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ABSTRÁCT

This thesis is concerned with the application
of time optimal theory, utilízing Pontryaginrs Maximum

Principle, to the problem of synchronous machine stability.
The plant is the Heffron and Phillips model of a synchronous

generator. The troublesome two point boundary value
problem, which is always associated with the maximum

principle, regardless of the plant, is solved by an iterative
scherne simulated on a hybrid computer. rt is shown that
an optimal bang bang signal, applied to the exciter of a

synchronous generator connected to an infínite bus,

greatly improves the stability of the system.
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CHAPTEIì T

TNTRODUCTTON

ïn the past ten years, íncreasíng attention has

been focused on t,he application of excitation control to
the behavior of the torque angle and speed, of a synchronous

generator, following a disturbance, such as a mechanical

torque disturbance. Many theoretical results have been

published in the area of system optimízat,ion¡ and except

for a few exceptions have mainly dealt with low-order

systems. One of t,he notable exceptions has been a paper

by Fred. B. Sndthzt, who presented. a method. for obtaining
a forcing function, u(t), as a function of the state

variabres, without requiring use of the phase space concept.

An iterative procedure which relies on the conneci,ion

between the adjoint system and the time optimal control
funct,ion, was appli.ed to a fourth order systein by

H. Ko Knudsenl2. Using a cost functional, yao - Nan yu24

has applied co¡rtrol theory to improve the dynanric response

of a power system. G. A. Korn and H. Kosakol4 h.rr" attacked

the problem of functional optimization using the so called
random - perturbation method. This method consists of
adding a random perturbation . ¡u(t) to u(t), computing

the given criterion function on an analog computer, and

comparing it with the value of the criterion function



calculated, with no perturbation on u(t). rf an improvement

has been made, the new value u(t) + Au(t) is stored and

the process repeated.

Optimal control theory: âs has been shown in the
past, can be successfully applied to the power system

field. using a modified gradient approach an iterative
scheme was built on a hybrid computer to solve the problem

of power system damping. fn order to test the method, a
11

second order system (?), and, a third order system ("ã* 
Ð),

were simulated and the time optimal control solutions r^rere

found. variations in the initial conditions of the adjoint
variables were used. The results for both systems agreed.

very well with theory; although for the third order plant
the adjoint system was very sensitive to changes in the
adjoint initial conditions and great care had to be taken

to prevent saturation of the computer.

The fourth order system simulated was the Heffron

and Phillips model of a four kilovolt-amperes wye-connected

synchronous generator attached to an infinite bus through

external reactance. All data dealing with the synchronous

generator have been taken from an M. sc. thesis, completed

at the university of Manitoba in rg7o, by Gordon t{. Ryckman20.

After simulation of the adjoint, system for the fourth orcler

plant it was found to be far too sensitive to parameter changes,



and therefore could not be used satisfactorily in the
program.

As an alternative scheme the adjoint system

method was not used, and instead the control function,
u(t), was built with adjustable switching times (t*).
To obtain a successively improved. control function u(t),
the switchíng times t* are each perturbed by atx, and the
criüerion function, which in ùhis case ís the ¡ninimum

time T, is calculated. If T(t* + 
^tx) 

is 1'ess than

T(tx), the value of u(t) with the new switching times

t* * At* is stored and the process is continued until
the function u(t) producing t,he minimum time T is found..

AJ.l values given in the thesis are in per unit
(p...), with the base quantities bei-ng the rated values

of torque angle, speed, field voltage, field flux and

accelerating power.



CHAPTER TT

OPTÏMAL CONTROL THEORY

Optimal control theory has been covered thoroughly

by many authors, and therefore, only the fundamentals as

applied to the particular problem, concerníng power system

damping, will be discussed here. A block diagram of the

Heffron and Phillips model, used to represent a synchronous

generator connected to an infinite bus, is shown in Figure 1.

The state variables for the system are the change in torque

angle (¡o), the change in speed (¡ô:n), the change in

field flux ( AV'O), and the change in field voltage (¡Ee¿).

The control u(t) is the input signal to the static exciter,

represented in the block diagran by the transfer function
-Ke The synchronous machine and controller equations

i-T sq
are written in the form X:AX

0

0

(") + ---rr-r
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dt is chosen and Pontryagints
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Figure 1" Block
model

diagram of the Heffron and Phillips
of a synchronous generator.

