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ABSTRACT

This thesis is concerned with the application
of time optimal theory, utilizing Pontryagin's Maximum
Principle, té the problem of synchronous machine stability.
The plant is the Heffron and Phillips model of a synchronous
generator, The troublesome two - point boundary value
problem, which is always associated with the maximum
principle, regardless of the plant, is solved by an iterative
scheme simulated on a hybrid computer, It is shown that
an optimal bang bang signal, applied to the exciter of a
synchronous generator connected to an infinite bus,

greatly improves the stability of the system.

id




ACKNOWLEDGEMENT

The author wishes to express his appreciation to
his thesis advisor, Professor W,H. Lehn, for suggesting the
topic, as well as for his guidance during the past year.
Thanks are also extended to Professor G.W. Swift for his
discussions concerning the thesis topic.

The financial assistance from Manitoba Hydro, which

permitted this work to be carried out, is also acknowledged.

iii



TABLE OF CONTENTS

PAGE
ABSTRACT ii
ACKNOWLEDGEMENT iii
LIST OF ILLUSTRATIONS v
CHAPTER
I. INTRODUCTION 1
II. OPTIMAL CONTROL THEORY 4
III. MODIFIED GRADIENT METHOD AND THE ITERATIVE SCHEME 10
IV. HYBRID COMPUTER PROGRAM 15
V. EXPERIMENTAL RESULTS 22
VI. CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY 51
APPENDIX
A. COMPUTER SYMBOLS 53
POT SETTINGS 57
INITIAL SETTINGS 57
BIBLIOGRAPHY 58

iv



FIGURE

1'

10.

LIST OF ILLUSTRATIONS

Block diagram of the Heffron and Phillips model
of a synchronous generator . . . . . . . . . . .

Control function u(t) . . . . . . . . . . . . . .

Block diagram of the iterative scheme . . . . . .
Control functions um(t) e e e e e e e e e e .
Analog Computer Program . . . . . . « & o o & . .
Mechanical torque input disturbances . . . ., . .

A8 versus A8 showing optimal switching curves
(a;b) for various torque input magnitudes

(¢ = .07, d = .096, e = .12) (constant control
magnitude) . . . . . . . . e e e e e e e e e

Ay

£q Versus A8 showing optimal switching curves
(a;b) for various torque input magnitudes

(c = .07, d=.096, e = .12) (constant control
magnitude) . . . . . . . . .. . e e ...
Ay versus AS showing optimal switching curves
(a;b) for various torque input magnitudes

(¢ = .07, d = .096, e = .12) (constant control
magnitude) . . . . e e e e e e e e e e e e e e
Dynamic stability of A8 and A§ with time optimal
control. Constant disturbance input magnitude
(0.1). Variable control magnitude (a = 0.07,

b =0.06, c=10.042) . . .. .. ... .. ...,

v

PAGE

11

13
16

21

24

25

26

29



FIGURE PAGE
11. Relationship between control and input magnitude
yielding time optimal control . . . . . . . . . . 30

12. Time optimal solution of 88 and AS , input

magnitude a)0.033 b)0.066 ¢)0.099 d)0.132 . . , . 32
13. Time optimal solution of Awfd and Avt,input
magnitude a)0.033 b)0.066 ¢)0.099 d)0.132 . . . . 33

14. Time optimal trajectories in the A8 versus AS
plane, input magnitudes a)0.033 b)0.066 c)0.099
d)0.132, control magnitudes a)0.02 b) 0.04 ¢)0.06
d)0.08 . . . . . e e e e e e e e e e e e e e e . . 34
15. Time optimal trajectories in the Mpeoq versus As
plane, input magnitudes a)0.033 b)0.066 ¢)0.099
d)0.132, control magnitudes a)0.02 b)0.04 ¢)0.06
d)0.08 . . . . . . . .. e e e e e e e e e .. 35
16. Time optimal trajectories in the Awfd versus A$
plane, input magnitudes a)0.033 b)0.066 c)0.099
d)0.132, control magnitudes a)0.02 b)0.04 ¢)0.06
d)0.08 . . . . . . e e e e e e e e e e e e e e .. 36
17. Steps in iterative scheme. . . . . . . . . . . . . 38
18. Dynamic stability of A8 and AS , with no control
(a) and with optimal control (b) . . . . . . . . . 40

19. Dynamic stability of APa, Ay and AV s with no

fd
control (a) and with optimal control (b) . . . . . 41

vi.



FIGURE

20.

21.

22.

23.

24v

Experimental results from an M.Sc.EE thesis

presented by G.W.

Ryckman20 e e o e e o e e

A8 versus AS phase plane plot for

a)Uncompensated case b)Time - optimal case

a')Uncompensated case c)Sub - optimal case . .

