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more physical) models such as the Abelian Higgs.
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Chapter 1

Introduction

1.1 Gauge Field Theories

Yang-Mills theory began as a generalization of Abelian gauge field theories, such as those

used to describe electromagnetism, to non-Abelian symmetry groups. We start with

the vector potential (or the Yang-Mills connection) Aµ, whose components belong to an

n-dimensional non-Abelian Lie algebra. That is, we can write

Aµ =
n∑
a=1

AµaTa (1.1)

using Greek letters to label space-time components, and Roman letters for the algebra,

where the Ta are the generators of the algebra which is defined by the commutation

relation

[Ta, Tb] = ıfabcTc. (1.2)

1
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The fabc, called the structure constants of the algebra, are real valued, anti-symmetric in

all of their indices, and can be (in the case of a compact Lie Algebra) chosen such that

Tr(TaTb) = δab. (1.3)

We will use the convention that repeated indices are summed over, however, unlike space-

time indices where indices must be raised or lowered by the metric before summing, the

Lie algebra indices will always be on the bottom. More information on Lie algebras can

be found in for example [1].

The Yang-Mills connection is used to define the covariant derivative

Dµ = ∂µ + ıq[Aµ, ] (1.4)

where q is a coupling constant, and now we can obtain the curvature

Fµν = ∂µAν − ∂νAµ + ıq[Aµ, Aν ] (1.5)

We define the Yang-Mills action as a functional of the connection Aµ:

S[Aµ] = −
∫
dxn

√
|g|
4

Tr(F µνFµν) (1.6)

where g denotes the determinant of the metric. The Yang-Mills action has, with various

choices of the gauge group, been used to describe electromagnetism, weak interactions,

and also quantum chromodynamics. For example, electromagnetism corresponds to an

Abelian gauge group, and F µν is the electromagnetic field strength tensor in four dimen-

sions, with

Ei = F i0 Bi = −1

2
εijkF

jk (1.7)
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The action (1.6) in this case becomes:

S[Aµ] =

∫
dxn

1

2

(
B2 − E2

)
(1.8)

Which is the usual action of classical electromagnetism. To obtain the action for some-

thing like chromodynamics however, one needs to include a non trivial Lie algebra, in

this case SU(3), which has eight different components.

1.1.1 Mass Generation in Yang-Mills

One of the early difficulties with Yang-Mills theory was that if we include the typical mass

terms for the gauge fields of the form m2AµAµ, we find that for a gauge transformation

with an arbitrary function, f ,

Aµ → Aµ + ∂µf (1.9)

m2AµAµ → m2AµAµ +m2 (∂µf + 2Aµ) ∂µf (1.10)

the action is no longer gauge invariant for any non-zero mass m. As a result, we need

to generate mass for the gauge particles in some other way. One such mechanism for

generating mass is by coupling the gauge fields to a complex scalar field with a potential

that allows for symmetry breaking such as the Mexican-hat potential. The additional

terms in the Lagrangian due to the scalar field,

(Dµφ)(Dµφ)† +
(
m2 − λφ2

)
φ2, (1.11)

are gauge invariant and the spontaneous symmetry breaking of the potential gives rise

to a mass term in the equations of motion for the gauge fields. This is the basis of the

Higgs mechanism in the standard model of particle physics.
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We can also generate mass by introducing ‘topological’ terms that do not depend on the

metric to the action. The most notable example being Chern-Simons theory in three

dimensions, named for the topological term known as the Chern-Simons density,

κεµνρ Tr

(
1

2
Aµ∂νAρ +

1

3
AµAνAρ

)
, (1.12)

where κ is a constant and Tr is just the usual matrix trace. Including the Chern-Simons

density in our action gives rise to massive gauge fields [2].

In two space-time dimensions we can consider the Schwinger model, where the gauge field

is coupled with massless Dirac fields ψ whose contribution to the Lagrangian is given by

ıψ̄γµ (∂µ + ıqAµ)ψ. (1.13)

In two dimensions the gamma matrices, γµ, can be written in terms of the familiar Pauli

matrices:

γ0 = σ1 =

 0 1

1 0

 , (1.14)

γ1 = −ıσ2 =

 0 −1

1 0

 . (1.15)

From this we can find the γ5 matrix,

γ5 = γ0γ1 =

 −1 0

0 1

 = −σ3. (1.16)

The resulting Lagrangian density can be reformulated in terms of the (two dimensional)

Chern-Pontryagin density,

P2 =
1

2
εµνFµν , (1.17)
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and the Chern-Simons current,

Cα = εαµAµ, (1.18)

Along with the axial vector current,

J 5
α = εαµψ̄γ

µψ, (1.19)

to obtain

L =
1

2
P2

2 + qCαJ 5
α . (1.20)

This theory also leads to the generation of massive fields without breaking the gauge

invariance, and can be generalized into higher dimensions using the natural generalizations

of P , C and J [3, 4]. This generated mass can be viewed in terms of a scalar field η related

to the vector current by

∂αη = J 5
α , (1.21)

and if we include a dynamical term for η we can obtain a Lagrangian for a generalized

version of the Schwinger model in two dimensions similar to the hybrid model in [3] given

by

L =
1

2
P2

2 − qηP2 +
1

2
∂µη∂

µη, (1.22)

where we have used the fact that ∂αCα = P2 and ignored a total derivative term.

1.1.2 Yang-Mills and Gravity

In addition to being used in the standard model to describe particle physics, field theories

can also be used to study theories of gravity. This has been studied mainly using two

different approaches, the first one being the anti-deSitter (AdS) / conformal field theory

(CFT) correspondence [5]. The first formulation of the AdS/CFT correspondence showed
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that a string-gravity theory in five dimensional anti-deSitter space is equivalent to a

four dimensional Yang-Mills field theory defined on the boundary of the space. This

equivalence has since been extended to a number of different cases where a gravity theory

in some n dimensional bulk space is equivalent to a field theory defined in n−1 dimensions

on the boundary of the bulk space. The major benefit of the AdS/CFT correspondence

is that weakly coupled interactions in one theory (which tend to be easier to solve), are

equivalent to strongly coupled interactions in the other theory (which tend to be more

difficult).

The AdS/CFT correspondence allows us to look at the Yang-Mills flow (which will be

introduced in more detail in the next section) in the context of a gravity theory as well as

the field theory in which it is originally defined. Through the AdS/CFT correspondence,

we can compare the Yang-Mills flow directly to flows defined in the gravity theory on the

bulk space such as Ricci flow which has been more extensively studied.

The other main approach to studying gravity through gauge-field theories is by viewing

the usual Christoffel connection of general relativity as a gauge connection. In this con-

text the Chern-Simons term (1.12), without being coupled with the Yang-Mills term, is

equivalent to the Einstein-Hilbert term in general relativity as discussed in [6]. So in this

way we have an equivalence between a gauge theory and a gravitational theory in three

dimensions, which further motivates our study of the Yang-Mills flow equations.