An__extract f[B* the M.Sc.EE thesís presented by
G.hI. Ryckman¿



maximum princíp1el1 is appliecl to find the optimar control
function u(t), whi-ch mj,nj,mizes the functional. The

solution of the problem begins with the introduction of
the adjoi-nt vector s Y s and a Hamiltonian function H, of
the following form:

H:-1 * ,rFAX+ YTBU

: -1 + v1( ¡ ) + yz( -þ oo -#r -þon o) + y¡( -h, 
^6J 4o ___rr_z

1- 
^v^ 

- +-1 
^Erd) 

+ vo( -¡auro -þ ",Tå" ''to q; e e

According to the marcj-mum princíple, in order for
J to be nrinim:ized with respect to u(t), H must be maxirnized

by the'proper choíce,of u(t). For an optimal control function
u(t) ¡ g and X must be the solution of

aa

X : åH , !: --è.lFI
àY àX

The adjoint equa,tions are of the form

---rr-3

---rr-4

-a_

IU

'1

fvz

IU

J

ll

o þ h," 'l [-'

-1 Po0
M

\y2

oK, 1o
M ñTI

3do
00-1 1
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maximum principle the control

U : a constant ---rr-5

where the swítching instants are

variable V..
4

A paper published by J. Grad and M. A. BrebnerS,

which finds all the eigenvalues of a real general matrix,
was used to find t,he eigenvalues of the Heffron and Phillips
plant. The system was found to have two real and two

imaginary eigenvalues.-)Ê Because two of the eigenvalues are

complex conjugates nothi-ng can be said about t,he number of
possible switching instants in t,he control u(t). Due to the

fact that the number of amplifiers is linrited. on the EAfv"+í

i80 hybrid computer, it was decided to solve for optímal

solutions with a maximum of three switching instants t, to tr"
At this time it should be noted that while the control
'frrnction can have any number of switching instants, the control
cannot remain forever and must, at time tOr be turned off.

According to Pontryaginls

function is of the form

u(t) : Usgn(-KeY )T4
e

ì(-The

li.sted in Table
àç_)íEAJ

controlled by t,he adjoint

values of K, to KU, M, D,

1.

Electronic Associates,

Tl,.KandTClo' e

Inc.

are



The problemj therefore ris to determine the

switching instants t,, to t O as shown in Fígure Z, which

will maximize the Harn-iltonian H and will yield the time

optimal solution,r"(t).

u(r )

U

Figure 2,

As the final values of Aô and Âúf¿ d not return
to zero, but reach a constant level after a disturbance,

the coordinates of both Aô and AVe¿ r^rere shifted so that,

their final constant level was centered on the origin ( see

Figures 7 ,8 19 rLArLS,L6,L7 ,zL) . In this wa y each magnit,ude of
disturbance ínput (l¡) can be looked on as a particular initíal
condition point in four dimensional state space. rn state
space, the problem can be viewed as one of bringing a point
in four dimensional space to the origin in the shortest
possible time, T. As has been mentioned in the rntroduction
the use of the adjoint, system in the iterative scheme had

to be abandoned. The adjoint system for a stable plant will



be unstable, and hence very sensitive to noise and parameter

errors. on simulation of the adjoint system it was founcl

that the switching instants were indeed far too sensitive
to changes in the initial choice of adjoint, variables.
ït was therefore decí,ded to apply the modifíed gradient

approach directly to the initial choice of switching instants
tt t,o t,O, rather than to the initial choice of t,he adjoint
variables. One disadvantage to this approach is that
simulation of the adjoint system requires fewer analogue

components, than generation of the switching instants
directly. As the number of analogue components is linrited
on the EAf 580 hydrid computer, the optimal solution for
higher order plants can not be solved without, a larger
computer.



CHAPTER IIT
MODÏFTED GRADTENT METHOD

and the

TTERJ,TTVE SCHEME

The modified gradient scheme works on the principle
that changing each paramete? tt by an amount proportional
to the negative of, its partial derivatin" #, will decrease

the criterion function T. The paramter" tl t,o to are the
switching instants of the function u(t) and the time T is
the criterion function -f o which has to be m:inirri zed..

0
To best explain the modified gradient, method, a block
diagram of the iterative scheme is shown in Figure 3.

fnít,ially the iterative scheme begins with the
random choice of the control function u.(t) from Figure 4.
The partial derivatives are calculated and duri-ng the
update mode, k( ++ ) i" subtracted from the switchingd"*
instants t*. The constant k controls the speed of convergence.

A small value of k, while approximating t,he steepest descent,

makes for a slow convergence time. A reasonable convergence

time for the iterative scheme is obtained by making a

suitable choice for k, as well as by making continuous

runs in the update mode as long as each value of T calculated
is less than the previous value of T.

