured dyes with the generic structure of 1,3,5-tri-(p -glycosyloxyphenylazo)-2,4,5trihydroxybenzene) used to separate protein from carbohydrate by binding β-forms of carbohydrate. This shows that AGPs contain(1-3)-β-Gal p and β-L-Arabinofuranose linkages ${ }^{[56]}$. These proteins have shapes of wattle blossom ${ }^{[57]}$, twisted hairy rope ${ }^{[58]}$, disc like ellipsoid ${ }^{[58]}$ structures as in Gum Arabic isolated and as investigated in different parts of the plant. Ala-Hyp, Ser-Hyp, Thr-Hyp, ValPro, Gly-Pro etc. dipeptide motifs are also seen in AGPs.	$\begin{gathered} \text { General Sequence in Nicotiana tabcuum }{ }^{[59]} \\ \begin{array}{c} \alpha-L-A r a f(1 \rightarrow 5)-\alpha-L-A r a f(1 \rightarrow 3)-\alpha-L-A r a f(1 \\ 3) \\ \alpha-L-R h a p(1 \rightarrow 4)-\beta-D-G 1 d U A p[1 \end{array} \end{gathered}$		RNA mutant experiments, nonglycosylated ones gave observed changes in leaf changes, stem size and underdeveloped. Inductive cell-cell signalling ${ }^{[61]}$ interactions and controlling the fate of cells, vacuole development ${ }^{[62]}$, Promoting pollen tube growth ${ }^{[63]}$ Contributors to plant stem strength ${ }^{[64]}$. involved in Salt tolerance and normal root expansion ${ }^{\text {[65] }}$ AGPs implicate the plant microbe interactions of Agrobacterium tumefaciens. Effects are seen by mutant changes in this plant where the plants became susceptible to attack by bacteria and decreased root growth ${ }^{[66]}$. AGPs are constituents of plant gums for species of Acacia Senegal which is used in candy industry

				due to low viscosity and helps in suspending flavours ${ }^{[67]}$. g) Useful in Cancer therapy too by enhancing cytotoxic activity by stimulating immune systems ${ }^{[68]}$.
3	Proline Rich Proteins ${ }^{[43 a]}$	Contain Proline(in major $\sim 60 \%$), Hydroxy proline with OGlycosylation ${ }^{[69]}$ with L-arabinose (constitutes only 3% of the mass) Tyrosine is present in these proteins which make them protected from oxidative stress responding to wounding. These proteins are mainly constituents of xylem and protoxylem tissues of cell wall.	Not much is known for these proteins as they do not get precipitated by Yariv Reagents. They don't have Ser-(Pro) 4 motifs. These are least glycosylated than Extensins. The glycosylation is around 3% only with L-Arabinofuranose.	a) They may act as nucleation sites for lignin deposition. b) Function as structural proteins for plants c) Prevent infection caused by mycorrhizal fungi in maize ${ }^{[70]}$ and other pathogens like bacteria. d) Help in plant defense by peroxide mediative cross linking in bean and soyabean plant cells after wounding for 3 min of injury ${ }^{[71]}$.
4	Glycopeptide plant hormones ${ }^{[31,42,72]}$	Recently some researchers found that there are also other secreted peptide components of cell wall which are important for plant growth regulation, root nodule development, cell-cell	One of the compound is isolated from tomato called Systemin in 2003 by Pearce and Ryan ${ }^{[27]}$	a) Help in defense response to attack of pathogens ${ }^{[31]}$. b) Cell proliferation and expansion c) Stem cell maintenance

		interaction ${ }^{[62]}$ etc. These are Glycopeptide hormones. These contain small chains of Hydroxy proline and L-arabinoses linkages in short chains like trioses and tetroses along with other amino acids.	Peptide sequence in Tomato plants: a) RTOYKTOOOOTSSSOTHQ- b) GRHDSVLPOOSOKTD- c) GRHDYVASOOOOKPQ- d) $\mathrm{DY}\left(\mathrm{SO}_{3} \mathrm{H}\right)$ GDPSANKHDPGV[(L-Ara) $)_{3}$ HHS e) RTVHSG[(L-Ara) $\left.)_{3}\right]$ HDPLHHH Where H and H represents Hydroxy Proline	

Amino acid codes: S-Ser, P-Pro, R-Arg, G-Gly, V-Val, L-Leu, O-Orn, H-Hyp, N-Asn, D-Asp, T-Thr

1.5 Structural and conformational effects of hydroxyproline glycosylation.

Before introducing structural effects of hydroxyproline, let's examine about proline's unique properties. Proline is a unique amino acid and its side chain is cyclised onto the peptide backbone of Nitrogen. As it is a secondary amine, it has special properties when present in a polypeptide. The pyrrolidine ring does not restrict the movement of the atoms in the proline side chain. The φ angle is fixed at -75° where as in all other amino acids free rotation is possible around peptide bond. The amide bonds of the amino acids in a polypeptide chain have pseudo double bond character; through resonance stabilization, π electrons are delocalised across the amide bond, induces a planar ω-torsional angle of the amide bond. This creates two distinct amide conformations with similar energy which are called cis and trans conformers. ${ }^{[73]}$

Figure 12: Origin of cis - trans rotamers in proline around peptide bond

The energy difference of cis and trans rotamers of proline is less due to the similar electronic environment of α and δ carbon for N -terminal amino acid carbon. This is also due to the favourable $\mathrm{n}-\pi^{*}$ interaction from the lone pair on the prolyl N -terminal amide carbonyl oxygen to the antibonding orbital of the prolyl C-terminyl carbonyl carbon ${ }^{[74]}$ (Figure 13).

Thus leading to cis-trans rotamer conversion for the proline related amino acids at RT slowly and high temperature $\left(50-70^{\circ} \mathrm{C}\right)$ rapidly as its rate constants can be measured by NMR experiments like Inverse Magnetization Transfer ${ }^{[75]}$. This isomerization plays an important role in folding paths of proteins in biological systems ${ }^{[76]}$.

Figure A

Figure B

Figure 13: Shows the A) proposed $n \rightarrow \pi^{*}$ electrostatic interaction present in the trans amide of N -formyl-L-proline methyl ester. B) Depiction of the n and π^{*} molecular orbitals [Reproduced with permission, Prot. Sci. 2003, 12(6), 1188-1194. Copyright 2003 WileyVCH]

The N -terminal amide isomerisation of proline in peptides and proteins is slow when compared to other amino acids. Some model peptides like alanine-phenylalanine bond, the rate constants for cis-trans isomerisation are $0.05 \sec ^{-1}\left(k_{\text {trans }}^{\rightarrow}{ }_{\text {cis }}\right)$ and $2.3 \sec ^{-1}\left(k_{\text {cis }_{\rightarrow} \rightarrow \text { trans }}\right)$ in water at $25^{\circ} \mathrm{C}^{[77]}$. Similarly for alanine-proline amide bond $0.001 \mathrm{sec}^{-1}\left(k_{\text {trans }}\right.$ cis $)$ and $0.005 \mathrm{sec}^{-}$ ${ }^{1}\left(k_{\text {cis } \rightarrow \text { trans }}\right)$ in water ${ }^{[78]}$ at $25^{\circ} \mathrm{C}$ respectively. By these results, there is a preference for trans rotamer amide stabilization. For proline peptide in Captropril, an ACE inhibitor useful for congenitive heart disease, the rates constants of cis trans rotamers are interconvertible at
slightly above room temperature and the rate constants are measured by Inverse Magnetization Transfer NMR experiments ${ }^{[75]}$. These have an impact in protein folding in biological systems ${ }^{[79]}$.

Proline cis-trans isomerisation around prolyl amide bond influences the gated ion channel of 5 -hydroxy tryptamine receptors ${ }^{[80]}$. These peptides have proline at 8 position and which folds into two strands, which are held by hydrogen bonding. As proline has two conformers cis and trans interconverting, the cis form will allow the ion channels to pass through and the trans form does not ${ }^{[81]}$. Due to the less energy gap between cis and trans forms, this protein shuttles the ion transfer from time to time. Proline and hydroxyproline exhibit cis-trans isomerizations which have implications in biology.

1.5.1 Ring Puckers of Hydroxyproline:

Hydroxy proline a small unique modification of Proline with OH group is an important amino acid which gives the strength to collagens in mammals by stabilization of triple helix structure due to hydrogen bonding. Hydroxyproline has two geometrical isomers which are $4 R$ and $4 S$ forms (Hyp and hyp). These isomers adopt two conformations called exo and endo by C^{γ} bond found by some of the researchers in nature. But only Hyp form is seen in plants predominantly and not cis form. $4 S$ hyp is seen only in few plants like Santalum Album and Lyngbia Majuscala. Exo form is seen in Hyp and endo- in hyp as found by many researchers even after glycosylation with sugars of the Hydroxyl group. Exo and endo configurations are judged by ${ }^{3} J$ coupling constants and arise due to gauche configuration between peptide bonds. Structures of exo and endo forms of O-glycosylated Hydroxyproline is shown in Figure 14

Figure 14: Exo and endo forms of Hydroxyproline from the permission of the journal ${ }^{[82]}$.

These ${ }^{3}$ Jcoupling constants are calculated by NUMMRIT algorithm from the ${ }^{1} \mathrm{H}$ spectra by spinworks 3.0 . As per literature, for exo configuration, the $J_{\alpha \beta 1}$ and $J_{\alpha \beta 2}$ of Hydroxyproline coupling constants should be from 7-11 and 9-10 Hz. For endo 7-11 and 2-4 Hz. Another method of finding the coupling constants is by decoupling methods of particular system to get the exact coupling constant of the other.

Each glycosylated Hyp or hyp have two rotamers cis and trans which are interconvertible at room temperature and faster at higher temperature i.e. $67^{\circ} \mathrm{C}$. The rate of conversion of cis to trans forms the basis of this thesis. The trans and cis rotamer form of Hyp and hyp are given below based on the information in the journal ${ }^{[26]}$.

Figure 15: Rotamers of hydroxyproline: cis and trans
(2S, 4R) Hyp

(2S, 4S) hyp

R=H, D-Galp, L-Araf

1.7 Techniques used in laboratory experiments: Introduction

The most important techniques for the study are NMR of synthesized molecules, nuclear overhauser effect (nOe) for finding out the configuration of molecules and major rotamer present in the molecule. Magnetization transfer experiments were carried out for finding out the rate constants of the cis, trans isomerisation around the peptide N -acetyl bond.
${ }^{13} \mathrm{C}$ inverse gated coupling of NMR is applied to find out the percentage of minor rotamer in the molecule. Each section will be discussed in brief with some examples.

1.7.1 Nuclear Overhauser effect technique by NMR for finding out the configurations of sugars and population of rotamers around the peptide bond:

Nuclear Overhauser effect is a common phenomenon of NMR which is a special technique employed for various purposes like finding out the stereoisomers, finding out the neighbouring groups of the molecule, its conformation ${ }^{[83]}$ etc. Also in carbohydrates, it is a very useful tool for finding out the configuration of α and β anomers. For assigning the configuration of α or β anomers are judged by the 1D NOE of neighbouring protons when anomeric proton of the sugar is irradiated. In my research, for all arabinosylated hydroxyproline building blocks, irradiation of anomeric protons was performed and compared the resonances of neighbouring protons for assignment of α and β. Dr Mario Pinto and his co-workers established the monoclonal antibody strep 9 selects a local minimum conformation of Streptococcus group A trisaccharide-hapten ${ }^{[84]}$ by NOE. The structure and the NOE resonances are depicted in Figure 16:
(a)

Figure 16: Schematic diagram of Streptococcus Group A trisaccharide-hapten ${ }^{[84]}$. (a) Conformation of β-($1 \rightarrow 3$)-glycosidic linkage that accounts for the interglycosidic NOE seen. This conformation present in aqueous solution and not bound by monoclonal antibody Strep 9. (b) The conformation of the trisaccharide when bound to antibody (NOE of interglycosidic linkage not seen)

The conformational analysis of Streptococcus Group A repeating-trisaccharide derivative of propyl 3-O-(2-acetamido-2-deoxy- β-D-glucopyranosyl)-2-O-(α-L-Rhamnopyranosyl)- α-L-Rhamnopyranoside bound to the monoclonal antibody Strep 9 by NOE studies (long range) reveals that NOE of interglycosidic bond is not seen in bound state (Figure 16b) and seen in aqueous solution (Figure 16a). As a result, authors can
predict the conformation due to minimum energy conformation of the tri-saccharide to be the ψ angle changes at $\alpha-(1 \rightarrow 2)$-glycosidic linkage from its preferred + gauche orientation to - gauche orientation. The interglycosidic NOE is not seen in the bound trisaccharide complex as it is energetically disfavoured conformation. This example shows that the conformation of the carbohydrates is possible to find out for some extent by using NOE along with configuration.

1.7.2 ${ }^{13} C$ Inverse gated coupling: A quantitative experiment to find out the minor rotamer percentage

Carbohydrates give complex ${ }^{1} \mathrm{H}$ NMR which most of the signals get overlapped for 5 membered furanose rings. So for finding out the rotamer population, ${ }^{13} \mathrm{C}$ quantitative experiments ${ }^{[85]}$ are needed to find out the exact percentage within experimental error. So ${ }^{13} \mathrm{C}$ inverse gated coupling is one of the methods which may give accurate information about the percentage of rotamers. Some researchers applied this NMR technique for analyzing carbohydrate compositions in Honey ${ }^{[86]}$ and lignin ${ }^{[87]}$ samples. ${ }^{13} \mathrm{C}$ Inverse gated coupling is suitable for characterizing the lignin is due to following reasons ${ }^{[87]}$: (i) It provides the nature of all carbons of the molecule. (ii) ${ }^{13} \mathrm{C}$ spectra is not complicated by spin-spin coupling effects when decoupler is made off and gives rise to single peaks for each and every single carbon atom. (iii) ${ }^{13} \mathrm{C}$ spectra have a wider range at 500 MHz . Also routine ${ }^{13} \mathrm{C}$ NMR does not lead to quantitative experiments because when proton decoupling is applied during both the relaxation delay and the acquisition period, the signal intensities do not correspond to the actual number of atoms due to nuclear Overhauser effects (nOe). To obtain a quantitative ${ }^{13} \mathrm{C}$ NMR spectrum, an inverse gated proton decoupling needs to be applied to minimize the nOe effect. In addition, the relaxation times delay must be set at least 5 times longer than the ${ }^{13} \mathrm{C}$ longitudinal
relaxation time. The outcome of this experiment is that the spectrum converts all carbons which are major to a nearly integral of same value and other minor peaks of carbons can be integrated. So these minor carbon percentages are averaged and adjusted with standard deviation to get the exact percentage of cis and trans rotamers in the compound. So this technique was employed in my Master's Research. It is a time consuming method as to one experiment takes about 13 hrs , but useful information can be obtained from this NMR experiment.

1.7.3 Inverse Magnetization experiment for finding out the rate constants of cis / trans isomerization around the peptide bond:

Inverse magnetization transfer experiment ${ }^{[88]}$ of NMR is mostly used for finding out the rate constants of two isomers or rotamers exchanging within NMR time scale. Magnetization transfer experiments have a wide range of scope in peptide chemistry where the rotamer population was important, in structural biology ${ }^{[89]}$, in medicine for knowing the malignant tumours of Breast Cancer ${ }^{[90]}$. This technique is referred as Soft Pulse Technique (SPT) ${ }^{[91]}$ and applied to systems of any chemical systems and both populated isomers exist and capable of exchanging from one conformer to another. The experiment generally consists of a soft weak pulse of r_{f} of length for one of the exchanged-couple resonances to be selectively inverted. Then the response of the second conformer is studied after a variable delay (T_{1}) (longitudinal relaxation times) using pulse Fourier transform experiments. T_{1} is characteristic of some conformers found by some researchers. Mariappan ${ }^{[92]}$ has successfully demonstrated the calculation of rate constants of peptide cis-trans isomerization by Fourier Transform calculations. This experiment can be done using the pulse sequence to be inverted at certain temperature mostly at $67^{\circ} \mathrm{C}$ on the trans amide singlet to see the effect of cis amide singlet in the isomerization. The
inverted pulse (Curve A) will be in the form of a parabola which after sometime exponentially comes back to its original position as a function of time. This affects the other rotamer recovery which is in the form of Morse curve (Curve B), initially decreases and increases till total restoration also by the function of time (Figure 17). Thus the time required for conversion of one rotamer to another is the function of these two curves. These two curves have mathematical equations which on calculation by Mathematica program gives the values of rate constants as the function of time which is the relaxation times for conversion of one rotamer to another (cis to trans). Calculation of these parameters is depicted below in brief with references.

Figure 17 ${ }^{[9]]}$: Pattern of Inverse Magnetization experiment by NMR : Curve A: Pattern of the inverted pulse. Curve B: Pattern of the exponential recovery of another conformer.

Calculation of rate constants:

The calculation of rate constants are described in brief as per the work of J. R. Alger and J. R. Prestegard ${ }^{[91]}$:

The data can be quantitatively analyzed using a set of modified Bloch equations developed by McConnel ${ }^{[93]}$. The description for the calculation is as follows developed by Dr Joe O Neil in Mathematica program to evaluate these rate constants of cis-trans isomerization.

The time dependant magnetization transfers of the cis $\left(\mathrm{M}_{\mathrm{c}}(\mathrm{t})\right)$ and $\operatorname{trans}\left(\mathrm{M}_{\mathrm{t}}(\mathrm{t})\right)$ NMR signals as a function of the inversion transfer time (t) were simultaneously fit to equations ${ }^{153,109} 1$ and 2 below for compounds mentioned above using Mathematica (v.7.0). In the following pulse sequence, the ${ }^{1} \mathrm{H}$ trans resonance is selectively inverted using a shaped pulse. Its recovery during t is determined by its intrinsic $T_{l t}$, magnetization transfer to and from the cis resonance, and the $\mathrm{T}_{1 \mathrm{c}}$ of the cis resonance.
$\pi(x)$ sel $----------------------\pi / 2(x, y,-x,-y)-a c q u i r e$

The resonances of the trans and cis isomers show the following time dependencies by the solutions of the equations of the curves;

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{t}}(\mathrm{t})=\mathrm{c}_{1} \tau_{t}\left(\lambda_{1}+1 / \tau_{1 \mathrm{c}}\right) \mathrm{e}^{\lambda}{ }_{1}{ }^{\mathrm{t}}+\mathrm{c}_{2} \tau_{\mathrm{c}}\left(\lambda_{2}+1 / \tau_{1 \mathrm{c}}\right) \mathrm{e}^{\lambda_{2}}{ }^{\mathrm{t}}+\mathrm{M}_{c \infty}--\cdots-------1 \\
& \mathrm{M}_{\mathrm{t}}(\mathrm{t})=\mathrm{c}_{1} \mathrm{e}^{\lambda}{ }_{1}{ }^{\mathrm{t}}+\mathrm{c}_{2} \mathrm{e}^{\lambda}{ }_{2}{ }^{t}+\mathrm{M}_{t \infty}----------2
\end{aligned}
$$

$\mathrm{T}_{1 c}$ and $\mathrm{T}_{1 t}$ are the longitudinal relaxation times of the resonances in the absence of exchange which are measured during the experiment.
τ_{c} and τ_{t} are the lifetimes of the cis and trans conformers and $\mathrm{k}_{c t}$ and $\mathrm{k}_{t c}$ are the corresponding rate constants.
$\tau_{1 c}$ and $\tau_{1 t}$ are the effective relaxation times of the cis and trans resonances when relaxation and exchange are both occurring and are defined below in terms of $\mathrm{T}_{1 c}$ and $\tau_{c}, \mathrm{~T}_{1 t}$ and τ_{t}. λ_{1} and λ_{2} are related to the time constants $\tau_{c}, \tau_{t}, \tau_{1 c}$, and $\tau_{1 t}$, and are defined below. c_{1} and c_{2} are defined below.
$\mathrm{M}_{c \infty}$ and $\mathrm{M}_{t \infty}$ are determined experimentally from the magnetization measured after $5 \mathrm{~T}_{1}$ periods for the cis and trans resonances, respectively.

Mathematica program then calculates τ_{t} from $\tau_{c}, \mathrm{M}_{c \infty}$, and $\mathrm{M}_{t \infty}$ as: $\tau_{t}=\tau_{c}{ }^{*}\left(\mathrm{M}_{t \infty} / \mathrm{M}_{c \infty}\right)$ Thus,
$\mathrm{k}_{c t}=1 / \tau_{c}$
$\mathrm{k}_{t c}=1 / \tau_{t}$
$\mathrm{K}_{e q}=\mathrm{M}_{t \infty} / \mathrm{M}_{c \infty}$
$\tau_{1 c}=\left(\mathrm{T}_{1 c} * \tau_{c}\right) /\left(\tau_{c}+\mathrm{T}_{1 c}\right)$
$\tau_{1 \mathrm{t}}=\left(\mathrm{T}_{1 t} * \tau_{t}\right) /\left(\tau_{t}+\mathrm{T}_{1 t}\right)$
$\lambda_{1}=1 / 2\left\{-\left(1 / \tau_{1 c}+1 / \tau_{1 t}\right)+\left[\left(1 / \tau_{1 c}+1 / \tau_{1 t}\right)^{2}-4\left(1 / \tau_{1 t} \tau_{1 c}-1 / \tau_{c} \tau_{\mathrm{t}}\right)^{1 / 2}\right\}\right.$
$\lambda_{2}=1 / 2\left\{-\left(1 / \tau_{1 c}+1 / \tau_{1 t}\right)+\left[\left(1 / \tau_{1 c}+1 / \tau_{1 t}\right)^{2}-4\left(1 / \tau_{1 t} \tau_{1 c}-1 / \tau_{c} \tau_{\mathrm{t}}\right)^{1 / 2}\right\}\right.$
$\mathrm{c} 2=1 /\left(\left(\tau_{c}\right)\left(\lambda_{1}-\lambda_{2}\right)\right)\left[\tau_{c}\left(\lambda_{1}+1 / \tau_{1 t}\right)\left(\mathrm{M}_{0 \mathrm{t}}-\mathrm{M}_{t \infty}\right)+\left(\mathrm{M}_{c \infty-} \mathrm{M}_{0 c}\right)\right.$
$\mathrm{c}_{1}=\mathrm{M}_{0 t}-\mathrm{M}_{t 0}-\mathrm{c}_{2}$
Thus all the values are calculated from the individual values and put into the equations by Mathematica program.

Chapter 2: Thesis Objectives

Hydroxyproline (Hyp) is found as structural proteins in plants and animals, special proteins of the cell wall of plants. In contrast, 4S-hydroxyproline (hyp) is very rare in nature but found to be present freely in nature in Santalum Album ${ }^{[35 b, 36 b]}$. The purpose of this thesis is to study the effects of L-arabinosylation of hydroxyproline in plant-derived glycopeptides. The ultimate goal of the thesis is to provide deeper insight into the roles of L-arabinosylation in plants. This requires:

- Synthesis of L-arabinosylated hydroxyproline model amides that serve as glycopeptide models.
- Exploration of the thermodynamic and kinetic parameters of hydroxyprolyl cis/trans isomerization in the glycopeptide models.

Chapter 3: Experimental Details: Effects of L-arabinofuranose

 glycosylation of (2S, 4R)-4-hydroxyproline and (2S, 4S)-4-hydroxyproline on the conformation, thermodynamic and kinetic of prolyl amide isomerization
3.1 Synthesis:

The synthesis of the target compounds $\mathbf{7 a}, \mathbf{7 b}, \mathbf{1 2 a}$ and $\mathbf{1 2 b}$ is shown in Figure $\mathbf{1 8}$:

7a: 2,3,5 Triol-arab-f-NAc-Trans-alpha-Hyp-OMe
7b: 2,3,5 Triol-arab-f-NAc-Trans-beta-Hyp-OMe

12b: 2,3,5 Triol-arab-f-NAc-Cis-beta-hyp-OMe

12a: 2,3,5 Triol-arab-f-NAc-Cis-alpha-hyp-OMe

Figure 18: Synthesis of mono-glycosylated L-Araf-hyp building blocks for study

These compounds are related to D-galactopyranosylated hydroxyproline model amides in our group's previous research ${ }^{[82]}$. The synthesis of these compounds in outlined in Schemes 1-3. The carbohydrate donor 2, 3, 5 Tri- O-benzyl-arab-f-1-thiocresol (3) was prepared
according to Scheme 1. L-arabinose (1) is tetra-benzoylated at $60^{\circ} \mathrm{C}$ using pyridine and excess of benzoylchloride. Then the crude mixture was reacted with borontrifluoride diethyl etherate $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ and p-thiocresol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0-5^{\circ} \mathrm{C}$ to afford a mixture containing protected furanose- and pyranose-based L-arabinose. Separation was achieved by careful column purification performed using 12% EtOAc in hexane to produce desired thioglycoside 3 in 29% yields. The benzoylated furanose product was debenzoylated using $\mathrm{NaOMe} /$ MeOH and further benzylated using benzylbromide, sodiumhydride in DMF to afford the required glycosyl donor 3 in 45% yield.

Scheme 1: Preparation of 2, 3, 5 Tri-O-benzyl-arab-f-1-thiocresol 3:

L-arabinose

1

30%

70\%
(ii)
Column Purification

3

2,3,5 Tri-O-benzyl-arab-f-1-thiocresol

2,3,5 Tri- O-benzoyl-arab- f-1-thiocresol

Scheme 1: Synthesis of thio glycosyl donor 3: (i) $\mathrm{BzCl}, \mathrm{Py}, 60^{\circ} \mathrm{C}, 3 \mathrm{~h}$, quantitative; (ii) $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$, p-thiocresol, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-5^{\circ} \mathrm{C}, 10 \mathrm{~h}$, quantitative; (iii) (a) $\mathrm{NaOMe} / \mathrm{MeOH}$, Amberlite strong H^{+}resin, (b) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF}, 0-5^{\circ} \mathrm{C}$ through RT overnight.

Model peptides of the form, N -Acetyl-Pro-OMe are well established for studying subtle effects of modification of the prolyl side chain on N -terminal amide isomerization ${ }^{[94]}$. This procedure avoids hydrogen bonding between the molecules as methyl esters do not function as hydrogen bond donors than N-Methyl amides. Hydrogen bonding in these building blocks may interfere in the equilibrium and rate constants of cis-trans isomerization while evaluation and change them.

From Schemes 2 and 3 the glycosylated 4R-hydroxyproline model peptides 5a, 5b, 10a, 10b were obtained through Fmoc protection under mild basic conditions using Fmoc-Cl / NaHCO_{3} in aqueous dioxane, followed by glycosylation using 2,3,5 tri- O-benzyl-arab- f - 1 thiocresol in the presence of N -iodosuccinamide (NIS), silver triflate(AgOTf) in acetonitrile to yield $\alpha-5 \mathbf{a}, \beta-\mathbf{5 b}$ and $\alpha-\mathbf{1 0 a}, \beta-\mathbf{1 0 b}$ in 25% and 24% of both steps. The anomeric ratio of obtained compounds were 7:3 ($\alpha: \beta$) in both cases. Incorporation of N-acetyl group was carried out by Fmoc-deprotection using piperidine in DMF followed by acylation using acetic anhydride and pyridine to give $\mathbf{6 a}, \mathbf{6 b} \& \mathbf{1 1 a}, \mathbf{1 1 b}$ in 80% yield. Removal of benzyl ether protecting groups was carried out by catalytic hydrogenation in methanol using $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}$ (10% catalyst loading) to afford model peptides $7 \mathbf{7 a}, 7 \mathrm{~b}$ and $\mathbf{1 2 a}, \mathbf{1 2 b}$ with 27% and 30% yields, respectively. The low overall yields of glycopeptides 12a and 12b required the synthesis of large amounts of starting materials as much of the material is lost in anomeric mixtures separation and isolation of pure anomers.

Scheme 2: Synthesis of $\operatorname{Ac-Hyp(O-\alpha -L-Araf)-OMe,~Ac-Hyp(O-~} \beta$-L-Araf)-OMe and Ac-HypOMe:

Synthesis of 4R Isomers

5b: $\mathrm{R}=\mathrm{OBn}, \mathrm{R}^{\prime}=$ Fmoc
b)

6b: $\mathrm{R}=\mathrm{OBn}, \mathrm{R}^{\prime}=\mathrm{Ac}$
7b: $\mathrm{R}=\mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{Ac}$

Scheme 2: Synthesis of 7a, 7b: a) (i) $\mathrm{FmocCl}, \mathrm{NaHCO}_{3}, 1,4$-Dioxane $/ \mathrm{H}_{2} \mathrm{O}(1: 1), 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$. (ii) 2,3,5 Tri-O-benzyl-L-arab-f-1-thiocresol (3)(prepared from Scheme 1), MeCN, AgOTf, NIS, $0-25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 65 \%$ overall yield; b)(i) DMF/Piperidine (1:0.2), $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$ (ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 25^{\circ} \mathrm{C}$, $10 \mathrm{~h}, 50 \%$ overall yield; c) $\mathrm{H}_{2} / \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 75 \%$ overall yield.

Scheme 3: Synthesis of Ac-hyp(O- α-L-Araf)-OMe, Ac-hyp(O- β-L-Araf)-OMe and Ac-hypOMe:

Synthesis of 4S Isomers

10a: $\mathrm{R}=\mathrm{OBn}, \mathrm{R}^{\prime}=\mathrm{Fmoc}$
b)

11a: $\mathrm{R}=\mathrm{OBn}, \mathrm{R}^{\prime}=\mathrm{Ac}$

10b: $\mathrm{R}=\mathrm{OBn}, \mathrm{R}^{\prime}=\mathrm{Fmoc}$
b)

11b: $\mathrm{R}=\mathrm{OBn}, \mathrm{R}^{\prime}=\mathrm{Ac}$
c)

12b: $\mathrm{R}=\mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{Ac}$

Scheme 3: Synthesis of 12a and 12b: a) (i)FmocCl, $\mathrm{NaHCO}_{3}, 1,4$-Dioxane $/ \mathrm{H}_{2} \mathrm{O}(1: 1), 25^{\circ} \mathrm{C}$, 3h. (ii) 2,3,5 Tri- O-benzyl- β-L-arab-f-1-thiocresol(prepared from Scheme 2), MeCN, AgOTf, NIS, $0-25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 36 \%$ overall yield; b)(i) DMF/Piperidine (1:0.2), $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$ (ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}$, $25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 75 \%$ overall yield; (c) $\mathrm{H}_{2} / \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$, quantitative.

3.2 Results:

3.2.1 NMR Spectroscopic studies:

Full assignment of all the compounds was done by HSQC and COSY experiments. Assignment of the major rotamer is trans for all the isomers are confirmed by ${ }^{13} \mathrm{C}$ chemical shifts. As per literature, the major rotamer (trans) has the higher chemical shift of C^{δ} carbon than the minor ${ }^{[95]}$ (cis rotamer). These results are tabulated below:

Table 3: Table showing the chemical shifts of C^{δ} carbon chemical shifts of 7a, 7b, 12a, 12b

Compound	$\mathbf{C}^{\boldsymbol{\delta}}$ Chemical shifts (ppm)	Assignment
7a	61.17 (Minor 61.05)	Major is trans rotamer
7b	63.11 (Minor overlapped)	Major is trans rotamer
$\mathbf{1 2 a}$	61.14 (Minor 61.1)	Major is trans rotamer
$\mathbf{1 2 b}$	63.23 (Minor 63.21)	Major is trans rotamer

Final compounds 7a, 7b, 12a, 12b are studied in $\mathrm{D}_{2} \mathrm{O}$ using DSS (4, 4-Dimethyl-4-silapentane-1-sulfonic acid 50 mM) as NMR reference standard and stabilized by phosphate buffer solution of pH 7.2 .

Table 4: NOE studies: The NOE studies after irradiating the H_{1} of the anomeric carbons of 7a, 7b, 12a, 12b and results are tabulated below indicating the rotameric state:

Compound	nOe interactions
(7a)	$\begin{aligned} & \mathrm{H}_{\alpha}-0.69 \%, \mathrm{H}_{\gamma}-1.14 \%, \mathrm{H}_{2}-0.74 \%, \mathrm{H}_{3}-0.3 \%, \mathrm{H}_{4}-0.09 \%, \mathrm{H}_{5 \mathrm{a}}-0 \%, \mathrm{H}_{\beta 1}- \\ & 0.69 \%, \mathrm{H}_{\beta 2}-0 \%, \mathrm{~N}^{-} \mathrm{COCH}_{3}-0 \% \end{aligned}$
(7b)	$\begin{aligned} & \mathrm{H}_{\alpha}-0.46 \%, \mathrm{H}_{\gamma}-1.36 \%, \mathrm{H}_{2}-2.23 \%, \mathrm{H}_{3}-0.12 \%, \mathrm{H}_{4}-0.13 \%, \mathrm{H}_{5 \mathrm{a}}-0.22 \%, \mathrm{H}_{5 b^{-}} \\ & 0.53 \%, \mathrm{H}_{\delta}-0.08 \%, \mathrm{H}_{\beta 1}-0.2 \%, \mathrm{H}_{\beta 2}-0.03 \%, \mathrm{~N}^{-} \mathrm{COCH}_{3}-0.03 \% \end{aligned}$
(12a)	$\begin{aligned} & \mathrm{H}_{\alpha}-0.62 \%, \mathrm{H}_{\gamma}-0.94 \%, \mathrm{H}_{2}-0.6 \%, \mathrm{H}_{3}-0.16 \%, \mathrm{H}_{4}-0.24 \%, \mathrm{H}_{5 \mathrm{a}}-0.34 \%, \mathrm{H}_{\beta 1-} \\ & 0.84 \%, \mathrm{~N}-\mathrm{COCH}_{3}-0.13 \% \end{aligned}$
(12b)	$\begin{aligned} & \mathrm{H}_{\alpha}-0.4 \%, \mathrm{H}_{\gamma}-1.4 \%, \mathrm{H}_{2}-2.52 \%, \mathrm{H}_{3}-0.13 \%, \mathrm{H}_{4}-0.19 \%, \mathrm{H}_{5 \mathrm{a}}-0.54 \%, \mathrm{H}_{\beta 1}- \\ & 0.51 \%, \mathrm{H}_{\beta 2}-1.16 \%,{\mathrm{~N}-\mathrm{COCH}_{3}-0.04 \%} \end{aligned}$

The assignment of α - and β - anomer was judged by two methods. First method is by the measurement of ${ }^{3} J_{\mathrm{H} 1, \mathrm{H} 2}$ coupling constant. The α-anomer shows a coupling constant of 1.6 Hz while the β-anomer shows a coupling constant of 4.6 Hz in both cases for Hyp and hyp. These results are further confirmed by similar compounds (p-Nitrophenyl β arabinofuranosides with α-isomer with coupling constant 1.6 Hz , and β-isomer with coupling constant 4.3 Hz) synthesized by Dr Kaeothip ${ }^{[96]}$ and co-workers. Second method is using ${ }^{1} \mathrm{H}$ NMR NOEs. Irradiation of H-1 in 7a leads to 1.14% and 0.74% NOE of H_{γ} and H_{2}, respectively while irradiation of $\mathrm{H}-1$ in $7 \mathbf{b}$ leads to observable NOEs of 1.36% and 2.23% for H_{γ} and H_{2}, respectively. The larger NOE effect observed for H_{2} in 7b indicates that this compound is the β-anomer in which H_{1} and H_{2} have a cis relationship. When the same
analysis is applied to compounds 12a and 12b, NOE resonances of H_{1} and H_{2} of 12b are greater than 12a which indicates 12b has vicinal protons which exhibit cis relationship and confirms β-anomer (Table 5). Our results are consistent with a previous analysis by R.A. Hoffmann. ${ }^{98}$ Table 3 shows relevant NOE data to assign the anomeric configuration in compounds 7a, 7b, 12a, and 12b while Table $\mathbf{4}$ contains all observable NOE effects when H_{1} is irradiated in compounds 7a, 7b, 12a, and 12b.

Table 5: Showing the NOE interactions of H_{γ} with ${ }^{1} \mathrm{H}$ (anomeric carbon) from spectra

Compound	NOE interactions of \mathbf{H}_{γ} and $\mathbf{H}_{\mathbf{2}}$	Assignment
7a	$\mathrm{H}_{\gamma}-1.14 \%, \mathrm{H}_{2}-0.74 \%$	α-isomer
7b	$\mathrm{H} \gamma-1.36 \%, \mathrm{H}_{2}-2.23 \%$	β-isomer
$\mathbf{1 2 a}$	$\mathrm{H} \gamma-0.94 \%, \mathrm{H}_{2}-0.6 \%$	α-isomer
$\mathbf{1 2 b}$	$\mathrm{H} \gamma-1.4 \%, \mathrm{H}_{2}-2.52 \%$	β-isomer

3.2.2 Prolyl side chain conformation:

Alberto Lesarri et al ${ }^{[97]}$ investigated the hydroxyprolines of Hyp and hyp in gas phase for determination of ring puckers. By computational calculations by the researcher revealed that the 4 R isomer has low energy rotameric state which is predominantly exo- and $4 S$ endoform. These conformations are due to gauche interactions between the substituents on hydroxyproline ${ }^{[98]}$ and stabilization due to hydrogen bonding in $4 S$ isomer ${ }^{[97]}$. The exo and endo forms are judged by the coupling ${ }^{3} J$ coupling constants of neighbouring carbon protons. The theoretical values of coupling constants for $J_{\alpha, \beta 1}$ for typical C^{γ}-exo pucker is expected to be 7-10 Hz and $J_{\alpha, \beta 2}, 7-11 \mathrm{~Hz}$. For typical $\mathrm{C} \gamma$-endo pucker, the theoretical values are $\mathrm{J}_{\alpha, \beta 1}=$ $7-10 \mathrm{~Hz}$ and $J_{\alpha, \beta 2}=2-3 \mathrm{~Hz}$. These prolyl puckers of $\mathbf{7 a}, 7 \mathbf{b}, \mathbf{1 2 b}$ are in compliance with theoretical values except 12a. The selected ${ }^{3} J$ coupling constants (Hz) for $\mathbf{7 a}, \mathbf{7 b}, \mathbf{1 2 a}, \mathbf{1 2 b}$ at $25^{\circ} \mathrm{C}$ and $\left(67^{\circ} \mathrm{C}\right)$ determined by NUMMRIT method by spin works program are as follows:

Table 6: Prolyl side chain conformation of exo and endo configurations

Compound	$\mathbf{J}_{\alpha, \beta 1}(\mathbf{H z})$	$\mathbf{J}_{0, \mathrm{\beta} 2}(\mathrm{~Hz})$	Pucker	Notes
7 a	8.5 (8.4)	8.2 (8.4)	C^{γ}-exo	
7b	8.4 (8.4)	8.4(8.2)	C^{γ}-exo	
12a	8.3 (8.1)	8.4 (8.3)	C^{γ}-exo	Anomaly as it should be endo.
12b	9.7 (9.5)	2.6 (2.5)	C^{γ}-endo	

Hyp arabinofuranose building blocks (7a \& 7b) are having C^{γ}-exo configuration as predicted. There is anomaly regarding hyp building block 12a which theoretically should be
an endo as $\mathbf{1 2 b}$ ($4 S \beta$ anomer is proved to be endo by galactose building blocks ${ }^{[82]}$). But by NUMMRIT calculations, it is shown to adopt exo pucker.

Figure 19: Figure showing the 4 isomers of L-arabinofuranosylated Hyp(4R) and hyp(4S) with observed NOE data. (H_{α} not drawn for convenience and $\mathrm{H}_{\beta}, \mathrm{H}_{5 \mathrm{a}}, \mathrm{H}_{5 \mathrm{~b}}$ protons resonances are important for judging the distant contacts of prolyl ring with arabinose)

12b

3.2.3 C^{γ} Inductive Effect:

Changes in ${ }^{13} \mathrm{C}$ chemical shifts are used to find out the electron withdrawing effects during glycosylation ${ }^{[99]}$. In reference to galactose glycosylation by our research group of the same Hyp and hyp building blocks have shown for $4 R$ (Hyp) isomers about $\sim 9 \mathrm{ppm}$ and $4 S$ (hyp) isomers in the range of $\sim 8 \mathrm{ppm}^{[100]}$. These values are quite higher in case with a simple acyl group of even the strongest trifluoroacetate group ${ }^{[101]}$ which showed only the shift of $\sim 3 p p m$. In the same manner, L-arabinosyl glycosylation produced similar effects slightly more than the galactosylation. In the case of arabinosylation the Table 7 explains the shift in ppm different for α and β isomers. For α isomer of 4R the chemical shift difference is around $\sim 13.7 \mathrm{ppm}$ and for β isomer (7b) the shift is around $\sim 13.9 \mathrm{ppm}$. For α isomer of 4 S the shift is around $\sim 12.2 \mathrm{ppm}$ and for β isomer ($\mathbf{1 2 b}$) it is around $\sim 12.1 \mathrm{ppm}$. These results show that glycosylation produces a local electron withdrawing effect significantly greater ($\sim 4 \mathrm{ppm}$) than galactose building blocks of Hyp and hyp.

