
PRICING FINANCIAL DERIVATIVES \MITII FUZZY
ALGEBRAIC MODELS: A THEORETICAL AND

COMPUTATIONAL APPROACH.

BY

Srimantoorao Semischetty Appadoo

A Thesis
Submitted to the Faculty of Graduate Studies

In Partial F\¡lffllment of the Requirements for the f_leg¡.u ot

DOCTOR OF PHILOSOPHY

Faculty of G¡aduate Studies

University of Manitoba

Winnipeg, Manitoba



THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION PAGE

Pricing Financial Derivatives With Fuzzy Algebraic Models:

A Theoretical and Computational Approach.

BY

Srimantoorao Semischetty Appadoo

A Thesis/Practicum submitted to the Faculty of Graduate Studies of
The University of Manitoba in partial fulfillment of the requirements of

the degree

of

DOCTOR OF PHILOSOPHY

SRIMANTOORAO SEMISCHETTY APPADOO @)2006

Permission has been granted to the Library of the university of Manitoba
to lend or sell copies of this thesis/practicum, to the National Library of
Canada to microfflm this thesis and to lend or sell copies of the fflm, and to
university Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by au-
thority of the copyright owner solely for the purpose of private study and
research, and may only be reproduced and copied as permitted by copy_
right laws or with express written authorization from the copyright owner.



Dedication

TO MY LATE MUM AND DAD



Abstract

The thesis is comprised of seven chapters. The first chapter is introductory in natu¡e

and pertains to a brief ¡eview of the related work to the proposed study. It also

contains the summary of the ¡esearch work presented in this thesis.

chapter 2 provides a literature survey of the work done by various resear.chers on

triangular fuzzy numbers, trapezoidal fuzzy numbers and option pricing under fuzzy

environment. some of the work done by carlsson and F\rller [80] on possibilitic mean

and variance of fuzzy numbers is highlighted. The rvork done by tr\rller and Majlender

[53] on weighied possibilistic mean and variance or rvzy numbers is also discussed to

some extents. At the end of Chapter 2, a summary of the thesis is provided.

In Chapter 3, we introduce the O(m, n)-Tlapezoidal Tlpe Fuzzy Numbers, and es_

tablish some of their properties along with some examples.

In chapter 4 for o(m, n)-Tlapezoidal rype F\rzzy Numbe¡s we derive expressions for

possibilistic mean and possibilistic variance, weighted possibilistic mean and weighted

possibilistic variânce, expressions for possibilistic covariance and weighted possibilis-

tic covariance, some applications a.re provided in the form of examples using weighted.



functions.

In Chapter 5, we make use of O(m, n)-Tlapezoidal Tlpe Rrzzy Numbers to dis-

cuss the fuzzy binomial option pricing model and derive expression for the fuzzy risk

neutral probabilities, along with finzy expression for the fuzzy call prices. As a con-

sequence, we obtain weighted intervals for the risk neutral probabilities and for the

expected ruzzy calr price. Numerical examples are provided to illustrate the results.

In Chapter 6, we present the fivzy binomial option pricing model using LR-F\rzzy

numbers and obtain expressions for the fuzzy risk neutral probabilities and for the

fitzzy call prices in terms of LB-fuzzy numbe¡s.

In the last chapter of the thesis, we present the contributions made in the thesis

and conclusion along with some recommendations for future directions on the prob-

lems considered in the thesis.
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Notations

The following notation arrd terminology are used thloughout this thesis

A or Ã Notation lor a. finzy number.

M,(A) Lower possibilistic mean value of i.

M-(A) Upper possibilistic mean value of i.

M(A) Inte¡val value possibilistic mean value of ,Â.

M(A) Crisp possibilistic mean value of .Â.

E-(A) Lower probability mean value of .Â,

E.(A) Upper probability mean value of ã,

E(A) IntervaÌ value probability mean value of ã.

E(A) Crisp probability mean value of .,4.

Mi Ø) Lower /-weighted possibilistic mean value of .Â.

Mi Ø) Upper /-weighied possibilistic mea¡r value of ã.

M¡(A) /-weighted interval-valued possibilistic mean value of ã.

M ¡(A) /-weighted possibilistic mean value of .Â.

S Stock price at time t : 0.

K Exercise Price of the call option.

T Time to expiration.

u Upward Movement in the Stock price,

vl



d Downward Movement in the Stock Price.

pu Probability of an Upward Movement in the Stock P¡ice.

pd Probability of a Downward Movement in the Stock Price.

C¿ Value of the call option in the downward state.

C" Value of the call option in the upward state.

Co Cur¡ent price of the call option..

C" F\rzzy price of the derivative in the up state.

Cd tr\zzy price of the de¡ivative in the down state.

ã zu zzy down movement in the stock price.

¿ F\¡zzy up movement in the stock price.

C F\zzy current price of the call option.
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Chapter 1

Introduction

Historically, probability theory has been used to form theoretical foundations for rea-

soning and decision making in situations involving uncertainty. However, one is ofben

faced with situations in which decisions are required to be made on the basis of i11-

defined variables, and imprecise (vague) data. F\tzzy algebra is a simple and useful

way to propagate impreciseness through a cascade of calculations, It has been used

to model systems that are ha¡d to define precisely. In option pricing the volatility

has been modeled by a fuzzy numbe¡ by Carlsson and F\rller [31],

As a methodology, it incorporates imprecision, subjective risk assessment, vague data

information, and sensitivity analysis into the modei formulation and solution process.

In finance and management science, uncertainty is usually handled through the proba-

bility theory, rvhich sometimes encounters difficulties. In general, probability calculus

is not well adapted to an imprecise corpus of knowledge, where as fuzzy calculus

appears to be a more supple technique that provides pragmatic answers to problems

under fuzzy environment. The use of finzy set theory, introduced by Zadeh [136] as

a methodology for modeling and anaiyzing ce¡tain financial problems, is of particular



interest to a numbe¡ of researchers in option pricing ([3], [5], [9], [17], [98]) due to

fizzy set theory's ability to both quantify and quantify those problems that involve

vagueness and imprecision. Option pricing theory can be traced back to Bachelier [Z].

Binomial option pricing ([33], [38]) is a simple but powerful technique that can be

used to solve many complex option pricing problems. In this thesis we consider such

problem of option pricing and on the lines of Muzzioli and Torricelli [98] we discuss

the option pricing when payoffs are described by O(m, n)-Tfapezoidal Type F\rzzy

Numbers and LR-F\zzy Numbers.

1.L Fuzzy Sets Theory

In this chapter, some of the fundamentals of basic fizzy set theory that we use in

this thesis are reviewed. Starting with basic definitions about fuzzy sets, we provide a

method for extending some non fuzzy mathematical concepts to the fuzzy framework,

Using the extension principle we caJry operations on fitzzy numbe¡s.

We now introduce certain terminology, notation, definitions and prerequisites that

will be used in the sequei.

F\rzzy Set

Let X be a classical set of objects, called the universe, whose generic elements a¡.e

denoted by x. The membership in a crisp subset .4 of X is viewed as cha¡acteristic

function ¡ro (x) from X to {0, 1} such that



../_\ l0 for x ç A
¡r"("J :t I for x € A

where {0, 1} is called a vaiuation set ([13], [  ],[136],[13¡).

If the valuation set is allowed to be the closed real interval [0, 1], then A is called

a fitzzy set as proposed by Zadeh [1a1].

¡-io (ø) is the degree of membership of X in A. The closer the value of ¡ro(ø) is to 1,

the more z belongs to ,4,. Therefore, a fiizzy set A is completely characterized by the

set of ordered pairs:

A : {(ø., ¡1, ^(r) 
r € X} where po(z) maps X to the membership space [0,1].

Ðlements with zero degree of membership are usually not listed.

Definition 7,'J.,t Let A be a fuzzy set i,n X. The hei,ght h(A) of A is defined, as

lr(A) : s,ep,n(r)
aeX

Normal F\rzzy Set.

If h(A) :1, then the fuzzy set A is called a normal f.uzzy set.

o- Cut.

An a-cut denoted by ,4(c) is the crisp set of elements X e $ù whose degree of

belonging to the fuzzy set A is at least a € (0, 1].

This means A(a) : {r e X I p.(x) )_ a,a e (0, 1]}. The a- cut is the crisp set ,4(o)

that contains all elements of the universal set X e I whose membership $ades in

,4 are greater than or equal to the specified value of o, o € (0, 11. Sometimes, in.the

literatule a- cut is also refer¡ed to as.y-level set, in which case we use 7 instead ofa.



Support of a Fuzzy Set

Let A be a fuzzy set in X. Then the support of A, denoted by S(A), is the crisp set

given by

S(,4) : {xeX:p¡(r)>0}

Intersection of F\-rzzy Sets

Intersection of two fuzzy sets A and B is a fuzzy set C denoted by C : A n B,

whose membership function is related to those of A and B by

¡¡.(") : Min Ip"(x), ¡r"(x) ] V ¿e X.

L2 Algebraic Operations orl Ftzzy Sets

In addition to the set theoretical operations, we can also define a number of combi-

nations of fuzzy sets and relate them to one another. Here we present some more

important operations among them.

1-.3 Convexity of F\rzzy Sets

The notion of convexity can be extended b fuzzy sets in such a way as to preselve

many of the properties that it has in case of crisp sets. ln what follows, we assume that

X is the r¿-dimensional space Rn. We have the following two definitions of convexity

of a fuzzy sets.

Convex F\rzzy Set. A luzzy set .4 is convex if and only if the sets A" : {r, €

X I p¡ @) > a) for all a € ( 0,1] is a convex set. The second definition of convexity of



a llzzy set is as follows: A fuzzy set ,4 is said to be a convex set if ¡i()ø1*(i-À)rr) >

min(¡r(ø1), ¡.t(r2)),r1,r2 e X, À € (0, 1], i.e. if ¡r(ø) is a quasi-concave function

on X. The definition of a convex fitzzy set leads us to the following defrnitions of a

fuzzy number.

L.4 Fuzzy Number

Definition L.4.t A Fuzzy Number A i,s a fuzzy set on the real láne fr., that possesses

the f olloui,ng properties.

(1) A is a norrnal, conuer fuzzy set onfr.,

(2) :fhe a-cut Ao i.s a closed, i,nterlal for euery a e (0,7),

(3) The support, oJ A, S(,a) : {ø I t t@) > 0}, is bound,ed,.

Definition 1.4.2 A fuzzy set A i,n fr. i,s called a fuzzg number i,J i.t sati,sfi,es the fot-

Iotuing conùitions.

(t) A i,s normal,

(i,i,) A" is a closed, 'interval for euery a e (0,Lf,

(lll) ¡1,1 ls upper setnicontinuous, and,

(i,u) the support of A is bound,ed,.

tr\zzy arithmetic is based on two properties of fitzzy numbers:

o Eanh htzzy set and thus, each ftnzy number can be fully and uniquely repre-

sented by its a-level sets.



o o- cut of each fitzzy number a,re closed intervals of real numbers for all o e

(0, 11.

A hnzy number can be characterized by an interval of confidence at level o, ([13],

1771, [t42]) as follows,

A(a) : laf), ol")1 *hi.h has rhe property

a3a' +A(a')c A(a).

These properties enable us to defrne an arithmetic operation on ftnzy numbers in

terms of arithmetic operations on thei¡ o-level sets. (i,e. arithmetic operations on

closed intervals). In what follows we shall use the notation A or Ã f.or a fuzzy number

without making any distinction between them. The interpretation will be clear from

the context.

L.5 Euzzy Arithmetic Based on Operations on Closed
Intervals.

Let A: [ø,b] e ft and B : [c,d] e ft be two fuzzy intervals then we define the

arithmetic operations on them as follows,

Addition A + B : la + c,b + dl

Subtraction A - B : fa - d,,b - c)

Multiplication 1B : lMin(ac, aiL, b c, b d,), Max(ac, ad,, b c, bd,)l

Inverse of á a-1 : ¡tvtin1l, jl, t*fj, jlt
Division f : Vrt "fi,ä,2,*1, *,"ti,i,l,*¡l



Let á and B be two fuzzy numbers such that ,4" : [u{"), uf;)¡ is tn" c- cut of

A and Bo : [äÍ"), ðt")] is the a- cut of B. Let * denote any of the arithmetic oper-

ations {, -, ,, l, L and V on fuzzy numbers. Then, we define a fuzzy set A * B in

R, by defining its o- level sets (A * B)" as (A * B)o: Ao * Bo for any a e [0,1].

Since (A * B)o is a closed interval for each a € [0,1] and A and B are l,tzzy numbers,

A * B is also a fuzzy number.

The multiplication of fuzzy number A C R by an ordinary number k € R+ can also

be defined as (k* A*) : k (. ) A" : I kul"), taj") 1 ot equivalentl¡ p-^(Ð : p^(l)

V¿e D.

Definition 1,5,! T.àangular Fuzzy Number (f. F. N.) A T.F.N. can be represented,

completely bg a triplet Ã, : (a1, a2, a3) , uhose mernbershi,p function i.s defi,ned, as

follows,

0 x 10,1

Í-dt

- 

al 1r1azaz- at

Í-dcJ az 11 1az
az-Q3

0 ø)ø¡.
Altetnati,uely [[lZ] , p. 26, 271, d,efi,ni,ng the i,nteraal of confd,ence at leuel- a as,

A" : lai,ail,

we characterize the T.F.N. (a1,a2,a3) as

p'(r) : (1.5. i)

A. : lq-l a(a2 - a1),a3 * a(a2 - a)] Va€ (0, 11, (1.5.2)



Definition 1.5,2 Thapezoid,al Fuzzy Number (fr.F.N.) A Ti.F.N. can be represented

cornpletely by a quadruplet Ã,: (a1,a2,a3,a¿), uhose membership Junction is d.ef,ned

as Íollous

0 x 1a,1

r-AtJ at 1x 1 a2.az-aI

I az 1x 1as

î-AÀ
___________:_ aj. 1 x 1 a¡az-d¿

0 x) ¿a,

Alternati,uely IZll , p. 26, 271, defi,ning the intental of confd,ence at leuel- a as,

A" : lai,afrl,

ue characterize the Tb,F.N.(a1, a2, as, aa) 0,s

Ao: la1*a(a2-a1),0.4+a(al-a4)l voe [0, 1]. (1.5.4)

Definition L.5.3 LR-Fuzzy Number. A fuzzy number IíI 'is of the L4-type i,f there

exi,st shape Juncti,ons L and R and, four parameters (m,ñ,) e [J{-co, +oo}., a, B and,

the membershi,p functi,on of IíI ls

LI* - ) vr1m.a)o
\ a ) --'

1 V m1x {ñ,, a) 0

,(+) y r>ñ, B>o

The Lù-fuzzg number is then denoted ba M : (m,m,a,B)7¡¡, where a is the teft

spread. and, B i,s the ráght spread, respecti.uelg.

p(r) :

LLï,r@):

(1.5.3)



Thi,s d.efini,ti,on is uery general and, allows quant'ifi,cation of qui,te different types of

,informati.on.

If lI is supposed be be a real crisp number for rn e R, then

f4 : (m,m,O,O)zn, V L and,Y R.

If i[ 'ts a crisp i,ntental,then

M : (o,,b,0,0)Lp, V L and,V R and a I b.

If ÑI 'ts a trapezoidal Juzzy number, then

L(x) : R(x):¡¡r7or(0, 1-ø)

and,

L-l(x) : À-t(r) : Mar (0,1 - r)

(1.5.5)

(1.5.6)

are impli,ed, Z,immermann[ 1 /¡2].

If L and, R are stri,ctly d,ecreas,ing functions then ue can easi,ly conxpute the 1-leuel

sets of i[ . |ry,ñ] i,s the peak of M and, m and, Ìñ, are the louer and, upper mod,al

ualues. AIso, L, R: 10,11 --+ [0, r] uith L(0) : R(0) : 1 and, L(1) : R(r) : 0 are

non-'increas'ing, continuous mappings U4l.

Assumption underlying LP"-fuzzy numbers,

(a) We assume that.t-1(.) and R-1(.) exist and are finite.

In view of assumption (a) we now state the following definition of a TJevel set.

The "ylevel set for which assumption (a) holds is given by the following expression

[30].

lMl' : lM'(ù, Mr(ùl - @- aL-I(1),Tñ. + pR-I(-t)1, 7 e (0, 11. (1.5.7)



Let ñ : la, b, a, Bl"o and, f¡ : lc, d., 1, ô]"o be rwo Tb.F.N,s of L-R rype, where

M > 0 and N > 0 then, we have the following (Zimmermann [142]).

(1.5.8)

(1.5.e)

(1.5.10)

We will refer to the operations given by (1.5.8)-(1.5.10) in deriving the fuzzy risk

neutral probabilities and fitzzy call price in Chapter 5.

L.5.1 Zadeh's Extension Principle.

Zadeh's extension principle is often refer¡ed to in the fuzzy literature as the sup

min extension principle. This principle allows us to extend any point operations to

operations involving fuzzy sets and is stated as follows (Bector.and Chandra [10]).

Definition L.5.4 (zad'eh's ertension principle). In tertns of the notation 'introduced

aboue, the ertens'ion principle of Zadeh states that

(i) t"¡t,c¡(a) : sup (p¡@)), for all A e F(X), and,
c e X' Í(a)=a

(ä) ¡1,¡-tp¡(r): p"U@D, for all B € F(Y).

Someti,mes the function f maps n-tuple i.n X to a poi,nt inY i,.e. X : Xt x Xz x

...X Xn and f : X -+ Y giuen by ! : Í (rt, sz,, . . . x^). Let At,Az,...An ben

fuzzg sets i,n Xy X2, . . . Xn respectiueLy. The entensi,on pri,nci,ple of Zad,eh allous to

ertend, the crisp functionA: f(rt,xz,...xn) to act onn fuzzy subsets of X, namely

Ar,Az,... A, such that B : f(A1,A2,... A^).

10



Here the fuzzy set B i,s d,efi,ned by

B:{(a,p"(aD:a:Í(x1 . ,nn),(rr,. . . ,xn) eX1 x. . .x X,"}

and

pn(a) : sup min(¡r¡,(21), . . . pe^(x")).
a e x, s=Í(E)

1".6 Possibility Theory.

In this section, we review the preliminary concepts of possibility and necessity mea-

sures.

Dubois and Prade [45] studied the ranking of fitzzy numbers in the setting of possi-

bility theory. To discuss this, suppose we have two fiizzy number A and B. Then in

accordance with the extension principle of Zadeh, the crisp inequality ø ( g can be

extended to obt¿in the Tluth value of the assertion that .4 is less than or equal to B,

as follows (Bector and Chandra [10]),

T(A(S)B) : sup (min(p.4 ("), t u("))).
ø 3v

This truth value 7(,4(<)B) is also called the grade of possi,bilitg of dom'inance of B

on á and is denoted by Poss(,A(<)B).

Similarly, the grade (or degree) of possibility that the asse¡tion ,,.4 is greater than or

equal to B" is true, is given by

Poss(, (>)B) : sup (min(pá ("), *e@Ð).ø>a

Also, the degree of possibility that the assertion ,,4 is equal to 8,, is denoted by poss

(á(:)B), and is defrned as

Poss(á(:)B) - sup(min(¡/,4 ("), t"B("))).

11



The above discussion motivates us to define A(<)B if and only if Poss(,4(<)B) >

Poss(B(l),a). Here it may be noted that for the case when,4 : (a1, a2, as) and

þ : (b1,,b2,å3) are T.F.N's then o2 ( å2 gives Poss(,4,(<)B) : 1 and Poss(B(<), ) :

height (A n B) < 1.

Therefore for the case of T.F.N's it can be defined that A(<)B with respect to

Poss(A(<)B) if a2 1 þr.

Related with the number "Poss(á(<)B)" there is another number ,,Necc(A(<)B)',

which measules the grade (or degree) of necessity of dominance of B on A, given by

Necc(á(<)B) : t-Poss(á(>)B)

The number "Necc(A(<)B)" can also be used for ranking of htzzy numbers, For this,

we can define A(<)B if and only if Necc(,A(<)B) I Necc(B(<)A).

In case ,4 : (a¡, a2, a3) and B : (br.,b2,h) a¡e T.F.N's then by actual computation of

Necc(A())B) it can be defined that,4(<)B with respect ro Necc(,A(<)B) approach

\lat*az1ù*bz,

L.7 Mean Value and Variance of F\mzy Numbers.

viewing the luzzy numbe¡s as random sets Dubois and Prade [43] defined their inter-

val valued expectation and introduced their mean value as a closed interval bounded

by the expectations calculated from its upper and lowe¡ dist¡ibution functions, R+

cently, carlsson a¡d tr\ller [30] introduced the notion of possibilistic mean value,

interval-valued possibilistic mean, crisp possibilistic mean value and crisp( possibilis-

tic) variance. on the line of carlsson a¡d F\rller [30], Frrller and Majrender [53] intro-

duced the concepts of weighted possibilistic mean and variance or htzzy numbers, In



this section we discuss possibilistic mean value, possibilistic variance, weighted mean

rveighted variance and weighted cova¡iance of a special type of finzy numbers.

1.7.L Possibilistic Mean Value and Variance of Fuzzy Num-
bers.

In the section we review the concepts of possibilitic mean and possibilistic variance

of a, î'ozzy number,

Consider two ftszzy numbers Ã and B e F such that their a-cuts are written as

A(a) : la1(a), a2(a)l and B(o) : [[(a), br(a)], a e (0, 11. Goerschel and Voxman

156l introduce a method for ranking fuzzy numbers as

¡1 ¡7A < B <+ la(a1@)+a2(a))daS lo,(bt(a)+bz(a))d,a (i.2.1)- Jo - Jo

In Goetschel and Voxman [56], (1.7.1) is motivated in part by the desire to give less

importance to the lower levels of fuzzy numbers. Taking the weight of the arithmetic

mean of ai(a) and o2(o) as o, Carlsson and F\rller [30], define the 1evel-weighted aver-

age of the arithmetic means of all o-cuts of the fuzzy number ã by expression(1.7,2).

(1.7.2)

M-(A\ + M-(A\
,

1ó

(1,7.3)



The fust quantity, denoted by M.(A) can be refo¡mulated as

[^' 
o orlo¡ao 

_ /'eo.r[ 
A < a1(a)] a1(a) d,a

--r\--l----Vf--

Jo 
o o" / eossta < a1(a)l da

(1.7.4)

where Poss denotes possibility. As in Carlsson and Fuller [30],

Poss[.A < o'(")] : II(-co, a1(a)) : 
,lïfl*,r{") 

: o.

Thus, M-(A) is nothing else but the lower possibility-weighted average of the a-cut

In a similar manner, M-(A), the upper possibilistic mean value of ã, is given by

[^' 
o orl,) oo _ lo' 

Poss[A > a2(a)] a2(o) da
'-\'-,/ ----vT---r

Jo " o" 
;/o 

eossl,a > a2(a)] da

_ /'no.rla 
> az(a)l max[A(e)] da

/ t-rtÁ > rda)]d"
J¡

where, as in Carlsson and F\rller [31],

Poss[á > a2(a)]: II(a2(a),co) :,1ï1,",r{") : 
".

In view of expression (1.7.4) and (1.7.5), the lower and upper possibilistic mean values

of frzzy number A are defined as follows.

M(A) : lM.(A),M.(A)l (1,7.6)

Since, M(,4) is represented as an interval in (1.7.6), therefore, in the sequel we shall

call M(A) as the interva,l-valued possibilistic mean of fizzy number .Â. Carlsson

and F\ller [30] define the crisp possibilistic mean value of finzy number .4 as the

(1.7.5)

Poss[.A < a1(a)] min[A(o)] do

Poss[.A < a1(a)] da



arithmetic mean of its lower possibilistic and upper possibilistic mean values, i.e.

Mttt : M^(A)+M.(A)
2: Q,7'7)

In view of (1.7 .2)-(1.7.7), Carlsson and F\ller [30] proved the following two important

theo¡ems.

Theorem 1.7,1 (Carlsson and F\rller [3 Ol) Let A and, B betwo fuzzg numbers and

Jeú À e $t be a real nurnber. Then

M(A+ B) : M(A) + M(B) M(^A) : 
^M(A)

i.e

M.(A+ B) : M.(A)+ M.(B) M.(A+ B) : M.(A)+ M.(B) and,

( l^M.(A),^M'-(A)l ¿/À > o
lM.(^A),M-(À.4)l: {

ll^M.(A),^M-(A)l fÀ<o
where the add,i,tion and, multipli.cati,on by a scalar of fuzzg numbers i,s d,efi,ned, by the

sup-m'i,n ertensi,on pri,ncþIe [ 1 3 6 ].

Theorem 1.7.2 (Carlsson and Fuller[3O]) Let A(a): [¿1(o), a2(a)] and B(a) --

lbl(a)., br(a)l be two fuzzy numbers and, let ), € $è be ¿ real number. Then

M(A+B) : M(A)+M(B)

and

M(^A) : 
^M(A)

15



7.7.2 Relation Between Interval-Valued Expectation and In-
terval Value Possibilistic Mean

We now discuss an important relationship between the interva.l-valued expectation

E(A): [E-(A),8.(A)] introduced by Dubois and Prade [ a] and the interval-valued

possibilistic mean introduced by Carlsson and F\rller [30]. For any ltzzy numbe¡ .Â

the a-cut can be written as,

A(") : la1(a), a2(a)l

The lower probability mean vaiue of ,{ is [44],

On the lines of Ðubois and Prade [ a], the interval value probability mean value of

.Ã is defined as follows,

l1
E.(A) : I at@)da

Jo

Similarly, the upper probability mean value of ã is [aa],

¡1
E.(A) : I a2(a)da.

Jo

E(A) : \E.(A),8.(A)1,

and the crisp probability mean value of .Â is

E(A) : lE.(, )tE-(.,4)l
L2J

(1.7.8)

(1.7.e)

(1.7.10)

(1.7.11)

There is a strong relationship between probability mean of a fuzzy number and the

possibilistic mean of a fuzzy number. Since the support of A is bounded, therefore,

the lower and upper possibilistic mean values are obtained by carlsson and F\rller

16



[30] as

M-(A)

M-(A)

lo' 
oo'@)ao'

lo' 
oo"(o)ao,

(t.7.t2)

(1.7.13)

The crisp possibilistic mean value of ,4. is

M(A) : \M.(A),M.(A)1. (1.7.74)

The interval value possibilistic mean value of .Ã is given by Carlsson and F\rller [30],

is

M(A) : lM.(A)+,M.(A)f (1.7.15)L2J
We can now state the following Ìemma, given by Carlsson and F\rller [30].

Lemma 1.7.f IÍ A e F is a fuzzg number ui,th strictlg increasing and, stri,ctly d,e-

creasi,ng (and, continuous) functi,ons then i,ts i,nterlal-ualued, possi,bi,Ii.stic mean ,is a

proper subset of i,ts interual-ualued, probabil'istic mean, i,.e M(A) C E(A).

