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SUMLARY

In the usual discussion of relativistic wave fields with variational

- principles,only the field equations ars obtained from the variational
fommn of Lhe

principles It is shown, in this investigation, that the boundary

conditions as well may be obtained from the action=principle for these
fieldse The boundary conditions which are allowed depend on the form

of the Lagrengian density which is used in the action-principlee The
scalar field, the vector field and the Dirac field are discusseds. The
usual Lagrengian densities, for these fields, do not contain sccond
derivativese By generalizing the form of the Lagrangian density,

for the sealar and vector fields, to combtain second derivatives, it

is shown that more boundary conditions are allowed than in the usual
formulation. In particular, the use of the generalized Lagrangian

density allows the possibility of linear homogensags boundary conditionse
This generalization also modifies the definition of the conjugate momentum
fields, the stress~energy tensor and the charge~current vectore Thus

the conjugate momentun fields for the vector field are defined so that

the time components of these fields do not vanish identically. A

gymmetry in formulation between the scalar and the vecltor fields is obbtainede
The classical (unquantized) formulation for the scalar and the vector

fields is complebed with the modified field quantities.




HIRODUCTION

1.1 Tield Theories and Variational Methods

The mbtions of wave fleld; are usually described by variatiomal
methodse These are analy%ical methods in which the field is represented
by a function = called the Lagrange function = which is employed. in
e variational principle. If the Lagrange function and the principle
are properly chosen they may describe the motion of the field completelye

In relaﬁivisﬁic field theories we discuss physical systems which
consist of field functions defined in given regions of space=tims,

The definiﬁions of these field funcitions are stated in the form of
partial differential ecuations which must be satisfied by the field
fuﬁcﬁions at every point of their spagemtime regionse The solutions

of these differential equations are restricted by conditions existing

at the space~time boundaries of the fisldse Sincey in describing

che motion of the system, we are usually interested in the progression,

I3 1. fe

through time, of the physical system, it is customary to specify that

o

the space~time region for the field be open with regard to the tinme

o

co=ordinate. Then the field is given meaning in the following waye We
seek those solutions of the differential equation of the field which can
be separated inteo a product of 4wo termsy one of which is time~dependent
only and the other space-dependent only. Then we require that the space=-
dependent part of these solutions satisfy, for all values of time,
certain conditions which we specify at the boundaryve If the field region

k3 Ay

is finite the solubtions of the field squation form a denumerably infinite

i
4




set, the so-called normal modes of the systeme The equations of motion
for the field are the set of equations of motion for these normal modes.
If a variational principle is to describs a reletivistic wave field we

ask that it give meaning to this field, that is, we ask that one principle

equations of motion for the normal modes follows a1f@0ulj - This is
equivalent to saying that the variationmal princinle be required to yield

the differential equation of the field and the conditions which ars to

o

hold at the space boundary of the fislde

:

In the discussion of field theories by variational principles the

boundary conditions are not ususlly recognized as a conse >quence of the

principle. the variational method usually involves a fundamental

quantity called 'action?! and the principle assodabed with the method
is then the statement that this action is shationarv, The discussion
above has shown that if this action principle is to deseribe any wave=
Tield completely we will require that it yield the partial differeniial
1 and also the space boundary conditions which may
accompany these field equetions. The manner in which the actiocu-~

principle does this is readily seen if we examine the variational methods

applied to a simple wave field, the real scalar field.

e assume that we have a field function W defined in a region qu

@

in space-timee qf is to be a cylinder which is oven in the direction

s

of the time-co-ordinate, x4 (= ict)e The intersection of any %, = consbant

plane and T forms a volume, v, in the three dimensional sub-space defined

+1 at4e = 59 3 F yrr . : fo.E
by the spatisl co ordinstes, x, X2y Xge  We require that this volume

Loy . e ,
Variational principles are discussed very generally in " The Varistional
Principles of Hechanics” by Cornelius Lanczos (University of Torombo Pressj.
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be fixed for all valuss of the time-co-ordinste %, e Lebt &l

written [ ¥ and called the Dalembortion of W e

- . o - e = 7 - N 4 - .
dimensional surface, in (x;, xgy x3), which encloses V, D

In order to dizcuss the motion of the field with the

variaticnal principle, we define the action, I, for th

BT el g opiy Ty
following ways
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where x5 and x, are two values of X,

and AT is the fouredimensional slement of volumes
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he action-prineiple now gtates that,; for arbitrary %y
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as defined in the zbove manner, is stationary in the £
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variablese LetdY be completely arbitrary except at xg_ and ::%‘; where
it vanishes, and on S where it is consistent with the boundary conditions
for the fielde HNot only the variaztions S¥ but also the variations «%3@@)&
SR ] KA 9] l e [ . s =, . % % (34
vanish at %, and x,e However, only the venishing of $Y and Sy Ty at x,
and x};g will be required in the variatiomal procedures If &I is the
variation in the action, I, corresponding to the variation (¥ in ¥
then the ‘acﬁim&principle may be stated, explicitly:s for {f which are
varistions about the correst funetiomal dependence of ¥ on its variables
the corresponding 4T venishess That is,
4
X9 Ku .
o= 8T = &) [tav= [ st ar (2)
o
Xy v Ry V
TP the variation, ¥ , is small we may expand $X in a Taylor®s series,

disregarding higher powers in S¥ +than the firste

Then S YER®' )
T s& = 5% v 5@&*3 é&gx}&

If this is substituted into the action prineivle the terms involving
J.d f{ﬂ and dy (4) may be integrated by pa.r”és to obkain:

%'9
- 3. 8Y = 3y = g»ﬂ«;n L8 <X
0 = j f {ggm ;mﬁ“ éi%a%a ISR k

-5-{ - gmﬁﬁ +§a§a~m§m {«g“i’aﬁt
RYAWY @5&4&)

whers h is the um“&nmomaﬂ to S5e
Since é‘f" is completely arbitrary for the whole region V - 3 for all

values of 2{‘% between 'xg and X}l_s we may writes

3L ;"f 2 ; oL - 0

L e S U N~ S
¥ 7T 0. Tl

whigh is the Buler=Lagrange equation for the fislde
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Then the action-principle for the field mey be written:

A ’
o . o f}/{ L g+ A besr 4L gl as
S

(<) IENEXD 3dyd )

(Y aL__ y 5w -(oc 9% dS (o)
0 gf(d(d.d’) Sy ‘*‘d«ww—-:(dxda*é& (Kd(éxdr“’;) é‘PA}‘ﬂec S Qw
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ferential equation for the field funcition W o We may
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imtegral above. In thig investigntio

- cioa s . R93,4 . . -
The attitude, in the litsrature™”? ”55 ig to require that the action

i

i
0

principle yield the field esguations while the boundary conditions are

ey
e

hus, for

i

added to the formalism, in an hoc manner, whenever requirede

ot

example, the boundary integral in the preceding example is dismissed by
G Se It is poinmted out that wvarious other aspects

requiring that &Y =
of the description of a field, e« Ze the conservation %he@f@msgs arise as
a consequence of the varistional principle. Howevery it is not recognized
that the variational princivle for a wave field describes the motion of
the wave field completely in ths senss that it describes the motion of

each of the normal modes for the field. If this is required of the action

principle for wavse fields and if this is recognized in the results o

N

he

¢l

action-principle then the principle has given meaning to the wave field

and hes yvielded all the information we can require of ite The results are

fG, Wentzel, "Quantum Theory of Fields® (Interscience Pub.), Chapter Ie
“Be Lo Hill, Reviews of Modern Physics, Vol. 23, pg.253=260, (1951).

4y, Pauli, Reviews of lodern Physics, Vole 13, pge203-232, (1941).

SLenczos, (page 68, ref.l), does memtion that the boundary conditions arise
from the variational principle for a particular problem 1N o]as5sical mechanicse




Form of the
the differential equation of the wave field and the'boundary conditions

which accempany thisg,. This informationg obtained from the action principle,
implies all the other information which we mey obtain from the principle.
Thus we are led to ascribe to a particular vhysical system a particular
Lagrangs function for which the conservation theorems are a natural con-

sequencee The purpose of this investigation is to show, for several wave

o

ield esquations,

fields,y that the boundary conditions which accompany the
as well as the field equations themselves, are a consequence of the action-
principles for these fieldse This discussion leads to a particularization

of the Lagrange function which is to be associated with a given wave field.

In describing wave fields with action  principles it is possible to
show that a certain arbitrariness exists in the type of Lagrange function

which will yield, at ieast, the differential equation of the fielde Thus
for some fields which arg‘&escribed by a field esquation containing second=-
order time- and space=derivatives, the Lagrange function may be a function
of: (a) the field funciion end its first order time= and space= derivatives
onlys (b} the field function and its second=order time~ and space= deriv-
atives onlys; (e¢) the field function and its first—order and second=crder
time= and space= derivatives. BRach of these types of Lagrange functiéns
nay be associated witﬁcan action-principle and if one requires a meaningiul
deseription from each suéh action-principle then each type alsc yields a
set of boundary conditions to accompany their common field squations

Gven though the three types of Lagrange functions mentioned above have a

common Huler=Lagrange equation they do not necessarily all lead fto the same

. st

set of boundary conditionse Because of the usual attitude, in the literaturs,
toward the variational principles for wave fields, 1. ee the failure to
recognize the boundary conditions as a consequence of the variakional

rinciples for the fields, +the Lagrange functioms of types (a), (b) and
p & 3 ] I3
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5

{c) are usually regarded as squivalent in the discussion of wave fleldse.

ficultiss” in the exbended formalism of tyoes (b)

However; a discussion of the Lagrange functions of types (a), (b) and (c)
= for the real and complex scalar fields and for the real and complex

vector fislds - and the recognition of the boundary conditions which
occur for each of these types, suggests that in general only Lagrange
functions of type (b) = rather than type (a) - should be used and thab
in some particular cases the use of types (a), (b) and (¢) are equivalent

in all resvectse.