1.2 Yang-Mills Flow

The Yang-Mills flow was first introduced by Atiyah and Bott [7] as the gradient flow

of the Yang-Mills action on Riemannian manifolds in order to study Riemann surfaces.

Given the Yang-Mills action (1.6) we define the Yang-Mills flow with respect to a flow
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parameter τ as:

∂Aµ

∂τ
= Dν(

√
|g|F µν) + ∂µχ. (1.23)

Since Aν and its flow are only determined up to a choice of gauge, we include a ‘deTurck’

term ∂µχ in order to ensure our initial gauge choice is preserved under the flow.

For a more complicated action, we can consider its gradient flow as a generalization of

the Yang-Mills flow equations. Consider, for example, a Yang-Mills theory coupled with

a scalar field φ:

S[Aµ, φ] =

∫
dxnL[Aµ, φ] (1.24)

We define the gradient flow of the action in terms of flow equations for each of our fields

as

∂φ

∂τ
=
δL[Aµ, φ]

δφ
+X, (1.25)

and

∂Aµ

∂τ
=
δL[Aµ,Φa]

δAµ
+ ∂µχ. (1.26)

Here X denotes any additional deTurck terms we may need to include to ensure the flow

equations are gauge invariant. The deTurck terms will depend on how the φ field changes

under a gauge transformation, in a case such as the Higgs (1.11) the transformation is

related to the transformation of Aµ and the deTurck terms will be related. In other cases,

such as for the scalar field η in (1.22), the scalar field is gauge invariant, and no additional

terms are needed.

Yang-Mills flow was initially introduced on Riemannian manifolds and although nothing

in the definition requires this to be the case, there are some advantages to working with a

Riemannian background metric. For a Riemannian manifold, the inner product defined by

the metric is positive definite, as is the inner product in our Lie algebra (1.3). Combining
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these, we can define a positive definite inner product for two gauge vectors as

Aµa ·Bν
b = δabA

µ
agµνB

ν
b . (1.27)

Now we can consider how the action itself changes with respect to our flow parameter τ ,

dS

dτ
=

∫
dxn

[
δL[Aµ, φ]

δAµ
· ∂A

µ

∂τ
+
δL[Aµ, φ]

δφ
· ∂φ
∂τ

]
. (1.28)

Since the action is gauge invariant, including a deTurck term in our flow equations will

not alter the flow of the action. Now we can see that, since the inner product is positive

definite, equations (1.25) and (1.26) mean that the action will be a strictly increasing

function of the flow parameter τ . However, in physics, the manifolds of interest are

Lorentzian manifolds so we no longer have a positive definite metric, and we can no

longer predict the behaviour of the action as the flow progresses. In flat space-times (i.e.

Minkowski space) we can avoid this difficulty by performing a Wick rotation (i.e. making

the substitution x0 → ıx0) to transform the Lorentzian manifold into a Riemannian one.

Since the Yang-Mills flow is a gradient flow, we can expect it to behave in a way similar

to other gradient flows, such as the heat equation from classical physics. The similarity

between Yang-Mills flow and heat flow becomes obvious when we consider Abelian Yang-

Mills with a flat background metric. We can rewrite the flow equation for Aµ as an

equation for the gauge invariant quantity F µν as

∂F µν

∂τ
= −∂α∂αF µν . (1.29)

If we perform a Wick rotation into Euclidean space, this gives a heat equation for each

component of F µν . Another flow equation similar to the heat equation is the Ricci flow



Chapter 1. Introduction 9

which is defined on the metric in general relativity, given by:

∂gµν
∂τ

= −2Rµν , (1.30)

where Rµν is the Ricci tensor. The Ricci flow has been much more extensively studied

than the Yang-Mills flow and it may be useful to compare the two flows. Two promising

areas where we can attempt such a comparison were outlined in the previous section, the

AdS/CFT correspondence, and the equivalence between the Chern-Simons action and

the Einstein-Hilbert action.

In this thesis we consider Yang-Mills flows for a particular model of a Yang-Mills action

coupled with a scalar field in two dimensions. Of particular relevance is the work of Rade

[8] which establishes that of the Yang-Mills flow in two and three dimensions converges

as τ → ∞, as well as estimates the rate at which the flow converges. Rade’s work deals

with pure Yang-Mills flow, however, and it is not clear that the results will still hold for

Yang-Mills coupled with a scalar field.

1.2.1 Current Applications of Yang-Mills Flow

In lattice QCD the Yang-Mills flow (or Wilson flow), is used to study non-Abelian gauge

field theories without the limitation that the coupling be small as in perturbation theory.

In this context, the Yang-Mills flow has been shown to renormalize the gauge fields,

see [9] and references therein. Presently, they do not consider any modifications to the

Yang-Mills flow due to the inclusion of additional fields in the action.

Yang-Mills flow has also be studied in the context of general relativity where, in three

dimensions, gravity can be formulated in terms of the Yang-Mills connection. In this

context the Yang-Mills flow can be compared directly to Ricci flow [10, 11]. Since the
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Yang-Mills action does depend on the metric, coupling the Yang-Mills flow to the Ricci

flow directly has also been considered by Streets [12] and some of the references within.

In this thesis we apply the flow to a two dimensional Yang-Mills model coupled with a

scalar field through a topological term. We define the flow as the gradient flow of the

new action which leads to scalar field terms in the flow of the gauge fields in addition to

the gauge field terms present in the scalar field flow equations.



Chapter 2

A 1+1 Dimensional Model

We start with the following action:

S[A, φ] =

∫
dx2

[
Tr

(
−
√
|g|
4

F µνFµν +

√
|g|
2

DµφDµφ + βεµνFµνφ

)
− V (|φ|)

]
(2.1)

• β is a constant parameter

• g is the determinant of a fixed background metric gµν whose components depend

on xµ and that we take to have a Lorentzian (+,-) signature so that |g| = −g.

• We consider an n dimensional compact Lie algebra with generators Ta (a goes from

1 to n):

◦ Aµ(x) =
∑n

a=1Aµa(x)Ta is the Yang-Mills potential

◦ φ(x) =
∑n

a=1 φa(x)Ta is a real scalar field

• V (|φ|) is a potential function that depends on Tr(φφ)

11
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2.1 The Equations of Motion

In order to find the equations of motion for our system, we extremize the action with

respect to variations of Aµa and φa. We find that:

δS =

∫
dx2

[
−
√
|g|
2

F µν
a δFµν a +

√
|g|(Dµφ)a δ(Dµφ)a + βεµνδFµν aφa

+ βεµνFµν aδφa − V ′(φa)δφa

]
, (2.2)

where we sum over repeated Lie Algebra indices, and we define:

V ′(φa) =
∂V

∂φa
. (2.3)

We can express the variations of Fµν and Dµφ in terms of variations in Aµ and φ in the

following way:

δFµν = Dµ(δAν)−Dν(δAµ) (2.4)