Table 7: Comparison of $C^{\prime \prime}$ L-arabinose glycosylated ones with D-Galactopyranose glycosylated compounds:

S. No	Compound	13C Chemical Shifts of $\mathbf{C}^{\gamma}(\mathbf{p p m})$	Change in Shift (ppm) glycosylated ones
1	Ac-Hyp-OMe	69.6	-
2	Ac-hyp-OMe	69.9	-
3	Ac-Hyp $(O-\alpha$-L-Araf $)$ OMe 7a	83.3	~ 13.7
4	Ac-Hyp $(O-\beta$-L-Araf $)$ OMe 7b	81.8	~ 12.2
5	Ac-hyp $(O-\alpha$-L-Araf $)$ OMe 12a	83.8	~ 13.9
6	Ac-hyp $(O-\beta$-L-Araf $)$ OMe 12b	82.0	~ 12.1

7	Ac-Hyp $(O-\alpha$-D-Gal $p)$ OMe	78.9	~ 9
8	Ac-Hyp $(O-\beta$ - D-Gal $p)$ OMe	77.6	~ 8
9	Ac-hyp $(O-\alpha$ - D-Gal $p)$ OMe	80.3	~ 10.7
10	Ac-hyp $(O-\beta$ - D-Gal $p)$ OMe	80.6	~ 11

3.2.4 ${ }^{13} \mathrm{C}$ Inverse gated Coupling ${ }^{[102]}$:

The inverse gated coupling is a quantitative experiment which gives the exact percentage of the minor rotamer present in the mixture of rotamers. This experiment was performed at 298 K in $\mathrm{D}_{2} \mathrm{O}$ with recycle time (acquisition time plus pulse delay) 5 times more than the ${ }^{13} \mathrm{C}$-spin lattice relaxation $(\mathrm{d} 1=5 \mathrm{sec})$ in all the samples during analysis. This is due to avoid transient NOE and decoupler is off till the next excitation pulse. As a result each component in the mixture will have same integration of ${ }^{13} C$ carbons in the spectrum. If the components are two, spectrum will show definite integration of the second compound present in it by which exact percentage of the other rotamer is found out from the average and Standard deviation of different carbons of the mixture. The trials are chosen from each of the ${ }^{13} C$ spectra of different carbons of $\mathbf{7 a}, 7 \mathbf{b}, \mathbf{1 2 a}, \mathbf{1 2 b}$ with the nearly same integration and integrating the minor gave the results almost accurately in nearest percentage with less standard deviation. This experiment was attempted as there is much pronounced standard deviation in ${ }^{1} \mathrm{H}$ NMR, if we try to measure the minor integration as the signals are overlapped. The results are tabulated below:

Table 8: ${ }^{13} \mathrm{C}$ inverse gated coupling results of L-arabinosyl building blocks of hydroxy proline i.e $7 \boldsymbol{a}, 7 \boldsymbol{b}, 12 a, 12 b$ at $R T$ i.e $24.8^{\circ} \mathrm{C}$.

S. No	Compound	Minor(Cis) Isomer \%age (by ${ }^{13} \mathbf{C}$ Inverse Gated Coupling)	$K_{\text {eq }}=\boldsymbol{K}_{\text {cistrans }}$ Average	Standard Deviationof $\boldsymbol{K}_{\mathrm{eq}}$
1	Ac-Hyp($O-\alpha$-L-Araf)OMe 7a	10.52	8.60	1.09
2	Ac-Hyp(O- β-L-Araf)OMe 7b	13.98	6.15	0.22
3	Ac-hyp($O-\alpha$-L-Araf)OMe 12a	30.23	2.32	0.24
4	Ac-hyp($O-\beta$-L-Araf)OMe 12b	30.76	2.25	0.13
5	Ac-Hyp($O-\alpha-\mathrm{D}-\mathrm{Gal} p) \mathrm{OMe}^{*}$	-	6	-
6	Ac-Hyp($O-\beta$ - $\mathrm{D}-\mathrm{Gal} p) \mathrm{OMe}^{*}$	-	5.9	-
7	Ac-hyp(O- α - D-Gal p)OMe*	-	2.9	-
8	Ac-hyp($O-\beta$ - D-Gal p) OMe*	-	2.9	-
9	Ac-Hyp-OMe*	-	6.2	-
10	Ac-hyp-OMe*	-	2.4	-

* Taken from Neil's paper for comparison.

In Table $\mathbf{8}$ compound 7a has the highest equilibrium constant of 8.6 which clearly shows it favours α - trans Hyp isomer more than the galactose building blocks.

3.2.5: Kinetics of cis-trans isomerization: Rate constants determination

The rate constants which are calculated by Mathematica programs using inverse magnetization transfer are summarized below in Table 9

Table 9: Equillibrium constants and rate constants of cis-trans isomers of the compounds researched till now: Here " p " denotes pyranose sugar and " f " denotes furanose sugar

Compound	$\begin{gathered} k_{c t} \sec ^{-1}(\text { rate } \\ \text { constant) at } \\ 67^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} k_{t c} \sec ^{-1}(\text { rate } \\ \text { constant) at } \\ 67^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \hline \boldsymbol{K}_{c t} \text { at } 67^{\circ} \mathrm{C} \\ \text { (Equal. } \\ \text { Constant) } \end{gathered}$	$\begin{gathered} K_{c t} \text { at } 24.8^{\circ} \mathrm{C} \\ \text { (Equal. } \\ \text { Constant) } \end{gathered}$
Ac-Hyp($O-\alpha-\mathrm{L}-$ Araf)OMe 7a	0.82 ± 0.2	0.14 ± 0.2	5.80 ± 0.1	8.6 ± 1.09
Ac-Hyp $(O-\beta$-LAraf)OMe 7b	0.87 ± 0.16	0.17 ± 0.16	5.01 ± 0.2	6.15 ± 0.22
Ac-hyp $(O-\alpha$-LAraf)OMe 12a	0.96 ± 0.14	0.18 ± 0.14	5.33 ± 0.1	2.32 ± 0.24
Ac-hyp $(O-\beta$-LAraf)OMe 12b	0.58 ± 0.12	0.25 ± 0.12	2.25 ± 0.2	2.25 ± 0.13
$\begin{aligned} & \mathrm{Ac}-\operatorname{Hyp}(O-\alpha \text {-D- } \\ & \text { Gal } p) \mathrm{OMe}^{*} \end{aligned}$	0.85	0.19	6.0	5.37
$\begin{aligned} & \mathrm{Ac}-\operatorname{Hyp}(O-\beta \text {-D- } \\ & \text { Gal } p) \mathrm{OMe}^{*} \end{aligned}$	0.77	0.18	5.9	5.18
Ac-hyp $(O-\alpha$-DGalp)OMe*	0.59	0.25	2.9	2.82
Ac-hyp $(O-\beta$-DGalp) OMe^{*}	0.71	0.3	2.9	2.75
Ac-Hyp-OMe*	0.81	0.18	6.2	5.08
Ac-hyp-OMe*	0.44	0.2	2.4	2.57

Ac-Prone*	0.81	0.31	2.61	$\mathrm{~N} / \mathrm{A}$
Ac-Hyphae*	0.73	0.25	2.92	$\mathrm{~N} / \mathrm{A}$
Ac-Hyp(O-tert- butyl)NHMe*	0.77	0.27	2.85	$\mathrm{~N} / \mathrm{A}$
Ac-Hyp(O- α-D- Gal $p) \mathrm{NHMe}$	0.83	0.27	3.07	$\mathrm{~N} / \mathrm{A}$
Ac-Hyp $(O-\beta$-D- Gal $p) N H M e *$	0.61	0.21	2.90	$\mathrm{~N} / \mathrm{A}$

* Taken from previously published data for comparison

From Table 8, the rate constants of cis \rightarrow trans $\left(k_{\mathrm{ct}}\right)$ isomerization of L-arabinofuranose glycosylated molecules i.e 7a, 7b, 12a, and 12b give following conclusions:

- Most L-arabinosylated peptide models of Hyp and hyp do not show great variations in the isomerization rate constants. The only building block that shows a significant twofold increase in rate is Ac-hyp (O- α-L-Araf)-OMe (12a).
- L-arabinosylated and D-galactosylated peptides show nearly identical rate constants at $67^{\circ} \mathrm{C}$.
- Glycosylation (D-galactosylation and L-arabinosylation) of hyp results in enhanced k_{ct} constants when compared to nonglycosylated hyp while nearly identical values are obtained for Hyp.

Our results show that the nature of the sugar has an influence on the stability of the rotameric state in the model peptides. L-arabinosylation of Hyp leads to a significant
stabilization of the trans rotameric state when compared to D-galactose at ambient temperature. Also there is degradation observed in all the furanosylated compounds during the NMR experiment where the compounds in buffer solutions are unstable at 67 ${ }^{\circ} \mathrm{C}$ as exposed to that temperature for a long time. Thus, further determinations of the thermodynamic parameters were not attempted. As indicated in table 6 the rate constant values are relatively similar between furanoside-based sugars and pyranoside-based sugars.

3.2.6 Measurement of $\mathbf{K}_{\text {cis/trans: }}$

Hydroxylation of proline modifies two properties. a) It stabilizes the prolyl side chain pucker which depends on stereochemistry of $4^{\text {th }}$ position oxygen atom. 4R Hydroxy proline adopts the C^{γ} exo pucker configuration and 4 S hydroxy proline C^{γ} endo pucker configuration ${ }^{[103]}$. b) Hydroxylation affects the N -terminal cis/trans equilibrium i.e. 4 R isomer stabilizes the trans conformation and 4 S isomer stabilizes cis conformation. The equilibrium constant for galactosylated hydroxyprolines (Table 7) $K_{\text {trans/cis }}=6.0$ for 4R Hyp and 2.4 for 4 S hyp ${ }^{[82]}$. This shows that 4 S isomer stabilizes cis rotamer and 4 R hydroxy proline stabilizes trans rotamer population. Moreover, recent studies of Mootoka et al ${ }^{[104]}$ have shown that 4R hydroxyproline stabilizes the triple helix structure in collagen. These results indicate that $4 R$-hydroxyproline plays an important function to control structural properties in proteins. In order to investigate the influence of the sugar on the proline cis/trans amide isomerization we prepared L-arabinosylated hydroxyproline building blocks. By measuring the equilibrium constants for α - and β-arabinosylated Hyp we have observed a significant discrepancy between $\alpha-\left(\mathrm{K}_{\mathrm{ct}}=8.6\right)$ and β-arabinosyalted $\left(\mathrm{K}_{\mathrm{ct}}=6.1\right) \mathrm{Hyp}$ at room temperature. Moreover, there is a marked difference when these equilibrium constants are measured at $67.3^{\circ} \mathrm{C}$ and at room temperature. The results are concluded below:

- α-L-arabinosylated Hyp analog 7a shows a strong stabilization of the trans amide rotamer population at room temperature when compared to their respective α - and β-galactosylated compounds. In addition, there is a much stronger temperature dependency of the equilibrium constant in the arabinosylated building blocks when compared to their galactosylated analogs.
- When temperature is increased to $67^{\circ} \mathrm{C}$, a change observed in Kct values of $\mathbf{1 2} \mathbf{a}$. Thus trans Hyp amide rotamer is stabilized at higher temperature $\left(\left(\mathrm{K}_{\mathrm{ct}}=2.3\right.\right.$ at $\left.24.8^{\circ} \mathrm{C}\right)$ and at $67^{\circ} \mathrm{C},\left(\mathrm{K}_{\mathrm{ct}}=5.3\right)$.
- In comparison, galactosylated derivatives display smaller differences in equilibrium constant values than L-arabinosylated building blocks.

Also the arabinofuranose glycosylated molecules are subjected to slight degradation / when subjected to Inverse Magnetization experiments at higher temperature over a prolonged time (6 hours). By NMR analysis of plants and other plant materials, it has been confirmed in majority that α and β arabinofuranoses are present in most of the flowering plants but mostly α is seen predominantly ${ }^{[39,56,59 b]}$. β-arabinofuranoses are also seen along with α ones in mugwort Artemesia plant as investigated by Altman et al in Ambrosia ${ }^{[105]}$ and other plants like CLAVATA3 arabidopsis CLV3 peptides.

Previous research in our group has shown that galactosylation of hydroxyproline in Ac-Hyp-COOMe and Ac-Hyp-COONHMe did not have a measurable effect on the equilibrium constant. It is noteworthy that α - or β-arabinofuranosylaton of Hyp has been shown to result in a significant stabilization of the trans rotamer population evident by equilibrium constants.

3.3 Discussion

Previous research has shown that inductive effects in the γ-position of proline have important structural, thermodynamical and kinetic consequences of prolyl amide bond isomerization ${ }^{[34, ~ 94 a, ~ b, ~ 104, ~ 106] ~}$. L-arabinosylation similar to D-galactosylation of Hyp induces an inductive effect which can result in stabilization of the trans rotameric state as in the case of L-arabinose. The combined observed ${ }^{13} \mathrm{C}$ NMR chemical shifts order ($\delta \mathrm{C}^{\gamma}$ trans) is as follows: hydroxyl $\left(\boldsymbol{\delta} \mathrm{C}^{\gamma}=\mathbf{6 9 . 6}\right)<$ tert-butoxyl $\left(\boldsymbol{\delta} \mathrm{C}^{\gamma}=70.1\right)<\beta$-D-galactosyl $\left(\boldsymbol{\delta} \mathrm{C}^{\gamma}=77.6\right)<\alpha$-Dgalactosyl $\left(\boldsymbol{\delta} \mathbf{C}^{\gamma}=\mathbf{7 8 . 9}\right)<\beta$-L-arabinofuranosyl $\left(\boldsymbol{\delta} \mathbf{C}^{\gamma}=\mathbf{8 1 . 8}\right)<\alpha$-L-Arabinofuranosyl ($\delta \mathrm{C}^{\gamma}=83.3$)

Both α - and β - 4-O-galactosylation of Hyp have no apparent effect on the isomer equilibrium or the rate of isomerization ${ }^{[100]}$ when compared with unglycosylated Hyp. In contrast, both $\alpha-$ and β - 4-O-L-arabinosylation induce a measurable effect. α-Larabinosylated Hyp shows the greatest effect and leads to a significant stabilization of the trans rotamer population. Galactosylation of Hyp produces an inductive electron withdrawing effect on the prolyl ring and 4 R -electronegative substituents stabilize the C^{γ}-exo pucker of proline. The inductive effect for L-arabinofuranose molecules are 4 ppm greater in ${ }^{13} \mathrm{C}$ NMR than the galactosylated molecules (Ref: Table 6). Nuclear Overhauser experiments indicate that the glycosylation of hyp resulted in distant contacts between proline ring and sugar linkages which is proved in both cases i.e galactopyranose and L-arabinofuranose. Due to the flexibility of arabinofuranose, nOe is judged based on the two anomers' relative resonances of neighbouring protons. This definitely induces a conformational restraint into glycopeptides in living systems. By these results, we can conclude that arabinofuranosylation of hyp too can influence cis-trans isomerization as $4 S$ hydroxylation causes the substituent groups to be projected from opposite face of prolyl side chain. But by results, the α-isomer of hyp i.e 12a
has a very good preference for cis-trans isomerization at higher temperature and exhibits exo configuration instead of endo. This may be due to gauche orientation of 4-hydroxyl group and prolyl nitrogen atom which may facilitate hydrogen bonding ${ }^{[103]}$. Improta et al ${ }^{[106 c]}$ have conducted conformational study with the aid of computational calculations, by taking 4S and 4R,hydroxyprolines, 4-Flouro proline whether inductive effect has any influence on the dipeptides for hydrogen bonding as collagen is stabilized by hydrogen bonds. Thus interaction energy of the prolines decreases of the order: proline (Pro) > hydroxyproline (Hyp) > 4-fluoroproline (Flp). The results are explained by Improta as follows:

- The hydrogen bonding capacity of the imido moiety increases with the relative stability of the substituent in which oxygen bears a formal negative charge. Thus a polar shielding group on $4-O$-substituent not only shields the electronegative power of the substituent but also enhances the delocalization effects for dipeptides of Hyp and Flp favouring the formation of a partial $\mathrm{N}-\mathrm{C}_{i-1}$ double bond. Thus in aqueous solution Hyp, Flp hydrogen bonds are stronger than Pro.
- This effect is also attributed to the gauche orientation of 4-hydroxyl group in 4 S hydroxyl proline and the prolyl nitrogen atom. This orientation is further stabilized by hyperconjugative $\sigma\left(\mathrm{C}^{\beta}-\mathrm{H}\right) \rightarrow \sigma^{*}\left(\mathrm{C}^{\gamma}-\mathrm{O}\right)$ and $\sigma\left(\mathrm{C}^{\delta}-\mathrm{H}\right) \rightarrow \sigma^{*}\left(\mathrm{C}^{\gamma}-\mathrm{O}\right)$ interactions. Thus by the work of Kramer et al ${ }^{[107]}$, polypeptides of sequences Pro-Pro-Gly in collagen like peptides, if Hyp introduced in the sequence, it stabilizes the collagen and if hyp is introduced by synthesis, stability is decreased. This is due to the orientation of 4 S substituent is on the different face of the prolyl nitrogen atom and hydrogen bonding is not much feasible.

Generally, Hyp favours trans amide conformation relative to proline because the C^{γ}-exo pucker forces a ψ-angle of 150°, ideal for $n \rightarrow \pi^{*}$ interaction. In contrast, the C^{γ}-endo
conformation associated with hyp has been favoured to show cis amide conformation due to unfavourable ψ-dihedral angle for the same $n \rightarrow \pi^{*}$ interaction. There may be hydrogen bonding in hyp i.e cis hydroxy proline conformation which is evidenced by R Improta et $\mathrm{al}^{[106 c]}$ which gives additional stability of $1.5 \mathrm{Kcals} \mathrm{mol}^{-1}$. It is between 4-hydroxyl group and C-terminal carbonyl oxygen atom in hyp, as well as electrostatic repulsion between 4position oxygen atom and C-terminal carbonyl oxygen atom; force the prolyl ψ-angle into a poor $n \rightarrow \pi^{*}$ interaction, favouring cis amide conformation relative to Pro and Hyp. The localelectronwithdrawing effect caused by the glycosylation diminishes the electrostatic repulsion between 4-Hydroxy groups of the, so that the prolyl ψ angle to relax from 180° to 150° to get favourable $\mathrm{n} \rightarrow \pi^{*}$ interaction and is very specific for C^{γ}-endo configuration for stabilization of trans amide rotamer stabilization ${ }^{[94 \mathrm{c}, 108]}$ and this effect is not seen in C^{γ}-exo pucker. Thus we can say that Hyp favours only trans amide isomerization and hyp favours both trans and cis isomerization. Also glycosylation of cis hyp would eliminate the intra molecular hydrogen bonding interaction of cis hydroxyl proline isomer. By NOE studies, the galactose and arabinose moeity is not in close proximity in C^{γ}-endo pucker. This interaction is not seen in C^{γ}-exo pucker. Thus it can be predicted that there is very little or no impact of glycosylation on $K_{\text {cistrans }}$ values. Also confirmed by Taylor et al ${ }^{[98]}$, introduction of O-methylation in hyp has little effect on $K_{\text {cistrans }}$ values. Here also in L-arabinose glycosylated ones, there is no much change in the values of $K_{\text {cistrans }}$ values except for α-arabinosylated hyp (12a). In this compound, there is a very good preference for the trans rotamer stabilization at higher temperature i.e $67.3^{\circ} \mathrm{C}$. The results of equilibrium constant values did not change much on comparison with galactosylated molecules but there is a slight preference for the trans conformation for 7a more than D-galactose.

NMR inverse transfer magnetization experiments indicate that glycosylation of Hyp and hyp leads to faster rates when compared to proline. NMR magnetization inversion transfer experiments indicated that hyp model compounds of D-galactose have faster amide isomerization rates. Improta et al. have calculated that the prolyl nitrogen is more pyramidalized in the C^{γ}-exo pucker than in the C^{γ}-endo pucker ${ }^{[106 c]}$ which should facilitate isomerization in D-galactosylated molecules, which each have a C^{γ}-exo pucker, with respect to cis hyp isomers, each with a C^{γ}-endo pucker. In the case of L -arabinose glycosylation a similar effect is observed with an exception of 12a. This is in contrast with the findings of Beausoleil et al ${ }^{[95]}$ who found the reverse effect: hyp had a faster rate than Hyp in Ac(peptide) $)_{2}$-NHMe model amides in $\mathrm{D}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{C}\left(2.05 \pm 0.5\right.$ and $\left.1.46 \pm 0.13 \mathrm{~s}^{-1}\right)$, which has been proved here with $4 S \alpha$ of L-arabinofuranose glycosylated molecule 12a. This may be attributed to the intramolecular hydrogen bond in hyp reducing couloumbic repulsion between the C-terminal carbonyl oxygen atom and the prolyl nitrogen, although the values were within experimental error. Moreoever, L-arabinofuranosylated compounds are degrading over time as a result of high temperature necessary to conduct the kinetic measurements that prohibits the measurement of the thermodynamic parameters.

There is a marked difference in equillibrium constants observed in the case of Larabinofuranose glycosylated molecules than D-galactopyranosylated building blocks. Though α - isomer of Hyp (7a) glycosylation showed the highest preference for trans stabilization at RT by equilibrium constant $\mathrm{K}_{\mathrm{ct}}=8.6$ but its stability is reduced at increased temperature $\left(\mathrm{K}_{\mathrm{ct}}=5.8,67.3^{\circ} \mathrm{C}\right)$. Changes in cis-trans isomerization is generally attributed to electron withdrawing inductive effect of the prolyl γ-substituents ${ }^{[94 \mathrm{~b}]}$ where the γ-position group withdraws electron density from the peptide bond and there by reducing the $\mathrm{C}-\mathrm{N}$ bond order ${ }^{[109]}$ of peptide bond and weakens the peptide bond, makes the isomerization to occur.

But glycosylation results in local electron withdrawing effect, it does for both of the and hyp. Therefore we cannot conclude an explanation for the increase and decrease of cis-trans isomerization around the peptide bond due to inductive effect only.

Thus glycosylation of Hyp in compounds of D-Galp and L-Arabf did not have much appreciable effect on the isomer equilibrium $\left(K_{\mathrm{ct}}\right)$ and rate of isomerization $\left(k_{c t}, k_{t c}\right)$ in water between cis and trans isomers when compared to unglycosylated reference compounds except α-arabinofuranose glycosylated compound 7a. But there is a clear indication of LArabf glycosylated molecules, $7 \mathbf{7 a}$ has some cis stabilization at $67.3^{\circ} \mathrm{C}, \mathbf{1 2 a}$ have some trans stabilization which is quite unusual for the un-natural cis hyp isomer. In the case of galactosylated compounds the magnitude of change in chemical shifts is around 8 to 11 ppm . In the case of L-arabinofuranosylated compounds this magnitude change is more pronounced and is around 12 to $14 \mathrm{ppm}[7 \mathbf{a}-83.3,7 \mathbf{b}-81.8, \mathbf{1 2 a}-83.8, \mathbf{1 2 b}-82 \mathrm{ppm}$, respectively from Table 6]. This magnitude may be due to the sugar moeity's dipole moment (vide definition of anomers) and they are conformationally flexible. The result of the inductive effect is the lowering of pK_{a} of pyramidalized prolyl nitrogen and reduces the cis-trans isomerization barrier ${ }^{[94 \mathrm{~b}]}$ and reduces electrostatic repulsion between 4-hydroxy oxygen atom and C terminyl carbon's oxygen atoms. So we can conclude that α isomer of L-arabinofuranose and β - isomer of D-galactose might be predominant in biological systems identified by some researchers ${ }^{[26,110]}$. It is a well-known fact that electronegative substituents stabilize C^{γ}-exo pucker of proline in peptide mimics ${ }^{[94 b]}$ and contribute to the stability of triple helix structure of collagen by hydrogen bonds. Glycosylation was also found to stabilize the structure of collagen like poly peptides researched by our group. By Lamport hypothesis, β-glycans stabilize the PPII conformation of HRGPs in plant cell walls. But here in the case of Larabinofuranosylated building blocks, α-isomer is the more stable one and the reason may be
due to the stereochemistry of the sugar moiety. By computational ${ }^{[106 c]}$ and experimental studies ${ }^{[94 \mathrm{cc}]}$ stabilization of C^{γ}-exo pucker favours trans amide isomerization. By comparing all the bulding blocks (i.e D-galactose methyl amides, D-galactose methyl esters and Larabinofuranose methyl esters of hydroxy proline), arabinofuranoses building blocks 7a, 7b, 12a, 12b have the trans stabilization measurable when they are comparable to unglycosylated ones. There is a steric strain induced by C^{γ} exo pucker of Hyp by glycosylation but did not influence the cis-trans isomerization much but it may have more implications for the stability of collagens and plants. As tri-L-arabinofuranosides are present in plant hormones, it would be interesting to synthesize these building blocks and study their stability parameters. It may be predicted these parameters to be additive for poly peptides.

The different stereoisomers of 4-hydroxyproline provide an opportunity to understand how the prolyl ring has influence on $\mathrm{K}_{\text {trans/cis }}$ values and the rate constants for the cis-trans isomerization. Hyp and hyp project the substituent or glycan spatially opposite direction; so these building blocks of D-Galp and L-Arabf have an influence on $K_{\text {trans/cis }}$ proved experimentally but the difference is not much. But still these building blocks may be a useful tool in predicting the stability of linkages to some extent and not explaining completely the reasons behind the stability. However this research can be used to ascertain the studying carbohydrate binding interactions and the influences of glycans on peptide and protein structures in which the orientation of the glycans are important ${ }^{[108,111]}$.

Chapter 4: Conclusions and Future work:

α-linked L-arabinofuranosides linked to Hyp appear to stabilize the trans amide rotamer population in plants. This effect is in contrast to D-galactopyranose-linked Hyp where no measurable effect was seen. It may be hypothesized that multiple glycosylation sites on the may produce additive effects ${ }^{[108]}$ and oligopeptides ${ }^{[112]}$. Synthesis of building blocks of L-arabinose tri-saccharide ${ }^{[596]}$ and tetra-saccharides ${ }^{[59 a]}$ of natural and un-natural analogues may have a greater impact on the results of these parameters as these trisaccharides are ubiquitous in plants and plant hormones ${ }^{[59]}$. There are many methods of preparing tri-saccharides ${ }^{[113]}$ but synthesis of arabinofuranosides so far has attracted little attention. In general the similar methods used in this thesis can be used for preparing oligosaccharides too but with some protective groups. These tri-saccharides synthesis generally involve the protection of the hydroxyl groups of the sugar and reacting with thiodonor of other sugar moiety and so on. The proposed scheme $\mathbf{5}$ is given below from one of the method ${ }^{[113]}$.

Scheme 4: Proposal for the preparation of Tri-saccharides as observed in plant hormones

Cis-alpha-compound

$\mathrm{NaOMe} / \mathrm{MeOH}$
Amberlite resin

Desired Tri-saccharide

In the same way, other isomers are synthesized in the similar fashion. These trisaccharides and their properties can be evaluated to see the effects of glycosylation i.e kinetics, equilibrium constants and thermodynamic parameters. These may provide some insight in their enhanced stability parameters.

Chapter 5: Supporting information for Chapter 3

5.1 Synthetic Procedures with NMR \& Mass data - General Procedures: Reagent grade solvents were used without further purification. Thin-layer chromatography was performed on Si250F precoated plates of silica gel $(250 \mu \mathrm{~m})$. Column chromatography was performed on Silica gel G60 silica gel ($43-63 \mu \mathrm{~m}$). NMR spectra were analyzed on Bruker Top Spin 500 MHz spectrometer with Top Spin Works 3.0 software. The synthesized compounds are assigned based on 2D COSY and 2D HSQC experiments. For ${ }^{1} \mathrm{H}$ NMR, minor isomers are depicted in percentages of 1 proton. For ${ }^{13} \mathrm{C}$ NMR, when assigned, minor isomer carbon peaks are listed in brackets.

5.2 General Preparation of Sugar glycosyl donor: Compound 3-2, 3, 5 Tri-O-benzyl-L-

 arab-f-1-thiocresol (3): L-arabinose ($5.0 \mathrm{gr}, 0.033 \mathrm{~mol}$) taken in Pyridine (65 mL) and heated to $60^{\circ} \mathrm{C}$ under stirring at inert atmosphere. To the heated solution, benzoyl chloride $(27.3 \mathrm{~mL}$, 0.164 mol) is added dropwise for 10 min . The resulting reaction mass is stirred for 3.5 hr at $60^{\circ} \mathrm{C}$ and monitored upon TLC for the absence of starting material. After reaction, the reaction mass is poured onto $(500 \mathrm{~mL})$ of ice cold water slowly under stirring. To this solution, Dichloromethane (100 mL) is added for extraction. The DCM layer is washed 3 x 50 mL times with $\mathrm{Sat} . \mathrm{NaHCO}_{3}$ solution, Brine and water and concentrated under vacuum. Crude NMR shows both α-pyranose and α and β of furanose forms of the tetra benzoyl deravatives. To a cooled mixture of the crude in Dichloromethane (75 mL), add p-thiocresol ($2.3 \mathrm{gr}, 0.0203 \mathrm{~mol}$) to the reaction mass and BF_{3}. $\mathrm{Et}_{2} \mathrm{O}(10.3 \mathrm{~mL}, 0.034 \mathrm{~mol})$ slowly dropwise and stirred at RT for overnight for completion of reaction by TLC. Then cooled RM to 0 to $5^{\circ} \mathrm{C}$, quenched with sodium bicarbonate solution and Ethyl acetate (50 mL) for organic layer separation. The crude product is extracted with $2 \times 50 \mathrm{~mL}$ of Ethyl acetate and concentrated under reduced pressure. The pure furanose product 2 is obtained from flash columnpurification with 12% Ethyl acetate: hexanes (careful isolation using this solvent mixture only, otherwise mixture of furanoses and pyranoses result) as first fraction. (5.3 gr , yield: $29 \%)$.

2,3,5-Tri-O-benzoyl-L-arab-f-1-thiocresol 2: ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}$): $\delta=$ 8.14-8.08 (m, 7H), 7.63-7.65 (m, 2H), 7.53-7.44 (m, 6H), 7.41-7.39 (m, 2H), 7.3-7.28 (m, $2 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.64\left(\mathrm{dd}, J_{1}=1.4 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, \mathrm{H}_{2}\right), 4.85\left(\mathrm{dd}, J_{1}=4.8 \mathrm{~Hz}\right.$, $\left.J_{2}=8.8 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.80\left(\mathrm{dd}, J_{1}=3.7 \mathrm{~Hz}, J_{2}=11.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.73\left(\mathrm{dd}, J_{1}=5.2 \mathrm{~Hz}, J_{2}=11.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}\right) 166.25,165.68,165.43,138.256,133.85$, $133.70,133.63,130.26,130.10,129.96,129.93,129.82,129.75,129.58,129.38,129.04$, 128.97, 128.62, 128.59, 128.53, 128.38, 91.75(Anomeric), 82.57, 81.11, 78.18, 77.33, 77.098, 76.85, 63.63, 21.19. MS (ES): m / z : calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{NaO}_{7} \mathrm{~S}: 591.64[\mathrm{M}+\mathrm{Na}]^{+}$; found : $591.3[\mathrm{M}+\mathrm{Na}]^{+}$

Charge $2(5.3 \mathrm{~g}, 0.009 \mathrm{~mol})$ in methanol $(50 \mathrm{~mL})$, and under stirring at RT add Sodium methoxide ($0.3 \mathrm{gr}, 0.0055 \mathrm{~mol}$) for 3 hrs shows the absence of starting material 2 . Then 3 mL water was added and stirred with Amberlite $120 \mathrm{H}^{+}$strong acid($\left.0.4 \mathrm{gr}, 0.06 \mathrm{~mol}\right)$ resin till color of the solution disappears. Filter the resin and concentrated and subjected to short column purification and the oily product eluted at 65% ethyl acetate: Hexane. The oily $2,3,5$ Triol-arab-f-1-thiocresol is suspended in 30 mL dry DMF under stirring and cooled to 0 to $5^{\circ} \mathrm{C}$. To the reaction mass, sodium hydride $(2.8 \mathrm{gr}, 0.117 \mathrm{~mol})$ portion wise was added and stirred for 30 min at 0 to $5^{\circ} \mathrm{C}$. Then benzyl bromide was added dropwise for 10 min . Stir RM for 2 hrs at 0 to $5^{\circ} \mathrm{C}$ and continued to RT and stirred overnight. After completion of reaction, charge $\mathrm{MeOH}(10 \mathrm{~mL})$ and stirred for 2 hrs . The solvent is evaporated and the organic layer is partitioned between ethyl acetate $(30 \mathrm{~mL})$ and washed with sat. NaHCO_{3} ($2 \mathrm{X} \mathrm{20mL}$). The organic layer is washed with Brine $(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ and dried with sodium sulphate
and concentrated to give a pale yellow viscous liquid. The product 3 is purified by flash chromatography and elutes at 10% Ethyl Acetate: Hexanes. (2.0gr, yield: 45\%)

2,3,5 Tri-O-benzyl-L-arabf-1-thiocresol 3: ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}$): $\delta=7.44$ $7.22(\mathrm{~m}, 15 \mathrm{H}), 5.18(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.52(\mathrm{~m}, 6 \mathrm{H}), 4.5(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.02$ $(\mathrm{dd}, J=3.3 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68\left(\mathrm{dd}, J_{1}=3.9 \mathrm{~Hz}, J_{2}=10.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.63\left(\mathrm{dd}, J_{1}=4.9 \mathrm{~Hz}\right.$, $\left.J_{2}=10.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}\right) \delta=138.62,138.21,137.96$, $137.85,137.46,137.32,134.52,132.11,131.03,129.99-129.77,128.70-128.25,128.20-$ 127.56, 124.91, 102.05, 90.66, 88.49, 84.47, 83.98, 83.61, 83.36, 80.54, 77.41, 77.16, 76.91, 73.40, 72.33, 72.17, 71.97, 69.21, 21.53, 21.19; MS (ES): m / z : calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{NaO}_{4} \mathrm{~S}$: $549.69[\mathrm{M}+\mathrm{Na}]^{+}$; found: $549.6[\mathrm{M}+\mathrm{Na}]^{+}$

5.3 General Preparation of glycosylated building blocks:

5.3.1 Fmoc Stage: Compounds 5a, 5b, \& 10a, 10b:

Compound $\mathbf{3}(1.5 \mathrm{gr}, 0.0029 \mathrm{~mol})$ is dissolved in dry ACN and cooled to $0-5^{\circ} \mathrm{C}$ under stirring. To this Fmoc-Hyp-OMe ($1.13 \mathrm{gr}, 0.0031 \mathrm{~mol}$) and NIS ($0.78 \mathrm{gr}, 0.0034 \mathrm{~mol}$), $\operatorname{AgOT} f(0.15 \mathrm{gr}$, 0.00058 mol) were added and stirred for 3 hrs at $0-5^{\circ} \mathrm{C}$. The progress of the reaction is monitored by TLC. After completion, the solvent is removed under vacuum and partitioned between ethyl acetate and sodium bicarbonate. To this 5% aq sodium thiosulphate is added till a colourless solution obtained and stirred for 15 min . The organic layer is washed with brine $(10 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, and dried with sodium sulphate and concentrated. The product is purified for α and β isomers by flash chromatography and the product elutes at 23% ethyl acetate and hexane(caution: the mix of solvents should be around 23 to 25% otherwise mix of anomers results and takes long time for separation). Ratio of isomers formed $8: 2(\alpha: \beta)$ and the overall yield of the products are 65% (1.3 gr mixture of anomers in both Hyp and hyp). After
careful column purification 1.5 gr of Hyp isomer yielded $0.7 \mathrm{gr}(35 \%)$ of pure α isomer and $0.15 \mathrm{gr}(6.6 \%)$ of pure β isomer after several purifications by flash column chromatography. Similarly 1.5 gr of cis hyp isomer yielded 0.68 gr (33%) of pure α isomer and 0.15 gr (6.5%) of pure β isomer.