Since the discussion of the boundary conditions arising from the
action=principle - for the scalar and vector fislds = suggested the
use of Lagrange functions inveolving second order time= and space- derivatives,

it is necessary to show that no difficulties cccur in the field theory

s necessary to construct

o

formaliem for such Lagrange functions. Thus it
2 Hemiltonian function in a natural manner and 4o sbbtain the equations

of motion as the canonical equations for this emiltoniane One mush

also be able to set up the conservation theorems, that is, to define a
suitable stress-energy tensor and a charge-current vector whose component s
enter into the required conservation théoremse The investigation discusses
‘the manner in which this aspect of the formelism is constructed for the
generalized Lagrange functions whose use is implied by the action-principle.
The result is a satisfactory formslism which possesses some advantages over
that which is usually developed. A discussion of the differences in the
Tormalism for different Lagrenge funciions leads to a closer identification

of the form of the Lagrange function with the behaviour of the wave field ot

its boundary. The Lagrangisn density must deseribe the boundary conditions

2 Go Wentzel, (reference 2), page 16a
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lez 1he Relativistic Wave Fields

The relativistic wave fields which are considered in this discussion
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that is, without imberaction, Since inmterscition will

. ;

not be considered the pseudo=scalar and pssudo=vestor fields will not be
discussed. In a vacuum these fields satisfy exactly the same equations as
the scalar and vector fields respedtivelys
For the complex scalar field the field function \j’ and its complex
*

conjugate V¥ must satisfy the following differentisl squations in the
space=time region of the field:

dda ¥ = KW

dwé«‘l’*’ Ky * (1)

where K is a positive constant.
For the real scalar field we have only the field function ¥ and the

first of equatioms (1)e

For the complex vechor field ¥ and “f"* each have four components,
that is, AR O A A S
\_ras . (‘l’,*, \ﬁ*, \*Sae '*’ﬂ,*j
and the field equations are the set
dadaty = K,
ded<t,t = K (2)

with the suxiliary relations = +the Lorentz conditions

(2a)

W
©

1]
©




""’E}zs £1eld squations as well as the Lorentz conditions are conmbtained in

+the following equations:

de(daty -data) = KY¥a

@‘,({:(;g( \P:,;& - (3{5 \.}I‘*) i K\be*

iy

for if we take the derivative, with respect te x, of the first

equations (3}, for example, then we ha«m
C‘Ado( (C‘a(“l",s = 3(3"’"«) = Kd{;‘k@

But we also have
“ o dxdsdeYx = dndcda e by intoerchanging dummy indicess

Consequently, (4) may be writtens:

K datt, = © K ¥ o
shich is the Lorentz conditione.
Therefore ecuations {3) are equivalent to the set (2) and (Rajs If the
Buler«=Lagrange ecuations for the vector field ars obbained in the form
(3), then the variational principle for this field has provided not only

the fisld equations but also the Lorentz conditione

The Dirac wave field is defined by a set of field equations which

involve only first-order derivatives. The field equations ares

+ ¥ ¥ > T x
8 Ci‘ ¥ (x) _ LY {3 - 0 ﬁ . Planck’s <ens L
+ + 24 . A me - p 3
¢ 7 ¢ “r !pd . : ﬂ', = \slaalq:z

* 4 f..;j_: o(f::_ d ¥, mc‘ﬁf,g- Y, =0 K =1,2,3 (5)
L v

t

)
m B3
where Y, ,Y¥pe , %  gare matrices defined by
k.3

*
* ‘&
\-!J = . =
& k“‘"a‘i *f ( \'k. N \'P;J\'P:s ,\-\/1—)
*Q*
6 o -i ) /o a6
. ( { ece
W /Q" ° O(“‘), §eic . K z[eea~ o1 o6
x«,{ = {feco 1o | . > {0 ’ =
Loy 00 ? 0o o 66 go-ve
\;000 i o ©0 Q ~"t¢ O G 8 o -\
¢ % 4 %
"I’S’J z :3-’( < = we shall frequently use this netation Ior

2

derivatives with respect to times Also, unless otherwise stated, Greek
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Lle3 Ihe Lagronge Functions For the Wavs Fields

The scalar field equations and the vector field esquations are linear,

o

1 2 £ il 23 . o & °

homogerious, and of second orders Their form is alsc invariant under
Lorentz transformationse. The Zuler-Lagrange equations,; resulting from
the action principle for these fields, is linsar and homomeqeus in £

e

the Lagrangian density for the fieldse. The order, in .f s of the

Buler-Lagrange equation is the scme as the nighest order derivative

occurring in &£ o Ihis Zuler=Lagrenge equation is required to be the

wave equation for the field described by gf ° Since the vechtor and
scalar field equations are of second order the Lagrange function for these
fields cannot be of higher order than the secondy since the field squations
are aomowanous end linear, £ must be homogéﬁ%us and guadraticy since
the wave equations are invariant in form under Lorentz transformations,

£ must be invarianﬁ (the necessity for the invariance in form, of

£ o is discussed and quelified in Appendix IT)e Conseguently the

o

only possible form of the Lagronge funchions for these fields is given
by s :
g = 2 (AYTEBGLEY +CRLY)
' (1)
for the real scalar field;
- % C , %
P = AP BOAGR) + S ¥ praaLr )(2}
for the complex scalar field;
A .
L= AR 8(3«‘»’7%“9/%*@‘)” et
%), ‘}‘ *jal;_@ tx)]
C * ‘*\f‘ (. e
+ = L‘é‘;&? Q;@LDB é 3’3 (3}
for the com pl % vector fields
where Ay By C are constanis 1f we assume the homogenelty and isotropy of
space = bimes
iﬂdices will be used to run through the '*?ues 15253,% while Latin indices
will indicate only the 1, 2, 3 component



iong for the Wave fields

The motion of a wave field is discussed in terms

for the fielde Thess normal modes are & st of solubions

apvish o Sy b s it Ty o R L T ST I
SOURCLONS 1n vermsg ol whieh an c’«,?@it?m&fy IUnCTLOn wmay be ?“KOM’EC C@a

have just discussed the differential squations for va

18« Llhe znormal m

Ead

space boundary of the wave fielde We shall sxomines &

to determine some of the boumdary conditions that wil

%3

modess Having identified the boundary conditios

o
"e-ﬁ
@
o
[
€
[

we shall expect that any variational primciple which

*x

which may be written in tk form

ity €
+ = e‘ A/{h (xn)$2)x3)
#/ s - @-L Wy, 5’{: LX‘) X;) Xs)

where w, W, are constants,
, ,
and in terms of which any arbitrary solutious, %’9 ¥

ollowing ways

~
A
di
300
)
; %
+
P4

where ¢, and ¢, are consianisa

g and havis cgnized the

nditions are necessary in describing the motion of t

o

(2]
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If this con be done for any arb

form & complete orthogonal sst of funchionss
When the solutions (1) are substitubed int

sguations become partial differ

1
[

0
&)
(‘)

involving the W, , W That i

be writtens 9
7 lad k) i =0
ded 4w ¥ (= - w7

kR
éks‘kﬁ‘“‘w +C“Z; ..,)‘\),!;4% N 3

e
N

We require that ,!Ah gu*‘ satiefy the conditions existing ot the boundary se

Conversely, we require that the boundary conditions are such that )
A 3 el 4]

may assume only a discrete set of values and that the M, g,a,,j‘ helonging
to various such W, , W, , form a complete set of ortheogonal Ifunctionse

Tor ¥, we must then have,
f”gﬁm*&vzg (4)

which is the orthogonality conditione If various u®s belong to the

same J, then these can be made orthogonal by a Sehmidt processs

Using the field equations (3) the orthogonality condition (4) may be

writhene
¢ * Ay éx},* ? = O
[ar 2% w2 s 2 ,,
( 3N In (5)
S
whare 3 is the normal derivative on De

an
% %

¥ - &%
'(’a" M’” “ sa"'u”tf) and M,," < (‘d“’; , 4 "1y ,’MM &%*

For the vector fields, &4 ,
3 ¥

so that the orthogonality condition may be writtens

P
f{ Y g“‘am,g _“Mh C?’MM’E ;{&5 = O
In B o (6)

in JILc}: there is no summabion on 13 «

)
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Boundary conditions which satisfy (5) or (6), for the scalar and

vector fields respectively, ares

é:!’ % i‘i’f Ed @ o2
{%‘n 3 5?1 O e
‘ (7)
or “%’%’, g = 0  on 3
or ‘{j‘}’* pericdic on Se

L% L gx ¥
For the vector fisld Vs Ui,‘ﬁ,%&, 7&1{) and ¥ Vi %ﬁ) %‘; I‘/f, « Bach
of the components has the boundaery conditions aboves
These are the boundary conditions which are usually employed in the
discussion of the scalar and vector fieldse They will be referrsd to
as the "usual boundary cenditions? throughout this investizotions
& N s e Ly o
In addition, linear homogendus boundary conditions satisfly oconditions
(5) amd (6)e That is,
3 Ly
—~ =r¥ ; = =7 en 2 ,
3n ) N &8)

where ¥ is a constant
and ‘= é%)ﬁ)%l ?éi,} s s {j;i fi@ﬁ, éi%%ﬁ'or the vector field.