Dynamic stability of A8 and AS with no control

(a) and with time
Dynamic stability
(a) and with time

Dynamic stability

optimal control (b) . . .

of APa and Avt with no control

optimal control (b) . . .

of A8 A8, and % with no

.

e

control (a) and with sub - optimal control (b) .

vii

PAGE

42

44

45

46

47



CHAPTER I
INTRODUCTION
In the past ten years, increasing attention has

been focused on the application of excitation control to
the behavior.of the torque angle and speed, of a synchronous
generator, following a disturbance, such as a mechanical
torque disturbance. Many theoretical results have been
published in the area of system optimization, and except

for a few exceptions have mainly dealt with low-order
systems. One of the notable exceptions has been a paper

by Fred B. Smith21, who presented a method for obtaining

a forcing function, u(t), as a function of the state
variables, without reqﬁiring use of the phase space concept.
An iterative procedure which relies on the connection
between the adjoint system and the time optimal control
function, was applied to a fourth order systewm by

H. K. Knudsenlz. Using a cost functional, Yao - Nan Yu24
has applied control theory to improve the dynamic response
of a power system. G, A. Korn and H,. Kosako14 have attacked
the problem of functional optimization using the so called
random - perturbation method. This method consists of
adding a random perturbation .Au(t) to u(t), computing
the given criterion function on an analog computer, and

comparing it with the value of the criterion function



calculated, with no perturbation on u(t). If an improvement
has been made, the new value u(t) + Au(t) is stored and
the process reﬁeated.

Optimal control theory, as has been shown in the
past, can be successfully applied to the power system
field. Using a modified gradient approach an iterative
scheme was built on a hybrid computer to solve the problem
of power system damping. In order to test the method, a
second order system (—;5), and a third order system (;EZi_:—IF),
were simulated and the time optimal control solutions were
found. Variations in the initial conditions of the adjoint
variables were uéed. The results for both systems agreed
very well with theory; although for the third order plant.
the adjoint system was very sensitive to changes in the
adjoint initial conditions and great care had to be taken
to prevent saturation of the computer,

The fourth order system simulated was the Heffron
and Phillips model of a four kilovolt-amperes wye-connected
synchronous generator attached to an infinite bus through
external reactance. All data dealing with the synchronous
generator have been taken from an M., Sc. thesis, completed
at the University of Manitoba in 1970, by Gordon W. Ryckmanzo.

After simulation of the adjoint system for the fourth order

plant it was found to be far too sensitive to parameter changes,



and therefore could not be used satisfactorily in the
program.

As ah alternative scheme the adjoint system
method was not used, and instead the control function,
u(t), was built with adjustable switching times (ty).

To obtain a successively improved control function u(t),
the switching times ty are each perturbed by Atx, and the
criterion function, which in this case is the minimum
time T, is calculated, If T(tx + Atx) is less than

T(ty), the value of u(t) with the new switching times

tx + Atx is stored and the process is continued until

the function u(t) producing the minimum time T is found.

All values given in the thesis are in per unit
(pu.), with the base quantities being the rated values
of torque angle, speed, field voltage, field flux and

accelerating power.



OPTIMAL CONTROL

CHAPTER II

THEORY

Optimal control theory has been covered thoroughly

by many authors, and therefore, only the fundamentals as

applied to the particular problem, concerning power system

damping, will be discussed here.
Heffron and Phillips model,

generator connected to an infinite bus,

A block diagram of the

used to represent a synchronous

is shown in Figure 1.

The state variables for the system are the change in torque -

angle (A§), the change in speed ( A§ =n), the change in

field flux ( N%d)’ and the change in field voltage (AE

fd)'

The control u(t) is the input signal to the static exciter,

represented in the block diagram by the transfer function
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maximum principlell

is applied to find the optimal control
function u(t), which minimizes the functional. The
solution of the problem begins with the introduction of
the adjoint vector, ¥, and a Hamiltonian function H, of
the following form:

H=-1+ AX + y'BU

=-1+ y(n)+ y(-_Lps-Dp-_24y )+ ¥, ( —_4 AS
1 2 H m' ¥ fd 3" g
3do  ___11.9
-1 Ayt 1 AE )+ 'ﬁ( -1 AE -Eg.u)
K Tt fd Tt fd o fd T
3 do do e e

According to the maximum principle, in order for
J to be minimized with respect to u(t), H must be maximized
by the proper choice.of u(t). For an optimal control function

u(t), ¢ and X must be the solution of

X=29H , y= -3H ~-~-II-3
oY oX
The adjoint equations are of the form
- K 9 oA
1 o G Mo ¥
1
M KSTdo
o - -1 D 0 0 y
¥Yg M 2
- v -—TIT-4
?3 0 Eg Y y
K T
M 37 do 3
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Y4 T T |
L J L do ej L




According to Pontryagin's maximum principle the control
function is of the form

u(t) = Usgn(-Ke l1’4) U = a constant I
T

where the switching instants are controlled by the adjoint
variable W4.

