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Abstract

The thesis is comprised of seven chapters. The first chapter is introductory in nature
and pertains to a brief review of the related work to the proposed study. It also

contains the summary of the research work presented in this thesis.

Chapter 2 provides a literature survey of the work doné by various researchers on
triangular fuzzy numbers, trapezoidal fuzzy numbers and option pricing under fuzzy
environment. Some of the work done by Carlsson and Fuller [30] on possibilitic mean
~and variance of fuzzy numbers is highlighted. The work done by Fuller and Majlender
[53] on weighted possibilistic mean and variance of fuzzy numbers is also discussed to

some extents. At the end of Chapter 2, a summary of the thesis is provided.

In Chapter 3, we introduce the O(m, n)-Trapezoidal Type Fuzzy Numbers, and es-

tablish some of their properties along with some examples.

In Chapter 4 for O{m, n)-Trapezoidal Type Fuzzy Numbers we derive expressions for
possibilistic mean and possibilistic variance, weighted possibilistic mean and weighted
possibilistic variance, expressions for possibilistic covariance and weighted possibilis-

tic covariance. Some applications are provided in the form of examples using weighted
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functions.

In Chapter 5, we make use of O(m, n)-Trapezoidal Type Fuzzy Numbers to dis-
cuss the fuzzy binomial option pricing model and derive expression for the fuzzy risk
neutral probabilities, along with fuzzy expression for the fuzzy call prices. As a con-
sequence, we obtain weighted intervals for the risk neutral probabilities and for the

expected fuzzy call price. Numerical examples are provided to illustrate the results.

In Chapter 6, we present the fuzzy binomial option pricing model using LR-Fuzzy
numbers and obtain expressions for the fuzzy risk neutral probabilities and for the

fuzzy call prices in terms of LR-fuzzy numbers.

In the last chapter of the thesis, we present the contributions made in the thesis

and conclusion along with some recommendations for future directions on the prob-

lems considered in the thesis.
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Notations

The following notation and terminology are used throughout this thesis.

Aor A

Notation for é fuzzy number.

Lower possibilistic mean value of A.

Upper possibilistic mean value of A.

Interval value possibilistic mean value of A.
Crisp possibilistic mean value of A.

Lower probability mean value of A.

Upper probability mean value of A.

Interval value probability mean value of A.
Crisp probability mean value of A.

Lower f-weighted possibilistic mean value of A.
Upper f-weighted possibilistic mean value of A.
f-weighted interval-valued possibilistic mean value of A.
f-weighted possibilistic mean value of A.

Stock price at time t = 0.

Exercise Price of the call option.

Time to expiration.

Upward Movement in the Stock Price.
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Pd

[~}

o)

Downward Movement in the Stock Price.

Probability of an Upward Movement in the Stock Price.
Probability of a Downward Movement in the Stock Price.
Value of the call option in the downward state.
value of the call option in the upward state.

Current price of the call option..

Fuzzy price of the derivative in the up state.

Fuzzy price of the derivative in the down state.

Fuzzy down movement in the stock price.

Fuzzy up movement in the stock price.

Fuzzy current price of the call option.
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Chapter 1

Introduction

Historically, probability theory has been used to form theoretical foundations for rea~
soning and decision making in situations involving uncertainty. However, one is often
faced with situations in which decisions are required to be made on the basis of ill-
defined variables, and imprecise (vague) data. Fuzzy algebra is a simple and useful
way to propagate impreciseness through a cascade of calculations. It has been used
to model systems that are hard to define precisely. In option pricing the volatility

has been modeled by a fuzzy number by Carlsson and Fuller [31].

As a methodology, it incorporates imprecision, subjective risk assessment, vague data
information, and sensitivity analysis into the model formulation and solution process.
In finance and management science, uncertainty is usually handled through the proba-
bility theory, which sometimes encounters difficulties. In general, probability calculus
is not well adapted to an imprecise corpus of knowledge, where as fuzzy calculus
appears to be a more supple technique that provides pragmatic answers to problems
under fuzzy environment. The use of fuzzy set theory, introduced by Zadeh [136] as

a methodology for modeling and analyzing certain financial problems, is of particular



interest to a number of researchers in option pricing ([3], [5], [9], [17], [98]) due to
fuzzy set theory’s ability to both quantify and quantify those problems that involve
vagueness and imprecision. Option pricing theory can be traced back to Bachelier [7].
Binomial option pricing ([33], [38]) is a simple but powerful technique that can be
used to solve many complex option pricing problems. In this thesis we consider such
problem of option pricing and on the lines of Muzzioli and Torricelli [98] we discuss
the option pricing when payoffs are described by O(m, n)-Trapezoidal Type Fuzzy

Numbers and LR-Fuzzy Numbers.

1.1 Fuzzy Sets Theory

In this chapter, some of the fundamentals of basic fuzzy set theory that we use in
this thesis are reviewed. Starting with basic definitions about fuzzy sets, we provide a
method for extending some non fuzzy mathematical concepts to the fuzzy framework.

Using the extension principle we carry operations on fuzzy numbers.

We now introduce certain terminology, notation, definitions and prerequisites that

will be used in the sequel.

Fuzzy Set
Let X be a classical set of objects, called the universe, whose generic elements are
denoted by X. The membership in a crisp subset A of X is viewed as characteristic

function u, (x) from X to {0, 1} such that



|0 for x ¢ A
“A(:E)_{l for x € A

where {0, 1} is called a valuation set ([13],[44],[136],[137]).

If the valuation set is allowed to be the closed real interval [0, 1], then A is called
a fuzzy set as proposed by Zadeh [141].
p,(z) is the degree of membership of X in A. The closer the value of p, (z) is to 1,
the more = belongs to A. Therefore, a fuzzy set A is completely characterized by the
set of ordered pairs:

A = {(z,p,(z) = € X} where y,(z) maps X to the membership space [0,1].
Elements with zero degree of membership are usually not listed.

Definition 1.1.1 Let A be a fuzzy set in X. The height h(A) of A is defined as

MA) = suppa(z)

z e X

Normal Fuzzy Set.

If h(A) =1, then the fuzzy set A is called a normal fuzzy set.

a— Cut.

An a-cut denoted by A(a) is the crisp set of elements X € R whose degree of
belonging to the fuzzy set A is at least « € (0, 1].
This means A(a) = {z € X | u(z) > o, € (0,1]}. The a— cut is the crisp set A(a)
that contains all elements of the universal set X € R whose membership grades in
A are greater than or equal to the specified value of @, @ € (0,1]. Sometimes, in the

literature o— cut is also referred to as y—level set, in which case we use v instead of «.



Support of a Fuzzy Set
Let A be a fuzzy set in X. Then the support of A, denoted by S(A), is the crisp set

given by

S(A) = {z€X:pa(z)>0}

Intersection of Fuzzy Sets
Intersection of two fuzzy sets A and B is a fuzzy set C denoted by C = A N B,

whose membership function is related to those of A and B by

fo(x) =Min [ p,(x), py(x)] V zeX.

1.2  Algebraic Operations on Fuzzy Sets

In addition to the set theoretical operations, we can also define a number of combi-
nations of fuzzy sets and relate them to one another. Here we present some more

important operations among them.
1.3 Convexity of Fuzzy Sets

The notion of convexity can be extended to fuzzy sets in such a way as to preserve
many of the properties that it has in case of crisp sets. In what follows, we assume that
X is the n-dimensional space R". We have the following two definitions of convexity

of a fuzzy sets.

Convex Fuzzy Set. A fuzzy set A is convex if and only if the sets 4, = {z €

X | pa (z) > a} forall o € (0,1] is a convex set. The second definition of convexity of



a fuzzy set is as follows: A fuzzy set A is said to be a convex set if p(Az; +(1—-N)zq) >
min(u(z1), pw(z2)),z1,22 € X, A€ (0,1], ie. if u(z) is a quasi-concave function
on X. The definition of a convex fuzzy set leads us to the following definitions of a

fuzzy number.

1.4 Fuzzy Number

Definition 1.4.1 A Fuzzy Number A is a fuzzy set on the real line R, that possesses

the following properties.

(1) A is a normal, convez fuzzy set on R,

(2) The a—cut A, is a closed interval for every o € (0, 1],
(8) The support of A, S(A) = {z | pa(z) > 0}, is bounded.

Definition 1.4.2 A fuzzy set A in R is called a fuzzy number if it satisfies the fol-

lowing conditions.

(i} A is normal,

(i) Aq is a closed interval for every o € (0, 1],
(i) [a 18 upper semicontinuous, and

(iv) the support of A is bounded.

Fuzzy arithmetic is based on two properties of fuzzy numbers:

¢ Each fuzzy set and thus, each fuzzy number can be fully and uniquely repre-

sented by its a—level sets.



e a-— cut of each fuzzy number are closed intervals of real numbers for all o €

©,1].

A fuzzy number can be characterized by an interval of confidence at level «, ([13],
[77], [142]) as follows.

Ale) = [a!®, al™)] which has the property

a<a = A(d/) C A(a).

These properties enable us to define an arithmetic operation on fuzzy numbers in
terms of arithmetic operations on their a—level sets. (i.e. arithmetic operations on
closed intervals). In what follows we shall use the notation A or A for a fuzzy number
without making any distinction between them. The interpretation will be clear from

the context.

1.5 Fuz'zy Arithmetic Based on Operations on Closed
Intervals.

Let A = [a,b] € R and B = [¢,d] € R be two fuzzy intervals then we define the
arithmetic operations on them as follows.

Addition A+ B =[a+¢,b+d]

Subtraction A— B =[a—d,b— ]

Multiplication AB = [Min(ac, ad, bc, bd), Max(ac, ad, be, bd)]

11 11
-1 _ et i
Inverseof A A l1= {Mln(a, b)’ Max(q, b)]
A aabd aabd
Divisi VR N aao0b
ivision B [Mln(c,d,c,d), Max(c’d’c’d)]



Let A and B be two fuzzy numbers such that A, = [a,(lo‘), aga)] is the a— cut of
A and B, = {b&“), bga)] is the a— cut of B. Let * denote any of the arithmetic oper-
ations +, —, ., /, A and V on fuzzy numbers. Then, we define a fuzzy set A * B in
R, by defining its a— level sets (A * B), as (A * B), = A, * B, for any « € [0,1].
Since (A * B), is a closed interval for each @ € [0,1] and A and B are fuzzy numbers,
A * B is also a fuzzy number.
The multiplication of fuzzy number A C R by an ordinary number k € R* can also
z

be defined as (k* A,) =k (- ) A, = | kaga), kal™ | or equivalently, BoaX)=p A(E)

V€ R

Definition 1.5.1 Triangular Fuzzy Number (T. F. N.) A T.F.N. can be represented

completely by a triplet A = (ay,as,a3), whose membership function is defined as

follows,
( 0 z<a
z—a
L y<z<a
s —
T—a
3 as <z < as
Qg — Qs
0 T >as .

\

Alternatively [[77] , p. 26, 27], defining the interval of confidence at level- o as,
Ay = [a?: ag]’
we characterize the T.F.N. (aj,az2,03) as

A, = [a1 + a(az - Gl), az + Ct((lg -~ ag)] Vae (0, 1] (152)



Definition 1.5.2 Trapezoidal Fuzzy Number (Tr.F.N.) A Tr.F.N. can be represented

completely by a quadruplet A = (a1, a2, a3, aq), whose membership function is defined

as follows
( 0 r<a
T—a
! a LT < ay
az — a1
() = < 1 as <z < ag (1.5.3)
T—a
k a3 <z <ay
a3 — Qg
0 T2 .

.

Alternatively [[T7] , p. 26, 27], defining the interval of confidence at level- o as,
Ap = [a?}a’g]a
we characterize the Tr.F.N.(a,, a2,a3,a4) as

Ay, = [al + CE(CLQ - 0;1),0.4 + a(a3 — 0,4)] YVac [O, 1] (154)

Definition 1.5.3 LR-Fuzzy Number. A fuzzy number M is of the LR-type if there
ezist shape functions L and R and four parameters (m,m) € {J{—o00,+0}, o, 8 and

the membership function of M is

( —
L('m“ m) Vz<m, a>0

04
1 Ym<z<m, a>0
pr () = <
R(I;m) Ve>m, >0 .

The LR-fuzzy number is then denoted by M = (m, M, o, B)r, where o is the left

spread and 3 is the right spread respectively.



This definition is very general and allows quantification of quite different types of
information.

If M is supposed be be a real crisp number form € R, then

M = (m, m,0,0)r, V L andV R.

If M is a crisp interval,then

M = (a,b,0,0)zp, V L andV R and a # b.

If M is a trapezoidal fuzzy number, then

L(z) = R(z)= Maz (0,1 — z) (1.5.5)
and
L™Mz) = RY(z)= Maz(0,1-1) (1.5.6)

are implied Zimmermann{142].

If L and R are strictly decreasing functions then we can easily compute the v-level
sets of M. [m, )] is the peak of M and m and 7@ are the lower and upper modal
values. Also, L, R: [0,1] — [0,1] with L(0) = R(0) = 1 and L(1) = R(1) = 0 are

non-increasing, continuous mappings [44].

Assumption underlying LR-fuzzy numbers.
(a) We assume that L=!(.) and R™(.) exist and are finite.

In view of assumption (a) we now state the following definition of a ~-level set.
The ~-level set for which assumption (a) holds is given by the following expression

[30].

M]" = [Mi(y), Mao(7)] = [m - aL7'(7), M+ BRM(Y)), v€ (0,1).  (L5.T)



Let M = [a, b, a, O], and N = [e, d, 7, 6], be two Tr.F.N’s of L-R type, where

M >0and N > 0 then, we have the following (Zimmermann [142]).

M+N = [a+c b+d, a+7, B+ 4] (1.5.8)
M+N = lac, bd, ay+ca, bd + df) (1.5.9)
M a b ad+da by+cf
—_ & -, — 5.1
iy &' o dd+0) o= (1.5.10)

We will refer to the operations given by (1.5.8)-(1.5.10) in deriving the fuzzy risk

neutral probabilities and fuzzy call price in Chapter 5.

1.5.1 Zadeh’s Extension Principle.

Zadeh’s extension principle is often referred to in the fuzzy literature as the sup
min extension principle. This principle allows us to extend any point operations to

operations involving fuzzy sets and is stated as follows (Bector and Chandra [10]).

Definition 1.5.4 (Zadeh’s extension principle). In terms of the notation introduced

above, the extension principle of Zadeh states that

(i) pray(y) = sup  (pa()), for all A € F(X), and
z € X, flz)=y

(i) ps-1(8)(%) = pa(f(2)), for oll B € F(Y).

Sometimes the function f maps n-tuple in X to a point inY ie. X = X X X3 X
X Xyand f 2 X =Y given by y = f(z1,20,...2,). Let 41, 4,,... 4, be n
fuzzy sets in Xy, X, ... Xy, respectively. The extension principle of Zadeh allows to

extend the crisp function y = f(z1,2a,...%,) to act on n fuzzy subsets of X, namely

Al,Ag, s .An such that B = f(A],Ag, e An)

10



Here the fuzzy set B is defined by

B={(y,us®) :y=flz1,. . ., zo), (z1, . . . ,Ta) € X1 X . .x X}
and
pe(y) = sup  min{ug, (z1), . . . pa,(20)).

z € X, y:f(m)

1.6 Possibility Theory.

In this section, we review the preliminary concepts of possibility and necessity mea-
sures.

Dubois and Prade [45] studied the ranking of fuzzy numbers in the setting of possi-
bility theory. To discuss this, suppose we have two fuzzy number A and B. Then in
accordance with the extension principle of Zadeh, the crisp inequality z < y can be
extended to obtain the Truth value of the assertion that A is less than or equal to B,

as follows (Bector and Chandra [10]).

T(A)B) = sup (minjea(e),an(c)
This truth value T(A(<)B) is also called the grade of possibility of dominance of B
on A and is denoted by Poss(A(<)B).
Similarly, the grade (or degree) of possibility that the assertion “A is greater than or

equal to B” is true, is given by
Poss(A(2)B) = sup (min(na(e), s (z)).
T2y

Also, the degree of possibility that the assertion “A is equal to B” is denoted by Poss

(A(=)B), and is defined as
Poss(A(=)B) = sup(min(u4(z), us())).

11



The above discussion motivates us to define A(<)B if and only if Poss{A(<)B) >
Poss(B(<)A). Here it may be noted that for the case when A = (a,as,4a3) and
B = (b1, b, bs) are T.F.N’s then ap < b, gives Poss(A(<)B) = 1 and Poss(B(<)A) =
height (AN B) < 1.

Therefore for the case of T.F.N’s it can be defined that A(<)B with respect to
Poss(A(<)B) if ay < b..

Related with the number “Poss(A(<)B)” there is another number “Necc(A(<)B)”

which measures the grade (or degree) of necessity of dominance of B on A, given by
Necc(A(<)B) = 1— Poss{(A(>)B)

The number “Necc(A(<)B)” can also be used for ranking of fuzzy numbers. For this,
we can define A(<)B if and only if Necc(A(<)B) > Necc(B(<)A).

In case A = (ay, as, a3) and B = (b, by, b3) are T.I*.N’s then by actual computation of
Nece(A(>)B) it can be defined that A(<)B with respect to Necc(A(<)B) approach

if a3 4+ ay < by + bs.
1.7 Mean Value and Variance of Fuzzy Numbers.

Viewing the fuzzy numbers as random sets Dubois and Prade [43] defined their inter-
val valued expectation and introduced their mean value as a closed interval bounded
by the expectations calculated from its upper and lower distribution functions. Re-
cently, Carlsson and Fuller [30] introduced the notion of possibilistic mean value,
interval-valued possibilistic mean, crisp possibilistic mean value and crisp( possibilis-
i;ic) variance. On the line of Carlsson and Fuller (30}, Fuller and Majlender [53] intro-

duced the concepts of weighted possibilistic mean and variance of fuzzy numbers. In
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this section we discuss possibilistic mean value, possibilistic variance, weighted mean

weighted variance and weighted covariance of a special type of fuzzy numbers.

1.7.1 Possibilistic Mean Value and Variance of Fuzzy Num-
bers.

In the section we review the concepts of possibilitic mean and possibilistic variance
of a fuzzy number.

Consider two fuzzy numbers A and B € F such that their a-cats are written as
Ala) = [a1(a), az(e)] and B(a) = [bi(a), ba(a)], @ € (0,1]. Goetschel and Voxman

[56] introduce a method for ranking fuzzy numbers as
~ _ 1 1
i< B f a(ar(a) + az(a))da < / a(b(@) + by(a))da (1.7.1)
0 0

In Goetschel and Voxman [56], (1.7.1) is motivated in part by the desire to give less
importance to the lower levels of fuzzy numbers. Taking the weight of the arithmetic
mean of a;(a) and ay(c) as «, Carlsson and Fuller [30], define the level-weighted aver-

age of the arithmetic means of all a-cuts of the fuzzy number A by expression(1.7.2).

/1 ay(a) +az(a)) ,

M(A) = /01 a(ar(a) + az{a))da = /1 2 (1.7.2)
a do
1 /ﬂlaal(a) da+/:a az(a) do
2 fl a da /1a do
_ M. (A) —I—OM*(A) 0 (1.7.3)

2
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The first quantity, denoted by M,(A) can be reformulated as
1 1
[ a a;(e) do / Poss[A < a1(e)] a1(a) da
— =
f a da f Poss[A < a;(0)] da
0 0

/ Poss[A < a;1(e)] min[A(e)] da
= <0 ; (1.7.4)
/ Poss{A < a1(a)] da

M,(A) =

where Poss denotes possibility. As in Carlsson and Fuller [30],
Poss[A < a;(0)] = II(—o0,a1{e)) = sup A(u) =a.
u < a1(a)

Thus, M,(A) is nothing else but the lower possibility-weighted average of the a-cut.

In a similar manner, M*(A), the upper possibilistic mean value of A, is given by
1 1
/ o ax(a) da / Poss[A > as(a)] ay(e) do
— =S
f o da / Poss[A > ay(a)] do
0 0

/(; Poss[A > as()] max[A(a)] do

M*(A) =

1 (1.7.5)
/ﬂ Poss[A > ax(e)] da

where, as in Carlsson and Fuller [31}],
Poss[A > ay(a)] = II(az(a),00) = sup A(u) = a.

u 2 az(a)

In view of expression (1.7.4) and (1.7.5), the lower and upper possibilistic mean values

of fuzzy number A are defined as follows.
M(A) = [M.(A), M*(4)] (1.76)

Since, M(A) is represented as an interval in (1.7.6), therefore, in the sequel we shall
call M(A) as the interval-valued possibilistic mean of fuzzy number A. Carlsson

and Fuller [30] define the crisp possibilistic mean value of fuzzy number A as the
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arithmetic mean of its lower possibilistic and upper possibilistic mean values, i.e.

M. (A) + M*(A)
2

M(A) = (1.7.7)

In view of (1.7.2)-(1.7.7), Carlsson and Fuller [30] proved the following two important

theorems.

Theorem 1.7.1 (Carlsson and Fuller[30]) Let A and B be two fuzzy numbers and
letAheR bea %eal number. Then

M(A+ B)=M(A)+ M(B) M(AA) = AM(A)

e

M.(A+ B) = M.(A) + M.(B) M*(A+ B) = M*(A) + M*(B) and

[AM,(A), \M*(A)] if A >0
[M.(AA), M*(AA)] = {
AM*(A), A\M.(A)] if A <0

where the addition and multiplication by a scalar of fuzzy numbers is defined by the

sup-min extension principle [136].

Theorem 1.7.2 (Carlsson and Fuller[30]) Let A(a) = [a;(e), az(c)] and B(a) =
- [bi(e), bae)] be two fuzzy numbers and let A € R be a real number. Then
M(A+B) = M(A)+ M(B)

and

M(OA) = \M(A)
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1.7.2 Relation Between Interval-Valued Expectation and In-
terval Value Possibilistic Mean

We now discuss an important relationship between the interval-valued expectation
E(A) = [E.(A), E*(A)] introduced by Dubois and Prade [44] and the interval-valued
possibilistic mean introduced by Carlsson and Fuller [30]. For any fuzzy number A

the a-cut can be written as,
Ale) = [m(a), ax(e)]
The lower probability mean value of A is [44],
1
E.(A) = / a1{a)da (1.7.8)
0 :
Similarly, the upper probability mean value of A is [44],
1
E*(A) = / ax(0)de. (1.7.9)
0

On the lines of Dubois and Prade [44], the interval value probability mean value of

A is defined as follows,
E(A) = [B.(A), E"(A)], (1.7.10)

and the crisp probability mean value of A is

E.(A) + E*(A)J _ (1.7.11)

F(4) = { !

There is a strong relationship between probability mean of a fuzzy number and the
possibilistic mean of a fuzzy number. Since the support of A is bounded, therefore,

the lower and upper possibilistic mean values are obtained by Carlsson and Fuller
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MM)=£MMW, (1.7.12)

1
Mw)=fmmm, (1.7.13)
0
The crisp possibilistic mean value of A is
M(A) = [M.(A), M*(4)]. (1.7.14)

The interval value possibilistic mean value of A is given by Carlsson and Fuller [30],

is

mm:{mw+mml

5 (1.7.15)

We can now state the following lemma, given by Carlsson and Fuller [30].

Lemma 1.7.1 If A € F' is a fuzzy number with strictly increasing and strictly de-
creasing (and continuous) functions then its interval-valued possibilistic mean is a

proper subset of its interval-valued probabilistic mean, i.e M(A) C E(A).

According to Carlsson and Fuller [30], Lemma 1.8.1 reflects on the fact that points
with small membership degrees are considered to be less important in the definition
of lower and upper possibilistic mean values than in the definition of probabilistic
ones. It is important to point out that in the limiting case when A is a fuzzy number
having equal spreads (a; — a1 = a4 — a3) , the possibilistic and probabilistic mean

values are equal. That is,

m@;Mw (1.7.16)
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1.7.3 Possibilistic Variance of Fuzzy Number

The possibilistic variance of a fuzzy number A, where A € F, is defined by Carlsson

and Fuller [30] as

Var(4) = /0 5 ((0) — ay(a))* o (1.7.17)

and the standard deviation of A is

ga = +/Var(A).

1.8 Weighted Possibilistic Mean and Variance of
| Fuzzy Number.

Interval-valued expectation of fuzzy numbers is defined by Dubois and Prade [44]
viewing them as random sets. Viewing the fuzzy numbers as random sets, Dubois
and Prade [44] define their interval valued expectation, whereas, Carlsson and Fuller
[30] define a possibilistic interval-valued mean value of fuzzy numbers, viewing them
as possibility distributions. Furthermore, weighted possibilistic mean, variance and
weighted interval-valued possibilistic mean value of fuzzy numbers are all introduced

in Fuller and Majlender [53].

Definition 1.8.1 (Fuller and Majlender [53)) Let A € F be a fuzzy number with
Ala) = [a1(a),a2(a)] , € [0,1]. A function f: [0,1] — R is said to be a weighted
function if f is non-negative, monotone increasing and satisfies the following normal-

tzation condition.

/01 fla)da = 1 (1.8.1)
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Definition 1.8.2 (Fuller and Majlender [53]) The f-weighted possibilistic mean

value of fuzzy number A is defined as

/0 ofai (o) + az(a))da
2

M¢A) = fla)da (1.8.2)

For exzample, if f(a) = 2a,a € [0,1] then

M(A) = /OM———;—GQ—@2ada=/; [e1(c) + az(a)] ada = M(A) (1.8.3)

This yields that f-weighted possibilistic mean value defined by (1.8.2) can be considered

as a generalization of possibilistic mean value introduced by Carlsson and Fuller [30].

Definition 1.8.3 (Fuller and Majlender [53]) Let f be a weighting function and
let A be a fuzzy number. Then we define the f-weighted interval-valued possibilistic

mean of A is defined as

Mp(A) = [M;(A),M](A) (1.8.4)
where

M (4) = fo ' aa(@)f (@) da, (1.8.5)

MF(A) = fglaz(a)f(a)da, (1.8.6)

PolASm() = s Aw)=a (L8.7)

PoslAz o)) = swp AW =, (188)

M; (A) is the f-weighted average of the minimum of the a-cuts and M;“(A) is the

f-weighted average of the mazimum of the a-cut.
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In view of (1.8.4) -(1.8.8) the following two theorems are proved in Fuller and Ma-

jlender [53].

Theorem 1.8.1 (Fuller and Majlender [53])) . Let A,B € F, f be a weighting

function, and A be a real number. Then

My (A+B) = M;(A)+ M,(B)

M;(AB) = AM(A)

From this and (1.8.2) we observe that the f-weighted possibilistic mean of A is the
arithmetic mean of its f-weighted lower and upper possibilistic mean values, i.e.

M7 (A)+ M[(A)
2

Mi(4) = (1.8.9)

Theorem 1.8.2 (Fuller and Majlender [53)) If A and B be two fuzzy numbers

and A € R, then the following relationship holds.

Ms(A+B) = M;(A)+ M;(B) (1.8.10)

M;(A\A) = MM(A) : (1.8.11)
1.8.1 Weighted Possibilistic Variance and Covariance.