According to Carlsson and Fìrller [30], Lemma 1.8.1 reflects on the fact that points

with small membership degrees are considered to be less important in the definition

of lower and upper possibilistic mean values than in the defrnition of probabilistic

ones. It is important to point out that in the limiting case when Ã, is a, fuzzy number

having equal spreads (o2 - ar: a4 - a3) , the possibilistic and probabilistic mean

values a¡'e equal. That is,

E(A) : M(A)

17

(i.7,16)



L.7.3 PossibÍlistic Variance of F\zzy Number

The possibilistic variance of. a fvzy number ã, where ,,{ e F', is defined by Carlsson

and tr\rller [30] as

11 1

Vør(A) : | ,a(ar(a) - ar(a))2 da. (1.7.17)
Jo ¿

and the standard deviation of ã is

"A : JVar@.

1.8 Weighted Possibilistic Mean and Variance of
Fttzzy Number.

Interval-valued expectation of hnzy numbers is defined by Dubois and prade 
[44]

viewing them as random sets. Viewing the htzzy numbers as random sets, Dubois

and Prade [44] define their inte¡val valued expectation, whereas, Carlsson and F\rller

[30] define a possibilistic interval-valued mean value of. finzy numbers, viewing them

as possibility dist¡ibutions. Fbrthermore, weighted possibilistic mean, variance and

weighted interval-valued possibilistic mean value or fitzzy numbers a¡e all introduced

in F\rller and Majlender [53].

Deffnition L.8.1 (F\rller and Majlender lSBl) Let A € F be a fuzzg number uith

A(") : la1(a),a2(a)l,o € [0, L], A function / : [0, 1] .-+ fr.'is said, to be a ueighted,

functi,on .if f is non-negatiae, monotone increasing and, sati,sfi,es the fottowing normal-

i,zation cond,iti,on.

lo' 
Í {o)oo : ' (1.8.1)



Definition 1.8.2 (F\rller and Majlender [53]) ?å,e f -uei.ghted. possi,bi,Iisti,c mean

ualue of fuzzy nutnber A i.s d,ef,ned, as

[' o@,(o¡ + a2(a))da
M¡(A):t , Í(")0" (1.8.2)

For example, ¿Í f (a) :2a,a e 10,71 then

M ¡(A) : [1 
a{a) ! az(a) 2oda: [' þ,(o) + a2(a)]ado : M(A) (t.8.8)Jo z Jo

This gield,s that f -uei,ghted, possibilisti,c mean ualue d,efined, by (l .B .2) can be consi,d,ered,

as a generalization of possibi,li,sti,c mean ualue i,ntrod,uced, by Carlsson and, FuUer [50].

Definition 1.8,3 (F\rller and Majlender l5B]) Let f be a wei,ghti,ng function and,

let A be a fuzzy nurnber. Then we d,efine the f -weighted, i.nteraal-oalued, possi,b,ilisti,c

mean of Ã, ,is d,ef,ned, as

M¡(A) : lMtØ),MTØ)l (1.8.4)

uhere

MlØ) : 
lo' 

at(a)f(a)a'a,

MTØ) : 
fol 

az(a)f(e)a.a,

(1.8.5)

(1.8.6)

(1.8.7)

(1.8.8)

MI@) is the

PoslA < o1(a)l : sup ,4(u) : ¿,
ujol(a)

PoslA> a2(a)l : sup .4(z) : a,
ula2(a)

Mr Ø) i,s the f -weighted, aaerage of the mi,ni,mum of the a-cuts and,

f -uei,ghted, auerage of the marirnum of the a,cut.
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In view of (1.8.4) -(1.8.8) the following two theorems are proved in F\rller and Ma-

jlender [53].

Theorem 1.8.1 (F\rller and Majlender [53]) . Let Á,8 e F, f be a ueàghting

function, and À be a real number. Then

Mt(A+B): MrØ)+Mt@)

Mr(^B) : 
^M!(A)

Flrom this and, (1.8.2) we obserle that the f-weighted possi,bil'isti,c mean of Á is the

arithmet'ic mean of its f -weighted, lower and upper possi,bilistic mean aalues, ,i,.e.

(1.8.e)

Theorem 1.8.2 (Fuller and Majlender [53]) f Ã and, É be two fuzzg nutnbers

and, À e fr., then the following relati,onship hold,s.

M¡(A) : WPyt9

M¡(A+B) : Mr(A)+Mr@)

M-|QA) : 
^MrØ)

var¡(A) - l"'(a,(") -r",(a))' t{.¡oo

L.8.L Weighted Possibilistic Variance and Covariance.

Definition 1.8.4 (F\rller and Majlender lSBl) Let Ã and, É be two fuzzg nutnbers

and let f be a ueighted function. We d,efi,ne the f -ueàghted, possibilistàc uariance of Ã,

by

(1.8.10)

(1.8.11)

20
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and, the f -uei,ghted, couariance of A and B is d,ef,ned, as

cou¡(A) - l"' (ø(") :",(")) (q4#{4) l"lr" (1.8.13)

FYom (7.8.12) and, (1.8.13) we observe that the f -ueàghted, possàbi,li,stic aari,ance and,

couariance can be consid,ered, as a generalizati,on of possi,báli,sti,c aariance and, couari,-

ance,

1.9 Option Pricing Model

An option is a contract between a buyer and a seller where the buyer of the contract

obtains the right to trade an underlying asset, for a specified price, called the exercise

price, on or before the maturity date,

An option that provides the holder the right to buy the underlying asset is known as

a call option.

Let r be the risk free rate, z be the up jump factors, d be the down jump factor and ,S

be the stock price at time ú : 0. All of r, u, d and 5 are assumed to be crisp. Then,

the stock price at time ú: 1 are obtained by multiplying,g with the jump factors u

and d, and are ,9u and 
^9d 

respectively.

Binomial Option Pricing Model

In the binomial option pricing model introduced by Cox, Ross and Rubenstein [38],

we model stock prices with respect to discrete time, assuming that at each particular

step, the stock price will change to one of two possible values, namely d and u, where

0 < d < ¿ such that over a single period of time, the stock price can only move from



its current price to any of the two possible values. Assuming that .9 is the cu¡rent

price of the stock, then in the next period the price will be either

C" : Max(Su-K,O) C¿:Max(Sd'- K,0) (1.e.1)

Thus, the value of a one-period call option on a stock governed by a binomial lattice

is

.1 [p" Max (Su - K,0)+pd Max (Sd- 1{,0)l lp, C.+ pa Caf" L 1+r J L r*r j

(1.e.2)

where, C, and C¿ a.re defined in (1.9.1). The above CRR model is a well known and

widely used model for valuing standard option.

A Two Period Binomial Option Pricing Model

In the above CRR model adding another period to the binomial tree yields a two

periods binomial option pricing model. such a¡r action increase the number of possible

outcomes at expiration (see [33] for more details).

In such a model we assume that at the end of the first period the stock price has

lisen to ,92. During the second period the price of the stock could go either up or

down, in which case the stock price would end up as either ,9u2 or ,gud. If, on the

other hand, the stock price has gone down in the first period to,gd then during the

second period it either goes down again or goes back up, in which case the price of

the stock ends up at either S& or Sdu. Therefore, in this case, the prices for a two



periods binomial option pricing at expiration are,

C", : Max[( Su2 - K, 0)]

C"¿ : Max[(Sud - I{, 0)]

C¿z : Max[(Sd2 - K, 0)]

(1.e.3)

(1.e.4)

(i.e.5)

Thus, the price of a two period ca.ll option is given by,(see [83] for more details).

.- lP?C""+2PuP¿C.a+P2dcd,fvo - t 1n;y-1
similarly' for the r¿ periods binomial option pricing model, the call price is given by

[33].

L,=. irã f' pi-itvtu* l( s ui d"-¡ - lr' 0 )l
Co:l (1.e.6)

Binomial Option Pricing Model Assumptions:

In orde¡ to derive the price of a call option in a vague environment we make the

following assumptions which are similar to those made by Muzzioli and rorricelli

[e8].

1. All investors have homogeneous beliefs.

2. Markets are frictionless i.e. markets have no transaction costs, no taxes, no

restrictions on sho¡t sales and asset are infinitely divisible.

3. Every investor acts as a price taker.



4. Interest râ,tes are positive, The interest rate is equal to r percent per time

period.

5. No arbitrage opportunities a¡e allowed. This condition is expressed by the

following formula, ú < (l + r) < q.

6. The market is complete.

L.10 Organization of the Thesis

chapter 1 provides an introduction to the concepts of decision making and presents

the motivations and the need for a comprehensive methodology for the binomial op-

tion pricing model, chapter 2 dea.ls with the literatu¡e review of the related work done

by other researchers relevant to this research. In Chapter B, we lntroduce O(m,n)-

Tl.T.F.N's as a generalization of T!.T.F.N,s ând discuss their varying algebraic prop-

erties. In chapter 4, on the lines of carlsson and fuller [J0] and F\rller and Majlen-

der [53], we discuss their possibilistic mean, variance and cova.riance as well as the

weighted possibilistic mean, variance and covariance for O(m,n)-T!.T.F.N,s. Chapter

5 deals with the binomial option pricing model using O(m,n)-T!.T.F.N's as input pa-

rameters. Various cases a¡e discussed for different values of rn and n,. chapter 6 deals

with the fuzzy binomial option pricing model using LP"-finzy numbers, A number of

results for o(m,n)-T!.T.F.N's and for trapezoidal fuzzy numbers can be deduced as

special cases ofthe results proved in this chapter. Finally, the conclusion and the dis-

cussion on the contributions made by the thesis, along with some recommendations

for further research, are given in Chapter 7.
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Chapter 2

Literature Survey

The main objective of this chapter is to provide a survey of the literature dealing with

fuzzy numbers, Binomial Option pricing Model and F\rzzy Binomial Option pricing

Model.

2.1 Fuzzy Numbers

In most fuzzy financial applications, linear membership functions are used to model

impreciseness, vâgueness, fuzziness and a¡bitrariness in the various pa,rameters of the

model. Linear and piecewise linear membership functions are easily manipulated by

fuzzy operators. The other major reason for using linear membership function is

to avoid complex non-linear computations in the analysis of various ¡e¡ults. Linear

membership functions are not always appropriate in va¡ious financial applications

as, many times, they do not represent the linguistic terms being modeled. Mem_

bership functions are the building blocks of fiizzy set theory. However, there are

many difficulties associated in selecting the solution of a problem written with linear

membership function. Therefore, various types of membership functions have been

proposed in the literature (for example, a ta,ngent type of a membership function [g3],



an interval linear membership function [6L], an exponential membership function [2g],

inverse tangent membership function [115], Iogistic type of membership function [12b],

concave piecewise linear membership function l72l and piecewise linear membership

function [65]). Unfortunately, most of those membership functions are not flexible

enough to capture impreciseness, vagueness, fuzziness, randomness a¡rd arbitra¡iness.

The need fo¡ an efficient membership function has long been felt. Medasani et al. [g5]

have highlighted the importance of having membership functions that can be easily

tuned and adjusted, Other authors (for example, Medaglia et al. [g4], Medasani et

al. [95], Appadoo et al. [2] and others) have expressed the need for membership

functions that a¡e easy to use and be manipulated, Moreove¡, the parameters associ-

ated with the membership functions should be easily tweaked until the performance

is acceptable. In this thesis, we propose a family of hnzy numbers to overcome some

of the shortcomings associated with linear membership functions and some of the

fuzzy numbers mentioned above. F\-¡rthermore, we discuss some important properties

of the proposed fuzzy numbers.

2.2 Binomial Option Pricing Model

various extensions to the original binomial modei have been proposed in the litera-

ture, such as Boyle [19], Nelson and Ramaswamy [102], Hull and White [62], Tian

[120], and Leisen and Reimer [85], iust to mention a few. The sole motivation for

these subsequent models is either improving the rate of convergence or for pr.icing

more complex derivatives. Another extension of the binomial option pricing model

is the trinomial option pricing model of Kamrad and Ritchken [25] which is a gener-



alization of the binomial model described by Cox, Ross and Rubinstein [38]. In the

available literature binomial and trinomial extensions are commonly referred to as

tree-based models. However, binomial option pricing model under crisp assumptions

lack flexibility in the sense that the jump size of the binomial tree is fixed for a given

set of option parameters and time increments. Johnson, Pawlukiewicz, and Mehta

[73] develop a binomial option pricing model that is dependent on skewness.

Other researchers have developed alternative models for option pricing when the

distribution of the stock return is not normally dist¡ibuted or where the stock price

follows a jump-diffusion processes (for example, Cox and Ross [3g] and Merton [g3]).

2.3 Fuzzy Binomial Option Pricing Model

Recently there has been growing interest in using fuzzy models in Finance, Economics

and Actuarial science (for example see Muzzioli and ror¡icelli [98] ostaszewski [104],

Wu [126], Appadoo et a1. [2]). F\zzy option pricing model harr been studied in

Muzzioli et al. [98] and in Wu [126] using fuzzy sets theory of Zadeh [137]. A nonlin-

ear shape fuzzy number for the fuzzy binomial option pricing model has been proposed

in Appadoo et al. [2]. In a variety of frnancial models a number of parameters in

general are vague, arbitrary and subjective in nature. such models have been the

subject of extensive study ever since Buckley published a paper in 1g8Z [2b].

The difrculty in such models a¡ise f¡om uncertainty which cannot be represented



by probability theory alone. A mathematical model for pricing American put option

and European options with uncertainty has been proposed by Yoshida [132]. In his

model [132], randomness and fuzziness in the paramete¡s are evaluated by both prob-

abilistic expectation and fitzzy expectation defined by a possibility measure from the

viewpoint of ruzzy expectation, taking into account the decision-makers subjective

judgement. European options with uncertainty are also discussed under appropriate

assumptions. In 2001, Zmeskal [138] proposed a fuzzy algebraic approach to price a

call option. Zmeskal [138] used fuzzy numbers for the input data. More recentl¡ an

application of htzzy sets theory to the Black Scholes option pricing model has been

proposed by Wu [126]. F\rzzy interest rate, htzzy volatiiit¡ and fuzzy stock price have

been used in the model. Under these assumptions, the European option price at time

ú turns out to be a htzzy number, thus, allowing us to choose the European option

price at his (her) acceptable degree of belief. The pricing models of European option

using the real interval limited choquet integral for a nonnegative measurable function

over a real fuzzy measure space has also been investigated by Kaino and Hirota [74],

A. htzzy approach to real options has been the subject of study of ca¡lsson and Fuller

[31]. carlsson and F\rller [31] introduce a (heuristic) real option rule in a fuzzy frame-

work, where the discounted cash flow ofthe expected cash flow and expected costs are

estimated by trapezoidal fuzzy numbers. They determine an optimal exercise time

using possibilistic mean value and variance of fizzy numbers. F\-rrthermore, they be-

lieve that uncertainty cannot be dealt as a stochastic phenomenon when working with

decisions on giga-investments. Thus, possibility theory becomes an alternative way

to handle future uncertainty.
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Recently there has been growing interest in using fuzzy supported finance modelling.

Appadoo et. al [5] propose a crisp risk free rate assisted by Capital Asset pricing

Model(CAPM) ¡etu¡n in the fuzzy binomial option pricing model. Their model is

geâred towards a more natural and intuitive way to deal with fuzziness, uncertainty

and arbitrariness. The classical binomial option pricing model becomes a special case

of the proposed model. The generality and vaiidity of the proposed fuzzy supported

option pricing model is highlighted in their paper.

2.4 Summary of the Thesis

Chapters 7 and 2 contain, respectively, the introduction and the literature survey

relevant to the thesis.

Chapter 3 Algebra of O(m,n)-Tl.T.F.N

Recently there has been rapid growth in the application of fuzzy set theory to financiaì

problems. Implementation issues have 1ed to the development of addition, subtrac-

tion, multiplication, division, and the inverse of various types of flzzy numbers. The

shape of a membership function always presents the knowledge about the grade of

the elements in the fuzzy set. In this chapter, we introduce O(m,n)-Tl.T.F.N's. The

algebra underlying the O(m,n)-Tt.T.T,N is discussed in details.
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Chapter 4 Moment Properties of O(m,n)-T!.T.F.N

On the line of Carlsson and F\rller [30] and F\rller and Majlender [53], we derive ex-

pressions for the possibilistic mean, possibilistic vâriance and possibilistic covariance

as well as weighted possibilistic mean, weighted possibilistic variance and weighted

possibilistic covariance using O(m,n)-TÌ.T.F.N's. The advantage of using O(m,n)-

T!'.T.F.N relative to other types of fivzy numbers is also discussed.

Chapter 5 Binomial Option pricing Model with O(nr,n)-Tl.T.F.N's,

In this chapter, on the lines of Muzzioli et al. [98], we use O(m,n)-T!.T.F.N,s to the

fuzzy binomial option pricing model. Numerical examples are provided to validate the

results. Furthermore, we consider different cases when parameters rn and r¿ assume

different values.

Chapter 6 Binomial Option ltr/ith LR-F\rzzy Numbers.

In this chapter we discuss the binomial option pricing model under fuzzy environment,

using LR-Fbzzy numbers,

Chapter 7 Conclusion, Contribution and Recommendations.

In this chapter, we present the contributions made in the thesis. conclusion along

with some ¡ecommendations for further ¡esearch are also given.
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Chapter 3

Algebra of O (m,n)-Tlapezoidal
Type Fuzzy Numbers

In this chapter we int¡oduce O(m,n)-Tlapezoidal Type F\:zzy Numbers (Ti..T,F.N,s)

as a generalization of Tbapezoid a|F\zzy Numbers (T!.F.N,s) and discuss their various

algebraic properties. Some numerical examples are given to reinforce the results.

3.1" O(m,n)-TYapezoidal Type F\nzy Numbers

In this section we introduce O(.,.)- Tlapezoidal Type F\zzy Numbers (O(.,.)-T!.T.F.N,s).

Definition 3.1.1 .4 Juzzg number A: le,0.2, as, aalo(m,n) t at 1 az 1 az 1 aa is said,

to be O (m,n) -Trapezoi,d,al Tþpe Fuzzy Number (O(m,n)-Tb.T.F.N.) if i.ts rnembershþ

functi.on is gi,uen as

( 0 rlat
I

l r-(o'-"1- o,.r.o,I \or-a'')
Ip@):\ | azlrlas (8.1,1)
I

l r_("t-")" or.".onI \o, - ¿n,i

I

|. 0 lr>.aq



Alternatiaely, following [[Zl], p. 26, 271, def,n'ing the a-cut (i,ntental of confid,ence at

leael- a) as, Ao: lai,all, we characterize the O(rn,n)-TF.T.F.N. fay, a2, øt, aafo@,n)

as

A, : la2-(a2-a)(t-a)*, a3-(ø3-aa)(1 -CI)*],V, a,e (0, 1l

(3.1.2)

by settinsr- (:'-:\- : a and, r - ( o, -ø¡" : a respect.uety.
\a2- at,/ \as- an)

An O(m,n)-Tl.T.F.N i,s said, to be sgmmetric i,f i,t satisfied the foitouing two cond,i-

ti,ons.

(o) or-al :a4-aB

(b) m: n

Thi,s is d,ifferent frorn triangular luzzy numbers (Defi,nition 1 .5. 1 ) and, trapezoi,d,al fuzzg

numbers (Def,ni,ti,on 1.5.2) wh.ich requzres condition (b), with m : n: L.

Definition 3.L.2 A fuzzg number A: la1, a2, as, a¿loe,z), q 1 az 1 as 1 aa ,is said,

to be O(2,2)-Thapezoid,al Tgpe Fuzzy Number (O(2,2)-T\.T.F.N.) ìf its metnbership

function ,is giuen as

0 n1a1

t ¡2
r- (o'-'\ or<r<o"

\az-at/

1 az 1æ 1as

t 12

r- (3:-! \ or<r<on
\43 - a4)

0 x,) a¿

p'(r) : (3.1.3)



Alternat'iuelg, Jollowing [ft2], p. 26, 271, defining the a-cut (intentat of confd,ence at

leuel- a) as, Ao: lai,ail, ue characterize the O(Z,2)-T|.T.F.N. la¡, a2, a3, aal6p,2¡

as

Ao : la2- (a2- a)(L - a)|., as- (as- aa)(r-o)ål V a € (0,11. (8.1.4)

bs settinsr- (:'-:\' : a and, t - ll'-1)' :a respecti.ueL!.
\az-at,/ \as- a¿)

An O(2,2)-T\.T.F.N i,s sa'id, to be symmetri,c i,f it sati.sfi,ed, the following tuo cond.i,ti,ons.

(o) or - at: a4 - as

(b) m: n

Definition 3.L.3 A fuzzg number A = la1, a2, as, aqlo@.s,o.a), a1 1 a2 <.as < aa ,¿s

sa'id, to be O(0.5,0.5)-Thapezoid,al Type Fuzzg Number (O(0.5,0.5)-Th.f .F.N.) i.f its

membershi.p functi,on 'is gi,uen as

t"@):

Alternati,uely, following 1771, p. 26, 271, d,efining the a-cut ('interual of conf,d,ence at

Ieuel- a) as, Ao: lat, ail, we chamcterize the O(0.5,0.5)-Tr.T.F,N. la1, ø2, as, o<]o1o.s,o.s¡

Ao : la2-(a2-a1)(t-a)2, as-(as-aa)(L-")rl vo€ (0, 11. (3.1.6)

0 x1a1

'- (Få)" o,-"-o,

I az1r164

/ \ ll.5I Ae-:r, \I-l " I at1r1as
\%-44/

0 a) aa

(3.1.5)



by setti,nst - (:'-+)''u : o ond, t - ll'-1)' : o respecti,aeta.
\az- at/ \as- a¿/

An O(0.5,0.5)-T|.T.F.N is said, to be symmetric if át satisf,ed, the folloui,ng two con-

d,itions.

(o) or - ar: a4 - aB

(b) nt: n

3.2 Algebraic Operations on O(m,n)-Trapezoidal
Type Fuzzy Number

In this section we discuss various operations and state and prove certain properties

of O(m, n)-T!.T.F.N's.

Let .Â and .É be t*o O(m, n)-T}.T..F.N's, such that

Ã - lar, a2, as, a¿l-.,n)

B : lh,b2,U,bql-'n)

Then the a-cut for each of ã and .É is defined as follows,

A(") : la1(a),a2(a)l:la2- (a2- 
",)(1 - o)*,o, - (o3 - aa)(1 - o)*l

(3.2.1)

B(") : [å1(o), òr(a)] : [b, - (b2- å,)(1 - a)*,b, - (ôs - å4)(1 - a)*]

(3.2.2)
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3.2.J. Addition Ã(+)B of rwo O(m,n)-t.T.F.N.'s

Writing Ã and É in terms of their o-cuts, we have.

A(a) + B(a) : la1(a),a2(a)l + [år(a), ðz(o)]

: laz - (a2 - a)(L - a)*, a3 - (a3 - aa)(I- a¡*1 +

[b, - (b" - öt)(1 - a¡*, b, - (ôa - å4)(1 - a)*]

: l(", + bz - ((oz -t bz) - (q+ ä1)) (1 - CI)*,

as*bs-((ae+ò.)-(¿¿+ån))(1-a)*l (3.2.3)

: lor(") + b1(a),a2(a) + br(a)]

: lcz - (c, - c1)(1 - o)t,", - (cs - ca)(t - o¡*1

where c1 : ¿r * ôr, c2 : a2 + b2, ca : as * bs, ca : as I b¿,

The following observations are made on the addition of two O(m.n)-T!.T.F.N,s.

(a) Sum of two O(m.n)-T!.T.F.N's is commutative, and the addition of two O(m.n)-

T!.T.F.N's results in an O(m.n)-Th.T.F.N,

(b) If we set zn : 1 and n : 1 in expression (3.2.3), we obtained the a-cut of a

T!.F.N. Thus, Tþ.F.N is a special case of O(m.n)-Tt.T.F.N.

(c) Another important observation can be made is that if we let rn and n get very large

in (3.2,3),then lim^--(a{a) + br (o)) : at I û and lim,"_""(a z(a) + Uz(a)) :

¿¿ * b¿. This implies that when rn and n get very la.rge, the limits of the o-cut

converge to the sum of their end points and do not depend on a.

(d) Simila"rly, it is obvious that when m and n get very small, the limits of the a-cut

given by (3.2.3) converge to thei¡ interior points (¿z+år) and (as+ös) respectively,



â.nd do not depend on a.

3.2.2 Membership F\rnction of Ã+ É

Consider two O(m,n)-Tl.T.F.N's Ã and, É respectively. The sum of two O(m,n)-

trapezoidal type fitzzy numbers is given by expression (3.2.3) and is as follows.

A(a) + B(a) : l@, +bz - ((a, r b2) - (q+ å1)) (1 - û)*,

as*bs- ((o. +är) - (on + ¿n))(t - ")*l

In order to find the membership function for the fuzzy number Ã8, we need to find

the inte¡ior points as well as the end points. To find the interior points, we set o: 1

in expression (3.2.3), and to find the end points, we set o:0 in expression (8.2.3).

Thus we have,

,4(1) + B(1) : laz + bz, as * bzl

and

A(0) + B(0) : lar + \, aat bal

In view of (3.2.4) and (3.2.5), the fuzzy number Ã+ É 
"un 

be written as

(3.2.4)

(3.2.5)

Á+ É: [¿r + ör, az*bz, at*b3, aa * bt]o(*,n)

The a-cut of the left hand part of. fuzzy number ,41(o) + B1(a) can be rewritten as

follows:

Ay(a) + B'(a) : az * bz - ((o, + b") - (r, + ¿,))(t - ")-t (3.2.6)

The o-cut of the right hand part of rrzzy number À,+ É cun be rewritten as follows,

Ar(a) + B2(e) : as * b¡ - ((o, + år) - (ø¿ + b¿))(r - a)*
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To find the membership function of á * B, we set

A1(a) + B{a) : ø and A2(a) + B2(a): ø and solve for c as follows.

az*bz-(("r+aù-(rr+bt))(t-")+: ø (3.2.8)

Solving for a, we obtain the following expression

a : r-l @z+bz)-t 1^
L((o, + ór) -fü, + åù.i (3 2'e)

Similarl¡ if we set A2(a) + Br(a) : ø, then we have

^._ 1l- (or + är) * l"o: r-t(,,-ÈJ-clEDl (3210)

Using (3.2.9) and (3.2,10) we have the membership function for A + É

'-k
ttt+a(x) :

'- lr

Example I In this example, we consi,d,er the add,ition of two O(m,n)-Tf.T.F.N's and,

d,lscuss the effect on the membershi,p function uhen m and, n uary. Let Ã, and É be

two O(rn,n)-Tt.T.F.N's, such that m and, n ¿ 0 and,

I : la1, a2, at, a¿f(*,n): [1,5,6, g]1-,"¡

E : lbL,b2,bs,bql@,n): [2,3,5,8]1-,,,¡

0

(o"+br) -,

r 1at*bt

'I -
I a'+å.1r1 ao *bo
I

az*bz 1x 1 as*bs

'ì"

I **bs1x1øsibq

r) a¿lbs

))

t

(ot + åt

+b^3

¡ bz)

1

(o, +
+ bs)

0

(a"

6'



(Jsing erpressi,on (3.2.1) and, (3.2.2), the a-cut for Ã and. Ê are

A(") : [5 - 4(1 - ")*,0 + 3(1 - a)*] (3.2.11)

B(") : [3- (1 -a)*,s+3(1 -@)*] (3.2.t2)

Using erpressi,on (3.2.3), we urite the sum of .Ã, and, É as

A(a) + B(a) : t(8 - 5(1 - a)*,11+ 6(1 - a)*1. (8.2.1s)

If we substötute d.i,fferent ualues of m and, n 'in erpressi,on (3.2. lS) ue obta,in the

Jollowi.ng tables and, graphs.

