This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Sun, W.; Davis, R. L.; Thorwirth, S.; Harding, M. E.; van Wijngaarden, J. *J. Chem. Phys.* 149, 104304 (2018) and may be found at <u>https://doi-org.uml.idm.oclc.org/10.1063/1.5048411</u>

Supporting information to accompany:

A highly flexible molecule: The peculiar case of ethynyl isothiocyanate HCCNCS

Wenhao Sun, [†] Rebecca L. Davis, [†] Sven Thorwirth, [‡] Michael E. Harding, ^{\parallel} and Jennifer van Wijngaarden^{*†}

[†] Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
 [‡] I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany

Institut f
ür Nanotechnologie, Karlsruher Institut f
ür Technologie (KIT), Campus Nord, Postfach 3640, 76021 Karlsruhe, Germany

*Corresponding author Email: vanwijng@cc.umanitoba.ca Phone: (204)474-8379 Fax: (204)474-7608

J'-J''	<i>F'-F''</i>	v _{obs} /MHz	o-c (kHz)
2-1	1-1	6085.9132	0.0
	3-2	6087.0431	0.4
	2-1	6087.0936	0.4
	1-0	6087.6833	0.0
	2-2	6087.8010	-0.2
3-2	2-2	9129.5720	0.0
	4-3	9130.6064	0.5
	3-2	9130.6343	0.3
	2-1	9130.7520	0.1
	3-3	9131.3924	-0.2
4-3	3-3	12173.1559	-0.5
	5-4	12174.1505	0.5
	4-3	12174.1676	-0.2
	3-2	12174.2185	0.1
	4-4	12174.9539	-0.6
5-4	4-4	15216.7091	0.0
	6-5	15217.6801	0.0
	5-4	15217.6938	1.3
	4-3	15217.7199	-0.6
	5-5	15218.4963	-0.7
6-5	5-5	18260.2384	-1.7
	7-6	18261.1955	-0.9
	6-5	18261.2060	0.4
	5-4	18261.2257	2.2
	6-6	18262.0214	-1.0
7-8	8-7	21304.6963	-1.5
	7-6	21304.7043	-0.4
	6-5	21304.7202	3.0
8-7	9-8	24348.1813	-1.0
	7-6	24348.1976	0.7

Table S1. Assigned transitions for HCCNCS-parent

Table S2. Assigned transitions for HCCNC³⁴S

J'- J''	F'- F''	$v_{\rm obs}/{ m MHz}$	o-c (kHz)
3-2	4-3	8898.1278	0.8

	3-2	8898.1554	0.3
	2-1	8898.2726	-0.4
4-3	5-4	11864.1797	0.9
	4-3	11864.1951	-1.5
	3-2	11864.2466	-0.5
5-4	6-5	14830.2146	-2.6
	5-4	14830.2314	1.8
	4-3	14830.2564	-1.2
6-5	7-6	17796.2397	-2.9
	6-5	17796.2537	1.9
	5-4	17796.2720	2.4
7-6	8-7	20762.2547	0.6
	6-5	20762.2750	1.6
8-7	9-8	23728.2473	-2.4
	7-6	23728.2651	0.8

_

Table S3. Assigned transitions for H¹³CCNCS

J'- J''	F'- F''	$v_{\rm obs}/{ m MHz}$	o-c (kHz)
4-3	5-4	11826.8148	0.7
	4-3	11826.8292	-2.8
6-5	7-6	17740.1919	-3.0
	6-5	17740.2058	1.7
	5-4	17740.2256	3.6
8-7	6-5	23653.5180	0.0
	9-8	23653.5317	-0.7

Table S4. Assigned transitions for HC¹³CNCS

J'-J''	<i>F'-F''</i>	$v_{\rm obs}/{ m MHz}$	o-c (kHz)
4-3	5-4	12040.2099	1.5
	4-3	12040.2247	-1.5
6-5	7-6	18060.2835	-2.1
	6-5	18060.2942	-0.4
	5-4	18060.3151	2.5

Table S5. Assigned transitions for HCCN¹³CS

J'-J''	<i>F'-F''</i>	v _{obs} /MHz	o-c (kHz)
4-3	5-4	12163.5573	2.7
	4-3	12163.5716	-0.8
	3-2	12163.6202	-2.8
6-5	7-6	18245.3020	-1.9
	6-5	18245.3132	0.2
	5-4	18245.3337	2.8
8-7	6-5	24326.9923	-0.7
	9-8	24327.0081	0.4