Definition 1.8.4 (Fuller and Majlender [53]) Let A and B be two fuzzy numbers

and let f be o weighted function. We define the f-weighted possibilistic variance of A

by
Varg(A) = -/01 (az—(a—)—;—w—))gf(a)da (1.8.12)
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and the f-weighted covariance of A and B is defined as

Cous(A) = fo : (“’2("‘)5“‘(6“)) (52(“);”1(“)) f(@)da (1.8.13)

From (1.8.12) and (1.8.13) we observe that the f-weighted possibilistic variance and
covariance can be considered as a generalization of possibilistic variance and covari-

ance.

1.9 Option Pricing Model

An option is a contract between a buyer and a seller where the buyer of the contract
obtains the right to trade an underlying asset, for a specified price, called the exercise
price, on or before the maturity date.

An option that provides the holder the right to buy the underlying asset is known as
a call option.

Let r be the risk free rate, u be the up jump factors, d be the down jump factor and S
be the stock price at time ¢t = 0. All of 7, u, d and S are assumed to be crisp. Then,
the stock price at time ¢ = 1 are obtained by multiplying S with the jump factors

and d, and are Su and Sd respectively.

Binomial Option Pricing Model

In the binomial option pricing model introduced by Cox, Ross and Rubenstein [38],
we model stock prices with respect to discrete time, assuming that at each particular
step, the stock price will change to one of two possible values, namely, d and u, where

0 < d < u such that over a single period of time, the stock price can only move from
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its current price to any of the two possible values. Assuming that S is the current

price of the stock, then in the next period the price will be either
C, = Max(Su— K,0) or  (Cyg=Max(Sd - K,0) (1.9.1)

Thus, the value of a one-period call option on a stock governed by a binomial lattice

is

pu Max (Su — K, 0) + ps Max (Sd — K, 0) Pu Cu + pg Cy
Cy = =
1+7 1+r

(1.9.2)

where, C, and Cy are defined in (1.9.1). The above CRR model is a well known and

widely used model for valuing standard option.

A Two Period Binomial Option Pricing Model

In the above CRR model adding another period to the binomial tree yields a two
periods binomial option pricing model. Such an action increase the number of possible
outcomes at expiration (see [33] for more details).

In such a model we assume that at the end of the first period the stock price has
risen to Su. During the second period the price of the stock could go either up or
down, in which case the stock price would end up as either Su® or Sud. If, on the
other hand, the stock price has gone down in the first period to Sd then during the
second period it either goes down again or goes back up, in which case the price of

the stock ends up at either Sd* or Sdu. Therefore, in this case, the prices for a two
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periods binomial option pricing at expiration are,

C,2 = Max[(Sv® - K, 0)] {1.9.3)
Cua = Max[(Sud — K, 0)] (1.9.4)
Ce = Max[(Sd® — K, 0)] (1.9.5)

Thus, the price of a two period call option is given by,(see [33] for more details).

p30u2 + 2pupdcud + p?iC'dz
(1+7)?

- |

Similarly, for the n periods binomial option pricing model, the call price is given by

33].
S }I(n—”l-ﬁ Pl i Max [( S W — K, 0)

Cy, = | TS (1.9.6)

Binomial Option Pricing Model Assumptions:
In order to derive the price of a call option in a vague environment we make the
following assumptions which are similar to those made by Muzzicli and Torricelli

[98].
1. All investors have homogeneous beliefs.

2. Markets are frictionless i.e. markets have no transaction costs, no taxes, no

restrictions on short sales and asset are infinitely divisible.

3. Every investor acts as a price taker.
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4. Interest rates are positive. The interest rate is equal to r percent per time

period.

5. No arbitrage opportunities are allowed. This condition is expressed by the

following formula, ds < (1 +7) < u,.

6. The market is complete.

1.10  Organization of the Thesis

Chapter 1 provides an introduction to the concepts of decision making and presents
the motivations and the need for a comprehensive methodology for the binomial op-
tion pricing model. Chapter 2 deals with the literature review of the related work done
by other researchers relevant to this research. In Chapter 3, we introduce O(m,n)-
Tr.T.F.N’s as a generalization of Tr.T.F.N’s and discuss their varying algebraic prop-
erties. In Chapter 4, on the lines of Carlsson and Fuller [30] and Fuller and Majlen-
der {53], we discuss their possibilistic mean, variance and covariance as well as the
weighted possibilistic mean, variance and covariance for O(m,n)-Tt. T.F.N’s. Chapter
5 deals with the binomial option pricing model using O(m,n)-Tr.T.F.N's as input pa-
rameters. Various cases are discussed for different values of m and n. Chapter 6 deals
with the fuzzy binomial option pricing model using LR-fuzzy numbers. A number of
results for O(m,n)-Tr.T.F.N’s and for trapezoidal fuzzy numbers can be deduced as
special cases of the results proved in this chapter. Finally, the conclusion and the dis-
cussion on the contributions made by the thesis, along with some recommendations

for further research, are given in Chapter 7.
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Chapter 2

Literature Survey

The main objective of this chapter is to provide a survey of the literature dealing with
fuzzy numbers, Binomial Option pricing Model and Fuzzy Binomial Option pricing

Model.

2.1 Fuzzy Numbers

In most fuzzy financial applications, linear membership functions are used to model
impreciseness, vagueness, fuzziness and arbitrariness in the various parameters of the
model. Linear and piecewise linear membership functions are easily manipulated by
fuzzy operators. The other major reason for using linear membership function is
to a,void’complex non-linear computations in the analysis of various results. Linear
membership functions are not always appropriate in various financial applications
as, many times, they do not represent the linguistic terms being modeled. Mem-
bership functions are the building blocks of fuzzy set theory. However, there are
many difficulties associated in selecting the solution of a problem written with linear
membership function. Therefore, various types of membership functions have been

proposed in the literature (for example, a tangent type of a membership function [83],
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an interval linear membership function [61], an exponential membership function [28],
inverse tangent membership function [115), logistic type of membership function [125],
concave piecewise linear membership function [72] and piecewise linear membership
function [65]). Unfortunately, most of those membership functions are not flexible
enough to capture impreciseness, vagueness, fuzziness, randomness and arbitrariness.
The need for an efficient membership function has long been felt. Medasani et al. [95]
have highlighted the importance of having membership functions that can be easily
tuned and adjusted. Other authors (for example, Medaglia et al. [94], Medasani et
al. [95], Appadoo et al. [2] and others) have expressed the need for membership
functions that are easy to use and be manipulated. Moreover, the parameters associ-
ated with the membership functions should be easily tweaked until the performance
is acceptable. In this thesis, we propose a fdmily of fuzzy numbers to overcome some
of the shortcomings associated with linear membership functions and some of the
fuzzy numbers mentioned above. Furthermore, we discuss some important properties

of the proposed fuzzy numbers.

2.2 Binomial Option Pricing Model

Various extensions to the original binomial model have been proposed in the litera-
ture, such as Boyle [19], Nelson and Ramaswamy [102], Hull and White [67], Tian
[120], and Leisen and Reimer [85], just to mention a few. The sole motivation for
these subsequent models is either improving the rate of convergence or for pricing
more complex derivatives. Another extension of the binomial option pricing model

is the trinomial option pricing model of Kamrad and Ritchken [75] which is a gener-
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alization of the binomial model described by Cox, Ross and Rubinstein [38]. In the
available literature binomial and trinomial extensions are commonly referred to as
tree-based models. However, binomial option pricing model under crisp assumptions
lack flexibility in the sense that the jump size of the binomial tree is fixed for a given
set of option parameters and time increments. Johnson, Pawlukiewicz, and Mehta

[73] develop a binomial option pricing model that is dependent on skewness.

Other researchers have developed alternative models for option pricing when the
distribution of the stock return is not normally distributed or where the stock price

follows a jump-diffusion processes (for example, Cox and Ross [39] and Merton [93]).

2.3 Fuzzy Binomial Option Pricing Model

Recently there has been growing interest in using fuzzy models in Finance, Economics
and Actuarial Science (for example see Muzzioli and Torricelli [98] Ostaszewski [104],
Wu [126], Appadoo et al. [2]). Fuzzy option pricing model have been studied in
Muzzioli et al. [98] and in Wu [126] using fuzzy sets theory of Zadeh [137]. A nonlin-
ear shape fuzzy number for the fuzzy binomial option pricing model has been proposed
in Appadoo et al. [2]. In a variety of ﬁnancial models a number of parameters in
general are vague, arbitrary and subjective in nature. Such models have been the

subject of extensive study ever since Buckley published a paper in 1987 [25].

The difficulty in such models arise from uncertainty which cannot be represented
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by probability theory alone. A mathematical model for pricing American put option
and Buropean options with uncertainty has been proposed by Yoshida [132]. In his
model [132], randomness and fuzziness in the parameters are evaluated by both prob-
abilistic expectation and fuzzy expectation defined by a possibility measure from the
viewpoint of fuzzy expectation, taking into account the decision-makers subjective
judgement. European options with uncertainty are also discussed under appropriate
assumptions. In 2001, Zmeskal [138] proposed a fuzzy algebraic approach to price a
call option. Zmeskal [138] used fuzzy numbers for the input data. More recently, an
application of fuzzy sets theory to the Black Scholes option pricing model has been
proposed by Wu [126]. Fuzzy interest rate, fuzzy volatility, and fuzzy stock price have
been used in the model. Under these assumptions, the European option price at time
t turns out to be a fuzzy number, thus, allowing us to choose the European option
price at his (her) acceptable degree of belief. The pricing models of European option
using the real interval limited Choquet integral for a nonnegative measurable function
over a real fuzzy measure space has also been investigated by Kaino and Hirota [74].
A fuzzy approach to real options has been the subject of study of Carlsson and Fuller
[31]. Carlsson and Fuller [31] introduce a (heuristic) real option rule in a fuzzy frame-
work, where the discounted cash flow of the expected cash flow and expected costs are
estimated by trapezoidal fuzzy numbers. They determine an optimal exercise time
using possibilistic mean value and variance of fuzzy numbers. Furthermore, they be-
lieve that uncertainty cannot be dealt as a stochastic phenomenon when working with
decisions on giga-investments. Thus, possibility theory becomes an alternative way

to handle future uncertainty.
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Recently there has been growing interest in using fuzzy supported finance modelling.
Appadoo et. al [5] propose a crisp risk free rate assisted by Capital Asset Pricing
Model(CAPM) return in the fuzzy binomial option pricing model. Their model is
geared towards a more natural and intuitive way to deal with fuzziness, uncertainty
and arbitrariness. The classical binomial option pricing model becomes a special case
of the proposed model. The generality and validity of the proposed fuzzy supported

option pricing model is highlighted in their paper.

2.4 Summary of the Thesis

Chapters 1 and 2 contain, respectively, the introduction and the literature survey

relevant to the thesis.

Chapter 3 Algebra of O(m,n)-Tr.T.F.N

Recently there has been rapid growth in the application of fuzzy set theory to financial
problems. Implementation issues have led to the development of addition, subtrac-
tion, multipliéation, division, and the inverse of various types of fuzzy numbers. The
shape of a membership function always presents the knowledge about the grade of
the elements in the fuzzy set. In this chapter, we introduce O(m,n)-Tr.T.F.N’s. The

algebra underlying the O(m,n)-Tr.T.T.N is discussed in details.
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Chapter 4 Moment Properties of O(m,n)-Tr.T.F.N

On the line of Carlsson and Fuller [30] and Fuller and Majlender [53], we derive ex-
pressions for the possibilistic mean, possibilistic variance and possibilistic covariance
as well as weighted possibilistic mean, weighted possibilistic variance and weighted
possibilistic covariance using O(m,n)-Tr. T.F.N’s. The advantage of using O(m,n)-

Tr. T.F.N relative to other types of fuzzy numbers is also discussed.

Chapter 5 Binomial Option pricing Model with O(nu,n)-Tr.T.F.N’s.
In this chapter, on the lines of Muzzioli et al. [98], we use O(m,n)-Tr.T.F.N’s to the
fuzzy binomial option pricing model. Numerical examples are provided to validate the
results. Furthermore, we consider different cases when parameters m and n assume

different values.

Chapter 6 Binomial Option With LR-Fuzzy Numbers.
In this chapter we discuss the binomial option pricing model under fuzzy environment,

using LR-Fuzzy numbers.

Chapter 7 Conclusion, Contribution and Recommendations.
In this chapter, we present the contributions made in the thesis. Conclusion along

with some recommendations for further research are also given.
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Chapter 3

Algebra of O(m,n)- Trapezoidal
Type Fuzzy Numbers

In this chapter we introduce O(m,n)-Trapezoidal Type Fuzzy Numbers (Tr.T.F.N’s)
as a generalization of Trapezoidal Fuzzy Numbers (Tr.F.N’s) and discuss their various

algebraic properties. Some numerical examples are given to reinforce the results.

3.1 O(m,n)-Trapezoidal Type Fuzzy Numbers

In this section we introduce O(.,.)- Trapezoidal Type Fuzzy Numbers (O(.,.)-Tr.T.F.N’s).

Definition 3.1.1 A fuzzy number A = [a1, ay, a3,a4]o(m,n), a1 < ag < ag < a4 18 said
to be O(m,n)-Trapezoidal Type Fuzzy Number (O(m,n)-Tr.T.F.N.) if its membership

function is given as

1 0 T <4
1—(‘22_9:) a; Lz < ap
o — 1
plx) = < 1 a2 <z < aj (3.1.1)
n
a,....
1—( 4 z) a3 <z <ay
ag — Q4
L 0 T 2> a4




Alternatively, following [[77], p. 26, 27], defining the a-cut (interval of confidence at
level- o) as, Ay = [af, a3], we characterize the O(m,n)-Tr. T.F.N. (a4, 0, as, a4]o(m,n)

as

Aw = [az— (a2 —a1)(1 — )=, a3——(a3—a4)(1-—a)%],\7’, a,€ {0,1]

(3.1.2)

az—z\™" az—z \" _
by setting 1 — ( 2 ) =qa and 1— ( 8 ) = « respectively.
Qg — a1 g — G4

An O(m,n)-Tr.T.F.N is said to be symmetric if it satisfied the following two condi-

tions.
(a) as —ay = a4 — a3
(b) m=n

Thas s different from triangular fuzzy numbers (Definition 1.5.1) and trapezoidal SJuzzy

numbers (Definition 1.5.2) which requires condition (b), withm =n = 1.

Definition 3.1.2 A fuzzy number A = [a;, a, as, adlop,ay, &1 < a2 < az < ay is said
to be O(2,2)-Trapezoidal Type Fuzzy Number (0(2,2)-Tr.T.F.N.) if its membership

function is given as

0 T<
as —z \°
1—( 2 ) a Sz ay
a9 — 1
() = < 1 a; <z <ag (3.1.3)
as —z \°
1—( 3 ) a3<:v<a4
a3 — Qg
. 0 IEZG,.;




Alternatively, following [[77], p. 26, 27], defining the a-cut (interval of confidence at
level- a) as, Ao = [af,af], we characterize the O(2,2)-Tr.T.F.N. (a1, a3, a3, ago,2)

as

Ay = [e2— (@2 —a)1-a)%, a3 — (a3 —a)(1—a)E) Y ae (0,1 (3.1.4)

2 2

ag — az —

by setting 1 — ( 2 3;) =a and 1— ( 3 :7:) = o respectively.
o — ag — a4

An O(2,2)-Tr.T.F.N is said to be symmetric if it satisfied the following two conditions.
(a) a2 — a1 = a4 — a3

(b) m=mn

Definition 3.1.3 A fuzzy number A = [al,ag,ag,a4]o(g_5,g_5), a1 < ag <.a3 < a4 18
said to be 0(0.5,0.5)-Trapezoidal Type Fuzzy Number (0(0.5,0.5)-Tr.T.F.N. ) if its

membership function is given as

( 0 :cgal
0.5
1_((12 m) a1 <z <a
g — Q4
p(z) = | 1 a; <z <ag (3.1.5)
0.5
1_(0,3 :c) a3 <r<ay
a3z — Q4
0 T > ay

Alternatively, following [[77], p. 26, 27], defining the a-cut (interval of confidence at
level- ) as, Ay = [a$, a3}, we characterize the 0(0.5,0.5)-Tr. T.F.N. [a1, 02, a3, a)o(0.5.0.5)

as

Ao = laz—(az—a1)(1-0a)? a3~ (a3 —a)(1 - )] Vae (0,1]. (3.1.6)
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0.5 0.5

p— a:‘ —

by setting 1 — ( %2 ) =a aend 1— ( G377 ) = o respectively.
G2 — 4y Q3 — Q4

An 0(0.5,0.5)-Tr.T.F.N is said to be symmetric if it satisfied the following two con-

ditions.
(a) ay —a; = a4 — a3

(b) m =n

3.2 Algebraic Operations on O(m,n)-Trapezoidal
Type Fuzzy Number

In this section we discuss various operations and state and prove certain properties
of O(m, n)-Tr.T.F.N’s.

Let A and B be two O(m, n)-Tr.T..F.N’s, such that

A = [a1,(12;a3aa4](m,n)

= [bh b2) bB: bé](m,n)
Then the a—cut for each of A and B is defined as follows.
Afe) = [m(a),a2(a)] = a2 — (a2 — @1)(1 = @)%, a5 — (a3 ~ as)(1 — )]
(3.2.1)
B(a) = [b1(@),ba(a)] = [b2 — (ba ~ by)(1 — @), bg — (b5 — ba)(1 — @) 7]

(3.2.2)
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3.2.1 Addition A(+)B of two O(m,n)-Tr.T.F.N.’s
Writing A and B in terms of their a-cuts, we have.

Ala)+ Bla) = [m(a), ax(e)] + [b1(e), ba(e)]
= [az— (a2 — a))(1 — )™, ag— (a5 — as)(1 — &)%) +
[b2 — (bs — b1) (1 — @)™, bs — (bs — by)(1 — @) 7]
= [(aa+be — ((a2 +bp) — (01 + by)) (1 — @)=,
as + b3 — ((ag + bs) — (aq + bs))(1 — @) 7] (3.2.3)
= [a1(e) + b1(e), a2(0r) + ba()]
= [~ (e2—a)(l-a)=, ¢ - (e - c)(1 - a)?]
where ¢; = a1 + by, co = ap + by, €3 = az + b, ¢4 = ay + by.

The following observations are made on the addition of two O(m.n)-Tr.T.F.N’s.

(a) Sum of two O(m.n)-Tr.T.F.N’s is commutative, and the addition of two O(m.n)-

Tr. T.F.N’s results in an O(m.n)-Tr.T.F.N,

(b) If we set m = 1 and n = 1 in expression (3.2.3), we obtained the a-cut of a

‘Ir.F.N. Thus, Tr.F.N is a special case of O(m.n)-Tr.T.F.N.

(c) Another important observation can be made is that if we let m and n get very large
in (3.2.3),then limm—oo(a1(a) + bi(@)) = a1 + b1 and lim,_eo(az(a) + by(a)) =
a4 + by. This implies that when m and n get very large, the limits of the a-cut

converge to the sum of their end points and do not depend on «.

(d) Similarly, it is obvious that when m and n get very small, the limits of the a~cut

given by (3.2.3) converge to their interior points (az-+b;) and (ag+bs) respectively,
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and do not depend on o.
3.2.2 Membership Function of 4 + B

Consider two O(m,n)-Tr.T.F.N’s A and B respectively. The sum of two O(m,n)-

trapezoidal type fuzzy numbers is given by expression (3.2.3) and is as follows.
Ala) +Bla) = [(aa+by — (a2 4 b3) — (@1 + b)) (1 — ),
a3+ bs — ((a + bs) = (a4 + b0))(1 — )]

In order to find the membership function for the fuzzy number AB, we need to find
the interior points as well as the end points. To find the interior points, we set @ = 1
in expression (3.2.3), and to find the end points, we set o = 0 in expression (3.2.3).

Thus we have,

A1)+ B(1) = [as+bs, a3+ bs) (3.2.4)
and

A(0)+ B(0) = [a1+b1, ag+by (3.2.5)

In view of (3.2.4) and (3.2.5), the fuzzy number A + B can be written as
A+B=[a1+b), ag+by, az+bs, ag+ b4) 0 m )
The a-cut of the left hand part of fuzzy number A;(c) + B;i(a) can be rewritten as

follows:
Ar(e) + Bi(a) = as+by — ((ag + by) — (a1 +b1))(1 — o) (3.2.6)
The a-cut of the right hand part of fuzzy number A + B can be rewritten as follows,
As(a) + Ba(a) = az + bz — ((ég, +b3) — (@ + by))(1 — a)% (3.2.7)
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To find the membership function of A + B, we set
Ai(a) + Bi(o) = z and As(@) + Bz(a) = z and solve for o as follows.

ag + by — ((ag +by) — (a1 + b))l — )% = z (3.2.8)

Solving for a, we obtain the following expression

o (az +b2) — x "
@ =1 [((a2+bz)—(a1+b1)>] (3.29)

Similarly, if we set Ay(a) + Ba(a) = z, then we have

(a3 +bg) — @ (3.2.10)

a = 1‘“[((aa_;_be,)—(a4—l-i'34))}n

Using (3.2.9) and (3.2.10) we have the membership function for A + B

( 0 :BSal—f-bl

(ay+b) —z m
_ o
1 [((a2 )= (e by Bthses ath

parp(z) = 4 1 a3 +by <z < ag+bs

(as+b3) — z n
_ o
[((a3+53) (et o)y BThSTSetb

0 T > ay + by

Example 1 In this evample, we consider the addition of two O(m,n)-Tr. T.F.N’s and

discuss the effect on the membership function when m and n vary. Let A and B be

two O(m,n)-Tr.T.F.N’s, such that m and n 5 0 and

AV = [a']JG‘ZJ a3;a4](m,n) == [1: 5,6,9](m,n)

[bla b2: b3: b4] (mmn) = [2) 3; 5: 8] (mm)

tn
l
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Using exzpression (3.2.1) and (3.2.2), the a-cut for A and B are

=3
£
I

[5—4(1 —a)=,6+3(1 — a)7]

38— (1—a)=,5+3(1 —a)i]

Using expression (3.2.3), we write the sum of A and B as

Ala)+B(@) = [(8—5(1—a)#,11+6(1— a)7].

(3.2.11)

(3.2.12)

(3.2.13)

If we substitute different values of m and n in ezpression (3.2.13) we obtain the

following tables and graphs.

Table 3.1: Addition of two O(m, n)-Tr.T.F.N’s, where m = 2, n = 2.

o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ai{a)+ Bi(a) | 3.00 | 3.26 | 3563 | 3.82 | 413 | 446 | 4.84 | 5.26 | 5.76 | 6.42 | 8.00
Ag(a) + Ba(a) [ 17.00 | 16.69 | 16.37 | 16.02 | 15.65 | 15.24 | 14.79 | 14.29 | 13.68 | 12.90 | 11.00

Table 3.2: Addition of two O(m, n)-Tr.T.F.N’s, where m = 0.5, n = 0.5.

o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A1(a) T Bi(e) [ 3.00 | 3.95 | 4.80 | 5.55 | 6.20 | 6.75 | 7.20 | 7.65 | 7.80 | 7.95 | 8.00
As(a)+ Ba(a) | 17 | 15.86 | 14.84 | 13.94 [ 13.16 | 12.5 [ 11.96 | 11.54 | 11.24 | 11.06 | 11.00

Table 3.3: Addition of two O(m, n)-Tr.T.F.N’s, where m = 2,n = 0.5.

o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ai(a)+Bi(a) | 3.00 | 3.26 | 3.53 | 382 | 413 | 446 | 484 | 526 | 5.76 6.42 | 8.00
Az(a) + Ba{a) | 17.00 | 15.86 | 14.84 | 13.94 [ 13.16 | 12.50 | 11.96 | 11.54 | 11.24 11.06 | 11.00
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Table 3.4: Addition of two O(m, n)-Tr.T.F.N’s, where m = 0.5,n = 2.

«@ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ai(a) + B (@) 3 3.95 | 4.80 | 5.55 | 6.20 | 6.75 | 7.20 | 7.55 | 7.80 | 7.95 | 8.00
As(a) + Ba(ar) | 17.00 | 16.69 | 16.37 | 16.02 | 15.65 | 15.24 | 14.79 | 14.29 | 13.68 | 12.90 | 11.00
-
A;jdition of two O(2, 2)-Tr. T.F.N’s Addition of two O(0.5, 0.5)-Tr.T.F.N"s
o a“ Ai(a)+Bi(o) Az(a)+B2(a)
At(a)+Bi(a) Az(c)+B2(a)
1
1
Ad ion of two O(2, 0.5)-Tr.T.F.N"s Addition of two O(0.5, 2)-Tr.T.F.N"s
o 4 A(a)+Bi(o) Az(a)+B2(o) o 4 Aa)+Bi(a) Az(a)+Bz(a)
1] 1
3 8 11 17 : i

Figure 3.1: Addition of two O(,)-Tr.T.F.N’s.

39




(a)

(@)

We now make the following observations.

When m = 2 and n = 2, Graph 1 bulges outward and is often interpreted in
linguistic term as “more or less” or “dilatation” (or concave). This means that

we do dot have much confidence in the middle portion of the membership function.

When m = 0.5 and n = 0.5, Graph 2 bulges inward and is often interpreted in
linguistic term as “very” or “concentration” (or convex). This mean that we have
more confidence in the middle portion of the membership function than we do at

the end points.

When m = 2 and n = 0.5, the shape Graph 3 of the membership function
is different from those describe in (a) and (b). It bulges outward on the left
hand side and bulges inward on the right hand side. In linguistic terms this can
be interpreted as a mixture of “concentration” (or convex) and “dilatation” (or
concave). This mean that we are “more or less” satisfied on the left hand side of

the membership function and “very” satisfied on the right hand side.

When m = 0.5 and n = 2, the shape of Graph 4 of the membership function
is different from (a), (b) or (c). In this case it bulges inward on the left hand
side of the membership function and bulges outward on the right hand side. In
linguistic terms this is interpreted as a mixture of “concentration” (or convex)
and “dilatation” (or concave). This means that we are very satisfied on the left

hand side of the membership function and “more or less” satisfied on the right

hand side.
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Thus, we observe that due to the flexibility that is associated with O(m,n)-Tr.T.F.N’s,
the left hand side of the membership function can be estimated independently from
the right hand side. In actual practice, users choose the shape of the membership
functions from a collection of commonly used membership functions including trian-
gular and trapezoidal membership functions. The added benefit of O(m,n)-Tr.T.F.N’s
is that the parameters m and n can be easily manipulated to tune énd adjust the
shape, without having to change the supports or the cores of the membership func-
tion. Thus, O(m,n)-Tr.T.F*.N’s can be used to produce membership function for a,

number of imprecise concepts.
3.2.3 Difference A(—)B of two O(m,n)-Tr.T.F.N’s

Writing A and B in terms of their a-cuts, we have,

Al@) = B(e) = [a1(a), az(e)] + [~ba(e), —bi()]
= [a(a) = ba(a), as(a) - bi(a)]
= laz — (a2 — &1)(1 — @)=, a3 — (as — aa}(1 — &)%) +
[—bs + (b3 — ba)(1 — @), —by + (by — by)(1 — ) ™)
= o2 — b5 = (a2 — a2)(1 — &)™) — (b5 — ba)(1 = @))),

(as = by — (a5 — aa)(1 — @) = (b — by)(1 — @)7))] (3.2.14)
If we set m = n in expression (3.2.14), we obtain the following results.

