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Abstract 

Three 3D nonlinear finite-element (FE) models are developed to study the behavior of 

concrete beams and plates with and without externally reinforcement of fibre reinforced 

polymer (FRP). Ramtekkar’s mixed layer-wise 3 dimensional (3D) 18-node FE model 

(108 degrees-of-freedom, DOFs) is modified to accommodate the nonlinear concrete and 

elasto-plastic steel behaviour. Saenz’s stress-strain equation is used for material 

nonlinearity of concrete. As in any 3D mixed FE analysis, the run time using the model 

can be computationally expensive. Two additional layer-wise 18-node FE models: 

Displacement FE model (54 DOF) and transitional FE model (81 DOF) are developed. 

The displacement FE model is based on purely displacement field, i.e. only displacement 

components are enforced throughout the thickness of the structures. The transitional FE 

model has six DOF (three displacement components in the coordinate axis direction and 

three transverse stress components - zyzxz σττ ,,  where z is the thickness direction) per 

node in the upper surface and only three DOF (three displacement components in the 

coordinate axis direction) per node in the bottom surface. The overall intention for 

developing the two additional element models is to investigate the result quality with the 

reduction of computational time by using elements with less DOF in less critical part of 

structure. In this study we limited our effort to investigate the quality of the results rather 

than efficiency of the models.  The analysis of reinforced concrete (RC) beam 

strengthened with FRP and composite plate using these models are verified against the 

experimental results and the results from the commercial software, ANSYS respectively. 

Several parametric studies are done on composite RC beam and composite plate. 
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Chapter I 

Introduction 

 

 

1.1 Objective 

The objective of this research work is to develop a three-dimensional (3D) nonlinear 

finite-element (FE) program by using efficient sophisticated FEs in order to accurately 

simulate nonlinear reinforced concrete (RC) beams and plates with and without fibre 

reinforced polymer (FRP) reinforcement. 

 

1.2 Research Contribution 

Three 18-node elements were introduced. The first model was originally developed by 

Ramtekkar et al. (2002) and is modified in this study to incorporate material 

nonlinearities, smeared cracked concept, and smeared reinforcement. The second FE 

model is based purely on displacement field. Only displacement components are assumed 

throughout the thickness of the structure. Transverse stress is not considered in this 

model. In the third model, three nodal displacement components in the coordinate axis 

direction and three nodal transverse stress components are used as degrees-of-freedom 

(DOFs) per node on one surface where as three nodal displacement components in the 

coordinate axis direction per node are used as DOFs on the opposite surface.  The overall 

intention for developing the last two element models is to reduce the computational time 
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by using a fewer DOFs element in a less critical part of the structure, and a higher DOFs 

element in a more critical part of the structure (local-global strategies). Because the top 

and bottom surface of the structure are critical in nature, we are interested in both 

displacements and stresses in that area. We will combine all three models and refer as 

combined model. In the combined model, we use modified Ramtekkar’s (Ramtekkar et 

al. 2002) mixed FE model in top and bottom surfaces, and in the rest of the area we use 

the displacement element model. Between these two different element model types, we 

use the transitional element model. This assembly overcomes the drawback of the 

Ramtekkar model by reducing the computational time. Then, the nonlinearity of concrete 

material is added by using Saenz’s (Saenz and Luis 1964) stress-strain formulation in the 

FE framework. Steel is considered as a bilinear elasto-plastic material and smeared 

uniformly over the elements. Only unidirectional stress is considered along the direction 

of the bars. The new models are verified by analyzing RC beam strengthened with FRP, 

and a composite concrete plate. A set of numerical results are provided for future study. 

 

1.3 Scope 

A 3D FE analysis program is written in FORTRAN language for analyzing RC 

structures. Nonlinearity of concrete material is added in the code. With this FE tool, it is 

possible to perform layer-wise analysis of RC beams and plates, composite structures like 

RC beams and plates strengthened with FRP sheet on the bottom, laminated plates etc. 

The geometric nonlinearity and bond-slip phenomena are not considered in this present 

model. From the analysis, load-deflection, load-stress, stress-strain, and failure mode 

information of the structures can be obtained. As the transverse stresses are considered as 
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nodal unknown variables, we get the transverse stresses directly from the elastic solution.  

This means the point-wise recalculation   by integrating the equilibrium equation does not 

need to be performed.  

    

1.4 Significance    

The mechanical behavior of composite concrete structures is difficult to analyze by an 

analytical model, as it becomes increasingly complex to consider the nonlinear behavior 

of the composite material. FE analysis is an efficient solution to overcome the problems. 

In this research, 3D 18-node layer wise mixed FE models are used for nonlinear analysis 

of concrete structures.  Although the model has the benefit of obtaining the transverse 

stress directly from the elastic solution, it is often computationally very expensive. To 

overcome this draw back, local-global strategies were introduced by developing the 

combined FE model.  
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Chapter II 

Literature Review 

 

 

2.1 Introduction 

FE has been an important tool in the analysis of both simple concrete structures, such as 

RC beam, column, slab, etc., and complex concrete structures, such as offshore wall, 

deep beam, shear wall, FRP strengthened RC structures etc. The development of large 

memory capacity computers allows the analysis of more complex concrete structures 

with both material and geometric nonlinearities using FE with significant amount of 

accuracy. Considerable amount of work has been reported in recent literature on the 

development and application of finite-element models for RC structures  

 

2.2 Literature Background 

Al-Taan and Ezzadeen (1995) developed a numerical procedure based on the FE method 

for the geometric and material nonlinear analysis of RC members. A frame element with 

a composite layer system was used to model the structure. For the nonlinear solution, an 

incremental-iterative technique based on Newton-Raphson’s method was employed. Only 

the displacement components were considered as DOFs where a parabolic interpolation 
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function for axial displacement, and cubic interpolation function for other displacement 

was used. The numerical solutions of a number of reinforced fibrous concrete beams 

were compared with published experimental test results and showed a good agreement. 

To see the monotonic behavior of RC beams and beam-column assemblages, Kwak and 

Filippou (1997) introduced a FE model. In this model, concrete and reinforced bars were 

represented by separate material models. Another model was used between reinforcement 

bars and concrete to describe the behavior of the composite RC material. The concrete 

was modeled by eight-node elements with 3×3 Gauss integration. The reinforcement was 

modeled by the two-node truss element. Between these two, a bond link element was 

used. Improved cracking criteria derived from fracture mechanics principles was used as 

the basis for developing this smeared finite- element model. Later Kwak and Kim (2002) 

introduced a new FE model for beams based on the moment-curvature relations of RC 

sections including the bond-slip and tension softening branch. They used the well 

established Timoshenko beam theory in the analysis.  Bhatt and Kader (1998) presented a 

2D parabolic isoparametric quadrilateral FE based on the tangent stiffening method for 

predicting the shear strength of RC rectangular beams.  Wang and Hsu (2001) developed 

the FE analysis program FEAPRC from FEAP by introducing a new set of constitutive 

models for analyzing RC beams. The fixed-angle softened-truss model (FA-STM), which 

assumes cracks develop along the direction of principal compressive stresses applied at 

initial cracking, and that cracks are fixed at this angle thereafter, was used in the new set 

of constitutive models.  The numerical results for beams, panels and framed shear walls 

were compared with the experimental results. Recently, Abbas et al (2004) presented a 

3D nonlinear FE model for RC structures under impact loading.  They used an elasto 
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visco-plastic two surface model in the FE. The reinforcement was smeared as a two 

dimensional membrane of equivalent thickness. The layer was assumed to resist only the 

axial stresses in the direction of the bars. A simply supported beam with dynamic point 

loading was considered for numerical verification. Then experimental and numerical 

analyses were done on a circular plate with impact loading. 

 

Considerable work has been reported in recent literature relating to the development and 

application of FE procedures for RC slabs, plates, panels, and shells. Vecchio (1989) 

developed a nonlinear FE procedure to predict the response of RC structures. A smeared 

crack approach was included for concrete. A secant stiffness approach was used in the 

procedure incorporating the constitutive relations for concrete. Only low order FE 

analysis was used in the procedure. Numerical results were verified with the experimental 

data for square panels, deep beams and perforated walls. Later Polak and Vecchio (1993) 

modified the FE model for analysis of RC shell structures. In this adapted model, a 42 

DOFs heterosis type degenerate isoparametric quadrilateral element was developed using 

a layered-element formulation.   During the same time, Vecchio et al. (1993) investigated 

the thermal load effect on RC slabs by nonlinear FE analysis.  In the FE analysis they 

considered the concrete tension stiffening effect. Hu and Schnobrich (1990) derived a set 

of constitutive equations suitable for incremental FE analysis, and developed a nonlinear 

material model for cracked RC structures. This model was able to describe the post-

cracking behavior of RC structures.  Reinforcement was treated as an equivalent uniaxial 

layered material placed at the depth of the centerline of the bar. For concrete nonlinear 

behavior, Saenz’s (Saenz and Luis, 1964) stress-strain curve was used. The model 
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considered smeared crack representation, rotating crack approach, tension stiffening, 

stress degrading effect for concrete parallel to the crack direction, and shear retention of 

concrete on the crack surface. The model was verified against a set of experimental data 

of RC panels.  

 

Cerioni and Mingardi (1996) introduced a FE model for analysis of a RC foundation 

plate, where the RC plate was modeled with materially nonlinear layered FEs. Jiang and 

Mirza (1997) developed a rational numerical model for the nonlinear analysis of RC 

slabs. Material nonlinearities for both concrete and steel were considered. In the model, a 

RC slab was first divided into a number of composite elements, and each of the 

composite elements was then assembled into a single concrete plate element and a small 

number of steel beam elements. Kirchhoff thin plate theory was used in the plate element. 

Very recently, Phuvoravan and Sotelino (2005) presented a FE model for nonlinear 

analysis of RC slabs that combined a four node Kirchhoff shell element for concrete with 

two-node Euler beam elements for the steel reinforcement bars. A rigid link was 

considered between these two element types. This model takes care of the exact location 

of steel reinforcement bars.    

 

Over the last decade, civil engineers have become very interested in the use of FRP due 

to its positive characteristics over the steel reinforcement. A large number of experiments 

on the topic were done in this time period. Many researchers also focus on the 

development of finite-element models for the analysis of FRP RC structures.  Shahawy et 

al. (1996) used a 2-dimensional non-linear FE computer program for analyzing beams 
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strengthened with carbon fiber reinforced plastic (CFRP). Nitereka and Neale (1999) 

developed a nonlinear FE layered model to predict the complete load-deformation 

response of RC beams strengthened in flexure by composite materials. This model 

considered both material and geometric nonlinearities. The numerical results confirmed 

the effectiveness of using externally bonded fiber reinforced composite laminates as a 

viable technique for strengthening concrete beams in flexure. Ferreira et al. (2001) 

presented an FE model for analyzing RC beams with FRP re-bars. They used the first 

order shear deformation theory in the analysis of concrete shells reinforced with internal 

composite unidirectional re-bars. The concrete was modeled with smeared crack 

concepts. A perfect plastic and a strain-hardening plasticity approach were used to model 

the compressive behavior of the concrete. A dual criterion for yielding and crushing in 

terms of stresses and strains was considered.  For tension in concrete, the influence that 

the cracked concrete zones had on the structural behavior was considered.  Smeared crack 

model was used. The response of concrete under tensile stresses was assumed to be linear 

elastic until the fracture surface was reached.  A sudden and total release of the normal 

stress in the affected direction, or its gradual relaxation according to the tension-

stiffening diagram was adopted after cracking had occurred. Cracking in two principal 

stress directions in the plane of the structure was considered. In this model, the 

reinforcing bars were modeled as layers of equivalent thickness, having strength and 

stiffness characteristics in the bar direction only. In tension, it is elastic up to failure. The 

FE was implemented in the degenerated shell element by considering the theory 

discussed above.  The model was verified against the experimental data for simply 

supported concrete beams reinforced with composites re-bars. A good agreement 
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between the experimental and numerical results for beams was obtained. Supaviriyakit et 

al. (2004) developed a FE model to analyze RC beams strengthened with externally 

bonded FRP plates.  The concrete and reinforcing steel were modeled together by 8-node 

2D isoparametric plane stress RC elements. The RC element considered the effect of 

cracks and reinforcing steel as being smeared over the entire element. Perfect 

compatibility between cracked concrete and reinforcing steel was considered.  The FRP 

plate was modeled as a 2D elasto-brittle element. As the epoxy is usually much stronger 

than the concrete, it was assumed a full compatibility between FRP and concrete. The 

model was verified against the experimental data of load-deformation, load capacity and 

failure mode of the FRP strengthen beam. Fanning (2001) used commercial software 

ANSYS to analyze reinforced and post-tensioned concrete beams. Hu et al. (2004) 

introduced a proper constitutive model to simulate nonlinear behavior of RC beams 

strengthened by FRP. They used the FE program ABAQUS. Reliable constitutive models 

for steel reinforcing bars and concrete are available in the material library. Only the 

nonlinearity of the FRP was added to ABAQUS as an external subroutine by the 

researchers. To model the nonlinear in-plane shear behavior, the nonlinear stress-strain 

relation for a composite lamina suggested by Hahn and Tsai (1973) was adopted.  Tsai 

and Wu (1971) failure criteria were also used in the model.  During the FE analysis, a 

perfect bonding between FRP and the concrete was assumed. The model was verified for 

load-deflection data of RC beams strengthened by FRP. 
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Chapter III  

Proposed Models 

 

 

3.1 Introduction 

Three 18-node 3D  FE models have been introduced in the present formulation consisting 

the followings: 1) both displacement and transverse stress as nodal DOFs, 2) only 

displacement as nodal DOFs, and 3) only displacement in one side and both displacement 

and transverse stress on opposite side as nodal DOFs, by using the Hamilton’s principle. 