Table S6. Assigned transitions for HCCNCS in vibrationally excited state

J'-J''	<i>F'-F''</i>	e/f	$v_{\rm obs}/{ m MHz}$	o-c (kHz)
4-3	5-4	(-1)-(1)	12181.0831	1.1
	3-2	(-1)-(1)	12181.1087	-3.6
	4-3	(-1)-(1)	12181.1766	1.5
	5-4	(1)-(-1)	12183.5974	0.8
	3-2	(1)-(-1)	12183.6255	-1.4
	4-3	(1)-(-1)	12183.6886	-1.0
5-4	6-5	(1)-(-1)	15226.3589	0.6
	4-3	(1)-(-1)	15226.3832	-0.8
	5-4	(1)-(-1)	15226.4093	0.1
	6-5	(-1)-(1)	15229.5022	0.1
	4-3	(-1)-(1)	15229.5284	0.4
	5-4	(-1)-(1)	15229.5526	-0.4
6-5	7-6	(-1)-(1)	18271.6181	0.0
	5-4	(-1)-(1)	18271.6358	-2.3
	6-5	(-1)-(1)	18271.6498	0.2
	7-6	(1)-(-1)	18275.3933	1.7
	5-4	(1)-(-1)	18275.4104	-1.1
	6-5	(1)-(-1)	18275.4251	2.0
7-6	8-7	(1)-(-1)	21316.8626	0.1
	7-6	(1)-(-1)	21316.8883	4.6
	8-7	(-1)-(1)	21321.2659	-0.1
	7-6	(-1)-(1)	21321.2858	-1.3
8-7	9-8	(-1)-(1)	24362.0888	-2.0
	8-7	(-1)-(1)	24362.1050	-0.8
	9-8	(1)-(-1)	24367.1249	0.0
	8-7	(1)-(-1)	24367.1403	0.3

Table S7: Input file (.par) and output file (.fit) for SPFIT program used for fitting the vibrationally excited state of HCCNCS.

hccncs				Tue	Fri SWed Au	Mon Mar 26 20:	48:10 2018	8	
8 26	7 0	0.0	000E+	-000	1.0000E+003	1.0000E+000) 1.000000	0000	
1 -3	1 1 1	0	1	1 1	0 -1				
1	00 1.522	2799	30144	9558E	E+003 2.92471	429E+023 / B			
-1(000 -1.52	2279	93014	49558	E+003 1.0000	0000E-037 /cor	rection		
1100	10000 3	510	62279	96958	28E+000 1 00	000000E+023/	(1 N-14)		
2	00 -8 57	9040)3586f	5501I	E-005 3 77299	045E+023 /-DI	(11)1)		
-1	100 1 71	580	80718	17292	E-004 1 00000	000E-037 /corr	rection		
-20	000 -8 50	7904	03586	65501	E-005 1 00000	000E-037 /com	rection		
40	$000 \ 0.51$	7107	45401	43065	E 005 1.00000	000E 0377001	100000 17		
40	$100 \ 1.5$	1033	73557	15000	$E_{-006} = 1.00000$	000E+023 / qv	2 [/?		
40	100 1.7	1055	25551	15070	L-000 1.00000	000L+023/qv.)/ <u> </u>		
hcenes				Tue	Fri SWed Au	Mon Mar 26 20:	48:10 2018	3	
LINES	REQUE	STE	D=2	6 NUI	MBER OF PA	RAMETERS=	8 NUMBE	ER OF ITE	RATIONS = 7
MAR	QUARD	T PA	RAM	ETER	k = 0.0000E + 00	0 max (OBS-C	ALC)/ERR	AOR = 1.00	00E+003
		P	ARAM	1ETEI	RS - A.PRIOR	I ERROR			
1	1	100	1.522	79929	071617E+003	2.924714E+02	3 B		
2	1 -	1000) -1.52	27992	971617E+003	-1.000000	correction		
3	2 110	0100	000 3.	51159	27907113E+0	00 1.00000E	+023 (1 N	J-14)	
4	3	200	-8.571	80473	358913E-005	3.772990E+02	3 -DJ	,	
5	3 -	1100) 1.71	43609	472624E-004	-2.000000 c	orrection		
6	3 -	2000) -8.57	18047	358913E-005	1.000000 c	orrection		
7	4 4	.0000) 1 57	11656	277593E-001	1 000000E+02	23 av/2		
8	5 4	.0100) 1.57	80984	866012E-006	1.00000E+02	23 av I/2		
8 naran	eters rea	ad 5	inden	endent	narameters	1.0000001102	20 9 10 2		
ENER(TY SOR	ш, <i>У</i> Г ОF	W AN	JG SI	B-BLOCKS				
	TE ROI		•• 7 1 1	10 50	D-DLOCKS				
SVMM	ETDIC		OUM						
			WTD		IN ESVANT	NEVM CDINC			
		1 1	000	2 with 2 1 (
			999 1 V	2 1.0 TCD) Nother av	uanta (nal ta E-	-0.)		
	x - w I -	511	/I - V · 1 0	- ISP	- N - other qu	ianta (rel. to F=	=0)		
	c 0	0 -	1.0						
	c 0	1	0.0						
	c 0	2	1.0						
2 1	b 0	0 -	1.0						
2 1	b 0	1	0.0						
2 1	b 0	2	1.0						
Maxim	um Dime	ensio	n for I	Hamilt	tonian = 3				
			E	XP.FF	REQ CALC	.FREQ DIF	F EXP.E	ERR EST	.ERRAVG.
CALC.	FREQ	DIF	F W	/T.					
1: 4	-1 5 3	1 4			12181.08309	12181.08196	0.00113	0.00200	0.00098
2: 4	-1 3 3	1 2			12181.10866	12181.11232	-0.00366	0.00200	0.00073
3: 4	-1 4 3	1 3			12181.17657	12181.17504	0.00153	0.00200	0.00117
4: 4	153.	-1 4			12183.59736	12183.59655	0.00081	0.00200	0.00098