Table 3,1: Addition of two O(m, n)-T!.T.F.N's, where rn :2,n:2.

Table 3.2: Addition of two O(m, n)-T!.T.F.N's, where rn: 0.5,n: 0.5.

Table 3.3: Addition of two O(m, n)-T!.T.F.N's, where rn :2,n: 0.5

a 0 0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.8 u.9
h@) + Bt@) 3.00 3.26 3.53 3.82 4.L3 4.46 4.44 5.26 5.76 6.42 8.00
Az@) * Bz@) 17,00 16.69 16.37 76.O2 15.65 15.24 t4,79 4,29 r3.68 12.90 11.00

a. 0 0.1 rJ.2 0.3 0.4 0.5 0.6 0.8 0.9 1

Alla I btla 3.00 3.95 4.80 5. bl) 6.20 6.75 7.20 ¡/. bb 7.80 7.95 8.00
Az@ I Bc(a t7 15;86 t4.84 13.94 13.16 12.5 11.96 r1.54 tt,24 11.06 1.0u

d 0 0.1 0.2 0.3 u.4 0.5 0,6 0.? 0.8 0.9 1
At a) + 81(a) 3.00 ó, ¿o 3.82 4.13 4.46 4.84 5.26 5.76 6.42 8.00
Az@) t Bz@) 17.00 15.Ett 14.84 13.94 13.16 1.2.50 r.vb 11.54 1L.24 11.06 1.00
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We now make the following observations.

(a) When m : 2 and n : 2, Graph 1 bulges outward and is often interpreted in

linguistic term as "more or less" or "dilatation" (or concave). This means that

we do dot have much confidence in the middle portion of the membership function.

(b) When m:0.5 and r¿ : 0.5, Graph 2 bulges inwa.rd and is often interpreted in

linguistic term as "very" or "concentration" (or convex). This mean that we have

more confidence in the middle portion of the membership function than we do at

the end points.

(c) When m : 2 and ¿ : 0.5, the shape Graph 3 of the membership function

is different f¡om those describe in (a) and (b). It bulges outward on the left

hand side and bulges inward on the right hand side. In linguistic terms this can

be interpreted as a mixture of "concentration', (or convex) and ,,dilatation,' (or

concave). This mean that we are "more or less" satisfied on the left hand side of

the membership function and "very" satisfied on the right hand side.

(d) When nz:0.5 and r¿ : 2, the shape of Graph 4 of the membership function

is diffe¡ent from (a), (b) or (c). In this case it bulges inward on the left hand

side of the membership function and bulges outward on the right hand side. In

linguistic terms this is interpreted as a mixture of ,,concentration,, (or convex)

and "dilatation" (or concave). This means that we a.re very satisfied on the left

hand side of the membership function and ,,more or less,, satisfi.ed on the right

hand side.
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Thus, we observe that due to the flexibility that is associated with O(m,n)-t.T.F.N,s,

the left hand side of the membership function can be estimated independently from

the right hand side. In actual prartice, users choose the shape of the membership

functions from a collection of commonly used membership functions including trian-

gular and trapezoidal membership functions. The a.dded benefit of O(m,n)-Tt.T.F.N,s

is that the parameters m and n can be easily manipulated to tune and a.djust the

shape, without having to change the supports or the cores of the membership func-

tion. Thus, O(m,n)-T!.T.F.N's can be used to produce membership function for a

number of imprecise concepts.

3.2.3 Difference A(-)B of two O(m,n)-TY.T.F.N,s

Writing Ã and É in terms of their a-cuts, we have,

A(a) - B(a) : la{a),a2(a)l + [-br(o), -ð1(a)]

: [a1(o) -br(a), a2(a)-b1(a)]

: laz - (a2 - a)(7 - a)*,a3 - (as - aa)Q - a¡*] +

[-ås + (ö¡ - å.)(1 - o)*,-br+ (bz - å1)(t - c)*]

: l@, - bs - ((az- r,)(1 - û)*) - (ös - ä4)(1 - a)t)),

(o, - b, - ((o3 - øa)(1 - ")* - (ó, - b1)(1 - a)ìt))l (a.2.14)

lf we set ,¡n : n in expression (3.2.14), we obtain the following results.

A(a) - B(a) : [(az - bs - ((az-¿r) - (ås - ö4))(1 - o)t,

(o, - b" - ((", - a¿) - (bz - br))(r - o¡;t1 (8.2.15)

: ldz - (d2 - dù(I - a¡*,4_ (d3 _ d4)(1 _ a)*l
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rvhere, d1 : (¿r - b4), d2 : (o, - bt), d4 : (as - bz), d¿ : (a¿ - bò.

In this case we make the folìowing obse¡vations.

(a) Note that a-cut given by (3.2.14) is not the a-cut of a O(m,n)-Th.T.F.N,s. Thus,

we conclude that the difference of two O(m,n)-t.T.F.N's does not yield an

O(m,n)-T!.T.F.N.

(b) If we set m:1 and n : 1 in expression (3.2.14), we obtain the a-cut of a T!.F.N.

(c) If we set rn : n in (3.2.74), then ã - É yields an O(n,m)-T!.T.F.N.

(d) If we let rn and n become large in (3.2.14), then we have

lim-,,,r-(a2 -br- ((oz- o,)(1 - o)*)- (äs - ån)(i - e*¡¡:6r-6n
lim*,,--(a3 -bz- ((as- a¿)(1 - a¡.1¡- 1a, - å,)(i - ù*¡¡: s.-6,
When rn and n get very large, the iimits of the o-cut converge to the difference

of their end points and do not depend on o.

(e) Similarl¡ it is obvious that when m and n get very small, the limits of the o-cut

given by (3.2.14) converge to a3-b2 and a2- å3 and do not depend on o.

In order to illustrate the difference of two o(m,n)-T!.T.F.N's, we consider the follow-

ing example.

Example 2 Consid,er the same two O(m,n)-Ih.T.F.N,s of Eaample 1 Usi,ng etpres-

sion (3.2.1) and, (3.2.2), the a-cut for luzzy numbers Ã, and. É are giaen by erpression

(3, 2. 1 1) and, (3.2. 12) respectiuels.

using erpressi'on(3.2.1i), we write the substraction of those tuo Juzzy numbers Ã and,
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B as follows.

A(a) - B(a) : l@z - br- ((or-or)(1 -û)*) - (åa - åa)(r -a)*¡¡,

(a" - br- ((o, - øa)(1 - a)* - (b, - ô1)(1 - ")'å))l
: t(5 - 5 - ((5 - 1)(1- a)t) - (5 - 8)(1 - ")å)),

(6 - 3 - ((6 - e)(1 - ")+ - (3 - 2X1 - ")'*'))l
: [-4(1 - ")* -B(1 -o)*,3+3(1 -")* + (r -o¡*11s.z.ro¡

If we substitute diffe¡ent values of m and n in expression (3.2.16) we obtain the fol-

lowing tables a,nd graphs.

Table 3.5: Subtraction of two O(m,n)-T!.T.F.N's, where rn :2, n:2

Table 3.6: Subtraction of two O(m,n)-T!.T.F,N's, where rn : 0.5, ¿:0.5

Table 3.7: Subtraction of two O(m,n)-Tb.T.F.N's, where rn : 2, n : 0.5.

a 0 0_1 0,2 0.3 0.4 0.5 0.6 o.7 0.8 0.9
At(a - B{a 7.00 -tt. ti4 -6.26 5 -ðrt -5.42 -4.95 4.43 -3.83 J.ló -2.2I 0.00
Aol d - bzla 9.00 8.69 8.37 8,02 7.65 7.24 6.79 6.29 5.68 4.90 3.00

a Lì 0.1 o.z 0.3 0,4 0.5 u.6 0.7 0.8 0.9 1

At(a o) -7.00 -5.67 4.44 -3.43 -2.52 7.75 t,1.2 -0,63 -0,28 -0.07 0.00
Az@ - Bz(a\ 9.00 7.86 6.84 5.94 5.16 4.5 3.96 3.54 3.24 3.06 3.00

d 0 0.1 o.2 0.3 0.4 0.5 0.6 o.7 0.8 0.9 1
At@) - Bt(a -7.00 -6.22 -5.50 -4.82 4.1ó -3.58 -3.01 -2.46 - 1.91 1.29 0.00
A2@) - 82@ 9.{J0 8.28 7.60 6.98 6.40 5.E7 5.38 4.91 4.46 3.98 3.00





We now make the following observations.

(a) When m : 2 and n : 2, Lhe graph bulges outward and is often interpreted in

linguistic term as "more or less" or "dilatation" (or concave). The form of the

membership function is very similar to the membership function of the addition

of two O(m,n)-Tt.T.F.N's.

(b) When m : 0.5 and n : 0,5, ihe graph bulges inwa¡d and is often interpreted

in linguistic term as "very" or "concentration,, (or convex). This mean we have

more confidence in the middle portion of the membership function than at its

end points.

(c) When m:2 and n : 0.5, the shape of the graph is different to those describe in

(a) and (b). Flom (3.2.16), if we consider the left hand side of the membership

function, we have,

,t2

fut-+-l=a-B(1-")'): -
J2

da2e4\/L - o-3 (1 - d)") :0, yields o : 0.69. When c > 0.69, frr(- ./= "-
e (t - a)'z) ) 0, else fiCn^tr- "-g (1 - o)') < 0. Thus, in rhis case a change

in the direction of concavity results in an infection point.

Similarly, from (3.2.16), if we consider the right hand side of the membership

function, we have,

12 tr-\ : t-z¿t/l=õ+zda\/l:õ+t
f;;{s+s(l-a)2+r, 4 (_1+o) \rc_õ

_. à2

f¡;fs+ 3(1-o)2 +\/T=a):0, yields a:0.82. When a > 0.87, #G+
3(1 - a)'? + \/T - d)( 0, else #rt *3(1 -a)'? +./T - d)> 0. Since, rhere
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is a change in the direction of concavit¡ we conclude that the¡e is an inflection

point at a:0.87.

(d) When m : 2 and n : 0.5, the shape of the graph is diffe¡ent from those desc¡ibed

in (c). From (3.2.16), if we consider the left hand side of the membership function,

we have,

7 -32-4

fi;(-aç - a)" - 3{T=ã): o, yields a :0.79.

*nne - a)2-s,fi - ¿) > 0, when a > 0. 79 and fif-ng - a)2-sr¡ - o¡ Iaa'

0, for a < 0.79. Since the¡e is a change in the direction of concavity, we conclude

that thele is a point of inflection at a : 0.7g. Similarly, if we consider the right

hand side of the membership function of (3.2.16), it can easily be shown that

the¡e is a point of inflection at o : 0.48.

Thus, O(m,n)-T!.T.F.N's allow us to introduce fuzziness at various places in the

membership function. After a particular value of rn and r¿ have been selected, the

usel can still go back and fine tune the membership. This added inte¡action and

flexibility associated in the use of O(m,n)-Tl,T.F.N,s are desirable features when

designing imprecise concepts.

7-c,)+32o' 1-a)+3
(-1+o)
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3.2.4 Multiplication ÃOn of two O(m,n)-t.T.F.N,s

Writing Ã and, É in terms of their o-cuts, we have,

A(a) (.) B (a) : la1(a), a2(a)l (.) [år (o), bu (a)]

: [ø1(a)å1(o), a2(a)br(a)]

: loz - (a2 - a)(L - o)*,or- (a3 - aa)(l - ")*l(.)
lbr- (br- ät)(1- a)*,å. - (âs - ä4)(1 - CI)tl

: l@z - (a2 - ø)(L - a)+)(b2_ (å' _ å1)(1 _ o)*),

(¿, - (o, -or)(1 -d)*Xå3 - (ö3 - å4)(r -a)*¡1

Thus,

A(a)(.)B(a) : la2b2+ (1 - a)* (a2\ - 2a2b2 * aþz) i(r - o¡t @2 - a1)(b2 - b1),

azbz r (r - Q* @abs - 2asbs + o3åa) * (1 - a¡2 ça, - aa) (bs - b a)l

(3.2.17)

Note that the product of two O(m,n)-t.T.F.N's is not an O(m,n)-Tb.T,F.N.

If we set values of rn : n : 1 in (3.2.17), we obtain the results for the product of

two trapezoidal fuzzy numbers as follows,

A(a) (.) B (a) : fay\ * a(a2\ I øyb2 - 2a1b) * a2 (a2b2 - a2b1 - ayb2+ ¿1är),

a¿bd]- a(a¿h, + asb4 - 2aaba) * a2 (a3bs - a3ba - aab3 * aaba)],

(3.2,18)

We now make the following observations on the product of two O(m.n)-T!,T.F.N,s,

(a) Note that the o-cut given by (3.2.17) is not the a-cut of an O(m,n)-Tl.T.F.N's.

Thus, the product of two O(m,n)-T!.T.F.N's is not an O(m,n)-Tl.T.F.N.
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(b) If we set r¿ : 1 and r¿ : 1 in expression (3.2.L4), we obtain the o-cut of a T!.F.N.

(c) On the other hand, if we set ¡n: n in (3.2.L7), tiren ã(.)É yields an O(m,m)-

TT.T.F.N.

(d) A'om (3.2.14)we have

lim^-*a2b2+ (1 - o)*(arô1-2a2b2+aúz) * (t - a)A@, - aì(bz- br) : orb,

Iim,"-- o3ô3 + (1 - Q* @abs - 2aebs+ ¿3b4) + (1 - a)* (ø3 - ad)(bs - bn) : aþn

When rn and n get very large, the limits of the o-cut converge to the product of

their end points and do not depend on a.

(e) Similarly, it is obvious that when m and n get very small, the limits of the o-cut

given by (3.2.17) converge to their interior points a2b2 and ø3å3 and do not

depend on a.

Note that the a-cut given by (3.2.17) is not linear. However, under appropriate

assumptions the a-cut given by (3.2.17) can be approximated by linear membership

function.

3.2.5 Membership Function of A(.)8.

Let i and .É be two O(m,n)-T!.T.F.N's. Using A anð, É respectively, The product

of iwo O(m,n)-trapezoidal lype fizzy numbers is given by expression (3.2.17) and is

as follows.

A(a)(.)B(a) : la2bz+ (1 - o)* (a2b¡ -2a2b2* aùz) *(t- o¡A @2- a1)(b2-b1),

¿eås * (1 - a)i (anfu - 2a3fu r a3ba) -t (7 - c):" çar- aa) (å3 - ba)l
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In order to find the membership function for the fuzzy number AB, we need to frnd

the interior points as well as the end points. To find the interior points, ìve set a: I

in expression (3.2.17), and to find the end points, we set û : 0 in expression (3.2.17).

Thus we have,

,4(1X.)B(1) : la2b2, a3fuf

and

(3.2.1e)

,4(0)(.)B(0) : la2b2 * (azh - 2o,2bz + arb2) + (a2 - a)(b2 - b),

asfu * (aabs - 2(4h + o4b4) + (a3 - øa)(å3 - ba)l

: lalbyaabal ß.2.20)

In vierv of (3.2.20) and (3.2,19), the fuzzy number Ã1.¡É can be written as

A(.)B : la1b1,a2b2, a3fu,aaba)

The o-cut of the left hand part of fitzzy number ,lç.¡A can be rewritten as follows:

The a-cut in (3.2.17) of the right hand part of lnzzy number AB can be ¡ewritten as

follorvs,

tu(a)B{a) : (az - at)(bz - ¿,) ((1 - o¡*)'+

(a2\ - 2a2b2+ arbz) ((r - e+) + oru,

A2(a)8,(a) : (as - aa)(tu- ar) ((1 - o¡*)'+

(aafu - 2asfu+ øsaa) ((r - o)*) + o3a3

(3,2.21)

(3.2.22)

Note that (3.2.21) and (3.2.22) have a quadratic structure in (1 - a)t and (t - a)*.

To find the membership function, we set
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fu(a)B1(a): ø and Ar(a)B2(a): z and solve for a as follows.

(a2 - a)(b2-â,) ((1 -o)*)' r (a2b1 -2azbz+ aúz) (fr -"1*) + a2b2 : r

(a2 - a1)(b2- b,) ((1 - ")*)' * @zbt - 2azbz + aþz) (fr - "l*¡ + o.2b2 -ø : 0

(3.2.23)

- ")-t

- (orbr. - 2a2b2 + oab2) + 1f @zh - atbz)2 * 4(a2 - a)(b2 - b)r)
2(a2-a)(b2-b1)

- 2ø2b2 * arb2) + 1f @zù - atbz)2 * 4(a2 - a)(b2 - b)x)

- at)(bz - bt)

Solving for (i

,' 'L(t - a)- :

Similarly, if we

a : L-

(3.2.24)

set A2(a)B2(a): ø, then we have

| -{ona, - 2a.¿bs + orun) + @1L]
(3.2.25)

Using (3.2.24) and (3.2.25) we have the membership function tor,Â(.)a.

o S ¿rör

a1h1!c! ø2b2

øzbz 3z 3 asba

asbs3a3a¿bt

ø > øabA



Example 3 Let Ã and, É be two O(m,n)-Tb.T.F.N's. Usi,ng erpression (5.p.1),

(3.2.2) and (3.2.17), ue haae

A(a)(.)B(a) : [15 - 17(1 -CI)* +4(1 -o¡å, 30+83(1 -o)+ +e(t -o)3]

(3.2.26)

For different values of m and n in expression (3.2.26) we obtain the foliowing tables

and graphs.

Table 3.9: Multiplication of two O(m,n)-T!.T.F.N's, where rn :2,, n: 2.

Table 3.10: Multiplication of two O(m,n)-TÌ.T,F.N's, where rn : 0.b, r¿ : 0.b.

Table 3.11: Multiplication of two O(m,n)-t.T.F.N,s, where r¿ :2, n:0.5.

Table 3.12: Multiplication of two O(m,n)-Tb.T.F.N,s, where rn :0.5, n:2.

d 0 0.I 0.2 0.3 o.4 0.5 0.6 0.7 0.8 0.9
A1(a) (+) 81(c) 2.00 2.47 2.99 3.58 4.98 5.85 6.89 8.20 10.02 15.00
A2lall*)E2ldl 72.00 69.41 66.72 63.91 60.96 57.83 54.47 50.77 6.56 47.34 30.00

d 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1

Ar(a )Bt a) 2.00 3.E5 5.76 /,oó 9.40 11.00 12.38 13.50 14.33 14.83 15.00
Atl a *)ö2ldl 72.00 62.63 54.81 48.33 43.05 38.81 35.51 33.04 31.33 30.33 30.00

d 0 0.1 0,2 0.3 0.4 0.5 0.6 o.7 0.8 0,9 I
At(a Bt a) 2.00 2.47 2.99 3.58 4.23 4,98 5.85 6.89 8.20 10.02 15.00
Az(a IJo a) 72.00 62.63 54.81 48.33 43.05 38.81 35.51 33.04 JI. J:J 30.33 30.00

a 0 0.1 0.2 0.3 0.4 0.5 0.6 0,7 0.8 0.9 1
A1 a Bt@) 2.00 3.85 5.76 7.63 9.40 11.00 12,38 13.50 14.33 14.83 15.00
A2 d *)tsl@l 72.00 69.47 66.72 63.91 60,96 57.83 54.47 50.77 46.56 41.34 30.00





We make the following observations on the product of two O(m,n)-Tf .T.F.N,s.

(a) When m : 2 and n : 2, the graph bulges outward and is often interpreted in

linguistic term as "more or less" or "dilatation" (or concave).

(b) When m:0.5 and n : 0.5, the graph bulges inward and is often interpreted in

linguistic term as "very" or "concentration" (or convex). We have more confidence

in the middle portion of the membership function than rve do at the end points.

(c) When m:2 and n : 0.5, the shape of the graph is different from those describe

in (b) and (c). The graph bulges outward on the left hand side of the membership

function and bulges inward on the right hand side of the membership function.

In linguistic terms this is interpreted as a mixture of "dilatation" (or concave)

and "concent¡ation" (or convex).

(d) When m:0.5 and n: 2, the shape of the graph is different from those desc¡ibed

in (b) or (c). The graph shrinks inwa¡d on the lefi hand side of the membership

function and bulges outward on the right hand side of the membership function.

In linguistic terms this is interpreted as a mixture of ,,dilatation,, (or concave)

and "concentration" (or convex).

O(m,n)-Ti.T.F.N's are well suited for a broad spectrum of fuzzy financial modeling.

The shape of the membe¡ship functions can be modified by varying the values of rn

and n. Fbrthermore, O(m,n)-T!.T.F.N's are more flexible to describe the vagueness

in the fuzzy parameters for the fuzzy binomial option pricing model considered in

Chapter 5.
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3.2.6 Division ÃOA ot two O(m,n)-t.T.F.N's

Writing Ã, and É in terms of their a-cuts, we have,

(A(a)(,)B(a)) -- la1(a),a2(a)r( ) l#,#] : lffi ffi]

- laz - (az - aù(t - ù* o¡ - (¿e - ø¿)(t - o)* 1,,,,,,,
L ¿, -(ar-äa)(r -a)*' bz- (bz-är)(1-o);à )*''''"

If we set rn: n:1 in expression (3.2.27), we obtain the following expression

(.4(a)(:)ã(CI)) : lffi#,##) (3.2.28)

We now make the following observations on the division of two O(m.n)-T!.T.F,N,s:

(a) The expression given by (3.2.27) 1s not an O(m,n)-Tb.T.F.N. However, (3.2.27)

can be approximated by a linear shape fuzzy numbers under certain assumptions.

(b) If we set m : 1 and z : 1 in expression (3.2.27), we obtain the o-cut of the

division of two T!.T.F,N's.

(c) Another important observation that can be made is that if we let nz and n get

very large in (3.2.27), then

ì:* az - (az - a1)(i - a)* aI
¡¡¡¡¡m'r¡+co 

à¡ - (be - à4)(1 - o)t - b4

and

ri* øs - (q - øa)(1 - o)* ø4
¡r'rm'n+c€ 

b, - (b: âtxi-;tr: t;
When rn and n get very large, the limits of the a-cut converge to the division of

their end points and do not depend on o,

(d) similarly, it is obvious that rvhen m and n get very small, the limits of the o-cut

given by (3,2.27) converye to f and p respectively, and do not depend on o.D3 o2
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Example 4 Let Á, and, É be two O(m,n)-Tb.T.F.N's, then

(,4(a)(:)ã(a)) : fr-¿tr-"1't, 
6+3(r-aËl 

1r.r.rn¡\'-\-''l\'/- \-'l/ 
l5 + r(r - o)* ' 3 - (1 : a)- 

.¡

For different values of m and n in expression (3.2.2g) we obtain the following Tables

and graphs.

Table 3.13: Division of two O(m,n)-T!.T.F.N's, whe¡e rn :2, n:2.

Table 3.14: Division of two O(m,n)-Tl.T.F.N's, where rn: 0.5, r¿: 0.5.

Table 3.15: Division of two O(m,n)-Tl.T.F.N's, where rn :2, n:0.5.

Table 3.16: Division of two O(m,n)-Tf .T.F.N's, where rn :0.5, n:2.

a 0 0.1 0.2 0.3 o.4 0.5 0.6 0.7 0.8 0.9
.41(d) ( * Jõ1(a 0.13 0.15 0.19 0.22 u.2tt Lì.30 0.36 0.42 0.51 0.63 I.UU
A2@)þ)Ë:@ 4.50 4.31 4.1 3.93 ó. (4 3.54 3.34 3.12 2.8E 2.59 2.00

o¿ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
At d )r)lJl(a) 0.13 0.24 u.óÐ o.47 0.59 0.70 0.80 U.EE 0.95 u.99 1.00
Az(a (*)bz@l 4.50 3.85 3.36 2.98 2.68 2.45 ') r9 2.t5 2.07 2.02 2.00

a 0 0.1 0.2 0.3 u.4 0,5 0.6 0.7 0.8 0.9 1

At@) D1 d 0.13 0.16 0.2r 0.26 0.31 0.38 0.45 0.53 0.63 0.74 1.00
Az@\ Bz@ 4.50 4.r ó. lo 3.45 3.18 2.94 2.74 2.56 2.40 2.25 2.00

d Lì 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
,4,1(o)(x)-B1(o) 0.13 0.22 0.32 0.40 Lì.49 0.56 0.63 0.70 0.76 0.83 1.00
Az@)G\Bz@) 4.50 4.04 3.68 3.39 3.15 2.95 2.78 2.63 2.48 2.32 2.00

EE





(u)

(b)

We, now make the following observations.

When r¿ : 2 and n : 2, the graph bulges outward and is often interpreted in

linguistic term as "more or less" or "dilatation" (or concave).

When rn : 0.5 and n : 0.5, the graph bulges inward and is often interpreted in

linguistic term as "very" or "concentration" (or convex). We have mo¡e confidence

in the middle portion of the membership function than at its end points.

When r¿ : 2 and n : 0.5, the shape of the graph is different than those describe

in (b) and (c). There is no point of inflection on either sides of the membership

function.

(d) When m :0.5 and n : 2, the graph bulges outward on both sides of the mem-

bership function. There is no point of inflection on either sides ofthe membership

function.

3.3 Conclusion

In this chapter a class of o(m,n)-T!.T.F.N's is introduced as a generalization of the

Tl.T.F.N's, and some of their properties are discussed using *, -, x and + operations.

Some numerical examples are also provided to reinforce the results.

(")
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Chapter 4

Moment Properties of
O (m,n)-Trapezoidal Type Fuzzy
Numbers

carlsson and F'uller [30] and F\rller and Majlender [53] discuss the possibilistic mean,

interval valued possibilistic mean, possibilistic variance and possibilistic covariance

for T!.F.N's. carlsson and F\,rller [lt] show the usefulness of possibilistic mean value

and variance of fitzzy numbers by applying it to a htzzy real option pricing model. In

the present chapter we derive, on the lines of Carlsson and F\ller [30] and tr\rller and

Majlender [53] similar results for O(m, n)-Tl.T.F.N's,

4.L Possibilistic Mean of an O(m,n)-Tb.T.F.N

Let Ã: la1, a2, as, aafe6,",¡ be an O(m,n)-Tb.T.F.N such that the a-cut of ,4 is given

by

A(") : lor- (or-o,)(1 -o)*,a3 - (o3 -aa)(t -a)*l

On the lines of Carlsson and F\¡ller [30] and Carlsson and Majlender [58], we have

the lower possibilistic mean M- (,4) as

ft tl
M.(A) : 2 

Jo 
oa{a)do :, 

J, " (", - ("r- ar)(t - a¡'t') aa



zo, 
lo' 

oao - 2(o, - o) 
fo' 

o(r - ùt¿o

az*2(az- ",)lffiG- o)+ + r--¿ftr^(t - ")+=],
| 2m2(az - or) 'ì

a'- Lî*õlrñ)
Similarl¡ the upper posibilistic mean

fl
M.(A) :2Joaaz(o)da

I zn2(a3-"n) 1- u3- 
tG+ÐÞãTÐi

The average of M-(A) of M-(A) and M-(,4) is

y:,-\ffiÀ1.^-lffil
2z

_ az*at I m2(a2-a) I I n2(as-a) I- 2 -LG+""!TÐÐJ -Ln;;*t, (4.1.3)

When .Ã is a symmetric fuzzy number, such that (o" - or) : (as - as) and m : n,

then from (4.1.3) we have,

ttç.t¡ : "z!ro'

Note that in this case M(A) is independent of rn and ¿. we make the following

obse¡vations on the possibilistic mean of an O(m,n)-Tt.T.F.N.