In the first model developed by Ramtekkar et al (2002), for analyzing composite 

laminated plates, the transverse stress quantities (τxz, τyz and σz where z is the thickness 

direction) had been invoked from the assumed displacement fields by using the concept 

of 3D theory of elasticity. Because the transverse stress components were the nodal DOFs 

in the present FE model, their computations are not required the integration of 

equilibrium equations which otherwise reduces the accuracy in the determination of these 

stresses. Moreover, it can appropriately model a composite laminated member of any 

number of lay-ups of different materials as it satisfies exactly, the requirements of 

through thickness continuity of transverse stress and displacement fields. 

Drawback of such 3-dimensional mixed FE models is often attributed to their being 

computationally expensive. To avoid this expense, this study introduced two models. One 

consists only the displacement as nodal DOFs and the other consists the displacement on 

one side, and displacement and transverse stress on the opposite side as nodal DOFs. In 
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the analysis of composite structures, combination of three models can eliminate the 

computational expense. Furthermore, due to the advent of high-speed computers, this 

drawback can be minimized to a great extent.  

 

3.2 FE Models 

In the development of FE models in this study, an anisotropic plate consisting of N 

orthotropic layers is considered, as shown in Figure 3.1(a). The plate has been discretized 

in to a number of 3D elements. Each element lies within a layer and no element crosses 

the interface between any two successive layers. 
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Figure 3.1: (a) Laminated plate and global reference axes and (b) Geometry of 18-node 

FE and local reference axes 
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3.2.1 Mixed FE Model 

This section presents an 18-node 3D mixed FE model shown in Figure 3.1(b) developed 

by Ramtekkar et al (2002). The displacement fields u(x,y,z), v(x,y,z) and w(x,y,z) are 

considered to have quadratic variation along the plane of the plate and cubic variation in 

transverse direction. The displacement fields can be expressed as, 

∑∑∑ ∑∑∑∑∑
=== =====

+++=
3

1
3

3

1

3
3

1

3

1
2

3

1

2
1

3

1

3

1
0

3

1
),,(

j
ijkji

ij j
ijkji

i
ijkji

ij
ijkji

i
k ahgzahgzahgzahgzyxu  

                                                                               k = 1, 2, 3                                         (3.1) 

where 

                     ( ) ( )2
1 2 31 , 1 , 1

2 2
g g gξ ξξ ξ ξ= − = − = + ,       ξ = x/Lx                         (3.2) 

 

                      ( ) ( )2
1 2 31 , 1 , 1

2 2
h h hδ δδ δ δ= − = − = + ,     δ = y/Ly                         (3.3) 

and                                           u1 = u      u2 = v       u3 = w                                           (3.4) 

Further, the generalized co-ordinates amijk (m = 0, 1, 2, 3; i, j, k = 1, 2, 3) are functions of 

z and the elements’ coordinate axes x, y, z are parallel to the global coordinate X, Y, Z, 

respectively. 

 

It may be noted that the variation of displacement fields has been assumed to be cubic 

along the thickness of element although there are only two nodes along ‘z’ axis of an 

element (Figure 3.1(b)). Such a variation is required for invoking transverse stress 

components zσ , xzτ  and yzτ  as the nodal DOFs in the present formulation. Further, it also 

ensures parabolic variation of transverse stresses through the thickness of an element. 
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3.2.1.1 Constitutive Equations 

Each layer in the composite has been considered to be in a 3D state of stress so that the 

constitutive relation for a typical ith layer with reference to the material local coordinate 

axes (1, 2, 3) can be shown to be, 
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2 22 23 2
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. 0 0
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∈⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪∈⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪∈⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬

⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

                      (3.5) 

where 1 2 3 12 13 23( , , , , , )σ σ σ τ τ τ  are the stresses and 1 2 3 12 13 23( , , , , , )γ γ γ∈ ∈ ∈  are the 

linear strain components referred to the layer coordinates (1, 2, 3) and Cmn’s (m, n =1, ... , 

6) are the elastic constants of the ith layer. 

The stress-strain relations for the ith layer can be written in the global coordinates X, Y, Z 

as, 

                                                           { } [ ]{ }= ∈Dσ                                                      (3.6a) 

Here                                    { } [ ]= T
x y z xy xz yzσ σ σ σ τ τ τ                                    (3.6b) 

and                                    { } [ ]∈ = ∈ ∈ ∈ T
x y z xy xz yzγ γ γ                                        (3.6c) 

are the stress and strain vectors with respect to the layer axes and 

                                       
0

[ ] 0
ij

lm

D
D D

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
         

, 1, 2,3,4
, 5,6

i j
l m

=
=

                                    (3.6d) 

are the 3D elasticity constants for ith layer with respect to the global reference axes, 

(Figure 3.1(a)). 
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3.2.1.2 FE Formulation 

The transverse stresses can be obtained from the constitutive Eq. (3.6a) and strain-

displacement relations as, 

                                   55 56 55 56

56 66 56 66

xz xz

yz yz

u w
D D D D z x

v wD D D D
z y

τ γ
τ γ

∂ ∂⎧ ⎫+⎪ ⎪⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ∂ ∂⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ∂ ∂⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎪ ⎪+
∂ ∂⎪ ⎪⎩ ⎭

                   (3.7)         

    13 23 33 34 13 23 33 34z x y z xy
u v w u vD D D D D D D D
x y z y x

σ γ
⎛ ⎞∂ ∂ ∂ ∂ ∂

= ∈ + ∈ + ∈ + = + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
  (3.8) 

From Eq. (3.7), following equations can be obtained 

                                                   66 56
1 [ ]xz yz

u wD D
z x

τ τ∂ ∂
= − −

∂ Δ ∂
                                      (3.9) 

                                                  56 55
1 [ ]xz yz

v wD D
z y

τ τ∂ ∂
= − − −

∂ Δ ∂
                                  (3.10) 

where                                                2
55 66 56Δ = −D D D                                              (3.11) 

Similarly Eq. (3.8) can be rewritten as 

                                   13 23 34
33

1
z

w u v u vD D D
z D x y y x

σ
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂

= − − − +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
                    (3.12) 

The displacement fields u(x,y,z), v(x,y,z) and w(x,y,z) expressed in Eq. (3.1), can now be 

further expressed in terms of nodal variables by using Eqs. (3.9), (3.10) and (3.12) 

respectively, as 

                                               
18

1
( , , ) ( )k i j q kn p kn

n
u x y z g h f u f u

=

= +∑                                 (3.13) 
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where ‘n’ is the node number in the 3D element, shown in the Figure 3.1(b). knu  (k = 1, 2, 

3 and n = 1, 2, … ,18) are the nodal displacement variables whereas knu  contains the 

nodal transverse stress variables. 

Here, i = 1, 2, 3 for the nodes with ξ = -1, ξ = 0 and ξ = 1, respectively. 

j = 1, 2, 3 for the nodes with δ = -1, δ = 0 and δ = 1, respectively. 

q = 1, 2 and p = 3, 4 for the nodes with η = -1 and η = 1, respectively. 

     f1 = 31 (2 3 )
4

− +η η  

     f2 = 31 (2 3 )
4

+ −η η                                   (3.14) 

    f3 = 2 3(1 )
4

zL η η η− − +  

    f4 = 2 3( 1 )
4

zL η η η− − + +  

/ zz Lη = ;     kn
kn

uu
z

∂
=

∂
  

Finally Eq. (3.13) yields the displacement fields u(x, y, z), v(x, y, z) and w(x, y, z) in terms 

of the nodal DOFs as 

                                                               { } [ ]{ }u N q=                                                 (3.15a) 

where                                               { } [ ]= Tu u v w                                                (3.15b) 

                                                1 2 18[ ] [ ... ... ]nN N N N N=                               (3.15c) 

                                                   1 2 18{ } [ ... ... ]T T T T T
nq q q q q=                               (3.15d) 

                                        { } [ ( ) ( ) ( ) ]T
n n n n xz n yz n z nq u v w τ τ σ=                       (3.15e) 

and 
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66 56

* 56 55

13 34

33 33

* *34 23 33

33 33

0 0

[ ] 0 0

10 0

i j q i j p i j p i j p

n i j q i j p i j p i j p

i j p i j p

i j q i j p

i j p i j p

D D
g h f g h f g h f g h f

D D
N g h f g h f g h f g h f

D D
g h f g h f

D D
g h f g h f

D D Dg h f g h f
D D

⎡ ⎤
⎢ ⎥
⎢ ⎥′− −⎢ ⎥Δ Δ
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= − −⎢ ⎥Δ Δ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎢ ⎥⎣ ⎦

      (3.15f) 

i, j, q, p and n are same as described in Eq. (3.14). Furthermore,                                         

                                                  i
i

gg
x

∂′ =
∂

  and * j
j

h
h

y
∂

=
∂

                                           (3.16) 

The total potential energy Π  of the layer can be obtained from       

                    { } { } { } { } { } { }1
2

T T T

b tV V
dV q p dV q p dsσ

Σ
Π = ∈ − −∫ ∫ ∫                                (3.17) 

where { }bp is the body force vector per unit volume and { }tp is the traction load vector 

acting on any surface of the composite plate. Here Σ  is a surface of the element subjected 

to traction forces. 