The partial derivatives are calculated using the
central difference method:
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Figure 3. Block diagram of t,he iterative scheme

see Figure.

ounter

parameters
1(n+1) : tlrr-ut#

_ L t- \m
2(n+1) - v2n-K2dr!

-¿ kàT3(n+1) - '3rr-'3-=

4(n+t) 
: t4rr-uO#

switching times
tt(n+t)'tz(n+1)
t3(n+t )'t4(n+l)

omparafo

_o_o



T2

àT
ãT,. 

: r(rr + n/2, tz, t3, t4,) r(rr - n/2, tz, t3, 
"4)

- r(rrr t, * h/2, ts, a¿) t(r' tz - n/2, t3, ,4)
h

r(tr, tz, 
"3 

+ n/2, 
"4) - t(tr, tz, t3 - n/2, *4)

h

r(rr , t 2,

JT
àt,

¿T :
ðtg

¿T
)t+

: T(t-, t , tr23 , t4 + n/z)
4 - n/z)t tt

3

As the switching instants approach their optimal values

the partial derívatives approach zero ( provided, h/z is

suffi-ciently small ) and the program wi1.l tend to remain

or oscillate slightly around the optimal solution. A

central difference method rather than a one-sided difference

method was used, because of the fact that the program

using a one-sided difference will have large oscillations

around the optimal solution. As the measurement of the

optimal srvitchings instants. relies on the fact that the

program will. eventually settle down to the optimal solution,

and remain there¡ a one,-sided difference-eannot.be used.

Because there is a possibility of solutions at a

local m:lnimum the iterative scheme rvill, in turn, work out

the time solution beginning wj-th each of the u(t) functions

in Ffgure 4. By way of a counter a reasonable length of time,
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uo(r)

ur(t)

U

uo(t )

U

I

tt
+--
tz

"4

Fígure 4. Control functions u*(t).



L4

choosen at random, is allotted by the program for each time
optimal solution to be found" As each solution is found the
value of r and the optimal switchíng instants t, to tn will
be stored by the recorder. A comparison of the six values
of T will be made by the record.er and the switching instants
t, t,o t¡ yielding the smallest time T, will be stored.



CHAPTER TV

HYDRID COMPUTER PROGRAM

The complete analogue computer program is presented

in Figure 5. The tinring and the order of events is established

by the logic part of t'he program, shown on the extreme left.
Because the effect of the disturbance on the plant must be

repeated many tímes in order to calculate partial

derivatives, update parameters, etco¡ the computer is run

in the repetitive operati.on mode. The IC (A) and Op (Ã)t'

periods are preset on the computer and fed into a flip
flop, whose delay produces a sharp marking pulse, EÃ,

at the end of the operate period.. By the use of a six bit
ring shift register GPRO, the computer can be cycled through

four exploration runs (Ex, to nx'), each consisting of two

IC 0P periods, one evaluation run (An), consisting of a

single fC -0P period, and one update run (U), consisting of
a nrrmber of fC - 0P periods" During the exploration runs

(E*., to Ex,) the partial derivatives .d!, .èI,, ð, and àT,¿ + Jrt òtz àr¡ àtq
respecti-vely, are calculated. Thè pulse eÃ is used in
shifting the computer mode through the four exploratíon runs.

The values of the criterion function T, with t,he initial
swit,ching instants 

"rr, "o 
, 

On, 
is calculated duríng the

evaluation mode. rmprovements in the criterion function

+*Th" repetitirve.operation mode has trvo periods,
the initial condition (rc) and operate (op) perioãs, foliowing
one after the other, each of which has a separate adjust,ment
on the conrputer for setting the lengt h of time the computer
will rcnlain in each period.



+1
lL

)-
-10

F03

F

r*
Figure !. Analog Computer Program
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T are made during the update mode. As was mentioned earlier,
as long as an improvement is made in T the computer will
maintain the partial derivatives calculated and continue to
update the parameters t, to t 

O. 
The signal fmp, whích

determines whether the program will remain in the update

mode or shift to the Ex, mode, is high if an improvement in
T has been made and 1ow íf there has been no improvement.

In the section e:ipIaíning the modified gradient

methód, it was stated that each control function u.(t) itt
Fígure d was allotted a definite time in which to reach

the optimal solution. 0n the analogue computer this is
accomplished by bhe use of counter J-¡which counts the number

of tLmes the partial derivatives have been recalculated.
once t'he optimal solution has been found for a particular
control .r, (t), ( see Figure 4 ), the nexb u_(t) funct,ion ism' -Þ -- - r t ¿ -m\ -

substituted into the iterative scheme, by the use of a

second ring shift register GPRI along with two flip flops.
To ühe right of the tinring section is the network

used to produce the control function ,r*(t). fnitially
function srvitches Of, 04 and 06 will be set, and the control
input, uo(t) will be generated. As soon as counter I has

counted up to N, the signal Lim goes high, resetting function
switch 04 and generating the control functíon ur(t). fn a

sinrj-lar manner the control functions .rr(t) to ur(t) will be
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generated in turn.