NMR Data:

5a) 2,3,5 Tri-O-benzyl-L-arab- f - α-NFmoc-Hyp-OMe:

${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}\right): \delta=7.76(\mathrm{~d}, 2 \mathrm{H}, J=7.52 \mathrm{~Hz}), 7.63 .-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.41-$ $7.19(\mathrm{~m}, 4 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 0.67 \mathrm{H}), 4.62-4.42(\mathrm{~m}, 6 \mathrm{H}), 4.41-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{t}$, $1 \mathrm{H}), 4.23-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.98\left(\mathrm{dd}, J_{1}=3.3 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.86(\mathrm{dd}$, $\left.J_{1}=5.3 \mathrm{~Hz}, J_{2}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.57(\mathrm{~m}$, $1 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.1-2.02(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}\right) \delta=172.92$, $172.85,154.94,(154.36), 144.21,144.01,143.96,143.78$, (141.35), 141.32, (138.07), 137.98, (137.86), 137.79, 137.55, 137.46, 128.63-128.51, 128.11-127.91, 127.89-127.63, 127.20-$127.05,125.31-125.19,125.08,124.98$, (105.32), 105.18(Anomeric), (88.77), 88.71, 83.64, (83.38), $80.95,(80.80), 77.34,77.09,76.84,74.39,73.64,72.38,72.34,72.26,69.54$, (69.25), 67.70, (67.59), 57.84, (57.47), 52.46, (52.40), (47.35), 47.19, (36.26), 35.03; MS (ES): m / z : $\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{NNaO}_{9}: 792.88[\mathrm{M}+\mathrm{Na}]^{+}$; found : $792.8[\mathrm{M}+\mathrm{Na}]^{+}$

5b) 2,3,5 Tri-O-benzyl-L-arab- \boldsymbol{f} - $\boldsymbol{\beta}$-NFmoc-Hyp-OMe:

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}$): $\delta=7.75(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.53(\mathrm{dd}, 2 \mathrm{H}$, $\left.J_{1}=7.3 \mathrm{~Hz}, J_{2}=18.9 \mathrm{~Hz}\right), 7.42-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$), $4.69\left(\mathrm{dd}, J_{1}=6.1 \mathrm{~Hz}, J_{2}=11.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.61-4.48(\mathrm{~m}, 9 \mathrm{H}), 4.48-4.39(\mathrm{~m}$, $2 \mathrm{H}), 4.33(\mathrm{t}, 1 \mathrm{H}), 4.30-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.65$ (s, 0.6 H$), 3.68\left(\mathrm{dd}, J_{1}=5.3 \mathrm{~Hz}, J_{2}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.56\left(\mathrm{dd}, J_{1}=3.3 \mathrm{~Hz}, J_{2}=11.4 \mathrm{~Hz}\right.$,
$1 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.298^{\circ} \mathrm{K}\right) \delta=173.01,172.92,154.74,154.52,144.12,144.02,143.89,143.68,141.34,141.3$, 138.14, 138.10, 137.92, 137.86, 137.49, 128.63-128.3, 128.21, 128.17-127.65, 127.11, $127.09,125.15,125.10,125.05,124.97,120.02,119.96,100.05$ (Anomeric), 84.15, 83.97, 82.56, 80.12, 77.29, 77.04, 76.79, 75.64, 73.81, 73.39, 73.35, 72.69, 72.53, 72.43, 72.0, 67.72, 67.59, 58.10, 57.74, 52.37, 52.35, 51.45, 51.30, 47.26, 47.16, 37.61, 36.52; MS (ES): m / z : calcd for $\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{NNaO} 9$: $792.88[\mathrm{M}+\mathrm{Na}]^{+}$; found : $792.9[\mathrm{M}+\mathrm{Na}]^{+}$

10a) 2,3,5 Tri-O-benzyl-L-arab- f - α-NFmoc-hyp-OMe:

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}\right): \delta=7.79(\mathrm{t}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}$, Anomeric), 4.66-4.46 (m, 8H), 4.46$4.36(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H})$, 2.45-2.32 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}\right) \delta=172.14,171.98,154.87,154.63$, $144.23,143.91,141.48,141.32,138.15,138.12,137.91,137.89,137.61,137.57$, (129.80), (129.07), 128.02, 127.93-127.67, 127.22-127.06, 125.24, 125.12, 125.05, 125.04, 120.08, 120.05, 120.03, 105.47(anomeric), 105.43(anomeric), 88.81, 83.74, 83.62, 80.74, 80.65, $77.51,77.25,77.0,74.98,74.11,73.49,73.48,72.3-72.18,69.71,69.66,67.59,67.56,58.13$, 57.85, 52.35, 52.31, 52.01, 51.39, 47.39, 38.01, 36.92; MS (ES): $m / z:$ calcd for $\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{NNaO}_{9}: 792.88[\mathrm{M}+\mathrm{Na}]^{+}$; found : $792.9[\mathrm{M}+\mathrm{Na}]^{+}$

10b) 2,3,5 Tri-O-benzyl-L-arabf- β-Nfmoc-hyp-OMe:

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}\right): \delta=7.75(\mathrm{~d}, \quad, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.57-7.50 (m, 2H), 7.42-7.17 (m, 2H), 4.93 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-$ $4.49(\mathrm{~m}, 8 \mathrm{H}), 4.49-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.38\left(\mathrm{dd}, J_{l}=3.5 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.36-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.24$ $(\mathrm{t}, 1 \mathrm{H}), 4.23-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.1-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.0(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.8(0.3 \mathrm{H}),, 3.73-3.71$
$(\mathrm{m}, 2 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.5(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.23-$ $2.16(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}\right) \delta=172.12,171.96,154.85,154.38$, 144.11, 143.83, 141.35, 141.31, 138.13, 138.09, 137.97, 137.86, 137.98, 128.55-128.24, 128.15-127.86, 127.86-127.60, 127.09, 127.05, 125.25, 125.13, 124.97, 119.99, (impurity), 99.97(anomeric), 84.97, 82.63, 82.52, 80.27, 80.13, 77.30, 77.04, 76.79, 75.34, 74.53, 73.36, $73.23,72.53,72.41,72.14,71.98,67.60,67.48,57.70,57.45,52.74,52.34,52.28,47.34$, 47.22, 36.43, 35.13; MS (ES): m/z: calcd for $\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{NNaO}_{9}: 792.88[\mathrm{M}+\mathrm{Na}]^{+}$; found : 793 $[\mathrm{M}+\mathrm{Na}]^{+}$
5.3.2 Benzyl Stage: Compounds 6a, 6b \& 11a, 11b: Compounds 5a (0.65 gr), 5b (0.1 gr), 10a ($0.63 \mathrm{gr}, 0.00083 \mathrm{~mol}$), and 10b ($0.1 \mathrm{gr}, 0.000129 \mathrm{~mol}$) are taken in (4 separate RB flasks) 20% piperidine in DMF (5 mL for α isomers and 2.5 mL for β isomers) and stirred for 2 hrs. Progress of the reaction is monitored by TLC. After starting material disappearance, DMF is removed by high vacuum and the crudes are taken as it is for next stage. The crude products are dissolved in pyridine (10 mL for α isomers and 5 mL for β isomers) and $\mathrm{Ac}_{2} \mathrm{O}$ (0.2 mL for α and 0.1 mL for β isomers) is added dropwise at $0-5^{\circ} \mathrm{C}$ and left overnight stirring at RT. The progress of the reaction is monitored by TLC. After completion, solvent is removed under vacuum and the residue is partitioned between ethyl acetate $(2.5 \mathrm{~mL})$ and sat $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The organic layer is washed with brine $(5 \mathrm{~mL})$, water $(5 \mathrm{~mL})$ and concentrated under vacuum and dried with Sodium Sulphate. The crude compounds are purified by flash chromatography and the pure products elute at 40% Ethyl Acetate: Hexanes. Yield (For Hyp $\alpha-0.12$ gr (25\%), $\beta-0.07$ gr (14.5\%) and hyp $\alpha-0.118$ gr (24\%), $\beta-0.071$ gr (15\%)

NMR Data:

6a) $\mathbf{2 , 3 , 5}$ Tri- O-benzyl-L-arab- f - α-NAc-Hyp-OMe:

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}$): $\delta=7.41-7.17(\mathrm{~m}, 15 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{dd}$, $\left.J_{1}=4.6 \mathrm{~Hz}, J_{2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.57-4.38(\mathrm{~m}, 6 \mathrm{H}), 4.48-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.0(\mathrm{t}$, $0.3 \mathrm{H}), 3.95\left(\mathrm{dd}, J_{1}=1.2 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.92\left(\mathrm{dd}, J_{1}=3.4 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.90-3.85(\mathrm{~m}$, $1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 0.6 \mathrm{H}), 3.60-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.36(\mathrm{t}, 0.7 \mathrm{H}), 2.4-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.32-$ $2.26(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 0.7 \mathrm{H}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}\right) \delta=$ (171.4), 171.69, (170.15), 169.46, 168.86, 146.70, 141.04, (138.08), 138.03, (137.83), 137.80, 137.59, 137.46, 128.6-128.30, 128.12, 127.97, 127.88-127.63, (127.11), 127.04, 126.73, 125.47, 119.66, 119.78, 105.64(anomeric), (105.10-anomeric), 88.78, (88.73), (83.78), 83.49, 80.82, (80.62), 77.64, 77.19, 76.93, 75.04, (73.67), 73.43, 72.25, (69.72), 69.57, 59.14, (57.21), 54.94, 52.51, (52.23), 51.71, (47.47), (44.86), (42.52), 38.48, (36.39), (26.46), 26.22, (25.53), (24.66), 24.50, 22.36, (22.11), 21.48; MS (ES): m / z : calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NNaO}_{8}: 612.68[\mathrm{M}+\mathrm{Na}]^{+}$; found : $612.6[\mathrm{M}+\mathrm{Na}]^{+}$

6b) 2,3,5 Tri- O-benzyl-L-arab- \boldsymbol{f} - β-NAc-Hyp-OMe:

${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}$): $\delta=7.42-7.12(\mathrm{~m}, 15 \mathrm{H}), 4.97\left(\mathrm{dd}, J_{1}=2.2 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}\right.$, $0.28 \mathrm{H}), 4.89\left(\mathrm{dd}, J_{1}=2.1 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.6-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.44(\mathrm{~m}, 6 \mathrm{H}), 4.44(\mathrm{t}$, $0.38 \mathrm{H}), 4.34-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.03(\mathrm{~m}, 3 \mathrm{H}), 3.96-3.84(\mathrm{~m}, 0.36 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 3 \mathrm{H})$, 3.53-3.67 (m, 2H), $3.4\left(\mathrm{dd}, J_{1}=2.8 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 0.4 \mathrm{H},) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}$) $\delta=172.23$, (172.59), (169.85), 169.30, 138.06, 137.83, 137.58, 128.81-128.8, 128.4-127.57, 100.52(Anomeric), 84.16, (83.91), 82.44, (80.10), 77.30, 77.05, 76.79, 76.34, 73.40, (73.32), (73.06), 72.76, 72.56, (72.42), (72.22), 71.92, (60.41), (58.78), 57.50, (52.79), 52.29, (50.53), 36.00, 29.72,
(29.68), 22.25, (21.07); MS (ES): $m / z:$ calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NNaO}_{8}: 612.68[\mathrm{M}+\mathrm{Na}]^{+}$; found : $612.5[\mathrm{M}+\mathrm{Na}]^{+}$

11a) $\mathbf{2 , 3 , 5}$ Tri- O-benzyl-L-arab- f - α-NAc-hyp-OMe:

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}$): $\delta=7.39-7.21(\mathrm{~m}, 15 \mathrm{H}), 5.07(\mathrm{~s}, 0.11 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H})$, 4.58-4.44(m, 6H), 4.4-4.32(m, 1H), 4.16-4.10 (m, 1H), 4.05 (m, 0.31H), $3.97\left(\mathrm{dd}, J_{1}=1.1 \mathrm{~Hz}\right.$, $\left.J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.88\left(\mathrm{dd}, J_{1}=3.3 \mathrm{~Hz}, J_{2}=7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79\left(\mathrm{dd}, J_{1}=5 \mathrm{~Hz}, J_{2}=11 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 3.76(\mathrm{~s}, 0.33 \mathrm{H}), 3.65-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.56\left(\mathrm{dd}, J_{1}=5.8 \mathrm{~Hz}, J_{2}=11 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38-2.32(\mathrm{~m}$, $0.19 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 0.32 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}\right) \delta=172.74,169.59,137.94,137.69,137.38,(137.20), 128.56$, 128.53-128.31, 128.08, 128, 127.93-127.67, 105.53, (105.43), (88.71), 88.62, (83.62), 80.86, (77.30), 77.05, 76.8, (75.11), 73.50, 72.41, (72.33), 69.80, 57.11, (57.04), 54.95, 52.34, (35.13), 34.82, 22.26, (21.08); MS (ES): $m / z:$ calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NNaO}_{8}: 612.68[\mathrm{M}+\mathrm{Na}]^{+}$; found : $612.5[\mathrm{M}+\mathrm{Na}]^{+}$

11b) 2,3,5 Tri- O-benzyl-L-arab- \boldsymbol{f} - β-Nac-hyp-OMe:

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298^{\circ} \mathrm{K}\right): \delta=7.37-7.21(\mathrm{~m}, 15 \mathrm{H}), 4.93(\mathrm{~d}, J=0.3 \mathrm{H}), 4.89(\mathrm{~d}$, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 0.37 \mathrm{H}), 4.66(\mathrm{~s}, 0.67 \mathrm{H}), 4.61-4.48(\mathrm{~m}, 6 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}$, $0.34 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 4.11\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=14.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.09-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.95(\mathrm{~m}$, $0.67 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 0.56 \mathrm{H}), 3.66-3.6(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.27$ $(\mathrm{m}, 1 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 0.9 \mathrm{H}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.298^{\circ} \mathrm{K}\right) \delta=(171.74), 171.70,169.81,169.49,138.05,137.97,137.72,128.54-128.30,128.09$, 128.02, (127.92), 127.86, 127.79, 127.76, 127.65, 100.21(Anomeric), 83.99, (83.95), 82.05, $79.94,77.30,77.05,76.79,75.72,(73.37), 73.17,72.55,72.47,72.36,72.33,72.18,71.82$,
$60.41,56.73,53.34,(52.77)$, (52.55), 52.25, 34.80, 22.19, (22.10), 21.07; MS (ES): m / z : calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NNaO}_{8}$: $612.68[\mathrm{M}+\mathrm{Na}]^{+}$; found : $612.5[\mathrm{M}+\mathrm{Na}]^{+}$

5.3.3 General Preparation of 4-O-arabinofuranosyl- N-acetyl- N '-methyl ester amino

 acids (Final compounds 7a, 7b, 12a, 12b): The protected N -Acetyl amino acid methyl esters (0.12 gr for α and 0.07 gr for β isomers) was dissolved in methanol and catalyst, (20% palladium hydroxide on carbon) was added (approx. $20 \% \mathrm{w} / \mathrm{w}$ loading of catalyst i.e 25 mg for α isomers, 15 mg for β isomers), and the flask was flushed with N_{2} for 3 times. The reaction mixture was then stirred under hydrogen gas (10psi) pressure for 16 hrs , checked TLC for completion of reaction. Then the reaction mass was flushed with nitrogen and filtered using celite. The product was then concentrated under reduced pressure and codistilled with toluene for 3 times ($3 \times 3 \mathrm{~mL}$) and subjected to C18 silica gel column to get pure compound. Sometimes if the compound is still impure by NMR, the compound is converted to tri-O-acetate by using Acetic anhydride / pyridine and purifying by column chromatography and de-acetylating by $\mathrm{NaOMe} / \mathrm{MeOH}$ and solvent evaporation after that yielded thick oily compound (53 mg for α and $\beta 34 \mathrm{mg}$) (y ield=75\%)
NMR Data:

7a) trans-4-O-(α-L-arabinofuranosyl)- N-acetyl-4-hydroxy-L-Proline methyl ester (2, 3, 5

Triol-L-arab- f - α-NAc-Hyp-OMe):

$[\alpha]^{\mathrm{D}}{ }_{23.9^{\circ}=}=-30.61\left(c=0.3, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298^{\circ} \mathrm{K}\right): \delta=5.07(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{1}\right), 5.05(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.17 \mathrm{H}), 4.99(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.13 \mathrm{H}), 4.98(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.07 \mathrm{H}), 4.78-$ $4.74(\mathrm{~m}, 0.38 \mathrm{H}), 4.61\left(\mathrm{dd}, J_{1}=2.9 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, 0.2 \mathrm{H}\right), 4.51-4.43\left(\mathrm{~m}, 2\right.$ protons, $\left.\mathrm{H}_{\gamma}, \mathrm{H}_{4}\right), 4.42-$ $4.38(\mathrm{~m}, 0.21 \mathrm{H}), 4.00\left(\mathrm{dd}, J_{1}=1.8 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.95\left(\mathrm{ddd}, J_{1}=3.1 \mathrm{~Hz}, J_{2}=5.9 \mathrm{~Hz}\right.$ $\left.J_{3}=9.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.87\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.76\left(\mathrm{dd}, J_{1}=3.1 \mathrm{~Hz}\right.$, $\left.J_{2}=12.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77-3.73(\mathrm{~m}, 2$ protons, 2 H$), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}-\mathrm{OCH}_{3}\right), 3.63\left(\mathrm{dd}, J_{1}=5.8 \mathrm{~Hz}\right.$, $\left.J_{2}=12.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.60-3.57(\mathrm{~m} 0.12 \mathrm{H}), 3.56-3.53(\mathrm{~m}, 0.38 \mathrm{H}), 3.350(\mathrm{~s}, 0.03 \mathrm{H}), 3.28(\mathrm{~s}, 0.2 \mathrm{H})$, 2.49-2.43 (m, 1H), 2.37-2.30 (m, 0.57H, 1H), 2.14-2.08 (m, 1H), 2.06 (s, 3H, N-COCH $)_{3}$, $2.01(\mathrm{~s}, 0.15 \mathrm{H}), 1.94(\mathrm{~s}, 0.41 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298^{\circ} \mathrm{K}\right) \delta=174.52,173.19$, 106.31, (106.60), (105.40), 83.83, 83.74, (81.82), (81.36), (76.61), 75.80, (75.39), (74.48), 61.17, (61.05), (58.73), 57.73, (57.51), 57.35, (54.43), (53.42), 53.04, (52.32), (36.67), (35.93), (35.16), 34.38, (33.92), (23.28), (21.53), 21.30, (21.15); MS (ES): $m / z:$ calcd for $\mathrm{C}_{13} \mathrm{H}_{31} \mathrm{NNaO}_{8}: 342.31[\mathrm{M}+\mathrm{Na}]^{+}$; found : $342.4[\mathrm{M}+\mathrm{Na}]^{+}$

7b) trans-4- O-(β-L-arabinofuranosyl)- N-acetyl-4-hydroxy-L-proline methyl ester (2, 3, 5

Triol -L-arab- \boldsymbol{f} - $\boldsymbol{\beta}$-NAc-Hyp-OMe):

$[\alpha]^{\mathrm{D}}{ }_{23.9^{\circ}}=27.18\left(c=0.3, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298^{\circ} \mathrm{K}\right): \delta=5.06(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 0.15 \mathrm{H}), 4.77\left(\mathrm{dd}, J_{1}=7 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.54-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.06$ (dd, $\left.J_{1}=5 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.94(\mathrm{t}, 1 \mathrm{H}), 3.84-3.77\left(\mathrm{dd}, J_{1}=3.3 \mathrm{~Hz}, J_{2}=7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.76(\mathrm{~s}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}-\mathrm{OCH}_{3}\right), 3.56\left(\mathrm{dd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=12.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.49\left(\mathrm{dd}, J_{1}=4.9 \mathrm{~Hz}, J_{2}=12.8 \mathrm{~Hz}, 0.17 \mathrm{H}\right), 2.62-2.55(\mathrm{~m}, 0.15 \mathrm{H}), 2.54-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.38-$
$2.31(\mathrm{~m}, 0.19 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{COCH}_{3}\right), 1.94\left(\mathrm{~s}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298^{\circ} \mathrm{K}$) $\delta=174.63$, (174.19), 173.19, 100.28, (100.17), 81.83, 76.29, 76.14, (74.49), 74.34, 63.11, 59.07, 57.88, 53.47, (53.39), 53.03, (51.36), (37.01), 35.65, 21.29, (20.67); MS (ES): $m / z:$ calcd for $\mathrm{C}_{13} \mathrm{H}_{31} \mathrm{NNaO}_{8}: 342.31[\mathrm{M}+\mathrm{Na}]^{+}$; found : $342.4[\mathrm{M}+\mathrm{Na}]^{+}$

12a) cis-4-O-(α-L-arabinofuranosyl)- N-acetyl-4-hydroxy-L-proline methyl ester (2, 3, 5 Triol-L-arab- f - α-NAc-hyp-OMe):
 $0.18 \mathrm{H}), 4.75-4.73(\mathrm{~m}, 0.2 \mathrm{H}), 4.53-4.42(\mathrm{t}, 2 \mathrm{H}), 3.99(\mathrm{t}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.82$ $\left(\mathrm{dd}, J_{1}=4.1 \mathrm{~Hz}, J_{2}=11.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78(\mathrm{~s}, 0.87 \mathrm{H}), 3.77-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}-\mathrm{OCH}_{3}\right)$, $3.63\left(\mathrm{dd}, J_{1}=5.9 \mathrm{~Hz}, J_{2}=11.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.55\left(\mathrm{dd}, J_{1}=4.9 \mathrm{~Hz}, J_{2}=12.4 \mathrm{~Hz}, 0.24 \mathrm{H}\right), 2.57-2.50(\mathrm{~m}$, $0.2 \mathrm{H}), 2.5-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 0.26 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{COCH}_{3}\right)$, $1.93(\mathrm{~s}, 0.44 \mathrm{H}), 1.91(\mathrm{~s}, 0.08 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298^{\circ} \mathrm{K}\right) \delta=(173.73), 174.57$, 174.52, (173.19), 106.31, (106.65), 83.84, 83.73, 76.28, (76.21), 75.81, 61.14, (61.10), 57.89, (57.52), 54.18, 53.43, (53.06), 35.70, (34.35), 21.30, (20.67);MS (ES): $m / z:$ calcd for $\mathrm{C}_{13} \mathrm{H}_{31} \mathrm{NNaO}_{8}: 342.31[\mathrm{M}+\mathrm{Na}]^{+}$; found : $342.4[\mathrm{M}+\mathrm{Na}]^{+}$

12b) cis-4- O-(β-L-arabinofuranosyl)- N-acetyl-4-hydroxy L-proline methyl ester (2, 3, 5

Triol-L-arab- \boldsymbol{f} - $\boldsymbol{\beta}$-NAc-hyp-OMe):

$[\alpha]^{\mathrm{D}}{ }_{23.9^{\circ}}=29.33\left(c=0.3, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298^{\circ} \mathrm{K}\right): \delta=5.01(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.99(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 0.41 \mathrm{H}), 4.76(\mathrm{~s}, 0.2 \mathrm{H}), 4.74(\mathrm{~s}, 0.2 \mathrm{H}), 4.58\left(\mathrm{dd}, J_{1}=3.0 \mathrm{~Hz}, J_{2}=9.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.49-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{t}, 1 \mathrm{H}), 3.83\left(\mathrm{ddd}, J_{1}=4.2 \mathrm{~Hz}, J_{2}=7.3 \mathrm{~Hz}\right.$, $\left.J_{3}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.81-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.72\left(\mathrm{~s}, 1.3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.71(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 0.64 \mathrm{H}), 3.62-$ $3.58(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.53(\mathrm{~m}, 0.7 \mathrm{H}), 2.4-2.37(\mathrm{~m}, 0.22 \mathrm{H}), 2.37-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.29(\mathrm{~m}$, $0.22 \mathrm{H}), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{COCH}_{3}\right), 2.01\left(\mathrm{~s}, 0.46 \mathrm{H}\right.$, minor $\left.\mathrm{N}-\mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz ,
$\left.\mathrm{D}_{2} \mathrm{O}, 298^{\circ} \mathrm{K}\right) \delta=(174.08),(173.79), 173.75,173.38,99.88$ (anomeric), (99.40), 82.0, (81.97), 76.13, (76.10), 76.0, (74.52), 74.49, 63.23, (63.21), (59.38), 57.46, 54.32, (53.24), (53.16), 53.00, (35.14), 34.05, 21.27, (21.19); MS (ES): $m / z:$ calcd for $\mathrm{C}_{13} \mathrm{H}_{31} \mathrm{NNaO}_{8}: 342.31$ $[\mathrm{M}+\mathrm{Na}]^{+}$; found : $342.4[\mathrm{M}+\mathrm{Na}]^{+}$

References:

[1] R. G. Spiro, Glycobiology 2002, 12, 43R-56R.
[2] I. Cumpstey, Org. Biomol. Chem. 2012, 10, 2503-2508.
[3] E. Juaristi and G. Cuevas, Tetrahedron 1992, 48, 5019-5087.
[4] R. U. Lemieux, A. A. Pavia, J. C. Martin and K. A. Watanabe, Can. J. Chem. 1969, 47, 4427-4439.
[5] C. Romers, C. Altona, H. R. Buys and E. Havinga in Geometry and Conformational Properties of Some Five- and Six-Membered Heterocyclic Compounds Containing Oxygen or Sulfur, Vol. John Wiley \& Sons, Inc., 2007, pp. 39-97.
[6] B. Imperiali, Acc. Chem. Res. 1997, 30, 452-459.
[7] T. de Beer, J. F. G. Vliegenthart, A. Loeffler and J. Hofsteenge, Biochemistry 1995, 34, 11785-11789.
[8] M.-A. s. Doucey, D. Hess, M. J. J. Blommers and J. Hofsteenge, Glycobiology 1999, 9, 435-441.
[9] S. Hartmann and J. Hofsteenge, J. Biol. Chem. 2000, 275, 28569-28574.
[10] R. G. Spiro, J. T. E. C.B. Anfinsen and M. R. Frederic in Glycoproteins, Vol. 27 Academic Press, 1973, pp. 349-467.
[11] D. T. Lamport and D. H. Miller, Plant Physiol. 1971, 48, 454-456.
[12] a) E. A. Nothnagel, Int Rev Cytol 1997, 174, 195-291; b) J. Perez-Vilar and R. L. Hill, J. Biol. Chem. 1999, 274, 31751-31754.
[13] P. A. Haynes, Glycobiology 1998, 8, 1-5.
[14] D. P. Mehta, M. Ichikawa, P. V. Salimath, J. R. Etchison, R. Haak, A. Manzi and H. H. Freeze, J. Biol. Chem. 1996, 271, 10897-10903.
[15] A. Guha-Niyogi, D. R. Sullivan and S. J. Turco, Glycobiology 2001, 11, 45R-59R.
[16] G. Srikrishna, L. Wang and H. H. Freeze, Glycobiology 1998, 8, 779-811.
[17] a) O. Nosjean, A. Briolay and B. Roux, Biochim. Biophys. Acta (BBA) - Reviews on Biomembranes 1997, 1331, 153-186; b) M. A. Ferguson, Journal of Cell Science 1999, 112, 2799-2809.
[18] a) A. Varki, Glycobiology 1993, 3, 97-130; b) P. J. Ferris, J. P. Woessner, S. Waffenschmidt, S. Kilz, J. Drees and U. W. Goodenough, Biochemistry 2001, 40, 2978-2987.
[19] H. Lis and N. Sharon, Eur. J. Biochem. 1993, 218, 1-27.
[20] T. Dinur, K. M. Osiecki, G. Legler, S. Gatt, R. J. Desnick and G. A. Grabowski, Proc. Natl. Acad. Sci. U.S.A 1986, 83, 1660-1664.
[21] M. E. Grace and G. A. Grabowski, Biochem. Biophys. Res. Commun. 1990, 168, 771777.
[22] V. Kaartinen and I. Mononen, Biochim.t Biophys. Acta (BBA) - Protein Structure and Molecular Enzymology 1988, 953, 345-352.
[23] M. A. Clay, G. J. Hopkins, C. P. Ehnholm and P. J. Barter, Biochim.t Biophys. Acta (BBA) - Lipids and Lipid Metabolism 1989, 1002, 173-181.
[24] S. Santamarina-Fojo, C. Haudenschild and M. Amar, Curr. Opin. Lipidol. 1998, 9, 211219.
[25] G. Stahnke, R. C. Davis, M. H. Doolittle, H. Wong, M. C. Schotz and H. Will, J. Lipid Res. 1991, 32, 477-484.
[26] C. M. Taylor, C. V. Karunaratne and N. Xie, Glycobiology 2012, 22, 757-767.
[27] G. Pearce and C. A. Ryan, J. Biol. Chem. 2003, 278, 30044-30050.
[28] G. Pearce, D. S. Moura, J. Stratmann and C. A. Ryan, Nature 2001, 411, 817-820.
[29] D. Mohnen and M. L. Tierney, Science 2011, 332, 1393-1394.
[30] S. M. Velasquez, M. M. Ricardi, J. G. Dorosz, P. V. Fernandez, A. D. Nadra, L. PolFachin, J. Egelund, S. Gille, J. Harholt, M. Ciancia, H. Verli, M. Pauly, A. Bacic, C. E. Olsen, P. Ulvskov, B. L. Petersen, C. Somerville, N. D. Iusem and J. M. Estevez, Science 2011, 332, 1401-1403.
[31] H. Shinohara and Y. Matsubayashi, Curr. Opin. Plant. Biol. 2010, 13, 515-519.
[32] K. J. Nytko, N. Maeda, P. Schlaofli, P. Spielmann, R. H. Wenger and D. P. Stiehl, Blood 2011, 117, 5485-5493.
[33] P. Hevia, S. T. Omaye and R. A. Jacob, Am. J. Clin. Nutr. 1990, 51, 644-648.
[34] J. Myllyharju, Matrix Biol. 2003, 22, 15-24.
[35] a) R. Kuttan and A. N. Radhakrishnan, Biochem. J. 1970, 117, 1015-1017; b) R. Kuttan and A. N. Radhakrishnan, Biochem. J. 1970, 119, 651-657.
[36] a) Z. Y. Guang Zhou, Yao Da, Xue X. B, Journal of Guangzhou University of Traiditional Chinese Medicine 2006, 23, 262-264; b) R. R. Yan, Journal of Guangzhou University of Traiditional Chinese Medicine 2006, 337-338.
[37] N. C. Carpita and D. M. Gibeaut, Plant J. 1993, 3, 1-30.
[38] a) D. J. Cosgrove, Ann. Rev. Cell Develop. Biol. 1997, 13, 171-201; b) C. Somerville, S. Bauer, G. Brininstool, M. Facette, T. Hamann, J. Milne, E. Osborne, A. Paredez, S. Persson, T. Raab, S. Vorwerk and H. Youngs, Science 2004, 306, 2206-2211.
[39] J. E. Darvill, M. McNeil, A. G. Darvill and P. Albersheim, Plant Physiol. 1980, 66, 1135-1139.
[40] D. J. Cosgrove, Nat. Rev. Mol. Cell Biol. 2005, 6, 850-861.
[41] R. Hatfield and W. Vermerris, Plant Physiol. 2001, 126, 1351-1357.
[42] Y. Matsubayashi, Plant Cell Physiol. 2011, 52, 5-13.
[43] a) G. I. Cassab, Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 281-309; b) J. Sommer-Knudsen, A. Bacic and A. E. Clarke, Phytochem. 1998, 47, 483-497.
[44] A. M. Showalter, Cell Mol. Life Sci. 2001, 58, 1361-1362.
[45] D. S. Everdeen, S. Kiefer, J. J. Willard, E. P. Muldoon, P. M. Dey, X.-b. Li and D. T. A. Lamport, Plant Physiol. 1988, 87, 616-621.
[46] I. N. Watson, L. M. Watson, T. A. Murray, B. Lige, R. B. van Huystee and M. T. McManus, Plant Physiol. Biochem. 1998, 36, 591-599.
[47] K. Bollig, M. Lamshoft, K. Schweimer, F. J. Marner, H. Budzikiewicz and S. Waffenschmidt, Carbohydr. Res. 2007, 342, 2557-2566.
[48] A. L. Rubinstein, A. H. Broadwater, K. B. Lowrey and P. A. Bedinger, P Proc. Natl. Acad. Sci. U.S.A 1995, 92, 3086-3090.
[49] L. N. Gatehouse, I. M. Evans, J. A. Gatehouse and R. R. D. Croy, Plant Science 1990, 71, 223-231.
[50] J. H. Ahn, Y. Choi, Y. M. Kwon, S. G. Kim, Y. D. Choi and J. S. Lee, Plant Cell 1996, 8, 1477-1490.
[51] A. M. Showalter, J. N. Bell, C. L. Cramer, J. A. Bailey, J. E. Varner and C. J. Lamb, Proc. Natl. Acad. Sci. U.S.A 1985, 82, 6551-6555.
[52] D. H. Miller, D. T. A. Lamport and M. Miller, Science 1972, 176, 918-920.
[53] A. M. Showalter, Plant Cell 1993, 5, 9-23.
[54] a) G. J. Seifert and K. Roberts, Annu. Rev. Plant Biol. 2007, 58, 137-161; b) A. M. Showalter, Cell Mol. Life Sci. 2001, 58, 1399-1417.
[55] a) S. C. Churms, E. H. Merrifield and A. M. Stephen, Carbohydr. Res. 1983, 123, 267279; b) S. C. Churms, A. M. Stephen and I. R. Siddiqui, Carbohydr. Res. 1981, 94, 119-122; c) A. Bacic, S. C. Churms, A. M. Stephen, P. B. Cohen and G. B. Fincher, Carbohydr. Res. 1987, 162, 85-93.
[56] M. J. Kieliszewski and E. Shpak, Cell Mol. Life Sci. 2001, 58, 1386-1398.
[57] T. Mahendran, P. A. Williams, G. O. Phillips, S. Al-Assaf and T. C. Baldwin, J. Agri. Food Chem. 2008, 56, 9269-9276.
[58] C. Sanchez, C. Schmitt, E. Kolodziejczyk, A. Lapp, C. Gaillard and D. Renard, Biophys. J. 2008, 94, 629-639.
[59] a) L. Tan, F. Qiu, D. T. A. Lamport and M. J. Kieliszewski, J. Biol. Chem. 2004, 279, 13156-13165; b) L. Tan, P. Varnai, D. T. Lamport, C. Yuan, J. Xu, F. Qiu and M. J. Kieliszewski, J. Biol. Chem. 2010, 285, 24575-24583.
[60] a) W. Sun, M. J. Kieliszewski and A. M. Showalter, Plant J. 2004, 40, 870-881; b) M. Gao, M. J. Kieliszewski, D. T. A. Lamport and A. M. Showalter, Plant J. 1999, 18, 43-55.
[61] H. Motose, M. Sugiyama and H. Fukuda, Nature 2004, 429, 873-878.
[62] H. Fukuda, Nat. Rev. Mol. Cell Biol. 2004, 5, 379-391.
[63] A. Y. Cheung, H. Wang and H.-m. Wu, Cell 1995, 82, 383-393.
[64] C. P. MacMillan, S. D. Mansfield, Z. H. Stachurski, R. Evans and S. G. Southerton, Plant J. 2010, 62, 689-703.
[65] H. Shi, Y. Kim, Y. Guo, B. Stevenson and J.-K. Zhu, Plant Cell 2003, 15, 19-32.
[66] a) Y. Gaspar, K. Johnson, J. McKenna, A. Bacic and C. Schultz, Plant Mol. Biol. 2001, 47, 161-176; b) J. Nam, K. S. Mysore, C. Zheng, M. K. Knue, A. G. Matthysse and S. B. Gelvin, Molecular and General Genetics MGG 1999, 261, 429-438.
[67] K. G. Ramawat, J. M. Merillon and A. Pal in Arabinogalactan Protein and Arabinogalactan: Biomolecules with Biotechnological and Therapeutic Potential, Springer Berlin Heidelberg, 2008, pp. 255-270.
[68] H. Wagner, H. Yamada and H. Kiyohara in Complement-activating polysaccharides from medicinal herbs, Vol. Birkhaouser Basel, 1999, pp. 161-202.
[69] M. JosÈ and P. PuigdomÈNech, New Phytol. 1993, 125, 259-282.
[70] R. Balestrini, C. Romera, P. Puigdomenech and P. Bonfante, Planta 1994, 195, 201-209.
[71] a) D. J. Bradley, P. Kjellbom and C. J. Lamb, Cell 1992, 70, 21-30; b) L. F. Brisson, R. Tenhaken and C. Lamb, Plant Cell 1994, 6, 1703-1712.
[72] Y. Matsubayashi and Y. Sakagami, Annu. Rev. Plant Biol. 2006, 57, 649-674.
[73] a) W. J. Wedemeyer, E. Welker and H. A. Scheraga, Biochemistry 2002, 41, 1463714644; b) I. K. Song and Y. K. Kang, J. Phys. Chem. B 2006, 110, 1915-1927; c) R. L. Stein, J. T. E. F. M. R. D. S. E. C.B. Anfinsen and L. George in Mechanism of Enzymatic and Nonenzymatic Prolyl Cis-Trans Isomerization, Volume 44 Academic Press, 1993, pp. 1-24.
[74] M. P. Hinderaker and R. T. Raines, Protein Sci. 2003, 12, 1188-1194.
[75] S. V. S. Mariappan and D. L. Rabenstein, J. Org. Chem. 1992, 57, 6675-6678.
[76] D. Kern, M. Schutkowski and T. r. Drakenberg, J. Am. Chem. Soc. 1997, 119, 84038408.
[77] G. Scherer, M. L. Kramer, M. Schutkowski, U. Reimer and G. Fischer, J. Am. Chem. Soc. 1998, 120, 5568-5574.
[78] C. Schiene, U. Reimer, M. Schutkowski and G. Fischer, FEBS Letters 1998, 432, 202206.
[79] C. Dugave and L. Demange, Chem. Rev. 2003, 103, 2475-2532.
[80] H. A. Lester, M. I. Dibas, D. S. Dahan, J. F. Leite and D. A. Dougherty, Tr. Neurosci. 2004, 27, 329-336.
[81] S. C. R. Lummis, D. L. Beene, L. W. Lee, H. A. Lester, R. W. Broadhurst and D. A. Dougherty, Nature 2005, 438, 248-252.
[82] N. W. Owens, A. Lee, K. Marat and F. Schweizer, Chemistry 2009, 15, 10649-10657.
[83] T. Peters and B. M. Pinto, Curr. Opin. Struct. Biol. 1996, 6, 710-720.
[84] T. Weimar, S. L. Harris, J. B. Pitner, K. Bock and B. M. Pinto, Biochemistry 1995, 34, 13672-13681.
[85] J. N. Shoolery, Progress in Nuclear Magnetic Resonance Spectroscopy 1977, 11, 79-93.
[86] V. Mazzoni, P. Bradesi, F. Tomi and J. Casanova, Magnetic Resonance in Chemistry 1997, 35, S81-S90.
[87] Z. Xia, L. G. Akim and D. S. Argyropoulos, J. Agri. Food Chem. 2001, 49, 3573-3578.
[88] a) Q. Sui, D. Borchardt and D. L. Rabenstein, J. Am. Chem. Soc. 2007, 129, 1204212048; b) T. J. Williams, A. D. Kershaw, V. Li and X. Wu, J. Chem. Edu. 2011, 88, 665-669.
[89] N. L. Alicea-Velazquez and T. J. Boggon, Curr. Drug Targets 2011, 12, 546-555.
[90] C. Callicott, J. M. Thomas and A. W. Goode, Physics in Medicine and Biology 1999, 44, 1147.
[91] J. R. Alger and J. H. Prestegard, J. Mag. Reson. (1969) 1977, 27, 137-141.
[92] S. V. Santhana Mariappan and D. L. Rabenstein, J. Mag. Reson. (1969) 1992, 100, 183188.
[93] H. M. McConnell, J. Chem. Phys. 1958, 28, 430-431.
[94] a) L. E. Bretscher, C. L. Jenkins, K. M. Taylor, M. L. DeRider and R. T. Raines, J. Am. Chem. Soc. 2001, 123, 777-778; b) E. S. Eberhardt, N. Panasik and R. T. Raines, J. Am. Chem. Soc. 1996, 118, 12261-12266; c) M. L. DeRider, S. J. Wilkens, M. J. Waddell, L. E. Bretscher, F. Weinhold, R. T. Raines and J. L. Markley, J. Am. Chem. Soc. 2002, 124, 24972505; d) L.-S. Sonntag, S. Schweizer, C. Ochsenfeld and H. Wennemers, J. Am. Chem. Soc. 2006, 128, 14697-14703.
[95] E. Beausoleil, R. Sharma, S. W. Michnick and W. D. Lubell, J. Org. Chem. 1998, 63, 6572-6578.
[96] S. Kaeothip, A. Ishiwata, T. Ito, S. Fushinobu, K. Fujita and Y. Ito, Carbohydr. Res. 2013, 382, 95-100.
[97] A. Lesarri, E. J. Cocinero, J. C. López and J. L. Alonso, J. Am. Chem. Soc. 2005, 127, 2572-2579.
[98] C. M. Taylor, R. HardrÃ® and P. J. B. Edwards, J. Org. Chem. 2005, 70, 1306-1315.
[99] H. Friebolin in Basic One- and Two-Dimensional NMR Spectroscopy, Wiley-VCH, Newyork, 2010.
[100] N. W. Owens, C. Braun, J. D. O'Neil, K. Marat and F. Schweizer, J. Am. Chem. Soc. 2007, 129, 11670-11671.
[101] a) N. Shamala, T. N. G. Row and K. Venkatesan, Acta Crystallographica Section B 1976, 32, 3267-3270; b) C. L. Jenkins, A. I. McCloskey, I. A. Guzei, E. S. Eberhardt and R. T. Raines, Peptide Sci. 2005, 80, 1-8.
[102] Z. Zhou, R. KÃ¹/4mmerle, X. Qiu, D. Redwine, R. Cong, A. Taha, D. Baugh and B. Winniford, J. Mag. Reson. 2007, 187, 225-233.
[103] M. D. Shoulders, F. W. Kotch, A. Choudhary, I. A. Guzei and R. T. Raines, J. Am. Chem. Soc. 2010, 132, 10857-10865.
[104] D. Motooka, K. Kawahara, S. Nakamura, M. Doi, Y. Nishi, Y. Nishiuchi, Y. K. Kang, T. Nakazawa, S. Uchiyama, T. Yoshida, T. Ohkubo and Y. Kobayashi, Peptide Sci. 2012, 98, 111-121.
[105] R. Léonard, N. Wopfner, M. Pabst, J. Stadlmann, B. O. Petersen, J. Ø. Duus, M. Himly, C. Radauer, G. Gadermaier, E. Razzazi-Fazeli, F. Ferreira and F. Altmann, J. Biol. Chem. 2010, 285, 27192-27200.
[106] a) T. V. Burjanadze, Biopolymers 1992, 32, 941-949; b) K. Keskiaho, R. Hieta, R. Sormunen and J. Myllyharju, Plant Cell 2007, 19, 256-269; c) R. Improta, C. Benzi and V. Barone, J. Am. Chem. Soc. 2001, 123, 12568-12577.
[107] R. Z. Kramer, L. Vitagliano, J. Bella, R. Berisio, L. Mazzarella, B. Brodsky, A. Zagari and H. M. Berman, J. Mol. Biol. 1998, 280, 623-638.
[108] J.-C. Horng and R. T. Raines, Protein Sci. 2006, 15, 74-83.
[109] L. Pauling in The Nature of the Chemical Bond, Vol. 1 Cornell University Press, Ithaca, United States 1960.
[110] D. L. Smith, D. A. Starrett and K. C. Gross, Plant Physiol. 1998, 117, 417-423.
[111] a) M. R. Wormald and R. A. Dwek, Structure 1999, 7, R155-R160; b) K. D. White, R. D. Cummings and F. J. Waxman, J. Immunol. 1997, 158, 426-435.
[112] C. Grathwohl and K. Wüthrich, Biopolymers 1981, 20, 2623-2633.
[113] B. Mukhopadhyay and R. A. Field, Carbohydr. Res. 2004, 339, 1285-1291.

