

An investigation into the effects of L-Arabinofuranose *O*-glycosylation of hydroxyproline

By

Venkata Ramana Murthy Mantha

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

In partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

Department of Chemistry

University of Manitoba

Winnipeg, Manitoba, Canada

Copyright © 2014 by Venkata Mantha

Abstract

The amino acid (2S, 4R)-4-hydroxyproline (Hyp) plays a critical role in animal kingdom as structural protein collagen. It is ubiquitous in plant cell walls performing various functions such as structural assembly, plant hormones, plant growth, defense against pathogens, etc. Glycosylation of Hyp is often seen in plant cell walls with L-Arabinofuranose and D-Galactopyranose and not in animal kingdom. Glycosylation is a post-translational modification, which affects characteristics of proteins and peptides.

The main objective of this thesis is to synthesize various L-arabinofuranosylated hydroxyproline model amides and investigate their thermodynamic and kinetic properties of cis/trans amide isomerization. These results are compared with the previous research of D-galactopyranosylated hydroxyproline model amides, which may provide an insight to structural implications for their stability and conformations of peptides and specificity in plants.

Both α - and β -L-arabinosylation of Hyp resulted in the stabilization of *trans* rotameric state at room temperature while the α -anomer leads to cis rotamer stabilization at higher temperature. Similarly, both unnatural 4S-hydroxyproline (hyp) building blocks resulted in stabilization of *trans* rotamer but α -anomer shows exo configuration instead of endo. This result shows a reverse trend when compared to galactosylated hydroxyproline building blocks as previous research results in our group. Our results may provide further insight to the role of glycosylation on protein structure and stability in plants.

Acknowledgements

I would like to thank my supervisor Prof. Frank Schweizer for his enthusiasm for research, inspiration to exceed my expectations, and for his valuable support throughout this project. His mentorship is very important for me to complete my Master's degree for learning key concepts of Carbohydrate Synthesis, NMR analysis and various NMR techniques.

Thank you to my examining committee, Prof. Helene Perreault, Prof. Mazdak Khajehpour and Prof. Arthur Gilbert for your evaluation, comments and advice.

Thank you to members of department of chemistry especially Dr Kirk Marat for his exceptional advice with NMR analysis and mentorship for various types of NMR experiments, Dr Wayne Buchanan for Mass analysis for many helpful suggestions for the project. Thank you to Dr Joe O'Neil for his valuable mathematica programs for the amide isomerization and his continuous support through the project.

I would like to thank Prof. John Sorenson, Prof. Athar Ata, and Prof. Norman Hunter for the course works which I have taken from them.

I would also like to thank the members of Dr Schweizer's group: Brandon Findlay, Dr Srinivas Bommagani, Mrs Prasanna, Dr Ramesh Dhondi, Dr Neil Owens, Lynda, Paul Slemez, Riley Anderson, Ron Domalan; I really enjoyed working with all of you. I would like to thank several people for inspiring me to carry out this work: my colleague Brandon Findlay, Rafeeq (a post-doctoral research scholar from Dr John Sorenson's group) for screening my thesis for mistakes.

Finally to my family and friends, my parents Mr Nageswara Sarma and Mrs Lakshmikantham, my sister Swapna Priya, cousin brother Raghu Mudhivarthi, thank you for your continued support, it has made all the difference.

Dedication

To my parents, Nageswara Sarma and Lakshmikantham

Table of Contents

		Page No
Abstract		2
Acknowledg	gements	3
Dedication		5
List of abbr	eviations	10
List of Figu	res	13
List of Tabl	es	15
List of Schemes		16
List of Copy	vright figures / tables	17
Chapter 1: 1	Introduction and Background	18
1.1	Introduction to carbohydrates, glycosylation and biological roles of carbohydrates in living systems	18
1.2	Glycosylation of sugars in living systems: <i>Glycosylation</i> reaction mechanism and their types	25
1.3	Glycosylation of sugars in living systems: plants and animals and subtle differences	32

	hydroxyproline on the conformation, kinetics of prolyl	
Chapter 3:	Experimental Details: Effects of L-arabinofuranose glycosylation of $(2S 4R)$ -4-hydroxyproline and $(2S 4S)$ -4-	57
Chapter 2:	Thesis Objectives	56
	constants of <i>cis / trans</i> isomerization around the peptide bond	
1.7.3	Inverse magnetization experiments for finding out the rate	52
1.7.2	^{13}C Inverse gated coupling, A quantitative experiment to find out the minor rotamer percentage	51
	the peptide bond	
1.7.1	Nuclear Overhauser Effect technique by NMR for finding out the configurations of sugars and population of rotamers around	49
1.7	Techniques used in laboratory experiments: Introduction	48
1.6	Ring Puckers of Hydroxyproline	46
	glycosylation	
1.4.2	HRGPs in plants Structural and conformational effects of hydroxyproline	36
1.4.1	Occurrence of HRGPs in animals and humans	35
	aspects: plants and animals	
1.4	-rich glycoproteins in living systems and their structural	35

	amide isomerization	
3.1	Synthesis	57
3.2	Results	63
3.2.1	NMR Spectroscopic studies:	63
3.2.2	Prolyl side chain conformation:	66
3.2.3	C^{γ} Inductive Effect:	69
3.2.4	¹³ C Inverse gated Coupling	70
3.2.5	Kinetics of <i>cis / trans</i> isomerization: <i>rate constants determination</i>	71
3.2.6	Measurement of K _{cis/trans} :	74
3.3	Discussion	76
Chapter 4: Conclusions and future work		82
Chapter 5: S	Supporting information for Chapter 3	84
5.1	Synthetic procedures with NMR & Mass data - General Procedures:	85
5.2	General Preparation of Sugar glycosyl donor: Compound 3 – 2, 3, 5 Tri- <i>O</i> -benzyl-L-arab- <i>f</i> -1-thiocresol (3):	85

5.3	General Preparation of glycosylated building blocks:	87
5.3.1	Fmoc Stage: Compounds 5a, 5b, 10a & 10b	87
5.3.2	Benzyl Stage: Compounds 6a, 6b, 11a & 11b	90
5.3.3	General Preparation of 4- <i>O</i> -arabinofuranosyl- <i>N</i> -acetyl- <i>N</i> '- methyl ester amino acids (Final compounds 7a , 7b , 12a & 12b):	93
References		97
Appendices		108
A) NMR an	d Mass spectral data reports	108
B) Nuclear Overhauser Experiments (NOE) spectra		152
C) ³ J Coupling constants data by NUMMRIT method		161
D) Inverse Magnetization Transfer experiment data		188
E) Inverse Magnetization Transfer Mathematica reports for calculation		205
of rate constants of <i>cis – trans</i> isomerization.		

List of Abbreviations

[θ]	Mean residue ellipticity
[α]	specific rotation
Ac	Acetyl
Ala	L-Alanine
Asn	L-Asparagine
Aq	aqueous
Bn	Benzyl
Bz	Benzoyl
Boc	<i>tert</i> -butoxycarbonyl
С	concentration in g/100 mL
CD	Circular Dichorism
CDCl ₃	deuterated chloroform
COSY	Correlation Spectroscopy
δ	chemical shift in parts per million
D ₂ O	Deuterium oxide
DCM	Dichloromethane

EtOAc	Ethyl acetate
Fmoc	9-fluorenyl methoxycarbonyl
Gal	D-Galactose
Glc	D-Glucose
GlcNAc	N-acetyl-D-glucosamine
Gly	Glycine
GOESY	Gradient Enhanced Nuclear Overhauser Effect Spectroscopy
HRGP	Hydroxyproline-rich Glycoprotein
HSQC	Heteronuclear single quantum coherence
Нур	(2 <i>S</i> , 4 <i>R</i>)-hydroxy-L-proline
hyp	(2 <i>S</i> , 4 <i>S</i>)-hydroxy-L-proline
J	coupling constant in Hertz (in NMR)
k _{ct}	rate constant from cis to trans rotamers
k _{tc}	rate constant from trans to cis rotamers
K _{trans/cis}	Equillibrium constant of <i>trans:cis</i> amide isomers
Lys	L-Lysine
МеОН	Methanol

MS	Mass spectrometry
NHMe	N-methylamide
nOe	Nuclear Overhauser effect
NMR	Nuclear Magnetic Resonance
OMe	methoxyl group
ppm	parts per million
Pro	L-Proline
Ser	L-Serine
TFA	Trifluoroacetic acid
Thr	L-Threonine
Tyr	L-Tyrosine

S.No	Title	Page no
1	D-glucose in open chain, 6-membered ring pyranose form and 5-	18
	membered ring furanose form.	
2	Most common monosaccharides present in biological systems in plants	19
	and animals	
3	Assignment of α - and β - anomers of D and L-Glucose	21
4	Depicting the anomeric effect where α -orientation (axial) is more stable	22
	than β -orientation (equatorial) in sugar moiety	
5	Anomeric effect by gauche interactions	23
6	Anomeric effect explained by Hyperconjugation	24
7	ALPH (Antiperiplanar Lone Pair Hypothesis)	24
8	Glycosylation reaction mechanism	25
9	Glycosylated carbohydrates examples of L-arabinose with amino acids,	27
	non-amino acids in various combinations	
10	The occurance of amino acid glycosylation with types of sugars is	28
	obtained with permission from the journal reference	
11	Tryptophan C-glycosylation commonly seen with mannose in living	29
	systems	
12	Origin of cis/trans rotamers in proline around peptide bond	44
13	Shows the A) proposed $n \rightarrow \pi^*$ electrostatic interaction present in the	45
	trans amide of N-formyl-L-proline methyl ester. B) Depiction of the n	

List of Figures

	and π^* molecular orbitals	
14	Exo and endo forms of Hydroxyproline	47
15	Rotamers of hydroxyproline: cis and trans	48
16	Schematic diagram of Streptococcus Group A trisaccharide-hapten (a) Conformation of β - $(1 \rightarrow 3)$ -glycosidic linkage that accounts for the interglycosidic NOE seen. This conformation present in aqueous solution and not bound by monoclonal antibody Strep 9. (b) The conformation of the trisaccharide when bound to antibody (NOE of interglycosidic linkage net even)	50
17	Pattern of Inverse Magnetization experiment by NMR: Curve A: Pattern of the inverted pulse. Curve B: Pattern of the exponential recovery of another conformer.	53
18	Synthesis of mono-glycosylated L-Araf-hyp building blocks for study	57
19	Figure showing the four isomers of O-L-Arabinofuranosylated hydroxyprolines (Hyp & hyp) with NOE data	68

S.No	Title	Page no
1	The occurrence of these glycosylations in biological systems along with	30
	stereochemical descriptors are also shown in this review but for	
	convenience only few examples are reproduced with permission from the	
	paper for which stereochemical anomeric descriptors are available	
2	Classes of HRGPs with their structural features, sequences in some	40
	plants and applications	
3	Table showing the chemical shifts of C^{δ} carbon chemical shifts of $7a$, $7b$,	63
	12a, 12b	
4	NOE studies: The NOE studies after irradiating the H_1 of the anomeric	64
	carbons of 7a, 7b, 12a, 12b and results are tabulated below indicating	
	the rotameric state	
5	Showing the NOE interactions of H_{γ} with ¹ H (anomeric carbon) from	65
	spectra	
6	Prolyl side chain conformation of exo and endo configurations	66
7	Comparision of C^{γ} L-arabinofuranose glycosylated compounds with D-	69
	galactopyranose glycosylated compounds	
8	¹³ C inverse gated coupling results of 7 <i>a</i> , 7 <i>b</i> , 12 <i>a</i> , 12 <i>b</i> at RT i.e 24.8°C	71
9	Equillibrium constants and rate constants of cis-trans isomers of the	72
	compounds researched till now	

List of Tables

List of Schemes

S.No	Title	Page no
1	Preparation of 2,3,5 Tri-O-benzyl-arab-f-1-thiocresol 3	59
2	Synthesis of Ac-Hyp(O - α -L-Araf)-OMe,Ac-Hyp(O - β -L-Araf)-OMe and Ac-Hyp-OMe	61
3	Synthesis of Ac-hyp(O-α-L-Araf)-OMe,Ac-hyp(O-β-L-Araf)-OMe and Ac-hyp-OMe	62
4	Proposal for the preparation of Tri-saccharides as observed in plant hormones	83

List of Copyright Figures / Tables / Illustrations

S.No	Source	Page no
1	Table 1: R. G. Spiro, Glycobiology 2002, 12, 43R-56R.	30
2	Figure 13: M. P. Hinderaker and R. T. Raines, Prot. Sci. 2003, 12(6),	45
	1188-1194	
3	Figure 14: N. W. Owens, A. Lee, K. Marat and F. Schweizer, <i>Chemistry</i>	47
	2009 , <i>15</i> , 10649-10657	
4	Figure 15: C. M. Taylor, C. V. Karunaratne and N. Xie, <i>Glycobiology</i>	48
	2012 , <i>22</i> , 757-767	
5	Figure 16: T. Weimar, S. L. Harris, J. B. Pitner, K. Bock and B. M.	50
	Pinto, Biochemistry 1995, 34, 13672-13681	
6	Figure 17: J. R. Alger and J. H. Prestegard, J. Mag. Reson. (1969) 1977,	53
	27, 137-141	
7	Equations / Illustrations used for calculations: J. R. Alger and J. H.	54 - 55
	Prestegard, J. Mag. Reson. (1969) 1977, 27, 137-141	

Chapter 1: Introduction and Background

1.1 Introduction to carbohydrates, glycosylation and biological roles of carbohydrates in living systems

Carbohydrates are important compounds of biological systems and generally regarded as polyhydroxy aldehydes or ketones which are hydrolysed to simpler monomers (monosaccharides) units. These exist in various chains of monosaccharides, cross linking chains of monomers in plants and animals mostly in ring forms. These compounds are classified as monosaccharides, disaccharides, trisaccharides and polysaccharides based on the linkage of one unit or multiple units of monomers. They may exist in open chain and ring forms and are interconvertible. The ring forms are mostly in 5 membered (furanose) or 6 membered (pyranose). Most of the monomers have a potential carbonyl group (ex: aldehyde in glucose and ketone in fructose) and exist in open chain or ring forms. Figure 1 shows the D-glucose in open chain and ring structure. The ring structure which contains 6 membered rings adopts the more stable chair conformation.

Figure 1: *D*-glucose in open chain, 6-membered ring pyranose form and 5-membered ring furanose form.

In most of living systems, these carbohydrates exist as chains of monomers linked to one another in various positions^[1]. The most common examples of sugars in living systems are blood sugar – glucose (monomer), table sugar is sucrose (disaccharide) and polysaccharides are starch, chitin and amylase. Monosaccharides which are commonly found in Nature are given in Figure **2**.

Figure 2: Most common monosaccharides present in biological systems in plants and animals

β-D-Glucose

Monosaccharides are characterized by

- Placement of carbonyl group: If on first or last carbon carbonyl group if present it will be an aldehyde as in glucose a 6 carbon aldehyde.
- Number of carbon atoms: 5 membered sugars are called pentoses, 6 membered hexoses and so on.
- *The chiral handedness:* Each carbon atom has a hydroxyl group with exception of first are asymmetric and more than 2 isomers are possible for any given monosaccharide. For example glucose has 4 hydroxyl groups and the number of possible isomers are 16 = 8 enantiomeric isomers.

Also, the ring forms exist in 2 anomeric forms i.e. alpha (α) and beta (β) defined by the position of hydroxyl group on the anomeric carbon which is shown for D-glucose in Figure **3**. These anomers are based on the following description and the anomeric² effect. Carbohydrates and some heterocyclics exhibit anomeric effect. The anomeric effect, originally defined as the preference of an electronegative substituent at the anomeric position of a carbohydrate to be axially rather than equatorially oriented, is now understood to be the result of multiple steric and stereo electronic interactions^[2]. Nucleotides and proteins are linear polymers that can each have only one basic type of linkage called peptide bonds. Not many variations possible with few numbers of amino acids. In fact each monosaccharide theoretically generates an α or a β linkage to any one of several positions on another monosaccharide / amino acid in a chain or to another type of molecule (5 or 6 carbons for ring structures). For example, three nucleotide bases or

amino acids can only generate six variations, three hexoses could produce anywhere from 1,056 to 27,648 unique trisaccharides and 6 hexoses with more than a trillion unique possible combinations. As the number of carbohydrate units in the polymer increases, this difference in complexity becomes even greater. Thus, an almost unimaginable number of possible saccharide units could be theoretically present in biological systems. Thus we can conclude that carbohydrates combinations are immense and it is difficult to ascertain completely their functions in biological systems. Carbohydrates have many roles in living systems from energy storage (glycogen, starch, etc.) to structural components (celluloses in plants, chitin in some organisms) and they play important role in biosynthesis of various molecules.

Figure 3: Assignment of α - and β - anomers of D and L-Glucose

β-D-Glucose

β-L-Glucose

Opposite side of the ring α

 α -D-Glucose

As it is a well-known fact that monosaccharides are polyhyroxy aldehydes or ketones with at least three carbons, one of which is a carbonyl and each remaining carbon bares a hydroxyl group. In aqueous solution, carbohydrates exist in equilibrium between their open chain and cyclic forms. Aldose sugars containing 5 or more carbons or ketoses containing 6 or more carbons cyclize to form hemiacetals in solution. Consider glucose to form a pyranose-based 6 membered ring. It will have 2 possibilities. The carbonyl carbon in the open chain becomes the anomeric carbon (*) in the cyclized structure, which is the most oxidized carbon of the ring. Cyclized aldose and ketose carbohydrates can adopt either α or β anomeric configuration depending on the orientation of the group. A simplified approach for the degree of contribution from dipole-dipole and molecular orbital interactions is depicted by Figure 4. The alpha- anomer has bond dipole moments anti parallel (stable) but equatorial have parallel (unstable). This figure also explains the preferred stability of α -orientation of carbohydrates.

Figure 4: Depicting the anomeric effect where α -orientation (axial) is more stable than β orientation (equatorial) in sugar moiety due to bond dipole moments antiparallel to each other

 α orientation – axial -

bond dipole monents anti-parallel

 β orientation – equatorial equatorial-bond dipole moments parallel A <u>glycosidic</u> linkage involves the attachment of a monosaccharide to another residue of carbohydrate, peptide or lipid, typically via the hydroxyl group of this anomeric center, which can be α -linkages or β -linkages depending on the relationship of the oxygen to the anomeric carbon. Also during glycosylation reaction, the ratio of anomers α and β are unequal due to the anomeric effect.

Anomeric Effect^[3]:

The generalized anomeric effect is a special case of general preference of gauche conformations (Figure 5) around the bond C-Y in X-C-Y-C, where X and Y are heteroatoms with non-bonding pairs of electrons and one of them is nitrogen, oxygen or sulphur. It is affected by the solvent dipole moment as decrease of polarity increases the anomeric stabilization^[4].

Figure 5: Anomeric effect by gauche interactions

The most widely accepted definition of the anomeric effect is explained by hyperconjugation and antiperiplanar lone pair hypothesis (ALPH).

a) Hyperconjugation^[5]: Figure 6: Anomeric effect explained by Hyperconjugation

b) ALPH (Antiperiplanar Lone Pair Hypothesis)^{1§}

There is a stabilizing 2 electron interaction by the closer examination of orbitals of HOMO (nonbonding orbital of (n_{Oxygen})) and LUMO (antibonding orbital of (σ^*_{C-O}) bond which is referred as ALPH and represented in the Figure 7:

Figure 7: ALPH (Antiperiplanar Lone Pair Hypothesis)

Antiperiplanar Configuration

^{1§} Krawczuck Paul, "Anomeric Effect – Baran group meeting" Nov 05, **2005** <u>http://www.scripps.edu/baran/images/grpmtgpdf/Krawczuk_Nov_05.pdf</u>

1.2 Glycosylation of sugars in living systems: *Glycosylation reaction mechanism and their types*

Meaning of the term glycosylation:

Glycosylation is a chemical reaction between a glycosyl donor and a glycosyl acceptor which forms a bond between the anomeric oxygen and another moiety (OH of sugar, amino acid, peptide, or lipid). A sample glycosylation is shown in Figure $8^{2\$}$.

Figure 8: Glycosylation reaction mechanism:

Formation of oxa-carbenium ion

Equitorial linkage β-product

(+)PO PO PC

Axial linkage α –product

^{2§} Chemical glycosylation. (2014, April 7). In *Wikipedia, The Free Encyclopedia*. Retrieved 22:53, June 18, 2014, from <u>http://en.wikipedia.org/w/index.php?title=Chemical_glycosylation&oldid=603140535</u>

P refers to the Protecting group of OH of carbohydrate which often is benzyl, benzoyl, and Acetyl. LG refers to the leaving groups which are mostly associated with OAc or SR where R = Ph, Tol, SOPh etc.

Activators are reagents which make the leaving group leave to form an oxo-carbenium ion for resonance stabilization. Some of them are N-Iodo succinamide, AgOTf (promoter), BF₃Et₂O etc. As there are 2 orientations of attack of OH by Nucleophile to the oxo-carbenium ion, α and β , a mixture of anomers are formed. These reactions yield α - and β -anomers unequal ratios and sometimes exclusively one form either α or β governed by anomeric effect and solvent dipole moment. Most probably axial anomer is formed more than equatorial. For example, Figure **9** shows the glycosylation of L-arabinose with another *L*-arabinose moiety or hydroxyproline or a non-carbohydrate moiety like the *n*-hexyl group. If a sugar is linked to a peptide chain or protein it is referred to as a glycopeptide or glycoprotein.

Figure 9: *Glycosylated Carbohydrates examples of L-arabinose with amino acids, nonamino acids in various combinations:*

L-Arabinose glycosylated with another L-arabinose at 1-2 glycosylation

L-Arabinose glycosylated with Hydroxy proline(amino acid)

L-Arabinose glycosylated with n-Hexyl group(as in lipds)

There are major five types of glycosylation^[6] found in living systems and the majority of them involve linkages to amino acids and some other carbohydrate sugars in linear and cross-linking fashion with a few peptides (in plants) observed in biological systems. They are *C*-glycosides, O-glycosides, N-glycosides, phospho serine and threonine glycosylation and GPI anchor lipid glycosylation. Some of the examples are shown in the **Figure 9**. O-glycosylation and N-

glycosylation are common and uncommon ones are C-glycosides and GPI anchor lipid glycosylation in living systems. Few examples with references of each and every type of glycosylation are presented below focussing on the type of anomeric and sugar linkages. **Figure 10** explains the types of linkages with types of sugars from an excellent review by Spiro et al^[1].

Figure 10:*The occurrence of amino acid glycosylation*^[1] *with types of sugars is obtained with permission from the journal reference*

<u>a)</u> <u>C-glycosides:</u> C-glycosides are common and usually involve a α-mannosidic linkage to
C-2 of tryptophan^[7]. These are present in RNase2, Interleukins^[8], properdins^[9].

Figure 11: Tryptophan C-Glycosylation commonly seen with Mannose in living systems.

- <u>b)</u> <u>N-glycosides:</u> The β glycosyl amine (GlcNAc) linkage as well as mannose with asparagine (Asn) forms an N-glycosidic bond and they belong to class of N-glycosides. Asparagines linked glycosylation is the most common linkages found in many living systems^[10]. These are mostly present along with O-glycosides too. They are present mostly in eukaryotes, plasma proteins, thryoglobulins^[10], immunoglobulins, lectins etc.
- <u>c)</u> <u>O-glycosides:</u> Linkages between hydroxyl group of amino acids like serine / threonine / hydroxy proline^[11] with sugars form O-glycosides usually exist in both α and β-forms. In some plants and animals only one anomeric form is present. GalNAc-α-Serine linkages are predominant in mucins^[12]. Variety of glycoproteins contains these linkages as in human gonadotropins, glycophorins, antifreeze glycoproteins, etc. and also show diversified linkages.
- <u>d)</u> <u>P-glycosides:</u> The glycosidic bond which involves the phosphodiester linkage with the sugar and the protein are called P-glycosides. These are predominant in biological systems^[13]in which sugar linkages of GlcNAc, Man, Xyl, and Fuc have been found to be

involved (Table 1). The GlcNAc- α -1-P-Ser linkage has been found in various proteins from *Dictyostelium*^[14] including proteinase-1. Man- α -1-P-Ser has been observed in several major proteins of *Leishmania* species^[15], and Xyl-1-P-Ser has been found in *T*. *cruzi*^[13]. Furthermore, evidence for the presence of Fuc- β -1-P-Ser in *Dictyostelium* has also been obtained^[16].

<u>e)</u> <u>Glypiated linkage:</u> Other carbohydrate–protein connection is the GPI anchor which occurs in various biological systems^[17]. In this linkage mannose is linked to phosphoethanolamine, which in turn is attached to the terminal carboxyl group of the protein. This linkage is widely distributed among biologically important cell surface glycoproteins of eukaryotes, including the Variant Surface Glycoproteins (VSGs) of trypanosomes and the Thy-1 antigen^[17b].

Table 1: The occurrence of these glycosylations in biological systems along with stereochemical descriptors are also shown in this review^[1] but for convenience only few examples are reproduced with permission from the paper for which stereochemical anomeric descriptors are available.:

	Linkage			Phylogenic Distribution			
	U			5 8			
Type of	Amino	Sugar	Configurati	Eukarvotes	Archaea	Bacteria	Examples
<u>1990 01</u>	<u>/ 111110</u>	Dugui	Configuration	<u>Elakar yötös</u>	<u>I II CIIded</u>	Ductoriu	Enumpios
hand	A and						
bond	Acia		<u>on</u>				
N-	Asn	GlcNAc	β	+	+	+	Ovalbumin, fetuin, insulin
glycosyl							receptor
0,00							1
	Asn	Gle	ß	+	+	_	Laminin H haloblum S-
	71511	UIC	Р	,	'	_	Lammin, II. naiobiam 5-

							layer
0-	Ser/Thr	GalNAc	α	+	-	-	Mucins, fetuin,
glycosyl							glycophorin
	Ser/Thr	GalNAc	β	-	+	-	A. thermoaerophilus S-
							layer
	Ser/Thr	Gal	α	+	-	+	Nuclear and cytoplasmic
							proteins
	Ser/Thr	Man	α	+	-	-	Yeast mannoproteins
	Ser/Thr	Fuc	α	+	-	-	Coagulation and
							fibrinolytic factors
	Ser	FucNAc	β	-	-	+	P. Aueruginosa pili
	Ser	Xyl	β	+	-	-	Proteoglycans
	Thr	Man	α	+	-	-	Cell walls of plants
	Thr	GlcNAc	α	+	-	-	Dicostelium T. Cruzi
	Нур	Gal	β	+	-	-	Collagen, c1q
							complement, core specific
							lectin, wheat endosperm
	Нур	L-Ara	α	+	-	-	Plant cell walls
	Нур	L-Ara	β	+	-	-	Potato Lectin
	Tyr	Glc	α	+	-	-	Muscle and liver
							glycogenin
	Tyr	Gle	β	-	-	+	C and T. thermohydro

							sulfuricum S-layer
C-	Trp	Man	α	+	-	-	RNAse 2, Interlukin 12,
Mannosyl							properdin
ation							
Phosphog	Ser	GlcNAc	α-1-p	+	-	-	Dicostelium Proteinases
lycosyl							
	Ser	Man	α-1-p	+	-	-	L Mexicana Phosphatase
		Fuc	β-1-p	+	-	-	Dicostelium proteins
Glypiatio	Pr-(C-O)-EthN-6-P-Man			+	+	-	T. Brucei VSG, Thy-1,
n							Sulfolobus Acidocaldarius

1.3 Glycosylation of sugars in living systems: plants and animals and subtle differences

A) Importance of glycosylation of sugars in animal kingdom:

Glycosylation in animals is a post-translational modification ^[18] which has diverse functions and is important in the regulation, disease management etc. Few examples for N-glycosylation effects are quoted below:

• Human acid β -glucosidase^[19] enzyme is important for cleaves the glucoceramic bonds and synthetic β glucosides^[20] of peptides in humans. The deficiency of this hydrolase leads to Gaucher disease which is also called lysosomal disease where the peptide is glycosylated with sugars. Grace et al^[21] have concluded that glycosylation is required for catalytic activity and non-glycosylation results in complete loss of activity.

- Haptoglobin is a protein present in humans which forms a complex with free blood-plasma protein hemoglobin, allows degradative enzymes to access hemoglobin, and prevents the loss of iron through kidneys, protecting them from damage by hemoglobin. Mutations in this gene and/or its regulatory regions cause haptoglobinemia or hypohaptoglobinemia. Haptoglobin has carbohydrate moieties of Mannose, Galactose, N-acetyl galactosamine, N-acetyl glycosamine, N-acetylneuraminic acid (sialic acid) in various cross linking chains. Vesa Kaartinen et al^[22] in 1988 have conducted experiments to remove the carbohydrate portions of Haptoglobin protein using *exo*-glycosidases and studied their binding capacity for hemoglobin. Removal of Sialic acid diminished the haptoglobin-hemoglobin complex formation to 15%. Further removal of 25% galactose residues diminished i.e. 40% of carbohydrate by weight resulted in complete loss of binding of hemoglobin by haptoglobin.
- Hepatic lipase (HL) is a secretory protein present in hepatocytes and bound to liver endothelium. The N-glycosylated carbohydrates are responsible for the catalytic activity of the hydrolysis of mono, di, tri glycerides and phosphoglycerides of circulating lipoproteins, very low density and high density lipoproteins^[23] and important in lipid metabolism^[24]. Rat Hepatic lipase has two N-glycosylation sites to Asn-57 and Asn-376 positions (similar humans have Asn-55 and Asn-374). This rHL N-glycosylation is a post translational step for the enzyme activity. Gisala Stankhe et al altered one of the glycosylation site by oligonucleotide directed mutagenesis and incorporated into the

native HL of rat and found that there is a decrease secretion of this protein^[25] and in turn lipid metabolism affected.

B) Importance of glycosylation of sugars in plant kingdom:

Glycosylation in plants is also a post-translational modification^[26] which have diverse functions in plants which mainly have important role in defense mechanisms. Few examples are quoted below:

- Pearce and Ryan^[27] have isolated three hydroxyproline systemin (plant hormones) from tomato plants belonging to *Lycopersicon esculentum*. These proteins have hydroxyproline and are glycosylated by secretory pathways and are important in helping young tomato plants in defense signalling in wounded conditions (i.e cut by stem). Comparision of these peptides by synthesis without glycosylation showed 1000 times less activity in defense signalling in these plants when wounded than the glycosylated counterparts.
- Pearce et al^[28] also isolated tobacco systemins which is a 18 peptide amino acid and hydroxyproline is glycosylated with L-arabinose. This peptide is important for cell-cell signalling of tobacco plants. Synthetic peptide without the appended carbohydrates is 10000 times less active than normal glycosylated peptide.
- Root hairs^[29] are specialized cells which help in nutrients absorption and water for plants. Their cell walls are composed of hydroxy rich glycoproteins, Extensins and Arabinogalactan proteins. These proteins are all glycosylated. Velasquez et al^[30] studied the implication of prolyl 4-hydroxylases in the cell walls of Arabidopsis Thaliana for proline hydroxylation and believed to be catalyzing the arabinosylation of these proteins.

Biochemical inhibition or genetic disruption of the enzyme reduced arabinosylation and prolyl hydroxylation. This shows that *O*-glycosylation is essential for root hair growth.

1.4 Hydroxyproline-rich glycoproteins (HRGPs) in living systems and their structural aspects: plants and animals

Hydroxyproline and L-arabinose (particularly arabinofuranose) are present in plant cell walls as hydroxyproline rich glycoproteins (HRGPs), secreted peptide hormones, and extensins. These have the functions to protect the plant cells, control reproductive system, carrying out specific functions like cell-cell signalling^[31] etc.

1.4.1 Occurrence of HRGPs in animals and humans:

Humans and mammals do not have HRGPs as *O*-Glycosylation of Hydroxyproline is not seen in animals and humans. Hydroxyproline is present as chains with many other amino acids in the sequence glycine-proline-X and glycine-X-hydroxyproline where X is any other amino acid other than proline and hydroxyproline in collagens of living organisms. It is believed that hydroxyproline is important for the construction of the human body's structural protein, collagen. Deficiency in collagen synthesis by human body leads to easy bruising, breakdown of ligments, increased blood vessel damage etc. Proline hydroxylases present in liver of humans requires Vitamin C as co-factor^[32] for hydroxylation of proline (which can be obtained from diet) in human body. So deficiency of Vitamin C causes a disease called scurvy and poor production of hydroxyproline and in some cases it is excreted^[33] in large amounts from human body due to this imbalance. Also improper production of hydroxyproline leads to defective collagen which

leads to the previous effects. Though hydroxyproline does not have any therapeutic use and is a non-essential amino acid, it has indirect effects on human body.

1.4.2 HRGPs in plants:

HRGPs are present in extracellular matrix of the plant cell wall³ discovered by Lamport^[11] in 1971. They are responsible for the strength of the plant cell wall and as a result are often referred to as proteins of plant cell wall. These glycoproteins contain long chains of repetitive hydroxyproline motifs with various amounts of *O*-glycosidic linkages to *L*-arabinofuranose and D-galactopyranose. In plant kingdom, proline is hydroxylated by an enzyme called proline-4-hydroxylase^[34] and it has the capacity of hydroxylating polyproline motifs. In most of the plants 4*R* hydroxyproline is formed. But unnatural 4*S* hyp isomer is rare but found to be in free state in plant sources like Santalum Album and reported in 1970 by Radhakrishnan^[35] and Chinese researchers^[36] in some species of India and Middle east Asian countries. It is not much known by these researchers about 4*S* Hyp whether it is in free or bound state and still investigations are going on.

The plant cell wall is the most important for carrying out the metabolic activities. It is the source for food storage, biosynthesis of compounds required for cell growth, expansion and reproduction. HRGPs are important components of the plant cell wall and regarded as the proteins of the plant cell wall. There are more than 50 different plant cell walls but all of them fall into type I and type II cell walls. Type I cell walls are found in grasses, mosses and some algae (non flowering plants). Most of the flowering plants have type II cell walls. These two

³ Cell wall. (2014, June 16). In *Wikipedia, The Free Encyclopedia*. Retrieved 22:51, June 18, 2014, from <u>http://en.wikipedia.org/w/index.php?title=Cell_wall&oldid=613121739</u> and http://www.ccrc.uga.edu/~mao/intro/ouline.htm
important models of plant cell wall have been assumed and studied by Carpita^[37] in 1993 for the organization of these proteins and polysaccharides in plant cell wall. HRGPs location, composition and function may be understood by below brief description of structure and organization of plant cell walls. Plant cell walls of type II consists of 3 layers:

- Middle lamella: This is the first layer formed during cell division. It makes up the outer wall of the cell and is shared by adjacent cells. It is composed of mainly pectic compounds and some glycoproteins. These pectic compounds are polymers of hundreds of poly-galacturonic acids (PGAs) cross linked by Ca⁺² or Mg⁺² salt bridges^[38]. These are found as insoluble gels and are soluble in water. These PGAs can exist as weak acids and are pH dependant and play an important role in ion balance in plants. Many of the carboxyl groups are methylated to prevent hydrolysis^[37, 38b].
- Primary wall: This is formed after the middle lamella and consists of a rigid skeleton of cellulose microfibrils embedded in a gel-like matrix composed of pectic compounds, hemicellulose, and glycoproteins. Cellulose is a polymer of glucose-typically consisting of 1000 to 10000 β-D-glucose residues. These polymers associate through hydrogen bonding in large amounts and results in the formation of micro fibers. As the hydrogen bonds are enormous between the layers of cellulose, it gives necessary tensile strength to the plant cell wall. The primary wall of cultured sycamore cells^[39] for example is comprised of pectic polysaccharides (30%), cross-linking glycans (hemicellulose; ca 25%), cellulose (15-30%) and protein (20%). The actual content of the wall components varies with species and age. All plant cells have a middle lamella and primary wall. Cell enlargement^[38a, 40] occurs till all the components are held together in cell walls.

Secondary wall: It is formed after cell enlargement^[38a] is completed. The secondary wall is extremely rigid and provides compression strength. They also play an important role in plant defense, reproductive systems and some special functions. It is made of cellulose, hemicellulose and lignin. The secondary wall is often layered in structure.

Thus the whole cell wall network is surrounded with a variety of structural proteins and glycoproteins and is partially cross-linked by aromatic substances^[41] called lignols (monolignols). These lignols are believed to be formed by biosynthesis of enzymes by radical mechanisms in plants and are the cross-linking polymers of *p*-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. These provide strength to cell walls, facilitate water transport, and impede the degradation of wall polysaccharides, thus acting as a major line of defense against pathogens, insects, and other herbivores. So these lignols are the basis for the woody tissue of plants and serve as fuel.

This hemicellulose is a polysaccharide comprising of a variety of sugars including β -Dxylose, α -L-arabinose, β -D-mannose. In most of the plants, these xyloses and arabinoses are the only sugars present. So they are called as xyloglucans or arabinoglucans etc. Hemicelluloses are often branched with cross-linking galactose / xylose with arabinoses reported by Carpita^[37]. These are very hydrophilic and form gel like structure. Hemicellulose is abundant in primary cell walls but is also found in secondary cell walls.

In addition to polysaccharide carbohydrates, cell walls contain a variety of glycoproteins in which various carbohydrates are linked to hydroxyproline, serine, threonine, alanine, tyrosine, tryptophan etc. These are called Hydroxyproline Rich Glycoproteins (HRGPs). In these glycoproteins, the carbohydrate moiety weight is around 80% but different amounts of carbohydrates are present in different classes of HRGPs. All of these components contain many glycosylated and non-glycosylated hydroxyproline repeating motifs. In these proteins glycosylation is not well ascertained and investigations are going on. Hydroxyproline is less glycosylated in another structural cell wall protein called <u>extensin</u>, which is capable of forming covalent bonds with other extensin proteins through amino acid tyrosine. In these extensins, the tyrosines are evenly spaced and they wrap around other cell wall constituents like "knitting" the wall together. The amount of extension produced is dependent on mechanical wounding, infection and these responses are mediated by plant peptide hormones^[42].

Enzymes needed for the biosynthesis or modification of the network (e.g peroxidase, xyloglucan, endo transglycosylase, α -fucosidase and glucanase) or for the modification of metabolites (invertase, phosphatase and ascorbic acid mutase) may be ionically or covalently bonded to the hemicelluloses network or the pectin matrix.

These HRGPs are broadly classified ^[43] into major four classes as follows and elucidatedwithapplicationsinTable2:

S.No	Types of HRGPs	Structural Features	Example with peptide sequences	Uses / Applications
1	Extensins	Least glycosylated linear chains of Hyp, Serine as tetra and pentapeptide sequences as Ser- (Hyp)4. Glycosylation is seen with β -L-Araf(90%) and β -D-Gal $p(10\%)$ as Ser-D-Gal. Extensins exist as PPII helixes ^[44] with α -L-Araf glycosylation. These extensins are held together in cell walls by Iso-dityrosine linkages in plants like tomato ^[45] , peanuts ^[46]	Example with peptude sequencesGeneral Sequence-Hyp-(L-β-Araf) ₁₋₄ ^[47] and Ser-Gal. Examples:a) SPPPPVKSPPPP- Maize ^[48] b) SPPPPVKSPPPP- Maize ^[48] b) SPPPPVF*SPPPVA- Tomato ^[50] c) SPPPVP*SPPPVA- Tomato ^[51] General sequence in Tomato ExtensinAra Ara Ara Arai i i i iAra Ara Ara Arai Ara Ara Ara Arai i i i iGeneral sequence in Tomato ExtensinAra Ara Ara Ara Arai i i i iAra Ara Ara Ara Arai i i i i iGal Gal Ara Ara Ara Ara AraI i i i i iGeneral Sequence of Chlamydomonas ^[47, 52] ofextensins by ¹³ C NMR is having Serineis linked to α-D-galactose and the Ser-(Hyp) ₄ linkages are 2-β except the 4 th residue is α-3 furanose linked	 a) Provide impenetrable physical barrier or immobilize the pathogens by binding to their surfaces. ^[43a] b) contribute to plant defense by providing protection against pathogens, elicitation and mechanical wounding^[53].
2	Arabinogalactan Proteins ^[54]	Primarily O-linked with Hyp residues (90% to 98%) and proteins (1 to 10%). Linkages of (1-3)- <i>β</i> -D-		a) Plant growth (reproductive issues) and development ^[60] . By

Table 2: Classes of HRGPs with their structural features, sequences in some plants and applications:

Gal <i>p</i> residues with substitutions of	General Sequence in <i>Nicotiana tabcuum</i> ^[59]		RNA mutant
$C(\Omega)_{\epsilon}$ by galactosyl side chains and			experiments non-
terminate with α -L-Araf Rhan and	a Larafilati a Larafilati a Larafila		glycosylated ones gave
Gal <i>p</i> residues ^[55]			observed changes in leaf
Sup residues .	3)		changes stem size and
$\beta_{\rm Variy}$ reagents ⁶⁷ (hrown_red	p-D-Gap(I- Repeating Units		underdeveloped
coloured dyes with the generic		h)	Inductive cell_cell
structure of 1.2.5 tri (n	α-L-Rhap(1→4)-β-D-GicUAp(1	0)	signalling ^[61] interactions
Subcluie of $1, 5, 5$ -ui-(p -			and controlling the foto
giycosyloxyphenylazo)-2,4,3-			and controlling the late
trinydroxybenzene) used to separate			of cells, vacuole $1 = 1 = 1 = 1$
protein from carbonydrate by			development ⁴ ,
binding p-forms of carbonydrate.			Promoting pollen tube
This shows that AGPs contain(1-3)	-	``	growth
β -Galp and β -L-Arabinofuranose		c)	Contributors to plant
linkages ¹³⁰ .			stem strength ^[04] .
		d)	involved in Salt tolerance
These proteins have shapes of			and normal root
wattle blossom ^[57] , twisted hairy			expansion ^[65]
rope ^[58] , disc like ellipsoid ^[58]		e)	AGPs implicate the plant
structures as in Gum Arabic			microbe interactions of
isolated and as investigated in			Agrobacterium
different parts of the plant.			tumefaciens. Effects are
			seen by mutant changes
Ala-Hyp, Ser-Hyp, Thr-Hyp, Val-			in this plant where the
Pro, Gly-Pro etc. dipeptide motifs			plants became
are also seen in AGPs.			susceptible to attack by
			bacteria and decreased
			root growth ^[66] .
		f)	AGPs are constituents of
		,	plant gums for species of
			Acacia Senegal which is
			used in candy industry

					due to low viscosity and
				g)	helps in suspending flavours ^[67] . Useful in Cancer therapy too by enhancing cytotoxic activity by stimulating immune systems ^[68] .
3	Proline Rich Proteins ^[43a]	Contain Proline(in major ~60%), Hydroxy proline with O- Glycosylation ^[69] with L-arabinose (constitutes only 3% of the mass) Tyrosine is present in these proteins which make them protected from oxidative stress responding to wounding. These proteins are mainly constituents of xylem and protoxylem tissues of cell wall.	Not much is known for these proteins as they do not get precipitated by Yariv Reagents. They don't have Ser-(Pro) ₄ motifs. These are least glycosylated than Extensins. The glycosylation is around 3% only with L-Arabinofuranose.	a) b) c) d)	They may act as nucleation sites for lignin deposition. Function as structural proteins for plants Prevent infection caused by mycorrhizal fungi in maize ^[70] and other pathogens like bacteria. Help in plant defense by peroxide mediative cross linking in bean and soyabean plant cells after wounding for 3 min of injury ^[71] .
4	Glycopeptide plant hormones ^[31, 42, 72]	Recently some researchers found that there are also other secreted peptide components of cell wall which are important for plant growth regulation, root nodule development, cell-cell	One of the compound is isolated from tomato called Systemin in 2003 by Pearce and Ryan ^[27]	a) b) c)	Help in defense response to attack of pathogens ^[31] . Cell proliferation and expansion Stem cell maintenance

	interaction ^[62] etc. These are Glycopeptide hormones.	HO HH H	
	These contain small chains of Hydroxy proline and L-arabinoses linkages in short chains like trioses and tetroses along with other amino		
	acius.		
		Peptide sequence in Tomato plants:	
		a) RTOYKTOOOOTSSSOTHQ-	
		b) GRHDSVLPOOSOKTD-	
		c) GRHDYVASOOOOKPQ-	
		d) DY(SO ₃ H)GDPSANKHDPGV[(L-Ara) ₃]HHS	
		e) RTVHSG[(L-Ara) ₃]HDPLHHH	
		Where H and H represents Hydroxy Proline	

Amino acid codes: S-Ser, P-Pro, R-Arg, G-Gly, V-Val, L-Leu, O-Orn, H-Hyp, N-Asn, D-Asp, T-Thr

1.5 Structural and conformational effects of hydroxyproline glycosylation.

Before introducing structural effects of hydroxyproline, let's examine about proline's unique properties. Proline is a unique amino acid and its side chain is cyclised onto the peptide backbone of Nitrogen. As it is a secondary amine, it has special properties when present in a polypeptide. The pyrrolidine ring does not restrict the movement of the atoms in the proline side chain. The φ angle is fixed at -75° where as in all other amino acids free rotation is possible around peptide bond. The amide bonds of the amino acids in a polypeptide chain have pseudo double bond character; through resonance stabilization, π -electrons are delocalised across the amide bond, induces a planar ω -torsional angle of the amide bond. This creates two distinct amide conformations with similar energy which are called *cis* and *trans* conformers.^[73]

Figure 12: Origin of cis - trans rotamers in proline around peptide bond

Prolyl cis rotamer

Prolyl trans rotamer

The energy difference of *cis* and *trans* rotamers of proline is less due to the similar electronic environment of α and δ carbon for N-terminal amino acid carbon. This is also due to the favourable n- π * interaction from the lone pair on the prolyl N-terminal amide carbonyl oxygen to the antibonding orbital of the prolyl C-terminyl carbonyl carbon^[74] (Figure 13).

Thus leading to cis-trans rotamer conversion for the proline related amino acids at RT slowly and high temperature (50 - 70°C) rapidly as its rate constants can be measured by NMR experiments like Inverse Magnetization Transfer^[75]. This isomerization plays an important role in folding paths of proteins in biological systems^[76].

Figure 13: Shows the A) proposed $n \rightarrow \pi^*$ electrostatic interaction present in the *trans* amide of N-formyl-L-proline methyl ester. B) Depiction of the n and π^* molecular orbitals [Reproduced with permission, *Prot. Sci.* 2003, *12*(6), 1188-1194. Copyright 2003 Wiley-VCH]

The N-terminal amide isomerisation of proline in peptides and proteins is slow when compared to other amino acids. Some model peptides like alanine-phenylalanine bond, the rate constants for *cis-trans* isomerisation are 0.05 sec⁻¹(k_{trans}) and 2.3 sec⁻¹(k_{cis}) trans) in water at 25°C^[77]. Similarly for alanine-proline amide bond 0.001 sec⁻¹(k_{trans}) and 0.005sec⁻¹(k_{cis}) trans) in water^[78] at 25°C respectively. By these results, there is a preference for *trans rotamer* amide stabilization. For proline peptide in Captropril, an ACE inhibitor useful for congenitive heart disease, the rates constants of cis trans rotamers are interconvertible at slightly above room temperature and the rate constants are measured by Inverse Magnetization Transfer NMR experiments^[75]. These have an impact in protein folding in biological systems^[79].

Proline *cis-trans* isomerisation around prolyl amide bond influences the gated ion channel of 5-hydroxy tryptamine receptors^[80]. These peptides have proline at 8 position and which folds into two strands, which are held by hydrogen bonding. As proline has two conformers *cis* and *trans* interconverting, the *cis* form will allow the ion channels to pass through and the *trans* form does not^[81]. Due to the less energy gap between *cis* and *trans* forms, this protein shuttles the ion transfer from time to time. Proline and hydroxyproline exhibit cis-trans isomerizations which have implications in biology.

1.5.1 Ring Puckers of Hydroxyproline:

Hydroxy proline a small unique modification of Proline with OH group is an important amino acid which gives the strength to collagens in mammals by stabilization of triple helix structure due to hydrogen bonding. Hydroxyproline has two geometrical isomers which are 4R and 4S forms (Hyp and hyp). These isomers adopt two conformations called exo and endo by C^{γ} bond found by some of the researchers in nature. But only Hyp form is seen in plants predominantly and not cis form. 4S hyp is seen only in few plants like *Santalum Album* and *Lyngbia Majuscala*. Exo form is seen in Hyp and *endo*- in hyp as found by many researchers even after glycosylation with sugars of the Hydroxyl group. Exo and endo configurations are judged by ${}^{3}J$ coupling constants and arise due to gauche configuration between peptide bonds. Structures of exo and endo forms of *O*-glycosylated Hydroxyproline is shown in Figure **14**

Figure 14: Exo and endo forms of Hydroxyproline from the permission of the journal^[82].

These ³*J*coupling constants are calculated by NUMMRIT algorithm from the ¹H spectra by spinworks 3.0. As per literature, for exo configuration, the $J_{\alpha\beta1}$ and $J_{\alpha\beta2}$ of Hydroxyproline coupling constants should be from 7-11 and 9-10 Hz. For endo 7-11 and 2-4 Hz. Another method of finding the coupling constants is by decoupling methods of particular system to get the exact coupling constant of the other.

Each glycosylated Hyp or hyp have two rotamers cis and trans which are interconvertible at room temperature and faster at higher temperature i.e. 67°C. The rate of conversion of cis to trans forms the basis of this thesis. The *trans* and *cis* rotamer form of Hyp and hyp are given below based on the information in the journal^[26].

(2S, 4R) Hyp

R=H, D-Galp, L-Araf

1.7 Techniques used in laboratory experiments: Introduction

The most important techniques for the study are NMR of synthesized molecules, nuclear overhauser effect (nOe) for finding out the configuration of molecules and major rotamer present in the molecule. Magnetization transfer experiments were carried out for finding out the rate constants of the *cis*, *trans* isomerisation around the peptide N-acetyl bond.

¹³C inverse gated coupling of NMR is applied to find out the percentage of minor rotamer in the molecule. Each section will be discussed in brief with some examples.

1.7.1 Nuclear Overhauser effect technique by NMR for finding out the configurations of sugars and population of rotamers around the peptide bond:

Nuclear Overhauser effect is a common phenomenon of NMR which is a special technique employed for various purposes like finding out the stereoisomers, finding out the neighbouring groups of the molecule, its conformation^[83] etc. Also in carbohydrates, it is a very useful tool for finding out the configuration of α and β anomers. For assigning the configuration of α or β anomers are judged by the 1D NOE of neighbouring protons when anomeric proton of the sugar is irradiated. In my research, for all arabinosylated hydroxyproline building blocks, irradiation of a nomeric protons was performed and compared the resonances of neighbouring protons for assignment of α and β . Dr Mario Pinto and his co-workers established the monoclonal antibody strep 9 selects a local minimum conformation of Streptococcus group A trisaccharide-hapten^[84] by NOE. The structure and the NOE resonances are depicted in **Figure 16**:

Figure 16: Schematic diagram of Streptococcus Group A trisaccharide-hapten^[84]. (a) Conformation of β - $(1 \rightarrow 3)$ -glycosidic linkage that accounts for the interglycosidic NOE seen. This conformation present in aqueous solution and not bound by monoclonal antibody Strep 9. (b) The conformation of the trisaccharide when bound to antibody (NOE of interglycosidic linkage not seen)

The conformational analysis of Streptococcus Group A repeating-trisaccharide derivative of propyl $3-O-(2-\operatorname{acetamido}-2-\operatorname{deoxy}-\beta-D-\operatorname{glucopyranosyl})-2-O-(\alpha-L-Rhamnopyranosyl)-\alpha-L-Rhamnopyranoside bound to the monoclonal antibody Strep 9 by NOE studies (long range) reveals that NOE of interglycosidic bond is not seen in bound state (Figure$ **16b**) and seen in aqueous solution (Figure**16a**). As a result, authors can

predict the conformation due to minimum energy conformation of the tri-saccharide to be the ψ angle changes at α -(1 \rightarrow 2)-glycosidic linkage from its preferred + gauche orientation to – gauche orientation. The interglycosidic NOE is not seen in the bound trisaccharide complex as it is energetically disfavoured conformation. This example shows that the conformation of the carbohydrates is possible to find out for some extent by using NOE along with configuration.

1.7.2 ¹³C Inverse gated coupling: A quantitative experiment to find out the minor rotamer percentage

Carbohydrates give complex ¹H NMR which most of the signals get overlapped for 5 membered furanose rings. So for finding out the rotamer population, ¹³C quantitative experiments^[85] are needed to find out the exact percentage within experimental error. So ¹³C inverse gated coupling is one of the methods which may give accurate information about the percentage of rotamers. Some researchers applied this NMR technique for analyzing carbohydrate compositions in Honey^[86] and lignin^[87] samples. ¹³C Inverse gated coupling is suitable for characterizing the lignin is due to following reasons^[87]: (i) It provides the nature of all carbons of the molecule. (ii) ¹³C spectra is not complicated by spin-spin coupling effects when decoupler is made off and gives rise to single peaks for each and every single carbon atom. (iii) ¹³C spectra have a wider range at 500MHz. Also routine ¹³C NMR does not lead to quantitative experiments because when proton decoupling is applied during both the relaxation delay and the acquisition period, the signal intensities do not correspond to the actual number of atoms due to nuclear Overhauser effects (nOe). To obtain a quantitative ¹³C NMR spectrum, an inverse gated proton decoupling needs to be applied to minimize the nOe effect. In addition, the relaxation times delay must be set at least 5 times longer than the ¹³C longitudinal

relaxation time. The outcome of this experiment is that the spectrum converts all carbons which are major to a nearly integral of same value and other minor peaks of carbons can be integrated. So these minor carbon percentages are averaged and adjusted with standard deviation to get the exact percentage of *cis* and *trans* rotamers in the compound. So this technique was employed in my Master's Research. It is a time consuming method as to one experiment takes about 13 hrs, but useful information can be obtained from this NMR experiment.

1.7.3 Inverse Magnetization experiment for finding out the rate constants of cis / trans isomerization around the peptide bond:

Inverse magnetization transfer experiment ^[88] of NMR is mostly used for finding out the rate constants of two isomers or rotamers exchanging within NMR time scale. Magnetization transfer experiments have a wide range of scope in peptide chemistry where the rotamer population was important, in structural biology^[89], in medicine for knowing the malignant tumours of Breast Cancer^[90]. This technique is referred as Soft Pulse Technique (SPT)^[91] and applied to systems of any chemical systems and both populated isomers exist and capable of exchanging from one conformer to another. The experiment generally consists of a soft weak pulse of r_f of length for one of the exchanged-couple resonances to be selectively inverted. Then the response of the second conformer is studied after a variable delay (T_1) (longitudinal relaxation times) using pulse Fourier transform experiments. T_1 is characteristic of some conformers found by some researchers. Mariappan^[92] has successfully demonstrated the calculation of rate constants of peptide *cis-trans* isomerization by Fourier Transform calculations. This experiment can be done using the pulse sequence to be inverted at certain temperature mostly at 67^{0} C on the *trans* amide singlet to see the effect of *cis* amide singlet in the isomerization. The inverted pulse (Curve A) will be in the form of a parabola which after sometime exponentially comes back to its original position as a function of time. This affects the other rotamer recovery which is in the form of Morse curve (Curve B), initially decreases and increases till total restoration also by the function of time (Figure 17). Thus the time required for conversion of one rotamer to another is the function of these two curves. These two curves have mathematical equations which on calculation by Mathematica program gives the values of rate constants as the function of time which is the relaxation times for conversion of one rotamer to another (*cis* to *trans*). Calculation of these parameters is depicted below in brief with references.