 

The strain vector {∈} and the stress vector {σ} can be expressed as  

                                                             { } [ ]{ }∈ = B q                                                     (3.18) 

                                                          { } [ ][ ]{ }D B qσ =                                                  (3.19) 

where                                                [ ] [ ][ ]B R N=                                                        (3.20) 
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0 0 0

[ ] 0 0 0

0 0 0

T

x y z

R
y x z

z x y

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

= ⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦

                                (3.21) 

Further,                              1 2 18[ ] [ ... ... ]nB B B B B=                                         (3.22) 

where 

66 56

* ** * *56 55

13 34

33 33

* *34 23 33

33 33

*66

* *

0 0

0 0

10 0

2

[ ]

i j q i j p i j p i j p

i j q i j p i j p i j p

i j p i j p

i j q i j p

i j p i j p

i j

i j q i j q i j q

n

D D
g h f g h f g h f g h f

D D
g h f g h f g h f g h f

D D
g h f g h f

D D
g h f g h f

D D D
g h f g h f

D D
D

g h
g h f g h f g h f

B

′′′ ′ ′− −
Δ Δ

− −
Δ Δ

′ ′− −

− −

Δ′ ′−

=

*56

56 55

34

3313 66 56

*2333 33

33*34

33

*13

33

**34

33

0

1

p i j p

i j p i j p

i j q
i j p

i j p
i j p i j p i j p i j p

i j q
i j p

i j p

i j q
i j p

i j p

D
f g h f

D D
g h f g h f

g h f D
g h f

D g h fD D D
g h f g h f g h f g h f

D g h fD D
g h f

DD
g h f

D

g h fD
g h f

D D
D

g h f
D

−
Δ

′ ′− +
Δ Δ

′′−
′−

′′ ′− −
′+ Δ Δ′−

′−

′−

−
−

*
* *34 56 55

*
33 33

**23

33

1i j p
i j p i j p i j p i j p

i j q

i j p

g h f D D
g h f g h f g h f g h f

g h fD D
D

g h f
D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥′ −⎢ ⎥+ Δ Δ
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥

(3.23)     

Here               
2

2
i

i
gg

x
∂′′=
∂

;    
2

**
2
j

j

h
h

y
∂

=
∂

;   q
q

f
f

z
∂

=
∂

; and    p
p

f
f

z
∂

=
∂

;                          (3.24) 
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Minimization of the total potential energy functional, Eq. (3.17), yields the element 

property matrix [ ]eK  and the element influence vector { }ef as 

                [ ] [ ] [ ][ ]X Y Z

X Y Z

TL L Le

L L L
K B D B dx dy dz

− − −
= ∫ ∫ ∫                   (3.25) 

                [ ] [ ] { } [ ] { }X Y Z

X Y Z

TL L Le T
b tL L L

f N p dx dy dz N p ds
− − − Σ

= +∫ ∫ ∫ ∫ ∫                  (3.26) 

The global equation can be obtained in the following form after assembly: 

[ ]{ } { }K Q F=                    (3.27) 

where [ ] { }, ,K Q  and { }F are respectively, the global property matrix, the global DOFs 

vector, and the global influence vector. They can be defined as  

                                  { }[ ] [ ] ; { } { } ;e b t
e e e e

K K Q q F p p= = = +∑ ∑ ∑ ∑                (3.28)       

 

3.2.2 Displacement FE Model 

A new model with 18-node 3D mixed FE as shown in Figure 3.1(b) has been developed. 

In this case, the transverse stress quantities (τxz, τyz and σz where z is the thickness 

direction) are not invoked as nodal DOFs. Continuity of displacement fields u(x,y,z), 

v(x,y,z) and w(x,y,z)  has been enforced through the thickness direction only. Also, it is 

considered a linear variation of the displacement fields along the plane of the plate and 

the transverse direction.  The displacement fields are expressed as  

∑∑∑∑
====

+=
3

1
1

3

1

3

1
0

3

1
),,(

j
ijkji

ij
ijkji

i
k ahgzahgzyxu           (3.29) 

where k = 1, 2, 3  
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3.2.2.1 Constitutive Equations 

Each layer in the composite has been considered to be in a 3D state of stress so that the 

constitutive relation for a typical ith layer with reference to the material coordinate axes 

(1, 2, 3) can be shown to be, 

1 11 12 13 1

2 22 23 2

3 33 3

i i iC C C
C C

Sym C

σ
σ
σ

∈⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥= ∈⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ∈⎩ ⎭ ⎣ ⎦ ⎩ ⎭

       (3.30) 

where 1 2 3( , , )σ σ σ  are the stresses and 1 2 3( , , )∈ ∈ ∈  are the linear strain components 

referred to the layer coordinates (1, 2, 3) and Cmn’s (m, n = 1,…,3) are the elastic 

constants of the ith layer. 

 

The stress-strain relations for the ith layer is the same as in Eq. (3.6a) in the global 

coordinates X, Y, Z with the exception that in this case                                                                                       

{ } [ ]T
x y zσ σ σ σ=                                                    (3.31a)  

and                                            { } [ ]T
x y z∈ = ∈ ∈ ∈                                          (3.31b) 

 

3.2.2.2 FE Formulation 

The displacement fields u(x,y,z), v(x,y,z) and w(x,y,z) expressed in Eq. (3.29), can now be 

further expressed in terms of nodal variables as 

18

1
( , , ) ( )k i j q kn

n
u x y z g h f u

=

= ∑           (3.32) 

where ‘n’ is the node number in the 3D element, shown in the Figure 3.1(b). knu  (k = 1, 

2, 3 and n = 1, 2,…, 18) are the nodal displacement variables. 
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Here, i = 1, 2, 3 for the nodes with ξ = -1, ξ = 0 and ξ = 1, respectively. 

j = 1, 2, 3 for the nodes with δ = -1, δ = 0 and δ = 1, respectively.                (3.33)  

q = 1, 2 for the nodes with η = -1 and η = 1, respectively. 

)1(
2
1

1 η−=f ; )1(
2
1

2 η+=f  

The displacement fields u(x,y,z), v(x,y,z) and w(x,y,z) in terms of the nodal DOFs are: 

                                                               { } [ ]{ }u N q=                                                 (3.34a) 

where                                                  { } [ ]= Tu u v w                                             (3.34b) 

                                                1 2 18[ ] [ ... ... ]nN N N N N=                               (3.34c) 

                                                   1 2 18{ } [ ... ... ]T T T T T
nq q q q q=                               (3.34d) 

                                                     { } [ ]T
n n n nq u v w=                                                (3.34e) 

and 

0 0
0 0
0 0

i j q

n i j q

i j q

g h f
N g h f

g h f
−

⎡ ⎤
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

    (3.34f) 
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3.2.3 Transitional FE Model 

This new variation of 18-node 3D mixed FE model shown in Figure 3.1(b) has been 

developed by invoking the displacement and the transverse stress quantities as upper 

surface nodal DOFs and only displacement as lower surface nodal DOFs. This model is 

developed to serve as a connector between stress-displacement continuity element and 

displacement continuity element. The displacement fields are expressed as  

∑ ∑∑∑∑∑
= =====

++=
3

1

3

1
2

3

1

2
1

3

1

3

1
0

3

1
),,(

j j
ijkji

i
ijkji

ij
ijkji

i
k ahgzahgzahgzyxu       (3.35) 

where k = 1, 2, 3.           

 

3.2.3.1 Constitutive Equations 

The constitutive relation for a typical ith layer with reference to the material coordinate 

axes (1, 2, 3) is same as used in the first model (Eq. 3.5, 3.6a, 3.6b,3.6c, and 3.6d). 

 

3.2.3.2 FE Formulation 

For the upper surface nodes, the transverse stresses can be obtained from the constitutive 

Eq. (3.6a) and strain-displacement relations Eq. (3.7). The displacement fields u(x,y,z), 

v(x,y,z) and w(x,y,z) expressed in Eqs. (3.35) can be represented by the Eqs. (3.15a), 

respectively. 

                                              

In this case, however, n is the node number in the 3D element, shown in the Figure 

3.1(b). knu  (k = 1, 2, 3 and n = 1, 2, …, 18) are the nodal displacement variables in both 
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lower and upper surfaces whereas knu  contains the nodal transverse stress variables in 

upper surface only. 

 

Here, i = 1, 2, 3 for the nodes with ξ = -1, ξ = 0 and ξ = 1, respectively. 

j = 1, 2, 3 for the nodes with δ = -1, δ = 0 and δ = 1, respectively. 

q = 1, 2 and p = 3  for the nodes with η = -1 and η = 1, respectively. 

)21(
4
1 2

1 ηη +−=f            (3.36) 

)23(
4
1 2

2 ηη −+=f   

)1(
2

2
3 η+−=

hf  

Finally, the displacement fields u(x,y,z), v(x,y,z) and w(x,y,z) in terms of the nodal DOFs 

are: 

                                                            { } [ ]{ }u N q=                                                    (3.37a) 

where                                                  { } [ ]= Tu u v w                                             (3.37b) 

                                                1 2 18[ ] [ ... ... ]nN N N N N=                               (3.37c) 

                                                   1 2 18{ } [ ... ... ]T T T T T
nq q q q q=                               (3.37d) 

  

                                 { } [ ]T
n n n nq u v w=                   (3.37e)                               

                               

0 0
[ ] 0 0

0 0

i j q

n i j q

i j q

g h f
N g h f

g h f

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦  

where n = m ... m+2, m = 1, 7, 13             
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and      

                   { } [ ( ) ( ) ( ) ]T
n n n n xz n yz n z nq u v w τ τ σ=  

 

66 56

* 56 55

13 34

33 33

* *34 23 33

33 33

0 0

[ ] 0 0

10 0

i j q i j p i j p i j p

n i j q i j p i j p i j p

i j p i j p

i j q i j p

i j p i j p

D D
g h f g h f g h f g h f

D D
N g h f g h f g h f g h f

D D
g h f g h f

D D
g h f g h f

D D Dg h f g h f
D D

⎡ ⎤
⎢ ⎥
⎢ ⎥′− −⎢ ⎥Δ Δ
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= − −⎢ ⎥Δ Δ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎢ ⎥⎣ ⎦

                  (3.37f) 

 

where, n = m+3 … m+5, m = 1, 7, 13  

and i, j, q, p are same as described in Eq. (3.14). Furthermore, i
i

gg
x

∂′ =
∂

  and * j
j

h
h

y
∂

=
∂

     

 

3.3 Conclusions   

This chapter presented three 18-node 3D FE models for analysis of composite beam and 

plate. The first model considering both stress and displacement continuity already proved 

a good working to analysis laminated plate. The rest two new models are able to consider 

only displacement continuity and a mixer of both models i.e. one side only displacement 

and other side both displacement and stress continuity. In chapter five, the verification of 

these models will be presented in the case of analysis composite beams and plates. For 
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simplicity, in the following, the first model will be called the mixed FE model, the second 

model will be called the displacement model, the third model will be called the 

transitional model, and the analysis using all three models will be referred to as the 

combined model. 
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Chapter IV 

Material Constitutive Relations 

 
 

4.1 Introduction 

In order to obtain accurate analysis, proper material models are needed. This chapter 

presents the concrete, reinforcing steel and FRP material models that are used in this 

study.  

 

4.2 Concrete  

 

4.2.1 Compressive behavior 

For compression, widely accepted Saenz’s (1964) uniaxial stress-strain relationship is 

used in this analysis. It has the following form: 

 

           (4.1) 

 

where 

( )
( ) ee

fE
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R 1
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1
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−
=                        (4.1a)  

12 12 −= RR           (4.1b)  
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Modular ratio
0E

ER C
E =         (4.1d) 

Stress ratio
f

C
f f

fR
′

=          (4.1e) 

Strain ratio 
0ε

ε f
eR =          (4.1f) 

Secant modulus 
0

0 ε

′
= CfE         (4.1g) 

cE = Initial tangent modulus 

σ = Stress in concrete 

ε = Strain in concrete 

'
cf = Characteristic compressive stress of concrete 

ff = Stress in the concrete at the maximum strain 

0ε =Strain in the concrete at the maximum stress '
cf  

fε = Strain in the concrete at the compressive failure                

The tangent modulus, tE , corresponding to the specified strain can be found by taking 

derivatives of the Eq. (4.1) with respect to strain component. This leads to 
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Beyond the peak stress point in the strain-softening region, with further straining, the 

compressive stress begins to decrease and the equivalent uniaxial tangent modulus 

becomes negative. In order to prevent the numerical difficulties associated with a 

negative tangent modulus, once the ultimate yield stress '
cf  has been reached, tE  is set to 

zero and the concrete behaves like perfectly plastic material (Figure 4.1). This plastic 

response is allowed to propagate through a limited strain  εΔ  , at which time the 

unbalanced stress is released. This process proceeds in a stepwise fashion.  