(a) When m: l, the lower possibilistic mean M-(A) is i - +

(b) When z : 1, the upper possibilistic mean M-(A) js 
? . i

(c) When * --+ Ø,i.e, lim--- a2 l#ffi..%'l : or. rhis mean rhar the

(4.1.1)

(4.1.2)

(4.r.4)

lower possibilistic mean M-(á) converges to o1.



(d) when f¿ ---+ oo, i.e, lim | 2n2(ø - ¿o) I
n'æa3 - tæìfuÉl : oo ti'i' mean that the

upper possibilistic mean M- (,4) converges to ø4.

/^\,:* a2+as I m2(a2-a) I I n2(as-aa) I a1 +an(e,,rmm,n+oo lo¡øe¡øj - ta;tnza|]:-n--
(f) When tn: n:0, the possibilistic mean of A is 

a2;as 
.

Also, note that lim-,,-"" M(A) is independent of m and n.

4.L.1 fnterval Valued Probabilistic Mean of an O(m,n)-Tb.T.F.N.

Let Ã : (a1, a2, a3, aa)e1rn,n¡ be an O(m,n)-Tl.T.F.N such that m,n ) 0, and m f n .

We now show that M(A) C E(,4). As in Ca¡lsson and tr\rller [30] the lower probability

mean of .4 is given by,

î1 11
Er(A) : 

Jo 
at(a)da: 

Jol"r-(a2-a)(t-afi;laa
- a2 (o, - où 

Io'G - ù*ao

: o,z * (o, - o,)l#^U- ")*1,
- a'2 (o,-a,) l-=l (4.1.5)" ll+m)

Similarly, the upper probability mean of i is given below,

11 ¡1
E.(A) : 

Jo 
az(a)da: 

Jol"r-(as-aa)(L-a¡ilaa
(*-')l#] (4i6)

F\'om (a.1.1) and (4.1.2), the interva,l vaiue possibility mean of ,4 is as follows,

M(A) : lM.(A), M.(A)l

| , 2rn2 2n2 'l

L", 
- ("" - ù6¡ffi16, at - (as - "òøffi,)
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Flom (4.i.5) and (4.1.6), the interval value probability mean of ã is as follows,

E(A) : lE.(A), E.(A)l : lo, - (o, - o,)=?=, as - (as - o^1- !-]L t +,¡n 'r+n)

We now state the following Lemma:

Lemma 4.7.t IÍ A e F is a fuzzy number ui,th strictlg ,áncreasi,ng and, strictly d,e-

creas'ing (and, continuous) functions then ,its i,nterual-ualued, possi,bili,sti,c rnean ,is a

proper subset of its i,ntertal-øalued, probabili,sti,c mean, i.e M(A) C E(A),

Lemma 4,1.1 is similar to Lemma 1,7.1 and its proof follows on the same lines of

Carlsson and F\rller [30]. In viev/ of Lemma 4.1.1, we have M(A) C E(A).

We now make the following observations on the interval valued probabilistic mean

and possibilistic mean of an O(m,n)-T!.T.F.N.

(a) When m:7, the lower probability mean ,Ð- (,4) i, o'! o' 
.

2

(b) when n'¿---+ Ø,then lim,,,-- a2 -*?ï;U : ør. The tower probabiliry mean

E*(A) converges to ø1.

(c) At n:0, the upper probability meân E-(A) is equal to ø3.

(d) When ¿ : 1, the upper probability mean E-(,4) is equaì to 
ot !^on .'2

(e) When r¿ --+ co, then lirr n(as - aa\
'n-6e o3 - -ff : øa. The upper probability mean

.Ð'(A) converges to aa.

(f) When ã is a symmetr\c fitzzy number, i.e., m: n and. a2- a1 : a4- a3 then,

the crisp probability mean of I is,

E(,s) : ,-@+P1Ð: r+t-(o,-o,) (l#] _ l#])
- 

az*at
2 Ø'L'7)



Note also that the probability mean of .4 is independent of rn and n. E(A) given

by (4.1.7) is equal toM(A) which is given by (a.1.a). This property is observed

by Carlsson and F\rller [30] also for triangula.r fuzzy numbers.

(g) It is easy to see that,

rim-,,,-- 

=t-(o,-o,)(lr._-] 
- t.h]) :r+t

Thus we see that lim-,,r- E(á) is is independent of rn and n and converges to
az*az

2'

4.L.2 Possibilistic Variance of O(m,n)-Tb.T.F.N.

If ,4 is an O(m,n)-T!.T,F.N, then using (1.7.17) ihe possibilistic variance of .4 can be

computed as follows.

11 I
var(A) : 

J" 2"@r(") - ar(a))z da

7 11 T.: 
; J" " [(o, - {o, - on)(I- ù+) - @r- (a2- a1)(7- o¡'i'¡]'ao

I 11 r-: ;J" "[{or- az)-(as-on)(1- o)*+(or-o,)(1- o¡}')'ao

: 
Tr* - où' 

lo oaa + |@s - oò' 
Io 

ag - .,¡3 ¿¿ + |@, - o), 
fo' 

o(t - o)a ao

-(a3 - a2)(as - "ò l: aQ - .,¡I¿a * (a3 - a2)(a2 - ") l, oe - e* ¿s

- (o, - at)(az - or) 
lo' 

o(t - Qi+t ¿o (4.1.8)
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Thus,

var(A) : |{o, - o,), . l##ffi). lffi{õl
ln'(o" - az)(at - aa)1, lm2(a3 - a)(a2 - a)l- t1l + ?¿¡1 +ãt-l r- 

L1l +,"n1 + rn I-l
_ | n2m2(as - ao)(o, - or) I-Lø¡;ñø;".a,1 (41'e)

The following result that follows as special cases of (4.1.g) can be found in [30].

(a) 11 m: r¿ in expression (4,1.9) we obtain the variance of an O(n,m)-T!.T.F,N as

(4.1.10)

var(A):@+*ffi*
m2((a¿-aù+(az-a))2

4(2+m)(t+nL)

If we set (ot - ar) : (aa - a3) : a in expression (4.1.10), we obtain the following

result for the variance of a symmetric O(m,m)-Tl.T.F.N:

var(A\ : (o,- or)' * 2m2a(at- a'¿) * 
- 

*'o'
4 - + î+õllñ+ 6¡66+*¡ (41'11)

If we let rn: 7 in expression (4.i.10), we obtain the following result for the

variance of a t.F.N.

var(A) : @;t* (" -'r)((', - '')+ *((aq- as) !-(az- a))2

(b)

(")

(4,1.12)

(d) If we set r¿ : 1 and (o2 - ot) : (on - o"): a in expression (4.1.10), we obtain

the following result for the variance of a symmetric T!.F.N.

t"" - =ù'_ _a(at- az) _a2Var(A):Y!-n g ,6 (4.1.1s)
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(e) If we set m : 1, aa : ¿a and ø3 : az in

following result for the variance of a T.F,N

Var(A) : ((az - az) + -(az - aù)2
24

Var(A\ : "
o

(f) Now, if as - a2: a2 - ar: o in expression (4.1.14), we obtain the variance of a

symmetric T.F.N as follows.

expression (4.1.10), we obtain the

(4,1.t4)

(4.1.15)

Let A € F, where .F' is the family of all O(m,n)-Tl.T.F.N's and let g be a real

number. If the fuzzy number ,4, is shifted by d, then in the following theorem we show

that the possibilistic mean of I shifts by á and the variance of an O(m,n)-T!.T.F.N

is invariant to shifting.

Theorem 4.1,L LetA€ F, where F is thefamily of alt O(rn,n)-Th.T.F.N,s and,let 0

be a real number. If fuzzy nurnber A is shi,fted, bg 0 , where, B(a) : la1(a) + 0, a2(a) + gl

such that,

(,) M(B) :M(A) + o,

(b) Var(B):Var(A).

Proof. Let, A(a) : [a1@), ar(")], a e [0, 1]. Then, we have

B(a) : A(a) + 0 --la1(a), ar(a)l+0: [o1(a) + g, ar(e +e],

Thus, using expression (L.7.2) ror the crisp possibilistic mean of a fuzzy number, we
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obtain that,

ît
M(B) : 

Jnafat(o)+0+ a2(a)+7lda

fl ¡1: 
J o " [a1 (a) + a2(o)) da + 20 

Jo 
ada

¡l: 
J"" [ø1(c)+ a2(a)]da+0:M(A)+e (4.1.16)

Thus, (4.1.16) yields that if fuzzy numbe¡ ,4 is shifted by d then, the possibilistic

mean of ,4, shifts by d as well. Similarly, for part (b) of the theorem we have

var(B) : ! 
[^' o¡1or1o¡ + 0 ) - (a1(a) + 0)]2 da :l 

lr' "[(or(o) - a1(a))]2 da¿ Jo

: var(A) Ø.t.r7)

Flom(4.1.17), it follows that va¡iance of an o(m,n)-T!.T.F.N is invariant to shifting.

we observe here that Theorem 4.1.1 is a generalization of the results given by carlsson

and F\ller [30] and is independent of the type of. finzy numbers but is dependent on

the a-cut only.

4.1.3 Possibilistic Covariance of Two O(m,n)-Tyapezoidal Type
Ftzzy Numbers.

on the lines of carlsson and Fuller [30].and F\rller and Majlender [b3], the possibilistic

covaria¡ce between !,wo fitzzy numbers, Ã, and, É is defined as follows,

1fl
Cou(A,B) : ; I "l@r@) - a1(a))(br(a) - b1(a))ld.a. Jo

111: ; I " la2(a)b2(a) - a2(a)b1(a) - a1(a)b2(a) + ay(a)b1(a)lda. Jo

lî1 l rl t rl: ¡ I "a2(o)b2(a)da-i I " a2(a)b1(a)da-| | aa1(a)br(a)da¿Jo ZJo '¿ Jo

*T 
I"' " a1(a)b1(a)d,a
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If I and .ã are two O(m,n)-Tl.T.F.N's of the type given by (3.2.1) and (3.2.2), then

the o-cut for .Â and .É are as follows.

A(")

B(a)

la1(a), a2(a)l : la2 - (az - ot) (1 - o)*, a" - (as - øa) (1 - o) *l

lb1(a),br(a)): lb2 - (b, - b,)(1 - a)*, b, - (b3 - ð4)(1 - a)*l

Below, we enumerate various possibilities of possibilistic covariance between two

O(m,n)-Tl.T.F.N's,

(a) Using (4.1.18), we obtain the possibilistic covariance between two O(m,n)-T}.T.F.N's

as follows,

cou(A,B) : f(os - ¿z)(ôs - åz)l *¡41
l",l(bn - år)(o, - a2) + (aa - ¿e)(ös - ör)ll .L@l +

ln, (bn - âr)(on - as) + rnz (b2 - br)(or- ar)l
L j+
l*,1þ, - år)(øs - a2) + (a2- ar)(å¡ - åz)ll

L@j r
ln2m2l(b2- b,)(on - as) + (a2- a1)(åa - ö3)llL)

(4.1,le)

(b) If we set rn : n : 1 in the expression for the possibiÌistic covariance given

by (4.1'19), then we obtain the following result for the possibilistic covariance

between two Tl.F.N's, as obtained by Carlsson and F\ller [J0] and F\rller and



Majlender [53],

cou( A. B\ : l(ot - "r)(bt - tr)l *l+l
| (as - az)((b+ - ä3) + (ä, - b,)) + (bs - b2)((aa- or) * (o, - o,)) l
rl
| (ba - bù((aq - at) + (o, - a)) + (b2 - å,)((", - a1) + (oa - a3)) I
tl

(4.1.20)

(c) If we set o4 : as, aB: az, ba,: b3 and å3 : bz in expression (4.1.20), we obtain

the possibilistic covariance between two TÌ.F.N's

(bs - bz)((as - az) + (az - at)) + (bz - bù((az - aì + (as - øz))l
24-)Cou(A, B)

(4.1.21)

(d) If we assume that Ã and É are symmetric fuzzy numbers, i.e., (a2 - or) :

(ot - or): o and (bz-bù: (ôe - bz) : B. Then, we obtain the following results

for the covariance between two symmetric fuzzy numbers.

cou(A. B\ : l(a + a)(þ + 0)l _ l?o)(zp)l _ ap
' l. 24 I L 24.1 6

(4.r.22)

The results given by expression (a1.22) is identical to the possibilistic covariance

between two symmetric T,F.N's reported by Carlsson and F\r er [30].

The following is a generalization of rheorem 4.1 proved by carlsson and tr\ller [30].

Theorem 4.L.2 Let À and ¡.t, Ç. ft and let A an B be tuo O(m, n)-Th.T.F.N,s. Then,

Var(ÀA + p,B) : \2Var(A) * p.2Var(B) + 2lÀp,lCou(A, E\
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uhere the ad.d,iti,on and, multi,plicati,on by a scalar of fuzzy numbers i,s d,ef,ned, by the

ertens'ion princ,iple gi1)en ,in Chapter 1.

Proof: Let, A(a) : la1(a),az(a)l and B(a) : [b1(a), år(o)], V a € (0, 11.

Suppose that À > 0 and ¡-r ) 0, then the o-cut lor ÀA+ ¡L,B is given b¡

ÀA(a) + p.B(a) : [Àa1(o), Àor(o)] + l¡1,b1(a), p.br(a))

: [Àa1(c) + ¡.tb1(a),Àa2(a) + p,b2(a)] (4.1.24)

Thus,

Var(ÀA+,rB\ : ! 1'
, 2 Jn Øaz(a) + p.br(a)) - ()ø1(a) + pbia))2da

111: 
; J, [ì(ø,(a) - o'(")) + ¡t(bz(a) - b1(a)))2 da

fl 1 11 t: 
^' Jo )@z(o) - a1(a))2d,o + u, J" ,{tz1c,) - \(a)),da +

uu l"' |ø,f,¡- a1(a))(å,(a) - b1(a))d,a

: 
^2var(A) 

+ p.2var(B) +2^p1ou(A+ B) (4.r.25)

Now, assume that À < 0 and ¡-r ( 0, then the Var(ÀA -l ¡L,B) is as follows.

^A(a) 
+ pB (a) : lÀa2(a) ,, Àa1(a)l + lpb2(a) , ¡.tb1(a)l

: [Àør(a) r ¡tb2(a),^ar(d) + pbl(a)l

Thus,

111
Var(ÀA+ ¡tB) : i Jo {x^{") + pår(a)) - (Àar(a) + ¡tb2(a))2da

711: 
; J, [À(o1(a) - "r(")) + p.(b1(a) - b,(a))12 da

: 
^' Io' f,ø,<"1 - a2(o))2do + ,, l"' f,tø,{.) - b2(a))2da +

zs,¡' l"' f,6,6¡- a2(a))(ò1(a) - b2(a))d,a

- 
^zvar(A) 

) p.zVar(B) + zÀpCou(A + B) (4.1.26)



Suppose now that ì > 0 and ¡z < 0. Then we get

\A(a) + ¡L.B(a) : [)a1(o), Àa2(a)) + [¡tb2(e), ¡1.b1(a)]

: [Ào1(o) r p,bz(a), Àaz(a) + pår(o)]

Thus,

var(ÀA + ¡rB) : I lr' 
ø.t l+ på1(c)) - (Àa1(o) + p,b2(a))2da

L l,' t^r.r.t- ¿r(o)) + ¡t(b1(a) - b,(a)))2 da

: 
^'", 

tl 1

Jo ,l"r{"¡ - a1(o))2d,o + ø' J" 5(u¡o) - br(o))2d.a -
11 1

zÀu 
Jo ,@z(a) - a1(a))(år(a) - b1(a))da

: 
^2Var(A)-l 

¡.t2Var(B) - D,pCn(A+ B) (4.t.27)

Simiìar reasoning holds for the case when À < 0, and ¡l > 0. It is important to point

out that the above theorem is proved for O(m,n)-T!.T.F.N,s, yet the proof is indepen-

dent of O(m,n)-Tb.T.F.N's and is dependent upon the a-cuts only. Therefore, it ap-

pears that the theorem may be proved without the assumption of O(m,n)-Tl.T.F.N,s.

In this section on the line of Flller and Majlender [b3] we discuss moment prop_

erties of various weighted functions. we derive expressions for weighted possibilistic

mean, weighted possibilistic variance and weighted possibilistic covariance related to

O(m,n)-T!.T.F.N's.

using ihe theory of weighted functions discussed in this chapter, an alternative

fuzzy binomial option pricing model (chapter 5) can be developed. rn the htzzy

binomial option pricing model developed in the next chapter (chapter b), instead of

taking probability expectation for the call price, we could as well opt for possibilistic or
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weighted possibilistic expectation. These techniques using possibiliiy theory concepts

are generalizations of already eisting methods and will be the subject of our future

research.

In this section we provide some application of the results proved using some weighted

functions.

4.L.4 Application 1

Let f (a) : (a + 7)a" be a weighted function and ,Ã : (a1, a2, a3, aa)s1-,",¡ be an

O(m,n)-T!.T.F.N with interior points, a2 and o3 and end points a1 a,nd a4. Then the

a-cut of .Ã is given by

A(") : [a1(a), a2(a)l : la2 - (a2- ot)(1 - a)*, a3 - (4 - øa)(1 - a).1].

The iower weighted possibilistic mean values of ã is obtained as follows.

Using (1.8.5), we have

¡1 ¡1m¡Ø) : | "r(") f(o)dri: I l"r- ("r-o,)(1- o)*l@+r)a.daJo Jo'
¡1 f\: az(a + 1) 

Jo 
a'da - (a2 - a)(u + 1)/ (1 - a)*a,da

: az(a + Ð I: a'd'a - (a2 - o',)(r+ rl/'1r - û)it+1)-1a('+r)-r¿o

: az(a+r¡ f 
a.+r''r . l.t**tltf"*tll

L, + 1lo - (ø + 1)(a2 - a) 
I ffi I

L'\mtwtP) I

lrrl*1)rlø+r)l
-- (r2 (a+r)(a2-¿1) l-jer--:----'| 1a.r.za;

L f(; +a+2) j



(Ð

(iÐ

f .f1 * r)r(o + i)'l
I'yrm¡ tO : j'S o, - (u + l)(az - o,) I # I

L ttå +u+2) I
^ m(a2 - a1)
- L*m

l.tl * 1)r(a.,+ r)
lim M, (A) : lim a2 - (a + L)(az - ar) I '* 

¡tn1"o' ,rL+(x) 
Lr(!+a+z):41

Similarl¡ the upper weighted possibilistic mean values of .Ã are as follows.

Using (1.8.6) we have

MiØ) : as-(u*r)(a3-oa)|.-ttrlît'tt'lt'l *r.r,
L tr* +a.t2) l

and

lr(1+r)r(,+r)'l
I'yruif,ql :,ljlào, - (ø + 1)(a3 - r., lffiJ

n(as - aa)
- ø3- l+n

irrl*1)r(ø+1)l
tim Mf(A) : _liT a3-(ut 1)(a3-oa) l-2]--j-=ln+co 

L \!+r+z) l:44
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Using (1.8.4) the /-weighted interval-valued possibilistic mean of ã is as follows.

lu7@),trr.(A)l:

a2 - (u * t)(a2 - a1) lt(åt 
tltr' * tl¡

s¿ 

,Ç.,.Ð 
)

as_(a,t)(as_aa) (+##)
The /+veighted possibilistic mean of the fitzzy number ,4, defined by (1.8.2), is the

alithmetic mean of its /-weighted lower and upper possibilistic mean values, i.e.,

M;(A\ + 
^/î+( 

a\
M'(A\ : 

tut\") t '2Í\t')
2

I,!,M ¡Qql : m9;- f 

(ø + rxøz - ¿1lrt* + rlrtø + rl'l

L t.t* +a+2) l
f 
(, + r){o, - o^F(I+ r)r(ø + r)l-LEj

: az * as _ (m(az - at)\ _ /n(a¡ - ¿a)\
2 \2(r+m)) \z(t+n))

(4.1.30)

(4.1,31)

If we assume that L is a T!.F.N, then, on the lines of Carlsson and F\ller [30] and

Fuller and Majlender [53] we have the following results:

(a) If we set rn : 1 in expression (4.L.25), the /-weighted lower possibilistic mean



value of á is converges to

M¡(A) : a2-(utr)(a2-a1) lHg#]
a2-al: 4,2 _ ,+2

Thus,

limM;(A\ : lima" -a2-al :at*az¡¿-0 J. u-0' U*2 2

lim M;(A) : lim a2-9=1 : o,
t¿+co " a1æ A+Z

(b) if n: 1 in expression (4.1.29), the /-weighted upper possibilistic mean value of

'ilI rs

MiØ) : as_ (u *1)(o3-oa) fl3++lL r (û_,, + JJ _l

: o^-al- a¿

" ul2

Thus,

I\uï<,ql : j,so, -#:\t
J*mir,s¡ : j1io, -ffi:a,

(c) Given the weighted function (u I I)a, and the fuzzy number ,Â then the /-
weighted interval-valued possibilistic mean ,4 is given below as

M¡(A) : tMi(A),MiØ)t : þ,- #, ",*#f



(d) The /-weighted possibilistic mean of ã, is the arithmetic mean of its /-weighted

lower and upper possibilistic mean values, i.e.

M ¡(A) : ll. * ", - # . #) : il.,. ^. (W))
(e) When e '----) Ø, the /-weighted possibilistic mean of ã, is as follows,

1l /on-¿s-¿2+ø1\l azt attim M¡(A) : lim i lo2t +co u-æ ¿ L 
+ ¿3 + 

\----; + 2- )): ,

and

I'!"M¡(t) :

: azias*aq+at
4

4.1.5 Application 2

Let A be an O(m,n)-Tt.T.F.N and let /(a) : (, - i) (=-- r) Uu a weighted\vr-c ./ -
function, then on the lines of carlsson and F\rller [J0] and Fìrller and Majlender

[53], the /-weighted lower and upper possibilistic mean values of fuzzy number ã are

obtained as follows.

17.,/1 \M¡(A) : I lo,- ("r-o,)(1-c);*l(ø-1) l=+-r ldoJo- '\V1 -a )
(4.1.32)

I *'(o" - ø1)(ar - 1) I- u2- L@=nT6únù)
Thus, we have

limM;(A\: lim¿^ -l 
m2(az-at)(a-l) Iiïit--t t--t ;:õ*2- l@=*+rr¿ø0;ø)

o'-l^@'- o-)1

Ll1Æt-l ,

A4-Inil'* " * (
A2

2T
AB

a
lat

)l
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lim M;(A\ : lim ¿,- | rn2(az-aù(u-t) I
",+oo r\' l(a-m+ru,t)(I+m))

-a2 lw#1,
tim M, (A) : lim a2 - | -m2(az - a)(?-- 1) I - ".,7ù+c! ^--*' L@ - rni nt/!)e + rù I - -1'

timM;(A\ : tim¿,- | m2(az-at)(.,-L) I -^,i,tõ-.-r r..., ;;::o*2- L@ _tn+trurE+rù): a,

The upper weighted possibilistic mean is

Mj(A) : 
Io'r, -(ø3 - øa)(1 - a)*l(ø - t, (v1_*! - r) a"

_ ^ ln2(aa-a)(u-7)l- ø3-r l@_"+õ6Tùl
Thus,

lim M*(A\ : lim ¿" * f .n'z(¿¿ - os)(&'' - 1) Ic,¡*o r' ø-o " L@ _ n + nu)(l +n) )

_ ^ ,ln(aa-a3)l: a3tLl6r,

lim M*(A\ : lim ¿" -l- | n'z(aa - as)(a - t) f{,+co j' ø-oo ' l(u _ n + ru)(l + n) )

: a.s * ln2(a¿ - as)l

tlîT6r-l

lim M,(A) : lim a3 * | n2(a¿- as)(u -t) I - ^r ?¡+co ¡çu - n + rtr,,yt ¡ n1]: aa

lim M+(A) : lim as * | -n2(aq - aù(u - t) I -n-o j' ' n-e-"-t l@-n+@-l]õl:4"
Fl'om (4.1.32) and (4.1.37) we obtain

M¡(A) : IMTØ),M7(A))

(4.1.34)

(4.1.35)

(4. i.36)

(4.1.37)

(4,1.38)

(4.1.3e)

(4.1.40)

(4.t.41)

,É,

(4.r.42)



That is,

1l
M¡(A) : )lor+o'+zL

n2(u-7)(aa-a3)
(a-n*rw)(I +n)

(4.1.43)

Now, when rm: n, a4 - aB: a2 - al : a., then the expression (4.1.43) becomes

and

1 I n2 (a - t)(aa - as) *, (o, - ø1)(ø - 1) Ilim M¡(A) : lim i la,,,+co a-æz l2'ru3-t @ -;Tõ6+t- @ -n+@€i;ù)
_ 1f^,^ m2(a2-a) n2(aa-a3)l- , L*'- 

*3 - (lTr;l;Ð - çt + z" + "11,

tim M,(A\ : li* 1 lo., *o"* n2(aa-aù(a-L) 
- 

m2(az-a)(a-r) Im,n+co ^,"-*2 L' -.'(a-n*nu)(I +n) (u_m+rru)(I +m.)),
_ a¿l at

2 @'t'46)

tim M r(A) : lim 1 lor* o"* -n2(a¿- as)(u-- L) 
- - m'z(az - aù(a - 1) 

f"t-0 ,-o2l' " (ø-n+,¡11Ð)(t+n) (a_rnimu)(I+m)l
:;1",*",*.,4# Wl

(4.1.45)

(4.1.47)

(a) If we set m : 1 in expression (4.L32), the /-weighted lower possibilistic mean

value of .A becomes

and

3az * at
4

Mt(A) : ",-l%æIfl,

I'y,m¡rel

lim M, (A)

lim ¿, _ l(a, - a,)(a - t)l : fo, * o'l
r¡-o - | 2(2c.t-1) J L 2 l'

: tim ¿, - f 
(¿z - ¿rX¿u - t)l -,-c.- | 2(2a-1) j

*'(o, - o1) (a,l - 1) I- @-n+õ6iñl

(4,1.44)

(4.1.48)

(4.1.4e)

(4.1.50)
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(b) If we set n : 1 in expression (4.1.37), the /-weighted upper possibilistic mean

value of .4 is becomes

M;(A) : ",-l@-41)(ø- 
i)l' L 'z@]-l'

and

(4.1.51)

(4.1.52)

(4,1.53)tiryMf (A): lim¿: - l(t-41)(ø- 1)l az*at
t 1u . u-u L-n@ -¡- l: ,

(c) Given the weighted tuncrion /(a) : (ø-1) (#- r) ,ta thehtzzynumber

A, then the /-weighted interval-valued possibilistic mean .A is

tim M;(A\ : tim ¿,_ l(az-at)(u-t)l :3or*o,r' a-*' L 2(2t_t) | 4

Ii,!"M¡(¡)

(d)

(")

(4.1.55)

(4.1.56)

lMtØ), MiØ)l : lr-@#y#, ** 
(":-tx=-Ð]

(4.r.54)

The /-weighted possibilistic mean of .4,

M¡(A) : !lor*o, ' (ø-i)(41 +a4-(a'+q¿¿l.
¿ L '- -- 4*'-¡-t'

When ø -----1 oor the /-weighted possibilistic mean of i is

J1-"M¡çe¡ 
: ;*; lo,* 

o,-Wl
la1 * a2+ as+ a41

| + .J'

and

r- I lr" * n" * @ - 7)(at + aa - (as + a2))l
i:'ot L" - 

*z - ---- 212, - ¡- )
la1 + a2+ a3+ o,4l

| + j' (4.1.57)



4.1.6 Application 3

Let ã be an O(n,n)-T!.T.F.N and let (a.,* 1)a, be a weighted function, then the

/-rveighting possibilistic variance is computed as follows.

var¡(A) - 
lo' 

(az(a) 
- a,(a))" 

,{o)0.