Figure 17^[91]: *Pattern of Inverse Magnetization experiment by NMR : Curve A: Pattern of the inverted pulse. Curve B: Pattern of the exponential recovery of another conformer.*

Calculation of rate constants:

The calculation of rate constants are described in brief as per the work of J. R. Alger and J. R. Prestegard^[91]:

The data can be quantitatively analyzed using a set of modified Bloch equations developed by McConnel^[93]. The description for the calculation is as follows developed by Dr Joe O Neil in Mathematica program to evaluate these rate constants of cis-trans isomerization.

The time dependant magnetization transfers of the *cis* ($M_c(t)$) and *trans* ($M_t(t)$) NMR signals as a function of the inversion transfer time (t) were simultaneously fit to equations^{153,109} 1 and 2 below for compounds mentioned above using Mathematica (v.7.0). In the following pulse sequence, the ¹H *trans* resonance is selectively inverted using a shaped pulse. Its recovery during t is determined by its intrinsic T_{1t} , magnetization transfer to and from the *cis* resonance, and the T_{1c} of the *cis* resonance.

 $\pi(x)$ sel----- $\pi/2(x,y,-x,-y)$ —acquire

The resonances of the *trans* and *cis* isomers show the following time dependencies by the solutions of the equations of the curves;

$$M_{t}(t) = c_{1}\tau_{t}(\lambda_{1}+1/\tau_{1c})e_{1}^{\lambda t} + c_{2}\tau_{c}(\lambda_{2}+1/\tau_{1c})e_{2}^{\lambda t} + M_{c\infty} - \dots - 1$$

 $M_{t}(t) = c_{1}e^{\lambda_{1}t} + c_{2}e^{\lambda_{2}t} + M_{t\infty} - \dots - 2$

 T_{1c} and T_{1t} are the longitudinal relaxation times of the resonances in the absence of exchange which are measured during the experiment.

 τ_c and τ_t are the lifetimes of the *cis* and *trans* conformers and k_{ct} and k_{tc} are the corresponding rate constants.

 τ_{1c} and τ_{1t} are the effective relaxation times of the *cis* and *trans* resonances when relaxation and exchange are both occurring and are defined below in terms of T_{1c} and τ_c , T_{1t} and τ_t .

 λ_1 and λ_2 are related to the time constants τ_c , τ_t , τ_{1c} , and τ_{1t} , and are defined below.

 c_1 and c_2 are defined below.

 $M_{c\infty}$ and $M_{t\infty}$ are determined experimentally from the magnetization measured after 5 T₁ periods for the *cis* and *trans* resonances, respectively.

Mathematica program then calculates τ_t from τ_c , $M_{c\infty}$, and $M_{t\infty}$ as: $\tau_t = \tau_c^* (M_{t\infty}/M_{c\infty})$ Thus,

$$\begin{split} k_{ct} &= 1/\tau_{c} \\ k_{tc} &= 1/\tau_{t} \\ K_{eq} &= M_{t\infty}/M_{c\infty} \\ \tau_{1c} &= (T_{1c} * \tau_{c})/(\tau_{c} + T_{1c}) \\ \tau_{1t} &= (T_{1t} * \tau_{t})/(\tau_{t} + T_{1t}) \\ \lambda_{1} &= \frac{1}{2} \{ -(1/\tau_{1c} + 1/\tau_{1t}) + [(1/\tau_{1c} + 1/\tau_{1t})^{2} - 4(1/\tau_{1t}\tau_{1c} - 1/\tau_{c}\tau_{t})^{\frac{1}{2}} \} \\ \lambda_{2} &= \frac{1}{2} \{ -(1/\tau_{1c} + 1/\tau_{1t}) + [(1/\tau_{1c} + 1/\tau_{1t})^{2} - 4(1/\tau_{1t}\tau_{1c} - 1/\tau_{c}\tau_{t})^{\frac{1}{2}} \} \\ c2 &= 1/((\tau_{c})(\lambda_{1} - \lambda_{2})) [\tau_{c}(\lambda_{1} + 1/\tau_{1t}) (M_{0t} - M_{t\infty}) + (M_{c\infty} - M_{0c}) \\ c_{1} &= M_{0t} - M_{t\infty} - c_{2} \end{split}$$

Thus all the values are calculated from the individual values and put into the equations by Mathematica program.

Chapter 2: Thesis Objectives

Hydroxyproline (Hyp) is found as structural proteins in plants and animals, special proteins of the cell wall of plants. In contrast, 4S-hydroxyproline (hyp) is very rare in nature but found to be present freely in nature in *Santalum Album*^[35b, 36b]. The purpose of this thesis is to study the effects of L-arabinosylation of hydroxyproline in plant-derived glycopeptides. The ultimate goal of the thesis is to provide deeper insight into the roles of L-arabinosylation in plants. This requires:

- Synthesis of L-arabinosylated hydroxyproline model amides that serve as glycopeptide models.
- Exploration of the thermodynamic and kinetic parameters of hydroxyprolyl *cis/trans* isomerization in the glycopeptide models.

Chapter 3: Experimental Details: Effects of L-arabinofuranose glycosylation of (2*S*, 4*R*)-4-hydroxyproline and (2*S*, 4*S*)-4-hydroxyproline on the conformation, thermodynamic and kinetic of prolyl amide isomerization

3.1 Synthesis:

The synthesis of the target compounds 7a, 7b, 12a and 12b is shown in Figure 18:

7a: 2,3,5 Triol-arab-f-NAc-Trans-alpha-Hyp-OMe

7b: 2,3,5 Triol-arab-f-NAc-Trans-beta-Hyp-OMe

12a: 2,3,5 Triol-arab-f-NAc-Cis-alpha-hyp-OMe

Figure 18: Synthesis of mono-glycosylated L-Araf-hyp building blocks for study

These compounds are related to D-galactopyranosylated hydroxyproline model amides in our group's previous research^[82]. The synthesis of these compounds in outlined in Schemes **1-3**. The carbohydrate donor 2, 3, 5 Tri-*O*-benzyl-arab-*f*-1-thiocresol (**3**) was prepared

according to **Scheme 1**. L-arabinose (1) is tetra-benzoylated at 60°C using pyridine and excess of benzoylchloride. Then the crude mixture was reacted with borontrifluoride diethyl etherate (BF₃:Et₂O) and *p*-thiocresol in CH₂Cl₂ at 0-5°C to afford a mixture containing protected furanose- and pyranose-based L-arabinose. Separation was achieved by careful column purification performed using 12% EtOAc in hexane to produce desired thioglycoside **3** in 29% yields. The benzoylated furanose product was debenzoylated using NaOMe / MeOH and further benzylated using benzylbromide, sodiumhydride in DMF to afford the required glycosyl donor **3** in 45% yield.

Scheme 1: Preparation of 2, 3, 5 Tri-O-benzyl-arab-f-1-thiocresol 3:

Scheme 1: *Synthesis of thio glycosyl donor 3:* (i) BzCl, Py, 60°C, 3h, quantitative; (ii) BF₃.Et₂O, *p*-thiocresol, CH₂Cl₂, 0-5°C, 10h, quantitative; (iii) (a) NaOMe /MeOH, Amberlite strong H⁺ resin, (b) BnBr, NaH, DMF, 0-5°C through RT overnight.

Model peptides of the form, N-Acetyl-Pro-OMe are well established for studying subtle effects of modification of the prolyl side chain on N-terminal amide isomerization^[94]. This procedure avoids hydrogen bonding between the molecules as methyl esters do not function as hydrogen bond donors than N-Methyl amides. Hydrogen bonding in these building blocks may interfere in the equilibrium and rate constants of cis-trans isomerization while evaluation and change them.

From Schemes 2 and 3 the glycosylated 4R-hydroxyproline model peptides 5a, 5b, 10a, 10b were obtained through Fmoc protection under mild basic conditions using Fmoc-Cl / NaHCO₃ in aqueous dioxane, followed by glycosylation using 2,3,5 tri-*O*-benzyl-arab-*f*-1- thiocresol in the presence of *N*-iodosuccinamide (NIS), silver triflate(AgOTf) in acetonitrile to yield α -5a, β -5b and α -10a, β -10b in 25% and 24% of both steps. The anomeric ratio of obtained compounds were 7:3 (α : β) in both cases. Incorporation of *N*-acetyl group was carried out by Fmoc-deprotection using piperidine in DMF followed by acylation using acetic anhydride and pyridine to give 6a, 6b & 11a, 11b in 80% yield. Removal of benzyl ether protecting groups was carried out by catalytic hydrogenation in methanol using Pd(OH)₂-C (10% catalyst loading) to afford model peptides 7a, 7b and 12a, 12b with 27% and 30% yields, respectively. The low overall yields of glycopeptides 12a and 12b required the synthesis of large amounts of starting materials as much of the material is lost in anomeric mixtures separation and isolation of pure anomers.

Scheme 2: Synthesis of Ac-Hyp(O- α -L-Araf)-OMe, Ac-Hyp(O- β -L-Araf)-OMe and Ac-Hyp-OMe:

Synthesis of 4R Isomers

Scheme 2: *Synthesis of 7a, 7b:* a) (i)FmocCl, NaHCO₃, 1,4-Dioxane/H₂O(1:1), 25°C, 3h. (ii) 2,3,5 Tri-O-benzyl-L-arab-f-1-thiocresol (**3**)(prepared from Scheme 1), MeCN, AgOTf, NIS, 0-25°C, 2h, 65% overall yield; b)(i) DMF/Piperidine (1:0.2), 25°C, 2h (ii)Ac₂O, Py, 25°C, 10h, 50% overall yield; c) H₂/Pd(OH)₂-C, MeOH, 25°C, 75% overall yield.

Scheme 3: Synthesis of Ac-hyp(O- α -L-Araf)-OMe, Ac-hyp(O- β -L-Araf)-OMe and Ac-hyp-OMe:

Synthesis of 4S Isomers

Scheme 3: *Synthesis of 12a and 12b*: a) (i)FmocCl, NaHCO₃, 1,4-Dioxane/H₂O(1:1), 25°C, 3h. (ii) 2,3,5 Tri-*O*-benzyl-β-L-arab-f-1-thiocresol(prepared from Scheme 2), MeCN, AgOTf, NIS, 0-25°C, 2h, 36% overall yield; b)(i) DMF/Piperidine(1:0.2), 25°C, 2h (ii)Ac₂O, Py, 25°C, 10h, 75% overall yield; (c) H₂/Pd(OH)₂-C, MeOH, 25°C, quantitative.

3.2 Results:

3.2.1 NMR Spectroscopic studies:

Full assignment of all the compounds was done by HSQC and COSY experiments. Assignment of the major rotamer is *trans* for all the isomers are confirmed by ${}^{13}C$ chemical shifts. As per literature, the major rotamer (trans) has the higher chemical shift of C^{δ} carbon than the minor^[95] (cis rotamer). These results are tabulated below:

Table 3: Table showing the chemical shifts of C^{δ} carbon chemical shifts of 7*a*, 7*b*, 12*a*, 12*b*

Compound	C ^o Chemical shifts (ppm)	Assignment
7a	61.17 (Minor 61.05)	Major is <i>trans</i> rotamer
7b	63.11 (Minor overlapped)	Major is <i>trans</i> rotamer
12a	61.14 (Minor 61.1)	Major is <i>trans</i> rotamer
12b	63.23 (Minor 63.21)	Major is <i>trans</i> rotamer

Final compounds 7a, 7b, 12a, 12b are studied in D_2O using DSS (4, 4-Dimethyl-4-silapentane-1-sulfonic acid 50 mM) as NMR reference standard and stabilized by phosphate buffer solution of pH 7.2.

Table 4: *NOE studies*: The NOE studies after irradiating the H₁ of the anomeric carbons of **7a**, **7b**, **12a**, **12b** and results are tabulated below indicating the rotameric state:

Compound	nOe interactions
(7a)	$H_{\alpha}\text{-}0.69\%, \ H_{\gamma}\text{-}1.14\%, \ H_{2}\text{-}0.74\%, \ H_{3}\text{-}0.3\%, \ H_{4}\text{-}0.09\%, \ H_{5a}\text{-}0\%, \ H_{\beta1}\text{-}0.69\%, \ H_{\beta1}\text{-}0.69\%, \ H_{\beta2}\text{-}0\%, \ H_{\beta1}\text{-}0.69\%, \ H_{\beta1}\text{-}0.69\%, \ H_{\beta2}\text{-}0\%, \ H_{\beta1}\text{-}0.69\%, \ H_{\beta2}\text{-}0\%, \ H_{\beta1}\text{-}0.69\%, \ H_{\beta2}\text{-}0\%, \ H_{\beta2}\text{-}0\%, \ H_{\beta1}\text{-}0\%, \ H_{\beta2}\text{-}0\%, \ H$
	0.69%, H _{β2} -0%, N-COCH ₃ -0%
(7b)	H _α -0.46%, H _γ -1.36%, H ₂ -2.23%, H ₃ -0.12%, H ₄ -0.13%, H _{5a} -0.22%, H _{5b} -
	0.53% , H _{δ} -0.08%, H _{β1} -0.2%, H _{β2} -0.03%, N-COCH ₃ -0.03%
(12a)	$H_{\alpha}\text{-}0.62\%, H_{\gamma}\text{-}0.94\%, H_{2}\text{-}0.6\%, H_{3}\text{-}0.16\%, H_{4}\text{-}0.24\%, H_{5a}\text{-}0.34\%, H_{\beta1}\text{-}$
	0.84%, N-COCH ₃ -0.13%
(12b)	H_{α} -0.4%, H_{γ} -1.4%, H_{2} -2.52%, H_{3} -0.13%, H_{4} -0.19%, H_{5a} -0.54%, $H_{\beta 1}$ -
	0.51% , H _{β2} -1.16%, N-COCH ₃ -0.04%

The assignment of α - and β - anomer was judged by two methods. First method is by the measurement of ${}^{3}J_{\text{H1,H2}}$ coupling constant. The α -anomer shows a coupling constant of 1.6 Hz while the β -anomer shows a coupling constant of 4.6 Hz in both cases for Hyp and hyp. These results are further confirmed by similar compounds (p-Nitrophenyl β - arabinofuranosides with α -isomer with coupling constant 1.6 Hz, and β -isomer with coupling constant 4.3 Hz) synthesized by Dr Kaeothip^[96] and co-workers. Second method is using ¹H-NMR NOEs. Irradiation of H-1 in **7a** leads to 1.14% and 0.74% NOE of H₇ and H₂, respectively while irradiation of H-1 in **7b** leads to observable NOEs of 1.36% and 2.23% for H₇ and H₂, respectively. The larger NOE effect observed for H₂ in **7b** indicates that this compound is the β -anomer in which H₁ and H₂ have a *cis* relationship. When the same

analysis is applied to compounds **12a** and **12b**, NOE resonances of H_1 and H_2 of **12b** are greater than **12a** which indicates **12b** has vicinal protons which exhibit cis relationship and confirms β -anomer (Table **5**). Our results are consistent with a previous analysis by R.A. Hoffmann. ⁹⁸ Table 3 shows relevant NOE data to assign the anomeric configuration in compounds **7a**, **7b**, **12a**, and **12b** while **Table 4** contains all observable NOE effects when H_1 is irradiated in compounds **7a**, **7b**, **12a**, and **12b**.

Table 5: Showing the NOE interactions of H_{γ} with ${}^{1}H$ (anomeric carbon) from spectra

Compound	NOE interactions of H_{γ} and H_2	Assignment
7a	H _γ -1.14%, H ₂ - 0.74%	α-isomer
7b	Hγ-1.36%, H ₂ -2.23%	β-isomer
12a	Hγ-0.94%, H ₂ - 0.6%	α-isomer
12b	Нγ-1.4%, Н2-2.52%	β-isomer

3.2.2 Prolyl side chain conformation:

Alberto Lesarri et al^[97] investigated the hydroxyprolines of Hyp and hyp in gas phase for determination of ring puckers. By computational calculations by the researcher revealed that the 4R isomer has low energy rotameric state which is predominantly *exo-* and 4*S endo*form. These conformations are due to gauche interactions between the substituents on hydroxyproline^[98] and stabilization due to hydrogen bonding in 4*S* isomer^[97]. The exo and endo forms are judged by the coupling ³*J* coupling constants of neighbouring carbon protons. The theoretical values of coupling constants for $J_{\alpha,\beta 1}$ for typical C^{γ}-exo pucker is expected to be 7- 10 Hz and $J_{\alpha,\beta 2}$, 7 – 11 Hz. For typical C γ -endo pucker, the theoretical values are $J_{\alpha,\beta 1}$ = 7-10 Hz and $J_{\alpha,\beta 2} = 2 - 3$ Hz. These prolyl puckers of **7a**, **7b**, **12b** are in compliance with theoretical values except **12a**. The selected ³*J* coupling constants (Hz) for **7a**, **7b**, **12a**, **12b** at 25°C and (67°C) determined by NUMMRIT method by spin works program are as follows:

Τ	ab	le (5: I	Prol	lyl	side	chain	con	form	ation	of	exo	and	end	o c	onf	ìgi	ure	ati	on	lS
					~			•/			•/					•/	~				

Compound	$J_{\alpha,\beta 1}$ (Hz)	$J_{\alpha,\beta 2}$ (Hz)	Pucker	Notes
7a	8.5 (8.4)	8.2 (8.4)	C ^γ -exo	
7b	8.4 (8.4)	8.4(8.2)	C^{γ} -exo	
12a	8.3 (8.1)	8.4 (8.3)	C ^γ -exo	Anomaly as it should be endo.
12b	9.7 (9.5)	2.6 (2.5)	C^{γ} -endo	

Hyp arabinofuranose building blocks (7a & 7b) are having C^{γ}-exo configuration as predicted. There is anomaly regarding hyp building block **12a** which theoretically should be

an endo as **12b** (4*S* β anomer is proved to be endo by galactose building blocks^[82]). But by NUMMRIT calculations, it is shown to adopt exo pucker.

Figure 19: Figure showing the 4 isomers of L-arabinofuranosylated Hyp(4R) and hyp(4S) with observed NOE data. (H_a not drawn for convenience and H_β, H_{5a}, H_{5b} protons resonances are important for judging the distant contacts of prolyl ring with arabinose)

12b

3.2.3 C^{γ} Inductive Effect:

Changes in ¹³*C* chemical shifts are used to find out the electron withdrawing effects during glycosylation^[99]. In reference to galactose glycosylation by our research group of the same Hyp and hyp building blocks have shown for 4*R* (Hyp) isomers about ~9ppm and 4*S* (hyp) isomers in the range of ~8ppm^[100]. These values are quite higher in case with a simple acyl group of even the strongest trifluoroacetate group^[101] which showed only the shift of ~3ppm. In the same manner, L-arabinosyl glycosylation produced similar effects slightly more than the galactosylation. In the case of arabinosylation the Table 7 explains the shift in ppm different for α and β isomer. For α isomer of 4R the chemical shift difference is around ~13.7 ppm and for β isomer (**7b**) the shift is around ~12.1ppm. These results show that glycosylation produces a local electron withdrawing effect significantly greater (~4 ppm) than galactose building blocks of Hyp and hyp.

Table 7: Comparison of C^{γ} L-arabinose glycosylated ones with D-Galactopyranose glycosylated compounds:

S. No	Compound	13C Chemical	Change in Shift (~
		Shifts of $C^{\gamma}(ppm)$	ppm) for
			glycosylated ones
1	Ac-Hyp-OMe	69.6	-
2	Ac-hyp-OMe	69.9	-
3	Ac-Hyp(<i>O</i> -α-L-Ara <i>f</i>)OMe 7a	83.3	~13.7
4	Ac-Hyp(<i>O</i> -β-L-Araf)OMe 7b	81.8	~12.2
5	Ac-hyp(<i>O</i> -α-L-Araf)OMe 12a	83.8	~13.9
6	Ac-hyp(<i>O</i> -β-L-Araf)OMe 12b	82.0	~12.1

7	Ac-Hyp(<i>O</i> -α-D-Gal <i>p</i>)OMe	78.9	~9
8	Ac-Hyp(<i>O</i> -β- D-Gal <i>p</i>)OMe	77.6	~8
9	Ac-hyp(<i>O</i> -α- D-Gal <i>p</i>)OMe	80.3	~10.7
10	Ac-hyp(<i>O</i> -β- D-Gal <i>p</i>)OMe	80.6	~11

3.2.4 ¹³C Inverse gated Coupling^[102]:

The inverse gated coupling is a quantitative experiment which gives the exact percentage of the minor rotamer present in the mixture of rotamers. This experiment was performed at 298K in D₂O with recycle time (acquisition time plus pulse delay) 5 times more than the ¹³C-spin lattice relaxation (d1=5sec) in all the samples during analysis. This is due to avoid transient NOE and decoupler is off till the next excitation pulse. As a result each component in the mixture will have same integration of ¹³C carbons in the spectrum. If the components are two, spectrum will show definite integration of the second compound present in it by which exact percentage of the other rotamer is found out from the average and Standard deviation of different carbons of **7a**, **7b**, **12a**, **12b** with the nearly same integration and integrating the minor gave the results almost accurately in nearest percentage with less standard deviation. This experiment was attempted as there is much pronounced standard deviation in ¹H NMR, if we try to measure the minor integration as the signals are overlapped. The results are tabulated below:

Table 8: ¹³C inverse gated coupling results of L-arabinosyl building blocks of hydroxyproline i.e 7a, 7b, 12a, 12b at RT i.e 24.8°C.

S. No	Compound	Minor(Cis) Isomer %age (by ¹³ C Inverse Gated Coupling)	K _{eq} =K _{cis/trans} Average	Standard Deviationof K _{eq}
1	Ac-Hyp(<i>O</i> -α-L-Araf)OMe 7a	10.52	8.60	1.09
2	Ac-Hyp(<i>O</i> -β-L-Araf)OMe 7b	13.98	6.15	0.22
3	Ac-hyp(<i>O</i> -α-L-Ara <i>f</i>)OMe 12a	30.23	2.32	0.24
4	Ac-hyp(<i>O</i> -β-L-Araf)OMe 12b	30.76	2.25	0.13
5	Ac-Hyp(<i>O</i> -α-D-Gal <i>p</i>)OMe*	-	6	-
6	Ac-Hyp(<i>O</i> -β- D-Gal <i>p</i>)OMe*	-	5.9	-
7	Ac-hyp(<i>O</i> -α- D-Gal <i>p</i>)OMe*	-	2.9	-
8	Ac-hyp(<i>O</i> -β- D-Gal <i>p</i>)OMe*	-	2.9	-
9	Ac-Hyp-OMe*	-	6.2	-
10	Ac-hyp-OMe*	-	2.4	-

* Taken from Neil's paper for comparison.

In **Table 8** compound **7a** has the highest equilibrium constant of 8.6 which clearly shows it favours α - *trans* Hyp isomer more than the galactose building blocks.

3.2.5: Kinetics of cis-trans isomerization: Rate constants determination

The rate constants which are calculated by Mathematica programs using inverse magnetization transfer are summarized below in Table **9**

Table 9: Equillibrium constants and rate constants of cis-trans isomers of the compoundsresearched till now: Here "p" denotes pyranose sugar and "f" denotes furanose sugar

Compound	<i>k_{ct} sec⁻¹</i> (rate constant) at 67°C	<i>k_{tc} sec⁻¹</i> (rate constant) at 67°C	<i>K_{ct}</i> at 67°C (Equal. Constant)	<i>K_{ct}</i> at 24.8°C (Equal. Constant)
Ac-Hyp(<i>O</i> -α-L- Ara <i>f</i>)OMe 7a	0.82 ± 0.2	0.14 ± 0.2	5.80 ± 0.1	8.6 ± 1.09
Ac-Hyp(<i>O-β</i> -L- Ara <i>f</i>)OMe 7b	0.87 ± 0.16	0.17 ± 0.16	5.01 ± 0.2	6.15 ± 0.22
Ac-hyp(<i>O</i> -α-L- Araf)OMe 12a	0.96 ± 0.14	0.18 ± 0.14	5.33 ± 0.1	2.32 ± 0.24
Ac-hyp(<i>O-β</i> -L- Ara <i>f</i>)OMe 12b	0.58 ± 0.12	0.25 ± 0.12	2.25 ± 0.2	2.25 ± 0.13
Ac-Hyp(<i>O</i> -α-D- Gal <i>p</i>)OMe*	0.85	0.19	6.0	5.37
Ac-Hyp(<i>O-β</i> -D- Gal <i>p</i>)OMe*	0.77	0.18	5.9	5.18
Ac-hyp(<i>O</i> -α-D- Gal <i>p</i>)OMe*	0.59	0.25	2.9	2.82
Ac-hyp(<i>O-β</i> -D- Gal <i>p</i>)OMe*	0.71	0.3	2.9	2.75
Ac-Hyp-OMe*	0.81	0.18	6.2	5.08
Ac-hyp-OMe*	0.44	0.2	2.4	2.57
Ac-Prone*	0.81	0.31	2.61	N/A
---	------	------	------	-----
Ac-Hyphae*	0.73	0.25	2.92	N/A
Ac-Hyp(<i>O-tert-</i> butyl)NHMe*	0.77	0.27	2.85	N/A
Ac-Hyp(<i>O</i> -α-D- Gal <i>p</i>)NHMe*	0.83	0.27	3.07	N/A
Ac-Hyp(<i>O-β</i> -D- Gal <i>p</i>)NHMe*	0.61	0.21	2.90	N/A

* Taken from previously published data for comparison

From Table 8, the rate constants of $cis \rightarrow trans$ (k_{ct}) isomerization of L-arabinofuranose glycosylated molecules i.e 7a, 7b, 12a, and 12b give following conclusions:

- Most L-arabinosylated peptide models of Hyp and hyp do not show great variations in the isomerization rate constants. The only building block that shows a significant twofold increase in rate is Ac-hyp (O-α-L-Araf)-OMe (12a).
- L-arabinosylated and D-galactosylated peptides show nearly identical rate constants at 67°C.
- Glycosylation (D-galactosylation and L-arabinosylation) of hyp results in enhanced k_{ct} constants when compared to nonglycosylated hyp while nearly identical values are obtained for Hyp.

Our results show that the nature of the sugar has an influence on the stability of the rotameric state in the model peptides. L-arabinosylation of Hyp leads to a significant

stabilization of the *trans* rotameric state when compared to D-galactose at ambient temperature. Also there is degradation observed in all the furanosylated compounds during the NMR experiment where the compounds in buffer solutions are unstable at 67 °C as exposed to that temperature for a long time. Thus, further determinations of the thermodynamic parameters were not attempted. As indicated in table 6 the rate constant values are relatively similar between furanoside-based sugars and pyranoside-based sugars.

3.2.6 Measurement of K_{cis/trans}:

Hydroxylation of proline modifies two properties. a) It stabilizes the prolyl side chain pucker which depends on stereochemistry of 4th position oxygen atom. 4R Hydroxy proline adopts the C^{γ} exo pucker configuration and 4S hydroxy proline C^{γ} endo pucker configuration^[103]. b) Hydroxylation affects the N-terminal *cis/trans* equilibrium i.e. 4R isomer stabilizes the trans conformation and 4S isomer stabilizes cis conformation. The equilibrium constant for galactosylated hydroxyprolines (Table 7) $K_{\text{trans/cis}} = 6.0$ for 4R Hyp and 2.4 for 4S hyp^[82]. This shows that 4S isomer stabilizes *cis* rotamer and 4R hydroxy proline stabilizes *trans* rotamer population. Moreover, recent studies of Mootoka et al^[104] have shown that 4R hydroxyproline stabilizes the triple helix structure in collagen. These results indicate that 4R-hydroxyproline plays an important function to control structural properties in proteins. In order to investigate the influence of the sugar on the proline cis/trans amide isomerization we prepared L-arabinosylated hydroxyproline building blocks. By measuring the equilibrium constants for α - and β -arabinosylated Hyp we have observed a significant discrepancy between α - (K_{ct} = 8.6) and β -arabinosyalted (K_{ct} = 6.1) Hyp at room temperature. Moreover, there is a marked difference when these equilibrium constants are measured at 67.3°C and at room temperature. The results are concluded below:

- α-L-arabinosylated Hyp analog 7a shows a strong stabilization of the *trans* amide rotamer population at room temperature when compared to their respective α- and β-galactosylated compounds. In addition, there is a much stronger temperature dependency of the equilibrium constant in the arabinosylated building blocks when compared to their galactosylated analogs.
- When temperature is increased to 67 °C, a change observed in Kct values of 12 a. Thus *trans* Hyp amide rotamer is stabilized at higher temperature ((K_{ct} = 2.3 at 24.8°C) and at 67 °C, (K_{ct} = 5.3).
- In comparison, galactosylated derivatives display smaller differences in equilibrium constant values than L-arabinosylated building blocks.

Also the arabinofuranose glycosylated molecules are subjected to slight degradation / when subjected to Inverse Magnetization experiments at higher temperature over a prolonged time (6 hours). By NMR analysis of plants and other plant materials, it has been confirmed in majority that α and β arabinofuranoses are present in most of the flowering plants but mostly α is seen predominantly ^[39, 56, 59b]. β -arabinofuranoses are also seen along with α -ones in mugwort Artemesia plant as investigated by Altman et al in Ambrosia^[105] and other plants like CLAVATA3 arabidopsis CLV3 peptides.

Previous research in our group has shown that galactosylation of hydroxyproline in Ac-Hyp-COOMe and Ac-Hyp-COONHMe did not have a measurable effect on the equilibrium constant. It is noteworthy that α - or β -arabinofuranosylaton of Hyp has been shown to result in a significant stabilization of the *trans* rotamer population evident by equilibrium constants.

3.3 Discussion

Previous research has shown that inductive effects in the γ -position of proline have important structural, thermodynamical and kinetic consequences of prolyl amide bond isomerization^[34, 94a, b, 104, 106]. L-arabinosylation similar to D-galactosylation of Hyp induces an inductive effect which can result in stabilization of the *trans* rotameric state as in the case of L-arabinose. The combined observed ¹³C NMR chemical shifts order (δC^{γ} trans) is as follows: hydroxyl (δC^{γ} =69.6) < *tert*-butoxyl (δC^{γ} =70.1) < β -D-galactosyl (δC^{γ} =77.6) < α -Dgalactosyl (δC^{γ} =78.9) < β -L-arabinofuranosyl (δC^{γ} =81.8) < α -L-Arabinofuranosyl (δC^{γ} =83.3)

Both α - and β - 4-*O*-galactosylation of Hyp have no apparent effect on the isomer equilibrium or the rate of isomerization^[100] when compared with unglycosylated Hyp. In contrast, both α - and β - 4-*O*-L-arabinosylation induce a measurable effect. α -Larabinosylated Hyp shows the greatest effect and leads to a significant stabilization of the *trans* rotamer population. Galactosylation of Hyp produces an inductive electron withdrawing effect on the prolyl ring and 4R-electronegative substituents stabilize the C^Y-exo pucker of proline. The inductive effect for L-arabinofuranose molecules are 4ppm greater in ¹³C NMR than the galactosylated molecules (Ref: Table 6). Nuclear Overhauser experiments indicate that the glycosylation of hyp resulted in distant contacts between proline ring and sugar linkages which is proved in both cases i.e galactopyranose and L-arabinofuranose. Due to the flexibility of arabinofuranose, nOe is judged based on the two anomers' relative resonances of neighbouring protons. This definitely induces a conformational restraint into glycopeptides in living systems. By these results, we can conclude that arabinofuranosylation of hyp too can influence cis-trans isomerization as 4*S* hydroxylation causes the substituent groups to be projected from opposite face of prolyl side chain. But by results, the α -isomer of hyp i.e **12a** has a very good preference for *cis-trans* isomerization at higher temperature and exhibits exo configuration instead of endo. This may be due to gauche orientation of 4-hydroxyl group and prolyl nitrogen atom which may facilitate hydrogen bonding^[103]. Improta et al^[106c]have conducted conformational study with the aid of computational calculations, by taking 4S and 4R,hydroxyprolines, 4-Flouro proline whether inductive effect has any influence on the dipeptides for hydrogen bonding as collagen is stabilized by hydrogen bonds. Thus interaction energy of the prolines decreases of the order: proline (Pro) > hydroxyproline (Hyp) > 4-fluoroproline (Flp). The results are explained by Improta as follows:

- The hydrogen bonding capacity of the imido moiety increases with the relative stability of the substituent in which oxygen bears a formal negative charge. Thus a polar shielding group on 4-*O*-substituent not only shields the electronegative power of the substituent but also enhances the delocalization effects for dipeptides of Hyp and Flp favouring the formation of a partial N-C_{*i*-1}double bond. Thus in aqueous solution Hyp, Flp hydrogen bonds are stronger than Pro.
- This effect is also attributed to the gauche orientation of 4-hydroxyl group in 4S hydroxyl proline and the prolyl nitrogen atom. This orientation is further stabilized by hyperconjugative σ (C^β-H)→σ* (C^γ-O) and σ (C^δ-H)→σ* (C^γ-O) interactions. Thus by the work of Kramer et al^[107], polypeptides of sequences Pro-Pro-Gly in collagen like peptides, if Hyp introduced in the sequence, it stabilizes the collagen and if hyp is introduced by synthesis, stability is decreased. This is due to the orientation of 4S substituent is on the different face of the prolyl nitrogen atom and hydrogen bonding is not much feasible.

Generally, Hyp favours *trans* amide conformation relative to proline because the C^{γ}-exo pucker forces a ψ -angle of 150°, ideal for $n \rightarrow \pi^*$ interaction. In contrast, the C^{γ}-endo

conformation associated with hyp has been favoured to show *cis* amide conformation due to unfavourable ψ -dihedral angle for the same $n \rightarrow \pi^*$ interaction. There may be hydrogen bonding in hyp i.e cis hydroxy proline conformation which is evidenced by R Improta et $al^{[106c]}$ which gives additional stability of 1.5Kcals mol⁻¹. It is between 4-hydroxyl group and C-terminal carbonyl oxygen atom in hyp, as well as electrostatic repulsion between 4position oxygen atom and C-terminal carbonyl oxygen atom; force the prolyl y-angle into a poor $n \rightarrow \pi^*$ interaction, favouring cis amide conformation relative to Pro and Hyp. The localelectronwithdrawing effect caused by the glycosylation diminishes the electrostatic repulsion between 4-Hydroxy groups of the , so that the prolyl ψ angle to relax from 180° to 150° to get favourable $n \rightarrow \pi^*$ interaction and is very specific for C^{γ}-endo configuration for stabilization of *trans* amide rotamer stabilization^[94c, 108] and this effect is not seen in C^{γ}-exo pucker. Thus we can say that Hyp favours only trans amide isomerization and hyp favours both trans and cis isomerization. Also glycosylation of cis hyp would eliminate the intra molecular hydrogen bonding interaction of cis hydroxyl proline isomer. By NOE studies, the galactose and arabinose moeity is not in close proximity in C^{γ} -endo pucker. This interaction is not seen in C^{γ} -exo pucker. Thus it can be predicted that there is very little or no impact of glycosylation on $K_{cis/trans}$ values. Also confirmed by Taylor et al^[98], introduction of O-methylation in hyp has little effect on K_{cis/trans} values. Here also in L-arabinose glycosylated ones, there is no much change in the values of $K_{cis/trans}$ values except for α -arabinosylated hyp (12a). In this compound, there is a very good preference for the trans rotamer stabilization at higher temperature i.e 67.3°C. The results of equilibrium constant values did not change much on comparison with galactosylated molecules but there is a slight preference for the trans conformation for 7a more than D-galactose.

NMR inverse transfer magnetization experiments indicate that glycosylation of Hyp and hyp leads to faster rates when compared to proline. NMR magnetization inversion transfer experiments indicated that hyp model compounds of D-galactose have faster amide isomerization rates. Improta et al. have calculated that the prolyl nitrogen is more pyramidalized in the C^{γ}-exo pucker than in the C^{γ}-endo pucker^[106c] which should facilitate isomerization in D-galactosylated molecules, which each have a C^{γ} -exo pucker, with respect to cis hyp isomers, each with a C^{γ}-endo pucker. In the case of L-arabinose glycosylation a similar effect is observed with an exception of 12a. This is in contrast with the findings of Beausoleil et al^[95] who found the reverse effect: hyp had a faster rate than Hyp in Ac-(peptide)₂-NHMe model amides in D₂O at 60°C (2.05 ± 0.5 and 1.46 ± 0.13 s⁻¹), which has been proved here with 4S α of L-arabinofuranose glycosylated molecule 12a. This may be attributed to the intramolecular hydrogen bond in hyp reducing couloumbic repulsion between the C-terminal carbonyl oxygen atom and the prolyl nitrogen, although the values were within experimental error. Moreoever, L-arabinofuranosylated compounds are degrading over time as a result of high temperature necessary to conduct the kinetic measurements that prohibits the measurement of the thermodynamic parameters.

There is a marked difference in equillibrium constants observed in the case of Larabinofuranose glycosylated molecules than D-galactopyranosylated building blocks. Though α - isomer of Hyp (**7a**) glycosylation showed the highest preference for *trans* stabilization at RT by equilibrium constant K_{ct}= 8.6 but its stability is reduced at increased temperature (K_{ct}=5.8, 67.3°C). Changes in *cis-trans* isomerization is generally attributed to electron withdrawing inductive effect of the prolyl γ -substituents^[94b] where the γ -position group withdraws electron density from the peptide bond and there by reducing the C-N bond order^[109] of peptide bond and weakens the peptide bond, makes the isomerization to occur. But glycosylation results in local electron withdrawing effect, it does for both of the and hyp. Therefore we cannot conclude an explanation for the increase and decrease of *cis-trans* isomerization around the peptide bond due to inductive effect only.

Thus glycosylation of Hyp in compounds of D-Galp and L-Arabf did not have much appreciable effect on the isomer equilibrium (K_{ct}) and rate of isomerization (k_{ct} , k_{tc}) in water between cis and trans isomers when compared to unglycosylated reference compounds except α -arabinofuranose glycosylated compound 7a. But there is a clear indication of L-Arabf glycosylated molecules, 7a has some cis stabilization at 67.3°C, 12a have some trans stabilization which is quite unusual for the un-natural cis hyp isomer. In the case of galactosylated compounds the magnitude of change in chemical shifts is around 8 to 11 ppm. In the case of L-arabinofuranosylated compounds this magnitude change is more pronounced and is around 12 to 14 ppm [7a - 83.3, 7b - 81.8, 12a - 83.8, 12b - 82 ppm, respectively from Table 6]. This magnitude may be due to the sugar moeity's dipole moment (vide definition of anomers) and they are conformationally flexible. The result of the inductive effect is the lowering of pK_a of pyramidalized prolyl nitrogen and reduces the cis-trans isomerization barrier^[94b] and reduces electrostatic repulsion between 4-hydroxy oxygen atom and Cterminyl carbon's oxygen atoms. So we can conclude that α isomer of L-arabinofuranose and β - isomer of D-galactose might be predominant in biological systems identified by some researchers ^[26, 110]. It is a well-known fact that electronegative substituents stabilize C^{γ} -exo pucker of proline in peptide mimics^[94b] and contribute to the stability of triple helix structure of collagen by hydrogen bonds. Glycosylation was also found to stabilize the structure of collagen like poly peptides researched by our group. By Lamport hypothesis, β -glycans stabilize the PPII conformation of HRGPs in plant cell walls. But here in the case of Larabinofuranosylated building blocks, α -isomer is the more stable one and the reason may be

due to the stereochemistry of the sugar moiety. By computational^[106c] and experimental studies^[94c] stabilization of C^{γ}-exo pucker favours *trans* amide isomerization. By comparing all the bulding blocks (i.e D-galactose methyl amides, D-galactose methyl esters and L-arabinofuranose methyl esters of hydroxy proline), arabinofuranoses building blocks **7a**, **7b**, **12a**, **12b** have the trans stabilization measurable when they are comparable to unglycosylated ones. There is a steric strain induced by C^{γ} exo pucker of Hyp by glycosylation but did not influence the *cis-trans* isomerization much but it may have more implications for the stability of collagens and plants. As tri-L-arabinofuranosides are present in plant hormones, it would be interesting to synthesize these building blocks and study their stability parameters. It may be predicted these parameters to be additive for poly peptides.

The different stereoisomers of 4-hydroxyproline provide an opportunity to understand how the prolyl ring has influence on $K_{trans/cis}$ values and the rate constants for the *cis-trans* isomerization. Hyp and hyp project the substituent or glycan spatially opposite direction; so these building blocks of D-Gal*p* and L-Arab*f* have an influence on $K_{trans/cis}$ proved experimentally but the difference is not much. But still these building blocks may be a useful tool in predicting the stability of linkages to some extent and not explaining completely the reasons behind the stability. However this research can be used to ascertain the studying carbohydrate binding interactions and the influences of glycans on peptide and protein structures in which the orientation of the glycans are important ^[108, 111].

Chapter 4: Conclusions and Future work:

 α -linked L-arabinofuranosides linked to Hyp appear to stabilize the *trans* amide rotamer population in plants. This effect is in contrast to D-galactopyranose-linked Hyp where no measurable effect was seen. It may be hypothesized that multiple glycosylation sites on the may produce additive effects^[108] and oligopeptides^[112]. Synthesis of building blocks of L-arabinose tri-saccharide^[59b] and tetra-saccharides^[59a] of natural and un-natural analogues may have a greater impact on the results of these parameters as these trisaccharides are ubiquitous in plants and plant hormones^[59]. There are many methods of preparing tri-saccharides^[113] but synthesis of arabinofuranosides so far has attracted little attention. In general the similar methods used in this thesis can be used for preparing oligosaccharides too but with some protective groups. These tri-saccharides synthesis generally involve the protection of the hydroxyl groups of the sugar and reacting with thiodonor of other sugar moiety and so on. The proposed scheme **5** is given below from one of the method^[113].

Scheme 4: Proposal for the preparation of Tri-saccharides as observed in plant hormones

In the same way, other isomers are synthesized in the similar fashion. These trisaccharides and their properties can be evaluated to see the effects of glycosylation i.e kinetics, equilibrium constants and thermodynamic parameters. These may provide some insight in their enhanced stability parameters.

Chapter 5: Supporting information for Chapter 3

5.1 Synthetic Procedures with NMR & Mass data - General Procedures: Reagent grade solvents were used without further purification. Thin-layer chromatography was performed on Si250F precoated plates of silica gel (250µm). Column chromatography was performed on Silica gel G60 silica gel (43-63µm). NMR spectra were analyzed on Bruker Top Spin 500 MHz spectrometer with Top Spin Works 3.0 software. The synthesized compounds are assigned based on 2D COSY and 2D HSQC experiments. For ¹H NMR, minor isomers are depicted in percentages of 1 proton. For ¹³C NMR, when assigned, minor isomer carbon peaks are listed in brackets.

5.2 General Preparation of Sugar glycosyl donor: Compound 3 – 2, 3, 5 Tri-O-benzyl-Larab-f-1-thiocresol (3): L-arabinose (5.0 gr, 0.033 mol) taken in Pyridine (65mL) and heated to 60°C under stirring at inert atmosphere. To the heated solution, benzoyl chloride (27.3mL, 0.164mol) is added dropwise for 10 min. The resulting reaction mass is stirred for 3.5 hr at 60°C and monitored upon TLC for the absence of starting material. After reaction, the reaction mass is poured onto (500mL) of ice cold water slowly under stirring. To this solution, Dichloromethane (100mL) is added for extraction. The DCM layer is washed 3 x 50mL times with Sat. NaHCO₃ solution, Brine and water and concentrated under vacuum. Crude NMR shows both α -pyranose and α and β of furanose forms of the tetra benzoyl deravatives. To a cooled mixture of the crude in Dichloromethane (75mL), add p-thiocresol (2.3gr, 0.0203mol) to the reaction mass and BF₃. Et₂O (10.3 mL, 0.034mol) slowly dropwise and stirred at RT for overnight for completion of reaction by TLC. Then cooled RM to 0 to 5°C, quenched with sodium bicarbonate solution and Ethyl acetate (50mL) for organic layer separation. The crude product is extracted with 2 x 50mL of Ethyl acetate and concentrated under reduced pressure. The pure furanose product **2** is obtained from flash column purification with 12% Ethyl acetate: hexanes (careful isolation using this solvent mixture only, otherwise mixture of furanoses and pyranoses result) as first fraction. (5.3 gr, yield: 29%).

2,3,5-Tri-*O***-benzoyl-L-arab***f***-1-thiocresol 2**: ¹**H NMR** (500MHz, CDCl₃, 298°K): $\delta = 8.14-8.08$ (m, 7H), 7.63-7.65 (m, 2H), 7.53-7.44 (m, 6H), 7.41-7.39 (m, 2H), 7.3-7.28 (m, 2H), 7.75 (s, 1H), 5.70 (m, 1H), 5.64 (dd, J_1 =1.4Hz, J_2 =4.8Hz, H₂), 4.85 (dd, J_1 =4.8Hz, J_2 =8.8 Hz, H₃), 4.80 (dd, J_1 =3.7Hz, J_2 =11.8Hz, 1H), 4.73 (dd, J_1 =5.2Hz, J_2 =11.8Hz, 1H), 2.32 (s, 3H); ¹³C NMR (125MHz, CDCl₃, 298°K) 166.25, 165.68, 165.43,138.256, 133.85, 133.70, 133.63, 130.26, 130.10, 129.96, 129.93, 129.82, 129.75, 129.58, 129.38, 129.04, 128.97, 128.62, 128.59, 128.53, 128.38, 91.75(Anomeric), 82.57, 81.11, 78.18, 77.33, 77.098, 76.85, 63.63, 21.19. MS (ES): m/z: calcd for C₃₃H₂₈NaO₇S: 591.64 [M+Na]⁺; found : 591.3 [M+Na]⁺

Charge 2(5.3 g, 0.009mol) in methanol (50mL), and under stirring at RT add Sodium methoxide (0.3 gr, 0.0055mol) for 3 hrs shows the absence of starting material 2. Then 3mL water was added and stirred with Amberlite 120H^+ strong acid(0.4gr, 0.06mol) resin till color of the solution disappears. Filter the resin and concentrated and subjected to short column purification and the oily product eluted at 65% ethyl acetate: Hexane. The oily 2,3,5 Triol-arab-f-1-thiocresol is suspended in 30mL dry DMF under stirring and cooled to 0 to 5°C. To the reaction mass, sodium hydride (2.8gr, 0.117mol) portion wise was added and stirred for 30 min at 0 to 5°C. Then benzyl bromide was added dropwise for 10 min. Stir RM for 2 hrs at 0 to 5°C and continued to RT and stirred overnight. After completion of reaction, charge MeOH (10mL) and stirred for 2 hrs. The solvent is evaporated and the organic layer is partitioned between ethyl acetate (30mL) and water (20mL) and dried with sodium sulphate

and concentrated to give a pale yellow viscous liquid. The product **3**is purified by flash chromatography and elutes at 10% Ethyl Acetate: Hexanes. (2.0gr, yield: 45%)

2,3,5 Tri-*O***-benzyl-L-arab***f***-1-thiocresol 3:** ¹**H NMR** (500MHz, CDCl₃, 298°K): $\delta = 7.44$ -7.22 (m, 15H), 5.18 (d, J = 2.8Hz, 1H), 4.72-4.52 (m, 6H), 4.5 (m, 1H), 4.16 (m, 1H), 4.02 (dd, J=3.3Hz, 6.8Hz, 1H), 3.68 (dd, $J_1=3.9$ Hz, $J_2=10.9$ Hz, 1H), 3.63 (dd, $J_1=4.9$ Hz, $J_2=10.9$ Hz, 1H), 2.38 (s, 3H); ¹³C NMR (125MHz,CDCl₃, 298°K) $\delta=138.62$, 138.21, 137.96, 137.85, 137.46, 137.32, 134.52, 132.11, 131.03, 129.99-129.77, 128.70-128.25, 128.20-127.56, 124.91, 102.05, 90.66, 88.49, 84.47, 83.98, 83.61, 83.36, 80.54, 77.41, 77.16, 76.91, 73.40, 72.33, 72.17, 71.97, 69.21, 21.53, 21.19; MS (ES): m/z: calcd for C₃₃H₃₄NaO₄S: 549.69 [M+Na]⁺; found: 549.6 [M+Na]⁺

5.3 General Preparation of glycosylated building blocks:

5.3.1 Fmoc Stage: Compounds 5a, 5b, & 10a, 10b:

Compound **3**(1.5gr, 0.0029mol) is dissolved in dry ACN and cooled to 0-5°C under stirring. To this Fmoc-Hyp-OMe (1.13 gr, 0.0031mol) and NIS (0.78 gr, 0.0034mol), AgOT*f* (0.15 gr, 0.00058mol) were added and stirred for 3hrs at 0 - 5°C. The progress of the reaction is monitored by TLC. After completion, the solvent is removed under vacuum and partitioned between ethyl acetate and sodium bicarbonate. To this 5% aq sodium thiosulphate is added till a colourless solution obtained and stirred for 15 min. The organic layer is washed with brine (10mL), water (10mL), and dried with sodium sulphate and concentrated. The product is purified for α and β isomers by flash chromatography and the product elutes at 23% ethyl acetate and hexane(caution: the mix of solvents should be around 23 to 25% otherwise mix of anomers results and takes long time for separation). Ratio of isomers formed 8:2(α : β) and the overall yield of the products are 65% (1.3 gr mixture of anomers in both Hyp and hyp). After

careful column purification 1.5gr of Hyp isomer yielded 0.7 gr (35%) of pure α isomer and 0.15gr (6.6%) of pure β isomer after several purifications by flash column chromatography. Similarly 1.5gr of cis hyp isomer yielded 0.68gr (33%) of pure α isomer and 0.15gr (6.5%) of pure β isomer.

NMR Data:

5a) 2,3,5 Tri-O-benzyl-L-arab-*f*-α-NFmoc-Hyp-OMe:

¹**H NMR** (500MHz, CDCl₃, 298°K): δ =7.76 (d, 2H, *J*=7.52Hz), 7.63.-7.52 (m, 2H), 7.41-7.19 (m, 4H), 5.11 (s, 1H), 5.08 (s, 0.67H), 4.62-4.42 (m, 6H), 4.41-4.32 (m, 2H), 4.26 (t, 1H), 4.23-4.14 (m, 1H), 4.05-4.00 (m, 1H), 3.98 (dd, *J*₁=3.3Hz, *J*₂=7.1Hz, 1H), 3.86 (dd, *J*₁=5.3Hz, *J*₂=11.4 Hz, 1H), 3.77 (s, 3H), 3.73-3.68 (m, 1H), 3.68-3.63 (m, 1H), 3.62-3.57 (m, 1H), 2.36-2.26 (m, 1H), 2.1-2.02 (m, 1H); ¹³C NMR (125MHz, CDCl₃, 298°K) δ = 172.92, 172.85, 154.94, (154.36), 144.21, 144.01, 143.96, 143.78, (141.35), 141.32, (138.07), 137.98, (137.86), 137.79, 137.55, 137.46, 128.63-128.51, 128.11-127.91, 127.89-127.63, 127.20-127.05, 125.31-125.19, 125.08, 124.98, (105.32), 105.18(Anomeric), (88.77), 88.71, 83.64, (83.38), 80.95, (80.80), 77.34, 77.09, 76.84, 74.39, 73.64, 72.38, 72.34, 72.26, 69.54, (69.25), 67.70, (67.59), 57.84, (57.47), 52.46, (52.40), (47.35), 47.19, (36.26), 35.03; MS (ES): *m/z*: C₄₇H₄₇NNaO₉: 792.88 [M+Na]⁺; found : 792.8 [M+Na]⁺

5b) 2,3,5 Tri-O-benzyl-L-arab-*f*-β-NFmoc-Hyp-OMe:

¹H NMR (500MHz, CDCl₃, 298°K): $\delta = 7.75$ (m, 2H), 7.59 (d, 1H, *J*=7.7Hz), 7.53 (dd, 2H, *J*₁=7.3Hz, *J*₂=18.9Hz), 7.42 -7.35 (m, 1H), 7.34 -7.19 (m, 2H), 4.96 (d, *J*=4.9Hz, 1H), 4.89 (d, *J*=4.9Hz, 1H)), 4.69 (dd, *J*₁=6.1Hz, *J*₂=11.9Hz, 1H), 4.61-4.48 (m, 9H), 4.48-4.39 (m, 2H), 4.33 (t, 1H), 4.30-4.25 (m, 1H), 4.24-4.15 (m, 2H), 4.13-4.03 (m, 2H), 3.73 (s, 3H), 3.65 (s, 0.6H), 3.68 (dd, *J*₁=5.3Hz, *J*₂=11.4Hz, 1H), 3.63 (m, 1H), 3.56 (dd, *J*₁=3.3Hz, *J*₂=11.4Hz,

1H), 3.53-3.48 (m, 2H), 2.39-2.32 (m, 1H), 2.09-2.02 (m, 1H); ¹³C NMR (125MHz,CDCl₃, 298°K) $\delta = 173.01, 172.92, 154.74, 154.52, 144.12, 144.02, 143.89, 143.68, 141.34, 141.3, 138.14, 138.10, 137.92, 137.86, 137.49, 128.63-128.3, 128.21, 128.17-127.65, 127.11, 127.09, 125.15, 125.10, 125.05, 124.97, 120.02, 119.96, 100.05(Anomeric), 84.15, 83.97, 82.56, 80.12, 77.29, 77.04, 76.79, 75.64, 73.81, 73.39, 73.35, 72.69, 72.53, 72.43, 72.0, 67.72, 67.59, 58.10, 57.74, 52.37, 52.35, 51.45, 51.30, 47.26, 47.16, 37.61, 36.52; MS (ES):$ *m/z:*calcd for C₄₇H₄₇NNaO₉: 792.88 [M+Na]⁺; found : 792.9 [M+Na]⁺

10a) 2,3,5 Tri-O-benzyl-L-arab-*f*-α-NFmoc-hyp-OMe:

¹**H NMR** (500MHz, CDCl₃, 298°K): $\delta = 7.79$ (t, 2H), 7.68 (d, *J*=7.3Hz, 2H), 7.64 (d, *J*=7.8Hz, 2H), 7.59 (t, 2H), 5.14 (s, 1H), 5.12 (s, 1H, Anomeric), 4.66-4.46 (m, 8H), 4.46-4.36 (m, 1H), 4.00 (s, 1H), 3.98-3.92 (m, 1H), 3.70 (s, 3H), 3.68-3.65 (m, 1H), 3.61 (s, 3H), 2.45-2.32 (m, 2H); ¹³**C NMR** (125MHz, CDCl₃, 298°K) $\delta = 172.14$, 171.98, 154.87, 154.63, 144.23, 143.91, 141.48, 141.32, 138.15, 138.12, 137.91, 137.89, 137.61, 137.57, (129.80), (129.07), 128.02, 127.93-127.67, 127.22-127.06, 125.24, 125.12, 125.05, 125.04, 120.08, 120.05, 120.03, 105.47(anomeric), 105.43(anomeric), 88.81, 83.74, 83.62, 80.74, 80.65, 77.51, 77.25, 77.0, 74.98, 74.11, 73.49, 73.48, 72.3-72.18, 69.71, 69.66, 67.59, 67.56, 58.13, 57.85, 52.35, 52.31, 52.01, 51.39, 47.39, 38.01, 36.92; MS (ES): *m/z*: calcd for $C_{47}H_{47}NNaO_9$: 792.88 [M+Na]⁺; found : 792.9 [M+Na]⁺

10b) 2,3,5 Tri-O-benzyl-L-arabf-β-Nfmoc-hyp-OMe:

¹H NMR (500MHz, CDCl₃, 298°K): $\delta = 7.75$ (d, , *J*=7.7Hz, 2H), 7.59 (d, *J*=7.4Hz, 2H), 7.57-7.50 (m, 2H), 7.42-7.17 (m, 2H), 4.93 (d, *J*=3.7Hz, 1H), 4.89 (d, *J*=2.3Hz, 1H), 4.68-4.49 (m, 8H), 4.49-4.42 (m, 1H), 4.38 (dd, *J*_{*I*}=3.5Hz, *J*_{*2*}=6.8Hz, 1H), 4.36-4.40 (m, 1H), 4.24 (t, 1H), 4.23-4.16 (m, 1H), 4.1-4.03 (m, 1H), 4.02-4.0 (m, 1H), 3.84-3.8 (0.3H,), 3.73-3.71

(m, 2H), 3.65 (m, 1H), 3.61 (s, 3H), 3.57-3.53 (m, 2H), 3.5 (s, 3H), 2.37-2.30 (m, 1H), 2.23-2.16 (m, 1H); ¹³C NMR (125MHz, CDCl₃, 298°K) δ = 172.12, 171.96, 154.85, 154.38, 144.11, 143.83, 141.35, 141.31, 138.13, 138.09, 137.97, 137.86, 137.98, 128.55-128.24, 128.15-127.86, 127.86-127.60, 127.09, 127.05, 125.25, 125.13, 124.97, 119.99, (impurity), 99.97(anomeric), 84.97, 82.63, 82.52, 80.27, 80.13, 77.30, 77.04, 76.79, 75.34, 74.53, 73.36, 73.23, 72.53, 72.41, 72.14, 71.98, 67.60, 67.48, 57.70, 57.45, 52.74, 52.34, 52.28, 47.34, 47.22, 36.43, 35.13; MS (ES): *m/z*: calcd for C₄₇H₄₇NNaO₉: 792.88 [M+Na]⁺; found : 793 [M+Na]⁺

5.3.2 Benzyl Stage: Compounds 6a, 6b & 11a, 11b: Compounds **5a** (0.65 gr), **5b** (0.1 gr), **10a** (0.63 gr, 0.00083 mol), **and 10b** (0.1 gr, 0.000129 mol) are taken in (4 separate RB flasks) 20% piperidine in DMF (5 mL for α isomers and 2.5mL for β isomers) and stirred for 2 hrs. Progress of the reaction is monitored by TLC. After starting material disappearance, DMF is removed by high vacuum and the crudes are taken as it is for next stage. The crude products are dissolved in pyridine (10mL for α isomers and 5mL for β isomers) and Ac₂O (0.2 mL for α and 0.1 mL for β isomers) is added dropwise at 0 – 5°C and left overnight stirring at RT. The progress of the reaction is monitored by TLC. After completion, solvent is removed under vacuum and the residue is partitioned between ethyl acetate (2.5mL) and sat NaHCO₃ (5mL). The organic layer is washed with brine (5mL), water (5mL) and concentrated under vacuum and dried with Sodium Sulphate. The crude compounds are purified by flash chromatography and the pure products elute at 40% Ethyl Acetate: Hexanes. Yield (For Hyp α -0.12 gr (25%), β -0.07 gr (14.5%) and hyp α -0.118 gr (24%), β -0.071 gr (15%)

NMR Data:

6a) 2,3,5 Tri-O-benzyl-L-arab-f-α-NAc-Hyp-OMe:

¹H NMR (500MHz, CDCl₃, 298°K): $\delta = 7.41-7.17$ (m, 15H), 5.07 (s, 1H), 4.59 (dd, J_1 =4.6Hz, J_2 =9.1Hz, 1H), 4.57-4.38 (m, 6H), 4.48-4.30 (m, 1H), 4.16-4.10 (m, 1H), 4.0 (t, 0.3H), 3.95 (dd, J_1 =1.2Hz, J_2 =3.4Hz, 1H), 3.92 (dd, J_1 =3.4Hz, J_2 = 6.8Hz, 1H), 3.90-3.85 (m, 1H), 3.65 (s, 3H), 3.62 (s, 0.6H), 3.60-3.51 (m, 3H), 3.36 (t, 0.7H), 2.4-2.33 (m, 1H), 2.32-2.26 (m, 1H), 2.08 (s, 3H), 2.02 (s, 0.7H, 3H); ¹³C NMR (125MHz, CDCl₃, 298°K) $\delta =$ (171.4), 171.69, (170.15), 169.46, 168.86, 146.70, 141.04, (138.08), 138.03, (137.83), 137.80, 137.59, 137.46, 128.6-128.30, 128.12, 127.97, 127.88-127.63, (127.11), 127.04, 126.73, 125.47, 119.66, 119.78, 105.64(anomeric), (105.10-anomeric), 88.78, (88.73), (83.78), 83.49, 80.82, (80.62), 77.64, 77.19, 76.93, 75.04, (73.67), 73.43, 72.25, (69.72), 69.57, 59.14, (57.21), 54.94, 52.51, (52.23), 51.71, (47.47), (44.86), (42.52), 38.48, (36.39), (26.46), 26.22, (25.53), (24.66), 24.50, 22.36, (22.11), 21.48; MS (ES): *m/z:* calcd for C₃₄H₃₉NNaO₈: 612.68 [M+Na]⁺; found : 612.6 [M+Na]⁺

6b) 2,3,5 Tri-*O*-benzyl-L-arab-*f*-β-NAc-Hyp-OMe:

¹**H NMR** (500MHz, CDCl₃, 298°K): δ = 7.42-7.12 (m, 15H), 4.97 (dd, J_1 =2.2Hz, J_2 =4.4Hz, 0.28H), 4.89 (dd, J_1 =2.1Hz, J_2 =3.4Hz, 1H), 4.6-4.55 (m, 2H), 4.54-4.44 (m, 6H), 4.44 (t, 0.38H), 4.34-4.25 (m, 1H), 4.14-4.03 (m, 3H), 3.96-3.84 (m, 0.36H), 3.76-3.67 (m, 3H), 3.53-3.67 (m, 2H), 3.4 (dd, J_1 =2.8Hz, J_2 =11.0Hz, 1H), 2.38-2.28 (m, 1H), 2.17-2.09 (m, 1H), 2.04 (s, 3H), 1.83(s, 0.4H,); ¹³C NMR (125MHz, CDCl₃, 298°K) δ = 172.23, (172.59), (169.85), 169.30, 138.06, 137.83, 137.58, 128.81-128.8, 128.4-127.57, 100.52(Anomeric), 84.16, (83.91), 82.44, (80.10), 77.30, 77.05, 76.79, 76.34, 73.40, (73.32), (73.06), 72.76, 72.56, (72.42), (72.22), 71.92, (60.41), (58.78), 57.50, (52.79), 52.29, (50.53), 36.00, 29.72, (73.83), 137.58, (73.83), 137.58, (73.84), 73.40, (73.84), (73.84), 73.40, (73.44), 73.40, (73.44), 73.40, (73.44), 73.40, (73.44), 73.40, (73.44), 73.40, (73.44), 73.40, (73.44), 73.40, (73.44), 73.40, (73.44), 73.40, (73.44), 73.40, (73.44), 73.40, 73.