A(@) - Bla) = [(a2—bs— ((az — a1) — (bs — by))(1 — @),
(a3 — b2 — ((as — ag) — (b — by))(1 — @) ] (3.2.15)

= [d— (do— d1)(1 — )7, dy — (d5 — da)(1 — @) %]
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where, di = (a1 — bs), da = (a2 — bs), ds = (a3 —by), dy = (ag — by).

In this case we make the following observations.

(a) Note that a-cut given by (3.2.14) is not the a-cut of a O(m,n)-Tr.T.F.N’s. Thus,
we conclude that the difference of two O(m,n)-Tr.T.F.N’s does not yield an

O(m,n)-Tr.T.F.N.
(b) If weset m = 1andn = 1 in expression (3.2.14), we obtain the a-cut of a Tr.F.N.
(c) If we set m =n in (3.2.14), then A — B yields an O(m,m)-Tr.T.F.N.

(d) If we let m and n become large in (3.2.14), then we have
limy, o oo(az — b3 — (a2 — a1)(1 — @) =) — (bs — ba)(1 — @)*)) = a1 — by
it n—soo(a3 — b2 — ((a3 — @g)(1 — @)= ) — (by — by)(1 — &)%) = aq — by
When m and n get very large, the limits of the a-cut converge to the difference

of their end points and do not depend on «.

(e) Similarly, it is obvious that when m and n get very small, the limits of the a-cut

given by (3.2.14) converge to as — b, and a; — b3 and do not depend on a.

In order to illustrate the difference of two O(m,n)-Tr.T.F.N’s, we consider the follow-

ing example.

Example 2 Consider the same two O(m,n)-Tr.T.F.N’s of Ezample 1 Using expres-
ston (3.2.1) and (8.2.2), the a-cut for fuzzy numbers A and B are given by expression

(3.2.11) and (3.2.12) respectively.

Using ezpression(3.2.14), we write the substraction of those two fuzzy numbers A and
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B as follows.

Ale) = B(a) = [(aa = b3~ ((az — a)(1 — @)= ) — (bs — bs)(1 = )%)),

(as — by — ((as — ag)(1 — @)% — (by — by)(1 — @) ™))]

= [(6-5—((6-1)(1—a)=)~(5—8)(1—a)")),

(6—3—((6-9)(1-a)r —(3-2)(1 —a)=))]

= [-4(1 - a)

=

~3(1 - a)",3+3(1 — a)= + (1 — a)%)(3.2.16)

If we substitute different values of m and n in expression (3.2.16) we obtain the fol-

lowing tables and graphs.

Table 3.5: Subtraction of two O(m,n)-Tr.T.F.N’s, where m = 2, n = 2.

(84

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

A1(e) — Bi(a) | -7.00

-6.64

-6.26

-5.86

-5.42

-4.95

-4.43

-3.83

-3.13

-2.21 | 0.00

Ag(a) — Ba{a) | 9.00

8.69

8.37

8.02

7.65

7.24

6.79

6.29

5.68

4.90 | 3.00

Table 3.6: Subtraction of two O(m,n)-Tr.T.F.N’s, where m = 0.5, n = 0.5.

o

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

Ai(a) — Bi(a)

-7.00 | -5.67

-4.48

-3.43

-2.52

-1.75

-1.12

-0.63

-0.28

-0.07 | 0.00

Az (CX) bl Bg(a)

9.00 | 7.86

6.84

5.94

5.16

4.5

3.96

3.54

3.24

3.06 | 3.00

Table 3.7: Subtraction of two O(m,n)-Tv.T.F.N’s, where m = 2, n = (.5.

(83

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

As(e) — By(a)

-7.00 | -6.22

-5.50

-4.82

-4.18

-3.58

-3.01

-2.46

-1.91

-1.29 1 0.00

Ag (a) _ Bz(a)

9.00 | 8.28

7.60

6.98

6.40

5.87

5.38

4.91

4.46

3.98 | 3.00
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Table 3.8: Subtraction of two O(m,n)-Tr.T.F.N’s, where m = 0.5, n = 2.

o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ai(a) — Bi() | -7.00 | -6.09 | -5.24 | -4.47 | -3.76 | -3.12 | -2.54 | -2.00 | -1.50 | -0.99 | 0.00
As(a) — Ba(ar) | 9.00 | 8.28 | 7.60 | 6.98 | 6.40 | 5.87 | 5.38 | 4.91 | 4.46 | 3.98 | 3.00

Substraction of two O(2, 2)-Tr.T.F.N"s Substraction of two O(0.5, 0.5)-Tr. T.F.N"s

Ai(a)+Bi(a)
Ai(a)+Bi(a) 4 o 4 Az(a)+B2(a)
o Az(a)+B2(a)
1
= £ = =

Substraction of two O(2, 0.5)-Tr.T.F.N’s

Substration of two O(0.5, 2)-Tr. T.F.N"s

A1(a)+Bi(oa) 1 oL A2(a)+Bz2(a)

Ai(a)+Bi(a) Ax{ay+Br{a)y

1

A g

Figure 3.2: Substraction of two O(,)-Tr.T.F.N’s.
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We now make the following observations.

(a) When m = 2 and n = 2, the graph bulges outward and is often interpreted in
linguistic term as “more or less” or “dilatation” (or concave). The form of the
membership function is very similar to the membership function of the addition

of two O(m,n)-Tr. T .F.N’s.

(b) When m = 0.5 and n = 0.5, the graph bulges inward and is often interpreted
in linguistic term as “very” or “concentration” (or convex). This mean we have
more confidence in the middle portion of the membership function than at its

end points.

(c) When m = 2 and n = 0.5, the shape of the graph is different to those describe in
(a) and (b). From (3.2.16), if we consider the left hand side of the membership

function, we have,

@ — ) _1-6y/(1 —a)+6ay/(1 -a)
& T

%(——4\/1 ~a—-3(1— a)2) =0, yields @ = 0.69. When o > 0.69, %(-4\/1—__(1*
d2
3(1- a)z) > 0, else @5(—4\/1 —a—-3(1- a)2) < 0. Thus, in this case a change

in the direction of concavity results in an inflection point.
Similarly, from (3.2.16), if we consider the right hand side of the membership

function, we have,

~241/(1 - @) + 240 /1 —a) + 1

1
4 (-14+a)/(1-0)

g;@+30—af+vT?a =

g2 ' 2
@(3 +3(1-a)’+vVI—a) =0, yields a = 0.87. When a > 0.87, dde?(S +

d?
3(1-a) ++v/T—a) <0, else @(3—1-3(1 —a)® 4+ vT—a) > 0. Since, there
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is a change in the direction of concavity, we conclude that there is an inflection

point at o = 0.87.

(d) When m = 2 and n = 0.5, the shape of the graph is different from those described
in (c). From (3.2.16), if we consider the left hand side of the membership function,

we have,

@ (41— o) —8vi=3) = 1-32y/(1=0a) +32a/(1 —a) +3

do? 4 (~14+a)v/(1-a)

(%2(—-4 (1—a)® —3yT—a) =0, yields a = 0.79.

%(—4 (1-a)’-3v1—a) >0, whena > 0.79 and aiiz(—-tl (1-a)-3vT-a)<
0, for @ < 0.79. Since there is a change in the direction of concavity, we conclude
that there is a point of inflection at a = 0.79. Similarly, if we consider the right

hand side of the membership function of (3.2.16), it can easily be shown that

there is a point of inflection at o = 0.48.

Thus, O(m,n)-Tr.T.F.N’s allow us to introduce fuzziness at various places in the
membership function. After a particular value of m and n have been selected, the
user can still go back and fine tune the membership. This added interaction and
flexibility associated in the use of O(m,n)-Tr.T.F.N’s are desirable features when

designing imprecise concepts.
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3.2.4 Multiplication A(.)B of two O(m,n)-Tr.T.F.N’s
Writing A and B in terms of their a-cuts, we have,
A(a)()Ble) = [o1(a), a2(@)]()[br (), ba()]
= [a(a)by(a), aa(e)ba(e)]
= [az — (a2~ 1) (1 — @), a5 — (a5 — as)(1 — @)*]()
]

= [(a2 — (a2 — @1)(1 — &)™) (b2 ~ (b — by)(1 — &)%),

Y

(b2 — (b2 — b1)(1 — &)™, b3 — (b — by)(1 — @)

(as — (a3 — aa)(1 — @)»)(bs — (ba — ba)(1 — ) *)]
Thus,
A@)()B(a) = [agby + (1 — @)™ (agby — 2a3by + asby) + (1 — @)= (az — a1)(bs — by),
asbs + (1 — &) (aqbs — 2abs + asbs) + (1 — @) (as — ag)(bs — by)]
(3.2.17)

Note that the product of two O(m,n)-Tr.T.F.N’s is not an O(m,n)-Tr.T.F.N.
If we set values of m = n =1 in (3.2.17), we obtain the results for the product of

two trapezoidal fuzzy numbers as follows,
Al)()B(a) = larby + afazby + arby — 2a1b1) + o?(aghy — aghy — arby + aiby),
agbs + aasbs + azby — 2a4by) + a2(a3b3 — agbs — a4bs + agdy)).
(3.2.18)
We now make the following observations on the product of two O(m.n)-Tr.T.F.N’s.

(a) Note that the a-cut given by (3.2.17) is not the a-cut of an O(m,n)-Tr.T.F.N’s.

Thus, the product of two O(m,n)-Tr.T.F.N’s is not an O(m,n)-Tr.T.F.N.
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(b) If weset m = 1 and n = 1 in expression (3.2.14), we obtain the a-cut of a Tr.F.N.

(c) On the other hand, if we set m = n in (3.2.17), then A(.)B yields an O(mn,m)-

Tr. T.F.N.

(d) From (3.2.14)we have
liM o0 G2by + (1 — &) (agb1 — 2agby + arby) + (1 — &)= (ag — a1)(bz — b1) = a1by
1My o0 @3bs + (1 — &) (agbs — 2a3bs + agbs) + (1 — @) (a3 — @) (bs — be) = agbs
When m and n get very large, the limits of the a-cut converge to the product of

their end points and do not depend on «.

(e) Similarly, it is obvious that when m and n get very small, the limits of the a-cut
given by (3.2.17) converge to their interior points asby and azbs and do not

depend on a.

Note that the a-cut given by (3.2.17) is not linear. However, under appropriate
assumptions the a-cut given by (3.2.17) can be approximated by linear membership

function.
3.2.5 Membership Function of A(.)B.

Let A and B be two O(m,n)-Tr.T.F.N’s. Using A and B respectively. The product
of two O(m,n}-trapezoidal type fuzzy numbers is given by expression (3.2.17) and is

as follows.

A(@)()B(a) = [aghy + (1~ &)™ (asby — 2agby + arbp) + (1 — @)= (ag — a1) (B — by),

agbs + (1 — o) " (agbs — 2a3bs + agbe) + (1 — @)™ (a5 — aq) (b — by)]
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In order to find the membership function for the fuzzy number ZE, we need to find
the interior points as well as the end points. To find the interior points, we set o = 1
in expression (3.2.17), and to find the end points, we set & = 0 in expression (3.2.17).

Thus we have,
A(l)()B(l) = [agbz, a3b3] (3219)
and

A(O)()B(O) = [agbg -+ (agbl — 20,252 + a1b2) + ((Lz - al)(bz — bl),
a3b3 - (a4b3 — 2(1363 + a3b4) + (CL3 - a,4)(b3 — b4)]
= [albl, a4b4] (3220)
In view of (3.2.20) and (3.2.19), the fuzzy number A(.)B can be written as

A()B = [a;bl,agbg, 03b3,a4b4]

The a-cut of the left hand part of fuzzy number A(.)B can be rewritten as follows:

A(@)Bi(a) = (a2 —a1)(by — by) ((1 - a)%)z +

((12b1 — 2&2[)2 +- albg) ((1 - Cf)ﬁ) + ngz (3221)

The a-cut in (3.2.17) of the right hand part of fuzzy number AB can be rewritten as

follows,

As(@)Ba(a) = (as — as)(bs — by) ((1 — a)%)2 +

(G;453 —_ 2&3b3 -+ a3b4) ((1 - O!)% + (1,353 (3222)

Note that (3.2.21) and (3.2.22) have a quadratic structure in (1 — o)= and (1 — a)n.

To find the membership function, we set
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Ai(a)B;(a) = z and Ay{a)By(a) = z and solve for « as follows.

| (0,2 — al)(bg — bl) ((1 i Ci)—’%)2 + (a2b1 — 20‘,21)2 + albz) ((1 — Ct);};) + a2b2 = I
(a,g — al)(bg — b;) ((1 - a)i)2 + (agbl — 2&2b2 + albz) ((1 — G!)%) + agbg —x = 0
(3.2.23)

“Solving for (1 — a)#

——(agbl — 2a2b2 + albz) + \/(azbl - 0.152)2 + 4(@2 — al)(bg — bl)il?)
2((12 _ Gl)(bg —_ b})

Bl

l-—a)= =

] _ —(agbl — 2a2b2 + albz) + \/(azbl - a1b2)2 + 4(0.’.2 - aq)(bg - bl):c) "
( B 05) B 2(@2 - al)(bz — bl)

_ —(Gle — 2a3by + albz) + \/(agbl — a1b2)2 + 4(&2 - a;)(bg — bl)a:) "
o - 2(ag — a1)(bs — b1)

(3.2.24)

Similarly, if we set Aq(a)By(e) = z, then we have

1 ——(a4b3 - 2&31)3 + a3b4) -+ \/(&453 — a3b4)2 -+ 4 (61.3 — G4)(bg o b4).’1?
a = -
2 (ﬁ',3 — a4)(b3 — b4)

(3.2.25)
Using (3.2.24) and (3.2.25) we have the membership function for A(.)B.

0 z<arh

a1hy <z < agh

- ~(agdy — 2a2b3 +a1bs) + \/(a2bx — a1b2)? + 4(az — a1)(b2 — by)z) "
2(az — a1)(ba — b1)

pap(z) = 1 agby <z < azbs

azbs < x < aghy

n
) —(a4by — 2a3bs + agbs) + \/(Mba ~ a3bs)? + 4 (a3 — aq)(bs — ba)z
2 (a3 — ag)(bs — by)

\ 0 T > aghy
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Example 3 Let A and B be two O(m,n)-Tr.T.F.N's. Using expression (3.2.1),

(5.2.2) and (3.2.17), we have

A(@)()B(a)

= [15-17(1—a)=+4(1—a)=, 30+33(1 — a)* +9(1 — a)7]

(3.2.26)

For different values of m and n in expression (3.2.26) we obtain the following tables

and graphs.

Table 3.9: Multiplication of two O(m,n)-Tr.T.F.N’s, where m = 2, n = 2.

o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A1{a)(*)B1(e) | 200 | 247 | 2.99 | 358 | 4.23 | 498 | 585 | 6.80 | 8.20 | 10.02 | 15.00
Ag(a)(%)Ba{cr) | 72.00 | 69.41 | 66.72 | 63.91 | 60.96 | 57.83 | 54.47 | 50.77 | 6.56 | 41.34 | 30.00

Table 3.10: Multiplication of two O(m,n)-Tr.T.F.N’s, where m = 0.5, n = 0.5.

o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A(e)(x)B1(a) | 2.00 | 3.85 | 5.76 | 7.63 | 9.40 | 11.00 | 12.38 | 13.50 | 14.33 | 14.83 | 15.00
Az(a)(x)Ba(a) | 72.00 | 62.63 | 54.81 | 48.33 | 43.05 | 38.81 | 35.51 | 33.04 | 31.33 | 30.33 30.00

‘Table 3.11: Multiplication of two O(m,n)-Tr.T.F.N’s, where m = 2, n = 0.5.

Q 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
A{a)(*)Bi{a) | 2.00 | 247 | 2.99 | 358 | 4.23 | 4.98 | 5.85 | 6.89 | 820 10.02 | 15.00
Ag(e)(x)Ba(a) | 72.00 | 62.63 | 54.81 | 48.33 | 43.05 | 38.81 | 35.51 | 33.04 | 31.33 | 30.33 | 30.00

"Table 3.12: Multiplication of two O(m,n)-Tr.T.F.N’s, where m = 0.5, n = 2.

o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ay(0)(*)Bi(e) | 2.00 | 3.85 | 5.76 | 7.63 | 9.40 | 11.00 | 12.38 | 13.50 | 14.33 | 14.83 | 15.00
Ag(a)(*)Ba{a) | 72.00 | 69.41 | 66.72 | 63.91 | 60.96 | 57.83 | 54.47 | 50.77 46.56 | 41.34 | 30.00
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Multiplication of two O(2, 2)-Tr.T.F.N’s

Multiplication of two Q(0.5, 0.5)-Tr.T.F.N’s

3
At(a)(*)Bi(a) Az(a)(*)B2(a)

2 15 30 72

4 A(a)(*)B1(a)
1

Az(a)(*)B2(o)

Sl

o

72

Multiplication of twe O(2, 0.5)-Tr.T.F.N’s

Multiplication of two O(0.5, 2)-Tr.T.F.N’s

o & A@)()Bi{a) Az(a)(*)B2(cx)

o 4 Atla)()Bi(a)
1

A2(a)(*)B2(a)

Figure 3.3: Multilication of two O(,)-Tr.T.F.N’s.
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We make the following observations on the product of two O(m,n)-Tr.T.F.N’s.

(a) When m = 2 and n = 2, the graph bulges outward and is often interpreted in

linguistic term as “more or less” or “dilatation” (or concave).

(b) When m = 0.5 and n = 0.5, the graph bulges inward and is often interpreted in
linguistic term as “very” or “concentration” {(or convex). We have more confidence

in the middle portion of the membership function than we do at the end points.

(c) When m = 2 and n = 0.5, the shape of the graph is different from those describe
in (b) and (c). The graph bulges outward on the left hand side of the membership
function and bulges inward on the right hand side of the membership function.
In linguistic terms this is interpreted as a mixture of “dilatation” (or concave)

and “concentration” (or convex).

(d) When m = 0.5 and n = 2, the shape of the graph is different from those described
in (b) or (c). The graph shrinks inward on the left hand side of the membership
function and bulges outward on the right hand side of the membership function.
In linguistic terms this is interpreted as a mixture of “dilatation” (or concave)

and “concentration” (or convex).

O(m,n)-Tr. T.F.N’s are well suited for a broad spectrum of fuzzy financial modeling.
The shape of the membership functions can be modified by varying the values of m
and n. Furthermore, O(m,n)-Tr.T.F.N’s are more flexible to describe the vagueness
in the fuzzy parameters for the fuzzy binomial option pricing model considered in

Chapter 5.
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3.2.6 Division A(:)B of two O(m,n)-Tr.T.F.N ’s

Writing A and B in terms of their a-cuts, we have,

(A(@)()B(0)) = [a(a), as(e@)](.) {bz(la), bl(la)J = [Z;((Z)) :fEZ)) }

= [az—(az—a1)(1~a)]# a3—(a3—a4)(1_a)%

: . }(3.2.27)
bg “(b3-‘-b4)(1 —'C!) bg—-(bg—-bl)(].—a)?ﬁ

If we set m =n = 1 in expression (3.2.27), we obtain the following expression

0B = (S S e 6229

We now make the following observations on the division of two O(m.n)-Tr.T.F.N’s:

(a) The expression given by (3.2.27) is not an O(m,n)-Tr.T.F.N. However, (3.2.27)

can be approximated by a linear shape fuzzy numbers under certain assumptions.

(b) If we set m = 1 and n = 1 in expression (3.2.27), we obtain the a-cut of the

division of two Tr.T.F.N's.

(c) Another important observation that can be made is that if we let m and n get

very large in (3.2.27), then

limy, oo ag — (@ — a1)(1 — a)? _a
b3 — (b3 - b4)(]. - CE); b4
and
az — (az — aq)(1 — a)% _ay

hmm,n——;oo

bg - (bg - b])(l - Ct)# B b_l.

When m and n get very large, the limits of the a-cut converge to the division of

their end points and do not depend on «.

(d) Similarly, it is obvious that when m and n get very small, the limits of the a~-cut

given by (3.2.27) converge to 22 and 2

7 5 respectively, and do not depend on «.
3 2

54



Example 4 Let A and B be two O(m,n)-Tr
5—4(1—

.T.F.N’s, then

6+3(1—a)n

H

A@OBE) = |7

3—(1~a)m

(3.2.29)

For different values of m and n in expression (3.2.29) we obtain the following Tables

and graphs.

0.6

Table 3.13: Division of two O(m,n)-Tr. T.F.N’s, where m = 2, n = 2.

0.7

08 1 09

0.2 ] 03

04 | 05

0.42

0.51 | 0.63

1.00

0 0.1

a
0.22

0.26 | 0.30 | 0.36

2.88 | 2.59

2.00

0.13 | 0.15| 0.19

3.54

3.34

3.12

3.74

Ai(e)(x)Bi()
Az()(*) Ba()

431 | 4.12 | 3.93

4.50

‘Table 3.14: Division of two O(m,n)-Tr.T.F.N’s, where m = 0.5, n = 0.5.

04 | 05| 0.

610

0.9
0.99

71038

1

00

0.2
0.35

0 0.1

R

0.3
0.47

0.59 | 0.70

0.80

0
2

.88

0.95
2.07

15 2.02

2.00

0.1310.24

2.98

2.68 | 245 | 2.

28

Ai(@)(x) Bi(e)
450 | 3.85 | 3.36

Az () (+) By(a)

Table 3.15: Division of two O(m,n)-Tr.T.F.N’s, where m = 2, n = 0.5.

0.2

03 | 04 | 05

0.6

0.9
0.74

0.8
0.63

0.7

1.00

0 0.1

(0

0.31]0.38

0.45

0.53
2.25

2.00

0.21
3.76

0.16
4.11

0.13

Ax(e)(x)Bi(c)

0.26
3.45

2.94

3.18

2.74

2.56 | 2.40

4.50

Az(a)(*) By(a)

Table 3.16: Division of two O(m,n)-Tr.T.F.N’s, where m = 0.5, n = 2.

o 0 [01[02]03[04[05[06]07]08]09] 1
A1(a)()B1(c) | 0.13]0.220.32 [ 0.40 | 0.49 | 0.56 | 0.63 | 0.70 | 0.76 | 0.83 | 1.00
Ag(0)(*)By(ar) [ 4.50 | 4.04 | 3.68 [ 3.39 | 3.15 | 2.95 | 2.78 | 2.63 | 2.48 | 2.32 | 2.00

%)




Division of two O(2, 2)-Tr.T.F.N’s

Division of two O(0.5, 0.5)-Tr. T.F.N"s

1
Ai(c)(:)B1(a) Az(a)(:)B2(a)

4 A(a)(:)B1(a)
1

Az(0)(:)B2(ct)

|

i

1

1 1

L b

1 i i |

I § i 1

L L

E ] | 1

b | i

] i i ]

] i i I

| i I I

i i 1 ]

I ] i i

! i i I

) L ~
0125 1 2 45 0.125 1 2 4.5
Divion of two O(2, 0.5)-Tr.T.F.N’s Division of two O(0.5, 2)-Tr. T.F.N’s
o b A(@)()Bi(a) Az(a)(:)B2() o 4 A(a)(:)B1(a) Az(a)(:)B2(a)

0.125 1 2 4.5

0.125 1 2

4.5

Figure 3.4: Division of two O(,)-Tr.T.F.N’s.
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We, now make the following observations.

(a) When m = 2 and n = 2, the graph bulges outward and is often interpreted in

linguistic term as “more or less” or “dilatation” (or concave).
g

(b) When m = 0.5 and n = 0.5, the graph bulges inward and is often interpreted in
linguistic term as “very” or “concentration” (or convex). We have more confidence

in the middle portion of the membership function than at its end points.

(c) When m = 2 and n = 0.5, the shape of the graph is different than those describe
in (b) and (c). There is no point of inflection on either sides of the membership

function.

(d) When m = 0.5 and n = 2, the graph bulges outward on both sides of the mem-
bership function. There is no point of inflection on either sides of the membership

function.
3.3 Conclusion

In this chapter a class of O(m,n)-Tr.T.F.N’s is introduced as a generalization of the
Tr.T.F.N’s, and some of their properties are discussed using +, —, x and + operations.

Some numerical examples are also provided to reinforce the results.
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Chapter 4

Moment Properties of
O(m,n)-Trapezoidal Type Fuzzy
Numbers

Carlsson and Fuller [30] and Fuller and Majlender [53] discuss the possibilistic mean,
interval valued possibilistic mean, possibilistic variance and possibilistic covariance
for Tr.F.N’s. Carlsson and Fuller [31] show the usefulness of possibilistic mean value
and variance of fuzzy numbers by applying it to a fuzzy real option pricing model. In
the present chapter we derive, on the lines of Carlsson and Fuller [30] and Fuller and

Majlender [53] similar results for O(m, n)-Tr.T.F.N’s.

4.1  Possibilistic Mean of an O(m,n)-Tr.T.F.N
Let A = [ay, 09,03, 4]o(mn) be an O(m,n)-Tr.T.F.N such that the a-cut of A is given
by

Ala) = [a2— (ag—a1)(1 — a)#,a@ — (as —aqg)(1 ~ a)%]

On the lines of Carlsson and Fuller [30] and Carlsson and Majlender [53], we have

the lower possibilistic mean M, (A) as
1 1 1
M.(A) = Qf aaq(o)da = 2/ o ((12 —(az — a1)(1 — a)ﬁ) doy
0 0

58



1 1
= Zazf ada — 2(a — al)f ol — a)mda
0 0

mo 14m m2 1+2m 1
= — — “m ]_ —_ “m
%+ 20 = m) [1+m(1 T rma e Y ",
2m2(ag — ay)
= — 4.1.1
@ {(1+m)(1+2m) ( )
Similarly, the upper posibilistic mean
1
M*(A) = 2/ aaz(a)do
0
2n%(a3 — a4)
= - 4.1.2
% [(n+1)(2n+1) (41.2)

The average of M(A) of M,(A) and M*(A) is

I Y T el [cx = e R e )
2 2
32-21-03 B [(1?217(7(,1)2(1— f 12)m)J B [(1f%§(;j42)n)} '

(4.1.3)

When A is a symmetric fuzzy number, such that (as — a1) = (a4 — @3) and m = n,

then from (4.1.3) we have,

an + Qg

M(4) = 23

(4.1.4)

Note that in this case M(A) is independent of m and n. We make the following

observations on the possibilistic mean of an O(m,n)-Tr.T.F.N.

(a) When m = 1, the lower possibilistic mean M, (A) is % + %.

(b) When n = 1, the upper possibilistic mean M*(A) is % + %5.

m2(a2 - 0',1)
(1 +m)(1 +2m)

lower possibilistic mean M,{A) converges to a;.

(c) When m — o0, i.e, limy.oo @y —

= a3. This mean that the
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2n2(az — a4)
(n+1)(2n +1)

upper possibilistic mean M,{A) converges to ay.