δ(Dµφ) = Dµ(δφ) + ıq[δAµ, φ] (2.5)

The variation of the action with respect to arbitrary variations δAµa and δφa can be

expressed as:

δS =

∫
dx2

[
(Dµ(−

√
|g|F µν))a + ıq

√
|g|[Dνφ, φ]a + 2βεµν(Dµφ)a

]
δAν a

+
[
−(Dµ(

√
|g|Dµφ))a + βεµνFµν a − V ′(φa)

]
δφa (2.6)
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The extrema of the action are found by taking δS = 0 which leads to the following

equations of motion for Aν and φ:

Dµ(−
√
|g|F µν + 2βεµνφ) + ıq

√
|g|[Dνφ, φ] = 0 (2.7)

βεµνFµν −Dµ(
√
|g|Dµφ)− V ′(φ) = 0 (2.8)

Here, although we have left off the Lie algebra indices, we have 2n equations for Aνa

and n equations for φa, that are coupled through the Lie bracket appearing in (2.7). If

we assume our background metric is flat (Minkowski) space-time, then |g| = 1 and our

equations of motion become:

Dµ(−F µν + 2βεµνφ) + ıq[Dνφ, φ] = 0 (2.9)

βεµνFµν −Dµ(Dµφ)− V ′(φ) = 0 (2.10)

2.2 Yang-Mills Flow Equations

The Yang-Mills Flow equations can be defined for this model as in (1.25) and (1.26) so

that solutions to the equations of motion are the stationary points of the flow. Although

we do not work with a Riemannian metric explicitly, if we perform a Wick rotation into

Euclidean space, the resulting flow equation is a heat equation in 2+1 dimensions. The

resulting system of partial differential equations is as follows:

∂Aν

∂τ
= −Dµ(

√
|g|F µν − 2βεµνφ) + ıq

√
|g|[Dν(φ), φ] + ∂νχ (2.11)

∂φ

∂τ
= −Dµ(

√
|g|Dµφ) + βεµνFµν − V ′(φ) (2.12)
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2.2.1 The Hessian of the Action

The stability of the stationary points of the Yang-Mills flow is determined by the stability

of the corresponding solutions to the equations of motion, and the stability of these

solutions under small perturbations is determined by the Hessian of the action which is

defined as the matrix of second functional derivatives of the action. The Hessian is an

infinite dimensional matrix operator with respect to the space-time variable xµ, that can

be viewed as a 3× 3 matrix acting on the fields Aν(xµ) and φ(xµ). Each of these entries

are n× n matrices that act on the components of the fields in the Lie algebra.

We will denote the Hessian Ĥ to avoid confusion with the Hamiltonian H which we

define later. In order to calculate the Hessian we need to compute the second functional

derivative of the action. We start by writing (2.1) as:

δS =

∫
dx2 [δAν aS

ν
Aa + δφaSφa] . (2.13)

We now vary SνAa and Sφa with respect to Aµ b and φb to obtain

δ2S =

∫
dx2

[
δAν a(Ĥ

νµ
ab )δAµ b + δAν a(Ĥ

νφ
ab )δφb + δφa(Ĥ

φφ
ab )δφb + δφa(Ĥ

νφ
ab )δAν b

]
.

(2.14)

Each component of the Hessian is given by:

Ĥφφ =−Dα

√
|g|Dα − V ′′(φ)I, (2.15)

Ĥφµ =− 2βεµαDα + q
√
|g|φDαg

αµ + qDµ(
√
|g|φ) + q

√
|g|Dµ(φ), (2.16)

Ĥµ,φ =− q
√
|g|Dµ(φ) + q

√
|g|φDµ + 2βεµαDα, (2.17)
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Ĥνµ =Dα

√
|g|Dαgνµ −DαD

νgαµ + qF νµ − qφ2gνµ + 2βqενµφ. (2.18)

Here we have represented φ, and Aµ as n× n matrices in the adjoint representation, I is

the n× n identity matrix, and Dµ is a matrix operator defined as

Dµ = I∂µ + Aµ, (2.19)

and unless indicated by brackets, D acts on everything to its right. In particular, if we

consider an Abelian gauge group and a flat background metric (with (+,-) signature) we

can write the Hessian as a 3× 3 matrix operator:

Ĥ =


−∂α∂α − V ′′(φ) −2β∂1 +2β∂0

+2β∂1 ∂1∂
1 ∂1∂

0

−2β∂0 −∂0∂1 ∂0∂
0

 . (2.20)

The Hessian acts on a perturbation of our original fields δWb given by

δWb =


δφb

δA0 b

δA1 b

 , (2.21)

which defines a perturbation for each Lie algebra component of each of our fields. In

order to determine the stability of a solution using the Hessian, we must look at the

eigenvalues of Ĥ at the solution. A solution will be stable under perturbations that are

linear combinations of eigenfunctions of Ĥ that correspond to negative eigenvalues, and

unstable for positive eigenvalues. More generally, when Ĥ acts on a perturbation, δW ,

we can find

δW T ĤδW = c|δW |2, (2.22)

and the sign of c indicates the stability of the solution under the given perturbation. In
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general, although we consider only small perturbations, we can not find all eigenvalues

and eigenfunctions since the Hessian is infinite dimensional, and eigenfunctions will be

found as solutions to a system of partial differential equations. The Hessian will also

have zero eigenvalues corresponding to the gauge invariance of the action, this can be

easily seen in the flat Abelian case above if we take δW to correspond to the usual gauge

transformation ∂µf for an arbitrary function f ,


−∂α∂α − V ′′(φ) −2β∂1 +2β∂0

+2β∂1 ∂1∂
1 ∂1∂

0

−2β∂0 −∂0∂1 ∂0∂
0




0

∂0f

∂1f

 =


0

0

0

 . (2.23)

This allows us to classify the stationary points of our action, and predict the initial

behaviour of the Yang-Mills flow. For a stable stationary point, the eigenvalues of Ĥ will,

apart from the zero eigenvalues associated with gauge invariance, all be negative. For

initial values close to a stable stationary point the Yang-Mills flow will move towards the

stationary point. If the eigenvalues are positive, the stationary point is unstable, and the

Yang-Mills flow will move away from the stationary point. In general we can have a mix

of positive and negative eigenvalues, which allow for more complex flow behaviour which

may include stable oscillations around the stationary point.

2.3 Hamiltonian Approach

In addition to the equations of motion derived above, which are represented as a system

of differential equations that are second order in both our time and space variables, we

derive an equivalent system of equations of motion that are first order in time using the

Hamiltonian. There are several advantages to having the equations of motion in this

form, in particular numerical methods for solving the equations typically require that
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they are first order. Additionally, the Hamiltonian plays an important role in quantum

field theories.