are boundary conditions which yield the normal modes, The scalar and
vector fields will be discussed to show how beth of the conditions {(7)
and (8) arise from the Lagrange functions which are employed in the
variational principles for these fieldse When this has been done we
shall be able to say that the variational principles describe all those
motions of the wave fields for which the boundary conditions are given
by either (7) or (8)e

The methods emp_loyeﬁ in the discuésiom of the vechor and scalar

fields = with Lagrange functions « may be introduced by a simple




examplee The vivrations a siretched sitring constitute a ¥field
problem® which may be solved with an action princivlee The methed
of analysis of this simple field, as developed in the next sechtion, will

indicate the manmer in which the scalar and vector fields may be

discussed and the way in which

interpreteds

le 5

the results for these fields may

Zhe Vibrations of a Uniform Strefched String

Assume that we have a uniform stretched string on the x-axis between

Y

A r® X and X = x5e If p is
the uniform linear density of the
ghtring and i P ig the tension
in the string, the equation of

v . § . )
{ —t > X motion can be shown to bes
Xo Y
2 P 3T
T P :
‘ (1)
2
3 Lo»
or 3% - Ur aC" .
P
where 'Jm
p

We discuss the motion of this

string in terms of the moltion of its normal

modese We assume that
= (t) M b‘;
LI LU (2)
satisfies equation(l}e  Then equation (1) may be written:
..;L éz"’g‘&“ «mL éz%a %
IR Towtq TEr T Mty
" A v 5‘w Ft? v N (3>

We seek all the MU,

corresponding to A, al

allowed by the boundary conditionss




Then, for Mﬂn we have
2
3 A = Ex ﬂn
FA?
IR*

If we multiply the first of these by AL, and the second of these by U s
subtract the result for the second from the result for +he first, and
integrate the difference over the length of +the string, we obtains

TN “’W}&x = (&, =2y it tho A
Xo

] A gk

I
2
R,

Ko
Y
& e
| e, dx =0
X
which may now be written N
fx°é EZJAV\ — A4 3&“%&%
Y A, % tdxe
{ R
Ko
;« N i X
or ro Y, il B B (4)
= - AL, - 5
i Xx X ¥Xo
Condition (4) he orthogonality condition which must be satisfied
re to have normal modes for the problem of the strebched gbringe
a variational principle which describes the motion of

"
et
A
[©]

i

We would expect tha 2
the stretched string will also yield boundary conditions which satisfy (4),

=

pac
e

The varia

@

4

or the string.
lefin

E
e

5

e will now discuss two variational principles, both of which yield
tional pr

ion of motion
angian density which they emplov.

p%ét%

the desired equ

differ in the Lagr:
)3 o %,2-%
2, 0= £ +E
N P
-”-*-»Ef?ijiz“+fi > (5)
;f“g, - 7. i‘ ED .
e the action, I, between ty and t; s
,ftt f‘xt
x dt

and then we &
t, \

’ T =] |
2 ] j




:
o3
‘m‘!
[0
W
.
(o]
-
[ l“

where, for arbitrary t and t,e the ¥ are vari
o 1

correct form of 7D e The §F vanigh

e A me
AL\ 8¢ T =

i B~ - . - 5 ke
bgy & = 9 and are consiste

ations about the

L il

with the boundary conditions for the problems

rrvy
LJf, &

action=princinles may be wiithe

tl L)
6= [ ‘j $d, dx LE

5 Kp
ta 1Y)

SA N g
£ o ax*’ JE*

o

1E

oL,

then, Tor small 57'5 $ s K 3%
s o dhsr 2S5 ST 4 e 3
S&, = 3% 3G (gt@

1

o

T

P,

. 23 P, ¥R
¢ él‘? - 7 é,.,,:% .P é ¢ 3
- (E“%;)’W ég&w? BRAFPOR RT3

The first of equaticns (8) may be writien:
. ; 2
LR oy BN A
o = | j AE(E{;?{@ B 2>é 2 ' Jxr? ::3!:‘2; (9)
to %p ’
Integrating 1

WL Y S X . - -
grating both of the las ms by parcs
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This condition accompanies the Huler-Lagranzge couation o

Before we discusgs this condition we shall examine the informati

p ey p 236y

= IR DA ot 3t
and the action~princiole mey be written:

i B
% j - 3 ,
T j{ _p »t i@*f+ Qi"f’ Q;Lé‘/‘)% Ax

O dx A% AT

i
po._—
a
.
{
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Integrating both terms once, by parts, tais bec&m@s:

«-P"éé‘** w; At +,a; i""w}he@x

o = 3%
&
+ ( 'j’"";Pw ?@3”*’ E Sl At
o 2 et ':m?ﬂ
jt@ xé é i{;X jt
so that for the Hulere~Lagranze sguation
3 e z%
P i -F%, =0
>¥ I
we obbtain the bouwmndary condition

|

O (12)




& Pusual boundary conditionsg?

%
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#

or

i
k=

B

+

riodic

bfe

= ¢

or

r
¢

nditio

b

A1l of thsse c¢o onsg so

variational principle for either I,

conditions®,

T Xpp X =¥y

(13)
= Ky X=X
XE€ % 4 with period oK e

~{11)and (12) and therefore the

2llows the fusual boundary

But the linear, homogencous boundary condition

3 ¥

e,

X

where ¥ is a constant,

=¥

satisfies (11) but net (12).

a:i;x:x@,x:xl

Therefore a system invelving

(14)

a

vibrating

string with linear, homogensous boundary conditions may be described
only by a Lagrangian dengity ef form i s not by one of fornm ifz ®
It. can be shown {see Appendix I) that the linear homogenecus boundary
condition is the only condition of the form
¥ is a funciion of %*t at x s X=X
thet satisfies condition{ll). Thus 1 generalizes the applications
of the action principle to include those systems for which the boundar

and then the Familtonian density, § s is defined a
H = oy =J (16)
For fa . a8 defined above, ac: obtains
: (17
7]-* = 74} \7& (’« )
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the canonical egquations of motion are

- s

A .

Y T = (20)
s form of the canonical equations will not be derived here. The
derivation would proceed Lfron

the use of fq’ in & variztional principle.

Similar canonical ecuations will be discussed for the

Then the

2% , which is the equation of motion, (1)
* @
and * ; anv identitye
Thus '2T; and “‘f;’ are conjugote with 'ﬁJ‘L a8 thelr Hamiltonian densitys.

The energy, Ly of the vibrating string can be shown to bes

et (M by rB(R) e

SR

[ —

Tk,

&

33 ° ke ° - » . Ly o 1 husg f( /
This is identical with the integroted Hamiltonian density HZ(:: i /}«L;ﬁx




T A 7 . o = s / 3 s = = = . < 3
‘hus the Hamiltonian density, iéi s 18 ddentified with the energy density
s
of the vibrating stringe
e
Wa et F it 3 . < : 5y
We notice that ,  Goes not comtain Y  and therefore W, may
A o i} L " s 8

not be defined in the same wayv as 7@ ° However, we defines

L3

| ms /Y
; ‘“}’Q’zwf&[;m
and 'ﬁ/ = ‘z‘ig" = Jy

(%)

The canonical equations for ﬁ, are identical with those for ﬁé s that
igy we obtain an identity and the ecuations of motions Therefore 7. and
M are conjugote.

We shall discuss now the way in which ‘ﬂ, may be identified with the

energy of the vibrating stringe

Y
et MW o= [ A dx
J Xo
e observe that D | x.f*éjj s E,é:@;;g} dx
_ = - £ { 3%
H, H‘z, 7 j,é@ A
o LY
P ¥t \

o B 4ot . 3 o s e ot
with these boundary conditions 94, may be identified with the energy

density of the stringe Bub if %j! ¥t at x = Xgy X = X1, where
ERd

ST

¥ is a constant which may be different for x = xy and x = xp, then

3

-

ke

St
A

- P ¥ Wbaiheﬁ "‘?f?,
Ha - Hz, 2 (v

which is not necessarily zeroes We sghall identify this difference,

H' - Hfl ¢ with the energy which we attribute to ths linear, hemogensetzs

%:k = ﬁ’lé'

boundary condition % e

-

< e . 0 o . .
The validity of this definition, for the scalar and vector field, is
discussed in Avppendix IT .
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Action Princinle for the Sealer Fislid

The variational principle for the resnl scalar field was &

as an exemplo (on page 2). The results obtained for th

]
(@]
€3
I
o
f
(@]
&y
e
(03
[»]

hy
aLveys

-

i

Consecuently only the latter will be discussed in debtaile.