     

Figure 4.1: Uniaxial Stress-strain Curve for Concrete 

 

Tangent modulus )3,2,1( =iE pi , along the three principle directions can be calculated 

from the Eq. (4.2) with the help of the three principal strains from the last load step. Then 

the 3D stress and strain can be computed from the following incremental stress-strain 

relations along the principal direction:  

[ ]{ }εσ Δ=Δ C}{  

εοε
fε

σ

ff

'
cf

οE

1

Strain 
Hardening 

Strain 
Softening 

1

cE
Assumed perfectly 
plastic behavior 
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where { }σ  and { }ε  are stress and strain vectors along the principal directions 

respectively. The symmetric constitutive matrix [ ]C  is: 

[ ] ( )( )

( )
( )

( )
( )

( )

( )

1 12 13

12 2 23
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 (4.3) 

where  

jiji
EE

E
pjpi

pjpjpipi
ij ≠==

+

+
= ;3,2;2,1,

σσ

σσ
     (4.4) 

This constitutive matrix along the principal direction can be transformed to the global 

direction by applying conventional coordinate transformation. 

 

 4.2.2 Tensile behavior 

Until the crack, initial tangent modulus cE  is used to find the maximum positive (tensile) 

stress. After the cracking in the concrete takes place, a smeared model is used to 

represent the discontinuous macro crack behavior. This cracked concrete can still carry 

some tensile stress perpendicular to the crack, which is termed tension stiffening. In this 

study, a simple descending line is used to model this tension stiffening phenomenon as 

shown in Figure 4.2. The default value of the strain *ε at which the tension stiffening 

stress reduced to zero is * 0.001ε = . In figure 4.2, cE and tE  are the modulus of elasticity 
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of tensile concrete between zero to fracture strain and fracture strain to *ε respectively. 

'
tf is the maximum stress at fracture of concrete, which has corresponding strain tε .       

                           

Figure 4.2: Tension Stiffening Model 

 

4.2.2 Modeling of Crack 

In the concrete, when the tensile stress in the principle direction exceeds the tensile 

strength, fσ , of concrete, the tensile failure would occur (Desai et al. 2002). Due to this 

crack at an integration point, we need to modify the constitutive matrix. After the crack 

forms, both normal and shear stiffness are reduced. For failure in the first principal 

direction ( 1pσ  exceeds fσ ), the modified constitutive matrix [ ]C  is:  

*ε ε

'
tf

cE
1

σ

'
tε

tE

1
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  (4.5) 

The constant η in Eq. (4.5) is the stiffness normal to the tensile failure plane reduction 

factor, and Sη is the shear stiffness in the tensile failure plane reduction factor. 

Further modification is applied to constitutive matrix for the tensile failure along the 

second principal directions. The new constitutive matrix [ ]C is given in Eq. (4.6). 
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4.3 Steel reinforcing bars 

The stress-strain curve of the reinforcing bar is assumed to be elastic up to the steel yield 

stress ( )yf followed by linear hardening up to the steel ultimate strength ( )uf  as shown in 

Figure 4.3. The dowel action of the reinforcing steel is neglected and the bond between 

steel and concrete is assumed to remain perfect.   

                     

Figure 4.3: Uniaxial stress-strain relation for steel. 

 

Furthermore, the reinforcement has uniaxial stiffness only and is assumed to be smeared 

throughout the element. Up to the yielding, the nonzero element of 6×6 constitutive 

matrix for reinforcement is: 

11
r r

SD E=          (4.7)  

where r
SE = Young's modulus of reinforcement up to yielding. 

When there is yielding, reduced modulus of elasticity ( )r
TE  for reinforcement is used to 

formulate the constitutive matrix rD⎡ ⎤⎣ ⎦  where the nonzero element is  

ET 
fu 

ε 

σ 

E

1 

1 fy 
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11
r r

TD E=       (4.8) 

where r
TE = Young's modulus of reinforcement after yielding.  

 

For this smeared element, the concrete is considered as a linear element for simplicity.  

The constitutive matrix ][ cD for isotropic concrete material used in this analysis is:  
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where:  

E  = Young's modulus for concrete, 

ν  = Poisson's ratio for concrete. 

This smeared element is assumed to be bilinear, consisting of bilinear steel and linear 

concrete. The constitutive matrix ][D used for this smeared element is defined as:  

[ ] ( )1 R c R rD V D V D⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦        (4.10) 

where:  

RV = ratio of the volume of reinforcing material to the total volume of the element, 

cD⎡ ⎤⎣ ⎦ = stress-strain matrix for concrete (Eq. 4.9), 

rD⎡ ⎤⎣ ⎦ = stress-strain matrix for reinforcement (Eqs. 4.7 & 4.8). 
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4.4 Fiber-reinforced plastics (FRP) 

The behavior of FRP materials is linear elastic to failure. Ultimate elongation strains are 

considerably higher than steel yielding strains. This results in ultimate tensile strengths 

that are typically between four to nine times the yield stress of steel. Failure is sudden 

and brittle with no load carrying capacity after failure.  Typical stress-strain relation of 

FRP is shown in Figure 4.4.  

      

Figure 4.4: Stress-strain Relation of FRP 

 

Mechanical properties of the composites vary to a high degree depending on the 

orientation of load with respect to the fiber orientation and the fiber to resin volume ratio 

(Volnyy and Pantelides, 1999). FRP materials exhibit the highest strength when loaded in 

the direction of the fibers, and have only the strength of the resin when loaded 

perpendicular to the fibers. Using FRP sheets with the fibers woven orthogonally to 

produce a fabric that has the same properties in the two directions can offset this effect.  

 

ε

σ 

fp 

εp 
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The constitutive relations for orthotropic FRP materials used in the analysis are: 
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 (4.11) 

where 

12 21 23 32 31 13 21 32 131 2ν ν ν ν ν ν ν ν νΔ = − − − −       (4.12) 

21 12

2 1E E
ν ν

= , 31 13

3 1E E
ν ν

= ,   32 23

3 2E E
ν ν

=        (4.13) 

 

4.5 Failure criteria 

 

4.5.1 Steel 

Failure criteria for steel are established by using the stress-strain curve as a basis. 

Principle strains in the elements are compared with the stress-strain curve to determine a 

value for the tangent modulus. When the principal strain in any steel element exceeds the 

yield strain, a percentage of initial tangent modulus is used in the elasticity matrix. 

Similarly, when the principal strain exceeds the strain hardening limit, the structure is 

assumed to exhibit tension failure. 
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4.5.2 Concrete 

The procedure used to describe the structural behavior of the concrete element is similar 

to that used for the steel elements. In compression, the concrete stress-strain relations 

(Figure 4.1) are used to determine the value for the tangent modulus for use in the 

elasticity matrix. These stress-strain relations defined by Saenz’s Eq. (4.1) are presented 

at the beginning of this chapter. When the principal strain is between zero and the strain 

at peak stress 0ε , Saenz’s stress-strain relationship equation (Eq. 4.1) is used to find the 

modulus of elasticity. The principal strains from the mth load step is used to determine the 

tangent modulus for the (m+1)th load step. When the value of principal strain is between 

0ε  and the ultimate strain fε , a very nominal value (0.001) of tangent modulus of 

elasticity is used. For the principal strain values greater than fε , it is assumed that the 

element fails by compression. In tension, up to the rupture strain, the initial modulus of 

elasticity is used. When the principal strain is greater than rupture strain and less than *ε , 

the initial modulus of elasticity is reduced by a factor (1.0×10-4). For principal strain 

value greater than *ε , a very nominal value (0.001) of modulus of elasticity is used. 

 

4.5.3 FRP 

For FRP, the failure criteria were also based on the stress-strain curve.  As FRP material 

is brittle in nature, there is no yielding stage. It behaves elastically to failure. When the 

principal strain is greater than the ultimate strain, it is assumed tension failure of the 

elements has taken place.   
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Chapter V 

Numerical Results and Discussions 

 

 

5.1 Introduction 

This chapter will present the FE implementation and verification of the proposed element 

models. It will also present some numerical results for future reference.   

 

5.2 FE Implementation 

 

5.2.1 Introduction 

The theory presented in the previous two chapters is implemented in Fortran to analyze 

concrete beam strengthened with FRP and composite plate.   

The input parameter for this program consists the following: 

- Structure parameters 

- Element parameters 

- Boundary conditions 

- Nodal displacements if any 

- Concrete properties 

- Steel  and/or FRP properties 

- Initial loads (distributed or point) 

 The output parameter consists the following: 
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- Reprint of input data 

- Nodal displacement data 

- Initial force distribution among the elements nodes 

- Nodal displacements and transverse stresses  

- Element stress and displacement. 

 

5.2.2 Flow Chart 

Figures 5.1 and 5.2 illustrate the flow chart of the main part of the program as well as the 

implementation of linear and nonlinear analysis of concrete. 
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Figure 5.1: Flow chart for incremental displacement and stress calculation 
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Figure 5.2: Flow chart of concrete constitutive matrix calculation 
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5.3 Validation 

In Chapter 3, we presented three types of FE models: 1) mixed model (both stresses-

displacements as nodal DOFs), 2) transitional model (both stresses- displacements on one 

surface and only displacements on the other surface as nodal DOFs), and 3) displacement 

model (only displacements as nodal DOFs). The validity of these models is carried out by 

the comparison of the results of the analysis of an RC beam strengthened by FRP with an 

experimental result and the results of the analysis of concrete plate reinforced with 

external steel sheet with the result from ANSYS (ANSYS Inc. 2004). The material 

models used in the analysis are as described in Chapter 4.  

 

5.3.1 Composite beam 

A simply-supported RC beam with an external reinforcement of FRP layers at the bottom 

experimented by Shahawy et al. (1996) is considered (Figure 5.3) here. The beam is 203 

mm wide, 305 mm high and 2743 mm long. The distance between two supports is 2439 

mm. Two 13 mm diameter steel bars are placed in the tension zone at a distance 251 mm 

from the top surface and two 3 mm diameter steel bars are placed in compression zone at 

54 mm from the top surface. Three layers of FRP sheet with their fiber directions oriented 

in the axial direction of the beam are adhered to the bottom surface of the beam. Each 

FRP sheet is 0.1702 mm thick and 203 mm wide. The beam is subject to four point static 

load up to failure.   
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                    (a)                                    (b) 

Figure 5.3: Geometry of a simply-supported beam under four-point load test (all dimensions are in mm) 
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The material properties of concrete, reinforcing steel, and FRP reinforcement are, 

respectively, 

 
'

0

4

0.0025 0.0035 41.37 MPa 10.34 MPa

0.33 ' MPa 4700 ' MPa 0.1 1.0 10
f c f

f c C c

f f
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= = = =
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E E
G G G
ν

= =
= = =
=

 5.1(c) 

Here, '
11, ,c Sf E E  and 12ν  are given by Shahawy et al. (1996). Remaining properties are 

considered from Hu et al. (2004). 

 

Due to symmetry in X-direction, only half of the beam was analyzed. Symmetric 

boundary conditions, presented in Table 5.1, were used. In the FE analysis, we meshed 

the half beam into 176 elements (eight in X-direction, one in Y-direction and twenty-two 

in Z-direction). Figure 5.4 shows the FE mesh used in the analysis. The concrete, 

reinforcement and FRP were modeled as 18-node solid elements. The concrete was 

considered as nonlinear and smeared crack model was applied. The reinforcement was 

considered as bi-linear elastic-plastic and uniformly smeared in the corresponding 

elements. The FRP was analyzed as linear up to failure and assumed to be perfect bonded 

to the concrete. FRP had a cutoff length of 152.5 mm from each support. Each top and 

bottom clear cover was meshed into three layers of 17.86 mm height. Reinforcement in 

tension and compression were smeared through out the element of thickness 1.32 mm and 

0.08 mm, respectively. Line load was applied on the top surface by putting concentrated 

load at three nodes.  
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Table 5.1: Boundary condition for RC composite beam 

0X =  0v w= =  

2X L= 1 0yzu τ= =  

2Y b= ± 1 (side surface) 0xzτ =  

2Z d= 1 (top surface) ( ), ;  0z xz yzP X Yσ τ τ= − = =  

2Z d= − 1 (bottom surface) 0z xz yzσ τ τ= = =  

1 L  is the span length, b  is the width of the section, and d  is the depth of the beam. 

 

 

 

Figure 5.4: FE mesh used in the result validation 
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5.3.1.1 Mixed element analysis 

In this analysis, all 176 elements were modeled with modified Ramtekkar et al. (2002) 

18-node mixed FE. All nodes have six DOFs- three nodal displacement components in 

the coordinate axis directions and three nodal transverse stress components.  The FE 

mesh for this analysis is shown in Figure 5.5.  