: @+! 
Ir' lr, - a2) + (a2- o,)(1 - a¡* - (a, - on)(r - .,¡*¡f' o'ao

- (at - o,)2 ., ( (u + l)(az - aù2, frt' + rlrtå + rl'1-.: 4 -\ 4 )lt@+Tal-
( (a + 1)(at- on)'\ frt' + ilrf3 + rll 

.,\ 4 )l-,@q.Ð ).
( (a + I)(at- øz)(¿z - ar)\ f 

rf' + ilrt* + r¡l\- )l;,,;:.4 )-
( (a + l)(az - az)(ae - ad)¡ irt' + rlrt* + rll 

-\ 2 /1.@4.Ðl-
( (a + l)(az- o,)(¿s - o¿)\ irt'+ ilrf* + 1 + rll(ffll;affi] t+'lssr

From (4.1.58) we obtain

Iimvar¡(A): @#.%#
, n(az - aa)2 , m(as - a2)(a2 - a)- a6¡"¡ - 2GJnÐ-
m(as - az)(as - aq)ll 

_ (az _ at)(as _ a¿) | *n I
z¡+m¡ly z lm+n+mn)

(4.1,5e)

/õ



(a) If wesettn:n:1in (4,1.58) and use some of the properties of Gamma function,

then,

(b)

var,(A\ : l(az-az)'l* f(¿s-oz) ((¿z-¿r)+(¿r-ør))'l ,L 4 I | 2(u+2) l
I (@, - or) + (aa - a))21

L--6;264'l (41'60)

If we set a : (o, - a1) and þ : (a¿ - ø3) in (4.1.60), then Var¡(.A) can be

re-written as

var¡(A) : l(r+'\' ' (o' - a2)(a+ Þ) (#3¡'1.L\ "-)- 2þr+Ð +

| @+ß), 1"+tÐ'1
Lt@Trt1,lÐ 

- 4@+e)
lor-or_* 

=?*þ=,1'* | (a+É)'?^(ø+r) I fn.r.ur,L 2 -16TÐ) - Lnç,-,(ø+3).1 \r'r'ur/

If a: þ in (4.1.61), we obtain the variance of a symmetric T!.F.N.

var¡(A) : l.+.åÐl.[##ä?r] rn,u,r

When ¿,.r ------¡ oor the limit of the variance given by (4.1.61) becomes

j\yvo,,çe¡ : J* l-t. #å]'. l#ffi+]
( a" - a"\2

(4.1.63)

(")

(d)

(e) When u 
- 

0, the limit of the variance given by (4.1.61) becomes

timvar,(A\ : 1¡- fo'- o' ' o+ þ )' , l{"+ø't"1¿l;ïô"-,r\^/ - ¿ïôL 2 *zç"q) +L,i@lr}õlÐl

l@P.þ#.*-#fl1 rn,unr
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(f) Thus, if ã is a symmetric fuzzy number, then the expression (4.1.64) becomes

tlmvar¡(A) : l@+.+.@+l rn,,uul

4.L.7 Application 4

Let ,,{ and .É be t*o O(m,n)-T!.T.I'.N's. Let f (a) : (a+t)a, be a weighted tunction

then the power-weighted covariance between Ã and, B is computed as follows.

cou¡(A,B) : 
lo' 

(ada) -ra'(a)) (*@5r{Ð) rr"to,

cou¡(A,B) : l*] - l%l l'ø*'rft'1*'rl-l L r*;.Ð-l .

f(a,+ 1)(a3 - o4)(ö3 -â4)1 frt"+ rlrtl + rl'l 
- 1,,øl -L ¿ )L-r.,q.Ðl_lrl.

l(.,+ 1)¿3(ö, - ô,)1 fr('+ 
r)rf* + rll 

*L 4 tLry,q.Ðl-
l(a + r)bz(ae - aq)1 frt' n rlrf* 

" 
rll 

-L----?-t ll@4.Ð j-
f 

(ø + 1)(¿g - ¿a)(öz - b,)1 frf' + r)rt* + * + rll
L 4 lLrp*)+!+z) 

I

lebl * l(u+r)az(bt-ba)¡ fr('+rErå+il1 *L¿iL 4 rLl;Frl -

f(ø+ 1)ä¡(¿z - ¿r)1 frt'+ rEf* + rll 
-L 4 lLrp+!+z¡ 

I



f(¿.i+ 1)(øz -ar)(ås -ò¿)1 frt'+ rlrt* +* + rll -L 4 lL\,¡!+!+z) l
I 
o,b,l - | @ + 1) (az(bz - b) + bz(az - aù) 1 irf' + rlrt* + Ul -L4t-L-t L"(,4ã-j 

.

l(u + L)(az - a)(bz - bù1 irf' + rlrtå + rll
L---- )l-r,";T.Ð I 

(4166)

tim cou,(A\ : f 
(bz - ås) (az - ø¡)'l *u-oL4j

_ i(å, - bn)(az - a3) + (ø3 - aa)(b, - bs)l"Lri
n^l@t - az)(bz - bù + (bz - bz)(az - aùl

L A(L+rn) l
_*rl(as - aq)(bz . bt) + (az - a)(h - uq)l

L  (m+n+mn) J

+*1,-''* aì(bz - bt)1 I b" - ao)(h . b¿)l ,n.r.u.t MTø-l*"1 ¿e*"t J

I1 m,n -----+ oo in (4.1.66) then,

lim Cou,(A\ - 
(bq-bt)(a¿- at)

m,n+oo 4

(a) If we set tn : n = I and (o, - ot) : a, (bz- ôr) : ar, (an - as) : lj, (b4 - h) :

B1 in (a.1.66) and use some of the properties of Gamma function, then,

cou¡(A,B) : l@"ø.fffi)lþ"Ð.ffi1 .
f 

(¿¿ + 1) (cr + Ér) (o + É)l
L- 4@ +A (,;Ð-.1 (4'1 6e)

(b)

(4. 1.68)

li,o cou,(A. B\ : l(as - aù (at - u')1
.,+c.L22l (4.1.70)



(c) Ifl is a triangular number then the weighted covariance given by (4.1.6g) reduce

to

c.a¡(A, B) : ltr#|ltrfi|. l9åg#*#l
(4.1.7t)

It may be pointed out here that results proved in (4.1.69)- (4.1.71) are similar to

the results proved by tr\ller and Carlsson [30] and trlller and Majlender [b3] for

T.F.N's. Also,

r*[#äî#] :,
,,_ f(o+É)(ar+Ér)l _ @+þ)(at+þò
.-o 12 (a + 2) (u.' + 3) J 12

(d) If ,4 and .ã a¡e symmetric triangular fuzzy number then the weighted covariance

from (4.1.69) reduce to

cou¡(A,B): i6sffi] (4.1.72)

and

r*l'#;fu] :'
l*f'o$fu]: e#
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4.2 Conclusion

In this chapter using possibility approach some of the moment properties of O(m,n)-

T¡.T.F.N's are discussed. Expressions for their possibilistic mean, possibilistic vari-

ance, possibilistic variance and possibilistic covariance are also derived. Furthermore,

interval valued probability and possibilistic mean of O(m,n)-T[.T.F.N's are also dis-

cussed and some numerical examples are provided to reinforce the results. Some

applications are provided in the form of examples using weighted functions.
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Chapter 5

Binomial Option Pricing Model
with O(*, n)-Tb.T.F.N's.

Binomial option pricing [6] is a simple but powerful technique that can be used to

solve many complex lattice option-pricing problems. Due to the vague fluctuation of

financial markets, it is natural to consider fuzzy pa.rameters in the binomial option

pricing model where the stock price at each state may take imprecise values. Using

O(m, n)-Tb.T.F,N's application of fuzzy sets theory to the binomial option pricing

model is proposed in this chapter. The imprecision in the stock price movements

yields both the risk-neutral probabilities and the stock price as weighted intervals

instead of one crisp value. The proposed model is flexible and allows for additional

insight into the binomial option pricing model.

We assume that the price of a stock at time ú : 0 is,9, whereas at ú : 1 we ob-

tain its price by multiplying ,9 with the jump factors. Let the a-cuts for a fuzzy

increase í,t: lu1,u2,us,u¿]o(-,,,) and a fuzzy decrease ã: [d4, d,2, d,s da]e1-,,"¡, respec-

tively, in the stock price be given by o-cuts



u(a): [u1(a),u2(o)], and d(a):ld1(a),fu(a)l such thar we have

a(a) : tur-(ur-2,)(t-o)-!1, 0<a<1

u2(a) : us-(us-øa)(1 - a)*¡¡, 0<o<1

da(a) : [dr-(dr-d1xl -CI)*], 0<o<1

d2(a) : ds-(ds-d4)(1-o)*)1, 0(c(1,

(5.0.i)

(5.0.2)

(5.0.3)

(5.0.4)

Below we now state and prove a theorem that provides the results for the fuzzy risk-

neutral plobabilities needed to price a hnzy call option under O(m, n)-Tb.T.F.N,s.

5.L Main Results

Theorem 5.t.1 Let l, : ¡d,r, dr, d4, dalo@,n) and, ít : lu1,u2,4,ual61m,n\t rêsp€c-

ttueLy, represent, fuzzy d,ecrease and fuzzy ,i,ncrease in the stoch price. Let,

(o) ¿(") : [dr("), da(a)],V, 0 1 a 17, be the a- cut for ã,,

(b) u(a) : [q(a), a(a)],V, 0 I a 17, be the a- cut for ú,

(") po(") : [pa(a), p¿z(a)], Y, 0 < a 1 t, be the fuzzy rislc neutral probabiti,tg

associated, ui,th ã,,

(d) p"(") : [pa(a), p*z(a)], V, 0 1 a 1 7, be the fuzzy rislç neutral probabi,li,ty

associated uith ú, and,

(e) r be the risk free rate, assumed to be a constant (crisp),

Then, the
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(i,) fuzzy ri,sk neutral probabi,l,ity associated, with a fuzzy d.ownuard, mouement 'in the

stock price às giaen by

pd(a) : Ip¿r(o),por(o)l- 
l''(o) - (1 + r) uz@) - (1 + rìlt;ñf:ipr'-ffi1 (511)

where,

p¿t(a): | @z-t-')-(uz-u,)(t- a)*.'l 
,r.r.r,

Lu, - d, - (u, - u,, - dz + dr)(1 - a)*.1

p¿z(a) : | (zs - t - r) - (u¡ - u¿)(t - a)* -l ,u.r.r,
Lu" - dt - (u, - un- de + d¿)(1 - a)ål

(ä) fuza rislc neutral probabi,I'ity associ.ated, uith a fuzzg upward, mouement 'in the

stock price i.s giaen by

p,(a):tp.,(o),p,,(o)t:1ffi=ffi ]o.,nl

Proof:

As given above, the o-cut for a fuzzy increase and a htzzy decrease in the stock price,

respectively are

u(a) : [a(a), uz(a)] : lu2 - (u2 - u,) (1 - o)*, u, - (23 - za) (t - a) * )l

d(") : ld1(a),d,2(a)) : td2 - (d2- drXl - a)*,d,, - (d, - d¿)(1 - a)*)l

(5.1.5)

(5.1.6)
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Also, we have

p¿(a)+p"(a) : t (5.1.8)

V9ffio,1"¡*lr$f@p*(o) :1 (51.e)

Following l ] and [98], this leads to the following two systems of equations.

pa(a)+p"z(a) : t (5. i.10)

(5.1.11)ffir^r.¡*ffir*@) : t

P¿z(a)+Pa(a) : 7

Ho*f,t+ffir^{o) : t

(5.1.12)

(5.1.13)

(5.1.14)

(5.1.15)

(5.1.16)

(5.1.17)

Equations (5,1.10)-(5.1.13) can be re-arranged so as to yield the following two sets of

equations.

and

pat@)*p"z(a) : 1

d1(a)p¿1(a) -t uía)p"z(a) : 1 *r

P¿2(a)+P6(a) : 1

d,2(a)p¿2(a) + u2(a)pú(a) : 7 lr
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solving equations (5.1,1a)-(5.1.17), we obtain the following o-cuts for the risk neutral

probability p¿(a) for a down movement in the stock price as well as the risk neutral

probability p"(a) for an up movement in the stock price.

Rema¡k 5,tJ It i,s impor.tant to obserle here that the aboue proof to fi,nd, p¿(a)

and p,(a) às not d,epend,ent on the type of fuzzy number. Also, 'it may be noted, that

ecpressàons (5.1.18) and (5.t.19) for p¿(a) and, p,(a) are also ,ind,epend,ent of the type

of fuzzy numbers.

1. r\om (5.1.7), (5.1.7) and (5.1.18), we obtain the following expression for the

risk neutral probability p¿(a) Íor a fuzzy decrease in the stock price.

p¿(a) : lpor(o),por(o)l- f"'(") - (1 +r) uz@) -(1 +r)l
t;'(ol- d,Gf ' uG): d,@)

p,(a) : lp,t(a),p",(a)l- l(1 +r) - d'?(o') (1 +r) - d1(o)l

1",@ - dø ';iãt-¿iãf l

p¿,(a): l#å+#]

(uz - | - r) - (uz - u) (t - ù* I
uz - dz - (rz - ur- a, + ar¡l-1fr.J

(5.1. i8)

(5.1.1e)

(5.1.20)

I
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p¿z(a): lffi-ãH)

I (", - (r, -u¿)(1 - a¡*) - 1r + r) Irl
- | (z¡ - 1- r) - (us - ¿,)(t - a)* ,'l ,u.r.rr,

Lut - dt - (ut - un - ds -l d¿) (1 - o)"= .J

2. F¡om (5.1.7), (5.1.7) and (5.1.19) we obtain the following expression for the risk

neutral probability p"(o) for a fizzy increase in the stock price

p,,(a) : lffi:#g]
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Corollary 5,L.L Let p¿(o) : lp¿r(o),p¿r(a)l be the luzzg risk neutral probabi,tity oJ

an increase ,in the stoclc price and, let p¿(a) : b¿{a), paz(a)l be the fuzzg rislc neutml

probabìli.ty of a d,e*ease i,n the stoclc price, then Jrorn (5.1.20) - (5.1.25) the Jollouing

compl'itnentary conditions hold, true for 0 ( o ( L Therefore,

I @r-t-")- (uz-ur)(r-o¡* llñ)-
I (t* r-d¿)+(dr-dr)(l-û);ir Itñ):'

I ("r-1-")- (ur-un)(r-o¡* ILæl -
| 1r+"-d3)+(d3 -d4)(1-ù," lLæt :'

Muzz'iol,i and, To¡ri,celli, [98], discussed the compli,mentary relati,onship for the fuzzy

rislc neutral probabi,liti,es when the parameters i,n the opti,on pricing mod,el are tri-

angular fuzzg numbers. Howeuer, from (5.1.18) and, (5.1.1g) we obset"ue that the

complimentarg hold tt"ue i,mespecti,ue of the fuzzy number.

5.1.1 Properties of the Fuzzy Risk Neutral probabilities

In this section, we discuss some ofthe properties of the fuzzy risk neutral probabilities.

,,- | (¿z - 1 - r) - (zz - u,) (t - a)* l*'* lu, - dz - (uz - ut - dz+ d1) (1 - a)ìt J

lu, - | - 11

Lã--J F'L'24)

lim p¿1(o)

lim-p¿1(o) mf (z' - r - r) - (u, - u,, ,t - or* 't

m+u ^'o Lu, - d, - (u, - ut - dz + dr) (1 - ")rå.1luz-1-rl
I ur-d" l (5,1.25)



| ,r+(u2-u1)a-(1 +r) lL@l

For rn: 1

Pa@)

The result obtained in (5.1.26) is analogous to the ¡esult obtained by Appadoo et.

a1 [4] for par(a), and coincides with p¿1(o) for a T!.F.N,

tim p¿2(a) : lim | (zs - r - ") - (z¡ - z¿) (l - a)* 'l

n-c\o 
Lut - dt - (r, - u¿ - ds I d4) (1 - a);; )

lu¿ _ 7 _ rj
l-;;-;) (5'1'27)

[ (r,- |-r)-(u,-un)(r-a¡* IIim p¿2(a) : lim I ' *i . In+u "-- Lr, -ds-(us-u¿- dt+d4) (1 -a)å]
lu"-7-r1
L "-d' l

Ë^---1

_ /^.\ _ I un-I-r+(us-ua)a IPd2\L'.)-L@l

The result obtained in (5.1.29) is analogous to the result obtained by Appadoo et.

al [4] for p¿z(a) and coincides with p¿2(a) for a T!.F.N. Also, if we set z4 : u.,

da : ds, u? : u, and d3 : dz in (5.1.29), we obtained the ¡esult for p¿2(a) for

T.F.N's as follows.

| ,r+(uz-ut\a-(1 +r) Ipd2\a) : | -: - -, . , r (b.1.90)ru'\-/ l.un-dt*(u2-q+fu-d2)a)

The result obtained in (5.1.30) is analogous to the result obtain by Muzzioli and

Torricelli [98] for p¿2(a). Similarly,

lim p,1(o) : ti* | (r + 
" - ¿') + (¿, - ¿n) (r - ")* -ln+Ø "-- Lr. -ù- (ut-u¿- ds+d4)(1 -a)åJ

f1+r-d4lL";il (51'31)

(5.1.26)

(5.1.28)

(5.1.2e)
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(5.1.32)

(5.1.33)

(5.1.36)

(5.1.37)

The lesult obtained in (5.1.33) is analogous to the result obtained by Appadoo et.

al [4] for ?,r(o). Also, if we set ,ü4:,uB¡ dt: ds, ut: uz and ds: dz in (5.1.33),

for r¿: 1 we obtained the result for p,1(o) for T.F.N's.

Pa@) : (5.1.34)

The result obtained in (5.1,3a) is analogous to the result obtained by Muzzioli and

Torricelli [98] for p"1(a). Again,

tim p"r(a) ri* | (r+"-¿')+(¿'-¿')(r-")'*' 
1,n+æ ^-* Lr, - dr- (uz - ut - dz + d1) (1 - ")å.'Jlt+r-dtl

t r:¿,l (51.35)

rimp-z@\ t- | (i+"-¿r)+(¿r-¿,)(r-o)'i' .'lm'0- ^'o Lu, - du - (u, - ut - dz + dr) (1 - û);ål
lL+r-d21
L u'-d' l

Forrn:1

p,z@) | (r+r-¿z)+(¿z-¿r)(r-a)* 
I

Lu, - d" - (u, - ut - dz 1-dl) (1 - o)*;l
I r*r-fu-(d"-dr)a IL@l

The result obtained in (5.1.37) is anaìogous to the result obtained by Appadoo et. al

l4l for p"2(a).

I l+r-d3*(d4-d2)a It@l



6.1.2 Membership F\rnction for p¿(o) and p"(q)

It is important to point out here that þ¿ and þ, given in (5.1,20)- (5.1.25) represent

fuzzy numbers. In this section we obtain their respective membership functions.

Muzzioli and rorricelli [98], obtained ¡esults similar to (5.1.20)- (5.1.23) using trian-

gt;Jar fuzzy numbers whereas in the curent section we consider O(m,n)-Tf .T.F.N,,s.

In order to frnd the two ends points and the two interior points which describe the

risk neutral probability or a fitzzy decrease in the stock price corresponding to the

O(m, n)- T!.T.F.N., we set a : 0 and a : 1 in (b.1.20) and (b.1,21). The results are

. ,^\ I @r-1-") - (ur-ur)(r-o¡;i; 'l lr,-1-rlp¿r(u) : | '- l:l*' -,'l 
t5.1.3s1

lur- dr- (u"- r, - d.z+ d)(r - r¡;*.1 L u, - d,



Similarly, to find the two ends points and the two interior points, we set a:0 and

c: 1 in (5.1.22) and (5.1.23). This yields

p',(o) : lffi]:f+Xl t,, n,r

p,r(o) : 
i

P,r(l) : 
t

uz - dz - (r, - u, - d.z -f dù(f - O¡;à

(1 + r - d2) + (d2- d,) (r - s¡*; l1+ r - d,1:L",-a-l (51'43)

]:t++l r"nn,
(t+r- ú)+(ú-d4)(1-1)*

us - ds - (ut - un - ù I d¿)(t - a;;

f t" --d,ù+(dz-d)(i-r¡;-r I ¡t+r-ar1P"z1) : l+l : l------ jl 15.1.45)
Lur- dr- (ur-u - de+dr)(t -c¡*;.1 L u2- d2 J'

In view of (5,1.38)-(5.1.41) and (5.L.42)-(5.L45), the ends points and rhe interior

points of the risk neutral probabilities are

^ lur-7-r uz-L-r u3_ 7-r ua-1-rl
tJd - L ur-dt ' u2-d2 ' u4' "^-d^ )

fl +r-da IIr -d3 1+r-d2 t*r-dtfPt - L u;-d;' t*_ ds' ur-dr, "r-¿, )

Below, we determine the membership functions for the fuzzy risk neutral probabilities

p¿ and F" in the stock price. Since,

, \ I @r_ t-r) -(ur-ur)(l-o)* IPala) : | " ' '- "' -'' 
' l. therefore for

Lu, - d, - (u, - u, - dz-l d) (1 - a)åJ

ut -7-r tç-1-'
ut - dt uz- dz

(5.1.46)

(5.1.47)

(uz - 1 - r) - (uz - uù (t - a)t
uz - dz - (u, - u, - d,z-l d) (f - o¡;t

: Pd.



Solving for a, we get

^ 1 ( po(ur-dr)-(ur-1-r) \-n:r-\ffi) (5.t.48)

- uz-1-r ,,auq-L-rSrmrlaJlv. tor - <r" us- ds us- d¿

we set,

I ("r-1-r)- (ur-un)(r-a;* IL@l:e''
Solving for @, we get

( po(ut - d¡) - (u¡ - 1- ') \"c¿-a-\@) (5.1.4e)

Therefore, the membe¡ship function for the fuzzy risk neutral probability þ¿ for a

fuzzy downward movement in the stock price is

t¿(pd) :

o Po <ut - r:'- ut- dt

, ( p¿(uz-dz)-(u2-l-r) \* ,r-l-r, ,uz-r_ r
\(p¿(øz - u1 - d.2 t dù - (uz - "t)) / ut - dt ": va ": uz- dz

1 "?-' ,: < p¿ <%-J: luz- dz us-dt

., ( pa(4-dù-(ut-1-") \" us-7-r , ,ua-I-r'-\@) q-d. "Pd=-u4-d,

- ua-7-r
P¿>---------;-ua- d¿

(5.1.50)
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Similarly, the membership function for the fuzzy risk neutral probability f, for a fizzy

upward movement is given by

t"(p") :

(p"(ut - us - ds * d4) + (ù - d4))

1

n^.rli'-dtut-dt
(5.1.51)

5.1.3 Characteristics of the F\nzy Risk Neutraì Probabilities
of a Fuzzy Downward and a F\zzy Upward Movement
Ín a Stock Price.

we now analyze the behavior of the risk neutral fuzzy probabilities of a fuzzy upward

movement and a htzzy downward movement in a stock price, under the following

assumptions, á1.

Assumptions 41. We assume that the following inequalities hold.

u7 <u2 <us < u4, d,1 < d2 1ds < da,

dt < dz 1 d.3 < d,a 1 I * r 1 ut < u2 < us < u4,

0<pot< 1, 01pa2 11, 01p¿a11, 01p¿a1L

01put< 1, 01pu2 11, 01p"3<-1, 01pua1L.

Now,

n^(rv\ - | (¿z-1-r) -(uz -¿,) (l -a)-r l_lr,vai*rr-lñ):D,

pu(us-d¡) -(1 *r-fu)

- ,llr-d¿f)", 1-
u¿- d¿

l" r+r-_d¿.o...r*r-d,
) ua- da us- dt

7*r-ds <r-.<1]-r-d,us-ds uz- dz

(5,1,52)



where,

N1 : (u2- 1-") -(ur-u1) (t-o¡*

Dt: uz- d¿- (uz-ut- dz+d1) (1 -a)*

This yields,

dDt d / r\ r'1 - ^'a-t# : å 1", - dz - (uz - ut - dz+ dl) (1 - "l*) : (u, - u, - d.z * dù +
dN, d t.

^ 
: ¿"((rr-1-") -(u,-zr)(1-")*) : (ur-ur)"#

Using the assumptions á1, we get

d.paía) _ lpr@r-u1)_ N7(u2-ut-dz+dr)l - ^d"-161 '"
Again,

d'pa(a) :
da2

It can be easily shown that

l*ur,-N,)(zz -2,)*ru,{ø -a,ll] : o

in (5.1.5a).

Thus, it implies that the expression (5.1.54) cân be rewritten as

tl
(5.1.54)

mol (t - a¡1-*¡

(5.1.53)

(5.1.55)



f dpa@) Iry : 
L 
æÆ= ll*"tr -"¡'-'+']

: -l W I |.,, -^..,,-* 
dD? , .^2,(1-o)'-*l:-lætt:;PlLt'-ot -do+"¡- ¿a l

I þ# 11,, '-,1: - lt¡å4 )l^''-ut-dz+dr)+ 
D'ffi1

(5.1.57)

Similarly,

dpd2(o) - lDz@s-u¿)_ \{r(us-ua-d3*rdl .o ts.l.5sld"-L6.1.-" \Ù¡'uol

where,

N2 : (q-1-") -(ur-rn)(i-a¡*

Dz: uz-ds-(us-u¿-ds+a.¡ 1i - "¡t

and

ry l#i] l* 
- - u¿- ds+ d4) + D2(#)l

(5. i.5e)

dp,l(a) l(¡r-¡¿r) (dn- ds)+^¡r(,rrn-rr)l-d"-:lffi1 'o' (5'160)

where,

¡f3 : (1 *r - d,s) + (ù - d.,)(r -o¡*
Ds : us - dz- (us-u¿- ds+d4)(1 -o)å,
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ând

Also,

dp"z(a)
da

where,

and

(*)l
(5.1.61)

d,'p"r(o)
da2

lf*'-u¿- 
dz*d4) + Dg

I nn@, - d2) - Nafu2 - q - dz * d.ìl
r-r\u
| *Dn2 (t - a)r-ã J

(1 +r - da) + (dz- a,¡ 1t - o¡* ,

uz - dz - (u, - u, - d.z * rtù(f - a¡*,

(5.1.62)

N¿:

D¿:

d2p,,(o):-lWlldo2 
lo, ft 

_ 
"l'-* I L

It may be pointed out that the second derivative of each of the fitzzy risk neutral

p'obability of an upward movement and a fuzzy risk neutral probability of a downward

movement in the stock price could be positives or negatives, If the second derivative

of a' fitzzy ¡isk neutral probability is positive (negative, respectively), it implies that

the corresponding probability function is convex (concave, respectively) in nature.

5.2 Call Option Value \Mith O(m,n)-Tr.T.F.N's.

suppose that there is a call option on a stock with exercise price K and expiration at

the end of Period 1. As before, we take u(a) as the a-cut of a fuzzv increase ã in the

lr,, - u1 - d.2 I d,,) + D4(;¡}) 
]

(5.1.63)



stock price, d(a) as the a-cut of a fuzzy decrease ã in the stock price and we assume

thal a.rbitrage opportunity is not allowed, Then, the o-cut for ã, and ú respectively,

âre

d(") : [d{a), dz(a)]

: ldz-(d"_ dr)(r-o¡;à,ds- (ds-d4)(1-a)"r1, (b.2.1)

u(a) : lu1(a), u2(a)l

: [uz - (u, - rr) (r - a;* ,us - (us - za) (t - a¡*1. 6.2.2)

Assume that ô is a current htzzy price of a call option on a stock whose crisp exercise

price is K. Also assume that when the call option expires, it is wor¿h either Õ. or Õ¿,

where c, and Õ¿ are fuzzy quantities whose values are subjected to a¡bitrariness and

subjectivity. In this case, the o-cut for õ" is found to be

C"(a) : [C"7@),C"2(a)]

: [Max(^9ur(o) - K,0), Max(522(o) - K,0)]. (5.2.3)

F\'om (5.2.2) and (5.2.3), we get

C6(a) : Max(.921(a) - K, o)

c"2(a) : Max(,922(o) - rr, o).

Similarly, the a-cuts for Õ¿ is given by

Co(") : lC¿1(a), C¿r(a)l

(5.2.4)

(5.2.5)

: [Max(Sd1(a) - K, 0), Max(^9dr(a) - K,0)] (5.2.6)
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Fbom (5.2.1) and (5.2.6), we get

C¿1(a) : Max(,9d1(o) - If, 0)

and

C¿2(a) : Max(Sdr(a) - K, o)

(5.2.7)

(5.2.8)

If Sdl(a) and Sd2(a) are less than K, that is, the tazzy stock price goes down, then

the call option expires out-of-the-money. If Su1(a) and ,922(a) are greater than K,

that is the fuzzy stock goes up, then the call option expires in-the-money. Note that

if both fuzzy stock prices result in the option expiring in-the-mone¡ then the call

option will not be very speculative. However, in this case, the rrzzy model will still

be able to price it.

Substituting expressions (5.2.2) f.or t,(o) into expression (5.2.3), the expression for

the price of the call in the up state, yields the following expressions for the price of

the derivative in the up state, under the assumption that û is an O(m,n)-Tl.T.F.N,

C"(a) : [Max(^921(a) - K, 0),Max(Su2(a) - K, 0))

: ft þ, - (u,-,,)(1 -"1+) - K, S (us- (ur- un)(r -")t) - "]
(5.2.e)

such that,

C6(a) : t ("r- (uz-ur)1r-a¡;t) -r
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and

C,2(a) : t (", - (ur-uo)1r -"¡*) -r< (5.2.11)

Under the assumption that d is an O(m,n)-Tb,T.F.N., (5.2.1) and (b.2.6), yield the

following expressions for the price of the derivative in the down state.

C¿(a) : [Max(^9d1(o) - K, 0), Max(.9dr(a) - K, 0)]

: [o, o]

It may be pointed out he¡e that when ,Sd1(a) and,9d2(a) are less than .K, then

lhe f.uzzy stock price goes down and the call option expires out-of-the money. Hence,

in this case the maximum value of C¿i(a) : 0 and the maximum value of C¿2(a) : 0.

This yields,

C¿1(a) : 0 and C¿2(a) :0 (5.2.12)

5.3 Expected Fuzzy Call Option Value \ryith O(m,n)-
Tr.T.F.N's.

Let Õ be a fuzzy number that characterizes the fuzzy current price of the call option

and lei c(o) be the o-cut for the fuzzy current price of the option. Then, the expected

luzzy call price is given by [98],

1 __c(a) : t¡rnQ¡ (5,3.1)



where.É stands for the expectation under the fuzzy risk neutral probabilities.

Therefore,

lc1(a) , c,(a)l : , * 
"I 

[*, 1o ) , c.2(a)]þ*1(a) , n,,(o¡1

+ fiQ^{o), "or(o)llp¿r(o), 
p¿r(o)l

Since, the fitzzy call option has zero payoff in the down state,

option pricing formula given by equation (5.3.2) simplifies to

lc {a), c, (a)l : fien {o),, c,2(a)lþ,1 (a), p,2 (a)l

where C"1(o) and C"2(a) are as in (5.2.4) and (b.2.5) respectively, Also, ?,r(o) and

puz(a) arc given by (5,1.22) and (5.1.23) respectively.

Thus,

=11c : * rE(C) 
: 

;;1c"1(a)p¡(a),C,2(a)p,r(")l

yields

t (""- (u2-u)(1- a

1*r

s (z¡ - (z¡ - z¿) (r - o)t) - r
7*r

(5.3.2)

the expected fuzzy

(5.3.3)

(t +r - ¿r) + (¿, - ¿o) (r - o)*
us - ds - (u, - un - d.s * d¿)(t - a¡*'

(r + r - ¿r) + (¿, - ¿r) (t - ù*
uz - dz - (u" - u, - dz + d)(1 - a)ìt

r\
)^)-K

c(") :

This leads to

c,(a) --ffio^f"¡ and c,(a) : fftr*{*)

Plugging the values of C"1(o) from (5.2.10) and p,1(o) from (5.1.22) we obtain the

following expression for the left hand part of the o-cut for the fuzzy current price of
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the call option.

,-1, \ l"(*-(",-1ì! .Ð-K (i+r-d3)+(dr-an¡1r-o¡.. lu1(,,):l-ffi]
(5.3.4)

Símilarly, from (5.2.11) and p,1(o) from (5.1.22) we obtain the right hand part of the

o-cut

(1+r-dr)+(¿, -¿,)(r -a)* l
uz - d¿ - (u, - ur- a, + a,¡l-lf]

(5.3.5)

cr(a) : 
I
" 

(", - (us - ua)1r - a¡*) - r<

L1'r

It is easy to show that as a increases the call option interval of price shrinks, and at

a : 1, the interval is the smallest. Similarly, at o : 0, the call price interval is the

largest. Therefore, [c1(o), c2(a)] gives us a weighted expected value inte¡val for the

call price Õ. ttri. is an important property for financial applications as it allows us

to determine the most useful outcome of the call price Õ,

S.3.L Membership F\rnction for the F\tzzy Call Option Value.

In order to frnd the two exterior points and the two interior points which describe

tbe finzy call price corresponding to the O(m,n)-T!.T.F.N we set a : 0 and a : 1

in (5.3.4) and (5.3.5) respectivelv.

c,(o) : l+# #), cz(o):l+# +:#l

c10) : ls:tz-t 1+r--dsl. c,tl)- fsu¡-k 7-tr_ d.21-¡\-'l f t+r uz-ds J I t+r ur4;J (5'3'6)



Flom (5.3,6) the fiizzy call price is given by

C:
Su1 -K7*r-d,¿ Su2-Kl+r-ú f1+r u4- d4 ' l+r u4s'l
Su3-Kl, r-da Sua- Kf +"-¿, I

l+r ur4r ' l+r ul -dt J

(5,3.7)

In view of (5.3.4)- (5.3.7), we determine the membership functions fo¡ õ as follows

Flom (5.3.4), seiting C1(a) : õ , we get

s(uz-(uz-uù(t-ùi;)-x
I*r

(1+r-d3)+(d3-d4)(1-o)'r I _ o
us - ds - (u" - un- a, a ar¡l-lf

(5.3.8)

This yields the following equation

({s", -Ir) (1 +, - d,t) - C (us - a3)(r +r)) +

({s", - K) (d, - da) + Õ@, - ua - ds+ d4) (1 + ")) 
(1 - o)* -

S (u2 - u)(1 + r - dr) (1 - o)t - S (u, - uì(da - dn) (r- o¡*+* : 6

(5,3.e)

Simila.rly, setting C2(a) : Ó yields the following equation

(Sus - K)(1 + r - dù - Õ Q r r) (u2 - d.z) +

({s", - K)(dz - dl) + õ Q i r) (u2 - ut - dz+ d1)) (1 - o)-t -
(1 + r - d,2) S(us - u¿) (r- 

")* - S @3 - ua)(dQ - dt) 0 -a¡*+å : I
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Special Cases:

(a) Setting rn : n in (5.3.9) yields

h(l - a)i - (Cr-B,)(1 -o)*! -¿, : s

where

At : S(uz-u)(ds-da)

B1 : (su2 - K) (dt - dl + õ@s - uq - ds+ d,4)(r + r)

Ct : S(uz - ¿r) (1 *r - fu)

D1 : (Su2 - r{)(r + r - a) - õ @3- d3) (1 +r)

Thus, solving expression (5.3.11) for o, yields

(1- a)*! :
(c, - Bù + tl (c, - B)2 + AAtDt

^. _ 1 ({c,_ Ð+rfrc,-a,l++eo,\--\r/
Similarly if we set, m: n in expression (5,3.10), we obtain

A,(r - d)A - (8, - C") (r - a¡* - p, : s

where

Az : S(us-ua)(d,2-d)

82 : (t*r-d2)S(us-ua)

C2 : ((54 - K)(dr- dù - C (r * r) (u2 - q - dz -t dì)

D2 : (54- Jr) (1 * r - d2) + Õ (t +r) (uz _ d.z)

2At

(5.3. 11)

(5.3.12)

(5.3.13)



Thus, solving expression (5.3.13) for o, yields

a : r-(<B'-c¡+'[B'-c'f *q¿'ø1^
\,,,)

This gives the membership function of C as.

(5,3.14)

;, Sua- K1!r-d,2
- 1+r ut-dr

(5.3.15)

t'(C) =

o Õ=\#,+ï#
/ /-------------_- \ ñ

, _ [ 
(à - Bt) + tf Qt - Bt)" + ¿tto, ì sqr - ¡< 1 + r -.d4 . ¿ . I * r - ds

\ "' ) 
1+r u¿-dt =" -'¡-d¡

, Sü2 - K 1+ î _ ds , * , Sus _ R I + r _ d2' t+" ;;:;;=Ú> 1+r u'-d'

, - ( e" - cr'r + {tø - c"f + ¿tror\ s¿s - r r + r - ¿z . ,+ . süc - K 7 * r - dz'- 
\-----------ut, ) 1+, -;;=Ë sus-Ìi;;;:dl

(b) If û and áare two symmetric O(m,n)-T!.T.F.N's, with ,u,2-u1 : a1, u4-us: 81,

d,2-d4 : a2 andd,a-d4: þr lhen the membership function p(Õ) given by (5.3.1b)

will have the following values fo¡ A1,81,C1, D1, Az, Bz,Cz, and D2.

At : -Satþz

Bt : - (Su, - K) B, + õ@r- þ)(r + r)

Ct : Sq(l +r-dg)

D, : (Su2-10(1 *r - ds) - Õ @r_d3)(1+r)

Az : -S7pz

Bz : -(7+r-d2)Sp1

C2 : (Sus - K)o, - õ çt+r¡(o, -or)

D2 : (Sq - K) (L.rr - d2) + õ e+r) (u2 - de)



(c) Now, if d and ã are two symmetric O(m,n)-Tl.T.F.N's having equal spreads, i.e.,

,tL2 - ut :,tr4 - u3 : d,2 - fi : d4 - dB : B, i.e., (q : az : þt : p2 : p), therr

the membership function ¡r(C) given by (5.3,15) will have the following values for

Ar, B1,Cb D1, A2,,82,C2 and D2.

h : _Sþ2

Bt : -(Suz-K)þ

Q : sþ (1+r-d3)

D1 : (Su2- rr)(1 -tr - ds) - õ @r_d3) (1+r)

Az : -502

Bz : _(1 +r_d2)Sp

Cz : (Sus- K)þ

D2 : (Sus- tf) (1 -t r - d2)+õ(1 + r) (u2 _ d,2)

5.3.2 Characteristics of the Call Price.

we now analyze the behavior of. r,he finzy call price. To do so we calculate their

derivatives and discuss their behavior under the following assumptions,

Assumptions ,4,2.

d,t 1d,z<d,s<d,a < 1*r < ut <u2<us<u4

0 1 p¿¿ 1 L, 0 < p.¿ <7 i : 1,2,3,4

Su¿> K, Sdi < K and i: 1,2,3,4.

Norv, (5.3.4) can be rewritten as follows,

C"r(a) , 1cr(o) : ffin",@):,;[c"'(") p,,(")]
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{# : +ls#p"(a)+W""url

: --t- ( t @, - v:). ) ,",,o, *r+" \_1r _")r_*)
t d,p6(a) ¡

1+, da \S(", - (u, - ur) (r - a¡;*;¡ - o) ,0 (b.3.16)

and

d2q@) 1 |
da2 i+r I ^,@w.s#ø#].

n , ,&pur(o) , dC,t@) dpú(d)l
vr¡l\u/----;--;--l-------;-------;-to.Q. da da I

,,,@)W.rg#ry*c^@)Wl
(5,3.17)

Similarly, (S.3.S) can be ¡ewritten as

c2(a) : ffio,,{o): # [c*,(a) p*2(a)]

Thus,

q'g# : #lq#p*z(a) iau#""^r)

t (s1"r-"n) \ ,\,:1+"\;(l-ofT/P!2\a)+

+(W(s(,.- (u,-u¿)(r-a¡*¡-Ð) 0 (5.8ls)

1

7lr
1

l*r
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and

d2c2(d) :
a,a' ,.,1^xøffi.q#ø#1.

fi1""xøffi.q#W)

: # f*<øffi+249e@dev'J") *"*rqW]
(5.3.1e)

Ilom (5.1.60) and (5,1.61), we observe ,hu:. 
doo[") 

> 0, and W may be > 0,

or < 0. In view of assumptions A1 and 42, we observe *X Q@ > 0, whereas

rycan be positive or negative. lt,û*1") is positive (negarive, respectivery), it

implies that the left hand side or right hand side of the fuzzy number that char.acterize

trhe fuzzy call price is convex (concave, respectively). Similarly, using (5.3.1g) and

(5.3.19), we obse¡ve ¡¡ut 
q@- 

> 0, whereas ry can be positive or negative.

-^ d2Czfu\
If, 

-ar- 
is positive (negative, respectively), it implies that the left h¿nd side o¡

right lrand side of t'he fuzzy number that characterize the fizzy call price is convex

(concave, respectively).

We now find limits of C1(a) and C2(a) when both rn, n approach zero and when both

rn, n approach infinity.

lim C1(a) : lim

lSul-K t+r-d¿f
L t+" -"^-d;) (5.3.20)



When both m and n -- oo, Cr(o) converges to the left end point of õ. This mean

that the âmount of fuzziness in the model increases.

I s (uz- (u,- u,)(t - q*) - x
II 1+r

lim G(a) : lim Im.n-O ¡n.n+O I"- | (1+r- tu)+(ds-an)(r -a¡*tñ
(5.3.21)

When each of m and n go to zero, Cr(o) converges to the left interior point of Õ, thus

as r¿ and n get smaller and smaller the amount of fuzziness in the model d.ecreases.

Similarly,

_K

lSu2-K l*r-dsl
L 1+" "t-d' l

t(",- (a-u¿)(r-o¡*)

lim Cr(o) : lim
m,n+tþ ,n,'¿-æ

lim_ Cr(a) : lim
m,n+u tr¿lr¡+oo

s (z¡ - (¿s - u¿) (r - a)*) - K l1+;- 
|

(r+r - d2) + (d2 - d)(t - a)ì; 
I

uz - dz - (u, - ur- a, a arfii - "p j

1*r
(t + r - dr) + (de - d) (t - a)+

uz - da - (u, - u, - a, ¡ ar| 11 - 6,-|F^

lSu¿-K 1*r-drl: Lr+" "r-dr)
(5.3.22)

When m and n become large, C2(a) converges to the right end point of Õ, this means

that the amount of fuzziness in the model increases.

(5.3.23)

Thus we see that as each of nz and n goes to zero, c2(a) converges to the right interior

point of Õ. tnis means that as rn and n get small the amount of fuzziness in the

lSq- K t+r-d2l
- L 1+r "r- d, )

111



model decreases.

5.4 Numerical Examples.

In this section we illustrates our results with the help of various numerical examples

and highlight some of the salient point in the fuzzy option pricing model developed in

this chapter. we also assume that the initial price of the stock is ,g and the exercise

price of the call option, K, are crisp and known, For, 0 ( a < l, let

ú : lu1,u2,us,uafoþn,n): [1.12,1,13, 1.15, l.\7]o@,¿1

ã, : ¡dr, d,r, d,r, doloç.,-t : [0.65, 0.25, 0. s5, 0. g5]o(-,")

r : 0.0633

(ì eE¡J-Ud

I¿ - É.o

We observe that for the above data the following hold.

ù < dz<d4<.d,a <1*r<ul <u2<u4 1u4,

0 1 pou( 1, 0( p1¡¿11 i,:1,,2,3,4

Su¿ > K, Sdi < K and i: I,2,3,4

For different values of m and n we discuss the following cases.

(a) Case J-, when m: n:2,

(b) Case 2, when m -- 2 and n : 0.5,

(c) Case 3, when m:0.5 and. n:2,

(d) Case 4, when m: n:0.5.

(5.4.1)

(5.4.2)

(5.4.3)

(5.4.4)

(5.4.5)

(5.4,6)

(5.4.7)

(5.4,8)
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5.4.L Case 1.

In view of (5.4.1)-(5.4.8) and for zn : 2 and n:2, we now compute the fuzzy price

of the call option. Using expressions (5.1.2),(5.1.9),(b.1.b) and (b....6), we obtain the

following risk neutral probabilities that we shall use to price the fiizzy call option

value.

- /^\ - I ("r-1-") -(u2-u)1/T-a I 10.0667-0.01/1 -ol
Luz - dz - (u, - u1 - d.2 * dt),Ã - a) | o.ss+ 0.09/1 - a .J

_ /^\ _ I (rr-1-r) -(us-u)1/T-c, I f0.0s6z+o.02JT_dl
l-us - ds- (ut - ud - d.s* dò'/T= al L O.¡ -0.08/i -ã .l

_ /^\ _ | (r+r-d3) +(d3-da)\/T-c' I f0.2193_0.h^_o'ì
Lus- dz- (ut-u¿- ds* dò'/T - a)) | o,a-o.oa7t-a l

- /^\ _ | (r+r -d,r)+(dr-ar¡¡|-o¡ 1 l0.3is+o.h/Fãl
Luz - d, - (u, - u1 - d.2 * d)./T - d ) Lo.sa + o.os/I _ ûl

Characteristics of the Risk Neutral Probabilities when r¿ _

n:2.For,0(a(lwehave

d, 1 I 4e.015 I

^tnatta)): ffi11"* 1,,
-.. |.d", 1 124.508(38+27.Jt_d\l,"Þ¿r(o)l : --------Tl-::-:¿l >0aa- (1_æ L-lsùs/r_"i5--j -"

d, t_l-, tu.tl _l .o
^tnaz(a)t ñLÆ;æ] .

dr, ,\1 t l-z4,.zss(-s++./i-o¡l¿oztPaz\a)):*;Flffil .o
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d,, 1 I t6,17 l
¿ot'Pa1a¡1 

: 
ñ11_15;;71_"¡J to

^rd', | 124.255(-b+4\/t-a\l ^
¿ozÞ"t(a)): u:;Flffil ',

r I 4s.7s 'l

- la-- t -------------- :-õ r \ \ryr-a 
f (38+s{t_a)')

|- 

-r

1 124.575(38 + 27^/L - a\ I

(r-a¡3 L (¡s +s\/T-a)3 j -"

Note that the frrst derivatives of the left hand side of the various fuzzy risk neutral

probabilities are greater than zero and the derivatives of the right hand side of the

fuzzy risk neutral probabilities are less than zero. This indicates that as the left hand

part of the a-cut characterizes an increasing function and the right hand part of the

a-cut characterize a decreasing function. However, the second derivative for p¿1(o) is

greater than zero, which indicates convex character ofp¿1(a). The second derivative

of. p¿2(a) is less than zero which indicates concâve character.

Table ?? summarize the finzy ¡isk neutral probabilities of a down movement in

the stock price, the fuzzy risk neutral probabilities of an up movernent in the stock

price for different values of a, where 0 < o < 1.

d ,^ ,^.r, -dav1tz\v)t -

fi;rn""@)l :



Table 5.1: Ku¡tosis of Sign RCA model a¡d RCA Model.

It is interesting to point out that Lhe hnzy algebraic approach to option pricing

preserves the complimentary condition imposed by probability theory and at the

same time does not disturb the stochastic structure of the risk neutral probabilities.

In other words, the complimentary conditions

(u) p-(") +p¿2@):1

(b) p.¿(") -t p¿{a) : I

are satisfied.

From Table(??) we obtain Figure (5.1) and Figure (5.2) respectively.

a Pa\a) F"z(a) P¿t@) n,¿.,Ial
0 0.515 0.879 o.tzt U.4õD

0.1 0.528 0.876 Lì.123 0.472
o.2 0.542 0.874 0.t25 0.458
0,3 0.556 0.871 0.128 o.444
0.4 0.571 0.868 0.131 0.429
0.5 0.586 0.865 0.134 0.474
0.6 0.602 Lì.861 0.138 0.398
0.7 0.619 0.857 0.143 0.381
0.8 0.638 0.851 0.148 0.362
0.9 0.661 0.E44 0.156 0.339

Lì.71 0.824 0.176 0.289
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0.120 0.176 0.289 0.485

Figure 5.1: p¿, Flzzy Risk Neutral Probabilities of a fuzzy downward movement in
the stock price when rn: n:2.

c, {uts

1

0.5t5 0.7t I 0.823 0.978

Figure 5.2: pu, F\rzzy Risk Neutral Probabilities of a l.zy upward movement in the
stock price when nz : n: 2,

When rn : n : 2t the graphs of p¿(a) and p,(a) are spread out. This mean

ihat the amount of fuzziness in the risk neutral probabilities are more than it would

have been if rt.F.N's were chosen for ã and ã. Increasing the values of rn and n in

the model increases the amount of fuzziness in the model. Estimation of member-

0.120 0.176 0.289

0.7t I 0.823 0.978
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ship functions is an important step in many applications of hnzy sets theory. Thus

eliciting membership functions is one of the fundamental issues associated with the

application of htzzy set theory,

F\nzy Call Option Value Calculation with O(2,2)-t.T.F.N's.

Substituting values of r,S,K,u and ãin formulas (5.3.4) and (b.S.5), we obtain the

fuzzy current price of the call option as follows.

C,(a\ : lS(uz-(uz-uùt/T=a)-K (1+r-dù+(ù-dò\/1=a 
)L 1+r (ur-ds)-(ur_un_ù+d¿)^/T_a

| 14.45 - 0.65\/T - a 0,2133 - 0.ly'l - ûl
L 1¡6s3 ft-i¡8\/1-"l (5.4.e)

n t^.\ _ lS("r- (us-ua),/T-a)-K (1 +r- dù-(dz-d)\/T=ã I

| 1*r uz-dz-(ur-ur-d2+d)y/T-tl

ii5.75 + 1.3/r - a 0.3133 + 0.1\Æ-l
L-----lnffi- I (5'4 io)

In Table (5.2), the fitzzy call option values are tabulated for different values of a,

0 < a ( 7 and m: n:2. Table (b.2) gives the o-cut closed intervals C1(a), C1(a)

of the fuzzy call price of a call option along with different degrees of truth.

Table 5.2: F\rzzy Call Option Values,

a 0 0.1 0.2 0.4 0.5 0.6 7 0.8 0.9 I
r(a 6.68 6.88 (.u t.¿I 7.49 7.7r 7.94 8.20 8.50 E.86 9.66

Uz(a 4.10 14.01 13.91 13.81 13.69 13.57 13.43 L3.27 I3.08 12.83 12.21
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Flom Table 5,2 we obtain Figure 5.3 that depicts the fiizzy call values for the option

pricing problem,

cr, -Cuts

6.69 7.71 9.66 12.21 13.57 14,10

Figure 5.3: Case 1: F\_rzzy Call Option Values.

In Case 1 we consider a call option on a stock under conditions listed in (5.4.1)-

(5.4.8). Table 5.2 gives the degrees of truth for difierent luzzy calloption values C1(o)

and C2(a). For example, if any call option price is taken in the range of [7.71, 13.57],

then the degree of t¡uth associated with the vaiue of this call option price is at least

0.5. Therefore, if an analyst is comfortable with the degree of truth of at least 0.5,

then he(she) can take this option price for his(her) later use. A simila¡ interpretation

holds for the othe¡ interval in Table 5.2.

Characteristics of ttre F\zzy Call Option Value Considered in

Case 1 , where m-2 andn-2,
We now analyze the behavior of lhe htzzy caìl price, considered in Case 1. To do

so we calculate their derivatives.

12.21 13.57 14.10
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For0(o< 1, (5.4.9) yields.

q# : +lg#p,,(a)iff".'r..t],0 (54.11)

Using (5.3.17) and (5.4.i1), we have

d2C{a) ( o.rczs (o.zræ - 0.r/I - d) (1 - a)-B \--d",-- 
\@/+
/ ro. srr \ _,

\ 1.0633 (1 - a) (-15 + at/t - a)' )
/z¿.zsr (r¿.¿s -o.or./i-o) (-s+¿./1 - c) (r - a)-Ê\ _.
\ r.0688 (-15 + 4\Æ - a)3 ) ' "

Sin"", ffi > 0, therefore the curvature for the left hand side of C.l(a)is convex.