(d) When n — oo, ie, lim, o a3 — [ } = @4. This mean that the

(e) hmm,n-——)oo 2 + % - l: mz(aQ — ai) J - [ nz(a3 _ a4) } = a1 + a4 .

2 (1+m)(1+2m) (1+n)(1+ 2n) 2

(f) When m = n = 0, the possibilistic mean of A is g2 ;— %,

Also, note that lim,, , ... M(A) is independent of m and n.

4.1.1 Interval Valued Probabilistic Mean of an O(m,n)-Tr.T.F.N.

Let A = (a1, az, a3, @4)o(m,n) be an O(m,n)-Tr.T.F.N such that m,n > 0, and m #n.
We now show that M(A) C E(A). As in Carlsson and Fuller [30] the lower probability

mean of A is given by,

E(A) = /{:al(a)dwf:[ag—(az—al)(:x—a)#]da

1
= ag—(ag—al)[(l—a)#da
0
m

= ay+ (ag — a;) [1+m(1——a)b§£]:
= a—(as — a1) [1fmJ (4.1.5)

Similarly, the upper probability mean of A is given below,

E*(A) = j: az{a)da = fol ez — (as — ag)(1 — @)= )dex

= a3 — (a3 — ag) [-1-%] (4.1.6)

From (4.1.1) and (4.1.2), the interval value possibility mean of A is as follows,

M(A) = [M.(A), M*(A)]

2m? as — ( ) 2n?
) —laz—a
1+m)(1+2m) ° TR I D2e+1)

- [ag—-»gag—al)(
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From (4.1.5) and (4.1.6), the interval value probability mean of A is as follows,

E(A) = [E.(A), E(A)] = |as — (a2 — a1) ——, a5 — (a5 — aq)——] .
14+m 1+n

We now state the following Lemma;
Lemma 4.1.1 If A € F is a fuzzy number with strictly increasing and strictly de-
creasing (and continuous) functions then its interval-valued possibilistic mean is a

proper subset of its interval-valued probabilistic mean, i.e M(A) C E(A).

Lemma 4.1.1 is similar to Lemma 1.7.1 and its proof follows on the same lines of
Carlsson and Fuller [30]. In view of Lemma 4.1.1, we have M(A) C E(A).
We now make the following observations on the interval valued probabilistic mean

and possibilistic mean of an O{m,n)-Tr.T.F.N.

(2) When m = 1, the lower probability mean E,(A) is @ ; iy
(b) When m — oo, then lim,,_,o, az — ﬁ(lii;m@ = q;. The lower probability mean

E.(A) converges to a;.

(c) At n =0, the upper probability mean E*(A) is equal to as.

(d) When n = 1, the upper probability mean E*(A) is equal to % ; 2y

n(az — ayq)

Wh ,th li n— 00 -
(e) en n — o0, then lim as Tom

= a4. The upper probability mean

E*(A) converges to aq.

(f) When A is a symmetric fuzzy number, ie., m = n and ay — a; = a4 — a3 then,

the crisp probability mean of A is,

S S SR

as + as

= = | (4.1.7)
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Note also that the probability mean of A is independent of m and n. E(A) given
by (4.1.7) is equal to M(A) which is given by (4.1.4). This property is observed

by Carlsson and Fuller [30] also for triangular fuzzy numbers.

(g) It is easy to see that,

n a2+a3_( —a) m . ' 0z +as
im, n—o 2 @2 ! 14+m 14+n N 2

Thus we see that limp, ,_ E(A) is is independent of m and n and converges to

az + az
T

4.1.2 Possibilistic Variance of O(m,n)-Tr.T.F.N,

If Ais an O(m,n)-Tr.T.F.N, then using (1.7.17) the possibilistic variance of A can be

computed as follows.

Var(A) = foléa(ag(a)—al(a))zda
— .;./Ola[(a3—(a3—-a4)(1—a)%)—(ag—(az—al)(z—a)rf:)]zda
1

- ; /01 o [(a ~ ) — (aa — ag)(1 — @)% + (a2 — ar) (1 — ) >

2
do

| WS |

1 ! 1 ! 1 !
= 5(a,3——a2)2/ ada+§(a3—a,4)2/ a(l—a)%da+§(ag—a1)2/ ol — )= da
0 0 0
1 1
—(ag—ag)(aa—a4)f a(1—a)%da+(a3—a2)(a2—a1)f o(l—a)* da
0 0

~ (a3 - ag)(as — @) fo a(l — )i+ da (4.1.8)
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Thus,

Var(A) = flas— )+ [4{5&“1;(??31)} i [4(?3%?1?;)}

- rﬁ‘;}i@(f_fg;);ﬂ__+ . Ejﬁ =y

(m+n+2mn)(m +n + mn)

(4.1.9)
The following result that follows as special cases of (4.1.9) can be found in [30).

(a) If m =n in expression (4.1.9) we obtain the variance of an O(m,m)-Tr.T.F.N as

_ (as—a)® | m?(as — a2) ((a2 — a1) + (a4 — a3))
Var(4) = it (L +m)(1 + 2m) *
m*((a4 — as) + (az — a1))?
12+ m)(1 +m) (4.1.10)

(b) If we set (a2 —a1) = (a4 — as) = o in expression (4.1.10), we obtain the following

result for the variance of a symmetric O{m,m)-Tr.T.F.N:

_ (as—a2)®  2mPa(as — as) m2a?
Var(4) = I T mirem T @m0t m

(4.1.11)

(c) If we let m = 1 in expression (4.1.10), we obtain the following result for the

variance of a Tr.F.N.

Var(A) = (a5 —4a2)2 " (a3 — a2) (a9 —'601) + (a4 — a3)) + ((as — a3) ;—4(0,2 —ay))?

(4.1.12)

(d) If we set m =1 and (a3 — a1) = (a4 — a3) = @ in expression (4.1.10), we obtain
the following result for the variance of a symmetric Tr.F.N.

2

2
a3 — a xldas — a 8]
(as 2)+ (a3 2)+

A) = — 1,
Var(A) 1 3 5 (4.1.13)
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(e) If we set m = 1, ay = a3 and a3 = ay in expression (4.1.10), we obtain the

following result for the variance of a T.F.N

((as = a2) + (ag — a1))?
24

Var(A) = (4.1.14)

(f) Now, if a3 — ag = a3 — a; = « in expression (4.1.14), we obtain the variance of a

symmetric T.F.N as follows.

a‘Z

Var(A) = < (4.1.15)

Let A € F, where F is the family of all O(m,n)-Tr.T.F.N’s and let @ be a real
number. If the fuzzy number A is shifted by 6, then in the following theorem we show
that the possibilistic mean of A shifts by @ and the variance of an O(m,n)-Tr.T.F.N

Is invariant to shifting.

Theorem 4.1.1 Let A € F, where F' is the family of all O(m,n)-Tr.T.F.N’s and let 6
be a real number. If fuzzy number A is shifted by 8, where, B(c) = [ay(a) + 6, az{c) + 6]

such that,

(b) Var(B) = Var(A).

Proof. Let A(a) = [a1(a), a2(a)], @ € [0,1]. Then, we have
B(a) = A(a) + 0 = [a1(a), az(a)] + 60 = [a1(@) + 6, as(e) +46],

Thus, using expression (1.7.2) for the crisp possibilistic mean of a fuzzy number, we
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obtain that,
M(B) = /0 o [ar(c) + 0+ ax(@) + 6] da
= /[; a [a{a) + ax(e)]da + QfEJf0 ado
= /1 a [ai(a) + ax(a)lda+60=M(A)+6 (4:1.16)‘

Thus, (4.1.16) yields that if fuzzy number A is shifted by @ then, the possibilistic

mean of A shifts by € as well. Similarly, for part (b) of the theorem we have

Var(B) = %/0 o ((aa(a) + 0 ) — (a1(e) + )P da = é/ﬂ a[(ag(e) — ai(e))) do
= Var(A) (4.1.17)

From(4.1.17), it follows that variance of an O(m,n)-Tr.T.F.N is invariant to shifting.
We observe here that Theorem 4.1.1 is a generalization of the results given by Carlsson
and Fuller [30] and is independent of the type of fuzzy numbers but is dependent on

the a-cut only.

4.1.3 Possibilistic Covariance of Two O(m,n)-Trapezoidal Type
Fuzzy Numbers.

On the lines of Carlsson and Fuller (30].and Fuller and Majlender [53], the possibilistic

covariance between two fuzzy numbers, A and B is defined as follows,

Co,B) = 5 [ alaae) - ax(@)(ba(e) ~ bu(e)] do

-1 / o [aa(@)ba(a) — an(@)bs(@) — ar(a)ba(e) + as(@)br(a)) da

2 Jo
= %/ﬂ a&z(a)bz(a)da—%/o o ag(a)lzvl(a)da—%/0 oy (a)by(ar)da
+% fO @ ax(e)b{a)da (4.1.18)
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If A and B are two O(m,n)-Tr.T.F.N’s of the type given by (3.2.1) and (3.2.2), then

the a-cut for A and B are as follows.

Ale) = [m(a),a2()] = [a2 — (a2 — a1)(1 — @)=, a5 — (a5 — ag)(1 — &)%)

Bla) = [bi(e),ba(a)] = [b2 — (bp — b1)(1 — @), bs — (b3 — bg)(1 — a)7]

Below, we enumerate various possibilities of possibilistic covariance between two

O(m,n)-Tr. T.F.N’s.

(a) Using (4.1.18), we obtain the possibilistic covariance between two O(m,n)-Tr.T.F.N’s

as follows,

[ (as — az)(bs — by)
4

1?((by — bs)(as — ag) + (a4 — a3)(bs — bz)]} i

Cov(A,B) =

2(1 +n)(1 + 2n)

[n®(ba = b3)(a4 — as) + m?(bs — by)(az — al)] n
I 4(2+n)(1 +n)

_m2{(b2 — bl)(a3 — ag) + (az - al)(b3 - b2)]] +
i 2(1+m)(1+ 2m)

[2m? (b — by)(aq — a3) + (a2 — a1) (by — ba)]]
2(m + n 4 2mn)(m + n + mn) '

(4.1.19)

(b) If we set m = n = 1 in the expression for the possibilistic covariance given
by (4.1.19), then we obtain the following result for the possibilistic covariance

between two Tr.F.N’s, as obtained by Carlsson and Fuller [30] and Fuller and
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Majlender [53].

Con(a,5) = [l
(05 = ) (b4 = b) + (b = b) + (ba = bo) (a4 = as) + (0 = ] .
I 12
[ (b4 — bs) ({24 — a5) + (a2 — 1)) + (b2 — b1)((a2 — 1) + (a4 — as))}
24

(4.1.20)

(c) If we set ay = ag, ag = ay, by = b3 and b3 = by in expression (4.1.20), we obtain

the possibilistic covariance between two Tr.F.N’s

Cov(A, B) l(ba — b2)((as — a5) + (a2 — al));‘l(bz - 51)-((‘12 — 1) + (ag — az))}
[(as — a2) + (az — a1)][(bs — b2) + (by — by)]
|: 24 (4.1.21)

(d) If we assume that A and B are symmetric fuzzy numbers, ie, (62 —ay) =
(a3 —az) = e and (by — 1) = (b3 — by) = 8. Then, we obtain the following results

for the covariance between two symmetric fuzzy numbers.

o o - (4.1.22)

Cov(A, B) = [(a+a)(ﬁ+ﬁ)} _ [(205)(2[3)} _ aéﬁ

The results given by expression (4.1.22) is identical to the possibilistic covariance

between two symmetric T.F.N's reported by Carlsson and Fuller {30].

The following is a generalization of Theorem 4.1 proved by Carlsson and Fuller [30].
Theorem 4.1.2 Let A and ;o € R and let A an B be two O(m, n)-Tr.T.F.N’s. Then,

Var(A +pB) = XVar(A) + p*Var(B) + 2[AulCov(4, B) (4.1.23)
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where the addition and multiplication by a scalar of fuzzy numbers is defined by the
extension principle given in Chapter 1.
Proof: Let, A(a) = [a1(a), az(@)] and B(e) = [bi(e), ()], V & € (0,1].

Suppose that A >0 and g > 0, then the a-cut for AA + pB is given by,

A(a) +pBla) = [Aa(a), Aaa(a)] + [ubi(e), pba(er)]

= [Aai(a) + pbi(a), Aaa(a) + pby(a)] (4.1.24)
Thus,
Var(AM +uB) = %fﬂ (Aaa(a) + pba(a)) — (Aar(a) + pbi(a))’da
- 2 f Ma2(e) ~ ax()) + (ba(@) = b1(@))] do

= [ Jenle) st [ L) ~ )+
23 [ 5(@(@) = ax(@)) (o) ~ ()i
= AVar(A) + p®Var(B) + 2\uCov(A + B) (4.1.25)
Now, assume that A <0 and p < 0, then the Var(\4 + pB) is as follows.

M(e) +pB(@) = [Aax(@), dar(a)] + [uby(e), ubr ()]

= [haz(a) + pba(), Aar(e) + pby ()]

Thus,
1/t 5
Var(a+uB) = 3 [ (ai(e) +uia(@) - Oax(@) + pbo(o) o
1

= 3 D)~ ) + nr(e) ~ () do

— fo 1 5 (a1(e) — aa(a))?dar + /0 1 5 (@) - bo(c)dar+
2 [ 3(en(@) — aa(e)(ta(e) — b))

= AVar(A) + p*Var(B) + 22uCov(A + B) (4.1.26)
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Suppose now that A > 0 and p < 0. Then we get

A(a) +pB(a) = [Aag(e), Aag(a)] + [pbe(e), pbi ()]
= [Aa1(a) + pba(a), Aaz(a) + pbi (@)
Thus,
Var(AM + uB) = % fo ' (haa(@) + 1 (@) — (Mar(@) + pubo(@))*d
= 3 @) = 0x(@) + 0 @) — b
Tl 11
= 2 [ (o) —an(@da+ 4 [ Lion(o) - tu(e)ie -
i [ 5(aa(e) ~ m(0)bn(e) ~ b))
= AVar(A) + p*Var(B) ~ 22uCov(A + B) (4.1.27)
Similar reasoning holds for the case when A < 0, and p > 0. It is important to point
out that the above theorem is proved for O(m,n)-Tr.T.F.N’s, yet the proof is indepen-

dent of O(m,n)-Tr.T.F.N’s and is dependent upon the a-cuts only. Therefore, it ap-

pears that the theorem may be proved without the assumption of O(m,n)-Tr. T.F.N’s.

In this section on the line of Fuller and Majlender [53] we discuss moment prop-
erties of various weighted functions. We derive expressions for weighted possibilistic
mean, weighted possibilistic variance and weighted possibilistic covariance related to
O(m,n)-Tr.T.F.N’s.

Using the theory of weighted functions discussed in this chapter, an alternative
fuzzy binomial option pricing model (Chapter 5) can be developed. In the fuzzy
binomial option pricing model developed in the next chapter (Chapter 5), instead of

taking probability expectation for the call price, we could as well opt for possibilistic or
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weighted possibilistic expectation. These techniques using possibility theory concepts
are generalizations of already existing methods and will be the subject of our future
research.

In this section we provide some application of the results proved using some weighted

functions.

4.1.4 Application 1

Let f(a) = (w+ 1)o* be a weighted function and A = (a1, az, 03, 84)0(m,n) be an
O(m,n)-Tr.T.F.N with interior points, a; and a3 and end points a; and a,. Then the

a-cut of A is given by

A=

Ale) = [a(a), a2(0)} = [a2 ~ (a2 — ar)(1 — @)=, a3 — (a3 — as)(1 — )

]

The lower weighted possibilistic mean values of A is obtained as follows.

Using (1.8.5), we have

M3(4) = /g o1 () f(a)de = fo (a2 — (a3 — a1)(1 — )% )(w + 1)o da
= ax(w+ 1)/0 a“da — (a2 — a1)(w + 1)/{) (1-a)ma“da

! 1
= apw+ 1)/ a’do — (ap — a3 )(w + l)f (1 — q)lmt-1lgl+-14,
0 0

@t 7t F(—i— + )INw + 1)
= (1,2(0.)"!‘1) l:w+1] —(w-{-l)(ag—al) ]:)E]- 2)
0 —tw+
(& + 10w + 1)
= ap— (w+1)(az —a;) | — (4.1.28)

1
F(a+w+2)
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r§;+nmw+n

hme_(A) = iig(l]az—(w-i-l)(ag—al)

w=0 I‘(i +w+2)
m
_ B mlag — a1)
- @ 1+m
(i)
1
M—+1)Nw+1)
'n{l-znooM;(A) = n%iiréoag—(W'i‘l)(GQ"'al) m].
I(—+w+2)
m
= a

Similarly, the upper weighted possibilistic mean values of A are as follows.

Using (1.8.6) we have

D(- + DI +1)

(4.1.29)

M.;.(A) = a3 — (w -+ 1)((1.3 - 0‘,4) 1
f '=+4+w+2)
n
and
1
T'(= + Dl(w + 1)
hr% M?-(A) = lim ag — (w -+ 1)(&3 e (1.4) n
w— w—0 ‘ F(—+w+2)
7
N nlas — aq)
l1+n
1
(= + 1)[{w + 1)
lim M;(A) = lim ag — (w + 1)(0,3 - !L;) n

i
M-
(n+w+2)
= (14
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Using (1.8.4) the f-weighted interval-valued possibilistic mean of A is as follows.

-

(= + 1)T(w + 1)
as — (w + 1)(az — ay) mn

I‘(% +w+2)
[M7(A), My (A)] = , (4.1.30)

(2 4 10w+ 1)
a3 — (w + 1)(0,3 - 04) n

1
I'{— 2
I (n+w+ ) |

The f-weighted possibilistic mean of the fuzzy number A, defined by (1.8.2), is the
arithmetic mean of its f-weighted lower and upper possibilistic mean values, i.e.,

Wy - MM

ap + as (w+1)(62—ﬂ1)F(%+1)F(w+1)
s

2F(ﬂ% +w+2)
= , (4.1.31)
(w+1)(as — a4)F(—:; + 1w + 1)

2F(—1— +w+2)
)
and

1
lim M;(A) = lim az + a3 (w+1)(az - al)F(a + 1)D(w + 1)
f = -

w—0 w—0 2

1
(= +w+2)
m

(w+1)(as = a)T(- + DI +1)

1

- e () (de=m)

If we assume that A is a Tr.F.N, then, on the lines of Carlsson and Fuller [30] and

Fuller and Majlender [53] we have the following results:

(a) If we set m = 1 in expression (4.1.28), the f-weighted lower possibilistic mean
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value of A is converges to

Mi(4) = a-(W+1)e-a) F%%Q}

Thus,

g — 4y _ a1+ aq

lim My (A) = limas —

w—0 w—0 Ld+2 - 2
) _ . Gz — aq

A poeed l — ==
M) = ey =

(b) If n =1 in expression (4.1.29), the f-weighted upper possibilistic mean value of

Alis
M?(A) = a3 — (w+1){(az —a4) [P_(?(E_(j:;_)—l):l
— az — Q4
IR

Thus,

a3 — a4 a3+ a4

lim M} (A) = limas—

w—0 w—0 w 2 o 2
Jim M (A) = Jlim g =St~

(c) Given the weighted function (w + 1)a and the fuzzy number A then the f-

weighted interval-valued possibilistic mean A is given below as

g — Q1 a5 — Qg
M A = _A M = —_—
) = M), My () = og = 2L, oy 4 2]
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(d) The f-weighted possibilistic mean of A, is the arithmetic mean of its f-weighted

lower and upper possibilistic mean values, i.e.

_— 1 Gz —a; a4 — Q3 1 a4y — a3z — a9 + @1
M(A) = = - i
r(A) 2[a2+a3 wi2 Tug2 ) " g|tat w+2

(e) When w — oo, the f-weighted possibilistic mean of A, is as follows,

_— 1
lim Mf(A) = lim 5 I:ag+a3+ (a

Ww—00

4~ 03— Qy-+a1)| g+ a3
w+2 2

and

lim M;(A) = lim 1 [ag +as + (

w—0 w—0 2

ag — a3 — Gy + a4q
w+ 2

gz + az + a4 + a
4

4.1.5 Application 2

1
vV1i—a

function, then on the lines of Carlsson and Fuller [30] and Fuller and Majlender

Let A be an O(m,n)-Tr. T.F.N and let f(a) = (w—1) ( - 1) be a weighted

[63], the f-weighted lower and upper possibilistic mean values of fuzzy number A are

obtained as follows.

M3(4) = /:[ag—(ag—al)(l—-a)?lﬁ](w—l)( ! —1)010:

V1 -«

_ m*(ag — a;)(w — 1)
= gy [(w_m+m)(1+m)} (4.1.32)
Thus, we have
. - . . m2(02 - al)(w - 1)
ili%Mf 4) = il_%ag - [(w —m-+mw)(l+ m)]
_ m(az — a;)
- 4y [m)_] | (4.1.33)
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b M7 (4) = Jim o [ 2001 }

W00 (w—m-f—mw)(l—{—m)
_ m?(az — a;)
= ay— [W} , (4.1.34)
dm Mp(4) = Tim e~ {(;n _(,:f T ggﬁ;};)] = an, (4-1.35)
_ . mZ(ag - al)(w — ].) _
ifl—n»oM (4) = iulin()@— [(w—m—i—mw)(l +m)] = G (4.1.36)

The upper weighted possibilistic mean is

) = [os = (02 a1 - )0 ~1) (s 1) do

f l1-o
— . n*(ay — az)(w — 1)
- [(w__ner)(Hn)]. (4.1.37)
Thus,
: L n?(aq — az)(w — 1)
EE%M}(A) N clul—%as—*— [(w—n—{—nw)(l-i-n)}
_ . n{ay — az)
— a4 {‘——"‘(Hn) } (4.138)
: o n*(aq — az)(w — 1)
2 MA) = Jim e+ [(w —n+w)(l +n)]
o n?(ay — ag)
= 4yt [ Lr } (4.1.39)
. - n*(aq — ag)(w — 1)
Am My(4) = lm as+ [(w n T w) (L ¥ n)] = 4 (4.1.40)
. (G,4 - a3)(w - 1)
?111_>rr{1]M+(A) = hm as + [(w )i —|—n)] = ag (4.1.41)

From (4.1.32) and (4.1.37) we obtain
MA(A) = [M7(A), My(4)

= o (FRore), e (Sl sle D]

(4.1.42)
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That is,

n*(w — 1)(ay — a3) _ mPag —a1)(w—1)
(w—n+nw)(l+n} (w—m+mw)(l+m)

Hf(A) = as + ag -+

| —

(4.1.43)
Now, when m = n, a4 — a3 = a2 — a1 = «, then the expression (4.1.43) becomes
— 1
My(A) = 5 la+ag) (4.1.44)

and

- o Ea . ?(w—1)(as —az)  m?(ag —ar)(w — 1)
Jim My{4) = Jﬂz[” St o—nt ) mt D) (w—m—f—mw)(l-{—m)}

1 m? (ag — a1) n? (ag — a3)
= 3 {ag +a3 — (+2m+m?) " (1+2n+n%)]’ (4.1.45)
m M m nas—a)w=1)  miag— ar)(w-1)
1 = 1 = _
ol MA) =0 {“2 s e ) (@ _m+m)(1+m)] ’
a4 + aq

= = (4.1.46)

2, _ _ 2. B
lin}JHf(A) = hr%%[az-f-as-}— n(e —ag)(w — 1) m*(ay — ar)(w — 1) }

(w—n+nw)(l+n) (w—m+mw)l+m)

(a4 —as) mfa; — al)] (4.1.47)

1 e
= 5[“2”” +n)  (1+m)

(a) If we set m = 1 in expression (4.1.32), the f-weighted lower possibilistic mean

value of A becomes

M7(A) = a— [(“’2 2—(;;)&"1)_ 1)} , (4.1.48)
and

. _ . ag —aq){w—1 as + ap

lim My (4) = lima, - [( 2(2w)E 1) )] - [%] (4.1.49)

by = e (Bt R] s
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(b) If we set n = 1 in expression (4.1.37), the f-weighted upper possibilistic mean

value of A is becomes

M;(A) = ap— [(“22_(2‘2)5“’1)_ 1)], (4.1.51)
and
lim M7 (4) = lima,— [(“22_(2‘2)5“’1)" 1)] - ”’2‘2”“. (4.1.53)

1
V-«
A, then the f-weighted interval-valued possibilistic mean A is

(a2 — a1)(w — 1) (a; — ag)(w — 1)
w-1 BT T 2w 1) ] '

(c) Given the weighted function f(a) = (w—1) ( — 1) and the fuzzy number

(M7 (A), Mi(4)] = [ -

(4.1.54)

(d) The f-weighted possibilistic mean of A,

— 1
Mf(A) = - [62+a3+

(4.1.55)

(w—1)(a1 + a4 — (a3 + ag))]
2

2(2w — 1)

(e) When w — o0, the f-weighted possibilistic mean of 4 is

lim 7,(4) = lim - [a2+a3+ (w—l)(a1+a4—(a3+a2))}

wW-—00 W00 2 2(2w -_— ].)
_ a1 +ax+as+ay
_ [ : ] , (4.1.56)

and
R L 1 (w — 1)(&1 + a4 — ({13 + az))

lim Ms(4) = Dimo [“2 Tast 202w — 1)
_ |Jaitastaz+tay
_ [ ' ] , (4.1.57)
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4.1.6 Application 3

Let A be an O(mn)-Tr.T.F.N and let (w + 1)o” be a weighted function, then the

f-weighting possibilistic variance is computed as follows.