It was shown (page 10), for the complex scalar wavs

only form of the Leagrangien density which required consid

] R y ]
where V)&f, %, X, are as defined on pages 2 and 3.

a

O

3 fileld

of the results for the complex scalar

\_,.«‘

Assume that &%, §¥% are small variotions in the funciional

dependence of ¥ ¥ *® on their variabless If 75“)‘ $¥, 5)"&?‘*&1,371 at ‘Ke: Xy

-

s

and

£y

. *
in I corresponding to such % (37, then 4l

[
.!0

variatio

8 R : &
may be staied in

et

he action

about thecorrect form of ¥, ¥* , $T vaniches for ar

$1=° (3)

5

This principle describes the motion of the comnlex seal

S SR

iJh

he following ways for arbityary variations

o

fu 3

are consistent with the boundary conditions on 3, and if 8T is the

o !
srary WWoand Yy e
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Bauation {3) may also be written:

*e (4)

& a}@w% édy)%; §w§&{; g&;@:ﬁd#j

J

-t

and gf = ;f C

If the & variations are small enough we may expand §f by a Taylor®s

gseries as

o f
Mo,y 2L +§i§&w i Mg&{w")
§€ = 377 T a4 3 (¥ G

, N,

C e Nk R D0 (5)

CAEt SRS+ (e £3,0.,95* + BRuHOAY (5)
1§

T

o el S %) Y gp 3 S ), svt
15 ) 0ur)+ SPs1 5 40

Substitute (5 ) imto (4)s Then, integrating the terms conbaining Qﬂgﬁﬁ’,

Jud¥ 5 once by perts, and the terms containming dude ¥ , b ¥ ¥ tuice

by parts and making uss of the fact that ¥ 545%* vanish at %", X, (4)

J

may be writtens

¢ ) . I % ? "
{y - ‘ - o T A TNE ) LY \P*{; éj")’\kgwﬁ»:’% ]«?’)Q &&;}Q}(
o = / ﬁ%f@w"}év Feunstt 45 [osrt - @) ) J
Ry »~

zé
RN L Tavafe- . Qgﬁg Ay .
b gﬁwuvgmﬁﬁwf%ﬁ"‘*f B0, ¥ $ (6)
fL9 i
iﬁqﬁ
Y

where S is the space surface enclosing V
and N, is the unit normal to the surface Se
Ve require that the variational principle, in the form (6), yield both

the complex scalar field equations and the boundary conditions which may

accompany thesea




b d

(7)

If we write k=

fiecld eguations 1e2 (Ll)e WHth these equations, the principle in the

xé .

) : N g

(6) then requires that the time=surface integral, jga J s be
“ 3

by
de

also set equal to zero. Since &,f’ and X, are gomplebely arbitrary we

Ve
may set | { fd?ﬁ O  That is,
At Y
. / .
(T gt T N YR IR S I IS e, ARV 2 WS o § ST A S
no= }!?Eéw’ )54 ;-@Q“’%‘I:g %ELL«:‘&LP )&t =BT * JE (8)
S

This equation should yield all the boundary conditions which may accompany

IS

the scalar field equations. Since %;3@» 9}1 ¢ the normal derivative om Sy

SN
(8) may be written
, * IR N T R L P 1 2 g ¢
e L (e et g E T Cuk e o A
n = E ?Q@“%}gﬁ s+ H(B-3) 5 2 1327 %m | (9)
S

Tnspection of (9) shows that all the Pusual boundary conditions® 1. 4 (7)
satisfy (9) and consequently may accompany the scalar field equationse

In addition, the linear, hcsmogeﬁ’ous boundary conditions 1.4 (8) satisfy

(9) if and only if F 0 . The proof of +this, as well as a discussion

of the manner in which (9) favours the linear form, is given in Appendix T.

2:8 The Generalized Lag‘ anglion Qensz.‘ty for the Scalar Field.

The form of the Lagrangian density 2e1 (1) for the complex scalar

Lo b = = I A
£ield may now be further restricteds The discussion of those mosions

e
e V. .
of +the wave field for which the field has linear homogencus boundary

%

conditions requires B = 0 in J . The stipulationg, B - 0, in £




does not, in any wa 1imit the usefulness of . in describing the
’ 9 ey

5

wave fields but rather it allows us to include, in the ach

ty
)«! -
0

motion o

neiple, a larger number of cases of such motione IfF B = O in C

e

nr
then the Yusuel boundory conditionk® are allowed. These are among +

conditions which give us the normal modes for the scalar field but these

n the Latter case linear

pie

conditions are also allowed if we get B = o and
e - ) s N e - e s .
homogertus boundary conditions are also alloweds therefere, in discussing
the scalar wave fields with an action principle of the form Z.1 (3), the
Lagrangian densities which must be used to degscribe the largest number

..’.1‘

field are of the forms

[

of cases of the motion of this
oy S kg i
¥ = A¥r" + {(’,'ﬂ“f’é@g%% }»)"L&m@‘/‘) (1)
Tor the complex scalar field, @Ad gimilarly
¥ ;:.g?: A k%g‘f*f%é&% (2)

for the real scalar field. These will be referred to as the
fgeneralized Lagrangian densitissts

] °

Sealar wave fislds are usually discussed with Lagrangien
e - -/ § 4. *}
of the form ¥ - Aﬁfﬂsf’* - ( (Gur) Gav
2

for the complex scalar field

wf % j ; (aa P 3]
Z, = ég% -5 C (3uP(3a¥ (3)

In future discussions we shall Fefer to these as the Tusual Lagrangion

among the fusual boundary conditions® for +he
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+the usual boundary conditions the use of the *gener ralized Lagrangian
density® is equivalent to the uss of the 'usual Lagrangian density®s
The reason for this squivalence, in the action pmﬂmnleg is eamly

showme The action integral, I, was defineds

T & é::';vjia@‘f

I

&

=
1

)
j f«’ AP S (B P AT
V
in which the Ygeneralized Lagranglan density? is used,

end let Iz = ;[:}f{m,\}*c_ c (ng%)(gd‘;"a{? g}r
ty

in which the fususl Lagranglian density? is used. We may write

L:.“l in the form ?
x' ) ‘ - % ‘& &
I = jf tf{ ApPE - c BB (3ar¥) 3 §_ Lo atF gﬁ»‘}) T
Xy

The integral of the divergence terms, in Il’ may be written as integrals
over the space~time surface which sucloses that part of T lying bvelween

| 4 /Xu’
I = f’( { AW‘;"*Q_C@’@L‘;@&%"*}}&T *’-}f fg{%;("’u*@x"%”k Jﬁc@)&q

®

1% . Ry §
(e fun o wby ol j"" £
¥ S P WH e
where My  is the wnit-nommal to §

Theraforo : : 2 04
meratere g [t - el 4Ty %j’ejlg"ww“—; P o L 4y
i dy ¥ Xe &
1y % f{: \ \f*,’, +k§q¢i X4 2y
A %,“*9‘* %

o mebl omoned nat _ N o
The action-principle states that &t , s¢* $SW Yt gSavYy vanish at x, and X}ée

Therefors

Xy

AL P |, v o=

Xy

g f§ ;
A
[

=
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Also, for all the *usual boundary conditions®

5% ( . ¢
; | I N 4 . o { =
S EPED e gﬁ*? g BSHAXy

f%@ j & kb

This explains the equivalence of the ®generalized Lagrangian density®
and the 'ususl Lagrangian density® for a complex scalar field with the
*usual boundary conditions®e

The fgeneralized Lagrangisn density®, however, allows more boundary
conditions than the Susual Lagrangian density®. This means that its use
in the action principle constitutes a more geﬁeral deseription ¢f the

motion of the scalar fielde This suggests that the theory of scalar
wave fields should be developed with the ¥generalized Lagrangian

density's Such a developement is discussed in the nexﬁ sectione

2.3 The Generalized Field Quantities for the Scalar Field

A consideration of the boundary conditions arising from the action=
principle for complex scalar fields yielded the result that the most
general description of the motion of the field is obtained with a Lagrangian
density of the form 2.2 (l)e Tt was showmn, in the preceding sections,
that this Lagrange function led to a deseription of the motion of the
wave field in terms of the motion of the normal modes of ;t;he fielde
Tn addition it is required of any useful Lagrangian demsity that it yield

other field functions and other aspects of the motion, It is expected

that a Lagrangian density will lead, in a natural memner, to the

construction of a Hamiltonien function and the expressions for the
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mozﬁen‘bmn, angular momentum and charge density of the field. These functions
should enter into the conservation theorems associated with the motion of
the wave fielde It can be shown? that these field quantities and their
conservation theorems may be derived from the usual Lagrangian densitiese”

The discussion in this section will develop this aspect of the classical

{unquantized) theory for the generalized Lagrangian density.