Similarly, from (5.3.18), the expression 
^, 

g# 
is always negative, irrespective of

the value of o, 0 ( o < 1. That is

q# : #lg#p'z(a) +ffc'x"tf 'o
on rhe other hand, the ry is as follows,

ts"@) /(o.eral+0.1,,4-3 (-r.rzs1r-")-8)\
da2 I 1 0633 (0. ra + o.oo,,Æ3 l\t")/

/ +s.ots \
\1sa.o + s.o\/T=a)'z JT - " )'( reo65)(-4e.015)(r-a¡-å \,-',
\1.0633y'1 - o (38.0 +9.0t/t - a)' /
/ "\
I 24.508 (15.75 + 1.3/i-:ã) (SA.o + zz.o7t _ 

"1 
(1 _ û)-; ì ^

''\t,

\ r.0633 (s8.0 + e.o\^T:ã))" ) 
- "

Sin"", {ffi < 0, it implies that the right hand side of C(a) considered in Case 1

ls concave.
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Membership F\rnction of the F\zzy Call Option Considered in

Case 1.

We now compute the membership function of the fizzy call price considered in

Case 1. In order to frnd the two ends points and the two interior points which describe

the fuzzy call price corresponding to the O(2,2)-T!.T.F.N in Case 1, we set a : 0 and

a:1in (5.4.9) and (5.4.10), respectively.

This yields

c1(0) :6.68, q(1) : e.66, ø(0) : 14.10, C2(L) :12.21.

Thus, the fuzzy number that describe the htzzy call price in (b.a.g) is given by

c : ¡0. oa, o.00,72.2L,t4.t01.

In view of the above discussion, we determine the membership function as follows.

F\'om (5.4.9), setting d1(a) : Õ, we get

| 2. 8987 - 7. 48e 4\/t- a * 0.0611 3 (lT - a)" I

I o.s-o.os\Æ-a j-"
Cross multiplication yields, the following equation.

0.06118 (^/l-¡'z - (r.aao+-0.08c) ,/T-a+ (z.soaz-o,sc) : o

Thus,

/lr.aao+-o.osc)+m\'
^. 1 r\

\ 0.12226 I\/
Similarly, fi'om (5.4.10), setting C2(o) : Ô, we get

0.12226(^h-3" -(0.0eC-1.8643)ú-d +(4.6407 -0.38C) : 0

and

^. _ 1 (@.osc-1.8643)+@\,
\ 0.12226 )

t20



This gives the membership function Õ.

'- (
(r. assa - o.oec) + 1.509 5 - 0

0.1.2226

1

, /10.0 sc - r. eoael + ,Æ¡oTlZri. rZõ7¿õ + r. zm r \''-\-)

0

)'

c < 6.68

o.os3ó5s.oo

s.66<Õ<12.21

12.2r<Õ<14.10

Ò 2 tt .to

t"@) =

5.4.2 Case 2"

In the problem considered in (5.a.1)-(5.a.5) and rn:2 and n:0.b, we compute the

fizzy call price. Using expressions (5.1.2),(5.1,3),(5.1.5) and (5.1.6), we compute the

risk. neut¡al probabilities as follows.

f 0.0 667 - 0.01/1 - al
L 0,38+0.09/1-a J

f o.o soz + o.o 2 (1 - a),.l
Pd2\d) : 

L-03-û08(1-")-]

, \ [o. zr:a - 0.1(r - a)'?1p"l\a) : 
L ù3_'oaA#l

f0.3133 + 0.1\Æ-l
10.38+0.09ú-û j

(5.4.12)

(5.4.13)

(5.4.14)

(5.4.15)

We use the fuzzy risk neutral probabilities given by expressions (5.a.12)-(b. . fb) in

exp'essions (5.3.4) and (5.3.5) to compute the ltzzy call price for different values of

a, 0( a ( 1.



Characteristics of the Risk Neutral Probability for Case 2.

we find the derivatives of each of those risk neutral probabilities and checks their

behavio¡ as a varies, where, 0 ( a ( 1.

¿pa(a) _ 1 i ¿g.ors l_.do 1/|- L(38.0 +s.olT_a),)'"
d"p¿r(a) | 24.508 (38.0 + 27.0r/1 - a) I

da2 l1r - "¡Ê 
(sa.o + o,o.,Ur - "-¡t_j 

- "

d paz(a) I -64.68(1 - o) I----.:-:----1 
- 

I \ t L^
d.a L(-11.0 _ 8.0o * s,.0a2). J

dpú(a) : | 6a.68(1-a) l'-^da l1-tt.o-8.0a*+.oo,)rJ' "
d2 pur(a) f194.04(9.0-8.0a*4.0o2)l

daz | 1-rr.o-8.0a*¿.oar)3 J -

dp*"(o) : __1_ | -¿g.ois _l .oda 7i _ã 
l(ss.o + e.o/i _ d,l - '

^t-d"p"r(o) | -24.508 (38,0 + 27.0y'1 - a) |Ë:lffij .,
Note that the first derivatives of the left hand side of the fuzzy risk neutral probabil-

ities are greater than ze¡o and the derivatives of the right hand side of the fuzzy risk

neutral probabilities are less than zero. However, the second derivative for p¿1(a) and

?ar(a) are gleater than zero, which indicates convex character . The second derivative

of p"1(a) and p.2(a) are less than zero which indicates concave character.

Table 5.3 summarizes the fuzzy risk neutral probabilities in the stock price for differ-

ent values of o, where 0 < o < 1.
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Table 5.3: F\rzzy Risk Neutral Probabilities

Flom Table(5.3) we obtain Figure (5.4) and Figure (5.4) respectively.

0.515 0.711 0.823 0.878

Figure 5 4: pu, F\nzy Risk Neut¡al Probabilities of an up movement in the stock price
whenrn:2andn:0.5.

a Pa(a) n",.>lal P¿t(a) P¿z@)
0 0.515 0.879 0. 121 0.485

0.1 0.563 0.876 0. 23 0.438
0.2 0.600 0.874 fì 25 0.400
0.3 0.630 O.E7I 0 28 0.370
0.4 Lì.654 0.868 0. 31 0.346
0.5 0,673 0.865 n 0.328
(J.h 0.687 0.861 0. 38 0.313
0.7 u.698 tì.857 0 0.302
0.E 0.705 0.851 0 48 0.295
f I u 0.710 0.844 0. 56 0.290

1 0.711 0.824 U (o 0.289
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0.120 0.1't6 0.289 0.485

Figure 5.5: p¿, Fuzzy Risk Neutral Probabilities of a down movement in the stock
price when m: 2 and n: 0.5.

When rn : 2 and n : 0.5, the graph of p"(a) bulges inward on the left hand

side and bulge outward on the right hand side. Thus, there is less fuzziness on the

left hand of the membership function. On the other hand, the graph ofp¿(a) bulges

outward on the left hand side and bulge inward on the right hand side. Thus, there

is more fuzziness on the left hand of the membership function than at the right hand

side.

F\tzzy Call Option Value Calculation v/ith O(2,0.5)-T}.T.F.N's.

Substituting values of r, S, K,ít and d in formulas (5.3.4) and (5.8.b), we obtain the

fuzzy current price of the call option.

T

| 14. 45 _ 0.65\/T _ ol:.1ãl : l-

L 1.0633

0.2133 - 0.1 (1 - a)'?1

ft - o¡8(1- ")-l

c2(a): ["r+#-d HHffi]

(5.4.16)

(5.4.17)

If we substitute different values of o, 0 ( o ( 1 we obtain the following table.
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In Table (5,a), the hnzy CalI are tabulated.

Table 5.4: Case 2: Ftzzy Call Option Values.

ftom Table 5,4 we obtain Figure 5.6 that depicts the call values obtained when

m:2 and n:2 for the option pricing problem.

c[ -cuts

1

6.68 8.85 9.66 12.21 13.09 l4.lo

Figure 5.6: F\zzy Ca1l Option Values with O(2, 0.5)-}.T.F.N.

In case 2 we conside¡ a call option on a stock under conditions listed in the prob-

lem considered in (5.4.1)- (5.a.8). Table 5.4 gives the degrees of truth in different fuzzy

call option values c1(a) and c1(a). For example, if any call option price is taken in

the range of [8.85, 13.09], then the deg.ee of truth associated with the va,lue of this

call option price is at least 0.5. Therefore, if an analyst is comfortable with the degree

of truth of at least 0.5, then he(she) can t¿ke this option price for his(her) later use.

a. 0 0.i 0.2 0.3 ('t 
^ 0.5 0.6 0.7 0.8 0.9

al 6.68 7.32 /. ðó 8.24 8.57 8.85 9.07 9.25 9.39 9.5i 9.66
Cz(a) 14.I0 13.86 13.64 73.44 13,25 I3.09 t2.93 72.79 t2.66 L2.52 12.27

8.85 9.66 12.21 13.09 14.10
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Characteristics of tlne F\zzy Call Option Value Considered in

Case 2, where m-2 andn-0.5..

We now analyze the behavior of the ftnzy call price, considered in Case 2. To do

so we calculate their derivatives.

For0(o(1.

g# : #lg#p"(c'¡).tffc"øtf'o (54'1s)

On the othe¡ hand for 0 ( o ( 1.

ry : # þ",øff .,q#ø# * c^øffi]
/ r 1/o.zrsr-0.1(1-a),\r 3\

\r¡os3i ( o:-"æffi/ (o'1625(1 - d)-ì ) +

(.#,,) (o szs1r - "r-å) (.#ffiary) .
( gn.+s- 0.65./f - d\ /ts4.04(s.0_ 8.0o*4.0o2)\

\ 1¡633 / \ 1=r;ao";;¡.,¡/ .,

(5.4.1e)

Similarly,for0(o(1.

g#: #lg#p,z(a).tffc"x"t)'o (5'4,20)
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and

ry : # l,*r"tffi .rq#W * c*r'¡tu#f
1 /0.319 g + o. 1^Æ- rl\| ' l.)4 !

1.0683 \ 0. s8 + 0.0 e/T _ o / '' "
(21-z.a*2.6a)1r - "¡-å\ f _.ss.ots \
\ 1.063s /\1m.0+s.o{T_ù,),
(rs, z¡ + r. s (r - a),) ( -z+.soe (sa.o + zt.o¡T - ") (r - o¡-å \i.oos3 \6,

(5.4.21)

Flom (5.4.21), we see that Cr(a) has a point of inflection at a -- 0.76,therefore, it

is convex for o < 0.76 and concave at o> 0.76 (because ry> 0foro < 0.76

^'dry<ofora>0.76).
5.4.3 Case 3.

In this case we take m : 0.5 and n : 2 in the problem considered in (5.a.1)-(5.a.5)

and compute the hvzy price of the call option. Using expressions (5.1.2), (5.1.3),

(5.1.5) and (5.1.6), we compute the risk neutral probabilities as follows.

^./^.\ - I @r-7_ r)-(ur-ur)(1-a¡-1 I
l- ur \*,/ t-t

Lu, - d, - (u, - ut - dz tdr) (1 - û)å J

f o.oooz - o.o 1 (1 - a),1

L o3s+o¡r[=fl
I (".-1-')- (ut-u¿)(r-o¡* Im,^ta\ - | \ " I

Lu, - d, - (ut - ua - d4I d4) (1 - a)â.1

f 0.0 867 + 0.02./T - dl
L 0.3-0.08y'1-a J

p,t(a) : | (r+"-¿.)+(¿r-¿n)(l -")'t 
'l

Lut - dt - (ut - un - ù * d¿)(1 - ø)å.J

|-0.2133-0,h/I-al
l-----.----------'

L 0.3-0,08y'1-a I
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. , \ fo.rr:a+o.rrr-"¡'lP'z\a): 
Lo;sioooÈ:;fl

Cha¡acteristics of the Risk Neutral Probabilities.

To study the behavio¡ ofthe fuzzy call price, we frnd the de¡ivatives ofeach ofthose

risk neutral probabilities and checks their behavior as a varies, where, 0 ( a ( 1

d.pdt(a) a fo.oooz-0.01(1-o),1 | 1e6.06(1-a) I ^d" - d" Lä8+oorft-")z-J 
: 

L1aA-sn"*rUryj "
d.2par(a) æ lolau - 0.0 1(1 - a)'l 1-196.06(-11.0 -:-4.0d+27.0a2\1d", : ãããLijr8+i¡r(1-;t-l :L@j .o

d.pa,(c') a fo.osoz+0.02(1-a)åI | -ro,rz Id" - d; I or_ì¡8¡ _;tr-l : tæl
d'p¿r(o) ¿z lo.osoz+0.02(i-a)ål I -z+.zssl-r.o+ 4s,Æzã\

da¿ aa' | 0.3 - 0.08 (1 - a)å .J Ltr - o)å (_1b.0 + 4.0.{T _ a)

<0

l.o
l

d pú(a)
da

d2 pú(d)
aa'

>0

I

I'o

d 10.2t33 - 0. h^ - 0l
do | 0.3-0.08y'1 -a J

& 10.2133 - o. h/i -ã'l-:--=¡_----------_¡:
do¿10.3-0.08y'1 -a I

I ro,rz l,-,
L (-15.0 + 4.0\/I - a)' lt - a)

d,p,2(a) _ a fo.srsr+0,i(1-a),1 | -1e6.06(i -a)da da 
L 0.38+0.09(1 -a), I L(47.0_ 18.0a+9,ro2) ]'o

d.'p,z(a) a, fo.eres+0. 1(1 -a),1 i-i96.06(-11.0-54.0a *27.0c2\jd", : d",Lirslirr(t:;fJ :L@] 
'o

Note that the fust derivatives of the left hand side of the fuzzy risk neutral proba-

bilities are greater than zero and the derivatives of the right hand side of the fitzzy

risk neutral probabilities are less than zero. The second derivative for p¿1(a) and

paz(a) arc less than zero, which indicates their concave character. on similar lines

rve conclude that p"1(a) and pu2(a) are convex in character.
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Table 5.5 summa¡izes the hnzy risk neutral probabilities in the stock price for

diffe¡ent values of o, where 0 < c ( 1.

Table 5.5: F\zzy Risk Neutral Probabilities.

Flom Table 5.5 we obtain Figures 5.7 and 5.8 which depict the fuzzy risk neutral

probabilities for different values of o, 0 ( a ( 1.

s -Cuts

1

0.5t5 0.71 I 0.823 0,878

Figule 5.7: p,, Probability of an up movement in the stock price.

a ?ala) P.z@) n;,1al P¿zla)
0 u.52 0.88 0.r2 0.49

0.I 0.53 0.87 0.13 0.47
o.2 0.54 0.86 0.14 Lì.46

0.3 0.56 0.85 Lì. ] 0.44
o.4 0.57 0.85 0.15 0.43
Lì.5 u.b9 0.84 0.16 0.4t
0.6 0.60 0.83 0.77 0.40
0.7 0.62 Lì.83 0.r7 0.38
0.8 Lì.64 0.83 0.t7 0.36
0.9 0.66 0.83 0.77 0.34

1 0.77 0.82 0.18 0.29
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u,t¿u u.l /ó 9.2E9 0.495

Figure 5.8: p¿, Probability of a down movement in the stock price.

F\tzzy Call Option Value Calculation with O(0.5,2)-T}.T.F.N's.

Substituting values of r, S, K,ú, and ã in formulas (5.3.4) and (5.S.5), we obtain the

fuzzy current price of the call option.

(1 + r - ú) + (ds- d4) (1 - a)*t (", - (uz - ut)1r - a¡;t) - r<

0.120 0.176 0.289

C1(a) : j 1+r us - ds - (r, - un - d.s + d¿)(1 - d)å

I r+. ds - 0. 65 (1 - a)2 0.2t83 - 0, iú - ol
L 1¡6rr o.a-00ffi1

cz(a) :

In Table (5.6), the luzzy call price are tabulated. By substituting different values

of a in the above expressions for c1(a) and c2(a) we obtain the following tables for

the fuzzy call option values.
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Table 5.6: F\tzzy CalI Option Values.

Using Table (5.6), we obtain Figure (b.9) which depicts the fizzy ca,ll values for

the option pricing problem.

cr -Cuts

6.68 7.87 9.66 12.21 13iA ftiO

Figure 5.9: F\tzzy CalI Option Values with O(0.5,2)

In case 3 we consider a call option on a stock under conditions listed in (5.4.1)-

(5.4.8). Table 5.6 gives the degree of truth for different fwzy cùl option values C1(a)

and C1(o). For example, if any call option price is taken in the range of [2.g7, 15.1g],

then the degree of truth associated with the value of this call option price is at least

0.5. Therefore, if an analyst is comfortable with the degree of truth of at least 0.5,

then he(she) can take this option price for his(her) later use,

d 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
r(a) 6.68 6.92 7.16 7.39 /.oó 7.87 L12 8,38 ð. bll 8.98 9.66
{r]l 1U r3.91 13.71 13.53 13.35 13.18 13.01 t2.86 t2.70 12,54 t2.21

6.68 7.87
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Characteristics of t};,.e htzzy Call Option Value Considered in

Case 3, where m - 0.5 and n - 2.

We now analyze the behavior ol the fuzzy call price, considered in Case 3.

Consider expression (5.4.16), the htzzy call price considered in r,_-ase 2. Expression

(5,4.16), is always greater than zero, irrespective of the value of o. for 0 < a < 1,

qP : +lg#p"r(o)* ffc",r.tf,o

dzC{a) I l^ t^\d21,1(a), nd.C6(a)dp^("), n, .,drpur(o)f
d", : L+r fú\a)-aì-n"-'d"-ã +U^(a)-;ar-)

-L.3 (0.2i33 - 0. r./1 - a\
1.0633 \ 9.3_6.s3\/T=d )'.

t ( +z.o+z- 42.042a(t-")-å\ .

1"o638- \ al5il;¡/i=ãf-i +

(t+. ¿r - o. os (i - a)'z) ( çr" 28 + s7 02\re-õ) (r - a¡-; \1063ã-\@7 .'
(5.4.22)

The expression given by (5.4.22) is negative irrespective of the value of a, for 0. (

o ( 1. Therefore, C1(a) is concave in nature for 0 ( a ( 1.

Similarly,fo¡0<o(1..

q# : +lg#p,z(a) +ffc,x*t].,



F\'om expression (5.3.19), we have

ry : # þ"xaffi +z{e@¿P":Jù + c*@)ry)
( -o.szs(r - a¡-8\ /o.arrr+0. 1 (1 -o)r\ .

\----liioãd-/ [,*;¡*;;; .
| -t.t0 - ")-å 

\ / -:'sa.oe(t - a\ \
\ 1¡6tu-/ (rr- - ** *,;¡'l .
( lts.zs+ t.B\Æ -A\ /-1e6.06(-1i.0 - b4.0a + 27.0a,)\

\ 1¡633 /\@/
(5.4.23)

Therefole, from (5.4.23), we have a point of inflection at a : 0.74, it is convex at

a < 0.74 and concave for o > 0.74. (because ry > 0 for a < 0.74 and.

d2C"( a\
-ãA-<0fora>0.74).

5.4.4 Case 4.

In the problem consideled in (5.4.1)-(5,a.5) and rn : 0.b and n : 0.5, we compute

the fuzzy call price. Using expressions (5,1.2),(5.1.3),(S,1.5) and (5.t.6), we compute

the risk neutral probabilities as follows.

n;,(a\ : | @z-1-r)-(uz-uù(t-ù2 f
Lu, - d, - (u" - ut - dz td1) (1 - o)rl

fo.o ooz - o.o 1 (1 - o),1

Lo38+o.or(1-")tl

n,,(a\ : i (¿¡ - r - ') - (¿¡ - zn) (i - a)' I
Lut - dt - (ut - u¿ - de * da) (1 - a)2 )

f o,o soz + o.o 2 (1 - o)'?1

L û3-ol8Çãf-l



_ /^\ _ I (t*r-d3)* (ds-dn)(l-o)' lvut\La)-l@)

fo.zr¡¡-0.1(1-o)r'l
L o, r - o.o B (1 - a)'z l

_ /^\ | 1r+"-d.2)+(d,2-d1)(1-o)2 IPuz\a) :Lffil
fo, rrss + o. r (1 - a)'z1

L ù¡s + û0, (1 - ")tl

Characteristics of the Risk Neutral Probabilities.

To study the behavior of the fuzzy call price, we find the derivatives of each of those

risk neutral probabilities and checks their behavior as o varies, where, 0 ( a ( 1.

dpak) ¿ lo.oooz - 0.0 1 (1 - a)2'l I 196.06 t1 - ¿l 'ì

da da | 0.s8+0.0e(1 -"), ) f1az.o-18.0a*s.o""f l'"
d2par(a)

da2
_ e 10.0667-0.01(1-o)'z'l f1e6.06(-1i.0-54.0a +27.0a2\l-dæLõ3ilior1r_;trJ :161 "

]'o
a2 fo.oaoz+0.02(1-o)'?1 l-194.04(9.0-8.0a+4,0a2)l-dælft-o¡s1r_ãf_l :L@l >u

d.p,Ja) ¿ fo.zres-0.1(1-a)'z'l I 64.esti-a) Ida : 
d; Lis-0¡8(r-")r-j 

: 
lt-rfo-aU*+6yj to

d.' p¡(a) d2 l}.2t}g- 0. r (1 - o),'l 1194.04(9.0 - 8.0a + 4.0a2)ld"' - ãt L 0.8-0¡8G;tz-J : L1=ro-o"++6 ¡-j "
d.p,z(d) ¿ lo. ¡re¡ + 0, 1 (1 - o)'?] I -196.06(1 - a) ld" : Alïea+oor(1;ttl :Løn-taA"*ro",y-l 

'0
d2p,z(o) a, fo.arrs+0. 1(1 -a)rl f-196.06(-11.0-54.0a* 27.0a2\fd", : 

dæ10r8+0or(1_"ìtl :t---rr-*"*e*;¡rl >o

d p¿z(a)

da

d 2paz(o)

da2
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Note that the fi¡st derivatives of the left hand side oL the ruzzy risk neutral proba-

bilities are greater than zero and the second derivatives of the right hand side of the

fuzzy risk neutral probabilities are less than zero which indicates its concave character

. The second derivative or p"2(a) is greater than zero which would indicate convex

character.

Table 5.7 summa¡izes the hnzy ¡isk neutral probabilities in the stock price for

different values of o, where 0 < a < 1.

Table 5.7: F\rzzy Risk Neutral Probabilities.

d Putld) n",rlal n¡Ial P¿z(al
0 0.515 Lì.E79 0.t27 0.485

0.1 0.563 0.871 0.129 0.438
o.2 0.600 0.862 0.138 0.400
0.3 0.630 0.854 U.I40 0.370
0.4 0.654 0.847 U.lbJ 0.346
0.5 0.673 0.840 0.160 0.328
0.6 0.687 0.835 0. 165 0.313
o.7 0.698 0.E30 0.170 0.302
u.8 Lì.705 0.827 0. i73 0.295
0,9 0.710 0.825 0.175 U.29U

1 0.71 0.824 0.176 0.289

Using Table (5.7), we obtained Figure 5,10 and 5.11.
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0.5 15 0.71 I 0.823 0.873

Figure 5.10: p", Probability of an up movement in the stock price

u.t¿u rr. r 7ó o.2E9 0.495

Figure 5.11: p¿, Probability of a down movement in the stock price.

o.7l I 0.823 0.878

0.t20 0.176 0.289
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Fuzzy Call Option Value Calculation with O(0.5,0.5)-Th.T.F.N's.

Substituting values of r,S,K,ù. and din formulas (5.3.4) and (5.3.5), we obtain the

fuzzy current price of the call option.

(r + r - d3) + (d3 - d4) (1 - o,)*
t (", - (r, - ut)1r - a¡;å) - rc{a) __ 

|

Cr(a) :

1*r ut - ds - (u" - un - d,s * da)(f - c¡*
I u.qs - 0.65 l1 - alz|\/
L 1.0633

0.2133-0.r(1-a)'?-l
03-008(1-"ìtl (5.4.24)

(5.4.25)

(1

;
un)

1+

r\
-")')S(23-(u3- (1 + r - d,z) + (dz - ¿t) (t - ù* I

uz - dz - (u, - ur- a, + arftr - "fr-]

_K

lrs.zr + 1.3(t - o)2 0.3183+0.1(1- a)rl
L 1¡6ï3 or8+o¡rffifl

In Table (5.8), the finzy call price are tabulated. By substituting different values of

o in the above expressions for c1(a) and c2(a) we obtain the following tables for the

fitzzy call option values.

Table 5.8: F\rzzy Call Option Values.

using Table (5.8), we obtain tr'igure 5.12 which depicts the tuzzy call values for the

option pricing probiem,

a. 0 0.1 o.2 0.3 0.4 0.5 0.6 u. I 0.8 0.9
U1 o 6.68 7.92 8.37 t\. t4 9.04 9.27 9.44 9.57 9.64 9.66
Cz@ 14.10 .rJ. to 13.45 13.17 12.92 12.77 t2.53 12.39 12.29 12,23 L2.21



6.68 9.04 9.66 12.21 12.71 14.10

Figure 5.12: F\rzzy Call Option Values with O(0.5, 0,5)

In Case 4 we consider a call option on a stock under conditions listed in (5.4.1)_

(5.4.8). Table 5.8 gives the degree of truth for difierent htzzy calloption values c1(a)

and C1(o). For example, if any call option price is taken in the range of. lg.04, I2.Tll,

then the degree of truth associated with the value of this call option price is at least

0'5. Therefore, if an analyst is comfortable with the degree of truth of at least 0.5,

then he(she) can take this option price for his(her) later use.

Characteristics of tlrre F\zzy Call Option Value Considered in

Case 4, where m - 0.5 and ¿ - 0.5.

We now analyze the behavior of the htzzy call price, considered in Case 4. Flom

(5.4.16) we have for o, for 0 ( o ( 1.

g# : #lg#p',(a) tffc',r.t], o

9.04 9.66 12.21 't2.71 14.10
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Also,foro,for0(o(1,

ry :, * 
"-]- 
þ"'roffi . tq#W * c-'naryf

_t.z / 0.2138 - o. 1(1 - a)2\: 
1"0633 \ ¡-a*æ;f-l .
2 (1.3 - 1.3o) ( !4 68(1 - o) \r.ooæ \Cl1¡:i"oaa+larf/+
(r¿,+s - o.or(r - a)r) 

/1s4.0a(9.0 
_ s.Oa+a.0or)\ _ n1.0633 \ (-i1.0-8.0a*+.Oc'r)t )-"

(5.4.27)

Hence, C1(o) is concave in character for 0 ( a ( 1.

Similarly,for,0<o(1.

q# : #lq#p'z(a) +ffc,x'tf 'o
and

ry: #þ"xøffi*'s#W*c*rqW)
_ 2.6 (o.uez+ o. 1(1 - "),\- 1"0633 \ o3slilo1r_;it/ r

2(-2'9!?.6a) 
L ,,, , 

tnu.ou(t - o) 
,, _) *1.063s \ (47.0 _ 18,00 + g.oa\2 )

(rr. zs + r. s (r - o)'?) /-1e6.06 (-11.0 - 54,0a + 27.0ar)\ ._ 
"1,0633 \ (42.0-18.0a+9.0a2)3 )'"
(5.4.28)

This means lhat, C2(a) is convex in character for 0 ( a ( 1.