(29.68), 22.25, (21.07); MS (ES): m/z: calcd for C₃₄H₃₉NNaO₈: 612.68 [M+Na]⁺; found : 612.5 [M+Na]⁺

11a) 2,3,5 Tri-*O*-benzyl-L-arab-*f*-α-NAc-hyp-OMe:

¹H NMR (500MHz, CDCl₃, 298°K): $\delta = 7.39-7.21$ (m, 15H), 5.07 (s, 0.11H), 5.06 (s, 1H), 4.58-4.44 (m, 6H), 4.4-4.32 (m, 1H), 4.16-4.10 (m, 1H), 4.05 (m, 0.31H), 3.97 (dd, J_1 =1.1Hz, J_2 =3.3Hz, 1H), 3.88 (dd, J_1 =3.3Hz, J_2 =7Hz, 1H), 3.79 (dd, J_1 =5Hz, J_2 =11Hz, 1H), 3.73 (s, 3H), 3.76 (s, 0.33H), 3.65-3.59 (m, 2H), 3.56 (dd, J_1 =5.8Hz, J_2 =11Hz, 1H), 2.38-2.32 (m, 0.19H), 2.27-2.20 (m, 1H), 2.08-2.03 (m, 1H), 2.01 (s, 3H), 1.94 (s, 0.32H); ¹³C NMR (125MHz,CDCl₃, 298°K) $\delta = 172.74$, 169.59, 137.94, 137.69, 137.38, (137.20), 128.56, 128.53-128.31, 128.08, 128, 127.93-127.67, 105.53, (105.43), (88.71), 88.62, (83.62), 80.86, (77.30), 77.05, 76.8, (75.11), 73.50, 72.41, (72.33), 69.80, 57.11, (57.04), 54.95, 52.34, (35.13), 34.82, 22.26, (21.08); MS (ES): m/z: calcd for C₃₄H₃₉NNaO₈: 612.68 [M+Na]⁺; found : 612.5 [M+Na]⁺

11b) 2,3,5 Tri-O-benzyl-L-arab-f-β-Nac-hyp-OMe:

¹H NMR (500MHz, CDCl₃, 298°K): $\delta = 7.37-7.21$ (m, 15H), 4.93 (d, *J*=0.3H), 4.89 (d, *J*=3.7Hz, 1H), 4.68 (s, 0.37H), 4.66 (s, 0.67H), 4.61-4.48 (m, 6H), 4.38 (m, 1H), 4.26 (m, 0.34H), 4.17 (m, 1H), 4.11 (dd, *J*₁=7.1Hz, *J*₂=14.3Hz, 1H), 4.09-4.05 (m, 1H), 4.01-3.95 (m, 0.67H), 3.74-3.69 (m, 0.56H), 3.66-3.6 (m, 1H), 3.58-3.51 (m, 1H), 3.62 (s, 3H), 2.34-2.27 (m, 1H), 2.15-2.09 (m, 1H), 2.04 (s, 1H), 2.02 (s, 0.9H, 1H); ¹³C NMR (125MHz, CDCl₃, 298°K) $\delta = (171.74)$, 171.70, 169.81, 169.49, 138.05, 137.97, 137.72, 128.54-128.30, 128.09, 128.02, (127.92), 127.86, 127.79, 127.76, 127.65, 100.21(Anomeric), 83.99, (83.95), 82.05, 79.94, 77.30, 77.05, 76.79, 75.72, (73.37), 73.17, 72.55, 72.47, 72.36, 72.33, 72.18, 71.82,

60.41, 56.73, 53.34, (52.77), (52.55), 52.25, 34.80, 22.19, (22.10), 21.07; MS (ES): m/z: calcd for C₃₄H₃₉NNaO₈: 612.68 [M+Na]⁺; found : 612.5 [M+Na]⁺

5.3.3 General Preparation of 4-*O***-arabinofuranosyl-***N***-acetyl-***N***'-methyl ester amino acids (Final compounds 7a, 7b, 12a, 12b):** The protected N-Acetyl amino acid methyl esters (0.12 gr for α and 0.07gr for β isomers) was dissolved in methanol and catalyst, (20% palladium hydroxide on carbon) was added (approx. 20% w/w loading of catalyst i.e 25 mg for α isomers, 15mg for β isomers), and the flask was flushed with N₂ for 3 times. The reaction mixture was then stirred under hydrogen gas (10psi) pressure for 16 hrs, checked TLC for completion of reaction. Then the reaction mass was flushed with nitrogen and filtered using celite. The product was then concentrated under reduced pressure and codistilled with toluene for 3 times (3 x 3mL) and subjected to C18 silica gel column to get pure compound. Sometimes if the compound is still impure by NMR, the compound is converted to tri-O-acetate by using Acetic anhydride / pyridine and purifying by column chromatography and de-acetylating by NaOMe / MeOH and solvent evaporation after that yielded thick oily compound (53mg for α and β 34mg) (yield=75%)

NMR Data:

7a) *trans*-4-O-(α-L-arabinofuranosyl)-N-acetyl-4-hydroxy-L-Proline methyl ester (2, 3, 5
Triol-L-arab-*f*-α-NAc-Hyp-OMe):

[α]^D_{23.9°}= -30.61 (*c*=0.3, CH₃OH); ¹**H NMR** (500MHz, D₂O, 298°K): δ = 5.07 (d, *J*=1.6Hz, 1H, H₁), 5.05 (d, *J*=1.6Hz, 0.17H), 4.99 (d, *J*=1.4Hz, 0.13H), 4.98 (d, *J*=1.4Hz, 0.07H), 4.78-4.74 (m, 0.38H), 4.61 (dd, *J*₁=2.9Hz, *J*₂=8.8Hz, 0.2H), 4.51-4.43 (m, 2 protons, H_γ, H₄), 4.42-4.38 (m, 0.21H), 4.00 (dd, *J*₁=1.8Hz, *J*₂=3.5Hz, 1H), 3.95 (ddd, *J*₁=3.1Hz, *J*₂=5.9Hz *J*₃=9.1Hz, 1H), 3.87 (dd, *J*₁=3.6Hz, *J*₂=6.2Hz, 1H), 3.78 (m, 1H), 3.76 (dd, *J*₁=3.1Hz, *J*₂=12.3Hz, 1H), 3.77-3.73 (m, 2 protons, 2H), 3.70 (s, 3 H, CO-OCH₃), 3.63 (dd, *J*₁=5.8Hz, *J*₂=12.3Hz, 1H), 3.60-3.57 (m 0.12H), 3.56-3.53 (m, 0.38H), 3.350 (s, 0.03H), 3.28 (s, 0.2H), 2.49-2.43 (m, 1H), 2.37-2.30 (m, 0.57H, 1H), 2.14-2.08 (m, 1H), 2.06 (s, 3H, N-COCH₃), 2.01 (s, 0.15H), 1.94 (s, 0.41H); ¹³C NMR (125MHz, D₂O, 298°K) δ = 174.52, 173.19, 106.31, (106.60), (105.40), 83.83, 83.74, (81.82), (81.36), (76.61), 75.80, (75.39), (74.48), 61.17, (61.05), (58.73), 57.73, (57.51), 57.35, (54.43), (53.42), 53.04, (52.32), (36.67), (35.93), (35.16), 34.38, (33.92), (23.28), (21.53), 21.30, (21.15); MS (ES): *m/z*: calcd for C₁₃H₃₁NNaO₈: 342.31 [M+Na]⁺; found : 342.4 [M+Na]⁺

7b) *trans*-4-*O*-(β-L-arabinofuranosyl)-*N*-acetyl-4-hydroxy-L-proline methyl ester (2, 3, 5
Triol –L-arab-*f*-β-NAc-Hyp-OMe):

[α]^D_{23.9°}= 27.18 (*c*=0.3, CH₃OH); ¹H NMR (500MHz, D₂O, 298°K): δ = 5.06 (d, *J*=4.6Hz, 1H), 5.03 (d, J=4.9Hz, 0.15H), 4.77 (dd, J_1 =7Hz, J_2 =15.5Hz, 1H), 4.54-4.42 (m, 2H), 4.06 (dd, J_1 =5Hz, J_2 =8.5Hz, 1H), 3.94 (t, 1H), 3.84-3.77 (dd, J_1 =3.3Hz, J_2 =7Hz, 1H), 3.76 (s, 1H), 3.75 (s, 1H), 3.73 (d, *J*=3.9Hz, 1H), 3.70 (s, 3H, CO-OCH₃), 3.56 (dd, J_1 =7.2Hz, J_2 =12.8Hz, 1H), 3.49 (dd, J_1 =4.9Hz, J_2 =12.8Hz, 0.17H), 2.62-2.55 (m, 0.15H), 2.54-2.47 (m, 1H), 2.38-

2.31 (m, 0.19H), 2.14 (m, 2H,), 2.06 (s, 3H, N-COCH₃), 1.94 (s, 0.5H, N-COCH₃); ¹³C NMR (125MHz, D₂O, 298°K) δ = 174.63, (174.19), 173.19, 100.28, (100.17), 81.83, 76.29, 76.14, (74.49), 74.34, 63.11, 59.07, 57.88, 53.47, (53.39), 53.03, (51.36), (37.01), 35.65, 21.29, (20.67); MS (ES): *m/z*: calcd for C₁₃H₃₁NNaO₈: 342.31 [M+Na]⁺; found : 342.4 [M+Na]⁺

12a) *cis*-4-*O*-(α-L-arabinofuranosyl)-*N*-acetyl-4-hydroxy-L-proline methyl ester (2, 3, 5
 Triol-L-arab-*f*-α-NAc-hyp-OMe):

[α]^D_{23.9°}= -34.11 (*c*=0.3, CH₃OH); ¹H NMR (500MHz, D₂O, 298°K): δ = 5.06(s, 1H), 5.04 (s, 0.18H), 4.75-4.73 (m, 0.2H), 4.53-4.42 (t, 2H), 3.99 (t, 1H), 3.95 (m, 1H), 3.87 (m, 1H), 3.82 (dd, J_1 =4.1Hz, J_2 =11.9Hz, 1H), 3.78 (s, 0.87H), 3.77-3.72 (m, 2H), 3.7 (s, 3H, CO-OCH₃), 3.63 (dd, J_1 =5.9Hz, J_2 =11.9Hz, 1H), 3.55 (dd, J_1 =4.9Hz, J_2 =12.4Hz, 0.24H), 2.57-2.50 (m, 0.2H), 2.5-2.51 (m, 1H), 2.37-2.26 (m, 0.26H), 2.15-2.07 (m, 1H), 2.06 (s, 3H, N-COCH₃), 1.93 (s, 0.44H), 1.91 (s, 0.08H); ¹³C NMR (125MHz, D₂O, 298°K) δ = (173.73), 174.57, 174.52, (173.19), 106.31, (106.65), 83.84, 83.73, 76.28, (76.21), 75.81, 61.14, (61.10), 57.89, (57.52), 54.18, 53.43, (53.06), 35.70, (34.35), 21.30, (20.67);MS (ES): *m/z*: calcd for C₁₃H₃₁NNaO₈: 342.31 [M+Na]⁺; found : 342.4 [M+Na]⁺

12b) *cis*-4-*O*-(β-L-arabinofuranosyl)-*N*-acetyl-4-hydroxy L-proline methyl ester (2, 3, 5
 Triol-L-arab-*f*-β-NAc-hyp-OMe):

[α]^D_{23.9°}= 29.33 (*c*=0.3, CH₃OH); ¹H NMR (500MHz, D₂O, 298°K): δ=5.01 (d, *J*=4.5Hz, 1H), 4.99 (d, *J*=4.6Hz, 0.41H), 4.76 (s, 0.2H), 4.74 (s, 0.2H), 4.58 (dd, *J*₁=3.0Hz, *J*₂=9.2Hz, 1H), 4.49-4.42 (m, 1H), 4.03-3.99 (m, 1H), 3.88 (t, 1H), 3.83 (ddd, *J*₁=4.2Hz, *J*₂=7.3Hz, *J*₃=11.4Hz, 1H), 3.81-3.78 (m, 2H), 3.72 (s, 1.3H, COCH₃), 3.71 (d, *J*=3.3Hz, 0.64H), 3.62-3.58 (m, 1H), 3.56-3.53 (m, 0.7H), 2.4-2.37 (m, 0.22H), 2.37-2.34 (m, 1H), 2.31-2.29 (m, 0.22H), 2.07 (s, 3H, N-COCH₃), 2.01 (s, 0.46H, minor N-COCH₃); ¹³C NMR (125MHz, 125MHz, 125MHz</sub>, 125MHz, 125MHz, 125MHz, 125MHz, 125MHz, 125MHz, 125MHz, 125MHz, 125MHz, 125MHz</sub>, 125MHz, 125MHz, 125MHz, 125MHz, 125MHz}, 125MHz, 125MHz, 125MHz}, 125MHz, 125MHz}, 125MHz}

 D_2O , 298°K) $\delta = (174.08)$, (173.79), 173.75, 173.38, 99.88 (anomeric), (99.40), 82.0, (81.97), 76.13, (76.10), 76.0, (74.52), 74.49, 63.23, (63.21), (59.38), 57.46, 54.32, (53.24), (53.16), 53.00, (35.14), 34.05, 21.27, (21.19); MS (ES): *m/z*: calcd for $C_{13}H_{31}NNaO_8$: 342.31 [M+Na]⁺; found : 342.4 [M+Na]⁺

References:

- [1] R. G. Spiro, *Glycobiology* **2002**, *12*, 43R-56R.
- [2] I. Cumpstey, Org. Biomol. Chem. 2012, 10, 2503-2508.
- [3] E. Juaristi and G. Cuevas, Tetrahedron 1992, 48, 5019-5087.
- [4] R. U. Lemieux, A. A. Pavia, J. C. Martin and K. A. Watanabe, *Can. J. Chem.* **1969**, *47*, 4427-4439.
- [5] C. Romers, C. Altona, H. R. Buys and E. Havinga in *Geometry and Conformational Properties of Some Five- and Six-Membered Heterocyclic Compounds Containing Oxygen or Sulfur, Vol.* John Wiley & Sons, Inc., **2007**, pp. 39-97.
- [6] B. Imperiali, Acc. Chem. Res. 1997, 30, 452-459.
- [7] T. de Beer, J. F. G. Vliegenthart, A. Loeffler and J. Hofsteenge, *Biochemistry* 1995, *34*, 11785-11789.
- [8] M.-A. s. Doucey, D. Hess, M. J. J. Blommers and J. Hofsteenge, *Glycobiology* 1999, 9, 435-441.
- [9] S. Hartmann and J. Hofsteenge, J. Biol. Chem. 2000, 275, 28569-28574.
- [10] R. G. Spiro, J. T. E. C.B. Anfinsen and M. R. Frederic in *Glycoproteins*, *Vol.* 27 Academic Press, **1973**, pp. 349-467.
- [11] D. T. Lamport and D. H. Miller, *Plant Physiol.* 1971, 48, 454-456.

[12] a) E. A. Nothnagel, *Int Rev Cytol* 1997, *174*, 195-291; b) J. Perez-Vilar and R. L. Hill, *J. Biol. Chem.* 1999, *274*, 31751-31754.

[13] P. A. Haynes, *Glycobiology* **1998**, *8*, 1-5.

[14] D. P. Mehta, M. Ichikawa, P. V. Salimath, J. R. Etchison, R. Haak, A. Manzi and H. H. Freeze, *J. Biol. Chem.* **1996**, *271*, 10897-10903.

[15] A. Guha-Niyogi, D. R. Sullivan and S. J. Turco, *Glycobiology* 2001, 11, 45R-59R.

[16] G. Srikrishna, L. Wang and H. H. Freeze, *Glycobiology* 1998, *8*, 779-811.

[17] a) O. Nosjean, A. Briolay and B. Roux, *Biochim. Biophys. Acta (BBA) - Reviews on Biomembranes* 1997, 1331, 153-186; b) M. A. Ferguson, *Journal of Cell Science* 1999, 112, 2799-2809.

[18] a) A. Varki, *Glycobiology* **1993**, *3*, 97-130; b) P. J. Ferris, J. P. Woessner, S. Waffenschmidt, S. Kilz, J. Drees and U. W. Goodenough, *Biochemistry* **2001**, *40*, 2978-2987.

[19] H. Lis and N. Sharon, Eur. J. Biochem. 1993, 218, 1-27.

[20] T. Dinur, K. M. Osiecki, G. Legler, S. Gatt, R. J. Desnick and G. A. Grabowski, *Proc. Natl. Acad. Sci. U.S.A* **1986**, *83*, 1660-1664.

[21] M. E. Grace and G. A. Grabowski, *Biochem. Biophys. Res. Commun.* 1990, 168, 771-777.

[22] V. Kaartinen and I. Mononen, *Biochim.t Biophys. Acta (BBA) - Protein Structure and Molecular Enzymology* **1988**, *953*, 345-352.

[23] M. A. Clay, G. J. Hopkins, C. P. Ehnholm and P. J. Barter, *Biochim.t Biophys. Acta* (*BBA*) - *Lipids and Lipid Metabolism* **1989**, *1002*, 173-181.

[24] S. Santamarina-Fojo, C. Haudenschild and M. Amar, *Curr. Opin. Lipidol.* 1998, 9, 211-219.

[25] G. Stahnke, R. C. Davis, M. H. Doolittle, H. Wong, M. C. Schotz and H. Will, *J. Lipid Res.* **1991**, *32*, 477-484.

[26] C. M. Taylor, C. V. Karunaratne and N. Xie, *Glycobiology* 2012, 22, 757-767.

[27] G. Pearce and C. A. Ryan, J. Biol. Chem. 2003, 278, 30044-30050.

[28] G. Pearce, D. S. Moura, J. Stratmann and C. A. Ryan, Nature 2001, 411, 817-820.

[29] D. Mohnen and M. L. Tierney, Science 2011, 332, 1393-1394.

[30] S. M. Velasquez, M. M. Ricardi, J. G. Dorosz, P. V. Fernandez, A. D. Nadra, L. Pol-Fachin, J. Egelund, S. Gille, J. Harholt, M. Ciancia, H. Verli, M. Pauly, A. Bacic, C. E. Olsen, P. Ulvskov, B. L. Petersen, C. Somerville, N. D. Iusem and J. M. Estevez, *Science* 2011, *332*, 1401-1403.

[31] H. Shinohara and Y. Matsubayashi, Curr. Opin. Plant. Biol. 2010, 13, 515-519.

[32] K. J. Nytko, N. Maeda, P. Schlaofli, P. Spielmann, R. H. Wenger and D. P. Stiehl, *Blood*2011, *117*, 5485-5493.

[33] P. Hevia, S. T. Omaye and R. A. Jacob, Am. J. Clin. Nutr. 1990, 51, 644-648.

[34] J. Myllyharju, Matrix Biol. 2003, 22, 15-24.

[35] a) R. Kuttan and A. N. Radhakrishnan, *Biochem. J.* **1970**, *117*, 1015-1017; b) R. Kuttan and A. N. Radhakrishnan, *Biochem. J.* **1970**, *119*, 651-657.

[36] a) Z. Y. Guang Zhou, Yao Da, Xue X. B, *Journal of Guangzhou University of Traiditional Chinese Medicine* **2006**, *23*, 262-264; b) R. R. Yan, *Journal of Guangzhou University of Traiditional Chinese Medicine* **2006**, 337-338.

[37] N. C. Carpita and D. M. Gibeaut, *Plant J.* 1993, *3*, 1-30.

[38] a) D. J. Cosgrove, *Ann. Rev. Cell Develop. Biol.* 1997, *13*, 171-201; b) C. Somerville, S. Bauer, G. Brininstool, M. Facette, T. Hamann, J. Milne, E. Osborne, A. Paredez, S. Persson, T. Raab, S. Vorwerk and H. Youngs, *Science* 2004, *306*, 2206-2211.

[39] J. E. Darvill, M. McNeil, A. G. Darvill and P. Albersheim, *Plant Physiol.* **1980**, *66*, 1135-1139.

[40] D. J. Cosgrove, Nat. Rev. Mol. Cell Biol. 2005, 6, 850-861.

[41] R. Hatfield and W. Vermerris, *Plant Physiol.* 2001, 126, 1351-1357.

[42] Y. Matsubayashi, Plant Cell Physiol. 2011, 52, 5-13.

[43] a) G. I. Cassab, Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 281-309; b) J.
Sommer-Knudsen, A. Bacic and A. E. Clarke, Phytochem. 1998, 47, 483-497.

[44] A. M. Showalter, Cell Mol. Life Sci. 2001, 58, 1361-1362.

[45] D. S. Everdeen, S. Kiefer, J. J. Willard, E. P. Muldoon, P. M. Dey, X.-b. Li and D. T. A. Lamport, *Plant Physiol.* **1988**, *87*, 616-621.

[46] I. N. Watson, L. M. Watson, T. A. Murray, B. Lige, R. B. van Huystee and M. T. McManus, *Plant Physiol. Biochem.* 1998, 36, 591-599.

[47] K. Bollig, M. Lamshoft, K. Schweimer, F. J. Marner, H. Budzikiewicz and S. Waffenschmidt, *Carbohydr. Res.* 2007, *342*, 2557-2566.

[48] A. L. Rubinstein, A. H. Broadwater, K. B. Lowrey and P. A. Bedinger, *P Proc. Natl. Acad. Sci. U.S.A* **1995**, *92*, 3086-3090.

[49] L. N. Gatehouse, I. M. Evans, J. A. Gatehouse and R. R. D. Croy, *Plant Science* 1990, 71, 223-231.

[50] J. H. Ahn, Y. Choi, Y. M. Kwon, S. G. Kim, Y. D. Choi and J. S. Lee, *Plant Cell* 1996, 8, 1477-1490.

[51] A. M. Showalter, J. N. Bell, C. L. Cramer, J. A. Bailey, J. E. Varner and C. J. Lamb, *Proc. Natl. Acad. Sci. U.S.A* **1985**, *82*, 6551-6555.

[52] D. H. Miller, D. T. A. Lamport and M. Miller, Science 1972, 176, 918-920.

[53] A. M. Showalter, *Plant Cell* 1993, 5, 9-23.

[54] a) G. J. Seifert and K. Roberts, Annu. Rev. Plant Biol. 2007, 58, 137-161; b) A. M.
Showalter, Cell Mol. Life Sci. 2001, 58, 1399-1417.

[55] a) S. C. Churms, E. H. Merrifield and A. M. Stephen, *Carbohydr. Res.* 1983, *123*, 267-279; b) S. C. Churms, A. M. Stephen and I. R. Siddiqui, *Carbohydr. Res.* 1981, *94*, 119-122;
c) A. Bacic, S. C. Churms, A. M. Stephen, P. B. Cohen and G. B. Fincher, *Carbohydr. Res.* 1987, *162*, 85-93.

[56] M. J. Kieliszewski and E. Shpak, Cell Mol. Life Sci. 2001, 58, 1386-1398.

[57] T. Mahendran, P. A. Williams, G. O. Phillips, S. Al-Assaf and T. C. Baldwin, J. Agri. Food Chem. 2008, 56, 9269-9276.

[58] C. Sanchez, C. Schmitt, E. Kolodziejczyk, A. Lapp, C. Gaillard and D. Renard, *Biophys. J.* 2008, *94*, 629-639.

[59] a) L. Tan, F. Qiu, D. T. A. Lamport and M. J. Kieliszewski, *J. Biol. Chem.* 2004, 279, 13156-13165; b) L. Tan, P. Varnai, D. T. Lamport, C. Yuan, J. Xu, F. Qiu and M. J. Kieliszewski, *J. Biol. Chem.* 2010, 285, 24575-24583.

[60] a) W. Sun, M. J. Kieliszewski and A. M. Showalter, *Plant J.* 2004, *40*, 870-881; b) M.Gao, M. J. Kieliszewski, D. T. A. Lamport and A. M. Showalter, *Plant J.* 1999, *18*, 43-55.

[61] H. Motose, M. Sugiyama and H. Fukuda, *Nature* **2004**, *429*, 873-878.

[62] H. Fukuda, Nat. Rev. Mol. Cell Biol. 2004, 5, 379-391.

[63] A. Y. Cheung, H. Wang and H.-m. Wu, Cell 1995, 82, 383-393.

[64] C. P. MacMillan, S. D. Mansfield, Z. H. Stachurski, R. Evans and S. G. Southerton, *Plant J.* **2010**, *62*, 689-703.

[65] H. Shi, Y. Kim, Y. Guo, B. Stevenson and J.-K. Zhu, Plant Cell 2003, 15, 19-32.

[66] a) Y. Gaspar, K. Johnson, J. McKenna, A. Bacic and C. Schultz, *Plant Mol. Biol.* 2001, 47, 161-176; b) J. Nam, K. S. Mysore, C. Zheng, M. K. Knue, A. G. Matthysse and S. B. Gelvin, *Molecular and General Genetics MGG* 1999, 261, 429-438.

[67] K. G. Ramawat, J. M. Merillon and A. Pal in *Arabinogalactan Protein and Arabinogalactan: Biomolecules with Biotechnological and Therapeutic Potential*, Springer Berlin Heidelberg, **2008**, pp. 255-270.

[68] H. Wagner, H. Yamada and H. Kiyohara in *Complement-activating polysaccharides* from medicinal herbs, Vol. Birkhaouser Basel, **1999**, pp. 161-202.

[69] M. JosÈ and P. PuigdomÈNech, New Phytol. 1993, 125, 259-282.

[70] R. Balestrini, C. Romera, P. Puigdomenech and P. Bonfante, Planta 1994, 195, 201-209.

[71] a) D. J. Bradley, P. Kjellbom and C. J. Lamb, *Cell* **1992**, *70*, 21-30; b) L. F. Brisson, R.
Tenhaken and C. Lamb, *Plant Cell* **1994**, *6*, 1703-1712.

[72] Y. Matsubayashi and Y. Sakagami, Annu. Rev. Plant Biol. 2006, 57, 649-674.

[73] a) W. J. Wedemeyer, E. Welker and H. A. Scheraga, *Biochemistry* 2002, *41*, 14637-14644; b) I. K. Song and Y. K. Kang, *J. Phys. Chem. B* 2006, *110*, 1915-1927; c) R. L. Stein, J. T. E. F. M. R. D. S. E. C.B. Anfinsen and L. George in *Mechanism of Enzymatic and Nonenzymatic Prolyl Cis-Trans Isomerization, Volume 44* Academic Press, 1993, pp. 1-24.

[74] M. P. Hinderaker and R. T. Raines, Protein Sci. 2003, 12, 1188-1194.

[75] S. V. S. Mariappan and D. L. Rabenstein, J. Org. Chem. 1992, 57, 6675-6678.

[76] D. Kern, M. Schutkowski and T. r. Drakenberg, J. Am. Chem. Soc. 1997, 119, 8403-8408.

[77] G. Scherer, M. L. Kramer, M. Schutkowski, U. Reimer and G. Fischer, J. Am. Chem. Soc. 1998, 120, 5568-5574.

[78] C. Schiene, U. Reimer, M. Schutkowski and G. Fischer, *FEBS Letters* 1998, 432, 202-206.

[79] C. Dugave and L. Demange, Chem. Rev. 2003, 103, 2475-2532.

[80] H. A. Lester, M. I. Dibas, D. S. Dahan, J. F. Leite and D. A. Dougherty, *Tr. Neurosci.*2004, 27, 329-336.

[81] S. C. R. Lummis, D. L. Beene, L. W. Lee, H. A. Lester, R. W. Broadhurst and D. A. Dougherty, *Nature* 2005, 438, 248-252.

[82] N. W. Owens, A. Lee, K. Marat and F. Schweizer, Chemistry 2009, 15, 10649-10657.

[83] T. Peters and B. M. Pinto, Curr. Opin. Struct. Biol. 1996, 6, 710-720.

[84] T. Weimar, S. L. Harris, J. B. Pitner, K. Bock and B. M. Pinto, *Biochemistry* **1995**, *34*, 13672-13681.

[85] J. N. Shoolery, Progress in Nuclear Magnetic Resonance Spectroscopy 1977, 11, 79-93.

[86] V. Mazzoni, P. Bradesi, F. Tomi and J. Casanova, *Magnetic Resonance in Chemistry* **1997**, *35*, S81-S90.

[87] Z. Xia, L. G. Akim and D. S. Argyropoulos, J. Agri. Food Chem. 2001, 49, 3573-3578.

[88] a) Q. Sui, D. Borchardt and D. L. Rabenstein, J. Am. Chem. Soc. 2007, 129, 1204212048; b) T. J. Williams, A. D. Kershaw, V. Li and X. Wu, J. Chem. Edu. 2011, 88, 665-669.

[89] N. L. Alicea-Velazquez and T. J. Boggon, Curr. Drug Targets 2011, 12, 546-555.

[90] C. Callicott, J. M. Thomas and A. W. Goode, *Physics in Medicine and Biology* **1999**, *44*, 1147.

[91] J. R. Alger and J. H. Prestegard, J. Mag. Reson. (1969) 1977, 27, 137-141.

[92] S. V. Santhana Mariappan and D. L. Rabenstein, J. Mag. Reson. (1969) 1992, 100, 183-188.

[93] H. M. McConnell, J. Chem. Phys. 1958, 28, 430-431.

[94] a) L. E. Bretscher, C. L. Jenkins, K. M. Taylor, M. L. DeRider and R. T. Raines, *J. Am. Chem. Soc.* 2001, *123*, 777-778; b) E. S. Eberhardt, N. Panasik and R. T. Raines, *J. Am. Chem. Soc.* 1996, *118*, 12261-12266; c) M. L. DeRider, S. J. Wilkens, M. J. Waddell, L. E. Bretscher, F. Weinhold, R. T. Raines and J. L. Markley, *J. Am. Chem. Soc.* 2002, *124*, 2497-2505; d) L.-S. Sonntag, S. Schweizer, C. Ochsenfeld and H. Wennemers, *J. Am. Chem. Soc.* 2006, *128*, 14697-14703.

[95] E. Beausoleil, R. Sharma, S. W. Michnick and W. D. Lubell, *J. Org. Chem.* **1998**, *63*, 6572-6578.

[96] S. Kaeothip, A. Ishiwata, T. Ito, S. Fushinobu, K. Fujita and Y. Ito, *Carbohydr. Res.*2013, 382, 95-100.

[97] A. Lesarri, E. J. Cocinero, J. C. López and J. L. Alonso, J. Am. Chem. Soc. 2005, 127, 2572-2579.

[98] C. M. Taylor, R. Hardré and P. J. B. Edwards, J. Org. Chem. 2005, 70, 1306-1315.

[99] H. Friebolin in *Basic One- and Two-Dimensional NMR Spectroscopy*, Wiley-VCH, Newyork, **2010**.

[100] N. W. Owens, C. Braun, J. D. O'Neil, K. Marat and F. Schweizer, J. Am. Chem. Soc.2007, 129, 11670-11671.

[101] a) N. Shamala, T. N. G. Row and K. Venkatesan, *Acta Crystallographica Section B* **1976**, *32*, 3267-3270; b) C. L. Jenkins, A. I. McCloskey, I. A. Guzei, E. S. Eberhardt and R. T. Raines, *Peptide Sci.* **2005**, *80*, 1-8.

[102] Z. Zhou, R. KÃ¹/₄mmerle, X. Qiu, D. Redwine, R. Cong, A. Taha, D. Baugh and B. Winniford, J. Mag. Reson. 2007, 187, 225-233.

[103] M. D. Shoulders, F. W. Kotch, A. Choudhary, I. A. Guzei and R. T. Raines, J. Am. Chem. Soc. 2010, 132, 10857-10865.

[104] D. Motooka, K. Kawahara, S. Nakamura, M. Doi, Y. Nishi, Y. Nishiuchi, Y. K. Kang,
T. Nakazawa, S. Uchiyama, T. Yoshida, T. Ohkubo and Y. Kobayashi, *Peptide Sci.* 2012, 98, 111-121.

[105] R. Léonard, N. Wopfner, M. Pabst, J. Stadlmann, B. O. Petersen, J. Ø. Duus, M. Himly,
C. Radauer, G. Gadermaier, E. Razzazi-Fazeli, F. Ferreira and F. Altmann, *J. Biol. Chem.* **2010**, *285*, 27192-27200.

[106] a) T. V. Burjanadze, *Biopolymers* 1992, *32*, 941-949; b) K. Keskiaho, R. Hieta, R. Sormunen and J. Myllyharju, *Plant Cell* 2007, *19*, 256-269; c) R. Improta, C. Benzi and V. Barone, *J. Am. Chem. Soc.* 2001, *123*, 12568-12577.

[107] R. Z. Kramer, L. Vitagliano, J. Bella, R. Berisio, L. Mazzarella, B. Brodsky, A. Zagari and H. M. Berman, *J. Mol. Biol.* **1998**, *280*, 623-638.

[108] J.-C. Horng and R. T. Raines, Protein Sci. 2006, 15, 74-83.

[109] L. Pauling in *The Nature of the Chemical Bond*, *Vol. 1* Cornell University Press, Ithaca, United States **1960**.

[110] D. L. Smith, D. A. Starrett and K. C. Gross, Plant Physiol. 1998, 117, 417-423.

[111] a) M. R. Wormald and R. A. Dwek, *Structure* 1999, *7*, R155-R160; b) K. D. White, R.
D. Cummings and F. J. Waxman, *J. Immunol.* 1997, *158*, 426-435.

[112] C. Grathwohl and K. Wüthrich, Biopolymers 1981, 20, 2623-2633.

[113] B. Mukhopadhyay and R. A. Field, Carbohydr. Res. 2004, 339, 1285-1291.

APPENDICES
NMR Data with Mass Reports

file: ...ocuments\NMR data\MVR-2-120A\1\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt number of scans: 64

freq. of 0 ppm: 500.130025 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 140.253 ppm/cm: 0.28043

SpinWorks 3: 2,3,5 Tri-O-benzoyl-arab-f-1-thiocresol

SpinWorks 3: 2,3,5 Tri-O-benzoyl-arab-f-1-thiocresol

file: ...ocuments\NMR data\MVR-2-120A\2\fid expt: <zgpg30> transmitter freq.: 125.770364 MHz time domain size: 65536 points width: 29761.90 Hz = 236.6369 ppm = 0.454131 Hz/pt number of scans: 1024

SpinWorks 3: 2,3,5 Tri-O-Benzyl-arab-f-1-thiocresol

file: ...ocuments\NMR data\MVR-2-120B\1\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt number of scans: 64 freq. of 0 ppm: 500.130025 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 120.592 ppm/cm: 0.24112

SpinWorks 3: 2,3,5 Tri-O-Benzyl-arab-f-1-thiocresol

width: 29761.90 Hz = 236.6369 ppm = 0.454131 Hz/pt

number of scans: 1024

Hz/cm: 796.798 ppm/cm: 6.33534

SpinWorks 3: 2,3,5 Tri-O-Benzyl-arab-f-alpha-Nfmoc-TransHyp-OMe

Compound 5a

file: ...a-tobeincluded\MVR-2-101A-TA\1\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt number of scans: 16

freq. of 0 ppm: 500.130025 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 126.640 ppm/cm: 0.25321

file: ...a-tobeincluded\MVR-2-101A-TA\2\fid expt: <zgpg30> transmitter freq.: 125.770364 MHz time domain size: 65536 points width: 29761.90 Hz = 236.6369 ppm = 0.454131 Hz/pt number of scans: 64

file: ...a-tobeincluded\MVR-2-101B-TB\1\fid _expt: <za30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt number of scans: 16

freq. of 0 ppm: 500.130025 MHz processed size: 65536 complex points LB: 0.000 GF: 0.0000 Hz/cm: 155.327 ppm/cm: 0.31057

file: ...beincluded\MVR-2-101B-TB-C13\1\fid expt: <zgpg30> transmitter freq.: 125.770364 MHz time domain size: 65536 points width: 29761.90 Hz = 236.6369 ppm = 0.454131 Hz/pt number of scans: 1258

Compound 10a

file: ...a-tobeincluded\MVR-2-101C-CA\1\fid _expt: <za30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt number of scans: 16

freq. of 0 ppm: 500.130025 MHz processed size: 65536 complex points LB: 0.000 GF: 0.0000 Hz/cm: 142.875 ppm/cm: 0.28567

119

Compound 10a

SpinWorks 3: 2,3,5 Tri-O-benzyl-arab-f-beta-NFmoc-cishyp-OMe

Compound 10b

121

file: ...beincluded\MVR-2-101D-CB-C13\1\fid expt: <zgpg30> transmitter freq.: 125.770364 MHz time domain size: 65536 points width: 29761.90 Hz = 236.6369 ppm = 0.454131 Hz/pt number of scans: 1024

file: ...data-tobeincluded\MVR-2-100B\1\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt number of scans: 16

freq. of 0 ppm: 500.130025 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 114.693 ppm/cm: 0.22933

file: ...data-tobeincluded\MVR-2-100B\2\fid expt: <zgpg30> transmitter freq.: 125.770364 MHz time domain size: 65536 points width: 29761.90 Hz = 236.6369 ppm = 0.454131 Hz/pt number of scans: 64

SpinWorks 3: 2,3,5 Tri-O-benzyl-arab-f-alpha-NAc-TransHyp-OMe

file: ...data-tobeincluded\MVR-2-100A\1\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt number of scans: 16

freq. of 0 ppm: 500.130025 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 116.332 ppm/cm: 0.23260

Compound 6a

Compound 6a

number of scans: 64

Compound 6b

file: ... data-tobeincluded\MVR-2-99A\1\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt

number of scans: 16

freq. of 0 ppm: 500.130025 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 115.021 ppm/cm: 0.22998

transmitter freq.: 125.770364 MHz time domain size: 65536 points width: 29761.90 Hz = 236.6369 ppm = 0.454131 Hz/pt number of scans: 128

Compound 11b

file: ... data-tobeincluded\MVR-2-99B\1\fid _expt: <za30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt number of scans: 16

freq. of 0 ppm: 500.130025 MHz processed size: 65536 complex points LB: 0.000 GF: 0.0000 Hz/cm: 137.222 ppm/cm: 0.27437

file: ... data-tobeincluded\MVR-2-99B\2\fid expt: <zgpg30> transmitter freq.: 125.770364 MHz time domain size: 65536 points width: 29761.90 Hz = 236.6369 ppm = 0.454131 Hz/pt number of scans: 128

SpinWorks 3: 2,3,5 triol-arab-f-NAc-TransHyp-alpha-OMe anomer1

Compound 7a

file: ...pha-arabinose-mvr-2-73A\proton\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt number of scans: 32

freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 85.201 ppm/cm: 0.17036

131

file: ...pha-arabinose-mvr-2-73A\c13ig2\fid expt: <zgig30> transmitter freq.: 125.770364 MHz time domain size: 65536 points width: 29761.90 Hz = 236.6369 ppm = 0.454131 Hz/pt number of scans: 8192

Compound 7b

file: ...arabinose-MVR-2-92A\MVR-2-92\1\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt number of scans: 32 freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 92.410 ppm/cm: 0.18477

file: ...arabinose-MVR-2-92A\MVR-2-92\3\fid expt: <zgpg30> transmitter freq.: 125.770364 MHz time domain size: 65536 points width: 29761.90 Hz = 236.6369 ppm = 0.454131 Hz/pt number of scans: 128

Compound 12a

134

file: ...VR-2-73C-Cis-alpha-arabinose\1\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt number of scans: 32 freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 97.325 ppm/cm: 0.19460

na andar Notestar	telana), den pala Reneria		rain, prispinana Prispinana Prispinana	(ditent) dan di dala Ni ⁿ trepheningan di dala	a langs bi stara ba Daga sa bi sa baga bi Daga sa bi s	keren kanala katilan Jaran ^a nggalangkan			()), (,) ₂ , ₂ , 2 ^{,11} 1, ₂ , 2 ^{,1} 19, 1 ^{,1} , 1 ^{,1} , ₁		das alle is instandard Harapa istanianist	
PPM	200	180	160	140	120	100	80	60	40	20	0	I

file: ...VR-2-73C-Cis-alpha-arabinose\4\fid expt: <zgpg30> transmitter freq.: 125.770364 MHz time domain size: 65536 points width: 29761.90 Hz = 236.6369 ppm = 0.454131 Hz/pt number of scans: 128

Compound 12b

file: ... documents\NMR data\MVR-2-95\1\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt number of scans: 64 freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 75.370 ppm/cm: 0.15070

137

file: ... documents\NMR data\MVR-2-95\4\fid expt: <zgpg30> transmitter freq.: 125.770364 MHz time domain size: 65536 points width: 29761.90 Hz = 236.6369 ppm = 0.454131 Hz/pt number of scans: 128

Compound 2

Print Date: 18 Dec 2013 10:51:53

Scan 13 from c:\chemistry personal\scweizer\venkara\mvr-2-120a.xms

Spectrum from ...mistry personal/scweizer/venkara/mvr-2-120a.xms Scan No: 13, Time: 0.179 minutes No averaging. Not background corrected. Comment: 0.179 min. Scan: 13 100:1500 lon: 1092 us RIC: 4.400e+7 Pair Count: 8 MW: 0 Formula: None CAS No: None Acquired Range: 99.5 - 1500.5 m/z

Method Time: 0.00-0.36, Centroid, Electrospray Seg 1, Time: 0.00-0.36, Scan Functions: 1 1, 100:1500 100:1500 [ESI Standard 80.0[V] Full Product Mass Range: 99.5 - 1500.5 m/z Scan Mass Segment 1: 99.5 - 399.5 m/z Scan Mass Segment 2: 399.5 - 1000.5 m/z Scan Mass Segment 3: 1000.5 - 1500.5 m/z

	Ion	Int	Norm	Ion	Int No	orm Ion	Int	Norm	Ion	Int	Norm
1	531.3	347812	159	592.5	1.330e+6 60	07 643.5	382891	175	758.1	395299	180
1	591.3	2.191e+6	999	605.6	352454 16	51 649.8	393565	179	830.9	393739	180

Mol. Wt.: 568.64

2,3,5-Tri-O-benzoyl-arab-f-1-thiocresol

Print Date: 18 Dec 2013 10:52:05

Compound 3

Scan 14 from c:\chemistry personal\scweizer\venkara\mvr-2-120b.xms

Spectrum from ...mistry personal\scweizer\venkara\mvr-2-120b.xms Scan No: 14, Time: 0.193 minutes No averaging. Not background corrected. Comment: 0.193 min. Scan: 14 100:1500 Ion: 726 us RIC: 6.893e+7 Pair Count: 8 MW: 0 Formula: None CAS No: None Acquired Range: 99.5 - 1500.5 m/z

Method Time: 0.00-0.42, Centroid, Electrospray Seg 1, Time: 0.00-0.42, Scan Functions: 1 1, 100:1500 100:1500|ESI Standard 80.0[V] Full Product Mass Range: 99.5 - 1500.5 m/z Scan Mass Segment 1: 99.5 - 399.5 m/z Scan Mass Segment 2: 399.5 - 1000.5 m/z Scan Mass Segment 3: 1000.5 - 1500.5 m/z

	Ion	Int	Norm	Ion	Int	Norm	Ion	Int	Norm	Ion	Int	Norm	
1	549.6	3.079e+6	999	551.5	529206	172	604.3	641661	208	846.9	1.101e+6	357	I
1	550.6	1.517e+6	492	554.9	637414	207	846.0	1.503e+6	488	847.9	666750	216	Ē

2,3,5-Tri-O-benzyl-arab-f-1-thiocresol

Print Date: 21 Apr 2011 10:22:54

Compound 5a

Scan 14 from c:\chemistry personal\scweizer\murthy\mvr-1-142a.xms

Spectrum from ...emistry personal\scweizer\murthy\mvr-1-142a.xms Scan No: 14, Time: 0.129 minutes No averaging. Not background corrected. Comment: 0.129 min. Scan: 14 100:1000 Ion: 870 us RIC: 2.606e+7 Pair Count: 5 MW: 0 Formula: None CAS No: None Acquired Range: 99.5 - 1000.5 m/z

Method Time: 0.00-0.48, Centroid, Electrospray Seg 1, Time: 0.00-0.48, Scan Functions: 1 1, 100:1000 100:1000|ESI Standard 80.0[V] Full Product Mass Range: 99.5 - 1000.5 m/z Scan Mass Segment 1: 99.5 - 399.5 m/z Scan Mass Segment 2: 399.5 - 1000.5 m/z

	Ion	Int	Norm	Ion	Int	Norm	Ion	Int Norm	ı Ion	Int Norm
I	393.5	1.010e+6	125	793.5	3.759e+6	464	794.6	1.104e+6 136	808.6	1.201e+6 148
1	792.8	8.085e+6	999							

2,3,5 Tri-O-Benzyl-arab-f-Fmoc-Trans-alpha-Hyp-OMe

C₄₇H₄₇NO₉ Mol. Wt.: 769.88

NMR Code: MVR-2-101A-TA

Print Date: 21 Apr 2011 10:23:11

Compound 5b

Spectrum from ...emistry personal\scweizer\murthy\mvr-1-142b.xms Scan No: 17, Time: 0.159 minutes No averaging. Not background corrected. Comment: 0.159 min. Scan: 17 100:1000 Ion: 756 us RIC: 3.109e+7 Pair Count: 5 MW: 0 Formula: None CAS No: None Acquired Range: 99.5 - 1000.5 m/z

Method Time: 0.00-0.26, Centroid, Electrospray Seg 1, Time: 0.00-0.26, Scan Functions: 1 1. 100:1000 100:1000|ESI Standard 80.0[V] Full Product Mass Range: 99.5 - 1000.5 m/z Scan Mass Segment 1: 99.5 - 399.5 m/z Scan Mass Segment 2: 399.5 - 1000.5 m/z

	Ion	Int	Norm	Ion	Int	Norm	Ion	Int Norm	Ion	Int	Norm
1	792.9	1.030e+7	999	794.6	1.879e+6	182	808.7	2.233e+6 217	809.6	1.493e+6	145
1	793.6	5.532e+6	536 1								

2,3,5 Tri-O-Benzyl-arab-f-Fmoc-Trans-beta-Hyp-OMe

C₄₇H₄₇NO₉ Mol. Wt.: 769.88

NMR Code: MVR-2-101B-TB

Print Date: 18 Dec 2013 10:52:30

Compound 10a

Scan 11 from c:\chemistry personal\scweizer\venkara\mvr-2-120c.xms

Spectrum from ...mistry personal\scweizer\venkara\mvr-2-120c.xms Scan No: 11, Time: 0.149 minutes No averaging. Not background corrected. Comment: 0.149 min. Scan: 11 100:1500 Ion: 877 us RIC: 4.716e+7 Pair Count: 2 MW: 0 Formula: None CAS No: None Acquired Range: 99.5 - 1500.5 m/z

Method Time: 0.00-0.18, Centroid, Electrospray Seg 1, Time: 0.00-0.18, Scan Functions: 1 1. 100:1500 100:1500 [ESI Standard 80.0[V] Full Product Mass Range: 99.5 - 1500.5 m/z Scan Mass Segment 1: 99.5 - 399.5 m/z Scan Mass Segment 2: 399.5 - 1000.5 m/z Scan Mass Segment 3: 1000.5 - 1500.5 m/z

	Ion	Int	Norm	Ion	Int	Norm	Ion	Int	Norm	Ion	
1	792.9	9.265e+6	999	793.9	3.837e+6	414					

2,3,5 Tri-O-Benzyl-arab-f-Fmoc-Cis-alpha-hyp-OMe

C₄₇H₄₇NO₉ Mol. Wt.: 769.88

NMR Code: MVR-2-101C-CA

Int Norm

Scan 13 from c:\chemistry personal\scweizer\murthy\mr-2-120e.xms

Compound 10b

Spectrum from ...hemistry personal\scweizer\murthy\mr-2-120e.xms Scan No: 13, Time: 0.178 minutes No averaging. Not background corrected. Comment: 0.178 min. Scan: 13 100:1500 lon: 609 us RIC: 5.994e+7 Pair Count: 3 MW: 0 Formula: None CAS No: None Acquired Range: 99.5 - 1500.5 m/z

Method Time: 0.00-0.25, Centroid, Electrospray Seg 1, Time: 0.00-0.25, Scan Functions: 1 1. 100:1500 100:1500[ESI Standard 80.0[V] Full Product Mass Range: 99.5 - 1500.5 m/z Scan Mass Segment 1: 99.5 - 399.5 m/z Scan Mass Segment 2: 399.5 - 1000.5 m/z Scan Mass Segment 3: 1000.5 - 1500.5 m/z

	Ion	Int No	orm	Ion	Int	Norm	Ion	Int	Norm	Ion	
L	793.0	1.453e+7 99	99	794.0	7.310e+6	503	795.0	2.455e+6	169		

2,3,5 Tri-O-Benzyl-arab-f-Fmoc-Cis-beta-hyp-OMe

C₄₇H₄₇NO₉ Mol. Wt.: 769.88

NMR Code: MVR-2-101C-CB

Int Norm

Print Date: 13 Jan 2011 14:31:07

Compound 6b

Scan 56 from c:\chemistry personal\scweizer\venkara\mvr-1-96b.xms

NMR Code: MVR-2-99B
Print Date: 13 Jan 2011 14:07:27

Compound 6a

Scan 12 from c:\chemistry personal\scweizer\venkara\mvr-1-96a.xms

NMR Code: MVR-2-99A

Print Date: 06 Apr 2011 15:33:50

Compound 11a

Mol. Wt.: 589.68

NMR Code: MVR-2-100B

Compound 11b

Scan 65 from c:\chemistry personal\scweizer\murthy\mvr-1-147a.xms

NMR Code: MVR-2-100A

Scan 12 from c:\chemistry personal\scweizer\venkara\mvr-2-150.xms

342.4 5.355e+7 999 |

Compound 7a

Spectrum from ...emistry personal/scweizer/venkara/mvr-2-150.xms -111111. Scan No: 12, Time: 0.093 minutes HO 3 points averaged. Not background corrected. Comment: 0.093 min. Scans: 11-13 100:600 Ion: 207 us RIC: 1.069e+8 Pair Count: 1 MW: 0 Formula: None CAS No: None Acquired Range: 99.5 - 600.5 m/z HO ,,,,,) OH Method Time: 0.00-0.19, Centroid, Electrospray Seg 1, Time: 0.00-0.19, Scan Functions: 1 ЮМе 1. 100:600 100:600 ESI Standard 80.0 [V] Full Product Mass Range: 99.5 - 600.5 m/z Scan Mass Segment 1: 99.5 - 399.5 m/z Ac Scan Mass Segment 2: 399.5 - 600.5 m/z trans-4-O-(α-L-Arabinofuranosyl)-N-Acetyl-4-hydroxy L-Proline methyl ester $C_{13}H_{21}NO_8$ Ion Int Norm Ion Int Norm Ion Int Norm Int Norm Ion Mol. Wt.: 319.31

NMR Code: MVR-2-73A

Compound 7b

Scan 22 from c:\chemistry personal\scweizer\venkara\mvr-2-151.xms

NMR Code: MVR-2-92

Compound 12a

Scan 24 from c:\chemistry personal\scweizer\murthy\mvr-2-152.xms

NMR Code: MVR-2-73C

Scan 17 from c:\chemistry personal\scweizer\venkara\mvr-2-153.xms

Compound 12b

NMR Code: MVR-2-95

cis-4-O-(β-L-Arabinofuranosyl)-N-Acetyl-4-hydroxy L-Proline methyl ester

C₁₃H₂₁NO₈ Mol. Wt.: 319.31

Nuclear Overhauser Experiments (NOE) Spectra

Compound 12a Cis-alpha Spin Works 3: HO ///,, .O Ο HO . ОН ЮМе Ν ١ Àс 5.0 4.6 3.4 3.2 2.2 PPM 4.8 4.2 4.0 3.8 3.6 3.0 2.8 2.6 2.4 2.0 1. 4.4

153

file: ...s\Cis-alpha-arabinose-NOe-1H\1\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000

file: ...s\Cis-alpha-arabinose-NOe-1H\2\fid expt: <selnogp> transmitter freq.: 500.133089 MHz time domain size: 65536 points freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000

file: ...es\Cis-beta-arabinose-NOe-1H\1\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000

file: ...es\Cis-beta-arabinose-NOe-1H\2\fid expt: <selnogp> transmitter freq.: 500,133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 73.076 ppm/cm: 0.14611

SpinWorks 3: Trans-alpha-arabinose-NOe-1H

file: ...Trans-alpha-arabinose-NOe-1H\1\fid expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 79.958 ppm/cm: 0.15987

file: ...Trans-alpha-arabinose-NOe-1H\2\fid expt: <selnogp> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 70.127 ppm/cm: 0.14022

SpinWorks 3: Trans-beta-arabinose-NOe-1H-a

file: ...rans-beta-arabinose-NOe-1H-a $1\$ expt: <zg30> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt

freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 70.782 ppm/cm: 0.14153

file: ...rans-beta-arabinose-NOe-1H-a\2\fid expt: <selnogp> transmitter freq.: 500.133089 MHz time domain size: 65536 points width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt freq. of 0 ppm: 500.130000 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 79.958 ppm/cm: 0.15987

3J Coupling Constants by NUMMRIT Method(NMR)

sim_out.txt *** SpinWorks simulation output, build 2008/10/11 ***

Trans

time: 14:49:44 date: 11/26/13

*** Reading spin system from: C:\nmrdata\temp\nmr-dta-compounds\Trans-alpha-arabinose-mvr-2-73A\proton\spin_system ***

Options:

Ĵ.