A paper published by J. Grad and M, A, Brebner8,
which finds all the eigenvalues of a real general matrix,
was used to find the eigenvalues of the Heffron and Phillips
plant. The system was found to have two real and two
imaginary eigenvalues.” Because two of the eigenvalues are
complex conjugates nothing can be said about thé number of

possible switching instants in the control u(t). Due to the

33t

fact that the number of amplifiers is limited on the EAT _

580 hybrid computer, it was decided to solve for optimal
solutions with a maximum of three switching instants tl to t3.
At this time it should be noted that while the control

‘function can have any number of switching instants, the control

cannot remain forever and must, at time t4, be turned off.

I t
The values of K1 to K6’ M, D, T do? Ke and Te are
listed in Table 1.

*¥EAI - Electronic Associates, Inc.



The problem, therefore;is to determine the
switching instants tl to t4 as shown in Figure 2, which
will maximize the Hamiltonian H and will yield the time

optimal solution u*(tj.»

u(t)
U
1. | t i
ty tp t3 ty
-~ Ut
Figure 2,

As the final values of AS and Awfd do not return
to zero, but reach a constant level after a diéturbance,
the coordinates of both AS and AY., were shifted so that
their final constant level was centered on the origin ( see
Figures 7,8,9,14,15,16,17,21). In this way each magnitude of
disturbance input (N) can be looked on as a particular initial
condition point in four dimensional state space. In state
space, the problem can be viewed as one of bringing a point
in four dimensional space to the origin in the shortest
possible time, T, As has been mentioned in the Introduction
the use of the adjoint system in the iterative scheme had

to be abandoned. The adjoint system for a stable plant will



be unstable, and hence very sensitive to noise and parameter
errors. 'On simulation of the adjoint system it was found
that the switching instants were indeed far too sensitive

to changes in the initial choice of adjoint variables.

It was therefore decided to apply the modified gradient
approach directly to the initial choice of switching instants
tl to t4, rather than to the initial choice of the adjoint
variables. One disadvantage to this approach is that
simulation of the adjoint system requires fewer analogue
components, than generation of the switching instants
directly. As the number of analogue components is limited
on the EAI 580 hydrid computer, the optiﬁal solution for
higher order plants can not be solved without a larger

computer,



CHAPTER III
MODIFIED GRADIENT METHOD
and the
ITERATIVE SCHEME
The modified gradient scheme works on the principle
that changing each parameter t, by an amount proportional
to the negative of its partial derivative %%, will decrease
the criterion function T, The paramters tl to t4 are the
switching instants of the function u(t) and the time T is
the criterion function _ftdt which has to be minimized.
To best explain the modgfied gradient method, a block
diagram of the iterative scheme is shown in Figure 3.
Initially the iterative scheme begins with the
random choice of the control function um(t) from Figure 4.
The partial derivatives are calculated and during the
update mode, k( %% ) is subtracted from the switching
instants ty. The ﬁonstant k controls the speed of convergénce.
A small value of k, while approximating the steepest descent,
makes for a slow convergence time. A reasonable convergence
time for the iterative scheme is obtained by making a
suitable choice for k, as well as by making continuous

runs in the update mode as long as each value of T calculated

is less than the previéus value of T.

The partial derivatives are calculated using the

central difference method:
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_3)%1 _ T(tl + h/2, t,s t3, t4,) - T(tl - h/2, t,s t3, t4)
: h
%% _ T(tl, t2 + h/2, tas t4) - T(tl, t, - h/2, t3, t4)
2 h
%% = T(tl, tz’ t3 + h/2, t4) - T(tl, tz, t3 - h/2, t4)
3 h
T =7(t. ,t ,t,t +h/2) -T(t ,t,t,t - h/2
_3___4 ( l) 2’ 3) 4 / ) ( 1) 23 3: 4 / )
h

As the switching instants approach their optimal values

the partial derivatives approach zero ( provided h/2 is

sufficiently small ) and the program will tend to remain

or oscillate slightly around the optimal solution, A

central difference method rather than a one-sided difference

method was used, because of the fact that the program

using a one-sided difference will have large oscillations

'around the optimal solution. As the measurement of the

optimal switchings instants, relies on the fact that the

program will eventually settle down to the optimal solution,

and remain there; a one-sided difference cannot be used.
Because there is a possibility of solutions at a

local minimum the iterative scheme will, in turn, work out

the time solution beginning with each of the u(t) functions

in Figure 4. By way of a counter a reasonable length of time,

12
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choosen at random, is allotted by the program for each time
optimal solution to be found. As each solution is found the
value of T and the optimal switching instants tl to t4 will
be stored by the recorder. A comparison of the six values

of T will be made by the recorder and the switching instants

tl to t4, yielding the smallest time T, will be stored.