We define the momentum fields mw and "ﬂ'* conjugate to ¥ and wk g

and the Hemiltonian density, 4 , for these fields by:

‘7“:‘: %‘;%:* & = vﬁLe"g gk?%‘f'

Th= &
e* N TR
. cay LG _pprk = S CHPTHEY ik ¥/
4 = Ut Frre ) Tt ¢ |
| % wAL 4 9 (1)
S L N -5 F Y
61
S gy X *3 3 V)
= fff;r'fi’% “"“A'%%% wg{,%wﬁkfk% + Ik I
-
e

It is shown, in Appendix IT, that the definitions (1) are ®natural® for
- those fields Which are described by the generalize& Lagrangzan den:éi'{;ye
Tt will be shown here that T and 77 ¥ are comjugate to 7 and ¥%
respectively and that 7i§ may be identified wi{;h the energy density
for the complex scalar fielde
The Hamiltonian density is generally constructed from the Tusual
Lagrangian densities's For *&hese Lagrangian denzities the conjﬁgate

momentum fields T, and 7,” , and the Hamiltomien demsity, M , are

defineds ' U Lo
T, &7t
?‘g’f&* = %EZ’ r

9 Ge Wentzel, (reference 2), Chapter I,
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On comparison with the similar functions defined for the Yzeneralized
Lagrangion density® it is seen that the coenjugate momenta are defined
in exactly the same way for both types of Lagrangian densities, ¥ and
L, » while the two Hamiltonian demsities, # and %, , differ ouly
in their space-derivative termss /I, and /, ¥  will be called the
*usual conjugate momenta® while 741_ will be the ®usual Hamiltonian
density®s
The canonical equations H'r the generalized Hamiltonian densi’ty

are the equations of motion for the wave fielde In erder to obtain such

canonical equations we define functional derivatives, SH S %;:'iﬁ

P Sy gk I

LXA of H in the following ways
s y 74
'y . , B E
sH oo dH Ly, S 3
F T T T oY) (2
5H ST ST

with similar definitions for - TH 8 Thk ®

and

S¢% e
Then the canonical equations of motion are:
v‘?f: = gvﬁ Wﬂ.v - gwﬁ
S S
(4)
Sk S g% =M :
ISk S48
Using the definition of 4 s these equations ares
€O = SH S pt =y
r EY , an identity

. ) 7 Y.
Y At¥ = éxﬁ;\;’%f’%;\}h;k &;‘;‘
W ,%,% - &

which is the field equation for %ﬂ




Similarly, the other two canonical equations yield an identity and

A%’ “"“”{13@2\%@% =0

s

the other wave field cquatione

In order to identify % with the energy density for the complex
scalar field and in order to obtain someof the other field quantities
for this wave field, a stress-energy temsor will be defined, The
*generalized Hamiltonian density? for the complex scalar field was

showa to bes

. C, . \ CATRY |
o) — AP = SR F R

H = - Cl%

3

Using the scalar wave field eguations this may be writtens

/ “?L;%WE mﬁ&%j” %%ﬂ:}’ff éﬁ}q %fg

L

i

Né{”\

o (3 (0P r) 4
?54 = - C QP77 (5)

It is desired o construct a tensor, ,-‘“/;:w s of second rank whose

Lt compdnent, T% is the negative of ffzﬁ g That is
?‘;‘? =7 i‘# ‘ (6)
~ Such a tensor is, obviously,

T 52 ééi%w}im*‘wé%‘méﬁf" AT ()

If this is the correct form of ‘%w then we shall expect that vsome of

the conservation theorems for the complex scalar field may be summarized

bys
i’\; T P = %:}

jﬁﬁ" /&A ) (8}




Thé equation (8) follows from the definition of -7;&,_, g (7] and the

scalar field equotiong, for
: < S E)
I p ;’;’v i}_{@ BBt 1+ (9 ¥) Qpit )Mé 3 p-
£ /g o L LS
¥ AT = (390 = Ty
SR AT - Gt i}

C [y A 9) 4 (PG ¢ - 2]
= F W) - T et T2
=0

In the formulation of the scalar field theory with the Tusuel
Lagranglon densities®, the stress~enorgy tensor, Tg s 1o delineds

Tow = CLea DY) + Gy }}+ L8

= . B A KRGO o g ode 2 » 2
of ; v ap it does in the conventional Fformulatione

then the timeecomponent (VF4) of (8) is

%_ﬁ + éggk = 0O

St

y o L2 s 7 g2 e A R A Y " s
H L8 TA8N Lodnviiled Wit Tne onerg

a3 werd B o e F <l B b ey ‘
S, with the energy flux densitve




. e . cne .
Zxcept for linear homogerbus voundary conditions, the total enerzy
#
Hy of the field, is given by H = J 4 AV . g and ig identicel with
1

the total energy which is obbained for the usual Hemiltonian density, jﬁiz e
Le = /3 x% 4y
pa 2 &
v

A LATRANNATETANNATS ﬁk‘} §
Then E = Hg = = }% @éﬁk}x\i«% L @%Ebk:\;"? }'Qk?jgk‘f‘ }; LAY

(11)

= C PR P
Y
where S is the surface enciosing V

and 1y, is the unit normal to 3.
Therefore, for all the usual boundary conditions H = Ho « That isy
the total energy for the field under tiese boundary conditions'is equal
to the usuel definition of the total energys For limear homogeﬁgous
boundary conditions the difference in BNergy, H- Hoy may be attributed
t0 the energy of the boundary conditions themselvese This was done for
the motion of the stretched string (see page 21)

Conventionally W, is idemtified with tho energy density of the
fielde For the usual boundary conditions the identity of O Wi'i:h Hqy
allows us to identify { also with the energy density of the f’n‘_eid,
In order to do this for »fi under linear homogen‘%us boundary conditionsg,
we define a surface energy density 53 so tha

5 _ N T 2ad Ny '
5@ = - CFd R 2RI ¥ Nk (12)

Then we may write equation (11) in the form

j My F {;j Hav + ] g, 4 (13)
<
W < - .
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Then the k-component of the general comtinuity equation, (8), is the
conservation theorem for the k=component of the momeartum of the £ield,
The conservation theorem for angular momentum follows from the

definition of T/gw if we define the angular momentum 'i:enscrlg, P\J/’w@ A

Muva = Tev X = Jer ™ (16)

= 0
=T,y - 12 I Juv
Thus since }17;0 is symmetric, that is 7};% = ?:‘7‘”‘ s we have
y M o,, =0
i (17)

The angular momentum density of the scalar £ield is defined as having

o Lo - ™ . 2 ) . .
component s 0 511;;@4313 RUATE h.quat:;oﬁ (1‘7? then expresses the

conservation of angular momentume.

If the field has linear homogengbus boundary conditions an exchange
of momentam or angular momentum may oecur 'bet%veén the field and the
boundary. The functions defined here ineclude the momentum or angulaf
momentum of both the field and the boundary. Howevery continuity
equations hold for the whole system. The *generalized® stress-energy
tengor has led to all the comservation ‘ﬁheoi'ems expected from it. It
remains to be shown that a charge conservation theorem can be set up

~for the ¥generalized® formulation.

10

e

Gs Wentzel, (reference 2), Chapter Ie




- 36 =

The complex scalar wave field can be inberprestca as a charge carrying
field in as much as it is possible to define an elechric charge density, ,ﬁ 9
and en electrie current density vectors Sps wnich satisly a continuity
equations If we let & Ybe a real constant with the dimensions of electric
charge, and define

p

o LT =R ¥E)

= L &

i

% %ﬁ;«’évﬁ

and s, = - Ce CCETT —# )

then, using the classical field squations 1le2 (1), it follows that

é;ﬁ + QK S = W&vﬁzk@ j“«-{j 39%’! d@?{ ij +L:§V¢}€lj§l?]‘j

3t
" %%&gk“}‘ i“@é;%ﬂ%%#)

Y

(19}
XK%} iék‘;‘yj wkf’”"gkﬁ%@ h

. R

which expresses the conservation of chargee
Since the generalized conjugate momentum fields are idemticel with the
usual conjugate momentum fields, the chargé density, £ , and the current
density, 5., are identical with ‘thé charge density and current density which
are derived from the usual Lagrange funci:ions%l There is no exchange of charge

between the field and the boundary. |

For the complex scalar wave field, discussed in terms of the generalized

Lagrengian density, all the classical field quantities have been defined.

11 q, Wentzel, (reference 2), Chapter I,




The definitions of the momentum fields, T 7{% s conjugate to the fields
v %*
tos

S, 3 are those found in the ususl discussions of this field. However,

wg@w

and the definitions of charse density / and current densit
$ 2 o $

the expressions for the Hemiltonisn density, %%, the energy flux density,
S the momentum and the angular momentum of the field have been modified,
Quantization of the scalar wave field would proceed directly from the
commutation rules for the quantities which have been definede This

quantization will not be carried out in this investigaltione
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CHAPTER ITI
THE VECTOR FIEID

3«1 The Action Principle for the Vector Field

The actior principle for the vechor field is quite analogous to the
‘ac*tion"»principle for the scalar field. Only the cogzglex vector field
will be discussed in this section: +the real vector field is always an
~obvious special ease of the complex field,

It was shown, on page 104 that the only acceptable form of the

Lagrangian density for the veector field is given bys

L= AL AT Bluf-dt) Gat - 473)

- e
1 = /1 L Ly (2)
4o oo
x ) i
4 V ‘
and the actior principle may be stateds
I = i
I (3)
0 xl (b cu . . : -
vhere x, and 4 and each Sl s é‘f’}z are arpitrary in the manner L

which is given in the example on page 3s This prineciple describes
the motion of the vector field completely. Equation (3) may alse be

writtens »
f’ X‘? ff

@«rj {dr
by

0Dy

/
/
7
v
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Txpanding é%ﬁ in a Taylor®s series we may writes:

. S 3 3 A
P = é% Ay g}{ér .;, £ (34 j el P N
> 9‘3;3 2 *%ﬁ‘ Y %) %)g& #&9@ MI}Q '
13
g £ 5 ; af Voo (5)
b "y %”‘f* & I 8
LRI @ LB )R

Substituting from (1) into (5) and then using (5) in the action principle

(4), one obtains, after suitable partial integrations, the action

princinle in the forms . 9
) ¥ A
- -2 J Pi& ﬁ;};zﬂ’ %
= _}f f‘%w"s@«-&@)@w jé“f *i"‘;’“‘* B) (k™ ey
(6}
j }‘:@B“sz@ Rl
Ry { .
LA - ) sH) b, S
C (g -dp¥) + S0 Y s jng o
where 3 is the surface enclosing V
and Na is the unit normel to Se
Xy, ‘ N
The § integral in (6), ®r the completely arbitrary éf’ and 7. s
a5ty 3 5

yields the Zuler-Lagrange equations of the motion of the wave field.