In order to formulate a Hamiltonian for the system we need to label one of our coordinates

as a time coordinate t, we choose x0. In 2 dimensions Fµν has only 1 independent

component, so we can write

F µνFµν = 2F 01F01 =
−2

|g|
(F01)

2 (2.24)

and

εµνFµν = 2F01, (2.25)

noticing that F01 is the Chern-Pontryagin density defined in (1.17). We also define

F =
F01

|g|
(2.26)

and we will also use the fact that

DµφDµφ = g00(D0φ)2 + 2g10D1φD0φ+ g11(D1φ)2. (2.27)

Now we write down the Lagrangian:

L =

∫
dx

[
(F01 a)

2

2
√
|g|

+

√
|g|
2

(
g00(D0φ)2a + 2g10(D1φ)a(D0φ)a + g11(D1φ)2a

)
+2βφaF01 a − V (|φ|)

]
. (2.28)

We will now write derivatives in the following way:

∂0A := Ȧ, (2.29)
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∂1A := ∂A. (2.30)

So, for example:

D0φ := φ̇+ ıq[A0, φ]. (2.31)

We have three Lie Algebra valued coordinate functions, A0, A1, and φ for a total of

3n coordinates (where n is the dimension of the Lie algebra) We define the conjugate

momentum for each coordinate as a functional derivative of the Lagrangian:

Π0 a :=
δL

δȦ0 a

= 0 (2.32)

Π1 a :=
δL

δȦ1 a

=
F01 a√
|g|

+ 2βφa (2.33)

Πφa :=
δL

δφ̇a
=
√
|g|D0

aφ (2.34)

Since the momenta conjugate to A0 a are 0, we get primary constraints.

The Hamiltonian, H, including the primary constraints is defined as:

H =

∫
dx
(

Π1 aȦ1 a + Πφaφ̇a + uaΠ0 a

)
− L, (2.35)

and the ua are Lagrange multipliers.

By inverting our expressions for the momenta we can find equations for the time deriva-

tives of our coordinates, and write the Hamiltonian in terms of the coordinates and their

momenta only with no explicit time dependence. Using the Hamiltonian density H de-

fined as H =
∫
dxH,
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H =

√
|g|
2

(Π1 a)
2 − 2β

√
|g|Π1 aφa + Π1 a(D1A0)a +

(Πφa)
2

2g00
√
|g|
− g10

g00
Πφa(D1φ)a

−ıqΠφa[A0, φ] + 2β2
√
|g|φ2

a +
1

2g00
√
|g|

(D1φ)2a + V (|φ|) + uaΠ0 a. (2.36)

We can now obtain the equations of motion for our fields using

Ẋ = {X,H}, (2.37)

here we use { , } to denote the Poisson bracket. First we need to look at the time deriva-

tive of our primary constraints, we find it is not identically zero so we define secondary

constraints Ψa as

Ψa = Π̇0 a = {Π0 a, H} = (D1Π1)a − ıq[Πφ, φ]a. (2.38)

Now we need to check Ψ̇a = {Ψa, H} and we find

Ψ̇a = −ıq[A0,Ψ]a, (2.39)

which is a multiple of existing constraints, therefore no new constraints are needed. We

can now write down the total Hamiltonian,

HT = H + u2 aΨa
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Where u2 a are Lagrange multipliers and we can simplify by making the substitution

u2 a → u2 a + A0 a We find the total Hamiltonian density to be :

H =

√
|g|
2

(Π1 a)
2 − 2β

√
|g|Π1 aφa +

(Πφa)
2

2g00
√
|g|

−g
10

g00
Πφa(D1φ)a + 2β2

√
|g|φ2

a +
(D1φ)2a

2g00
√
|g|

+ V (|φ|) (2.40)

+uaΠ0 a + u2 a (D1Π1 + ıq[φ,Πφ])a

Now we can obtain equations of motion for our fields and their conjugate momenta:

φ̇a =
Πφa

g00
√
|g|
− g10

g00
(D1φ)a − ıq[φ, u2]a (2.41)

Ȧ1 a =
√
|g|(Π1 a − 2βφa)− (D1u2)a (2.42)

Ȧ0 a = ua (2.43)

Π̇φa = D1

(
1

g00
√
|g|
D1φ−

g10

g00
Πφ

)
a

− 2β
√
|g|(2βφa − Π1 a)

−V ′(φ) + ıq[u2,Πφ]a (2.44)

Π̇1 a = ıq

(
[u2,Π1]a +

g10

g00
[φ,Πφ]a −

1

g00
√
|g|

[φ,D1φ]a

)
(2.45)

Π̇0 a = 0 (2.46)

The equations (2.43) and (2.46) are simply the requirement that our constraint equations

are satisfied, and (2.45) becomes redundant once we choose a gauge so only (2.41), (2.42)

and (2.44) along with the constraint equation (2.38) are necessary.

If we work in flat space-time with g00 = −g11 = 1 the Hamiltonian density simplifies to:

H =
(Π1 a)

2

2
− 2βΠ1 aφa +

(Πφa)
2

2
+ 2β2φ2

a +
(D1φ)2a

2
(2.47)

+uaΠ0 a + u2 a (D1Π1 + ıq[φ,Πφ])a + V (φ) (2.48)
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And the relevant equations of motion become:

φ̇a = Πφa − ıq[φ, u2]a, (2.49)

Ȧ1 a = (Π1 a − 2βφa)− (D1u2)a, (2.50)

Π̇φa = (D1D1φ)a − 2β(2βφa − Π1 a) + ıq[u2,Πφ]a − V ′(φ). (2.51)

This system of equations determines φa, A1 a and Πφa in terms of u2 which is determined

by our choice of gauge, and Π1 a which is determined by the constraint (2.38). Solving

this system is equivalent to solving the system given by (2.9) and (2.10), both will give

us the same results for Aµ(t, x) and φ(t, x).

Even with the simplest non-Abelian Lie algebra, n = 3 and we have a system of 12

coupled partial differential equations to solve the equations of motion, as well as the 9

equations that define the Yang-Mills flow: 3 for each component of Aν from (2.11) and

3 for φ from (2.12). In the next chapter, we simplify things further by considering the

Abelian case, where we can find solutions to the equations of motion, and the flow can

be simulated numerically.