Opimize shifts and couplings? =1Ignore bad transitions? =1Auto assign observed peaks? =1Maximum number of iterations? =30RMS convergence limit =0.020RMS below this for autoassign =0.250Trans. freq. this * RMS ignored =2.400

Groups and chemical shifts:

#	name	shift	spins	species	spin	sym
1 2 3 4	alpha beta1 beta2 gam	2232.976 1233.600 1058.149 2249.700	1 1 1 1	1 1 1 1	1 1 1	1 1 1 1

Scalar coupling constants:

	יזיריייייייייייייי ווווייייייייייייייייי	1, 1, 2, 2, 3,	2] 3] 4] 4] 4]	H H H H H H	<pre>j[a]pha,beta1] = 8.254400][a]pha,beta2] = 8.410110][a]pha,gam] = 0.000000][beta1,beta2] = -13.672660][beta1,gam] = 1.400000][beta2,gam] = 4.845260</pre>
--	---	----------------------------	----------------------------	-------------	--

Dipolar coupling constants:

Paramaters to vary:

#	para	.m.	range low	range hi
1 2 3 4 5 6	∨[1] ∨[3] j[1] j[2] j[3]	[2] [3] [3] [4]	1665.358 778.465 6.191 6.308 -10.254 3.634	2806.843 1347.931 10.318 10.513 -17.091 6.057
Parame 0 1 2 3 4 5 6	eter map 0 0 1 0 3 0 1 2 1 3 2 3 3 4	: 0 0 0 0 0 0 0		

Reading assigned transitions

15 assigned transitions read 4 frequencies with no assignments	read	
Observed transitions read = Total asigned line numbers =	19 15	

Basis functions generated, transition information:

Species 1, up to56 transitions, intensity32Total size of U3 matrix = 70 double wordsTotal sixe of E3 matrix = 16 double wordslineobs. freq.calc. freq

Page 1

p. there when

Gonpound

Compound 7a

La Tc RM	1 3 6 9 11 16 18 28 29 32 39 43 43 45 51 56 51 56 51 56 0tal assign IS deviatio	1057.808 2241.081 1071.298 2233.188 1049.053 1052.928 2233.044 2241.224 2224.720 1062.974 1066.562 2233.044 1044.317 2233.044 1057.808 01ute difference = 100 intensity = 200	1057.653 2241.340 1071.325 2232.928 1049.241 1052.813 2233.088 2241.340 2224.676 1062.913 1066.485 2232.928 1044.400 2233.088 1058.073 = 0.2655 = 14.986 = 0.19074	sim_	_out.txt 0.155 -0.259 -0.027 0.259 -0.187 0.116 -0.044 -0.116 0.044 0.061 0.077 0.116 -0.083 -0.044 -0.265	
***	Ignored	0 transitions				
***	Transitio	ons now assigned =	15			
<pre>***</pre>	Iteration 1] = 2] = 4] = 1][2] = 1][3] = 1][4] = 2][3] = 2][4] = 3][4] =	<pre># 1, new parameter v[a]pha] v[beta1] v[beta2] v[gam] j[a]pha][beta1] j[a]pha][beta2] j[a]pha][gam] j[beta1][beta2] j[beta1][gam] j[beta2][gam]</pre>	rs are: 1 1 2249.700	232.970 233.600 058.129 8.267 8.400 0.000 -13.634 1.400 4.885	change: change: change: change: change:	-0.0065 -0.0193 0.0131 -0.0101 0.0386
La To RM Fr	rgest abso tal assign S deviatio actional c Ignored Transitio	lute difference = ed intensity = n of transitions = hange of RMS = 0 transitions ns now assigned =	= 0.254 = 14.986 = 0.18779 = -0.01545			
***	Iteration	# 2. new parameter	's are:			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>v[a]pha] v[beta1] v[beta2] v[gam] j[a]pha][beta1] j[a]pha][beta2] j[a]pha][gam] j[beta1][beta2] j[beta1][gam] j[beta2][gam]</pre>	2249.700	232.970 233.600 058.128 8.267 8.400 0.000 -13.634 1.400 4.885	change: change: change: change: change: change:	-0.0000 -0.0015 -0.0000 0.0000 -0.0000 -0.0000
Lai Tot RMS Fra	rgest abso tal assigno 5 deviation actional cl	lute difference = ed intensity = 1 of transitions = 1ange of RMS =	0.254 14.986 0.18779 -0.00003			
***	Automatic	assignment has oc	curred ***	r		
* * *	Transition	ns now assigned =	16			
*** >	$\begin{array}{c} \text{Iteration } \# \\ 1 &= \\ 2 &= \\ 2 &= \\ 1 &= $	<pre># 3, new parameter v[a]pha] v[beta1] v[beta2] v[gam] j[a]pha][beta1] j[a]pha][beta2] j[a]pha][gam] j[beta1][beta2] j[beta1][gam] j[beta2][gam]</pre>	s are: 27 17 2249.700	232.976 233.600 058.147 8.254 8.410 0.000 -13.673 1.400 4.846	change: change: change: change: change: change:	0.0065 0.0193 -0.0131 0.0101 -0.0386 -0.0386
Lar	gest absol	ute difference =	0.186	Pa	ge 2	

.

<pre>rotal assigned intensity = 16.000 RMS deviation of transitions = 0.12792 Fractional change of RMS = -0.31879 *** Ignored 0 transitions *** Transitions now assigned = 16</pre>	
<pre>*** Ignored 0 transitions *** Transitions now assigned = 16</pre>	
*** Transitions now assigned = 16	
<pre>*** Iteration # 4, new parameters are: v[1] = v[alpha] 2232.976 change: v[2] = v[beta1] 1233.600 v[3] = v[beta2] 1058.149 change: v[4] = v[gam] 2249.700 i[1][2] = j[alpha][beta1] 8.254 change: j[1][3] = j[alpha][beta2] 8.410 change: j[1][4] = j[alpha][gam] 0.000 i[2][3] = j[beta1][beta2] -13.673 change: i[2][4] = j[beta1][gam] 1.400 j[3][4] = j[beta2][gam] 4.846 change: Largest absolute difference = 0.188 Total assigned intensity = 16.000 RMS deviation of transitions = 0.12792 Fractional change of RMS = -0.00005</pre>	0.0000 0.0015 0.0000 -0.0000 0.0000 0.0000
*** Ignored 0 transitions	
*** Transitions now assigned = 16	
<pre>*** Iteration # 5, new parameters are: v[1] = v[alpha] 2232.976 change: v[2] = v[beta1] 1233.600 v[3] = v[beta2] 1058.149 change: v[4] = v[gam] 2249.700 j[1][2] = j[alpha][beta1] 8.254 change: j[1][3] = j[alpha][beta2] 8.410 change: j[1][4] = j[alpha][gam] 0.000 j[2][3] = j[beta1][beta2] -13.673 change: j[2][4] = j[beta1][gam] 1.400 j[3][4] = j[beta2][gam] 4.846 change:</pre>	0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000
Largest absolute difference = 0.188 Total assigned intensity = 16.000 RMS deviation of transitions = 0.12792 Fractional change of RMS = 0.00000	
*** Automatic assignment has occurred ***	
*** Transitions now assigned = 16	
<pre>*** Iteration # 6, new parameters are: v[1] = v[a]pha] 2232.976 change: v[2] = v[beta1] 1233.600 v[3] = v[beta2] 1058.149 change: v[4] = v[gam] 2249.700 j[1][2] = j[a]pha][beta1] 8.254 change: j[1][3] = j[a]pha][beta2] 8.410 change: j[1][4] = j[a]pha][gam] 0.000 j[2][3] = j[beta1][beta2] -13.673 change: j[2][4] = j[beta1][gam] 1.400 j[3][4] = j[beta2][gam] 4.846 change:</pre>	-0.0000 0.0000 -0.0000 0.0000 0.0000
Largest absolute difference = 0.188 Total assigned intensity = 16.000 RMS deviation of transitions = 0.12792 Fractional change of RMS = 0.00000	
*** Ignored 0 transitions	
*** Transitions now assigned = 16	
<pre>*** Iteration # 7, new parameters are: v[1] = v[a]pha] 2232.976 change: v[2] = v[beta1] 1233.600 v[3] = v[beta2] 1058.149 change: v[4] = v[gam] 2249.700 j[1][2] = j[a]pha][beta1] 8.254 change: Page 3</pre>	-0.0000 -0.0000 0.0000

, **'**

<pre>j[1][3] = j[a]pha][beta2] j[1][4] = j[a]pha][gam] j[2][3] = j[beta1][beta2] j[2][4] = j[beta1][gam] j[3][4] = j[beta2][gam] Largest absolute difference = Total assigned intensity = RMS deviation of transitions =</pre>	sim_out.txt 8.410 change: -0.0000 0.000 -13.673 change: -0.0000 1.400 4.846 change: -0.0000 0.188 16.000 0.1292
<pre>kms deviation of transitions = Fractional change of RMS = *** Ignored 0 transitions *** Transitions now assigned = *** Iteration # 8, new parameters v[1] = v[alpha] v[2] = v[beta1]</pre>	-0.00000 16 are: 2232.976 change: 0.0000 1233.600
<pre>v[3] = v[beta2] v[4] = v[gam] j[1][2] = j[a]pha][beta1] j[1][3] = j[a]pha][beta2] j[1][4] = j[a]pha][gam] j[2][3] = j[beta1][beta2] j[2][4] = j[beta1][gam] j[3][4] = j[beta2][gam]</pre>	1058.149 change: -0.0000 2249.700 8.254 change: 0.0000 8.410 change: -0.0000 0.000 -13.673 change: 0.0000 1.400 4.846 change: -0.0000
<pre>Total assigned intensity = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS = *** Convergence achieved (Parameter This could be due to insuffic *** After final iteration: *** current iteration count = *** transitions new assigned</pre>	0.188 16.000 0.12792 -0.00000 rs not changing) rient assigned transitions in a second-order spectrum
<pre>*** current RMS =</pre>	0.127916 1tions are: 2232.976 Hz. +/- 1233.600 Hz. 1058.149 Hz. +/- 2249.700 Hz. 8.254 Hz. +/- 0.0906 Hz. 8.410 Hz. +/- 0.00641 Hz. -13.673 Hz. +/- 0.0905 Hz.
<pre>[2][4] = j[beta1][gam] j[3][4] = j[beta2][gam] *** Parameter correlation coeffici 1 1.000 2 -0.000 1.000 3 -0.000 0.000 1.000 4 0.000 -0.000 -0.003 1.000 5 0.000 -0.000 -0.000 1 6 -0.000 0.000 -0.000 -0.000 -0</pre>	1.400 Hz. 4.846 Hz. +/- 0.0906 Hz. ents:
Transitions for isotopic species 1 46 1044.317 1044.400 -0 11 1049.053 1049.241 -0 16 1052.928 1052.812 0 1 1057.808 1057.653 0 56 1057.962 1058.072 -0 32 1062.974 1062.913 0 39 1066.562 1066.485 0 6 1071.298 1071.326 -0 52 1222.184 19 1223.589 24 1230.436 2 1231.841 55 1235.856 30 1237.261 37 1244.108 5 1245.513	.083 0.91257 .188 0.91867 .116 0.92585 .154 0.93211 .111 1.06507 .061 1.07504 .077 1.08026 .028 1.09043 1.06673 1.07137 1.08398 1.08872 0.91404 0.92973 0.93059 Page 4

•

а. – С. – А. А.

	549 495 5188 5188 5352 10227 4	2224.720 2233.044 2233.044 2233.044 2233.044 2233.044 2241.224 2241.224	2224.676 2224.676 2232.928 2233.088 2233.088 2241.340 2241.340 2246.582 2246.583 2247.987 2247.987 2251.423 2251.423 2251.424 2252.828	0.044 0.044 0.116 -0.044 -0.044 -0.116 -0.116	si 1.0144 1.0166 0.99805 1.0003 0.9826 1.0044 1.0044 1.0044 1.0044 0.9979 0.9979 0.9926 0.9965	m_out.txt 2 0 5 9 4 6 8 6 8 2 2 3 9 3 1 1	
* * *	32 1	transitions	for species	1 written	to plot	file	
RM:	s dev	/iation of	11 peaks	grouped wi	thin	0.050 Hz =	0.15739 нz

*** Simulation normal exit *** Calculation time = 0 seconds

i e E *** SpinWorks simulation output, build 2008/10/11 ***

time: 15:53:41 date: 11/29/13

*** Reading spin system from: C:\Users\murthy\Desktop\nmr-dta-compounds
\Trans-beta-arabinose-MVR-2-92A\MVR-2-92\1\spin_system ***

Options:

0 I

Opimize shifts and couplings? =	1
Ignore bad transitions? =	1
Auto assign observed peaks? =	1
Maximum number of iterations? =	30
RMS convergence limit =	0.020
RMS below this for autoassign =	0.250
Trans. freq. this * RMS ignored =	2.400

Groups and chemical shifts:

#	name :	shift	spins	species	spin	sym
1	alpha	2240.618	1	1	1	1
2	beta1	1257.000	1	1	1	1
3	beta2	1072.369	1	1	1	1
4	gam	2258.000	1	1	1	1

Scalar coupling constants:

j[1,	2] =	j[alpha,beta1] =	8.490230
j[1,	3] =	j[alpha,beta2] =	8.368170
j/[1,	4] =	j[alpha,gam] = 0.00	0000
j[2,	3] =	j[beta1,beta2] =	-13.483640
j[2,	4] =	j[beta1,gam] = 1.50	0000
j[3,	4] =	j[beta2,gam] = 4.75	3340

Dipolar coupling constants:

Paramaters to vary:

#	param.	range low	range hi
	•	5	

1	v[1]	1670.981	2816.577
2	v[3]	789.311	1365.403
3	j [1][2]	6.368	10.613
4	j[1][3]	6.276	10.460
5	j[2][3]	-10.113	-16.855
6	j[3][4]	3.565	5.942

Parameter map:

•

0	0	0	0
1	1	0	0
2	3	0	0
3	1	2	0
4	1	3	0
5	2	3	0
6	3	4	0

Reading assigned transitions

11 assigned transitions read

Observed transitions read =	11
Total asigned line numbers =	11

Basis functions generated, transition information:

up to	56 transitions,	intensity 32
U3 matrix E3 matrix	= 70 double word = 16 double word	s s
obs. freq.	calc. freq	diff.
1071.970	1071.921	0.048
1085.752	1085.405	0.347
2241.049	2240.710	0.339
1063.156	1063.551	-0.395
2248.741	2249.080	-0.339
2232.235	2232.222	0.012
1080.624	1080.656	-0.032
1059.149	1058.802	0.347
2240.568	2240.593	-0.025
	up to U3 matrix E3 matrix obs. freq. 1071.970 1085.752 2241.049 1063.156 2248.741 2232.235 1080.624 1059.149 2240.568	up to 56 transitions, U3 matrix = 70 double word E3 matrix = 16 double word obs. freq. calc. freq 1071.970 1071.921 1085.752 1085.405 2241.049 2240.710 1063.156 1063.551 2248.741 2249.080 2232.235 2232.222 1080.624 1080.656 1059.149 1058.802 2240.568 2240.593

54	2232.235		2232.222	
56	1071.970		1072.285	
Largest	absolute difference	=	0.395	
Total as	ssigned intensity	=	11.018	
RMS devi	ation of transitions	=	0.38237	

0.012 -0.315

Ignored *** 0 transitions *** Transitions now assigned = 11 *** Iteration # 1, new parameters are: v[1] = v[alpha]2240.618 change: 0.0000 v[2] = v[beta1] 1257.000 v[3] = v[beta2]1072.369 change: 0.0000 v[4] = v[gam] 2258.000 j[1][2] = j[alpha][beta1] 8.490 change: -0.0000 j[1][3] = j[alpha][beta2] 8.368 change: -0.0000 j[1][4] = j[alpha][gam] 0.000 j[2][3] = j[beta1][beta2] -13.484 chanae: -0.0000j[beta1][gam] j[2][4] = 1.500 j[3][4] = j[beta2][gam] 4.753 change: -0.0000 Largest absolute difference =0.395 Total assigned intensity 11.018 = RMS deviation of transitions = 0.38237 Fractional change of RMS -0.00000 *** Ignored 0 transitions Transitions now assigned = 11 *** Iteration # 2, new parameters are: v[1] = v[alpha]2240.618 change: 0.0000 v[2] = v[beta1] 1257.000 v[3] = v[beta2] 1072.369 change: 0.0000 v[4] = v[gam] 2258.000 j[1][2] = j[alpha][beta1] 8.490 change: -0.0000 j[1][3] = i[alpha][beta2] 8.368 change: 0.0000 j[1][4] = j[alpha][gam] 0.000 j[2][3] = j[beta1][beta2] -13.484 change: 0.0000 j[beta1][gam] j[2][4] =1.500 j[3][4] = j[beta2][gam] 4.753 change: 0.0000 Largest absolute difference = 0.395 Total assigned intensity 11.018 = RMS deviation of transitions = 0.38237 Fractional change of RMS = 0.00000

*** Ignored 0 transitions

1

*** Ignored 0 transitions

**** Transitions now assigned =

***	Iteration	# 4, new paramete	rs are:		
V	[1] =	v[alpha]	2240.618	change:	0.0000
v	[2] =	v[beta1]	1257.000		
V	[3] =	v[beta2]	1072.369	change:	0.0000
v	[4] =	v[gam]	2258.000		
j	[1][2] =	j[alpha][beta1]	8.490	change:	0.0000
j	[1][3] =	j[alpha][beta2]	8.368	change:	-0.0000
j	[1][4] =	j[alpha][gam]	0.000		
jl	[2][3] =	j[beta1][beta2]	-13.484	change:	-0.0000
jl	[2][4] =	j[beta1][gam]	1.500		
jl	[3][4] =	j[beta2][gam]	4.753	change:	0.0000
1.	anaoct abco	Juto diffononco	0 205		
	argest ubst	state attrefence	= 0.393		
10	otal assigr	lea intensity	= 11.018		
RN	MS deviatio	on of transitions	= 0.38237		
۲ı	ractional c	change of RMS	= -0.00000		

11

*** Ignored 0 transitions
*** Transitions now assigned = 11
*** Iteration # 5, new parameters are:

·.....

*** Iransitions now assigned = 11	***	Transitions	now	assigned	=	11
-----------------------------------	-----	-------------	-----	----------	---	----

· ,

*** Iteration	# 3, new paramete	rs are:		
v[1] =	v[alpha]	2240.618	change:	0.0000
v[2] =	v[beta1]	1257.000		
v[3] =	v[beta2]	1072.369	change:	-0.0000
v[4] =	v[gam]	2258.000		
j[1][2] =	j[alpha][beta1]	8.490	change:	-0.0000
j[1][3] =	j[alpha][beta2]	8.368	change:	0.0000
j[1][4] =	j[alpha][gam]	0.000		
j[2][3] =	j[beta1][beta2]	-13.484	change:	0.0000
j[2][4] =	j[beta1][gam]	1.500		
j[3][4] =	j[beta2][gam]	4.753	change:	-0.0000
Largest abso	olute difference	= 0.395		
Total assign	ned intensity	= 11.018		
RMS deviatio	on of transitions	= 0.38237		
Fractional d	change of RMS	= -0.00000		

v[:	1] =	v[alpha]	2240.6	518	change:	-0.0000
v[2	2] =	v[beta1]	1257.0	000		
v[:	3] =	v[beta2]	1072.3	369	change:	-0.0000
v[4	4] =	v[gam]	2258.000			
j[1][2] =	j[alpha][beta1]	8.4	190	change:	-0.0000
j[1][3] =	j[alpha][beta2]	8.3	368	change:	0.0000
j[1][4] =	j[alpha][gam]	0.0	000		
jĘ	2][3] =	j[beta1][beta2]	-13.4	184	change:	0.0000
jĘ	2][4] =	j[beta1][gam]	1.5	500		
j[3][4] =	j[beta2][gam]	4.7	753	change:	0.0000
١٥	rapst absol	uto difference -	0 395			
	tal assiana	d intensity -	. 11 018			
DM	C doviation	of transitions -	. 0 38237			
Км Ел	actional ch	ando of PMS -	. 0.00207			
11		unge of KMS =	0.00000			
***	Ignored	0 transitions				
	T					
ተ ተ ተ	Iransition	s now assigned =	11			
***	Iteration #	6, new parameter	's are:			
٧ſ	17 =	νΓαιρμα]	2240.6	518	change:	0.0000
νĒ	21 =	v[beta1]	1257.0	000	5	
νΓ	31 =	v[beta2]	1072.3	369	chanae:	0.0000
νΓ	4] =	v[aam]	2258.000		5	
iΓ	1727 =	i[alpha][beta1]	8.4	490	chanae:	0.0000
iΓ	17[3] =	i[alpha][beta2]	8.3	368	chanae:	0.0000
iΓ	17[47] =	i[a]pha][aam]	0.0	200	j	
iΓ	21[3] =	i[beta1][beta2]	-13.4	484	chanae:	-0,0000
iΓ	27[4] =	i[beta1][aam]	1.5	500	enenger	
iΓ	37[4] =	i[beta2][aam]	4.7	753	chanae:	-0.0000
7)[000x2][94m]			5	
La	rgest absol	ute difference =	= 0.395			
То	tal assigne	ed intensity =	= 11.018			
RM	IS deviation	of transitions =	= 0.38237			
Fr	actional ch	ange of RMS =	= 0.00000			
***	Tanored	0 transitions				
	rghoreu	o cruiisrecons				
***	Transitior	ns now assigned =	11			
ىلە بىلە بىلە		, 				
*** 	Iteration #	· /, new parameter	's are:	~ 4 ~	1	0 0000
٧Ľ	1] =	v[alpha]	2240.6	b18	change:	-0.0000
٧Ľ	2] =	v[beta1]	1257.0	000		• • • • • •
νE	3] =	v[beta2]	1072.3	369	change:	0.0000

V	·[4] =	∨[qam]	2258.000		
÷	[1][2] =	i[alpha][beta1]	8.490	change:	-0.0000
r T	[1][3] =	i[a]pha][beta2]	8.368	change:	0.0000
L F	[1][4] =	j[alpha][aam]	0,000	chunger	0.0000
L E		j[a:pna][gam] j[bota1][bota2]	_13 484	change	0 0000
ן. זי	[2][3] =	j[betui][betuz]	1 500	chunge.	0.0000
لـ يـ	$\begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	j[betu1][gum]	1.500	chango	0 0000
J	[[5][4] =	J[becaz][gam]	4.755	chunge.	-0.0000
	anaact ahaa	lute difference	0 205		
L 7	argest abso	Lute altrenence =	11 019		
1	otal assigne	ed intensity =	11.010		
۲ -	MS deviation	n of transitions =	0.38237		
٢	ractional ci	nange of KMS =	-0.00000		
	— .	.			
***	Ignored	0 transitions			
***	Transitio	ns now assigned =	11		
***	Iteration a	# 8, new parameter	s are:		
V	/[1] =	v[alpha]	2240.618	change:	-0.0000
<u>۱</u>	/[2] =	v[beta1]	1257.000		
<u>۱</u>	/[3] =	v[beta2]	1072.369	change:	-0.0000
<u>۱</u>	([4] =	v[gam]	2258.000		
-	[1][2] =	j[alpha][beta1]	8.490	change:	-0.0000
-	i[1][3] =	j[alpha][beta2]	8.368	change:	0.0000
-	i[1][4] =	i[alpha][aam]	0.000	0	
-	i[2][3] =	i[beta1][beta2]	-13.484	chanae:	0.0000
-	[2][4] =	i[beta1][aam]	1.500		
-		j[beta2][aam]	4 753	change:	0,0000
-)[becar][gam]	1.1.55	change.	0.0000
1	argest abso	lute difference –	a 395		
	otal assian	ad intensity -	11 018		
	MS doviation	n of transitions -	0 38237		
r C	ins deviation	$\frac{1101}{101} = \frac{1101}{101} = 11$	0.30237		
r		nunge of KMS =	0.00000		
***	Convorgonco	achiound (Panamot	one not changing)		
	This coul	d ha dua ta incuff	iciant accianad to	anci+ionc	in a socond-order
	THES COULD	a de que co insult	icient assigned ti	unstitions	LII a second-order
spec	trum				
***	After fine	1 itanation.			
***	Atter fina	L iteration:	0		
***	curren	t iteration count	= 0		
***	transi	tions now assigned	= 11		
***	curren	t RMS =	0.382374		
***	Final para	meters after 8 ite	rations are:		
١	/[1] =	v[alpha]	2240.618	Hz. +/-	0.1759 Hz.
١	/[2] =	v[beta1]	1257.000	Hz.	

v[3] =	v[beta2]	1072.369 Hz. +/-	0.1563 Hz.
v[4] =	v[gam]	2258.000 Hz.	
j[1][2] =	j[alpha][beta1]	8.490 Hz. +/-	0.3523 Hz.
j[1][3] =	j[alpha][beta2]	8.368 Hz. +/-	0.2602 Hz.
j[1][4] =	j[alpha][gam]	0.000 Hz.	
j[2][3] =	j[beta1][beta2]	-13.484 Hz. +/-	0.3557 Hz.
j[2][4] =	j[beta1][gam]	1.500 Hz.	
j[3][4] =	j[beta2][gam]	4.753 Hz. +/-	0.3562 Hz.

*** Parameter correlation coefficients:

1 1.000

,

•

2 -0.000 1.000 3 0.182 0.000 1.000 4 0.123 -0.000 -0.126 1.000

5 0.045 -0.000 -0.045 0.365 1.000

6 -0.045 0.000 0.045 -0.365 -0.422 1.000

Transitions for isotopic species 1

46	1059.149	1058.802	0.347	0.91727
11	1063.156	1063.551	-0.395	0.92352
16		1067.172		0.93071
1	1071.970	1071.922	0.048	0.93713
56	1071.970	1072.285	-0.315	1.06047
32		1077.034		1.07007
39	1080.624	1080.656	-0.032	1.07552
6	1085.752	1085.405	0.347	1.08531
52		1245.490		1.06159
19		1246.994		1.06622
24		1253.977		1.07942
2		1255.481		1.08414
55		1258.973		0.91819
30		1260.477		0.91950
37		1267.460		0.93479
5		1268.964		0.93616
54	2232.235	2232.222	0.012	1.01482
29	2232.235	2232.222	0.012	1.01696
51	2240.568	2240.593	-0.025	1.00193
18		2240.593		1.00080
43		2240.710		0.99777
9	2241.049	2240.710	0.339	0.99912
28	2248.741	2249.080	-0.339	0.98625
3		2249.081		0.98235
53		2254.879		1.00652
35		2254.879		1.00451
42		2256.383		1.00315

13	2256.383	1.00185
50	2259.628	0.99695
22	2259.628	0.99803
27	2261.132	0.99261
4	2261.132	0.99638

*** 32 transitions for species 1 written to plot file

RMS deviation of 9 peaks grouped within 0.050 Hz = 0.46981 Hz

*** Simulation normal exit ***
Calculation time = 0 seconds

· ·

sim_out.txt *** SpinWorks simulation output, build 2008/10/11 ***

```
time: 15:19:17
date: 11/26/13
```

*** Reading spin system from: C:\nmrdata\temp\nmr-dta-compounds\MVR-2-73C-Cis-alpha-arabinose\1\spin_system ***

Options:

4.3 4 sa

Opimize shifts and couplings? =	1
Ignore bad transitions? =	ī
Auto assign observed peaks? =	ī
Maximum number of iterations? =	30
RMS convergence limit =	0.020
RMS below this for autoassign =	0.250
Trans. freq. this * RMS ignored =	2.400

Groups and chemical shifts:

#	name	shift	spins	species	spin	sym
1	alpha	2232.000	1	1	1	1
2	beta1	1231.600	1	1	1	1
3	beta2	1056.700	1	1	1	1
4	gam	2248.300	1	1	1	1

Scalar coupling constants:

į[1,	2]		j[a]pha, beta1] = 8.200000
įĘ	ī, 2,	4] 31	=	j[a]pha,gam] = 0.000000
jį	2,	4]	=	j[beta1, beta2] = -13.700000 j[beta1, gam] = 1.400000
JL	3,	4]	=	J[beta2,gam] = 4.800000

Dipolar coupling constants:

Paramaters to vary:

#	para	.m.	range low	range hi
1 2 3 4 5 6	v[1] v[3] i[1][2] i[2][3] j[3][4]		1664.663 777.394 6.150 6.300 -10.275 3.600	2805.563 1346.094 10.250 10.500 -17.125 6.000
Parame 0 1 2 3 4 5 6	eter map 0 0 1 0 3 0 1 2 1 3 2 3 3 4	: 0000000000000000000000000000000000000		

Reading assigned transitions

16 assigned	transitions read		
Observed tra Total asigne	16 16		
Basis functions	generated, tran	sition informati	ion:
Species 1,	up to 56 t	ransitions, inte	ensity
Total size o Total sixe o	of U3 matrix = 70 of E3 matrix = 16	double words double words	
line	obs. freq.	calc. freq	diff.
1	1056.415	1056.161	0.255 Page 1

32

3 6 9 11 16 18 28 29 32 39 43 46 51 54 54 56 Largest abs Total assig RMS deviati	2240.208 1069.807 2231.943 1047.581 1051.126 2231.943 2240.258 2223.677 1061.480 1065.137 2232.190 1042.799 2231.943 2223.677 1056.415 olute difference = ned intensity = on of transitions =	$\begin{array}{c} 2240.332\\ 1069.861\\ 2231.930\\ 1047.759\\ 1051.366\\ 2232.134\\ 2240.332\\ 2223.732\\ 1065.066\\ 2231.930\\ 1042.964\\ 2232.134\\ 2232.134\\ 2232.732\\ 1056.664\\ 0.266\\ 16.000\\ 0.2046 \end{array}$	sim_ 0 6	out.txt -0.123 -0.053 0.013 -0.177 -0.240 -0.191 -0.074 -0.055 0.021 0.071 0.260 -0.165 -0.191 -0.055 -0.248	
*** Ignored	0 transitions				
*** Transiti	ons now assigned =	16			
<pre>*** Iteration</pre>	<pre># 1, new parameter v[alpha] v[beta1] v[beta2] v[gam] j[alpha][beta1] j[alpha][gam] j[beta1][beta2] j[beta1][beta2] j[beta1][gam] j[beta2][gam] olute difference = ned intensity = change of RMS =</pre>	s are: 2248.300 0.26 16.00 0.1639 -0.1990	2231.948 1231.600 1056.633 8.342 8.382 0.000 -13.730 1.400 4.957 8 0 3 0	change: change: change: change: change: change:	-0.0521 -0.0672 0.1424 -0.0178 -0.0295 0.1568
*** Tanored	0 transitions				
*** Transiti	ons now assigned =	16			
*** Iteration v[1] = v[2] = v[3] = v[4] = i[1][2] = i[1][4] = i[2][4] = i[2][4] = i[3][4] =	<pre># 2, new parameter v[a]pha] v[beta1] v[beta2] v[gam] j[a]pha][beta1] j[a]pha][beta2] j[a]pha][gam] j[beta1][gam] j[beta1][gam] j[beta2][gam] j[beta2][gam]</pre>	s are: 2248.300	2231.947 1231.600 1056.634 8.342 8.382 0.000 -13.730 1.400 4.957	change: change: change: change: change: change:	-0.0005 0.0014 0.0000 -0.0000 -0.0000 0.0000
Largest abs Total assig RMS deviati Fractional	olute difference = ned intensity = on of transitions = change of RMS =	0.26 16.00 0.1639 -0.0000	7 0 3 3		
*** Automati	c assignment has oc	curred *	* *		
*** Transiti	ons now assigned =	16			
*** Iteration v[1] = v[2] = v[3] = v[4] = i[1][2] = i[1][4] = i[2][3] = i[3][4] =	<pre># 3, new parameter v[alpha] v[beta1] v[beta2] v[gam] j[alpha][beta1] j[alpha][beta2] j[alpha][gam] j[beta1][beta2] j[beta1][gam] j[beta2][gam]</pre>	s are: 2248.300	2231.923 1231.600 1056.634 8.293 8.419 0.000 -13.730 1.400 4.957	change: change: change: change: change: change:	-0.0247 0.0000 -0.0496 0.0373 -0.0000 0.0000
Largest abs	olute difference =	0.24	9 Pi	age 2	

с. с. с. .

	10.00	sim	out.txt	
Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =	16.00 0.1373 -0.1619	10 18 16		
*** Ignored 0 transitions				
*** Transitions now assigned =	16			
<pre>*** Iteration # 4, new parameters v[1] = v[a]pha] v[2] = v[beta1] v[3] = v[beta2] v[4] = v[gam] i[1][2] = i[a]pha][beta1] i[1][3] = i[a]pha][beta2] i[1][4] = i[a]pha][gam] i[2][3] = i[beta1][beta2] i[2][4] = i[beta1][gam] j[3][4] = j[beta2][gam] Largest absolute difference = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =</pre>	s are: 2248.300 0.24 16.00 0.1373 -0.0000	2231.923 1231.600 1056.634 8.293 8.419 0.000 -13.730 1.400 4.957 8 00 8	change: change: change: change: change: change:	0.0001 0.0001 -0.0000 0.0000 0.0000 0.0000
*** Tanored O transitions				
*** Transitions now assigned -	16			
Transicions now assigned =				
v[1] = v[a]pha]	s are:	2231.923	change:	0.0000
v[2] = v[beta1] v[3] = v[beta2]	2210 200	1056.634	change:	-0.0000
i[1][2] = i[a]pha][beta1]	2240.300	8.293	change:	-0.0000
[1][4] = [[a][bata][bata2]]		0.000	change.	0.0000
j[2][4] = j[beta1][gam] j[3][4] = j[beta2][gam]		1.400	change.	-0.0000
Largest absolute difference = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =	0.24 16.00 0.1373 -0.0000	8 00 8 00		
*** Automatic assignment has oc	curred *	**		
*** Transitions now assigned =	16			
*** Iteration # 6, new parameter:	s are:	2231.923	change:	0.000
v[2] = v[beta1] v[3] = v[beta2]		1231.600	change:	-0.0000
v[4] = v[gam] i[1][2] = i[a]pha][beta1]	2248.300	8.293	change:	0.0000
j[1][3] = j[a]pha][beta2] j[1][4] = j[a]pha][gam]		8.419 0.000	change:	-0.0000
][2][3] =j[beta1][beta2]][2][4] =j[beta1][gam]		-13.730 1.400	change:	-0.0000
j[3][4] = j[beta2][gam]		4.957	change:	-0.0000
Largest absolute difference = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =	0.24 16.00 0.1373 0.0000	-8 -0 -8 -0		
*** Ignored O transitions				
*** Transitions now assigned =	16			
*** Iteration # 7, new parameters	s are:	2221 022	change	_0_0000
$v_{12} - v_{13}$ $v_{21} = v_{12}$		1231.600	change:	0.000
$v_{1} = v_{1}$ $v_{1} = v_{1}$ $i_{1} = i_{1}$ $i_{1} = i_{1}$	2248.300) & 202	change.	_0_0000
lftlfs] - lfgihuglfnergt]		0.295 Pa	ige 3	-0.0000

 $e^{-i\omega t}$

	cim out tyt
j[1][3] = j[a]pha][beta2]	8.419 change: 0.0000
][1][4] =][a]pha][gam] i[2][3] = i[beta1][beta2]	0.000 -13.730 change: 0.0000
j[2][4] = j[beta1][gam] j[3][4] = j[beta2][gam]	1.400 4.957 change: 0.0000
$\int \int \int \int \int \partial \partial$	- 248
Total assigned intensity = 16	
Fractional change of RMS = 0.0	0000 0000
*** Ignored O transitions	10
*** Transitions now assigned =	70
<pre>*** Iteration # 8, new parameters are: v[1] = v[a]pha]</pre>	2231.923 change: 0.0000
v[2] = v[beta1] v[3] = v[beta2]	1231.600 1056.634 change: 0.0000
v[4] = v[gam] 2248 i[1][2] = i[a]pha][beta1]	300 8.293 change: -0.0000
j[1][3] = j[a]pha][beta2] j[1][4] = j[a]pha][gam]	8.419 change: 0.0000 0.000
j[2][3] = j[beta1][beta2] j[2][4] = j[beta1][cam]	-13.730 change: 0.0000 1.400
j[3][4] = j[beta2][gam]	4.957 change: 0.0000
Largest absolute difference = (0.248
RMS deviation of transitions = 0.1	3738
Fractional change of RMS = -0.0	the changing)
*** Convergence achieved (Parameters in This could be due to insufficient	assigned transitions in a second-order spectrum
<pre>*** After final iteration: *** current iteration count =</pre>	8
<pre>*** transitions now assigned = *** current RMS =</pre>	16 0.137377
*** Final parameters after 8 iteratio	ns are:
v[1] = v[a]pha] v[2] = v[beta1]	2231.923 Hz. +/- 0.0486 Hz. 1231.600 Hz.
v[3] = v[beta2] v[4] = v[am] 2248	1056.634 Hz. +/- 0.0486 Hz.
i[1][2] = i[a]pha][beta1]	8.293 Hz. +/- 0.0973 Hz. 8 419 Hz. +/- 0.0688 Hz.
j[1][5] = j[a]pha][gam] j[1][4] = j[a]pha][gam]	0.000 Hz.
j[2][3] = j[beta1][beta2] j[2][4] = j[beta1][gam]	1.400 Hz.
<pre>j[3][4] = j[beta2][gam]</pre>	4.557 HZ. +/ - 0.0575 HZ.
1 1.000	>.
2 - 0.000 1.000 3 - 0.000 0.000 1.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
6 -0.000 0.000 -0.000 -0.000 -0.00	5 1.000
Transitions for isotopic species 1	
46 1042.799 1042.794 0.00 11 1047 581 1047.746 -0.16	5 0.91197 4 0.91818
16 1051.126 1051.215 -0.08 1 1056 415 1056 167 0.24	9 0.92526 8 0.93163
56 1056.415 1056.523 -0.10	8 1.06547 5 1.07570
39 1065.137 1064.945 0.19	2 1.08067 0 1.09111
52 1220.139 52 1220.139	1.06720
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.08451
2 1229.834 55 1233.868	0.91350
30 1235.273 37 1242.159	0.91424 0.92927
5 1243.564	0.93004

۲. ۲

	54951883352274 5352274	2223.677 2223.677 2231.943 2231.943 2231.943 2231.943 2240.258 2240.258	$\begin{array}{c} 2223.599\\ 2223.599\\ 2231.889\\ 2232.020\\ 2232.021\\ 2240.311\\ 2240.311\\ 2245.127\\ 2245.127\\ 2246.532\\ 2246.532\\ 2246.532\\ 2250.079\\ 2251.484\\ 2251.484\\ \end{array}$	0.078 0.078 0.053 -0.078 -0.078 -0.078 -0.053 -0.053	sin 1.0144 1.0166 0.9979 0.9996 1.0017 1.0003 0.9825 1.0064 1.0044 1.0035 1.0019 0.9965	1_out.txt 2 7 8 1 0 5 5 4 3 1 8 8 6 8 7 7 7 3 1		
***	32	transitions	for species	1 written	to plot	file		
RMS	de	viation of	10 peaks	grouped wi	thin	0.050 Hz =	0.17657	Ηz

*** Simulation normal exit *** Calculation time = 0 seconds
sim_out.txt *** SpinWorks simulation output, build 2008/10/11 ***

time:	10:43:55
date:	12/06/13

*** Reading spin system from: C:\nmrdata\temp\nmr-dta-compounds\Cis-beta-arabinose-MVR-2-95\1\spin_system ***

Options:

4.5

٠

Opimize shifts and couplings? =	1
Ignore bad transitions? =	ī
Auto assign observed peaks? =	ī
Maximum number of iterations? =	30
RMS convergence limit =	0.020
RMS below this for autoassign =	0.250
Trans. freq. this * RMS ignored =	2,400

Groups and chemical shifts:

#	name	shift	spins	species	spin	sym
1	H-a	2291.000	1	1	1	1
2	H-b1	1185.000	1	1	1	1
3	H-b2	1161.000	1	1	1	1
4	H-g	2238.000	1	1	1	1

Scalar coupling constants:

j[1,	2]	=	j[H-a,H-b1] =	9.200000
j[1,	3]	=][H-a,H-b2] =	3.100000
j[1,	4]	22	j[H-a,H-g] =	0.00000
j[2,	3]	Ħ	ј[H-b1,H-b2] =	~13.500000
jį 2,	4]	==	j[H-b1,H-g] =	4.500000
][3,	4]	=	ј[H-b2,H-g] =	3.000000

Dipolar coupling constants:

Paramaters to vary:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	#	param.	range low	range hi
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12345678	v[1] v[2] v[3] i[1][2] i[2][3] i[2][4] j[3][4]	1711.331 873.450 859.725 6.900 2.325 -10.125 3.375 2.250	2875.281 1506.750 1469.625 11.500 3.875 -16.875 5.625 3.750

Parameter map: 0 0 0 0

0	0	0	0
1	1	0	0
2	2	0	0
3	3	0	0
4	1	2	0
5	1	3	0
6	2	3	0
7	2	4	0
8	3	4	0

Reading assigned transitions

24 assigned transitions read

Observed transitions read = 24 Total asigned line numbers = 24

Basis functions generated, transition information:

Species 1, up to	56 transitions, intensity	32
Total size of U3 matrix Total sixe of E3 matrix	= 70 double words = 16 double words Page 1	

181

				sim_out.txt	
11	ine	obs. freq.	calc. fre	q diff.	
	1 2 4 5 6 11 15 17 20 22 24 27 30 31 35 38 39 42 46 49 52 53 55 56 Largest abso Total assign RMS deviatio	1154.009 1186.811 2297.189 1200.925 1168.518 1151.329 1182.238 2294.035 1151.486 2287.963 1177.507 2297.189 1196.352 1165.364 2284.888 1191.542 1165.285 2294.114 1148.490 2287.963 1173.091 2284.888 1186.811 1162.446 Ditte difference red intensity on of transition	1155.747 1186.625 2297.171 1200.125 1169.246 1152.665 1182.207 2293.689 1152.264 2288.354 1177.808 2297.171 1195.707 1166.165 2284.871 1191.307 1165.764 2293.647 1149.141 2288.391 1162.641 = 1.737 = 23.988 s = 0.76314	$\begin{array}{c} -1.737\\ 0.186\\ 0.018\\ 0.800\\ -0.729\\ -1.336\\ 0.031\\ 0.346\\ -0.778\\ -0.390\\ -0.301\\ 0.018\\ 0.645\\ -0.801\\ 0.017\\ 0.234\\ -0.479\\ 0.466\\ -0.651\\ -0.432\\ -0.340\\ 0.017\\ -0.320\\ -0.340\\ 0.017\\ -0.120\\ -0.195\end{array}$	
***	Ignored	0 transitions			
* * *	Transitio	ons now assigned	= 24		
***	Iteration V[1] = V[2] = V[4] = V[4] = J[1][2] = J[1][4] = J[2][3] = J[2][4] = J[3][4] =	<pre># 1, new parame v[H-a] v[H-b1] v[H-b2] v[H-a][H-b1] i[H-a][H-b2] i[H-a][H-b2] i[H-b1][H-b2] i[H-b1][H-g] j[H-b2][H-g]</pre>	ters are: 2 1 2238.000	2291.007 change: 185.208 change: 160.096 change: 2.542 change: 0.000 -14.035 change: 4.693 change: 2.798 change:	0.0074 0.2077 -0.9042 0.5190 -0.5577 -0.5355 0.1931 -0.2022
 - 	Largest abso Total assign RMS deviatio Fractional c	lute difference ed intensity n of transitions hange of RMS	$ \begin{array}{rcl} = & 0.354 \\ = & 23.985 \\ 5 = & 0.18738 \\ = & -0.75447 \end{array} $		
***	Ignored	0 transitions			
***	Transitio	ns now assigned	= 24		
*** \ \ \ \	$\begin{array}{c} \text{Iteration} \\ [1] = \\ [2] = \\ [3] = \\ [4] = \\ [1] [2] = \\ [1] [3] = \\ [1] [4] = \\ [2] [3] = \\ [2] [4] = \\ [3] [4] = \\ [3] [4] = \end{array}$	<pre># 2, new paramet v[H-a] v[H-b1] v[H-b2] v[H-g] i[H-a][H-b1] i[H-a][H-b2] i[H-a][H-b2] i[H-b1][H-b2] i[H-b1][H-g] j[H-b2][H-g]</pre>	cers are: 1 2 2238.000	291.006 change: 185.057 change: 160.249 change: 9.757 change: 2.504 change: 0.000 -14.036 change: 4.703 change: 2.788 change:	-0.0015 -0.1511 0.1528 0.0381 -0.0381 -0.0000 0.0097 -0.0097
L T P F	argest abso Total assign MS deviation Tractional cl	lute difference ed intensity n of transitions hange of RMS	$ \begin{array}{r} = & 0.277 \\ = & 23.984 \\ = & 0.13262 \\ = & -0.29222 \end{array} $		
***	Automatic	assignment has	occurred ***	*	
***	Transition	ns now assigned	= 23		
***	Iteration #	# 3, new paramet	ers are:	Page 2	

e :

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	sim_out.txt 2291.016 change: 1185.054 change: 1160.290 change: 2238.000 9.767 change: 2.553 change:	0.0097 -0.0025 0.0415 0.0094 0.0492
$\begin{array}{rcl} 1 & [1] & [4] & = & j & [H-a] & [H-g] \\ j & [2] & [3] & = & j & [H-b1] & [H-b2] \\ j & [2] & [4] & = & j & [H-b1] & [H-g] \\ j & [3] & [4] & = & j & [H-b2] & [H-g] \end{array}$	0.000 -14.016 change: 4.696 change: 2.872 change:	0.0191 -0.0064 0.0840
Largest absolute difference = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =	= 0.189 = 23.414 = 0.09304 = -0.29847	
*** Ignored 0 transitions		
*** Transitions now assigned =	23	
<pre>*** Iteration # 4, new parameter v[1] = v[H-a] v[2] = v[H-b1] v[3] = v[H-b2] v[4] = v[H-g] i[1][2] = i[H-a][H-b1]</pre>	rs are: 2291.016 change: 1185.060 change: 1160.285 change: 2238.000 9.765 change:	-0.0001 0.0056 -0.0053 -0.0013
][1][4] =][H-a][H-D2]][1][4] =][H-a][H-G]][2][3] -][H-b][[U-b]]	2.555 change: 0.000	0.0013
j[2][4] = j[H-b1][H-g] j[3][4] = j[H-b2][H-g]	4.696 change: 2.873 change:	-0.0004 0.0004
Largest absolute difference = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =	0.195 23.414 0.09291 -0.00137	
*** Ignored 0 transitions		
*** Transitions now assigned =	23	
<pre>*** Iteration # 5, new parameter v[1] = v[H-a] v[2] = v[H-b1] v[3] = v[H-b2] v[4] = v[H-g] i[1][2] = i[H-a][H-b1] i[1][3] = i[H-a][H-b2] i[1][4] = i[H-a][H-g] i[1][4] = i[H-a][H-g]</pre>	s are: 2291.016 change: 1185.060 change: 1160.285 change: 2238.000 9.765 change: 2.555 change: 0.000	0.0000 0.0000 -0.0000 -0.0001 0.0001
j[2][4] = _j[H-D1][H-D2] j[2][4] = _j[H-b1][H-g] j[3][4] = _j[H-b2][H-g]	-14.016 Change: 4.696 change: 2.873 change:	0.0000 -0.0000 0.0000
Largest absolute difference = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =	0.195 23.414 0.09291 -0.00000	
*** Automatic assignment has oc	curred ***	
*** Transitions now assigned =	22	
<pre>*** Iteration # 6, new parameter: v[1] = v[H-a] v[2] = v[H-b1] v[3] = v[H-b2] v[4] = v[H-g]</pre>	s are: 2291.016 change: 1185.102 change: 1160.277 change: 2238.000	-0.0000 0.0427 -0.0076
j[1][2] = j[H-ā][H-b1] j[1][3] = j[H-a][H-b2]	9 722 change:	-0.0431
김 분규를 분가로 이 것 같은 이야기 같은 가슴다.	2.555 change:	0.0002
$ \begin{array}{cccc} 1 & [1] & [4] & = & j & [H-a] & [H-g] \\ 1 & [2] & [3] & = & j & [H-b1] & [H-b2] \\ 1 & [2] & [4] & = & j & [H-b1] & [H-g] \\ 1 & [3] & [4] & = & j & [H-b2] & [H-g] \\ \end{array} $	2.555 change: 0.000 -14.059 change: 4.614 change: 2.869 change:	-0.0429 -0.0822 -0.0037
<pre>j[1][4] = j[H-a][H-g] j[2][3] = j[H-b1][H-b2] j[2][4] = j[H-b1][H-g] j[3][4] = j[H-b2][H-g] Largest absolute difference = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =</pre>	0.155 0.000 0.14.059 change: 0.4.614 change: 2.869 change: 0.155 22.992 0.07092 -0.23672	-0.0429 -0.0822 -0.0037

.