 

 

Figure 5.5: FE mesh for mixed analysis 

 

Figure 5.6 shows the load versus mid-span deflection curves of the beam for both 

numerical and experimental data (Shahawy et al., 1996). The FE analysis predicts the 

ultimate load to be 55.8 KN which is in a good agreement with the experimental ultimate 

load of 57 KN. The error is 2.1%. The predicted mid-span deflection differs from the 

experimental result by 6.21%.   
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Figure 5.6: Load-deflection curves of RC beams strengthened with three FRP layers 

analyzed by mixed FE. 

 

5.3.1.2 Analysis by using displacement model and combined model: 

First, we analyzed the beam with the displacement model in which every node has three 

nodal displacement components in the coordinate axis directions as nodal DOFs. Then, 

we analyzed the beam with the combination of all three models or the combined model. 

In this combined model, the mixed FE with six DOFs were used for both top and bottom 

elements. The internal elements are the displacement model and the transitional element 

models were used between the displacement element and mixed element models. This 

special arrangement is shown in Figure 5.7. 
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Figure 5.7: FE mesh for displacement and combined element model analysis 

 

The numerical results for both models are presented in Figure 5.8 along with the results 

from mixed FE analysis and the experiment. The combined model results differ by 12.4 

and 13.0% of the experimental results for the load and the deflection prediction, 

respectively. The displacement model predicts the load and the deflection to differ by 3.0 

and 16.55% of the experimental results, respectively. Therefore, the mixed model 

provides a very accurate prediction of the mid-span deflection and the ultimate load, 

when compared to the results from the experiment. Note that the mixed FE model has six 

DOFs per node which is computationally very expensive even with the high memory 

speed. Therefore, we can combine the mixed FE model with the displacement model 

(three DOFs per node) with of the help of transitional element model (six DOFs on top 

surface nodes and three DOFs on bottom surface nodes). If the accuracy can be 

compromised, this combined model should be used. Another benefit of this combined 
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model over the displacement model is that the transverse stresses can be prescribed 

directly at the top and the bottom elements in the combined model. We do not need to 

integrate the equilibrium equation for transverse stresses.   
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Figure 5.8: Load-deflection curves of RC beams strengthened with three FRP layers 

analyzing by displacement and combined FE under four-point load. 

 

5.3.2 Composite plate 

In this section, we considered a rectangular composite concrete plate as shown in Figure 

5.9. The size of the plate is 800 mm wide, 2000 mm long and 80 mm thick. A 1.2 mm 

thick structural steel sheet, uniformly distributed all over the area at the bottom of the 

plate is considered. Load was applied through a patch of uniformly distributed load 

covering the area of 200 mm × 200 mm. The 28 days average compressive and tensile 

strength of polymer fibre RC used in the analysis is 34.47 MPa and 3.35 MPa, 

respectively. Because of the bi-axial symmetry, a quarter of the model is used for 
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analysis. The quarter model was discretized with four elements in X-direction, ten 

elements in Y-direction and five elements in Z-direction. The meshing of the model is 

shown in Figure 5.10.  

 

Figure 5.9: Composite plate 
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27594.24cE =  GPa 

6175.8=ff  MPa 

35.3=fσ  MPa 

η =1.0×10−4 

Steel:  

Es = 200 GPa 

ν = 0.3 

 

Figure 5.10: FE modeling and mesh for composite plate 
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Table 5.2: Boundary condition for composite plate 

0X =  0v w= =  

2X a= 1 0yzu τ= =  

0Y =  0u w= =  

2Y b= 1 (side surface) 0xzv τ= =  

2=Z d 1 (top surface) ( ), ;  0z xz yzP X Yσ τ τ= − = =  

2Z d= − 1 (bottom surface) 0z xz yzσ τ τ= = =  

1 a  is the length in the X -direction, b  is the width in the Y -direction, and d is the 

thickness of the plate. 

 

5.3.2.1 Mixed model, Displacement model, and ANSYS Analysis 

Analysis was done by using mixed FE model and displacement element model. As we 

have considered only five layers in the Z-direction, we did not do the analysis by using 

the combined model. In all analysis, same boundary condition is used as mentioned in 

Table 5.2. To compare the results, one more analysis was done using commercial FE 

software- ANSYS v8.1 (ANSYS Inc., 2004). In ANSYS, Solid65 and Solid45 elements 

were used to model the concrete and steel sheet respectively. Both elements have eight 

nodes with three DOFs at each node-translation in the nodal x, y, and z directions. The 

Solid65 requires linear isotropic and multilinear isotropic material properties to model the 

concrete properties. The multilinear isotropic uses the stress-strain curve along with the 

William and Warnke (1974) failure criteria. The properties used for the failure criteria in 
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ANSYS are given in Table 5.3. The steel was modeled as bilinear isotropic material 

model.  Figure 5.11 shows the results of all three analyses. Mixed model and 

displacement model predict the failure load capacity of 385 kN and 390 kN that is 6.39% 

and 7.59% variation from ANSYS analysis respectively. Their prediction of maximum 

deflection is varied by 24.44% and 27.11% respectively.   

 

Table 5.3: Concrete failure criteria 

Concrete 
ShrCf-Op 0.7 
ShrCf-Cl 0.9 
UnTensSt 3.35 
UnCompSt -1 
BiCompSt 0 
HydroPrs 0 
BiCompSt 0 
UnTensSt 0 
TenCrFac 1 
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Figure 5.11: Load-deflection curves for analysis of composite plate 
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5.4 Examples 

 

5.4.1 Introduction 

In order to demonstrate an applicability of the models on the nonlinear analysis of RC 

members with FRP materials, this section presents parametric studies for the following 

parameters for composite beams and plates. 

 Number of FRP layers 

 Length of FRP layers 

 Fibre-orientation of FRP   

 

5.4.2 Composite beam 

The RC beam strengthened with FRP mentioned in section 5.3.1 is used in this section. 

The dimension and cross-section of the beam is shown in Figure 5.3.  The beam’s 

material properties and boundary conditions used in the analysis are given Eqns. 5.1(a), 

5.1(b), 5.1(c) and Table 5.1, respectively. The only variation we make here is the number 

and length of FRP layers. 

 

5.4.2.1 Number of FRP layers 

In this example, the effects of the number of externally reinforced FRP laminas on the 

nonlinear response of a simply-supported RC beam are investigated. We have performed 

eleven sets of analysis starting from a beam without FRP to a beam with ten layers of 

FRP for each of the three models, i.e. the mixed FE model, the combined model, and the 
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displacement model. The result sets are shown in the Figures 5.12, 5.13, and 5.14, 

respectively. The ultimate load ratio ( )0u uP P and the maximum mid-span deflection ratio 

( )0u uδ δ  of the beams are presented in Figure 5.15 and Figure 5.16, respectively. Here 

uP  and 0uP  are the ultimate load of the beam with and without the FRP reinforcement, 

respectively, whereas, uδ and 0uδ  are the maximum mid-span deflection of the beam with 

and without the FRP reinforcement, respectively.  
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Figure 5.12: Load-deflection curve of RC beams strengthened with variable number of 

FRP layers by using the mixed FE model. 
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Figure 5.13: Load-deflection curve of RC beams strengthened with variable number of 

FRP layers by using the combined model. 
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Figure 5.14: Load-deflection curve of RC beams strengthened with variable number of 

FRP layers by using the displacement model. 
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It can be seen that increasing the number of layers of FRP increases the load capacity of 

the beam and reduces the beam maximum mid-span deflection. The rate increase in the 

ultimate load is almost constant with the increase in the number of FRP laminas. Slight 

increase in the maximum mid-span deflection is first noticed when the beam is reinforced 

with one and two layers of FRP. With more layers of FRP, the maximum mid-span 

deflection of the beam decreases with the number of the FRP reinforcement. The 

prediction of the ultimate load capacity of the beams is not significantly affected by the 

use of different model while the maximum mid-span deflection prediction is. It should be 

noted hat only up to ten layers of FRP is considered here and that the first-ply failure of 

the FRP and the delimitation between the laminas are not taken into account in this study. 
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Figure 5.15: Ultimate load ratio versus number of FRP layers for simply supported RC 

beam with and without FRP layers. 
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Figure 5.16: Maximum mid span deflection ratio versus number of FRP layers for simply 

supported RC beam with and without FRP layers. 

5.4.2.2 Length of FRP layers 

The effects of the externally reinforced FRP lengths on the ultimate load and the 

maximum mid-span deflection of a simply-supported RC beam are examined. The 

beam’s geometric and material properties are the same as in previous example. The beam 

is reinforced with three layers of FRP. The lengths of FRP considered are 0% (without 

FRP), 12.5% (305 mm), 25% (610 mm), 37.5% ( 915 mm), 50% (1220 mm), 62.5% 

(1524 mm), 75% (1829 mm), 87.5% (2135 mm), and 100% (full length) of the beam 

length. Figures 5.17, 5.18, and 5.19 illustrate load-deflection curves for the mixed FE 

model, the combined model, and the displacement model, respectively.   It is found that 

an increase in the length of FRP reinforcement increases the ultimate load of the beam.  
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Figure 5.17: Load-deflection curves of a simply-supported beam with varying length of 

FRP reinforcement by using the mixed FE model 
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Figure 5.18: Load-deflection curves of a simply-supported beam with varying length of 

FRP reinforcement by using mixed element model by using the combined model 
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Figure 5.19: Load-deflection curves of a simply-supported beam with varying length of 

FRP reinforcement by using mixed element model by using the displacement model 

The plots of the ultimate load ratio and the maximum mid-span deflection ratio are shown 

in Figure 5.20 and 5.21, respectively. An increase in the length of the FRP laminas 

increases the ultimate load of the beam and slightly reduces the maximum mid-span 

deflection of the beam. The increase in the length of FRP beyond 50% of the beam 

length, however, does not significantly contribute to the beam bending capacity nor 

affects the maximum mid-span deflection.  
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Figure 5.20: Ultimate load ratio versus percent of FRP length for simply supported RC 

beam. 
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Figure 5.21: Maximum mid span deflection ratio versus percent of FRP length for simply 

supported RC beam. 
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5.4.3 Composite Plate 

We considered a square concrete plate of size 1000 mm × 1000 mm × 100 mm. A 

uniformly distributed load was applied on the top surface of the plate.  Due to bi-axial 

symmetry, a quarter plate had been used with ideal support condition (Table 5.2). For 

meshing, three elements in X-direction and three elements in Y-direction were considered. 

In the Z-directions, concrete was meshed into six layers and additional layer of mesh was 

considered for each layer of FRP.  The thickness of each FRP layer was 0.1702 mm. 

The material properties of concrete and of FRP are, respectively 

 0
-4

0.002 0.003 46.1 MPa 41.5 MPa
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f f
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5.4.3.1 Laminating scheme of FRP layers 

Fibre-orientation angle plays an important role in the increase of the plate strength. This 

is due to FRP having high strength in the fibre direction, and low strength in the direction 

perpendicular to the fibre. In order to maximize the FRP reinforcement strength, balanced 

laminate is commonly used. Four-ply [ ] [ ] [ ] [ ]β β β β− −  FRP, where the fibre-

orientation angle β  is measured from the X −axis of the plate, is considered for this 

example. Each ply is 0.6808 mm thick. Figures 5.22, 5.23 and 5.24 demonstrate the 

effects that fibre-orientation angle have on the nonlinear behavior of the concrete plate 

for mixed FE model, combined model, and displacement model, respectively.  
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Figure 5.22: Load-deflection curves of a simply-supported plate with four-ply FRP 

reinforcement having fibre-orientation angle of [ ] [ ] [ ] [ ]β β β β− − by using the mixed 

FE model. 
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Figure 5.23: Load-deflection curves of a simply-supported plate with four-ply FRP 

reinforcement having fibre-orientation angle of [ ] [ ] [ ] [ ]β β β β− − by using the 

combined model. 
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Figure 5.24: Load-deflection curves of a simply-supported plate with four-ply FRP 

reinforcement having fibre-orientation angle of [ ] [ ] [ ] [ ]β β β β− − by using the 

displacement element model. 