CHAPTER IV
HYDRID COMPUTER PROGRAM

The complete analogue computer program is presented
in Figuré 5. The timing and the order of events is established
by the logic part of the program, shown on the extreme left,
Because the effect of the disturbance on the plant must be
repeated many times in order to calculate partial
derivatives, update parameters, etc., the computer is run
in the repetitive operation mode. The IC (A) and OP (K)*
periods are preset on the computer and fed into a flip
flop, whose delay produces a sharp marking pulse, EA,
at the end of tﬁe operate period. By the use of a six bit
ring shift register GPRO, the computer can be cycled through

four exploration runs (Ex. to Ex4), each consisting of two

1
IC - OP periods, one evaluation run (Ev), consisting of a
single IC -OP period, and one update run (U), consisting of
a number of IC-- OP periods. During the exploration runs

(Ex_ to Ex4) the partial derivatives JT, 9T, JT, and 3T,

1 9T, Jt, It 3t
reépectively, are calculated. The pulse EA is used in
shifting the computer mode through the four exploration runs.
The values of the criterion function T, with the initial
switching instants tln to t , is calculated during the

n
evaluation mode. Improvements in the criterion function

*The repetitive operation mode has two periods,
the initial condition (IC) and operate (OP) periods, following
one after the other, each of which has a separate adjustment
on the computer for setting the length of time the computer
will remain in each period.
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T are made during the update mode. As was mentioned earlier,
as long as an improvement is made in T the computer will
maintain the pértial derivatives calculated and continue to
update the parameters tl to t4. The signal Imp, which
determines whether the program will remain in the update
mode or shift to the Exl mode, is high if an improvement in
T has been made and low if there has been no improvement.

In the section explaining the modified gradient
method, it was stated that each control function um(t) in
'Figure 4 was allotted a definite time in which to reach
the optimal solution. On the analogue computer this is
accomplished by the use of counter l,which counts the number
of times the partial derivatives have been recalculated.
Once the optimal solution has been found for a particular
control um(t), ( see Figure 4 ), the next um(t) function is
substituted into the iterative scheme, by the use of a
second ring shift register GPRI along with two flip flops.

To the right of the timing section is the network
used to produce the control function um(t). Initially
function switches 0L, 04 and 06 will be set, and the contrél
input, uo(t) will be generated. As soon as counter 1 has
counted up to N, the signal Lim goes high, resetting function
switch 04 and generating the control function ul(t). In a

similar manner the control functions uz(t) to us(t) will be



generated in turn,

The plant, which is the Heffron and Phillips
model of a synchronous generator, is shown in the lower
right hand block of Figure 5. As a measure of the time
it takes for oscillations in P , é, and § to damp out, the
signal APa2 + Aé? is formed azd fed into a comparator;
the :output of which will be hiéh as long as oscillations .
are still present, and will be low otherwise. Due to
limitations of the computer components, the comparator

2—% Ag is less than 0.01., Therefore

will go low when APa
the output of the comparator will indicate when oscillations
in A8  and A8 have been damped out below a constant level,
rather than zero. The state variables Awfd and Aﬁfd have
not been included here, because of the fact that oécillations
in N%d and AM%d are relatively unimportant, compared with
oscillations in Aé, AS and AP . If ATfézand AE . 2 were

a fd
included in A& + APaz, the time T taken to damp out
oscillations in AS ,A8 and AP: would undoubtedly be
increased.

The generafion of the criterion function T and the
partial derivatives, the updating of the switching instants
t. to t , and the measurement of whether or not an improvement

1
has been made in T, is accomplished by the network shown in the



top right hand corner of Figure 5. As the central difference
method is being used to calculate partial derivatives, the

parameters t., to t4 have to be incremented by *h/2. The

1

signals Rl to R, will be incremented by *n/2, during the

4

Exl to Ex4 modes, respectively., As the signals R1 to R

control the switching instants t

4

1 to t4, an increment in

R of *n/2 causes a corresponding increment of th/2 in the

switching instants ‘t. The partial derivatives I, 31, JT, JT

are produced during the Ex, to Ex, modes, respectively, and

1 4
stored at the output of track and store units 2,3,4, and 5.

During the IC period of the update mode, the values of

Rl‘to R4 and thus tl to t4 will be incremented by a value

proportional to the negative of the partial derivatives

3T to ﬁl, respectively.
oty oty
To clarify the above process, the calculation of

L will be demonstrated, . i% is calculated during the
at 9t

1
Exl mode. For the first IC - OP period the signal Ex
is low and the switching parameter tl will be incremented

by +h/2 (R, + n/2). At the end of the OP period

—T(tl + h/2, t,s tg, t4) will be stored by track and
store unit 1. During the second IC - OP period Ex' is
high and h/2 will be subtracted from tl. At the end of

the OP period the quantity

19



t = hJT

T(t, + h/2, t )
1 4 Ay
étl

t4) - T(ty - h/2, tos to, t

2’ 3’ 3’
will be stored at the output of track and store unit 2.

In a similar manner haT, heT and h3T will be stored at the
at, It B

output of track and store units 3, 4, and 5 at the end of

the Exz, Ex3 and Ex4 modes, respectively.