Var;(A) = /01 (M—;ﬂ-@)g f(e)do
(w+1)

fol [(ag ~ ag) + (@ — a))(1 — @)™ — (a3 — aq)(1 - a)?li)ra“’da

2
(as =) | ((+1)(ag—ay)?\ | T+ DI +1)

* +
1 ( 4 ) { P+ % +2)

2
—a Hw+ 1= +1
(w+1)(03 4 ) (w+ )2(71 ) i
F(w-l-a—I-Z)

1
Nw+ —+2)
i m

(
((w+1)(a3—a2 ag—al)) -F(w+1)l“(%+1)} ~
(

(w+1)(a3—a2 a3—a4)> ~F(w+1)1‘(%+1)] ~

1
MNw+—+2)
i m

4.1.58)
T 1 (

2 Tw+—+=+2)

L m 7

((w + 1)(az — ar)(as — a4)) -F(w + l)F(% + % + 1)}

From (4.1.58) we obtain

(a3 ~ a2)2 mag — a1)2

E}E}} Varg(A) = 1 42+ m)
+n(aa —aq)® | mas ~as)(ag —a)
4(2 + n) 2(1+m)

2

m(az — az)(as — 04)%! (a2 — a1)(as — aq) [ mn ]
m-+n+mn

2(1 +m)%t
(4.1.59)
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(a) If weset m =n = 1in (4.1.58) and use some of the properties of Gamma. function,

then,

Var(4) = [(_‘11%2)2] N [(03*02)((;2(; il??;‘ (94*%))} +
e

(4.1.60)

(b) If we set & = (az — a1) and § = (a4 — a3) in (4.1.60), then Var;(A) can be

re-written as

2{w+2) (w+2

[ @tf? (@t
2(w+2)(W+3)  4(w+2)

_ [ag—a, a+8 1 [(a—l—ﬁ)z(w-kl)}
|2 2(w+2)} 4 (w+2)* (w + 3) (4.1.61)
(c) If a = g in (4.1.61), we obtain the variance of a symmetric Tr.F.N.
_ |es—a a 1° a? (w+1)
Varg(A) = [ 5 + o 2)] + [(w n 2)2 o 3)} (4.1.62)

(d) When w — oo, the limit of the variance given by (4.1.61) becomes

2
L}_iﬂrloloVn:mr(A) = Ji_r,ﬁo[ag_az-l- a—i—ﬁ)} +{(a+ﬁ)2(w+1)]

2 2(w+2 4(w+2)* (w+3)

(@3 = 02)" (4.1.63)

4

(e) When w — 0, the limit of the variance given by (4.1.61) becomes

lim Varg(A) = lim[

w—0 w—0

as—as  a+fB P | (@+B) w+1)
2 +2(w+2)} +[4(w+2)2(w+3)}

{(0‘,3 ;ag) n (Ol ‘1"25) + (a3 - a22(a + ﬁ)} (4164)
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(f) Thus, if A is a symmetric fuzzy number, then the expression (4.1.64) becomes

(as —az)® o (a3 — ax)

lin}) Varg(A) = |——+ —+ (4.1.65)

4.1.7 Application 4

Let A and B be two O(m,n)-Tr.T.F.N’s. Let f(a) = (w+1)a* be a weighted function

then the power-weighted covariance between A and B is computed as follows,

Covy(A, B) — /01 (a2(0f);al(a)) (b2(a);bl(a)) f(a)de

1
b] . {(w +1) [aa(bs = ba) + ba(as — amJ Pw+ DG +D)

Cov(4,B) = |~ 7 or i +
9 n
'w+imm—%xm—mq Nw+ 0= +1) _[%%]+
: T'w + % +2) 4
'@+mm@_m'EW+UH%+n N
4 I Nw + —:—r; +2)
[(w+ 1)bz(az — as)] _F(w + I)P(% +1) )
4 I Nw + % +2)
'@+1mm—mx@—mq F@+¢W@%+%+n )
4 |

1
Nw+ —+ —+2)
mon

'@%J+Fw+mm%_mq Nw+UH%+U N

1
- 4 Dw+~+2)

_@+DM@_M}F@+UN%+U

1
1 N(w+ —+2)
m
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1 1
[(w+1){(ag — a1)(bs — 54)} [P(w + 1)1‘(;”— +-+ 1)} s

T 1
4 Pw+ =+ = +2)
m n

1
'agbg] ) [(w + 1) (aa(by — by) + bafaz — a1))J Pt DTG+ 01
| 4 4 T(w + % +2)

2
[(w + 1){as — a3 }{bs — 51)} [F(w + UP(E * 1)] (4.1.66)

2
| 4 I(w+ = +2)
m
Thus,

lim Covy(4) = [(52“53) 4(”’2"‘13)] +

n l:(b,g — b4)(a2 — a3) + (Gg - a4)(b2 - bg)}
4(1+n)
(a3 ot ag)(bQ had bl) + (b3 — bz)(ag — al)
m [ 4(1+m) }
—mn [(a;; - a4)(b2 — bl) + (G.g - GI)(b3 - b4)]
4(m + n + mn)

m [(a2 —ay){by — bl)] . [(a3 — ay)(bs — by)

10 +m) 12+ 1) ] (4.1.67)

If m,n — o0 in (4.1.66) then,

lim Covy(4) = Lizb)(@a—a) (4.1.68)

m,n—00 4

(a) Ifweset m=n=1and (a2 —a1) =@, (b — b1) = a1, (a4 — as) = B, (bs —bs) =

Fr in (4.1.66) and use some of the properties of Gamma function, then,

oo - [E521. 5] o) ]
[ttehiessy @i
(b)
lim Couy(4,B) = [(af";‘”) (53;‘521 (4.1.70)
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(c) If A is-a triangular number then the weighted covariance given by (4.1.69) reduce

to

(a+p) (o1 + B1) (w+1) (a1 + B) (a+ )
Covs(4, B) [2(w+2)] [2(w+2)] +[ 4w+27(w+3)
(a+ ) (ar + A)
{2(w +2) (w+3)} (4.1.71)

It may be pointed out here that results proved in (4.1.69)- (4.1.71) are similar to
the results proved by Fuller and Carlsson {30] and Fuller and Majlender [53] for

T.F.N’s. Also,

lim
W—C0

[(a—l—ﬂ)(al-i-ﬁl)} _ 0
2(w+2) (w+3)

i [EXDAA) (@20 +0)
0=0 | 2 (w + 2) (w + 3) 12

(d) If A and B are symmetric triangular fuzzy number then the weighted covariance

from (4.1.69) reduce to

Covs(A,B) = [ " fz")*(il 3)} (4.1.72)

and

(e +p)?
2{w+2) (w+3)

lim

W—COo

lim
w—0

[ (a + ) ] _ (a+p)
2( B 12

w+2) (w+3)
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4.2 Conclusion

In this chapter using possibility approach some of the moment properties of O(m,n)-
Tr.'T.F.N’s are discussed. Expressions for their possibilistic mean, possibilistic vari-
ance, possibilistic variance and possibilistic covariance are also derived. Furthermore,
interval valued probability and possibilistic mean of O{m,n)-Tr.T.F.N’s are also dis-
cussed and some numerical examples are provided to reinforce the results. Some

applications are provided in the form of examples using weighted functions.
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Chapter 5

Binomial Option Pricing Model
with O(m, n)-Tr.T.F.N’s.

Binomial option pricing [6] is a simple but powerful technique that can be used to
solve many complex lattice option-pricing problems. Due to the vague fluctuation of
financial markets, it is natural to consider fuzzy parameters in the binomial option
pricing model where the stock price at each state may take imprecise values. Using
O(m, n)-Tr.T.F.N’s application of fuzzy sets theory to the binomial option pricing
model is proposed in this chapter. The imprecision in the stock price movements
yields both the risk-neutral probabilities and the stock price as weighted intervals
instead of one crisp value. The proposed model is flexible and allows for additional

insight into the binomial option pricing model.

We assume that the price of a stock at time £ = 0 is S, whereas at ¢ = 1 we ob-
tain its price by multiplying S with the jump factors. Let the a-cuts for a fuzzy
increase @ = [uy, uz, U3, Us]o(m,ny a0d a fuzzy decrease d = [dy, dy, ds, ds)o(m,n), TEspec-

tively, in the stock price be given by a-cuts
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u(a) = [u(a), ug(ar)), and d(a) = [d1(a), da(cx)] such that we have

u(@) = [uz — (uz —w)(1 — )7, 0<a<l1 (5.0.1)
ula) = uzg—(ug—uw)(l—a)7), 0<a<l (5.0.2)
di(a) = [dy—(dy — d1)(1 — @)=), 0<ac<1 (5.0.3)
do(@) = ds—(ds—d)(1—-)7), O0<a<l. (5.0.4)

Below we now state and prove a theorem that provides the results for the fuzzy risk-

neutral probabilities needed to price a fuzzy call option under O(m, n)-Tr.T.F.N’s.

5.1 Main Results

Theorem 5.1.1 Let d = [d1, da, d3, di)ogmny and @ = [u1, u2, Us, Ua)opm,ny, TESPEC-

twely, represent fuzzy decrease and fuzzy increase in the stock price. Let,
(a) dla) = [di(a), dy(a)], V¥, 0 < a <1, be the a— cut for d,
(b) ule) = [ (a), wa)), ¥, 0 < a <1, be the a— cut for @,

(c) pafe) = [par(@), paz(@)], ¥, 0 < « < 1, be the fuzzy risk neutral probability

associated with d,

(@) pule) = [pu(a), pua(a)], ¥, 0 < a < 1, be the fuzzy risk neutral probability

associated with &, and
(e) v be the risk free rate, assumed to be a constant (crisp).

Then, the
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(i) fuzzy risk neutral probability associated with a fuzzy downward movement in the
stock price is given by

pa(e) = [par(a), pa(e)] = {u;fa)__(;fag) ,uljz)((cg)—_(;;(rag) } (5.1.1)

where,
_ (ug—1—7) — (g — )1 — o)
pafa) = [u2 (i — —dy d)(1 a)?f?:l (5.1.2)
. B (ug —1—7) — (us — ug}(1 — )=
Par(a) = Ls (o —dy ) (1= a)%jl (5.1.3)

(i) fuzzy risk neutral probability associated with a fuzzy upward movement in the
stock price is given by

pu(@) = [pu(@),pule)] = {(iia?__ dﬁg), (;J(ra?__ d‘fl(g)] (5.1.4)

where

pula) = | (tr=ds)+ (d —di)(1 - ) } (5.15)

ug — dg — (ug — ug — d3 + dy)(1 — @)=)

Puz() = (5.1.6)

(I +7r— dz) — (dz — dl)(l — a)%)
(up —dp — (ug — ug — dy + dy)(1 — )=

Proof:
As given above, the a-cut for a fuzzy increase and a fuzzy decrease in the stock price,
respectively are
(o) = [u(e),ua(0)] = fuz ~ (w2 ~ w)(1 - @), ug — (s — ua)(1 ~ 2)*)]
dle) = [d(a),do()] = [da = (d — d1)(1 — @), d5 — (d3 ~ ds)(1 — @) )]

(5.1.7)
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Also, we have

pa(e) +pu(e) = 1 (5.1.8)
—-—-—[dl(?fﬁ(a)]pd(a)nL———[ul((;)f:(a)]pu(a) = 1 (5.1.9)

Following [4] and [98], this leads to the following two systems of equations.

pai{@) +puz(e) = 1 (5.1.10)
%l%pdl(a)th;}‘iagpuz(a) =1 (5.1.11)
and
pa2(a) +pu(e) = 1 (5.1.12)
%mz(a%ﬁﬂaﬁm(a) =1 (5.1.13)

Equations (5.1.10)-(5.1.13) can be re-arranged so as to yield the following two sets of

equations.
pa(a) +pu(a) = 1 (5.1.14)
di{a)pai{a) + ui(a@)pue(e) = 147 (5.1.15)
and
paz(@) +pula) = 1 (5.1.16)
da(@)paz(0) + up(@)pia () = 147 (5.1.17)
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Solving equations (5.1.14)-(5.1.17), we obtain the following a-cuts for the risk neutral
probability ps{c) for a down movement in the stock price as well as the risk neutral

probability p,(a) for an up movement in the stock price.

pale) = [pa(a),pa(a)] = [u;fg):(;l—(z;),ujz)((acz)—_(;?—(i_a;)} (5.1.18)
ple) = fpu(e)pale) = | SEI=RO Q= dla] g

Remark 5.1.1 It is important to observe here that the above proof to find pa(a)
and p,(c) is not dependent on the type of fuzzy number. Also, it may be noted that
expressions (5.1.18) and (5.1.19) for py(a) and p,(c) are also independent of the type

of fuzzy numbers.
1. From (5.1.7), (5.1.7) and (5.1.18), we obtain the following expression for the
risk neutral probability pg(o) for a fuzzy decrease in the stock price.

Pd1(0-’) _ _ul(a) - (1 +T):|

L w(a) — dia)

(u2 “(uz_“l)(l“a)ﬁ) —(1+7) }
-(u2_(u2_’lL1)(1—Q;);171) _ (d2_(d2—d1)(1—a)i)

(ug—l——?‘)—(t@—ui)(l—a)#

= } (5.1.20)

_U2—d2—(U2—ul—d2+d1)(1—a)%
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[ug(a) — (1 + 1)
| uz(a) — da(r)

paa(a) =

| (v = (5 — ) (1 = 0)") = (1 41) J
| (uz — (uz —ug) (1 — @)7) — (ds — (d3 — d4) (1 — @)™)

i

[ (v = 1= 1) ~ (1 — ) (L~ )" ] (5.1.21)
'u.3—d3-*(U3~’U;4—d3+d4)(1—a)’-1{

2. From (5.1.7), (5.1.7) and (5.1.19) we obtain the following expression for the risk

neutral probability p,(a) for a fuzzy increase in the stock price

[0 +7)—dy(a)
Pu(a) = | wa(a) — da(a)
- (L47) = (ds = (ds = do) (1 = @)") 1}
[ (ug — (us —ug) (1 — @)*) — (ds — (d3 — dy) (1 — @) ")
_ [ 4 —d)  (d—di) (1 -0 } (51.22)
_’U.3—d3-—-(U3—U4—d3+d4)(1-—0l);
_ [ +r) —di(a)
pale) = | @)~ di)

_ | (L47) = (b = (dy = ) (1 = g }
(g = (w2 — ) (1~ &)™) = (dp — (dy — di) (1 — @) )

(5.1.23)

(I+7—do) 4+ (do—dy) (1 — ) }
uz—dg—(u2—u1——d2—|—d1)(1—a)%

This proves the Theorem.
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Corollary 5.1.1 . Let py(a) = [pai(ar), paa(c)] be the fuzzy risk neutral probability of
an increase in the stock price and let py(a) = [pa1(e), paz(c)] be the fuzzy risk neutral
probability of a decrease in the stock price, then from (5.1.20) - (5.1.23) the following

complimentary conditions hold true for 0 < o < 1. Therefore,

[ (uQ—l—r)—(ug—ul)(l—a)% }_{_
Uz —dg — (upg —uy —da + dp) (1 — @)
[ (147 =) +(do— o) (1 — @) 1}21
’U,g—Cilg’--(’U;g—'h',l—Ci'z-{-dl)(]."‘Gf)H

Bl

[ (us = 1= 1) = (ug — ug) (1 — @)~ 1}_1_
U3—'d3—-(U3—U4—d3+d4)(1"'Oé);
[ (1+7 = do) + (ds = do) (1 — ) ]:1
’u3—d3-—(U3—U4—d3+d4)(1—0.’)%

Muzzioli and Torricelli [98], discussed the complimentary relationship for the fuzzy
risk neutral probabilities when the parameters in the option pricing model are tri-
angular fuzzy numbers. However, from (5.1.18) and (5.1.19) we observe that the

complimentary hold true irrespective of the fuzzy number.
9.1.1 Properties of the Fuzzy Risk Neutral Probabilities

“In this section, we discuss some of the properties of the fuzzy risk neutral probabilities.

1
lim pn{a) = lim [ (u2—1—r)—(u2—u1)(1—a) 1}
M—r00 m—00 u2—dg——(‘uz—-U1—d2+dl)(1_a);
_ u—1—r
_ [ =1 J (5.1.24)
_ 1
lim py () = lim{ e T
m—0 M0 (up —dy — (up —uy —dy + dy) (1 — @)=
_ Jup—1—7
_ [ L ] (5.1.25)
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Form=1

u + (ug —ur)a— (1 +7)
uy ~dy + (ug — uy — dg + dp )

pala) = { (5.1.26)

The result obtained in (5.1.26) is analogous to the result obtained by Appadoo et.

al [4] for pg (@), and coincides with pg () for a Tr.F.N.

1
1N 1— o)t
lim pg{e) = lim [ (us—1—7)~(uzg —ug) (1 — ) l]
n—oo n—00 ’U,3_d3"‘(U3_U4—d3+d4) (l—a)n
ug—1—r
T Tw—d 1.2
[ ug —dy J (5.1.27)
1
lim pge(a) = lim (us —1—7)—(uz3 —ug) (1 - ) 1]
n—s0 nmo0 | ug —ds — (ug — ug — dg +dy) (1 = @)™
uz —1—7r
T w—ds 12
[ u3 — d3 } (5.1.28)
FOI"n,—_—L
us —1 -1+ (us —uwg)a
B 5.1.29
pd2(C¥) I:u'4 - d4 + (U.3 — g + d4 - d3)a] ( )

The result obtained in (5.1.29) is analogous to the result obtained by Appadoo et.
al [4] for pe(a) and coincides with pgp(a) for a Tr.F.N. Also, if we set ws = us,
dy = ds, uz = up and dsz = dp in (5.1.29), we obtained the result for paz(c) for

T.F.N’s as follows.

(5.1.30)

px(a) = [ ug + (ug — ug)a — (1 +7) ]

u4—d3+(u2——u3+d3 —dg)a
The result obtained in (5.1.30) is analogous to the result obtain by Muzzioli and

Torricelli [98] for pgz(c). Similarly,

1
lim pu,(e) = lim (It+r—ds)+(ds—ds) (1 - 0) 1}
00 =00 u3_d3—('113-u4——d3+d4)(]__fa)n
. 1+T'—d4
B [ Ug — dy } (5.1.31)
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n—0

(147 —ds) + (ds — dg) (1 — a)* }
u3~d3—(u3——u4—d3+d4)(1——a)%

}.+7‘~—d3
= | .1.32
{ug_%] (5.1.32)

lin}) pur(a) = }im[

pule) = [ (47 —ds) + (ds — ds) (1 ~ @) }

ug —dz — (ug —ug — ds + dy) (1 — @)
- l: 1+’I‘—d4+(d4-—d3)a :]
u4—d4—(u4—-u3—d4+d3)a

(5.1.33)

The result obtained in (5.1.33) is analogous to the result obtained by Appadoo et.
al [4] for py; (o). Also, if we set g = us, dy =ds, us =1us and ds =d, in (5.1.33),
for n =1 we obtained the result for p,;(a) for T.F.N’s.

1+r—d3+(d3-d2)a.

5.1.34
'U,3—d3—(’IL3—’IL2*—d3+d2)a ( )

pula) = [

The result obtained in (5.1.34) is analogous to the result obtained by Muzzioli and

Torricelli [98] for p,;(a). Again,

1
lim p(a) = lim i: (1+7’——d2)+(d2—d1)(1—-a) 1]
m—o0 m—oo u2—d2—(u2—u1—d2+d1)(1_a);
_ 1+'r—d1
B [ U — dy ] (5.1.35)
lim py(a) = lim A+r—dp)+(d—dy) (1~ )™ :
m—0 m—0 u2—d2—(u2—~u1—d2+d1)(1_a)g
_ ]-'i“?"—dz
B { us — dy } (5.1.36)
Form=1
1
l+7r—dy) + (dy—dy) (1 — @)™
pal) ={ (147 =)+ (=) (1~ ) }
up —~dy — (ug —ug —dp + dp) (1 — @)
I+"'—d1—(d2—d1)a :’
N 1.
[Ul*d1+(uz—u1—d2+d1)a (5.1.37)

The result obtained in (5.1.37) is analogous to the result obtained by Appadoo et. al

[4] for pyo(a).
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5.1.2  Membership Function for ps(e) and p,(c)

It is important to point out here that §; and 5, given in (5.1.20)- (5.1.23) represent

fuzzy numbers. In this section we obtain their respective membership functions.

Muzzioli and Torricelli [98], obtained results similar to (5.1.20)- (5.1.23) using trian-

gular fuzzy numbers whereas in the curent section we consider O(m,n)-Tr. T.F.N.’s.

In order to find the two ends points and the two interior points which describe the

risk neutral probability of a fuzzy decrease in the stock price corresponding to the

O(m, n)- Tr. T.F.N., we set @ = 0 and @ = 1 in (5.1.20) and (5.1.21). The results are

pa1{0)

Pa2(0)

par(1)

Paz(1)

-

’1‘.!;2—d2“-('ug—-’4‘.!,1—Gfg“i‘dl)(l-—-].)_'1’T

(= 1= 7) ~ (up — wy) (1 = 0) } _ [u = d—’"] (5.0.38)

(u3——1~r) (us —uq) (1 —0)

1

- [u} (5.1.39)
d3—-(U3—U4—d3+d4) 1-— 1 "

Ug ~— dy

(up=1—7)~(ug —uy) (1 —1)= }: [“2‘1d2 J (5.1.40)

_UQ—dg—(U2—-ul d2+d1 (1—1)—'1;

(u3—1~—'r) (us — ug) (1 — 1)» } 3—1—7~] (5:1.41)
(U3—U4-—d3+d4)(1—1;1‘- o
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Similarly, to find the two ends points and the two interior points, we set o = 0 and

a =11in (5.1.22) and (5.1.23). This yields

_ | OQ4r—d)+(d—d)1-0)* | _[14r—d,

pul(o) - _u3—d3—('l£3_u4_d3+d4) (1_0);1;:| Ii ?.b4—d4 ] (5142)
_ | OHr-d) - a-0F | [14r-g

Pu2(0) = s — s — (w2 — 01—y ) (1 O} | {—*—ul_dl ] (5.1.43)
_ [ O4r—d)rd—d)a-nF | [14r-ds

pul(l) - _u3—d3—(u3—u4—d3+d4)(1-—a)%_ i: ’ng—dg } (5144)

(1+T—d2)+(d2'—d1)(1—1)~"1; :lrl'f'?"“dg
’lLQ—dg—(UQ—'Ul'“d‘Z'f'd])(l—a‘) ug — dy

In view of (5.1.38)-(5.1.41) and (5.1.42)-(5.1.45), the ends points and the interior

J (5.1.45)

3=

points of the risk neutral probabilities are

Uy —1—=7r ug—1—7 ug—1—7r uy—1—7r
= ) s 5.1.4
Pa [ul—dl ’ ’U.'.Q—dz u3—d3 ’U,4'—'d4 ] ( 6)
and
l+r—dy 1+r—dy 147~dy 14+7r—4d;
. = ’ s , . 14
P [U4~d4 uz—ds ' us—dy ' u—d (5.147)

Below, we determine the membership functions for the fuzzy risk neutral probabilities

Pa and P, in the stock price. Since,

1
—1—=9)= _ 1 — )=
pu(a) = { (2 r) = (wu—w){l—o) T ] , therefore for
"UQ“dg—(’ELg—'LL}_—dz-f-dl)(].—a)m
Uy — 1—7r - Uy — 1—17
5 S pa £ ————, we set py (@) = pg and we solve for «, therefore,
Uy — dl Uy — dg

[ (ug—l—'r)—(uz—ul)(l——af)% }=Pd-
uz—dz—(uz~—u1—d2+d1)(1—a)$
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Solving for «, we get

patus — dg) — (ug — 1 — 1) )m
a = 1-— 5.1.48
((pd(’uz —uy —dy +dy) — (U — 1)) ( )
.. ug— 1 —r ug—1—r
; —_— < <L
Similarly, for o d = Pa < va—d,

we set,

1
[ (us —1—1)—(uzg —ug) (1 — @)= }zpd
u3—d,3—(u3—u4——d3+d4)(1—a)3
Solving for «, we get

_ 1 Pa(us —d3) — (us —1—1) "
@ =1 ((Pd(u3~u4—d3+d4)_(”3"u4)))

(5.1.49)

Therefore, the membership function for the fuzzy risk neutral probability §; for a

fuzzy downward movement in the stock price is

( U —1-—r

0 <
ba = U —dy

_ palup — da) — (w2 — 1 — 1) ™ ou—1—r7 Up—1—7
- (@ ) <pctlor

(ug—ul—d2+d1)—(U2—u1 ul—dl_ 'U;Q"‘"d2

ug—1—r ug—1—7r

= 1 = < P
pa) w—dp 0 Ty = d

1—( Paus —ds) — (us —1—7) )n Ua—l—T< <’u4—1—r
(Pa(us — us — ds + da) — (us — uy))

uz — ds g — dy
Uy —1—7r
0 >
L ba = Uy — dyg
(5.1.50)
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Similarly, the membership function for the fuzzy risk neutral probability f, for a fuzzy

upward movement is given by

’

(Pu(ts — us — ds + dy) + (d3 — dy)) Ug — dy

p(pu) = 4 1 —,
1'_( pu(?.Lg—dz)—(l-i-T—dz) )m 1+T—d2<

(Pu(ue —ur — do + d1) + (da — dy)) Up — dy

0 B <
1_( pu(u3—d3)—(l+?‘—d3) )n 1+’i"—'d4<

1+T—d3<

1+T—d4
U4—d4

< 1+T°—d3

Uz — d3

1+T—d2

Uy — dy

<1+T'—d1

uy — dp

> l'f‘T—d]
u1~d1

(5.1.51)

5.1.3 Characteristics of the Fuzzy Risk Neutrai Probabilities
of a Fuzzy Downward and a Fuzzy Upward Movement

in a Stock Price.

We now analyze the behavior of the risk neutral fuzzy probabilities of a fuzzy upward

movement and a fuzzy downward movement in a stock price, under the following

assumptions, A,.

Assumptions A;. We assume that the following inequalities hold.

U < Up < Uz < Uy, d1<d2<d3<d4,

dl<d2<d3<d4<1+T<’lL1<UQ<’IL3<’lL4,

0 <pa <1, 0 <pa <1, 0 <pas <1, O<pu<l
0<pu<l, 0<pe <1, 0 <pus <1, OD<pu<l.
Now,
i
Ug—1—7)—(ug— ) (1 —a)™ N-
pala) = (u2 )= (ua —uy) (1—a) M

uz—dz—-(u2—u1—-d2+d1)(1——a)% —Dl
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where,
Ny = (up—1—7)=(upg—w)(l—a)m
D; == uz—dg—(ug—ul—dg'i‘dﬂ(].—a)#‘-

This yields,

dD d 1
d_C: == '('i—&' (’LLQ—dg— (Ug —ul—dg-I-dl)(l-—a)'i) = (?.Lz—"u.l "'dg'i-dl)
1
dN;y  d 1y (1--a)m!
il ((uz—l——r)—(uz—ui)(l—a) ) = {ug — u1)
Using the assumptions A;, we get
dpdl(oz) — D1 (’U,g - 'LLI) — Nl(u2 - U1 - d2 + d}) >0 (5153)
dor mD2? (1 — oz)l"f%f
Again, »
1| d }
Ponie) | PO | (D)= 00) (0 - ) + Ml - )|
do? (mD? (1 — @)~ )2

(mD} (1 — o) m)2

(5.1.54)

It can be easily shown that

i (D= M) s =)+ M= )] = o (5.1.55)

in (5.1.54).
Thus, it implies that the expression (5.1.54) can be rewritten as

i, .
Epa (@) _ (D1 — Ny) (ug — u1) + Ni(dz — di)) [@le (1-a)

o’ (mD} (1 = a)' )2

(5.1.56)
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P2 ( ) dpdl(a) -
PailC do L P2 N\
da? DZ(1-— a)l'# _daD1 (1-a) jl
~ dpdl(a) § - o 1
— do (1_ )1——‘"_6_‘{_& DQd(l“CE) i
D2(1 - a)l—% I do ! do
|_ dpdi(a) B 1 1
do 2 m__
= - : — (up —uy —dy + dy) + D; 2%
Dl(l—a)1°5 m( 2 1 2 1) 1 o
(5.1.57)
Similarly,
dpdg(a) _ D2 (’U.’.g — U4) — N2 ('LL3 — Uq — d3 -+ d4) 0
e D (1= a)l_% < (5.1.58)
where,
Ny = (ug—1-r)— (us —u4)(1~o:)%
D2 = ’U,3—d3— (U3—U4“d3+d4)(1 —a)%
and
dpaa(c) 1
par(c) do 2 n
—_— = - —(us —ug —~ds+dy) + D
do? Dy(1—a)'= g e e — st d) + Dy | s
(5.1.59)
dpui (e Ds — N3)(dy — d N -
Py () _ (Ds 3) (ds 3) + ?(U4 Us) >0, (5.1.60)
da nDg? (1 — )™=
where,

Ny = (1+7—ds)+(ds — dy) (1 — )"

.D3 = u3—d3—-(u3——u4—d3+d4)(1——a)?17,
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and

d2 dpu () ) 1y
M = - da i —(ug —ug — d3 +dy) + Dy | -
do? Ds(1—a)™n| |7 V1—o
(5.1.61)
Also,
dpuz(CE) _ _D4 (dl ~ dg) — N4('LL2 —_ ‘LL11'— d2 + dl) <0 (5162)
do mDy? (1 — a)l_;
where,
1
Ny, = (1+r~d2)+(d2—d1)(1—-a)m,
D4 = ug—-dz--(U2—U1"d2+d1)(1—-a)%,
and
. ( ) dpug(a) 1 1
d DPuz\ & da 2 . ;n,‘- o
—_—l = — —uy —dy+d D
do? Dill—a) % | [m TR D g
(5.1.63)

It may be pointed out that the second derivative of each of the fuzzy risk neutral
probability of an upward movement and a fuzzy risk neutral probability of a downward
movement in the stock price could be positives or negatives. If the second derivative
of a fuzzy risk neutral probability is positive (negative, respectively), it implies that

the corresponding probability function is convex (concave, respectively) in nature.
5.2 Call Option Value With O(m,n)-Tr.T.F.N’s.