The plant, which is the Heffron and Phillips

model of a synchronous generator, is shown in the lower

right hand block of Figure 5. As a measure of the time

it takes for oscillations in'P , ð, and ô to damp out, the
2¡1.?

signal AP 2 + Aô- is formed and fed into a comparator;
a

the:output of which wiJ.l be high as J-ong as oscillations .

are still presente and will. be l.ow otherwise. Due to

linritatíons of the computer components, the comparator

will go low when Ap^2 + 
^# 

is less than 0.01. Therefore
a

the output of the comparator wiJ.1- indicate when oscillatíons

in 
^ð 

and Aô have been damped out below a constant level,

rather than zeto. The state variables AY'U and ÂEtO have

not been included here, because of ühe fact that oscillations

in ÂYrU and ArrO are relatively unimportant, compared wíth

oscillations in lô , 16 and 4"". If ÂY¡¿2 and OtrO' were

included in ¡02 + 
^P 

2, the time T taken to damp out
a

oscillations in lô r16 and. ÂP2 would undoubtedly be
a

increased.

The gen.""iion of ühe criterion function T and the

partial derivatives, the updating of the switching instants

t, to t . and the measurement of whether or not an improvement
14'

has been made in T, is accomplished by the network shorsn in the
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top right hand corner of Figure 5. As the central difference

method is beíng used to calculate partía1 clerívatives, the

parameters t, to tO have to be incrernented by tn/2" The

signals R, to RO will be íncremented by tn/2, during the

Ex, to ExO modesr respectively. As the signals R, to Rn

control the switching instants t, to /cnt an increment in

R of xn/z causes a corresponding íncrement of th/z in the

rhe partial derivati""" 
H;. #; li; #,switching instants .t.

are produced during the Ex, to Exn modesr respectively, and

stored at the output of track and store units 2r3t4, and 5.

During the fC period of the update mode, the values of

R, to R4 and ùhus t, to t,4 wiJ-J. be incremented by a value

proportional to the negative of the partíal derivatives

{, to lI, respectively.àrr àt 4
To clarify the above process, the calculation of

++ will be demonstrated. 4+ i" calculated during thedt, ðtl1r
Ex, mode. For the first fC OP period the signal Ex+

is low and the switching paramete:r' t, will be incremented

by +h/z (Rf * n/2). At the end of the oP period

-r(tr + h/2, tz, t3, t4) will be stored by track and

store unít 1. During the second fC 0P períod Ex* is

high and h/2 will be subtracted from tr. At the end of

the OP peri-od the quantity
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r(rr + n/2, tz, t3, t4) - r(tr h/2, t2, t3, t+) = rt+
Jtr

will be stored at the output of track and store unít 2,

In a sim:ilar manner hÀT, hèf and hf will be stored at the
àt,; ãr3 -àT 

4

output of tr:ack and store units 3t 4t and 5 at ühe end of

the Ex.r, Ex^ and Ex modes, respectively.þs4

the recorder is shown in the lower left hand

block in Figure 5. This network will compare the criteríon

functions T calculated for each optimal control function

u (t) and will store the values of R and thus the optimal
m

switching instants t, to t, which yield the smallest value

of T. The mechanical torque disturbance inputs used are of

the forms shown in Figure 6. When function switch 02 is

set or reset the inputs of the .form shown in Figure 6 ( 
" ) or

Figure ó(b), respectively, will be applied to the plant.



2I

sec )

Figure 6. Mechanical torque input disturbances



CHAPTER V

EXPERIMENTAL RESULTS

The analogue computer program, shown in Figure S,

was simulated on an EAr 580 hybrid computer slaved with a

TR - 20 analogue computer. As has been mentioned, the plant
used is the Heffron and Phillips mode! on a synchronous

generator connected to an infínite bus. The Heffron and

Phillips constants, for various operating point,s, are

presented in Table L.2o The time optimal control of a

synchronous generator delivering rated power at unity
power factor, with an external reactance of 0.0480

p.r., was determined and the results are shown in Figures

7 to 24. Two types of mechanical torque inputs have been

applied to the plantr âs shown in Fígure 6. The results
shown in Figures 7 to 20 were protted using a nechantcaL

torque input of the form shown in Figure 6("), while the
results shown in Figures 2L to 24 were plotted using a

mechanical torque input of the form shown in Figure 6(u).
Figures 7 to g are phase plane plots of Aô r" Àô,

Aü t¿ .vs a6 and 
^ür¿ 

vs 
^õ. 