The recorder is shown in the lower left hand
block in Figure 5. This network will compare the criterion
functions T.calculated for each optimal control function
um (t) and will store the values of R and thus the optimal
switching instants tl to t4 which yield the smallest value
of T. The mechanical torque disturbance inputs used are of
the forms shown in Figure 6., When function switch 02 is

set or reset the inputs of the form shown in Figure 6(a) or

Figure 6(b), respectively, will be applied to the plant.

20
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APM 4(a)
N
0,5 t(sec)
AP : b
FSNE | (»)
N
0.5 t(sec)

Figure 6. Mechanical torque input disturbances



CHAPTER V
EXPERIMENTAL RESULTS

The analogue computer program, shown in Figure 35,
was simulated on an EAI 580 hybrid computer slaved with a
TR - 20 analogue computer. As has been mentioned, the plant
used is the Heffron and Phillips model of a synchronous
generator connected to an infinite bus. The Heffron and
Phillips constants, for various operating points, are
presented in Table l.2Q The time optimal control of a
.synchronous generator delivering rated péwer at unity
power factor, with an external reactance of 0,0480
pP.u,, was determined and the results are shown in Figures
7 to 24. Two types of mechanical-torque inpﬁts have been
applied to the plant, as shown in Figure 6, The results.
shown in Figures 7 to 20 were plotted using a mechanical
torque input of the form shown in Figure 6(a), while the
results shown in Figures 21 to 24 were plotted using a
mechanical torque input of the form shown in Figure 6(b).

Figures 7 to 9 are phase plane plots of A vs A6,
mpfd\vs AS and Awfd Vs A& The magnitude;lj, of the control
u(t) was at first arbitrarily set at .058., The program
“was run and the optimal control u*(t) was found to be of

the form



) ¥*
Table 1.

Heffron and Phillips Constants
For Various Operating Points

p.f. xt(p.u.) go(Deg) Kq Ko K3 Ky Ks Kg
unity .0480 20.3 1.63 .681 .623 .136 ~-.0244 .0863
0.8 Leading . 0480 14.4 1.36 491 .623 .008 -.0210 . 0886
0.8 Lagging .0480 39.3 3.65 1.26 .623 .251 ~.0446 .0735
unity .200 31.5 1.30 .807 .680 .176 -.0892 .271
0.8 Leading .200 18.0 1.06 477 ;680 .104 -.0650 . 288
0.8 Lagging .200 57.0 3.75 1.30 .680 .282 -.159 215

Te = 0,005 secs.
Ke = 5.0
Téo = ,120 secs.
M = ,00165 p.u.
D = .0114 p.u.

3%
An extract from the M.Sc.EE thesis

presented by G.w. Ryckman?0

£€¢



Figure 7, AS

curves (a;b) for various torque input
magnitudes (c = .07, d = .096, e = ,12)
(constant control magnitude)

versus Ad showing optimal switching

24



Figure 8. Ay, versus AS showing optimal switching
curves (aj;b) for various torque input
magnitudes (¢ = .07, d = .096, e = .12)
(constant control magnitude)

25



Figure 9. Mgeq versus A8 showing optimal switching
curves (a;b) for various torque input
magnitudes (c = .07, d = .006, e = ,12)
(constant control magnitude)

26



u(t)

|

|

,058%
“”__4;__.__}Q=____P%“7 t(sec)

|

~.0581

Curves a and b in Figures 7 to 9 show the magnitude of the
state variables Aé, A8, and zw%d at the optimal switching
instants tl and t4, respectively, as the mechanical torque
input (8 Py) was varied from .05 to .13 p.u. Typical time
optimal trajectories, having mechanical torque input
disturbances of .07, .096, and .12 are shown by curves
c,d, and e, respectively. The switching instants tl and t4
are indicated by the crossing of curves c,d, and e with
curves a and b, respectively. Knowing the initial state
and also the switching curves a and b, the time optimal
control u*(t), for any initial condition point in state
space, can be generated,

It was hoped that one set of switching instants;
for u(t), might be chosen that would serve fairly well for

all magnitudes of disturbance due to a change in mechanical

torque input. However, with disturbance input magnitudes

27
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between the ranges of ,05 to .13 the change in optimal
switching instants was from ,042 to .062 sec., for the
first switch (tl), and .059 to .112 sec. for the second
switch (t4). According to Pontryagint's principle, for a
bounded control u(t), the time optimal control u*(t) is
generated by the use of the maximum possible magnitude
U. However, after careful experimentation involving a
variation in control magnitude U, under a constant
disturbance magnitude N, ( see Figure 10), it was concluded
that the magnitude of control U, yielding a time optimal
solution, directly affected the damping out time T.*

Figure 10 presents the time optimal trajectories
of A§ and AS versus time for a disturbance input magnitude
of 0.1 and control input magnitudes of 0.07, and 0.06
and 0.042; shown in curves a,b and c, respectively. While
curves a and c represeht the time optimal solution for the
particular control magnitudes 0.07 and 0.042, it is evident
.that curve b,with a control magnitude of 0.06, definitely
yields the shortest time T, Furthermore, it was found that
this was the general case for all magnitudes of disturbance
input, Figure 11 is a plot of mechanical torque input
versus control input magnitude U, For a pérticular disturbance
input the corresponding control input, indicated in Figure.ll,

has to be used in order for 'the iterative scheme to produce

*
See end of this chapter,
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¢
a
1.0
0,3 t(secs)
\ et
AS
) 0.1
b S—
a
0q3 t(SBQ_S)