Suppose that there is a call option on a stock with exercise price K and expiration at

the end of Period 1. As before, we take u(a) as the a-cut of a fuzzy increase 4 in the

99



stock price, d(a) as the a-cut of a fuzzy decrease d in the stock price and we assume
that arbitrage opportunity is not allowed. Then, the a-cut for d and 4 respectively,

are

da) = [di(e), da(a))]

= [dy— (da— da) (1 — @)™ ,ds — (d3 — d) (1 — a)7), (5.2.1)
u(@) = [u(a), uz(a)]
= [uz — (up — up) (1 — @)™ ,ug — (ug — ua) (1 — @)%]. (5.2.2)

Assume that C is a current fuzzy price of a call option on a stock whose crisp exercise
price is K. Also assume that when the call option expires, it is worsh either ¢, or Ca,
where C, and &, are fuzzy quantities whose values are subjected to arbitrariness and

subjectivity. In this case, the a-cut for G, is found to be

Cula) = [Cula),Cu(a)]

= [Max(Su;(a) — K,0), Max(Suy(a) — K,0)]. (5.2.3)
From (5.2.2) and (5.2.3), we get

Cula) = Max(Su(a) — K, 0) (5.2.4)

Cua(a) = Max(Sus(e) — K, 0). (5.2.5)
Similarly, the a-cuts for Cy is given by

Ca(@) = [Cala), Ca(a)]

= [Max(Sdi(a) — K, 0), Max(Sda(a) — K, 0)] (5.2.6)
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From (5.2.1) and (5.2.6), we get

Can(a) = Max(Sdi(a) - K, 0) (5.2.7)
and

Cp(@) = Max(Sdy(a) — K, 0) (5.2.8)

If Sdi () and Sda(a) are less than K, that is, the fuzzy stock price goes down, then
the call option expires out-of-the-money. If Su;(e) and Suz(«) are greater than K,
that is the fuzzy stock goes up, then the call option expires in-the-money. Note that
if both fuzzy stock prices result in the option expiring in-the-money, then the call
option will not be very speculative. However, in this case, the fuzzy model will still
be able to price it.

Substituting expressions (5.2.2) for u(a) into expression (5.2.3), the expression for
the price of the call in the up state, yields the following expressions for the price of

the derivative in the up state, under the assumption that @ is an O(m,n)-Tr.T.F.N,

Cula) = [Max(Syl(a) — K, 0), Max(Suz(a) — K, 0)]

i

Max(S(ug — (ug — ur)(1 — @)mw) — K, 0),

Max(S(us — (us —wg)(1 — @)%) = K, 0)

= [S ('u,g —(ua—w) (1~ a)%) -K, S (U3 —(ug —uy) (1 — a)%) — K]

(5.2.9)

such that,

Cula) = S (uz — (g — ) (1 = a)rf:) K (5.2.10)



and
Cusle) = S (u3 — (uz — ug) (1 — a)%) _K (5.2.11)

Under the assumption that d is an O(m,n)-Tr. T.F.N., (5.2.1) and (5.2.6), yield the

following expressions for the price of the derivative in the down state.

Cala) = [Max(Sdi(a) - K, 0), Max(Sdy(a) — K, 0)]

Max(S(dy — (dz — dy) (1 — @)™) — K, 0),
= = {O:O]
Max(S(ds — (ds — ds) (1 — a)") — K, 0)

3=

It may be pointed out here that when Sd;() and Sdy(c) are less than K, then
the fuzzy stock price goes down and the call option expires out-of-the money. Hence,
in this case the maximum value of Cy; () = 0 and the maximum value of Ca2(a) = 0.

This yields,
Cdl(a) = 0 and Cdg(a)zo (5212)

5.3 Expected Fuzzy Call Option Value With O(m,n)-
Tr.T.F.N’s.

Let C be a fuzzy number that characterizes the fuzzy current price of the call option
and let C(a) be the a-cut for the fuzzy current price of the option. Then, the expected
fuzzy call price is given by [98],

o) = - iTE(é) (5.3.1)
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where E stands for the expectation under the fuzzy risk neutral probabilities.

Therefore,

(G, Col@)] = T3=1Cu(@), Curl@)[pur(a),pun(e)]

1

+ 147

[Car (@), Caa()]lpar (@), paz(e)] (5.3.2)

Since, the fuzzy call option has zero payoff in the down state, the expected fuzzy

option pricing formula given by equation (5.3.2) simplifies to

Ci@),Co@)] = =[Cu(@), Cur(e]fpn(0) pua(e)] (533

where Cy1(a) and Cyp(a) are as in (5.2.4) and (5.2.5) respectively. Also, py () and

Pua(c) are given by (5.1.22) and (5.1.23) respectively.

Thus,
¢ = ——BO)- c
= i 7"E( ) = m[CM(a)pul(a), u2(a)pu2(a)]
yields
_S('LLQ—(’UQ_UI)(}-"‘@)%)_K (1+T—d3)+(d3_d4)(1_a)% _
1+7r u;;—da—(Us—u4—ds+d4)(1—a)%,
Cla) =

1
3(u3—(US-U4)(1—a)") K Qtr—d)+ (- d) (1 - )
L 1+r Uz—d2—(’Uaz"m—'dz-l-dl)(l—'a)# i
This leads to

Cul(a) _ Cu2
Ty pui(a) and Cyla) = 1 +rpu2(a)

C’l(a) =

Plugging the values of Cy;1(a) from (5.2.10) and p; () from (5.1.22) we obtain the

following expression for the left hand part of the a-cut for the fuzzy current price of
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the call option.

™

ooy = | S W m A =0) “ K (- dy (- )
1 o 1+7r u3—-d3—(u3—u4—d3+d4)(1"05)
(5.3.4)

Similarly, from (5.2.11) and p. (@) from (5.1.22) we obtain the right hand part of the

a-cut

S (o019 0-9) K (14 a1t
]'+T ’U,g—dg—(’u.z—ul—d2+d1)(].—a)£‘-
(5.3.5)

02(05) = ﬁ

It is easy to show that as o increases the call option interval of price shrinks, and at
a = 1, the interval is the smallest. Similarly, at o = 0, the call price interval is the
largest. Therefore, [C1{a), Cao(a)] gives us a weighted expected value interval for the
call price C. This is an important property for financial applications as it allows us

to determine the most useful outcome of the call price C.

5.3.1 Membership Function for the Fuzzy Call Option Value.

In order to find the two exterior points and the two interior points which describe
the fuzzy call price corresponding to the O(m,n)-Tr.T.F.N weset « =0 and o = 1

in (5.3.4) and (5.3.5) respectively.

. Suy — k l+7r—d; | Su—k 14+r—d
01(0) - I: 1'{"7’ ‘U,4—d4 }’ 02(0) - l: 1+T Ul—d1
Suz—k 1+T—d3 S'U,g—k 1+7‘—d2
1 = =
Cl( ) [ 1+T ’lL3"’d3 :l ’ 02(1) [ 1‘!‘7‘ "U,g—'dg (536)
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From (5.3.6) the fuzzy call price is given by

Sul—-K1+r——d4 SU2—K1+T—d3
1+r ws—dy ' 147 wug—ds ’

o
I}

(5.3.7)
S’IL3—K].+7'—d2 S’U;4—K1+T-dl

1+7 ’U,g—-dg ! 147 ul—d1

In view of (5.3.4)-(5.3.7), we determine the membership functions for C as follows.

From (5.3.4), setting Cy(a) = C , we get

S(uz—(uz——ul)(l—a)'l"‘)—ff (147 —ds) + (ds — do) (1 — a)" &
1+r ug — ds — (ug —ug — ds +ds) (1 — )

S

(5.3.8)
This yields the following equation

((Su2~K)(1+r—d3) — & (ug — d) (1+r)) +

((5u2 — ) (ds — da) + Clus — uq — ds + de) (1 + r)) (1-a) -

B

Stz — w) (147 — da) (1 — @)™ — S(uy — ug)(ds — ds) (1 — @)= =0

(5.3.9)
Similarly, setting Cy(a) = C yields the following equation
(Sus ~ K)(L+7—dy) —C(1+7) (ug — do) +
((S’Ub3 - K)(dg — d]) + 5’(1 +T) ('UQ — Uy — dg +d1)) (]. - Ct:);l; -
(147 —dy) S(us —ug) (1 — @)™ — S(ug — ua)(dy — dy) (1 — @) %% =0
(5.3.10)

105



Special Cases:
(a) Setting m = n in (5.3.9) yields
A(—a)"—(Ci—B)(l—a) —D; = 0 (5.3.11)
where

A] = S(’U.g - ‘ul)(dg - d4)
By = (Suy— K)(ds — dy) + Clus —ug — d3 + dg) (1 +7)
01 = S(’U,z—‘ul) (1+'T‘-‘d3)

Dy = (Sup~K)(L+7—ds)—C (uz—ds) (1 +7)

Thus, solving expression (5.3.11) for a, yields

(Ci ~ By) 4+ /(C1 - By + 44, D,
24

1- ((Gl “B)H \/(Cl “B) 4A1D1) (5.3.12)

3|~

(1-a)

e
|

24

Similarly if we set m = n in expression (5.3.10), we obtain
Ay(1—a)m — (By—Cp)(1—a)" —Dy = 0 (5.3.13)
where

Ag = S(u3 — ’U,4)(d2 - d})
Bg = (1 +7r— dQ)S(’{Lg - U4)

((Sus — K)(dy — dy) — C (1 +7) (ug — us — dy + dy))

I

Cy

Dy = (Susg—K)(L+7~dy) +C1+7)(up — dy)
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Thus, solving expression (5.3.13) for «, yields

(By — Ca) +/(Bs — )" + 44,D,

a = 1-— o (56.3.14)

This gives the membership function of C as.

Suj—Kl4+r—dy

0 s 1lir ug—dy
m
1_((Cl—B;)+\/(Cl-Bx)2+4A1D1) Su—Kl+r—ds o l4r—ds
24, 1++ ug—dy T T ug—ds
“(C.-') - 1 Suz—Kl-}-T—dgSégsu‘g—Kl—I—T—dg
14+r usg—ds 147  wug—ds
m
. ((Bz—C'2)+\/(32—Cz)2+4A2D2) Suz ~ K14+ —do < Stu-Kltr—ds
245 147 ug—de ~ T 147 uy —d
0 é25u4—K1+T‘—d2
14r uy — dy

(5.3.15)

(b) If & and d are two symmetric O(m,n)-Tr.T.F.N’s, with ug —u; — ai, g —ug = fi,
dy—dy = ag and dy—d3 = B then the membership function u(C) given by (5.3.15)

will have the following values for A;, By, Cy, Dy, Ay, Bs, Cy, and Ds.

A = =Souf
By = —(Sup—K)B+C(Ba— L) (1 +7)
Ci = So; (1+7~—ds)

D, = (SUQ—K)(1+T—d3)—é(U3—d3)(1+T)

Ay = *Sﬁ1a2
Bg = —(1+T’—d2)5ﬁ1
Cy = (Sus— K)oz — C(1+7) (a1 — ap)

Dy = (Sus— K)(1+7—dg)+C (1+7) (uz — da)
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(c) Now, if % and d are two symmetric O(m,n)-Tr.T.F.N’s having equal spreads, i.e.,
u2—U1=U4—u3:d2—'d1 =d4*-d3=/3, i.e., (C{l =Oc'2=ﬁ1 =ﬁ2=ﬁ),then
the membership function u(C) given by (5.3.15) will have the following values for

Ay, By, Ch, Dy, Ag, By, Cy, and D,

Al = "Sﬁ2
B, = —(Suz—K)8
C, = SB(+7r—ds)

Dy = (Su;—K)(1+7—dg)—C(uz —ds) (1 +7)

Ay = —Sp?

By = —(1+r—dy)Sp

Cy = (Suz—K)B

Dy = (Sus—K)(1+7—da)+C(1+7) (uz — do)

5.3.2 Characteristics of the Call Price.

We now analyze the behavior of the fuzzy call price. To do so we calculate their
derivatives and discuss their behavior under the following assumptions.
Assumptions A,.

di<dy<dy<dy <lHr<u <us<us<u

O<pu <1, 0<pu<l i=1,2,3,4

Su; > K, Sdi< K and 1=1,23,4.

Now, (5.3.4) can be rewritten as follows,

Cal®) (@) = —— [Cu(@) pu (o)

Gl(a) - i+ 147
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dCI(CE) . 1 dC’ul(a) dpul(a)
da 147 [ do pa(e) + do Cul(a)}
_ 1 S (’Uiz - Ul)
1 dp, 1
mf"d—fl (5(u2 — (up —w) (1 — @)™) — K) >0  (5.3.16)
and
d201(a) . i [ d20u1(a) dC’ul(a) dpu1(a)
da? 147 _pul(a) i da do ] *
1 T Ppale)  dCu(a)dpu(a)
1+7 | Cua(e) d? T da do }
17 PCu(a)  dCu(e)dp,(e) &pyi(a)
= Tay | P& P gy T Gal@—
(5.3.17)
Similarly, (5.3.5) can be rewritten as
Cy 1
Cg(a) = ﬁ_(%—)pug(a) = 1+T [Cu2(a) pu2(a)]
Thus,
dCQ(CY) . 1 dC‘ug(a) dpug(ce)
dae 147 [ da Pua(@) + TGM(Q)}
1 S (us — uy)
T I4r (n(l—a)l‘%)puz(a)+
1 dp, 1
— ( P dif“) (S(us ~ (uz — ug) (1 — @) *) — K)) <0 (5.3.18)
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and

d202 (a) . i d2€u2 (Gf) doug (Od) dpug (Oﬂ)
do? T 117 [p“g(a) do? " da  da |7
1 dzpu2 (O{) dCu? (a) dpu2(a)
1+7 [ Caa(a) o T da do }
1 ECupla)  dCyu(a) dpy(e) d*pa(a)
147 [ Pua(@) 2 T da do T Cul®) do?
(5.3.19)

dpy d*p,
From (5.1.60) and (5.1.61), we observe that _%a_) > 0, and »%—g.d) may be > 0,
. : dCi(a)
or < 0. In view of assumptions Al and A2, we observe that —dn > 0, whereas
dzC'l(a) d26'1(a)
do?

Toz con be positive or negative. If,
o

implies that the left hand side or right hand side of the fuzzy numbe: that characterize

is positive (negative, respectively), it

the fuzzy call price is convex (concave, respectively). Similarly, using (5.3.18) and

2

(5.3.19), we observe that i%@? > 0, whereas %—)— can be positive or negative.
d2C2(O!)

da?

right hand side of the fuzzy number that characterize the fuzzy call price is convex

If, is positive (negative, respectively), it implies that the left hand side or

(concave, respectively).
We now find limits of C(a) and Ca(a) when both m, n approach zero and when both

m, . approach infinity.

S(uz—(ug—ul)(l——a)%) - K
1+7r

lim Ci(a) = lim
m,n—oo m,n—oo

(147 —dsg) + (ds — do) (1 — @)=
L u3~d3—(u3—u4—'d3+d4)(1—a)

2=

_ [Su1~1{ 1+T—d4]

I+r Ug — dy (5:3.20)
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When both m and n — oo, C1(a) converges to the left end point of ¢. This mean

that the amount of fuzziness in the model increases.

[ S(uz——(uz—ul)(l—a)"'lﬁ)—ff
I1+7r

lim Ci{a) = lim
m,n—0 m,n—0

(147 —ds) + (ds — dy) (1 — @)™
| u3—d3—(u3~u4——d3+d4)(1—a)

A e

[S’J‘.LQ—K 1+T—d3}

0.3.21
1+7 Uz — dg ( )

When each of m and n go to zero, C1{c) converges to the left interior point of é, thus

as m and n get smaller and smaller the amount of fuzziness in the model decreases.

Similarly,
S(ug — (ug — ug) (1 —a)%) - K
147
lim Cy(a) = lim
T T G —d) - d) (- )
| up—dy~ (ug—ug —dy + i) (1 — @)™ |

_ J’S’U@"-K 1+T—d1] (5322)

147 U1 — dy
When m and n become large, Cy(«) converges to the right end point of C, this means

that the amount of fuzziness in the model increases.

[ S(U3—(U3"—U4)(1—(1)%) - K
I+7

lim Cy(a) = lim
m,n—0 m,n—oo

(1+7‘—d2)+(d2—d1)(1—0‘)#
| wp—do— (w2~ — dy+ i) (1 — )™ |

I:S’U,g'—K 1+T—d2] (5323)

147 Uy — dy
Thus we see that as each of m and n goes to zero, Cy(c) converges to the right interior

point of C. This means that as m and n get small the amount of fuzziness in the
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model decreases.

5.4 Numerical Examples.

In this section we illustrates our results with the help of various numerical examples
and highlight some of the salient point in the fuzzy option pricing model developed in
this chapter. We also assume that the initial price of the stock is S and the exercise

price of the call option, K, are crisp and known. For, 0 < o <1, let

@ = [ug, vz, us, uaogmmn) = [1.12,1.13,1.15, 1.17)ofmm (5.4.1)
d = [(di,d2,ds,ds)opmmy = [0.65,0.75,0.85,0.95]00mm (5.4.2)
r = 0.0633 (5.4.3)
S = 65 (5.4.4)
K = 59 (5.4.5)

We observe that for the above data the following hold.

d < de < d3 < dy <1+7‘<u1<u2<U3<u4, (546)
0 < pu<l, O<pu<li=1234 (5.4.7)
Su; > K, Sdi<K and i=1,234 (5.4.8)

For different values of m and n we discuss the following cases.

(a) Case 1, when m =n =2,

(b) Case 2, when m =2 and n = 0.5,
(c) Case 3, when m = 0.5 and n = 2,
(d) Case 4, when m =n = 0.5.
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5.4.1 Case 1.

In view of (5.4.1)-(5.4.8) and for m = 2 and n = 2, we now compute the fuzzy price
of the call option. Using expressions (5.1.2),(5.1.3),(5.1.5) and (5.7.6), we obtain the
following risk neutral probabilities that we shall use to price the fuzzy call option

value.

(o) = (us—1-r)—(ug—~w)vT—a | [0.0667 —0.01y/1T =]
P = = (i —m -+ d)Vi-a) | 03840095 |

(@) = (us~1—r)—(uz—w)v1—a ] [0.0867+0.02¢/1— ]
Paz _U3—dg“(U3—U4—d3+d4)\/1—O!_ | 0.3—0.08‘\/1—& ]

(147 —ds) +(ds —di)vI—a 0.2133 — 0.1y = &]

pa) - | H

Lug — d3 — (ug — ug — ds + dq)v/1 — @) 0.3 -0.08v/1—a |
(a) N i (1 +T—d2)+(d2—d1)\/1—-a’) } . [0.313'{*0.1\/1—&
Puz uy —dy— (p —t —dp + )Vl -] 038+ 009V —a

Characteristics of the Risk Neutral Probabilities when m =

1 = 2. For, 0 < @ < 1 we have

o) = o= (3853;335_—&)4”
f;h)dl(a)] T _Ia)% [24.5()32(1?:89:?;_{'16);_&)} a
%[pdz(a)] = ”ﬂi_—a :(_1525:——5)2} =
d%[m(a)] T ja)g —2?1555:—2;1;\/?)] =
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. 1 16.17
ZgPal(@)] = m{pwHM)z] a

. A — 1 24.255(—~5+ 41— a)
dag[pul( )] (1__03)_2‘ I: (—15—*-4\/1-—-—(1)3 }>0

d 1 49.15
Zhpal@) = - [ ( } <0

1-a|(38+9/T=a)

1 [24. 575(38 + 27v/T— a)} <0
1-x)f| (B+9v/i-a)

d2
—lba)] = -

Note that the first derivatives of the left hand side of the various fuzzy risk neutral
probabilities a,re’greater than zero and the derivatives of the right hand side of the
fuzzy risk neutral probabilities are less than zero. This indicates that as the left hand
part of the a-cut characterizes an increasing function and the right hand part of the
a-cut characterize a decreasing function. However, the second derivative for pai () is
greater than zero, which indicates convex character of py (o). The second derivative
of pga(e) is less than zero which indicates concave character.

Table 77 summarize the fuzzy risk neutral probabilities of a down movement in
the stock price, the fuzzy risk neutral probabilities of an up movement in the stock

price for different values of &, where 0 < o < 1.
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Table 5.1: Kurtosis of Sign RCA model and RCA Model.

@ | pu(@) | pua(@) | par(@) | paz(c)
0 | 0.515 | 0.879 | 0.121 | 0.485
0.1 0.528 | 0.876 { 0.123 | 0.472
0.2 0542 | 0.874 | 0.125 | 0.458
0.3 0.556 | 0.871 | 0.128 | 0.444
0.4 0571 | 0.868 | 0.131 | 0:429
051 0.586 | 0.865 | 0.134 | 0.414
0.6 | 0.602 | 0.861 | 0.138 | 0.398
0.7 0.619 | 0.857 | 0.143 | 0.381
0.8 0.638 | 0.851 | 0.148 | 0.362
09 0.661 | 0.844 | 0.156 | 0.339
1 ] 0.711 | 0.824 | 0.176 | 0.289

It is interesting to point out that the fuzzy algebraic approach to option pricing
preserves the complimentary condition imposed by probability theory and at the
same time does not disturb the stochastic structure of the risk neutral probabilities.

In other words, the complimentary conditions
(a) pui(@) + paz(e) = 1
(b} pu(@) + par(@) =1

are satisfied.

From Table(??) we obtain F igure (5.1) and Figure (5.2) respectively.
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o —Cuts

0.120 0.176 0.289 0.485

Figure 5.1: py, Fuzzy Risk Neutral Probabilities of a fuzzy downward movement in
the stock price when m =n = 2.

o —Cuts

Pu

0.515 0.711 0.823 0378

Figure 5.2: p,, Fuzzy Risk Neutral Probabilities of a fuzzy upward movement in the
stock price when m =n = 2.

When m = n = 2, the graphs of ps(a) and p,(a) are spread out. This mean
that the amount of fuzziness in the risk neutral probabilities are more than it would
have been if Tr.F.N’s were chosen for % and d. Increasing the values of m and n in

the model increases the amount of fuzziness in the model. Estimation of member-
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ship functions is an important step in many applications of fuzzy sets theory. Thus

eliciting membership functions is one of the fundamental issues associated with the

application of fuzzy set theory.

Fuzzy Call Option Value Calculation with O(2,2)-Tr.T.F.N’s.

Substituting values of 7,5, X, # and d in formulas (6.3.4) and (5.3.5), we obtain the

fuzzy current price of the call option as follows.

S(ug — (ug —u)vV1—0a) - K

(1471 —dg) + (ds — ds)V1— &

G = |

147

1.0633

0.3 ~0.08v/1 —«

S(Ug b (Ug - 7.!4)\/1 - O!) - K

(ug —dg) - ('IL3 — Uyq —d3+d4)\/1 — &
_ [14.45 —0.65v/1 —0.2133 — 0.1/1 — «

(5.4.9)

(1 +r— dz) — (d2 - dl)m

Cala) = [

147

u2—~d2—(u2—u1~d2+d1)\/1—a

3 [ 15.75 4+ 1.3v/1— 2 0.3133 4+ 0.1v/1 — &
N 0.38 4+ 0.09/1 —

In Table (5.2), the fuzzy call option values are tabulated for different values of a,

0<a<1andm=mn=2. Table (5.2) gives the a—cut closed intervals C;(a), Cy(c)

1.0633

of the fuzzy call price of a call option along with different degrees of truth.

Table 5.2: Fuzzy Call Option Values.

(5.4.10)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ci{a) | 6.68 | 6.88 | 7.07 | 7.27 | 749 | 7.71 | 7.94 | 820 | 8.50 | 8.86 | 9.66
Co() | 14.10 ] 14.01 | 13.91 | 13.81 | 13.69 | 13.57 | 13.43 | 13.27 | 13.08 | 12.83 | 12.21
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From Table 5.2 we obtain Figure 5.3 that depicts the fuzzy call values for the option

pricing problem.

o —-Cuts
F-3

0.5

Call

6.68 7.71 9.66 1221 18.57 14.10

Figure 5.3: Case 1: Fuzzy Call Option Values.

In Case 1 we consider a call option on a stock under conditions listed in (5.4.1)-
(5.4.8). Table 5.2 gives the degrees of truth for different fuzzy call option values Cy ()
and Cs(a). For example, if any call option price is taken in the range of [7.71, 13.57],
then the degree of truth associated with the value of this call option price is at least
0.5. Therefore, if an analyst is comfortable with the degree of truth of at least 0.5,
then he(she) can take this option price for his(her) later use. A similar interpretation

holds for the other interval in Table 5.2.

Characteristics of the Fuzzy Call Option Value Considered in
Case 1 , where m =2 and n = 2.
We now analyze the behavior of the fuzzy call price, considered in Case 1. To do

so we calculate their derivatives.

118



For 0 < e <1, (5.4.9) yields.

dpui{a)
do

dC’l(a) . 1 [ dCul (Q.’)

do T 147 da pule) +

Cul(a)] >0 (5.4.11)

Using (5.3.17) and (5.4.11), we have

d2Cy(e) ( 0.1625 (0.2133 - 0.14/1 - a) (1-— Of)_%) n

do? 1.0633 (0.3 - 0.08v/1 — o)

( 10. 511 ) s

1.0633 (1 — @) (=15 + 4y/T— )’

(24. 255 (14.45 — 0.65v/T — &) (-5 +4vI—a) (1 - a)—%) ¥
1.0633 (~15+4/1—a)°

d201 (OL’)
dao?

