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ABSTRACT

We have studied the antiferromagnetic sublattice
magnetization for large spin region by means of the cone
ventional formulation of spin wave theory. Spin wave inter-
actions have been taken into account within the Micheline
Bloch approximation which gives the leeding interaction
effects. The procedure adopted in the classical limit (S ~»oo)
follows closely the recent work on the analogous ferromagnetic
broblem by Loly. The results simplify considerably as in the
simllar ferromagnetic case and the leading terme have the same
temperature dependence for the magn@tizati@ns which is in

contrast to the results for small spin,



CHAPTER ONE

Introduction to the Heisenberg Model of Magnetism

We investigate a physical system of interacting spins
occupying sites of a cubic crystal lattice.

The strong magnetism of solids is due to spins of partly
filled inner electronic shells of atoms. We shall assume that
hoth an interaction between the electrons and orbital moments
of the electrons are negligible. The energy of such a system
is deseribed by the exchange Heisenberg Hamiltonian 1-3

H=-> 27 S S (1.1)
(Emy Ao :
where J wm 18 exchange integral (often th@ definiti@n is alg@
%M”J /2)’be‘tween )l. and )L sites and S and 5 are spin
operators on these lattice sites. The spin operators of each
gite are only dynamical variables in (1.1) since the distances
between spine are known,

Neel b first expressed the possibility that the negative
sign of the exchange integral could lead to-a state in which
different sublatiices of spins in a crystal may align themselves
antiparallel, Such ordered magnetic arrangement of sublattices;
each possessing uniform magnetization, was later called anti-
ferromagnetisn.

Here we are interested in the character of energy

spectrum neayr to the ground state of magnetic system, For
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simplieity we shall assume that there are only two eqguivelent
sublattices, one inslide the other, representing an isotropic

o crystal, Such an antiferromagnetic state was taken as a first

i reasonable approximation in Bethe’s 5 and later in Hulthen's 6
caleulation of the exact ground state for one dimensional anti-
ferromagnet. However, in the three-dimensional antiferromagnet,
no exact theory exists at T = 0°K (ground state).

Fortunately we have spin wave theory, whieh is one of the
most useful schemes for approximating the character of energy
gpectrum near to the ground state. The elementery excitations
of an entiferromegnetic spin system from an ordered arvay of
alternately pointing spins, which is assumed to be a reasonable
approximation of the ground state, have a wavelike form and
are called spin waves.

The classical dispersion law is satisfactory for spin
waves, because the quantum end classical equations of motion

ere identical; as one can prove by means of the commutation

rules for spin operators. One can DProve, also, that in
equilibrium the energy of the antiferromagnet should be

minimum. Such antiferromagnetic ground state configurations 7-12
are governed by the signs and values of the exchange integrals
in various environments and geometries of th@ @ry8ta1 lattice.
Thepe are only two possible c.gublattice arrangements for cublie
erystal lattices, namely the NaCl (simple cubiec) and CsCl

(body centred cubiec) structures; face centred cubic magnetic



3
lattice cannot be represented as an assembly of two identical
cubie lattices with opposite spins 708 , The sublattices of
the NaCl and CsCl strueture have symmetry of f.2.6., and g.cC.
lattice,*respectively.

The lowest energy state of an antiferromagnet must be a
singlet state i3 » and thus have no directional character, that
is, have total S equal to zero., However, the direction of the
resulting antiparallel magnetic moments of the two sublattlces
is arbitrarys so that the ground state is degenerate, This
degeneracy cannot be removed by an external field, For a not
too large external field, the spins would arrange themselves
fully in a plane perpendicular to the external field, but the
direction of the sping in the plane would s8till be arbitrary 6,14 o

| In any real antiferromagnetic crystal this degeneracy
is removed by the real anisot¥opy. An anisotropy cen be
introduced in the form of an effective anisotropy field such
that the spins on sublattice 1 are preferentially oriented in
the +% direction, say, and those on sublattice 2 in the -Z direction
by introdusing a hypothetical field h, and W,, respectively.
The Hamiltonian (1.1) then becomes

- - =z ) z
Hs= 2\]\(;'"\)325”“ +h' ; S£ ¥ hz Z S’"‘ ) (1.2)

ligal

where £ runs over all the atoms on sublattice 1, and m over
those on sublattice 2% J is the negative constant of the

isotropic antiferromagnetic interaction,

# See Appendix 3
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Forfinite viiues of b, and hz the ground state of (1.2)
turns out to be only slightly dependent on these valuesg as

(3]

long as h' ig not smaller than of order TG- » where N is the
total number of atoms in the crystal 15,

We accordingly define the antiferromagnetic ground state
of (1.1) corresponding to the assumed two sublattise structure,
a8 the limiting ground state of (1.2) for first N tending to
infinity and then h, and FQ tending %o zero. This does not
differ from the completely ordered state obtained by letting

h‘ and hg tending to infinity 15@ Such a completely ordered

state becomes identical to that of the Ising approximation 10-18
and it is used as the initial state in the spin wave theory of
antiferromagnets,

The antiferromagnetic spin waves are introduced to
describe the small deviations of the state of the 8pin system
from this completely ordered stete., The most Truitful
theoretical approaches have invelved the use of boson models
for spin waves., The first such theory was presented by
Holsteln and Primekeff *° in 1940 for the ferro case and
applied to antiferromagnetism in 1952 by Kubo 20@ who cal=
culated some thermodynamie quantities and ground state for anti-
ferromagnetic cubic lattice, Anderson 2!, who presented a
similar but semiclassical theory of antiferromagnet, carefully
examined the zero point energy and showed that ground state

- 2 i
lies between the limits N1Jlz S ana N1J xS (1 + g?s)



22 used

predicted by his varistional method, Davis
perturbation expansion for the ground state energy where the

off diagonal part of antiferromegnetic exchange Hamiltonian is
treated as perturbation--this was also evaluated using a

diagram technigue by Boon 23@ This treatment gives the spin
wave ground state about 93% completely ordered, i.e, the
sublattice % -component of spin is 93% of its maximum value,

One of the characteristiecs of the spin wave approximation
is the faet that at sufficiently lew temperatures the influence
of the interaction between the spin deviations may be neglected.
Dyson 2k invented for the ferromagnetic case a general theory
of spin wave interactions, He defines two kinds of interactions:
One is the kinematical interaction which arises from the fact
that more than 25*l units of reversed spin cannot be attached
to the same atom simultaneously, where © is the magnitude of
atomic spin in units of R, The other is the dynamical intere
action which represents the nondiagonal part of Hamiltounian in
its basic set of states,

Since the boson approach replaces the 25*1 states of
each spin by a system with an infinite number of states in a
form of quantum harmonie sscillator whose lowest 25+ sgates
corregpond exgctly to those of the spin, the rest of the states
are spuricus states causing the kinematic interaction. Dysen
has shown that the kinematic effect was negligible for TKT,

end gave a low temperature result which is assymptotically



exact as T - 0°K,

Oguchi 25 used the Holstein-Primekoff transformation of
spin operators to bosons and his result was in agreement with
a significant part of Dyson’s result, correct to order 'é' as
was recently shown 26 in case of magnetization. Oguchi also
uséd similer procedure for antiferromagnet.

The difficulty of estimating the kinematic,@ffe@t can
be removed in a special ease investigated just reeently by
Loly 27 for ferromagnetiec problems and furthermore the bound
states, whose @?f@@t is also difficult to estimaste 289 are
abgent in this case--this is the case of infinite spin or
classical Heisenberg model, Loly has improved results of some

28,29 for large S case and achieved a considerable

authors
extension of the result given by Heller and Kramers 30@

Present work deals with similer problem for antiferromagnetie
cubie crystals along the lines of Oguchi’s treatment for anti-
ferromagnet but using the self consistently renormalised form

of spin wave energy 31 for thermodynamie ealeunlatione



CHAPTER TUWO

Antiferromagnetic Spin Wave Hamiltonian and Magnetization

After the common redefinition of the 2pin operator
-5 _ b4 Y z
5j=(53 ) SJ' i 55 ) into the so-called projection form,

- + - z + X . -
552(54'.34‘; SJ-) » where S; = SJ- + L S»J-y and SJ- = SJ’.‘- 1 S}
the spin Hamiltonian (1.2) becomes

3 + - - - 3
He=21312 [3(s] S.*+S Se) * S, 5.1 +

<LmYy
+\—;‘RZS§+\~2'E Si- (2.1)

Following Holstein and Primakof? 199 we express the

atomie spin operators of the sublattiece 1 in the form

=S - m

+ “z' - I e f
S=sifsla | g=2s)’a ftsr, s 2 (2.2)

2

where the operator § (S) is defined as fellows {(s) =(1 - _’!‘..e)
0 ) A28 7/,

my, = 6(: a_e is a spin deviation operator of S: component

from its maxzimal value S along the + ¥ axis in units of o m'e

is tThe number operator with allowed values 0, 1, 29 s00 .
Let us define correspondingly the spin deviation

z
operator for the sublattice 2, as follows m,_=S-("5).

Since we define m, ag a spin deviation operator of
z
5,,“ component from its maximel value S along the ~2 axis, the

projection spin components for the sublattice 2 become
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+ Lo, - L
S..=(29)"b fM(S)z, S =(29)%5(S)b, (23
S,m = - S Y, o,
where similarly as in the case of sublattiee 1 the operator
fwss) is defined by :
fu8)= (1= 7807, mo -l b,

The integers 0, L, 2, 000025 are eigen-values of the
spin deviation operators my= g_éznd m, =S *S:\‘ o

Since we are dealing with twe sublattieces we have
formed two independent boson spaces eaeh corresponding to one
sublattice.

An alternative approach is the Dyson-Maleev method,
which is coneeptually diffieult, but has certain advantages
from more rigorous treatment, ' As far as we are coneerned for
the present purpose we will use the Holstein-Primakoff
transformation,

The operators a+, b and a , b are defined by the
comnutation rules

Iai na,e+1 = JL,Q ) Y-bj | b:-\-& = g&f'“ )
Y_a.i‘t):“—_\”‘ Y.C({ \bﬁv\] = [a:| ‘:’M] = [“—t 1 b::& =0
((S;.M and g;_;, are Kronecker's deltas )
and are to be regarded as the ereation and annihilation
“operators of the spin deviation, correspondingly.
By using these Bose operators the Hamiltonian (2.1) ean

be written as follows



N/2
H H +22l]|3[(l h\z a, a +(L+hﬁ)42“b;bm]*

(2.5)
+213\S<;m>\'_§ f &, b + ax“‘b* f _f g & aJZ lom‘bm_\]
where h

) 2 \ Y hJ -
H9=-N2\ IS (1-h,+h) | h =52 b

4

h
-2
2° 2217 (2.6)

and £ is number of nearest nelghbors, At the next step we use

binomial expansion for §(S)

fls=]-La-Lto L oot
) = L S 22 S2 128 32 T ... . (2:7)

Then the Hamiltonian has the form
0 ) (2)
H=H"+H "+ H (2.8)

where terms with 6 and more boson operators are missing or in

different words we have picked up all terms to the order § o
So
H' -Zz\'.HS[Z(L—h,) aa, ¥ (LR, b
R*9 Lre 2re (249)
..\... +, +
+Z£;P(a£t3“‘?+ be*.eﬂ
(2) {31
T +
2 Zp.( Rxp xa-_e x'oxa-y X £*£b£+f ‘“’J’ (2,10)
+a£aab£‘\-y a bp I I*Lfaﬂakb.h- bx-ty)J

—’

L and P indicates the position vectors of the sublattiee 1, R o

and all thelr nearest neighbors on the sublattice Qg;zgg
—9-._-_.’

respectivelys so symbolically £ +9 = m .

Because of th@ translational symmetry of the sublattices,



i¢c
1% is convenient to make a Fourier transformation from the
+ +
operators a’i”a’i’l b,;:, b"-: to the spin wave variables

* *
Q. as b-. b, defined by

K
N .
N& K2 & 3 o ke
v o_(2\% ‘ (232
a, =5 ) : a, ak-(N) %,e a, ,
+ _&_'EN/z tKam + 2 3 2 3 (2.11)
=( ) Zc bm\ , = "ﬁ Z C m‘ )
™ out

wher@ we have leftYthe vector sign for both lattice vectors
- -
ﬂ,ﬂn and reciproecal lattice veetor X from the first Brillouin
zZone,
Commutation rules for these new operators are bosonlike#
as Tollowe
+ 9 _ o 0
[a,,ap)=[b_  b,]=8&k-k)
. . (2,12)
+ — 1 = + = =0
[ak\bk‘]-{.ak]bk‘]-[ak|bk‘1 [Qk,bkl} ’
Then
) ) \ +
H 222171 2 [(1-R)ata +(1+n )b b+
% R 277k Tk (2.13)
L
+yk(akbk ¥ Ay bk)]
and

H“’=_D_lzz L’x\kk)g(\( *ky -k, -k, ) b, b b b *
N o, “ Ka k
+3"(K\) 5(“"\(1"“ kk\,‘,) a ‘ b b“.k-‘,’b l.'.
g Uey) d(x,~k, +k 3 =\%y) a b .:4.“_s ‘,

-

5 (2.14)
1K) 00K —k, -k £Kk,) ak'a a, b ¥
b

b, |

Ko K3 Wy, )

+ Lt ’aﬂ(k,-kz) Skkx'kz"‘g"kq) a: a

#Proof in Appendix 1
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where z ik
= = L
Pp=p =23 e
P
If the crystal in consideration has a center of symmetry, then
3‘ (K) = = P i=-x ) o
To carry out the diagonalization of the Hamiltonian,
loes to get rid of such terms as @&, b bK Ky b jooe
2 Ky
--terms where the two boson subspaces are mixing, we transf@rm
to new boson operators o(K ,4“ , (5“ @k such that the boson

commutation rules remain similar for the new operators, i.e.
> *
Y'O(Kldk'-l = ‘-(5\(\ @Kl-& = 8(\(’\"))
(2.15)

[°LK|(SK'] = ‘-‘*;\ (3:’.\: ‘-d‘k\ (5:,]-_- [-a(': . (Sk"x-; o

The new operators are defined by a transformation often

called Begolyubov 29 transformation :

_ % - - pnt
a,k-o&Ku—(aKv Qy = oh U pKv
bk_-ogkv-t—(bku by=-« VvV *r@E u

—’
where U and V are certain functions of the wave vector K to be
defined#,

Then the Hamiltonian (2.1) cen be written® as

i .
H=H, zk:(A“m“+ Aem) ™ (2.17)

+Z[‘Bmmmz"'mm) Bmm]

K Ky

#*See Appendiz 1



12
3 ’ o
where M, = °‘k o(k and m_ = pk P\: are occupation number

operators in the first subspace and second Subspace, respectively;

Ho=2xz121s -%SN(ZD-I)—Z[(Dz-?i);‘- -p] -

(2,18)
-l (R -1
2 ...
ana PN O
h] A
D=1-4 0 (2,19)
the coeffielents in the free boson part of Hamiltonian are
+

A, =22 s [(D-ph)T e p i vy -

2 (2.20)
Do S (R )]

)
two body interactions are described by the coefficients B and
'B("-)

where we have taken on account only diagonal elements,

which
is sufficient for the renormalization of energy®;
B(‘)‘-‘-"z‘] ( D~ '()"k, D - 'J"K,_ - 1)’
N (D'-Th)z (D2~ ?% )E
(2.21)

®©_ 2:13 (D 3‘5. D- 7, ) B
B N (uf e (D-gis T - |

*See next chapter

##In Appendix 1 we illustrate in a more deta

iled example how
oné can transform Hamiltonian (2,9)

to the form of (2.17),
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Using the above results we will derive an expression
Tor the antiferromegnetic reduced sublattice magnetization in

the case of h, = hzz O , defined as quantum statistical average

m(T) = (2.22)
Rt Na S ?
where spin z-component of the first sublattice is
z = 'Z._ N - + (2.23)
SM"};'SA“TS ;“zz“x :

After transformation of S%:;L into new boson variables
and neglecting two nondiagonal terms in which the new boson
subgspaces are mixing and will venish under the thermal trace
we get for (2,23) formula

= N 2 + 2 N z (2.24)
SM '=~2-S"‘ %\[ Wiy o b +VI B B+ V (k)]

If we substitute into the last eguation the expressions Uik}
and V{K)derived in Appendix 1, we obtain for the reduced
sublattice magnetization

) ""L (30255
C 2
m(T)=l"2"§—‘sg"_Za \J(\“’X‘&)z

K
4
2

c=% 2 lt-r* -1,

The characteristic feature of this theory 18 the faet that the

where

sublattice magnetic moment at T = 0°K iz not egqual to the

magnitude -521— S.



CEHAPTER THREE

Spin Wave Renormalization in Antiferromagnet

Keeping the HeiSenberg Hamiltonian up to the diagonal
term of fourth order in spin wave operators, (2.17), the
temperature dependence of the spin wave energy, together with
the sublattice magnetization, can be studied by a self-consistent
treatment,

This approximation has been found very useful in
interpreting experimental date J33=35 for those megnetic
insulators which seem to be fairly well described by the
Helsenberg model. In this formalism the dispersion relation
appears to have the same form as for free spin waves, apart
from a temperature-dependent renormalizetion factorol(T). It
was found 3136 that no solution for X (T)exists above a
maximum temperature ., which is close to the Neel temperature
(in ferromagnetiec case to the Curie temperature). An interesting
feature of the o/ {T) is its independence of K, at least for the
cubiec lattices,

In absence of an anisotropy, i1.e. if D'—’l,the A= and
p-modes are degenerate. Therefore writing mye= m'K s the
Hamiltonian (2.17) reduces to

el
H°=E°+2§A°Kmk*‘Z,(ZB:*B:)mkmk, et

KK



15

where
2

Eo=“2‘j\5N(S “‘C""r‘.c"'fs)) C:% g[l—il_y:)i]
A €H+;_—), €=ZZIJ‘S(1~3‘§)E
,Bo:-___ 2!3! [( 3,‘&)2.(1_ ?K,)& _ &-1

I
1 :
B,=- —"=—’,‘—\,+'3’—’[U— )t (gt e L
Investigation of the Helmholtz free energy of our system
determines average oceupancies (Mk) as follows,
The f{ree energy is given by

F = ( Ha> - Ts , (3.2)

whare

S=-kg —2;" [<Mk>~fm<”‘k> ~Kmy+ 1) A, (<Mk > ¥ )]

and Ky is ths Boltzman constent. The condition that free
energy @f‘%h@ system 18 an extremum with respect to the average

oceupancy - is oF = QO go we obtain
O myY

(3@3)
l —
< ={€%fv BLOL+ )€ - sNg? };ékek,mkﬂ - 1})

where we have used equalities

o
2B, E”; TN xS ) KT £
= <. .
and Ak e (1+ %)
This resiilt leads to the conclusion that the occupation

nupber hag a Boge-Eingstein form with & renormselized temperature
dependent energy

€K(T) = 0((T) é-k 3 . (3@‘%’)
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where o{{T )satisfies the impliecit equation
1 o
A(T) =1 + 55 - 'fg—%: (\‘3":')2<mk/> 27
and -
<mpd>=leppe (1)~ 1)
Before solving equation (3,5) we have to evaluate the summation
in (3.5) and ¢, Once we are at the stage to calculate such
coeffieient or those coming from the temperature dependence of
magnetization, (2,16), we have to deal with diffiecult integrals
dep@nﬁing.cn the crystal structure of the material in
consideration, Such integrals through first Brillouin zone
have considerable influence on the thermodynamic caeleulation
and results,

Let ug list them for a convenience:

Zyli-U-phil=c

Ll-g*-11=¢
Kk

(3.6)
Limy L=t

2 -
&2 <ma L )

The last two integrals depend on temperature through

i
2

these two integrals we are usually dealing with temperature

axpangion of <nnK) in certain temperature region.
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Let us write down qualitatively the o((T) glven in finite spin
case by several 28,30,32 authors
o<=o<°—o<,T‘*—... , (3.7}
wh@reo&,cit are congtants depending on S end particularly
HKo= 1+ 72975’ « In Appendix 2 are listed known values of c
and ¢’ caleulated by different suthors for the two cubic lattices,
By using the spin wave renormalization method we obtain
the same result as in Oguchi®s answer for mnagnetization |
ST -

—mlTé_--‘ (3.8)

mlT) = A, - m T? "M\,.T"-"fw\

where My, My g, o,y are constents depending on the

H
atomic spin and integral C., Sinece the leading temperature

2
term in equation (2,25) has the form @@n@tx(%%) » substitution
of equation (3.7) into this term gives the first term from the

b
Spin wave interactions, m T o For m, the explicit form is

Mo=1-'zc_é' (3.9)

Then we can conclude that epinsg in an antiferromagnetic sube

lattiee are not, even at T=09K completely aligned,



CHAPTER FOUR

Large Spin and the Classical Limit

Because of the diffieulty of estimating the kinematiec
effect for %emperatureg that are not negligible compared to
7} the range of validity of Dyson‘’s low temperature result is
not known very well. The bound states of two spin waves is

also difficult to estimate 28,

In addition to these problems we have further complication

of the complexity of the antiferromagnetic ground state. In

ferromagnetic case when we eliminate kinematie effect the

bound states disappear., In the present work we follow the sanme

philosophy and the kinematic effect obviously is absent, in
analogy. Further more it is plausib1@ that the bound state
also disappears, In addition we find a simplification of the

ground state problem,

The kinematie effect vanishes in the limit S —»es, sinece

from the topological point of view there is no problem to
represent the infinite spin by an infinite system of bosons
from Hilbert space completely, So the spurious states will
not occur and then the kinematic effect vanishes, The thermo-
dynamie problems may now be caleulated much easier,

Let us look at some features of the large S behavior.

The spin Hamiltonian (1.2) can be rewritten to the form
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2
H=2171S )Y 8.5 +hS LA +h ST A" (4.1)
41,/\0\)
> S,
where we have defined dimensionless operator A4, , ,Z\jz = __é_f; ;

%
S is the maximum component of S; 1in units of h,

—5
As S""°°,A2

L
(1) the magnitude of %,[S(SH)] 2 tends to S,

tende to a classical unit veetor sinece

(11) the elgenvalues of 5: then tend to infinity resulting in

a continuous set of eigenvalues for A: ranging from -1 to

+1, and

{111) the Z,e operators then commute in a classical sense, 1.2,
z (bo2)

S s B
[A\m/‘x] ;A,egu

The classical model of an antiferromagnet is based on equation
(B.1) for S—» e with 3s? taken constant, or equivalently since
S is measured in unite of h by letting Sh —> constant,

Let us have a look at the S dependence of Iy, If we
take the anisotropy constants egual to zero, dimensional
argument gives kBTN =<1 NS for large spin, which is readily
confirmed by the molecular field approximation for whiech one
has KTy = 22 171S(S+1).

For all temperatures obeying the inequality kT X 1ILS,
up to end ineluding Ty, 1t is permissible to replace the
Bose-Eingtein funetion by the expansion in powers of T given

mix) = 5 = 5 * 7" 720 + 0(x%) (%.3)
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where x =@ E(X) K1 apa E(R) 1g eigenvalue of the spin
Hamiltonian (4.1),

Following the above discussion the criterion kT Z 133

may be rearranged as follows

Tz (b,t4)
This means that the useful temperature range of the conventional
result becomes a smaller fraction @f'rN as the spin inereases,
This idea has also been used by Vaks, Larkin and Pikin 29@

To reduce the mathematical inconvenience of the limiting
case S —» o° » We introduce dimensionlzss temperature T defined
by

T = E%gﬁ;gz . (4.5)

This becomes clear since temperature enters the problem through
the density matrix e © .

The renormalization coefficient and the sublattice
magnetization from the previcus chapters will be then given for

large spin by the self-consistent equation

d=1lsg5-75 12 St ]I"r (4.6)
3
A .
* hho =191S° E% T3 "
and
m l+2$ oc]I-IT 12s8* T
» 1 (4.7)
+720$"‘E17L'-‘3+" '
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where integral B;“ is defined as follows

(ko8)
)

L=%% - pe)

m. 18 an integer or a half-integer,
Now taking the limit S —> <o the above equations simplify

to the form

A = 1_;1('_ (%.9)

and

oy T (4.10)
m=1-1T, = )

where
-1
I£4 = %% %; ( l"aég)
Iterative solution for £ now gives
L=1-T - T?. 0(T? (#.11)
where it follows that

/W\.=l - 'I-IT - _E_[Tz_. O(TB) ) (@’312)

the quedratic term expresses the spin waves interaction,

It turns out that for simple cubic lattice value of,llq

equals Watgon'’s integral#,

# Communication with Loly



CONCLUSION

The results for the renormalization coefficient &
and relative sublattice magnetization mvin the infinite 8pin
1imit are different from those for small spin fcompare
equation (Mﬁll); (8:12) and (3.7), (3.8)7,

By the comparison of our results with those for the
classical ferromagnet given by Loly we see that implieit
equations for o are identical, In addition the amtif@rr@magn@ti@
sublattice magnetization has qualitatively the same behavior
as the ferromagnetic magnetization in Loly's work 24@ but for
the ferromagnet the coefficient of both the linear end
gquaedratic terms is Watson’'s integral instead of the ZL1 in
our case /Jegquation (4.12)7,

The ground state simplifies since in the infinite gpin
limit constents in equations (3.1), (3.9), (4.7) of order -é
vanish implying meximum alignment,

Straight forward extension of these results can be done
in case of the antiferromagnetic specifie heat and susceptibility.

As a continuation of our work the ferrimagnet and its thermo-

dynamie proverties should be calseulated.
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APPEREDIX 1

An Example of the Fourier and Bogolyubov Transformation

Since a Hamiltonian operator represents energy, which
iz an additive quantity we ean transform individuel parts of a
: (1)
total Hamiltonian separately., We choose H of our total

Hemiltonian. Reecalling (2.9) (for brevity 2z(JIS={)

=2(1-h)aga, + 2 (1+h) g b +

L+@ 2449 “drp
-
* Z f‘? a«i bl*g:-)
2,¢

and using Fourier transform (2.11) we can write the last part

of Fﬁu as follows

{ *
fz-'g (a,e b£+9* a“ BA

£ +Q

Z Z & (v, - %) elkzg “«K bk * (i)

kkz 2

Z 2. S$ix-xp S =

k| kz
Z}‘kab:,ark\;) kK K,

L3

where

Lk
é(k):.'g(-k) “-‘-"%\T Ze L y N>>1 {2)

ig delta-function and



W
=+ ). (3)
=5

is function depending on the structure of a given lattice.
Also in & similay manner as (1)
N (&)
Zaa Zo.,a Zbﬂ?‘%*f’ Zb b .
L+
It is important to point out that the symbols 194£+j> repregent

posgition vectors ﬂ_ )t of the atomiec spine and vector I?

L+
goes through the first Brillouin zone, So Fourier transform
gives
] ) * _ +
H = Z[(l—h,)akaki-(l h,) b b,
K (5)
+
+Xk(akbk " bk)]

Commutation relations for the boson spin wave (2,12) are given
by the commutation relations of the erystal lsttice bosons (2.4)
as follows
Cr ' :
lag,atl=2 % &7 a, ar]= San®
A4
Similarly for the rest of (2,12)., Hamiltonian (5) is

repregented by the nondiagonal guadratic form, which can be
transformed by the unitary transformation (2.16) to the dlagonal

form as

- *
H:c:; [x'k"(:"(k * x; @k(‘z’k] ) (7)
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From (2.,16) follows

a

O“K:“".(k <oV Py ) Bkg—v"'(:*u(ék)
where

dk=%[Hx1°<u-l=“?:’"%:x;a<K

- L -

3, = r\[Hxl('l)k-x--é-zk'x‘tﬁk
and then

d,k:--%-z(x;uock-»x:v(i:) \

. . _ + . (11)

bk=——;\—§k:,(xKVo<k+ X, v 3

By the eguating coefficients dk from (10) and (11) we get two

homogeneous eguations for the unknown U and V as follows
[Ch-1) + xT Tu » puv =0
y\ku*[(ﬁ,-l)-xt]" =0, (12)
which are soluable only if

(W, - 1) + %y
det ‘ . ¥

hY

3o .
Pwr (R - 1) = xy (13)
From the equations for Bk we get gimilarly.
3 +
[(1+\,\2)_xk]u—?\“\/ = O

(14)
v+ TR ¢ =0



Numerical

APPENDIX 2

Quantities for Antiferromagnet

author (year)

typve of structure

NaCl, 8.Ce

CaCl; beceto

¢

C c’ c c
Anderson (1952) 0,097 0,156 - o=
Kube (1952) == e 0.073 0.150
Davis (1962) <o = 0.0730 0.118636
M. Bloch (1965) - - co 0.1185




APPENDIX 3

b.c.0s lattice (s.c, sublattices)