Figure 10. Dynamic stability of A§ and AS with time optimal control.
Constant disturbance input magnitude (0.1)
Variable control magnitude (a = 0.07, b = 0.06, ¢ = 0.042)



Fi gure 11,

Relationship between control and input magnitude
yielding time optimal control
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an optimal solution u®(t), yielding the shortest time T.
The data in Figures 12 to 19 were taken utilizing
Figure 11. It was found that the optimal control, for

various magnitudes of mechanical torque inputs was of the

form
u(t)l
|
i
L —_—
Uy
_____L__”4Q§___.%O t(sec)
|
-U_'r.___.

with the magnitude U, variable, (according to Figure 11)
and the switching instants tl and t4 constant at ,058

and .0944 sec., respectively. Figures 12 and 13 are

plots of A8 , A8, N%d and Avt vs time, for input
.magnitudes of 0,033, 0.066, 0.099 and 0.132. Superimposed
on these curves are two lines indicating the place where
the two switching instants tl and t4 occur, Figures 14, 15
and 16 are the optimal phase plancplots of A8 vs AS , Awfd
vs D8 ana M eq VS A&, for input magnitudes of ,033, .066,
.099 and .132, Superimposed on these curves is a line

iindicating the point where the first switching occurs. For

‘clarity, the second switching line has been omitted.

31
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200"

A t(secs)
.10
AS
0.101
/ A
. C
0.05‘— /
b
/
a
P
. | t (secs)
.05 .10

Figure 12, Time optimal solution of A8 and AS input
magnitude a)0.033 b)0.066 c)0,099 d)0.132



33

.Aw
fd

0.05]
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a
.10 t(secs)
—
R —
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Figure 13. Time optimal solution of Ay and Avge
input magnitude a)0.033 b)O.ggé c)0.099
d)0.,132
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ERESAR: IR el

Figure 14. Time optimal trajectories in the A§ versus AS$
plane, input magnitudes a)0.033 b)0.066 c)0.099
d)0.132,control magnitudes a)0.02 b)0.04

c)0.06 d)0.08
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Figure 15, Time optimal trajectories in the versus A8
plane, input magnitudes a)0.033 b)O. Ogg c)0.099
d)o. 132,control magnitudes a)O 02 b)0.04 ¢)0.06
d)0.08
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Figure 16. Time optimal trajectories in the Ay versus A8
plane,input magnitudes a)0.033 b)0.0gg c)0.099
d)0.132, control magnitudes a)0.02 b)0.04 c)0.06
a)o.08 |
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Figure 17 shows particular stages of the iterative
process as seen from the A8 vs AS phase plane, Plot 1 shows
the trajectory followed with no control present. Plot 2
shows the trajectory followed with any control, chosen at
random. Plot 3 to 8 show various stages of the trajectory

of the iterative program taken during the update mode., It is
to be noted that in going from plot 6 to 7 the computer has
passed the optimal solution. All modes were then repeated and
the time optimal trajectory was found as shown in Figure 8.
The operation time of the iterative process was

variable +taking:anywhere from a few minutes up to ten to
fifteen minutes. The main reason for this is the initial

1

choice of initial switching instants to their optimal values,

choice of the switching instants t, to t4° The closer the

the shorter the operation time. The operation time was also
affected to a large extent by the choice of parameters for

the iterative scheme. The parameters of the iterétive scheme
are the values of h/2 and the k values kl to k4; which determine

the amount by which the switching instants t. to t respectively,

1 4’
are updated during the IC period of the update mode. It was
found that while these parameters could be optimally chosen
to yield the fastest operation time for a certain input-

magnitude; as the disturbance input magnitude was varied, the

parameters had to be changed in order to maintain the same
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A | N AS A8

J AS . - 0 AS AS

Figure 17. Steps in iterative scheme
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operation time. As a result a set of parameters was used
which gave a reasonable operation time for all disturbance
input magnitudes.

Figures 18 and 19 show plots of A, A8 , AP,
Awfd, vs time without any control and with the optimal
control present. It can be seen that the oscillations in

Aé s A8  and Awfd

definitely been damped out more quickly. It is to be noted

with optimal control present, have

that there is a large jump in terminal voitage initially
and also that the change in terminal voltage does not return
to zero. Both of these disadvantages to the system pose no
problem due to the relatively small magnitude of change. . .The
jump in terminal voltage is only .007 and the change in
terminal voltage‘is only .003, With large magnitudes of
disturbance the change in terminal voltage can reach .010
to .015 p.u, This change in terminal voltage, however, will
not bother the system for a short time and can eventually
be dissipated by disconnecting the bang bang control and
feeding the terminal voltage into the exciter through a
suitable R-C network which will bring it back to zéro
without causing significant oscillations in A8 and AS .