The magnitude, u, of the control
u(t) was at first arbitrarily set at .058. The program

was run and. the optimal control ,r-''(t) was found to be of
the form



p. f.

unity

0.8 Leading

0.8 Lagging

unity

0.8 Leading

0.8 Lagging

Table 1. Heffron and Phillips Constants
For Various Operating Points

xr(n.,t. ) So(oee)
.0480

.0480

.0480

.200

.200

.200

20 .3

L4.4

39 .3

31.5

18 .0

57 ,0

K1

Ta : 0.005 secs.

Ka : 5.0

Tåo : .LzO secs.

M - .00165 p.ü.

D : .0114 p.u.

An extract from the M.Sc.EE thesís presented by

1.63

L.36

3.65

1.30

1. 06

3.7 5

K2'

.681

" 49r

L ,26

.807

.477

1.30

K3

.623

.623

.623

. ó80

. ó80

,680

K4

.136

.098

.25r

"L7 6

.104

.282

K5

-.0244

-. 0210

-.0446

-.0892

-.0650

-.159

K6

.0863

.0886

"07 35

.27t

.288

.2r5

G.l4I. Ry"krarr?0

l\,
G)
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Curves a and b in Figures 7 to 9 show the magnitude of the

state variable. Aô , Aô, and %U "" the optimal switching

instants t- and t _, respectivelyr âs the mechanical torque
14'

input (^pU) was varied from .05 to .13 p.ll. Typical time

optimal trajectories, having mechanical torque ínput

disturbances of .O7, .096, and ,L2 are shown by curves

crdt and e, respectively. The switching instants t, and t4

are indicated by the crossing of curves crdr and e with

curves a and b, respectively. Knowing the initial state

and also the switching curves a and b, the time optimal

control ,rtt-(t), for any ini,tial condition point in state

space, can be generated.

ft was hoped that one set of switching instants,

for u(t), might be chosen that would serve fairly well for

all magnitudes of disturbance due to a change in mechanical

torque input. However, with disturbance input magnitudes

27

u(r)
I

I

,05s+
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between the ranges of.05 to.13 the change in optimal

switching instants was from .O42 to .062 seco, for the

first switch (t-), and .059 to .LLZ seco for the secondI
swítch (t, ). According to Pontryagints principle, for a

4

bounded control u(t), the time .optimal control .r*t(t) i"
generated by the use of the maximum possible magnitude

U. However, after careful experimentation involving a

variation in control magnitude U, under a constant

disturbance magnitude N, ( see Figure 10), it was concluded

that the magnitude of control U, yielding a time optimal

solution, di-rectly affected the damping out tim. T.'*

Figure 10 presents the time optimal trajectories

of 
^6 

and Aô versus time for a disturbance input magnitude

of 0.1 and control input magnitudes of 0.07, and 0.06

and 0.O42; shown in curves arb and c, respectively. While

curves a and c represent the time optimal solution for the

particular control magnitudes 0.07 and O,O42, ít is evident

that curve brwíth a control magnitude of 0.06, definitely
yields the shortest time T. Furthermore, it was found that
this was the general case for all magnitudes of disturbance

input. Figure 11 is a plot of mechanical torque input

versus control input magnitude U. For a particular distu¡bance

input the corresponding control input, indicated in Figure.ll,

has to be used in order for'the iterative scheme to produce

See end of this chapter.



29

t( secs

Figure 10. Dynamic stability of Aô and Aó with tlme optimal control.
Constant disturbance lnput maggritudo (0.1)
Varlablo control magnitude (a = 0.0?r b = 0.06, c = O.O/r2)



30

Flgure 11. llelationship between control ar¡d lnput magnitude
yielding tlme optinal control
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an optimal solution r"-(t), yielding the shortest time T.