Membership F\rnction of the Fuzzy Call Option Considered in

Case 4.

we now compute the membership function of the fuzzy call price considered in

case 4. In orde¡ to find the two exterior points and the two interior points which



describe the fuzzy call price corresponding to the O(0.5,0.5)-T!.T.F.N in Case 4, we

set o : 0 and a : 1ln (5. .2 ) and (5.4,25), respectively.

Thus, the fuzzy number that describe the fitzzy call price in (5.a.2$ is as given

Uy C : [0.68,9.66, 12.21,14.10]. In view of the above discussion, we determine the

membership function as follows. Ffom (5.4.24), setting Ci(o) : Õ, we get

It+.ns - 0.65 (1 - a)'z 0.2133 - 0.1 (1 - a)rl
L 1¡6dã- ì^l - 008î;É I 

: c

Cross multiplication yields, the following equation for a,

Similarly, from (5.4.25), setting C2(o) : Õ, we get

a : 1-

This gives the membership function C of (see Figure(5.12)) âs

c < 6.68

\ u.u, . õ. n.uut-
9.66 < Ò < 12.21

. | / (0.09c- 1.8643)+ y'0.0081c2 -0.149?4C+ 1.2061\.-.,,-t L2.21 < C < 14.10
\ \ 0'12226 ) -- -' ' -

o õ > 14.10

Conclusion

In this chapter, on the lines of Muzzioli and Torricelli [98] and Appadoo et aJ. [2], we

discuss the option pricing when payoffs are described by o(m, n)-Tb.T.F.N. numbers.

we believe that this approached can be extended to price a wide variety of options

with different types of fuzzy pay-off patterns.

p(c\ =

l(þ.aas+-o.osõ)+ffi\
\l \ 0.12226 ll\ /

- 0.74574C + L.206t

0

1.509 5 - 0
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Chapter 6

Fuzzy Option Pricing Model (Jsing
LR-Fbzzy Numbers

In this chapter we de¡ive and discuss the results f.or rtzzy binomial risk neutral option

pricing model using LR-fuzzy number. The model provides a reasonable range of

option price to choose from. certain results derived in chapter b of this thesis and in

[2]' [a] and [s8] may be viewed as special cases of the results derived in this chapter.

Suppose the price of a stock ât time ¿ : 0 is S, whereas at ú _ 1 we obtain its price

by multiplying,9 with the jump factors. Let the -¡-levei sets for a fuzzy increase û

a,nd a fitzzy decrease á, respectively, in the stock price be given by .ylevel sets

u(1) : lu1(1,u2(7)1, and d(t) : [dr(ù,do('y)] such rhar using (r.5.7) we have

dr(t) : d- orL-'(ù (6.0.1)

dz(t) : ã+ Bra-l11¡ (6.0.2)

"t0) 
: u-a2L-1(1) (6.0.3)

ur(t) : ø+ þzR-l(ù (6.0.4)

wlrere, a1 > 0 is the left spread of a hnzy decrease in the stock price, B1 > 0 is the

1.41



right spread of a fitzzy decrease in the stock price, a2 > 0 is the left sprea.d of a,luzzy

increase in the stock price and Éz > 0 is the right spread of a fuzzy increase in the

stock price. F\rrthermore, L and R are ieft and right functions: [0, 1] --+ [0, l], with

¿(0) : B(0) :1and ¿(1) : Ã(1) :0 and are non-increasing, continuous mappings.

Below we now state a theorem that provides the results ror the ruzzy risk-neutral

probabilities needed to price a fiizzy call option under LR-fuzzy numbers. since its

proof follows the lines of the proof of rheorem 4.1.1, therefore we do not prove it

here.

6.L. Main Results

Theorem 6.I.L Let ít: (u,û,, a2, B2)tn and, ã,: @,A,"r,pr)LR represent, respec-

t'iaely, a fuzzy'increase and, a fuzzy d,ecrease in S. Att: L Let,

(o) 
"(^Ð 

: ["r0), a(l)],V, 0 < 1 < t, be the 1-Ieuel set for a fuzzg increasein S,

(U) ¿(l) : [ùh), do(l)|, V, 0 < 1 < 7, be the l -leuel set for a fuzzg d,ecrease i,n S.

(") po(l) : [por(l), p¿z("'t )], Y, 0 < 1 < l, be the associ.ated. fuzzy risk, neutral

probabi,Ii,ty for a fuzzy d,ecrease 'in S,

(d) p"h) : [na(1¡, p,z(^t)], V, 0 < I 1 7, be the associated, fuzzy rislc neutral

probabilitg for a fuzzy increase i,n S, and,

(e) r be the risk free rate, assumed to be constant.

Then
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('i) the fuzzg ri,slc neutral probabi,l,ity associ,ated uith a fuzzy downuard, mouement ,in

the stock pri,ce is gi,uen by,

- /^.\ f ø-(t+r) -a1.t-1(7) Ipdt\"t) : 
Lu_î+T;lõG;_ã)) (6.1.2)

(6.1.3)

(6.1.5)

(6.1.6)

n.,(À : | (1lr-ã)- prï-|(..t) (1+r- d)+azL-l(ù.l,^,,,
Lù - d+ R-'(ì(þ, - 0z)' u- d+ L-r(l)@z - a,)l t" ''=r

such that,

corollary 6.r.L Let p6(1) and p"2(1) be the fuzzg risk neutral probabili,ti,es of a fuzzy

'increase 'in the stock pri'ce and, let p¿1(1) and, p¿2(1) be the risk neutrar probabili,ties oJ

such that,

and,

(i.i,) the fuzzg risk, neutral probabiti,tg associ,ated wi,th a fuzzg upward, mouement ,in

the stoclc pri,ce is gi,uen by,



a fuzzy d,ecrease i,n the stocle práce, then the folloui,ng compl'imentary cond,i,ti,ons hold,.

| (1+r -ã)- prn-'h) I I z-(t+r) *0ß-1(ù I
Lù - d + R-,(ù(þ, - þ"))' lt -ã + R-,(ù(þ, - þùl

Muzzàoli. and, Torricell| [98], dáscussed, the complimentary relati,onship uhen the pa_

rameters àn the option prici'ng model are triangular fuzzy numbers. our approach is

more general and' it can be ad,apted, to hand,le different kind, oJ fuzzg numbers, includ-

ing fuzzy numbers with certaàn lcind, of nonli,near rnembershi,p funr:tions, that i,nclud,es

O (m,n) -Tb. T. F. N's also.

6.l.L Membership F\rnction for p¿(fi and p,(7)

In order to frnd the two exterior points and the two interio¡ points which describe the

risk neutral probability of a hnzy decrease in the stock price corresponding to the

LB-htzzy numbers, we set 7 : 0 and 7 : 1 in (6.1.2)) and (6.1.8)). This yields,

p¿r(o) : tf+#reläa,-*]

p¿z(O) :

pa(L) :

_ /1\ _ I a- G +r)+81Ã-1(1) IPdz\r) - lú-î+ R-\l)(pr- pr))

lz-(r+r)+B1,R-1(0)l
L;-+ R-\oXp, - h)l

I u- (t + r) - a1.L-1(1) I
ts -Z +z-{-ÐG, - "Jl

(6. i.7)

(6.1.8)

(6.1.e)

(6.1.10)
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Simila,rly, to find the two exterior points and the two interior points which describe

the ¡isk neutra.l probability of a htzzy increase in the stock price corresponding to the

LR-f,tzzy numbers we set 7: 0 and 7: 1 in (6.1.5)) and (6.1.6)). This yields

p.,(o) : l#ffi%)
p,z(,): tfr##*]

(6,1.1i)

(6.1.12)

(6.1.13)

(6.1.14)

(6.1.15)

In view of (6.1.7))- (6.1.14)), lhe fivzy probabilities of a down movement and of an

up movement are given respectively, by

þa:

u-ft+r)-a,.L-110)
u- d+ L rß)b" a)'
ú - (1+ r) + øR-l(r)

u- (I+ r) - o,-L-111)

u- d+TAll,*-i'
u -_(1 + r) + B1Ã-1(0)
u- d+ R-'(o)(þr- þr)

(6.1.16)

we now determine the membership functions for the fuzzy risk neutral probabilities of

downward movement and the fuzzy risk neutral probabilities of an upward movement

G+r-A)-pra-l(o)
û-a+ Ru(o)(0r - þr)'

(7+r-d\+d'L-L(t\
14+ Ljn\(a, - a,\'

(7+r-ã)-B2R-1(1)
n-ã+ Ru(L)(þ, - þr)'

(L+r-d)+a2L-1(0)
u - d+ L-1(0)(a2 - a)

n-ã+ R-(L)(1r- þr)'
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in a stock price.

Since

I a- otL-l(t\ - (1 +r) I
,gat\ I t l-

L(s - or¿-'(z)) - @- azL-|(tDl

thelefore, for

u-Q+r)-aú-t(O) - , - !- (1 +r) - o1L-1(r)
;d+Tt@6-ãJ > Pa > f,-l*J:rfl! r

Y/e set

I u- atL-I(t) - (1 + r) I
L6):oo
u - a1L-I(1) - (t + r) : Fo[(t - arL-|(ù) - (d- azt -111¡¡1

u - a1L-\(1) - (1 + r : þ¿u - fi¿a1L-I(ì - p¿d+ p¿azL-t(l)

v - (t + r) - uþ¿* dþ¿ : -6¿a1L-1(1) + þ¿a2L-1(11 + qL-|(,y)

s- (1 + r) + Ø¿ - aþ¿ : L-l(t) @1¡ þ¿(a2 - a))

1 : Lle-J\+r)+Í¿@-a)l ru.,.r.L pa\a2- a1)*a1 I .---,

simitarlv. fo. u -_(1 +r) +BrÆ-1(1) < -, < u - (1 +r) +Br.R-1(0)
"' ú- d+ R-l(r)(Pt- þr) - A+ R-t(0)(&- p2)

setting,

I ø+ þ,R-,(ì - (1+ r) I -LMI:'o
yields
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Therefore,

p(pò:

the membership function for the dorvn movement probability f¿ is

o uosl##*
, (u-(t+r)+f¿(@-u)\ q-(1 +r)-ar¿-1(0) , - , a-(1 +r)-dr¿-1(t)" \-E@-¡ + "i ) f:f;¡¡øø -;¡ 1pd s ;=i7;i7¡c;:;;

, z- (1 +r) - arl-l(r) . .o. - ú_ (i +r) +81.R-r(1)
r - d+ L-w@;;¡'' pd > ú- + R-\W-6

,(na@-ã.) -u +(1 +r)\ u -(1 +r) +pß-le) - _ , ii-(1 +r)+p1Ã-r(0)
" \-1p1+ þd@, - pt)) ) ;-. 

^-r*, *, = 
ed s l:llÉ,@)@;6

_ r u -(1 +r) +p1À-1(0)n) 2 _-_+_-:---L'" - ú- d+ R-I(o)(ø - p2)

(6.1.1e)

The computation for the membership function for the fuzzy risk neutral probabilities

of an upward movement in the stock price is as follows. Set

| (r + r -ã) - þzR-(ù l
L;-ãiR-\ì@r-tu)) 

: o"

(1 +r - ã.) - þrR"(ù : p" (ú -ã, + Ra(ù(& - gz))

(r + r - ã) - B,n + B,ã : n"R-11r¡18, - þr) + þrR-'(t)

(i +r - ã) + Þ"(ã -a) : R-'(ù(ñ"(þ, - þz) + þ,)

R-'(t):ls###)
þ(s+#;æ))

similarly, setting

f(t+r -d)+azL-l(ùl
Lu- d+ L-6@,- "Jl 

: o"

yields

, ((L+r-d)+F"(d-s)\- tr \-løf-, - "J=t-l
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Therefore, the membership function for the fuzzy risk neutral probability of an upward
movement in the stock price is

= _ (1 +r-a)-0zR-1(07P"=-d+R-\o)(pt_pr)

p(p") :

= ._ (1 +r - d) + d2L-1(0)
c" =;-if,-fr¡sliÃ-ãÃ

(6.1.20)

6.2 Characteristics of the LP"-F\tzzy Risk Neutral
Probability of a Down or up movement in the
Stock Price.

we now discuss the behavior of the risk neutral fuzzy probabilities of the stock price.

In order to determine the shape of the two probabilities, we compute their values

at 7 : g and ^¡ : 1 and then we analyze their behavior as ,y varies. We now

make additional assumptions that the functions .L-1 and .R-1 are finite and twice

difie¡entiable with respect to 7. F\rthermore, we make the following assumptions.

R ( G + r -A) + p"(A - t) \ (t +r - ã) - Éz R-r(o) _ = _ (7 + r -A) - p2T-1(t)
" \--61il:-Bñîf ) ;:f + R-\o)(t\ - pù s p" s ; _ãTÉ6@;á

(1 +r-A)-þ2R-10) -- _ (r+r-d)+a2L-1(r)
¡ - d+ R-1(1)(h - þz) d+ L-1(7)(a2 - ot)

(r +r - ù + a2L-t(t) _ - - (t + r - d) + a2L-1(0)
f -¿+ L-W6-j) - Pø : ;l-llJ:rJ[]¡¿;_lJ

))u+ ø" (d-
ot) - oz)

_d)
Q.2 -

+r
(Pu(

1
(1L

lo, (d- (r + r)) + c.2((1 + r) - ")14!#
flr(t + r¡ _ã) + gz(ø- (i + r))l ry
[pr(t + r) - a) + 0r(ã -(r + r))] ry
l..,r(u- (I+ r)) + o1((1 + r) - dry

>0

<0

>0

<u.

(6.2.1)

(6.2.2)

(6.2.3)

(6.2.4)
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Ft'om (6,1.2) we have

p¿t(t) : 
I

I ¡¿'

)D'
q-(1 +r)-a1L-1(1)

u - d+ L-1(1)@2 - o1)

where,

Ns : a- (1 + r) - arL-t(l)

Ds : u-d+L-t(ù(a2-o.ù

such that

dNs , dL-'(t)_(-t1-=-
d'Y d1
dD, _,^. ^rdL-r(l)-=- - ru2-u]d1 "d1

therefore,

)^ t^.\ | -nror4Ll(ù - Ns(oz - o,¡d¿,t('v)1dPat\^t) I " ' dt -' ' -' dl 
Id1 :Lrl

l(",(", - Ds) - rvror¡ 
dL-,' 0)l

I o.'v IlDslLI

I

L

which is positive under assumption (6.2.1).

Similarly, under assumptions (6.2.3), (6.2.2) and (6.2.4) respectively we have

dpaz(t) f{r,rt* r) -ã) + þz(ø- (t+Ò))ry]
-d1-: l l<0 (6'26)

L ," - a+ Ìr-,\'t).\ur_ ltz)) 
J

(6.2,5)
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(6.2.7)

and

d.p,2(-t) lø"{u-(r +r))+ a,((1+r) - alldL)(tl1
dl ¡ l'o (6'28)

L"l
To find the convexity or concavity character of the finzy risk neutral probabilities f¿

and þ, we need to find the second de¡ivatives of each of p¿1, p¿2, pa1 and. pu2, If the

second derivative is positive (negative, respectively), it implies that the corresponding

probability is convex (concave, respectively) in nature.

6.2.L Call Option Value With LR-Fuzzy Numbers.

suppose that there is a call option on a stock with exercise price I( and expiration

at the end of Period 1. In view of the above notation we take z(7) as the 7-level set

or a luzzy increase û in the stock price, d(7) as the 7-cut of a fuzzy decrease ã in the

stock price.

We assume that arbitrage opportunity is not a.llowed. Then, the 7-level set for û

and á are respectively given by

u(t) : lur(t),"rh)l: fu- a1L-1(1),a + þfi-1(ù)

¿0) : ld,,(ù,dr(t)l : ld - a2L-1(1),ã, + þzR-I(ìl

(6.2.e)

(6.2.10)

Assume that Õ is a fuzzy current price of a call option on a stock whose crisp exercise

price is K. Also, assume that when the call option expires, it is worth either c,, or

Õ¿, where c* and' c¿ arc fivzy quantities whose values are subjected to arbitrariness,
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subjectivity and fuzziness. In this case the.yJevel set for

C"(t) : lC"r(ù,C"r(t)l

: [Man(Su1(1) - .If,0), Max(Su2(l - I(,0)]

(6.2,9) and (6,2.11) yield the following two equations.

c"r(t) : Man(su1(1) - K,o)

C"z(t) : Max(Su2(1) - K,0)

Similarly, the ,yJevel set for Õ¿ is given by

Ca(t) : lCor(t),Co'(ùl

: lMax(Sd,t(1) - K, 0), Max(Sd,r(fi - K, 0)l

Flom (6.2.10) and (6.2.15), we get

Ca(t) : Mar(Sda(l-K,0)

and

C¿z(t) : Max(Sda(l - K,0)

(6.2.11)

(6.2.12)

(6.2.13)

(6.2.14)

(6.2.15)

(6.2.16)

(6.2.17)

If .9d1(,y) and ,9d2(1) are less than I(, that is, the finzy stock prictr goes down, then

the call option will expire out- of-the-money. If .921(1) and 
^9u2 

(,y) are greater than I(,

that is the fuzzy stock goes up, then the call option expires in the-money. substituting

expressions (6.2.9) for ø(7) into expression (6.2.1r), the expression for the price of

the call in the up state, unde¡ the assumption that û is a LÈ-ruzzy number yields

C"(ù : [Mar(Su1(1) - K,0), Mar(Su2(l - K,0)j

: lMax(S(u- ar¿-l(r)) - K,0), Mar(S(û+ pß-r(r)) - ¡<,0)l

: [s(g - "rL-,(ù) - K, S(a+ þ,R-1(ù) - K]
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such thât

C^(ù : lS@- a1L-L(l) - Kl

yields

dC¡(t) .- L-'(t)------;--:_Du1-d1 'dt

(6.2.18)

(6,2.1e)

(6.2.20)

Note th¿t expression (6.2.19) is needed to analyze the behavior of the call price. Flom

expression (6.2.19), it can be observed thú 49#P > o, it Lff 
< o.

Again,

C"z(t) : [S(ú+ pß-|(-tD - K]

gives

dC"z!) * oo R-'(t)------;-- - o l,r-'----;-
d'^l d'Y

(6.2.2t)

Explession (6.2.21) is also needed to analyze the behavior of the call price. From

expt'ession (6.2.21),it can be observed that 
q#. g, if 4-t(2 . 6.

Assuming that Jis a LF.-fitzzy number, (6.2.10) and (6.2.15), yield the following

expressions for the price of the derivative in the down state.

C¿(t) : lMax(Sd1(l - K,0), Max(Sd2(l - It,0)l

: lMar(S(@- azL-,(ù) _ K,0), Maq(A+ prï-'(r)) _ ¡r, o)l

It may be pointed out here that when Sd1(.y) and Sd2(1) are less than K, that is

when the fuzzy stock price goes down, then the call option expires out-of-the money.
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In this case the maximum value of Crr(f) : 0 and the maximum value of C¿2(7) : Q.

This yields

Cah) : o C¿z(t) : o (6.2.22)

6.2.2 Expected F\zzy Call Option Value \Mith LR-tr\rzzy Num-
bers.

Let c l¡e a fuzzy number that characterizes the fuzzy current price of the call option

and Ó1 be the finzy payoff of the call option at time ú : 1. Let C(l bethe a-cut for

t'he htzzy current price of the option. Then, the expected fizzy caII price is given by

-1c : Ti;E(c)

that is,

lc,(t),c,(t)l : fiV,h), c.z(t)llp.t(t),p*,(.y)l +

fiQ ^ 
{r), 

" 
o, (t)Jlp a, (t), p ¿, (t)l (6.2.2s)

whele .É stands for the expectation under the risk-neutral probabilities and ôr is the

fitzzy payoff of the call option at time ú : 1.

since, the fitzzy calr option has zero payoff in the down state, the fuzzy option pricing

formula given by equation (6.2,23), simplifies to

[cr(^t), cr(t)] : fr t*, ft ), c,r(t)llp*,(t), p,r(ùl (6.2.24)

C"r(r) and C,2(1) are as in (6.2.18) and (6.2.20) respectively. Also, p,1(7) and. p*2(1)

that describe the luzzy probabilities of an up movement in the stock price are given
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by (6.1.5) and ((6.1.6) respectively,

Thus,

-11C : u,E(C) 
: 

tilc^(.y)p",h),C"2(ùp,z(ùl

yieìds

C:

This leads to

ct(t) : ffir^tl

S(u-aú-|(tÐ- K (L+r -ã)- p2t-1(^t)
1*r a-ã+R-l(.ù(þr- þz)'

s(ú+ 7LR-I(ù) - K (t+r - d) +d"L-r(.'t)
7*r u - d.* L-l(l(a2 - o1)

c,(t):ffio*f",1

. (6.2.25)

Plugging the values of Ca(l) from (6.2.18) and p,1(7) ftom (6,1.5) we obtain the

following expression for the left hand part of the 7-level set for the fuzzy current

plice of the call option,

(6.2.26)

Similarìy, from (6.2.20) and p,2(1) from (6.1.6) we obtain the right hand part of the

.y-level set

c,(À : ls(ú+ p1R1(ì) - K (1+r _ d) +azL-l(ù.],^.,.,,,
| 1+r u- d+ f-l(,y)(a, - o1)l

l'low, [G (f), Ø(7)] gives us a weighted expected value interval for the call price. If we

assume that Cr(,y) and C2(1) arc decreasing functions of 7 then (6.2.26) and (6.2.27)

yield that as.y increases the call option interval lcr(ù, Cr(ùl of price shrinks, and

at 7 : 1, the interval is the smallest. Similarly, at -/ : 0, the call price interval is

the largest. This is an important pÌoperty for financial applications as it allows us to
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dete¡mine the most useful outcomes of the call price,

In o'der to determine the membership function we have to find the two exterior points

and the two interior points which describe the luzzy call price corresponding to the

LR- fuzzy number, we set î/ : 0 and 1 : 1 in (6.2.26) and (6.2.27) respectively. Thus,

¡., t|\ _ ls(e- a1L-1(1)) - K (1+ r _ ã.) _ prn-r(l) 
1\'i\'/ - L i+r ù_f+R-\L)(pt_b))

c,(t\ : ls(ù+ Pß-L(t)) - K (1+r -ù+a2L-1(r) 1L 1+r a_d+L_l(l)(ar_a1)J
R'om (6.2.28)- (6.2,31) we have that the fitzzy call price is given by

c : lcr(o),cl(i), cr(1), cr(0)l

S(u- alL-1(0)) - K (1+r -ã) - p2R1(0)
I +r r,- d+ R-r(o)(þr- þr)'

(6.2.28)

(6,2.2e)

(6.2.30)

(6.2,31)

(6.2.32)C:
ú.-d+R-'(r)(þ,- þr)'

(1 +r-d,)+a2L-1(r)
u-d,+L-l(L\(a,-a.'\'

(t+r-d)+azL-l(0)
a- d+ r-1(o)(a2 - a1)
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L1'r

S(ù+ Pß-l(t)) - K
l+r

,5(u+B1B-1(0))-/r
7+r



For the membership functions for Õ we set C1(.y) : Õ , and Cr(ù : ó. Therefore,

ls(u-aú-1(.y))-K !+:g:!:R-,(!l : e (6233)I t+r o-¿¡P-r11¡çr-Þù)

and

ls(ú+pfi-t(-tD-K (1+r- d)+azL-r(..ò I -
t 1+r f:¿iE6@,-=,,1)l : .;' (6.2.34)

Solving (6.2.33) and (6.2.34) for 7 yields the membership function for Õ.

6,2,3 Characteristics of the Fuzzy Call Price with LR-Fìrzzy
Numbers

dc9. g9?A. ¿'zc:\ù 
un¿d4' d.1 ' d1"

6.2 discuss the behavior of the

Making appropriate assumptions on Cy(|, C2(1,

d,2Czh\
-7F- we can, as in Chapter 5 and as in Section

fizzy ca.ll price with LR-F\rzzy Numbers.

6.3 Conclusion

In this chapter we demonstrated how call options can be va"lued under fuzzy environ-

ment using LB-luzzy numbers. The approach can be easily extended to price a wide

variety of options with different types of pay-off patterns. The fuzzy binomial option

pricing approach conside¡ed in this chapter is quite general and the methodology de

veloped by Muzzioli [98] and certain results of chapter b and 4 of this thesis may be

viewed as a special case of the results developed in this chapter. This methodology

provides an intuitive and easy way to look at the vagueness in the stock price move-

ment and our result include the results of the standard binomial option pricing model

as special case,
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Chapter 7

Conclusion, Contribution and
Recommendations.

In the present chapter, we state the contributions and conclusions made in this thesis

Finally, we give some recommendations for further research.

7.L Contribution and Conclusion.

In the present thesis, we introduce o(m, n).t.T.F.N's and discuss their various al-

gebraic properties in Chapter 3, Some numerical examples are provided to highlight

those properties. We, also point out some of their advantages. F\rrthermore, we dis-

cuss moment properties of o(m, n).Tt.T.F.N's in chapter 4 and derive expression for

possibilistic mean, possibilistic variance, possibilistic covariance, weighted possibilis-

tic mean, weighted possibilistic variance and weighted possibilistic covariance. some

examples are provided to ¡einforce the results. In chapter 5 we consider an important

problem in the field of fitzzy binomial option pricing model ,and model it using O(m,

n).Tb.T.F.N's in order to capture the impreciseness present in the model. The main

cont¡ibution of this chapter a¡e the derivations of the fuzzy risk neutral probabilities
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and the weighted interval associated with the call price. The behavior of those prob-

abilities and the call price is also discussed and is supported by numerical examples.

In Chapter 6, the problem conside¡ed in Chapter 5 is extended using LR-fuzzy num-

bers. Some results are derived for lhe htzzy risk neutral probabilities and the fuzzy

call option values using LÈ-fuzzy numbers. Based on the results presented in this

thesis, we conclude that the fuzzy sets theory approach offers the added advantage

of flexibility when dealing with uncertainty involved in the binomial option pricing

model. ce¡tain fuzzy techniques have been applied to some existing deterministic

models and that have resulted in more flexible solutions than normally obtained with

their counterparts under crisp environment.

7.2 Recommendations for F\rture Research.

The results developed in this thesis for O(m, n).T!.T,F.N's can be utilized in a port-

folio selection problem, where one cân use a possibilistic variance rovariance matrix.

Also, one can generate the possibilistic variance-covariance matrix using a weighted

function. using the theory of weighted functions discussed in chapter 4, an alter-

nafive rtzzy binomial option pricing model can be developed. In the fuzzy binomial

option pricing model developed in chapter 5, instead of taking probability expecta-

tion fo¡ the call price, we could as well opt for possibilistic or weighted possibilistic

expectation. we believe that the work presented in this thesis will initiate further.

research in a number of areas (for example, portfolio selection). using the concept

of lower possibilistic mean and upper possibilistic mean we can construct two pos-



sibilistic variance-covariance matrices. This will generate two possibilistic quadratic

plogramming models. Last but not least, one can introduce other kind of fitzzy

numbers and derive ¡esults simila¡ to the one discussed in Chapter 3-6.
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