For comparison purposes, a page from Gordon W,
Ryckman's M.Sc. thesis has been included (See Figure 20).

As with the curves in Figures 18 and 19 the disturbance
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AS
0.1,
) /\\//\
! t(secs)
0.5
AS

/\/\/ e

- Figure 18, Dynamic stability of A8 and A8 s with no
control (a) and with optimal control (b)
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b
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t
0.005 b
| t(secs)
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Figure 19. Dynamic stability of AP_, Alpy and Bwvy,

with no control (a) and with optimal control(b)
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Figure 30. Dynamic Stavility With Bang-Bang
“stabilizing Signal in Phase #ith APa

Rigure 20. Experimental results from an M.Sc.EE thesis presented by

G.Ye Ryckman 2%
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magnitude was made equal to a change of 0.1 p.u., in the
mechanical torque input. On comparing the time taken
to daﬁp out oscillations in AS , A8 ; and sza one can see
that by the use of optimal control theory oscillations in
A8 have been damped out approximately 10 times faster,
oscillations in A§ approximately 100 times faster and
oscillations in APa approximately twice as fast.
The time taken to damp out oscillations completely
was used here,ZAfor comparison purposes. If the computer -
1imit; (APa2 + Aéz < 0.01) had been considered,the improvement
in AS would have been approximately twice as great using
the iterative scheme as compared with G. W. Ryckman's solution.,

'Figures 21 to 24 present the results for input
disturbance magnitudes of the form shown in Figure 6(b).
For this disturbance two solutions were found which provided
a great improvement over the uncompensated system., - The A§
vs AS phase plane plot of the time optimal solution is
shown in Figure 21 (b), with the corresponding uncompensated
response shown in Figure 21 (a). The optimal control input
is of tﬁe form

u(t):

00605 :'_———"""

_____J”__“:lﬂ___.?O t(sec)
|
I
! .
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ﬁ(\ el A8

//;;éb A . AS

“Figure 2 1. A8 versus AS phase plane plot for

a) Uncompensated case b) Time - optimal case
a')Uncompensated case c¢) Sub - optimal case
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2.0
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FaX i ' 0'!5 t(_sec)
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\\\\\_/////////’—~;T$\\E£ffC)

Figure 22, Dynamic stability of A8 and AS with no control
(a) and with time optimal control (b)
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a
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Figure 23, Dynamic stability of AP, and Avg with no
control (a) and with time optimal control (b)
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Figure 24. Dynamic stability of A6, A§ and AP_ with
no control (a) and with sub - optimal
control (b)
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where the input disturbance was 0.1 p.u. énd the switching
instants occurred at .134 and .190 secs. The A$ versus
AS ~phase plane plot of the sub - optimal solution is

shown in Figure 21 (c), with the corresponding uncompensated

response shown in Figure 21 (a'). The control input is of
the form
|
u(t)g
|
.,0605+ —
|
e 2 Q__i%Q___.%O t(secs)
' .
-.0605 !

!

|
where the input disturbance was 0.1 p.u. and the switching
instants occurred at .233 and .282 secs. Figures 22 and 23
present the dynamic stability of A8, A8 s A‘Pa and A Ve
with no control and with optimal control present. As can
be seen there is once again a tremendous improvement in the
time taken to damp out oséillations, with a damping out time
of approximately .255 secs. For an input disturbance
magnitude of the form shown in Figure 6(b), a very good
sub - optimal case was found. The A8 s, A8 and AI;
versus time plots, for this sub - optimal case, are shown

in Figure 24. For this case the time taken to damp out

oscillations is approximately .295 secs.



49

As has been stated, Pontryagin's principle seems
to be in disagreement with the experimental results, A
possible reason for this discrepancy lies in the fact

2 has a limit on it. This

that the signal APa2 + A8
limit, which has been set at APaz + a8 < 0.01, changes
the target set. The actual shape of the target set in

four dimensional state space is very hard to predict ,

due to the fact that Paz, which is not a state variable,

is used in determining the target set. With a target set.
being something other than the origin, it is postulated

that the computer program finds a solution which brings the
trajectory to the new target set in the smallest possible
time but not necessarily to the origin in the smallest
possible time. With another trajectory being postulated

as possible, the question arises as to why the program

does not at any time happen to follow this trajectory.