These Zuler=Lagrange equations ares

[ *
A *}’g + iiw’z@@%é@%ﬁ WQG&%E +*

3 -

= 0

S

Aty v (o) (Juday - (7)

Wth K= A/ (8B -C) these are identically the field equations le2 (3)
They are equivalent to the equations

\%Z:@

for the vector fields
AT c2e) ds -
8

i%"f’ v (e ¥ s = 0O




I =6
and the Lorembtz condition: 53‘53%9% -

s - S L% o 32 1 e P P o
in terms of which the vector £ield is usually discussed.

5’)!(@@ ) (e ¥d 0¥ )shy + @R-E)0uh, ~nhe) S
S

(9)

) sV LY, S¥ ;{ D efS
- \ib @)&%% @3;3&‘7”9) F WL {ﬁg@
A1l the boundary conditions to be allowed with the Fuler«Lagrange
equations (7) will satisfy the condition (9),
The Lorentz conditions may be used to remove some of the forms

in (9)s Tan order to do this we observe that the Lorentz conditions

allow us to writes

This may be rewritten as a surfacs integral over the space=time surface

which encloses that part of T which lies between x and Xre That is

we obtaing ) x \ ] ¢
{f N, £S5 AX
0 = j g % QU" Q‘;s%ﬂ k};&éﬁ% 5 K JL v
& 1
< Yy
PSRN \,*)il,? 4V (11)
+ ] Q%U" %fﬁ; 2Op Tu/l e
Jo Yy
v
where h, is the unit normal to § = = @

I
But the action princivle states that the variations ggfé gifﬁ 3;53)3};” ssap\;:;%g




venish ab xz and xi. Consequently

/ \ L ) gxudige/
AT |
o o= [ 1 (¥t = Yull s
V
whence
A 1\ ds dx
N — jr Ve &= ARy (12)
0 = | }’ SOHR Rk —Teop7e i
v $
whichy for arbitrary xz and Xé]i’ may be writtens
g"}; * Yo St b ds = f‘i '; “f’*§ ¢ ?m&‘s
JRIERAT E A" o 3 O ; (13)
)
s <

. . #
the left=hand side contains only the variations é’f’B
the right-hand side contains only the variations ii
Since these variations are independent each side may be equated to zero

separately, that is

){/3@ \;«k‘%é%* - %3 S“Fég Ny €5 = 0

{ ' \ Ty | =0 (14
g
Using (14}, the boundary condition (9) may be written
0 = {50 SOt st st TR Nt
S ' (15)

\

~Jp

Far (i * Yo pHyst ¥ MYy - i) SH |
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An examination of (15) reveals the following boundary conditionss

L5

Lr
aﬁ = Iz =0 s
& (16)

. L * e s
or ;j; s ‘Tf’ periodic on S.
2 = Ly2,3,4

But, unless B = O,

%}‘}j‘ - O gfi.i = O
neither in an
‘ A " on O
¥ g}_g 7L 9’%}3 - 34“7@:
nor ;}5 = ¥ ;3 Z}.Yi )

§

(where ¥ 43 a constomt depending oun f.:% )
satisfy condition (15). since these boundary conditions are expected
of a useful Lagrangian deasity, we stipulate that B = Oe Then (15)

may be written:

;

P N T Ty » ) SRR B
O ==7 j( B ISt F Quis)stg =77 aubh, =Yy dadlg pnads ooy

)

which is satisfied by all the usual boundary conditions and also by
linear hcmogensous boundary conditions. The relation of the latter to

the surface condition (17) is discussed in Appendix T.

3e2 The Generalized Lagrangian Density for Vector Fields

We shall eall

ﬁ
("‘“‘"‘*W«,\

‘f}z{ $§ a@a%} j‘i’% é«lﬂﬁif» }» o b!}} (,1-}
thefgeneralized Lagrengian density® for vector fields. The Lagrangian
density, fl ¢ Which is usually employed in the formulation of vechor

fields, A

C- S i \ i ‘)% &‘ *
jﬂzﬂ = fg‘%%s 3 - Z {@ldjé “’x}ﬁ%a}{%«\f}é *’)jsvé@*’)
(2)




w11l be called the Yusual Lagrangian density’e The Buler=Lagrange
equations,; 3.l {7)s show that both the genefalizeé and the usual Lagrangian
densities lead to the same field ecuatious. Howevery the usual Lagrengian
density allows only some of the usual boundary conditicns while the
generalized Lagrongian density allows all the usual boundary conditions

and, in addition, linear hémégen%us boundary conditionse  Thus the

use of the generalized Lagrangian density, (1), ccnsﬁita%esva generalization
of the descripfion of the motion ¢f the vector field by an action principles

Tn the next section the classical theory for vector fields will be

developed for the generalized Lagrangian density (1)e

 3¢3 Ihe Generslized Field Quamtities for the Vector Field

For the generalized Lagrongian density, 3.2 (1), the momentum fields,

*

X .
ﬁ; and ﬁ@g s conjugate to jﬁﬁ and ‘¥}3 respectively, and the

Hemiltonian density, 44 g may be defined bys

= & 4 ¥
mn;a T oe* j#P

¥ C % :
4 = "% W,gﬁ; WA?:.:‘;?L;.? - iﬁs@k%ﬁg‘s&—%\}w (,l)

¢ \ \
- SO 1)

K:" 5,2,3
W[}‘JMZ, %,“f
- 3 L2 3 . '
The field quantities, (1), are derived from the generalized Lagrangian

density, in a natural manner, in Appendixz II., We shall refer %o these
quantities as the generalized field quantities for the vector fielde
In the conventional formulation of the wvector field the field
quantities s - o - . :
a ies are constructed from the usual Lagrangian density, 53; ®

—_— . s X ;
Then the usuel field quantities, ’%%1 . “ﬁ%a s H, aredefineds




- S
B, — T Gy :i “‘”%3&%!}
* = mé;’ ) § . é‘é'?i‘)
ij%'b ;2 L;«;%g ! i
- £
W = T PG % o Fi (2)
R YA) 4+
= CJUA=I G RN ] AT,

y & @@"2 ““ﬂ“;af”éié %7%3"'5;% h) =R,
KWy, BTRE A

i
where Fp is some vector function of ‘4";’) ‘7/’1/

&

It is usually assumed that divergences of the form "’"Ek F; can be added
to ﬁ rbitrarily because the integrated Hamiltonian density, E{P
( Hy _,5/ #,4V )y will not be affected by these terms if the £ield
function: vanish at the boundary, 741 is used only for this special
boundary conditione

It is seen, on inspection that the generalized 7;1 ’ Zf;%wé 44
differ from the usual 7@1,’77{;?) and ”’742‘, In particular, for the
usuel formulation both T,  and 774;1 venish identically while, for
the generalized formulation, W;{ and 7, * do not vanish in generale
In the usual developement +he vanishing of these two momentum fields
intreduces difficulties into the theory of vector fieldse TFor example,
if the canonical equations from a Hamiltonian densityy, for i?ector fields,
are to yield the field equations in the form 3.1 (8) then these equations

¥

mst arise for all the components of §‘?é"’ 5 Y&l g that is for afi, B’L‘v %, %

519" ‘f’ * ‘f:f ‘/T; e However, with the usual conjugate momenta canonical
equations would have to be set up involving the identically vanishing ﬁ“fz,.
and 7}:;;; This consbruction would not have meaninge Zven otherwise,
it is usuelly necessary to assume a particular form of F if the remaining
six canonical equations are to be the corresponding six field equationse

Such difficulties are not encountered with the generalized conjugate

momentae
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I would be possible, with the usual Lagrange function, to define
the usual conjugate fields to be identical with the generalized conjugate
fields (1) However, such definitions would not follow naturally from/
the usual Lagrangian density {see Appendix II)e The merits of the
generalized field quantities will receive further é_iscussion in the
following sectionse

To obtain the canonical equations of motion from the generalized
Hemiltonian density, 74 s 1t is necessary to define functional derivatives,
S sH s s

e - —_ Pl with respect to ‘f‘/ in the following way:
YA ’g%g’ &7, * Swx? v

X S A A A Y0 Iyt)
déffﬂ T 9% ¢ 0 I9klp) el 2)
éiﬂf ' &fG’
with similar definitions for (¥ éﬁ amd g e
S¥ha T 7
J zf)a’jﬁ R

With these functional derivatives the canonical equations of motion are:

¢ éxﬂi » .
= 22 | N
fﬁ éﬁ;g {(a) W;; ’ '“;f% {b)
(4)
;% _ 344 s % L é#
*fs T () T = 5y» (a)

B

Tt is expeched that these canonical equations will be the eguations of

motion of the vector wave fielde This is readily verified.

(42) yields \Fﬂ =¥ ar  identity, and

¢ x _ R
(4b) yields -nc_élﬁ}q#; s A?ﬁ: 4 i(gkgk%fg ég&g}g )

PO, Dyt

which is the field equation for 7;* in the form 3.1 (7).




<

similarly (4c) and (4d) yield, respectively:

*
%f%
O = A+ﬁ + C (:g@zé@t?!’w - gdéﬁ%@>

s %
= %5;3 ary identity

and

which is the equation of moltion for the field ‘71;3 e

The canonical equations of motion, (4), have not beem derived here
from a variationmel principle involving the generalized Hemiltonian demsity
*?ﬂ e« This could be done and such a discussion could alsc be used %o
obtain the boundary conditions to be allowed in the desecription of the
motione One Woul& preceed to discuss ‘74 in & manner entirely analogous
to the way in which a‘f was discussed in the preceding seebions.