Chapter 3

The Abelian Case

3.1 Solving the Equations of Motion

In order to analyse the gradient flow equations for this model, we first would like to find

the stationary points of the flow, which are given by the solutions to the equations of

motion. In order to solve the equations of motion, we first need to specify the potential

function V (|φ|) which we define as:

V (|φ|) = −m
2

2
φ2 +

λ

4!
φ4. (3.1)

The negative m2 term in the potential leads to a double-well potential with two distinct

vacuum states which allows symmetry breaking of the φ4 potential. If we consider only

the case where we have an Abelian Lie algebra, and our background metric is flat, our

equations of motion (2.9) and (2.10) using the potential defined above, simplify to the

22
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following:

−∂νF µν + 2βεµν∂νφ = 0, (3.2)

−∂µ∂µφ+ βFµνε
µν +m2φ− λ

6
φ3 = 0. (3.3)

This gives the gradient flow equations as

∂Aµ

∂τ
= −∂νF µν + 2βεµν∂νφ+ ∂µχ (3.4)

and

∂φ

∂τ
= −∂µ∂µφ+ βFµνε

µν +m2φ− λ

6
φ3. (3.5)

In two dimensions, F µν has only one independent component so we can use F from (2.26)

which in flat space is equivalent to the Chern-Pontryagin density (1.17). Using this we

can rewrite our equations of motion:

−εµν∂ν(F + 2βφ) = 0, (3.6)

−∂µ∂µφ− 2βF +m2φ− λ

6
φ3 = 0. (3.7)

Now that our equations of motion depend on F and φ only, we would like to write down

the flow equation for F instead of the equations for Aµ. We start by rewriting (3.5) as

∂φ

∂τ
= −(∂20 − ∂21)φ− 2βF +m2φ− λ

6
φ3. (3.8)

From the definition for F we can find that

∂F

∂τ
= −∂(∂0A1 − ∂1A0)

∂τ
(3.9)
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Since derivatives with respect to space-time variables x and t will commute with deriva-

tives with respect to our flow parameter τ we can obtain the following flow equation for

F ,

∂F

∂τ
= −(∂20 − ∂21)(F − 2βφ). (3.10)

Now that the flow equation is now written in terms of gauge invariant quantities, the

deTurck term appearing in (3.4) has dropped out of our equations, and we will only be

required to choose a gauge to find the values of Aµ from F .

For the remainder of this chapter we will consider only the static case, where F and

φ are independent of t, this simplifies our equations of motion to ordinary differential

equations, and allows us to work with only the Riemannian part of the metric, without

performing a Wick rotation. Now our system of partial differential equations for the flow

has simplified to only two equations, one for F and one for φ, which are functions of

only the spatial variable x as well as the flow parameter τ . The stationary points of the

flow will be determined by solutions to the equations of motion which are now ordinary

differential equations in terms of x only.

Now we can easily solve for F by integrating (3.6) to find

F = 2βφ+ b0, (3.11)

where b0 is a constant.

First we want to consider the case where m = λ = 0 or V = 0, in this case our action

corresponds to the modified Schwinger model in (1.22). We have a general solution,

φ = c1e
2βx + c2e

−2βx − b0
2β
, (3.12)
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where c1 and c2 are constants. The only solutions that are finite for all x are the constant

solutions,

φ = − b0
2β

and F = 0. (3.13)

However we can attempt to construct a finite solution by patching together two solutions

at the origin.

φ = c2e
−2β|x| − b0

2β
(3.14)

is a solution everywhere except at x = 0 where the derivative is not defined. If we

consider the Yang-Mills flow near this solution, it is clear that the flow will move away

from the solution towards the constant − b0
2β

. The flow equations in this model appear to

be trivial, but the connection with the Schwinger model suggests that the 2β term acts

like a topological mass term. We expect it to still act like a mass term when we include

an explicit mass term in the potential.

Now we consider the the full potential (3.1). We substitute this along with the static

condition into (3.7) to obtain a second order differential equation that we can solve for

φ(x):

∂2xφ = −M2φ+
λ

6
φ3 + 2βb0, (3.15)

where we define a new quantity

M2 = m2 − 4β2, (3.16)

which, as we can see from (3.15), acts like a mass term for φ. We will require

M2 > 0⇔ m2 > 4β2 (3.17)

to ensure symmetry breaking of the potential.
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We start by looking for constant solutions to (3.15), which are given by the real roots of

the cubic equation on the right hand side. We will have either one, two or three distinct

constant solutions depending on the value of b0, the possibilities are summarized in the

following table:

Value of b0 number of solutions Value of b0 number of solutions

b0 >
M3

3β

√
2
λ

one negative solution b0 <
−M3

3β

√
2
λ

one positive solution

|b0| = M3

3β

√
2
λ

two solutions |b0| < M3

3β

√
2
λ

three solutions

Table 3.1: Number of constant solutions to the equations of motion for φ

We are mainly interested in the case where we have 3 constant solutions, and we will

label them as

φ− = the smallest solution, (3.18)

φ+ = the largest solution, and (3.19)

φ0 = φ− < φ0 < φ+. (3.20)

For cases with only one solution, we denote it with either φ− or φ+ depending on its sign,

and for cases with two solutions we exclude φ0.

In order to find non-constant solutions we look at (3.15) which is a second order equation

that does not depend explicitly on our variable x, so we can integrate to obtain a first

order equation,

dx =
dφ√

λ
12
φ4 −M2φ2 + 4βb0φ+ b1

, (3.21)

where b1 is a constant. Integrating both sides of the equation will give x as a function of

φ which we will then need to invert to find φ(x). For certain values of the constants b0

and b1 we can find φ(x) analytically.
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If b0 = 0, the equations of motion simplify to the equations of motion for a scalar field

in a double well potential with mass given by M , that is not coupled to a gauge field.

Therefore we expect to find the typical kink solution that moves between two of our

constant solutions. By setting b1 = 3M4

λ
we can integrate (3.21) and, as expected we find

φodd(x) = ±
√

6M2

λ
tanh

(
M√

2
x+ c

)
. (3.22)

Noting that for c = 0, φodd is an odd function of x.

If b0 = ± M3

3β
√
λ
, we can find additional solutions by setting b1 = 0 and integrating, which

gives

φeven(x) = ±
4M√
λ

tanh2
(
Mx+c

2

)
3− tanh2

(
Mx+c

2

) . (3.23)

Here we have for c = 0, φeven is an even function of x.

In both (3.22) and (3.23) we have a constant of integration c that allows translations

along the x-axis. We will consider only the positive solution from (3.23), any results for

the negative solution will differ only by the sign change. Both of the above solutions are

bounded and approach constant solutions as x→∞,

lim
x→±∞

φodd(x) = ±
√

6M2

λ
, (3.24)

and,

lim
x→±∞

φeven(x) = 2

√
M2

λ
. (3.25)

We also note that

|0| <
∣∣∣∣ M3

3β
√
λ

∣∣∣∣ <
∣∣∣∣∣M3

3β

√
2

λ

∣∣∣∣∣ , (3.26)

therefore, for both choices of b0 that result in a non-constant solution we have three

constant solutions as well.
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3.2 The Yang-Mills Flow

In order to examine the flow equations we first consider the case when both F and φ are

constant in x as well as t. Here (3.10) is trivial, so F (τ) is a constant. The behaviour

of φ(τ) will be determined by its initial value relative to the stationary points. The

stationary points are the constant solutions (3.18),(3.19) and (3.20). In the case where

there are three stationary points they divide possible choices of φ(0) into four intervals

lim
τ→∞

φ(τ) =



φ− if φ(0) < φ−

φ− if φ− < φ(0) < φ0

φ+ if φ0 < φ(0) < φ+

φ+ if φ(0) > φ+

(3.27)

The case where we have two stationary points is similar to the case where we have three

stationary points with the exception that if b0 < 0, φ0 = φ− and the second interval

vanishes or if b0 > 0, φ0 = φ+ and the third interval vanishes. For cases with only one

stationary point, all flows move toward the stationary point, which has the opposite sign

of b0.