The data in Figures IZ to 19 were taken utilizing
Figure 11. It was found that the optimal control, for
various magnitudes of mechanical torque inputs was of the

form

u(r)

ui
.t t-- rqs- -.10 t("""1

I

I

-TT 

-

with the Ìnagnitude U, variable, (according to Figure 11)

and the switching instants t, and tO constant at .058

and ,0944 sec., respectively. Figures LZ and 13 afe

plots of Aô , 46, AürO and Or" vs time, for input

magnitudes of 0.033, 0.066, 0.099 and 0.732" Superimposed

on these curves are two lines indicating the place where

the two switching instants t, and tO occur" Figures L t 15

and L6 are the optimal phase planeplots of Âå t" 
^6 

, AVfd

vs Aôand Allr 
fd vs Aå, for input magnitudes of "033, .066,

.099 and .L32. Superimposed on these curves is a line
¡ indicating the point where the first swit,ching occurs. For

clarity, the second switching line has been omitted.
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^ô

2"0

t (secs)

Aô and Aô input
c)0.099 d)0.132

Time optimal solution of
magnitude a)0. 033 b)0.066

Figure L2.
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^úfd

0.05

-.05

-"10

t (secs)

t (secs )

Time opti-mal solution of Aúc; and Av¡
input rnagnitude a)0.033 b)0.öËO 

")o.oi99d)0.132

Figure 13.
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Figure 15. Time optimal trajectories in the Àü c¿ versus Aô

plane. input magnitudes a)0.033 ¡)0.06ö c)o.o9g
d)0.1!2,control magnitudes a)0.02 b)0.04 c)0.06
d)0.08



36

Figure 16. Time optimal trajectories in the Aúp¿ versus Aô
plane, inptrt magnitudes a)0.033 ¡)0.06ö c)0.099
d)0.132, control magnitudes a)0.02 b)0. o4 c)0.06
d)o.ou
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Figure L7 shows particular stages of the iterative
process as seen from the 

^ô 
vs 

^ô 
phase plane. plot 1 shows

the trajectory followed with no control present. plot 2

shows the trajectory followed wit,h any control, chosen at
random" Plot 3 to 8 show various stages of the trajectory

of the iterative program taken during the update mode. rt is
to be noted that in going from p1ot, 6 to 7 the computer has

passed the optimal solution. All modes were then repeated and

the time optimal trajectory was found as shown in Fígure 8.

The operation time of the iterative process was

vari¿btre taking,anywhere from a few minutes up to ten to
fifteen minutes. The main reason for this 'is the i-nitial
choice of the switching instants 

"r_ 
ao a4. The closer the

choice of initial switching instants to their optimal values,
the shorter the operation time. The operation time was also
affected to a large extent by the choice of parameters for
the it'erative scheme. The parameters of the iteratíve scheme

are the values of h/z and the k values k- to k , which determine14'
the amount by which the switching instants t,, to t4, respectively,
are updated during the rc period of the update mode. rt was

found that whí1e these parameters could be optimally chosen

to yield the fastest operation time for a certain input
magnitude; as the disturbance input magnítude was varied, the
parameters had to be changed in order to maintain the sanre
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Ffgurc T7. Stcps -ln iteratlvc sche¡rte
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operation time. As a result a set of parameters was used

which gave a reasonable operation time for all dj-sturbance

input magnitudes.

Figures 18 and Lg show plots of Aô, Að , ÂPa,

vs time without any control and with the optimal
^üru
control present. ft can be seen that the oscillations in
'Að , Âô and Âüro with optimal control present, have

definitely been damped out more quickly. It is to be noted

that there is a large jump in terminal voltage initially

and also that the change in terminal voltage does not return
to zero. Both of these disadvantages to the system pose no

problem due to the relatively smal1 magnitude of cþange'o ,.,The

jump in terminal voltage is only .007 and the change in
term:inal voltage is only , OO3. I4Iíth large magnitudes of
disturbance the change in terminal voltage can reach .010

to .015 p.u. This change in terminal voltage, however, will
not bother the system for a short time and can eventually

be dissipated by disconnecting the bang bang control and

feeding the ternrinal voltage into the exciter through a

suitable R-C network which will bring it back to zero

without causing significant oscillations in Aô and 
^ô 

.

For comparison purposes, a page from Gordon IV.

Ryckmanls M.Sc. thesis has been included (See Figure 20).

As with the curves in Figures 18 and 19 the disturbance
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Dynamic stability of
control (a) and with

A6 and A6 , with no
optimal control (¡)

Figure 18,
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0.1

^ú'fd
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-0.10

0"005
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stability of APrr Aúf¿ attd
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1.0
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(p.u. )

-- , - 'Timellf (secs. )

fd (p.u. I
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.l,f'tt"""'1ft''iff

FÍgure 3O. Dynarnic SLaoility trtith Ba^ng-Bang
- --suabilizing Signal ln Phase '¡libh A P.