If the gemeralized Hamiltonisan density which we have construcuied
is to be entirely successful in the classical theory it remains to be
shown that ﬁ may be interpreted as the energy dengity of the wave fields
and ‘thaﬁé. continuvity equation for eﬁergy may be‘ set up. In order to
do this, a stress-energy temsor, for the vector wave field, will be

gonstructed from the definition of ‘ﬂ e

The vector field equations, 3.1 (8), may be used to write the

generalized Hamiltomian function, (1), in the form

- :é(;s.njg‘)(m,QB PSR P PR (5)
A s’tressweﬁsz;gy tensor, 7;~u , may now be defined

T;,v = % {ﬁ@,,,@,g(mg)+(sv*,;)@,,_v;§)~é§kw§ - ;w;&% )

It is seen, on inspection, that Ty, =-Jd o4 requirede We shall
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identify various field quantities with the components of Z/;u o Some
of the continuity equations for the vector field will be of the forms

%Tu.;':.’@

el (7)

This equation follows directly from the definition of ’Z‘:y (6) and
from the vector field equations 3.1 (7) (efe proof of similar relation
for the scalar field, page 32 )o  The time=component of equation (7)
will be recognlzed as a contlnulty equa:b:.on for energye The energy

flux vector, Sk, for the vector field, is dennec‘i bys

S = FTiea k = Lo203 (8)

Then the ‘ﬁme—-component of equation ('7) may be writtens

3H )5, =0

] !s: o
ot ol (9)
The generalized Hmil‘&onian‘ densityy ‘ﬁ g Will be identified with the
energy density of the vector field 't;hi'ough a comparison of 'i/ with the

usual Hamiltomian deﬁsﬁ.}, ‘ﬁz e We may write

H-4, =-C {Qv 1) Q) +4(% gw;wwgkm ) +M)(; vh@ %eet)

1
aow® oy )Ly by
= (375 )0 ¢ %é» RIS %mﬁﬂ} (10)

= = (%) @,%} F 0, Y0) 5&;{7@%3 ¥ 4 P,

+ v%:}(%»sk;}k%i) g: +°‘» @t ‘&}Lék te)

To reduce this expressionm to & pure divergence we remember that the

Lorentz conditions may be written:

égf?@& g ""’;‘j’f



Then we examine

), {9y + DY 5 K09 4 I

Z
- CQK%?}(@%;%) PSR+ ShY ) (12

v“ sl

FE 90 OFE) +2 O PR 0B o
Z

- gch%‘wm} _ D) Oin)

Using (12) in (10), we have

Wy, = £y J-hoct EMk b r 7
A TR

Lige

(13)

which is a pure divergence,

The difference between the integrated Hamiltonians, j /7JJV - j”ﬂ; AV,
4

is therefore an expression which may be evalﬁaﬁed at the houndary,
If j "7dia@v is identified with the energy of the wave field, then,
for The more general motions of +he vector field j{/ﬂ dVv ig identified
v

with the energy of not only ths wave field but also the boundary conditions,

The generalized Hamiltonian density will serve as the energy density
of the vector field if we remember that at the boundary fs/ containsg
terms which deécribe a surfage energy densitye Howevery the total energy
flux through the boundary vanishes, that is,

& I - @
S n, 48
® (14)

C ﬁx\.,mm«‘\’

This follows from
I .
‘} gk— "y & S = j
& AY

definition of Sy s

{
icgﬁ*)(;,m FOds) (3u ¥E) = 3y ST &S

""%
%

PRI A

he
C
*

L e g ’é\%’i‘ 3 % )
f [T R L mt( B+ W«é > )
S

for all the allowed boundary conditionse

1
o




= 49 =

Therefore the total energy of the system is consérved$ Howevery, as
for the scalar field, an exchange of energy may occur belween the field
and the boundarye. The generalization of the Lagraﬁgian dengity has
extended the use of the action principle to a special kind of non -

conservative vechtor field.

The momentum density vector, Gys for the vector field may be defined:
G = 53‘6 Tgr  k =1,2,3 (15)

from which it follows that the v = k component of the general continuity
equation (7) expresses the conservation of the k=component of the momentum
of the wave field,

As for the sealar wave field, the conservation of angular momentum

is an immediate consequence of the symmstry of Z;ﬁv s

By defining a charge density, f@f, and a current density, Spg in
terms of the vector fisld functions, and by constructing a continuity
equation with iﬁ and s, it is possible to imbterpret the vector field

£y

as a charge carrying fields As for the scalar field, we defines

p= omcelmyp My ]) < -CE S (f AT 43, )

isf

iy

G R AR AL B

where & is a real constant with the dimensions of chargee

-

Theny using the vector field equa tions, it follows immediately that

%ﬁ + gkik <0

3t (17)

which expresses the conservation of charze.
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sneralized sonjugate momentum fields, 79’% and W;; s ATE

s
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(63
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different from those usually employed in the literature, the de

of charge density and current densilty, given above, aleo differ from the

Then we have

PP’ T ETURNN - )

R mf»;l ) (9]

it
h
By
o
w
s
=&
i@

. . L¥ -7
since dy }g:@ and %}& ?ﬂ@ -
- oh ! HlaV .
The total charges for r and f , that is, jﬁéi} and jlﬁ respectively,

difference vanishes if the field functioms vanish at the boundary TV &
The generalized Lagrange function for the vector field allowed a
definition of the conjugate momentum Fields for which the time- cc*mponbnﬂt

of these fields did not vamish identically, It has been shown, in this

section, thet all the classical field cuantities and comservation Eeamms
may be derived along with such definitions of the con. jugote momentum fielésg

The formulation was extended Lo include ficlds with linear homogencous

boundary conditionse More than that, the vector field cuantities, as
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derived above, possess a remarkable similarity in form to their analogues
9 P
in the complex scalar field. As 2 rule, if any generalized field
?
quantity is defined for the scalar field its analogue in the vector
field follows immediately by simply replacing the scalar field functions,
S . . +F .
N g 9 ‘7& 3 by vector field functions, *‘;; 5 é g and by replacing

products of scalar field functions by inner products of vector field

functionse Thus

v 722/32
NN
$iE —— *j;%}g

(20)
3ri dn
etce

The only exceptions to this rule are the Lagrange function and the
Hemiltonian functione These are logical exceptions becauss we require
that the Lagrangian density and also the Hamiltonian demnsity, for the
vector field, lead to a Lorentz condition, a condition whieh has no
analogue in the scalar field, ’Jﬁze Hamiltonian functions and the
Lagrange functions for the vector fields are at variance with the rule
above only in those terms (that is, mixed=derivative terms), in the
vector field quantities, which lead to this Lorentz condition,

The simple rule given above, for the transition in form from the
scalar to the vector field does not apply for any of the field quantities

in the usual developement of the classical theory for these fields.




CHAPTER IV

eld

b
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Lol The Dirae ]

The Dirac field equations,le2 (5)y imvolve no derivatives of higher
order than the first and consequently the Lagrange function for this
Tield may not be generalized to contain sescond=order derivatives.
'Form of the
However, it may be shown, for this field also, that the'boundary conditions
to be allowed in the description of the motion of the wave field are 2

direct consequence of the action principle for this fielde

The Lagrangian density, ;ﬁ s for the Dirac wave field may be choser

N

X , ok

§ = i 2; §%+mc,/®/%7‘;» |
’ F ’Q r (1)
whichy for reasons of simplicity, is unsymetrical in ?% and
the discussion of the action=prineciple will show that this expre
ar and vector fields, the

could be easily symmetrizeds As for the scal

action=principle here may be written:

£ XL; {
—_ g § ) #
S
X” v

s i 4’“&“
where the variation &4 means the variations in £ of the
functional dependence of all the f’ s %fﬁ on thelr respective variables.
4 1
These veriations vanish at x? and xz.

Using the form of gf given in (1) and per;or“ing partial integre

the usual varistional procsdure allows us to write (2) as:




{m ;‘ff“ . % ) % }
o = [ =™ S o Y _n, gsdX
J{ag 55 £ po ok ’
(R g i 3,
FololIThAS s R My yaen ¥ [(=59E)
Je 1 L% T o 2t el R IO (2)

where ny = (ny, ngy n3) 5 the unit normal to Se
The Buler-Lagrange equations yielded by the second integral of {3) are
identically the Dirac field equations :Ln the form 1.2 (5)e Theyﬁ Pirst

integral, which is the boundary condition integral, allo; s us to writes

either Yo =0 on 3 (4)
BT SR |
or ﬁk,‘;‘) ﬁ m}@v =0 on s (5)

or the periodieity of %,. on Sy as possible boundary condi’i;ion‘s.
By interchanging the places of ‘75; and %’?"’/j in the Lagrange function (1),

one would have obtained

either N Z, = 0 ons 6)
gx?
or N s 7;@ =0 on$ (7)

*
or the periodicity of */ég. on Se

I% will now be shown that (4) is equivalent to (7) and that (5) is

L
equivalent to (6)s From the definitions of d;:: and T;a as given

by 1e2 (5), we may write (5) as

Sl % U“}Ra
O - i’j%f’ Qi'zéa’)mk

5] Lh*&q*"ml%‘/ '9"?’7374’3}
|

‘}V‘;ﬁ&** 3 %?)33")5 jj
y / (8)

i
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|
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and consequently
{ % A
Nty pina TNt

. A L 4F

1
<

(9)

: % *
n % we Pt

A
% <y X %mﬂ Q’;’
mYi; -¢ N, ¥y =137

1
O

The first two equations of (9) are two linear homogerbus equations in

*
&%3‘ s §§ ¢ Whose determlnaﬁt, (nl + n?2+ n32 = l )y does not vanish,

* =
Consequently ¥’ %‘ =
L4 *%Wy$:‘\ 1 e 3
Similarly, 77 =73 50  from the third and fourth of (9)
Therefore the condition (5) is equivalent 4o (6). Similarly (4) is equivalent
to (7)e Of the usual boundary conditions the only ones allowed by the
action=principle for the Dirae field are the vanishing of bhe field functions
on S or their periocdicity on Se The vanishing of the normal derivatives, on

S, or linear hamogeﬂ%us boundary conditions are excluded as possible

boundary conditions for the Dirac Fielde

4ed Conclusion

The boundary conditions for the motion of the scalar fieldy the vector
field and the Dirac field have been shown +o be a consequence of the
action=principle for these fieldss It was shown, for the vector and
scalar fields, that the use of Lagrangian densities containing second-order
derivatives constituted a generallza ion in the semse that the description
of the motion of these wave fields was extended to include those motions
involving linear hamogeﬁ%us boundary conditionse This generalizabion
modified the form of various field quantities.