5: 4 1 3 3 -1 2	12183.62551	12183.62692	-0.00141	0.00200	0.00073	
6: 4 1 4 3 - 1 3	12183.68860	12183.68963	-0.00103	0.00200	0.00117	
7: 5 1 6 4 - 1 5	15226.35887	15226.35822	0.00065	0.00200	0.00082	
8: 5 1 4 4 - 1 3	15226.38324	15226.38407	-0.00083	0.00200	0.00069	
9: 5 1 5 4 - 1 4	15226.40930	15226.40916	0.00014	0.00200	0.00081	
10: 5-1 6 4 1 5	15229.50218	15229.50208	0.00010	0.00200	0.00082	
11: 5-1 4 4 1 3	15229.52843	15229.52793	0.00050	0.00200	0.00069	
12: 5-1 5 4 1 4	15229.55263	15229.55302	-0.00039	0.00200	0.00081	
13: 6-1 7 5 1 6	18271.61806	18271.61800	0.00006	0.00200	0.00068	
14: 6-1 5 5 1 4	18271.63578	18271.63810	-0.00232	0.00200	0.00061	
15: 6-1 6 5 1 5	18271.64982	18271.64950	0.00032	0.00200	0.00065	
16: 6 1 7 5 - 1 6	18275.39330	18275.39154	0.00176	0.00200	0.00068	
17: 6 1 5 5 - 1 4	18275.41045	18275.41163	-0.00118	0.00200	0.00061	
18: 6 1 6 5 - 1 5	18275.42508	18275.42304	0.00204	0.00200	0.00065	
19: 7 1 8 6 - 1 7	21316.86263	21316.86238	0.00025	0.00200	0.00073	
20: 7 1 7 6 - 1 6	21316.88828	21316.88352	0.00476	0.00200	0.00072	
21: 7-1 8 6 1 7	21321.26588	21321.26608	-0.00020	0.00200	0.00073	
22: 7-17616	21321.28582	21321.28722	-0.00140	0.00200	0.00072	
23: 8-1 9 7 1 8	24362.08879	24362.09057	-0.00178	0.00200	0.00123	
24: 8-1 8 7 1 7	24362.10499	24362.10561	-0.00062	0.00200	0.00123	
25: 8 1 9 7 - 1 8	24367.12490	24367.12502	-0.00012	0.00200	0.00123	
26: 8 1 8 7 -1 7	24367.14029	24367.14006	0.00023	0.00200	0.00123	
NORMALIZED DIAGO	NAL:					
1 1.00000E+000 2	9.95341E-001 3 3.64	4981E-001 4	1.0000E+	-000 5 3	.60399E-001	
MARQUARDT PARAM	IETER = 0, TRUST EX	$\mathbf{XPANSION} = 1$	1.00			
NEW	PARAMETER (EST.	ERROR) Cl	HANGE TI	HIS ITERA	ATION	
1 100 B	1522.799301(91)	0.000000				
2 110010000 (1 N-	14) 3.511(61)	-0.000				
3 200 -DJ	-0.08579(101)E-03	-0.0000E-0	3			
4 40000 qv/2	0.157107(92)	0.000000				
5 40100 qvJ/2	1.71(100)E-06	-0.00E-06				
MICROWAVE AVG =	-0.000025 MHz, IR	R AVG = 0	.00000			
MICROWAVE RMS =	0.001580 MHz, IR	RMS = 0.	00000			
END OF ITERATION	2 OLD, NEW RMS EF	ROR = 0.7	8975	0.78975		
1 2 -0.151571 1 3 -0.9	30878 1 4 0.000000	1 5 -0.000000	2 1 -0.15	1571 2 3	0.125286 2 4	-
0.000000 2 5 0.000000						
3 1-0.930878 3 2 0.1	25286 3 4 -0.000000	3 5 0.000000	4 1 0.00	0000 4 2	-0.000000 4 3	-
0.000000 4 5 -0.932798						
5 1 -0.000000 5 2 0.0	00000 5 3 0.000000	5 4 -0.932798				
hcenes	Tue Fri SWed AuM	Ion Mar 26 20:	48:10 2018	, ,		