Illgurn 20. .Ex¡nrirnental r?:su1ts fro¡n an M.Sc.EE thesls presonted by

' G.trJ. Ryclcnan4
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magnitude was made equal to a change of 0.1 p.uo in the

mechanical torque input. On comparing the tíme taken

to damp out oscillations ín 
^ð , 

Âô , and 
^ 

P^ one can see
a

that by t,he use of optimal control theory oscillations in

^ð 
have been damped out approximately 10 times faster,

oscillations in Â6 approximately 100 times faster and

oscillations in At" approximately twice as fast.
The time taken to damp out osclllations completely

r+¡as used here, for comparison purposes. If the computer

limit, (np-2 + 
^ð2 

< 0.01) hád been consideredrthe improvement
a

in A6 would have been approxímately twice as great using

the j-teratj-ve scheme as compared with G. W. Ryckmants solution"

Figures 2L to 24 present the results for input

disturbance magnitudes of t,he form shown in Figure 6(b).

For this disturbance two solutions were found which provided

a great improvement over the uncompensated system. f,he 
^ô

vs 
^ô 

phase plane plot of the time optimal solution is

shown in Figure 2I (¡), with the corresponding uncompensated

response shown in Figure 2I ("). The optimal control input

is of the form

u(t) I

I

.0ó05

_l____.lo__.?o t,(sec)
I

_. o6os+
I
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Figure 2 l, 
^6 

versus Aô phase plane plot
a) Uncompensated case b) Tfme
at)UncompensaÈed case c) Sub -

for

- optimal case
optlmal case
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e

^6

2"0

qec )

Dynamic Étability
(a) and with time

of Að and Âô wi'bh no controL
optimal control (U)

Figure 22,
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Figure 23, Dynami-c
control

stability of
(") and with

A P^ and .Âv* with no
timeooptimal ðontrol (b)
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Aô

0.1

Dynandc stability of Aô , Aô
no control (a) and with sub
control (U)

and ap^ with
_atopË]-maI

Figure 24.
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where the input disturbance was 0.1 p..u. and the switching
ínstants occurred at .134 and .190 secs. The 

^ð 
versus

^6 
phase plane plot of the sub optimal solut,ion is

shown in Figure 2r ("), with the corresponding uncompensated

response shown in Figure 27 (at). The control input is of
the form

u(r)

,0605+
I

--l----
I

-. 06os I

where the input disturbance r{as 0.1 p.u. and t,he switching
instants occurred at .233 and .282 secs. Figures 22 and, 23

present the dynamic stability of Aô, 
^ô , A p" and 

^ 
,t

with no control and with optimal control pres.ent. As can

be seen there is once again a tremendous improvement in the
time taken to damp out oscillations, with a damping out time
of approximately .255 secs. For an input disturbance

magnitude of the form shown in Figure 6(b), a very good

sub optimal case rr'as found. The Aô , Aô and O t.
versus time plots, for this sub optimal case, are shown

in Fígure 24. For this case the time taken to damp out
oscillations is approximately .29S secs.
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As has been stated, pontryaginrs principle seems

to be in disagreement with the experimental results. A

possible reason for this discrepancy lies in the fact
that the signal ¿p^2 + ¡ð2 tras a limit on it. Thisa

lirnit, which has been set at Ap 2 +
a AP < 0.01, changes

the target set. The actual shape of t,he target set in
four dimensional state space is very hard to predict ,

due to the fact that P^2, which is not a state variable,a

is used in determining the target set. tfit,h a target set
being something other than the origin, it is postulated
that the computer program finds a solution which brings the
trajectory to the new target set in the smallest possible
time but not necessarily to the origín in the smallest
possible time" I'fith another trajectory being postulated
as possible, the questi-on arises as to why the program

does not at any time happen to follow this trajeçtory.
There are two possible explanat,ions" As was mentioned

earlier the plant has two real and two imaginary eigenvalü€se
shown below:

(- ¡. s + jloo) *l 
t*"*inarY

I

{60

(-2*9) -fg! Real

(-¡.s - jroo) x

-ó0
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The complex conjugate roots are very close to the imaginary

axis compared with the real roots, and hence dominat,e the
program initially. For this reason the program does not

anticipat,e another optimal solution. The resulting optimal
trajectories have, ãt time t*r damped out all oscillations in
Að and Â6 and what remains is a damped exponential decay to
the origin, as influenced by the pole at -13.3. Secondly: ttie

soareh has beon limit,ed to a'maximum of three possible

switching instants. rt is possible that with a greater

number of swítching instants a smaller value of T could be

reached



CHAPTER VT

CONCLUSTONS AND SUGGESTTONS FOR

FURTHER STUDY

An iterative scheme for solving time optimal control
problems has been presented, and applied to the problem of
power system damping. The results indicate that for a

mechanical torque input. disturbance, the optimal control u(t).
wí11 have two switching instants. Furthermore, as long as

Figure 11 is followed, the two switching instants have constant
values. However, use of Figure 11 will make practical
implementation more difficult in that the control magnitude

will have to be adjusted in accordance with t,he disturbance
magnitude" As has been pointed out, a varying magnitude of
control does not follow from pontryagin?s princíple and a

possible explanation for this discrepancy has been given.
Furt'her research could involve verification of this explanatíon
by solving the problem using some other form of iterative scheme.