Figures 5.25 and 5.26 demonstrate the effects of fibre-orientation angle on the plate 

ultimate load capacity ratio and the plate maximum deflection ratio respectively using all 

three models. Here, 0uP  and 0uδ  are the ultimate load capacity and the maximum 

deflection at the middle of the plate with [ ] [ ] [ ] [ ]0 90 0 90  FRP reinforcement, 

respectively. The two models: the mixed FE and the combined model, show that an 

increase in a fibre-orientation angle increases the ultimate load capacity of the plate and, 

simultaneously, reduces the maximum deflection at the middle of the plate. The 

displacement model, however, produces questionable results, i.e. the ultimate load 

capacity and the maximum deflection at the middle of the plate both increase with an 

increase in the fibre-orientation angle. It should be noted here that due to symmetry in 

geometry, when β  is greater than 45o, load-deflection curves of the plate are the same as 
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those when β  is less than 45o.  The maximum ultimate load is obtained when the fibre-

orientation angle reaches 45o. This is expected because of the symmetric property of the 

problem.  
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Figure 5.25: Ultimate load ratio of a simply-supported plate with externally reinforced 

FRP laminates having different fibre-orientation angles of  [ ] [ ] [ ] [ ]β β β β− −  
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Figure 5.26: Maximum mid span deflection ratio of a simply-supported plate with 

externally reinforced FRP laminates having different fibre-orientation angles of  

[ ] [ ] [ ] [ ]β β β β− −  

5.4.3.2 Plate aspect ratio 

The effects of the plate aspect ratio ( )a b  on the response of an all side simply-

supported, FRP reinforced steel-free concrete rectangular plate subjected to a uniformly 

distributed load are investigated. The plate is reinforced with three FRP layers. Each FRP 

layer thickness is 0.1702 mm.  Two fibre orientations (0/90/0 and 0/0/0) are considered. 

The ratio of length to width is considered as a/b = 1, 1.25, 1.67, and 2.5.  Figures 5.27, 

5.28, and 5.29 illustrate the plate load-deflection curve predicted by the mixed FE model, 

the combined model, and the displacement model, respectively.   
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Figure 5.27: Load-deflection curves for concrete plate strengthened with FRP for layers 

orientation: 0/0/0 and 0/90/0 by using the mixed FE model. 
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Figure 5.28: Load-deflection curves for concrete plate strengthened with FRP for layers 

orientation: 0/0/0 and 0/90/0 by using the combined model. 
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Figure 5.29: Load-deflection curves for concrete plate strengthened with FRP for layers 

orientation: 0/0/0 and 0/90/0 by using the displacement model. 

Figures 5.30 and 5.31 show the plate ultimate load capacity ratio and the plate maximum 

deflection ratio calculated using all three models, respectively. The reference ultimate 

load 0uP  and the reference maximum deflection 0uδ  are the values of the plate with 

/ 1a b = . It is interesting that an increase in the aspect ration increases the plate capacity 

and decreases the plate maximum deflection. All three models predict the same behaviour 

and the results are almost identical with the exception of the plate having large aspect 

ratios where the mixed FE model provides higher prediction of the plate capacity. For 

two fibre-orientations (0/90/0 and 0/0/0), with a/b = 1, both results are identical. As a/b 

increases, 0/90/0 orientation shows slightly larger load capacity and less maximum 

deflection.  
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Figure 5.30: Ultimate load ratio versus length-width ratio (a/b) curves for two types of 

FRP layers orientation (0/90/0 and 0/0/0) 
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Figure 5.31: Maximum mid span deflection ratio versus length-width ratio (a/b) curves 

for two types of FRP layers orientation (0/90/0 and 0/0/0) 



 69

5.4.3.3 Number of FRP layers 

The effects of the number of externally reinforced FRP laminas on the nonlinear response 

of a simply-supported concrete plate are investigated. We have performed analysis by 

considering up to ten layers of FRP for each of the three models, i.e. the mixed FE model, 

the combined model, and the displacement model. The result sets are shown in the 

Figures 5.32, 5.33, and 5.34, respectively. The ultimate load ratio ( )0u uP P and the 

maximum mid-span deflection ratio ( )0u uδ δ  of the beams are presented in Figure 5.35. 

Here uP  and 0uP  are the ultimate load of the plate with variable number of FRP layers 

and single layer of FRP reinforcement, respectively, whereas, uδ and 0uδ  are the 

maximum mid-span deflection of the plate with variable number of FRP layers and single 

layer of FRP reinforcement, respectively. 

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Deflection (mm)

Lo
ad

 (k
N

)

FRP LAYER-1
FRP LAYER-2
FRP LAYER-3
FRP LAYER-4
FRP LAYER-5
FRP LAYER-6
FRP LAYER-7
FRP LAYER-8
FRP LAYER-9
FRP LAYER-10

 

Figure 5.32: Load-deflection curves for concrete plate strengthened with variable 

number of FRP layers by using the mixed model. 
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Figure 5.33: Load-deflection curves for concrete plate strengthened with variable 

number of FRP layers by using the combined model. 

 

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2

Deflection (mm)

Lo
ad

 (k
N

)

FRP LAYER-1
FRP LAYER-2
FRP LAYER-3
FRP LAYER-4
FRP LAYER-5
FRP LAYER-6
FRP LAYER-7
FRP LAYER-8
FRP LAYER-9
FRP LAYER-10

 

Figure 5.34: Load-deflection curves for concrete plate strengthened with variable 

number of FRP layers by using the displacement model. 
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It can be seen that increasing the number of layers of FRP increases the load capacity of 

the plate and does not significantly affect the maximum mid-span deflection. The rate 

increase in the ultimate load is almost constant with the increase in the number of FRP 

laminas. On the other hand, the maximum mid-span deflection is almost constant with the 

increasing number of FRP layers. The prediction of both the ultimate load capacity and 

maximum mid-span deflection of the plate is not affected by the use of different model. It 

should be noted that only up to ten layers of FRP is considered here and that the first-ply 

failure of the FRP and the delimitation between the laminas are not taken into account in 

this study. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.35: Ultimate load ratio and maximum mid span deflection ratio versus number 

of FRP layers for concrete plate strengthen with FRP 
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Chapter VI 

Conclusions 

 

 

Three 3D layer-wise 18-node FE models for nonlinear analysis of concrete structures 

have been introduced. In the first model, three displacement components and three 

transverse stress components are used while in the second model, only displacement 

components are used as nodal DOFs. In last model, three displacement components and 

three transverse stress components are used as nodal DOFs on one surface while only 

three displacement components are used as nodal DOFs on the opposite surface. All three 

models incorporate material nonlinearities, smeared crack concept, and smeared 

reinforcement. The first and third models are based on a mixed FE formulation which 

approximates displacement components in the form of nodal displacements and nodal 

stresses using a concept of 3D elasticity theory, a determination of stresses does not 

require integration. Local-global phenomena are introduced by considering all three 

models together. In order to reduce the computational time, an element with less DOF is 

used where the less accurate stress determination is allowed and an element with larger 

DOF is used where the more accurate stress calculation is required. The developed 

models are verified by a comparison of numerical and experimental results of RC beams 

strengthened with FRP and composite concrete plate. From the numerical results, the 

following conclusions can be made: 
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- In composite beam, an increase in the number of layers of FRP increases the load 

capacity of the beam and reduces the beam maximum mid-span deflection. The 

prediction of the ultimate load capacity of the beams is not significantly affected 

by the use of different models while the maximum mid-span deflection prediction 

is affected for fewer number of FRP layers. With the larger number of FRP layers, 

all three models show almost similar behavior.  

- In composite beam, an increase in the length of FRP beyond 50% of the beam 

length, does not significantly contribute to the beam bending capacity nor affects 

the maximum mid-span deflection.  

- In composite plate, an increase in a fibre-orientation angle from X-axis increases 

the ultimate load capacity of the plate and simultaneously, reduces the maximum 

deflection at the middle of the plate. The 45/-45/45/-45 fibre-orientation provides 

the highest ultimate load.  

- In composite plate, the load capacity of 0/90/0 and 0/0/0 FRP reinforcement 

increases as the length-to-width ratio (or aspect ratio) increases. As the aspect 

ratio increases, the width of plate decreases in comparison to the length. The plate 

starts to distribute more loads along the width direction. In the 0/90/0 FRP, the 

middle layer fiber is oriented along the width direction, hence helps to carry more 

loads than 0/0/0 FRP reinforcement.    

- Increased number of FRP layers increases the load capacity of the plate and does 

not significantly affect the maximum mid-span deflection. The prediction of both 

the ultimate load capacity and maximum mid-span deflection of the plate is not 

affected by the use of different model. 
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APPENDIX  

 
 

Input instructions 

 
1) TITLE (15A4) 

 Column 1-60   : Title to be printed with the output 

2) CONTROL INFORMATION (12I5) 

 Column variable 

 01-05 NUMNP : No. of nodes 

 06-10 NUMEL : No. of elements 

 11-15 NDF  : No. of dof per node 

 16-20 NDM  : No. of dimensions (Default 3 for 3D) 

 21-25 NUMAT : No. of material sets 

 26-30 NSN  : No. of Supported nodes 

 31-35 NPROP  : No. of material data 

 36-40 IDSPLY : Graphical display (0 for no graphical display) 

 41-45 ITYPE  : Type of analysis (Default to 3 for 3D) 

 46-50 ILOADSTEP : No. of load steps  

  51-55 NEQ  : No. of equations. (Manually correct after 1st run)  

 56-60 MBAND : Size of half bandwidth (Manually correct after 2nd run) 

3) ELEMENT DATA (I4,4I2,18I4) (One line per elements) 

 Column 

 01-04   : Element No. 
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 05-06   : Material set no. 

 07-08   : No. of nodes in the element 

09-10 : Element model type (1 for combined model, 2   

  for mixed model, 3 for displacement model) 

11-12    : Type of material analysis (0 for linear, 1 for nonlinear) 

13-16   : 1st node number of that element 

17-20   : 2nd node number of that element 

And up to 18th node number for 3-D analysis (i.e. if   

ITYPE=3). For element model type 1, bottom layer of 

transitional elements need to be inverted (interchange top 

and bottom surface nodes).  

4) NODAL DOF LIST 

 A) 01-05  : 6 for dof=6 

 B) List of nodes with dof=6 (16I5) 

: If number of nodes zero, leave the line blank 

: If number of nodes are multiple of 16, put a blank line 

after this. 

 C) 01-05  : 3 for dof=3 

 D) List of nodes with dof=3 (16I5) 

    : If number of nodes zero, leave the line blank 

: If number of nodes are multiple of 16, put a blank line   

  after this.   
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4) BOUNDARY CONDITIONS (for individual nodes, not specified means free) 

 A) No. of sets of BCs 

  01-05  : No. of sets of boundary conditions 

 B) First set of boundary conditions (6I5) 

    : 1 for restrained and 0 for free conditions.  

    : 3 dof/ 6 dof depending on the element model type. 

: In transtional element model- top surface nodes-6 dof, 

  bottom surface nodes- 3 dof  

: In both stress and displacement continuity model- all 18 

nodes are 6 dof 

: In displacement continuity model- all 18 nodes are 3 dof  

 C) List of nodes (16I5)  

: List all the nodes that belongs to this BCs set  

: If number of nodes are multiple of 16, put a blank line   

  after this.  

 … Continue B and C for rest of the BCs sets. 

5) NODAL DISPLACEMENT DATA (I5,5X,6E10.0),(one line per node) 

 Columns 

01-05  : Node number 

11-20  : Value of 1st dof 

21-30  : Value of 2nd dof 

31-40  : Value of 3rd dof 

41-50  : Value of 4th dof 
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51-60  : Value of 5th dof 

61-70  : Value of 6th dof 

 

(for the dof whose value is either ‘not known’ or ‘zero’, just leave blank) 

(TERMINATED WITH A BLANK LINE) ………………………Important 

 

6) CONCRETE PROPERTY (CHARACTERISTIC) DATA (2I5)  

     Columns 

01-05  :Material set number 
06-10 :Element type number 

Total 14 number of property data to be given for each material set in next two lines. It is 

to be given in the following format: 

1st line : Young's Modulus, Poisson ratio,  , Comp stress, Stress at max strain, Strain at 

max stress, Strain at comp failure ……………… ………………………………..7E11.2 

2nd line: Max tensile stress, Normal stiffness reduction factor (1.0*10-4), Density, 

Thickness, Width & Length of element, and Angle (anticlockwise) of fiber orientation 

with the X1-coordinate axis(i.e. Global X-axis)…………………………………..7E11.2 

 

7) MATERIAL PROPERTY (CHARACTERISTIC) DATA (2I5)  

     Columns 

      01-05   : Material set number 

06-11   : Element type number 
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Each material set input line must be followed immediately by the material property 

data required for that element type. There are total 14 numbers of property data to be 

given for each material set. It is to be given in the following format: 

 

1st line : for C11, C12, C13,C22, C23……………………………5E15.2 

2nd line: for C33, C44, C55, C66, Density of the material ……….5E15.2 

3nd line: for Thickness, Width & Length of element, and  

             Angle (anticlockwise) of fiber orientation with the X1-coordinate 

            axis(i.e. Global X-axis)…………………………………....5E15.2 

 

8) NODAL LOAD DATA (I5,5X, 6E10.0), (One line per loaded node) 

     Columns 

01-05 :Node number 

11-20  :Force corresponding to 1st dof 

21-30 :Force corresponding to 2nd dof 

31-40 :Force corresponding to 3rd dof 

41-50 :Force corresponding to 4th dof 

51-60 :Force corresponding to 5th dof 

61-70 :Force corresponding to 6th dof 

(TERMINATED WITH A BLANK LINE) ………………………Important 

 

9) DISTRIBUTED LOAD DATA, (One line per element) 

                (3I5, 5X, 4E10.2/5E10.2) 
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 Columns 

01-05 :Element number 

06-10 :Surface of the element, which is loaded 

  (1-F, 2-B, 3-L, 4R, 5-Bot, 6-Top) 

 11-15 :Direction in which the load is applied (1 for X, 2 for Y & 3 for Z) 

 21-30 :Load intensity-1 (P1) 

 31-40 :Load intensity-2 (P2) 

 41-50 :Load intensity-3 (P3) 

 51-60 :Load intensity-4 (P4) 

Next line 

      01-10  :Load intensity-5 (P5) 

      11-20  :Load intensity-6 (P6) 

      21-30  :Load intensity-7 (P7) 

      31-40  :Load intensity-8 (P8) 

      41-50  :Load intensity-9 (P9) 

(TERMINATED WITH A BLANK LINE) ………………………Important 
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Sample input file 

! TITLE 

Concrete beam- SS (Ex= 8 Ey= 1 Ez=22) S= 0(Point load across width) 

! CONTROL INFORMATION 

 1173  176    6    3    4  858   14    0    3   33 4994  397 

! ELEMENT DATA   

   1 418 2 0   1   2   3  52  53  54  18  19  20  69  70  71  35  36  37  86  87  88 

   2 118 2 0   3   4   5  54  55  56  20  21  22  71  72  73  37  38  39  88  89  90 

   3 118 2 0   5   6   7  56  57  58  22  23  24  73  74  75  39  40  41  90  91  92 

   --    --   --   --   --   -- 

   --    --   --   --   --   -- 

 175 118 2 1108410851086113511361137110111021103115211531154111811191120116911701171 

 176 118 2 1108610871088113711381139110311041105115411551156112011211122117111721173 

! LIST OF NODES WITH SIX DOF   

    6 

    1     2     3     4     5     6     7     8     9    10   11   12   13   14   15   16 

   --    --   --   --   --   -- 

   --    --   --   --   --   -- 

 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 

 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 

 1169 1170 1171 1172 1173 

! LIST OF NODES WITH THREE DOF 

    3 

! BOUNDARY CONDITIONS 

   30 

    0    1    1    0    1    1 

   69  120  171  222  273  324  375  426  477  528  579  681  732  783  834  885 

  936  987 1038 1089 

    1    0    0    1    0    0 

   85  136  187  238  289  340  391  442  493  544  595  697  748  799  850  901   

  952 1003 1054 1105 

    0    0    0    1    0    1 

   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  104 

  105  106  107  108  109  110  111  112  113  114  115  116  117  118  155  156 
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  157  158  159  160  161  162  163  164  165  166  167  168  169  206  207  208 

   --    --   --   --   --   -- 

   --    --   --   --   --   -- 

   0    0    0    1    0    1 

   87   88   89   90   91   92   93   94   95   96   97   98   99  100  101  138 

  139  140  141  142  143  144  145  146  147  148  149  150  151  152  189  190 

   --    --   --   --   --   -- 

   --    --   --   --   --   -- 

    0    0    0    1    1    1 

   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33 

    0    0    0    1    1    1 

 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 

    0    1    1    1    1    1 

 1140 

    0    1    1    1    1    1 

   18 

    1    0    0    1    1    1 

 1156 

    1    0    0    1    1    1 

   34 

    0    0    0    1    1    1 

 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 

    0    0    0    1    1    1 

    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 

    0    0    0    1    1    1 

 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 

    0    0    0    1    1    1 

   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50 

    0    1    1    1    1    1 

   52  103  154  205  256  307  358  409  460  511  562  664  715  766  817  868 

  919  970 1021 1072 

    1    0    0    1    0    1 

   68  119  170  221  272  323  374  425  476  527  578  680  731  782  833  884 

  935  986 1037 1088 

    0    1    1    1    1    1 
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   86  137  188  239  290  341  392  443  494  545  596  698  749  800  851  902 

  953 1004 1055 1106 

    1    0    0    1    0    1 

  102  153  204  255  306  357  408  459  510  561  612  714  765  816  867  918 

  969 1020 1071 1122 

    0    1    1    1    1    1 

    1 

    0    1    1    1    1    1 

 1123 

    1    0    0    1    1    1 

   17 

    1    0    0    1    1    1 

 1139 

    0    1    1    1    1    1 

   35 

    0    1    1    1    1    1 

 1157 

    0    0    0    1    1    1 

   51 

    1    0    0    1    1    1 

 1173 

    0    1    1    0    1    0  

  630 

    1    0    0    1    0    0 

  646 

    0    1    1    1    1    1 

  613  647   

    1    0    0    1    0    1 

  629  663 

**BLANK LINE** 

! CONCRETE PROPERTIES 

    1    1 

 .30230E+05 .10000E+00 .00000E+00 -.4137E+02 -.10340E+2 -.2500E-02 -.3500E-02 

 .21200E+01 .10000E-03 .10000E+01 .17858E+02 .20300E+03 .15244E+03 .00000E+00 

! NON- CONCRETE MATERIAL PROPERTIES 
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   1    1 

 .142591885D+06 .307591589D+04 .307591589D+04 .145663665D+05 .808520275D+02 

 .145663665D+05 .586000000D+04 .586000000D+04 .352000000D+04 .100000000D+01 

 .170200000D+00 .203000000D+03 .152437500D+03 .000000000D+00 

    2    1 

 .198323433D+06 .320499965D+02 .320499965D+02 .288449968D+03 .320499965D+02 

 .288449968D+03 .128199986D+03 .128199986D+03 .128199986D+03 .100000000D+01 

 .132000000D+01 .203000000D+03 .152437500D+03 .000000000D+00 

    3    1 

 .178673099D+06 .431521152D+03 .431521152D+03 .388369037D+04 .431521152D+03 

 .388369037D+04 .172608461D+04 .172608461D+04 .172608461D+04 .100000000D+01 

 .800000000D-01 .203000000D+03 .152437500D+03 .000000000D+00 

    4    1 

 .102591885D+01 .307591589D+00 .307591589D+00 .145663665D+00 .808520275D+00 

 .145663665D+00 .586000000D+00 .586000000D+00 .352000000D+00 .100000000D+01 

 .170200000D+00 .203000000D+03 .152437500D+03 .000000000D+00 

! NODAL LOAD DATA 

 1137                         -.3333D+05 

 1154                         -.3333D+05 

 1171                         -.3333D+05 

** BLANK LINE ** 

! DISTRIBUTED LOAD 

 169    6    3     -.7200D-02-.7200D-02-.7200D-02-.7200D-02 

      -.7200D-02-.7200D-02-.7200D-02-.7200D-02-.7200D-02 

  170    6    3     -.7200D-02-.7200D-02-.7200D-02-.7200D-02 

      -.7200D-02-.7200D-02-.7200D-02-.7200D-02-.7200D-02 

  171    6    3     -.7200D-02-.7200D-02-.7200D-02-.7200D-02 

      -.7200D-02-.7200D-02-.7200D-02-.7200D-02-.7200D-02 

  172    6    3     -.7200D-02-.7200D-02-.7200D-02-.7200D-02 

      -.7200D-02-.7200D-02-.7200D-02-.7200D-02-.7200D-02 

  173    6    3     -.7200D-02-.7200D-02-.7200D-02-.7200D-02 

       -.7200D-02-.7200D-02-.7200D-02-.7200D-02-.7200D-02 

  174    6    3     -.7200D-02-.7200D-02-.7200D-02-.7200D-02 

      -.7200D-02-.7200D-02-.7200D-02-.7200D-02-.7200D-02 

  175    6    3     -.7200D-02-.7200D-02-.7200D-02-.7200D-02 
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       -.7200D-02-.7200D-02-.7200D-02-.7200D-02-.7200D-02 

  176    6    3     -.7200D-02-.7200D-02-.7200D-02-.7200D-02 

       -.7200D-02-.7200D-02-.7200D-02-.7200D-02-.7200D-02 

**BLANK LINE** 
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Sample output file 

! HEADER 

Concrete Beam SS (Ex= 8 Ey= 1 Ez=22) S= 0(Point load across width)        

 

! GIVEN CONTROL INFORMATION 

 

 NO. OF NODES ....................................=1173 

 NO. OF ELEMENTS  ...........................= 176 

 NO. OF DEGREES OF FREEDOM .....=   6 

 NO. OF DIMENSIONS ........................=   3 

 NO. OF MATERIAL SETS ..................=   4 

 NO. OF SUPPORTED NODES ............= 858 

 NO. OF MATERIAL DATA ................=  14 

 GRAPHICAL DISPLAY CODE ..........=   0 

 TYPE(3 FOR PLATE)………………...=   3 

 NO. OF INCREMENTS OF LOAD......=  95 

 NO. OF EQUATION.............................= 4994 

 NO. OF HALF BAND WIDTH............=  397 

 

! GIVEN ELEMENT DATA 

 

ELMT MATERIAL  NEL ELTYPE MATYPE NOD-1 NOD-2 NOD-3 NOD-4 NOD-5 NOD-6 NOD-7 NOD-8 NOD-9 NOD10 

NOD11 NOD12 NOD13 NOD14 NOD15 NOD16 NOD17 NOD18 

    1        4   18     2    0     1     2     3    52    53    54    18    19    20    69    70    71    35    36    37    86    87    88 

    2        1   18     2    0     3     4     5    54    55    56    20    21    22    71    72    73    37    38    39    88    89    90 

    3        1   18     2    0     5     6     7    56    57    58    22    23    24    73    74    75    39    40    41    90    91    92 

    4        1   18     2    0     7     8     9    58    59    60    24    25    26    75    76    77    41    42    43    92    93    94 

    5        1   18     2    0     9    10    11    60    61    62    26    27    28    77    78    79    43    44    45    94    95    96 

    6        1   18     2    0    11    12    13    62    63    64    28    29    30    79    80    81    45    46    47    96    97    98 

---------------------------------------------------------------------------------------------------------------------------------------- 

---------------------------------------------------------------------------------------------------------------------------------------- 

  171        1   18     2    1  1076  1077  1078  1127  1128  1129  1093  1094  1095  1144  1145  1146  1110  1111  1112  1161  1162  

1163 
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  172        1   18     2    1  1078  1079  1080  1129  1130  1131  1095  1096  1097  1146  1147  1148  1112  1113  1114  1163  1164  