The use of linear homogeﬁ%us boundary conditionsg in the spplication

of field theories to physical problems has not been investigated. It was

pointed out that such boundary conditions allowed the exchange of cérbain
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field quantities between the field and the boundarye Any physical

problem involving sueh boundary conditions would have to be discussed

by

which has been developed,

with the generalized theory

became quite amalogous in form to the

L

y
ct

the formulation for vechor fields

formulation for scalar fields.
The modification of the field quantities, as suggested by the
generalized Lagrangian densities, have been carried out Tor the elassical

(unquantized) theory of the scalar and vector fieldse A natural extension

on would be the discussion of quantization

of the work in this investic
with the modified field functionse Such an extension is contenplated,
Interactions were not considered in +this investigation. The boundary
conditions arising firom the use of generaslized Lagrangian densiﬁies in
action=prineiples for the pseudoscalar and pseudovector fields eould be
discussede In a vacuum the equations for these fields are identical with

the scalar and vector fields respectivelye It would also be of interest

to discuss the electromagnetic fieclde In ga%ﬁicular, it would be important
1d in a

to discuss the possibility of defining the momenta for this field

menner analogous to the definitions of the generalized conjugate momenta

for the vector field.

In the discussion of field theorises with variational principles it

Y

should be remembered that the variational principle be required to yield

all the information about

motion of the fielde

the field which is necessary to describe the
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LINBAR H@LDGEYGUS CONDITIONS FROL THE BOUMDARY THTRGRAL

The boundary condition integral for the complex scalar field was

found to be (2.1 (9)):

. ) "
Y Sy 3 L, Gy P Curd] )
= -6 = ‘}‘(,B“ ""’"4‘3% "'T‘\?Lg Uy
0 ’jgg(ﬁ 3/)dn 7 J >/ 9n 27 %I 2 ?
)
Among the boundary conditions so igfving this reléiien would be those

conditions which express a relation between the field functions and
their normal derivatives. That is,

%:f = G )

In

W )
»:75?! -

on 3 (2}

It will be shown that (1) requires +hat
Gl = 87
Bty =y ¥ (3)

where ¥ is a conshtante.

Azsume the relations {2). Then by Taylor's series expansions, for

amall &Y, ¥ e nave
g,-,z:* dH g *
¥ _ 46 S T |

>
p N

Thig allows us to write (1) as:

- T ouwl e
{ -
G q. Y dH ls+*e S

&
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(B-3) G+ E%ffm = 0 (6)

7

These are two differcntial equations which may be solved for H and @,

The first equation of (6) may be written:

LR AN

<, vF &% | ‘!?

1

. . g . . oy .
in (7) the left-hand side depeands on ¥ only while the right=hand side

depends on ¥ onlye  Therefore each side may be equated to o consbant

?

—¥ sayy Then

G = ¥¥
~ (8)
Boe T yt¥
2(8-¢1)

Simileriy the second equation of (86) yields, for aumother arbitrary
constant A N

H :‘A‘»P*

o~

C
G o= m —— ¥ (9)

) z(ﬁ -¢2)

Equating the results of (8) and (9), we obtain

.
¥ = - — A

2(g-4)
C : (o)
T T | |
that is 2 (11)

U
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which holds for k‘g“ not both zerc. TFrom thig, either B = C or
3 = 0s But from the Zuler=Lagrange squations 2.1 (7), if B = ¢ +then
= everywhere in V.
Therefore, for a non=trivial wave field, boundary conditions of the
form (2) require that B = Os Also then, )Y and the only possible

form of the boundary conditions (2) ares

DTy
an
’ (12)
LA ¥
dn

For the vector field, a similar result is obtazined for each component
of W=ty ¥y ) ama PHATAA AL L)

The conditions (2) and their restricted form (12) express a relation
which holds separately for each point on the boundarye Thus ¥ is
independent of time but mey be a function of position &n'Sa The linear
homogeﬁ%us boundary conditions (12) are the only possible boundary

conditions which are *point=wise® relations in this mamnere




APPENDIX II
THZ CONSTRUGTION OF HAMILTONTANS FROM GENERALIZED LAGRANGIAN DENSITIZS

A Hemiltonian function may be defined, for a wave field, if both
the field functions and their conjugate momenta may be defined, We

obtained, as the generalized Lagrangisn densities:

o . ) N ooy
Ay = ATF* + %(%ﬁc{éd“}% P ¥y dut)

o ~ (1)
5 . ¥ Sl 0y o ) #) LW AT A E
E y = A %;3 %}g + y if;gti&kgﬁjﬁg - jy;:x! \7{%&) s - @zﬁ &\,};g cg&ép%a?ij
o S
where j:p is for the complex scalar fisld
and «fv for the complex vector fielde
Usually the conjugate momentum fields are defined by
_ ¥ % 3L
TY, = .2 “77-“. - [ * (2)
g oF B 0¥
)3 E '

whore (3 F 1.2.3.4 for the veckor field
= 1 for the scalar fielde
But neither of thegeneralized Lagrange functions above contains ‘//;3 or
&;l; explicitly.

Because of the special role played by Xy, in the action -principles,

o4

= . '!% R
any terms in jﬁ; or fv - involving "if; or ‘?4"]3 { /3% 1eRe304 for vector
P 3 H
fields, = 1 for scalar fields) may be replaced by a suitable term
¥ 4 )
involving ﬁ% or "7!’; s and the action-principle remains unchanged

under such an interchanges Thus we transform
o0
I, — s

\ 3
jvw%ﬁvl (3)
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By employing<§3{ and ii’ in the variational procedure it is seen

at once that these Lagrangs functions yield exactly the same Zuler=Lagrange
equations and exactly the same boundary condition integral as ?5 and i@
respectivelys Therefore iiggand &ﬁ,/are equivalent %o ;f& and j;
respectively, in the discussion of scalar and vector wave fields with
action-principles. Tn view of this equivalence ?ég and 7ﬁ£§ may be

defined, unequivecally, as

AN % = éﬁéj
; = W_ Vi 2 = 35}: * .
r T 3E, 5 2 (5)

where /3= 142,3,4 for vector fields
= 1 for scalar fields.

These coustitute natural definitions of the conjugate momenta which
were stated in the discussion of these wave fields.

It would be expected thalt the Hamiltonian function for the wave fields
would follow from that form of the Lagrangian density which was employed
in defining the conjugate momentum fields. Therefore we define the
Hemiltonian density, 7@ s 28

©)

: ¢ e %’% - . ,
3T 1,243,4 for vector fields
= 1 for scalar fields.

This is the natural definition of the Hamiltonian density for those
wave fields which are described by a generalized Lagrange functione

The definitions 2.3 (1), 363 (1) employed in the discussion of the secalar

and vector fields follow immediately from (5) and (6}.
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The trensformation s above , has transiocrmea all those terms
in %22 which involve cerivatives with respect to the time zo-ordimate.
f Y I |

This is not true of the transformation <, = </, . In the latter,

s s ° ° o 'y o o5 % % S ¥ *g 3 75‘
time=derivatives occeuring in terms of the fomﬁ%c}ﬁ&@f& or ‘4’,% «;)%;3 du T
have not been transformed and have not been employed im the definition
of the conjugate momentum fields. Tn order to employ these terms in
such definitions it would be necessary to define functional derivatives

& o0
o “4’}2 or V"*. However these terms occeour in

o

of %V with respect
C:Z{‘y only because they give rise to the Loreatz condition. Thus thess

terms have an auxiliary role in the variational procedure and their use

=0

n-extending the definition of 7rB and 7]'3"‘c need not be expecteds It

was shown that the definitions (5) and (6) were completely sufficient

for the construction of a Familtonian whose canonical equations are the

vector field equations in the form which includes the Lorentz condition,

In view of this these definitions are not only natural vut also sufficient,
The transformations f‘g el L ——s &, correspond

to transformations to Lagrange functions which are not relativistically

invarient., This is a qualification of the relativistic invariance of &’iﬁ M

It arises because of the special role played by the time-go=ordinate

in the ac‘biorswprihciple, The space=derivatives, however, must enter

into a generalized <  uniformly.