The switching curves in four dimensional state space, under

a constant control magnitude, have also been presented. From

these curves it is possible to generate a feedback control,
which will predict, the correct value of control u(t) for the
present values of the state variables.

rn regard to the practical aspects of the results,
further research is required. Due to t,he fact that there will
be a delay in measurement of the disturbance magnit,ucle: âs
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well as the fact that instantaneous switching is a pract,ical

impossibilil-y, a sub - opt,imal system will definitely have to

be used

The iterative scheme has been designed for a time

optimal solution as applied to the Heffron and Phillips plant.

I{ith slight modifications¡ âny other olant can be substituted

into the iterative scheme. Furthermore, all other optimal

control problems, including cost optimal and fuel optimal

problems can be very easily solved using the iterative scheme.

As the EAI 5BO hybrid computer is limited in size, larger
problems will undoubtedly have to be solved on a digital
computer,



53

Ioglc I = Hlgh
0=Low

APPENDIX A

Cornputer Synbols

= +Jvolts
= Ovolts

Sunner
( fnve rter)

Integrator

D-A Sr¡itch

Function
Switch

x=-(a+I0b)

x = -c -t'ttoo + a)dt

1
0

x=-Kax x=o

Resultin

0perate
Initial Condition
fnitial Condition

L = trbgic
L = Loglc

atu
EI

l.Þ__l B

x=a S=1 R=0
x=b S=0 f|=1
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Comparator

Track &
Store

fillD Gate

x=1 y=O(a*¡)>O
x=O y=1(a+U)çg

l,lhen the Latch input ls highr

(Latctr = 1), the comparator

output 1s frozen (Latcired) ; it
cannot change¡ regardless of what

the analog input does.

tJhen the I input is at loglc 1

the unit is in the Track mode and

the output is minus the analog

lnput (x = -a) . llhen ttre T input

is at logic 0 the unÍt is in the

Store mode;: lts output is held

constant¡ tlrus rtrememberingrr the

the value it had at the instant

of switching.

Latch

0R Gate
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S Input R Inpurt

ELip Flop

Rfng
shÍft

Register

Counter

Differentlatór

Indlvfdual FF Outputs

togig

0

0
1
1

0

1
0
1

SO Ís the

SHO=I a
SI0=0 no

Either
0orL

0
1

Changes
state

Either
0orl

l_

0
Changes
state

clock
rate

control input.

shift occurs
shift occurs

If Set ls high (logic 1).e output

Co is hieh (logic 1). If Reset is

highr output Co ls low (logic O).

Ci is the input logic to the cou¡lter.

If Ci is hlgh and the counter is

set¡ the counter r¿11I count up one

at every clock pulse. Once it has

counted to N + 1r the output Co goes

low¡ and the cor¡nter 1s reset"

ï I il-r.i" l- | I ]-f-r-l -W Dlff rn-fl--[---

Dlff out l-L__ll
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Digital
Inverter

. ínout

;_J-l_J-Lfl_
i"PuLÐ--¡-¡¿-tP"t outout

i-l-t-t-l-l-l-
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L,

2.

3.

4.

5.

6.

7"

8.

9"

10.

11.

.L27

L. 27 *3

"L27 *4

" 6go

. ó05 *,

.0605 Kr

-'1 K5

K6

.0010

"605 N

.ó05 N

Pot

L2,

13.

L4,

15.

L6.

L7.

18.

L9:

20.

2L.

22.

R3o

R
40

.0200

.0200

.0200

,0200

" 5600 u

"1U

" 0100

.0100

,0010

Settíngs

" 0100

. oe5o

.0100

Variable

Variable

Varíable

Variable

" o5n

.10n

Rto

Reo

23.

24.

zS.

26.

27.

28"

29.

30.

31.

32.

33.

Initial: Settings

H2-

Ht

F01 -
E*l 

-
F04 

-
ro6

I
Þx

Cntr.

High

Low

Set

High

Set

Set

Low

1. 
- 

Set

Note: The signals A and Ã, after the flip flop, were used
to run the rest of the simulation. (see Figure 5)

on settilg Rot 29 t the output voltage of the flip
flop used as an input to the pot must be considered.
The magnitude of the output voltage will vary with
each flip f1op.
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