The flow can be visualized as trajectories in a (φ, F ) phase space, as in figure 3.1. Points

lying on the curve are stationary points of the flow. For any initial point (φ(0), F (0)) that

lies below the curve will move along a horizontal trajectory to the right (i.e. constant F ,

increasing φ). Initial points that lie above the curve will move along horizontal trajectories

to the left (constant F , decreasing φ). All trajectories will approach a stationary point

as τ approaches infinity.

Although we can predict the behaviour of the flow for any initial condition if we know the

values of the stationary points, this involves solving a cubic equation which would require

us to choose specific values for b0, m and β. To determine whether or not a given constant
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Figure 3.1: The blue curve indicates the
location of stationary points (φ, F ) deter-
mined from (3.8). The flow moves any initial
points to the left (decreasing φ) along hor-
izontal trajectories shown in red, or to the
right (increasing φ) along trajectories shown
in green. The two circles on the graph in-
dicate saddle points, and the area between
the two bold lines is the main area of inter-
est where we have three stationary points.
Notice the portion of the curve with φ be-
tween the two saddle points corresponds to
the unstable stationary points. The exact
location of the saddle points will depend
on our choice of parameters, but the overall

shape seen here is unchanged.

solution is stable or not we can look at the Hessian, (2.20). If we are only considering

constant perturbations of φ then only one element of the Hessian is relevant,

Ĥφφ = m2 − λ

2
φ2. (3.28)

As discussed in Chapter 2, the stability of a stationary point is determined by the signs

of the eigenvalues of the Hessian, in this case we have only one component, so the only

eigenvalue will be the component itself. If we find that for a solution φ (3.28) is negative,

then that solution will be stable, if it is positive then the solution will be unstable.

Two cases of particular interest are the constant solutions that our non-constant solutions

approach as x→∞, the results are summarized in Table 3.2:

We can see from table 3.2 that the stability of our solutions can depend on the relative

values of our symmetry breaking mass term m and our topological mass term β. We
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φeven(x→∞) = 2M√
λ

(3.23) φodd(x→∞) =
√

6M2

λ
(3.22)

Stable (Ĥ < 0) m2 > 8β2 m2 > 6β2

Unstable (Ĥ > 0) m2 < 8β2 m2 < 6β2

Table 3.2: Stability of Constant Solutions

consider two main cases, the ‘large M ’ case where m2 > 8β2 and the ‘small M ’ case

where m2 < 6β2, We notice that in the large M case the asymptotic solutions are stable

constant solutions but in the small M case the asymptotic solutions are unstable con-

stant solutions. So far we have only considered the stability of constant perturbations of

constant solutions, but we would like to extend what we know about the constant case to

non-constant solutions. Although we can’t apply the stability conditions from the sim-

plified Hessian directly to the rest of our non-constant solutions, it does suggest that we

will find different flow behaviour in each of the two cases. In order to solve the system of

partial differential equations, (3.8) and (3.10), we proceed with a numerical calculation.

3.3 The Numerical Method

Systems of non-linear partial differential equations like we have here, are difficult to solve

in general, but we can attempt to learn about their behaviour numerically. In order to

do this we employ a simple explicit method for solving diffusion problems. First, in order

to integrate over −∞ < x <∞ we change coordinates using

x =
y

1− y2
, (3.29)

which changes our derivatives,

∂2x =

(
dy

dx

)2 [
∂2y +

(
2y3 + 6y

y4 − 1

)
∂y

]
, (3.30)
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where

dy

dx
=

(1− y2)2

1 + y2
. (3.31)

Now our range of integration is finite, −1 < y < 1. Derivatives with respect to our flow

parameter τ (which takes the place of the time variable in a typical diffusion problem)

are approximated using a forward finite difference, and derivatives with respect to x are

approximated using a central finite difference as follows:

∂F (τ, y)

∂y
=

F (τ, y + dy)− F (τ, y − dy)

2dy
, (3.32)

∂F (τ, y)

∂τ
=

F (τ + dτ, y)− F (τ, y)

dτ
. (3.33)

In order to complete the integration from τ = 0 to τ = 10 in a reasonable number of

steps, we have a lower limit on the step size dτ . Additionally, this method will be stable

as long as dτ
(2dx)2

≤ 1
2
[13], which limits how accurately the derivatives can be approximated

by placing a lower limit on our spatial grid size dx.

Before we apply the numerical approximation, we can simplify our equations to eliminate

the interaction strength λ by making the following substitutions for φ and F :

φ → m

√
6

λ
φ, (3.34)

F → 2βm

√
6

λ
F. (3.35)

Which changes our system of equations for F (τ, x) and φ(τ, x) from (3.10) and (3.8) to :

∂F

∂τ
= ∂2x(F − φ), (3.36)

and

∂φ

∂τ
= ∂2xφ− 4β2F +m2(φ− φ3), (3.37)
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Once we use (3.30) to express the ∂2x in terms of ∂y, we are ready to implement our

numerical procedure. The Fortran code can be found in Appendix A.

3.4 Summary of Numerical Results

We need to specify specific values for our constants m and β. We will look at two main

cases in order to perform calculations:

• m = 2 and β = 0.5 corresponding to the large M case in Table 3.2

• m = 2 and β = 0.9 corresponding to the small M case in Table 3.2

In order to solve the equations numerically we need to specify initial functions φ(x, 0) and

F (x, 0). Since we are mainly interested in the flow near stationary points, we consider

initial functions given by

φ(x, 0) = φ̄(x) + h(x) (3.38)

F (x, 0) = F̄ (x) (3.39)

where φ̄(x) is either φodd or φeven, F̄ (x) = φodd or F̄ = φeven + b0 respectively (after we

have applied the transformations in (3.34) and (3.35) to (3.11), and we choose h(x) so

that h(x)→ 0 as |x| → ∞.

We start by looking at the flow near the φeven (3.23) in the large M case, where h(x)

is chosen to be a small gaussian centred at x = 0. We find that the flow has different

behaviour depending on the overall sign of h(x) but is not sensitive to the magnitude or

the width of the gaussian perturbation.
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For a negative gaussian, the flow moves φ downwards towards the negative constant

solution, starting near the origin and propagating outwards. F flattens out as the flow

progresses, moving towards the constant solution given by the initial asymptotic values

of F (x), with some structure that propagates along with φ outwards toward infinity. The

figure 3.2 shows F (x) and φ(x) for several values of τ as the flow progresses.