Similarly, from (5.3.18), the expression for

Since, > 0, therefore the curvature for the left hand side of C,,;(a) is convex.

dCQ (O.’)
dov

is always negative, irrespective of

the value of o, 0 < & < 1. That is

dCy(a) 1 dCys(a) dpys ()
do 1+7~[ da Puel@) + =5 = Cule)| <0
2
On the other hand, the %@ is as follows,
PCy(ar) (0.3133+0.1vT=a) (-1.325 (1 - o)}
da® 1.0633 (0.38 + 0.09v/1— ) B
49.015
2 +
(38.0+9.0v1I—a) vI—«
2 (—0.65) (—49.015) (1 — &) "2 N
1.0633vT — @ (38.0 +9.0y/T— @)
24.508 (15.75 + 1.3v/T — &) (38.0 + 27.0v/T— @) (1 — o)™ -0
3
1.0633 (38.0 +9.0,/(1 = a))
. d? 02(0!) .. . . . . .
Since, a3 < 0, it implies that the right hand side of C(«) considered in Case 1
is concave.
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Membership Function of the Fuzzy Call Option Considered in
Case 1.

We now compute the membership function of the fuzzy call price considered in
Case 1. In order to find the two ends points and the two interior points which describe
the fuzzy call price corresponding to the O(2,2)-Tr.T.F.N in Case 1, we set @ = 0 and
a=11in (5.4.9) and (5.4.10), respectively.

This yields
C1(0) = 6.68, C1(1) = 9.66, C(0) = 14.10, Cy(1) = 12.21.

Thus, the fuzzy number that describe the fuzzy call price in (5.4.9) is given by
C = [6.68,9.66,12.21,14.10).

In view of the above discussion, we determine the membership function as follows.
From (5.4.9), setting Cy(a) = C, we get

2.8987 — 1.4894y/T — @ +0.06113 (VI —a)’
0.3-008/1—a

Cross multiplication yields, the following equation.

= C

0.06113 (vI—a)’ — (1.4894 - 0.08C) vI—a+ (2.8087-0.3C) = 0

Thus,

& =

(1. 4894 — 0.0 86') ++/1.5095 — 0. 164 95C + 0.00 64C2
1 —_
0.12226

Similarly, from (5.4.10), setting Cy(a) = C, we get
0.12226 (v1 - a)’ - (0.09C — 1.8643)v/1 — a + (4.6407 — 0. 38C) = 0

and

o = 1 (0.09C — 1.8643) +/0.0081C2 — 0.14974C + 1. 2061\ °
- 0.12226
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This gives the membership function C.

0 ¢ < 6.68

(1. 4894 — 0.0SC’) +/1.5095 — 0.164 95C + 0.0064C2
11—
0.12226

2
) 6.68 < & < 9.66

() = ¢ 1 9.66 < C < 12.21

~ = = 2
1 (0.09C — 1.8643) + +/0.008152 — 0.14974C + 1. 206 1
0.12226

0 & >14.10

5.4.2 Case 2.

In the problem considered in (5.4.1)-(5.4.5) and m = 2 and n = 0.5, we compute the
fuzzy call price. Using expressions (5.1.2},(5.1.3),(5.1.5) and (5.1.6), we compute the

risk neutral probabilities as follows.

[0.0667 — 0.01vI—a
pafa) = ] (5.4.12)
| 0.3840.09vI—«a |

[0.0867 +0.02(1 — a)?
— : 5.4.13
Paa () | 0.3-008(1—a)’ (5.4.13)

~ Jo.2133-0.1(1 - a)?
pu(e) = 03-008(—a) ] (5.4.14)

@ — '0.3133+0.1\/_1—aJ 5,419
Pl = 038 1009V = o i

We use the fuzzy risk neutral probabilities given by expressions (5.4.12)-(5.4.15) in
expressions (5.3.4) and (5.3.5) to compute the fuzzy call price for different values of

a, 0< o < 1.
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Characteristics of the Risk Neutral Probability for Case 2,
We find the derivatives of each of those risk neutral probabilities and checks their

behavior as « varies, where, 0 < o < 1.

dpai (@) 1 49.015
do — Vi-a [(38.0+9.0M)2} >0
Ppala) [ 24.508 (38.0 + 27.0/1 — ) ] o
do* (1 -)? (38.0+9.0vI—a)°

d ppla) —64.68(1 — ) 0

doe [(—11.0 — 8.0a + 4.0042)2] <

d *paa(a) [ —194.04 (9.0 — 8.0c + 4.00:2)} >0
do® | (~11.0 — 8.0a + 4.0a2)°

dpula) 64.68(1 — a)
dee [(—11.0 — 8.0c + 4.0@2)2J
@® pula) {194. 04 (9.0 — 8.0c + 4.0@2)} 0
do? | (~11.0 — 8.0a + 4.002)°

dpuz(e) 1 —49.015
da VI-a [(38.0+9.0ﬁ——a)2J <9
) [—24. 508 (38.0 + 27.,0@)} Iy
da? (1-a)? (38.0+9.0/T=a)°

Note that the first derivatives of the left hand side of the fuzzy risk neutral probabil-

ities are greater than zero and the derivatives of the right hand side of the fuzzy risk
neutral probabilities are less than zero. However, the second derivative for pg (a) and
paz(0) are greater than zero, which indicates convex character . The second derivative
of pu1(e) and pua(a) are less than zero which indicates concave character.

Table 5.3 summarizes the fuzzy risk neutral probabilities in the stock price for differ-

ent values of , where 0 < o < 1.
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Table 5.3: Fuzzy Risk Neutral Probabilities

a | pu(e) | pula) | pa(e) | palo) |
0 | 0515 | 0.879 | 0.121 | 0.485
0.1 0.563 | 0.876 | 0.123 | 0.438
0.2 0.600 | 0.874 | 0.125 | 0.400
0.3] 0.630 | 0.871 | 0.128 | 0.370
0.4 | 0.654 | 0.868 | 0.131 | 0.346
05| 0.673 | 0.865 | 0.134 | 0.328
0.6 | 0.687 | 0.861 | 0.1338 | 0.313
0.7 | 0.698 | 0.857 | 0.143 | 0.302
0.8 0.705 | 0.851 | 0.148 | 0.295
0.0 0.710 | 0.844 | 0.156 | 0.290
1 [ 0711 | 0.824 | 0.176 | 0.289

From Table(5.3) we obtain Figure (5.4) and Figure (5.4) respectively.

o —Cuts

pu

fu

0.515 0.711 0.823 0.878

Figure 5.4: p,,, Fuzzy Risk Neutral Probabilities of an up movement in the stock price
when m = 2 and n = 0.5.
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a —Cuis

0.120 0.176 0.289 0.485

Figure 5.5: pg, Fuzzy Risk Neutral Probabilities of a down movement in the stock
price when m = 2 and n = 0.5.

When m = 2 and n = 0.5, the graph of p,(a) bulges inward on the left hand
side and bulge outward on the right hand side. Thus, there is less fuzzingss on the
left hand of the membership function. On the other hand, the graph of pa(a) bulges
outward on the left hand side and bulge inward on the right hand side. Thus, there
is more fuzziness on the left hand of the membership function than at the right hand
side.

Fuzzy Call Option Value Calculation with O(2,0.5)-Tr.T.F.N’s.
Substituting values of r,.5, K, % and d in formulas (5.3.4) and (5.3.5), we obtain the

fuzzy current price of the call option.

Cula) = (14.45-0.65v/T—a 0.2133 — 0.1(1 — )? (5.4.16
nee _ 1.0633 0.3 ~0.08(1 — a)? 416)

Grle) (15.75+1.3(1—a)® 0.3133+0.1vI—a (5.4.17)
2 - 1.0633 0.38 + 0.09v/1 — & o

If we substitute different values of o, 0 < o < 1 we obtain the following table.
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In Table (5.4), the fuzzy Call are tabulated.

Table 5.4: Case 2: Fuzzy Call Option Values.

o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ci{a) | 668 | 7.32 | 783 | 824 | 857 | 885 | 9.07 | 9.25 | 9.39 | 9.51 | 9.66

Co(a) | 14.10 | 13.86 | 13.64 | 13.44 | 13.25 [ 13.09 | 12.93 | 12.79 | 12.66 | 12.52 | 12.21

From Table 5.4 we obtain Figure 5.6 that depicts the call values obtained when
m = 2 and n = 2 for the option pricing problem.

o —Cuts

0.5

Call
6.68 8.85 9.66 1221 13.09 14.10

Figure 5.6: Fuzzy Call Option Values with O(2, 0.5)-Tr.T.F.N.

In Case 2 we consider a call option on a stock under conditions listed in the prob-
lem considered in (5.4.1)-(5.4.8). Table 5.4 gives the degrees of truth in different fuzzy
call option values Cy(@) and Cy(cr). For example, if any call option price is taken in
the range of [8.85, 13.09], then the degree of truth associated with the value of this
call option price is at least 0.5. Therefore, if an analyst is comfortable with the degree

of truth of at least 0.5, then he(she) can take this option price for his(her) later use.
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Characteristics of the Fuzzy Call Option Value Considered in

Case 2, where m =2 and n = 0.5..

We now analyze the behavior of the fuzzy call price, considered in Case 2. To do

so we calculate their derivatives.

For0<a<l.
On the other hand for 0 < o < 1.
d*Ch(a) 1 d*Ci(a) dCy (@) dp,1{a) d*p,1 ()
7 R s [p“l(a) i? T da da TOal 0 ]

- (o) (S22 ) (0102500 0)

(T%é) (0.325(1 - o)) ((_11,{6}4;688.5)21020&)2) !

((14, 45 — 0. 65@)) (194. 04 (9.0 — 8.0c + 4.0&)) -0

1.0633 (—11.0 — 8.0 + 4.002)*
(5.4.19)
Similarly, for 0 < o < 1.
dCy{a) 1 dCyuo(a ) pug( )
de 147 [ da 0 20) + == “2( )| < (5.4.20)
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and

d2 Cg (O!) 1 dgcug (Of) dcug (a) dpug (CE)

do? 1+r[p”2(o‘) i? T da da T el

1 (0.3133‘—{-0.1\/1—0{)2 6+
1.0633 \ 0.384+0.09v/1—a /

2(—2.642.60)(1 — )3 —49.015 N
1.0633 (38.0+9.0vT—a)’

(15.75+ 1.3 (1 — @)?) {~24.508 (38.0 + 27.0v/T—a) (1 — @) ">
1.0633 (38.0 +9.0vT—a)°

pua(c)
do?

(5.4.21)

From (5.4.21), we see that Cy(c) has a point of inflection at o = 0.76, therefore, it

2
is convex for o < 0.76 and concave at « > 0.76 ( because d Ziga) > 0 for a < 0.76
and &Cy(a) < 0 for a > 0.76).
da?

5.4.3 Case 3.

In this case we take m = 0.5 and n = 2 in the problem considered in (5.4.1)-(5.4.5)
and compute the fuzzy price of the call option. Using expressions (5.1.2), (5.1.3),

(5.1.5) and (5.1.6), we compute the risk neutral probabilities as follows.

pa(a) = (o=1-7)= (=)l - L]
_?.Lz—dg-—(’u.g—ul—d2+d1)(1—a)"‘
_ r0.0667—0.01(1—a)2]

| 0.38+0.09(1-0)®

r 1
uz —1—71)—(uzg —uy) (1 — a)=
pie) = | (8= 1=7) = (4~ ) (1~ o) ]
_’U.3—d3—(U3—U4—d3+d4)(1—(1)"
_ [0.0867+0.02v/1—
| 0.3-0.08/1—«

Pula) = (U 4r—dg)+(ds—d) (1—)* ]
u L us — ds ~ (us — us — ds + dy) (1 - @)
[0.2133—0.1\/1—_71

0.3-0.08y1 -«
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0.3133+0.1(1 — a)?
0.3840.09(1 — )?

Du2 (G) =

Characteristics of the Risk Neutral Probabilities.
To study the behavior of the fuzzy call price, we find the derivatives of each of those

risk neutral probabilities and checks their behavior as a varies, where, 0 < o < 1.

dpar(@) _ d [0.0667—0.01(1-a)®| [ 196.06 (1 — ) } 0
dee do | 0.384+0.09(1 — a)? (47.0 — 18.0c + 9.002)*
Ppa(e) & [0.0667-001(1—a)®] [196.06(~11.0 — 54.0a + 27.0&2)} 0
de?  de?| 0.3840.09(1 — o)’ | | (47.0-18.0a+9.002)
dpgs () d [0.0867+002(1-a)?]| | ~16.17
da dor| 0.3-008(1-a)? | |(-150+40yI—a)'vI—a
d%ps(a) _ d® [0.0867+0.02(1—)7| [ —24.255(-5.0+4.0/T—a) 0
da? da? | 0.3-0.08(1 - a)? (1-)? (~15.0+ 4.0y/T—a)°
d pu () d {0. 2133 —0.1y/1= a] 16.17
GPale) _ @& - - >0
do da | 0.3—0.08y1 —« (_15_04_49‘/1_@) NI

d* pur(a) & [0.2133—0.1\/1—03}: 24, 255( 50+4.0v/1~a)
da? do? | 0.3-0.08/1—« (1—a)? (150+40m)

dpwa(a) _ d [0.3133+40.1(1—a)’| [ —196.06(1 — a) ]
da da | 0.38+0.09(1—a)® (47.0 — 18.0c + 9.0a2)®
Ppu(a)  d* |0.3133+0.1(1 - )? [—-196. 06 (—11.0 — 54.0cx + 27.0(12)} -0
do® do? | 0.38+40.09(1 — o) (47.0 — 18.0c + 9.0a2)°

Note that the first derivatives of the left hand side of the fuzzy risk neutral proba-
bilities are greater than zero and the derivatives of the right hand side of the fuzzy
risk neutral probabilities are less than zero. The second derivative for par (@) and
paz(ax) are less than zero, which indicates their concave character. On similar lines

we conclude that p,;(a) and py(e) are convex in character.
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Table 5.5 summarizes the fuzzy risk neutral probabilities in the stock price for

different values of o, where 0 < o < 1.

Table 5.5: Fuzzy Risk Neutral Probabilities.

[ a Ipul(a) Ipug(a) Ipdl(a) lpdz(a) ]

0 0.52 0.88 0.12 0.49
0.1 0.53 0.87 0.13 0.47
02| 0.54 0.86 0.14 0.46
0.3 0.56 0.85 0.15 0.44
041 057 0.85 0.15 (.43
0.5 0.59 0.84 0.16 0.41
0.6 0.60 0.83 0.17 0.40
0.7 0.62 0.83 0.17 0.38
0.8 0.64 0.83 0.17 0.36
09| 0.66 0.83 0.17 0.34

1 0.71 0.82 0.18 0.29

From Table 5.5 we obtain Figures 5.7 and 5.8 which depict the fuzzy risk neutral
probabilities for different values of @, 0 < o < 1.

o —Cuts

0.515 0.711 0.823  0.878

Figure 5.7: p,, Probability of an up movement in the stock price.
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a —Cuis

Pd

-
L ant

0.120 0.176 0.289 0.485

Figure 5.8: py, Probability of a down movement in the stock price.

Fuzzy Call Option Value Calculation with 0(0.5,2)-Tr.T.F.N’s.
Substituting values of , S, K, % and d in formulas (5.3.4) and (5.3.5), we obtain the

fuzzy current price of the call option.

Ci(c) 9 (== m) A=) =K 14y - g+ (- d) (- 0}
1 = 1
lL+r U3—d3*—(U3—U4—'d3+d4)(1—0.’);
_ [1445-0.65(1-0a)?0.2133-0.1y/T—a
= 1.0633 0.3-0.08y/I-a
K u3—(u3~u4)(1——a)% - K _ _ _ oL
C(a) _ (1+T d2)+(d2 d1)(]. Cf)
() =
i _ 1+r T;Lg—a!g—(‘u.g—'lh“‘(12‘+‘Cil)(].‘—Ct')$
|17+ 1.3T=a0.3133 4 0.1(1 - a)?
_ 1.0633 - 0.38+0.09(1—a)?

In Table (5.6), the fuzzy call price are tabulated. By substituting different values
of & in the above expressions for C1(e) and Cy(e) we obtain the following tables for

the fuzzy call option values.
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Table 5.6: Fuzzy Call Option Values.

o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ci(e) | 668 | 6.92 | 7.16 | 7.390 | 7.63 | 7.87 | 8.12 | 8.38 | 8.65 | 8.98

0.66

Cy(er) | 14.10 | 13.91 | 13.71 | 13.53 | 13.35 | 13.18 | 13.01 | 12.86 | 12.70 | 12.54

12.21

Using Table (5.6), we obtain Figure (5.9) which depicts the fuzzy call values for
the option pricing problem.

o —-Cuts
A

05 [*~ "~

Call

6.68 7.87 0.66 1221 13.18 14.10

Figure 5.9: Fuzzy Call Option Values with O(0.5, 2)

In Case 3 we consider a call option on a stock under conditions listed in (5.4.1)-
(5.4.8). Table 5.6 gives the degree of truth for different fuzzy call option values C; (@)
and Ci(«). For example, if any call option price is taken in the range of [7.87, 13.18],
then the degree of truth associated with the value of this call option price is at least
0.5. Therefore, if an analyst is comfortable with the degree of truth of at least 0.5,

then he(she) can take this option price for his(her) later use.
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Characteristics of the Fuzzy Call Option Value Considered in
Case 3, where m = 0.5 and n = 2.
We now analyze the behavior of the fuzzy call price, considered in Case 3.
Consider expression (5.4.16), the fuzzy call price considered in Clase 2. Expression

(5.4.16), is always greater than zero, irrespective of the value of a. for 0 < o < 1.

dCi{a) 1 dCu(a) dpy; (@)
do 1+’r[ o Pal@)+—7 —Cul@)] >0
dZC'l(a) 1 dQCul(o:) dCuj[ (C\{) dpul(a) dzpu]_ (Of)
oz = Tay [Pt gy T Oal@ =5 J
. -1.3 (0.2133—0.1\/1—a)+
©1.0633\ 0.3—-0.08/1—a

1 (42.042—42.0420 (1 — o) 73
(14.45 - 0.65 (1 — 0)?) ((—121. 28+ 97.02/(1 - a)) (1 - a)-%) i

1.0633 (-15.0 + 4.0v/T ~ @)’

(5.4.22)

The expression given by (5.4.22) is negative irrespective of the value of @, for 0 <
a < 1. Therefore, Ci(a) is concave in nature for 0 < o < 1.
Similarly, for 0 < a < 1..

dCofe) _ 1 [dCu(@) .

dpus(a) o
do 1+7r do

do u2

(@) <0

132



From expression (5.3.19), we have

P _ L[ PO o Za@ale) g, o Erate)]

—0.325(1—0)" 7 {0.3133+0.1(1 — a)? N
1.0633 0.38 4+ 0.09(1 — a)?

1+r
3(1—a)7? ( ~196.06(1 — ) ) N
1 0633 (47.0 — 18.0c + 9.0a2)®

((15 75+ 1.3y/1 - a)) (—196. 06(—11.0 — 54.0a + 27.0a2))

1.0633

(47.0 — 18.0cx + 9.002)°
(5.4.23)

Therefore, from (5.4.23), we have a point of inflection at o = 0.74, it is convex at

202 (Ct)

To? > 0 for @ < 0.74 and

a < 0.74 and concave for o > 0.74. ( because

d2 Cg (CB)
da?

< 0 for @ > 0.74).

5.4.4 Case 4.

In the problem considered in (5.4.1)-(5.4.5) and m = 0.5 and n = 0.5, we compute
the fuzzy call price. Using expressions (5.1.2),(5.1.3),(5.1.5) and (5.1.6), we compute

the risk neutral probabilities as follows.

_ - (ue ~1—7) = (ug —u) (1 — a)”
pa(a) = 2z - _(uZ—ul—derdl)(l—a)z}
~ [0.0667-001(1 - a)?
| 0.384+0.09(1—a)?

pola) = | Wa=1=1) - (w-u)(-q) }

~’u,3—d3—(U3—U4—d3+d4)(1—&)2
_ [o.0867+002(1 - a)ZJ

0.3-0.08(1 — a)?
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_ [ Or—d)+ (s -d) 1 — o)
paa) = u3—d3—(ua—u4—d3+d4)(1—a)2J

~ Jo2133-0.1(1 - a)?
| 0.3-0.08(1—a)?

pufQ) = (Atr—da)+(d—di)(1-a) J

\up —dy — (ug — uy — dy + di) (1 — @)°
~ Jo.z13340.1(1-a)?
| 0.38+0.09(1 — a)?

Characteristics of the Risk Neutral Probabilities.
To study the behavior of the fuzzy call price, we find the dérivatives of each of those

risk neutral probabilities and checks their behavior as a varies, where, 0 < o < 1.

do - do
Ppn(a) &P [0.0667——0.01(1—01)2}

dpn(e) _ d |0.0667—0.01(1 —a)’ _ [ 196.06 (1 — a) }
0.38+0.09(1 — o)? (47.0 — 18.0a + 9.0a?)?

3 [ 196.06 (—11.0 — 54.0a + 27.00:2)J
(47.0 — 18.9a + 9.002)

da? "~ da? | 0.38+0.09(1 - )
dpp(a) _ d |0.0867+0.02(1—0a)’| [ —64.68 (1 — o) } 0
da da | 0.3-0.08(1—a) (—11.0 — 8.0a + 4.002)?
d’par(e)  _ d® [0.0867+0.02(1—a)] {—194. 04(9.0 — 8.0c + 4.00:2)] -0
do? da? | 0.3-0.08(1—a)® (—11.0 — 8.0 + 4.002)®
dpale) _ d [0.2133-0.1(1-a)’| [ 64.68(1 — a) ]
do der | 0.3-0.08(1 - a)? (—11.0 — 8.0 + 4.002)*
@ pafe) & [0.2133-0.1(1-a)*| _ [ 194.04(9.0 — 8.0a + 4.0&2)] 0
da? da? | 0.3-008(1-a)® | (—=11.0 — 8.0c + 4.002)?
dpuz(a) _ d [0.3133+40.1(1-a)’| [ —196.06(1 — ) J 0
da da | 0.38+0.09(1 - a)? | (47.0 — 18.0c + 9.0a2)

B [-—196. 06 (—11.0 — 54.0c + 27.0a2)] .
(47.0 — 18.0a + 9.0a2)?

dpys(a) d? 10.3133+0.1(1 — a)?
da? do® | 0.38+0.09(1 — a)®
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Note that the first derivatives of the left hand side of the fuzzy risk neutral proba-
bilities are greater than zero and the second derivatives of the right hand side of the
fuzzy risk neutral probabilities are less than zero which indicates its concave character
. The second derivative of p,s(a) is greater than zero which would indicate convex
character.

Table 5.7 summarizes the fuzzy risk neutral probabilities in the stock price for

different values of , where 0 <a < 1.

Table 5.7: Fuzzy Risk Neutral Probabilities.

| @ [pu(®) | puala) [ par(e) | pas(e) |

0 | 0.515 | 0.879 | 0.121 | 0.485
0.1] 0.563 | 0.871 | 0.120 | 0.438
0.2 | 0.600 | 0.862 | 0.138 | 0.400
03] 0630 | 0.854 | 0.146 | 0.370
0.4 0.654 | 0.847 | 0.153 | 0.346
0.5 | 0.673 | 0.840 | 0.160 | 0.328
0.6 | 0.687 | 0.835 | 0.165 | 0.313
0.7 0.698 | 0.830 | 0.170 | 0.302
0.8 | 0.705 | 0.827 | 0.173 | 0.295
0.9 0.710 | 0.825 | 0.175 | 0.290

1 | 0.711 | 0.824 | 0.176 | 0.289

Using Table (5.7), we obtained Figure 5.10 and 5.11.
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o —Cuts

Ppu
0.515 0.711 0.823 0.878
Figure 5.10: p,, Probability of an up movement in the stock price.
o —Cuts
A
i - e
pd

0.i120 0.176 0.289 0.485

Figure 5.11: pg, Probability of a down movement in the stock price.
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Fuzzy Call Option Value Calculation with 0(0.5,0.5)-Tr.T.F.N’s.

Substituting values of 7, S, K, and d in formulas (5.3.4) and (5.3.5), we obtain the

fuzzy current price of the call option.

C; (a)

CQ(C!)

(8 (wa— (=) (1=a)%) =K (1474 4 (ds - do) (1 - ) J

147 us — dy — (ug — ug — dg + dg) (1 — @)*
[14.45-0.65(1 —)®  0.2133—0.1(1 — a)? (5.4.24)
_ 1.0633 0.3—0.08(1—a)? h

'S(Ua—(m—w)(l—a)%)—ff (L+7—do) + (do — ) (1 — @)
1+ uz—dg—(u2~—u1—d2+d1)(1~—af)$

(5.4.25)

(15.75+1.3(1— )’ 0.3133+0.1(1 — a)?
1.0633 0.38+0.09(1 — )®

‘In Table (5.8), the fuzzy call price are tabulated. By substituting different values of

« in the above expressions for C1{c) and Cy(a) we obtain the following tables for the

fuzzy call option values.

Table 5.8: Fuzzy Call Option Values.

o! 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ci(e) | 6.68 | 7.37 | 7.92 | 837 | 8.74 | 9.04 | 927 | 9.44 | 9.57 | 9.64 | 9.66
Cye) | 14.10 | 13.76 | 13.45 | 13.17 [ 12.92 | 12.71 [ 1253 | 12.39 | 12.20 | 12.23 | 12.21

Using Table (5.8), we obtain Figure 5.12 which depicts the fuzzy call values for the

option pricing problem.
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o —Cuts

0.5

Call

P

5.68 9.04 966 1221 1271 14.10

Figure 5.12: Fuzzy Call Option Values with O(0.5, 0.5)

In Case 4 we consider a call option on a stock under conditions listed in (5.4.1)-
(5.4.8). Table 5.8 gives the degree of truth for different fuzzy call option values Ci(a)
and Cy{a). For example, if any call option price is taken in the range of [9.04, 12.71],
then the degree of truth associated with the value of this call option price is at least
0.5. Therefore, if an analyst is comfortable with the degree of truth of at least 0.5,

then he(she) can take this option price for his(her) later use.

Characteristics of the Fuzzy Call Option Value Considered in
Case 4, where m = 0.5 and n = 0.5.
We now analyze the behavior of the fuzzy call price, considered in Case 4. From

(5.4.16) we have for o, for 0 < ¢ < 1.

dC}_ (a) _ ]. dC’ul (a) dpul (a)
do  T+r| da Pul@+—g,"Cale)| >0 (5.4.26)
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Also, forar, for 0 < a < 1.

&2C 1 d2C, dCy1(c) dp,, d*p,
d;ga) = 1 e l:pul(a) dojz(a) -+ 2 d;(O.’) pd;(!a) + Cul(a) P 1(a):]

do?
—1.3 { 0.2133-0.1(1 - )®
~ 1.0633 ( 0.3—0.08(1— a)? ) "
2(1.3—1.3a) 64.68(1 — )
1.0633 ((_11.0 —8.0a + 4.0@2)2)
(14.45 - 0.65 (1 — )?) ( 194. 04(9.0 — 8.0c + 4.00:2)) 0

1.0633 (—11.0 — 8.0c + 4.002)°
(5.4.27)
Hence, Ci(c) is concave in character for 0 < o < 1.
Similarly, for, 0 < o < 1.
dCa) 1 dCua(a) dpuz ()
de 147 { do Pu(e) + do Cufe)) <0
and
d*Ch(a) 1 d?*Cya() dCy2(a) dpyo(c) pya(c)
do2 - 1+r puZ(Q-’) do? +2 do dot -+ Cug(a)————daz

26 (0.3133+0.1(1 - a)?
1.0633 | 0.38+0.09(1 — a)?