APPENDICES

NMR Data with Mass Reports

SpinWorks 3: 2,3,5 Tri-O-benzoyl-arab-f-1-thiocresol

file: ...ocuments\NMR data\MVR-2-120A\1\fid expt: <zg30> transmitter freq.: 500.133069 MHz
time domain size: 65536 points
width: $10330.58 \mathrm{~Hz}=20.6557 \mathrm{ppm}=0.157632 \mathrm{~Hz} / \mathrm{pt}$ number of scans: 64
freq. of $0 \mathrm{ppm}: 500.130025 \mathrm{MHz}$
processed size: 65536 complex points LB: 0.300 GF: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 140.253 \mathrm{ppm} / \mathrm{cm}: 0.28043$

SpinWorks 3: 2,3,5 Tri-O-benzoyl-arab-f-1-thiocresol

SpinWorks 3: 2,3,5 Tri-O-Benzyl-arab-f-1-thiocresol

SpinWorks 3: 2,3,5 Tri-0-Benzyl-arab-f-1-thiocresol

file: ...ocuments\NMR dsta\MVR-2-120B\2\fid expt: <zgpg30>
transmitter freq.: 125.770364 MHz
time domsin size: 65536 points
wiath: $29761.90 \mathrm{~Hz}=236.6369 \mathrm{ppm}=0.454131 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 1024
freq. of $0 \mathrm{ppm}: 125.757769 \mathrm{MHz}$
processed size: 32768 complex points
LB: 1.000 GF: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 796.798 \mathrm{ppm} / \mathrm{cm}: 6.33534$

SpinWorks 3: 2,3,5 Tri-O-Benzyl-arab-f-alpha-Nfmoc-TransHyp-OMe

SpinWorks 3: 2,3,5 Tri-O-benzyl-arab-f-beta-NFmoc-TransHyp-OMe

SbinWorks 3: 2.3.5 Tri-O-benzvl-arab-f-albha-NFmoc-cishvo-OMe
PROTON CDCI3 C: \schweiz

(1)

file: ...a-tobeincluded\MVR-2-101C-CAl1\fid _exnt: $\leq z a 30>$ transmitter freq.: 500.133089 MHz
time domain size: 65536 points
width: $10330.58 \mathrm{~Hz}=20.6557 \mathrm{ppm}=0.157632 \mathrm{~Hz} / \mathrm{pt}$ number of scans: 16
freq of $0 \mathrm{ppm}: 500.130025 \mathrm{MHz}$
processed size: 65536 complex points
LB: 0.000 GF: 0.0000
Hz/cm: $142.875 \mathrm{ppm} / \mathrm{cm}: 0.28567$

file: ...dsta-tobeincludedVMVR-2-100A\1才fid expt: <zg30>
transmitter freq.: 500.133059 MHz
time domain size: 65536 points
wiath: $10330.56 \mathrm{~Hz}=20.6557 \mathrm{ppm}=0.157632 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 16
freq. of $0 \mathrm{ppm}: 500.130025 \mathrm{MHz}$
processed size: 65536 complex points
LB: 0.300 GF: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 116.332 \mathrm{ppm} / \mathrm{cm}: 0.23260$

SpinWorks 3: 2,3,5 Tri-O-benzyl-arab-f-beta-TransHyp-OMe
(
file: ... data-tobeincluded\MVR-2-99A\1才fid expt: <zg30>
transmitter freq.: 500.133069 MHz
time domsin size: 65536 points
width: $10330.56 \mathrm{~Hz}=20.6557 \mathrm{ppm}=0.157632 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 16
freq. of 0 ppm: 500.130025 MHz
processed size: 65536 complex points
LB: 0.300 GF: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 115.021 \mathrm{ppm} / \mathrm{cm}: 0.22996$

file: ... data-tobeincluded\MVR-2-99A\2\fid expt: <zgp930>	freq. of 0 ppm: 125.757789 MHz
transmitter freq.: 125.770364 MHz	processed size: 32768 complex points
time domain size: 65536 points	LB: 1.000 GF: 0.0000
width: $29761.90 \mathrm{~Hz}=236.6369 \mathrm{ppm}=0.454131 \mathrm{~Hz} / \mathrm{pt}$	$\mathrm{Hz} / \mathrm{cm}: 1190.476$ ppm/cm: 9.46547
number of scans: 128	

wiath: $29761.90 \mathrm{~Hz}=236.6369 \mathrm{ppm}=0.454131 \mathrm{~Hz} / \mathrm{pt}$

SpinWorks 3: 2,3,5 Tri-O-benzyl-arab-f-beta-NAc-cishyp-OMe

file: ... data-tobeincluded\MVR-2-99B\1\fid expt: <za30> transmitter freq.: 500.133089 MHz
time domain size: 65536 points
width: $10330.58 \mathrm{~Hz}=20.6557 \mathrm{ppm}=0.157632 \mathrm{~Hz} / \mathrm{pt}$ number of scans: 16
freq. of 0 ppm: 500.130025 MHz
processed size: 65536 complex points
LB: 0.000 GF: 0.0000
Hz/cm: $137.222 \mathrm{ppm} / \mathrm{cm}: 0.27437$

SpinWorks 3: 2,3,5 triol-arab-f-NAc-TransHyp-alpha-OMe anomer1

file: ...pha-arabinose-mvr-2-734yprotonyfid expt: <xg30;
tranemitter freq.: 500.133059 MHz
time domain size: 65535 points
width: $10330.56 \mathrm{~Hz}=20.6557 \mathrm{ppm}=0.157632 \mathrm{~Hz} / \mathrm{pt}$
number of sans: 32
freq. of 0 ppm: 500.130000 MHz
procesend cize: 65536 complex pointe
6: 0.300 GF: 0.0000
$\mathrm{Hz} / \mathrm{cm}=55.201 \mathrm{PPm} / \mathrm{m}=0.17036$

SpinWorks 3: 2,3,5 triol-arab-f-beta-TransHyp-OMe

file: ...arabinose-MVR-2-92A\MVR-2-92\1\fid expt: <zg30>
transmitter freq.: 500.133069 MHz
time domain size: 65536 points
wiath: $10330.58 \mathrm{~Hz}=20.6557 \mathrm{ppm}=0.157632 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 32
freq. of $0 \mathrm{ppm}: 500.130000 \mathrm{MHz}$
processed size: 65536 complex points
LB: 0.300 GF: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 92.410 \mathrm{ppm} / \mathrm{cm}: 0.18477$

file: ... documents 1 NMR data\MVR-2-95\1\fid expt: <zg30>
transmitter freq.: 500.133069 MHz
time domain size: 65536 points
width: $10330.58 \mathrm{~Hz}=20.6557 \mathrm{ppm}=0.157632 \mathrm{~Hz} / \mathrm{pt}$ number of scans: 64
req. of $0 \mathrm{ppm}: 500.130000 \mathrm{MHz}$
processed size: 65536 complex points
LB: 0.300 GF: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 75.370 \mathrm{ppm} / \mathrm{cm}: 0.15070$

Scan 13 from c:lchemistry personallscweizerlvenkaralmvr-2-120a.xms

Spectrum from ...mistry personallscweizerlvenkaralmvr-2-120a.xms Scan No: 13, Time: 0.179 minutes
No averaging. Not background corrected.
No averaging. Not background corrected
Comment: 0.179 min . Scan: 13 100:1500 Ion: 1092 us RIC: $4.400 \mathrm{e}+7$
Pair Count: 8 MW: 0 Formula: None
CAS No: None Acquired Range: 99.5-1500.5 m/z
Method Time: 0.00-0.36, Centroid, Electrospray
Seg 1, Time: 0.00-0.36, Scan Functions: 1

1. $100: 1500$ 100:1500|ESI Standard $80.0[\mathrm{~V}]$ Full

Product Mass Range: $99.5-1500.5 \mathrm{~m} / \mathrm{z}$
can Mass Segment 1: $99.5-399.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 2: 399.5-1000.5 m/z
Scan Mass Segment 3: $1000.5-1500.5 \mathrm{~m} / \mathrm{z}$

	Ion	Int	Norm	Ton	Int	Norm	Ion	Int	Norm	Ion	In	t Norm
\|	531.3	347812	159	592.5	1.330e+6	607	643.5	382891	175	758.1	39529	9180
।	591.3	$2.191 \mathrm{e}+6$	999	605.6	352454	161	649.8	393565	179	830.9	39373	9180

$\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~S}$
Mol. Wt.: 568.64

2,3,5-Tri-O-benzoyl-arab-f-1-thiocresol

Scan 14 from c:Ichemistry personallscweizerlvenkaralmvr-2-120b.xms

Spectrum from ...mistry personallscweizerlvenkaralmvr-2-120b.xms

Scan No: 14, Time: 0.193 minutes
No averaging. Not background corrected. 726 us RIC: $6.893 \mathrm{e}+7$
Pair Count: 8 MW: 0 Formula: None
CAS No: None Acquired Range: $99.5-1500.5 \mathrm{~m} / \mathrm{z}$
Method Time. 0.00-0.42, Centroid, Electrospray
Seg 1, Time: 0.00-0.42, Scan Functions: 1

1. 100:1500 100:1500|ESI Standard 80.0[V] Full

Product Mass Range: $99.5-1500.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 1: $99.5-399.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 2: $399.5-1000.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 3: $1000.5-1500.5 \mathrm{~m} / \mathrm{z}$

Ion	Int	rm	Ion	Int	Norm	Ion	Int	Norm	n	Int Norm.
549.6	$3.079 \mathrm{e}+6$	999	551.5	529206	172	604.3	641661	208	846.9	$1.101 \mathrm{e}+6357$
50.6	. $517 \mathrm{e}+6$	92	554.	63741	207	846.	. 503 e	488	847	666750216

$\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~S}$
Mol. Wt.: 526.69
2,3,5-Tri-O-benzyl-arab-f-1-thiocresol

Scan 14 from c:\chemistry personallscweizerlmurthylmvr-1-142a.xms

Spectrum from ...emistry personallscweizerlmurthylmur-1-142a.xms
Scan No: 14, Time: 0.129 minutes
No averaging. Not background corrected. 870 us RIC 2606 e +7
Comment: 0.129 min. Scan: 14 100:1000
CAS No: None Acquired Range: $99.5-1000.5 \mathrm{~m} / \mathrm{z}$
Method Time: 0.00-0.48, Centroid, Electrospray
Seg 1, Time: 0.00-0.48, Scan Functions: 1

1. 100:1000 100:1000|ESI Standard 80.0[V] Full

Product Mass Range: $99.5-1000.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 1: $99.5-399.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 2: 399.5-1000.5 m/z

2,3,5 Tri-O-Benzyl-arab-f-Fmoc-Trans-alpha-Hyp-OMe
$\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{NO}_{9}$
$\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{NO}_{9}$
Mol. Wt.: 769.88

NMR Code: MVR-2-101A-TA

Scan 17 from c:lchemistry personallscweizerlmurthylmvr-1-142b.xms

Spectrum from emistry personallscweizerlmurthylmvr-1-142b.xms
Scan No: 17, Time: 0.159 minutes
No averaging. Not background corrected.
Comment: 0.159 min. Scan: 17 100:1000 Ion: 756 us RIC: $3.109 e+7$
Pair Count: 5 MW: 0 Formula: None
CAS No: None Acquired Range: $99.5-1000.5 \mathrm{~m} / \mathrm{z}$
Method Time: 0.00-0.26, Centroid, Electrospray
Seg 1, Time: $0.00-0.26$, Scan Functions: 1

1. 100:1000 100:1000|ESI Standard 80.0[V] Full

Product Mass Range: 99.5-1000.5 m/z
Scan Mass Segment 1: $99.5-399.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 2: 399.5-1000.5 m/z

合Bn

Fmoc
2,3,5 Tri-O-Benzyl-arab-f-Fmoc-Trans-beta-Hyp-OMe

NMR Code: MVR-2-101B-TB

Scan 11 from c:Ichemistry personallscweizerlvenkaralmvr-2-120c.xms

Spectrum from ...mistry personallscweizerlvenkaralmvr-2-120c.xms Scan No: 11, Time: 0.149 minutes
No averaging. Not background corrected.
Comment: 0.149 min . Scan: 11 100:1500 Ion: 877 us RIC: $4.716 \mathrm{e}+7$
Pair Count: 2 MW: 0 Formula: None
CAS No: None Acquired Range: 99.5-1500.5 m/z
Method Time: 0.00-0.18, Centroid, Electrospray
Seg 1, Time: 0.00-0.18, Scan Functions: 1

1. 100:1500 100:1500|ESI Standard 80 O[V Full

Product Mass Range 99.5-1500. $5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 1: 99.5-399.5 m/z
Scan Mass Segment 2: 399.5-1000.5 m/z Scan Mass Segment 3: $1000.5-1500.5 \mathrm{~m} / \mathrm{z}$
Ion Int Norm Ion Int Norm
Ion
Int Norm
Ion
$792.9 \quad 9.265 \mathrm{e}+6999 \quad 793.9 \quad 3.837 \mathrm{e}+6414$
int Norm

2,3,5 Tri-O-Benzyl-arab-f-Fmoc-Cis-alpha-hyp-OMe
$\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{NO}_{9}$
Mol. Wt.: 769.88
NMR Code: MVR-2-101C-CA

Scan 13 from c:Ichemistry personallscweizer\murthylmr-2-120e.xms

Spectrum from ...hemistry personallscweizerlmurthylmr-2-120e.xms
Scan No: 13, Time: 0.178 minute
No averaging. Not background corrected
Comment: 0.178 min. Scan: $13100: 1500$ Ion: 609 us RIC: $5.994 \mathrm{e}+7$
Pair Count: 3 MW: 0 Formula: None
CAS No: None Acquired Range: $99.5-1500.5 \mathrm{~m} / \mathrm{z}$
Method Time: $0.00-0.25$, Centroid, Electrospray
Seg 1, Time: $0.00-0.25$, Scan Functions 1

1. 100:1500 100:1500|ESI Standard 80.0[V] Full

Product Mass Range: $99.5-1500.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 1: 99.5-399. $5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 2 $399.5-1000.5 \mathrm{~m} / \mathrm{z}$ Scan Mass Segment 3: $1000.5-1500.5 \mathrm{~m} / \mathrm{z}$

Ion	Int Norm								
793.0	$1.453 \mathrm{e}+7$	999	794.0	$7.310 \mathrm{e}+6$	503	795.0	$2.455 \mathrm{e}+6$	169 \|	

2,3,5 Tri-O-Benzyl-arab-f-Fmoc-Cis-beta-hyp-OMe

NMR Code: MVR-2-101C-CB

Scan 56 from c:lchemistry personallscweizerlvenkaralmvr-1-96b.xms

Spectrum from ...emistry personallscweizerivenkaralmvr-1-96b.xms
Scan No: 56, Time: 0.942 minutes
3 points averaged. Not background corrected.
Comment: 0.942 min. Scans: $55-57100: 2000$ Ion: 1303 us RIC: $3.764 e^{+7}$ Pair Count: 11 MW: 0 Formula: None
CAS No: None Acquired Range: $99.5-2000.5 \mathrm{~m} / \mathrm{z}$
Method Time: 0.00-3.19, Centroid, Electrospray Seg 1, Time: 0.00-3.19, Scan Functions: 1

1. 100:2000 100:2000|ESI Standard 80 OM Full
ranc Mass Range: $99.5-2000.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segmel2. $399.5-1000.5$
Can Me 13: $1000.5-2000.5 \mathrm{~m}$

Ion	Int	Norm									
181.2	166441	22	599.5	349842	46	613.5	$2.803 \mathrm{e}+6$	370	637.4	207986	27
330.4	347180	46	600.5	293336	39	614.5	495341	65 ।	802.4	195618	26
365.3	221927	29	612.5	$7.564 e+6$	999	615.5	167580	22 \|			

$\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NO}_{8}$
Mol. Wt.: 589.68

NMR Code: MVR-2-99B

Scan 12 from c:Ichemistry personallscweizerlvenkaralmvr-1-96a.xms

Spectrum from ...emistry personallscweizerlvenkaraimvr-1-96a.xms
Scan No: 12, Time: 0.189 minutes
3 points averaged. Not background corrected
comment: 0.189 min. Scans: $11-13$ 100:2000 Ion: 1282 us RIC $3.308 \mathrm{e}+7$
Pair Count: 4 MW: 0 Formula: None
CAS No: None Acquired Range: $99.5-2000.5 \mathrm{~m} / \mathrm{z}$
Method Time: $0.00-0.26$, Centroid, Electrospray
Seg 1, Time: 0.00-0.26, Scan Functions: 1

1. 100:2000 100:2000|ESI Standard 80.0[V] Full

Product Mass Range: $99.5-2000.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 1: $99.5-399.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 2: $399.5-1000.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 3: $1000.5-2000.5 \mathrm{~m} / \mathrm{z}$

$$
\begin{array}{rrrrrrrrr}
\text { Ion } & \text { Int Norm } & \text { Ion } & \text { Int Norm } & \text { Ion } & \text { Int Norm } & \text { Ion } & \text { Int Norm } \\
\mid & 612.6 & 1.020 \mathrm{e}+7 & 999 & 613.5 & 3.795 \mathrm{e}+6 & 372 \mid & 614.5 & 856473 \\
\hline
\end{array}
$$

NMR Code: MVR-2-99A

Scan 24 from c:Ichemistry personallscweizerlmurthylmvr-1-144b.xms

Spectrum from ...emistry personallscweizerlmurthylmur-1-144b.xms
Scan No: 24, Time: 0.349 minutes
5 points averaged. Not background corrected.
Comment: 0.349 min . Scans: 22-26 100:1000 Ion: 1447 us RIC: $1.625 \mathrm{e}+7$
Pair Count: 3 MW: 0 Formula: None
CAS No: None Acquired Range: 99.5-1000.5 m/2
Method Time: 0.00-0.66, Centroid, Electrospray
Seg 1, Time: $0.00-0.66$, Scan Functions: 1

1. 100:1000 100:1000|ESI Standard 80.01VI Full

Product Mass Range: 99.5-1000.5 m/z
Scan Mass Segment 1: 99.5-399.5 m/z
Scan Mass Segment 2: 399.5-1000.5 m/z
Ion Int Norm Ion Int Norm
101
Int Norm 756245218 |
2,3,5 Tri-O-Benzyl-arab-f-Fmoc-Cis-alpha-hyp-OMe

$\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NO}_{8}$
Mol. Wt.: 589.68

NMR Code: MVR-2-100B

Scan 65 from c:Ichemistry personallscweizerlmurthylmvr-1-147a.xms

Spectrum from ..emistry personallscweizerlmurthylmvr-1-147a.xms
Scan No: 65, Time: 0.677 minutes
5 points averaged. Not background corrected
Comment: 0.677 min . Scans: $63-67$ 100:1000 Ion: 1373 us RIC: $1.591 \mathrm{e}+7$
Pair Count: 3 MW: 0 Formula: None
CAS No: None Acquired Range: 99.5-1000.5 m/z
Method Time: 0.00-0.92, Centroid, Electrospray
Seg 1, Time: 0.00-0.92, Scan Functions: 1

1. 100:1000 100:1000|ESI Standard 80.0[V] Full
roduct Mass Range: $99.5-1000.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 1: $99.5-399.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 2: 399.5-1000.5 m/z
Ion Int Norn
Ion
613.4
Int Norm
Ion
Int Norm
710596232 |

2,3,5 Tri-O-Benzyl-arab-f-Fmoc-Cis-beta-hyp-OMe

NMR Code: MVR-2-100A

Spectrum from ...emistry personallscweizerlvenkaralmvr-2-150.xms
Scan No: 12, Time: 0.093 minutes
3 points averaged. Not background corrected
Comment: 0.093 min. Scans: 11-13 100:600 Ion: 207 us RIC: 1.069e+8
Pair Count: 1 MW: 0 Formula: None
CAS No: None Acquired Range: $99.5-600.5 \mathrm{~m} / \mathrm{z}$
Method Time: 0.00-0.19 Centroid, Electrospray
Seg 1, Time: 0.00-0.19, Scan Functions: 1
Seg 1, Time: 0.00-0.19, Scan Functions: 1

1. 100:600 100:600|ESI Standard 80.0[V] Full
Product Mass Range: $99.5-600.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 1: $99.5-399.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 2: $399.5-600.5 \mathrm{~m} / \mathrm{z}$

trans-4-O-(α-L-Arabinofuranosyl)-N-Acetyl-4-hydroxy L-Proline methyl ester

NMR Code: MVR-2-73A

Spectrum from ...emistry personallscweizerlvenkaralmvr-2-151.xms
Scan No: 22, Time: 0.214 minutes
3 points averaged. Not background corrected.
Comment: 0.214 min . Scans: 21-23 100:600 Ion: 474 us RIC: $3.264 \mathrm{e}+7$
Pair Count: 2 MW: 0 Formula: None
CAS No: None Acquired Range: 99.5-600.5 m/z
Method Time: 0.00-0.64, Centroid, Electrospray
Seg 1, Time: 0.00-0.64, Scan Functions: 1

1. 100:600 100:600|ESI Standard 80.0[V] Full Product Mass Range: $99.5-600.5 \mathrm{~m} / \mathrm{z}$ Scan Mass Segment 1: $99.5-399.5 \mathrm{~m} / \mathrm{z}$ Scan Mass Segment 2: $399.5-600.5 \mathrm{~m} / \mathrm{z}$

| Ion Int Norm Ion Int Norm | | | |
| ---: | ---: | ---: | ---: | ---: |
| 342.4 | $4.005 e+6$ | 999 | |

1342.4 4.005e+6 $999 \mid 345.4$
$1.392 \mathrm{e}+6347$

trans-4-O-(β-L-Arabinofuranosyl)-N-Acetyl-4-hydroxy L-Proline methyl ester

Int Norm

$$
\begin{gathered}
\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{8} \\
\text { Mol. Wt.: } 319.31
\end{gathered}
$$

NMR Code: MVR-2-92

Spectrum from ...hemistry personallscweizerlmurthylmvr-2-152.xms
Scan No: 24, Time: 0.194 minutes
3 points averaged. Not background corrected.
Comment: 0.194 min. Scans: 23-25 100:600 Ion: 237 us RIC: 9.089e+7 Pair Count: 2 MW: 0 Formula: None CAS No: None Acquired Range: $99.5-600.5 \mathrm{~m} / \mathrm{z}$

Method Time: 0.00-0.41, Centroid, Electrospray
Seg 1, Time: 0.00-0.41, Scan Functions: 1

1. 100:600 100:600|ESI Standard 80.0[V] Full

Product Mass Range: $99.5-600.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 1: $99.5-399.5 \mathrm{~m} / \mathrm{z}$
Scan Mass Segment 2: $399.5-600.5 \mathrm{~m} / \mathrm{z}$

Ion	Int Norm	Ion	Int Norm	Ion	Int Norm	Ion
342.4	$4.198 \mathrm{e}+7$	999	343.4	$5.320 \mathrm{e}+6$	127	

cis-4-O-(α-L-Arabinofuranosyl)-N-Acetyl-4-hydroxy L-Proline methyl ester
Int Norm $\quad \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{8}$
$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{8}$
Mol. Wt.: 319.31

NMR Code: MVR-2-73C

Spectrum from ...emistry personallscweizerlvenkaralmvr-2-153.xms
Scan No: 17, Time: 0.135 minutes
3 points averaged. Not background corrected.
Comment: 0.135 min . Scans: 16-18 100:600 Ion: 536 us RIC: $3.534 \mathrm{e}+7$
Pair Count: 1 MW: 0 Formula: None
CAS No: None Acquired Range: $99.5-600.5 \mathrm{~m} / \mathrm{z}$
Method Time: $0.00-0.28$, Centroid, Electrospray
Seg 1, Time: 0.00-0.28, Scan Functions: 1

1. 100:600 100:600|ESI Standard 80.0[V] Full

Product Mass Range: $99.5-600.5 \mathrm{~m} / \mathrm{z}$

Scan Mass Segment 1: 99.5-399.5 m/z
Scan Mass Segment 2: 399.5-600.5 m/z

NMR Code: MVR-2-95

cis-4-O-(β-L-Arabinofuranosyl)-N-Acetyl-4-hydroxy L-Proline methyl ester
$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{8}$
Mol. Wt.: 319.31

Nuclear Overhauser Experiments (NOE) Spectra

file: ...șCis-alpha-arabinose-NOe-1H\2\fid expt: <selnogp transmitter freq.: 500.133089 MHz
time domain size: 65536 points
freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000

file: ...eshCis-bete-arabinose-NOe-1H\1\fid expt: <zg30>
transmitter freq.: 500.133089 MHz
time domain size: 65536 points
freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000

SpinWorks 3: Cis-beta

SpinWorks 3: Trans-alpha-arabinose-NOe-1H

SpinWorks 3: Trans-beta-arabinose-NOe-1H-a

file: ...rans-beta-arabinose-NOe-1H-a\2\fid expt: <selnogp> transmitter freq.: 500.133089 MHz
time domain size: 65536 points
width: $10330.58 \mathrm{~Hz}=20.6557 \mathrm{ppm}=0.157632 \mathrm{~Hz} / \mathrm{pt}$
freq. of 0 ppm : 500.130000 MHz
processed size: 65536 complex points
LB: 0.300 GF: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 79.958 \mathrm{ppm} / \mathrm{cm}: 0.15987$

3J Coupling Constants by
NUMMRIT Method(NMR)

Compound 7a

Paramaters to vary:

$\#$	param.
1	$\vee[1]$
2	$\vee[3]$
3	$j[1][2]$
4	$j[1][3]$
5	$j[2][3]$
6	$j[3][4]$

range low	range hi
1665.358	2806.843
778.465	1347.931
6.191	10.318
6.308	10.513
-10.254	-17.091
3.634	6.057

Parameter					map:
0	0	0	0		
1	1	0	0		
2	3	0	0		
3	1	2	0		
4	1	3	0		
5	2	3	0		
6	3	4	0		

Reading assigned transitions
15 assigned transitions read
4 frequencies with no assignments read
observed transitions read $=\quad 19$
Total asigned line numbers $=$
15
Basis functions generated, transition information:

> Species 1 , up to 56 transitions, intensity Total size of $u 3$ matrix $=70$ double words Total sixe of $E 3$ matrix $=16$ double words line obs. freq.

Page 1

*** SpinWorks simulation output, build 2008/10/11
time: 15:53:41
date: 11/29/13
*** Reading spin system from: C:\Users\murthy \backslash Desktop $\backslash n m r$-dta-compounds \Trans-beta-arabinose-MVR-2-92A\MVR-2-92\1\spin_system

Options:
Opimize shifts and couplings? = 1
Ignore bad transitions? = 1
Auto assign observed peaks? = 1
Maximum number of iterations? $=30$
RMS convergence limit $=\quad 0.020$
RMS below this for autoassign $=0.250$
Trans. freq. this * RMS ignored $=2.400$

Groups and chemical shifts:

\#	name shift	spins	species spin	sym		
1	alpha	2240.618	1	1	1	1
2	beta1	1257.000	1	1	1	1
3	beta2	1072.369	1	1	1	1
4	gam	2258.000	1	1	1	1

Scalar coupling constants:

$j[1,2]=$	$j[$ alpha, beta1 $]=$	8.490230
$j[1,3]=$	$j[$ alpha, beta2 $]=$	8.368170
$j[1,4]=$	$j[$ alpha, gam $=0.0000000$	-13.483640
$j[2,3]=$	$j[$ beta1, beta2] $=$	
$j[2,4]=$	j [beta1, gam $]=1.500000$	
$j[3,4]=$	$j[$ beta2, gam $]=4.753340$	

Dipolar coupling constants:

Paramaters to vary:
range low range hi

1	$v[1]$	1670.981	2816.577
2	$v[3]$	789.311	1365.403
3	$j[1][2]$	6.368	10.613
4	$j[1][3]$	6.276	10.460
5	$j[2][3]$	-10.113	-16.855
6	$j[3][4]$	3.565	5.942

Parameter map:
$0 \quad 0 \quad 0 \quad 0$
1100

2300
3120
$4 \quad 1 \quad 3 \quad 0$
$\begin{array}{llll}5 & 2 & 3 & 0\end{array}$
6340

Reading assigned transitions
11 assigned transitions read
Observed transitions read $=\quad 11$
Total asigned line numbers = 11
Basis functions generated, transition information:
Species 1, up to 56 transitions, intensity 32
Total size of U3 matrix $=70$ double words
Total sixe of E3 matrix = 16 double words
line
obs. freq. calc. freq diff.

1	1071.970	1071.921	0.048
6	1085.752	1085.405	0.347
9	2241.049	2240.710	0.339
11	1063.156	1063.551	-0.395
28	2248.741	2249.080	-0.339
29	2232.235	2232.222	0.012
39	1080.624	1080.656	-0.032
46	1059.149	1058.802	0.347
51	2240.568	2240.593	-0.025
54	2232.235	2232.222	0.012
56	1071.970	1072.285	-0.315
Largest absolute difference	$=$	0.395	
Total assigned intensity	$=$	11.018	
RMS deviation of transitions $=$ 0.38237			

```
*** Ignored 0 transitions
*** Transitions now assigned =
1 1
*** Iteration # 1, new parameters are:
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{v}[1]=\) & v[alpha] & 2240.618 change: & 0.0000 \\
\hline \(\mathrm{v}[2]=\) & \(v\) [beta1] & 1257.000 & \\
\hline \(v[3]=\) & \(\checkmark\) [beta2] & 1072.369 change: & 0.0000 \\
\hline \(v[4]=\) & v [gam] & 2258.000 & \\
\hline \(j[1][2]=\) & j[alpha][beta1] & 8.490 change: & -0.0000 \\
\hline j[1][3] = & j[alpha][beta2] & 8.368 change: & -0.0000 \\
\hline j[1][4] = & j[alpha][gam] & 0.000 & \\
\hline j[2][3] = & j[beta1][beta2] & -13.484 change: & -0.0000 \\
\hline \(j[2][4]=\) & j[beta1][gam] & 1.500 & \\
\hline j[3][4] = & j[beta2][gam] & 4.753 change: & -0.0000 \\
\hline
\end{tabular}
    Largest absolute difference = 0.395
    Total assigned intensity = 11.018
    RMS deviation of transitions = 0.38237
    Fractional change of RMS = -0.00000
*** Ignored 0 transitions
*** Transitions now assigned =
1 1
*** Iteration # 2, new parameters are:
\begin{tabular}{lllr}
\(v[1]=\) & \(v[\) alpha \(]\) & 2240.618 change: & 0.0000 \\
\(v[2]=\) & \(v[\) beta1] & 1257.000 & \\
\(v[3]=\) & \(v[\) beta2] & 1072.369 change: & 0.0000 \\
\(v[4]=\) & \(v[\) gam \(]\) & 2258.000 & \\
\(j[1][2]=\) & \(j\) [alpha][beta1] & 8.490 change: & -0.0000 \\
\(j[1][3]=\) & \(j\) [alpha][beta2] & 8.368 change: & 0.0000 \\
\(j[1][4]=\) & \(j\) [alpha][gam] & 0.000 & \\
\(j[2][3]=\) & \(j[\) beta1][beta2] & -13.484 change: & 0.0000 \\
\(j[2][4]=\) & \(j[\) beta1][gam] & 1.500 & \\
\(j[3][4]=\) & \(j[\) beta2][gam] & 4.753 change: & 0.0000
\end{tabular}
    Largest absolute difference = 0.395
    Total assigned intensity = 11.018
    RMS deviation of transitions = 0.38237
    Fractional change of RMS = 0.00000
```

*** Ignored 0 transitions

*** Ignored 0 transitions
*** Transitions now assigned = 11
*** Iteration \# 5, new parameters are:

```
*** Transitions now assigned =11
*** Iteration \# 3, new parameters are:
\begin{tabular}{|c|c|c|c|}
\hline v [1] \(=\) & v[alpha] & 2240.618 change: & 0.0000 \\
\hline \(v[2]=\) & \(\checkmark\) [beta1] & 1257.000 & \\
\hline \(v[3]=\) & v[beta2] & 1072.369 change: & -0.0000 \\
\hline \(v[4]=\) & \(\checkmark\) [gam] & 2258.000 & \\
\hline j[1][2] = & j[alpha][beta1] & 8.490 change: & -0.0000 \\
\hline j[1][3] = & j[alpha][beta2] & 8.368 change: & 0.0000 \\
\hline j[1][4] = & j[alpha][gam] & 0.000 & \\
\hline \(\mathrm{j}[2][3]=\) & j[beta1][beta2] & -13.484 change: & 0.0000 \\
\hline \(\mathrm{j}[2][4]=\) & j[beta1][gam] & 1.500 & \\
\hline \(\mathrm{j}[3][4]=\) & j[beta2][gam] & 4.753 change: & -0.0000 \\
\hline
\end{tabular}
Largest absolute difference \(=0.395\)
Total assigned intensity \(=11.018\)
RMS deviation of transitions \(=0.38237\)
Fractional change of RMS \(=-0.00000\)
```

$\left.\begin{array}{llcr}v[1]= & v[\text { alpha }] & 2240.618 & \text { change: }\end{array}\right)-0.0000$

0 transitions						
	Transit	ns now assigned $=$	11			
*** Iteration \# 6, new parameters are:						
	$v[1]=$	v [alpha]		2240.618	change:	0.0000
	$v[2]=$	\checkmark [beta1]		1257.000		
	$v[3]=$	v[beta2]		1072.369	change:	0.0000
	$\vee[4]=$	v[gam]	2258.000			
	$\mathrm{j}[1][2]=$	j[alpha][beta1]		8.490	change:	0.0000
	$j[1][3]=$	j[alpha][beta2]		8.368	change:	0.0000
	$\mathrm{j}[1][4]=$	j[alpha][gam]		0.000		
	$j[2][3]=$	j[beta1][beta2]		-13.484	change:	-0.0000
	$j[2][4]=$	j[beta1][gam]		1.500		
	$j[3][4]=$	j[beta2][gam]		4.753	change:	-0.0000
	Largest ab	lute difference	0.395			
	Total assi	ned intensity	11.018			
	RMS deviat	on of transitions	0.38237			
Fractional change of RMS $=0.00000$			0.00000			

*** Ignored 0 transitions
*** Transitions now assigned $=$
11
*** Iteration \# 7, new parameters are:

$\mathrm{v}[1]=$	v [alpha]	2240.618 change:	-0.0000
$\mathrm{v}[2]=$	$\mathrm{v}[$ beta1]	1257.000	
$\mathrm{v}[3]=$	v [beta2]	1072.369 change:	0.0000

$\left.\begin{array}{lllr}v[4]= & v[\text { gam }] & 2258.000 & \\ j[1][2]= & j[\text { alpha }] \text { [beta1] } & & 8.490 \text { change: }\end{array}\right)-0.0000$

*** Convergence achieved (Parameters not changing)
This could be due to insufficient assigned transitions in a second-order spectrum
*** After final iteration:
current iteration count $=8$ transitions now assigned $=\quad 11$ current RMS = 0.382374
*** Final parameters after 8 iterations are:
$\mathrm{v}[1]=\quad \mathrm{v}$ [alpha]
$2240.618 \mathrm{~Hz} .+/-$
0.1759 Hz .
$v[2]=\quad$ [beta1] 1257.000 Hz.

$v[3]=$	$v[$ beta2]	$1072.369 \mathrm{~Hz} .+/-$	0.1563 Hz.
$v[4]=$	$v[$ gam $]$	2258.000 Hz.	
$j[1][2]=$	j[alpha][beta1]	$8.490 \mathrm{~Hz} .+/-$	0.3523 Hz.
$j[1][3]=$	j[alpha][beta2]	$8.368 \mathrm{~Hz} .+/-$	0.2602 Hz.
$j[1][4]=$	j[alpha][gam]	0.000 Hz.	
$j[2][3]=$	j[beta1][beta2]	$-13.484 \mathrm{~Hz} .+/-$	0.3557 Hz.
$j[2][4]=$	j[beta1][gam]	1.500 Hz.	
$j[3][4]=$	j[beta2][gam]	$4.753 \mathrm{Hz}. . /-$	0.3562 Hz.