*** Ignored O transitions	
*** Transitions now assigned = 22	
*** Iteration # 7, new parameters are: v[1] = v[H-a] 2291.016 change: v[2] = v[H-b1] 1185.090 change: v[3] = v[H-b2] 1160.289 change: v[4] = v[H-g] 2238.000 i[1][2] = i[H-a][H-b1] 9.725 change: i[1][3] = i[H-a][H-b2] 2.552 change: $i[1][4] = i[H-a][H-g]_{an}$ 0.000	0.0002 -0.0126 0.0122 0.0031 -0.0031
J[2][4] =][H-b][H-g] -14.059 change: J[2][4] =][H-b][H-g] 4.615 change: J[3][4] =][H-b2][H-g] 2.868 change:	0.0000
Largest absolute difference = 0.143 Total assigned intensity = 22.992 RMS deviation of transitions = 0.07009 Fractional change of RMS = -0.01162	-0.0006
*** Ignored 0 transitions	
*** Transitions now assigned = 22	
*** Iteration # 8, new parameters are: V[1] = V[H-a] 2291.016 change: V[2] = V[H-b1] 1185.090 change: V[3] = V[H-b2] 1160.289 change: V[4] = V[H-g] 2238.000 i[1][2] = i[H-a][H-b1] 9.725 change:	-0.0000 -0.0000 0.0000
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-0.0001 -0.0000 0.0000
Largest absolute difference = 0.143 Total assigned intensity = 22.992 RMS deviation of transitions = 0.07009 Fractional change of RMS = 0.00000	-0.0000
*** Transitions now assigned = 21	
*** Iteration # 9, new parameters are: v[1] = v[H-a] 2291.016 change: v[2] = v[H-b1] 1185.095 change: v[3] = v[H-b2] 1160.258 change: v[4] = v[H-g] 2238.000 i[1][2] = i[H-a][H-b1] 9.719 change: i[1][3] = i[H-a][H-b2] 2.584 change: i[1][4] = i[H-a][H-b2] 0.000 i[2][3] = i[H-b1][H-b2] -14.091 change: i[2][4] = i[H-b1][H-g] 4.605 change: i[3][4] = i[H-b2][H-g] 2.929 change:	-0.0000 0.0054 -0.0317 -0.0061 0.0319 -0.0316 -0.0092 0.0607
Largest absolute difference = 0.104 Total assigned intensity = 22.562 RMS deviation of transitions = 0.05315 Fractional change of RMS = -0.24165	
*** Ignored 0 transitions	
*** Transitions now assigned = 21	
<pre>*** Iteration # 10, new parameters are: v[1] = v[H-a] 2291.016 change: v[2] = v[H-b1] 1185.086 change: v[3] = v[H-b2] 1160.267 change: v[4] = v[H-g] 2238.000 i[1][2] = i[H-a][H-b1] 9.721 change: i[H-a][H-b2] 9.721 change:</pre>	-0.0000 -0.0091 0.0091 0.0024
j[1][4] = j[H-a][H-g] 2.581 change: j[2][3] = j[H-b1][H-b2] -14.091 change: Page 4	-0.0024 0.0000

j[2][4] = j[H-b1][H-g]][3][4] = j[H-b2][H-g]	sim_out.txt 4.606 change: 2.928 change:	0.0005
Largest absolute difference = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =	0.095 22.563 0.05257 -0.01094	
*** Ignored 0 transitions		
*** Transitions now assigned =	21	
*** Iteration # 11, new parameter v[1] = v[H-a] v[2] = v[H-b1] v[3] = v[H-b2] v[4] = v[H-g] i[1][2] = i[H-a][H-b1] i[1][4] = i[H-a][H-b2] i[1][4] = i[H-b1][H-b2] i[2][4] = i[H-b1][H-b2] i[2][4] = i[H-b1][H-g] i[3][4] = i[H-b2][H-g] Largest absolute difference =	rs are: 2291.016 change: 1185.086 change: 1160.267 change: 2238.000 9.722 change: 2.581 change: 0.000 -14.091 change: 4.606 change: 2.928 change:	-0.0000 -0.0000 0.0001 -0.0001 -0.0000 0.0000 -0.0000
Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =	22.563 0.05257 0.00000	
*** Automatic assignment has occ	urred ***	
*** Transitions now assigned =	21	
<pre>*** Iteration # 12, new parameter v[1] = v[H-a] v[2] = v[H-b1] v[3] = v[H-b2] v[4] = v[H-g] i[1][2] = i[H-a][H-b1] i[1][3] = i[H-a][H-b2] i[1][4] = i[H-b1][H-b2] i[2][4] = i[H-b1][H-g] i[3][4] = i[H-b2][H-g]</pre>	s are: 2291.006 change: 1185.087 change: 1160.266 change: 2238.000 9.709 change: 2.595 change: 0.000 -14.092 change: 4.604 change: 2.932 change:	-0.0099 0.0012 -0.0004 -0.0124 0.0133 -0.0010 -0.0015 0.0033
Largest absolute difference = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =	0.102 22.562 0.05467 0.03997	
*** Ignored 0 transitions		
*** Transitions now assigned =	21	
<pre>*** Iteration # 13, new parameters v[1] = v[H-a] v[2] = v[H-b1] v[3] = v[H-b2] v[4] = v[H-g] i[1][2] = i[H-a][H-b1] i[1][3] = i[H-a][H-b2] i[1][4] = i[H-b1][H-b2] i[2][3] = i[H-b1][H-b2] i[2][4] = i[H-b1][H-g] i[3][4] = i[H-b2][H-g] Largest absolute difference = Tattal parameters</pre>	2291.006 change: 1185.087 change: 1160.267 change: 2238.000 9.709 change: 2.595 change: 0.000 -14.092 change: 4.604 change: 2.932 change: 0.102	0.0000 -0.0003 0.0003 0.0001 -0.0001 0.0000 0.0000 -0.0000
<pre>rotal assigned intensity = RMS deviation of transitions = Fractional change of RMS = *** Ignored 0 transitions</pre>	22.562 0.05467 -0.00001	
*** Transitions now assigned =	21	
*** Iteration # 14, new parameters v[1] = v[H-a]	are: 2291.006 change: Page 5	-0.0000

• • •

v[2] = v[H-b1] v[3] = v[H-b2] v[4] = v[H-a]	sim_out.txt 1185.087 change: 1160.267 change:	0.0000 -0.0000
][1][2] = j[H-ă][H-b1]][1][3] = j[H-a][H-b2]][1][4] = j[H-a][H-a]	9.709 change: 2.595 change:	0.0000
i[2][3] = j[H-b1][H-b2] j[2][4] = j[H-b1][H-g] j[3][4] = j[H-b2][H-g]	0.000 -14.092 change: 4.604 change: 2.932 change:	-0.0000 0.0000 -0.0000
Largest absolute difference = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =	0.102 22.562 0.05467 0.00000	-0.0000
*** Automatic assignment has occ	curred ***	
*** Transitions now assigned =	20	
v[1] = v[H-a] v[2] = v[H-b1] v[3] = v[H-b2] v[4] = v[H-b2] v[4] = v[H-a] [H-b1] i[1][2] = i[H-a] [H-b1] i[1][4] = i[H-a] [H-b2] i[2][3] = i[H-b1] [H-b2] i[2][3] = i[H-b1] [H-b2]	's are: 2291.006 change: 1185.087 change: 1160.235 change: 2238.000 9.708 change: 2.639 change: 0.000 -14.069 change:	0.0000 0.0002 -0.0321 -0.0015 0.0441
][2][4] =][H-b1][H-g]][3][4] =][H-b2][H-g]	4.604 change: 3.017 change:	-0.0003
Largest absolute difference = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS =	0.070 21.002 0.03946 -0.27826	0.0055
*** Ignored 0 transitions		
*** Iteration # 16 man	20	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	are: 2291.006 change: 1185.094 change: 1160.228 change: 238.000 9.706 change:	-0.0000 0.0068 -0.0066
[1][4] = [H-a][H-b2] [2][3] = [H-a][H-g] [2][3] = [H-b1][H-b2] [2][4] = [H-b1][H-b2]	2.641 change: 0.000 -14.068 change:	0.0019
j[3][4] = j[H-D1][H-g]	4.604 change: 3.017 change:	-0.0004 0.0003
Largest absolute difference = Total assigned intensity = RMS deviation of transitions = Fractional change of RMS = ·	0.065 21.002 0.03904 -0.01067	
*** Convergence achieved (Fractional	decrease)	
*** After final iteration: *** Current iteration count = *** transitions now assigned = *** Current RMS =	16 20 0.039039	
*** Final parameters after 16 itera v[1] = v[H-a] v[2] = v[H-b1] v[3] = v[H-b2] v[4] = v[H-a][H-b1] i[1][2] = i[H-a][H-b2] i[1][4] = i[H-a][H-g] i[2][4] = i[H-b1][H-g] i[2][4] = i[H-b1][H-g] i[3][4] = i[H-b2][H-g]	tions are: 2291.006 Hz. +/- 1185.094 Hz. +/- 1160.228 Hz. +/- 38.000 Hz. 9.706 Hz. +/- 2.641 Hz. +/- 0.000 Hz. -14.068 Hz. +/- 4.604 Hz. +/- 3.017 Hz. +/-	0.0138 Hz. 0.0164 Hz. 0.0197 Hz. 0.0222 Hz. 0.0260 Hz. 0.0235 Hz. 0.0326 Hz.
*** Parameter correlation coefficier 1 1.000 2 -0.000 1.000	its:	U.U422 HZ.

• • •

sim_out.txt

							sm_ouc	
3	-0.000	-0.157	1.000					
4	-0.000	-0.164	0.071	1.000				
Ś	0.000	0.043	-0.236	-0.138	1.000			
ã	0.000	-0 145	0 086	0.098	0.113	1.000		
9	0.000	0.176	0.000	0 120	-0.028	0 123	1 000	
1	0.000	-0.1/0	0.042	0.100	-0.020	0 147	0 116	1 000
8	0.000	0.017	-0.249	-0.031	0.417	0.147	-0.110	1.000

Transitions for isotopic species 1

e te

46 11 20 1	1151.329 1151.329	1148.176 1151.313 1151.329 1154.415	0.016 -0.000	0.43330 0.54470 0.46405 0.56763		
56 31 39 6 52 24 15	1165.364 1165.364 1168.518 1173.091 1177.507 1182.238	1162.245 1165.381 1165.397 1168.484 1173.064 1177.532 1182.274	-0.017 -0.033 0.034 0.027 -0.026 -0.036	1.55502 1.45488 1.53609 1.44348 1.54853 1.53196 1.45916		
2 55 38 30	1186.811 1191.542 1196.352	$1186.792 \\1187.132 \\1191.601 \\1196.342 \\1200.860$	0.019 -0.059 0.010	1.45067 0.42671 0.45989 0.54900		
5 54 29 14 51 44 9 28 3	1200.925	2234.197 2234.197 2237.299 2237.349 2238.665 2238.715 2241.818 2241.818	0.003	$\begin{array}{c} 1.00667\\ 1.00771\\ 1.00159\\ 1.00068\\ 0.99864\\ 0.99815\\ 0.99332\\ 0.99238\end{array}$		
53 35 22 49 42 17 27 4	2284.888 2287.963 2287.963 2294.035 2294.114 2297.189 2297.189	2284.856 2284.856 2287.942 2294.065 2294.115 2297.202 2297.202	0.033 0.031 -0.028 -0.031 -0.002 -0.013 -0.013	1.01159 1.01069 1.00181 1.00151 0.98998 0.99113 0.98852 0.98932		
*** 32	transitions	for species	s 1 written	to plot	file	
RMS d	eviation of	15 peaks	grouped wi	thin	0.050 Hz =	0.04701 Hz

*** Simulation normal exit *** Calculation time = 0 seconds

Page 7

Inverse Magnetization Transfer Experiment data

Compound 7a Major Amide singlet irradiation

Mager TX

No and the

, je Ce

Tue Nov 15 09:22:16 CST 2011

Dataset :		
E:/data/scl	weiz/nmr/2,3,5 Triol-arab-	f-NAC_Trans-alpha-Hyp-OMe_67.3C/2/pdata/
INTENSITY f:	t :	
I [t]=I[0]+]	*exp(-t/T1)	
32 points fo	r Peak 1, Péak Point at 2	.455 ppm
Results	Comp. 1	
I[0] = 5	836e-001	
P = -1	.472e+000	
T1 =	1.402s	
SD = 6	6 9 5e-002	
tau p	pm integral intensi	ty
1.000m	2.455 -4.3038e+007 -2.6	439e+006
10.000m	2.455 -4.2735e+007 -2.9	216e+006
150.000m	2.455 -3.5797e+007 -2.	421e+006
20.000m	2.454 -4.1885e+007 -2.8	163e+006
30.000m	2.454 -4.1244e+007 -2.8	106e+006
40.000m	2.454 -4.048e+007 -2.6	397e+006
50.000m	2.454 -3.9795e+007 -2.4	496e+006
80.000m	2.454 -3.8166e+007 -2.2	384e+006
100.000m	2.454 -3.7052e+007 -2.0	973e+006
150.000m	2.454 -3.4598e+007 -1.9	093e+006
200.000m	2.454 -3.2223e+007 -1.7	328e+006
300.000m	2.454 -2.794e+007 -1.4	836e+006
400.000m	2.454 -2.3973e+007 -1.2	663e+006
500.000m	2.454 -2.0343e+007 -1.0	808e+006
600.000m	2.454 -1.6962e+007 -9.0	712e+005
800.000m	2.454 -1.0991e+007 -6.	246e+005
1.000s	2.454 -5.7766e+006 -3.8	432e+005
1.200s	2.454 -1.2082e+006 -1.7	686e+005
1.500s	2.457 4.653e+006	89826
2.000s	2.454 1.2487e+007 4.	348e+005
3.000s	2.454 2.3161e+007 9.1	272e+005
4.000s	2.454 2.9855e+007 1.	208e+006
5.000s	2.454 3.4238e+007 1.3	913e+006
6.000s	2.454 3.7112e+007 1.5	126e+006
8.000s	2.454 4.0618e+007 1.	669e+006
10.000s	2.454 4.2423e+007 1.7	424e+006
12.000s	2.454 4.3458e+007 1.7	706e+006

15.000s	2.454	4.4412e+007	1.8073e+006
18.000s	2.454	4.4981e+007	1.8252e+006
20.000s	2.454	4.5201e+007	1.8322e+006
25.000s	2.454	4.5744e+007	1.8634e+006
30.000s	2.454	4.5975e+007	1.8694e+006

j i sar

Minor-TK

and inter

Tue Nov 15 09:23:03 CST 2011

Compound 7a Minor amide exponential recovery

Dataset : E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Trans-alpha-Hyp-OMe_67.3C/2/pdata/ INTENSITY fit : I[t]=I[0]+P*exp(-t/T1)Peak Point at 2.336 ppm 32 points for Peak 2, Results Comp. 1 I[0] Ξ 4.512e-001 5.750e-001 Ρ = 144**1**37m т1 = 1.3086-001 SD = integral intensity tau ppm 8.4499e+006 4.7061e+005 1.000m 2.336 5.0378e+005 10.000m 2.336 8.2749e+006 2.336 6.6795e+006 4.035e+005 150.000m 8.079e+006 4.8913e+005 20.000m 2.336 2.335 7.9414e+006 4.8563e+005 30.000m 4.5934e+005 40.000m 2.335 7.8249e+006 2.335 7.6551e+006 4.2678e+005 50.000m 3.8676e+005 80.000m 2.335 7.3169e+006 7.0943e+006 3.6064e+005 100.000m 2.335 6.5917e+006 3.2392e+005 150.000m 2.335 2.335 6.1465e+006 2.9139e+005 200.000m 2.335 5.4078e+006 2.4752e+005 300.000m 4.776e+006 2.1305e+005 400.000m 2.335 2.335 4.2979e+006 1.8652e+005 500.000m 2.335 3.8787e+006 1.6287e+005 600.000m 1.3492e+005 3.3051e+006 800.000m 2.335 2.335 2.9963e+006 1.188e+005 1.000s 2.335 2.8418e+006 1.1037e+005 1.200s 1.1108e+005 2.335 2.8493e+006 1.500s 2.000s 3.1865e+006 1.2447e+005 2.335 4.2527e+006 1.7262e+005 3.000s 2.335 2.1299e+005 5.189e+006 4.000s 2.335 2.335 5.8819e+006 2.4202e+005 5.000s 6.000s 2.335 6.3836e+006 2.6207e+005 2.8975e+005 2.335 6.9902e+006 8.000s 3.0312e+005 7.3388e+006 10.000s 2.335 3.0752e+005 12.000s 2.335 7.5036e+006

2.335	7.691e+006	3.1443e+005
2.335	7.765e+006	3.1716e+005
2.335	7.8072e+006	3.1846e+005
2.335	7.9144e+006	3.2465e+005
2.335	7.9199e+006	3.2453e+005
	2.335 2.335 2.335 2.335 2.335 2.335	2.335 7.691e+006 2.335 7.765e+006 2.335 7.8072e+006 2.335 7.9144e+006 2.335 7.9199e+006

e e

Major TB

· · ·

Fri Dec 16 09:20:49 CST 2011

```
Dataset :
E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Trans-beta-hyp-OMe_67.3C/2/pdata/1
AREA fit :
                                          ~~~~~
I[t] = I[0] + P^* \exp(-t/T1)
32 points for Integral 1, Integral Region from 2.486 to 2.416 ppm
Results
          Comp. 1
I[0] = 9.369e-001
         -1.681e+000
Ρ
    _
             2.137s
T1
     =
         3.262e-002
SD
     =
        ppm
                 integral
                           intensity
    tau
             2.458 -2.4574e+008 -1.8202e+007
   1.000m
             2.458 -2.4436e+008 -1.7829e+007
   10.000m
             2.458 -2.4355e+008 -1.7587e+007
   15.000m
   20.000m
             2.458 -2.4099e+008 -1.735e+007
              2.458 -2.3692e+008 -1.6873e+007
   30.000m
   40.000m
             2.458 -2.3283e+008 -1.6346e+007
             2.458 -2.2885e+008 -1.578e+007
   50.000m
   80.000m
             2.458 -2.1926e+008 -1.4902e+007
  100.000m
             2.458 -2.1269e+008 -1.4239e+007
             2.458 -1.9838e+008 -1.3155e+007
  150.000m
             2.458 -1.8479e+008 -1.2114e+007
  200.000m
             2.458 -1.5938e+008 -1.049e+007
  300.000m
             2.458 -1.3596e+008 -9.0115e+006
  400.000m
             2.458 -1.1423e+008 -7.6809e+006
  500.000m
             2.458 -9.3995e+007 -6.4589e+006
  600.000m
  800.000m
             2.458 -5.7852e+007 -4.5067e+006
              2.458 -2.6171e+007 -2.8365e+006
    1.000s
             2.458 1.7959e+006 -1.3931e+006
    1.200s
              2.458 3.7928e+007 4.6812e+005
    1.500s
              2.459 8.7105e+007 2.9603e+006
    2.000s
              2.459 1.5656e+008 6.4694e+006
    3.000s
             2.459 2.0028e+008 8.62e+006
    4.000s
              2.459 2.2854e+008 9.9742e+006
    5.000s
              2.459 2.4868e+008 1.0928e+007
    6.000s
             2.459 2.7268e+008 1.208e+007
    8.000s
             2.459 2.8586e+008 1.2673e+007
   10.000s
           2.459 2.9392e+008 1.3021e+007
   12.000s
```

15.000s	2.459	3.019e+008	1.3427e+007
18.000s	2.459	3.0728e+008	1.3735e+007
20.000s	2.459	3.1042e+008	1.3989e+007
25.000s	2.459	3.1575e+008	1.4262e+007
30.000s	2.459	3.1926e+008	1.4465e+007

· · · .

Fri Dec 16 09:21:59 CST 2011

```
Dataset :
E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Trans-beta-hyp-OMe_67.3C/2/pdata/1
AREA fit :
I[t]=I[0]+P*exp(-t/T1)
32 points for Integral 2, Integral Region from 2.365 to 2.331 ppm
          Comp. 1
Results
I[0] = 6.813e-001
        2.951e-001
Ρ
     =
          108.364m
Τ1
     =
     = 1.900e-001
SD
       ppm integral intensity
   tau
            2.343 5.9974e+007 3.3127e+006
   1.000m
             2.343 5.9805e+007 3.2449e+006
  10.000m
              2.343 5.9383e+007 3.2081e+006
  15.000m
  20.000m 2.343 5.8815e+007 3.1629e+006
              2.343 5.7997e+007 3.0723e+006
   30.000m
           2.343 5.7197e+007 2.9799e+006
   40.000m
              2.343 5.6334e+007 2.8794e+006
   50.000m
            2.343 5.4028e+007 2.7013e+006
   80.000m
              2.343 5.257e+007 2.5821e+006
  100.000m
              2.343 4.9239e+007 2.3622e+006
  150.000m
              2.343 4.6209e+007 2.1646e+006
  200.000m
  300.000m
              2.343 4.0943e+007 1.8596e+006
              2.343 3.6509e+007 1.6081e+006
  400.000m
              2.343 3.2933e+007 1.4033e+006
  500.000m
             2.343 3.0074e+007 1.241e+006
  600.000m
              2.343 2.5941e+007 1.0323e+006
  800.000m
              2.343 2.3529e+007 9.1239e+005
    1.000s
              2.343 2.2431e+007 8.5813e+005
    1.200s
    1.500s
              2.343 2.2497e+007 8.5659e+005
             2.343 2.5307e+007 9.7691e+005
    2.000s
              2.344 3.3371e+007 1.3561e+006
    3.000s
             2.344 4.0453e+007 1.6784e+006
    4.000s
              2.344 4.5557e+007 1.9119e+006
    5.000s
             2.344 4.9353e+007 2.0832e+006
    6.000s
             2.344 5.4171e+007 2.2987e+006
    8.000s
             2.344 5.6903e+007 2.4097e+006
   10.000s
           2.344 5.8522e+007 2.4778e+006
   12.000s
```

Fri Dec 16 09:21:59 CST 2011

	\checkmark	
2.344	6.001e+007	2.55e+006
2.344	6.124e+007	2.609e+006
2.343	6.1822e+007	2.6537e+006
2.343	6.2821e+007	2.7012e+006
2.343	6.361e+007	2.7409e+006
	2.344 2.344 2.343 2.343 2.343	2.344 6.001e+007 2.344 6.124e+007 2.343 6.1822e+007 2.343 6.2821e+007 2.343 6.361e+007

 Thu Nov 17 09:28:19 CST 2011

Major (x

Dataset :	
E:/data/schwe:	iz/nmr/2,3,5 Triol-arab-f-NAC_Cis-alpha-hyp-OMe_67.3C/2/pdata/1
AREA fit :	
I[t]=I[0]+P*e	xp(-t/T1)
32 points for 3	Integral 1, Integral Region from 2.482 to 2.439 ppm
Results Con	mp. 1
I[0] = 9.40	5e-001
P = -1.8	37e+000
т1 =	2.083s
SD = 3.47	7e+002
tau ppm	integral intensity
1.000m	2.460 -9.3855e+007 -6.6201e+006
10.000m	2.460 -9.2803e+007 -6.9244e+006
150.000m	2.460 -7.8596e+007 -6.185e+006
20.000m	2.460 -9.1397e+007 -6.9785e+006
30.000m	2.460 -9.0124e+007 -6.682e+006
40.000m	2.460 -8.8767e+007 -6.3567e+006
50.000m	2.460 -8.7475e+007 -6.0359e+006
80.000m	2.460 -8.4115e+007 -5.6631e+006
100.000m	2.460 -8.1859e+007 -5.3809e+006
150.000m	2.460 -7.6686e+007 -4.9615e+006
200.000m	2.460 -7.183e+007 -4.588e+006
300.000m	2.460 -6.2832e+007 -3.9692e+006
400.000m	2.460 -5.4572e+007 -3.3751e+006
500.000m	2.460 -4.6872e+007 -2.8782e+006
600.000m	2.460 -3.9734e+007 -2.4369e+006
800.000m	2.460 -2.7053e+007 -1.7182e+006
1.000s	2.460 -1.5947e+007 -1.1074e+006
1.200s	2.460 -6.2716e+006 -5.7445e+005
1.500s	2.462 6.4065e+006 1.1135e+005
2.000s	2.460 2.3158e+007 9.9789e+005
3.000s	2.460 4.6543e+007 2.2358e+006
4.000s	2.460 6.1605e+007 3.0175e+006
5.000s	2.460 7.154e+007 3.5117e+006
6.000s	2.460 7.8307e+007 3.8329e+006
8.000s	2.460 8.6513e+007 4.221e+006
10.000s	2.461 9.088e+007 4.4179e+006
12.000s	2.461 9.3569e+007 4.5127e+006

2.460	9.6091e+007	4.6315e+006
2.460	9.7741e+007	4.6852e+006
2.460	9.847e+007	4.7083e+006
2.460	9.9927e+007	4.7775e+006
2.460	1.007e+008	4.7991e+006
	2.460 2.460 2.460 2.460 2.460	2.460 9.6091e+007 2.460 9.7741e+007 2.460 9.847e+007 2.460 9.9927e+007 2.460 1.007e+008

, , , , , Thu Nov 17 09:30:39 CST 2011

Dataset : E:/data/schweiz/m AREA fit :	nmr/2,3,5 Triol-a	rab-f-NAC_Cis-alpha	-hyp-OMe_67.3C/2/pdata/1
I[t]=I[0]+P*exp(-t/T1)		
32 points for Int	egral 2, Integra	1 Region from 2.356	5 to 2.330 ppm
Results Comp.	1		
I[0] = 6.287e	001		
$P = 4.051e^{-1}$	001		
т1 = 128.5	27m		
$SD = 1.941e^{-1}$	001		
tau ppm	integral int	ensity	
1.000m 2.	342 2.0109e+007	1.1778e+006	215
10.000m 2.	342 1.9861e+007	1.2108e+006	V = 0.659153
150.000m 2.	341 1.5873e+007	9.9929e+005	ret
20.000m 2.	341 1.9427e+007	1.2024e+006	= 0.12 309
30.000m 2.	341 1.909e+007	1.154e+006	r-te
40.000m 2.	341 1.8807e+007	1.105e+006	C 002
50.000m 2.	341 1.8429e+007	1.0526e+006	Ka = 5.53+
80.000m 2.	341 1.7583e+007	9.7987e+005	i er
100.000m 2.	341 1.702e+007	9.2617e+005	
150.000m 2.	342 1.5765e+007	8.4155e+005	
200.000m 2.	341 1.459e+007	7.6621e+005	
300.000m 2.	342 1.2576e+007	6.444e+005	
400.000m 2.	342 1.0918e+007	5.4064e+005	
500.000m 2.	342 9.6205e+006	4.6367e+005	
600.000m 2.	342 8.5149e+006	4.0254e+005	
800.000m 2.	342 6.9664e+006	3.2263e+005	
1.000s 2.	.342 6.1278e+006	2.8076e+005	
1.200s 2.	.342 5.7561e+006	2.5855e+005	
1.500s 2.	.342 5.7234e+006	2.5692e+005	
2.000s 2.	.341 6.5826e+006	3.0162e+005	
3.000s 2.	.341 9.2214e+006	4.3296e+005	
4.000s 2.	.341 1.1597e+007	5.4806e+005	
5.000s 2	.341 1.336e+007	6.3264e+005	
6.000s 2	.341 1.4598e+007	6.8739e+005	
8.000s 2	.342 1.6198e+007	7.5744e+005	
10.000s 2	.342 1.7065e+007	7.9376e+005	
12.000s 2	.342 1.7568e+007	8.1347e+005	

(1/2)

199

15.000s	2.341	1.7998e+007	8.3536e+005
18.000s	2.342	1.8326e+007	8.4386e+005
20.000s	2.341	1.8492e+007	8.477e+005
25.000s	2.342	1.8787e+007	8.6276e+005
30.000s	2.341	1.8868e+007	8.6461e+005

Kal

n de la composition de la comp

• •

Fri Dec 16 09:25:56 CST 2011

Dataset : E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Cis-beta-	-hyp-OMe_67.3C/2/pdata/1
AREA fit :	<u>~</u>
$I[t] = I[0] + P^* exp(-t/T1)$	-
32 points for Integral 1, Integral Region from 2.502	2 to 2.436 ppm
Results Comp. 1	
I[0] = 9.383e-001	
P = -1.685e+000	
T1 = 1.731s	
SD = 3.467e-002	
tau ppm integral intensity	04.04159
1.000m 2.473 -8.6252e+008 -5.0091e+007	Ka = 0.404797
10.000m 2.473 -8.4948e+008 -4.9497e+007	
15.000m 2.473 -8.4302e+008 -4.8955e+007	p.(13 ⁹)
20.000m 2.473 -8.365e+008 -4.8656e+007	le de la viente de la companya de l
30.000m 2.473 -8.2242e+008 -4.787e+007	55581
40.000m 2.473 -8.0807e+008 -4.7227e+007	in a manufacture and a
50.000m 2.473 -7.9521e+008 -4.6469e+007	
80.000m 2.473 -7.5749e+008 -4.4469e+007	
100.000m 2.473 -7.3176e+008 -4.2924e+007	$2.5\sqrt{6}$
150.000m 2.473 ~6.7174e+008 -3.9749e+007	ار موجد في انتخاب مستقدم . او م
200.000m 2.473 -6.1352e+008 -3.6652e+007	→ provide the fit of the second s
300.000m 2.473 -5.0672e+008 -3.0939e+007	
400.000m 2.473 -4.0985e+008 -2.5695e+007	
500.000m 2.473 -3.2113e+008 -2.1094e+007	
600.000m 2.473 -2.3912e+008 -1.6742e+007	
800.000m 2.473 -9.456e+007 -9.1801e+006	
1.000s 2.473 2.7486e+007 -2.745e+006	
1.200s 2.473 1.3305e+008 2.8659e+006	
1.500s 2.473 2.6469e+008 9.8113e+006	
2.000s 2.473 4.3348e+008 1.87e+007	
3.000s 2.473 6.5343e+008 3.0364e+007	
4.000s 2.473 7.8574e+008 3.735e+007	
5.000s 2.473 8.6957e+008 4.1893e+007	
6.000s 2.473 9.251e+008 4.4937e+007	
8.000s 2.473 9.9055e+008 4.8433e+007	
10.000s 2.473 1.0259e+009 5.037e+007	
12.000s 2.473 1.0486e+009 5.1271e+007	

(1/2)

15.000s	2.473	1.0717e+009	5.1997e+007
18.000s	2.472	1.0874e+009	5.271e+007
20.000s	2.473	1.0965e+009	5.306e+007
25.000s	2.473	1.1096e+009	5.4367e+007
30.000s	2.473	1.1177e+009	5.6022e+007

• 2

2.2

```
Minor CB
```

Fri Dec 16 09:27:15 CST 2011

```
Dataset :
E:/data/schweiz/nmr/2,3,5 Triol-arab-f-NAC_Cis-beta-hyp-OMe_67.3C/2/pdata/1
                                                  \overline{ }
                                           1
AREA fit :
I[t] = I[0] + P \exp(-t/T1)
32 points for Integral 2, Integral Region from 2.434 to 2.378 ppm
Results
          Comp. 1
I[0] =
         3.654e+000
         -2.918e+000
Ρ
     =
          258.602s
т1
     =
SD
     =
         1.441e-001
                              intensity
         ppm
                  integral
    tau
              2.405 4.6494e+008 2.0468e+007
    1.000m
              2.405 4.6173e+008 2.0308e+007
   10.000m
              2.405 4.5869e+008 2.0106e+007
   15.000m
   20.000m
              2.405 4.5602e+008 2.0032e+007
              2.405 4.5048e+008 1.9779e+007
   30.000m
              2.405 4.4657e+008 1.9531e+007
   40.000m
                     4.417e+008 1.9284e+007
   50.000m
              2.405
              2.405 4.2768e+008 1.8626e+007
   80.000m
  100.000m
              2.405 4.1933e+008 1.8119e+007
              2.405 3.9852e+008
                                  1.715e+007
  150.000m
              2.405 3.8011e+008 1.6243e+007
  200.000m
              2.405 3.4822e+008 1.4675e+007
  300.000m
                     3.211e+008 1.3355e+007
  400.000m
              2.405
              2.405 2.9993e+008 1.2322e+007
  500.000m
              2.405
                     2.832e+008
                                  1.149e+007
  600.000m
  800.000m
                     2.597e+008 1.0366e+007
               2.405
              2.405 2.4681e+008 9.7393e+006
    1.000s
    1.200s
              2.405 2.4185e+008 9.4837e+006
               2.405 2.4431e+008 9.5729e+006
    1.500s
               2.405 2.6281e+008 1.0405e+007
    2.000s
                     3.137e+008 1.2784e+007
    3.000s
               2.405
               2.405 3.5783e+008 1.4859e+007
    4.000s
    5.000s
               2.405 3.8993e+008 1.6406e+007
    6.000s
               2.405 4.1253e+008 1.7507e+007
               2.405 4.401e+008 1.8827e+007
    8.000s
               2.405 4.5481e+008 1.9579e+007
   10.000s
   12.000s
               2.405 4.6447e+008 1.9918e+007
```

Fri Dec 16 09:27:15 CST 2011

	- Alexandre			
15.000s	2.405	4.7494e+008	2.0207e+007	
18.000s	2.405	4.8352e+008	2.0473e+007	
20.000s	2.405	4.8792e+008	2.0624e+007	
25.000s	2.405	4.933e+008	2.1091e+007	
30.000s	2.405	4.9584e+008	2.1668e+007	

Inverse Magnetization Transfer – Mathematica Programs with Graphs

Fitting Inversion Magnetization Transfer NMR Experiments

DESCRIPTION

Magnetization transfer is used to measure the following Proline isomerization:

> kct cis <----> trans ktc

where Keq = kct/ktc = taut/tauc = Mtinf/Mcinf.

This notebook will simultaneously fit the time-dependent magnetization transfers of Pro 1H or 13C *cis* (Mct) and *trans* (Mtt) NMR signals as a function of the inversion transfer time (t) in Inversion Magnetization Transfer experiments. In the following pulse sequence, the 13C or 1H *cis* resonance is selectively inverted using a shaped pulse. Its recovery during t is determined by its intrinsic T1c, magnetization transfer to and from the *trans* resonance, and the T1t of the *trans* resonance. Similarly, the steady-state magnetization of the *trans* resonance is modulated by exchange with the *cis* resonance:

p(x)sel -----t----p/2(x,y.-x.-y)---acquire

The resonance of the *trans* isomer of **Pro (Mtt)** shows the following time dependence:

Mtt = (c1)(t t)(1 + 1/t 1c)exp(1 1*t) + (c2)(t 2)(1 2+1/t 1c)exp(1 2t) + Mtin(1 + 1/t 1c)exp(1 +

The resonance of the *cis* isomer of Pro (Mtc) shows the following time dependence:

$$Mtc = (c1)exp(1 1*t) + (c2)exp(1 2t) + Mcinf$$

T1c and T1t are the longitudinal relaxation times the resonances would have in the absence of exchange.

t c and t t are the lifetimes of the *cis* and *trans* conformers and kct and ktc are the corresponding rate constants.

t 1c and t 1t are the effective relaxation times of the *cis* and *trans* resonances when relaxation and exchange are both occuring and are defined below in terms of T1c and t c, T1t and t t.

l 1 and l 2 are related to the time constants t c, t t, t 1c, and t 1t, and are defined below.

c1 and c2 are defined below.

The user must enter Mcinf and Mtinf, the magnetization measured after 5 T1 periods for the *cis* and *trans* resonances.

The program calculates t t from t c, Mcinf, and Mtinf as: t t = t c * Mtinf/M-cinf.

The notebook will also generate graphs of the data and the fitted curve and statistical information on the goodness of the fit. A table of points can be produced to permit export of the theoretical curve. References:

Alger and Prestegard (1977) J. Magn. Reson. 27, 137-41. Mariappan and Rabenstein (1992) J. Magn. Reson. 100, 183-8.

Thanks to Maxim A. Dubinnyi for advice on how to fit multiple data sets.

INSTRUCTIONS

Hit the down arrow to move from cell to cell and press "enter" (not return) to execute each calculation. Follow the example below to see the fitting results for one set of data for hydroxy-Pro.

The user may enter data manually, in the form of {Transfer Time, Intensity} pairs, or read in a data files. For the latter, set the directory containing the data in the first line below. If you are not reading in files, move the cursor to the 4th line ("list2") and replace the pairs of points in "list2" with your own data. Do the same with "list3". Alternatively, press enter on the line "list2" and follow the fitting of those data.

In the first 3 lines below we set a directory, read in a data file, and check the number of points in the file.

SetDirectory ["~/Documents/JOE/Mathematica/Research/FrankSchweizer/Venkata"];

translist2 = Import["NaxTransHypOmeUnGlyT.xls"]; cislist3 = Import["NaxTransHypOmeUnGlyC.xls"];

cislist := {{0.001, 8444.9}, {0.01, 8274.9}, {0.02, 8079}, {0.03, 7941.4}, {0.04, 7824.9}, {0.05, 7655.1}, {0.08, 7316.9}, {0.1, 7094.3}, {0.15, 6591.7}, {0.2, 6146.5}, {0.3, 5407.8}, {0.4, 4776}, {0.5, 4297.9}, {0.6, 3878.7}, {0.8, 3305.1}, {1, 2996.3}, {1.2, 2841.8}, {1.5, 2849.3}, {2, 3186.5}, {3, 4252.7}, {4, 5189}, {5, 5881.9}, {6, 6383.6}, {8, 6990.2}, {10, 7338.8}, {12, 7503.6}, {15, 7691}, {18, 7765}, {20, 7807.2}, {25, 7914.4}, {30, 7919.9}}

```
translist := {{0.001, -43048}, {0.01, -42375}, {0.02, -41885}, {0.03, -41244},
{0.04, -40480}, {0.05, -39795}, {0.08, -38166}, {0.1, -37052}, {0.15, -34598},
{0.2, -32223}, {0.3, -27940}, {0.4, -23973}, {0.5, -20343}, {0.6, -16962},
{0.8, -10991}, {1, -5776.6}, {1.2, -1208.2}, {1.5, 4653}, {2, 12487},
{3, 23161}, {4, 29855}, {5, 34238}, {6, 37112}, {8, 40618}, {10, 42423},
{12, 43458}, {15, 44412}, {18, 44981}, {20, 45201}, {25, 45744}, {30, 45975}}
```

```
totalres4 = Length[translist];
totalres6 = Length[cislist]
```

31

```
lp2 = ListPlot[cislist, PlotStyle → {PointSize[0.02], Black},
                 \texttt{PlotRange} \rightarrow \{\{0, 35\}, \{0, 10000\}\}, \text{ Frame} \rightarrow \texttt{True}, \text{ RotateLabel} \rightarrow \texttt{False}, 
                 BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity, "Inte
                 Axes \rightarrow False, BaseStyle \rightarrow {14, FontFamily \rightarrow "Times"}]
                                                       10000
                                                                  8000
                                                                  6000
 Intensity
                                                                  4000
                                                                  2000
                                                                                          0
                                                                                                                                                               10 15 20 25
                                                                                                                                                                                                                                                                                                   30 35
                                                                                               0
                                                                                                                                 5
                                                                                                                                                                           Transfer Time
lp3 = ListPlot[translist, PlotStyle → {PointSize[0.02], Black},
                 \texttt{PlotRange} \rightarrow \{\{0, 35\}, \{-50\,000, 50\,000\}\}, \text{ Frame} \rightarrow \texttt{True}, \texttt{RotateLabel} \rightarrow \texttt{False}, 
                 BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity, "Inte
                 Axes \rightarrow False, BaseStyle \rightarrow {14, FontFamily \rightarrow "Times"}]
                                                               40 000
                                                               20 000
 Intensity
                                                                                                   0
                                                    -20\,000
                                                    -40\,000
                                                                                                                                                                     10 15 20 25 30 35
                                                                                                         0
                                                                                                                                        5
                                                                                                                                                                                Transfer Time
```

CombinedData = Join[Insert[#, 1, 2] & /@translist, Insert[#, 2, 2] & /@cislist]; CombinedData // TableForm

 $\begin{array}{rrrr} 0.001 & 1 & -43\,048 \\ 0.01 & 1 & -42\,375 \end{array}$

0.02	1	-41885
0.03	1	-41244
0.04	1	-40480
0.05	1	- 39 795
0.08	1	-38166
0.1	1	-37052
0.15	1	-34598
0.2	1	- 32 223
0.3	1	-27940
0.4	1	-23973
0.5	1	-20343
0.6	1	-16962
0.8	1	-10991
1	1	-5776.6
1.2	1	-1208.2
1.5	1	4653
2	1	12487
3	1	23161
4	1	29 855
5	1	34 238
6	1	37112
8	1	40618
10	1	42 423
12	1	43 458
15	1	44 412
18	1	44981
20	1	45 201
25	1	45 7 4 4
30	1	45 975
0.001	2	8444.9
0.01	2	8274.9
0.02	2	8079
0.03	2	7941.4
0.04	2	7824.9
0.05	2	7655.1
0.08	2	7316.9
0.1	2	7094.3
0.15	2	6591.7
0.2	2	6146.5
0.3	2	5407.8
0.4	2	4776
0.5	2	4297.9
0.6	2	3878.7
0.8	2	3305.1
1	2	2996.3

1.2	2	2841.8
1.5	2	2849.3
2	2	3186.5
3	2	4252.7
4	2	5189
5	2	5881.9
б	2	6383.6
8	2	6990.2
10	2	7338.8
12	2	7503.6
15	2	7691
18	2	7765
20	2	7807.2
25	2	7914.4
30	2	7919.9

Clear [T1t, T1c, taut, tauc, M0t, M0c, Mtinf, Mcinf, tault, taulc, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]

Users : Enter your values for Mcinf and Mtinf below :

Mcinf := 7919.9

Mtinf := 45975

```
taut := ((tauc) * (Mtinf)) / (Mcinf)
kct := 1 / tauc
ktc := 1 / taut
Keq := (Mtinf) / (Mcinf)
taulc := ((T1c) * (tauc)) / ((tauc) + (T1c))
tault := ((Tlt) * (taut)) / ((taut) + (Tlt))
lam1 :=
 (0.5) * (-(((1) / (taulc)) + ((1) / (taulc))) + ((((((1) / (taulc)) + ((1) / (taulc)))^(2)) - (4) *
           ((((1) / (taulc)) * ((1) / (tault))) - (((1) / (tauc)) * ((1) / (taut))))))^{(0.5)}
lam2 :=
 (0.5) * (-(((1) / (taulc)) + ((1) / (tault))) - ((((((1) / (taulc)) + ((1) / (tault)))^{(2)}) - (4) *
           ((((((1) / (taulc))) * (((1) / (tault)))) - (((1) / (tauc)) * ((1) / (taut))))))^((0.5))
c2 := ((1) / ((taut) * ((lam1) - (lam2)))) *
  (((taut) * ((lam1) + (((1) / (tau1c)))) * ((MOc) - (Mcinf))) + ((Mtinf) - (MOt)))
c1 := M0c - Mcinf - c2
Mtt := ((c1) * (taut) * ((lam1) + (((1) / (taulc)))) * (Exp[(lam1) * (x)])) +
  ((c2) * (taut) * ((lam2) + (((1) / (tau1c)))) * (Exp[(lam2) * (x)])) + Mtinf
Mct := ((c1) * (Exp[(lam1) * (x)])) + ((c2) * (Exp[(lam2) * (x)])) + (Mcinf)
CombinedMctMtt :=
Which[MDL == 1, Evaluate@Mtt,
   MDL == 2, Evaluate@Mct,
    True, 0];
taut
tau1c
tault
1 / taulc
1 / tault
5.805 tauc
Tlc tauc
Tlc + tauc
5.805 T1t tauc
T1t + 5.805 tauc
```

```
\frac{\frac{\text{Tlc + tauc}}{\text{Tlc tauc}}}{\frac{0.172265 (\text{Tlt + 5.805 tauc})}{\text{Tlt tauc}}}
```

Users : You may want to adjust the best guesses for the parameters, the upper and lower limits, and the number of interations below :

NLM1 = NonlinearModelFit [CombinedData, CombinedMctMtt,

```
{{T1c, 1.7, 0.1, 100}, {T1t, 1.7, 0.1, 100}, {tauc, 1, 0.1, 100}, {M0c, 8500, 5000, 10 000},
{M0t, -43 000, -60 000, -30 000}, {x, MDL}, MaxIterations → 1000 000]
```

NonlinearModelFit::lstol :

The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal but

was unable to find a sufficient decrease in the norm of the residual. You may need

more than MachinePrecision digits of working precision to meet these tolerances. \gg

FittedModel

Which[MDL == 1, $\ll 4 \gg$, 0]

NLM1[{"ParameterTable", "RSquared"}]

FittedModel::constr :

The property values {ParameterTable} assume an unconstrained model. The results for these properties may

not be valid, particularly if the fitted parameters are near a constraint boundary. \gg

		Estimate	Standard Error	t Statistic	P-Value	
T1c	15.4307	12.4031	1.24411	0.218552		
{	T1t	2.34505	0.0410966	57.062	5.5155×10^{-52}	, 0.99919}
ι	tauc	1.21067	0.0982919	12.3171	1.05702×10^{-17}	,
	M0c	8699.18	258.843	33.6079	2.87267×10^{-39}	
	M0t	-42090.7	253.905	-165.774	3.36472×10^{-78}	

param1 = NLM1["BestFitParameters"]

 $\{\texttt{Tlc} \rightarrow \texttt{15.4307}, \, \texttt{Tlt} \rightarrow \texttt{2.34505}, \, \texttt{tauc} \rightarrow \texttt{1.21067}, \, \texttt{M0c} \rightarrow \texttt{8699.18}, \, \texttt{M0t} \rightarrow \texttt{-42090.7} \}$

Tlc = Tlc /. paraml Tlt = Tlt /. paraml tauc = tauc /. paraml MOt = MOt /. paraml MOc = MOc /. paraml 15.4307 2.34505 1.21067 - 42090.7 8699.18

```
Plot[Mct, {x, 0, 10000}, PlotStyle \rightarrow {Thickness[0.01], Black},
 \texttt{PlotRange} \rightarrow \{\{0, 35\}, \{0, 10000\}\}, \text{ Frame} \rightarrow \texttt{True},
 RotateLabel \rightarrow False, BaseStyle \rightarrow {14, FontFamily \rightarrow "Times"},
 FrameLabel \rightarrow {"Transfer Time (sec)", "Intensity"}, Axes \rightarrow False]
          10000
            8000
            6000
Intensity
            4000
            2000
                0
                 0
                        5
                              10
                                  15
                                          20
                                                25
                                                       30
                                                             35
                             Transfer Time (sec)
Show[%, lp2]
          10000
            8000
            6000
Intensity
```

Transfer Time (sec)

 $\label{eq:plot_matrix} \begin{array}{l} \mbox{Plot}[Mtt, \{x, 0, 35\}, \mbox{Plot}Style \rightarrow \{\mbox{Thickness}[0.01], \mbox{Black}\}, \\ \mbox{PlotRange} \rightarrow \{\{0, 35\}, \{-55\,000, 55\,000\}\}, \mbox{Frame} \rightarrow \mbox{True}, \end{array}$

kct 0.82599 ktc 0.14229 Keq 5.805

The next line calculates points from the theoretical curve in case you want to graph the curve in another application:

theorMtt = Table[{x, Mtt}, {x, 0, 15, 0.01}]

theorMct = Table[{x, Mct}, {x, 0, 15, 0.01}]

The next line exports a file containing the theoretical points just calculated.

Export["OHPro1.txt", theorMtt, "Table"]
Export["OHPro2.txt", theorMct, "Table"]

Just to confirm, here are graphs of the theoretical points and the data.

```
ListPlot[theorMtt, PlotStyle → {PointSize[0.01], Black}, PlotRange → {{0, 15}, {70, +120}},
Frame → True, RotateLabel → False, BaseStyle → {14, FontFamily → "Times"},
FrameLabel → {"Transfer Time (sec)", "Intensity"}, Axes → False]
Show[%, lp2]
ListPlot[theorMct, PlotStyle → {PointSize[0.01], Black}, PlotRange → {{0, 15}, {-75, +50}},
Frame → True, RotateLabel → False, BaseStyle → {14, FontFamily → "Times"},
FrameLabel → {"Transfer Time (sec)", "Intensity"}, Axes → False]
```

```
Clear[Tlt, Tlc, taut, tauc, M0t, M0c, Mtinf, Mcinf, tault,
taulc, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]
```

END

© Conditions of Use:

This software is in the public domain and may be distrubuted and modified freely by any user. It is provided "as is", with absolutely no warranty expressed or implied. Any use is at your own risk.

Errors, suggestions for improvement, or other comments may be sent to:

Joe O'Neil Department of Chemistry University of Manitoba 390 Parker Building 144 Dysart Rd. Winnipeg, MB R3T 2N2 TELE: (204) 474-6697 FAX: (204) 474-7608 joneil@cc.umanitoba.ca http://home.cc.umanitoba.ca/~joneil/ Last updated: June 20 2007
Fitting Inversion Magnetization Transfer NMR Experiments

DESCRIPTION

Magnetization transfer is used to measure the following Proline isomerization:

> kct cis <----> trans ktc

where Keq = kct/ktc = taut/tauc = Mtinf/Mcinf.

This notebook will simultaneously fit the time-dependent magnetization transfers of Pro 1H or 13C *cis* (Mct) and *trans* (Mtt) NMR signals as a function of the inversion transfer time (t) in Inversion Magnetization Transfer experiments. In the following pulse sequence, the 13C or 1H *cis* resonance is selectively inverted using a shaped pulse. Its recovery during t is determined by its intrinsic T1c, magnetization transfer to and from the *trans* resonance, and the T1t of the *trans* resonance. Similarly, the steady-state magnetization of the *trans* resonance is modulated by exchange with the *cis* resonance:

p(x)sel -----t----p/2(x,y.-x.-y)---acquire

The resonance of the *trans* isomer of **Pro (Mtt)** shows the following time dependence:

Mtt = (c1)(t t)(1 + 1/t 1c)exp(1 1*t) + (c2)(t 2)(1 2+1/t 1c)exp(1 2t) + Mtint

The resonance of the *cis* isomer of Pro (Mtc) shows the following time dependence:

$$Mtc = (c1)exp(1 1*t) + (c2)exp(1 2t) + Mcinf$$

T1c and T1t are the longitudinal relaxation times the resonances would have in the absence of exchange.

t c and t t are the lifetimes of the *cis* and *trans* conformers and kct and ktc are the corresponding rate constants.

t 1c and t 1t are the effective relaxation times of the *cis* and *trans* resonances when relaxation and exchange are both occuring and are defined below in terms of T1c and t c, T1t and t t.

l 1 and l 2 are related to the time constants t c, t t, t 1c, and t 1t, and are defined below.

c1 and c2 are defined below.

The user must enter Mcinf and Mtinf, the magnetization measured after 5 T1 periods for the *cis* and *trans* resonances.

The program calculates t t from t c, Mcinf, and Mtinf as: t t = t c * Mtinf/Mcinf.

The notebook will also generate graphs of the data and the fitted curve and statistical information on the goodness of the fit. A table of points can be produced to permit export of the theoretical curve. References:

Alger and Prestegard (1977) J. Magn. Reson. 27, 137-41. Mariappan and Rabenstein (1992) J. Magn. Reson. 100, 183-8.

Thanks to *Maxim A. Dubinnyi* for advice on how to fit multiple data sets.

INSTRUCTIONS

Hit the down arrow to move from cell to cell and press "enter" (not return) to execute each calculation. Follow the example below to see the fitting results for one set of data for hydroxy-Pro.

The user may enter data manually, in the form of {Transfer Time, Intensity} pairs, or read in a data files. For the latter, set the directory containing the data in the first line below. If you are not reading in files, move the cursor to the 4th line ("list2") and replace the pairs of points in "list2" with your own data. Do the same with "list3". Alternatively, press enter on the line "list2" and follow the fitting of those data.

In the first 3 lines below we set a directory, read in a data file, and check the number of points in the file.

SetDirectory ["~/Documents/JOE/Mathematica/Research/FrankSchweizer/Venkata"];

translist2 = Import["NaxTransHypOmeUnGlyT.xls"]; cislist3 = Import["NaxTransHypOmeUnGlyC.xls"];

cislist := {{0.001, 5997.4}, {0.01, 5980.5}, {0.015, 5938.3}, {0.02, 5881.5}, {0.03, 5799.7}, {0.04, 5719.7}, {0.05, 5633.4}, {0.08, 5402.8}, {0.1, 5257}, {0.15, 4923.9}, {0.2, 4620.9}, {0.3, 4094.3}, {0.4, 3650.9}, {0.5, 3293.3}, {0.6, 3007.4}, {0.8, 2594.1}, {1, 2352.9}, {1.2, 2243.1}, {1.5, 2249.7}, {2, 2530.7}, {3, 3337.1}, {4, 4045.3}, {5, 4555.7}, {6, 4935.3}, {8, 5417.1}, {10, 5690.3}, {12, 5852.2}, {15, 6001}, {18, 6124}, {20, 6182.2}, {25, 6282.1}, {30, 6361}}

```
translist := {{0.001, -24574}, {0.01, -24436}, {0.015, -24355}, {0.02, -24099},
{0.03, -23692}, {0.04, -23283}, {0.05, -22885}, {0.08, -21926}, {0.1, -21269},
{0.15, -19838}, {0.2, -18479}, {0.3, -15938}, {0.4, -13596}, {0.5, -11423},
{0.6, -9399.5}, {0.8, -5785.2}, {1, -2617.1}, {1.2, 179.59}, {1.5, 3792.8},
{2, 8710.5}, {3, 15656}, {4, 20028}, {5, 22854}, {6, 24868}, {8, 27268}, {10, 28586},
{12, 29392}, {15, 30190}, {18, 30728}, {20, 31042}, {25, 31575}, {30, 31926}}
```

```
totalres4 = Length[translist];
totalres6 = Length[cislist]
```

32

```
lp2 = ListPlot[cislist, PlotStyle → {PointSize[0.02], Black},
                                                   \texttt{PlotRange} \rightarrow \{\{0, 35\}, \{0, 6500\}\}, \texttt{Frame} \rightarrow \texttt{True}, \texttt{RotateLabel} \rightarrow \texttt{False}, \texttt{Formula} \rightarrow \texttt{False}, \texttt{False} \rightarrow \texttt{False
                                                   BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity, "Inte
                                                   Axes \rightarrow False, BaseStyle \rightarrow {14, FontFamily \rightarrow "Times"}]
                                                                                                                                                                             6000
                                                                                                                                                                             5000
                                                                                                                                                                             4000
Intensity<sub>3000</sub>
                                                                                                                                                                             2000
                                                                                                                                                                             1000
                                                                                                                                                                                                                                                       0
                                                                                                                                                                                                                                                                          0
                                                                                                                                                                                                                                                                                                                                                                                    5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     15 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Transfer Time
   lp3 = ListPlot[translist, PlotStyle \rightarrow {PointSize[0.02], Black},
                                                   \texttt{PlotRange} \rightarrow \{\{\texttt{0, 35}\}, \{\texttt{-35000, 35000}\}\}, \texttt{Frame} \rightarrow \texttt{True}, \texttt{RotateLabel} \rightarrow \texttt{False}, \texttt{Formula} \rightarrow \texttt{False}, \texttt{Formula} \rightarrow \texttt{Formula} \rightarrow \texttt{False}, \texttt{Formula} \rightarrow \texttt{Formula} \rightarrow \texttt{False}, \texttt{Formula} \rightarrow \texttt{False} \rightarrow \texttt{Formula} \rightarrow \texttt{False}, \texttt{Formula} \rightarrow \texttt{Formula} \rightarrow \texttt{False} 
                                                   \texttt{BaseStyle} \rightarrow \{\texttt{14, FontFamily} \rightarrow \texttt{"Times"}\}, \texttt{FrameLabel} \rightarrow \{\texttt{"Transfer Time", "Intensity"}\}, \texttt{FrameLabel} \rightarrow \{\texttt{Transfer Time", "Intensity"}\}, \texttt{FrameLabel} \rightarrow \{\texttt{Time", "Intensity"}\}, \texttt{FrameLabel} \rightarrow \{\texttt{Time", "Intensity"}\}, \texttt{Time", "Intensity"}\}, \texttt{Time
                                                      Axes \rightarrow False, BaseStyle \rightarrow {14, FontFamily \rightarrow "Times"}]
                                                                                                                                                                                                30,000
                                                                                                                                                                                                20 0 00
                                                                                                                                                                                                   10000
Intensity
                                                                                                                                                                                                                                                                                                       0
                                                                                                                                                                -10\,000
                                                                                                                                                             -20\,000
                                                                                                                                                             -30\,000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     10 15 20 25 30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                35
                                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                                                                                                                              5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Transfer Time
```

CombinedData = Join[Insert[#, 1, 2] & /@translist, Insert[#, 2, 2] & /@cislist]; CombinedData // TableForm

0.02	1	-24099
0.03	1	-23692
0.04	1	- 23 283
0.05	1	- 22 885
0.08	1	-21926
0.1	1	- 21 269
0.15	1	-19838
0.2	1	-18479
0.3	1	-15938
0.4	1	-13596
0.5	1	-11423
0.6	1	-9399.5
0.8	1	-5785.2
1	1	-2617.1
1.2	1	179.59
1.5	1	3792.8
2	1	8710.5
3	1	15656
4	1	20 0 28
5	1	22854
6	1	24 868
8	1	27 268
10	1	28 586
12	1	29 392
15	1	30190
18	1	30 7 2 8
20	1	31042
25	1	31 575
30	1	31926
0.001	2	5997.4
0.01	2	5980.5
0.015	2	5938.3
0.02	2	5881.5
0.03	2	5799.7
0.04	2	5719.7
0.05	2	5633.4
0.08	2	5402.8
0.1	2	5257
0.15	2	4923.9
0.2	2	4620.9
0.3	2	4094.3
0.4	2	3650.9
0.5	2	3293.3
0.6	2	3007.4
0.8	2	2594.1

1	2	2352.9
1.2	2	2243.1
1.5	2	2249.7
2	2	2530.7
3	2	3337.1
4	2	4045.3
5	2	4555.7
б	2	4935.3
8	2	5417.1
10	2	5690.3
12	2	5852.2
15	2	6001
18	2	6124
20	2	6182.2
25	2	6282.1
30	2	6361

Clear [T1t, T1c, taut, tauc, M0t, M0c, Mtinf, Mcinf, tault, tau1c, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]

Users : Enter your values for Mcinf and Mtinf below :

Mcinf := 6361

Mtinf := 31926

```
taut := ((tauc) * (Mtinf)) / (Mcinf)
kct := 1 / tauc
ktc := 1 / taut
Keq := (Mtinf) / (Mcinf)
taulc := ((T1c) * (tauc)) / ((tauc) + (T1c))
tault := ((Tlt) * (taut)) / ((taut) + (Tlt))
lam1 :=
 (0.5) * (-(((1) / (taulc)) + ((1) / (taulc))) + ((((((1) / (taulc)) + ((1) / (taulc)))^(2)) - (4) *
           ((((1) / (taulc)) * ((1) / (tault))) - (((1) / (tauc)) * ((1) / (taut))))))^{(0.5)}
lam2 :=
 (0.5) * (-(((1) / (taulc)) + ((1) / (tault))) - ((((((1) / (taulc)) + ((1) / (tault)))^{(2)}) - (4) *
           ((((((1) / (taulc))) * (((1) / (tault)))) - (((1) / (tauc)) * ((1) / (taut))))))^((0.5))
c2 := ((1) / ((taut) * ((lam1) - (lam2)))) *
  (((taut) * ((lam1) + (((1) / (tau1c)))) * ((MOc) - (Mcinf))) + ((Mtinf) - (MOt)))
c1 := M0c - Mcinf - c2
Mtt := ((c1) * (taut) * ((lam1) + (((1) / (taulc)))) * (Exp[(lam1) * (x)])) +
  ((c2) * (taut) * ((lam2) + (((1) / (tau1c)))) * (Exp[(lam2) * (x)])) + Mtinf
Mct := ((c1) * (Exp[(lam1) * (x)])) + ((c2) * (Exp[(lam2) * (x)])) + (Mcinf)
CombinedMctMtt :=
Which[MDL == 1, Evaluate@Mtt,
   MDL == 2, Evaluate@Mct,
    True, 0];
taut
tau1c
tau1t
1 / taulc
1 / tault
31926 tauc
   6361
Tlc tauc
Tlc + tauc
```

```
\frac{31926 \text{ Tlt tauc}}{6361 (\text{Tlt} + \frac{31926 \text{ tauc}}{6361})}
\frac{\text{Tlc} + \text{tauc}}{\text{Tlc} \text{ tauc}}
\frac{6361 (\text{Tlt} + \frac{31926 \text{ tauc}}{6361})}{31926 \text{ Tlt} \text{ tauc}}
```

Users : You may want to adjust the best guesses for the parameters, the upper and lower limits, and the number of interations below :

```
NLM1 = NonlinearModelFit [CombinedData, CombinedMctMtt,
```

```
{{T1c, 1.8, 0.5, 5}, {T1t, 1.8, 0.5, 5}, {tauc, 1, 0.1, 100}, {M0c, 6000, 3000, 12000},
{M0t, -25000, -35000, -15000}}, {x, MDL}, MaxIterations → 1000000]
```

FindMinimum::reged :

```
The point {5., 2.63505, 1.14774, 6000.01, -25000.} is at the edge of the search region \left\{\frac{1}{2}, 5\right\} in coordinate
```

1 and the computed search direction points outside the region. \gg

FittedModel [<1>

NLM1[{"ParameterTable", "RSquared"}]

FittedModel::constr :

The property values {ParameterTable} assume an unconstrained model. The results for these properties may

not be valid, particularly if the fitted parameters are near a constraint boundary. \gg

		Estimate	Standard Error	t Statistic	P-Value	
	T1c	5.	2.16016	2.31464	0.0241315	
Į	T1t	2.63505	0.0841792	31.3029	1.89899×10^{-38}	. 0.998259
ι	tauc	1.14774	0.143342	8.00703	5.32396×10^{-11}	,
	M0c	6000.01	235.089	25.5223	1.42514×10^{-33}	
	MOt	-25 000.	224.381	-111.417	2.6596×10^{-70}	

param1 = NLM1["BestFitParameters"]

{Tlc \rightarrow 5., Tlt \rightarrow 2.63505, tauc \rightarrow 1.14774, M0c \rightarrow 6000.01, M0t \rightarrow - 25000.}

```
Tlc = Tlc /. paraml
Tlt = Tlt /. paraml
tauc = tauc /. paraml
MOt = MOt /. paraml
MOc = MOc /. paraml
5.
2.63505
1.14774
- 25 000.
```

```
6000.01
```

```
 \begin{array}{l} \texttt{Plot[Mct, \{x, 0, 35\}, PlotStyle \rightarrow \{\texttt{Thickness[0.01], Black}\}, PlotRange \rightarrow \{\{0, 35\}, \{0, 6500\}\}, \\ \texttt{Frame} \rightarrow \texttt{True, RotateLabel} \rightarrow \texttt{False, BaseStyle} \rightarrow \{\texttt{14, FontFamily} \rightarrow \texttt{"Times"}\}, \\ \texttt{FrameLabel} \rightarrow \{\texttt{"Transfer Time (sec)", "Intensity"}\}, \texttt{Axes} \rightarrow \texttt{False} \end{aligned}
```



```
Plot[Mtt, {x, 0, 35}, PlotStyle → {Thickness[0.01], Black},
PlotRange → {{0, 35}, {-35000, 35000}}, Frame → True,
RotateLabel → False, BaseStyle → {14, FontFamily → "Times"},
FrameLabel → {"Transfer Time (sec)", "Intensity"}, Axes → False]
```


kct
0.871275
ktc
0.173595
Keq
31926
6361

The next line calculates points from the theoretical curve in case you want to graph the curve in another application:

```
theorMtt = Table[{x, Mtt}, {x, 0, 15, 0.01}]
theorMct = Table[{x, Mct}, {x, 0, 15, 0.01}]
```

The next line exports a file containing the theoretical points just calculated.

```
Export["OHProl.txt", theorMtt, "Table"]
Export["OHPro2.txt", theorMct, "Table"]
```

Just to confirm, here are graphs of the theoretical points and the data.

```
ListPlot[theorMtt, PlotStyle → {PointSize[0.01], Black}, PlotRange → {{0, 15}, {70, +120}},
Frame → True, RotateLabel → False, BaseStyle → {14, FontFamily → "Times"},
FrameLabel → {"Transfer Time (sec)", "Intensity"}, Axes → False]
Show[%, lp2]
ListPlot[theorMct, PlotStyle → {PointSize[0.01], Black}, PlotRange → {{0, 15}, {-75, +50}},
Frame → True, RotateLabel → False, BaseStyle → {14, FontFamily → "Times"},
FrameLabel → {"Transfer Time (sec)", "Intensity"}, Axes → False]
Show[%, lp3]
Clear[Tlt, Tlc, taut, tauc, M0t, M0c, Mtinf, Mcinf, tault,
taulc, laml, lam2, cl, c2, Mct, Mtt, Keq, kct, ktc, paraml, NLM1]
```

END

© Conditions of Use:

This software is in the public domain and may be distrubuted and modified freely by any user. It is provided "as is", with absolutely no warranty expressed or implied. Any use is at your own risk.