For a positive gaussian, the flow moves both φ and F upwards towards the positive

constant solution determined by their initial endpoints. φ initially overshoots the constant

solution, but will approach the constant solution from above rather than below, see Figure

3.3

As seen in the figures 3.2 and 3.3, the φeven solution, (3.23), is unstable, and it remains

unstable regardless of our choice of m and β. We also note that the negative constant

solution is the preferred state, that is, even though the asymptotic limit of φ is a stable

constant solution, the flow will move towards the negative solution. This results in the

flow behaviour seen in figure 3.2 where φ initially moves downward where it was perturbed

at x = 0. As the flow progresses the perturbation propagates outwards as φ(x) moves

towards the negative constant solution even though it already lies on a constant solution.

Now we consider flow starting near the φodd (3.22). In the large M case, we find that

for anti-symmetric perturbations, the flow moves back toward the solution (see figure

B.1). For the large M case, we can consider φodd to be stable under anti-symmetric

perturbations. However, if we consider a symmetric perturbation (shown in figure B.2),

then the flow moves away from the solution, towards the asymptotic constant solution in

the direction of the perturbation. As the flow progresses, the effect of the perturbation

propagates outward moving φ towards a stable constant solution.

In the small M case, we find that the solution is not stable under even anti-symmetric

perturbations. Although in this case we once again find that the flow moves in the
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Figure 3.2: The Flow for initial data given by φ(0) = φeven − h(x),where h(x) =
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direction of the initial perturbation, the flow does not appear to approach either of the

initial constant solutions. The plots of this can be seen in Figure 3.4. Additional plots

of φ and F for various initial functions can be found in Appendix B and the results are

summarized in the following table.

Initial Value Parameter Choice End Result Figure
φeven + h(x) large M asymptotic constant fig. 3.3
φeven + h(x) small M positive constant fig. B.4
φeven − h(x) large M negative constant fig. B.3
φeven − h(x) small M negative constant fig. 3.2
φodd + hodd(x) large M φodd fig. B.1
φodd + hodd(x) small M undetermined fig. 3.4

Table 3.3: Summary of Numerical Results
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and m = 2, β = 0.9 (small M case). F (0) = φodd
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Conclusions

Our model has a physical interpretation as a modified Schwinger model outlined in [4] for

the choice that V (|φ|) = 0. As mentioned in Chapter 3 the only finite, static solutions

to the equations of motion are the constant solutions, where φ can have any value and

F = 0. If we look at the flow in this case we find that F is not a function of τ , and φ is a

linear function of τ with slope −2βF . For any constant, non-zero value of F we find that

lim
τ→∞

φ(τ) = ±∞ (4.1)

Therefore without a potential term in the action, the flow can result in our field φ be-

coming infinite, although only as the flow parameter τ becomes infinite as well. With

the inclusion of the potential (3.1) the flow will remain finite for initial functions that

are bounded. The potential included is the typical double well potential of classical

physics which, for complex valued φ becomes the ‘Mexican hat’ potential used to allow

for symmetry breaking in the Abelian Higgs model.

With a non-zero potential term we found several solutions to the equations of motion,

and numerically studied the flow in the neighbourhood of these solutions in order to
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study the stability of the solutions. We found that, for symmetric solutions φeven(x) and

Feven(x), the Yang-Mills flow moved towards one of the constant solutions. The overall

direction of the flow was determined by the direction of the initial perturbation from the

solution. The φeven solutions are found to be unstable solutions, and the end result of the

flow did not depend on the relative values of the mass of the scalar field and the coupling

between the scalar and gauge fields. We also find that the constant solution furthest from

0 (in the cases we considered this is the negative constant solution) is the preferred final

state. That is, even if only part of φ is flowing towards the negative constant solution,

eventually all of φ will flow towards the solution as can be seen in figure 3.2.

For the φodd solutions, which are similar to solutions that appear in the Abelian Higgs

model or models without any coupling between φ and Aµ, we found that the flow was

substantially different for different choices of mass and coupling. In particular, the so-

lution becomes unstable if the coupling is chosen to be large enough while still allowing

for symmetry breaking, this corresponds to lowering the mass of the scalar field in a

model with no coupling. In contrast, without the coupling, the solution would remain

stable for any value of the mass. For values of the mass and coupling where the functions

are not completely unstable, we find that the solutions are generally stable under anti-

symmetric perturbations, while symmetric perturbations move the functions towards one

of the constant solutions.

In this thesis we have only considered initial functions that differ from a solution by

a perturbation in φ, in general we should also consider perturbations of F generated

by perturbations of Aµ. However, our results suggest that the flow will smooth out

any perturbations of F . Therefore, we expect that, for an initial perturbation F (x) →

F (x) + g(x), subject to the condtion

lim
x→±∞

g(x) = 0, (4.2)
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will not alter the end result of the flow for either F or φ. Additionally, if we consider

leaving φ unchanged, the initial direction of the flow for φ will be opposite the direction

of the perturbation g(x). We still expect that the initial direction of the flow of φ will

determine the behaviour of the flow for large values of τ .

There are several interesting extensions to the work in this thesis. So far we have only con-

sidered static solutions, including time dependence in our equations may result in bounded

solutions without including a potential term for φ. Additionally an extra dimension may

allow for more complex flow behaviour around the stationary points. Considering the

non-static case is interesting for this model whether or not we include the potential term

in the action. In order to perform numerical calculations in this case it may be necessary

to use a more advanced numerical method to compensate for the greater number of grid

points we would need to include in our calculations.

In this thesis we compute the flow only in the case of a flat background metric. There

may be interesting results from considering curved space-times although it may require

that we consider non-static equations of motion as well. In chapter 2 we derived equations

of motion for an arbitrary background metric before simplifying to the flat case, and we

can see that a curved metric could significantly alter our solutions, as well as the flow

equations. Alternatively we could consider an arbitrary metric that is not fixed, so that

when we compute the variation of the action we allow the metric to vary as well. This

will result in new equations of motion to compute the metric components gµν and might

require the inclusion of an Einstein-Hilbert term in the action. Additional flow equations

would arise for the metric that will be directly related to Ricci flow, and our system will

be similar to the Ricci Yang Mills flow considered in [12] coupled with an additional scalar

field.

Another obvious extension of this work is to consider the non-Abelian case, the simplest

case being SO(3) where our fields can be represented as 3 × 3 anti-symmetric matrices.
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In this case our two coupled flow equations for F and φ become a system of six coupled

partial differential equations, which can allow for much more complex flow behaviour

even if we consider the constant case only. It may also be of interest to consider more

complicated Lie Algebras such as SU(3) which forms the basis for chromodynamics.

Finally, the simplest extension would be to consider the flow in the Abelian Higgs model.