*** Parameter correlation coefficients:

1	1.000					
2	-0.000	1.000				
3	0.182	0.000	1.000			
4	0.123	-0.000	-0.126	1.000		
5	0.045	-0.000	-0.045	0.365	1.000	
6	-0.045	0.000	0.045	-0.365	-0.422	1.000

Transitions for isotopic species 1

46	1059.149	1058.802	0.347	0.91727
11	1063.156	1063.551	-0.395	0.92352
16		1067.172		0.93071
1	1071.970	1071.922	0.048	0.93713
56	1071.970	1072.285	-0.315	1.06047
32		1077.034		1.07007
39	1080.624	1080.656	-0.032	1.07552
6	1085.752	1085.405	0.347	1.08531
52		1245.490		1.06159
19		1246.994		1.06622
24		1253.977		1.07942
2		1255.481		1.08414
55		1258.973		0.91819
30		1260.477		0.91950
37		1267.460		0.93479
5		1268.964		0.93616
54	2232.235	2232.222	0.012	1.01482
29	2232.235	2232.222	0.012	1.01696
51	2240.568	2240.593	-0.025	1.00193
18		2240.593		1.00080
43		2240.710		0.99777
9	2241.049	2240.710	0.339	0.99912
28	2248.741	2249.080	-0.339	0.98625
3		2249.081		0.98235
53		2254.879		1.00652
35		2254.879		1.00451
42		2256.383		1.00315

13	2256.383	1.00185
50	2259.628	0.99695
22	2259.628	0.99803
27	2261.132	0.99261
4	2261.132	0.99638

32 transitions for species 1 written to plot file		
RMS deviation of	9 peaks grouped within $0.050 \mathrm{~Hz}=0.46981 \mathrm{~Hz}$	

```
*** Simulation normal exit ***
    Calculation time = 0 seconds
```

```
*** Spinworks simulation output, build 2008/10/11 sim_out.txt
    time: 15:19:17
    date: 11/26/13
*** Reading spin system from:
C:\nmrdata\temp\nmr-dta-compounds\MVR-2-73C-Cis-alpha-arabinose\1\spin_system ***
Options:
\begin{tabular}{lr} 
Opimize shifts and couplings? \(=\) & 1 \\
Ignore bad transitions? \(=\) & 1 \\
Auto assign observed peaks? \(=\) & 1 \\
Maximum number of iterations? \(=\) & 30 \\
RMS convergence limit = & 0.020 \\
RMS below this for autoassign \(=\) & 0.250 \\
Trans. freq. this * RMS ignored \(=\) & 2.400
\end{tabular}
Groups and chemical shifts:
```

$\#$	name	shift	spins	species spin	sym	
	alpha	2232.000	1	1	1	1
1	beta1	1231.600	1	1	1	1
2	beta2	1056.700	1	1	1	1
3	gam	2248.300	1	1	1	1

Scalar coupling constants:

Dipolar coupling constants:

Paramaters to vary:

$\#$	param.	range low	range hi
1	$v[1]$	1664.663	2805.563
2	$v[3]$	777.394	1346.094
3	$j[1][2]$	6.150	10.250
4	$j[1][3]$	6.300	10.500
5	$j[2][3]$	-10.275	-17.125
6	$j[3][4]$	3.600	6.000

Parameter map:

0	0	0	0
1	1	0	0
2	3	0	0
3	1	2	0
4	1	3	0
5	2	3	0
6	3	4	0

Reading assigned transitions
16 assigned transitions read

observed transitions read $=$	16
Total asigned line numbers $=$	16

Basis functions generated, transition information:
species 1 , up to 56 transitions, intensity 32
Total size of U3 matrix $=70$ double words
Total sixe of e3 matrix $=16$ double words
line obs. freq. calc. freq diff.
1
1056.415
1056.161
0.255

Page 1

Groups and chemical shifts:

$\#$	name	shift	spins	species spin	sym	
1	H-a	2291.000	1	1	1	1
2	$H-b 1$	1185.000	1	1	1	1
3	$H-b 2$	1161.000	1	1	1	1
4	$H-g$	2238.000	1	1	1	1

Scalar coupling constants:

1, 21	$j[\mathrm{H}-\mathrm{a}, \mathrm{H}-\mathrm{b} 1]$	9.200000
1, 3	$][\mathrm{H}-\mathrm{a}, \mathrm{H}-\mathrm{b} 2]$	3.100000
1, 4	$3[\mathrm{H}-\mathrm{a}, \mathrm{H}-\mathrm{g}]=$	0.000000
2, 3]	[$\mathrm{H}-\mathrm{b} 1, \mathrm{H}-\mathrm{b} 2]$	-13.500000
2, 4	[$\mathrm{H}-\mathrm{b1}, \mathrm{H}-\mathrm{g}]=$	4.500000
3, 4]	$\mathrm{j}[\mathrm{H}-\mathrm{b} 2, \mathrm{H}-\mathrm{g}]$	3.000000

Dipolar coupling constants:
Paramaters to vary:

$\#$	param.	range low	range hi
1	$\mathrm{~V}[1]$	1711.331	2875.281
2	$v[2]$	873.450	1506.750
3	$\vee[3]$	859.725	1469.625
4	$j[1][2]$	6.900	11.500
5	$][1][3]$	2.325	3.875
6	$j[2][3]$	-10.125	-16.875
7	$j[2][4]$	3.375	5.625
8	$j[3][4]$	2.250	3.750

Parameter			
0	0	0	
1	0	0	
1	1	0	0
2	2	0	0
3	3	0	0
4	1	2	0
5	1	3	0
6	2	3	0
7	2	4	0
8	3	4	0

Reading assigned transitions
24 assigned transitions read
$\begin{array}{ll}\text { observed transjtions read }= & 24 \\ \text { Total asigned line numbers }= & 24\end{array}$
Basis functions generated, transition information:
Species 1, up to 56 transitions, intensity 32
Total size of U3 matrix $=70$ double words
Total sixe of E3 matrix $=16$ double words
Page 1

Inverse Magnetization Transfer Experiment data

Tue Nov 15 09:22:16 CST 2011

Dataset :
E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Trans-alpha-Hyp-OMe_67.3C/2/pdata/ INTENSITY fit :
$I[t]=I[0]+P^{*} \exp (-t / T 1)$

1.000 m	2.455	$-4.3038 \mathrm{e}+007$	$-2.6439 \mathrm{e}+006$
10.000 m	2.455	$-4.2735 \mathrm{e}+007$	$-2.9216 \mathrm{e}+006$
150.000 m	2.455	$-3.5797 \mathrm{e}+007$	$-2.421 \mathrm{e}+006$
20.000 m	2.454	$-4.1885 \mathrm{e}+007$	$-2.8163 \mathrm{e}+006$
30.000 m	2.454	$-4.1244 \mathrm{e}+007$	$-2.8106 \mathrm{e}+006$
40.000 m	2.454	$-4.048 \mathrm{e}+007$	$-2.6397 \mathrm{e}+006$
50.000 m	2.454	$-3.9795 \mathrm{e}+007$	$-2.4496 \mathrm{e}+006$
80.000 m	2.454	$-3.8166 \mathrm{e}+007$	$-2.2384 \mathrm{e}+006$
100.000 m	2.454	$-3.7052 \mathrm{e}+007$	$-2.0973 \mathrm{e}+006$
150.000 m	2.454	$-3.4598 \mathrm{e}+007$	$-1.9093 \mathrm{e}+006$
200.000 m	2.454	$-3.2223 \mathrm{e}+007$	$-1.7328 \mathrm{e}+006$
300.000 m	2.454	$-2.794 \mathrm{e}+007$	$-1.4836 \mathrm{e}+006$
400.000 m	2.454	$-2.3973 \mathrm{e}+007$	$-1.2663 \mathrm{e}+006$
500.000 m	2.454	$-2.0343 \mathrm{e}+007$	$-1.0808 \mathrm{e}+006$
600.000 m	2.454	$-1.6962 \mathrm{e}+007$	$-9.0712 \mathrm{e}+005$
800.000 m	2.454	$-1.0991 \mathrm{e}+007$	$-6.246 \mathrm{e}+005$
1.000 s	2.454	$-5.7766 \mathrm{e}+006$	$-3.8432 \mathrm{e}+005$
1.200 s	2.454	$-1.2082 \mathrm{e}+006$	$-1.7686 \mathrm{e}+005$
1.500 s	2.457	$4.653 \mathrm{e}+006$	89826
2.000 s	2.454	$1.2487 \mathrm{e}+007$	$4.348 \mathrm{e}+005$
3.000 s	2.454	$2.3161 \mathrm{e}+007$	$9.1272 \mathrm{e}+005$
4.000 s	2.454	$2.9855 \mathrm{e}+007$	$1.208 \mathrm{e}+006$
5.000 s	2.454	$3.4238 \mathrm{e}+007$	$1.3913 \mathrm{e}+006$
6.000 s	2.454	$3.7112 \mathrm{e}+007$	$1.5126 \mathrm{e}+006$
8.000 s	2.454	$4.0618 \mathrm{e}+007$	$1.669 \mathrm{e}+006$
10.000 s	2.454	$4.2423 \mathrm{e}+007$	$1.7424 \mathrm{e}+006$
12.000 s	2.454	$4.3458 \mathrm{e}+007$	$1.7706 \mathrm{e}+006$

Tue Nov 15 09:22:16 CST 2011

15.000 s	2.454	$4.4412 \mathrm{e}+007$	$1.8073 \mathrm{e}+006$
18.000 s	2.454	$4.4981 \mathrm{e}+007$	$1.8252 \mathrm{e}+006$
20.000 s	2.454	$4.5201 \mathrm{e}+007$	$1.8322 \mathrm{e}+006$
25.000 s	2.454	$4.5744 \mathrm{e}+007$	$1.8634 \mathrm{e}+006$
30.000 s	2.454	$4.5975 \mathrm{e}+007$	$1.8694 \mathrm{e}+006$

Minor -TK

Dataset :
E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Trans-alpha-Hyp-OMe_67.3C/2/pdata/ INTENSITY fit :

Tue Nov 15 09:23:03 CST 2011

15.000 s	2.335	$7.691 \mathrm{e}+006$	$3.1443 \mathrm{e}+005$
18.000 s	2.335	$7.765 \mathrm{e}+006$	$3.1716 \mathrm{e}+005$
20.000 s	2.335	$7.8072 \mathrm{e}+006$	$3.1846 \mathrm{e}+005$
25.000 s	2.335	$7.9144 \mathrm{e}+006$	$3.2465 \mathrm{e}+005$
30.000 s	2.335	$7.9199 \mathrm{e}+006$	$3.2453 \mathrm{e}+005$

Major $T \beta$

Fri Dec 16 09:20:49 CST 2011

Dataset :
E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Trans-beta-hyp-OMe_67.3C/2/pdata/1
AREA fit :

```
    I[t]=I[0]+P* exp(-t/T1)
Results Comp. 1
I[0] = 9.369e-001
P= = -1.681e+000
T1 = 2.137s
SD = 3.262e-002
```

32 points for Integral 1, Integral Region from 2.486 to 2.416 ppm

tau ppm	integral intensity		
1.000 m	2.458	$-2.4574 \mathrm{e}+008$	$-1.8202 \mathrm{e}+007$
10.000 m	2.458	$-2.4436 \mathrm{e}+008$	$-1.7829 \mathrm{e}+007$
15.000 m	2.458	$-2.4355 \mathrm{e}+008$	$-1.7587 \mathrm{e}+007$
20.000 m	2.458	$-2.4099 \mathrm{e}+008$	$-1.735 \mathrm{e}+007$
30.000 m	2.458	$-2.3692 \mathrm{e}+008$	$-1.6873 \mathrm{e}+007$
40.000 m	2.458	$-2.3283 \mathrm{e}+008$	$-1.6346 \mathrm{e}+007$
50.000 m	2.458	$-2.2885 \mathrm{e}+008$	$-1.578 \mathrm{e}+007$
80.000 m	2.458	$-2.1926 \mathrm{e}+008$	$-1.4902 \mathrm{e}+007$
100.000 m	2.458	$-2.1269 \mathrm{e}+008$	$-1.4239 \mathrm{e}+007$
150.000 m	2.458	$-1.9838 \mathrm{e}+008$	$-1.3155 \mathrm{e}+007$
200.000 m	2.458	$-1.8479 \mathrm{e}+008$	$-1.2114 \mathrm{e}+007$
300.000 m	2.458	$-1.5938 \mathrm{e}+008$	$-1.049 \mathrm{e}+007$
400.000 m	2.458	$-1.3596 \mathrm{e}+008$	$-9.0115 \mathrm{e}+006$
500.000 m	2.458	$-1.1423 \mathrm{e}+008$	$-7.6809 \mathrm{e}+006$
600.000 m	2.458	$-9.3995 \mathrm{e}+007$	$-6.4589 \mathrm{e}+006$
800.000 m	2.458	$-5.7852 \mathrm{e}+007$	$-4.5067 \mathrm{e}+006$
1.000 s	2.458	$-2.6171 \mathrm{e}+007$	$-2.8365 \mathrm{e}+006$
1.200 s	2.458	$1.7959 \mathrm{e}+006$	$-1.3931 \mathrm{e}+006$
1.500 s	2.458	$3.7928 \mathrm{e}+007$	$4.6812 \mathrm{e}+005$
2.000 s	2.459	$8.7105 \mathrm{e}+007$	$2.9603 \mathrm{e}+006$
3.000 s	2.459	$1.5656 \mathrm{e}+008$	$6.4694 \mathrm{e}+006$
4.000 s	2.459	$2.0028 \mathrm{e}+008$	$8.62 \mathrm{e}+006$
5.000 s	2.459	$2.2854 \mathrm{e}+008$	$9.9742 \mathrm{e}+006$
6.000 s	2.459	$2.4868 \mathrm{e}+008$	$1.0928 \mathrm{e}+007$
8.000 s	2.459	$2.7268 \mathrm{e}+008$	$1.208 \mathrm{e}+007$
10.000 s	2.459	$2.8586 \mathrm{e}+008$	$1.2673 \mathrm{e}+007$
12.000 s	2.459	$2.9392 \mathrm{e}+008$	$1.3021 \mathrm{e}+007$

(1/2)

Fri Dec 16 09:20:49 CST 2011

15.000 s	2.459	$3.019 \mathrm{e}+008$	$1.3427 \mathrm{e}+007$
18.000 s	2.459	$3.0728 \mathrm{e}+008$	$1.3735 \mathrm{e}+007$
20.000 s	2.459	$3.1042 \mathrm{e}+008$	$1.3989 \mathrm{e}+007$
25.000 s	2.459	$3.1575 \mathrm{e}+008$	$1.4262 \mathrm{e}+007$
30.000 s	2.459	$3.1926 \mathrm{e}+008$	$1.4465 \mathrm{e}+007$

Fri Dec 16 09:21:59 CST 2011

Dataset :
E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Trans-beta-hyp-oMe_67.3C/2/pdata/1
AREA fit :

```
I[t]=I[0]+P* exp (-t/T1)
Results Comp. 1
I[0] = 6.813e-001
P = 2.951e-001
T1 = 108.364m
SD = 1.900e-001
```

32 points for Integral 2, Integral Region from 2.365 to 2.331 ppm

tau ppm	integral intensity		
1.000 m	2.343	$5.9974 \mathrm{e}+007$	$3.3127 \mathrm{e}+006$
10.000 m	2.343	$5.9805 \mathrm{e}+007$	$3.2449 \mathrm{e}+006$
15.000 m	2.343	$5.9383 \mathrm{e}+007$	$3.2081 \mathrm{e}+006$
20.000 m	2.343	$5.8815 \mathrm{e}+007$	$3.1629 \mathrm{e}+006$
30.000 m	2.343	$5.7997 \mathrm{e}+007$	$3.0723 \mathrm{e}+006$
40.000 m	2.343	$5.7197 \mathrm{e}+007$	$2.9799 \mathrm{e}+006$
50.000 m	2.343	$5.6334 \mathrm{e}+007$	$2.8794 \mathrm{e}+006$
80.000 m	2.343	$5.4028 \mathrm{e}+007$	$2.7013 \mathrm{e}+006$
100.000 m	2.343	$5.257 \mathrm{e}+007$	$2.5821 \mathrm{e}+006$
150.000 m	2.343	$4.9239 \mathrm{e}+007$	$2.3622 \mathrm{e}+006$
200.000 m	2.343	$4.6209 \mathrm{e}+007$	$2.1646 \mathrm{e}+006$
300.000 m	2.343	$4.0943 \mathrm{e}+007$	$1.8596 \mathrm{e}+006$
400.000 m	2.343	$3.6509 \mathrm{e}+007$	$1.6081 \mathrm{e}+006$
500.000 m	2.343	$3.2933 \mathrm{e}+007$	$1.4033 \mathrm{e}+006$
600.000 m	2.343	$3.0074 \mathrm{e}+007$	$1.241 \mathrm{e}+006$
800.000 m	2.343	$2.5941 \mathrm{e}+007$	$1.0323 \mathrm{e}+006$
1.000 s	2.343	$2.3529 \mathrm{e}+007$	$9.1239 \mathrm{e}+005$
1.200 s	2.343	$2.2431 \mathrm{e}+007$	$8.5813 \mathrm{e}+005$
1.500 s	2.343	$2.2497 \mathrm{e}+007$	$8.5659 \mathrm{e}+005$
2.000 s	2.343	$2.5307 \mathrm{e}+007$	$9.7691 \mathrm{e}+005$
3.000 s	2.344	$3.3371 \mathrm{e}+007$	$1.3561 \mathrm{e}+006$
4.000 s	2.344	$4.0453 \mathrm{e}+007$	$1.6784 \mathrm{e}+006$
5.000 s	2.344	$4.5557 \mathrm{e}+007$	$1.9119 \mathrm{e}+006$
6.000 s	2.344	$4.9353 \mathrm{e}+007$	$2.0832 \mathrm{e}+006$
8.000 s	2.344	$5.4171 \mathrm{e}+007$	$2.2987 \mathrm{e}+006$
10.000 s	2.344	$5.6903 \mathrm{e}+007$	$2.4097 \mathrm{e}+006$
12.000 s	2.344	$5.8522 \mathrm{e}+007$	$2.4778 \mathrm{e}+006$

Fri Dec 16 09:21:59 CST 2011

15.000 s	2.344	$6.001 \mathrm{e}+007$	$2.55 \mathrm{e}+006$
18.000 s	2.344	$6.124 \mathrm{e}+007$	$2.609 \mathrm{e}+006$
20.000 s	2.343	$6.1822 \mathrm{e}+007$	$2.6537 \mathrm{e}+006$
25.000 s	2.343	$6.2821 \mathrm{e}+007$	$2.7012 \mathrm{e}+006$
30.000 s	2.343	$6.361 \mathrm{e}+007$	$2.7409 \mathrm{e}+006$

(2/2)

Dataset :
E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Cis-alpha-hyp-OMe_67.3C/2/pdata/1
AREA fit :

$$
I[t]=I[0]+P^{*} \exp (-t / T 1)
$$

32 points for Integral 1, Integral Region from 2.482 to 2.439 ppm

tau ppm integral intensity
$1.000 \mathrm{~m} \quad 2.460-9.3855 \mathrm{e}+007-6.6201 \mathrm{e}+006$
$10.000 \mathrm{~m} \quad 2.460-9.2803 \mathrm{e}+007-6.9244 \mathrm{e}+006$
$150.000 \mathrm{~m} \quad 2.460-7.8596 \mathrm{e}+007 \quad-6.185 \mathrm{e}+006$
$20.000 \mathrm{~m} \quad 2.460-9.1397 e+007-6.9785 e+006$
$30.000 \mathrm{~m} \quad 2.460-9.0124 \mathrm{e}+007 \quad-6.682 \mathrm{e}+006$
$40.000 \mathrm{~m} \quad 2.460-8.8767 \mathrm{e}+007-6.3567 \mathrm{e}+006$
$50.000 \mathrm{~m} \quad 2.460-8.7475 \mathrm{e}+007-6.0359 \mathrm{e}+006$
$80.000 \mathrm{~m} \quad 2.460-8.4115 \mathrm{e}+007-5.6631 \mathrm{e}+006$
$100.000 \mathrm{~m} \quad 2.460-8.1859 \mathrm{e}+007-5.3809 \mathrm{e}+006$
$150.000 \mathrm{~m} \quad 2.460-7.6686 \mathrm{e}+007-4.9615 \mathrm{e}+006$
$200.000 \mathrm{~m} \quad 2.460 \quad-7.183 \mathrm{e}+007 \quad-4.588 \mathrm{e}+006$
$300.000 \mathrm{~m} \quad 2.460-6.2832 \mathrm{e}+007-3.9692 \mathrm{e}+006$
$400.000 \mathrm{~m} \quad 2.460-5.4572 \mathrm{e}+007-3.3751 \mathrm{e}+006$
$500.000 \mathrm{~m} \quad 2.460-4.6872 \mathrm{e}+007-2.8782 \mathrm{e}+006$
$600.000 \mathrm{~m} \quad 2.460-3.9734 \mathrm{e}+007-2.4369 \mathrm{e}+006$
$800.000 \mathrm{~m} \quad 2.460-2.7053 \mathrm{e}+007-1.7182 \mathrm{e}+006$
$1.000 \mathrm{~s} \quad 2.460-1.5947 \mathrm{e}+007-1.1074 \mathrm{e}+006$
$1.200 \mathrm{~s} \quad 2.460-6.2716 \mathrm{e}+006-5.7445 \mathrm{e}+005$

1.500 s	2.462	$6.4065 \mathrm{e}+006$	$1.1135 \mathrm{e}+005$
2.000 s	2.460	$2.3158 \mathrm{e}+007$	$9.9789 \mathrm{e}+005$
3.000 s	2.460	$4.6543 \mathrm{e}+007$	$2.2358 \mathrm{e}+006$
4.000 s	2.460	$6.1605 \mathrm{e}+007$	$3.0175 \mathrm{e}+006$
5.000 s	2.460	$7.154 \mathrm{e}+007$	$3.5117 \mathrm{e}+006$
6.000 s	2.460	$7.8307 \mathrm{e}+007$	$3.8329 \mathrm{e}+006$
8.000 s	2.460	$8.6513 \mathrm{e}+007$	$4.221 \mathrm{e}+006$
10.000 s	2.461	$9.088 \mathrm{e}+007$	$4.4179 \mathrm{e}+006$
12.000 s	2.461	$9.3569 \mathrm{e}+007$	$4.5127 \mathrm{e}+006$

(1/2)

Thu Nov 17 09:28:19 CST 2011

15.000 s	2.460	$9.6091 \mathrm{e}+007$	$4.6315 \mathrm{e}+006$
18.000 s	2.460	$9.7741 \mathrm{e}+007$	$4.6852 \mathrm{e}+006$
20.000 s	2.460	$9.847 \mathrm{e}+007$	$4.7083 \mathrm{e}+006$
25.000 s	2.460	$9.9927 \mathrm{e}+007$	$4.7775 \mathrm{e}+006$
30.000 s	2.460	$1.007 \mathrm{e}+008$	$4.7991 \mathrm{e}+006$

Thu Nov 17 09:30:39 CST 2011

Dataset :
E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Cis-alpha-hyp-OMe_67.3C/2/pdata/1 AREA fit :
$I[t]=I[0]+P^{*} \exp (-t / T 1)$
32 points for Integral 2, Integral Region from 2.356 to 2.330 ppm
Results

$I[0]=6.28$ petal
$\mathrm{P}=4.051 \mathrm{e}-\mathrm{Q} 01$
$\mathrm{T} 1=128.587 \mathrm{~m}$
$\mathrm{SD}=1.94 \mathrm{Re} 001$

(1/2)

Thu Nov 17 09:30:39 CST 2011

15.000 s	2.341	$1.7998 \mathrm{e}+007$	$8.3536 \mathrm{e}+005$
18.000 s	2.342	$1.8326 \mathrm{e}+007$	$8.4386 \mathrm{e}+005$
20.000 s	2.341	$1.8492 \mathrm{e}+007$	$8.477 \mathrm{e}+005$
25.000 s	2.342	$1.8787 \mathrm{e}+007$	$8.6276 \mathrm{e}+005$
30.000 s	2.341	$1.8868 \mathrm{e}+007$	$8.6461 \mathrm{e}+005$

Fri Dec 16 09:25:56 CST 2011

Dataset :
E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Cis-beta-hyp-OMe_67.3C/2/pdata/1
AREA fit :
$I[t]=I[0]+P^{*} \exp (-t / T 1)$

32 points for Integral 1, Integral Region from 2.502 to 2.436 ppm
Results Comp. 1
$I[0]=9.383 e-001$
$\mathrm{P}=-1.685 \mathrm{e}+000$
$\mathrm{T} 1=1.731 \mathrm{~s}$
$S D=3.467 e-002$

Fri Dec 16 09:25:56 CST 2011

15.000 s	2.473	$1.0717 \mathrm{e}+009$	$5.1997 \mathrm{e}+007$
18.000 s	2.472	$1.0874 \mathrm{e}+009$	$5.271 \mathrm{e}+007$
20.000 s	2.473	$1.0965 \mathrm{e}+009$	$5.306 \mathrm{e}+007$
25.000 s	2.473	$1.1096 \mathrm{e}+009$	$5.4367 \mathrm{e}+007$
30.000 s	2.473	$1.1177 \mathrm{e}+009$	$5.6022 \mathrm{e}+007$

Dataset :
E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Cis-beta-hyp-OMe_67.3C/2/pdata/1
AREA fit :

$I[t]=I[0]+P * \exp (-t / T 1)$
32 points for Integral 2, Integral Region from 2.434 to 2.378 ppm
Results Comp. 1
$I[0]=3.654 \mathrm{e}+000$
$\mathrm{P}=-2.918 \mathrm{e}+000$
$\mathrm{T} 1=258.602 \mathrm{~s}$
$\mathrm{SD}=1.441 \mathrm{e}-001$

tau ppm	integral intensity		
1.000 m	2.405	$4.6494 \mathrm{e}+008$	$2.0468 \mathrm{e}+007$
10.000 m	2.405	$4.6173 \mathrm{e}+008$	$2.0308 \mathrm{e}+007$
15.000 m	2.405	$4.5869 \mathrm{e}+008$	$2.0106 \mathrm{e}+007$
20.000 m	2.405	$4.5602 \mathrm{e}+008$	$2.0032 \mathrm{e}+007$
30.000 m	2.405	$4.5048 \mathrm{e}+008$	$1.9779 \mathrm{e}+007$
40.000 m	2.405	$4.4657 \mathrm{e}+008$	$1.9531 \mathrm{e}+007$
50.000 m	2.405	$4.417 \mathrm{e}+008$	$1.9284 \mathrm{e}+007$
80.000 m	2.405	$4.2768 \mathrm{e}+008$	$1.8626 \mathrm{e}+007$
100.000 m	2.405	$4.1933 \mathrm{e}+008$	$1.8119 \mathrm{e}+007$
150.000 m	2.405	$3.9852 \mathrm{e}+008$	$1.715 \mathrm{e}+007$
200.000 m	2.405	$3.8011 \mathrm{e}+008$	$1.6243 \mathrm{e}+007$
300.000 m	2.405	$3.4822 \mathrm{e}+008$	$1.4675 \mathrm{e}+007$
400.000 m	2.405	$3.211 \mathrm{e}+008$	$1.3355 \mathrm{e}+007$
500.000 m	2.405	$2.9993 \mathrm{e}+008$	$1.2322 \mathrm{e}+007$
600.000 m	2.405	$2.832 \mathrm{e}+008$	$1.149 \mathrm{e}+007$
800.000 m	2.405	$2.597 \mathrm{e}+008$	$1.0366 \mathrm{e}+007$
1.000 s	2.405	$2.4681 \mathrm{e}+008$	$9.7393 \mathrm{e}+006$
1.200 s	2.405	$2.4185 \mathrm{e}+008$	$9.4837 \mathrm{e}+006$
1.500 s	2.405	$2.4431 \mathrm{e}+008$	$9.5729 \mathrm{e}+006$
2.000 s	2.405	$2.6281 \mathrm{e}+008$	$1.0405 \mathrm{e}+007$
3.000 s	2.405	$3.137 \mathrm{e}+008$	$1.2784 \mathrm{e}+007$
4.000 s	2.405	$3.5783 \mathrm{e}+008$	$1.4859 \mathrm{e}+007$
5.000 s	2.405	$3.8993 \mathrm{e}+008$	$1.6406 \mathrm{e}+007$
6.000 s	2.405	$4.1253 \mathrm{e}+008$	$1.7507 \mathrm{e}+007$
8.000 s	2.405	$4.401 \mathrm{e}+008$	$1.8827 \mathrm{e}+007$
10.000 s	2.405	$4.5481 \mathrm{e}+008$	$1.9579 \mathrm{e}+007$
12.000 s	2.405	$4.6447 \mathrm{e}+008$	$1.9918 \mathrm{e}+007$

Fri Dec 16 09:27:15 CST 2011

-

15.000 s	2.405	$4.7494 \mathrm{e}+008$	$2.0207 \mathrm{e}+007$
18.000 s	2.405	$4.8352 \mathrm{e}+008$	$2.0473 \mathrm{e}+007$
20.000 s	2.405	$4.8792 \mathrm{e}+008$	$2.0624 \mathrm{e}+007$
25.000 s	2.405	$4.933 \mathrm{e}+008$	$2.1091 \mathrm{e}+007$
30.000 s	2.405	$4.9584 \mathrm{e}+008$	$2.1668 \mathrm{e}+007$

Inverse Magnetization Transfer - Mathematica Programs with Graphs

Fitting Inversion Magnetization Transfer NMR Experiments

DESCRIPTION

Magnetization transfer is used to measure the following Proline isomerization:
cis <------>> $\underset{\text { ktct }}{\substack{\text { kct }}}$
where Keq = kct/ktc $=$ taut/tauc $=$ Mtinf/Mcinf.
This notebook will simultaneously fit the time-dependent magnetization transfers of Pro 1H or 13C cis (Mct) and trans (Mtt) NMR signals as a function of the inversion transfer time (t) in Inversion Magnetization Transfer experiments. In the following pulse sequence, the 13C or 1 H cis resonance is selectively inverted using a shaped pulse. Its recovery during t is determined by its intrinsic T1c, magnetization transfer to and from the trans resonance, and the T1t of the trans resonance. Similarly, the steady-state magnetization of the trans resonance is modulated by exchange with the cis resonance:

$$
\pi(x) \text { sel ----------------------- } \pi / 2(x, y .-x .-y)---a c q u i r e ~
$$

The resonance of the trans isomer of Pro (Mtt) shows the following time dependence:

$$
M t t=(c 1)(\tau t)(\lambda 1+1 / \tau 1 c) \exp \left(\lambda 1^{*} t\right)+(c 2)(\tau 2)(\lambda 2+1 / \tau 1 c) \exp (\lambda 2 t)+\text { Mtin } 1
$$

The resonance of the cis isomer of Pro (Mtc) shows the following time dependence:

$$
\text { Mtc }=(c 1) \exp \left(\lambda 1^{*} t\right)+(c 2) \exp (\lambda 2 t)+\text { Mcinf }
$$

T1c and T1t are the longitudinal relaxation times the resonances would have in the absence of exchange.
$\tau \mathbf{c}$ and $\tau \mathrm{t}$ are the lifetimes of the cis and trans conformers and kct and ktc are the corresponding rate constants.
$\tau 1 \mathbf{c}$ and $\tau 1$ t are the effective relaxation times of the cis and trans resonances when relaxation and exchange are both occuring and are defined below in terms of T1c and $\tau \mathrm{c}$, T1t and $\tau \mathrm{t}$.
$\lambda 1$ and $\lambda 2$ are related to the time constants $\tau \mathbf{c}, \tau \mathbf{t}, \tau 1 \mathbf{c}$, and $\tau 1 \mathbf{t}$, and are defined below.
c1 and c2 are defined below.

The user must enter Mcinf and Mtinf, the magnetization measured after 5 T1 periods for the cis and trans resonances.

The program calculates $\tau \mathbf{t}$ from $\tau \mathbf{c}$, Mcinf, and Mtinf as: $\tau \mathbf{t}=\tau \mathbf{c}$ * Mtinf/Mcinf.

The notebook will also generate graphs of the data and the fitted curve and statistical information on the goodness of the fit. A table of points can be produced to permit export of the theoretical curve.

References:

Alger and Prestegard (1977) J. Magn. Reson. 27, 137-41. Mariappan and Rabenstein (1992) J. Magn. Reson. 100, 183-8.

Thanks to Maxim A. Dubinnyi for advice on how to fit multiple data sets.

INSTRUCTIONS

Hit the down arrow to move from cell to cell and press "enter" (not return) to execute each calculation. Follow the example below to see the fitting results for one set of data for hydroxy-Pro.

The user may enter data manually, in the form of \{Transfer Time, Intensity\} pairs, or read in a data files. For the latter, set the directory containing the data in the first line below. If you are not reading in files, move the cursor to the 4th line ("list2") and replace the pairs of points in "list2" with your own data. Do the same with "list3". Alternatively, press enter on the line "list2" and follow the fitting of those data.

In the first 3 lines below we set a directory, read in a data file, and check the number of points in the file.

```
SetDirectory ["~/Documents /JOE/Mathematica/Research/FrankSchweizer/Venkata"];
```

```
translist2 = Import ["NaxTransHypOmeUnGlyT.xls"];
cislist3 = Import["NaxTransHypOmeUnGlyC .xls"];
```

cislist $:=\{\{0.001,8444.9\},\{0.01,8274.9\},\{0.02,8079\},\{0.03,7941.4\},\{0.04,7824.9\}$,
$\{0.05,7655.1\},\{0.08,7316.9\},\{0.1,7094.3\},\{0.15,6591.7\},\{0.2,6146.5\},\{0.3,5407.8\}$,
$\{0.4,4776\},\{0.5,4297.9\},\{0.6,3878.7\},\{0.8,3305.1\},\{1,2996.3\},\{1.2,2841.8\}$,
$\{1.5,2849.3\},\{2,3186.5\},\{3,4252.7\},\{4,5189\},\{5,5881.9\},\{6,6383.6\},\{8,6990.2\}$,
$\{10,7338.8\},\{12,7503.6\},\{15,7691\},\{18,7765\},\{20,7807.2\},\{25,7914.4\},\{30,7919.9\}\}$
translist $:=\{\{0.001,-43048\},\{0.01,-42375\},\{0.02,-41885\},\{0.03,-41244\}$,
$\{0.04,-40480\},\{0.05,-39795\},\{0.08,-38166\},\{0.1,-37052\},\{0.15,-34598\}$,
$\{0.2,-32223\},\{0.3,-27940\},\{0.4,-23973\},\{0.5,-20343\},\{0.6,-16962\}$,
$\{0.8,-10991\},\{1,-5776.6\},\{1.2,-1208.2\},\{1.5,4653\},\{2,12487\}$,
$\{3,23161\},\{4,29855\},\{5,34238\},\{6,37112\},\{8,40618\},\{10,42423\}$,
$\{12,43458\},\{15,44412\},\{18,44981\},\{20,45201\},\{25,45744\},\{30,45975\}\}$

```
totalres4 = Length[translist];
totalres6 = Length[cislist]
```

31
lp2 = ListPlot [cislist, PlotStyle \rightarrow \{PointSize[0.02], Black\},
PlotRange $\rightarrow\{\{0,35\},\{0,10000\}\}$, Frame \rightarrow True, RotateLabel \rightarrow False,
BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\},
Axes \rightarrow False, BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}]


```
lp3 = ListPlot[translist, PlotStyle }->\mathrm{ {PointSize[0.02], Black},
    PlotRange }->{{0,35},{-50000,50000}}, Frame -> True, RotateLabel T False
    BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"}, FrameLabel }->\mathrm{ {"Transfer Time", "Intensity"},
    Axes }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"}]
```



```
CombinedData = Join[Insert[#, 1, 2] & /@translist, Insert[#, 2, 2] & /@ cislist];
CombinedData // TableForm
```

0.001	1	-43048
0.01	1	-42375

```
0.02 1 -41885
0.03 1 - 41 244
0.04 1 - 40480
0.05 1 - 39795
0.08 1 - 38166
0.1 1 - 37052
0.15 1 - 34598
0.2 1 - 32223
0.3 1 - 27940
0.4 1 - 23973
0.5 1 - 20343
0.6 1 - 16962
0.8 1 - 10991
1 1 - 5776.6
1.2 1 - 1208.2
1.5 1 4653
2 1 12487
3 1 23161
4 1 29855
5 1 34238
6 1 37112
8 1 40618
10 1 42423
12 1 43458
15 1 44412
18 1 44981
20 1 45201
25 1 45744
30 1 45975
0.001 2 8444.9
0.01 2 8274.9
0.02 2 8079
0.03 2 7941.4
0.04 2 7824.9
0.05 2 7655.1
0.08 2 7316.9
0.1 2 7094.3
0.15 2 6591.7
0.2 2 6146.5
0.3 2 5407.8
0.4 2 4776
0.5 2 4297.9
0.6 2 3878.7
0.8 2 3305.1
1 2 2996.3
```

1.2	2	2841.8
1.5	2	2849.3
2	2	3186.5
3	2	4252.7
4	2	5189
5	2	5881.9
6	2	6383.6
8	2	6990.2
10	2	7338.8
12	2	7503.6
15	2	7691
18	2	7765
20	2	7807.2
25	2	7914.4
30	2	7919.9

Clear [T1t, T1c, taut, tauc, MOt, MOc, Mtinf, Mcinf, tau1t, tau1c, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]

Users : Enter your values for Mcinf and Mtinf below :

```
Mcinf := 7919.9
Mtinf := 45975
```

```
taut := ((tauc) * (Mtinf)) / (Mcinf)
kct := 1/tauc
ktc := 1/taut
Keq := (Mtinf) / (Mcinf)
taulc := ((T1c) * (tauc)) / ((tauc) + (T1c))
tau1t := ((T1t) * (taut)) / ((taut) + (T1t))
lam1 :=
    (0.5)* (- (((1) / (tau1c)) + ((1) / (tault))) + ((((((1) / (taulc)) + ((1)/(tau1t)))^(2)) - (4) *
            ((((1)/(tau1c)) * ((1) / (tau1t))) - (((1)/(tauc))*((1)/(taut))))))^(0.5))
lam2 :=
    (0.5) * (- (((1) / (taulc)) + ((1) / (tau1t))) - ((((((1) / (taulc)) + ((1) / (tault)))^(2)) - (4) *
            (((((1) / (tau1c))) * (((1) / (tau1t)))) - (((1) / (tauc)) * ((1) / (taut))))))^(0.5))
c2 := ((1) / ((taut) * ((lam1) - (lam2)))) *
        (((taut) * ((lam1) + (((1) / (taulc)))) * ((MOc) - (Mcinf))) + ((Mtinf) - (MOt)))
c1 := M0c-Mcinf - c2
Mtt := ((c1) * (taut) * ((lam1) + (((1) / (tau1c)))) * (Exp [(lam1) * (x)])) +
    ((c2) * (taut) * ((lam2) + (((1) / (tau1c)))) * (Exp[(lam2) * (x)])) + Mtinf
Mct := ((c1) * (Exp [(lam1) * (x)])) +((c2) *(Exp[(lam2) * (x)])) +(Mcinf)
CombinedMctMtt :=
    Which[MDL == 1, Evaluate@Mtt,
        MDL == 2, Evaluate @Mct,
        True, 0];
taut
tau1c
tau1t
1/taulc
1/ tau1t
5.805 tauc
    T1c tauc
T1c + tauc
5.805 T1t tauc
T1t + 5.805 tauc
```

$\frac{\text { T1c }+ \text { tauc }}{\text { T1c tauc }}$
$\frac{0.172265(\text { T1t }+5.805 \text { tauc })}{\text { T1t tauc }}$

Users : You may want to adjust the best guesses for the parameters, the upper and lower limits, and the number of interations below :

```
NLM1 = NonlinearModelFit [CombinedData, CombinedMctMtt
    {{T1c, 1.7, 0.1, 100}, {T1t, 1.7, 0.1, 100}, {tauc, 1, 0.1, 100}, {M0c, 8500, 5000, 10 000},
        {M0t, -43 000, - 60 000, - 30 000}}, {x, MDL}, MaxIterations -> 1 000 000]
```

NonlinearM odelFit::Istol:
The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find a sufficient decrease in the norm of the residual. You may need more than M achinePrecision digits of working precision to meet these tolerances. >>

```
FittedModel [[Which[M DL== 1,<<4>>,0]
NLM1 [ {"ParameterTable", "RSquared"}]
```

FittedM odel::constr :

The property values \{ParameterTable\} assume an unconstrained model. The results for these properties may not be valid, particularly if the fitted parameters are near a constraint boundary. >>

	Estimate	Standard Error	t Statistic	P-Value
T1c	15.4307	12.4031	1.24411	0.218552
$\{$ T1t	2.34505	0.0410966	57.062	5.5155×10^{-52}
tauc	1.21067	0.0982919	12.3171	1.05702×10^{-17}
M Oc	8699.18	258.843	33.6079	2.87267×10^{-39}
M Ot	-42 090.7	253.905	-165.774	3.36472×10^{-78}
param1 = NLM1 ["BestFitParameters "]				
$\{\mathrm{T1c} \rightarrow$ 15.4307, T1t $\rightarrow 2.34505$, tauc \rightarrow 1.21067, M0c \rightarrow 8699.18, M0t $\rightarrow-42090.7\}$				
T1c = T1c / . param1				
T1t = T1t / . param1				
tauc = tauc / . param1				
MOt = MOt / . param1				
MOc = MOc / . param1				
15.4307				
2.34505				
1.21067				
-42090.7				
8699.1				

Show [\%, lp2]

Intensity


```
Plot[Mtt, {x, 0, 35}, PlotStyle }->\mathrm{ {Thickness[0.01], Black},
    PlotRange }->\mathrm{ {{0, 35}, {-55 000, 55 000}}, Frame }->\mathrm{ True,
    RotateLabel }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"},
    FrameLabel }->\mathrm{ {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
```


Show [\%, lp3]

Following are the rate constants in sec-1 and the equilibrium constant:

kct

0.82599
ktc

$$
0.14229
$$

Keq

5.805

The next line calculates points from the theoretical curve in case you want to graph the curve in another application:

```
theorMtt = Table [{x, Mtt }, {x, 0, 15, 0.01}]
theorMct = Table [{x, Mct}, {x, 0, 15, 0.01}]
```

The next line exports a file containing the theoretical points just calculated.

Export ["OHPro1.txt", theorMtt, "Table"]

Export ["OHPro2.txt", theorMct, "Table"]
Just to confirm, here are graphs of the theoretical points and the data.

```
ListPlot [theorMtt, PlotStyle }->\mathrm{ {PointSize[0.01], Black}, PlotRange }->{{0,15},{70, +120}}
    Frame }->\mathrm{ True, RotateLabel }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"},
    FrameLabel }->\mathrm{ {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
Show[%, lp2]
ListPlot [theorMct, PlotStyle }->\mathrm{ {PointSize[0.01], Black}, PlotRange }->{{0,15},{-75, +50}}
    Frame }->\mathrm{ True, RotateLabel }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"},
    FrameLabel }->\mathrm{ {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
Show[%, lp3]
```

Clear [T1t, T1c, taut, tauc, M0t, M0c, Mtinf, Mcinf, tau1t, tau1c, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]

END

Conditions of Use:
This software is in the public domain and may be distrubuted and modified freely by any user. It is provided "as is", with absolutely no warranty expressed or implied. Any use is at your own risk.

Errors, suggestions for improvement, or other comments may be sent to:
Joe O'Neil
Department of Chemistry
University of Manitoba
390 Parker Building
144 Dysart Rd.
Winnipeg, MB
R3T 2N2
TELE: (204) 474-6697
FAX: (204) 474-7608
joneil@cc.umanitoba.ca
http://home.cc.umanitoba.ca/~joneil/
Last updated: June 202007

Fitting Inversion Magnetization Transfer NMR Experiments

DESCRIPTION

Magnetization transfer is used to measure the following Proline isomerization:
cis <------>> $\underset{\text { ktct }}{\substack{\text { kct }}}$
where Keq = kct/ktc = taut/tauc = Mtinf/Mcinf.
This notebook will simultaneously fit the time-dependent magneti zation transfers of Pro 1H or 13C cis (Mct) and trans (Mtt) NMR signals as a function of the inversion transfer time (t) in Inversion Magnetization Transfer experiments. In the following pulse sequence, the 13C or 1 H cis resonance is selectively inverted using a shaped pulse. Its recovery during t is determined by its intrinsic T1c, magnetization transfer to and from the trans resonance, and the T1t of the trans resonance. Similarly, the steady-state magnetization of the trans resonance is modulated by exchange with the cis resonance:

$$
\pi(x) \text { sel ----------------------- } \pi / 2(x, y .-x .-y)---a c q u i r e ~
$$

The resonance of the trans isomer of Pro (Mtt) shows the following time dependence:

$$
M t t=(c 1)(\tau t)(\lambda 1+1 / \tau 1 c) \exp \left(\lambda 1^{*} t\right)+(c 2)(\tau 2)(\lambda 2+1 / \tau 1 c) \exp (\lambda 2 t)+\text { Mtint }
$$

The resonance of the cis isomer of Pro (Mtc) shows the following time dependence:

$$
\text { Mtc }=(c 1) \exp \left(\lambda 1^{*} t\right)+(c 2) \exp (\lambda 2 t)+\text { Mcinf }
$$

T1c and T1t are the longitudinal relaxation times the resonances would have in the absence of exchange.
$\tau \mathbf{c}$ and $\tau \mathrm{t}$ are the lifetimes of the cis and trans conformers and kct and ktc are the corresponding rate constants.
$\tau 1 \mathbf{c}$ and $\tau 1$ t are the effective relaxation times of the cis and trans resonances when relaxation and exchange are both occuring and are defined below in terms of T1c and $\tau \mathrm{c}$, T1t and $\tau \mathrm{t}$.
$\lambda 1$ and $\lambda 2$ are related to the time constants $\tau \mathbf{c}, \tau \mathbf{t}, \tau 1 \mathbf{c}$, and $\tau 1 \mathbf{t}$, and are defined below.
c1 and c2 are defined below.