1165 

  173        1   18     2    1  1080  1081  1082  1131  1132  1133  1097  1098  1099  1148  1149  1150  1114  1115  1116  1165  1166  

1167 

  174        1   18     2    1  1082  1083  1084  1133  1134  1135  1099  1100  1101  1150  1151  1152  1116  1117  1118  1167  1168  

1169 

  175        1   18     2    1  1084  1085  1086  1135  1136  1137  1101  1102  1103  1152  1153  1154  1118  1119  1120  1169  1170  

1171 

  176        1   18     2    1  1086  1087  1088  1137  1138  1139  1103  1104  1105  1154  1155  1156  1120  1121  1122  1171  1172  

1173 

 

 !GIVEN BOUNDARY CONDITION CODES 

 

 NODE 1-STF 2-STF 3-STF 4-STF 5-STF 6-STF 

    1     0     1     1     1     1     1 

    2     0     0     0     1     1     1 

    3     0     0     0     1     1     1 

    4     0     0     0     1     1     1 

    5     0     0     0     1     1     1 

    ---------------------------------- 

    ---------------------------------- 

1171     0     0     0     1     1     1 

1172     0     0     0     1     1     1 

1173     1     0     0     1     1     1 

 

! CONCRETE MATERIAL PROPERTIES 

 

 Ec            =   .3023E+05 

 rnui          =   .1000E+00 

 Density    =   .0000E+00 

 fcs            =  -.4137E+02 

 ff              =  -.1034E+02 

 et0            =  -.2500E-02 

 etf             =  -.3500E-02 

 sigma_f    =   .2120E+01 
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 enu           =   .1000E-03 

 rho            =   .1000E+01 

 thickness  =   .1786E+02 

 width        =   .2030E+03 

 length       =   .1524E+03 

 angle         =   .0000E+00 

 

! NON-CONCRETE MATERIAL PROPERTIES 

 MATERIAL SET NUMBER    1          ELMT LIB NUMBER    1 

 

 MATERIAL SET NUMBER =    1 

 

 C11        =      .14259E+06 

 C12        =      .30759E+04 

 C13        =      .30759E+04 

 C22        =      .14566E+05 

 C23        =      .80852E+02 

 C33        =      .14566E+05 

 C44        =      .58600E+04 

 C55        =      .58600E+04 

 C66        =      .35200E+04 

 DENSITY       =      .10000E+01 

 THICKNESS  =      .17020E+00 

 WIDTH           =      .20300E+03 

 LENGTH        =      .15244E+03 

 ANGLE          =      .00000E+00 

 

 MATERIAL SET NUMBER    2          ELMT LIB NUMBER    1 

 

 MATERIAL SET NUMBER =    2 

 C11        =      .19832E+06 

 C12        =      .32050E+02 

 C13        =      .32050E+02 

 C22        =      .28845E+03 

 C23        =      .32050E+02 
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 C33        =      .28845E+03 

 C44        =      .12820E+03 

 C55        =      .12820E+03 

 C66        =      .12820E+03 

 DENSITY       =      .10000E+01 

 THICKNESS  =      .13200E+01 

 WIDTH           =      .20300E+03 

 LENGTH         =      .15244E+03 

 ANGLE           =      .00000E+00 

 

 MATERIAL SET NUMBER    3          ELMT LIB NUMBER    1 

 

 MATERIAL SET NUMBER =    3 

 

 C11        =      .17867E+06 

 C12        =      .43152E+03 

 C13        =      .43152E+03 

 C22        =      .38837E+04 

 C23        =      .43152E+03 

 C33        =      .38837E+04 

 C44        =      .17261E+04 

 C55        =      .17261E+04 

 C66        =      .17261E+04 

 DENSITY       =      .10000E+01 

 THICKNESS  =      .80000E-01 

 WIDTH           =      .20300E+03 

 LENGTH         =      .15244E+03 

 ANGLE           =      .00000E+00 

 

 MATERIAL SET NUMBER    4          ELMT LIB NUMBER    1 

 

 MATERIAL SET NUMBER =    4 

 

 C11        =      .14259E+02 

 C12        =      .30759E+01 
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 C13        =      .30759E+01 

 C22        =      .14566E+02 

 C23        =      .80852E+00 

 C33        =      .14566E+01 

 C44        =      .58600E+01 

 C55        =      .58600E+01 

 C66        =      .35200E+01 

 DENSITY       =      .10000E+01 

 THICKNESS  =      .17020E+00 

 WIDTH           =      .20300E+03 

 LENGTH         =      .15244E+03 

 ANGLE           =      .00000E+00 

 

 HALF BAND WIDTH =  397      ELMT NUMBER =  103 

 

! GIVEN NODAL LOAD DATA 

 

 NODE        1-LOAD    2-LOAD    3-LOAD    4-LOAD    5-LOAD    6-LOAD 

 1137      .0000E+00 .0000E+00-.3508E+03 .0000E+00 .0000E+00 .0000E+00 

 1154      .0000E+00 .0000E+00-.3508E+03 .0000E+00 .0000E+00 .0000E+00 

 1171      .0000E+00 .0000E+00-.3508E+03 .0000E+00 .0000E+00 .0000E+00 

 

 !GIVEN DISTRIBUTED LOAD 

 

 ELMT SURFACE DIRECTION    LOAD-1      LOAD-2      LOAD-3      LOAD-4      LOAD-5      LOAD-6      LOAD-7      LOAD-8      

LOAD-9 

  169    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  170    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  171    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  172    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  173    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  174    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  175    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  176    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 
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! CALCULATED ELEMENT LOAD VECTOR 

 

! LOAD STEP-1 

============= 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 

 169    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 169    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 169    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 169    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 169   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 169   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 169   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 169   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 169   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 

 170    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 170    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 
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 170    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 170    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 170   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 170   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 170   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 170   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 170   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 

 171    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 171    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 171    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 171    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 171   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 171   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 171   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 
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 171   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 171   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 

 172    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 172    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 172    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 172    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 172   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 172   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 172   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 172   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 172   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 

 173    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 
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 173    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 173    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 173    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 173    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 173   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 173   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 173   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 173   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 173   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 

 174    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 174    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 174    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 174    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 174   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 174   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 174   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 
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 174   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 174   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 174   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 

 175    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 175    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 175    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 175    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 175   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 175   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 175   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 175   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 175   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 

 176    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 
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 176    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 176    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 176    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 176    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 176   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 176   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 176   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 176   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 176   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 NEQ =       4994MBAND =        397 

  

 NO OF EQUATIONS =       4994 

 

 

 NODE DISPLACEMENTS 

 

 NODE       U-DISP          V-DISP             W-DISP                 TOU-XZ          TOU-YZ                   SIG-Z 

    1  -.76223491E-02   .00000000E+00   00000000E+00   .00000000E+00   .00000000E+00   .00000000E+00 

    2  -.75869499E-02   .86190227E-05  -.40242203E-02   .00000000E+00   .00000000E+00   .00000000E+00 

    3  -.74904900E-02   .16544077E-04  -.80118418E-02   .00000000E+00   .00000000E+00   .00000000E+00 

    4  -.73384814E-02   .24664714E-04  -.11940779E-01   .00000000E+00   .00000000E+00   .00000000E+00 

---------------------- 

----------------------  

1168   .41841901E-02   .93845928E-04  -.37417790E-01   .00000000E+00   .00000000E+00   .00000000E+00 

 1169   .34335288E-02   .10644457E-03  -.39411402E-01   .00000000E+00   .00000000E+00   .00000000E+00 

 1170   .27171337E-02   .14247942E-03  -.41029464E-01   .00000000E+00   .00000000E+00   .00000000E+00 
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 1171   .17881408E-02   .33923676E-03  -.42806733E-01   .00000000E+00   .00000000E+00   .00000000E+00 

 1172   .83581817E-03   .15191590E-03  -.42885114E-01   .00000000E+00   .00000000E+00   .00000000E+00 

 1173   .00000000E+00   .12950030E-03  -.43123731E-01   .00000000E+00   .00000000E+00   .00000000E+00 

 

! LOAD STEP- 2 

============= 

 NODAL LOAD DATA 

 

 NODE        1-LOAD    2-LOAD    3-LOAD    4-LOAD    5-LOAD    6-LOAD 

 1137      .0000E+00 .0000E+00-.3508E+03 .0000E+00 .0000E+00 .0000E+00 

 1154      .0000E+00 .0000E+00-.3508E+03 .0000E+00 .0000E+00 .0000E+00 

 1171      .0000E+00 .0000E+00-.3508E+03 .0000E+00 .0000E+00 .0000E+00 

 

 DISTRIBUTED LOAD 

 ELMT SURFACE DIRECTION    LOAD-1      LOAD-2      LOAD-3      LOAD-4      LOAD-5      LOAD-6      LOAD-7      LOAD-8      

LOAD-9 

  169    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  170    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  171    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  172    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  173    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  174    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  175    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

  176    6    3          -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04    -.76E-04 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 

 169    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 169    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 169    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 
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 169    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 169   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 169   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 169   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 169   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 169   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 169   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 

 170    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 170    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 170    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 170    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 170   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 170   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 170   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 170   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 170   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 
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 170   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 

 171    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 171    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 171    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 171    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 171   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 171   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 171   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 171   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 171   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 171   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 172    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 172    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 
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 172    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 172    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 172   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 172   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 172   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 172   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 172   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 172   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 173    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 173    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 173    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 173    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 173   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 173   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 173   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 173   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 173   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 
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 173   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 174    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 174    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 174    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 174    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 174   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 174   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 174   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 174   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 174   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 174   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 175    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 175    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 175    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 
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 175    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 175   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 175   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 175   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 175   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 175   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 175   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 RLL=      -2.345329515789496 

 

 ELEMENT LOAD VECTOR 

 

 ELEM NODE       U           V           W        TOU-XZ      TOU-YZ      SIG-Z 

 176    1    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176    2    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176    3    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176    4    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 176    5    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 176    6    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 176    7    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176    8    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176    9    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176   10    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 176   11    .000E+00    .000E+00   -.104E+01    .000E+00    .000E+00    .000E+00 

 176   12    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 176   13    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176   14    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176   15    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00    .000E+00 

 176   16    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 

 176   17    .000E+00    .000E+00   -.261E+00    .000E+00    .000E+00    .000E+00 

 176   18    .000E+00    .000E+00   -.651E-01    .000E+00    .000E+00    .000E+00 
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 RLL=      -2.345329515789496 

 NEQ =       4994MBAND =        397 

  

 NO OF EQUATIONS =       4994 

 

! CALCULATED NODAL DISPLACEMENTS 

 

 NODE       U-DISP          V-DISP          W-DISP          TOU-XZ          TOU-YZ          SIG-Z 

    1  -.15595867E-01   .00000000E+00   .00000000E+00  .00000000E+00   .00000000E+00   .00000000E+00 

    2  -.15524644E-01   .17384592E-04  -.83828893E-02   .00000000E+00   .00000000E+00   .00000000E+00 

    3  -.15330457E-01   .33412806E-04  -.16692024E-01   .00000000E+00   .00000000E+00   .00000000E+00 

--------------------------- 

--------------------------- 

 1167   .10411255E-01   .16127030E-03  -.73295941E-01   .00000000E+00   .00000000E+00   .00000000E+00 

 1168   .90143030E-02   .18098031E-03  -.78204499E-01   .00000000E+00   .00000000E+00   .00000000E+00 

 1169   .74093653E-02   .20576941E-03  -.82403365E-01   .00000000E+00   .00000000E+00   .00000000E+00 

 1170   .58805862E-02   .27101645E-03  -.85802558E-01   .00000000E+00   .00000000E+00   .00000000E+00 

 1171   .38674095E-02   .68796777E-03  -.89549184E-01   .00000000E+00   .00000000E+00   .00000000E+00 

 1172   .18011521E-02   .28873821E-03  -.89717476E-01   .00000000E+00   .00000000E+00   .00000000E+00 

 1173   .00000000E+00   .25006505E-03  -.90233383E-01   .00000000E+00   .00000000E+00   .00000000E+00 

 

! Continue load step 
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