Errors, suggestions for improvement, or other comments may be sent to:

Joe O'Neil Department of Chemistry University of Manitoba 390 Parker Building 144 Dysart Rd. Winnipeg, MB R3T 2N2 TELE: (204) 474-6697 FAX: (204) 474-7608 joneil@cc.umanitoba.ca http://home.cc.umanitoba.ca/~joneil/ Last updated: June 20 2007

Fitting Inversion Magnetization Transfer NMR

Experiments

DESCRIPTION

Magnetization transfer is used to measure the following Proline isomerization:

> kct cis <----> trans ktc

where Keq = kct/ktc = taut/tauc = Mtinf/Mcinf.

This notebook will simultaneously fit the time-dependent magnetization transfers of Pro 1H or 13C *cis* (Mct) and *trans* (Mtt) NMR signals as a function of the inversion transfer time (t) in Inversion Magnetization Transfer experiments. In the following pulse sequence, the 13C or 1H *cis* resonance is selectively inverted using a shaped pulse. Its recovery during t is determined by its intrinsic T1c, magnetization transfer to and from the *trans* resonance, and the T1t of the *trans* resonance. Similarly, the steady-state magnetization of the *trans* resonance is modulated by exchange with the *cis* resonance:

p(x)sel ------t-----p/2(x,y.-x.-y)---acquire

The resonance of the *trans* isomer of Pro (Mtt) shows the following time dependence:

Mtt = (c1)(t t)(1 + 1/t 1c)exp(1 1*t) + (c2)(t 2)(1 2+1/t 1c)exp(1 2t) + Mtint

The resonance of the *cis* isomer of Pro (Mtc) shows the following time dependence:

$$Mtc = (c1)exp(1 1*t) + (c2)exp(1 2t) + Mcinf$$

T1c and T1t are the longitudinal relaxation times the resonances would have in the absence of exchange.

t c and t t are the lifetimes of the *cis* and *trans* conformers and kct and ktc are the corresponding rate constants.

t 1c and t 1t are the effective relaxation times of the *cis* and *trans* resonances when relaxation and exchange are both occuring and are defined below in terms of T1c and t c, T1t and t t.

l 1 and l 2 are related to the time constants t c, t t, t 1c, and t 1t, and are defined below.

c1 and c2 are defined below.

The user must enter Mcinf and Mtinf, the magnetization measured after 5 T1 periods for the *cis* and *trans* resonances.

The program calculates t t from t c, Mcinf, and Mtinf as: t t = t c * Mtinf/M-cinf.

The notebook will also generate graphs of the data and the fitted curve and statistical information on the goodness of the fit. A table of points can be produced to permit export of the theoretical curve. **References:**

Alger and Prestegard (1977) J. Magn. Reson. 27, 137-41. Mariappan and Rabenstein (1992) J. Magn. Reson. 100, 183-8.

Thanks to Maxim A. Dubinnyi for advice on how to fit multiple data sets.

INSTRUCTIONS

Hit the down arrow to move from cell to cell and press "enter" (not return) to execute each calculation. Follow the example below to see the fitting results for one set of data for hydroxy-Pro.

The user may enter data manually, in the form of {Transfer Time, Intensity} pairs, or read in a data files. For the latter, set the directory containing the data in the first line below. If you are not reading in files, move the cursor to the 4th line ("list2") and replace the pairs of points in "list2" with your own data. Do the same with "list3". Alternatively, press enter on the line "list2" and follow the fitting of those data.

In the first 3 lines below we set a directory, read in a data file, and check the number of points in the file.

SetDirectory ["~/Documents/JOE/Mathematica/Research/FrankSchweizer/Venkata"];

translist2 = Import["NaxTransHypOmeUnGlyT.xls"]; cislist3 = Import["NaxTransHypOmeUnGlyC.xls"];

cislist := {{0.001, 20109}, {0.01, 19861}, {0.02, 19427}, {0.03, 19909}, {0.04, 18807}, {0.05, 18429}, {0.08, 17583}, {0.1, 17020}, {0.15, 15765}, {0.2, 14590}, {0.3, 12576}, {0.4, 10918}, {0.5, 9620.5}, {0.6, 8514.9}, {0.8, 6966.4}, {1, 6127.8}, {1.2, 5756.1}, {1.5, 5723.4}, {2, 6582.6}, {3, 9221.4}, {4, 11597}, {5, 13360}, {6, 14598}, {8, 16198}, {10, 17065}, {12, 17568}, {15, 17998}, {18, 18326}, {20, 18492}, {25, 18787}, {30, 18868}}

```
translist := {{0.001, -93855}, {0.01, -92803}, {0.02, -91397}, {0.03, -90124},
{0.04, -88767}, {0.05, -87475}, {0.08, -84115}, {0.1, -81859}, {0.15, -76686},
{0.2, -71830}, {0.3, -62832}, {0.4, -54572}, {0.5, -46782}, {0.6, -39734},
{0.8, -27053}, {1, -15947}, {1.2, -6271.6}, {1.5, 6406.5}, {2, 23158},
{3, 46543}, {4, 61605}, {5, 71540}, {6, 78307}, {8, 86513}, {10, 90880},
{12, 93569}, {15, 96091}, {18, 97741}, {20, 98470}, {25, 99927}, {30, 100700}}
```

```
totalres4 = Length[translist];
totalres6 = Length[cislist]
```

31

```
lp2 = ListPlot[cislist, PlotStyle → {PointSize[0.02], Black},
               \texttt{PlotRange} \rightarrow \{\{0, 35\}, \{0, 25000\}\}, \text{ Frame} \rightarrow \texttt{True}, \text{ RotateLabel} \rightarrow \texttt{False}, 
               BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity, "Inte
               Axes \rightarrow False, BaseStyle \rightarrow {14, FontFamily \rightarrow "Times"}]
                                                 25000
                                                  20000
                                                 15000
Intensity
                                                   10000
                                                           5000
                                                                                 0
                                                                                                                                                10 15 20 25
                                                                                                                                                                                                                                                                       30 35
                                                                                      0
                                                                                                                     5
                                                                                                                                                          Transfer Time
lp3 = ListPlot[translist, PlotStyle → {PointSize[0.02], Black},
               \texttt{PlotRange} \rightarrow \{\{0, 35\}, \{-110\,000, 110\,000\}\}, \texttt{Frame} \rightarrow \texttt{True}, \texttt{RotateLabel} \rightarrow \texttt{False}, 
               BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity, "Inte
               Axes \rightarrow False, BaseStyle \rightarrow {14, FontFamily \rightarrow "Times"}]
                                                         100 000
                                                               50000
Intensity
                                                                                              0
                                                    -50\,000
                                               -100\,000
                                                                                                      0
                                                                                                                                5
                                                                                                                                                         10 15 20 25 30 35
                                                                                                                                                                 Transfer Time
CombinedData = Join[Insert[#, 1, 2] & /@translist, Insert[#, 2, 2] & /@cislist];
```

CombinedData // TableForm

0.001 1 -93855 0.01 1 -92803

0.02	1	-91397
0.03	1	-90124
0.04	1	-88767
0.05	1	-87475
0.08	1	-84115
0.1	1	-81859
0.15	1	-76686
0.2	1	-71830
0.3	1	-62832
0.4	1	-54572
0.5	1	-46782
0.6	1	- 39 734
0.8	1	-27053
1	1	-15947
1.2	1	-6271.6
1.5	1	6406.5
2	1	23158
3	1	46 543
4	1	61605
5	1	71540
6	1	78 307
8	1	86513
10	1	90880
12	1	93 569
15	1	96091
18	1	97741
20	1	98 470
25	1	99 927
30	1	100 700
0.001	2	20109
0.01	2	19861
0.02	2	19 427
0.03	2	19909
0.04	2	18807
0.05	2	18 429
0.08	2	17 583
0.1	2	17020
0.15	2	15 765
0.2	2	14590
0.3	2	12576
0.4	2	10918
0.5	2	9620.5
0.6	2	8514.9
0.8	2	6966.4
1	2	6127.8

1.2	2	5756.1
1.5	2	5723.4
2	2	6582.6
3	2	9221.4
4	2	11 597
5	2	13360
б	2	14598
8	2	16198
10	2	17065
12	2	17568
15	2	17998
18	2	18326
20	2	18492
25	2	18787
30	2	18868

Clear [T1t, T1c, taut, tauc, M0t, M0c, Mtinf, Mcinf, tault, tau1c, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]

Users : Enter your values for Mcinf and Mtinf below :

Mcinf := 18868

Mtinf := 100 700

```
taut := ((tauc) * (Mtinf)) / (Mcinf)
kct := 1 / tauc
ktc := 1 / taut
Keq := (Mtinf) / (Mcinf)
taulc := ((T1c) * (tauc)) / ((tauc) + (T1c))
tault := ((Tlt) * (taut)) / ((taut) + (Tlt))
lam1 :=
 (0.5) * (-(((1) / (taulc)) + ((1) / (taulc))) + ((((((1) / (taulc)) + ((1) / (taulc)))^(2)) - (4) *
           ((((1) / (taulc)) * ((1) / (tault))) - (((1) / (tauc)) * ((1) / (taut))))))^{(0.5)}
lam2 :=
 (0.5) * (-(((1) / (taulc)) + ((1) / (tault))) - ((((((1) / (taulc)) + ((1) / (tault)))^{(2)}) - (4) *
           ((((((1) / (taulc))) * (((1) / (tault)))) - (((1) / (tauc)) * ((1) / (taut))))))^((0.5))
c2 := ((1) / ((taut) * ((lam1) - (lam2)))) *
  (((taut) * ((lam1) + (((1) / (tau1c)))) * ((MOc) - (Mcinf))) + ((Mtinf) - (MOt)))
c1 := M0c - Mcinf - c2
Mtt := ((c1) * (taut) * ((lam1) + (((1) / (taulc)))) * (Exp[(lam1) * (x)])) +
  ((c2) * (taut) * ((lam2) + (((1) / (taulc)))) * (Exp[(lam2) * (x)])) + Mtinf
Mct := ((c1) * (Exp[(lam1) * (x)])) + ((c2) * (Exp[(lam2) * (x)])) + (Mcinf)
CombinedMctMtt :=
Which[MDL == 1, Evaluate@Mtt,
   MDL == 2, Evaluate@Mct,
    True, 0];
taut
tau1c
tau1t
1 / taulc
1 / tault
475 tauc
   89
T1c tauc
Tlc + tauc
```

475 Tlt tauc 89 (T1t + $\frac{475 \text{ tauc}}{1000}$) 89 Tlc + tauc T1c tauc 89 (T1t + $\frac{475 \text{ tauc}}{}$ 89 475 Tlt tauc

Users : You may want to adjust the best guesses for the parameters, the upper and lower limits, and the number of interations below :

```
NLM1 = NonlinearModelFit [CombinedData, CombinedMctMtt,
```

```
{{Tlc, 2, 0.5, 5}, {Tlt, 2, 0.5, 5}, {tauc, 1, 0.1, 100}, {Moc, 20000, 10000, 30000},
 {MOt, -95000, -150000, -30000}, {x, MDL}, MaxIterations \rightarrow 1000000]
```

FindMinimum::reged :

The point {5., 2.54472, 1.04081, 20000., -95000.} is at the edge of the search region $\left\{\frac{1}{2}, 5\right\}$ in coordinate

1 and the computed search direction points outside the region. \gg

FittedModel

Which
$$\left[MDL = 1, \ll 1 \gg, MDL = 2, \\ 18\,868 + \frac{\ll 1 \gg}{\ll 1 \gg} + e^{0.5\,(\ll 1 \gg)x} \left(-18\,868 + \ll 19 \gg - \frac{89\,\ll 1 \gg\,(\ll 1 \gg \ll 1 \gg)}{\ll 1 \gg} \right), \text{ True, } 0 \right]$$

NLM1[{"ParameterTable", "RSquared"}]

FittedModel::constr :

The property values {ParameterTable} assume an unconstrained model. The results for these properties may not be valid, particularly if the fitted parameters are near a constraint boundary. \gg

		Estimate	Standard Error	t Statistic	P-Value	
	T1c	5.	2.11033	2.3693	0.0212319	
ſ	T1t	2.54472	0.0719304	35.3776	1.75839×10^{-40}	. 0.998634
ι	tauc	1.04081	0.110532	9.41641	3.24919×10^{-13}	,
	M0c	20 000.	766.051	26.1079	2.14428×10^{-33}	
	M0t	-95 000.	724.769	-131.076	2.1152×10^{-72}	

param1 = NLM1["BestFitParameters"]

{T1c \rightarrow 5., T1t \rightarrow 2.54472, tauc \rightarrow 1.04081, M0c \rightarrow 20000., M0t \rightarrow -95000.}

```
T1c = T1c /. param1
T1t = T1t /. param1
tauc = tauc /. param1
MOt = MOt /. paraml
MOc = MOc /. param1
5.
2.54472
1.04081
-95000.
20 000.
Plot[Mct, {x, 0, 35}, PlotStyle \rightarrow {Thickness[0.01], Black},
 \texttt{PlotRange} \rightarrow \{\{0, 35\}, \{0, 25000\}\}, \text{ Frame} \rightarrow \texttt{True},
 RotateLabel \rightarrow False, BaseStyle \rightarrow {14, FontFamily \rightarrow "Times"},
 \texttt{FrameLabel} \rightarrow \{\texttt{"Transfer Time (sec)", "Intensity"}\}, \texttt{Axes} \rightarrow \texttt{False}\}
         25\,000
         20000
         15000
Intensity
          10000
            5000
                0
                 0
                       5
                             10
                                  15 20
                                              25
                                                     30
                                                           35
                            Transfer Time (sec)
Show[%, lp2]
         25000
         20000
          15000
Intensity
          10000
           5000
                0
                 0
                       5
                             10
                                  15
                                        20
                                              25
                                                     30
                                                           35
                            Transfer Time (sec)
```

```
Plot[Mtt, {x, 0, 35}, PlotStyle \rightarrow {Thickness[0.01], Black},
 PlotRange → {{0, 35}, {-110000, 110000}}, Frame → True,
 RotateLabel \rightarrow False, BaseStyle \rightarrow {14, FontFamily \rightarrow "Times"},
 FrameLabel \rightarrow {"Transfer Time (sec)", "Intensity"}, Axes \rightarrow False]
          100 000
           50 0 00
Intensity
                 0
         -50\,000
        -100\,000
                  0
                       5
                            10 15 20 25 30 35
                          Transfer Time (sec)
Show[%, lp3]
          100 000
           50 0 00
Intensity
                 0
         -50\,000
        -100\,000
                                                     35
                  0
                       5
                            10
                               15 20 25 30
```

Transfer Time (sec)

Following are the rate constants in sec-1 and the equilibrium constant:

kct 0.960788 ktc 0.180021 Keq 475 89

The next line calculates points from the theoretical curve in case you want to graph the curve in another application:

theorMtt = Table[{x, Mtt}, {x, 0, 15, 0.01}]
theorMct = Table[{x, Mct}, {x, 0, 15, 0.01}]

The next line exports a file containing the theoretical points just calculated.

Export["OHProl.txt", theorMtt, "Table"]
Export["OHPro2.txt", theorMct, "Table"]

Just to confirm, here are graphs of the theoretical points and the data.

```
ListPlot[theorMtt, PlotStyle → {PointSize[0.01], Black}, PlotRange → {{0, 15}, {70, +120}},
Frame → True, RotateLabel → False, BaseStyle → {14, FontFamily → "Times"},
FrameLabel → {"Transfer Time (sec)", "Intensity"}, Axes → False]
Show[%, lp2]
ListPlot[theorMct, PlotStyle → {PointSize[0.01], Black}, PlotRange → {{0, 15}, {-75, +50}},
Frame → True, RotateLabel → False, BaseStyle → {14, FontFamily → "Times"},
FrameLabel → {"Transfer Time (sec)", "Intensity"}, Axes → False]
Show[%, lp3]
Clear[Tlt, Tlc, taut, tauc, M0t, M0c, Mtinf, Mcinf, tault,
taulc, laml, lam2, cl, c2, Mct, Mtt, Keq, kct, ktc, paraml, NLM1]
```

END

© Conditions of Use:

This software is in the public domain and may be distrubuted and modified freely by any user. It is provided "as is", with absolutely no warranty expressed or implied. Any use is at your own risk.

Errors, suggestions for improvement, or other comments may be sent to:

Joe O'Neil Department of Chemistry University of Manitoba 390 Parker Building 144 Dysart Rd. Winnipeg, MB R3T 2N2 TELE: (204) 474-6697 FAX: (204) 474-7608 joneil@cc.umanitoba.ca http://home.cc.umanitoba.ca/~joneil/ Last updated: June 20 2007

Fitting Inversion Magnetization Transfer NMR Experiments

DESCRIPTION

Magnetization transfer is used to measure the following Proline isomerization:

> kct cis <----> trans ktc

where Keq = kct/ktc = taut/tauc = Mtinf/Mcinf.

This notebook will simultaneously fit the time-dependent magnetization transfers of Pro 1H or 13C *cis* (Mct) and *trans* (Mtt) NMR signals as a function of the inversion transfer time (t) in Inversion Magnetization Transfer experiments. In the following pulse sequence, the 13C or 1H *cis* resonance is selectively inverted using a shaped pulse. Its recovery during t is determined by its intrinsic T1c, magnetization transfer to and from the *trans* resonance, and the T1t of the *trans* resonance. Similarly, the steady-state magnetization of the *trans* resonance is modulated by exchange with the *cis* resonance:

p(x)sel -----t----p/2(x,y.-x.-y)---acquire

The resonance of the *trans* isomer of **Pro (Mtt)** shows the following time dependence:

Mtt = (c1)(t t)(1 + 1/t 1c)exp(1 1*t) + (c2)(t 2)(1 2+1/t 1c)exp(1 2t) + Mtin(1 + 1/t 1c)exp(1 + 1

The resonance of the *cis* isomer of Pro (Mtc) shows the following time dependence:

$$Mtc = (c1)exp(1 1*t) + (c2)exp(1 2t) + Mcinf$$

T1c and T1t are the longitudinal relaxation times the resonances would have in the absence of exchange.

t c and t t are the lifetimes of the *cis* and *trans* conformers and kct and ktc are the corresponding rate constants.

t 1c and t 1t are the effective relaxation times of the *cis* and *trans* resonances when relaxation and exchange are both occuring and are defined below in terms of T1c and t c, T1t and t t.

l 1 and l 2 are related to the time constants t c, t t, t 1c, and t 1t, and are defined below.

c1 and c2 are defined below.

The user must enter Mcinf and Mtinf, the magnetization measured after 5 T1 periods for the *cis* and *trans* resonances.

The program calculates t t from t c, Mcinf, and Mtinf as: t t = t c * Mtinf/M-cinf.

The notebook will also generate graphs of the data and the fitted curve and statistical information on the goodness of the fit. A table of points can be produced to permit export of the theoretical curve. References:

Alger and Prestegard (1977) J. Magn. Reson. 27, 137-41. Mariappan and Rabenstein (1992) J. Magn. Reson. 100, 183-8.

Thanks to *Maxim A. Dubinnyi* for advice on how to fit multiple data sets.

INSTRUCTIONS

Hit the down arrow to move from cell to cell and press "enter" (not return) to execute each calculation. Follow the example below to see the fitting results for one set of data for hydroxy-Pro.

The user may enter data manually, in the form of {Transfer Time, Intensity} pairs, or read in a data files. For the latter, set the directory containing the data in the first line below. If you are not reading in files, move the cursor to the 4th line ("list2") and replace the pairs of points in "list2" with your own data. Do the same with "list3". Alternatively, press enter on the line "list2" and follow the fitting of those data.

In the first 3 lines below we set a directory, read in a data file, and check the number of points in the file.

SetDirectory["~/Documents/JOE/Mathematica/Research/FrankSchweizer/Venkata"];

translist2 = Import["NaxTransHypOmeUnGlyT.xls"]; cislist3 = Import["NaxTransHypOmeUnGlyC.xls"];

cislist := {{0.001, 46494}, {0.01, 46173}, {0.015, 45869}, {0.02, 45602},
 {0.03, 45048}, {0.04, 44657}, {0.05, 44170}, {0.08, 42768}, {0.1, 41933},
 {0.15, 39852}, {0.2, 38011}, {0.3, 34822}, {0.4, 32110}, {0.5, 29993},
 {0.6, 28320}, {0.8, 25970}, {1, 24681}, {1.2, 24185}, {1.5, 24431}, {2, 26281},
 {3, 31370}, {4, 35783}, {5, 38993}, {6, 41253}, {8, 44010}, {10, 45841},
 {12, 46447}, {15, 47494}, {18, 48352}, {20, 48792}, {25, 49330}, {30, 49584}}

```
translist := {{0.001, -86 252}, {0.01, -84 948}, {0.015, -84 032}, {0.02, -83 650},
{0.03, -82 242}, {0.04, -80 807}, {0.05, -79 521}, {0.08, -75 749}, {0.1, -73 176},
{0.15, -67 174}, {0.2, -61 352}, {0.3, -50 672}, {0.4, -40 985}, {0.5, -32 113},
{0.6, -23 912}, {0.8, -9456}, {1, 2748.6}, {1.2, 13 305}, {1.5, 26 469}, {2, 43 348},
{3, 65 343}, {4, 78 574}, {5, 86 957}, {6, 92 510}, {8, 99 055}, {10, 102 590},
{12, 104 860}, {15, 107 170}, {18, 108 740}, {20, 109 650}, {25, 110 960}, {30, 111 770}}
```

```
totalres4 = Length[translist];
totalres6 = Length[cislist]
```

32

```
lp2 = ListPlot[cislist, PlotStyle → {PointSize[0.02], Black},
                               \texttt{PlotRange} \rightarrow \{\{0, 35\}, \{20\,000, 50\,000\}\}, \texttt{Frame} \rightarrow \texttt{True}, \texttt{RotateLabel} \rightarrow \texttt{False}, \texttt{PlotRange} \rightarrow \{\{0, 35\}, \{20\,000, 50\,000\}\}, \texttt{Frame} \rightarrow \texttt{True}, \texttt{RotateLabel} \rightarrow \texttt{False}, \texttt{PlotRange} \rightarrow \texttt{False}, \texttt{PlotRange} \rightarrow \texttt{False}, \texttt{PlotRange} \rightarrow \texttt{False}, \texttt{False} \rightarrow \texttt{False} \rightarrow \texttt{False}, \texttt{False} \rightarrow \texttt{False} \rightarrow
                               BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity, "Inte
                               Axes \rightarrow False, BaseStyle \rightarrow {14, FontFamily \rightarrow "Times"}]
                                                                                                       50000
                                                                                                       45 000
                                                                                                     40 000
 Intensity35000
                                                                                                     30 0 0 0
                                                                                                     25 000
                                                                                                       20000
                                                                                                                                                                                                                                                  5
                                                                                                                                                                                                                                                                                                       10 15 20 25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                30 35
                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                                               Transfer Time
lp3 = ListPlot[translist, PlotStyle → {PointSize[0.02], Black},
                               \texttt{PlotRange} \rightarrow \{\{0, 35\}, \{-120\,000, 120\,000\}\}, \texttt{Frame} \rightarrow \texttt{True}, \texttt{RotateLabel} \rightarrow \texttt{False}, 
                               BaseStyle \rightarrow \{14, FontFamily \rightarrow "Times"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity"\}, FrameLabel \rightarrow \{"Transfer Time", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity", "Intensity, "Int
                               Axes \rightarrow False, BaseStyle \rightarrow {14, FontFamily \rightarrow "Times"}]
                                                                                                                                                                                                                                                                                                                                                                                                                                    ÷
                                                                                                                       100 000
                                                                                                                                   50 0 00
 Intensity
                                                                                                                                                                                                  0
                                                                                                             -50\,000
                                                                                                 -100\,000
                                                                                                                                                                                                                                                                                                                           10 15 20 25 30 35
                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                          5
                                                                                                                                                                                                                                                                                                                                               Transfer Time
```

CombinedData = Join[Insert[#, 1, 2] & /@translist, Insert[#, 2, 2] & /@cislist]; CombinedData // TableForm

0.001 1 -86252 0.01 1 -84948 0.015 1 -84032

0.02	1	-83650
0.03	1	- 82 242
0.04	1	- 80 807
0.05	1	- 79 521
0.08	1	- 75 749
0.1	1	-73176
0.15	1	-67174
0.2	1	-61352
0.3	1	- 50 672
0.4	1	- 40 985
0.5	1	-32113
0.6	1	-23912
0.8	1	-9456
1	1	2748.6
1.2	1	13305
1.5	1	26 4 6 9
2	1	43348
3	1	65 3 4 3
4	1	78 574
5	1	86 957
6	1	92510
8	1	99 0 5 5
10	1	102590
12	1	104860
15	1	107170
18	1	108740
20	1	109650
25	1	110 960
30	1	111 770
0.001	2	46 494
0.01	2	46173
0.015	2	45 869
0.02	2	45 602
0.03	2	45 0 4 8
0.04	2	44 657
0.05	2	44170
0.08	2	42768
0.1	2	41933
0.15	2	39 852
0.2	2	38011
0.3	2	34 822
0.4	2	32110
0.5	2	29 993
0.6	2	28 3 2 0
0.8	2	25 970

1	2	24681
1.2	2	24185
1.5	2	24 4 3 1
2	2	26 281
3	2	31370
4	2	35 783
5	2	38 993
б	2	41 253
8	2	44010
10	2	45 841
12	2	46 447
15	2	47 494
18	2	48 352
20	2	48 792
25	2	49 3 3 0
30	2	49 584

Clear [T1t, T1c, taut, tauc, M0t, M0c, Mtinf, Mcinf, tault, tau1c, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]

Users : Enter your values for Mcinf and Mtinf below :

Mcinf := 49584

Mtinf := 111 770

```
taut := ((tauc) * (Mtinf)) / (Mcinf)
kct := 1 / tauc
ktc := 1 / taut
Keq := (Mtinf) / (Mcinf)
taulc := ((T1c) * (tauc)) / ((tauc) + (T1c))
tault := ((Tlt) * (taut)) / ((taut) + (Tlt))
lam1 :=
 (0.5) * (-(((1) / (taulc)) + ((1) / (taulc))) + ((((((1) / (taulc)) + ((1) / (taulc)))^(2)) - (4) *
           ((((1) / (taulc)) * ((1) / (tault))) - (((1) / (tauc)) * ((1) / (taut))))))^{(0.5)}
lam2 :=
 (0.5) * (-(((1) / (taulc)) + ((1) / (taulc))) - ((((((1) / (taulc)) + ((1) / (taulc)))^(2)) - (4) *
           ((((((1) / (taulc))) * (((1) / (tault)))) - (((1) / (tauc)) * ((1) / (taut))))))^((0.5))
c2 := ((1) / ((taut) * ((lam1) - (lam2)))) *
  (((taut) * ((lam1) + (((1) / (tau1c)))) * ((MOc) - (Mcinf))) + ((Mtinf) - (MOt)))
c1 := M0c - Mcinf - c2
Mtt := ((c1) * (taut) * ((lam1) + (((1) / (taulc)))) * (Exp[(lam1) * (x)])) +
  ((c2) * (taut) * ((lam2) + (((1) / (tau1c)))) * (Exp[(lam2) * (x)])) + Mtinf
Mct := ((c1) * (Exp[(lam1) * (x)])) + ((c2) * (Exp[(lam2) * (x)])) + (Mcinf)
CombinedMctMtt :=
Which[MDL == 1, Evaluate@Mtt,
   MDL == 2, Evaluate@Mct,
    True, 0];
taut
tau1c
tau1t
1 / taulc
1 / tault
55 885 tauc
   24792
Tlc tauc
Tlc + tauc
```

```
\frac{55885 \text{ Tlt tauc}}{24792 (\text{Tlt} + \frac{55885 \text{ tauc}}{24792})}
\frac{\text{Tlc} + \text{tauc}}{\text{Tlc} \text{ tauc}}
24792 (\text{Tlt} + \frac{55885 \text{ tauc}}{24792})
```

24792

55885 Tlt tauc

Users : You may want to adjust the best guesses for the parameters, the upper and lower limits, and the number of interations below :

```
NLM1 = NonlinearModelFit [CombinedData, CombinedMctMtt,
```

```
{{T1c, 1.4, 0.5, 5}, {T1t, 2, 0.1, 10}, {tauc, 1, 0.1, 100}, {M0c, 50000, 10000, 80000}, {M0t, -90000, -200000, -10000}}, {x, MDL}, MaxIterations \rightarrow 1000000]
```

NonlinearModelFit::lstol :

The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal but

was unable to find a sufficient decrease in the norm of the residual. You may need

more than MachinePrecision digits of working precision to meet these tolerances. \gg

FittedModel Which[MDL == 1, $\ll 4 \gg$, 0]

NLM1[{"ParameterTable", "RSquared"}]

FittedModel::constr :

The property values {ParameterTable} assume an unconstrained model. The results for these properties may not be valid, particularly if the fitted parameters are near a constraint boundary. >>>

		Estimate	Standard Error	t Statistic	P-Value	
	T1c	4.43998	0.684587	6.48563	1.99594×10^{-8}	
Į	T1t	2.50305	0.0625134	40.0402	1.78701×10^{-44}	. 0.99921}
ι	tauc	1.72364	0.0969296	17.7824	2.23594×10^{-25}	,j
	M0c	46957.8	611.354	76.8095	7.76098×10^{-61}	
	M0t	-85 207.4	581.78	-146.46	2.772×10^{-77}	

param1 = NLM1["BestFitParameters"]

 $\{\texttt{Tlc} \rightarrow \texttt{4.43998} \texttt{, Tlt} \rightarrow \texttt{2.50305} \texttt{, tauc} \rightarrow \texttt{1.72364} \texttt{, M0c} \rightarrow \texttt{46957.8} \texttt{, M0t} \rightarrow \texttt{-85207.4} \}$

```
T1c = T1c /. param1
T1t = T1t /. param1
tauc = tauc /. param1
MOt = MOt /. paraml
MOc = MOc /. param1
4.43998
2.50305
1.72364
-85207.4
46957.8
Plot[Mct, {x, 0, 35}, PlotStyle \rightarrow {Thickness[0.01], Black},
 PlotRange → {{0, 35}, {20000, 50000}}, Frame → True,
 RotateLabel \rightarrow False, BaseStyle \rightarrow {14, FontFamily \rightarrow "Times"},
 \texttt{FrameLabel} \rightarrow \{\texttt{"Transfer Time (sec)", "Intensity"}\}, \texttt{Axes} \rightarrow \texttt{False}\}
         50000
         45 000
         40 000
Intensity35000
         30 0 0 0
         25 000
         20000
                0
                     5
                          10
                               15
                                    20
                                          25
                                                 30
                                                      35
                          Transfer Time (sec)
Show[%, lp2]
         50000
         45 000
         40 000
Intensity35000
         30 0 00
         2500
         20000
                0
                     5
                          10
                               15
                                     20
                                          25
                                                 30
                                                      35
                          Transfer Time (sec)
```

```
Plot[Mtt, {x, 0, 35}, PlotStyle → {Thickness[0.01], Black},
PlotRange → {{0, 35}, {-120000, 120000}}, Frame → True,
RotateLabel → False, BaseStyle → {14, FontFamily → "Times"},
FrameLabel → {"Transfer Time (sec)", "Intensity"}, Axes → False]
```


Following are the rate constants in sec-1 and the equilibrium constant:

kct 0.580168 ktc 0.257377 Keq 55885 24792

The next line calculates points from the theoretical curve in case you want to graph the curve in another application:

theorMtt = Table[{x, Mtt}, {x, 0, 15, 0.01}]

 $\{\{0., -85207.4\}, \{0.01, -83934.3\}, \{0.02, -82672.3\}, \{0.03, -81421.3\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1\}, \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -80181.1], \{0.04, -801$ $\{0.05, -78951.8\}, \{0.06, -77733.1\}, \{0.07, -76524.9\}, \{0.08, -75327.2\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8\}, \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74139.8], \{0.09, -74$ $\{0.1, -72962.7\}, \{0.11, -71795.6\}, \{0.12, -70638.6\}, \{0.13, -69491.5\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -68354.3\}, \{0.14, -685$ $\{0.15, -67226.7\}, \{0.16, -66108.8\}, \{0.17, -65000.4\}, \{0.18, -63901.4\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62811.7\}, \{0.19, -62$ $\{0.2, -61731.3\}, \{0.21, -60660.\}, \{0.22, -59597.8\}, \{0.23, -58544.6\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -57500.2\}, \{0.24, -5750$ $\{0.25, -56464.5\}, \{0.26, -55437.6\}, \{0.27, -54419.3\}, \{0.28, -53409.5\},$ $\{0.29, -52408.1\}, \{0.3, -51415.1\}, \{0.31, -50430.4\}, \{0.32, -49453.8\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -48485.3\}, \{0.33, -484855.3\}, \{0.33, -484855.3\}, \{0.33, -484855.3\}, \{0.33, -48455.3\}, \{0.33, -48555.3\}, \{0.33, -48555.3\}, \{0.33, -48555.3\}, \{0.33, \{0.34, -47524.9\}, \{0.35, -46572.3\}, \{0.36, -45627.7\}, \{0.37, -44690.8\},$ $\{0.38, -43761.6\}, \{0.39, -42840.\}, \{0.4, -41926.\}, \{0.41, -41019.5\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120.4\}, \{0.42, -40120$ $\{0.43, -39228.6\}, \{0.44, -38344.\}, \{0.45, -37466.6\}, \{0.46, -36596.4\}, \{0.47, -35733.2\}, \{0.47, -35733.2\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -36596.4\}, \{0.47, -365$ $\{0.48, -34876.9\}, \{0.49, -34027.6\}, \{0.5, -33185.\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.48, -34876.9\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.51, -32349.3\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -31520.2\}, \{0.52, -3152$ $\{0.53, -30697.8\}, \{0.54, -29882.\}, \{0.55, -29072.6\}, \{0.56, -28269.7\}, \{0.57, -27473.2\}, \{0.57, -27473.2\}, \{0.57, -27473.2\}, \{0.57, -27473.2\}, \{0.57, -27473.2\}, \{0.57, -27473.2\}, \{0.57, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -29882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -28882.3\}, \{0.58, -288$ $\{0.58, -26683.\}, \{0.59, -25899.\}, \{0.6, -25121.2\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.61, -24349.6\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\}, \{0.62, -23584.\},$ $\{0.63, -22824.5\}, \{0.64, -22070.9\}, \{0.65, -21323.1\}, \{0.66, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20581.3\}, \{0.61, -20$ $\{0.67, -19845.2\}, \{0.68, -19114.8\}, \{0.69, -18390.1\}, \{0.7, -17671.\}, \{0.71, -16957.5\}, \{0.68, -19114.8\}, \{0.69, -18390.1\}, \{0.71, -17671.\}, \{0.71, -16957.5\}, \{0.68, -19114.8\}, \{0.69, -18390.1\}, \{0.71, -17671.\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.5\}, \{0.71, -16957.$ $\{0.72, -16249.4\}, \{0.73, -15546.9\}, \{0.74, -14849.7\}, \{0.75, -14157.9\},$ $\{0.76, -13471.3\}, \{0.77, -12790.\}, \{0.78, -12113.9\}, \{0.79, -11443.\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -10777.1\}, \{0.8, -107777.1\}, \{0.8, -107777.1\}, \{0.8, -107777.1\}, \{0.8, -107777.1\}, \{0.8, -107777.1\}, \{0.8, -107777.1\}, \{0.8, -107777.1\}, \{0.8, -10777$ {0.81, -10116.3}, {0.82, -9460.52}, {0.83, -8809.66}, {0.84, -8163.71}, {0.85, -7522.61}, $\{0.86, -6886.31\}, \{0.87, -6254.79\}, \{0.88, -5627.98\}, \{0.89, -5005.84\}, \{0.9, -4388.33\}, \{0.89, -5005.84\}, \{0.89, -5005.84\}, \{0.89, -4388.33\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -5005.84\}, \{0.80, -500$ $\{0.91, -3775.41\}, \{0.92, -3167.03\}, \{0.93, -2563.15\}, \{0.94, -1963.72\}, \{0.95, -1368.71\}, \{0.91, -1963.72\}, \{0.95, -1368.71\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -1963.72\}, \{0.91, -19$ $\{0.96, -778.073\}, \{0.97, -191.766\}, \{0.98, 390.251\}, \{0.99, 968.018\}, \{1., 1541.57\}, \{0.98, 390.251\}, \{0.99, 968.018\}, \{1., 1541.57\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98, 390.251\}, \{0.98,$ $\{1.01, 2110.96\}, \{1.02, 2676.21\}, \{1.03, 3237.38\}, \{1.04, 3794.48\}, \{1.05, 4347.57\},$ {1.06, 4896.68}, {1.07, 5441.85}, {1.08, 5983.11}, {1.09, 6520.51}, {1.1, 7054.07}, $\{1.11, 7583.83\}, \{1.12, 8109.83\}, \{1.13, 8632.1\}, \{1.14, 9150.67\}, \{1.15, 9665.59\},$ $\{1.16, 10176.9\}, \{1.17, 10684.6\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.2, 12186.5\}, \{1.18, 11188.7\}, \{1.18, 11188.7\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11689.3\}, \{1.19, 11690.3\}, \{1.19, 11690.3\}, \{1.19, 11690.3\}, \{1.19, 11690.3\}, \{1.19, 11690.3\}, \{1.19, 11690.3\}, \{1.19, 11690.3\}, \{1.19, 11690.3\}, \{1.$ $\{1.21, 12680.1\}, \{1.22, 13170.3\}, \{1.23, 13657.2\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.25, 14620.7\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 14140.6\}, \{1.24, 141400.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.24, 14040.6\}, \{1.$ $\{1.26, 15097.6\}, \{1.27, 15571.1\}, \{1.28, 16041.4\}, \{1.29, 16508.4\}, \{1.3, 16972.3\}, \{1.26, 15097.6\}, \{1.27, 15571.1\}, \{1.28, 16041.4\}, \{1.29, 16508.4\}, \{1.3, 16972.3\}, \{1.28, 16041.4\}, \{1.29, 16508.4\}, \{1.3, 16972.3\}, \{1.28, 16041.4\}, \{1.29, 16508.4\}, \{1.3, 16972.3\}, \{1.28, 16041.4\}, \{1.29, 16508.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 16041.4\}, \{1.29, 1$ {1.31, 17433.1}, {1.32, 17890.6}, {1.33, 18345.1}, {1.34, 18796.5}, {1.35, 19244.9}, {1.36, 19690.2}, {1.37, 20132.6}, {1.38, 20572.}, {1.39, 21008.4}, {1.4, 21441.9}, $\{1.41,\ 21\,872.6\},\ \{1.42,\ 22\,300.3\},\ \{1.43,\ 22\,725.3\},\ \{1.44,\ 23\,147.4\},\ \{1.45,\ 23\,566.7\},$ $\{1.46, 23983.3\}, \{1.47, 24397.2\}, \{1.48, 24808.3\}, \{1.49, 25216.7\}, \{1.5, 25622.5\},$ $\{1.51, 26025.6\}, \{1.52, 26426.1\}, \{1.53, 26824.\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.55, 27612.1\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54, 27219.4\}, \{1.54$ {1.56, 28002.4}, {1.57, 28390.1}, {1.58, 28775.4}, {1.59, 29158.2}, {1.6, 29538.6}, {1.61, 29916.5}, {1.62, 30292.}, {1.63, 30665.2}, {1.64, 31036.}, {1.65, 31404.4}, {1.66, 31770.6}, {1.67, 32134.4}, {1.68, 32496.}, {1.69, 32855.3}, {1.7, 33212.3}, $\{1.71,\,33\,567.1\},\,\{1.72,\,33\,919.8\},\,\{1.73,\,34\,270.2\},\,\{1.74,\,34\,618.5\},\,\{1.75,\,34\,964.6\},\,$ $\{1.76, 35308.6\}, \{1.77, 35650.5\}, \{1.78, 35990.3\}, \{1.79, 36328.1\}, \{1.8, 36663.7\},$ {1.81, 36997.3}, {1.82, 37328.9}, {1.83, 37658.5}, {1.84, 37986.1}, {1.85, 38311.8}, {1.86, 38635.4}, {1.87, 38957.2}, {1.88, 39277.}, {1.89, 39594.8}, {1.9, 39910.8}, $\{1.91, 40225.\}, \{1.92, 40537.2\}, \{1.93, 40847.6\}, \{1.94, 41156.2\}, \{1.95, 41463.\},$ {1.96, 41767.9}, {1.97, 42071.1}, {1.98, 42372.5}, {1.99, 42672.1}, {2., 42970.}, {2.06, 44721.5}, {2.07, 45007.6}, {2.08, 45292.}, {2.09, 45574.8}, {2.1, 45856.}, {2.11, 46135.6}, {2.12, 46413.6}, {2.13, 46690.}, {2.14, 46964.9}, {2.15, 47238.3}, {2.16, 47510.1}, {2.17, 47780.3}, {2.18, 48049.1}, {2.19, 48316.4}, {2.2, 48582.1},

{2.21, 48846.4}, {2.22, 49109.3}, {2.23, 49370.7}, {2.24, 49630.6}, {2.25, 49889.1}, {2.26, 50146.2}, {2.27, 50401.9}, {2.28, 50656.2}, {2.29, 50909.1}, {2.3, 51160.6}, $\{2.31, 51410.7\}, \{2.32, 51659.5\}, \{2.33, 51907.\}, \{2.34, 52153.1\}, \{2.35, 52397.9\}, \{2.34, 52153.1\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52397.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 52797.9\}, \{2.35, 527977.9\}, \{2.35, 52777.9\}, \{2.35, 52777.9\}, \{2.35, 52777.9\}, \{2.35, 52777777777777$ $\{2.36, 52641.4\}, \{2.37, 52883.5\}, \{2.38, 53124.4\}, \{2.39, 53364.\}, \{2.4, 53602.3\},$ $\{2.41, 53839.4\}, \{2.42, 54075.1\}, \{2.43, 54309.7\}, \{2.44, 54543.\}, \{2.45, 54775.1\}, \{2.41, 54543.\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45, 54775.1\}, \{2.45,$ $\{ \texttt{2.46, 55\,005.9} \}, \ \{ \texttt{2.47, 55\,235.6} \}, \ \{ \texttt{2.48, 55\,464.} \}, \ \{ \texttt{2.49, 55\,691.2} \}, \ \{ \texttt{2.5, 55\,917.3} \},$ $\{ \texttt{2.51}, \texttt{56142.2} \}, \ \{ \texttt{2.52}, \ \texttt{56365.9} \}, \ \{ \texttt{2.53}, \ \texttt{56588.5} \}, \ \{ \texttt{2.54}, \ \texttt{56809.9} \}, \ \{ \texttt{2.55}, \ \texttt{57030.1} \},$ $\{2.56, 57249.3\}, \{2.57, 57467.3\}, \{2.58, 57684.1\}, \{2.59, 57899.9\}, \{2.6, 58114.6\},$ $\{ \texttt{2.61, 58\,328.2} \}, \ \{ \texttt{2.62, 58\,540.7} \}, \ \{ \texttt{2.63, 58\,752.1} \}, \ \{ \texttt{2.64, 58\,962.4} \}, \ \{ \texttt{2.65, 59\,171.7} \}, \ \{ \texttt{2.64, 58\,962.4} \}, \ \{ \texttt{2.65, 59\,171.7} \}, \ \{ \texttt{2.64, 58\,962.4} \}, \ \{ \texttt{2.65, 59\,171.7} \}, \ \{ \texttt{2.66, 58\,171.7} \}, \ \{ \texttt{2.66, 58\,171.7$ $\{2.66, 59380.\}, \{2.67, 59587.1\}, \{2.68, 59793.3\}, \{2.69, 59998.4\}, \{2.7, 60202.5\},$ {2.71, 60405.5}, {2.72, 60607.6}, {2.73, 60808.6}, {2.74, 61008.7}, {2.75, 61207.7}, $\{ \texttt{2.76, 61405.8} \}, \ \{ \texttt{2.77, 61602.9} \}, \ \{ \texttt{2.78, 61799.} \}, \ \{ \texttt{2.79, 61994.2} \}, \ \{ \texttt{2.8, 62188.4} \},$ $\{2.81, 62381.7\}, \{2.82, 62574.\}, \{2.83, 62765.4\}, \{2.84, 62955.8\}, \{2.85, 63145.3\}, \{2.84, 62955.8\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85, 63145.3\}, \{2.85$ $\{2.86, 63334.\}, \{2.87, 63521.6\}, \{2.88, 63708.4\}, \{2.89, 63894.3\}, \{2.9, 64079.3\},$ $\{ \texttt{2.91, 64263.4} \}, \ \{ \texttt{2.92, 64446.6} \}, \ \{ \texttt{2.93, 64629.} \}, \ \{ \texttt{2.94, 64810.5} \}, \ \{ \texttt{2.95, 64991.1} \},$ {2.96, 65170.8}, {2.97, 65349.7}, {2.98, 65527.8}, {2.99, 65705.}, {3., 65881.4}, $\{3.01, 66056.9\}, \{3.02, 66231.7\}, \{3.03, 66405.6\}, \{3.04, 66578.7\}, \{3.05, 66750.9\},$ $\{3.06, 66922.4\}, \{3.07, 67093.1\}, \{3.08, 67263.\}, \{3.09, 67432.1\}, \{3.1, 67600.4\},$ $\{3.11, 67767.9\}, \{3.12, 67934.7\}, \{3.13, 68100.7\}, \{3.14, 68265.9\}, \{3.15, 68430.4\}, \{3.12, 67934.7\}, \{3.13, 68100.7\}, \{3.14, 68265.9\}, \{3.15, 68430.4\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.15, 68430.4\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.14, 68265.9\}, \{3.1$ {3.16, 68594.1}, {3.17, 68757.1}, {3.18, 68919.3}, {3.19, 69080.8}, {3.2, 69241.5}, $\{3.21, 69401.5\}, \{3.22, 69560.8\}, \{3.23, 69719.4\}, \{3.24, 69877.3\}, \{3.25, 70034.4\}, \{3.24, 69877.3\}, \{3.25, 70034.4\}, \{3.24, 69877.3\}, \{3.25, 70034.4\}, \{3.24, 69877.3\}, \{3.25, 70034.4\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 69877.3\}, \{3.24, 698777.3\}, \{3.24, 698777.3\}, \{3.24, 698777.3\}, \{3.24, 698777.3\},$ $\{ \texttt{3.26, 70190.8} \}, \ \{ \texttt{3.27, 70346.6} \}, \ \{ \texttt{3.28, 70501.6} \}, \ \{ \texttt{3.29, 70655.9} \}, \ \{ \texttt{3.3, 70809.6} \},$ $\{3.31, 70962.5\}, \{3.32, 71114.8\}, \{3.33, 71266.4\}, \{3.34, 71417.3\}, \{3.35, 71567.6\},$ $\{3.36, 71717.2\}, \{3.37, 71866.1\}, \{3.38, 72014.4\}, \{3.39, 72162.\}, \{3.4, 72309.\},$ $\{ \texttt{3.41}, \texttt{72455.3} \}, \\ \{ \texttt{3.42}, \texttt{72601.} \}, \\ \{ \texttt{3.43}, \texttt{72746.} \}, \\ \{ \texttt{3.44}, \texttt{72890.4} \}, \\ \{ \texttt{3.45}, \texttt{73034.2} \}, \\ \{ \texttt{3.45}, \texttt{73034.2} \}, \\ \{ \texttt{3.46}, \texttt{72746.} \}, \\ \{ \texttt{3.46}, \texttt{72890.4} \}, \\ \{ \texttt{3.46}, \texttt{32890.4} \}, \\ \{ \texttt{3.46}, \texttt{32890.4}$ $\{ \texttt{3.46}, \texttt{73}\texttt{177.4} \}, \\ \{ \texttt{3.47}, \texttt{73}\texttt{319.9} \}, \\ \{ \texttt{3.48}, \texttt{73}\texttt{461.8} \}, \\ \{ \texttt{3.49}, \texttt{73}\texttt{603.1} \}, \\ \{ \texttt{3.5}, \texttt{73}\texttt{743.8} \}, \\ \{ \texttt{3.67}, \texttt{73}, \texttt{$ $\{ \texttt{3.51}, \texttt{73883.8} \}, \ \{ \texttt{3.52}, \texttt{74023.3} \}, \ \{ \texttt{3.53}, \texttt{74162.2} \}, \ \{ \texttt{3.54}, \texttt{74300.4} \}, \ \{ \texttt{3.55}, \texttt{74438.1} \},$ $\{ \texttt{3.56}, \texttt{74575.2} \}, \\ \{ \texttt{3.57}, \texttt{74711.7} \}, \\ \{ \texttt{3.58}, \texttt{74847.6} \}, \\ \{ \texttt{3.59}, \texttt{74982.9} \}, \\ \{ \texttt{3.6}, \texttt{75117.7} \}, \\ \{ \texttt{3.6}, \texttt{751.7} \},$ $\{3.61, 75251.8\}, \{3.62, 75385.4\}, \{3.63, 75518.5\}, \{3.64, 75650.9\}, \{3.65, 75782.9\}, \{3.61, 75782.9\}, \{3.61, 75782.9\}, \{3.62, 75782.9\}, \{3.63, 75782.9\}, \{3.64, 75650.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.65, 75782.9\}, \{3.6$ {3.66, 75914.2}, {3.67, 76045.}, {3.68, 76175.2}, {3.69, 76304.9}, {3.7, 76434.1}, $\{ \texttt{3.71}, \texttt{76562.7} \}, \ \{ \texttt{3.72}, \texttt{76690.8} \}, \ \{ \texttt{3.73}, \texttt{76818.3} \}, \ \{ \texttt{3.74}, \texttt{76945.3} \}, \ \{ \texttt{3.75}, \texttt{77071.8} \},$ {3.76, 77197.7}, {3.77, 77323.1}, {3.78, 77448.}, {3.79, 77572.4}, {3.8, 77696.2}, {3.81, 77819.6}, {3.82, 77942.4}, {3.83, 78064.7}, {3.84, 78186.5}, {3.85, 78307.9}, {3.86, 78428.7}, {3.87, 78549.}, {3.88, 78668.8}, {3.89, 78788.2}, {3.9, 78907.}, {3.91, 79025.4}, {3.92, 79143.2}, {3.93, 79260.6}, {3.94, 79377.5}, {3.95, 79494.}, {3.96, 79609.9}, {3.97, 79725.4}, {3.98, 79840.5}, {3.99, 79955.}, {4., 80069.1}, $\{4.06, 80744.1\}, \{4.07, 80855.\}, \{4.08, 80965.5\}, \{4.09, 81075.5\}, \{4.1, 81185.1\},$ $\{4.11, 81294.3\}, \{4.12, 81403.\}, \{4.13, 81511.3\}, \{4.14, 81619.1\}, \{4.15, 81726.5\}, \{4.14, 81619.1\}, \{4.15, 81726.5\}, \{4.14, 81619.1\}, \{4.15, 81726.5\}, \{4.14, 81619.1\}, \{4.15, 81726.5\}, \{4.14, 81619.1\}, \{4.15, 81726.5\}, \{4.14, 81619.1\}, \{4.15, 81726.5\}, \{4.14, 81619.1\}, \{4.15, 81726.5\}, \{4.14, 81619.1\}, \{4.15, 81726.5\}, \{4.14, 81619.1\}, \{4.15, 81726.5\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.15, 81726.5\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.15, 81726.5\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.15, 81726.5\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14, 81619.1\}, \{4.14$ {4.21, 82362.2}, {4.22, 82466.7}, {4.23, 82570.7}, {4.24, 82674.4}, {4.25, 82777.6}, {4.26, 82880.5}, {4.27, 82982.9}, {4.28, 83085.}, {4.29, 83186.6}, {4.3, 83287.8}, $\{4.31, 83388.7\}, \{4.32, 83489.1\}, \{4.33, 83589.2\}, \{4.34, 83688.8\}, \{4.35, 83788.1\}, \{4.34, 83688.8\}, \{4.35, 83788.1\}, \{4.34, 83688.8\}, \{4.35, 83788.1\}, \{4.34, 83688.8\}, \{4.35, 83788.1\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.35, 83788.1\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 83688.8\}, \{4.34, 836888.8\}, \{4.34, 836888.8\}, \{4.34, 836888.8\}, \{4.34, 836888.8\}, \{4.34, 836888.8\}, \{4.34, 836888888, 8368888, 83688888, 8368888, 8368888, 836888, 836888, 836888, 836888, 836888, 83688, 836888, 836888, 836888, 836888, 8368888, 836888, 8368888, 836888, 8368888, 836888, 836888, 836888, 836888, 836888, 836888, 836888, 836888, 836888, 836888, 836888, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 83688, 836888, 83688, 836888, 836888, 836888, 8368888, 836$ $\{4.36, 8387.\}, \{4.37, 83985.5\}, \{4.38, 84083.7\}, \{4.39, 84181.4\}, \{4.4, 84278.8\}, \{4.38, 84083.7\}, \{4.39, 84181.4\}, \{4.4, 84278.8\}, \{4.38, 84083.7\}, \{4.39, 84181.4\}, \{4.4, 84278.8\}, \{4.38, 84083.7\}, \{4.39, 84181.4\}, \{4.4, 84278.8\}, \{4.38, 84083.7\}, \{4.39, 84181.4\}, \{4.4, 84278.8\}, \{4.38, 84083.7\}, \{4.39, 84181.4\}, \{4.4, 84278.8\}, \{4.38, 84083.7\}, \{4.39, 84181.4\}, \{4.4, 84278.8\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.39, 84181.4\}, \{4.38, 84083.7\}, \{4.39, 84181.4\}, \{4.4, 84278.8\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.39, 84181.4\}, \{4.4, 84278.8\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}, \{4.38, 84083.7\}$ $\{4.41, 84375.8\}, \{4.42, 84472.4\}, \{4.43, 84568.6\}, \{4.44, 84664.5\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 84760.\}, \{4.45, 8$