The user must enter Mcinf and Mtinf, the magnetization measured after 5 T1 periods for the cis and trans resonances.

The program calculates $\tau \mathbf{t}$ from $\tau \mathbf{c}$, Mcinf, and Mtinf as: $\tau \mathbf{t}=\tau \mathbf{c}$ * Mtinf/Mcinf.

The notebook will also generate graphs of the data and the fitted curve and statistical information on the goodness of the fit. A table of points can be produced to permit export of the theoretical curve.

References:

Alger and Prestegard (1977) J. Magn. Reson. 27, 137-41. Mariappan and Rabenstein (1992) J. Magn. Reson. 100, 183-8.

Thanks to Maxim A. Dubinnyi for advice on how to fit multiple data sets.

INSTRUCTIONS

Hit the down arrow to move from cell to cell and press "enter" (not return) to execute each calculation. Follow the example below to see the fitting results for one set of data for hydroxy-Pro.

The user may enter data manually, in the form of \{Transfer Time, Intensity\} pairs, or read in a data files. For the latter, set the directory containing the data in the first line below. If you are not reading in files, move the cursor to the 4th line ("list2") and replace the pairs of points in "list2" with your own data. Do the same with "list3". Alternatively, press enter on the line "list2" and follow the fitting of those data.

In the first 3 lines below we set a directory, read in a data file, and check the number of points in the file.

```
SetDirectory ["~/Documents/JOE/Mathematica/Research/FrankSchweizer/Venkata"];
```

```
translist2 = Import["NaxTransHypOmeUnGlyT .xls"];
cislist3 = Import["NaxTransHypOmeUnGlyC.xls"];
```

```
cislist := {{0.001, 5997.4}, {0.01, 5980.5}, {0.015, 5938.3}, {0.02, 5881.5},
    {0.03, 5799.7}, {0.04, 5719.7}, {0.05, 5633.4}, {0.08, 5402.8}, {0.1, 5257},
    {0.15, 4923.9}, {0.2, 4620.9}, {0.3, 4094.3}, {0.4, 3650.9}, {0.5, 3293.3},
    {0.6, 3007.4}, {0.8, 2594.1}, {1, 2352.9}, {1.2, 2243.1}, {1.5, 2249.7}, {2, 2530.7},
    {3, 3337.1}, {4, 4045.3}, {5, 4555.7}, {6, 4935.3}, {8, 5417.1}, {10, 5690.3},
    {12, 5852.2}, {15, 6001}, {18, 6124}, {20, 6182.2}, {25, 6282.1}, {30, 6361}}
translist := {{0.001, -24 574}, {0.01, -24 436}, {0.015, -24 355}, {0.02, -24 099},
    {0.03, -23 692}, {0.04, -23 283}, {0.05, -22 885}, {0.08, -21 926}, {0.1, -21 269},
    {0.15, -19 838}, {0.2, -18479}, {0.3, -15 938}, {0.4, -13 596}, {0.5, -11423},
    {0.6,-9399.5}, {0.8,-5785.2}, {1,-2617.1}, {1.2, 179.59}, {1.5, 3792.8},
    {2, 8710.5}, {3, 15 656}, {4, 20 028}, {5, 22 854}, {6, 24 868}, {8, 27 268}, {10, 28 586},
    {12, 29 392}, {15, 30190}, {18, 30 728}, {20, 31 042}, {25, 31 575}, {30, 31 926}}
```

```
totalres4 = Length[translist];
totalres6 = Length[cislist]
```


32

lp2 = ListPlot [cislist, PlotStyle \rightarrow \{PointSize[0.02], Black\}, PlotRange $\rightarrow\{\{0,35\},\{0,6500\}\}$, Frame \rightarrow True, RotateLabel \rightarrow False,
BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\},
Axes \rightarrow False, BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}]


```
lp3 = ListPlot[translist, PlotStyle }->\mathrm{ {PointSize[0.02], Black},
    PlotRange }->{{0,35}, {-35000, 35000}}, Frame -> True, RotateLabel -> False
    BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"}, FrameLabel }->\mathrm{ {"Transfer Time", "Intensity"},
    Axes }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"}]
```



```
CombinedData = Join[Insert[#, 1, 2] & /@translist, Insert[#, 2, 2] & /@ cislist];
CombinedData // TableForm
```

0.001	1	-24574
0.01	1	-24436
0.015	1	-24355

```
0.02 1 - 24099
0.03 1 - 23692
0.04 1 - 23283
0.05 1 - 22885
0.08 1 - 21926
0.1 1 - 21269
0.15 1 - 19838
0.2 1 - 18479
0.3 1 - 15938
0.4 1 - 13596
0.5 1 - 11423
0.6 1 -9399.5
0.8 1 -5785.2
1 1 -2617.1
1.2 1 179.59
1.5 1 3792.8
2 1 8710.5
3 1 15656
4 1 20028
5 1 22854
6 1 24868
8 1 27268
10 1 28586
12 1 29392
15 1 30190
18 1 30728
20 1 31042
25 1 31575
30 1 31926
0.001 2 5997.4
0.01 2 5980.5
0.015 2 5938.3
0.02 2 5881.5
0.03 2 5799.7
0.04 2 5719.7
0.05 2 5633.4
0.08 2 5402.8
0.1 2 5257
0.15 2 4923.9
0.2 2 4620.9
0.3 2 4094.3
0.4 2 3650.9
0.5 2 3293.3
0.6 2 3007.4
0.8 2 2594.1
```

```
1 2 2352.9
1.2 2 2243.1
1.5 2 2249.7
2 2 2530.7
3 2 3337.1
4 2 4045.3
5 2 4555.7
6 2 4935.3
8 2 5417.1
10 2 5690.3
12 2 5852.2
15 2 6001
8 2 6124
20 2 6182.2
25 2 6282.1
30 2 6361
```

Clear [T1t, T1c, taut, tauc, MOt, MOc, Mtinf, Mcinf, tau1t, tau1c, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]

Users : Enter your values for Mcinf and Mtinf below :

```
Mcinf := 6361
Mtinf := 31926
```

```
taut \(:=((\) tauc \() *(M t i n f)) /(M c i n f)\)
kct := \(1 /\) tauc
ktc : = 1 / taut
Keq := (Mtinf) / (Mcinf)
taulc := ((T1c) * (tauc)) / ((tauc) + (T1c))
tau1t \(:=((T 1 t) *(\) taut \()) /((\) taut \()+(T 1 t))\)
lam1 :=
```



```
                            \(((((1) /(\) taulc \()) *((1) /(\) tault \()))-(((1) /(\) tauc \()) *((1) /(\) taut \()))))\) ^(0.5))
lam2 :=
```



```
                (((() / (tau1c))) * (((1) / (tau1t)))) - (((1) / (tauc)) * ((1) / (taut))))))^(0.5))
c2 : = ( (1) / ((taut) * ((lam1) - (lam2)))) *
        (((taut) * ((lam1) + (((1) / (taulc)))) * ((MOc) - (Mcinf))) + ((Mtinf) - (MOt)))
c1 : = MOc - Mcinf - c2
Mtt \(:=((c 1) *(\) taut \() *((\operatorname{lam} 1)+((1) /(\) tau1c) ))) * (Exp \([(\operatorname{lam} 1) *(x)]))+\)
    \(((c 2) *(\) taut \() *((\operatorname{lam} 2)+(((1) /(\) tau1c \()))) *(E x p[(\operatorname{lam} 2) *(x)]))+\) Mtinf
Mct \(:=((c 1) *(\operatorname{Exp}[(\operatorname{lam} 1) *(x)]))+((c 2) *(\operatorname{Exp}[(\operatorname{lam} 2) *(x)]))+(\) Mcinf \()\)
CombinedMctMtt :=
    Which [MDL == 1, Evaluate @Mtt,
        MDL == 2, Evaluate @Mct,
        True, 0];
taut
tau1c
tault
\(1 /\) tau1c
\(1 /\) tau1t
\(\frac{31926 \text { tauc }}{6361}\)
T1c tauc
T1c + tauc
```

31926 T1t tauc
$\overline{6361\left(T 1 t+\frac{31926 \text { tauc }}{6361}\right)}$
T1c + tauc
T1c tauc
$6361\left(\right.$ T1t $\left.+\frac{31926 \text { tauc }}{6361}\right)$
31926 T1t tauc

Users: You may want to adjust the best guesses for the parameters, the upper and lower limits, and the number of interations below :

```
NLM1 = NonlinearModelFit [CombinedData, CombinedMctMtt,
    {{T1c, 1.8, 0.5, 5}, {T1t, 1.8, 0.5, 5}, {tauc, 1, 0.1, 100}, {M0c, 6000, 3000, 12 000} ,
        {M0t, - 25000, - 35000, -15000}}, {x, MDL}, MaxIterations -> 1000 000]
```

FindM inimum::reged :
The point $\{5 ., 2.63505,1.14774,6000.01,-25000$.$\} is at the edge of the search region \left\{\frac{1}{2}, 5\right\}$ in coordinate 1 and the computed search direction points outside the region. \gg

NLM1 [\{ "ParameterTable", "RSquared"\}]
FittedM odel::constr :
The property values \{ParameterTable\} assume an unconstrained model. The results for these properties may not be valid, particularly if the fitted parameters are near a constraint boundary. >>

	Estimate	Standard Error	t Statistic	P-Value
T1c	5.	2.16016	2.31464	0.0241315
\{ T1t	2.63505	0.0841792	31.3029	1.89899×10^{-38},
tauc	1.14774	0.143342	8.00703	5.32396×10^{-11}
M0c	6000.01	235.089	25.5223	1.42514×10^{-33}
M Ot	-25000.	224.381	-111.417	2.6596×10^{-70}

param1 = NLM1 ["BestFitParameters"]
$\{$ T1c $\rightarrow 5 .$, T1t $\rightarrow 2.63505$, tauc $\rightarrow 1.14774$, M0c $\rightarrow 6000.01$, M0t $\rightarrow-25000$.

```
T1C = T1C / . param1
T1t = T1t / . param1
tauc = tauc / . param1
MOt = MOt / . param1
MOc = MOc / . param1
5.
2.63505
1.14774
-25000.
```

6000.01
Plot [Mct, $\{x, 0,35\}$, PlotStyle \rightarrow \{Thickness [0.01], Black $\}$, PlotRange $\rightarrow\{\{0,35\}$, $\{0,6500\}\}$,
Frame \rightarrow True, RotateLabel \rightarrow False, BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\},
FrameLabel \rightarrow \{"Transfer Time (sec)", "Intensity"\}, Axes \rightarrow False]

Show [\%, lp2]


```
Plot[Mtt, {x, 0, 35}, PlotStyle -> {Thickness[0.01], Black},
    PlotRange }->{{0,35},{-35000,35000}}, Frame -> True
    RotateLabel }->\mathrm{ False, BaseStyle }->{14, FontFamily -> "Times"}
    FrameLabel }->\mathrm{ {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
```


Show [\%, lp3]

Following are the rate constants in sec-1 and the equilibrium constant:

```
kct
0.871275
```

ktc
0.173595

Keq
$\frac{31926}{6361}$
The next line calculates points from the theoretical curve in case you want to graph the curve in another application:

```
theorMtt = Table[{x, Mtt}, {x, 0, 15, 0.01}]
theorMct = Table[{x, Mct}, {x, 0, 15, 0.01}]
```

The next line exports a file containing the theoretical points just calculated.

Export ["OHPro1.txt", theorMtt, "Table"]
Export ["OHPro2.txt", theorMct, "Table"]
Just to confirm, here are graphs of the theoretical points and the data.

```
ListPlot[theorMtt, PlotStyle }->\mathrm{ {PointSize[0.01], Black}, PlotRange }->{{0, 15},{70, + 120}}
    Frame }->\mathrm{ True, RotateLabel }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"},
    FrameLabel }->\mathrm{ {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
Show[%, lp2]
ListPlot[theorMct, PlotStyle }->\mathrm{ {PointSize[0.01], Black}, PlotRange }->{{0, 15}, {-75, + 50}}
    Frame }->\mathrm{ True, RotateLabel }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"},
    FrameLabel }->\mathrm{ {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
Show[%, lp3]
Clear[T1t, T1c, taut, tauc, M0t, M0c, Mtinf, Mcinf, tau1t,
    tau1c, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]
```


END

Conditions of Use:

This software is in the public domain and may be distrubuted and modified freely by any user. It is provided "as is", with absolutely no warranty expressed or implied. Any use is at your own risk.

Errors, suggestions for improvement, or other comments may be sent to:

Joe O'Neil
Department of Chemistry
University of Manitoba
390 Parker Building

144 Dysart Rd.
Winnipeg, MB
R3T 2N2
TELE: (204) 474-6697
FAX: (204) 474-7608
joneil@cc.umanitoba.ca
http://home.cc.umanitoba.ca/~joneil/
Last updated: June 202007

Fitting Inversion Magnetization Transfer NMR Experiments

DESCRIPTION

Magnetization transfer is used to measure the following Proline isomerization:
cis <------>> $\underset{\text { ktct }}{\substack{\text { kct }}}$
where Keq = kct/ktc = taut/tauc = Mtinf/Mcinf.
This notebook will simultaneously fit the time-dependent magnetization transfers of Pro 1H or 13C cis (Mct) and trans (Mtt) NMR signals as a function of the inversion transfer time (t) in Inversion Magnetization Transfer experiments. In the following pulse sequence, the 13C or 1H cis resonance is selectively inverted using a shaped pulse. Its recovery during t is determined by its intrinsic T1c, magnetization transfer to and from the trans resonance, and the T1t of the trans resonance. Similarly, the steady-state magnetization of the trans resonance is modulated by exchange with the cis resonance:

$$
\pi(x) \text { sel ----------------------- } \pi / 2(x, y .-x .-y)---a c q u i r e ~
$$

The resonance of the trans isomer of Pro (Mtt) shows the following time dependence:

$$
\text { Mtt }=(c 1)(\tau t)(\lambda 1+1 / \tau 1 c) \exp \left(\lambda 1^{*} t\right)+(c 2)(\tau 2)(\lambda 2+1 / \tau 1 c) \exp (\lambda 2 t)+\text { Mtint }
$$

The resonance of the cis isomer of Pro (Mtc) shows the following time dependence:

$$
\text { Mtc }=(c 1) \exp \left(\lambda 1^{*} t\right)+(c 2) \exp (\lambda 2 t)+\text { Mcinf }
$$

T1c and T1t are the longitudinal relaxation times the resonances would have in the absence of exchange.
$\tau \mathbf{c}$ and $\tau \mathrm{t}$ are the lifetimes of the cis and trans conformers and kct and ktc are the corresponding rate constants.
$\tau 1 \mathbf{c}$ and $\tau 1$ t are the effective relaxation times of the cis and trans resonances when relaxation and exchange are both occuring and are defined below in terms of T1c and $\tau \mathbf{c}$, T1t and $\tau \mathrm{t}$.
$\lambda 1$ and $\lambda 2$ are related to the time constants $\tau \mathbf{c}, \tau \mathbf{t}, \tau 1 \mathbf{c}$, and $\tau 1 \mathbf{t}$, and are defined below.
c1 and c2 are defined below.

The user must enter Mcinf and Mtinf, the magnetization measured after 5 T1 periods for the cis and trans resonances.

The program calculates $\tau \mathbf{t}$ from $\tau \mathbf{c}$, Mcinf, and Mtinf as: $\tau \mathbf{t}=\tau \mathbf{c}$ * Mtinf/Mcinf.

The notebook will also generate graphs of the data and the fitted curve and statistical information on the goodness of the fit. A table of points can be produced to permit export of the theoretical curve.

References:

Alger and Prestegard (1977) J. Magn. Reson. 27, 137-41. Mariappan and Rabenstein (1992) J. Magn. Reson. 100, 183-8.

Thanks to Maxim A. Dubinnyi for advice on how to fit multiple data sets.

INSTRUCTIONS

Hit the down arrow to move from cell to cell and press "enter" (not return) to execute each calculation. Follow the example below to see the fitting results for one set of data for hydroxy-Pro.

The user may enter data manually, in the form of \{Transfer Time, Intensity\} pairs, or read in a data files. For the latter, set the directory containing the data in the first line below. If you are not reading in files, move the cursor to the 4th line ("list2") and replace the pairs of points in "list2" with your own data. Do the same with "list3". Alternatively, press enter on the line "list2" and follow the fitting of those data.

In the first 3 lines below we set a directory, read in a data file, and check the number of points in the file.

```
SetDirectory ["~/Documents /JOE/Mathematica/Research/FrankSchweizer/Venkata"];
```

```
translist2 = Import ["NaxTransHypOmeUnGlyT.xls"];
cislist3 = Import["NaxTransHypOmeUnGlyC .xls"];
```

cislist $:=\{\{0.001,20109\},\{0.01,19861\},\{0.02,19427\},\{0.03,19909\},\{0.04,18807\}$,
$\{0.05,18429\},\{0.08,17583\},\{0.1,17020\},\{0.15,15765\},\{0.2,14590\},\{0.3,12576\}$,
$\{0.4,10918\},\{0.5,9620.5\},\{0.6,8514.9\},\{0.8,6966.4\},\{1,6127.8\},\{1.2,5756.1\}$,
$\{1.5,5723.4\},\{2,6582.6\},\{3,9221.4\},\{4,11597\},\{5,13360\},\{6,14598\},\{8,16198\}$,
$\{10,17065\},\{12,17568\},\{15,17998\},\{18,18326\},\{20,18492\},\{25,18787\},\{30,18868\}\}$
translist $:=\{\{0.001,-93855\},\{0.01,-92803\},\{0.02,-91397\},\{0.03,-90124\}$,
$\{0.04,-88767\},\{0.05,-87475\},\{0.08,-84115\},\{0.1,-81859\},\{0.15,-76686\}$,
$\{0.2,-71830\},\{0.3,-62832\},\{0.4,-54572\},\{0.5,-46782\},\{0.6,-39734\}$,
$\{0.8,-27053\},\{1,-15947\},\{1.2,-6271.6\},\{1.5,6406.5\},\{2,23158\}$,
$\{3,46543\},\{4,61605\},\{5,71540\},\{6,78307\},\{8,86513\},\{10,90880\}$,
$\{12,93569\},\{15,96091\},\{18,97741\},\{20,98470\},\{25,99927\},\{30,100700\}\}$

```
totalres4 = Length[translist];
totalres6 = Length[cislist]
```

31
lp2 = ListPlot [cislist, PlotStyle \rightarrow \{PointSize[0.02], Black\},
PlotRange $\rightarrow\{\{0,35\},\{0,25000\}\}$, Frame \rightarrow True, RotateLabel \rightarrow False,
BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\},
Axes \rightarrow False, BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times" $\}]$


```
lp3 = ListPlot[translist, PlotStyle }->\mathrm{ {PointSize[0.02], Black},
    PlotRange }->\mathrm{ {{0, 35}, {-110 000, 110 000}}, Frame }->\mathrm{ True, RotateLabel }->\mathrm{ False,
    BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"}, FrameLabel }->\mathrm{ {"Transfer Time", "Intensity"},
    Axes }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"}]
```


CombinedData = Join[Insert[\#, 1, 2] \&/@translist, Insert[\#, 2, 2] \&/@cislist];
CombinedData // TableForm

0.001	1	-93855
0.01	1	-92803

```
0.02 1 -91397
0.03 1 - 90124
0.04 1 - 88767
0.05 1 - 87475
0.08 1 - 84115
0.1 1 - 81859
0.15 1 - 76686
0.2 1 - 71830
0.3 1 - 62 832
0.4 1 - 54572
0.5 1 -46782
0.6 1 - 39734
0.8 1 - 27053
1 1 - 15947
1.2 1 -6271.6
1.5 1 6406.5
2 1 23158
3 1 46543
4 1 61605
5 1 71540
6 1 78307
8 1 86513
10 1 90880
12 1 93569
15 1 96091
18 1 97741
20 1 98470
25 1 99927
30 1 100700
0.001 2 20109
0.01 2 19861
0.02 2 19427
0.03 2 19909
0.04 2 18807
0.05 2 18429
0.08 2 17583
0.1 2 17020
0.15 2 15765
0.2 2 14590
0.3 2 12576
0.4 2 10918
0.5 2 9620.5
0.6 2 8514.9
0.8 2 6966.4
1 2 6127.8
```

1.2	2	5756.1
1.5	2	5723.4
2	2	6582.6
3	2	9221.4
4	2	11597
5	2	13360
6	2	14598
8	2	16198
10	2	17065
12	2	17568
15	2	17998
18	2	18326
20	2	18492
25	2	18787
30	2	18868

Clear [T1t, T1c, taut, tauc, MOt, MOc, Mtinf, Mcinf, tault, tau1c, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]

Users : Enter your values for Mcinf and Mtinf below :

```
Mcinf := 18868
Mtinf := 100 700
```

```
taut := ((tauc) * (Mtinf)) / (Mcinf)
kct := 1/tauc
ktc := 1/taut
Keq := (Mtinf) / (Mcinf)
taulc:= ((T1C)* (tauc)) / ((tauc) + (T1c))
tau1t := ((T1t) * (taut)) / ((taut) + (T1t))
lam1 :=
    (0.5)* (- (((1) / (tau1c)) + ((1) / (tault))) + ((((((1) / (taulc)) + ((1)/(tau1t)))^(2)) - (4) *
            ((((1)/(tau1c)) * ((1) / (tau1t))) - (((1)/(tauc))*((1)/(taut))))))^(0.5))
lam2 :=
    (0.5) * (- (((1) / (taulc)) + ((1) / (tau1t))) - ((((((1) / (taulc)) + ((1) / (tault)))^(2)) - (4) *
                (((((1) / (tau1c))) * (((1) / (tau1t)))) - (((1) / (tauc)) * ((1) / (taut))))))^(0.5))
c2 := ((1) / ((taut) * ((lam1) - (lam2)))) *
        (((taut) * ((lam1) + (((1) / (taulc)))) * ((M0c) - (Mcinf))) + ((Mtinf) - (MOt)))
c1 := MOc-Mcinf - c2
Mtt := ((c1) * (taut) * ((lam1) + (((1) / (tau1c)))) * (Exp [(lam1) * (x)])) +
    ((c2) * (taut) * ((lam2) + (((1) / (tau1c)))) * (Exp[(lam2) * (x)])) + Mtinf
Mct := ((c1) * (Exp [(lam1) * (x)])) +((c2) *(Exp [(lam2) * (x)])) +(Mcinf)
CombinedMctMtt :=
    Which[MDL == 1, Evaluate@Mtt,
        MDL == 2, Evaluate @Mct,
        True, 0];
taut
tau1c
tau1t
1/taulc
1/tault
475 tauc
T1c tauc
T1c + tauc
```

```
    475 T1t tauc
89(T1t + 475 tauc
T1c + tauc
    T1c tauc
89(T1t + 475 tauc
    475 T1t tauc
```


Users : You may want to adjust the best guesses for the parameters, the upper and lower limits, and the number of interations below :

NLM1 = NonlinearModelFit [CombinedData, CombinedMctMtt,
$\{\{T 1 c, 2,0.5,5\},\{T 1 t, 2,0.5,5\},\{$ tauc, $1,0.1,100\},\{M 0 c, 20000,10000,30000\}$, $\{$ MOt, $-95000,-150000,-30000\}\},\{x$, MDL\}, MaxIterations $\rightarrow 1000000$]

FindM inimum::reged :
The point $\{5 ., 2.54472,1.04081,20000 .,-95000$.$\} is at the edge of the search region \left\{\frac{1}{2}, 5\right\}$ in coordinate 1 and the computed search direction points outside the region. >>

NLM1 [\{"ParameterTable", "RSquared"\}]
FittedM odel::constr :
The property values \{ParameterTable\} assume an unconstrained model. The results for these properties may not be valid, particularly if the fitted parameters are near a constraint boundary. >>

	Estimate	Standard Error	t Statistic	P -Value
T1c	5.	2.11033	2.3693	0.0212319
$\left\{\begin{array}{c\|llll}\text { T1t } & 2.54472 & 0.0719304 & 35.3776 & 1.75839 \times 10^{-40} \\ \text { tauc } & 1.04081 & 0.110532 & 9.41641 & 3.24919 \times 10^{-13}\end{array}, 0.998634\right\}$				
M 0c	20000.	766.051	26.1079	2.14428×10^{-33}
M Ot	-95000.	724.769	-131.076	2.1152×10^{-72}

param1 = NLM1 ["BestFitParameters"]
$\{$ T1c \rightarrow 5., T1t $\rightarrow 2.54472$, tauc \rightarrow 1.04081, M0c $\rightarrow 20000 .$, M0t $\rightarrow-95000$.

```
T1c = T1C /. param1
T1t = T1t /. param1
tauc = tauc /. param1
MOt = MOt / . param1
MOc = MOc / . param1
5 .
2.54472
1.04081
-95000.
20000.
Plot[Mct, {x, 0, 35}, PlotStyle -> {Thickness[0.01], Black},
    PlotRange }->{{0,35},{0,25000}}, Frame -> True
    RotateLabel }->\mathrm{ False, BaseStyle }->{14, FontFamily -> "Times"}
    FrameLabel }->\mathrm{ {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
```


Show [\%, lp2]


```
Plot[Mtt, {x, 0, 35}, PlotStyle -> {Thickness[0.01], Black},
    PlotRange }->{{0,35},{-110000,110000}}, Frame -> True
    RotateLabel }->\mathrm{ False, BaseStyle }->{14, FontFamily -> "Times"}
    FrameLabel }->\mathrm{ {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
```


Show[\%, lp3]

Following are the rate constants in sec-1 and the equilibrium constant:

```
kct
```

0.960788
ktc
0.180021

Keq
475

The next line calculates points from the theoretical curve in case you want to graph the curve in another application:

```
theorMtt = Table [{x, Mtt}, {x, 0, 15, 0.01}]
theorMct = Table[{x, Mct}, {x, 0, 15, 0.01}]
```

The next line exports a file containing the theoretical points just calculated.

```
Export["OHPro1.txt", theorMtt, "Table"]
Export["OHPro2.txt", theorMct, "Table"]
```

Just to confirm, here are graphs of the theoretical points and the data.

```
ListPlot[theorMtt, PlotStyle }->\mathrm{ {PointSize[0.01], Black}, PlotRange }->\mathrm{ {{0, 15}, {70, +120}},
    Frame }->\mathrm{ True, RotateLabel }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"},
    FrameLabel -> {"Transfer Time (sec)", "Intensity"}, Axes -> False]
Show[%, lp2]
ListPlot[theorMct, PlotStyle }->\mathrm{ {PointSize[0.01], Black}, PlotRange }->\mathrm{ {{0, 15}, {-75, +50}},
    Frame }->\mathrm{ True, RotateLabel }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"},
    FrameLabel }->\mathrm{ {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
Show[%, lp3]
Clear[T1t, T1c, taut, tauc, M0t, M0c, Mtinf, Mcinf, tau1t,
    tau1c, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]
```


END

Conditions of Use:

This software is in the public domain and may be distrubuted and modified freely by any user. It is provided "as is", with absolutely no warranty expressed or implied. Any use is at your own risk.

Errors, suggestions for improvement, or other comments may be sent to:

```
Joe O'Neil
Department of Chemistry
University of Manitoba
390 Parker Building
144 Dysart Rd.
Winnipeg, MB
R3T 2N2
TELE: (204) 474-6697
FAX: (204) 474-7608
joneil@cc.umanitoba.ca
http://home.cc.umanitoba.ca/~joneil/
Last updated: June 20 2007
```


Fitting Inversion Magnetization Transfer NMR Experiments

DESCRIPTION

Magnetization transfer is used to measure the following Proline isomerization:
cis <------>> $\underset{\text { ktct }}{\substack{\text { kct }}}$
where Keq = kct/ktc $=$ taut/tauc $=$ Mtinf/Mcinf.
This notebook will simultaneously fit the time-dependent magnetization transfers of Pro 1H or 13C cis (Mct) and trans (Mtt) NMR signals as a function of the inversion transfer time (t) in Inversion Magnetization Transfer experiments. In the following pulse sequence, the 13C or 1 H cis resonance is selectively inverted using a shaped pulse. Its recovery during t is determined by its intrinsic T1c, magnetization transfer to and from the trans resonance, and the T1t of the trans resonance. Similarly, the steady-state magnetization of the trans resonance is modulated by exchange with the cis resonance:

$$
\pi(x) \text { sel ----------------------- } \pi / 2(x, y .-x .-y)---a c q u i r e ~
$$

The resonance of the trans isomer of Pro (Mtt) shows the following time dependence:

$$
\operatorname{Mtt}=(c 1)(\tau t)(\lambda 1+1 / \tau 1 c) \exp \left(\lambda 1^{*} t\right)+(c 2)(\tau 2)(\lambda 2+1 / \tau 1 c) \exp (\lambda 2 t)+\text { Mtin } 1
$$

The resonance of the cis isomer of Pro (Mtc) shows the following time dependence:

$$
\text { Mtc }=(c 1) \exp \left(\lambda 1^{*} t\right)+(c 2) \exp (\lambda 2 t)+\text { Mcinf }
$$

T1c and T1t are the longitudinal relaxation times the resonances would have in the absence of exchange.
$\tau \mathbf{c}$ and $\tau \mathrm{t}$ are the lifetimes of the cis and trans conformers and kct and ktc are the corresponding rate constants.
$\tau 1 \mathbf{c}$ and $\tau 1$ t are the effective relaxation times of the cis and trans resonances when relaxation and exchange are both occuring and are defined below in terms of T1c and $\tau \mathbf{c}$, T1t and $\tau \mathrm{t}$.
$\lambda 1$ and $\lambda 2$ are related to the time constants $\tau \mathbf{c}, \tau \mathbf{t}, \tau 1 \mathbf{c}$, and $\tau 1 \mathbf{t}$, and are defined below.
c1 and c2 are defined below.

The user must enter Mcinf and Mtinf, the magnetization measured after 5 T1 periods for the cis and trans resonances.

The program calculates $\tau \mathbf{t}$ from $\tau \mathbf{c}$, Mcinf, and Mtinf as: $\tau \mathbf{t}=\tau \mathbf{c}$ * Mtinf/Mcinf.

The notebook will also generate graphs of the data and the fitted curve and statistical information on the goodness of the fit. A table of points can be produced to permit export of the theoretical curve.

References:

Alger and Prestegard (1977) J. Magn. Reson. 27, 137-41. Mariappan and Rabenstein (1992) J. Magn. Reson. 100, 183-8.

Thanks to Maxim A. Dubinnyi for advice on how to fit multiple data sets.

INSTRUCTIONS

Hit the down arrow to move from cell to cell and press "enter" (not return) to execute each calculation. Follow the example below to see the fitting results for one set of data for hydroxy-Pro.

The user may enter data manually, in the form of \{Transfer Time, Intensity\} pairs, or read in a data files. For the latter, set the directory containing the data in the first line below. If you are not reading in files, move the cursor to the 4th line ("list2") and replace the pairs of points in "list2" with your own data. Do the same with "list3". Alternatively, press enter on the line "list2" and follow the fitting of those data.

In the first 3 lines below we set a directory, read in a data file, and check the number of points in the file.

```
SetDirectory ["~/Documents /JOE/Mathematica/Research/FrankSchweizer/Venkata"];
```

```
translist2 = Import ["NaxTransHypOmeUnGlyT.xls"];
cislist3 = Import["NaxTransHypOmeUnGlyC .xls"];
```

cislist $:=\{\{0.001,46494\},\{0.01,46173\},\{0.015,45869\},\{0.02,45602\}$,
$\{0.03,45048\},\{0.04,44657\},\{0.05,44170\},\{0.08,42768\},\{0.1,41933\}$,
$\{0.15,39852\},\{0.2,38011\},\{0.3,34822\},\{0.4,32110\},\{0.5,29993\}$,
$\{0.6,28320\},\{0.8,25970\},\{1,24681\},\{1.2,24185\},\{1.5,24431\},\{2,26281\}$,
$\{3,31370\},\{4,35783\},\{5,38993\},\{6,41253\},\{8,44010\},\{10,45841\}$,
$\{12,46447\},\{15,47494\},\{18,48352\},\{20,48792\},\{25,49330\},\{30,49584\}\}$
translist $:=\{\{0.001,-86252\},\{0.01,-84948\},\{0.015,-84032\},\{0.02,-83650\}$,
$\{0.03,-82242\},\{0.04,-80807\},\{0.05,-79521\},\{0.08,-75749\},\{0.1,-73176\}$,
$\{0.15,-67174\},\{0.2,-61352\},\{0.3,-50672\},\{0.4,-40985\},\{0.5,-32113\}$,
$\{0.6,-23912\},\{0.8,-9456\},\{1,2748.6\},\{1.2,13305\},\{1.5,26469\},\{2,43348\}$,
$\{3,65343\},\{4,78574\},\{5,86957\},\{6,92510\},\{8,99055\},\{10,102590\}$,
$\{12,104860\},\{15,107170\},\{18,108740\},\{20,109650\},\{25,110960\},\{30,111770\}\}$

```
totalres4 = Length[translist];
totalres6 = Length[cislist]
```


32

lp2 = ListPlot [cislist, PlotStyle \rightarrow \{PointSize[0.02], Black\}, PlotRange $\rightarrow\{\{0,35\},\{20000,50000\}\}$, Frame \rightarrow True, RotateLabel \rightarrow False, BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, Axes \rightarrow False, BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times" $\}]$


```
lp3 = ListPlot[translist, PlotStyle }->\mathrm{ {PointSize[0.02], Black},
    PlotRange }->\mathrm{ {{0, 35}, {-120 000, 120 000}}, Frame }->\mathrm{ True, RotateLabel }->\mathrm{ False,
    BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"}, FrameLabel }->\mathrm{ {"Transfer Time", "Intensity"},
    Axes }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"}]
```


Transfer Time

```
CombinedData = Join[Insert[#, 1, 2] & /@translist, Insert[#, 2, 2] & /@ cislist];
CombinedData // TableForm
```

0.001	1	-86252
0.01	1	-84948
0.015	1	-84032

0.02	1	-83650
0.03	1	-82242
0.04	1	- 80807
0.05	1	-79521
0.08	1	-75749
0.1	1	- 73176
0.15	1	-67174
0.2	1	-61352
0.3	1	-50672
0.4	1	-40985
0.5	1	- 32113
0.6	1	-23912
0.8	1	-9456
1	1	2748.6
1.2	1	13305
1.5	1	26469
2	1	43348
3	1	65343
4	1	78574
5	1	86957
6	1	92510
8	1	99055
10	1	102590
12	1	104860
15	1	107170
18	1	108740
20	1	109650
25	1	110960
30	1	111770
0.001	2	46494
0.01	2	46173
0.015	2	45869
0.02	2	45602
0.03	2	45048
0.04	2	44657
0.05	2	44170
0.08	2	42768
0.1	2	41933
0.15	2	39852
0.2	2	38011
0.3	2	34822
0.4	2	32110
0.5	2	29993
0.6	2	28320
0.8	2	25970

1	2	24681
1.2	2	24185
1.5	2	24431
2	2	26281
3	2	31370
4	2	35783
5	2	38993
6	2	41253
8	2	44010
10	2	45841
12	2	46447
15	2	47494
18	2	48352
20	2	48792
25	2	49330
30	2	49584

Clear [T1t, T1c, taut, tauc, MOt, MOc, Mtinf, Mcinf, tau1t, tau1c, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]

Users : Enter your values for Mcinf and Mtinf below :

```
Mcinf := 49584
Mtinf := 111770
```

```
taut \(:=((\) tauc \() *(M t i n f)) /(M c i n f)\)
kct := \(1 /\) tauc
ktc : = 1 / taut
Keq := (Mtinf) / (Mcinf)
taulc := ((T1c) * (tauc)) / ((tauc) + (T1c))
tau1t \(:=((T 1 t) *(\) taut \()) /((\) taut \()+(T 1 t))\)
lam1 :=
```



```
            \(((((1) /(\) taulc \()) *((1) /(\) tault \()))-(((1) /(\) tauc \()) *((1) /(\) taut \()))))\) ^(0.5))
lam2 :=
```



```
                (((() / (tau1c))) * (((1) / (tau1t)))) - (((1) / (tauc)) * ((1) / (taut))))))^(0.5))
c2 : = ( (1) / ((taut) * ((lam1) - (lam2)))) *
        (((taut) * ((lam1) + (((1) / (taulc)))) * ((MOc) - (Mcinf))) + ((Mtinf) - (MOt)))
c1 : = MOc - Mcinf - c2
Mtt \(:=((c 1) *(\) taut \() *((\operatorname{lam} 1)+((1) /(\) tau1c) ))) * (Exp \([(\operatorname{lam} 1) *(x)]))+\)
    \(((c 2) *(\) taut \() *((\operatorname{lam} 2)+(((1) /(\) tau1c \()))) *(E x p[(\operatorname{lam} 2) *(x)]))+\) Mtinf
Mct \(:=((c 1) *(\operatorname{Exp}[(\operatorname{lam} 1) *(x)]))+((c 2) *(\operatorname{Exp}[(\operatorname{lam} 2) *(x)]))+(\) Mcinf \()\)
CombinedMctMtt :=
    Which [MDL == 1, Evaluate @Mtt,
        MDL == 2, Evaluate @Mct,
        True, 0];
taut
tau1c
tau1t
\(1 /\) tau1c
1 / tault
\(\frac{55885 \text { tauc }}{24792}\)
T1c tauc
T1c + tauc
```

55885 T1t tauc
$24792\left(T 1 t+\frac{55885 \mathrm{tauc}}{24792}\right)$
T1c + tauc
T1c tauc
$24792\left(\right.$ T1t $\left.+\frac{55885 \mathrm{tauc}}{24792}\right)$
55885 T1t tauc

Users : You may want to adjust the best guesses for the parameters, the upper and lower limits, and the number of interations below :

```
NLM1 = NonlinearModelFit [CombinedData, CombinedMctMtt,
    {{T1c, 1.4, 0.5, 5}, {T1t, 2, 0.1, 10}, {tauc, 1, 0.1, 100}, {M0c, 50 000, 10 000, 80 000},
        {MOt, - 90000, - 200 000, - 10000}}, {x, MDL}, MaxIterations -> 1 000 000]
```

NonlinearM odelFit::Istol :

The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find a sufficient decrease in the norm of the residual. You may need more than M achinePrecision digits of working precision to meet these tolerances. >>

```
FittedModel [[ Which[MDL == 1,<<4>>,0]
NLM1 [ { "ParameterTable", "RSquared"}]
```

FittedM odel::constr:

The property values \{ParameterTable\} assume an unconstrained model. The results for these properties may not be valid, particularly if the fitted parameters are near a constraint boundary. >>
$\left.\begin{array}{r|llll} & \text { Estimate } & \text { Standard Error } & \text { t Statistic } & \text { P-Value } \\ \hline \text { T1c } & 4.43998 & 0.684587 & 6.48563 & 1.99594 \times 10^{-8} \\ \left\{\begin{array}{lllll}\text { T1t }\end{array}\right. & 2.50305 & 0.0625134 & 40.0402 & 1.78701 \times 10^{-44} \\ \text { tauc } & 1.72364 & 0.0969296 & 17.7824 & 2.23594 \times 10^{-25}\end{array}, 0.99921\right\}$
param1 = NLM1 ["BestFitParameters"]
$\{\mathrm{T1c} \rightarrow 4.43998, \mathrm{~T} 1 \mathrm{t} \rightarrow 2.50305$, tauc $\rightarrow 1.72364, \mathrm{M0c} \rightarrow 46957.8, \mathrm{MOt} \rightarrow-85207.4\}$

```
T1c = T1C /. param1
T1t = T1t /. param1
tauc = tauc /. param1
MOt = MOt / . param1
MOc = MOc / . param1
4.43998
2.50305
1.72364
-85207.4
46957.8
Plot[Mct, {x, 0, 35}, PlotStyle -> {Thickness[0.01], Black},
    PlotRange }->{{0, 35}, {20 000, 50 000}}, Frame -> True
    RotateLabel }->\mathrm{ False, BaseStyle }->{14, FontFamily -> "Times"}
    FrameLabel -> {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
```


Show [\%, 1p2]


```
Plot[Mtt, {x, 0, 35}, PlotStyle -> {Thickness[0.01], Black},
    PlotRange }->{{0,35},{-120000,120 000}}, Frame -> True
    RotateLabel }->\mathrm{ False, BaseStyle }->{14, FontFamily -> "Times"}
    FrameLabel }->\mathrm{ {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
```


Show [\%, lp3]

Following are the rate constants in sec-1 and the equilibrium constant:

kct

0.580168
ktc
0.257377

Keq
$\frac{55885}{24792}$
The next line calculates points from the theoretical curve in case you want to graph the curve in another application:
theorMtt $=$ Table [\{x, Mtt $\},\{x, 0,15,0.01\}]$

```
{{0.,-85 207.4}, {0.01,-83 934.3}, {0.02,-82672.3}, {0.03,-81 421.3}, {0.04,-80 181.1},
    {0.05,-78 951.8}, {0.06,-77 733.1}, {0.07,-76524.9}, {0.08,-75 327.2}, {0.09,-74 139.8},
    {0.1, - 72 962.7}, {0.11, -71 795.6}, {0.12, - 70 638.6}, {0.13,-69491.5}, {0.14,-68 354.3},
    {0.15,-67226.7}, {0.16,-66108.8}, {0.17, - 65000.4}, {0.18, - 63 901.4}, {0.19, - 62 811.7},
    {0.2,-61 731.3}, {0.21,-60660.}, {0.22,-59 597.8}, {0.23, - 58 544.6}, {0.24, - 57 500.2},
    {0.25,-56464.5}, {0.26,-55437.6}, {0.27, - 54 419.3}, {0.28, - 53 409.5},
    {0.29,-52408.1}, {0.3,-51415.1}, {0.31, - 50 430.4}, {0.32,-49453.8}, {0.33, - 48 485.3},
    {0.34,-47524.9}, {0.35,-46572.3}, {0.36, -45 627.7}, {0.37, - 4 4 690.8},
    {0.38,-43761.6}, {0.39,-42840.}, {0.4,-41926.}, {0.41, -41 019.5}, {0.42,-40 120.4},
    {0.43,-39228.6}, {0.44,-38344.}, {0.45,-37466.6}, {0.46,-36 596.4}, {0.47,-35 733.2},
    {0.48,-34876.9}, {0.49,-34027.6}, {0.5,-33185.}, {0.51,-32 349.3},{0.52,-31 520.2},
    {0.53,-30 697.8}, {0.54,-29882.}, {0.55,-29072.6}, {0.56,-28 269.7}, {0.57, - 27 473.2},
    {0.58,-26 683.}, {0.59,-25 899.}, {0.6,-25121.2}, {0.61,-24 349.6}, {0.62, - 23 584.},
    {0.63,-22 824.5}, {0.64,-22070.9}, {0.65,-21 323.1}, {0.66, - 20 581.3},
    {0.67,-19845.2}, {0.68,-19114.8}, {0.69,-18390.1}, {0.7,-17671.}, {0.71, -16 957.5},
    {0.72,-16249.4}, {0.73,-15546.9}, {0.74,-14 849.7}, {0.75,-14 157.9},
    {0.76,-13471.3}, {0.77,-12 790.}, {0.78, -12113.9}, {0.79,-11443.}, {0.8, -10 777.1},
    {0.81,-10116.3}, {0.82,-9460.52}, {0.83,-8809.66}, {0.84,-8163.71}, {0.85,-7522.61},
    {0.86,-6886.31}, {0.87,-6254.79}, {0.88, - 5627.98}, {0.89,-5005.84}, {0.9, - 4388.33},
    {0.91,-3775.41}, {0.92,-3167.03}, {0.93,-2563.15}, {0.94,-1963.72}, {0.95,-1368.71},
    {0.96,-778.073}, {0.97,-191.766}, {0.98, 390.251}, {0.99, 968.018}, {1., 1541.57},
    {1.01, 2110.96}, {1.02, 2676.21}, {1.03, 3237.38}, {1.04, 3794.48}, {1.05, 4347.57},
    {1.06, 4896.68}, {1.07, 5441.85}, {1.08, 5983.11}, {1.09, 6520.51}, {1.1, 7054.07},
    {1.11, 7583.83}, {1.12, 8109.83}, {1.13, 8632.1}, {1.14, 9150.67}, {1.15, 9665.59},
    {1.16, 10176.9}, {1.17, 10 684.6}, {1.18, 11 188.7}, {1.19, 11 689.3}, {1.2, 12 186.5},
    {1.21, 12 680.1}, {1.22, 13 170.3}, {1.23, 13657.2}, {1.24, 14 140.6}, {1.25, 14 620.7},
    {1.26, 15097.6}, {1.27, 15 571.1}, {1.28, 16041.4}, {1.29, 16 508.4}, {1.3, 16 972.3},
    {1.31, 17433.1}, {1.32, 17 890.6}, {1.33, 18 345.1}, {1.34, 18 796.5}, {1.35, 19 244.9},
    {1.36, 19690.2}, {1.37, 20 132.6}, {1.38, 20 572.}, {1.39, 21008.4}, {1.4, 21 441.9},
    {1.41, 21 872.6}, {1.42, 22 300.3}, {1.43, 22 725.3}, {1.44, 23 147.4}, {1.45, 23 566.7},
    {1.46, 23 983.3}, {1.47, 24 397.2}, {1.48, 24 808.3}, {1.49, 25 216.7}, {1.5, 25 622.5},
    {1.51, 26025.6}, {1.52, 26426.1}, {1.53, 26 824.}, {1.54, 27 219.4}, {1.55, 27 612.1},
    {1.56, 28002.4},{1.57, 28 390.1}, {1.58, 28 775.4}, {1.59, 29 158.2}, {1.6, 29 538.6},
    {1.61, 29 916.5}, {1.62, 30 292.}, {1.63, 30 665.2}, {1.64, 31036.}, {1.65, 31 404.4},
    {1.66, 31770.6}, {1.67, 32 134.4}, {1.68, 32 496.}, {1.69, 32 855.3}, {1.7, 33 212.3},
    {1.71, 33 567.1}, {1.72, 33 919.8}, {1.73, 34270.2}, {1.74, 34 618.5}, {1.75, 34 964.6},
    {1.76, 35 308.6}, {1.77, 35 650.5}, {1.78, 35 990.3}, {1.79, 36 328.1}, {1.8, 36 663.7},
    {1.81, 36 997.3}, {1.82, 37 328.9}, {1.83, 37 658.5}, {1.84, 37 986.1}, {1.85, 38 311.8},
    {1.86, 38635.4}, {1.87, 38957.2}, {1.88, 39 277.}, {1.89, 39 594.8}, {1.9, 39 910.8},
    {1.91, 40 225.}, {1.92, 40 537.2}, {1.93, 40 847.6}, {1.94, 41 156.2}, {1.95, 41 463.},
    {1.96, 41 767.9}, {1.97, 42071.1}, {1.98, 42 372.5}, {1.99, 42 672.1}, {2., 42 970.},
    {2.01, 43 266.2}, {2.02, 43 560.6}, {2.03, 43 853.4}, {2.04, 44 144.4}, {2.05, 44 433.8},
    {2.06, 44 721.5}, {2.07, 45007.6}, {2.08, 45 292.}, {2.09, 45 574.8}, {2.1, 45 856.},
    {2.11,46135.6}, {2.12, 46 413.6}, {2.13, 46 690.}, {2.14, 46 964.9}, {2.15, 47 238.3},
    {2.16,47510.1}, {2.17,47 780.3}, {2.18,48049.1},{2.19,48316.4},{2.2, 48 582.1},
```

$\{2.21,48846.4\},\{2.22,49109.3\},\{2.23,49370.7\},\{2.24,49630.6\},\{2.25,49889.1\}$, $\{2.26,50146.2\},\{2.27,50401.9\},\{2.28,50656.2\},\{2.29,50909.1\},\{2.3,51160.6\}$, $\{2.31,51410.7\},\{2.32,51659.5\},\{2.33,51907\},.\{2.34,52153.1\},\{2.35,52397.9\}$, $\{2.36,52641.4\},\{2.37,52883.5\},\{2.38,53124.4\},\{2.39,53364\},.\{2.4,53602.3\}$, $\{2.41,53839.4\},\{2.42,54075.1\},\{2.43,54309.7\},\{2.44,54543\},.\{2.45,54775.1\}$, $\{2.46,55005.9\},\{2.47,55235.6\},\{2.48,55464\},.\{2.49,55691.2\},\{2.5,55917.3\}$, $\{2.51,56142.2\},\{2.52,56365.9\},\{2.53,56588.5\},\{2.54,56809.9\},\{2.55,57030.1\}$, $\{2.56,57249.3\},\{2.57,57467.3\},\{2.58,57684.1\},\{2.59,57899.9\},\{2.6,58114.6\}$, $\{2.61,58328.2\},\{2.62,58540.7\},\{2.63,58752.1\},\{2.64,58962.4\},\{2.65,59171.7\}$, $\{2.66,59380\},.\{2.67,59587.1\},\{2.68,59793.3\},\{2.69,59998.4\},\{2.7,60202.5\}$, $\{2.71,60405.5\},\{2.72,60607.6\},\{2.73,60808.6\},\{2.74,61008.7\},\{2.75,61207.7\}$, $\{2.76,61405.8\},\{2.77,61602.9\},\{2.78,61799\},.\{2.79,61994.2\},\{2.8,62188.4\}$, $\{2.81,62381.7\},\{2.82,62574\},.\{2.83,62765.4\},\{2.84,62955.8\},\{2.85,63145.3\}$, $\{2.86,63334\},.\{2.87,63521.6\},\{2.88,63708.4\},\{2.89,63894.3\},\{2.9,64079.3\}$, $\{2.91,64263.4\},\{2.92,64446.6\},\{2.93,64629\},.\{2.94,64810.5\},\{2.95,64991.1\}$, $\{2.96,65170.8\},\{2.97,65349.7\},\{2.98,65527.8\},\{2.99,65705\},.\{3 ., 65881.4\}$, $\{3.01,66056.9\},\{3.02,66231.7\},\{3.03,66405.6\},\{3.04,66578.7\},\{3.05,66750.9\}$, $\{3.06,66922.4\},\{3.07,67093.1\},\{3.08,67263\},.\{3.09,67432.1\},\{3.1,67600.4\}$, $\{3.11,67767.9\},\{3.12,67934.7\},\{3.13,68100.7\},\{3.14,68265.9\},\{3.15,68430.4\}$, $\{3.16,68594.1\},\{3.17,68757.1\},\{3.18,68919.3\},\{3.19,69080.8\},\{3.2,69241.5\}$, $\{3.21,69401.5\},\{3.22,69560.8\},\{3.23,69719.4\},\{3.24,69877.3\},\{3.25,70034.4\}$, $\{3.26,70190.8\},\{3.27,70346.6\},\{3.28,70501.6\},\{3.29,70655.9\},\{3.3,70809.6\}$, $\{3.31,70962.5\},\{3.32,71114.8\},\{3.33,71266.4\},\{3.34,71417.3\},\{3.35,71567.6\}$, $\{3.36,71717.2\},\{3.37,71866.1\},\{3.38,72014.4\},\{3.39,72162\},.\{3.4,72309$.$\} ,$ $\{3.41,72455.3\},\{3.42,72601\},.\{3.43,72746\},.\{3.44,72890.4\},\{3.45,73034.2\}$, $\{3.46,73177.4\},\{3.47,73319.9\},\{3.48,73461.8\},\{3.49,73603.1\},\{3.5,73743.8\}$, $\{3.51,73883.8\},\{3.52,74023.3\},\{3.53,74162.2\},\{3.54,74300.4\},\{3.55,74438.1\}$, $\{3.56,74575.2\},\{3.57,74711.7\},\{3.58,74847.6\},\{3.59,74982.9\},\{3.6,75117.7\}$, $\{3.61,75251.8\},\{3.62,75385.4\},\{3.63,75518.5\},\{3.64,75650.9\},\{3.65,75782.9\}$, $\{3.66,75914.2\},\{3.67,76045\},.\{3.68,76175.2\},\{3.69,76304.9\},\{3.7,76434.1\}$, $\{3.71,76562.7\},\{3.72,76690.8\},\{3.73,76818.3\},\{3.74,76945.3\},\{3.75,77071.8\}$, $\{3.76,77197.7\},\{3.77,77323.1\},\{3.78,77448\},.\{3.79,77572.4\},\{3.8,77696.2\}$,
$\{3.81,77819.6\},\{3.82,77942.4\},\{3.83,78064.7\},\{3.84,78186.5\},\{3.85,78307.9\}$, $\{3.86,78428.7\},\{3.87,78549\},.\{3.88,78668.8\},\{3.89,78788.2\},\{3.9,78907$.$\} ,$
$\{3.91,79025.4\},\{3.92,79143.2\},\{3.93,79260.6\},\{3.94,79377.5\},\{3.95,79494$.$\} ,$ $\{3.96,79609.9\},\{3.97,79725.4\},\{3.98,79840.5\},\{3.99,79955\},.\{4 ., 80069.1\}$, $\{4.01,80182.8\},\{4.02,80295.9\},\{4.03,80408.7\},\{4.04,80520.9\},\{4.05,80632.7\}$, $\{4.06,80744.1\},\{4.07,80855\},.\{4.08,80965.5\},\{4.09,81075.5\},\{4.1,81185.1\}$, $\{4.11,81294.3\},\{4.12,81403\},.\{4.13,81511.3\},\{4.14,81619.1\},\{4.15,81726.5\}$, $\{4.16,81833.5\},\{4.17,81940.1\},\{4.18,82046.2\},\{4.19,82152\},.\{4.2,82257.3\}$, $\{4.21,82362.2\},\{4.22,82466.7\},\{4.23,82570.7\},\{4.24,82674.4\},\{4.25,82777.6\}$, $\{4.26,82880.5\},\{4.27,82982.9\},\{4.28,83085\},.\{4.29,83186.6\},\{4.3,83287.8\}$, $\{4.31,83388.7\},\{4.32,83489.1\},\{4.33,83589.2\},\{4.34,83688.8\},\{4.35,83788.1\}$, $\{4.36,83887\},.\{4.37,83985.5\},\{4.38,84083.7\},\{4.39,84181.4\},\{4.4,84278.8\}$, $\{4.41,84375.8\},\{4.42,84472.4\},\{4.43,84568.6\},\{4.44,84664.5\},\{4.45,84760$.$\} ,$

$\{6.71,99379.9\},\{6.72,99422\},.\{6.73,99464\},.\{6.74,99505.8\},\{6.75,99547.4\}$, $\{6.76,99588.9\},\{6.77,99630.3\},\{6.78,99671.5\},\{6.79,99712.6\},\{6.8,99753.5\}$, $\{6.81,99794.3\},\{6.82,99835\},.\{6.83,99875.5\},\{6.84,99915.9\},\{6.85,99956.1\}$, $\{6.86,99996.2\},\{6.87,100036\},.\{6.88,100076\},.\{6.89,100116\},.\{6.9,100155$.$\} ,$ $\{6.91,100195\},.\{6.92,100234\},.\{6.93,100273\},.\{6.94,100312\},.\{6.95,100351$.$\} ,$ $\{6.96,100390\},.\{6.97,100428\},.\{6.98,100467\},.\{6.99,100505\},.\{7 ., 100543$.$\} ,$ $\{7.01,100581\},.\{7.02,100619\},.\{7.03,100657\},.\{7.04,100695\},.\{7.05,100732\},$. $\{7.06,100770\},.\{7.07,100807\},.\{7.08,100844\},.\{7.09,100881\},.\{7.1,100918\},$. $\{7.11,100955\},.\{7.12,100992\},.\{7.13,101028\},.\{7.14,101065\},.\{7.15,101101\},$. $\{7.16,101137\},.\{7.17,101173\},.\{7.18,101209\},.\{7.19,101245\},.\{7.2,101280$.$\} ,$ $\{7.21,101316\},.\{7.22,101351\},.\{7.23,101387\},.\{7.24,101422\},.\{7.25,101457$.$\} ,$ $\{7.26,101492\},.\{7.27,101527\},.\{7.28,101561\},.\{7.29,101596\},.\{7.3,101630$.$\} ,$ $\{7.31,101665\},.\{7.32,101699\},.\{7.33,101733\},.\{7.34,101767\},.\{7.35,101801\},$. $\{7.36,101835\},.\{7.37,101868\},.\{7.38,101902\},.\{7.39,101935\},.\{7.4,101969\},$. $\{7.41,102002\},.\{7.42,102035\},.\{7.43,102068\},.\{7.44,102101\},.\{7.45,102133$.$\} ,$ $\{7.46,102166\},.\{7.47,102199\},.\{7.48,102231\},.\{7.49,102263\},.\{7.5,102295$.$\} ,$ $\{7.51,102328\},.\{7.52,102359\},.\{7.53,102391\},.\{7.54,102423\},.\{7.55,102455$.$\} ,$ $\{7.56,102486\},.\{7.57,102518\},.\{7.58,102549\},.\{7.59,102580\},.\{7.6,102611$.$\} ,$ $\{7.61,102642\},.\{7.62,102673\},.\{7.63,102704\},.\{7.64,102735\},.\{7.65,102765$.$\} ,$ $\{7.66,102796\},.\{7.67,102826\},.\{7.68,102856\},.\{7.69,102886\},.\{7.7,102916$.$\} ,$ $\{7.71,102946\},.\{7.72,102976\},.\{7.73,103006\},.\{7.74,103036\},.\{7.75,103065$.$\} ,$ $\{7.76,103095\},.\{7.77,103124\},.\{7.78,103153\},.\{7.79,103182\},.\{7.8,103211$.$\} ,$ $\{7.81,103240\},.\{7.82,103269\},.\{7.83,103298\},.\{7.84,103327\},.\{7.85,103355$.$\} ,$ $\{7.86,103384\},.\{7.87,103412\},.\{7.88,103440\},.\{7.89,103468\},.\{7.9,103496$.$\} ,$ $\{7.91,103524\},.\{7.92,103552\},.\{7.93,103580\},.\{7.94,103608\},.\{7.95,103635\},$. $\{7.96,103663\},.\{7.97,103690\},.\{7.98,103718\},.\{7.99,103745\},.\{8 ., 103772$.$\} ,$ $\{8.01,103799\},.\{8.02,103826\},.\{8.03,103853\},.\{8.04,103879\},.\{8.05,103906$.$\} ,$ $\{8.06,103933\},.\{8.07,103959\},.\{8.08,103986\},.\{8.09,104012\},.\{8.1,104038\},$. $\{8.11,104064\},.\{8.12,104090\},.\{8.13,104116\},.\{8.14,104142\},.\{8.15,104168$.$\} ,$ $\{8.16,104194\},.\{8.17,104219\},.\{8.18,104245\},.\{8.19,104270\},.\{8.2,104295$.$\} ,$ $\{8.21,104321\},.\{8.22,104346\},.\{8.23,104371\},.\{8.24,104396\},.\{8.25,104421$.$\} ,$ $\{8.26,104446\},.\{8.27,104470\},.\{8.28,104495\},.\{8.29,104520\},.\{8.3,104544$.$\} ,$ $\{8.31,104569\},.\{8.32,104593\},.\{8.33,104617\},.\{8.34,104641\},.\{8.35,104665$.$\} ,$ $\{8.36,104689\},.\{8.37,104713\},.\{8.38,104737\},.\{8.39,104761\},.\{8.4,104785$.$\} ,$ $\{8.41,104808\},.\{8.42,104832\},.\{8.43,104855\},.\{8.44,104879\},.\{8.45,104902$.$\} ,$ $\{8.46,104925\},.\{8.47,104948\},.\{8.48,104971\},.\{8.49,104994\},.\{8.5,105017$.$\} ,$ $\{8.51,105040\},.\{8.52,105063\},.\{8.53,105085\},.\{8.54,105108\},.\{8.55,105130\},$. $\{8.56,105153\},.\{8.57,105175\},.\{8.58,105197\},.\{8.59,105219\},.\{8.6,105242$.$\} ,$ $\{8.61,105264\},.\{8.62,105286\},.\{8.63,105308\},.\{8.64,105329\},.\{8.65,105351$.$\} ,$ $\{8.66,105373\},.\{8.67,105394\},.\{8.68,105416\},.\{8.69,105437\},.\{8.7,105459$.$\} ,$ $\{8.71,105480\},.\{8.72,105501\},.\{8.73,105522\},.\{8.74,105544\},.\{8.75,105565\},$. $\{8.76,105585\},.\{8.77,105606\},.\{8.78,105627\},.\{8.79,105648\},.\{8.8,105669\},$. $\{8.81,105689\},.\{8.82,105710\},.\{8.83,105730\},.\{8.84,105751\},.\{8.85,105771$.$\} ,$ $\{8.86,105791\},.\{8.87,105811\},.\{8.88,105831\},.\{8.89,105851\},.\{8.9,105871$.$\} ,$ $\{8.91,105891\},.\{8.92,105911\},.\{8.93,105931\},.\{8.94,105951\},.\{8.95,105970$.$\} ,$

```
{8.96, 105 990.}, {8.97, 106009.}, {8.98, 106029.}, {8.99, 106048.}, {9., 106068.},
{9.01, 106 087.}, {9.02, 106106.}, {9.03, 106 125.}, {9.04, 106 144.}, {9.05, 106163.},
{9.06, 106 182.}, {9.07, 106201.}, {9.08, 106220.}, {9.09, 106 238.}, {9.1, 106 257.},
{9.11, 106 276.}, {9.12, 106 294.}, {9.13, 106 313.}, {9.14, 106 331.}, {9.15, 106 350.},
{9.16, 106 368.}, {9.17, 106 386.}, {9.18, 106404.}, {9.19, 106422.}, {9.2, 106440.},
{9.21, 106458.}, {9.22, 106476.}, {9.23, 106494.}, {9.24, 106 512.}, {9. 25, 106 530.},
{9.26, 106 547.}, {9.27, 106565.}, {9.28, 106583.}, {9.29, 106 600.}, {9.3, 106617.},
{9.31, 106 635.}, {9.32, 106652.}, {9.33, 106669.}, {9.34, 106 687.}, {9.35, 106 704.},
{9.36, 106 721.}, {9.37, 106 738.}, {9.38, 106 755.}, {9.39, 106 772.}, {9.4, 106 789.},
{9.41, 106 806.}, {9.42, 106 822.}, {9.43, 106 839.}, {9.44, 106 856.}, {9.45, 106872.},
{9.46, 106 889.}, {9.47, 106 905.}, {9.48, 106 922.}, {9.49, 106 938.}, {9.5, 106 954.},
{9.51, 106 970.}, {9.52, 106 987.}, {9.53, 107003.}, {9.54, 107019.}, {9.55, 107035.},
{9.56, 107051.}, {9.57, 107067.}, {9.58, 107083.}, {9.59, 107099.}, {9.6, 107 114.},
{9.61, 107 130.}, {9.62, 107146.}, {9.63, 107 161.}, {9.64, 107 177.}, {9.65, 107 192.},
{9.66, 107 208.}, {9.67, 107223.}, {9.68, 107 238.}, {9.69, 107 254.}, {9.7, 107 269.},
{9.71, 107 284.}, {9.72, 107 299.}, {9.73, 107314.}, {9.74, 107 329.}, {9.75, 107 344.},
{9.76, 107 359.}, {9.77, 107374.}, {9.78, 107389.}, {9.79, 107404.}, {9.8, 107 419.},
{9.81, 107433.}, {9.82, 107448.}, {9.83, 107462.}, {9.84, 107477.}, {9.85, 107491.},
{9.86, 107506.}, {9.87, 107 520.}, {9.88, 107535.}, {9.89, 107 549.}, {9.9, 107 563.},
{9.91, 107 577.}, {9.92, 107 591.}, {9.93, 107606.}, {9.94, 107 620.}, {9.95, 107 634.},
{9.96, 107648.}, {9.97, 107661.}, {9.98, 107675.}, {9.99, 107 689.}, {10., 107 703.},
{10.01, 107 717.}, {10.02, 107 730.}, {10.03, 107 744.}, {10.04, 107 757.}, {10.05, 107 771.},
{10.06, 107 784.}, {10.07, 107 798.}, {10.08, 107 811.}, {10.09, 107 825.}, {10.1, 107 838.},
{10.11, 107 851.}, {10.12, 107 864.}, {10.13, 107 878.}, {10.14, 107 891.}, {10.15, 107 904.},
{10.16, 107 917.}, {10.17, 107 930.}, {10.18, 107 943.}, {10.19, 107 956.}, {10.2, 107 969.},
{10.21, 107 981.}, {10.22, 107 994.}, {10.23, 108007.}, {10.24, 108 020.}, {10.25, 108 032.},
{10.26, 108045.}, {10.27, 108057.}, {10.28, 108070.}, {10.29, 108082.}, {10.3, 108095.},
{10.31, 108107.}, {10.32, 108120.}, {10.33, 108132.}, {10.34, 108144.}, {10.35, 108 156.},
{10.36, 108169.}, {10.37, 108181.}, {10.38, 108193.}, {10.39, 108 205.}, {10.4, 108 217.},
{10.41, 108229.}, {10.42, 108241.}, {10.43, 108253.}, {10.44, 108 265.},{10.45, 108276.},
{10.46, 108288.}, {10.47, 108 300.}, {10.48, 108312.}, {10.49, 108323.}, {10.5, 108 335.},
{10.51, 108347.}, {10.52, 108 358.}, {10.53, 108 370.}, {10.54, 108 381.}, {10.55, 108 392.},
{10.56, 108404.}, {10.57, 108415.}, {10.58, 108427.}, {10.59, 108438.}, {10.6, 108449.},
{10.61, 108460.}, {10.62, 108471.}, {10.63, 108482.}, {10.64, 108494.}, {10.65, 108505.},
{10.66, 108516.}, {10.67, 108527.}, {10.68, 108538.}, {10.69, 108548.}, {10.7, 108559.},
{10.71, 108570.}, {10.72, 108581.}, {10.73, 108592.}, {10.74, 108602.}, {10.75, 108613.},
{10.76, 108624.}, {10.77, 108634.}, {10.78, 108645.}, {10.79, 108655.}, {10.8, 108 666.},
{10.81, 108676.}, {10.82, 108687.}, {10.83, 108697.}, {10.84, 108 708.}, {10.85, 108 718.},
{10.86, 108728.}, {10.87, 108738.}, {10.88, 108749.}, {10.89, 108759.}, {10.9, 108 769.},
{10.91, 108779.}, {10.92, 108 789.}, {10.93, 108799.}, {10.94, 108 809.}, {10.95, 108 819.},
{10.96, 108 829.}, {10.97, 108 839.}, {10.98, 108849.}, {10.99, 108859.}, {11., 108 869.},
{11.01, 108878.}, {11.02, 108 888.}, {11.03, 108898.}, {11.04, 108 908.}, {11.05, 108 917.},
{11.06, 108 927.}, {11.07, 108 936.}, {11.08, 108946.}, {11.09, 108 956.}, {11.1, 108 965.},
{11.11, 108975.}, {11.12, 108984.}, {11.13, 108993.}, {11.14, 109003.},{11.15, 109 012.},
{11.16, 109021.}, {11.17, 109031.}, {11.18, 109040.}, {11.19, 109049.}, {11.2, 109058.},
```



```
{13.46, 110506.}, {13.47, 110 510.}, {13.48, 110514.}, {13.49, 110 519.}, {13.5, 110 523.},
{13.51, 110 527.}, {13.52, 110 531.}, {13.53, 110 535.}, {13.54, 110 539.}, {13.55, 110 544.},
{13.56, 110548.}, {13.57, 110552.}, {13.58, 110556.}, {13.59, 110560.}, {13.6, 110 564.},
{13.61, 110568.}, {13.62, 110 572.}, {13.63, 110 576.}, {13.64, 110 580.}, {13.65, 110 584.},
{13.66, 110588.}, {13.67, 110592.}, {13.68, 110596.}, {13.69, 110 600.}, {13.7, 110 604.},
{13.71, 110608.}, {13.72, 110 612.}, {13.73, 110616.}, {13.74, 110 620.}, {13.75, 110 624.},
{13.76, 110628.}, {13.77, 110 631.}, {13.78, 110 635.}, {13.79, 110 639.}, {13.8, 110 643.},
{13.81, 110 647.}, {13.82, 110 651.}, {13.83, 110 654.}, {13.84, 110 658.}, {13.85, 110 662.},
{13.86, 110666.}, {13.87, 110669.}, {13.88, 110673.}, {13.89, 110 677.}, {13.9, 110 680.},
{13.91, 110684.}, {13.92, 110688.}, {13.93, 110691.}, {13.94, 110 695.}, {13.95, 110 699.},
{13.96, 110 702.}, {13.97, 110 706.}, {13.98, 110709.}, {13.99, 110 713.}, {14., 110 717.},
{14.01, 110720.}, {14.02, 110 724.}, {14.03, 110 727.}, {14.04, 110 731.}, {14.05, 110 734.},
{14.06, 110738.}, {14.07, 110741.}, {14.08, 110745.}, {14.09, 110 748.}, {14.1, 110 751.},
{14.11, 110755.}, {14.12, 110 758.}, {14.13, 110 762.}, {14.14, 110 765.}, {14.15, 110 769.},
{14.16, 110772.}, {14.17, 110775.}, {14.18, 110779.}, {14.19, 110782.}, {14.2, 110 785.},
{14.21, 110789.}, {14.22, 110792.}, {14.23, 110795.}, {14.24, 110 799.}, {14.25, 110 802.},
{14.26, 110805.}, {14.27, 110 808.}, {14.28, 110 812.}, {14.29, 110 815.}, {14.3, 110 818.},
{14.31, 110 821.}, {14.32, 110 824.}, {14.33, 110 828.}, {14.34, 110 831.}, {14.35, 110 834.},
{14.36, 110 837.}, {14.37, 110 840.}, {14.38, 110 843.}, {14.39, 110 847.}, {14.4, 110 850.},
{14.41, 110 853.}, {14.42, 110 856.}, {14.43, 110 859.}, {14.44, 110 862.}, {14.45, 110 865.},
{14.46, 110868.}, {14.47, 110 871.}, {14.48, 110874.}, {14.49, 110 877.}, {14.5, 110 880.},
{14.51, 110 883.}, {14.52, 110 886.}, {14.53, 110 889.}, {14.54, 110 892.}, {14.55, 110 895.},
{14.56, 110 898.}, {14.57, 110 901.}, {14.58, 110 904.}, {14.59, 110 907.}, {14.6, 110 910.},
{14.61, 110 913.}, {14.62, 110 916.}, {14.63, 110 918.}, {14.64, 110 921.}, {14.65, 110 924.},
{14.66, 110 927.}, {14.67, 110 930.}, {14.68, 110 933.}, {14.69, 110 935.}, {14.7, 110 938.},
{14.71, 110 941.}, {14.72, 110 944.}, {14.73, 110 947.}, {14.74, 110 949.}, {14.75, 110 952.},
{14.76, 110 955.}, {14.77, 110 958.}, {14.78, 110960.}, {14.79, 110 963.}, {14.8, 110 966.},
{14.81, 110 969.}, {14.82, 110 971.}, {14.83, 110 974.}, {14.84, 110 977.}, {14.85, 110 979.},
{14.86, 110 982.}, {14.87, 110 985.}, {14.88, 110 987.}, {14.89, 110 990.}, {14.9, 110 993.},
{14.91, 110 995.}, {14.92, 110 998.}, {14.93, 111000.}, {14.94, 111003.}, {14.95, 111006.},
{14.96, 111008.}, {14.97, 111011.}, {14.98, 111013.}, {14.99, 111016.}, {15., 111018.}}
```


theorMct $=$ Table $[\{\mathbf{x}$, Mct $\},\{\mathbf{x}, 0,15,0.01\}]$

$\{\{0 ., 46957.8\},\{0.01,46475.6\},\{0.02,46000.5\},\{0.03,45532.4\},\{0.04,45071.3\}$, $\{0.05,44617\},.\{0.06,44169.5\},\{0.07,43728.7\},\{0.08,43294.5\},\{0.09,42866.9\}$, $\{0.1,42445.7\},\{0.11,42030.9\},\{0.12,41622.4\},\{0.13,41220.2\},\{0.14,40824.1\}$, $\{0.15,40434.1\},\{0.16,40050.1\},\{0.17,39672\},.\{0.18,39299.8\},\{0.19,38933.3\}$, $\{0.2,38572.6\},\{0.21,38217.6\},\{0.22,37868.1\},\{0.23,37524.1\},\{0.24,37185.6\}$, $\{0.25,36852.5\},\{0.26,36524.7\},\{0.27,36202.1\},\{0.28,35884.8\},\{0.29,35572.5\}$, $\{0.3,35265.3\},\{0.31,34963.1\},\{0.32,34665.9\},\{0.33,34373.5\},\{0.34,34086$.$\} ,$ $\{0.35,33803.2\},\{0.36,33525.1\},\{0.37,33251.6\},\{0.38,32982.7\},\{0.39,32718.4\}$, $\{0.4,32458.5\},\{0.41,32203.1\},\{0.42,31952\},.\{0.43,31705.2\},\{0.44,31462.7\}$, $\{0.45,31224.4\},\{0.46,30990.2\},\{0.47,30760.1\},\{0.48,30534.1\},\{0.49,30312.1\}$, $\{0.5,30094\},.\{0.51,29879.9\},\{0.52,29669.5\},\{0.53,29463\},.\{0.54,29260.3\}$, $\{0.55,29061.2\},\{0.56,28865.8\},\{0.57,28674.1\},\{0.58,28485.9\},\{0.59,28301.2\}$,
$\{0.6,28120\},.\{0.61,27942.3\},\{0.62,27767.9\},\{0.63,27596.9\},\{0.64,27429.2\}$, $\{0.65,27264.8\},\{0.66,27103.6\},\{0.67,26945.6\},\{0.68,26790.8\},\{0.69,26639$.$\} ,$ $\{0.7,26490.4\},\{0.71,26344.7\},\{0.72,26202.1\},\{0.73,26062.4\},\{0.74,25925.6\}$, $\{0.75,25791.7\},\{0.76,25660.6\},\{0.77,25532.3\},\{0.78,25406.8\},\{0.79,25284$.$\} ,$ $\{0.8,25164\},.\{0.81,25046.6\},\{0.82,24931.8\},\{0.83,24819.6\},\{0.84,24710$.$\} ,$ $\{0.85,24602.9\},\{0.86,24498.3\},\{0.87,24396.2\},\{0.88,24296.5\},\{0.89,24199.2\}$, $\{0.9,24104.3\},\{0.91,24011.7\},\{0.92,23921.4\},\{0.93,23833.4\},\{0.94,23747.6\}$, $\{0.95,23664.1\},\{0.96,23582.8\},\{0.97,23503.6\},\{0.98,23426.5\},\{0.99,23351.6\}$, $\{1 ., 23278.7\},\{1.01,23207.9\},\{1.02,23139.1\},\{1.03,23072.3\},\{1.04,23007.4\}$, $\{1.05,22944.6\},\{1.06,22883.6\},\{1.07,22824.5\},\{1.08,22767.3\},\{1.09,22711.9\}$, $\{1.1,22658.3\},\{1.11,22606.6\},\{1.12,22556.6\},\{1.13,22508.3\},\{1.14,22461.8\}$, $\{1.15,22417\},.\{1.16,22373.8\},\{1.17,22332.3\},\{1.18,22292.4\},\{1.19,22254.2\}$, $\{1.2,22217.5\},\{1.21,22182.4\},\{1.22,22148.8\},\{1.23,22116.7\},\{1.24,22086.2\}$, $\{1.25,22057.1\},\{1.26,22029.5\},\{1.27,22003.3\},\{1.28,21978.6\},\{1.29,21955.2\}$, $\{1.3,21933.2\},\{1.31,21912.6\},\{1.32,21893.4\},\{1.33,21875.4\},\{1.34,21858.8\}$, $\{1.35,21843.4\},\{1.36,21829.3\},\{1.37,21816.5\},\{1.38,21804.9\},\{1.39,21794.5\}$, $\{1.4,21785.3\},\{1.41,21777.3\},\{1.42,21770.5\},\{1.43,21764.8\},\{1.44,21760.2\}$, $\{1.45,21756.8\},\{1.46,21754.4\},\{1.47,21753.1\},\{1.48,21752.9\},\{1.49,21753.8\}$, $\{1.5,21755.7\},\{1.51,21758.6\},\{1.52,21762.5\},\{1.53,21767.4\},\{1.54,21773.3\}$, $\{1.55,21780.2\},\{1.56,21788\},.\{1.57,21796.7\},\{1.58,21806.4\},\{1.59,21816.9\}$, $\{1.6,21828.4\},\{1.61,21840.7\},\{1.62,21853.9\},\{1.63,21868\},.\{1.64,21882.9\}$, $\{1.65,21898.6\},\{1.66,21915.1\},\{1.67,21932.5\},\{1.68,21950.6\},\{1.69,21969.5\}$, $\{1.7,21989.2\},\{1.71,22009.6\},\{1.72,22030.8\},\{1.73,22052.7\},\{1.74,22075.3\}$, $\{1.75,22098.7\},\{1.76,22122.7\},\{1.77,22147.4\},\{1.78,22172.8\},\{1.79,22198.9\}$, $\{1.8,22225.6\},\{1.81,22252.9\},\{1.82,22280.9\},\{1.83,22309.5\},\{1.84,22338.8\}$, $\{1.85,22368.6\},\{1.86,22399\},.\{1.87,22430\},.\{1.88,22461.6\},\{1.89,22493.7\}$, $\{1.9,22526.4\},\{1.91,22559.7\},\{1.92,22593.5\},\{1.93,22627.8\},\{1.94,22662.6\}$, $\{1.95,22697.9\},\{1.96,22733.8\},\{1.97,22770.1\},\{1.98,22806.9\},\{1.99,22844.2\}$, $\{2 ., 22881.9\},\{2.01,22920.1\},\{2.02,22958.8\},\{2.03,22997.9\},\{2.04,23037.4\}$, $\{2.05,23077.4\},\{2.06,23117.8\},\{2.07,23158.6\},\{2.08,23199.8\},\{2.09,23241.4\}$, $\{2.1,23283.4\},\{2.11,23325.7\},\{2.12,23368.5\},\{2.13,23411.6\},\{2.14,23455\},$. $\{2.15,23498.9\},\{2.16,23543\},.\{2.17,23587.5\},\{2.18,23632.4\},\{2.19,23677.6\}$, $\{2.2,23723.1\},\{2.21,23768.9\},\{2.22,23815\},.\{2.23,23861.4\},\{2.24,23908.1\}$, $\{2.25,23955.1\},\{2.26,24002.4\},\{2.27,24050\},.\{2.28,24097.8\},\{2.29,24145.9\}$, $\{2.3,24194.3\},\{2.31,24242.9\},\{2.32,24291.8\},\{2.33,24340.9\},\{2.34,24390.2\}$, $\{2.35,24439.8\},\{2.36,24489.6\},\{2.37,24539.7\},\{2.38,24589.9\},\{2.39,24640.4\}$, $\{2.4,24691\},.\{2.41,24741.9\},\{2.42,24793\},.\{2.43,24844.3\},\{2.44,24895.7\}$, $\{2.45,24947.4\},\{2.46,24999.2\},\{2.47,25051.2\},\{2.48,25103.3\},\{2.49,25155.7\}$, $\{2.5,25208.2\},\{2.51,25260.8\},\{2.52,25313.6\},\{2.53,25366.6\},\{2.54,25419.6\}$, $\{2.55,25472.9\},\{2.56,25526.2\},\{2.57,25579.8\},\{2.58,25633.4\},\{2.59,25687.1\}$, $\{2.6,25741\},.\{2.61,25795\},.\{2.62,25849.1\},\{2.63,25903.3\},\{2.64,25957.6\}$, $\{2.65,26012.1\},\{2.66,26066.6\},\{2.67,26121.2\},\{2.68,26175.9\},\{2.69,26230.7\}$, $\{2.7,26285.6\},\{2.71,26340.5\},\{2.72,26395.6\},\{2.73,26450.7\},\{2.74,26505.9\}$, $\{2.75,26561.1\},\{2.76,26616.5\},\{2.77,26671.8\},\{2.78,26727.3\},\{2.79,26782.8\}$, $\{2.8,26838.3\},\{2.81,26893.9\},\{2.82,26949.6\},\{2.83,27005.3\},\{2.84,27061$.$\} ,$

257

$\{2.85,27116.8\},\{2.86,27172.6\},\{2.87,27228.5\},\{2.88,27284.4\},\{2.89,27340.3\}$, $\{2.9,27396.2\},\{2.91,27452.2\},\{2.92,27508.2\},\{2.93,27564.2\},\{2.94,27620.2\}$, $\{2.95,27676.3\},\{2.96,27732.3\},\{2.97,27788.4\},\{2.98,27844.4\},\{2.99,27900.5\}$, $\{3 ., 27956.6\},\{3.01,28012.7\},\{3.02,28068.8\},\{3.03,28124.8\},\{3.04,28180.9\}$, $\{3.05,28237\},.\{3.06,28293\},.\{3.07,28349.1\},\{3.08,28405.1\},\{3.09,28461.1\}$, $\{3.1,28517.1\},\{3.11,28573.1\},\{3.12,28629\},.\{3.13,28685\},.\{3.14,28740.9\}$, $\{3.15,28796.8\},\{3.16,28852.6\},\{3.17,28908.5\},\{3.18,28964.3\},\{3.19,29020$.$\} ,$ $\{3.2,29075.8\},\{3.21,29131.5\},\{3.22,29187.1\},\{3.23,29242.7\},\{3.24,29298.3\}$, $\{3.25,29353.8\},\{3.26,29409.3\},\{3.27,29464.8\},\{3.28,29520.2\},\{3.29,29575.5\}$, $\{3.3,29630.8\},\{3.31,29686.1\},\{3.32,29741.3\},\{3.33,29796.4\},\{3.34,29851.5\}$, $\{3.35,29906.6\},\{3.36,29961.6\},\{3.37,30016.5\},\{3.38,30071.3\},\{3.39,30126.1\}$, $\{3.4,30180.9\},\{3.41,30235.6\},\{3.42,30290.2\},\{3.43,30344.7\},\{3.44,30399.2\}$, $\{3.45,30453.6\},\{3.46,30508\},.\{3.47,30562.2\},\{3.48,30616.4\},\{3.49,30670.6\}$, $\{3.5,30724.6\},\{3.51,30778.6\},\{3.52,30832.5\},\{3.53,30886.3\},\{3.54,30940.1\}$, $\{3.55,30993.8\},\{3.56,31047.4\},\{3.57,31100.9\},\{3.58,31154.3\},\{3.59,31207.7\}$, $\{3.6,31261\},.\{3.61,31314.2\},\{3.62,31367.3\},\{3.63,31420.3\},\{3.64,31473.3\}$, $\{3.65,31526.1\},\{3.66,31578.9\},\{3.67,31631.6\},\{3.68,31684.2\},\{3.69,31736.7\}$, $\{3.7,31789.1\},\{3.71,31841.4\},\{3.72,31893.7\},\{3.73,31945.8\},\{3.74,31997.9\}$, $\{3.75,32049.8\},\{3.76,32101.7\},\{3.77,32153.5\},\{3.78,32205.1\},\{3.79,32256.7\}$, $\{3.8,32308.2\},\{3.81,32359.6\},\{3.82,32410.9\},\{3.83,32462.1\},\{3.84,32513.2\}$, $\{3.85,32564.2\},\{3.86,32615.1\},\{3.87,32665.9\},\{3.88,32716.6\},\{3.89,32767.2\}$, $\{3.9,32817.7\},\{3.91,32868.1\},\{3.92,32918.4\},\{3.93,32968.6\},\{3.94,33018.7\}$, $\{3.95,33068.7\},\{3.96,33118.6\},\{3.97,33168.4\},\{3.98,33218.1\},\{3.99,33267.7\}$, $\{4 ., 33317.1\},\{4.01,33366.5\},\{4.02,33415.8\},\{4.03,33464.9\},\{4.04,33514$.$\} ,$ $\{4.05,33562.9\},\{4.06,33611.8\},\{4.07,33660.5\},\{4.08,33709.1\},\{4.09,33757.6\}$, $\{4.1,33806\},.\{4.11,33854.3\},\{4.12,33902.5\},\{4.13,33950.6\},\{4.14,33998.6\}$, $\{4.15,34046.5\},\{4.16,34094.2\},\{4.17,34141.9\},\{4.18,34189.4\},\{4.19,34236.8\}$, $\{4.2,34284.2\},\{4.21,34331.4\},\{4.22,34378.5\},\{4.23,34425.5\},\{4.24,34472.3\}$, $\{4.25,34519.1\},\{4.26,34565.8\},\{4.27,34612.3\},\{4.28,34658.7\},\{4.29,34705.1\}$, $\{4.3,34751.3\},\{4.31,34797.4\},\{4.32,34843.4\},\{4.33,34889.2\},\{4.34,34935$.$\} ,$ $\{4.35,34980.7\},\{4.36,35026.2\},\{4.37,35071.6\},\{4.38,35116.9\},\{4.39,35162.1\}$, $\{4.4,35207.2\},\{4.41,35252.2\},\{4.42,35297.1\},\{4.43,35341.8\},\{4.44,35386.5\}$, $\{4.45,35431\},.\{4.46,35475.4\},\{4.47,35519.7\},\{4.48,35563.9\},\{4.49,35608$.$\} ,$ $\{4.5,35651.9\},\{4.51,35695.8\},\{4.52,35739.5\},\{4.53,35783.1\},\{4.54,35826.6\}$, $\{4.55,35870\},.\{4.56,35913.3\},\{4.57,35956.5\},\{4.58,35999.6\},\{4.59,36042.5\}$, $\{4.6,36085.3\},\{4.61,36128.1\},\{4.62,36170.7\},\{4.63,36213.2\},\{4.64,36255.5\}$, $\{4.65,36297.8\},\{4.66,36340\},.\{4.67,36382\},.\{4.68,36423.9\},\{4.69,36465.7\}$, $\{4.7,36507.4\},\{4.71,36549\},.\{4.72,36590.5\},\{4.73,36631.9\},\{4.74,36673.1\}$, $\{4.75,36714.3\},\{4.76,36755.3\},\{4.77,36796.2\},\{4.78,36837\},.\{4.79,36877.7\}$, $\{4.8,36918.3\},\{4.81,36958.8\},\{4.82,36999.2\},\{4.83,37039.4\},\{4.84,37079.5\}$, $\{4.85,37119.6\},\{4.86,37159.5\},\{4.87,37199.3\},\{4.88,37239\},.\{4.89,37278.6\}$, $\{4.9,37318\},.\{4.91,37357.4\},\{4.92,37396.6\},\{4.93,37435.8\},\{4.94,37474.8\}$, $\{4.95,37513.7\},\{4.96,37552.5\},\{4.97,37591.2\},\{4.98,37629.8\},\{4.99,37668.3\}$, $\{5 ., 37706.7\},\{5.01,37744.9\},\{5.02,37783.1\},\{5.03,37821.1\},\{5.04,37859.1\}$, $\{5.05,37896.9\},\{5.06,37934.6\},\{5.07,37972.2\},\{5.08,38009.7\},\{5.09,38047.1\}$,
$\{5.1,38084.4\},\{5.11,38121.6\},\{5.12,38158.7\},\{5.13,38195.6\},\{5.14,38232.5\}$, $\{5.15,38269.2\},\{5.16,38305.9\},\{5.17,38342.4\},\{5.18,38378.8\},\{5.19,38415.1\}$, $\{5.2,38451.4\},\{5.21,38487.5\},\{5.22,38523.5\},\{5.23,38559.4\},\{5.24,38595.2\}$, $\{5.25,38630.8\},\{5.26,38666.4\},\{5.27,38701.9\},\{5.28,38737.3\},\{5.29,38772.5\}$, $\{5.3,38807.7\},\{5.31,38842.8\},\{5.32,38877.7\},\{5.33,38912.6\},\{5.34,38947.3\}$, $\{5.35,38982\},.\{5.36,39016.5\},\{5.37,39050.9\},\{5.38,39085.3\},\{5.39,39119.5\}$, $\{5.4,39153.6\},\{5.41,39187.7\},\{5.42,39221.6\},\{5.43,39255.4\},\{5.44,39289.1\}$, $\{5.45,39322.8\},\{5.46,39356.3\},\{5.47,39389.7\},\{5.48,39423\},.\{5.49,39456.2\}$, $\{5.5,39489.3\},\{5.51,39522.4\},\{5.52,39555.3\},\{5.53,39588.1\},\{5.54,39620.8\}$, $\{5.55,39653.4\},\{5.56,39685.9\},\{5.57,39718.4\},\{5.58,39750.7\},\{5.59,39782.9\}$, $\{5.6,39815\},.\{5.61,39847.1\},\{5.62,39879\},.\{5.63,39910.8\},\{5.64,39942.5\}$, $\{5.65,39974.2\},\{5.66,40005.7\},\{5.67,40037.2\},\{5.68,40068.5\},\{5.69,40099.8\}$, $\{5.7,40130.9\},\{5.71,40162\},.\{5.72,40192.9\},\{5.73,40223.8\},\{5.74,40254.6\}$, $\{5.75,40285.2\},\{5.76,40315.8\},\{5.77,40346.3\},\{5.78,40376.7\},\{5.79,40407$.$\} ,$ $\{5.8,40437.2\},\{5.81,40467.3\},\{5.82,40497.3\},\{5.83,40527.3\},\{5.84,40557.1\}$, $\{5.85,40586.8\},\{5.86,40616.5\},\{5.87,40646\},.\{5.88,40675.5\},\{5.89,40704.9\}$, $\{5.9,40734.1\},\{5.91,40763.3\},\{5.92,40792.4\},\{5.93,40821.4\},\{5.94,40850.3\}$, $\{5.95,40879.2\},\{5.96,40907.9\},\{5.97,40936.5\},\{5.98,40965.1\},\{5.99,40993.5\}$, $\{6 ., 41021.9\},\{6.01,41050.2\},\{6.02,41078.4\},\{6.03,41106.5\},\{6.04,41134.5\}$, $\{6.05,41162.5\},\{6.06,41190.3\},\{6.07,41218.1\},\{6.08,41245.7\},\{6.09,41273.3\}$, $\{6.1,41300.8\},\{6.11,41328.2\},\{6.12,41355.5\},\{6.13,41382.8\},\{6.14,41409.9\}$, $\{6.15,41437\},.\{6.16,41463.9\},\{6.17,41490.8\},\{6.18,41517.6\},\{6.19,41544.4\}$, $\{6.2,41571\},.\{6.21,41597.5\},\{6.22,41624\},.\{6.23,41650.4\},\{6.24,41676.7\}$, $\{6.25,41702.9\},\{6.26,41729\},.\{6.27,41755.1\},\{6.28,41781\},.\{6.29,41806.9\}$, $\{6.3,41832.7\},\{6.31,41858.4\},\{6.32,41884.1\},\{6.33,41909.6\},\{6.34,41935.1\}$, $\{6.35,41960.5\},\{6.36,41985.8\},\{6.37,42011\},.\{6.38,42036.2\},\{6.39,42061.2\}$, $\{6.4,42086.2\},\{6.41,42111.1\},\{6.42,42136\},.\{6.43,42160.7\},\{6.44,42185.4\}$, $\{6.45,42210\},.\{6.46,42234.5\},\{6.47,42258.9\},\{6.48,42283.2\},\{6.49,42307.5\}$, $\{6.5,42331.7\},\{6.51,42355.8\},\{6.52,42379.9\},\{6.53,42403.8\},\{6.54,42427.7\}$, $\{6.55,42451.5\},\{6.56,42475.3\},\{6.57,42498.9\},\{6.58,42522.5\},\{6.59,42546$.$\} ,$ $\{6.6,42569.4\},\{6.61,42592.8\},\{6.62,42616.1\},\{6.63,42639.3\},\{6.64,42662.4\}$, $\{6.65,42685.4\},\{6.66,42708.4\},\{6.67,42731.3\},\{6.68,42754.1\},\{6.69,42776.9\}$, $\{6.7,42799.6\},\{6.71,42822.2\},\{6.72,42844.7\},\{6.73,42867.2\},\{6.74,42889.6\}$, $\{6.75,42911.9\},\{6.76,42934.1\},\{6.77,42956.3\},\{6.78,42978.4\},\{6.79,43000.4\}$, $\{6.8,43022.4\},\{6.81,43044.3\},\{6.82,43066.1\},\{6.83,43087.8\},\{6.84,43109.5\}$, $\{6.85,43131.1\},\{6.86,43152.6\},\{6.87,43174.1\},\{6.88,43195.5\},\{6.89,43216.8\}$, $\{6.9,43238\},.\{6.91,43259.2\},\{6.92,43280.3\},\{6.93,43301.4\},\{6.94,43322.3\}$, $\{6.95,43343.2\},\{6.96,43364.1\},\{6.97,43384.9\},\{6.98,43405.6\},\{6.99,43426.2\}$, $\{7 ., 43446.8\},\{7.01,43467.3\},\{7.02,43487.7\},\{7.03,43508.1\},\{7.04,43528.4\}$, $\{7.05,43548.6\},\{7.06,43568.8\},\{7.07,43588.9\},\{7.08,43608.9\},\{7.09,43628.9\}$, $\{7.1,43648.8\},\{7.11,43668.6\},\{7.12,43688.4\},\{7.13,43708.1\},\{7.14,43727.7\}$, $\{7.15,43747.3\},\{7.16,43766.8\},\{7.17,43786.3\},\{7.18,43805.7\},\{7.19,43825$.$\} ,$ $\{7.2,43844.3\},\{7.21,43863.5\},\{7.22,43882.6\},\{7.23,43901.7\},\{7.24,43920.7\}$, $\{7.25,43939.6\},\{7.26,43958.5\},\{7.27,43977.3\},\{7.28,43996.1\},\{7.29,44014.8\}$, $\{7.3,44033.4\},\{7.31,44052\},.\{7.32,44070.5\},\{7.33,44089\},.\{7.34,44107.4\}$,
$\{7.35,44125.7\},\{7.36,44144\},.\{7.37,44162.2\},\{7.38,44180.3\},\{7.39,44198.4\}$, $\{7.4,44216.5\},\{7.41,44234.4\},\{7.42,44252.4\},\{7.43,44270.2\},\{7.44,44288$.$\} ,$ $\{7.45,44305.7\},\{7.46,44323.4\},\{7.47,44341\},.\{7.48,44358.6\},\{7.49,44376.1\}$, $\{7.5,44393.6\},\{7.51,44411\},.\{7.52,44428.3\},\{7.53,44445.6\},\{7.54,44462.8\}$, $\{7.55,44479.9\},\{7.56,44497\},.\{7.57,44514.1\},\{7.58,44531.1\},\{7.59,44548$.$\} ,$ $\{7.6,44564.9\},\{7.61,44581.7\},\{7.62,44598.5\},\{7.63,44615.2\},\{7.64,44631.9\}$, $\{7.65,44648.5\},\{7.66,44665\},.\{7.67,44681.5\},\{7.68,44697.9\},\{7.69,44714.3\}$, $\{7.7,44730.6\},\{7.71,44746.9\},\{7.72,44763.1\},\{7.73,44779.3\},\{7.74,44795.4\}$, $\{7.75,44811.5\},\{7.76,44827.5\},\{7.77,44843.4\},\{7.78,44859.3\},\{7.79,44875.2\}$, $\{7.8,44891\},.\{7.81,44906.7\},\{7.82,44922.4\},\{7.83,44938.1\},\{7.84,44953.6\}$, $\{7.85,44969.2\},\{7.86,44984.7\},\{7.87,45000.1\},\{7.88,45015.5\},\{7.89,45030.8\}$, $\{7.9,45046.1\},\{7.91,45061.3\},\{7.92,45076.5\},\{7.93,45091.6\},\{7.94,45106.7\}$, $\{7.95,45121.7\},\{7.96,45136.7\},\{7.97,45151.6\},\{7.98,45166.5\},\{7.99,45181.3\}$, $\{8 ., 45196.1\},\{8.01,45210.8\},\{8.02,45225.5\},\{8.03,45240.2\},\{8.04,45254.7\}$, $\{8.05,45269.3\},\{8.06,45283.8\},\{8.07,45298.2\},\{8.08,45312.6\},\{8.09,45326.9\}$, $\{8.1,45341.2\},\{8.11,45355.5\},\{8.12,45369.7\},\{8.13,45383.8\},\{8.14,45397.9\}$, $\{8.15,45412\},.\{8.16,45426\},.\{8.17,45440\},.\{8.18,45453.9\},\{8.19,45467.8\}$, $\{8.2,45481.6\},\{8.21,45495.4\},\{8.22,45509.1\},\{8.23,45522.8\},\{8.24,45536.4\}$, $\{8.25,45550\},.\{8.26,45563.6\},\{8.27,45577.1\},\{8.28,45590.5\},\{8.29,45604$.$\} ,$ $\{8.3,45617.3\},\{8.31,45630.7\},\{8.32,45643.9\},\{8.33,45657.2\},\{8.34,45670.4\}$, $\{8.35,45683.5\},\{8.36,45696.6\},\{8.37,45709.7\},\{8.38,45722.7\},\{8.39,45735.7\}$, $\{8.4,45748.6\},\{8.41,45761.5\},\{8.42,45774.4\},\{8.43,45787.2\},\{8.44,45799.9\}$, $\{8.45,45812.6\},\{8.46,45825.3\},\{8.47,45838\},.\{8.48,45850.5\},\{8.49,45863.1\}$, $\{8.5,45875.6\},\{8.51,45888.1\},\{8.52,45900.5\},\{8.53,45912.9\},\{8.54,45925.2\}$, $\{8.55,45937.5\},\{8.56,45949.8\},\{8.57,45962\},.\{8.58,45974.2\},\{8.59,45986.3\}$, $\{8.6,45998.4\},\{8.61,46010.5\},\{8.62,46022.5\},\{8.63,46034.5\},\{8.64,46046.4\}$, $\{8.65,46058.3\},\{8.66,46070.1\},\{8.67,46082\},.\{8.68,46093.7\},\{8.69,46105.5\}$, $\{8.7,46117.2\},\{8.71,46128.8\},\{8.72,46140.4\},\{8.73,46152\},.\{8.74,46163.6\}$, $\{8.75,46175.1\},\{8.76,46186.5\},\{8.77,46198\},.\{8.78,46209.3\},\{8.79,46220.7\}$, $\{8.8,46232\},.\{8.81,46243.3\},\{8.82,46254.5\},\{8.83,46265.7\},\{8.84,46276.9\}$, $\{8.85,46288\},.\{8.86,46299.1\},\{8.87,46310.1\},\{8.88,46321.2\},\{8.89,46332.1\}$, $\{8.9,46343.1\},\{8.91,46354\},.\{8.92,46364.8\},\{8.93,46375.7\},\{8.94,46386.5\}$, $\{8.95,46397.2\},\{8.96,46407.9\},\{8.97,46418.6\},\{8.98,46429.3\},\{8.99,46439.9\}$, $\{9 ., 46450.5\},\{9.01,46461\},.\{9.02,46471.5\},\{9.03,46482\},.\{9.04,46492.4\}$, $\{9.05,46502.8\},\{9.06,46513.2\},\{9.07,46523.5\},\{9.08,46533.8\},\{9.09,46544.1\}$, $\{9.1,46554.3\},\{9.11,46564.5\},\{9.12,46574.7\},\{9.13,46584.8\},\{9.14,46594.9\}$, $\{9.15,46604.9\},\{9.16,46615\},.\{9.17,46625\},.\{9.18,46634.9\},\{9.19,46644.8\}$, $\{9.2,46654.7\},\{9.21,46664.6\},\{9.22,46674.4\},\{9.23,46684.2\},\{9.24,46694$.$\} ,$ $\{9.25,46703.7\},\{9.26,46713.4\},\{9.27,46723.1\},\{9.28,46732.7\},\{9.29,46742.3\}$, $\{9.3,46751.8\},\{9.31,46761.4\},\{9.32,46770.9\},\{9.33,46780.4\},\{9.34,46789.8\}$, $\{9.35,46799.2\},\{9.36,46808.6\},\{9.37,46817.9\},\{9.38,46827.2\},\{9.39,46836.5\}$, $\{9.4,46845.7\},\{9.41,46855\},.\{9.42,46864.2\},\{9.43,46873.3\},\{9.44,46882.4\}$, $\{9.45,46891.5\},\{9.46,46900.6\},\{9.47,46909.6\},\{9.48,46918.6\},\{9.49,46927.6\}$, $\{9.5,46936.5\},\{9.51,46945.5\},\{9.52,46954.3\},\{9.53,46963.2\},\{9.54,46972$.$\} ,$ $\{9.55,46980.8\},\{9.56,46989.6\},\{9.57,46998.3\},\{9.58,47007\},.\{9.59,47015.7\}$,
$\{9.6,47024.3\},\{9.61,47033\},.\{9.62,47041.5\},\{9.63,47050.1\},\{9.64,47058.6\}$, $\{9.65,47067.1\},\{9.66,47075.6\},\{9.67,47084.1\},\{9.68,47092.5\},\{9.69,47100.9\}$, $\{9.7,47109.2\},\{9.71,47117.6\},\{9.72,47125.9\},\{9.73,47134.1\},\{9.74,47142.4\}$, $\{9.75,47150.6\},\{9.76,47158.8\},\{9.77,47167\},.\{9.78,47175.1\},\{9.79,47183.2\}$, $\{9.8,47191.3\},\{9.81,47199.4\},\{9.82,47207.4\},\{9.83,47215.4\},\{9.84,47223.4\}$, $\{9.85,47231.3\},\{9.86,47239.2\},\{9.87,47247.1\},\{9.88,47255\},.\{9.89,47262.9\}$, $\{9.9,47270.7\},\{9.91,47278.5\},\{9.92,47286.2\},\{9.93,47294\},.\{9.94,47301.7\}$, $\{9.95,47309.4\},\{9.96,47317\},.\{9.97,47324.7\},\{9.98,47332.3\},\{9.99,47339.9\}$, $\{10 ., 47347.4\},\{10.01,47354.9\},\{10.02,47362.5\},\{10.03,47369.9\},\{10.04,47377.4\}$, $\{10.05,47384.8\},\{10.06,47392.2\},\{10.07,47399.6\},\{10.08,47407\},.\{10.09,47414.3\}$, $\{10.1,47421.6\},\{10.11,47428.9\},\{10.12,47436.2\},\{10.13,47443.4\},\{10.14,47450.6\}$, $\{10.15,47457.8\},\{10.16,47464.9\},\{10.17,47472.1\},\{10.18,47479.2\},\{10.19,47486.3\}$, $\{10.2,47493.4\},\{10.21,47500.4\},\{10.22,47507.4\},\{10.23,47514.4\},\{10.24,47521.4\}$, $\{10.25,47528.3\},\{10.26,47535.3\},\{10.27,47542.2\},\{10.28,47549\},.\{10.29,47555.9\}$, $\{10.3,47562.7\},\{10.31,47569.5\},\{10.32,47576.3\},\{10.33,47583.1\},\{10.34,47589.8\}$, $\{10.35,47596.5\},\{10.36,47603.2\},\{10.37,47609.9\},\{10.38,47616.6\}$, $\{10.39,47623.2\},\{10.4,47629.8\},\{10.41,47636.4\},\{10.42,47642.9\},\{10.43,47649.5\}$, $\{10.44,47656\},.\{10.45,47662.5\},\{10.46,47669\},.\{10.47,47675.4\},\{10.48,47681.8\}$, $\{10.49,47688.2\},\{10.5,47694.6\},\{10.51,47701\},.\{10.52,47707.3\},\{10.53,47713.7\}$, $\{10.54,47720\},.\{10.55,47726.2\},\{10.56,47732.5\},\{10.57,47738.7\},\{10.58,47745\},$. $\{10.59,47751.1\},\{10.6,47757.3\},\{10.61,47763.5\},\{10.62,47769.6\},\{10.63,47775.7\}$, $\{10.64,47781.8\},\{10.65,47787.9\},\{10.66,47793.9\},\{10.67,47800\},.\{10.68,47806$.$\} ,$ $\{10.69,47812\},.\{10.7,47817.9\},\{10.71,47823.9\},\{10.72,47829.8\},\{10.73,47835.7\}$, $\{10.74,47841.6\},\{10.75,47847.5\},\{10.76,47853.3\},\{10.77,47859.2\},\{10.78,47865\},$. $\{10.79,47870.8\},\{10.8,47876.5\},\{10.81,47882.3\},\{10.82,47888\},.\{10.83,47893.8\}$, $\{10.84,47899.4\},\{10.85,47905.1\},\{10.86,47910.8\},\{10.87,47916.4\},\{10.88,47922$.$\} ,$ $\{10.89,47927.6\},\{10.9,47933.2\},\{10.91,47938.8\},\{10.92,47944.3\},\{10.93,47949.8\}$, $\{10.94,47955.4\},\{10.95,47960.8\},\{10.96,47966.3\},\{10.97,47971.8\},\{10.98,47977.2\}$, $\{10.99,47982.6\},\{11 ., 47988\},.\{11.01,47993.4\},\{11.02,47998.7\},\{11.03,48004.1\}$, $\{11.04,48009.4\},\{11.05,48014.7\},\{11.06,48020\},.\{11.07,48025.3\},\{11.08,48030.5\}$, $\{11.09,48035.8\},\{11.1,48041\},.\{11.11,48046.2\},\{11.12,48051.4\},\{11.13,48056.5\}$, $\{11.14,48061.7\},\{11.15,48066.8\},\{11.16,48071.9\},\{11.17,48077\},.\{11.18,48082.1\}$, $\{11.19,48087.1\},\{11.2,48092.2\},\{11.21,48097.2\},\{11.22,48102.2\},\{11.23,48107.2\}$, $\{11.24,48112.2\},\{11.25,48117.2\},\{11.26,48122.1\},\{11.27,48127\},.\{11.28,48131.9\}$, $\{11.29,48136.8\},\{11.3,48141.7\},\{11.31,48146.6\},\{11.32,48151.4\},\{11.33,48156.2\}$, $\{11.34,48161\},.\{11.35,48165.8\},\{11.36,48170.6\},\{11.37,48175.4\},\{11.38,48180.1\}$, $\{11.39,48184.9\},\{11.4,48189.6\},\{11.41,48194.3\},\{11.42,48199\},.\{11.43,48203.6\}$, $\{11.44,48208.3\},\{11.45,48212.9\},\{11.46,48217.5\},\{11.47,48222.1\},\{11.48,48226.7\}$, $\{11.49,48231.3\},\{11.5,48235.9\},\{11.51,48240.4\},\{11.52,48244.9\},\{11.53,48249.4\}$, $\{11.54,48253.9\},\{11.55,48258.4\},\{11.56,48262.9\},\{11.57,48267.3\},\{11.58,48271.8\}$, $\{11.59,48276.2\},\{11.6,48280.6\},\{11.61,48285\},.\{11.62,48289.4\},\{11.63,48293.7\}$, $\{11.64,48298.1\},\{11.65,48302.4\},\{11.66,48306.7\},\{11.67,48311\},.\{11.68,48315.3\}$, $\{11.69,48319.6\},\{11.7,48323.9\},\{11.71,48328.1\},\{11.72,48332.3\},\{11.73,48336.6\}$, $\{11.74,48340.8\},\{11.75,48345\},.\{11.76,48349.1\},\{11.77,48353.3\},\{11.78,48357.4\}$, $\{11.79,48361.6\},\{11.8,48365.7\},\{11.81,48369.8\},\{11.82,48373.9\},\{11.83,48378$.$\} ,$
$\{11.84,48382\},.\{11.85,48386.1\},\{11.86,48390.1\},\{11.87,48394.2\},\{11.88,48398.2\}$, $\{11.89,48402.2\},\{11.9,48406.1\},\{11.91,48410.1\},\{11.92,48414.1\},\{11.93,48418$.$\} ,$ $\{11.94,48421.9\},\{11.95,48425.9\},\{11.96,48429.8\},\{11.97,48433.6\},\{11.98,48437.5\}$, $\{11.99,48441.4\},\{12 ., 48445.2\},\{12.01,48449.1\},\{12.02,48452.9\},\{12.03,48456.7\}$, $\{12.04,48460.5\},\{12.05,48464.3\},\{12.06,48468.1\},\{12.07,48471.8\},\{12.08,48475.6\}$, $\{12.09,48479.3\},\{12.1,48483\},.\{12.11,48486.8\},\{12.12,48490.5\},\{12.13,48494.1\}$, $\{12.14,48497.8\},\{12.15,48501.5\},\{12.16,48505.1\},\{12.17,48508.8\},\{12.18,48512.4\}$, $\{12.19,48516\},.\{12.2,48519.6\},\{12.21,48523.2\},\{12.22,48526.8\},\{12.23,48530.3\}$, $\{12.24,48533.9\},\{12.25,48537.4\},\{12.26,48540.9\},\{12.27,48544.4\},\{12.28,48548$.$\} ,$ $\{12.29,48551.4\},\{12.3,48554.9\},\{12.31,48558.4\},\{12.32,48561.8\},\{12.33,48565.3\}$, $\{12.34,48568.7\},\{12.35,48572.2\},\{12.36,48575.6\},\{12.37,48579\},.\{12.38,48582.3\}$, $\{12.39,48585.7\},\{12.4,48589.1\},\{12.41,48592.4\},\{12.42,48595.8\},\{12.43,48599.1\}$, $\{12.44,48602.4\},\{12.45,48605.7\},\{12.46,48609\},.\{12.47,48612.3\},\{12.48,48615.6\}$, $\{12.49,48618.9\},\{12.5,48622.1\},\{12.51,48625.4\},\{12.52,48628.6\},\{12.53,48631.8\}$, $\{12.54,48635\},.\{12.55,48638.2\},\{12.56,48641.4\},\{12.57,48644.6\},\{12.58,48647.7\}$, $\{12.59,48650.9\},\{12.6,48654\},.\{12.61,48657.2\},\{12.62,48660.3\},\{12.63,48663.4\}$, $\{12.64,48666.5\},\{12.65,48669.6\},\{12.66,48672.7\},\{12.67,48675.8\}$,
$\{12.68,48678.8\},\{12.69,48681.9\},\{12.7,48684.9\},\{12.71,48688\},.\{12.72,48691$.$\} ,$ $\{12.73,48694\},.\{12.74,48697\},.\{12.75,48700\},.\{12.76,48702.9\},\{12.77,48705.9\}$, $\{12.78,48708.9\},\{12.79,48711.8\},\{12.8,48714.8\},\{12.81,48717.7\},\{12.82,48720.6\}$, $\{12.83,48723.5\},\{12.84,48726.4\},\{12.85,48729.3\},\{12.86,48732.2\},\{12.87,48735.1\}$, $\{12.88,48737.9\},\{12.89,48740.8\},\{12.9,48743.6\},\{12.91,48746.5\},\{12.92,48749.3\}$, $\{12.93,48752.1\},\{12.94,48754.9\},\{12.95,48757.7\},\{12.96,48760.5\}$,
$\{12.97,48763.3\},\{12.98,48766\},.\{12.99,48768.8\},\{13 ., 48771.5\},\{13.01,48774.3\}$, $\{13.02,48777\},.\{13.03,48779.7\},\{13.04,48782.4\},\{13.05,48785.1\},\{13.06,48787.8\}$, $\{13.07,48790.5\},\{13.08,48793.2\},\{13.09,48795.8\},\{13.1,48798.5\},\{13.11,48801.1\}$, $\{13.12,48803.8\},\{13.13,48806.4\},\{13.14,48809\},.\{13.15,48811.6\},\{13.16,48814.3\}$, $\{13.17,48816.8\},\{13.18,48819.4\},\{13.19,48822\},.\{13.2,48824.6\},\{13.21,48827.1\}$, $\{13.22,48829.7\},\{13.23,48832.2\},\{13.24,48834.8\},\{13.25,48837.3\},\{13.26,48839.8\}$, $\{13.27,48842.3\},\{13.28,48844.8\},\{13.29,48847.3\},\{13.3,48849.8\},\{13.31,48852.3\}$, $\{13.32,48854.7\},\{13.33,48857.2\},\{13.34,48859.6\},\{13.35,48862.1\}$, $\{13.36,48864.5\},\{13.37,48866.9\},\{13.38,48869.4\},\{13.39,48871.8\},\{13.4,48874.2\}$, $\{13.41,48876.6\},\{13.42,48878.9\},\{13.43,48881.3\},\{13.44,48883.7\},\{13.45,48886$.$\} ,$ $\{13.46,48888.4\},\{13.47,48890.7\},\{13.48,48893.1\},\{13.49,48895.4\},\{13.5,48897.7\}$, $\{13.51,48900\},.\{13.52,48902.3\},\{13.53,48904.6\},\{13.54,48906.9\},\{13.55,48909.2\}$, $\{13.56,48911.5\},\{13.57,48913.8\},\{13.58,48916\},.\{13.59,48918.3\},\{13.6,48920.5\}$, $\{13.61,48922.8\},\{13.62,48925\},.\{13.63,48927.2\},\{13.64,48929.4\},\{13.65,48931.6\}$, $\{13.66,48933.8\},\{13.67,48936\},.\{13.68,48938.2\},\{13.69,48940.4\},\{13.7,48942.5\}$, $\{13.71,48944.7\},\{13.72,48946.9\},\{13.73,48949\},.\{13.74,48951.1\},\{13.75,48953.3\}$, $\{13.76,48955.4\},\{13.77,48957.5\},\{13.78,48959.6\},\{13.79,48961.7\},\{13.8,48963.8\}$, $\{13.81,48965.9\},\{13.82,48968\},.\{13.83,48970.1\},\{13.84,48972.2\},\{13.85,48974.2\}$, $\{13.86,48976.3\},\{13.87,48978.3\},\{13.88,48980.4\},\{13.89,48982.4\},\{13.9,48984.4\}$, $\{13.91,48986.4\},\{13.92,48988.5\},\{13.93,48990.5\},\{13.94,48992.5\},\{13.95,48994.5\}$, $\{13.96,48996.5\},\{13.97,48998.4\},\{13.98,49000.4\},\{13.99,49002.4\},\{14 ., 49004.3\}$, $\{14.01,49006.3\},\{14.02,49008.2\},\{14.03,49010.2\},\{14.04,49012.1\},\{14.05,49014$.$\} ,$

```
{14.06, 49016.}, {14.07, 49017.9}, {14.08, 49019.8}, {14.09, 49 021.7}, {14.1, 49023.6},
{14.11, 49025.5}, {14.12, 49027.4}, {14.13, 49029.2}, {14.14, 49031.1}, {14.15, 49 033.},
{14.16, 49034.8}, {14.17, 49036.7}, {14.18, 49038.5}, {14.19, 49 040.4}, {14.2, 49042.2},
{14.21,49044.},{14.22, 49045.8}, {14.23, 49047.6}, {14.24, 49049.5}, {14.25, 49051.3},
{14.26, 49053.1}, {14.27, 49054.8}, {14.28, 49056.6}, {14.29, 49 058.4},{14.3, 49 060.2},
{14.31,49061.9}, {14.32, 49063.7}, {14.33, 49065.5}, {14.34, 49 067.2},{14.35, 49 068.9},
{14.36, 49070.7}, {14.37, 49072.4}, {14.38, 49074.1}, {14.39, 49 075.9}, {14.4, 49077.6},
{14.41, 49079.3}, {14.42, 49081.}, {14.43, 49082.7}, {14.44, 49 084.4},{14.45, 49 086.},
{14.46, 49087.7}, {14.47, 49089.4}, {14.48, 49091.1}, {14.49, 49092.7}, {14.5, 49 094.4},
{14.51,49096.},{14.52, 49097.7}, {14.53, 49099.3}, {14.54, 49 100.9}, {14.55, 49102.6},
{14.56,49104.2}, {14.57, 49105.8}, {14.58, 49107.4}, {14.59, 49109.}, {14.6, 49110.6},
{14.61, 49112.2}, {14.62, 49113.8}, {14.63, 49115.4}, {14.64, 49117.}, {14.65, 49118.6},
{14.66, 49120.1}, {14.67, 49121.7}, {14.68, 49123.2}, {14.69, 49124.8}, {14.7, 49126.4},
{14.71,49127.9}, {14.72, 49129.4}, {14.73, 49131.}, {14.74, 49132.5}, {14.75, 49134.},
{14.76, 49135.5}, {14.77, 49137.}, {14.78, 49138.5}, {14.79, 49140.}, {14.8, 49 141.5},
{14.81, 49143.}, {14.82, 49144.5}, {14.83,49146.}, {14.84, 49147.5}, {14.85, 49149.},
{14.86, 49150.4}, {14.87,49151.9}, {14.88,49153.3}, {14.89, 49154.8}, {14.9, 49 156.2},
{14.91,49157.7}, {14.92, 49159.1}, {14.93, 49160.5}, {14.94, 49162.}, {14.95, 49163.4},
{14.96,49164.8}, {14.97, 49166.2}, {14.98,49167.6},{14.99, 49169.}, {15., 49170.4}}
```

The next line exports a file containing the theoretical points just calculated.

Export ["OHPro1.txt", theorMtt, "Table"]
OHPro1.txt
Export ["OHPro2.txt", theorMct, "Table"]
OHPro2.txt

Just to confirm, here are graphs of the theoretical points and the data.

```
ListPlot[theorMtt, PlotStyle }->\mathrm{ {PointSize[0.01], Black}, PlotRange }->{{0, 15},{70, +120}}
    Frame }->\mathrm{ True, RotateLabel }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"},
    FrameLabel }->\mathrm{ {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
```


Show[\%, lp2]


```
ListPlot [theorMct, PlotStyle }->\mathrm{ {PointSize [0.01], Black}, PlotRange }->{{0, 15}, {-75, +50}}
    Frame }->\mathrm{ True, RotateLabel }->\mathrm{ False, BaseStyle }->\mathrm{ {14, FontFamily }->\mathrm{ "Times"},
    FrameLabel }->\mathrm{ {"Transfer Time (sec)", "Intensity"}, Axes }->\mathrm{ False]
Show [%, lp3]
Clear[T1t, T1c, taut, tauc, MOt, MOc, Mtinf, Mcinf, tau1t,
    tau1c, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]
```


END

Conditions of Use:
This software is in the public domain and may be distrubuted and modified freely by any user. It is provided "as is", with absolutely no warranty expressed or implied. Any use is at your own risk.

Errors, suggestions for improvement, or other comments may be sent to:
Joe O'Neil
Department of Chemistry
University of Manitoba
390 Parker Building

144 Dysart Rd.
Winnipeg, MB
R3T 2N2
TELE: (204) 474-6697
FAX: (204) 474-7608
joneil@cc.umanitoba.ca
http://home.cc.umanitoba.ca/~joneil/
Last updated: June 202007

[^0]: α orientation - axial -
 bond dipole monents anti-parallel

[^1]: ${ }^{18}$ Krawczuck Paul, "Anomeric Effect - Baran group meeting" Nov 05, 2005 http://www.scripps.edu/baran/images/grpmtgpdf/Krawczuk Nov 05.pdf

[^2]: ${ }^{28}$ Chemical glycosylation. (2014, April 7). In Wikipedia, The Free Encyclopedia. Retrieved 22:53, June 18, 2014, from http://en.wikipedia.org/w/index.php?title=Chemical_glycosylation\&oldid=603140535

[^3]: ${ }^{3}$ Cell wall. (2014, June 16). In Wikipedia, The Free Encyclopedia. Retrieved 22:51, June 18, 2014, from http://en.wikipedia.org/w/index.php?title=Cell_wall\&oldid=613121739 and http://www.ccrc.uga.edu/~mao/intro/ouline.htm

[^4]: These HRGPs are broadly classified ${ }^{[43]}$ into major four classes as follows and elucidated with applications in

 Table
 2 :