In order to do this we need to consider a complex scalar field φ instead of a real one,

and instead of including an explicit coupling term between φ and Aµ we couple them

through the covariant derivative. The Abelian Higgs model has a solution similar to

our φodd solution, although it is not clear if its stability will be affected by the choice of

the corresponding parameters in the action similar to what we found for our model. Of

course the Abelian Higgs model itself is a starting point for looking at a non-Abelian Higgs

model, as well as higher dimensional models which may be of more physical significance

in terms of actual particle physics.
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Code for Numerical Procedure

program YMFLOWSOLVE

implicit none

double precision y, x, dy, t, dt, m, B , q1, q2, ee, a, a2, bo

integer i, j, l, ii, iii, q3(1), q4(1)

integer, parameter :: k = 400 !the number of space steps

double precision, dimension(k-1) :: dp, du

double precision, dimension(k-1) :: p, u

double precision, dimension(21,k-1) :: plowout, flowout

dy = 2.0d+0/k !space step size

dt = 2.0d-0*dy**2.0 !time step size

m =2.0d+0 !specify the parameter m in the action

B = 0.5d+0 ! specify the parameter beta in the action

l = 0

j = 0

ii = 1

iii = 0

ee = 5.0d-5

open(101,FILE=’phi.dat’)

open(102,FILE=’F.dat’)

open(103,FILE=’tauspace.dat’)

call init(p,u,dy,k,m,B)

plowout(1,:) = p(:)

flowout(1,:) = u(:)

do while (l.le.10)
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j=j+1

call slope(p,u,dp,du,dy,k,m,B)

p = dp*dt+p

u = du*dt+u

q1 = Maxval(abs(dp))

q2 = Maxval(abs(du))

q3 = Maxloc(abs(dp))

q4 = Maxloc(abs(du))

write(*,*) q1 , q3, q2, q4, j*dt

if (q1.le.ee.and.q2.le.ee) then

l=15

ii=ii+1

plowout(ii,:) = p(:)

flowout(ii,:) = u(:)

write(103, "(e20.14)") j*dt

endif

if (q1.ge.(1000./ee)) then

l=25

endif

if(j.eq.200000) then

l=35

endif

if((mod(j,10000).eq.0)) then

ii=ii+1

plowout(ii,:) = p(:)

flowout(ii,:) = u(:)

write(103, "(e20.14)") j*dt

endif

end do

write(103, *) q1, q2

write(103, *) dp(200), du(200)

write(*,*) ’dy=’,dy,’dt=’,dt

write(*,*) ’end:’, l, ’steps:’,j

do l=1,k-1,1 !writes output to files

y = -1.0d+0+l*dy

x = y/(1.0d+0-y**2.0)

write(101, *) x,y,(plowout(ii,l),ii=1,21),dp(l)
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write(102, *) x,y,(flowout(ii,l),ii=1,21),du(l)

end do

end program YMFLOWSOLVE

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

subroutine init(p,u,dy,k,m,2B) !sets initial values for phi, F

integer k,n

double precision, dimension(k-1) :: p, u

double precision dy,y,m,B,a,x,2B

integer l

B=2.0d+0*2B !replace beta with 2*beta

a=sqrt(m**2.-B**2.)/2.d+0

a2=4.0d+0*sqrt(m**2.-B**2.)/(m*sqrt(6.0d+0))

bo=2.0d+0*(sqrt(m**2.-B**2.)**3.)/(((B)**2.)*3.0d+0*m*sqrt(6.0d+0))

do l=1,k-1

y = -1.0d+0+l*dy

x = y/(1.0d+0-y**2.)

p(l)= 1.00d+0*(a2*((tanh(a*x))**2.d+0)/(3.d+0-(tanh(a*x))**2.d+0))

+ 1.0d-2*exp(-25.0d-1*x**2.)

u(l)= 1.00d+0*(a2*((tanh(a*x))**2.d+0)/(3.d+0-(tanh(a*x))**2.d+0))

+ bo

end do

end subroutine init

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

subroutine slope(p,u,dp,du,dy,k,m2,B2)

integer k

double precision, dimension(k-1) :: dp, du , F

double precision, dimension(k-1) :: p, u

double precision dy,y,J1,J2,m,B,d,m2,B2

integer l

F(:) = -(u(:)-p(:))

m = m2*m2 ! sets m=m^2

B = B2*B2 ! sets B = beta^2

d = 2.0d+0*dy

do l = 1,k-1

y = -1.0d+0 + l*dy

J1 = ((1.0d+0-y**2.)**2.)/(1.0d+0+y**2.)

J2 = 2.0d+0*y*(y**2.0+3.0d+0)/((y**2.-1.0d+0)*(1.0d+0+y**2.))
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if (l.eq.1) then

du(l)=-J1**2.*(J2*(F(l+1)-F(l))/d + (F(l)+F(l+2)-2.0d+0*F(l))/d**2.)

dp(l)=(-4.0d+0*B*u(l) + J1**2.*(J2*(p(l+1)-p(l))/d +

(p(l)+p(l+2)-2.0d+0*p(l))/d**2.)) + m*(p(l)-(p(l))**3.)

else if (l.eq.2) then

du(l)=-J1**2.*(J2*(F(l+1)-F(l-1))/d + (F(l-1)+F(l+2)-2.0d+0*F(l))/d**2.)

dp(l)=(-4.0d+0*B*u(l) + J1**2.*(J2*(p(l+1)-p(l-1))/d +

(p(l-1)+p(l+2)-2.0d+0*p(l))/d**2.) + m*(p(l)-(p(l))**3.))

else if (l.eq.(k-2)) then

du(l)=-J1**2.*(J2*(F(l+1)-F(l-1))/d + (F(l-2)+F(l+1)-2.0d+0*F(l))/d**2.)

dp(l)=(-4.0d+0*B*u(l) + J1**2.*(J2*(p(l+1)-p(l-1))/d +

(p(l-2)+p(l+1)-2.0d+0*p(l))/d**2.) + m*(p(l)-(p(l))**3.))

else if (l.eq.(k-1)) then

du(l)=-J1**2.*(J2*(F(l)-F(l-1))/d + (F(l-2)+F(l)-2.0d+0*F(l))/d**2.)

dp(l)=(-4.0d+0*B*u(l) + J1**2.*(J2*(p(l)-p(l-1))/d +

(p(l-2)+p(l)-2.0d+0*p(l))/d**2.) + m*(p(l)-(p(l))**3.))

else

du(l)=-J1**2.*(J2*(F(l+1)-F(l-1))/d + (F(l-2)+F(l+2)-2.0d+0*F(l))/d**2.)

dp(l)=J1**2.*(J2*(p(l+1)-p(l-1))/d + (p(l-2)+p(l+2)-2.0d+0*p(l))/d**2.)

+(-4.0d+0*B*u(l) + m*(p(l)-(p(l))**3.))

end if

end do

end subroutine slope
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Additional Diagrams of Numerical

Results
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Figure B.1: The Flow for initial data given by φ(0) = φodd − h(x), with h(x) =
sin(5x)e−x

2
and m = 2, β = 0.5 (large M case). F (0) = φodd
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Figure B.2: The Flow for initial data given by φ(0) = φodd+h(x), with h(x) = 0.01e
x2

2

and m = 2, β = 0.5 (large M case). F (0) = φodd
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