$\{4.46, 84855.1\}, \{4.47, 84949.9\}, \{4.48, 85044.3\}, \{4.49, 85138.3\}, \{4.5, 85232.\},$,	
$\{4.51, 85325.3\}, \{4.52, 85418.3\}, \{4.53, 85510.9\}, \{4.54, 85603.1\}, \{4.55, 85695.\}$	},	
{4.56, 85786.6}, {4.57, 85877.8}, {4.58, 85968.6}, {4.59, 86059.1}, {4.6, 86149.3}	},	
$\{4.61, 86239.1\}, \{4.62, 86328.5\}, \{4.63, 86417.7\}, \{4.64, 86506.5\}, \{4.65, 86594.9\}$	€},	
{4.66, 86683.1}, {4.67, 86770.8}, {4.68, 86858.3}, {4.69, 86945.4}, {4.7, 87032.2}	},	
{4.71, 87118.7}, {4.72, 87204.8}, {4.73, 87290.7}, {4.74, 87376.2}, {4.75, 87461.3}	3},	
{4.76, 87546.2}, {4.77, 87630.7}, {4.78, 87714.9}, {4.79, 87798.9}, {4.8, 87882.4}	},	
{4.81, 87965.7}, {4.82, 88048.7}, {4.83, 88131.3}, {4.84, 88213.7}, {4.85, 88295.7}	7},	
$\{4.86, 88377.5\}, \{4.87, 88458.9\}, \{4.88, 88540.\}, \{4.89, 88620.8\}, \{4.9, 88701.4\}$,	
{4.91, 88781.6}, {4.92, 88861.5}, {4.93, 88941.1}, {4.94, 89020.5}, {4.95, 89099.5	5},	
{4.96, 89178.2}, {4.97, 89256.7}, {4.98, 89334.9}, {4.99, 89412.7}, {5., 89490.3}	,	
{5.01, 89 567.6}, {5.02, 89 644.6}, {5.03, 89 721.4}, {5.04, 89 797.8}, {5.05, 89 874.1	},	
{5.06, 89949.9}, {5.07, 90025.5}, {5.08, 90100.8}, {5.09, 90175.9}, {5.1, 90250.7}	},	
{5.11, 90 325.2}, {5.12, 90 399.4}, {5.13, 90 473.4}, {5.14, 90 547.}, {5.15, 90 620.5}	},	
{5.16, 90 693.6}, {5.17, 90 766.5}, {5.18, 90 839.1}, {5.19, 90 911.5}, {5.2, 90 983.6}	},	
{5.21, 91 055.4}, {5.22, 91 126.9}, {5.23, 91 198.2}, {5.24, 91 269.3}, {5.25, 91 340.1	1},	
{5.26, 91 410.6}, {5.27, 91 480.9}, {5.28, 91 550.9}, {5.29, 91 620.6}, {5.3, 91 690.2}	},	
{5.31, 91759.4}, {5.32, 91828.4}, {5.33, 91897.2}, {5.34, 91965.7}, {5.35, 92033.9}	9}.	
{5.36, 92101.9}, {5.37, 92169.7}, {5.38, 92237.2}, {5.39, 92304.5}, {5.4, 92371.5}	},	
$\{5.41, 92438.3\}, \{5.42, 92504.9\}, \{5.43, 92571.2\}, \{5.44, 92637.3\}, \{5.45, 92703.1\}$,. 1},	
{5.46, 92768.7}, {5.47, 92834.1}, {5.48, 92899.2}, {5.49, 92964.1}, {5.5, 93028.7}	},	
{5.51, 93 093.2}, {5.52, 93 157.4}, {5.53, 93 221.3}, {5.54, 93 285.1}, {5.55, 93 348.6	5}.	
{5.56, 93 411.9}, {5.57, 93 474.9}, {5.58, 93 537.7}, {5.59, 93 600.3}, {5.6, 93 662.7}	}.	
{5.61, 93724.9}, {5.62, 93786.8}, {5.63, 93848.5}, {5.64, 93910.}, {5.65, 93971.3}	}.	
$\{5, 66, 94032, 4\}, \{5, 67, 94093, 2\}, \{5, 68, 94153, 8\}, \{5, 69, 94214, 2\}, \{5, 7, 94274, 4\}$	}.	
{5.71, 94 334.4}, {5.72, 94 394.1}, {5.73, 94 453.7}, {5.74, 94 513.}, {5.75, 94 572.2}	}.	
{5.76, 94631.1}, {5.77, 94689.8}, {5.78, 94748.3}, {5.79, 94806.6}, {5.8, 94864.7}	}.	
{5.81, 94 922.5}, {5.82, 94 980.2}, {5.83, 95 037.7}, {5.84, 95 095.}, {5.85, 95 152.}		
{5.86, 95 208.9}, {5.87, 95 265.5}, {5.88, 95 322.}, {5.89, 95 378.3}, {5.9, 95 434.3}	,	
{5.91, 95 490.2}, {5.92, 95 545.9}, {5.93, 95 601.3}, {5.94, 95 656.6}, {5.95, 95 711.5}	, 7	
{5.96, 95766.6}, {5.97, 95821.3}, {5.98, 95875.8}, {5.99, 95930.1}, {6., 95984.2}		
<i>{</i> 6.01, 96038.1 <i>}</i> , <i>{</i> 6.02, 96091.9 <i>}</i> , <i>{</i> 6.03, 96145.4 <i>}</i> , <i>{</i> 6.04, 96198.8 <i>}</i> , <i>{</i> 6.05, 96251.9	, 9},	
{6.06, 96304.9}, {6.07, 96357.7}, {6.08, 96410.3}, {6.09, 96462.8}, {6.1, 96515.}	, .	
<i>{</i> 6.11, 96567,1 <i>}</i> , <i>{</i> 6.12, 96618,9 <i>}</i> , <i>{</i> 6.13, 96670,6 <i>}</i> , <i>{</i> 6.14, 96722,1 <i>}</i> , <i>{</i> 6.15, 96773,5	, 5},	
{6.16, 96824.6}, {6.17, 96875.6}, {6.18, 96926.4}, {6.19, 96977.}, {6.2, 97027.5}		
<i>{</i> 6.21, 97 077.7 <i>}</i> , <i>{</i> 6.22, 97 127.8 <i>}</i> , <i>{</i> 6.23, 97 177.7 <i>}</i> , <i>{</i> 6.24, 97 227.5 <i>}</i> , <i>{</i> 6.25, 97 277. <i>}</i>	}.	
<i>{</i> 6.26, 97 326.4 <i>}</i> , <i>{</i> 6.27, 97 375.7 <i>}</i> , <i>{</i> 6.28, 97 424.7 <i>}</i> , <i>{</i> 6.29, 97 473.6 <i>}</i> , <i>{</i> 6.3, 97 522.3 ⁺ }	},	
<i>{</i> 6.31, 97 570.8 <i>}</i> , <i>{</i> 6.32, 97 619.2 <i>}</i> , <i>{</i> 6.33, 97 667.4 <i>}</i> , <i>{</i> 6.34, 97 715.4 <i>}</i> , <i>{</i> 6.35, 97 763.3	3}.	
<i>{</i> 6.36, 97811. <i>}</i> , <i>{</i> 6.37, 97858.5 <i>}</i> , <i>{</i> 6.38, 97905.9 <i>}</i> , <i>{</i> 6.39, 97953.1 <i>}</i> , <i>{</i> 6.4, 98000.1 <i>}</i>		
{6.41, 98047.}, {6.42, 98093.7}, {6.43, 98140.2}, {6.44, 98186.6}, {6.45, 98232.8}	},	
{6.46, 98 278.9}, {6.47, 98 324.8}, {6.48, 98 370.5}, {6.49, 98 416.1}, {6.5, 98 461.6}	},	
<i>{</i> 6.51 <i>,</i> 98 506.8 <i>}, {</i> 6.52 <i>,</i> 98 551.9 <i>}, {</i> 6.53 <i>,</i> 98 596.9 <i>}, {</i> 6.54 <i>,</i> 98 641.7 <i>}, {</i> 6.55 <i>,</i> 98 686.3	3},	
{6.56, 98730.8}, {6.57, 98775.1}, {6.58, 98819.3}, {6.59, 98863.4}, {6.6, 98907.2}	},	
{6.61, 98 951.}, {6.62, 98 994.5}, {6.63, 99 037.9}, {6.64, 99 081.2}, {6.65, 99 124.3}	},	
{6.66, 99167.3}, {6.67, 99210.1}, {6.68, 99252.8}, {6.69, 99295.3}, {6.7, 99337.7}	},	
{6.71,	99379.9}, {6.72,	99 422.}, {6.73, 99 464.}, {6.74, 99 505.8}, {6.75, 99 547.4},
-----------	------------------	---
{6.76,	99588.9}, {6.77,	99630.3}, {6.78, 99671.5}, {6.79, 99712.6}, {6.8, 99753.5},
{6.81,	99794.3}, {6.82,	99835.}, {6.83, 99875.5}, {6.84, 99915.9}, {6.85, 99956.1},
{6.86,	99996.2}, {6.87,	$100036.$ }, {6.88, 100076.}, {6.89, 100116.}, {6.9, 100155.},
{6.91,	100195.}, {6.92,	$100234.$ }, {6.93, 100273.}, {6.94, 100312.}, {6.95, 100351.},
{6.96,	100390.}, {6.97,	100 428.}, {6.98, 100 467.}, {6.99, 100 505.}, {7., 100 543.},
{7.01,	100581.}, {7.02,	$100619.$ }, {7.03, 100657.}, {7.04, 100695.}, {7.05, 100732.},
{7.06,	100770.}, {7.07,	100807.}, {7.08, 100844.}, {7.09, 100881.}, {7.1, 100918.},
{7.11,	100955.}, {7.12,	100992.}, $\{7.13, 101028.\}, \{7.14, 101065.\}, \{7.15, 101101.\},$
{7.16,	101137.}, {7.17,	101173.}, {7.18, 101209.}, {7.19, 101245.}, {7.2, 101280.},
${7.21},$	101316.}, {7.22,	101 351.}, {7.23, 101 387.}, {7.24, 101 422.}, {7.25, 101 457.},
${7.26},$	101492.}, {7.27,	$101527.$ }, {7.28, 101561.}, {7.29, 101596.}, {7.3, 101630.},
{7.31,	101665.}, {7.32,	$\texttt{101 699.}, \ \{\texttt{7.33, 101 733.}\}, \ \{\texttt{7.34, 101 767.}\}, \ \{\texttt{7.35, 101 801.}\},$
{7.36,	101835.}, {7.37,	$101868.$, {7.38, $101902.$ }, {7.39, $101935.$ }, {7.4, $101969.$ },
{7.41,	102002.}, {7.42,	$\texttt{102035.}, \texttt{\{7.43, 102068.\}, \texttt{\{7.44, 102101.\}, \texttt{\{7.45, 102133.\},}}$
{7.46,	102166.}, {7.47,	$102199.$, {7.48, 102231.}, {7.49, 102263.}, {7.5, 102295.},
{7.51,	102328.}, {7.52,	102359.}, $\{7.53, 102391.\}, \{7.54, 102423.\}, \{7.55, 102455.\},$
{7.56,	102486.}, {7.57,	$102518.$, {7.58, 102549.}, {7.59, 102580.}, {7.6, 102611.},
{7.61,	102642.}, {7.62,	$102673.\},\{7.63,102704.\},\{7.64,102735.\},\{7.65,102765.\},$
{7.66,	102796.}, {7.67,	$102826.$, {7.68, 102856.}, {7.69, 102886.}, {7.7, 102916.},
{7.71,	102946.}, {7.72,	$\texttt{102976.}, \texttt{\{7.73, 103006.\}, \texttt{\{7.74, 103036.\}, \texttt{\{7.75, 103065.\},}}$
{7.76,	103095.}, {7.77,	103124.}, {7.78, 103153.}, {7.79, 103182.}, {7.8, 103211.},
{7.81,	103240.}, {7.82,	$103269.$, {7.83, 103298.}, {7.84, 103327.}, {7.85, 103355.},
{7.86,	103384.}, {7.87,	103412.}, {7.88, 103440.}, {7.89, 103468.}, {7.9, 103496.},
{7.91,	103524.}, {7.92,	$103552.$, {7.93, 103580.}, {7.94, 103608.}, {7.95, 103635.},
{7.96,	103663.}, {7.97,	103690.}, {7.98, 103718.}, {7.99, 103745.}, {8., 103772.},
{8.01,	103799.}, {8.02,	$103826.$, {8.03, 103853.}, {8.04, 103879.}, {8.05, 103906.},
{8.06,	103933.}, {8.07,	103959.}, {8.08, 103986.}, {8.09, 104012.}, {8.1, 104038.},
{8.11,	104064.}, {8.12,	104090.}, {8.13, 104116.}, {8.14, 104142.}, {8.15, 104168.},
{8.16,	104194.}, {8.17,	$104219.$, {8.18, 104245.}, {8.19, 104270.}, {8.2, 104295.},
{8.21,	104321.}, {8.22,	104346.}, {8.23, 104371.}, {8.24, 104396.}, {8.25, 104421.},
{8.26,	104446.}, {8.27,	104 470.}, {8.28, 104 495.}, {8.29, 104 520.}, {8.3, 104 544.},
{8.31,	104569.}, {8.32,	104593.}, {8.33, 104617.}, {8.34, 104641.}, {8.35, 104665.},
{8.36,	104689.}, {8.37,	104713.}, {8.38, 104737.}, {8.39, 104761.}, {8.4, 104785.},
{8.41,	104808.}, {8.42,	104832.}, {8.43, 104855.}, {8.44, 104879.}, {8.45, 104902.},
{8.46,	104925.}, {8.47,	104948.}, {8.48, 104971.}, {8.49, 104994.}, {8.5, 105017.},
{8.51,	105040.}, {8.52,	$105063.$, {8.53, 105085.}, {8.54, 105108.}, {8.55, 105130.},
{8.56,	105153.}, {8.57,	105175.}, {8.58, 105197.}, {8.59, 105219.}, {8.6, 105242.},
{8.61,	105264.}, {8.62,	$105286.$, {8.63, 105308.}, {8.64, 105329.}, {8.65, 105351.},
{8.66,	105373.}, {8.67,	105 394.}, {8.68, 105 416.}, {8.69, 105 437.}, {8.7, 105 459.},
{8.71,	105480.}, {8.72,	105501.}, {8.73, 105522.}, {8.74, 105544.}, {8.75, 105565.},
{8.76,	105585.}, {8.77,	105606.}, {8.78, 105627.}, {8.79, 105648.}, {8.8, 105669.},
{8.81,	105689.}, {8.82,	105710.}, {8.83, 105730.}, {8.84, 105751.}, {8.85, 105771.},
{8.86,	105791.}, {8.87,	LU5 811.}, {8.88, LU5 831.}, {8.89, L05 851.}, {8.9, L05 871.},
{8.91,	105891.}, {8.92,	$105911.$, {8.93, 105931.}, {8.94, 105951.}, {8.95, 105970.},

{8.96, 105 990.}, {8.97, 106 009.}, {8.98, 106 029.}, {8.99, 106 048.}, {9., 106 068.},
{9.01, 106087.}, {9.02, 106106.}, {9.03, 106125.}, {9.04, 106144.}, {9.05, 106163.},
{9.06, 106182.}, {9.07, 106201.}, {9.08, 106220.}, {9.09, 106238.}, {9.1, 106257.},
{9.11, 106276.}, {9.12, 106294.}, {9.13, 106313.}, {9.14, 106331.}, {9.15, 106350.},
{9.16, 106368.}, {9.17, 106386.}, {9.18, 106404.}, {9.19, 106422.}, {9.2, 106440.},
{9.21, 106458.}, {9.22, 106476.}, {9.23, 106494.}, {9.24, 106512.}, {9.25, 106530.},
{9.26, 106547.}, {9.27, 106565.}, {9.28, 106583.}, {9.29, 106600.}, {9.3, 106617.},
{9.31, 106635.}, {9.32, 106652.}, {9.33, 106669.}, {9.34, 106687.}, {9.35, 106704.},
{9.36, 106721.}, {9.37, 106738.}, {9.38, 106755.}, {9.39, 106772.}, {9.4, 106789.},
{9.41, 106806.}, {9.42, 106822.}, {9.43, 106839.}, {9.44, 106856.}, {9.45, 106872.},
{9.46, 106889.}, {9.47, 106905.}, {9.48, 106922.}, {9.49, 106938.}, {9.5, 106954.},
{9.51, 106970.}, {9.52, 106987.}, {9.53, 107003.}, {9.54, 107019.}, {9.55, 107035.},
{9.56, 107 051.}, {9.57, 107 067.}, {9.58, 107 083.}, {9.59, 107 099.}, {9.6, 107 114.},
{9.61, 107130.}, {9.62, 107146.}, {9.63, 107161.}, {9.64, 107177.}, {9.65, 107192.},
{9.66, 107 208.}, {9.67, 107 223.}, {9.68, 107 238.}, {9.69, 107 254.}, {9.7, 107 269.},
$\{9.71, 107284.\}, \{9.72, 107299.\}, \{9.73, 107314.\}, \{9.74, 107329.\}, \{9.75, 107344.\},$
$\{9.76, 107359.\}, \{9.77, 107374.\}, \{9.78, 107389.\}, \{9.79, 107404.\}, \{9.8, 107419.\},$
$\{9.81, 107433.\}, \{9.82, 107448.\}, \{9.83, 107462.\}, \{9.84, 107477.\}, \{9.85, 107491.\},$
$\{9.86, 107506.\}, \{9.87, 107520.\}, \{9.88, 107535.\}, \{9.89, 107549.\}, \{9.9, 107563.\},$
$\{9.91, 107577.\}, \{9.92, 107591.\}, \{9.93, 107606.\}, \{9.94, 107620.\}, \{9.95, 107634.\},$
$\{9.96, 107648.\}, \{9.97, 107661.\}, \{9.98, 107675.\}, \{9.99, 107689.\}, \{10., 107703.\},$
$\{10.01, 107717.\}, \{10.02, 107730.\}, \{10.03, 107744.\}, \{10.04, 107757.\}, \{10.05, 107771.\}, \{10.05, 107,771.\}, \{10.05, 107$
$\{10.06, 107784.\}, \{10.07, 107798.\}, \{10.08, 107811.\}, \{10.09, 107825.\}, \{10.1, 107838.\},$
$\{10.11,107851.\},\{10.12,107864.\},\{10.13,107878.\},\{10.14,107891.\},\{10.15,107904.\},\{10.15,107904.\},\{10.14,107891.\},\{10.15,107904.\},\{10.14,107891.\},\{10.15,107904.\},\{10.14,107891.\},\{10.15,107904.\},\{10.15,107904.\},\{10.14,107891.\},\{10.15,107904.\},\{10.14,107891.\},\{10.15,107904.\},\{10.14,107891.\},\{10.15,107904.\},\{10.14,107891.\},\{10.15,107904.\},\{10.14,107891.\},\{10.15,107904.],\{10.15,107904.]$
$\{10.16, 107917.\}, \{10.17, 107930.\}, \{10.18, 107943.\}, \{10.19, 107956.\}, \{10.2, 107969.\},$
$ \{10.21, 107981.\},\{10.22, 107994.\},\{10.23, 108007.\},\{10.24, 108020.\},\{10.25, 108032.\},\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{10.25, 10802.],\{$
$\{10.26, 108045.\}, \{10.27, 108057.\}, \{10.28, 108070.\}, \{10.29, 108082.\}, \{10.3, 108095.\},$
$ \{10.31, 108107.\}, \{10.32, 108120.\}, \{10.33, 108132.\}, \{10.34, 108144.\}, \{10.35, 108156.\}, $
$\{10.36, 108169.\}, \{10.37, 108181.\}, \{10.38, 108193.\}, \{10.39, 108205.\}, \{10.4, 108217.\},$
$\{10.41, 108229.\}, \{10.42, 108241.\}, \{10.43, 108253.\}, \{10.44, 108265.\}, \{10.45, 108276.\}, \{10.45, 108, 108, 108, 108, 108, 108, 108, 108$
$\{10.46, 108288.\}, \{10.47, 108300.\}, \{10.48, 108312.\}, \{10.49, 108323.\}, \{10.5, 108335.\},$
$\{10.51, 108347.\}, \{10.52, 108358.\}, \{10.53, 108370.\}, \{10.54, 108381.\}, \{10.55, 108392.\},$
$\{10.56, 108404.\}, \{10.57, 108415.\}, \{10.58, 108427.\}, \{10.59, 108438.\}, \{10.6, 108449.\},$
$\{10.61, 108460.\}, \{10.62, 108471.\}, \{10.63, 108482.\}, \{10.64, 108494.\}, \{10.65, 108505.\},$
$\{10.66, 108516.\}, \{10.67, 108527.\}, \{10.68, 108538.\}, \{10.69, 108548.\}, \{10.7, 108559.\},$
$\{10.71, 108570.\}, \{10.72, 108581.\}, \{10.73, 108592.\}, \{10.74, 108602.\}, \{10.75, 108613.\},$
$\{10.76, 108624.\}, \{10.77, 108634.\}, \{10.78, 108645.\}, \{10.79, 108655.\}, \{10.8, 108666.\},$
$\{10.81, 108676.\}, \{10.82, 108687.\}, \{10.83, 108697.\}, \{10.84, 108708.\}, \{10.85, 108718.\}, $
$\{10.86, 108728.\}, \{10.87, 108738.\}, \{10.88, 108749.\}, \{10.89, 108759.\}, \{10.9, 108769.\},$
$\{10.91, 108779.\}, \{10.92, 108789.\}, \{10.93, 108799.\}, \{10.94, 108809.\}, \{10.95, 108819.\},$
{10.96, 108 829.}, {10.97, 108 839.}, {10.98, 108 849.}, {10.99, 108 859.}, {11., 108 869.},
{II.01, IU8878.}, {II.02, IU88888.}, {II.03, IU8898.}, {II.04, IU8908.}, {II.05, IU8917.},
{II.06, IU8927.}, {II.07, IU8936.}, {II.08, IU8946.}, {II.09, IU8956.}, {II.1, IU8965.},
<pre>{11.11, 108 9/5.}, {11.12, 108 984.}, {11.13, 108 993.}, {11.14, 109 003.}, {11.15, 109 012.},</pre>
{11.16, 109 021.}, {11.17, 109 031.}, {11.18, 109 040.}, {11.19, 109 049.}, {11.2, 109 058.},

{11.21, 109067.}, {11.22, 10907	6.}, {11.23, 10	9086.}, {11.24, 1	L09095.}, {11.	25, 109104.},
{11.26, 109113.}, {11.27, 10912	2.}, {11.28, 10	9130.}, {11.29, 1	LO9139.}, {11.	3,109148.},
{11.31, 109157.}, {11.32, 10916	6.}, {11.33, 10	9175.}, {11.34, 1	LO9183.}, {11.1	35, 109 192.},
{11.36, 109 201.}, {11.37, 109 21	0.}, {11.38, 10	9218.}, {11.39, 1	LO9227.}, {11.4	4, 109235.},
{11.41, 109244.}, {11.42, 10925	2.}, {11.43, 10	9261.}, {11.44, 1	LO9269.}, {11.4	45, 109 278.},
{11.46, 109286.}, {11.47, 10929	5.}, {11.48, 10	9303.}, {11.49, 1	LO9311.}, {11.	5, 109 319.},
{11.51, 109 328.}, {11.52, 109 33	6.}, {11.53, 10	9344.}, {11.54, 1	LO9352.}, {11.	55, 109 361.},
{11.56, 109369.}, {11.57, 10937	7.}, {11.58, 10	9385.}, {11.59, 1	LO9393.}, {11.	6, 109 401.},
{11.61, 109409.}, {11.62, 10941	7.}, {11.63, 10	9425.}, {11.64, 1	LO9433.}, {11.	65, 109 441.},
{11.66, 109 448.}, {11.67, 109 45	6.}, {11.68, 10	9464.}, {11.69, 1	LO9472.}, {11.	7,109480.},
{11.71, 109 487.}, {11.72, 109 49	5.}, {11.73, 10	9503.}, {11.74, 1	L09510.}, {11.	75, 109518.},
{11.76, 109525.}, {11.77, 10953	3.}, {11.78, 10	9541.}, {11.79, 1	LO9548.}, {11.	8,109556.},
{11.81, 109563.}, {11.82, 10957	0.}, {11.83, 10	9578.}, {11.84, 1	LO9585.}, {11.	85, 109 593.},
{11.86, 109600.}, {11.87, 10960	7.}, {11.88, 10	9615.}, {11.89, 1	LO9622.}, {11.	9,109629.},
{11.91, 109636.}, {11.92, 10964	4.}, {11.93, 10	9651.}, {11.94, 1	LO9658.}, {11.	95,109665.},
{11.96, 109672.}, {11.97, 10967	9.}, {11.98, 10	9686.}, {11.99, 1	LO9693.}, {12.	, 109700.},
{12.01, 109707.}, {12.02, 10971	4.}, {12.03, 10	9721.}, {12.04, 1	LO9728.}, {12.	05,109735.},
{12.06, 109742.}, {12.07, 10974	9.}, {12.08, 10	9755.}, {12.09, 1	L09762.}, {12.3	1, 109769.},
$\{12.11, 109776.\}, \{12.12, 10978\}$	2.}, {12.13, 10	9789.}, {12.14, 1	L09796.}, {12.3	15, 109802.},
{12.16, 109809.}, {12.17, 10981	6.}, {12.18, 10	9822.}, {12.19, 1	L09829.}, {12.	2,109835.},
$\{12.21, 109842.\}, \{12.22, 10984\}$	8.}, {12.23, 10	9855.}, {12.24, 1	LO9861.}, {12.3	25, 109868.},
$\{12.26, 109874.\}, \{12.27, 10988\}$	1.}, {12.28, 10	9887.}, {12.29, 1	L09893.}, {12.	3, 109900.},
$\{12.31, 109906.\}, \{12.32, 10991\}$	2.}, {12.33, 10	9918.}, {12.34, 1	LO9925.}, {12.	35, 109931.},
$\{12.36, 109937.\}, \{12.37, 10994\}$	3.}, {12.38, 10	9949.}, {12.39, 1	L09956.}, {12.4	4, 109962.},
$\{12.41, 109968.\}, \{12.42, 10997\}$	4.}, {12.43, 10	9980.}, {12.44, 1	L09986.}, {12.4	45, 109992.},
$\{12.46, 109998.\}, \{12.47, 11000\}$	4.}, {12.48, 11	0010.}, {12.49, 1	110016.}, {12.	5, 110022.},
$\{12.51, 110028.\}, \{12.52, 11003\}$	4.}, {12.53, 11	0039.}, {12.54, 1	110045.}, {12.	55,110051.},
$\{12.56, 110057.\}, \{12.57, 11006\}$	3.}, {12.58, 11	0068.}, {12.59, 1	L10074.}, {12.	6, 110080.},
$\{12.61, 110086.\}, \{12.62, 11009\}$	1.}, {12.63, 11	0097.}, {12.64, 1	110102.}, {12.	65,110108.},
{12.66, 110114.}, {12.67, 11011	9.}, {12.68, 11	0125.}, {12.69, 1	L10130.}, {12.	7,110136.},
$\{12.71, 110141.\}, \{12.72, 11014\}$	7.}, {12.73, 11	0152.}, {12.74, 1	L10158.}, {12.	75, 110163.},
{12.76, 110169.}, {12.77, 11017	4.}, {12.78, 11	0179.}, {12.79, 1	110185.}, {12.	8, 110190.},
{12.81, 110 196.}, {12.82, 110 20	1.}, {12.83, 11	0206.}, {12.84, 1	110 211. }, {12.	85,110217.},
{12.86, 110 222.}, {12.87, 110 22	7.}, {12.88, 11	0232.}, {12.89, 1	110 237. }, {12.	9,110243.},
$\{12.91, 110248.\}, \{12.92, 11025\}$	3.}, {12.93, 11	0258.}, {12.94, 1	110263.}, {12.	95,110268.},
{12.96, 110 273.}, {12.97, 110 27	8.}, {12.98, 11	0283.}, {12.99, 1	10288.}, {13.	, 110293.},
{13.01, 110 298.}, {13.02, 110 30	3.}, {13.03, 11	0308.}, {13.04, 1	110313.}, {13.	05,110318.},
{13.06, 110 323.}, {13.07, 110 32	8.}, {13.08, 11	0333.}, {13.09, 1	110338.}, {13.	1, 110 342.},
{13.11, 110 347.}, {13.12, 110 35	2.}, {13.13, 11	0357.}, {13.14, 1	10362.}, {13.1	15, 110 366.},
{13.16, 110 371.}, {13.17, 110 37	6.}, {13.18, 11	0380.}, {13.19, 1	110385.}, {13.3	2, 110 390.},
{13.21, 110 394.}, {13.22, 110 39	9.}, {13.23, 11	0404.}, {13.24, 1	110408.}, {13.	25, 110413.},
{13.26, 110 417.}, {13.27, 110 42	2.}, {13.28, 11	0427.}, {13.29, 1	110 431. }, {13.	3, 110436.},
{13.31, 110 440.}, {13.32, 110 44	5.}, {13.33, 11	0449.}, {13.34, 1	110 454.}, {13.	35, 110458.},
{13.36, 110462.}, {13.37, 11046	7.}, {13.38, 11	0 471.}, {13.39, 1	110 476.}, {13.4	4, 110480.},
{13.41, 110484.}, {13.42, 11048	9.}, {13.43, 11	0493.}, {13.44, 1	L10 497.}, {13.4	45, 110 502.},

$ \{13.46, 110506.\}, \{13.47, 110510.\}, \{13.48, 110514.\}, \{13.49, 110519.\}, \{13.5, 110523.\}, $
$\{13.51,110527.\},\{13.52,110531.\},\{13.53,110535.\},\{13.54,110539.\},\{13.55,110544.],\{13.55,110544.],\{13.55,110544.],\{13.55,110544,11054$
$ \{13.56, 110548.\}, \{13.57, 110552.\}, \{13.58, 110556.\}, \{13.59, 110560.\}, \{13.6, 110564.\}, $
$ \{ \texttt{13.61, 110568.} \}, \ \{ \texttt{13.62, 110572.} \}, \ \{ \texttt{13.63, 110576.} \}, \ \{ \texttt{13.64, 110580.} \}, \ \{ \texttt{13.65, 110584.} \}, $
$ \{13.66, 110588.\}, \{13.67, 110592.\}, \{13.68, 110596.\}, \{13.69, 110600.\}, \{13.7, 110604.\}, $
$ \{13.71,110608.\},\{13.72,110612.\},\{13.73,110616.\},\{13.74,110620.\},\{13.75,110624.\},\{13.75,110624.\},\{13.74,110620.\},\{13.75,110624.\},\{13.74,110620.\},\{13.75,110624.\},\{13.74,110620.\},\{13.75,110624.\},\{13.74,110620.\},\{13.75,110624.\},\{13.74,110620.\},\{13.74,110620.\},\{13.75,110624.\},\{13.74,110620.\},\{13.75,110624.\},\{13.74,110620.\},\{13.75,110624.\},\{13.74,110620.],\{13.75,110624.],\{13.74,110620.],\{13.75,110624.],\{13.74,110620.],\{13.75,110624.],\{13.74,110620.],\{13.75,110624.],\{13.74,110620.],\{13.75,110624.],\{13.74,110620.],\{13.75,110624.],\{13.74,110620.],\{13.75,110624.],\{13.74,110620.],\{13.74,11062.],\{13.74,11062.],\{13.74,11062.],\{13.74,11062.],\{13.74,11062.],\{13.74,11062.],\{1$
$ \{13.76, 110628.\}, \{13.77, 110631.\}, \{13.78, 110635.\}, \{13.79, 110639.\}, \{13.8, 110643.\}, $
$ \{ \texttt{13.81, 110647.} \}, \; \{ \texttt{13.82, 110651.} \}, \; \{ \texttt{13.83, 110654.} \}, \; \{ \texttt{13.84, 110658.} \}, \; \{ \texttt{13.85, 110662.} \}, \;$
$ \{13.86, 110666.\}, \{13.87, 110669.\}, \{13.88, 110673.\}, \{13.89, 110677.\}, \{13.9, 110680.\}, $
$ \{ \texttt{13.91, 110684.} \}, \; \{ \texttt{13.92, 110688.} \}, \; \{ \texttt{13.93, 110691.} \}, \; \{ \texttt{13.94, 110695.} \}, \; \{ \texttt{13.95, 110699.} \}, \;$
$ \{13.96, 110702.\}, \{13.97, 110706.\}, \{13.98, 110709.\}, \{13.99, 110713.\}, \{14., 110717.\}, $
$ \{ \texttt{14.01} , \texttt{110720.} \} , \; \{ \texttt{14.02} , \texttt{110724.} \} , \; \{ \texttt{14.03} , \texttt{110727.} \} , \; \{ \texttt{14.04} , \texttt{110731.} \} , \; \{ \texttt{14.05} , \texttt{110734.} \} , \\ $
$ \{ 14.06,110738.\},\{ 14.07,110741.\},\{ 14.08,110745.\},\{ 14.09,110748.\},\{ 14.1,110751.\},$
$ \{ \texttt{14.11} , \texttt{110755.} \} , \; \{ \texttt{14.12} , \texttt{110758.} \} , \; \{ \texttt{14.13} , \texttt{110762.} \} , \; \{ \texttt{14.14} , \texttt{110765.} \} , \; \{ \texttt{14.15} , \texttt{110769.} \} , \\ $
$ \{14.16, 110772.\}, \{14.17, 110775.\}, \{14.18, 110779.\}, \{14.19, 110782.\}, \{14.2, 110785.\}, $
$ \{ 14.21,110789.\},\{ 14.22,110792.\},\{ 14.23,110795.\},\{ 14.24,110799.\},\{ 14.25,110802.\},\{ 14.24,110799.\},\{ 14.25,110802.\},\{ 14.24,110799.\},\{ 14.25,110802.\},\{ 14.24,110799.\},\{ 14.25,110802.\},\{ 14.24,110799.\},\{ 14.25,110802.\},\{ 14.24,110799.\},\{ 14.25,110802.\},\{ 14.24,110799.\},\{ 14.25,110802.\},\{ 14.24,110799.\},\{ 14.25,110802.\},\{ 14.24,110799.],\{ 14.25,110802.],\{ 14.24,110799.],\{ 14.25,110802.],\{ 14.24,110799.],\{ 14.25,110802.],\{ 14.24,110799.],\{ 14.25,110802.],\{ 14.24,110799.],\{ 14.25,110802.],\{ 14.24,110799.],\{ 14.25,110802.],\{ 14.24,110799.],\{ 14.25,110802.],\{ 14.24,110799.],\{ 14.25,110802.],\{ 14.24,110799.],\{ 14.25,110802.],\{ 14.24,110799.],\{ 14.24,110799.],\{ 14.25,110802.],\{ 14.24,11079.],\{ 14.24,11079.],\{ 14.25,110802.],\{ 14.24,11079.],\{ 14.24,11079.],\{ 14.24,11079.],\{ 14.25,110802.],\{ 14.24,11079.],$
$ \{ 14.26,110805.\},\{ 14.27,110808.\},\{ 14.28,110812.\},\{ 14.29,110815.\},\{ 14.3,110818.\},\{ 14.29,110815.\},\{ 14.3,110818.\},\{ 14.29,110815.\},\{ 14.3,110818.\},\{ 14.29,110815.\},\{ 14.3,110818.\},\{ 14.29,110815.\},\{ 14.3,110818.\},\{ 14.3,110818.\},\{ 14.29,110815.\},\{ 14.3,110818,110812,11081,110,$
$ \{ \texttt{14.31} , \texttt{110821.} \} , \; \{ \texttt{14.32} , \texttt{110824.} \} , \; \{ \texttt{14.33} , \texttt{110828.} \} , \; \{ \texttt{14.34} , \texttt{110831.} \} , \; \{ \texttt{14.35} , \texttt{110834.} \} , \\ $
$ \{ 14.36,110837.\},\{ 14.37,110840.\},\{ 14.38,110843.\},\{ 14.39,110847.\},\{ 14.4,110850.\},\{ 14.39,110847.\},\{ 14.4,110850.\},\{ 14.39,110847.\},\{ 14.4,110850.\},\{ 14.39,110847.\},\{ 14.4,110850.\},\{ 14.39,110847.\},\{ 14.4,110850.\},\{ 14.39,110847.\},\{ 14.4,110850.\},\{ 14.39,110847.\},\{ 14.4,110850.\},\{ 14.39,110847.\},\{ 14.4,110850.\},\{ 14.39,110847.],\{ 14.4,110850.],\{ 14.4,11085.],\{ 14.4,11085.],11085.$
$ \{ \texttt{14.41} , \texttt{110853.} \} , \; \{ \texttt{14.42} , \texttt{110856.} \} , \; \{ \texttt{14.43} , \texttt{110859.} \} , \; \{ \texttt{14.44} , \texttt{110862.} \} , \; \{ \texttt{14.45} , \texttt{110865.} \} , \\ $
$ \{ 14.46,110868.\},\{ 14.47,110871.\},\{ 14.48,110874.\},\{ 14.49,110877.\},\{ 14.5,110880.\},\{ 14.49,110877.\},\{ 14.5,110880.\},\{ 14.49,110877.\},\{ 14.5,110880.\},\{ 14.49,110877.\},\{ 14.5,110880.\},\{ 14.49,110877.\},\{ 14.5,110880.\},\{ 14.49,110877.\},\{ 14.5,110880.\},\{ 14.49,110877.\},\{ 14.5,110880.\},\{ 14.49,110877.\},\{ 14.49,110877.\},\{ 14.49,110877.\},\{ 14.49,110877.\},\{ 14.5,110880.],\{ 14.49,110877.],\{ 14.5,110880.],\{ 14.49,110877.],\{ 14.5,110880.],\{ 14.49,110877.],\{ 14.5,110880.],\{ 14.49,110877.],\{ 14.5,110880.],\{ 14.49,110877.],\{ 14.5,110880.],\{ 14.49,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,110874.],\{ 14.44,11084.],\{ 14.44,11084.],\{ 14.44,11084.],\{ 14.44,11084.],\{ 14.44,11084.],\{ 14.44,11084.],\{ 14.44,11084.],\{ 14.44,11084.],$
$ \{ 14.51,110883.\},\{ 14.52,110886.\},\{ 14.53,110889.\},\{ 14.54,110892.\},\{ 14.55,110895.\},\{ 14.54,110892.\},\{ 14.55,110895.\},\{ 14.54,110892.\},\{ 14.55,110895.\},\{ 14.54,110892.\},\{ 14.55,110895.\},\{ 14.54,110892.\},\{ 14.55,110895.\},\{ 14.54,110892.\},\{ 14.55,110895.\},\{ 14.54,110892.\},\{ 14.55,110895.\},\{ 14.54,110892.\},\{ 14.55,110895.\},\{ 14.54,110892.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.54,110892.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.\},\{ 14.55,110895.],\{ 14.55,11089.],\{ 14.55,11089.],\{ 14.55,11089.],\{ 14.5$
$ \{14.56, 110898.\}, \{14.57, 110901.\}, \{14.58, 110904.\}, \{14.59, 110907.\}, \{14.6, 110910.\}, $
$ \{ 14.61,110913.\},\{ 14.62,110916.\},\{ 14.63,110918.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.\},\{ 14.65,110924.\},\{ 14.64,110921.],\{ 14.64,11092.],\{ 14.64,11092.],\{ 14.64,11092.],\{ 14.64,11092.],\{ 14.64,11092.],\{ 14.64$
$ \{ 14.66, 110927. \}, \ \{ 14.67, 110930. \}, \ \{ 14.68, 110933. \}, \ \{ 14.69, 110935. \}, \ \{ 14.7, 110938. \}, $
$ \{ 14.71,110941.\},\{ 14.72,110944.\},\{ 14.73,110947.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.75,110952.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.74,110949.\},\{ 14.75,110952.\},\{ 14.75,110952.\},\{ 14.75,110952.\},\{ 14.75,110952.\},\{ 14.75,110952.\},\{ 14.75,110952.\},\{ 14.75,110952.\},\{ 14.75,110952.\},\{ 14.75,110952.\},\{ 14.75,110952.],\{ 14.75,11095.],\{ 14.75,11095.],\{ 14.75,11095.],\{ 14.75,11095.],\{ 14.75$
$\{14.76, 110955.\}, \{14.77, 110958.\}, \{14.78, 110960.\}, \{14.79, 110963.\}, \{14.8, 110966.\},$
$ \{ 14.81,110969.\},\{ 14.82,110971.\},\{ 14.83,110974.\},\{ 14.84,110977.\},\{ 14.85,110979.\},\{ 14.85,110979.\},\{ 14.84,110977.\},\{ 14.85,110979.\},\{ 14.84,110977.\},\{ 14.85,110979.\},\{ 14.84,110977.\},\{ 14.85,110979.\},\{ 14.84,110977.\},\{ 14.85,110979.\},\{ 14.84,110977.\},\{ 14.85,110979.\},\{ 14.84,110977.\},\{ 14.85,110979.],\{ 14.84,110977.],\{ 14.85,110979.],\{ 14.84,110977.],\{ 14.85,110979.],\{ 14.84,110977.],\{ 14.85,110979.],\{ 14.84,110977.],\{ 14.85,110979.],\{ 14.84,110977.],\{ 14.85,110979.],\{ 14.84,110977.],\{ 14.85,110979.],\{ 14.84,110977.],\{ 14.85,110979.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110977.],\{ 14.84,110974.],\{ 14.84,11094.],\{ 14.84,11094.],\{ 14.84,11094.],\{ 14.84,11094.],\{ 14.84$
$ \{14.86, 110982.\}, \{14.87, 110985.\}, \{14.88, 110987.\}, \{14.89, 110990.\}, \{14.9, 110993.\}, $
$ \{ \texttt{14.91} , \texttt{110} \texttt{995.} \texttt{,} \{ \texttt{14.92} , \texttt{110} \texttt{998.} \texttt{,} \{ \texttt{14.93} , \texttt{111} \texttt{000.} \texttt{,} \{ \texttt{14.94} , \texttt{111} \texttt{003.} \texttt{,} \{ \texttt{14.95} , \texttt{111} \texttt{006.} \texttt{,} \texttt{000} \texttt{,} \texttt{,} \texttt{,} \texttt{000} \texttt{,} \texttt{,} \texttt{,} $
{14.96, 111 008.}, {14.97, 111 011.}, {14.98, 111 013.}, {14.99, 111 016.}, {15., 111 018.}

theorMct = Table[{x, Mct}, {x, 0, 15, 0.01}]

 $\{ \{0., 46957.8\}, \{0.01, 46475.6\}, \{0.02, 46000.5\}, \{0.03, 45532.4\}, \{0.04, 45071.3\}, \\ \{0.05, 44617.\}, \{0.06, 44169.5\}, \{0.07, 43728.7\}, \{0.08, 43294.5\}, \{0.09, 42866.9\}, \\ \{0.1, 42445.7\}, \{0.11, 42030.9\}, \{0.12, 41622.4\}, \{0.13, 41220.2\}, \{0.14, 40824.1\}, \\ \{0.15, 40434.1\}, \{0.16, 40050.1\}, \{0.17, 39672.\}, \{0.18, 39299.8\}, \{0.19, 38933.3\}, \\ \{0.2, 38572.6\}, \{0.21, 38217.6\}, \{0.22, 37868.1\}, \{0.23, 37524.1\}, \{0.24, 37185.6\}, \\ \{0.25, 36852.5\}, \{0.26, 36524.7\}, \{0.27, 36202.1\}, \{0.28, 35884.8\}, \{0.29, 35572.5\}, \\ \{0.3, 35265.3\}, \{0.31, 34963.1\}, \{0.32, 34665.9\}, \{0.33, 34373.5\}, \{0.34, 34086.\}, \\ \{0.4, 32458.5\}, \{0.41, 32203.1\}, \{0.42, 31952.\}, \{0.43, 31705.2\}, \{0.44, 31462.7\}, \\ \{0.45, 31224.4\}, \{0.46, 30990.2\}, \{0.47, 30760.1\}, \{0.48, 30534.1\}, \{0.49, 30312.1\}, \\ \{0.5, 29061.2\}, \{0.56, 28865.8\}, \{0.57, 28674.1\}, \{0.58, 28485.9\}, \{0.59, 28301.2\},$

 $\{0.6, 28120.\}, \{0.61, 27942.3\}, \{0.62, 27767.9\}, \{0.63, 27596.9\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64, 27429.2\}, \{0.64,$ {0.65, 27264.8}, {0.66, 27103.6}, {0.67, 26945.6}, {0.68, 26790.8}, {0.69, 26639.}, $\{0.7, 26490.4\}, \{0.71, 26344.7\}, \{0.72, 26202.1\}, \{0.73, 26062.4\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.74, 25925.6\}, \{0.75, 25955.6\}, \{0.75, 25955.6\}, \{0.75, 25955.6\}, \{0.75$ $\{0.75, 25791.7\}, \{0.76, 25660.6\}, \{0.77, 25532.3\}, \{0.78, 25406.8\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 25284.\}, \{0.79, 2$ {0.8, 25164.}, {0.81, 25046.6}, {0.82, 24931.8}, {0.83, 24819.6}, {0.84, 24710.}, $\{0.85, 24602.9\}, \{0.86, 24498.3\}, \{0.87, 24396.2\}, \{0.88, 24296.5\}, \{0.89, 24199.2\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.81, 24296.5\}, \{0.8$ $\{0.9, 24104.3\}, \{0.91, 24011.7\}, \{0.92, 23921.4\}, \{0.93, 23833.4\}, \{0.94, 23747.6\},$ {0.95, 23664.1}, {0.96, 23582.8}, {0.97, 23503.6}, {0.98, 23426.5}, {0.99, 23351.6}, $\{1.,\,23\,278.7\},\,\{1.01,\,23\,207.9\},\,\{1.02,\,23\,139.1\},\,\{1.03,\,23\,072.3\},\,\{1.04,\,23\,007.4\},\,$ {1.05, 22944.6}, {1.06, 22883.6}, {1.07, 22824.5}, {1.08, 22767.3}, {1.09, 22711.9}, $\{1.1, 22658.3\}, \{1.11, 22606.6\}, \{1.12, 22556.6\}, \{1.13, 22508.3\}, \{1.14, 22461.8\},$ $\{1.15,\,22\,417.\},\,\{1.16,\,22\,373.8\},\,\{1.17,\,22\,332.3\},\,\{1.18,\,22\,292.4\},\,\{1.19,\,22\,254.2\},\,$ $\{1.2, 22217.5\}, \{1.21, 22182.4\}, \{1.22, 22148.8\}, \{1.23, 22116.7\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24, 22086.2\}, \{1.24$ $\{1.25, 22057.1\}, \{1.26, 22029.5\}, \{1.27, 22003.3\}, \{1.28, 21978.6\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.29, 21955.2\}, \{1.2$ $\{1.3,\,21\,933.2\},\,\{1.31,\,21\,912.6\},\,\{1.32,\,21\,893.4\},\,\{1.33,\,21\,875.4\},\,\{1.34,\,21\,858.8\},$ $\{1.35, 21843.4\}, \{1.36, 21829.3\}, \{1.37, 21816.5\}, \{1.38, 21804.9\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.39, 21794.5\}, \{1.3$ $\{1.4, 21785.3\}, \{1.41, 21777.3\}, \{1.42, 21770.5\}, \{1.43, 21764.8\}, \{1.44, 21760.2\},$ $\{1.45, 21756.8\}, \{1.46, 21754.4\}, \{1.47, 21753.1\}, \{1.48, 21752.9\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.49, 21753.8\}, \{1.4$ $\{1.5, 21755.7\}, \{1.51, 21758.6\}, \{1.52, 21762.5\}, \{1.53, 21767.4\}, \{1.54, 21773.3\},$ {1.55, 21780.2}, {1.56, 21788.}, {1.57, 21796.7}, {1.58, 21806.4}, {1.59, 21816.9}, $\{1.6, 21828.4\}, \{1.61, 21840.7\}, \{1.62, 21853.9\}, \{1.63, 21868.\}, \{1.64, 21882.9\},$ $\{1.65, \, 21\, 898.6\}, \, \{1.66, \, 21\, 915.1\}, \, \{1.67, \, 21\, 932.5\}, \, \{1.68, \, 21\, 950.6\}, \, \{1.69, \, 21\, 969.5\},$ $\{1.7, 21989.2\}, \{1.71, 22009.6\}, \{1.72, 22030.8\}, \{1.73, 22052.7\}, \{1.74, 22075.3\},$ $\{1.75, 22098.7\}, \{1.76, 22122.7\}, \{1.77, 22147.4\}, \{1.78, 22172.8\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.79, 22198.9\}, \{1.7$ $\{1.8, 22\,225.6\}, \{1.81, 22\,252.9\}, \{1.82, 22\,280.9\}, \{1.83, 22\,309.5\}, \{1.84, 22\,338.8\},$ $\{1.85, 22368.6\}, \{1.86, 22399.\}, \{1.87, 22430.\}, \{1.88, 22461.6\}, \{1.89, 22493.7\},$ $\{1.9, 22526.4\}, \{1.91, 22559.7\}, \{1.92, 22593.5\}, \{1.93, 22627.8\}, \{1.94, 22662.6\},$ $\{1.95, 22697.9\}, \{1.96, 22733.8\}, \{1.97, 22770.1\}, \{1.98, 22806.9\}, \{1.99, 22844.2\},$ $\{2., 22881.9\}, \{2.01, 22920.1\}, \{2.02, 22958.8\}, \{2.03, 22997.9\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 23037.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 2307.4\}, \{2.04, 23$ $\{2.05, 23077.4\}, \{2.06, 23117.8\}, \{2.07, 23158.6\}, \{2.08, 23199.8\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.09, 23241.4\}, \{2.0$ $\{2.1,\,23\,283.4\},\,\{2.11,\,23\,325.7\},\,\{2.12,\,23\,368.5\},\,\{2.13,\,23\,411.6\},\,\{2.14,\,23\,455.\},\,$ $\{ \texttt{2.15, 23498.9} \}, \{ \texttt{2.16, 23543.} \}, \{ \texttt{2.17, 23587.5} \}, \{ \texttt{2.18, 23632.4} \}, \{ \texttt{2.19, 23677.6} \},$ $\{2.2,\,23\,723.1\},\,\{2.21,\,23\,768.9\},\,\{2.22,\,23\,815.\},\,\{2.23,\,23\,861.4\},\,\{2.24,\,23\,908.1\},$ $\{ \texttt{2.25, 23955.1} \}, \ \{ \texttt{2.26, 24002.4} \}, \ \{ \texttt{2.27, 24050.} \}, \ \{ \texttt{2.28, 24097.8} \}, \ \{ \texttt{2.29, 24145.9} \},$ {2.3, 24194.3}, {2.31, 24242.9}, {2.32, 24291.8}, {2.33, 24340.9}, {2.34, 24390.2}, {2.35, 24439.8}, {2.36, 24489.6}, {2.37, 24539.7}, {2.38, 24589.9}, {2.39, 24640.4}, $\{2.4,\,24\,691.\},\,\{2.41,\,24\,741.9\},\,\{2.42,\,24\,793.\},\,\{2.43,\,24\,844.3\},\,\{2.44,\,24\,895.7\},\,$ $\{2.45, 24947.4\}, \{2.46, 24999.2\}, \{2.47, 25051.2\}, \{2.48, 25103.3\}, \{2.49, 25155.7\},$ $\{2.5, 25208.2\}, \{2.51, 25260.8\}, \{2.52, 25313.6\}, \{2.53, 25366.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54, 25419.6\}, \{2.54$ $\{ \texttt{2.55, 25472.9} \}, \ \{ \texttt{2.56, 25526.2} \}, \ \{ \texttt{2.57, 25579.8} \}, \ \{ \texttt{2.58, 25633.4} \}, \ \{ \texttt{2.59, 25687.1} \},$ $\{2.6, 25741.\}, \{2.61, 25795.\}, \{2.62, 25849.1\}, \{2.63, 25903.3\}, \{2.64, 25957.6\},$ $\{2.65, 26012.1\}, \{2.66, 26066.6\}, \{2.67, 26121.2\}, \{2.68, 26175.9\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.69, 26230.7\}, \{2.6$ $\{2.7, 26285.6\}, \{2.71, 26340.5\}, \{2.72, 26395.6\}, \{2.73, 26450.7\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74, 26505.9\}, \{2.74$ $\{2.75, 26561.1\}, \{2.76, 26616.5\}, \{2.77, 26671.8\}, \{2.78, 26727.3\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.79, 26782.8\}, \{2.7$ {2.8, 26838.3}, {2.81, 26893.9}, {2.82, 26949.6}, {2.83, 27005.3}, {2.84, 27061.},

{2.9, 27396.2}, {2.91, 27452.2}, {2.92, 27508.2}, {2.93, 27564.2}, {2.94, 27620.2}, $\{2.95, 27676.3\}, \{2.96, 27732.3\}, \{2.97, 27788.4\}, \{2.98, 27844.4\}, \{2.99, 27900.5\},$ $\{3., 27956.6\}, \{3.01, 28012.7\}, \{3.02, 28068.8\}, \{3.03, 28124.8\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04, 28180.9\}, \{3.04,$ {3.05, 28237.}, {3.06, 28293.}, {3.07, 28349.1}, {3.08, 28405.1}, {3.09, 28461.1}, $\{ \texttt{3.1, 28517.1} \}, \ \{ \texttt{3.11, 28573.1} \}, \ \{ \texttt{3.12, 28629.} \}, \ \{ \texttt{3.13, 28685.} \}, \ \{ \texttt{3.14, 28740.9} \},$ $\{ \texttt{3.15, 28796.8} \}, \\ \{ \texttt{3.16, 28852.6} \}, \\ \{ \texttt{3.17, 28908.5} \}, \\ \{ \texttt{3.18, 28964.3} \}, \\ \{ \texttt{3.19, 29020.} \}, \\$ $\{3.2, 29075.8\}, \{3.21, 29131.5\}, \{3.22, 29187.1\}, \{3.23, 29242.7\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24, 29298.3\}, \{3.24$ $\{3.25, 29353.8\}, \{3.26, 29409.3\}, \{3.27, 29464.8\}, \{3.28, 29520.2\}, \{3.29, 29575.5\},$ {3.3, 29630.8}, {3.31, 29686.1}, {3.32, 29741.3}, {3.33, 29796.4}, {3.34, 29851.5}, {3.35, 29906.6}, {3.36, 29961.6}, {3.37, 30016.5}, {3.38, 30071.3}, {3.39, 30126.1}, $\{ \texttt{3.4}, \texttt{30180.9} \}, \ \{ \texttt{3.41}, \texttt{30235.6} \}, \ \{ \texttt{3.42}, \texttt{30290.2} \}, \ \{ \texttt{3.43}, \texttt{30344.7} \}, \ \{ \texttt{3.44}, \texttt{30399.2} \},$ $\{ \texttt{3.45}, \texttt{30453.6} \}, \ \{ \texttt{3.46}, \texttt{30508.} \}, \ \{ \texttt{3.47}, \texttt{30562.2} \}, \ \{ \texttt{3.48}, \texttt{30616.4} \}, \ \{ \texttt{3.49}, \texttt{30670.6} \},$ $\{3.5, 30724.6\}, \{3.51, 30778.6\}, \{3.52, 30832.5\}, \{3.53, 30886.3\}, \{3.54, 30940.1\},$ {3.55, 30993.8}, {3.56, 31047.4}, {3.57, 31100.9}, {3.58, 31154.3}, {3.59, 31207.7}, $\{3.6, 31261.\}, \{3.61, 31314.2\}, \{3.62, 31367.3\}, \{3.63, 31420.3\}, \{3.64, 31473.3\},$ $\{3.65, 31526.1\}, \{3.66, 31578.9\}, \{3.67, 31631.6\}, \{3.68, 31684.2\}, \{3.69, 31736.7\},$ $\{3.7, 31789.1\}, \{3.71, 31841.4\}, \{3.72, 31893.7\}, \{3.73, 31945.8\}, \{3.74, 31997.9\},$ $\{3.75, 32049.8\}, \{3.76, 32101.7\}, \{3.77, 32153.5\}, \{3.78, 32205.1\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 32256.7\}, \{3.79, 3256.7\}, \{3.79, 3256.7\}, \{3.79, 3256.7\}, \{3.79, 3256.7\}, \{3.79, 3$ {3.8, 32308.2}, {3.81, 32359.6}, {3.82, 32410.9}, {3.83, 32462.1}, {3.84, 32513.2}, {3.85, 32564.2}, {3.86, 32615.1}, {3.87, 32665.9}, {3.88, 32716.6}, {3.89, 32767.2}, $\{ \texttt{3.9}, \texttt{32817.7} \}, \ \{ \texttt{3.91}, \texttt{32868.1} \}, \ \{ \texttt{3.92}, \texttt{32918.4} \}, \ \{ \texttt{3.93}, \texttt{32968.6} \}, \ \{ \texttt{3.94}, \texttt{33018.7} \},$ $\{3.95, 33068.7\}, \{3.96, 33118.6\}, \{3.97, 33168.4\}, \{3.98, 33218.1\}, \{3.99, 33267.7\},$ $\{4., 33317.1\}, \{4.01, 33366.5\}, \{4.02, 33415.8\}, \{4.03, 33464.9\}, \{4.04, 33514.\},$ $\{4.05,\,33\,562.9\},\,\{4.06,\,33\,611.8\},\,\{4.07,\,33\,660.5\},\,\{4.08,\,33\,709.1\},\,\{4.09,\,33\,757.6\},\,$ $\{4.1, \ 33\ 806.\}, \ \{4.11, \ 33\ 854.3\}, \ \{4.12, \ 33\ 902.5\}, \ \{4.13, \ 33\ 950.6\}, \ \{4.14, \ 33\ 998.6\}, \ (4.14, \ 33\ 998.6\}, \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ 33\ 998.6), \ (4.14, \ (4.14, \ 33\ 998.6), \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14, \ (4.14,$ $\{4.15, 34046.5\}, \{4.16, 34094.2\}, \{4.17, 34141.9\}, \{4.18, 34189.4\}, \{4.19, 34236.8\},$ $\{4.2, 34284.2\}, \{4.21, 34331.4\}, \{4.22, 34378.5\}, \{4.23, 34425.5\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24, 34472.3\}, \{4.24$ $\{4.25, 34519.1\}, \{4.26, 34565.8\}, \{4.27, 34612.3\}, \{4.28, 34658.7\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.29, 34705.1\}, \{4.2$ $\{4.3, 34751.3\}, \{4.31, 34797.4\}, \{4.32, 34843.4\}, \{4.33, 34889.2\}, \{4.34, 34935.\},$ $\{4.35,\,34\,980.7\},\,\{4.36,\,35\,026.2\},\,\{4.37,\,35\,071.6\},\,\{4.38,\,35\,116.9\},\,\{4.39,\,35\,162.1\},\,$ $\{4.4,\,35\,207.2\},\,\{4.41,\,35\,252.2\},\,\{4.42,\,35\,297.1\},\,\{4.43,\,35\,341.8\},\,\{4.44,\,35\,386.5\},\,$ $\{4.45,\,35\,431.\},\,\{4.46,\,35\,475.4\},\,\{4.47,\,35\,519.7\},\,\{4.48,\,35\,563.9\},\,\{4.49,\,35\,608.\},\,$ {4.5, 35651.9}, {4.51, 35695.8}, {4.52, 35739.5}, {4.53, 35783.1}, {4.54, 35826.6}, {4.55, 35870.}, {4.56, 35913.3}, {4.57, 35956.5}, {4.58, 35999.6}, {4.59, 36042.5}, {4.6, 36085.3}, {4.61, 36128.1}, {4.62, 36170.7}, {4.63, 36213.2}, {4.64, 36255.5}, $\{4.65,\ 36\ 297.8\},\ \{4.66,\ 36\ 340.\},\ \{4.67,\ 36\ 382.\},\ \{4.68,\ 36\ 423.9\},\ \{4.69,\ 36\ 465.7\},$ $\{4.7, 36507.4\}, \{4.71, 36549.\}, \{4.72, 36590.5\}, \{4.73, 36631.9\}, \{4.74, 36673.1\},$ $\{4.75, 36714.3\}, \{4.76, 36755.3\}, \{4.77, 36796.2\}, \{4.78, 36837.\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79, 36877.7\}, \{4.79$ $\{4.8,\,36\,918.3\},\,\{4.81,\,36\,958.8\},\,\{4.82,\,36\,999.2\},\,\{4.83,\,37\,039.4\},\,\{4.84,\,37\,079.5\},\,$ {4.85, 37119.6}, {4.86, 37159.5}, {4.87, 37199.3}, {4.88, 37239.}, {4.89, 37278.6}, {4.9, 37 318.}, {4.91, 37 357.4}, {4.92, 37 396.6}, {4.93, 37 435.8}, {4.94, 37 474.8}, $\{4.95, 37513.7\}, \{4.96, 37552.5\}, \{4.97, 37591.2\}, \{4.98, 37629.8\}, \{4.99, 37668.3\}, \{4.99, 37613.7\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.99, 37629.8\}, \{4.9$ $\{5., 37706.7\}, \{5.01, 37744.9\}, \{5.02, 37783.1\}, \{5.03, 37821.1\}, \{5.04, 37859.1\},$ {5.05, 37896.9}, {5.06, 37934.6}, {5.07, 37972.2}, {5.08, 38009.7}, {5.09, 38047.1},

{5.1, 38084.4}, {5.11, 38121.6}, {5.12, 38158.7}, {5.13, 38195.6}, {5.14, 38232.5}, {5.15, 38269.2}, {5.16, 38305.9}, {5.17, 38342.4}, {5.18, 38378.8}, {5.19, 38415.1}, $\{5.2, 38451.4\}, \{5.21, 38487.5\}, \{5.22, 38523.5\}, \{5.23, 38559.4\}, \{5.24, 38595.2\},$ $\{5.25, 38630.8\}, \{5.26, 38666.4\}, \{5.27, 38701.9\}, \{5.28, 38737.3\}, \{5.29, 38772.5\}, \{5.28, 38737.3\}, \{5.29, 38772.5\}, \{5.28, 38737.3\}, \{5.29, 38772.5\}, \{5.28, 38737.3\}, \{5.29, 38772.5\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.29, 38772.5\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.29, 38772.5\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.29, 38772.5\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.29, 38772.5\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.29, 38772.5\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.29, 38772.5\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.28, 38737.3\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38737.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.28, 38757.5\}, \{5.2$ {5.3, 38807.7}, {5.31, 38842.8}, {5.32, 38877.7}, {5.33, 38912.6}, {5.34, 38947.3}, $\{5.35, 38\,982.\}, \{5.36, 39\,016.5\}, \{5.37, 39\,050.9\}, \{5.38, 39\,085.3\}, \{5.39, 39\,119.5\},$ $\{5.4, \ 39\ 153.6\},\ \{5.41,\ 39\ 187.7\},\ \{5.42,\ 39\ 221.6\},\ \{5.43,\ 39\ 255.4\},\ \{5.44,\ 39\ 289.1\},$ {5.45, 39322.8}, {5.46, 39356.3}, {5.47, 39389.7}, {5.48, 39423.}, {5.49, 39456.2}, $\{5.5, \, 39\, 489.3\}, \, \{5.51, \, 39\, 522.4\}, \, \{5.52, \, 39\, 555.3\}, \, \{5.53, \, 39\, 588.1\}, \, \{5.54, \, 39\, 620.8\},$ {5.55, 39653.4}, {5.56, 39685.9}, {5.57, 39718.4}, {5.58, 39750.7}, {5.59, 39782.9}, {5.6, 39815.}, {5.61, 39847.1}, {5.62, 39879.}, {5.63, 39910.8}, {5.64, 39942.5}, $\{ \texttt{5.65}, \texttt{39974.2} \}, \ \{ \texttt{5.66}, \texttt{40005.7} \}, \ \{ \texttt{5.67}, \texttt{40037.2} \}, \ \{ \texttt{5.68}, \texttt{40068.5} \}, \ \{ \texttt{5.69}, \texttt{40099.8} \},$ $\{5.7, 40130.9\}, \{5.71, 40162.\}, \{5.72, 40192.9\}, \{5.73, 40223.8\}, \{5.74, 40254.6\},$ $\{5.75, 40285.2\}, \{5.76, 40315.8\}, \{5.77, 40346.3\}, \{5.78, 40376.7\}, \{5.79, 40407.\}, \{5.79, 40407.\}, \{5.79, 40407.\}, \{5.79, 40407.\}, \{5.79, 40407.\}, \{5.79, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 40407.\}, \{5.70, 4$ $\{5.8, \, 40\, 437.2\}, \ \{5.81, \, 40\, 467.3\}, \ \{5.82, \, 40\, 497.3\}, \ \{5.83, \, 40\, 527.3\}, \ \{5.84, \, 40\, 557.1\},$ {5.85, 40586.8}, {5.86, 40616.5}, {5.87, 40646.}, {5.88, 40675.5}, {5.89, 40704.9}, $\{5.9, 40734.1\}, \{5.91, 40763.3\}, \{5.92, 40792.4\}, \{5.93, 40821.4\}, \{5.94, 40850.3\},$ $\{5.95, 40879.2\}, \{5.96, 40907.9\}, \{5.97, 40936.5\}, \{5.98, 40965.1\}, \{5.99, 40993.5\},$ $\{6., 41021.9\}, \{6.01, 41050.2\}, \{6.02, 41078.4\}, \{6.03, 41106.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 41134.5\}, \{6.04, 4114.5\}, \{6.04, 4114.5\}, \{6.04, 4114.5\}, \{6.04, 41$ {6.05, 41162.5}, {6.06, 41190.3}, {6.07, 41218.1}, {6.08, 41245.7}, {6.09, 41273.3}, $\{6.1, \, 41\, 300.8\}, \, \{6.11, \, 41\, 328.2\}, \, \{6.12, \, 41\, 355.5\}, \, \{6.13, \, 41\, 382.8\}, \, \{6.14, \, 41\, 409.9\}, \, (6.14, \, 41\, 409.9)\}, \, (6.14, \, 41\, 409.9)\},$ $\{6.15,\,41\,437.\},\,\{6.16,\,41\,463.9\},\,\{6.17,\,41\,490.8\},\,\{6.18,\,41\,517.6\},\,\{6.19,\,41\,544.4\},\,$ $\{6.2, 41571.\}, \{6.21, 41597.5\}, \{6.22, 41624.\}, \{6.23, 41650.4\}, \{6.24, 41676.7\},$ $\{6.25, 41702.9\}, \{6.26, 41729.\}, \{6.27, 41755.1\}, \{6.28, 41781.\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29, 41806.9\}, \{6.29,$ $\{6.3,\,41\,832.7\},\,\{6.31,\,41\,858.4\},\,\{6.32,\,41\,884.1\},\,\{6.33,\,41\,909.6\},\,\{6.34,\,41\,935.1\},\,$ $\{6.35, 41960.5\}, \{6.36, 41985.8\}, \{6.37, 42011.\}, \{6.38, 42036.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.39, 42061.2\}, \{6.30$ $\{6.4, 42086.2\}, \{6.41, 42111.1\}, \{6.42, 42136.\}, \{6.43, 42160.7\}, \{6.44, 42185.4\},$ $\{6.45, 42\,210.\}, \{6.46, 42\,234.5\}, \{6.47, 42\,258.9\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.49, 42\,307.5\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,283.2\}, \{6.48, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 42\,28, 4$ $\{6.5, 42331.7\}, \{6.51, 42355.8\}, \{6.52, 42379.9\}, \{6.53, 42403.8\}, \{6.54, 42427.7\},$ *{*6.55*,* 42 451.5*}<i>, {*6.56*,* 42 475.3*}<i>, {*6.57*,* 42 498.9*}<i>, {*6.58*,* 42 522.5*}<i>, {*6.59*,* 42 546*, }<i>,* $\{6.6, 42569.4\}, \{6.61, 42592.8\}, \{6.62, 42616.1\}, \{6.63, 42639.3\}, \{6.64, 42662.4\},$ $\{6.65, 42\,685.4\}, \{6.66, 42\,708.4\}, \{6.67, 42\,731.3\}, \{6.68, 42\,754.1\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,776.9\}, \{6.69, 42\,$ $\{6.7, 42799.6\}, \{6.71, 42822.2\}, \{6.72, 42844.7\}, \{6.73, 42867.2\}, \{6.74, 42889.6\},$ {6.8, 43 022.4}, {6.81, 43 044.3}, {6.82, 43 066.1}, {6.83, 43 087.8}, {6.84, 43 109.5}, {6.85, 43131.1}, {6.86, 43152.6}, {6.87, 43174.1}, {6.88, 43195.5}, {6.89, 43216.8}, $\{6.9,\,43\,238.\},\,\{6.91,\,43\,259.2\},\,\{6.92,\,43\,280.3\},\,\{6.93,\,43\,301.4\},\,\{6.94,\,43\,322.3\},\,$ $\{6.95, 43343.2\}, \{6.96, 43364.1\}, \{6.97, 43384.9\}, \{6.98, 43405.6\}, \{6.99, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 43426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.96, 44426.2\}, \{6.9$ $\{7., 43446.8\}, \{7.01, 43467.3\}, \{7.02, 43487.7\}, \{7.03, 43508.1\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04, 43528.4\}, \{7.04,$ $\{7.05, \, 43\, 548.6\}, \, \{7.06, \, 43\, 568.8\}, \, \{7.07, \, 43\, 588.9\}, \, \{7.08, \, 43\, 608.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\}, \, \{7.09, \, 43\, 628.9\},$ $\{7.1, 43648.8\}, \{7.11, 43668.6\}, \{7.12, 43688.4\}, \{7.13, 43708.1\}, \{7.14, 43727.7\},$ {7.15, 43747.3}, {7.16, 43766.8}, {7.17, 43786.3}, {7.18, 43805.7}, {7.19, 43825.}, *{*7.2*,* 43844.3*}, {*7.21*,* 43863.5*}, {*7.22*,* 43882.6*}, {*7.23*,* 43901.7*}, {*7.24*,* 43920.7*},* $\{7.25, 43939.6\}, \{7.26, 43958.5\}, \{7.27, 43977.3\}, \{7.28, 43996.1\}, \{7.29, 44014.8\},$ $\{7.3, 44033.4\}, \{7.31, 44052.\}, \{7.32, 44070.5\}, \{7.33, 44089.\}, \{7.34, 44107.4\},$

{7.35, 44125.7}, {7.36, 44144.}, {7.37, 44162.2}, {7.38, 44180.3}, {7.39, 44198.4}, $\{7.4, 44216.5\}, \{7.41, 44234.4\}, \{7.42, 44252.4\}, \{7.43, 44270.2\}, \{7.44, 44288.\},$ $\{7.45, 44305.7\}, \{7.46, 44323.4\}, \{7.47, 44341.\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.48, 44358.6\}, \{7.49, 44376.1\}, \{7.48, 44358.6\}, \{7.48, 44358.6\}, \{7.48, 44358.6\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48, 44376.1\}, \{7.48$ $\{7.5, 44393.6\}, \{7.51, 44411.\}, \{7.52, 44428.3\}, \{7.53, 44445.6\}, \{7.54, 44462.8\},$ $\{7.55, 44479.9\}, \{7.56, 44497.\}, \{7.57, 44514.1\}, \{7.58, 44531.1\}, \{7.59, 44548.\},$ {7.65, 44648.5}, {7.66, 44665.}, {7.67, 44681.5}, {7.68, 44697.9}, {7.69, 44714.3}, {7.7, 44730.6}, {7.71, 44746.9}, {7.72, 44763.1}, {7.73, 44779.3}, {7.74, 44795.4}, $\{7.75,\,44\,811.5\},\,\{7.76,\,44\,827.5\},\,\{7.77,\,44\,843.4\},\,\{7.78,\,44\,859.3\},\,\{7.79,\,44\,875.2\},\,$ {7.8, 44891.}, {7.81, 44906.7}, {7.82, 44922.4}, {7.83, 44938.1}, {7.84, 44953.6}, {7.85, 44969.2}, {7.86, 44984.7}, {7.87, 45000.1}, {7.88, 45015.5}, {7.89, 45030.8}, $\{7.9,\,45\,046.1\},\,\{7.91,\,45\,061.3\},\,\{7.92,\,45\,076.5\},\,\{7.93,\,45\,091.6\},\,\{7.94,\,45\,106.7\},\,$ $\{7.95, 45121.7\}, \{7.96, 45136.7\}, \{7.97, 45151.6\}, \{7.98, 45166.5\}, \{7.99, 45181.3\}, \{7.98, 45166.5\}, \{7.99, 45181.3\}, \{7.98, 4516.5\}, \{7.99, 45181.3\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.98, 4516.5\}, \{7.9$ $\{8., 45196.1\}, \{8.01, 45210.8\}, \{8.02, 45225.5\}, \{8.03, 45240.2\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 45254.7\}, \{8.04, 4525, 4525, 4525, 4525, 4525, 4525, 4525, 4525, 45$ {8.05, 45269.3}, {8.06, 45283.8}, {8.07, 45298.2}, {8.08, 45312.6}, {8.09, 45326.9}, {8.1, 45 341.2}, {8.11, 45 355.5}, {8.12, 45 369.7}, {8.13, 45 383.8}, {8.14, 45 397.9}, $\{8.15, 45412.\}, \{8.16, 45426.\}, \{8.17, 45440.\}, \{8.18, 45453.9\}, \{8.19, 45467.8\},$ $\{8.2, 45481.6\}, \{8.21, 45495.4\}, \{8.22, 45509.1\}, \{8.23, 45522.8\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45536.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 45566.4\}, \{8.24, 4566.4\}, \{8.24, 4566.4\}, \{8.24, 4566.4\}, \{8.24, 4566.4\}, \{8.24, 4566.4\}, \{8.24, 4566.4\}, \{8.24, 4566.4\}, \{8.24, 4566.4\}, \{8.24, 4566.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24, 456.4\}, \{8.24,$ $\{8.25, 45550.\}, \{8.26, 45563.6\}, \{8.27, 45577.1\}, \{8.28, 45590.5\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45604.\}, \{8.29, 45$ $\{8.3, 45617.3\}, \{8.31, 45630.7\}, \{8.32, 45643.9\}, \{8.33, 45657.2\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45670.4\}, \{8.34, 45700.4\}, \{8.34, 45700.4\}, \{8.36, 4700.4\}, \{8.36, 4700.4\}, \{8.36, 4700.4\}, \{8.36, 4700.4\}, \{8.36, 4700.4\}, \{8.36, 4700.4\}, \{8.36, 4700$ {8.35, 45683.5}, {8.36, 45696.6}, {8.37, 45709.7}, {8.38, 45722.7}, {8.39, 45735.7}, $\{8.4,\,45\,748.6\},\,\{8.41,\,45\,761.5\},\,\{8.42,\,45\,774.4\},\,\{8.43,\,45\,787.2\},\,\{8.44,\,45\,799.9\},\,$ $\{8.45, 45812.6\}, \{8.46, 45825.3\}, \{8.47, 45838.\}, \{8.48, 45850.5\}, \{8.49, 45863.1\},$ $\{8.5, 45875.6\}, \{8.51, 45888.1\}, \{8.52, 45900.5\}, \{8.53, 45912.9\}, \{8.54, 45925.2\},$ $\{ 8.55, \, 45\, 937.5 \}, \, \{ 8.56, \, 45\, 949.8 \}, \, \{ 8.57, \, 45\, 962. \}, \, \{ 8.58, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.57, \, 45\, 962. \}, \, \{ 8.58, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 949.8 \}, \, \{ 8.57, \, 45\, 962. \}, \, \{ 8.58, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.57, \, 45\, 962. \}, \, \{ 8.58, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.57, \, 45\, 962. \}, \, \{ 8.58, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.58, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 962. \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 986.3 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \, \{ 8.59, \, 45\, 974.2 \}, \,$ $\{8.6, 45\,998.4\}, \{8.61, 46\,010.5\}, \{8.62, 46\,022.5\}, \{8.63, 46\,034.5\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046.4\}, \{8.64, 46\,046, 46\,046, 46\,046, 46\,046, 46\,046, 46\,046, 46\,046, 46\,046, 46\,046, 46\,046, 46\,046, 46\,04, 46\,046, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04\,04, 46\,04, 46\,04, 46\,04, 46\,04, 46\,04\,04, 46\,04\,0$ {8.65, 46058.3}, {8.66, 46070.1}, {8.67, 46082.}, {8.68, 46093.7}, {8.69, 46105.5}, $\{8.7, 46117.2\}, \{8.71, 46128.8\}, \{8.72, 46140.4\}, \{8.73, 46152.\}, \{8.74, 46163.6\},$ $\{8.75, 46175.1\}, \{8.76, 46186.5\}, \{8.77, 46198.\}, \{8.78, 46209.3\}, \{8.79, 46220.7\}, \{8.79, 4620.7\}, \{8.79, 46198.\}, \{8.79, 4620.7\}, \{8.79, 46198.\}, \{8.79, 4620.7\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46198.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 46188.\}, \{8.79, 4$ {8.8, 46232.}, {8.81, 46243.3}, {8.82, 46254.5}, {8.83, 46265.7}, {8.84, 46276.9}, $\{8.85, \ 46\ 288.\}, \ \{8.86, \ 46\ 299.1\}, \ \{8.87, \ 46\ 310.1\}, \ \{8.88, \ 46\ 321.2\}, \ \{8.89, \ 46\ 332.1\}, \ 46\ 332.1\}, \ 46\ 332.1\}, \ 46\ 332.1\},$ {8.9, 46343.1}, {8.91, 46354.}, {8.92, 46364.8}, {8.93, 46375.7}, {8.94, 46386.5}, {8.95, 46397.2}, {8.96, 46407.9}, {8.97, 46418.6}, {8.98, 46429.3}, {8.99, 46439.9}, $\{9., 46450.5\}, \{9.01, 46461.\}, \{9.02, 46471.5\}, \{9.03, 46482.\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46492.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 46422.4\}, \{9.04, 4$ {9.05, 46502.8}, {9.06, 46513.2}, {9.07, 46523.5}, {9.08, 46533.8}, {9.09, 46544.1}, {9.1, 46554.3}, {9.11, 46564.5}, {9.12, 46574.7}, {9.13, 46584.8}, {9.14, 46594.9}, $\{9.15, \, 46\, 604.9\}, \, \{9.16, \, 46\, 615.\}, \, \{9.17, \, 46\, 625.\}, \, \{9.18, \, 46\, 634.9\}, \, \{9.19, \, 46\, 644.8\},$ $\{9.2, 46654.7\}, \{9.21, 46664.6\}, \{9.22, 46674.4\}, \{9.23, 46684.2\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46694.\}, \{9.24, 46$ $\{9.25, 46703.7\}, \{9.26, 46713.4\}, \{9.27, 46723.1\}, \{9.28, 46732.7\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.29, 46742.3\}, \{9.2$ $\{9.3, 46\,751.8\}, \{9.31, 46\,761.4\}, \{9.32, 46\,770.9\}, \{9.33, 46\,780.4\}, \{9.34, 46\,789.8\},$ {9.35, 46799.2}, {9.36, 46808.6}, {9.37, 46817.9}, {9.38, 46827.2}, {9.39, 46836.5}, $\{9.4, 46845.7\}, \{9.41, 46855.\}, \{9.42, 46864.2\}, \{9.43, 46873.3\}, \{9.44, 46882.4\},$ {9.45, 46891.5}, {9.46, 46900.6}, {9.47, 46909.6}, {9.48, 46918.6}, {9.49, 46927.6}, $\{9.5, 46936.5\}, \{9.51, 46945.5\}, \{9.52, 46954.3\}, \{9.53, 46963.2\}, \{9.54, 46972.\},$ {9.55, 46980.8}, {9.56, 46989.6}, {9.57, 46998.3}, {9.58, 47007.}, {9.59, 47015.7},

{9.6, 47 024.3}, {9.61, 47 033.}, {9.62, 47 041.5}, {9.63, 47 050.1}, {9.64, 47 058.6}, $\{9.65,\,47\,067.1\},\,\{9.66,\,47\,075.6\},\,\{9.67,\,47\,084.1\},\,\{9.68,\,47\,092.5\},\,\{9.69,\,47\,100.9\},\,$ $\{9.7, 47109.2\}, \{9.71, 47117.6\}, \{9.72, 47125.9\}, \{9.73, 47134.1\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74, 47142.4\}, \{9.74$ $\{9.75, 47150.6\}, \{9.76, 47158.8\}, \{9.77, 47167.\}, \{9.78, 47175.1\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79, 47183.2\}, \{9.79$ $\{9.8, 47191.3\}, \{9.81, 47199.4\}, \{9.82, 47207.4\}, \{9.83, 47215.4\}, \{9.84, 47223.4\},$ $\{9.85,\,47\,231.3\},\,\{9.86,\,47\,239.2\},\,\{9.87,\,47\,247.1\},\,\{9.88,\,47\,255.\},\,\{9.89,\,47\,262.9\},\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262.9),\,(9.89,\,47\,262\,2),\,(9.89,\,47\,262\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),\,(9.89,\,47\,26\,2),$ $\{9.9,\,47\,270.7\},\,\{9.91,\,47\,278.5\},\,\{9.92,\,47\,286.2\},\,\{9.93,\,47\,294.\},\,\{9.94,\,47\,301.7\},\,$ $\{9.95, 47309.4\}, \{9.96, 47317.\}, \{9.97, 47324.7\}, \{9.98, 47332.3\}, \{9.99, 47339.9\},$ $\{10., 47347.4\}, \\ \{10.01, 47354.9\}, \\ \{10.02, 47362.5\}, \\ \{10.03, 47369.9\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04, 47377.4\}, \\ \{10.04$ $\{10.1, 47421.6\}, \{10.11, 47428.9\}, \{10.12, 47436.2\}, \{10.13, 47443.4\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 47450.6\}, \{10.14, 474$ $\{10.2, 47493.4\}, \{10.21, 47500.4\}, \{10.22, 47507.4\}, \{10.23, 47514.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 47521.4\}, \{10.24, 475$ $\{10.25, 47528.3\}, \{10.26, 47535.3\}, \{10.27, 47542.2\}, \{10.28, 47549.\}, \{10.29, 47555.9\}, \{10.29, 47555.9\}, \{10.28, 47542.2\}, \{10.28, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 47542.2\}, \{10.29, 475$ $\{10.3, 47562.7\}, \{10.31, 47569.5\}, \{10.32, 47576.3\}, \{10.33, 47583.1\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8\}, \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 47589.8], \{10.34, 475$ {10.35, 47596.5}, {10.36, 47603.2}, {10.37, 47609.9}, {10.38, 47616.6}, $\{10.39, 47623.2\}, \{10.4, 47629.8\}, \{10.41, 47636.4\}, \{10.42, 47642.9\}, \{10.43, 47649.5\}, \{10.43, 47649.5\}, \{10.43, 47649.5\}, \{10.43, 47649.5\}, \{10.43, 47649.5\}, \{10.43, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47649.5\}, \{10.44, 47669.5\}, \{10.44, 47669.5\}, \{10.44, 47669.5\}, \{10.44, 47669.5\}, \{10.44, 47669.5\}, \{10.44, 47669.5\}, \{10.44, 47669.5\}, \{10.44, 47660.5\}, \{10.44, 47660.5\}, \{10.44, 476$ $\{10.44, 47656.\}, \{10.45, 47662.5\}, \{10.46, 47669.\}, \{10.47, 47675.4\}, \{10.48, 47681.8\},$ $\{10.49, 47688.2\}, \{10.5, 47694.6\}, \{10.51, 47701.\}, \{10.52, 47707.3\}, \{10.53, 47713.7\}, \{10.54, 47707.3\}, \{10.53, 47713.7\}, \{10.54, 47707.3\}, \{10.54, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.55, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.3\}, \{10.57, 47707.5\}, \{10.57, 47707.5\}, \{10.57, 47707.5\}, \{10.57, 47707.5\}, \{10.57, 47707.5\}, \{10.57, 47707.5\}, \{10.57, 47707.5\}, \{10.57, 47707.5\}, \{10.57, 47707.5\}, \{10.57, 4770$ {10.54, 47720.}, {10.55, 47726.2}, {10.56, 47732.5}, {10.57, 47738.7}, {10.58, 47745.}, {10.59, 47751.1}, {10.6, 47757.3}, {10.61, 47763.5}, {10.62, 47769.6}, {10.63, 47775.7}, $\{10.64, 47781.8\}, \{10.65, 47787.9\}, \{10.66, 47793.9\}, \{10.67, 47800.\}, \{10.68, 47806.\},$ $\{10.69, 47812.\}, \{10.7, 47817.9\}, \{10.71, 47823.9\}, \{10.72, 47829.8\}, \{10.73, 47835.7\},$ $\{10.74, 47841.6\}, \{10.75, 47847.5\}, \{10.76, 47853.3\}, \{10.77, 47859.2\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\}, \{10.78, 47865.\},$ $\{10.79,\,47\,870.8\},\,\{10.8,\,47\,876.5\},\,\{10.81,\,47\,882.3\},\,\{10.82,\,47\,888.\},\,\{10.83,\,47\,893.8\},\,$ $\{10.84, 47899.4\}, \{10.85, 47905.1\}, \{10.86, 47910.8\}, \{10.87, 47916.4\}, \{10.88, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\}, \{10.81, 47922.\},$ $\{10.94, 47955.4\}, \{10.95, 47960.8\}, \{10.96, 47966.3\}, \{10.97, 47971.8\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47977.2\}, \{10.98, 47$ {10.99, 47982.6}, {11., 47988.}, {11.01, 47993.4}, {11.02, 47998.7}, {11.03, 48004.1}, $\{11.04, 48009.4\}, \{11.05, 48014.7\}, \{11.06, 48020.\}, \{11.07, 48025.3\}, \{11.08, 48030.5\},$ $\{11.09,\,48\,035.8\},\,\{11.1,\,48\,041.\},\,\{11.11,\,48\,046.2\},\,\{11.12,\,48\,051.4\},\,\{11.13,\,48\,056.5\},$ $\{ \texttt{11.14}, \texttt{48061.7} \}, \ \{ \texttt{11.15}, \texttt{48066.8} \}, \ \{ \texttt{11.16}, \texttt{48071.9} \}, \ \{ \texttt{11.17}, \texttt{48077.} \}, \ \{ \texttt{11.18}, \texttt{48082.1} \},$ $\{ \texttt{11.19}, \texttt{48} \texttt{087.1} \}, \ \{ \texttt{11.2}, \texttt{48} \texttt{092.2} \}, \ \{ \texttt{11.21}, \texttt{48} \texttt{097.2} \}, \ \{ \texttt{11.22}, \texttt{48} \texttt{102.2} \}, \ \{ \texttt{11.23}, \texttt{48} \texttt{107.2} \},$ $\{11.24, 48112.2\}, \{11.25, 48117.2\}, \{11.26, 48122.1\}, \{11.27, 48127.\}, \{11.28, 48131.9\},$ {11.29, 48136.8}, {11.3, 48141.7}, {11.31, 48146.6}, {11.32, 48151.4}, {11.33, 48156.2}, {11.34, 48161.}, {11.35, 48165.8}, {11.36, 48170.6}, {11.37, 48175.4}, {11.38, 48180.1}, $\{11.39,\,48\,184.9\},\,\{11.4,\,48\,189.6\},\,\{11.41,\,48\,194.3\},\,\{11.42,\,48\,199.\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,203.6\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,20,2,2\},\,\{11.43,\,48\,2,2,2\},\,\{11.43,\,48\,2,\,2\},\,\{11.43,\,48\,2,\,2\},\,\{11.43,\,24,\,2],\,\{11.43,\,24,\,2],\,\{11.43,\,$ $\{ 11.44, 48208.3 \}, \ \{ 11.45, 48212.9 \}, \ \{ 11.46, 48217.5 \}, \ \{ 11.47, 48222.1 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.47, 48222.1 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \}, \ \{ 11.48, 48226.7 \},$ $\{11.49, 48231.3\}, \{11.5, 48235.9\}, \{11.51, 48240.4\}, \{11.52, 48244.9\}, \{11.53, 48249.4\}, \{11.53, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 48249.4\}, \{11.51, 482$ $\{11.54,\,48\,253.9\},\,\{11.55,\,48\,258.4\},\,\{11.56,\,48\,262.9\},\,\{11.57,\,48\,267.3\},\,\{11.58,\,48\,271.8\},\,(11.58,\,48\,271.8)\},\,\{11.58,\,48\,271.8\},\,(11.58,\,48\,271.8)\}$ {11.59, 48 276.2}, {11.6, 48 280.6}, {11.61, 48 285.}, {11.62, 48 289.4}, {11.63, 48 293.7}, {11.64, 48 298.1}, {11.65, 48 302.4}, {11.66, 48 306.7}, {11.67, 48 311.}, {11.68, 48 315.3}, {11.69, 48 319.6}, {11.7, 48 323.9}, {11.71, 48 328.1}, {11.72, 48 332.3}, {11.73, 48 336.6}, $\{11.74, 48340.8\}, \{11.75, 48345.\}, \{11.76, 48349.1\}, \{11.77, 48353.3\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 48357.4\}, \{11.78, 4857.4\}, \{11.78, 4857.4\}, \{11.78, 4857.$ {11.79, 48361.6}, {11.8, 48365.7}, {11.81, 48369.8}, {11.82, 48373.9}, {11.83, 48378.},

{11.84, 48382.}, {11.85, 48386.1}, {11.86, 48390.1}, {11.87, 48394.2}, {11.88, 48398.2}, {11.89, 48402.2}, {11.9, 48406.1}, {11.91, 48410.1}, {11.92, 48414.1}, {11.93, 48418.}, $\{ \texttt{11.94}, \texttt{48421.9} \}, \ \{ \texttt{11.95}, \texttt{48425.9} \}, \ \{ \texttt{11.96}, \texttt{48429.8} \}, \ \{ \texttt{11.97}, \texttt{48433.6} \}, \ \{ \texttt{11.98}, \texttt{48437.5} \},$ $\{11.99, 48441.4\}, \{12., 48445.2\}, \{12.01, 48449.1\}, \{12.02, 48452.9\}, \{12.03, 48456.7\},$ $\{12.04, 48460.5\}, \{12.05, 48464.3\}, \{12.06, 48468.1\}, \{12.07, 48471.8\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48475.6\}, \{12.08, 48$ $\{12.09,\,48\,479.3\},\,\{12.1,\,48\,483.\},\,\{12.11,\,48\,486.8\},\,\{12.12,\,48\,490.5\},\,\{12.13,\,48\,494.1\},\,(12.12,\,48\,491.5),\,(12.13,\,48\,494.1),\,(12.12,\,48\,491.5),\,(12.13,\,48\,494.1),\,(12.12,\,48\,491.5),\,(12.13,\,48\,494.1),\,(12.12,\,48\,491.5),\,(12.13,\,48\,494.1),\,(12.12,\,48\,491.5),\,(12.13,\,48\,494.1),\,(12.12,\,48\,491.5),\,(12.13,\,48\,494.1),\,(12.12,\,48\,491.5),\,(12.13,\,48\,494.1),\,(12.12,\,48\,491.5),\,(12.13,\,48\,494.1),\,(12.12,\,48\,491.5),\,(12.13,\,48\,494.1),\,(12.12,\,48\,491.5),\,(12.13,\,48\,494.1),\,(12.12,\,48\,491.5),\,(12.13,\,48\,494.1),\,(12.12,\,48\,491.5),\,(12.13,\,48\,494.1),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,491.5),\,(12.12,\,48\,48\,48\,4),\,(12.12,\,48\,48\,4),\,(12.12,\,48\,48\,4),\,(12.12,\,48\,48\,4),\,(12.12,\,48\,48\,$ $\{12.14,\,48\,497.8\},\,\{12.15,\,48\,501.5\},\,\{12.16,\,48\,505.1\},\,\{12.17,\,48\,508.8\},\,\{12.18,\,48\,512.4\},\,$ {12.19, 48516.}, {12.2, 48519.6}, {12.21, 48523.2}, {12.22, 48526.8}, {12.23, 48530.3}, $\{12.24, 48533.9\}, \{12.25, 48537.4\}, \{12.26, 48540.9\}, \{12.27, 48544.4\}, \{12.28, 48548.\}, \{12.28, 48548.4\}, \{12.28, 48548.4\}, \{12.28, 48548.4\}, \{12.28, 48548.4\}, \{12.28, 48548.4\}, \{12.28, 48548.4\}, \{12.28, 48548.4\}, \{12.28, 48548.4\}, \{12.28, 48548.4\}, \{12.28, 48548.4\}, \{12.28, 48548.4\}, \{12.28, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 48548.4\}, \{12.48, 485$ {12.29, 48551.4}, {12.3, 48554.9}, {12.31, 48558.4}, {12.32, 48561.8}, {12.33, 48565.3}, $\{12.34, 48568.7\}, \{12.35, 48572.2\}, \{12.36, 48575.6\}, \{12.37, 48579.\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 48582.3\}, \{12.38, 485$ $\{12.44, 48602.4\}, \{12.45, 48605.7\}, \{12.46, 48609.\}, \{12.47, 48612.3\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 48615.6\}, \{12.48, 486$ $\{12.49, 48618.9\}, \{12.5, 48622.1\}, \{12.51, 48625.4\}, \{12.52, 48628.6\}, \{12.53, 48631.8\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 48628.6\}, \{12.54, 486$ {12.54, 48635.}, {12.55, 48638.2}, {12.56, 48641.4}, {12.57, 48644.6}, {12.58, 48647.7}, $\{12.59, 48650.9\}, \{12.6, 48654.\}, \{12.61, 48657.2\}, \{12.62, 48660.3\}, \{12.63, 48663.4\}, \{12.63, 48663.4\}, \{12.63, 48663.4\}, \{12.63, 48663.4\}, \{12.63, 48654.\}, \{12.63, 48654.\}, \{12.64, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}, \{12.65, 48654.\}$ $\{12.64, 48666.5\}, \{12.65, 48669.6\}, \{12.66, 48672.7\}, \{12.67, 48675.8\},$ {12.68, 48678.8}, {12.69, 48681.9}, {12.7, 48684.9}, {12.71, 48688.}, {12.72, 48691.}, $\{12.73, 48694.\}, \{12.74, 48697.\}, \{12.75, 48700.\}, \{12.76, 48702.9\}, \{12.77, 48705.9\}, \{12.77, 48705.9\}, \{12.77, 48705.9\}, \{12.77, 48705.9\}, \{12.74, 48697.\}, \{12.74, 48697.\}, \{12.75, 48700.\}, \{12.76, 48702.9\}, \{12.77, 48705.9\}, \{12.77, 48705.9\}, \{12.76, 48702.9\}, \{12.77, 48705.9\}, \{12.77, 48705.9\}, \{12.77, 48705.9\}, \{12.77, 48705.9\}, \{12.77, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}, \{12.79, 48705.9\}$ {12.78, 48708.9}, {12.79, 48711.8}, {12.8, 48714.8}, {12.81, 48717.7}, {12.82, 48720.6}, {12.83, 48723.5}, {12.84, 48726.4}, {12.85, 48729.3}, {12.86, 48732.2}, {12.87, 48735.1}, $\{12.88,\,48\,737.9\},\,\{12.89,\,48\,740.8\},\,\{12.9,\,48\,743.6\},\,\{12.91,\,48\,746.5\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.91,\,48\,746.5\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749.3\},\,\{12.92,\,48\,749,\,48\,749,\,48\,749,\,48\,749,\,48\,749,\,48\,749,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,48\,74,\,$ {12.93, 48752.1}, {12.94, 48754.9}, {12.95, 48757.7}, {12.96, 48760.5}, {12.97, 48763.3}, {12.98, 48766.}, {12.99, 48768.8}, {13., 48771.5}, {13.01, 48774.3}, $\{13.02,\,48\,777.\},\,\{13.03,\,48\,779.7\},\,\{13.04,\,48\,782.4\},\,\{13.05,\,48\,785.1\},\,\{13.06,\,48\,787.8\},\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,787.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05,\,48\,77.8),\,(13.05$ $\{13.07, 48790.5\}, \{13.08, 48793.2\}, \{13.09, 48795.8\}, \{13.1, 48798.5\}, \{13.11, 48801.1\},$ $\{13.12,\,48\,803.8\},\,\{13.13,\,48\,806.4\},\,\{13.14,\,48\,809.\},\,\{13.15,\,48\,811.6\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,814.3\},\,\{13.16,\,48\,8$ $\{13.22, 48829.7\}, \{13.23, 48832.2\}, \{13.24, 48834.8\}, \{13.25, 48837.3\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.26, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8\}, \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48839.8], \{13.28, 48$ {13.27, 48842.3}, {13.28, 48844.8}, {13.29, 48847.3}, {13.3, 48849.8}, {13.31, 48852.3}, $\{13.32,\,48\,854.7\},\,\{13.33,\,48\,857.2\},\,\{13.34,\,48\,859.6\},\,\{13.35,\,48\,862.1\},$ {13.36, 48864.5}, {13.37, 48866.9}, {13.38, 48869.4}, {13.39, 48871.8}, {13.4, 48874.2}, {13.41, 48876.6}, {13.42, 48878.9}, {13.43, 48881.3}, {13.44, 48883.7}, {13.45, 48886.}, $\{13.46, 48888.4\}, \{13.47, 48890.7\}, \{13.48, 48893.1\}, \{13.49, 48895.4\}, \{13.5, 48897.7\},$ {13.51, 48 900.}, {13.52, 48 902.3}, {13.53, 48 904.6}, {13.54, 48 906.9}, {13.55, 48 909.2}, {13.56, 48911.5}, {13.57, 48913.8}, {13.58, 48916.}, {13.59, 48918.3}, {13.6, 48920.5}, $\{13.61,\,48\,922.8\},\,\{13.62,\,48\,925.\},\,\{13.63,\,48\,927.2\},\,\{13.64,\,48\,929.4\},\,\{13.65,\,48\,931.6\},\,$ $\{13.66, 48933.8\}, \{13.67, 48936.\}, \{13.68, 48938.2\}, \{13.69, 48940.4\}, \{13.7, 48942.5\},$ $\{13.71, 48944.7\}, \{13.72, 48946.9\}, \{13.73, 48949.\}, \{13.74, 48951.1\}, \{13.75, 48953.3\}, \{13.74, 48951.1\}, \{13.75, 48953.3\}, \{13.74, 48951.1\}, \{13.75, 48953.3\}, \{13.74, 48951.1\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 48953.3\}, \{13.75, 489550.3\}, \{13.75, 489550.3\}, \{13.75, 48950.3\}, \{13.75, 48950.3\}, \{13.75, 4$ $\{13.76, 48\,955.4\}, \{13.77, 48\,957.5\}, \{13.78, 48\,959.6\}, \{13.79, 48\,961.7\}, \{13.8, 48\,963.8\}, \{13.79, 48\,961.7\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,963.8\}, \{13.8, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96, 48\,96\,96, 48\,96\,96, 48\,96\,96\,96, 48\,96\,96\,96\,96\,96\,96\,96\,96\,96\,96\,9$ {13.81, 48965.9}, {13.82, 48968.}, {13.83, 48970.1}, {13.84, 48972.2}, {13.85, 48974.2}, {13.86, 48976.3}, {13.87, 48978.3}, {13.88, 48980.4}, {13.89, 48982.4}, {13.9, 48984.4}, {13.91, 48986.4}, {13.92, 48988.5}, {13.93, 48990.5}, {13.94, 48992.5}, {13.95, 48994.5}, $\{13.96, 48996.5\}, \{13.97, 48998.4\}, \{13.98, 49000.4\}, \{13.99, 49002.4\}, \{14., 49004.3\},$ {14.01, 49006.3}, {14.02, 49008.2}, {14.03, 49010.2}, {14.04, 49012.1}, {14.05, 49014.},

```
{14.06, 49016.}, {14.07, 49017.9}, {14.08, 49019.8}, {14.09, 49021.7}, {14.1, 49023.6},
 {14.11, 49025.5}, {14.12, 49027.4}, {14.13, 49029.2}, {14.14, 49031.1}, {14.15, 49033.},
  \{14.16, 49034.8\}, \{14.17, 49036.7\}, \{14.18, 49038.5\}, \{14.19, 49040.4\}, \{14.2, 49042.2\}, 
 {14.21, 49044.}, {14.22, 49045.8}, {14.23, 49047.6}, {14.24, 49049.5}, {14.25, 49051.3},
{14.26, 49053.1}, {14.27, 49054.8}, {14.28, 49056.6}, {14.29, 49058.4}, {14.3, 49060.2},
 \{14.31,\,49\,061.9\},\,\{14.32,\,49\,063.7\},\,\{14.33,\,49\,065.5\},\,\{14.34,\,49\,067.2\},\,\{14.35,\,49\,068.9\},\,(14.34,\,49\,067.2),\,(14.35,\,49\,068.9),\,(14.34,\,49\,067.2),\,(14.35,\,49\,068.9),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,067.2),\,(14.34,\,49\,06,\,(14.34,\,49\,06,\,(14.34,\,49\,06,\,(14.34,\,49\,06,\,(14.34,\,49\,06,\,(14.34,\,49\,06,\,(14.34,\,49\,0),\,(14.34,\,49\,06,\,(14.34,\,49\,0),\,(14.34,\,
{14.36, 49070.7}, {14.37, 49072.4}, {14.38, 49074.1}, {14.39, 49075.9}, {14.4, 49077.6},
 {14.41, 49079.3}, {14.42, 49081.}, {14.43, 49082.7}, {14.44, 49084.4}, {14.45, 49086.},
  \{14.46, 49087.7\}, \\ \{14.47, 49089.4\}, \\ \{14.48, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.5, 49094.4\}, \\ \{14.48, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.5, 49094.4\}, \\ \{14.48, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49094.4\}, \\ \{14.49, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49094.4\}, \\ \{14.49, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49094.4\}, \\ \{14.49, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49094.4\}, \\ \{14.49, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49094.4\}, \\ \{14.49, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49094.4\}, \\ \{14.49, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49094.4\}, \\ \{14.49, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49094.4\}, \\ \{14.49, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49094.4\}, \\ \{14.49, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49094.4\}, \\ \{14.49, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49094.4\}, \\ \{14.49, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49094.4\}, \\ \{14.49, 49091.1\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49092.7\}, \\ \{14.49, 49002.7\}, \\ \{14.49, 49002.7\}, \\ \{14.49, 49002.7\}, \\ \{14.4
{14.51, 49096.}, {14.52, 49097.7}, {14.53, 49099.3}, {14.54, 49100.9}, {14.55, 49102.6},
{14.56, 49104.2}, {14.57, 49105.8}, {14.58, 49107.4}, {14.59, 49109.}, {14.6, 49110.6},
 \{ 14.61, \, 49\, 112.2 \}, \, \{ 14.62, \, 49\, 113.8 \}, \, \{ 14.63, \, 49\, 115.4 \}, \, \{ 14.64, \, 49\, 117. \}, \, \{ 14.65, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 112.2 \}, \, \{ 14.62, \, 49\, 113.8 \}, \, \{ 14.63, \, 49\, 115.4 \}, \, \{ 14.64, \, 49\, 117. \}, \, \{ 14.65, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 117. \}, \, \{ 14.62, \, 49\, 113.8 \}, \, \{ 14.62, \, 49\, 113.8 \}, \, \{ 14.61, \, 49\, 115.4 \}, \, \{ 14.64, \, 49\, 117. \}, \, \{ 14.65, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 117. \}, \, \{ 14.62, \, 49\, 113.8 \}, \, \{ 14.61, \, 49\, 115.4 \}, \, \{ 14.64, \, 49\, 117. \}, \, \{ 14.65, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 117. \}, \, \{ 14.62, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 117. \}, \, \{ 14.62, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 117. \}, \, \{ 14.61, \, 49\, 117. \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 117. \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 117. \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 117. \}, \, \{ 14.61, \, 49\, 117. \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 117. \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 117. \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 49\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.61, \, 48\, 118.6 \}, \, \{ 14.
 \{14.66, 49120.1\}, \{14.67, 49121.7\}, \{14.68, 49123.2\}, \{14.69, 49124.8\}, \{14.7, 49126.4\}, \{14.7, 49126.4\}, \{14.7, 49126.4\}, \{14.7, 49126.4\}, \{14.7, 49126.4\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, \{14.8, 49123.2\}, 
 \{14.71, 49127.9\}, \{14.72, 49129.4\}, \{14.73, 49131.\}, \{14.74, 49132.5\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 49134.\}, \{14.75, 4914.\}, \{14.75, 4914.\}, \{14.75, 4914.\}, \{14.
 {14.76, 49135.5}, {14.77, 49137.}, {14.78, 49138.5}, {14.79, 49140.}, {14.8, 49141.5},
 {14.81, 49143.}, {14.82, 49144.5}, {14.83, 49146.}, {14.84, 49147.5}, {14.85, 49149.},
{14.86, 49150.4}, {14.87, 49151.9}, {14.88, 49153.3}, {14.89, 49154.8}, {14.9, 49156.2},
 \{14.91, 49157.7\}, \{14.92, 49159.1\}, \{14.93, 49160.5\}, \{14.94, 49162.\}, \{14.95, 49163.4\}, \{14.95, 49163.4\}, \{14.91, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 49163, 4916
 \{14.96, 49164.8\}, \{14.97, 49166.2\}, \{14.98, 49167.6\}, \{14.99, 49169.\}, \{15., 49170.4\}\}
```

The next line exports a file containing the theoretical points just calculated.

```
Export["OHPro1.txt", theorMtt, "Table"]
OHProl.txt
Export["OHPro2.txt", theorMct, "Table"]
OHPro2.txt
```

Just to confirm, here are graphs of the theoretical points and the data.

ListPlot[theorMtt, PlotStyle \rightarrow {PointSize[0.01], Black}, PlotRange \rightarrow {{0, 15}, {70, +120}},


```
ListPlot[theorMct, PlotStyle → {PointSize[0.01], Black}, PlotRange → {{0, 15}, {-75, +50}},
Frame → True, RotateLabel → False, BaseStyle → {14, FontFamily → "Times"},
FrameLabel → {"Transfer Time (sec)", "Intensity"}, Axes → False]
```

Show[%, lp3]

Clear[Tlt, Tlc, taut, tauc, M0t, M0c, Mtinf, Mcinf, tault, taulc, lam1, lam2, c1, c2, Mct, Mtt, Keq, kct, ktc, param1, NLM1]

END

© Conditions of Use:

This software is in the public domain and may be distrubuted and modified freely by any user. It is provided "as is", with absolutely no warranty expressed or implied. Any use is at your own risk.

Errors, suggestions for improvement, or other comments may be sent to:

Joe O'Neil Department of Chemistry University of Manitoba 390 Parker Building 144 Dysart Rd. Winnipeg, MB R3T 2N2 TELE: (204) 474-6697 FAX: (204) 474-7608 joneil@cc.umanitoba.ca http://home.cc.umanitoba.ca/~joneil/ Last updated: June 20 2007