2(—2.6 + 2.6a) —196.06(1 — )
1.0633 ((47.0 ~18.0a + 9.0a2)2)
(15.75+1.3(1 — @)*) (~196.06(—11.0 — 540 + 27.00?) 0
1.0633 ( (47.0 — 18.0c + 9.002)° )

(5.4.28)

This means that, Cy(e) is convex in character for 0 < o < 1.

Membership Function of the Fuzzy Call Option Considered in
Case 4.

We now compute the membership function of the fuzzy call price considered in

Case 4. In order to find the two exterior points and the two interior points which
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describe the fuzzy call price corresponding to the O(0.5,0.5)-Tr.T.F.N in Case 4, we
set @ =0 and a = 1 in (5.4.24) and (5.4.25), respectively.

Thus, the fuzzy number that describe the fuzzy call price in (5.4.24) is as given
by C = [6.68,9.66,12.21,14.10]. In view of the above discussion, we determine the

membership function as follows. From (5.4.24), setting Ci(a) = C, we get

[14.45 —0.65(1—0a)? 0.2133-0.1(1— a)"’} _ &

1.0633 0.3 —0.08(1 — a)?

Cross multiplication yields, the following equation for c.

(1. 4894 — 0.0 85) +1/1.5095 — 0. 164 95C + 0.00 6402
0.12226 B

Similarly, from (5.4.25), setting Cy(a) = C, we get

o — 1_ |{(0.09C ~1.8643) + v/0.0081C% — 0.14974C + 1. 2061
a 0.12226

This gives the membership function C of (see Figure(5.12)) as

0 & < 6.68

J ((1.4894 —00 86’) + v 1.5095 — 0.16495C + 0.00 6402
1._

6.68 < C < 9.66
0.12226 ) - -

SR 1 9.66 < & < 12.21

1_ 1 009C—1.8643) + v/0.0081C2 — 0.14974C + 1.206 1
0.12226

) 12.21 < € < 14.10

0 ¢ > 14.10

Conclusion

In this chapter, on the lines of Muzzioli and Torricelli [98] and Appadoo et al. [2], we
discuss the option pricing when payoffs are described by O(m, n)-Tr.T.F.N. numbers.
We believe that this approached can be extended to price a wide variety of options

with different types of fuzzy pay-off patterns.
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Chapter 6

Fuzzy Option Pricing Model Using
LR-Fuzzy Numbers

In this chapter we derive and discuss the results for fuzzy binomial risk neutral option
pricing model using LR-fuzzy number. The model provides a reasonable range of
option price to choose from. Certain results derived in Chapter 5 of this thesis and in

(2], [4] and [98] may be viewed as special cases of the results derived in this chapter,

Suppose the price of a stock at time ¢ = 0 is S, whereas at ¢ = 1 we obtain its price
by multiplying S with the jump factors. Let the ~-level sets for a fuzzy increase i
and a fuzzy decrease d, respectively, in the stock price be given by ~-level sets

u(y) = [w1(7), u2(7)], and d(7) = [di(7), da(7)] such that using (1.5.7) we have

di(7) = d—a L7 () (6.0.1)
d(7) = d+ /R () (6.0.2)
w(y) = uw—oLl 7 (y) (6.0.3)
w(y) = T+ BHR(y) (6.0.4)

where, a; > 0 is the left spread of a fuzzy decrease in the stock price, £; > 0 is the

141



right spread of a fuzzy decrease in the stock price, ap > 0 is the left spread of a fuzzy
increase in the stock price and B3 > 0 is the right spread of a fuzzy increase in the
stock price. Furthermore, L and R are left and right functions: [0,1] — [0,1], with

L(0) = R(0) = 1 and L(1) = R(1) = 0 and are non-increasing, continuous mappings.

Below we now state a theorem that provides the results for the fuzzy risk-neutral
probabilities needed to price a fuzzy call option under LR-fuzzy numbers. Since its
proof follows the lines of the proof of Theorem 4.1.1, therefore we do not prove it

here.
6.1. Main Results

Theorem 6.1.1 Let i = (u,T, 0, Bo)rr and d = (d,d, a1, B1)Lr Tepresent, respec-

tively, a fuzzy increase and a fuzzy decrease in S. Att =1 Let,
(a) wly) = fu(y), ()], ¥, 0 < v <1, be the y-level set for a fuzzy increase in S,
(b) d(v) = [di(v), ()], ¥, 0 < v < 1, be the v —level set for a fuzey decrease in S.

(¢) pa(y) = [par(v), pa2(v)], ¥, 0 < v < 1, be the associated fuzzy risk neutral

probability for a fuzzy decrease in S,

(@) pu(v) = [Pu(¥), e2(¥), ¥, 0 < v < 1, be the associated fuzzy risk neutral

probability for a fuzzy increase in S, and
(e) v be the risk free rate, assumed to be constant.

Then
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(1) the fuzzy risk neutral probability associated with a fuzzy downward movement in

the stock price is given by,

w—(1+7r)— a1 L7(y) (1+7)+BR(y)

paly) = L—¢+L4hxw—ag’E—E+RﬂmMz_@) (6.1.1)
such that,
_ =0+ r) -l (y)
pa(y) = Lﬂ ey =T P al)} (6.1.2)
_ [E=0+r)+ R (y)
SURNES o 2 (613)
and

(i) the fuzzy risk neutral probability associated with a fuzzy wpward movement in

the stock price is given by,

(1+r—d)—BRYy) (1+r—d) +ol(y)

d+ R_I(_’Y)(ﬁl —B) u—d+ L Y(v)(az — o) (6.1.4)

y2n (’7’) =

such that,

_ [Q+4r-d) - BR()]
Pu1(’7) - _ﬁ*&*i—R“%’}’)(ﬁl —162)_ (615)

_ [+ r—d) +ol(y)]
pu2('}') - _y"“_d‘l‘L—'l(’}')(OQ _al)_ . (616)

Corollary 6.1.1 Let pu1(7y) and pus(y) be the fuzzy risk neutral probabilities of a fuzzy

increase in the stock price and let pai(7y) and paa(7) be the risk neutral probabilities of
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a fuzzy decrease in the stock price, then the following complimentary conditions hold.

(I+r—d)+al™(y)

[ u—(1+7)— a1 L7Hy) ]
[u—d+ L7 (y) (g ~ o) |

((tr-8)- AR ]

+

u—d+ L (y)(oe ~— a1) ]

[(B-(+r)+BR()]

T —d+ Ry (B — B).

+

@ —d+ R(7)(6, — Ba) ]

Muzzioli and Torricelli (98], discussed the complimentary relationship when the pa-

rameters in the opt'i.on pricing model are triangular fuzzy numbers. Our approach is

more general and it can be adapted to handle different kind of fuzzy numbers, includ-

ing fuzzy numbers with certain kind of nonlinear membership functions, that includes

O(m,n)-Tr.T.F.N’s also.

6.1.1 Membership Function for py(y) and p,(v)

In order to find the two exterior points and the two interior points which describe the

risk neutral probability of a fuzzy decrease in the stock price corresponding to the

LR-fuzzy numbers, we set v = 0 and v = 1 in (6.1.2)) and (6.1.3)). This yields,

pa(0) = ;__ 4( ilii&)?;fjff)
a0 = [T
pa(l) = _5: _@r( 112(1)?;?—1 Si))
par(l) = a-?__a(f;%)ﬁ(lﬁig)]
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Similarly, to find the two exterior points and the two interior points which describe
the risk neutral probability of a fuzzy increase in the stock price corresponding to the

LR-fuzzy numbers we set v = 0 and y = 1 in (6.1.5)) and {6.1.6)). This yields

. (147 ~d) — B R71(0)
al0) = |35 R(0) (61 - ﬁz)J (611

w0 = [ e 6112
_ [(Q+r—d)—BR(1)

ml) = | G- (6113

nalh) = [ =) (6114

In view of (6.1.7))- (6.1.14)), the fuzzy probabilities of a down movement and of an

up movement are given respectively, by

u—(1+7) -0 L7'0)  w—(1+7)— o L7Y1) ]
v—d+ L (0){az — 1) u—d+ L (1) (o — ay)’

T g—-(1+7r)+/AR1(1) T—(1+7)+ BR7L0)
| T—d+RY (B, —F) w—d+RL0)B; - F) |
(6.1.15)
and
(l+r—d)—BRY0) (1+r—d)—FKR1)
N T—d+RY0) B~ F2) T—d+ R~ B)
pu =
(At+r—d+oel™'(1) (1+r—d)+aLl™}(0)
v—d+ L (1) o2~ 1)’ uw—d+ L 0)(ag ~ o)
(6.1.16)

We now determine the membership functions for the fuzzy risk neutral probabilities of

downward movement and the fuzzy risk neutral probabilities of an upward movement
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in a stock price.

Since

[ u—ay L7 (y) - (1+7)

pa(y) = (. — o L77y)) — (d — aaL~1())

therefore, for

z— (1+7) —anL70)
u—d+ L10)(0z — o)

we set

v—(14+7)— o L7Y1)
v—d+ L7 (1)(0g ~ a1)’

IN
IA

Da

[ u—onLlM(y) = (1+7) } ~ 5
(u— a1 L71(7)) = (d — ae L} ())

u—a L) = (1+7) = fal(u— L7 ') — (d - L7 Y(y))]
u—oan L7y - (1+r = fou— Pacr L) — Pad + Paca L7 ()
u—(147)—ups+dps = —Paonl (v} + Paca L () + an L7 ()

u—(1+7)+dfg—ups = L7(y) (a1 + Palce — 1))

_ u—(1+7)+pa(d — )
v =L [ Filon — o) + o (6.1.17)
o 2—(1+7r)+6R 1) . _ #w—(1+7)4BR0)
e O R (B, — ) = 7= a=at B0) (6, —
setting,
{ ut+AHR(y) - (1+7) ] - 5
@+ B RY7)) — (d+ B2R~Y(y))
yields
_ i@ —d)~a+ (1+7)
=k ( (B1 + Pa(Ba — 51)) ) (6.1.18)
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Therefore, the membership function for the down movement probability 7, is

’

0

z—(1+7) - l7H(0)
u—d+ L7H0)(az — a1)

D <

w—(14+7)— a1 L71(1)

Palas —a1) + o

1#(Pa) = < 1

L(Lﬁ— (1+7) +Pald — v)

y—(I+r)-olL70) __ u
u~—~d+ L‘l((})(a’z — C¥1) SPas u—d+ L"l(l)(ag — al)

u—(1+7) = L71(1) s, < B=(1+7)+/RI(Q
u—d+ L Maz—c1) = = T+ R)G - B)

T-(1+7)+ARTI) _ @ —(14+7)+ B R 0)

0

(ﬁd(ﬁ—&) —T+(1+7)
(B1 + pa(B2 — B1))

il <SPS ———=
T—d+R1(1)(5; - f) U= d+EH0)(B - £)

Z—(1+7)+ AR 0)
T—d+ R70)(B, — f2)
(6.1.19)

Pd =

The computation for the membership function for the fuzzy risk neutral probabilities

of an upward movement in the stock price is as follows. Set

(1+7—d)— BR(y) }
T—d+ R(7) (61 — )
(1+7—d) — SR (y)

(147 ~d) — $,7 + pud

similarly, setting

{ (1+7r—d)+asL71() ]
u—d+ L7 (y){ag — 01)

yields

u

Pu(@—d+ R () (B — fa))
PR V(B1 — ) + BR7H(y)

R (Bu(Br — B2) + B2)

[(l—i-r—d) + B d—ﬁ)}
(Bu(B1 — G2) + B2)

(SSwaa)

v = (D)

(ﬁu(az - (11) - CY2)
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‘Therefore, the membership function for the fuzzy risk neutral probability of an upward
movement in the stock price is

( | 5 < O +r—d) ~ BR(0)
T —d+ R™Y0)(B1 — F2)

R((l +r~3)+ﬁu(3-ﬂ‘)) (1+r—d)-BR(0) <5, < AAr=d) - BRT(1)
(Pu(Br — B2) + Ba) T—d+RY0)B—Fa) ~ T @—d+ R (B - Ba)

(4r=d - BRI .

©—d+ R™Y1)(B1 — B2)

A+r—d)+p(d—w)\ (+r-d)+ol™'(1) _. _ (1+7—d)+apL™}(0)
L( (Pulaz — 1) — az) ) E—Q+L‘1(1)(az—al)Spu_y—¢+1§‘l(0)(az~al)

N

(1+7r—d)+aL71(1)
Tu—d+ L7(1){o2 — )

A

#{(Pu) = < 1

A

~ (1+r—d)+ agL"l(O)
>
\ 0 Pu = u—d+ L71(0) (g — 1)

(6.1.20)

6.2 Characteristics of the LR-Fuzzy Risk Neutral
Probability of a Down or up movement in the
Stock Price.

We now discuss the behavior of the risk neutral fuzzy probabilities of the stock price,
In order to determine the shape of the two probabilities, we compute their values
at ¥ = 0 and v = 1 and then we analyze their behavior as v varies. We now
make additional assumptions that the functions L~! and R-! are finite and twice

differentiable with respect to . Furthermore, we make the following assumptions.

dL7(y)
dy
dR™'()
dry
(Bo(147) —0) + fi(d — (1+7))] %2 > 0 (6.2.3)
dL~(v)
dy

1 (d—(147))+ o ((1+7) — )] > 0 (6.2.1)

(1 +7) = d) + Bz — (1 +7))] <0 (6.2.2)

[aa(u — (1 +7)) + s (14 7) — d] < 0. (6.2.4)

148



From (6.1.2) we have

u—(1+r)—oL7(y)] _Ns
u—d+ L7 (v)(az —a)| — Ds

pa(y) = {
where,
Ny = u—(1+4+7)—anL7'(y)

Ds = u—d+ L (v) (02 — 01)

such that
dNs dL~(v)
[ — _al
dy dry
dD drL=1
d—’ys- = (a2 —_ al)_d&@
therefore,
[ dL*(v) dL™'(v)
-D - N — )M
dpar(y) _ M h loa o)
dy D¢
- AL
B (Oél (Ns - Ds) - NsOéz) T’y(’y_)
= o
- L™
(@x(—L =7+ d= L 0)o0) = (= (147) — a7 o)) o) 250
: AL
(ea{d—=1—-7)+as(r—u+ 1))———d—m
= i (6.2.5)

(u—d+ L (7) (s — ay))?

which is positive under assumption (6.2.1).

Similarly, under assumptions (6.2.3), (6.2.2) and (6.2.4) respectively, we have

C Dt BT — (12 ) )
doaly) |Gl - d) b ) — - 626)
dy @—d+R1()(8 - B)°
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i _ . dR™ ()7
dpa() (Be(1+7) —m) + Bu(d — (1 +7))) & » 627
&y (@—d+ R () (6 - )°
and
(ot — (1))t e (1 ) — y @D
dpuz(’}’) _ (012(7_14 (1 + )) + 1((1 + ) d)) dvy <0 (62 8)
dy u—d+ L71(v)(oz — )? .

To find the convexity or concavity character of the fuzzy risk neutral probabilities P
and p, we need to find the second derivatives of each of pg, Pz, Pu1 and Du2. If the
second derivative is positive (negative, respectively), it implies that the corresponding

probability is convex (concave, respectively) in nature.

6.2.1 Call Option Value With LR-Fuzzy Numbers.

Suppose that there is a call option on a stock with exercise price K and expiration
at the end of Period 1. In view of the above notation we take u(7y) as the vy-level set
of a fuzzy increase @ in the stock price, d(7) as the y-cut of a fuzzy decrease d in the
stock price.

We assume that arbitrage opportunity is not allowed. Then, the ~v-level set for

and d are respectively given by

u(y) = (@), wM =k—-o0l'(y),Z+ /R ()] (6.2.9)

d(y) = [di(v), ()] = [d— 2L (v),d+ BR7I(7)) (6.2.10)

Assume that C is a fuzzy current price of a call option on a stock whose Crisp exercise
price is K. Also, assume that when the call option expires, it is worth either C, or

Cy, where G, and C, are fuzzy quantities whose values are subjected to arbitrariness,
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subjectivity and fuzziness. In this case the y-level set for

Cu('y) = [Cul (7)> Cuz (7)]

= [Maz(Sui(y) - K,0), Maz(Sus(y) — K, 0)]
(6.2.9) and (6.2.11) yield the following two equations.
Culv) = Maz(Sui(y) - K,0)
Cuo(7) = Maz(Suz(vy) — K,0)

Similarly, the -level set for Cj is given by

Ca(y) = [Ca(¥), Car(7)]

= [Maz(Sdi(y) - K,0), Maz(Sds(v) — K, 0)]
From (6.2.10) and (6.2.15), we get
Caly) = Maz(Sdi(v) - K,0)
and

Ce(v) = Max(Sdy(v) - K,0)

(6.2.11)

(6.2.12)

(6.2.13)

(6.2.14)

(6.2.15)

(6.2.16)

(6.2.17)

If Sdi(v) and Sdy(v) are less than K, that is, the fuzzy stock price goes down, then

the call option will expire out- of-the-money. If Su;(7y) and Sus () are greater than K,

that is the fuzzy stock goes up, then the call option expires in the-money. Substituting

expressions (6.2.9) for u(y) into expression (6.2.11), the expression for the price of

the call in the up state, under the assumption that 4 is a LR-fuzzy number yields

Cu(y) = [Maz(Sui(y) — K,0), Maz(Sus(v) - K, 0)]

= [Maz(S(u -1 L7(y)) - K,0), Maz(S(m+ AHR™(7)) - K,0)]

= [Slu—aal™ (7)) - K, S(u+pBRy) - K]
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such that

Culn) = [Sw—aL () - K] (6.2.18)
yields

dCua () i L—“I(’}')

_&T_ = —So & (6.2.19)

Note that expression (6.2.19) is needed to analyze the behavior of the call price. From

dcC, -1
expression (6.2.19), it can be observed that __C’le('y) >0, if E% <0.

Again,
Cu() = [S(T+BEy)—K] (6.2.20)
gives
i%# - 5515;1’5_7) (6.2.21)

Expression (6.2.21) is also needed to analyze the behavior of the call price. From

-1
expression (6.2.21), it can be observed that é?;_i(l) <0, if Ed—h—) <0.

Y

Assuming that d is a LR-fuzzy number, (6.2.10) and (6.2.15), yield the following

expressions for the price of the derivative in the down state.

Ca(y) = [Maz(Sdi(y) - K,0), Maz(Sda(y) — K, 0)]

= [Maz(S(d— L7 (7)) ~ K,0), Maz((d+ FR7(¥)) - K,0)]

It may be pointed out here that when Sd;i(vy) and Sdy(7) are less than K, that is

when the fuzzy stock price goes down, then the call option expires out-of-the money.
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In this case the maximum value of Cy;(y) = 0 and the maximum value of Cy, (v)=0.

This yields

Caly) = 0 Caa(7) =0 (6.2.22)

6.2.2 Expected Fuzzy Call Option Value With LR-Fuzzy Num-
bers.

Let C be a fuzzy number that characterizes the fuzzy current price of the call option
and C; be the fuzzy payoff of the call option at time ¢t = 1. Let C (v) be the a-cut for

the fuzzy current price of the option. Then, the expected fuzzy call price is given by

¢ = 1+TE(C)

that is,

GG = T—{Cul), Calpa(y), pal)] +

1
147

[Car(7), Cax()]lpar (), paz ()] (6.2.23)

where E stands for the expectation under the risk-neutral probabilities and Cj is the
fuzzy payoff of the call option at time ¢ = 1.

Since, the fuzzy call option has zero payoff in the down state, the fuzzy option pricing
formula given by equation (6.2.23), simplifies to

1

[Ci(7), Ca(n)] = Tir

[Cul (’Y) * Cu2 (7)] {pul (7)1 D2 (7)] (6224)

Cu1(7) and Cya(7) are as in (6.2.18) and (6.2.20) respectively. Also, Pui(7y) and pya(y)

that describe the fuzzy probabilities of an up movement in the stock price are given
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by (6.1.5) and ((6.1.6) respectively.

Thus,
C = B0 = - [Capul). Calypal)
yields
[ Sw—onLl())-K (1+r—d)—BR(y) ]
1+7 @—d+R(7)(B—f)’
C = : (6.2.25)
S(a+ BRI —K  (IL+r—d)+ol™(y)
! 147 u—d+ L7 y)(az — 1) |
This leads to
at) = P2 pum) e =%,

Plugging the values of Cy;(7) from (6.2.18) and p, () from (6.1.5) we obtain the
following expression for the left hand part of the ~-level set for the fuzzy current

price of the call option.

—aL M) =K (147 —13) - BR-1
147 u—d+ R (7)(51—ﬂ2)
Similarly, from (6.2.20) and pus(7y) from (6.1.6) we obtain the right hand part of the
v-level set
S(z+BR(7) - K (1+T—d)+a2L"1(v)]
= 6.2.27
02(7) [ 1+T y_—d—{—L”l('y)(ag—-aI) ( )

Now, [C1(7), Ca(7)] gives us a weighted expected value interval for the call price. If we
assume that C1() and Cy(7) are decreasing functions of + then (6.2.26) and (6.2.27)
yield that as v increases the call option interval [C1(v), Ca(7)] of price shrinks, and
at v = 1, the interval is the smallest. Similarly, at v = 0, the call price interval is

the largest. This is an important property for financial applications as it allows us to
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determine the most useful outcomes of the call price.

In order to determine the membership function we have to find the two exterior points
and the two interior points which describe the fuzzy call price corresponding to the

LR- fuzzy number, we set vy = 0 and v = 1 in (6.2.26) and (6.2.27) respectively. Thus,

_ [Su—on L H0) - K (147 —d)~ BR(0)
GO = [ l+r T—d+R10)(f — ﬁ2)} (6:2.28)
_ [S(m+BERN0)-K (1+7~d)+al 10
(0 = [ Tt u—d+L(0){as al)} (6:2:29)
_ [Sw—a L7 1) - K (1+7—d)—BR(1)
I e R = > = ] B
_ [S(E+BRT)) K (T+r—d)+anl7Y(1)
Cy(1) = [ T 4 AT L (e = al)] (6.2.31)
From (6.2.28)-(6.2.31) we have that the fuzzy call price is given by
C = [Ci(0),Ch(1), Ca(1), Cy(0)]
[ S(u—en LN 0) —K (1+7r—d)— fRY0)
l+7 @ —d+RY0)(6 - f)’
Su—a; LY 1) =K (147 —d) — fR(1)
1+7 T—d+ R 1)(B - B)’
o = (6.2.32)

S(@+ARM)—-K  (1+7—d)+osl™1(1)
1+7 v—d+ L7 (1) (g ~ ay)’

S(e+BR0)-K  (1+7—d)+ oL Y(0)
147 g—d+L—1(O)(a2—a1) |
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For the membership functions for C we set C1(y) = C , and Cy(v) = €. Therefore,

Su—oa L7 y)) =K (147 —d)~ BR(y)

[ 47 T—d+ R ) - ﬁz)} (62.33)
and

S(B+A/RI) K (147r—d)+al}(y) A

[ 147 E"4+L4WX%‘*hJ C. (6.2.34)

Solving (6.2.33) and (6.2.34) for v yields the membership function for .

6.2.3 Characteristics of the Fuzzy Call Price with LR-Fuzzy
Numbers

d d*C
Making appropriate assumptions on Ci{v), Ca(7y), 01(7), ng(’)’), 19{)
) dy dy dry
d’Ca(7)

—g2 Wecen, as in Chapter 5 and as in Section 6.2 discuss the behavior of the
g

fuzzy call price with LR-Fuzzy Numbers.

and

6.3 Conclusion

In this chapter we demonstrated how call options can be valued under fuzzy environ-
ment using LR-fuzzy numbers. The approach can be easily extended to price a wide
variety of options with different types of pay-off patterns. The fuzzy binomial option
pricing approach considered in this chapter is quite general and the methodology de-
veloped by Muzzioli {98] and certain results of Chapter 5 and 4 of this thesis may be
viewed as a special case of the results developed in this chapter. This methodology
provides an intuitive and easy way to look at the vagueness in the stock price move-
ment and our result include the results of the standard binomial option pricing model

as special case.
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Chapter 7

Conclusion, Contribution and
Recommendations.

In the present chapter, we state the contributions and conclusions made in this thesis.

Finally, we give some recommendations for further research.

7.1 Contribution and Conclusion.

In the present thesis, we introduce O(m, n).Tr.T.F.N’s and discuss their various al-
gebraic properties in Chapter 3. Some numerical examples are provided to highlight
those properties. We, also point out some of their advantages. Furthermore, we dis-
cuss moment properties of O(m, n).Tr.T.F.N’s in Chapter 4 and derive expression for
_possibilistic mean, possibilistic variance, possibilistic covariance, weighted possibilis-
tic mean, weighted possibilistic variance and weighted possibilistic covariance. Some
examples are provided to reinforce the results. In Chapter 5 we consider an important
problem in the field of fuzzy binomial option pricing model and model it using O(im,
n).Tr.T.F.N’s in order to capture the impreciseness present in the model. The main

contribution of this chapter are the derivations of the fuzzy risk neutral probabilities
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and the weighted interval associated with the call price. The behavior of those prob-
abilities and the call price is also discussed and is supported by numerical examples.
In Chapter 6, the problem considered in Chapter 5 is extended using LR-fuzzy num-
bers. Some results are derived for the fuzzy risk neutral probabilities and the tuzzy
call option values using LR—fuzzy numbers. Based on the results presented in this
thesis, we conclude that the fuzzy sets theory approach offers the added advantage
of flexibility when dealing with uncertainty involved in the binomial option pricing
model. Certain fuzzy techniques have been applied to some existing deterministic
models and that have resulted in more flexible solutions than normally obtained with

their counterparts under crisp environment.

7.2 Recommendations for Future Research.

The results developed in this thesis for O(m, n).Tr.T.F.N’s can be utilized in a port-
folio selection problem, where one can use a possibilistic variance-zovariance matrix.
Also, one can generate the possibilistic variance-covariance matrix using a weighted
function. Using the theory of weighted functions discussed in Chapter 4, an alter-
native fuzzy binomial option pricing model can be developed. In the fuzzy binomial
option pricing model developed in Chapter 5, instead of taking probability expecta-
tion for the call price, we could as well opt for possibilistic or weighted possibilistic
expectation. We believe that the work presented in this thesis will initiate further
researéh in a number of areas (for example, portfolio selection). Using the concept

of lower possibilistic mean and upper possibilistic mean we can construct two pos-
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sibilistic variance-covariance matrices. This will generate two possibilistic quadratic
programming models. Last but not least, one can introduce other kind of fuzzy

numbers and derive results similar to the one discussed in Chapter 3-6.
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