There are two possible explanations. As was mentioned
'earlier the plant has two real and two imaginary eigenvalues,

shown below: Imaginary
(-3.5 + j100) X

+60

(-29<0) ~-100 (—1\2.3) Real

(-3.5 - j100) x




The coﬁplex conjugate roots are very close to the iméginary
axis compared with the real roots, and hence dominate the
program initiall&. For this reason the program does not
anticipate another optimal solution. The resulting optimal

trajectories have, at time t damped out all oscillations in

4’
AS and A and what remains is a damped exponential decay to
the origin, as influenced by the pole at -13.3. Secondly, the
search has beeon 1imited"to a maximum of three possible
switching instants. It is possible that with a greater

number of switching instants a smaller value of T could be

reached.
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CHAPTER VI
CONCLUSIONS AND SUGGESTIONS FOR
FURTHER STUDY

An iterative scheme for solving time optimal control
problems has been presented, and applied to the problem of
power system damping. The results indicate that for a
mechanical torque input. disturbance, the optimal control u(t)
will have two switching instants. Furthermore, as long as
Figure 11 is followed, the two switching instants have constant
values. However, use éf Figure 11 will make practical
implementation more difficult in that the control magnitude
will have to be adjusted in accordance with the disturbance
magnitude. As has been pointed out, a varying magnitude of
control does not follow from Pontryagin's Principle and a
possible explanation for this discrepancy has béen given,
Further research could involve verification of this explanation
by solving the problem using some other form of iterative schene.
The switching curves in four dimensional state space, under
a constant control magnitude, have also been presented. From
these curves iﬁ is possible to generate a feedback control,
which will predict the correct value of.control u(t) for the
present values of the-state variables.

In regard to the practical aspects of the results,
further research is required. Due to the fact that there will

be a delay in measurement of the disturbance magnitude, as
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well as the fact that instantaneous switching is a practical
impossibility, a sub - optimal sysﬁem will definitely have to
be used. |

The iterative scheme has been designed for a time
optimal solution as applied to the Heffron and Phillips plant.
With slight modifications, any other plant can be substituted
into the iterative scheme, Furthermoré, all other optimal
control problems, including cost optimal and fuel optimal
problems can be very easily solved using the iterative scheme.
As the EAT 580 hybrid computer is limited in size, larger
problems will undoubtedly have to be solved on a digital

computer, -
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0
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Summer
(Inverter)

Integrator

D-A Switch

Function
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APPENDIX A

Computer Symbols

High = +5volts
Low = OQvolts
. : S
_b
a__ Ka

Logic Signal F1

10

Vs, x

Fl

b I R

= -(a + 10b)

»
l

-c fgz(lOb + a)dt

Op | Resulting mode
0 Hold

1 Operate
0
1

Initial Condition
Initial Condition

x = -Ka L =Eogic 1

x =0 L = Logic O
x=a S=1 R=0
x=b S=0 R=1
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Comparator

Track &
Store

AND Gate

OR Gate

Latch

Logic Input

N : W

ah
_b___1
i : N

a+hb
b
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0 (a +b)>0
1 (a +b)<0

(w)
o
(1

When the Latch input is high,
(Lateh = 1), the comparator
output is frozen (Latched); it
cannot change, regardless of what

the analog input does.

When the T input is at logic 1

the unit is in the Track mode and

‘the output is minus the analog

input (x = -a). When the T input
is at logic O the unit is in the
Store mode; its output is held
constant, thus "remembering" the
the value it had at the instant

of switching.

a b a+b
0| O 0
110 0
011 0
111 1

a ‘ b l a+b
010 0
l1i{0 1
01 1
1l 1 1



Flip Flop

Set Input

S Input

X
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Either
Oor 1l

Either
Oorl

1 0 1

1 0

1 Changes| Changes
state state

Reset Input

= O
o

Individual FF Outputs

7 N

Ring
Shift
Register

Input

GPRO SHO is the control input.

SHO
SHO

1 a shift occurs
0 no shift occurs

nu

Logic Input SHO

If Set is high (logic 1), output

Counter Co is high (logic 1). If Reset is

' high, output Co is low (logic 0).
Set

Reset
Ci is the input logic to the coudter. .

If Ci is high and the counter is
set, the counter will count up one
at every clock pulse. Once it has
counted to N + 1, the output Co goes

low, and the counter is reset,

S e e I

Diff out rate
D
Diff In (_1

pirgout | ||

Differentistor Diff In




Digital
Inverter

input

’

F\\\ ouﬁput
L//’

input

output
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1. 127

2. 1.27 K3
3. 127 K,
4. .690

5. .605 K2
6. .0605 K1
7. -1 K
8. Kg

9. .0010

10. .605 N

11. .605 N

H2 — High

H1 —— Low
FO01l— Set
Exl——-High
F04— Set

FO6 Set
Ex+““Low
Cntr. 1.— Set

Pot Settings

12. . 0100
13. .0250
14. .0100
15. Variable

16. Variable
17. Variable

18. Variable

19. .05n
20. .10n
22. R20

Initial:Settings

57

23. R

30
24. R40
25. .0200
26. .0200
27. .0200
28. .0200
29. .5600U
30. 10U
31. .0100
32, .0100

33. .0010

Note: The signals A and A, after the flip flop, were used
to run the rest of the simulation. (see Figure §)

On setting pot 29, the output'voltage of the flip
flop used as an input to the pot must be considered.

The magnitude of the output voltage will vary with

each flip flop.
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