Method	Basis	$r_l(\mathbf{H-C_1})^1$	$r_2(C_1-C_2)^1$	$r_3(C_2-N)^1$	<i>r</i> ₄ (N-C ₃) ¹	<i>r</i> ₅ (C ₃ -S) ¹	$\alpha_l (C_2 C_1 H)^1$	$\alpha_2(NC_2C_1)^1$	$\alpha_3(C_3NC_2)^1$	$\alpha_4(SC_3N)^1$
fc-CCSD(T)	ANO0	1.0704	1.2251	1.3183	1.2074	1.5862	177.88	183.64	156.10	184.46
fc-CCSD(T)	ANO1	1.0627	1.2124	1.3047	1.1941	1.5780	179.07	181.88	166.85	181.52
fc-CCSD(T)	ANO2	1.0623	1.2097	1.3025	1.1901	1.5757	179.49	181.14	171.97	181.54
fc- $CCSD(T)$	cc- $pV(T+d)Z$	1.0582	1.2085	1.2982	1.1890	1.5738	180.00	180.00	180.00	180.00
fc-CCSD(T)	cc-pwCVTZ	1.0632	1.2115	1.3032	1.1910	1.5759	179.57	180.79	174.95	181.00
fc- $CCSD(T)$	cc-pwCVTZ	1.0632	1.2115	1.3028	1.1906	1.5761	180.00	180.00	180.00	180.00
fc- $CCSD(T)$	cc-pwCVQZ	1.0625	1.2096	1.3013	1.1892	1.5739	180.00	180.00	180.00	180.00
fc- $CCSD(T)$	cc-pwCV5Z	1.0619	1.2093	1.3009	1.1892	1.5724	180.00	180.00	180.00	180.00
fc-CCSD(T)	cc-pCVTZ	1.0634	1.2122	1.3040	1.1917	1.5784	179.58	180.78	174.91	181.01
ae-CCSD(T)	cc-pCVTZ	1.0624	1.2103	1.3017	1.1896	1.5755	180.00	180.00	180.00	180.00
ae-CCSD(T)	cc-pCVQZ	1.0613	1.2072	1.2993	1.1872	1.5704	180.00	180.00	180.00	180.00
ae-CCSD(T)	cc-pCV5Z	1.0611	1.2065	1.2990	1.1867	1.5694	180.00	180.00	180.00	180.00
ae-CCSD(T)	cc-pwCVTZ	1.0621	1.2093	1.3009	1.1888	1.5726	180.00	180.00	180.00	180.00
ae-CCSD(T)	cc-pwCVQZ	1.0612	1.2070	1.2991	1.1870	1.5698	180.00	180.00	180.00	180.00
ae-CCSD(T)	cc-pwCV5Z	1.0610	1.2063	1.2988	1.1866	1.5690	180.00	180.00	180.00	180.00
ae-CCSD(T)	aug-cc-pwCVTZ	1.0626	1.2100	1.3010	1.8931	1.5733	180.00	180.00	180.00	180.00

Table S8: Computed structural parameters (distances *r* in Å, angles α in °) for HCCNCS at the CCSD(T) level employing various basis sets. Structures, which do not represent a local minimum, are indicated in italics. All Structures are either linear or planar.

¹Definition of structural parameters:

