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ABSTRACT

We analyze the Witt designs and obtain a number of new results
concerning their structures. We characterize all r-blocking sets and
semiovals in the Witt designs, and determine the possible sizes of a
t-blocking set, classifying them by their frequency vectors. We prove
that there are only three types of semiovals in $(3.6,22), one of them
has size nine, the other two have size ten; S(5.6.12) and S(4,7,23) each
have only one type of semioval; but both §(4.5.11) and S(5.8,24) have
no semioval at all.
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. INTRODUCTION

First of all we introduce some terminology and notations which will be used in

the sequel.

Definition 1.1. A t-design D is a pair (V.5). where V is a v-set of elements called
points. B is a family of k-sets of V called blocks. such that any fixed t-set of V is
contained in exactly A elements of B. We also say that D is a t-(v. k. \) design.

When \ = 1. the design is called a Steiner system and is written S(t. k. v).

A t-design is also a s-design for s < ¢ (56. pp. 2|.

Let b denote the number of blocks in a t-design. Then for any 2-design we have
v < b (Fisher’s inequality {36. pp. 4i}.

A design with v = b is called a symmetric design.

Suppose D is a t-(r. k. \) design with blocks By. B;y.--- . By. The number
‘B, 7 B,j.t # ). is called an intersection number of D. Assume that ry. ry.--- . Iy
are the distinct intersection numbers of D. The r,’s and the number s sometimes
provide very useful information about the design.

A symmetric 2-design can be characterized by the property that the design has
precisely one intersection number [13. pp. 37).

A gquasi-symmetric design is just a design with at most two intersection numbers

rand y(xr<y).

Definition 1.2. Let T be a finite graph on v vertices. The degree or valency of a
vertex z is the number of edges on r. If each vertex r has the same degree d. then

the graph is said to be regular of degree d.




Let T be a regular graph of degree d. with v vertices. If
1. any two adjacent vertices are simultaneously adjacent to a other vertices.
2. any two non- adjacent vertices are simultaneously adjacent to h other vertices.

then I is called a strongly regular graph with parameters (. h.a.d).

Definition 1.3. Let D be a design. and ¥V and B be rhe point set and block set of

D respectively. Let £ £ V. Define:

B,={B-{r}:z2B.B=ByL V.=V |J X
X=5,

The pair (V..B;) is cailed the contraction of D at z and we denote it by D;.

If Dis a t-design. and £ is a (t — 1)-design such that = = D.. rhen D is called
an ertension of ;.

Suppose D is a design. B is a block of D. Define:
D8 = (v - B.B - {B}).

where B — {B}:= {A - Bi 4 2 B}. DB is called the restdual of D with respect ro
the block B. If D, is a design. and D; = D8, then D, is said to be embedded in D.

Suppose D is a quasi-symmetric design with two intersection numbers r and
y (£ < y). The block graph of D is the graph whose vertices are the blocks of D:
two vertices are adjacent whenever the corresponding blocks intersect in y poiats.

The following five Steiner systems are called Witt designs:
S(4.5.11). 5(5.6.12). 5(3.6.22). 5(4.7.23). 5(5.3. 24).

Witt designs are very important in combinatorial design theory. They provide
good examples of the extensions of designs. quasi-symmetric designs. and strongly

regular graphs.




Example 1. {52. pp. 35} ${3.6.22) s an extension of PG(2.4). 5(3.6.22) 15 a

quasi-symmetric design with r =0, y = 2.

Example 2. 52. pp. 35] S(4.7.23) s an ertension of 5(3.6.22}. and it 15 a two

fold extension of PG(2.4). It is a quasi-symmetrc design with r =1 and y = 3.

By theorem 3.2 in [19] we know that both the block graphs of 5(3.6.22) and
S(4.7.23) are strongly regular grapbs.

Witt designs also provide examples of Steiner systems with ¢+ > 4. Beside the
Witt designs. there are only eight known examples of Steiner systems with ¢t > 4
S5(5.6.24). S(5.7.28). S5(5.6.48). S(5.6.34). S(5.6.72). S(5.6.108).5(5.6.132}
and S(5.6.168) 22!. Up to now there are no examples of Steiner systems with t > 6
'13]. From 29. 37. 17| we know that the only non-trivial quasi-symmetric {-designs
are S(4.7.23) and its complement. Shrikhande and Sane 52 conjectured that the
only non-trivial quasi-symmetric 3-designs (other than the Hadamard 3-designs)
are the 3-designs related to the Witt designs or their complements. Witt designs
have close relation with group theory. The automorphism groups of S(4.5.11).
5(5.6.12).5(3.6.22). $(4.7.23) and S(5. 3,24} are the famous Mathieu groups 1/, ;.
Mia. Mas, Moz and My, respectively. The five Mathieu groups were the first dis-
covered sporadic simple groups. Historically. statisticians were the first to make
a systematic and exhaustive study of block designs. particularly from the point of
view of construction. In Shrikhande and Sane’s words (52} “From the combinato-
rialist’s point of view. a substantial portion of the research work in design theory
centers around various characterizations of the Witt designs by their properties.”

The attempt to prove the existence and uniqueness of the Witt designs produced
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many techniques and methods. which also enhanced the theory of combinatorial
designs.

The Witt designs were considered to be first constructed by Witt 57 and
Carmichael 21'.

Witt constructed rhe tive Witt designs from the five Mathieu groups. He proved
that M. Mya. Moz, Moz and by are the automorphism groups of S(4.5.11).
5(5.6.12). 5(3.6.22). S(1.7.23) and 5(5.3.24) respectively. Witt 58] also proved
the uniqueness of these designs.

To construct 5(5.6.12). Carmichael considered the linear fractional group G
modulo 11 of order 1211 -5 = 660. G is a doubly transitive group of degree 12 on
S = {x.0.1.2.--- . 10}. Select B = S. B! = 6. such that B is transformed into

itself bv just five elements of G. Let

B={qB ¢=G}.

then Bl = 132 and (S.B) is an 5(5.6.12). Let B = {dA-{x} x =4 -8B}
then By, = 66 and (S - {x}. B ) is an S{4.5. L1).

Now let G be the linear fractional group modulo 23 of order 24 - 23 - 11 = 6072
and let § = {x.0.1.2.--- .22}, G contains a subgroup H of order 3. such that

h(B) = B for all h = H. where B = {x.0.1.12.15.21.22}. Let

B={gB) g=G}.

Then (8.B) is an 5(5.3.24).
[n 1969. Liineburg {47] constructed the Witt designs by extending known struc-
tures. In his proof. Liineburg considered the geometry of the atfine plane over

GF(3) {for S{4.5.11) and 5(5.6.12)) and the geometry of the projective plane
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over GF(4) (for S(3.6.22). $(4.7.23) and 5(5.3.24)). Other proofs of the unique-
ness of §(3.6.22). S(4.7.23) and S(5.3.24) were given by Jonsson 40! and Iwasaki
39|. Jénsson’s proof was based on rhe geometric aspect of an elementary abelian
subgroup of order 16 and a knowledge of the geometries associated with certain
subgroups of the alternating group As. [wasaki’s proof was based on the fact thar
any two blocks intersect in 0 or 2 points. in 1 or 3 points or in 0. 2 or 4 points.
respectively. From this the blocks can be determined explicitly.

Before Lineburg. L..J.Paige 50 construcred S(4.7.23) and S(4.53.11}. His con-
struction of 5(4.7.23) is as tollows.

Let 17(23) be a vecror space of dimension 23 over GF(2). let

v =(0.0.0.0.0.0.1. 1. 1. 1. 1. 1.1.0.0.0.0.0.0.0.9.0. 0},
vo=(L1.1.1.1.1.0.0.0.0.0.0.1.0.0.0.0.9.0.9.0.0.0).
vy =(1.1.1.0.0.0.1.1.1.0.0.0.0. 1.0.0.0.9.0.0.0.0.0).

vy =(L0.0.1.L.O. L. L0 L.0.0.0.0.1.0.0.0.0.0,0.0.0}.

vy = (0.1.0.1.0. [.1.0. L. 1.0.0.0.0.0. 1.0.0.0.0.0.0.0}.
ve ={0.0.1.0.1.1.0.1. 1. 1.0.0.0.0.0.0. 1.0.0.0.0.0.0).
vy =({L1.0.0.1.0.0.0.1.1.1.0.0.0.0.0.0. L.0.0.0.03. ).
vg = (1.0.1.0.0.1.1.0.0.1.1.0,0.0.0.0.0.0.1.0.0.0.0).
vg =(0.1.1.1.0.0.0.1.0.1. 1.0.0.0.0.0.0.0.0. 1.0.0. 0).
vig =(1.0.0.1.0.1.0.1.1.0.1.0.0.0.0.0.0.0.0.0. 1. 0. 0).
vy = (0.1.0.0.1.1.1,1.0.0.1.0.0.0.0.0.0.0.0.0.0. 1. 0).

vy =(0.0.1.1.1.0.1.0.1.0.1.0.0.0.0.0.0.0.0.0.0.0. 1).




Let T =< vy.va.---.vy2 >. Then T is a subspace of V'{23). For anyv given vector

v = (ty.ta.--- .tag) = T. define:

He ={i 1 <i<23.t, =0}
let B={H, v=T . Hy =7}.V ={1.2.---.23}. Then (V.B) is an 5(4.7.23).

S5(4.53.11) can be constructed similarlyv by considering V(11) over GF(3).

In order to prove the existence of $(3.3.24). Curtis 26i considered the power
set P(2) of a 24-set 2 as a linear space of dimension 24 over GF(2). where the
sum of two subsets is defined to be their symmetric difference. Choose a subspace
{dimension 12) 2 of P(2). such that the smallest cardinality of the elements in
= is 8 {Curtis called rhis kind of element an octad ) and = contains exactly 759
octads. The set of all actads is the set of blocks of S(5.3.24}. In his paper Curtis
also introduced the so called “Miracle Octad Generator™ or MOG . The MOG
provided a convenient computational device for tinding the block containing anyv
tive points.

Around 1980. starting from the designs £ and £z associated with the
Hadamard matrix of order 12. Hughes 34| constructed 5(4.5.11) and 5(5.6.12)
bv an elementary technique. Before long. based on Hughes’ ideas. Beth 11| gave
a simpler method ro construct 5(5.6.12). he also gave a proof of the uniqueness
of §(5.6.12). In 1981. Beth and Jungnickel [12] gave another method to construct
S(4.5.11) and 5(5.6.12).

Cameron (13|, using some of the properties of S{4.7.23) and 5(5.3.24). proved
the uniqueness of these two designs.

Cameron and Van Lint [20] discussed the structures of 5(5.6. 12) and S(5.3.24).




Using the binary code of PG(2.4). Lander (13} constructed 5(3.6.22). then from
S$(3.6.22). constructed S(5.8.24).

To study a design D by specifving some of the intersection numbers r.’s or the
number s of D is an interesting research direction in design theory. We already know
that if s = L. then D is a symmetric design: if s = 2. then D is a quasi-symmerric
design. Calderbank and Morton {17} classified all quasi-symmetric 3-designs with
two intersection numbers r. y and £ = 1. The only nontrivial examples are 5(4.7.23)
and its residual. a 3-(22.7.4) design. Ionin and Shrikhande 36| got the following

characterizations of S(4.7.23) and S(5.8.24):

1. A (2s — 1)-design with s intersection numbers is 5(5.3.24) if and only if s > 3
and 3°0_, £, < s(s - 1).
2. A 2s-design with s intersection numbers is S(4.7.23) if and only if 5 > 2 and

57 (I < s2.

el

The usual geometric construction of S(4.7.23) starts from PG(2.4). Starting
from PG(3.2) Baartmans {1] constructed 5(4.7.23).

Let G = PSL(2.q) with ¢ = Ll or 13. Iwasaki [38] considered the action of
G on a set P. and took all G-images of a subset A in P as blocks. To construct
S(5.6.12). he selected 4 = Q := {r* ! r = GF(11)}. To construct 5(5.3.24). he
selected A as the symmetric difference of the sets Q. Q + 1 and Q = 4 in GF(23).

Lenz [15] gives a short uniqueness proof for S(5.3.24). which immediately gives
the order of AMyy.

Let PSUg(2?) act on the unitary polar geometry consisting of 693 points. 6237
totally isotropic lines and 891 totally isotropic planes. Jémsson and Mckay (41]

proved that My is a subgroup of PSUs(2?) leaving invariant some configuration of




22 planes any two having a point in common. no three having a point in common.
5(3.6.22) is obtained from rthis configuration of 22 planes as a set of 77 other
planes cailed blocks. a block being called incident to one of the 22 planes if the
corresponding planes have a line in common.

The monographs 13. 35. 52 all have compiete self-contained discussions of Wirt
designs.

[n 42} the action of the Mathieu groups M,. n = 22.23.24. on the power sets of
the point set of respective Witt designs have been studied. The orbits of all point
subsets of $(3.6.22). 5(4.7.23) and S(5.3.24) together with the numbers f, of
blocks which meet a point subset in a oribit at : (0 < ¢ < 3) points in 5(5.3.24) and
the formulas to calculate these numbers for the orbits in 5(3.6.22) and 5(4.7.23)
have heen given. The vectors {ty. - .t }. called frequency vectors. for 5(3.6.22).
S(4.7.23) and S(5.3.24) are listed in appendix A. B and C. respectively.

Witt designs also have relations with other interesting objects. such as Golay
codes and the Leech lartice. Just as Hughes and Piper 351 described. they ~are a
fundamental feature of combinatorics and algebra™.

Let £ be a finite field.

A code C is a subset of F". the vectors in C are called codewords. If Cis a
subspace of dimension k. then C is called a linear n.ki code.lf F = GF(2). then
C is called a binary code. If F = GF(3). then C is called & ternary code. The
( Hamming) weight of a vector v in F". denoted by w(v). is the number of non-zero
coordinates of v. The  Hamming) distance d(x.y) between two codewords x and y

is the number of coordinate positions in which they differ. Let C be an in.ki code.




The (Hammang) distance d of the code C 1s

d = min{d(x.y) x.y=Cx =y}

An n.ki code with distance ¢ will be denoted by n.k.d!. The support of a
codeword is the set of coordinate positions where its entries are non-zero.

With these definitions we can see that Paige’s construction of S(4.7.23) men-
tioned above is actually to use the supports of the code T to construct the blocks
of §(4.7.23).

Let G2y be the code generated by the row vectors of the matrix I,,.Bl 33l

where I;2 is the 12 bv 12 identity matrix. and

- -

Let Ga3 be the code generated by the row vectors of the matrix iI;2. Bl. where

B is the matrix obtained from B by deleting the last column of B.
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Let G2 be the code generated by the row vectors of the matrix Ts. C! 56]. where

Is is the 6 by 6 identity matrix. and

Let G,; be the code generated by the row vectors of the matrix Is.C!. where C
is the matrix obtained from C by deleting the last column of C.

The codes Gay and Goz are binary 24.12.3] and 23. 12. 7' codes respectively 33!
the codes G1» and G); are ternary [12.6.6! and '11.6.3] codes respectively 56..

The codes Gay and G2 are called Ertended Golay codes. while Goy and Gy are
called Golay codes. Golay codes Goy and G, were discovered by Golay 31.. Golay
codes are very important. They have far-reaching implications for sphere packing
and simple groups. The extended Golay code G4 was used in the Vovager spacecraft
program to transmit the colour pictures of Jupiter and Saturn.

The close relation between Witt designs and Golay codes can be illustrated by

the following facts:

e Let A be an incidence matrix of S(5.8.24). Then A7 is a generating matrix
for G24(35. pp. 222-229]. The supports of the codewords of minimum weight

(weight 8) of Goy form an S(5.8.24)[48. pp. 634].




i
e The supports of the codewords of minimum weight (weight 7) of Go3 form an
S(4.7.23). G»3 may be obtained by deleting any coordinate of G, {4%. pp.
634-635]
e The supports of the codewords of minimum weight (weight 6) of Gy» form an
S(5.6.12)[48. pp. 635].
o The supports of the codewords of minimum weight (weight 5) of Gy, form an
S(4.5.11)[48. pp. 635].

The Leech lattice . denoted bv .l.; . consists of the vectors {25]

1 .
—(0 + 2¢ - ix)
V'3

L
V8
24 u

e e,
where0 = (0.0.--- .0). 1 = (1.1.--- .1). ¢ = Ga; (the components of ¢ are regarded

(1 ~2c+dy)

as real 0's and 1's) and x. y € Z*. satisfy Y_r, = 0(mod2). "y, = l(mod?2).

The Leech lattice .1»4 was discovered by Leech in 1965 [44]. The Leech lattice
.12y has a significant impact in the theory of finite simple groups. Conway (23]
constructed three simple groups Co;. Co» and Coy by using the Leech lattice.
Coy. Cos and Coy are all subgroups of Cog. the group of automorphisms of the
Leech lattice .155. The Leech lattice also provides a lattice packing in R*}. which
still stands as the densest known packing in R** {25].

The purpose of this thesis is to characterize all t-blocking sets (see definition 3.1)
and all semiovals (see definition 1.2) in the Witt designs up to the frequency vectors.

In chapter 2 we obtain some results which correct some mistakes in 7. 8]. We also
improve the results in [9]. In chapter 3 we thoroughly determine the structure of

a Fano set - a fundamental structure used to characterize blocking sets, ¢t-blocking
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sets and semiovals in S(3.6.22). and obtain a construction method for a Fano set.
Then we characterize the t-blocking sets in Witr. designs. We determine the possible
size of a t-blocking set. classifying them by their frequency vectors. We also analyze
the Witt designs and obtain a number of new resufts. [n chapter 4. we characterize
all semiovals in the Witt designs. We prove that there are only rthree tvpes of
semiovals in 5(3.6.22). one of them has size nine. the other two have size *on. one
of them is also a ¢t-blocing set: S{5.6.12) and S(4.7.23) each have only one tvpe
of semioval. which are also t-blocking sets: but both S(4.3.11) and 5(5.%.24) have

no semioval at all.




2. NOTES ON S5(3.6.22), S(4.7.23) AND 5(5.8.24)

2.1. Some definitions and notations.

Definition 2.1. A set of points of a Steiner system is called a blocking set if it

contains no block. but intersects every block.

Definition 2.2. A blocking set C is said to be of index ¢ if C is contained in ¢t blocks.

but can not be contained in ¢t — | blocks. The index of C is denoted by i(C).

Definition 2.3. A blocking set C is said to be ureducible if for any £ = C. the set

C — {r} is not a blocking set. Otherwise. C is said to be reducible .

Definition 2.4. Let X be a set of points of S(t.k.v). let ¢, be the number of blocks
that are t-secant to X. ¢ = 0. 1. ---. k. If {i;.--- .1} is the set of all those
i,"s (0 <1, <k)such that ¢, #0and 0 <) <ty < - < i,. then we say that X
is of type (1y.12.--- .in) and call (¢5.t). -+ .tx) the frequency rector of X. denote

it by FV(X).

Definition 2.5. Let X and Y be two point subsets of S(t.k.v). [f'.X] = Y1 and

FV(X) = FV(Y). then we say that X and Y are the same type.

In the sequel discussion. S will be used to denote the point set of S(¢. k. ). Given
any t points py.--- .p; in S. the unique block B which contains py.--- .p; is also
refered to as determined by p1.--- .p:.

Let rg(s =0.1.--- .t) be the number of blocks containing a fixed s-set. then




We have the following identities:

k

! s
(1 \)t =r )..':(].1.--~.f.
) Z (’ ' ] (.5‘ >
If k =t of ty.- - .te are given. then rhe rest can be determined hv solving the

above linear system.

We recall the following:

Result 2.1. 7. result 2.1} Let B and B’ be rwo blocks in S(3.6.22). Then either

BrB' ' =0or BH-B''=2

Result 2.2

7. lemma 2.2, lemma 2.7! Let B and B’ be rwo blocks in 5(3.6.22). If

I

B~ B'" =2.then the tvpe of B B’ is {0.2.3.4.6) wirh

[f ' B~ B” =0.then the type of B _ B’ is (2. 4.6) with

ty =30, ty =45, g =2

-~

Result 2.3. 7. lemma 5.1] Let B. B’ be two blocks of 5(3.6.22) with B~ B" =2
Denote by a.b two points of B’ — B. Let & = {E|. Ea. E3. Ey} be the set of the
four blocks external to B1_ B’

1. There exist two blocks S,. S» which are 2-secant to B _ B’ at a and b.

2. For every £ £ S; {or 53). with £ # a.b. the two blocks £,. £, of £ rhrough

have the other common point y on Sa (or Sy).

3. One of the two points outside B\ B U E, C E, is in S; and the other in 5.

Result 2.4. [8. result 2.1] Every block in S(4.7.23) is a 7-set of type (1.3.7).




15
Result 2.5. [3. lemma 2.5] Let B. B’ be two blocks of S(4.7.23) with B~ B" =3.
Fix r € B — B’ and y £ B’ — B. There are exactly three blocks D). D> and D3

intersecting B U B’ only at r and y. Moreover D ™~ D2™ D3 = {r.y}.

Berardi {7. 8] defined the following sets:

1. Use the same notations of result 2.3. Fix 1 £ B ~ B’ and let = be the only

point of S» outside Bu B’ 'y E; U E,. Define

Ny =(BUB' -{a.bu}yu{r.z}

o

Let B. B’ and B” be three blocks in $(3.6.22) with .B~ B~ B" =1. Fixa
point = of B” — (B U B’). let y be one of the joint points of the rwo external

biocks to Bu B’ U {z}. Define:
Ny = [(BL;B') ~ B"] “A{y. =}

3. Ey:=S - (BAB'). where B and B’ are two blocks of 5{4.7.23) with
BB = 1.
4. E = (B - {r}) v (B - {y} - {a.b}). where B and B’ are two blocks of

S(4.7.23) with |BNn B =3.rB-B.y= B - B and
{a.b} < {r1. 2. 53/{zx} = D," D, — (BU B'). {i.).k} = {1.2.3}}.

here D;. D and Dy are the three blocks intersecting B'_ B’ only at r and y.

5. E) := BuU B’ — {0.w}. where B and B’ are two blocks of §(1.7.23) with
BNB ={o}andwe B - B.

Berardi {7] proved that .V| and .V are the only blocking sets of size nine in

5(3.6.22). It is also implied that ) and Vg are different types of blocking sets

in S(3.6.22). In (8] Berardi proved that Ep. E and £, are blocking sets of size
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eleven in S{4.7.23). He also claims that E,. £ and E| are three different types
of blocking sets in $(4.7.23). Here we prove that .V, and Vg are the same type
of blocking set in $(3.6.22): while E and E| are the same tvpe of blocking set in

S5(4.7.23).

For convenience. we will use X =Y to denote X and Y are the same type.

2.2. The proofs of NV, = Vy and E = E|.
Lemma 2.1. There exists a block which is 5-secant to Ny m 5(3.6.22).

souovh

Proof. Let B = {o.r.1.2.3.4}. B’ = {o.r.a.b.c.d}. B” = {o.4.d.

Ei={r.y.m.n.pgq}. Es={r.y.s.u.v.w}: then
Ng = [(Bu B’y - B"] U{y.z} ={r.l.2.3.a.b.c.y. z}.

It is not difficult to prove the following conclusion:

Let A(:.a) be the blocks determined by {y.i.a}. where 1 <1 < 3. a < {a.h.c}.
If one of 4.d is in A(i.«}. then the other one is also in A{i. ).

Suppose there is no block which is 3-secant to .Vy. then A(l.a) # A(1.3) if
a # 3. so each one of {0}. {r} and {{.d} is contained in exactly one of A(1l.a).
A(1.6) and A(1l.¢). Without loss of generality. we mayv assume {0} < A(l.a).
{r} € A(1.b) and {4.d} C A(l.¢). Since A({2.¢c) # A(l.c) # A(3.¢) and
4.d ¢ A(2.¢c)uA(3.c). theneithero € A(2.¢c).r € A(3.c)orr € A(2.¢).0 € A(3.c).
Ifo e 4(2.¢). r € A(3.¢). then since A(2.b) # A(l.a). A(1.b). A(l.c). A(2.¢).
I{b}} = 1. which is a contradiction.

o.r.a,c.d ¢ A{2,b). therefore |A(2.b) N B'| =

If r € A(2.¢) and o € A(3.¢), similarly we can also get a contradiction. a
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[t is not difficult to prove rhat a blocking set of size 9 in 5(3.6.22) has at most
one -secant block ‘7. pp. 39]. By lemma 2.1 and rhe proof of lemma 5.6 of 7" we

can prove

Theorem 2.1. The set Ny is the unique hlocking set of size mine 1n 5(3.6.22) and

FV(Ny) =10.138.20.26.12.1.0).

Now we prove

Theorem 2.2. The hlocking sets E and E, are the same type of blocking set 1n

S{4.7.23).

Proof. Let E be detined as in 1 of section 2.1. We only need to prove that rhere
exist two blocks 4 and A’ such that £ = 4 _ A" — {o.w} with 4~ 4’ = {0} and
w= A - A

Without loss of generality, we may assume ¢« = r;. h = r» and ¢ = £y rhen
we have a.h = Ds. Consider the blocks determined by {r.a. b.c} and {y. a.b e},
respectively. [f any one of the blocks meets B ~ B’. then it meets B ~ B’ at exactly
two peints. So at most one meets B~ B’. Let 4 be one which does not meer B~ B’.
We may assume that - is determined hv {r.a.b.c}. Since r.a.b = D3, ria.c = Da
and £.h.e = Dy. we have A — {r.a.b.c} 2 (BAB"Y - {r}. By result 2.4, we can
obtain that (4 — {r.a.b.c}) > {B' - B)l=1orl.

[Fi(d-{r.a.b.c})n(B ~B) =1 then (A—-{r.a.b.c})"iB-(B"2{c})j =2.

Let

(A~ {z.a.b.c}y (B - B) ={=}.

(A ~{c.a.b.c})n[B - (B u{c})] = {u.v}.
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By lemma 2.4 in [8]. there is a block U" through u. = and a such that

Un(BuB') = {u.z}. Since UN 4 = {u.z.a}. we have b.c ¢ '. Therefore.

U (Dy —{r.y.b.c.})| = 1Lor3.s0 !/ NDaj =2or U7 Dy| = 2. acontradiction.
So {A = {r.a.b.c}) " (B’ - B)| = 3. Therefore AN El =5 A" B = {r} and

E=(AuB) - {r.c}. a
By remark 2.8 in (8] and theorem 2.2 we know that E, and E, are the only

two different tyvpes of blocking sets of size eleven in S(4.7.23). So there are four

different tvpes of blocking sets in S(4.7.23). not six as indicated in [3}.
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2.3. Notes on S(5.8.24). We use the same notations and terminologies as in 91.

Let B. B’ be two blocks in §(5.8.24) with |[B™ Bl = 2. We have

M:=BAB'": My:=BAB -{a}: [:=B:sB -{u.r}: R:=B_B -{z.a}

whereu= B -B'.ve B ~B.as BAB'. -2 B~ B ={r.y}.

In [9] the following theorem had bheen proved:

Theorem 2.3. Let C be a blocking set in 5(5.8.24). Then 11 < C' < 13. More-
over.,
1. |C| = 1L itmplies that C = My and (My) = 2.

2. 1C| = 12 and C irreducible :mply that C = [ and ([} = 2.

.

3. |Cl = 12 and C reducible tmply that C = My - {z}. £ € Mqo. Moreover. if
i(C) = 2. then either C = M or C = R.

1. iC| = 13 implies that C is reducthle and C s the complement of M,. More-
over. if {C) = 2. then C = Bu B’ — {a}. where B. B’ are two blocks uzth

iBNB'l=2andac BN B".

In this section we prave the following theorem. which has improved the results

in the above theorem.
Theorem 2.4. Let C be a blocking set in §(5.8.24). Then Ll < 'C! < 13 and
i(C) = 2. Moreover.

1. If|C| = L1. then C = M,.

o

If |C] = 12 and C is irreducible . then C = I.
3. If |C| = 12 and C is reducible . then C = M or R.
1. If|C| = 13. then C =S — My = BuU B’ — {:} is reducible . where B. B’ are

two blocks with BN B| =2 and : € BN B’.
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2.3.1. Some known results on S(5.3.24). In the case of S(5.3.24). if E is a

blocking set. then (1) implies:
Py=ty =ty =ty —ts~tg—Ffr = 739
Fa =y =3ty — 45 = 5tg ~6t- = o
(2) ty — 3ty ~6t5 = 10t ~ 15t = 4o
fy—dt5 =10t =208 = g3
ts =5ts = I3t = g

ts — 6ty = g5

where
g1 = 253¢-7539
290 = TTele =1) =2y
(3) 6gs = 2lecle = Lie—=2) — 6y
249y = Sele = LHe = 2e = 3) = 24
12095 = «cle = Lite = 2)(e = 3)te = 4) = 1204,

The following lemmas are quoted from (3. 9].

Lemma 2.2. 9] Let B. B’ be two blocks in $(5.3.24). Then

1. The type of B is (0.2.4.3) unth
to = 30.t> = 148.t, =280.ty = L.

2. If|IBN B'| = 4. then BAB’ is a block.



3. If B~ B" =2, then M = BAB' is a set of type (2.4.6) unth

1. If B~ B =0, then BAB" = B . B’ 15 a set of type (0.4.6.3) unth

fq = I..t,g = ZSO.t,; = 448.f\‘ = i[]

5. Let E he a set. Then S — E s a block 1f and only of E =B _B'. B~ B’ =4.
6. Let F be a d-set. F~ B = 0: then there emists a block B’ such that F Z B’

and B~ B = 4.

By 1. 3 and 4 of lemma 2.2 we get rhe following corollaries. respectivelyv.

Corollary 2.1. No blocking set can be contained m one block.

Corollary 2.2. The sets M. My are blocking sets 1 S(3.3.24).

Corollary 2.3. Let C he a blocking set. [fC Z B _B’. then B ~B" =10.

Fix a point £ in S(¢t. k. v). the contractionof S(¢. k. cratrisan St -1 k=1.r=1).

For 5(4.7.23) we have

Lemma 2.3. 8! Let B. B’ he two blocks tn S(4.7.23) wnth B~ B' = {r}. then for
any u € B - B’ and v £ B’ — B. there ezists « block B m S(4.7.23) such that

= =

B" (B B = {u.v}.

Corollary 2.4. Let B. B’ be two blocks in S(5.3.24) with Br B’ = {r.y} and let

uc B-B'.ve B -B. Then (BL B') — {y.u.v} is not a blocking set.
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2.3.2. Proof of the theorem 2.4. From now on. C will be used to denote a
blocking set in S(5.3.24).

Lemma 2.4. proposition 2.1, proposition 2.2 and proposition 2.3 had been proved

in {9]. we quote them here for our convenience.

Lemma 2.4. 11 <.C} < 13.

Propositica 2.1. If!C| = 11. then C = M and C has no 7-secant block.

Proposition 2.2. [ is an irreducible blocking set.

Proposition 2.3. R is a reducible blocking set.

By (2). if :C! =12, then

(4) ty =ttty =t = 132 — 6E;.t3 = t5 = 1547ty = 495 — 20¢t-.

The following proposition plays a crucial role in our proof.

Proposition 2.4. Let |C} = 12.
1. If C has a T-secant block. then C = R or [.

2. If C has no 7-secant block. then C = M.

Proof. Let B be a block T-secant to C. B’ be a block containing the five points in
C - B:then |BnB'I =2. Let BN B’ = {r.y}. Since [ BNC|=7.{r.y}nC £0.
freC.yéC.thenC=R. lf r.ye C.thenC = 1.

If C has no T-secant block. then by (4). C is of type (2.1.6). Let B be a block
6-secant to C. let five of the six points in C ~ B be contained in block B’: then
B’ contains another point in C. We claim that this point must be the remaining

point in C - B. Suppose this point is in B: then by lemma 2.2.1, |BN B/| = 2.
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T

Let BNB ={r.yt,. r€C.y¢C.ue B-B.vr< B -B.w=C-(BuB).
Since C is of tvpe (2.4.6). the set C — {w} = (B B’) — {y.u.r} is a blocking set.

a contradiction. So B. B’ are blocks 6-secant to C and C = BAB' = /. a

Proposition 2.5 and proposition 2.7 are proved in [9]. but using proposition 2.4,

we can simplifv the proofs.

Proposition 2.5. IfiC| = 12 and C s wrreducible. then C = [.

Proof. Since C is irreducible. t; = t; > 12. By proposition 2.4. C = [. (]

Proposition 2.6. [f 'C! = 12 and C is reducible. then C = M or R.

Proof. If C has a T-secant block. then ¢ = R: if C has no 7-secant block. then

C =1\ d

Since 1/ has no 7-secant block. we have

FU(My) = (0.22.110. 165. 330.66.66.0.0).

In theorem 3.17 we will prove that R has eleven 7-secant blocks. so

FV(R) =(0.11.66.165.275.165.66. 11.0).

From the fact that [ is an irreducible blocking set we know that [ has at least

twelve T-secant blocks. Checking the appendix C we know that

FV(I) = (0.12.60.180.255.180.60.12.0}.

Lemma 2.2 tells us that FV(A[) = (0.0.132.0.495.0.132.0.0).

Proposition 2.7. Let 4 be one of the 12-sets [. M and R. Then S — A = A.
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Proof. Let A = M. Since M is of type (2.1.6). 50 is S — \[. By proposition 2.4.
S~-M=)M

Let A=R=B_B -{:.a}. where B~ B" =2.a< B.LB and - = B~ B’
Since R has a T-secant block and R . {a} is a blocking set. § — R is reducible and
also has a T-secant block. by proposition 2.6 and propositien 2.4. S - £ = R.

Let A = /. Suppose § ~ [ is reducible: then S - I = R.but § ~1S -1 =1. 30

I =8 - R = R. a contradiction. Therefore S — [ is irreducible and S - [ =7.

Proposition 2.8. IfiC" = 13. then C = § - Mg = B _ B’ - {z} 15 reducthle. where

B. B’ are blocks with BT B =2 and - = B~ B’.

Proof. Since S —C' = 11. we have § — C = M,. But M, has no T-secant block. so
C has no l-secant block. This means that C is reducible .

The fact that My has a l-secant block means that C has T-secant blocks. Let
B be a T-secant block to C and let five of rhe six points in C — B be contained in
block B’.

We claim that the remaining one point ww = C - B is still in B".

Suppose 1w £ B': we may assume that B~ B’ = ) (If B~ B’ = 4. then B’
contains three points in § — (C _ B). Since there are six blocks that contain five
points in C — B. any two of these only intersect at four points in C — B. and there
are only ten points in § — (C © B). so at least one of these blocks will intersect B:
we can label this block as B’.). Then .B™~ B" =2. Let B~ B’ = {r.y}: since B is
7-secant to C. {r.y}NC # 0.

[fr.y € C.then C - {w} = [. But on the other hand. My U {«} is reducible. so

S — I = MyuU {w} = R. a contradiction.



freC yztC.let v =B ~(C_B). B=/{r.ya.aras.ay.a5.as}. By
lemma 2.3 we know that there is a block B, that contains a,. . y such rhat
B, ~(C —{w.a,})y =0 for: =1.2.3.4.5.6. Since C has no l-secant block. w = B,.
fori=1.2.3.4.5.6:let D, = B, —{v.y.w.a,}:then D, =4.D. Z5—-1C {r.yh
and 'D,” D, =1lfort =) Since S—(C_{r.ythi=9. wehave D, ~D. = D, " D,.
if t # j. Hence D; > 5. a contradiction.

Now we have proved that w = B’. From C Z (B B’} we know that B~ B" = 2.
Let B~ B’ = {r.y}: since B~ C' = 7. rthis means that (B~ B") ~C'" = L. so

C=B._B -{:}withz= B~ B" |

From time to time we apply results of 7. 3. 91 in rthis thesis. In order ro ensure

our proofs are not affected by the errors in 7. 3. 9. rhose we use here have been

thoroughly checked.




3. t+-BLOCKING SETS IN THE WITT DESIGNS

3.1. Preliminaries.

Definition 1.1. A set C, (t > 1) is called a t-blocking set if C, meers every block in

at least ¢t points and meets at least one block in exactly t points.

Our definition of t-blocking set is different from that in '14{. Here we require rhar
at least one block meets C; in exactly ¢ points. while in 14| this is not required.

[n recent vears. more and more papers dealing with t-blocking sets have been
published. Not only is the ¢-blocking set of theoretic importance by irself (see
3. 161). it also has applications in other areas . For example. it is known rhat
there is a link between optimal linear codes and ¢-blocking sets in a projective
plane 2[. Batten 3! has pointed out that critical svstems are connected wirh /-
blocking sets and Batten 6i has presented a private key crvprosvsrem which is
based on t-blocking sets.

The automarphism groups of the Witt designs S(4.5. L1}, 5(3.6. 12). 5{3.6.22).
S(4.7.23) and 5(5.3.24) are respectively Mathieu's five sporadic simple groups
Mo M. Miao Moy and Moyt the Mathieu groups My . M. Moy and Moy are
the automorphism group of the Golay codes Gy . Gro. Gog and Gay. respectively 56.
pp. L11-112]. In 7. 3. 9. 10! Berardi. Eugeni and Ferri characrerized the blocking
sets in Witt designs. [n this chapter we characterize all t-blocking sets in Witt

designs.
3.2. t-blocking sets in S(4.5.11) and S(5.6.12).

3.2.1. t-blocking sets in S(4.5.11).




Theorem 3.1. Let C; be a t-blocking set 1n S(4.5.11).
P

I. Ift = 1. then5 < Cyi < 7.and if C,; =4 ~1t. 1 = 1.2.3. then we have
Cy = B U X. where B is a block. X s an (1 — l)-subset of S such that
X~ B =0. When C;. = 5. FV(Cy) = 10.15.20.30.0.1): when C; = 6.
FV(Cy) =(0.5.20.30.10.1); when C; =7. FV(Cy) =1(0.1.12.30.20.31.

2. If5>t >2. then C, = X. where X 15 a (6 - t)-subset of S. and

FV(Cy) =(0.0.4.24.30.3). FV(Cy) =1(0.0.0.12.36.13).

FV{(Cy) =1(0.0.0.0.30.36). FV(C5) =10.0.0.0.0.66).

Proof. Since the type of the block in $(4.5.11) is (1.2.3.5} and any 4-set is con-
tained in exactly one block. we conclude that 5 < € < 7.

Because S(4.5.11) does not have any blocking ser. C| contains a block B. If
‘Cl =5.then C; = B:if C;: =6.then C; = B _{r}. wherer £ B:if C, =7
then €, = B {r.y}. where r.y # B.

It is easy to prove that if 5 > ¢ > 2, then C, = X. where X is a (6 — f)-subser

of S. The frequency vector can be obtained by letting ¢ty = 0 and solve the linear

system (1) 3

Theorem 3.2. Let C; be a t-blocking set in 5(5.6.12).

1. IfC, does not contain any block. thent = 1. |Ci =6 and C; = (B —{a})u{r}

and FV'(C,) = (0.6.30.60.30.6.0). where B is a block and a < B. r £ B.
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If Cy contains a block. then C, = B U X,. where B is a block and X, s at-set

such that X, ~ B = 0. The frequency vectors are:

FV(Cy) =1(0.1.15.50.50.15. 1). FV(Cy) =100.0.4.32.60.32.4).

FV(C3) =1(0.0.0.12.54.54.12). FV(Cy) =i0.0.0.0.30.72.30).

I

FV(C5) =(0.0.0.0.0.66.66). FV(Csj =10.0.0.0.0.0.132).

Proof. The type of a block in 5(5.6.12) is (0.2.3.4.6). Noticing the fact rhat anv

five points are contained in exactly one block we can easily prove this theorem. Il

3.3. Some known results on S(3.6.22). The following results are quoted from 7

for our reference convenience:

Result 3.1. Let B and B’ be two blocks in 5(3.6.22) with B~ B’ = 2. Let r be

a point with r ¢ B~ B’. Then rhe set B _ B’ _ {r} has two external blocks.

Result 3.2. Let B and B’ be two blocks in 5(3.6.22) with B~ B’ = 2. Denote hy
IV the point set of the complement of B'_ B’. and by R the set of external blocks

of Bu B’. Then the pair {1 R) is a 1-{12.6.2) design.

Result 3.3. Each point in S(3.6.22) is on 21 blocks. each pair of points is on 5

blocks.

3.4. The structure of a Fano set in S(3.6.22).

Definition 3.2. A Fano set in $(3.6.22) is a T-set F of type (1.3).

The frequency vector of a Fano set F is (0.42.0.35.0.0.0). Fano sets plaved a

very important role in Berardi's characterization of the blocking sets in 5(3.6.22).
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We will also use Fano sets in our characterization and calculation of the frequency
vectors. So in this section we studv the structure of a Fano ser rhoroughly. and

give a construction method for a Fano set. Qur main result is theorem 3.3.

Definition 3.3. Let B be a block in 5(3.6.22). We define R{B) to be the set of

blocks which are disjoint from B.

By result 2.2 we can prove

Lemma 3.1. The pair iS — B, R(B)) s a 2-(16.6.2) deswgn.

Lemma 3.2. Let B and R(B) he as above. let B' = {a.h.c.d.h.¢} and
U =A{o.a.b.u.v.w} he two distinet elements of RUB). Let V. = RIB) he the other

hlocks on {o.a} and {0.b}. respectwely. [fV = B = {a.c}. then W~ B = {bh.c}.

Proof. By lemma 3.1 we only need to prove that the block .X determined by {h. .0}
is in R(B).
Suppose X 2 R(B): then X =~ Bl = 2. Let B = {r.y.z.£.7. 3} and

X = {o.b.eox. E.d}. let B, = {o.h.@. y.j.e} be the block derermined by {0.b. y}.
let B. = {0.h.h.z. 2. f} be the block determined by {0.h.z}. Then rhe block B”
determined by {o.h.¢} would be in R(B). s0 let B” = {o.h.é.p.g.r}. Because
VoU ={oa}. V- X ={oct souwvow.dz V. As o= V.7 B” so V7 contains
only one of p.q and r. We may assume that p = V. then V' = {o.a.c.e. fop}.
By lemma 3.1 there exists a block A = R(B) on {o.c} such that 4 = V. Then

a.b.e. f 2 A sod.be A and A" B > 3. a contradiction. d

This lemma guarantees that o is uniquely determined by a.b.¢ and any two of

Uv.w.




Use the notation of lemma 3.2 and let £ = B. Let By. B> and B be the blocks
determined by {n.a.xc}. {o.h.r} and {o.c.r}. respectively. Then B, = B, if i = ;

(otherwise B, would be one of L. V. W . and B, = R(B)). Let
By~ B -{r}={z}. B~ B-{r}={j} Bx~ B-{r}={z}.

B~ B - {a} = {a}. Bo~ B - {b} = {b}. By~ B’ - {c} = {7}

These produce partitions of B and B” into two parts. say {r.y.z}. {Z.§7. 2} and

{a.b.c}. {a.b.c}.

Lemma 3.3. The above partition does not depend on the chowe of r. that is for

any element of B. we get the same partition of B.

In the same way. the blocks 4. A>. 43 determined by {a.b.r}. {a.c.x}. {h.c o},
respectively also produce a partition of B. It can be proved that this partition does
not depend on r either. The next lemma shows that these are actually the same

partition.

Lemma 3.4.

3 3
U~ B) - {c} ={J(B. " B) - {z}.
r=1 e=1

Proof. 1t suffices to show (A, — {c}) ~{r.y.z} =@ for: =1.2.3.

Let U.V and 11" be as in lemma 3.2.

Now we prove (4 — {r}) " {z.y.z} = 0. Suppose (A, — {r}) " {r.y.z} =0
then A, B = {r.a}. wherea € {y.:}. Let A be the block determined by {o.¢. a}:

then from

ArV =ArWW=4nBy = {o.c}
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and result 3.1 we know that a.b.x ¢ A and {AN{U - B’} =2. From a.h < A we

know that A, N (L7 — B") = 0. Therefore. A N 4, = {a}. contradicting result 3.1.
Thus. (4, - {thn{r.y.z} = 0.

That (4; — {z}) N {r.y.z} =0 and (A3 - {r}) ™ {r.y.z} = @ can be proved

similarly. 3

For the remainder of this section. we assume

ty

B ={r.y. }. B’ = {a.b.c.d.b.é}

.L.JY.

t

and o is as above.

Lemma 3.5. Let Dy.Ds. Dy € R(B) be the blocks on {a.b}. {a.7}. {b.}. respec-

tively. and D, # B". i = 1.2.3. Theno< D,. t = 1.2.3.

Proof. If 0 ¢ D,. then D, would be disjoint from one of LU V. 0", say L. and then
the union of the two disjoint blocks D, and U" would have an external block B.

contradicting result 3.4. a

Lemma 3.6. Any block determined by three points from {a.h.é..§.2} contans

exactly three points of this set.

ty

Proof. Suppose there exists a block A containing four points from {a. b.c.F.§.z}:
then A contains two of . §. Z. say £. 7. Then one of the blocks on Z. § would contain

two points a..J € {a.b.c}: consequently. one of the blocks on {a. 3} would contain

two of 1.y, z. which is a contradiction. a

Lemma 3.7. Any block determined by three points from either {a.b.c.r.y.z} or

{@.b,é.z.§,%} does not contain o.
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Prof. Since three points uniquely determine a block. this lemma is just a conse-

quence of lemmas 3.1. 3.2. 3.4 and 3.5. .|

Lemma 3.8. Let X.Y.Z = R(B"Y - {B} he three blocks on {r.y}. {r.z} and

{y. z}. respectively. X.Y.Z = R(B"Y = {B} be three blocks on {F.j}. {F.3}. {§. 3}

respectively. Theno= X" Y ~Z~-X"Y "~ Z.

Proof. Since each block meets B _ B’. and there are totally 21 blocks on o. the
conclusion is obtained by using the above lemmas to count the blocks which do not

contain o. 3
By summarizing what we have already got. we obrain:
Theorem 3.3. Let F he a 7-set of the point set S of S(3.6.22). Then F 1s a Fano

set if and only if no block determuned by three points from F contains more than

three pownts from F.

The above results give a construction methad for a Fano ser F:

L. choose {a.b.c.r} = 8 such that {a.h. . £} is not contained in any block:

[

let B’ be the block determined by {a.h.e:}. let B = R(B") be a block on r:
3. let UV = R(B) - B’ be the blocks on {a.b} and {a.r}. respectively: let
02 (U 7V - {a}:
1. let B. B-. By be the blocks determined by {a.b.r}. {a.c.c}. {b.c.r}. respec-
tively. and let
3 N
{r.y.z) = [B— (U(B, "-B))] s}

=1

Then F = {a.b.c.r.y.z.0} is a Fano set.
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Example 3. Let the point set of S(3.6.22) he {1.2.--- .22}, the hlocks be those
listed on the next page 7. Leta = 10.h = 1l. ¢ = 13. r = 4 then

B’ = {10.11.13.16.18.20}. Now rwe rhoose B

{4.21.22.5.17.19}: then
U= {10.11.9.12. 143} U = {10.13.1.6.3.3}. 0 = 3. By = {10.11.4.2.5.6}.
B> = {10.13.4.7.9.19}. By = {11.13. 4.8 14.17}. {r.y.z} = {4.21.22} and

F={3.4.10.11.13.21.22} is a Fano set.

Note 3.1. In the above mentioned construction. there are six choices of B. but some
of them produce the same Fano set. For instance. in the above example. if we choose
B = {4.3.21.2.8.9}: then U = {10.11.1.7.17.22}. 1" = {10.13.5. 4. 15.22} and
0o =22 {r.y. 2} = {4.3.21}. and we get the same Fano set as in the above example.

It can be proved rhat there are two different Fano sets which contain {a.b.c.r}.

Note 3.2, Let F) be one of {r.y.z}. {£.4.3}. let Fy be one of {a.b.c}. {a.b.c}:

then F = Fy _ Fa_ {0} is again a Fano set.

Theorem 3.4. Let F bhe a Fano set: then there are two disjoint hlocks B'. B” und
a pownt o £ Bi. B’ such that F s just the set which consists of three pownts from

vach of B'. B” and o.

Proof. Let F = {r.y.z.a.b.c.o}: let B.B’ he the blocks determined by {r.y.:}

and {a.b.c}. respectively. Then B~ B' = (. J

The Fano sets all have frequency vector {0.42.0.35.0.0.0). [n appendix A there
are two orbits which have the same frequency vector as a Fano set. This means

that the Fano sets are divided into two orbits under the action of M.
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3.5. t-blocking sets in 5(3.6.22).

3.5.1. 1-blocking sets in S(3.6.22). [In this section we characterize the 1-blocking

sets in S(3.6.22).
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From the definitions of blocking set and t-blocking set we know that a blocking set

is a t-blocking set with ¢ > 1. which contains no block. Hence. when characterizing

the t-blocking sets. we can make use of the results in 7. Let C be a blocking set

in $(3.6.22): then the type of C can be determined by checking the results in 7
when 'C # 9. 10. 12, 13.

In order to determine the tvpes of other blocking sets. we need some more de-

tailed results. We first consider the blocking sets with ten points.

Lemma 3.9. The blocking set F . {u.v.w}. where F 15 a Fano set. r.y.z £ F
and the block determined by {u.v.w} 15 L-secant to F. has three 3-secant blocks. So

FV(FuU{u.v.w}) =(0.11.21.26.16.3.0).

Proof. Let F ={r.y.z.a.b.c.0}. let B” he the block determined by {u.r. i}, and
o0& B”. On B” - {u.v.w.o} there are four blocks besides B”. 50 rhere exists a block
B on B” — {u.v.w.o} such that B contains at least two points in {r.y.z.a.h.c}.
say r.y. Since F is a Fano set. we have B~ F' = 3. Therefore. B contains another
point in {r.y.z.a.b.c}. say =. Let B’ be the block determined by {a.h.c}: then
B'"B=0=B"B".

By lemma 3.1. there exist three blocks L". V" and W on {u.}. {v.w} and {u.w}.
respectively. such that " # B”. V" & B”. 11" 2 B”. U". V" and W are disjoint
from B’. By lemma 3.2 we know that L' =V """ = L. Since B~ B’ = ¥ and

(UuVuW)n B = 0. we have

UnBl=VAB = WrBl =2

But it is easy to see thato ¢ U UV U M. s0

UCni{z.y.ci=Vn{r.y.z}l = W{r.y.z} =L
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From (B” ~ (B - {z.y.z})] ~ (LU =V _ W) = . we know that the only point I in
(B—-{r.y.z}) -~ (B” " B)is contained in L' = V" 7~ ",

Now we consider the blocks A, (i = 1.2.3) determined by {w.r.a}. {r.w. 3}

and {u. .8}, respectively. where

as{r.y.zt -iU " {r.y.z}).

d={r.y.z} =iV " {r.y. zh.

Az{r.y =} — (W " {r.yz}).

It is easy to see that 4, =" B”: 4, = V. B": 4y = . B”. So 4, " B = 4.
A" B 20,43 "B =dand £ 2 A, _ Ay _ A4 Therefore.

{c.y.c} — (U~ ey zh) 2 Ay

{r.oy.zb =V "oy zhy T oAa

{r.oy .z} =W ~{r.oy.zh) 2 Ay
Consequently. A, ~ {a.h.e} = 1.0 = 1.2.3. Hence A, “(F _ {mwrowpn = 5.

From the above proof we can see that any 3-secant block conrains two points in
{u.v.w} and three points in F. of which one is from {a.b.c}. rwo are from {r.y. =}
So it must be one of 4. 4» and A4

The fact that F _ {w.v.w} is a blocking set means that fy =ty = 0. So

FV(F s {u.v.w}) =(0.11.21.26.16.3.0). a

The proof of the above lemma actually gives out a method to find the rhree 5-secant

blocks of F'_ {u.v.w}. Now we consider the blocking sets with eleven points.
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Lemma 3.10. The blocking set C = D _ {rw}. where D = 1B — {u}p) _ (B’ - {r}).
B and B’ are disjownt blocks. w = B. v = B’ and w £ B _ B'. has sz 5-secant

blocks. and FV{C) = 10.6.20.25.20.6.0).

Proof. We can construct a Fano set F based on B and B’ such thar w..w = F.
Any 3-secant block of C besides B and B’ contains . meets 8 — {u} and B’ — {r}.

So it contains . one point in B~ F — {u} and one poinr in B’ ~ F - {r}. But

B~ F ~-{u}=2= B~ F-{r}.

so we have four different blocks of this kind. Hence C has six 3-secant blocks and

FV(C) =10.6.20.25.20.6.0). 3

Lemma 3.11. The blocking set F _ A — {u}. where F s a Fano set. A 15 a block.
AT F =1land v = A - F. has seven 3-secant blocks. So its frequency vector s

(3.7.16.3L.16.7.0).

Proof. Let F ={r.y.z.a.h.c.o}. A = {o.w.v.p.q.r.s}. We can properly choose
two disjoint blocks B and B’ such that B~ F' =3 = B~ F.{c.y.z} - B.
{a.b.c} 2 B’ and B~ A = {u.r}. Using the merhod used in rhe proof of lemma 3.9
we can prove that on any two points in {p.q.r}. rhere exists one 3-secant block to
F . A —{u}. Now we consider the blocks A.,. A5 and 4. determined by {p.r a}.
{p.c.b} and {p.v.c}. respectively. [t is obvious that o.n 2 A, - Ay - A.. If there
exists a ¢ € {a.h.c} such that A, ~ F' = 1. then A, contains the unique point in
B-{z.y.z. u.v}. Sothere exists at most one block of this kind. rherefore two of 4,.

A, and A.. say 4, and A,. contain one point in {r.y. z}. respectively. Therefore.

ide S {abc} =2 =14 0 {a b c}i.
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So 4 = Ap. and (A, T (F o A - {u})l =5.

We can similarly prove that there exist a block determined by q.rr and a poins
in {a.b.c}. a block determined by r. i and a point in {a.b.c} such that these rwo
blocks are both 3-secant to F _ 4 — {u}.

Any 3-secant block to F _ A — {u}. other than 4. meets F at rhree poinrs.
therefore contains two points in A. So it must be one of rthe above mentioned

blecks. and so FV(F _ A — {n}) =(0.7.16.31.16.7.0). 3

Lemma 3.12. Let C = F 2 {r.y.z.w}. where F 15 o Fano set. r.y.z.w £ F. any
hlock determined hy three pownts m {r.y. z.w} s L-secant to F. [f (£ y.zow} o
not contained i any block. then C has sur 3-secant hlocks and the frequency rector

of C s 0.6.20.25.20.6.0).

Proof. [t is easy to see that C is a blocking set. Now we only need to prove that
C has six 3-secant blocks. But this can be proved by lemma 3.9 and rhe following
fact:

Let u.r be two points not in the union of rwo disjoint blocks B and B’: rhen

there exists only one block B” on {u.r} such that B” ~B'=2= B" ~ 8" 2

[n 7! the blocking sets in lemma 3.11 and lemma 3.12 are considered rhe same
type. but are different from the blocking set in lemma 3.10. Here we see that rhe
blocking set in lemma 3.12 and lemma 3.10 are the same tvpe: while the blocking
set in lemma 3.11 is a different type.

Let C be a blocking set with ten points: then

ty =8 +t5. ta =33 — b5, ty =3 ~6E5. g = 28 — df5.

Lemma 3.13. Let C be a blocking set in 5(3.6.22) unth iC! = 10. Then t; < 5.
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Proof. Suppose t; > 5. let B, B’ be two 3-secant blocks to C. Then B~ B’ # 9
{otherwise t; = 2) and BN B’ = Clotherwise C would have two external blocks).
So!lC -{BUB")} =2 Let C -(B'B’") = {z.y}. by result 3.2 there are two hlocks

A and A’ such that

An(B_ B u{ch)yi=0= A" (B_.B _{r})

Soye An A, Let B;. B and By be another three 3-secant blocks ro €. Then
B,n[(BuB)r )| =4.1=1.2.3. Hence B, contains either r or y. So one of r
and y. say r. is contained in at least two of B;. B and Bs. say B;. B». Therefore

1B, N By > 3. this is a contradiction. |

By lemma 3.9 we know that the type of C is (1.2.3.4.5): rherefore the tvpe of
S —Cisalso (1.2.3.4.5). This strengthens the result of 7. The following theorem

is a slight improvement of the results of 7.

Theorem 3.5. If C| does not contain any hlock. then 7 < C, < 13. and

1. If |IC,; = 7. then Cy = F and FV(F) = (0.42.0.35.0.0.0). wherr F 15 a

Fano set.

~

IfIC,| = 3. then Cy = F U {z} and FV(Cy) = (0.28.14.23.7.0.0}. where F

is a Fano set and r ¢ F.

3. IfIC, =9. then Cy = Fu{r.y} end FV(C,) = (0.13.20.26.12.1.0). where
F is a Fano set. and r.y ¢ F.

1. If|Cij = 10. then C, is one of the following:

(a) Cy = D := (B - {u})u (B —{v}) and FV(D) = (0.10.25.20.20.2.0).

where B. B’ are two blocks uith BB’ =0. ue B, r e B".
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(b Cy = Fu{r.y.z} and FV(Cy) = (0.11.21.26.16.3.0). where F s a
Fano set. r.y.z ¢ F and the block determined by {r.y.z} 1s l-secant to

F.

. IfCy | = 11. then Cy s one of the foliounng:

(a) C1 = (FUB) - {r}. FV(Cy) = (0.11.0.55.0. 11.0). where F is a Fano
set. B 1s a block and Fn B = {r}.

(b) Cy = D {w} and FV(C,) = (0.6.20.25.20.6.0). where D is defined as
i §{ and w ¢ BU B.

() Cy = FiuAdA-A{u}. FV(C,) = (0.7.16.31.16.7.0). where F 1s a Fano

set. A is a block and {ANFl=1.ued-F.

. AfIC) = 12, then Cy is one of the following:

(a) C) =8 - (Fu{r.y.z}) and FV(Cy) = (0.3.16.26.21.11.0). where F 1s
a Fano set. r.y.z ¢ F. and the block determined by {r.y. =} s L-secant
to F.

(b) Cy, =8 = D and FV(Cy) = (0.2.20.20.25. 10.0).

G =13 thenCy =S - (Fu{z.y}). where F is a Fano set. r.y ¢ F.

and FV(Cy) =(0.1.12.26.20.18.0).

Proof. Let C be a blocking set: then 7 < |C] < I5.

L.

(8%

If IC} = 7. then the type of C is (1.3). Solve the linear system 1 and let
tg =ty =ty = t5 = tg = 0. we get t; = 42 and t3 = 35. So we have

FV(C) = (0.42.0.35.0.0.0).

. If |C] = 8. then the type of C is (1.2.3.4). FV(C) = (0.28.14.28.7.0.0).
. If|C| = 9. then the type of C is (1.2,3.4.5). FV(C) = (0.18.20.26.12.1.0).

. If |C] = 10, then the type of C is (1.2,3.4.5).
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. [fIC! = 11. then the type of C is (1.3.3) or (1.2.3.4.3).

6. If |C! = 12. then the tvpe of C is (1.2.3.1.5).

If :C| = 13. then the type of C is (1.2.3.1.3).
3. If !C| = 14. then the type of C is (2.3.4.3).

9. If 'C! = 15. then the type of C is {(3.3).

Since C| does not contain any block. it is a blocking set. By lemmas 3.10. 3.11.

3.12 and theorem 7.4 in (7! the theorem is proved. 3

Theorem 3.6. [f C| contains at least one block, then 10 < C), < 17. and

1. If Cy =10, then Cy = F _{r.y. z}. FVI(Cy) = (0.12.13.23. 13.0. L}. where
F 15 a Fano set. r.y.z 2 F. and the hlock determumned hy {r.y. =} 1s 3-secant
to F.
2. [fCy: = L1, then C| s one of the followrng:
ta) Cy = B _(B" — {a}). where B. B’ are two blocks. B~ B =0.a = B';
FV(C,) =10.5.25,15.30. L. L).
(b) Cy =(B_.B - {a}h . {u.r}. FUCy) = 0.7.17.27.22.3. 1). where B.
B’ are two blocks. B~ B =2. a =B - B. u% B_B'. v s ane of the
two joint pownts of the two erternal blocks of B _ B" _ {u}.
3. If \[Cy| = 12. then C; is one of the follourng:
(a) Cy = BB < {u.v}. FUV(C; = (0.4.14.24,29.4.2) .where B and B’ are
blocks. B B’\ = 2. ug Bi_ B’ v s one of the two jornt points of the
two external blocks of B U B’ U {u}.
(b) €y, = BU(B’ - {u})u{z}. FV(Cy) = (0.3.17.22.27.7.1). where B. B’

are disjoint blocks, u € B’ and £ 2 BU B’.



(¢} Cy = BU(B'AB” = {u.v.w})u{c}. FV(C)) = (0.4.13.28,23.8.1).
where B. B’ and B” are bhlocks. BN B' = BN B" =0. {B"nB"} = 2.
wv.we B -B andr¢ BuB' UB”.

(d) Cy = FuBu B - {o}. FVI(Cy) = (0.6.5.40.15.10.1). where F 15 a

Fano set. B. B’ are blocks, (F"Bn B’ =2 ando< B’ F - B.

. IfIC| = 13. then C\ is one of the follounng:

(a} Cy = Bu B U{u.v.w}. FV(Cy) = (0.2.12.16.40.3. 4). where B. B’
are two blocks. |BN B’ =2 and v.v.w ¢ BU B'. and v.w are the jownt
points of the two external blocks of B U B’ U {u}.

(b) Cy = BuB' U {u.v.w}., FV(Cy) = (0.2.10.24.28.11.2). where B. B’
are two blocks, [B™ Bl =2 and u.v.iww 2 BuUB'. v and w are contained
in the the two erternal blocks of B U B’ = {u}. but only one of v.w s in
the join.

(¢) C\ = BuB' U{u.v.w}, FV(Cy) = (0.3.6.30.24.12.2), where B. B’ are
two blocks. | BN B’ =2 and u.v.w & B B’'. vach of the two external
blocks of B B’ U {u} contains only one of v and w: and u. v and w are
contained in an external block of B B'.

(d) C, =BC[(B'UB") - {a}]. FV(Cy) = (0.1.13.22,26.14.1). where B.
B’ and B” are blocks with BN B’ =¢. |B'NnB", = BN B" =2 and

ac B'nB”.

. If|Cy| = 14, then C; s one of the following:

(a) C, =S -{(BUB')~{u.v}|, where B and B’ are two blocks. |[BNB'| = 2.
ue B-B andve B' — B. FV(C,) = (0.2.3.24.30. 11. 1),
(b) C, =8 - [(BUB’) - {x.u}], where B and B’ are two blocks. £ € BN B’

and u € BAB'; FV(Cy) = (0.1.7.18.34. 13, 4).
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(c) Cy =8 -[(BuB’)—{r.a.b.cl]. where B and B’ are two disyoint blocks.
re Banda.b.cec B': FV(C) = (0.1.6.22.28.17.3).
6. If |Cyl = 15. then Cy = (S — (B G {a.b})] U {r}. wherr B s n block. £ = B
and a.b & B: FV(Cy) =(0.1.2.17.32.19.6).

T IfIC) = 16, then C) =S — (B {a})] o {x}. where B 1s a block. r < B and

:€ B: FV'(Cy) =(0.1.0.10.35.21.10).
8. If |ICy| = IT. then C; = (S - BYu {z}. where B is a block and r ¢ B:

FV(Cy) =(0.1.0.0.40.20. 16).

Proof. Checking the appendix A we obtain that 10 < |C}! < IT.

Let B be a block and B < C.

1. If |Cii = 10. let C; — B = {a.b.c.0}. let B’ be the block determined by
{a.b.c}. Since Cy is a l-blocking set. we have B’ " B = {§§. According to our
construction method for a Fano set in section 3.4. we only need to prove that
if B;. B, are two blocks on {0.a} which are disjoint from B. then b £ B,.
cs Byorcs By.be Ba.

Suppose B’ = {a.b.c.d.e. f}. Since on each of {d.e}. {d. f} and {e. f}
there are two blocks respectively. which are disjoint from B. and B’ is one of
these. let U'. V. W be the other ones on {d.e}. {d. f} and {e. f}. respectively.
Because ' is a l-blocking set. so 0o € U. V. W’ therefore. either 6 € B and
c&€ Baorcé€ By and b e B;.

It is easy to see that C, has only one block, and has no 2-secant block. So
FV(C,) = (0.12.18.28.18.0. 1).

2. If|C)| =1l.let Cy — B = {a.b.c.d.e}.
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If {a.b.c.d.e} is contained in a block B’. then B’~ B = @ and C; has five
l-secant blocks. So C; = Bu B’ - {r}. and FV(C,) = (0.5.25.15.30. 1. 1).
where r € B'.

If {a.h.c.d. e} is not contained in any block. then we claim that there exists
a block B’ such that B’ is determined by three points from {a.b.r.d.e} and
[B'n Bf =2.

If there exist four points from {a.b.c.d. e}. say a.bh. c. d. which are contained
in a block B”. then B” " B = 0. Since there are only two blocks on {a.¢}
which are disjoint from B. one of the blocks determined by {a.b.e}. {a.c.¢}
and {a.d.e}. respectively meets B. Let B’ be this block.

If no four points from {a.h.c.d. e} are contained in any block and suppose
the block determined by {a.h.c} does not meet B: then one of the blocks
determined by {a.b.d} and {a.b.e}. respectively meets B. Let this block be
B

Without loss of generality we may assume B’ is determined hy {a.h.c}.
Since B'U B’ L {d} has two external blocks. e must be in the intersection of
the two external blocks.

It not difficult to prove that on each of d and e there exists only one
block which is 5-secant to C';. So C; has three 5-secant blocks. Therefore.

FV(Cy) = (0.7.17.27.22.3.1).

3. Let |C,| = 12. First we consider the case when C| contains another block B’.

In this case |[BN Bl = 2. Let C, — (Bu B’) = {u.v}: then v must lie on
the intersection of the two external blocks of B B’ U {u} and C, has four

5-secant blocks. So FV(C,) = (0.4.14,24.29.1.2).
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Now suppose C| contains no block other than B: then C; has more than
two 3-secant blocks. hence there exists a block A such that 4 is 5-secant to
Ciand B~ Ai=2 Let C, - (Bw A) = {a.h.c}.

If the block A’ determined by {a.b.} is not disjoint from B _ 4. then
there exists a block B’ disjoint from B which contains at least two points in
{a.b.c} and meets A at the two pointsin 1~ C.

If B~ {a.b.e} = 3. then C; = B _ (B - {u}) _{r}. where u = B’.
r ¢ B _ B’ It is easy to see that C| has three [-secant blocks. So we have
FVI(C) =10.3.17.22.27.7. 1).

[f B'~{a.h.c} =2 then the block B” £ B’ ovn B’ — ;. which is disjoint
from B. contains only one of the two points in C; — B _ B") (otherwise C)
would contain at least two blocks). so Cy = B (B’ 2B" - {u.r.w}: - {r}.
where w.r.w = B”" - B andr ¢ B _ B’ . B".

From the structure of a Fano set we can see that C; has four l-secant
blocks. therefore FV(Cy) = (0.4, 13.28.23.3.1).

Now suppose A’ is disjoint from B _ A. We may even assume that any
block disjoint from B on two points in {a.h.c} contains rhe unique point in
A - C| (otherwise. we would have a block which contains four points in Cy
and is disjoint from B). Then the three points in {a.h.<} and the point in
A - C| forms a Fano set F with three points in B. The block on two points
in A’ — {a.b.c} which is disjoint from B is a l-secant block ro C,. There are
three of this kind of I-secant blocks to C;. For any point £ = {a.h.c}. we
have three different blocks on r and a point in A’ - {a.b.c} which are disjoint

from B. But only one of them is disjoint from A. so it is a L-secant block
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to C';. There are three of this kind of l-secant blocks to C';. So C; has six

l-secant blocks. FV(Cy) = (0.6.5.40.15.10.1).

. Let |Cy| = 13. If C, contains another block B’. then ‘B ™ B’l = 2 and

C, = BuB"U{u.r.w}, where u ¢ BuB’ and each of the two external blocks
E, and E; of BU B" U {1} contains at least one of v. w.

If r.w e EyNE,. then the two external blocks E4 and Ey of B'_ B’ which
contain u are the only two l-secant hlocks of C,. B and B’ are two of the
four external blocks of E3 U Ey: the other two all contain {¢.w}. so they are
contained in Cy. thus FV(C}) = (0.2.12.16.40. 3. 4).

Ifire £yNEs, we E\AE,. then C; has only two l-secant blocks and
contains only two blocks. So FV(Cy) = (0.2.10.24.28.11.2).

Ifre Ef - Ea. we Ey — E|. we can even assume that u. © and w are
contained in another external block of B U B’ (otherwise. we reduce the case
to the above case). then C, has only three l-secant blocks. and contains only
two blocks. So FV(Cy) = (0.3.6.30.24.12.2).

Now suppose C| contains only one block B. then there exists a block B’
which is 3-secant to C;. So BN B’ = . Let C, — (B B’) = {u.v} and
a € B’ - Cy: then the block B” determined by {a.u.r} meets B (otherwise.
C would contain another block). So C; = B U {(B'u B”) — {a}]. It is easy
to prove that B is the only block contained in Ci: the block which contains
B"MB’. and is disjoint from B, is the only block which meets C' at one point.

So FV(Cy) = (0.1.13.22,26.14. 1).

5. Here we only prove the case of [C)] = 14; the other cases can be proved

similarly.
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Since C, is a 1-blocking set. there exists a block B such that B is l-secant
toCy. Let r € BNC. S ~(C;UB) = X. and let B’ be the block determined
by X. If B'’"v B # . then the four external blocks of B U B’ are the only
blocks contained in C;. If r ¢ B’ ™ B. then B and B’ are the only l-secant
blocks of Cy. s0 FV(C}) =(0.2.3.24.30.14.4): if r = B* ™ B. then B is the
only 1-secant block of Cy. FV(Cy) = (0.1.7.18.34.13.4). If BB = {. then
!B’ N Cyi = 3. The three blocks which contain two points in B’ 7 C, and are
disjoint from B are the only blocks contained in C,: B is the only l-secant

block of Cy. So FV(Cy) = (0.1.6.22.28,17.3).

3.5.2. 2-blocking sets in S(3.6.22).

Lemma 3.14. Let B be a block in 5(3.6.22). r.y = B. and A,. { = 1.2.3. 4. be
another four blocks on {r.y}. Let a.b & A\ — B. and let L';. Uy £ A be another
two blocks on {a.b} which meet B. Then U’y meets one of A,. j = 2.3.4. and if

UynA, £0. then Us N A, 20 and (U, N A,) U (Lan 4,) = A, - {r.y}.

Proof. Because (U1 " Bj =2 |4, v Ay uAzu Ay uBl =22 and U = 6. sa U
meets one of A». A3 and 4. Suppose U; N As # & Since U, also meets one
of A>. A3 and A,. if Uy N A = 0. and U, meets one of Ay..Ay. say Ajz. then
(U2 N Azl = 2. Let Vi, V, be the two blocks on {a.b} which do not meet B:
then neither V; nor V5 can meet both 4, and Az. while both V] and V5 can only
meet two of A, A3 and Ay. Suppose Vi M Ay # 0. Vi Ay £ 0. Vuon Ay # 0.
VaonAgy #0: then (ViNA)u(U1NAz)=As—B. (VonA3)u(UanAs) = 43- B
and (Vi u Vi) N Ay = 4; — B. Now consider A> U B. The block V5 is external to

A> U B and a € V. Let W be another external block to A, U B which contains a:
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then IV contains at most one point in each of (Vo Ag)u(Vondy). Vi Ay Usm Ay,
respectively. so IV meets A3 U Ay in at most three points. Thus. IV contains at
most five points. which contradicts {H| = 6. So U3~ 4y # . Since {a.b} Z L~ L

and Uy # Uy, we must have (') 1 Az) (0 ™ Ay) = Ay - {roy}. -

Lemma 3.15. Let B. r.y. 4,. 1t = 1.2.3.4. be as in lemma 2.14. let
ab.e e A — {r.y}. and let 7. V. W be blocks on {a.h}. {a.c} and {b.c}. respec-

tively. which meet B. Then

(12<j<4 AN UVUW) £0} = {2.3.4}.

Proof. Suppose U m Aa # 8. V1 A, # 0: then by lemma 3.14. a would lie on at

least four external blocks of A3 U A,. which contradicts result 3.2. d

Lemma 3.16. Let B and B’ be tiwo disjoint blocks. E a 13-subset urth B — E and

|EN B'| = 5: then E s not a 2-blocking set.

Proof. Let E ~ (BUB’) = {u.v}. B’ = {a.b.c.d.e.r}. where a.b.c.d.e = E and
r ¢ E: let r be the number of the blocks on any one of {r.u}. {z.c¢}. which are
disjoint from B. Then by lemma 3.1 r < 1. Because the five blocks on {r.a}.
{r.b}. {x.c}. {r.d} and {r.e}. respectively. which are disjoint from B and are not
equal to B’. are all different. so at least one of them contains neither u nor v. and

this block is 1-secant to E. Therefore E is not a 2-blocking set. 3

Similarly we can prove

Lemma 3.17. [f B. B’ are two disjoint blocks. E is a 12-subset. B < E and

41 < |ENB'| <5. then E is not a 2-blocking set.
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Lemma 3.18. Let C, he a 2-blocking set in S(3.6.22). B. U'. V" be blocks such
that 0 #U "B =V "B %« B. If B~ Cs and Cy contains at least five pomts m

each of L and V. then C5 contains a hlock B’ such that B’ = B' = 2.

Proof. This is a consequence of lemmas 3.14 and 3.15. J

Theorem 3.7. Let C, be a 2-hlocking set 1n 5(3.6.22).

1. If Cs does not contain any block. then Ci = 14 and Co = S5 —(F _ {r}).

FV(C3) =10.0.7.28.14.28.0). where F s a Fano set and r ¢ F.

[

If C5 contains a block. then 12 < Cs < 13.
fa)y If Cy =12, then Cs = B _ B’. FV(Cs) = 10.0.30.0.45.0.2). where B.
B’ are blocks and B ~ B’ = ¢.
(b) If Cy = 13. then Ca = B . B’ _{z}. FV(Cay = 10.0.15.12.36.9.2).
where B and B’ are two disjoint blocks and £ + B . B’.
tc) If Cs. = 14. then Ca s ane of the followrng:
(i) Ca = B_B' _B”. FV(Cs) = {0.0.14.0.56.0.7). where B. B’ and
B” are blocks uith B~ B’ ~ B" =2.
(i) Co = BuB' _B". FV(Ca) = (0.0.10.16.32.16. 3}. where B. B’ and
B” are blocks. B~ B'" =2=.B'"B"". and (B~ B")"(B'~B") = 0.
(ii) Ca = B B w(B" — {u}) - {c}. FV(Ca) = {0.0.9.20.26.20.2).
where B. B’ and B” are blocks with B~ B" =2 = B~ B".
(B BY~(B'"B"Y=0.uzsB”" -B' and r £ B_B _B".
(d) IfiCs] = 15, then Cs s one of the following:
(i) Ca =8 - (BAB'Y = {u}]. FV(C3) = (0.0.7.7.42. 14.7). where B

and B’ are blocks. u € BAB'.




(ii) Co =8 -{(F - {o})Ufu}l. FV(C2) = (0.0.4.19.24.26.1). where F
ts a Fano set. o€ F and u ¢ F.
(ii) C2 = & - [(F - {o.x}) U {u.v}]. FV(Ca) = 10.0.5.15.30.22.5).
where F s a Fano seto.r < F. u.v ¢ F.
(e) IfICal = 16. then Ca is one of the following:
(i) Ca =8 - (BAB' — {u.r}). FV(Cs) = (0.0.3.8.33.24.9). where B
and B’ are two blocks. (BN B’ =2 and u.v =< B’ — B.
(i) Co = [S = (BU B ~ {n.c.iw.0})], FV(Ca) = (0.0.2.12.27.28.3).
where B and B’ are two blocks. | BNB'\ =2.0< BNB'. u.r< B'-B
and w € B - B’.
(f) If|C2) = 17. then Cy =S - (BAB' - {u.v.w}). and
EFV(Cy) = (0.0.1.6.26.31.13). where B and B’ are two blocks with
BNB'=2and u.v.we B - B.
(g) If|Cai = 18. then C; =S — (B - {u.v}). FV(Cy) =(0.0.1,0.24.32.20).

where B s a block and u.v & B.

Proof. We prove the theorem case by case:

1. Since C» does not contain any block. C» actually is a blocking set. By checking
the type of the blocking sets we obtain |Caj = 14 and
Ca =8 - (Fu{r}). where F is a Fano set. r € F.
2. Let B C C» be a block. By checking the appendix A. we can obtain that
12 £ |C1| < 18.
(a) |Ca| = 12.
Since both BUB'U{u, v} and (BUB’—{z})u{u.v.w}. where | BNB’| =2,

r€ B'—B,u,v,w ¢ BUB’. are not 2-blocking sets. any block determined
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by three points in C2 — B = {a.b.c.d.e. f} is disjoint from B. Let B’ be
the block determined by {a.b.r}: we claim that d.e. f = B’. Otherwise.
by lemma 3.17 d.e. f ¢ B’ and one of the blocks determined by {e.d. f}.
{e.d.a}. {e.d.b} and {e.d.c} would meet B. Thus C> = B _ B’ and
BB’ =0. [t is easy to see that C contains only two blocks. so we have
FV{C,) = (0.0.30.0.45.0.2).
iCal = 13.

If C» contains another block B’. then B~ B’ = §). Otherwise each of the
four external blocks of B U B’ would contain at least two of the three
points in Cy — (B iU B’): this is not possible since each point outside of
B U B’ lies on exactly two of the four external blocks. So B = B’ = 4.
Let {r} = C, — (B B’): then we are done.

Now we prove that C, does really contain another block.

Suppose C» does not contain another block.

It is not difficult to prove that there exists a block B” which is 3-secant
to Cy. By lemma 3.16 |\B™ B” = 2. Let B” — B = {a.h.c.0}. where
a.bccCrand0og Cy. Let n.v.r.y < Co— (B _ B”) and let E|. E; be
two external blocks of BUB” _{u}. Then each of E|. E: contains at least
two of v. r and y: therefore £y ™ E; contains at least one of v. r and y.
say v. Since in R(B) there are two blocks on {r.y}. one of them. say L.
meets B” at two of a. b and c. say a and b. Let V" be the block determined
by {u.v.o}: then V € R(B) and {V'N B"} = 2. Since by lemma 3.16 there
is no block in R({B) which is 5-secant to C. {r.y} is not contained in V"
If VN B" = {c,0}. then UNV contains a point «' ¢ Ca. Then the block in

R(B), which goes through {w. o} and is different from V". can not contain



(c}

u. v. ¢ and contains at most one of a. . r. y. So this block contains at
most one point in Cy. If VN B” = {a.0}. let V' £ R(B) be the other
block on {u.v}. Then h.c € V" and therefore by lemma 3.16 r.y ¢ V7.
So there are two points p.q = V'’ such that p.q 2 Ca. p = V" 7 U and
q € V' = U. The second block in R(B) which goes through {p.q} can
not contain u. v, b, ¢ and contains at most one of r. y. a. so this block
contains at most one point in Ca.

1Cai = 14

We prove that C, contains two blocks A. A’ such that .4~ A" = 2,

Let T be a block which is 2-secant to C», let Co ~ T = {r.y} and let

A, (1 = 1.2.3.4) be the other four blocks on {r.y}.

If at least two of A, (i = 1.2.3.4) are contained in C. then we are done:

if only one of them is contained in C,. then two of the rest are 3-secant
to C,. and so by lemma 3.18. the conclusion is also true.

If {T N B| = 2. then we are done.

If T~ B} =0 we may even assume that none of A4, (1 = 1.2.3.4) is

contained in Ca. s0 A, (: = 1.2.3.4) are all 3-secant to C». and one of

A, (1 = 1.2.3,4). say 4,. is disjoint from B. Let a. b and ¢ be the three

points contained in Cy, — (BUT U A;): let U. V" and I be the other three

external blocksof TU A4,.ac U NV,

(i) HUNV C C,, then the block determined by (V"N B) U {a} contains
UNV.TnNA; and W N B. Let this block and B be 4 and 4’.
respectively: then we are done.

(ii) EUNV is not contained in Cy, thenb.c€ W. lf b.c€e U orb.ce V.

then the block determined by (BN V)U {b} or (BNU) U {b} contains
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CrWand T Ay or VIV and T~ Ay, Let this block and B be A
and A’. respectively: then we are done. If b= L. ¢ = V. then U" ~ IV
contains a point u £ C> and V'~ I¥ contains a point + 2 Ca. Now
817 is a block on {u. v} which does not meet 4. Let B” he the other
block on {u.r} which does not meer A;: then (" ~ V) = B” =4 50
B” contains one point in each of L” = B and V' = B. and two points
in T - 4. and B” "~ Bl = 2. So we are done.

Let 4. 4’ be two blocks contained in Cy and 4 ~ 4 = 2: rthen

Co—(ALAN =4 Let Co—(ALAN = {a.b.e.d}. Since Cs is a 2-blacking

set. each of the four external blocks of A _ A’ contains exactly two of a.b.e

and d. Now we consider the block A" determined by {a.b.c}. A" contains

another point outside A A. If = A”. then either 4 ~ 4" = A" or A"

meets onlvone of Aand A" If 4~ A" Z A”. then Cy = 4 _ A" _ 4" and

C, contains seven blocks. so FV(Ca) = 10.0.14.0.56.0. 7). If 4" meets

onlvoneof A and A’ sav 4. then Cy = A _ 1" _ 4”7, 47~ 4 =4 In this

case C contains only three blocks. so FV{C,) = (0.0.10.16.32. 1. 3).

Ifd 2 A”. then A” meets only one of A and A’. sav A’. [n rhis case C,

contains only two blocks. so FV(Ca) = (0.0.9.20.26.20.2).

Cay = 15,

Let B be a block which is 2-secant to Ca. let B’ be the block determined

by the three points in S - (C» < B): then either B ~ (B~ Cy) =0 or

B n"B =@ If BB~ (BNCy} £ Y. we may even assume that 8C, Z 5’

(otherwise it could reduced to the other case). then C.» contains seven

blocks. So FV(C,) = (0.0.7.7.42.14. 7). If B'NB = . then we choose a

point o in C, such that {0} (B’ -C:) and a point in B —C'; forms a Fano
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set F. If F contains no point in BN C,. then C; = 8 = [(F — {o}) = {u}].
where u € F. From the structure of a Fano set we know that C'; contains
four blocks. So FV(C,) = (0.0.4.19.24.26.4). If F contains one point
rin BNCy then C; =8 -~ (F - {o.z}) o {u.v}]. where o.c € F. In
this case C, contains five blocks. So FV(C,) = (0.0.5.15.30.22.5).

|Caf = 16.

Let B be a block which is 2-secant to Cs. then |S — (B U ()] = 2. Let
B’ be a block determined by S — (B () and one point in BN C,. If
B’ contains the other point in BN C,. then C2 =S — (BAB' - {u.v}).
where u, i € B’ — B. It is easy to see that C» contains nine blocks. So
FV(Cy) = (0.0.3.8.33.24.9). If B does not contain the other point in
BNCy. thenCy = {S—(BUB' - {u.v.w.0})].oc BB . uvr= B -B
and w € B— B’. Tt is easy to see that there exist only two 2-secant blocks
to Cy. So FV(C») = (0.0.2.12.27.28.8).

The cases of |Cy] = 17 and |C»| = 18 can be proved similariy.

3.5.3. 3-blocking sets in S(3.6.22).

Theorem 3.8. We have 15 < |C3] < 19.

1. IfiCsl = 15. then C3 =S - F. FV(C3) = (0.0.0.35.0.42.0). where F i5a
Fano set.

2. IfiCs] = 16. then C3 = (S - FYu{z}. FV(C3) = (0.0.0.20.15.36.6). where
F is a Fano set and z € F.

3. IfICy| = 17, then Cy = (S - F)}{z.y}, FV(C3) = (0.0.0.10.20.35.12), where

F is a Fano set, r.y € F.




55

4. If]C3] = 18. then Cy = (S - FYu{z.y.z}. FV(C;) = (0.0.0.4. 18.36.19).
where F 1s a Fano set. r.y.z ¢ F.

5. IfiC3] = 19. then C3 = (S - F)U{r.y.z.w}. FV(Cy) = (0.0.0.1.12.36.28).

where F is a Fano set, r.y.z.w = F.

Proof. Let C = (BUB’ - 4)_.X.where B. B’ areblocks. B~ B" =24 - B -B.
0<iAl <1/ Xt =4+ 14]. X (BuUB’) = 0. Since B. B’ has four external blocks.
it is not difficult to prove that C is not a 3-blocking set.

Let C = (Bu B’" — AYy u X. where B. B’ are two disjoint blocks. A = B’.
0< A1 <3. Xl =2+id]. X (BUB)=0. Ifidl =3. leta.b < A let B” be
another block on {a.b} which is disjoint from B. If B” ~ X' > 3. then at least one
of the four external blocks of B” = B’ contains no more than rwo points from C.
so C is not a 3-blocking set. When |4l = 0.1 or 2, we can similarly prove that C
is not a 3-blocking set either.

So 15 <€ |C3j. It is easy to see that |C;) < 19.

Suppose (3] = 15: then Cy = S — F. where £ = {a.b.c.r.y.z.0}. Since (4
is a 3-blocking set. any block determined by three points of F contains exactly
three points of F. Let B and B’ be the blocks determined by {r.y. =} and {a.b.c}.
respectively: then B B’ = ¥ (otherwise two of the blocks determined by {r.y.a}.
{z.y.b} and {r.y.c} would be the same block. and this block would contain four
points from {a.b.c.r.y} C F). So F is a Fano set.

Now suppose |{C3] =15 +r. 1 <r < 4: then C3 =S — ({a.b.c} U A). where
Al = 4—-r. An{a.b.c} = 0. Let B’ be the block determined by {a.b.c}. let
B € R(B') be a blockon A (if A = &: then let B & R(B')). let £ € A (if 4 =&

then choose any point r € B). Denote by B, Bs and Bj the blocks determined by
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{a.b.r}. {a.c.x} and {h.c.r}. respectively: then B, # B, if : £ . Let
EeBirB-{z}.j< B, B-{zr}. 2 By~ B-{r}and {z.y.z} = B-{E.§.2}:
then any block determined by three points from {a.b.~.r.y.z} contains exactly
three points in {a.h.c.r.y.z}. By theorem 3.3. there exists a point o such that
F = {a.b.c.x.y.z.0} is a Fano set. Let X = F — ({a.b.c} _ A): then .X =r and

Cy=(S-F)u X, d

3.5.4. t-blocking sets, t = 4.5, in §(3.6.22). The following theorem is easv to

prove. so we omit the proof.

Theorem 3.9. C; = S - {r.y}. FV(Cy} = (0.0.0.0.5.32.40): C5 = § - {r}.

FV{(C5) =(0.0.0.0.0.21.56).

3.6. t-blocking sets in S(4.7.23).

3.6.1. Some known results about S(4.7.23). We recail the following:

Result 3.4. 10. 5.5] Every block in S(4.7.23) is of tvpe (1.3.7).

Check the appendix B we know that the frequency vector of a block is

(0.112.0.140.0.9.0.1).

Result 3.5. (L. Berardi 8] lemma 2.3.) Let B. B’ be two blocks in §(4.7.23) with

BN B’ = 3. Then FV(BU B’) = (0.12.48.75.80.36.0.2).

Result 3.6. [8. lemma 2.4] Let B. B’ be two blocks in §(4.7.23) with 1BN B’ = 3.
Fixre B-B'.yc B'- B and u ¢ BU B’. Then there exists at least one block

through r.y. u intersecting B U B’ only at r and y.




Result 7.7. (8. lemma 2.5| Let B. B’ be two blocks in S(4.7.23) with \ B B’ = 3.
Fix r € B - B’ and y € B’ — B. There are exactly three blocks E;. E; and E;

intersecting B B’ only at r and y. Moreover. E\ ™ E, ™ E; = {z.y}.

Result 3.8. (3. lemma 2.7} Let B. B’ be two blocks in $(4.7.23) with B~ B" = 1.
The symmetric difference BAB' is a 12-set of type (2.4.6). so it is a reducible

blocking set. FV(BAB’) = (0.0.66.0. 165.0.22.0).

Result 3.9. [8. lemma 2.10] Let B. B’ be two blocks in $(4.7.23) with B~ B"

I
—

Then FV(B U B’) = (0.0.36.30.120.45.20.2).

Result 3.10. [8. lemma 2.11] Let B. B’ be two blocksin S(+4.7.23) with B B" = L.
Fix r € B~ B’ and y € B’ — B. There exists exactly one block B” intersecting

Bu B’ at . y exactly.

Result 3.11. [8.2.12} Let B. B’ be two blocks in S(4.7.23) with B~ B’ = {w}. Fix
re B-{w}.y€ B'—{w} and = ¢ B B’. Then the block B” that is 2-secant to

B B’ at r.y contains = iff = is on a block through r. y and 6-secant to B _ B’.

Here we use the same terminology and notations as in {3|. Let B and B’ be two
blocks. Define:
E¢ := S - (BAB'), where BN B'| = 1.
E\:=BUB - {r.u}. where BN B’ ={r}andue B - B.

By [8] and theorem 2.2 we have

Lemma 3.19. Let C be a blocking set in S(4.7.23): then {C| = 11 or 12 and

1. if |C| =11, then C = Eg or Ey;

2. f|C| =12, then C =S - Eqg or S — E|.
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Lemma 3.20. Let B be a block m S(4.7.23). and r.1.2.3.4 five pownts not mn
B. Then there 15 a block B’ such that B’ contains at least four of £.1.2.3. 4 and

B~ B =1

Proof. If £.1.2.3.4 are contained in a block. rhen we are done: otherwise the five
different 4-subsets of {r.1.2.3.4} determine five «ifferent blocks. and ar least tour

of them meet B at only one paoint. d

Let B and B’ be two blocks in S(4.7.23) with B~ B = 1. and let
B - B’ = {aj.ar.aj.a5.a5.a4}. £ = B’ — B. Denote by L’ rthe unique biock rhat

intersects Bi_ B’ anly at {r.a,}. 1 =1.--- .6,

Lemma 3.21. The sic blocks L. 1 = L.--- . 6. satisfy the followny ronditions:
LU0 23.and U, 70, =3 iff 0 =
2. Any point in S - B _ B’ lies on exactly three of U, ¢ = 1.--- 6. Any fwo

powmts m S — U _ B’ are contained n at least one of UL 0 = Lo+ 6.

Proof. 1. Suppose :[L'y 7 L% < 3: then Uy 7 L% = 1. hence Uy, < 6.

2. Ifrhere exists w = S — (B - B’) such that w = Uy ~ 0 ~ L7 ~ U, then one of
U,.{=1.--- 6. contains at most six points.

I[f anyv point in $ - (B~ B’) lies on one or two of L. : = 1.--- .6. then there
must exist another point which lies on four or more than four blocks.

Leta.bh = S—(BUB’). Supposea lieson L').L and {7y, Since S—-(BLB’)| = 10.

3
s-meBn () -t

=1

and a is the only point in & — B U B’ that lies on Uy 7 L'y © Uy. Since

.U, =3, i#j.1<uj<3.




there are three points in

(L:j U,) —- BUB U {al.

every one of which lies on two of U',. 1 = 1.2.3: each one of the remaining points

lies on only one of L",. 1 = 1.2,3. Therefore

.3 ‘
J}x‘z?—l(UU,)—B’_,‘B'v{a}!—iiz4x3=1‘2.

=1

so
L, 3 }
(Uw) -opoani=o.
H =1 .
and b lieson one of U",. 1 = 1.2.3. O

Let B and B’ be two blocks in $(4.7.23) with B B’ = {a.b.c}.

Lemma 3.22. There are exactly three blocks T). Ta and T; on {a.b.c} such that

T, (BAB'Y=0 fori =a.b.c.

Proof. There are five blocks on {a.b.c}. B and B’ being two of them. So the

remaining three can not contain any point in BAB'. d

Lemma 3.23. For i € {a.b.c}. there are exactly four blocks T,, (j = 1.2.3.4})
such that T,, N (B B’) = {i}. |T,, " T} = 3 and each point in S — (B B’) lies

on only two of them.

Proof. There are twelve 1-secant blocks to BU B’. so each one of them meets BU B’
at one point in B B’. If there is a point £ € § ~ (B U B’) such that r lies on
three blocks T,;. T.» and T3, which meet B U B’ at i.then one of T,;. T;» and T}3
would contain at most six points, a contradiction. So the twelve 1-secant blocks to

B U B’ can be divided into three groups. each group with four blocks. all of which
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meet B B’ at the same point: each point in S —( B'_ B’) lies on exactly two blocks
of the group. Let T}, (; = 1.2.3.4} be the four blocks which meet B~ B at i.

1< {a.b.c}. Then T,, " Tii = 3. |

Lemma 3.24. Fir i < {a.h.c}. For anyl < {a.b.c} we have T,, " T; — {2} =2

{j =1.2.3.1) and either

T.)A'Tl—{i}:TxkATl—'{i}

or

(T, "Ti -t u(Tu "~ Tt = {t}) =Tt = {a.h.c}.

Proof. If |T,, nT; — {i}i # 2. then T,, 7 T; — {t}i = 0 and one of rhe blocks T
(j # k = {1.2.3.1}) would contain at most five points.

If there exist j.k € {1.2.3.4} and ; £ k such that

T‘IJ‘A'I‘I—{'.},:(TIIG‘"I‘I—{Z.}

and

(Ty "Ti = {i}) <« (Tu " T - {t}) 2 T = {a.b.c}.

then (T, NT; — {i})(Tu~ Ty —{i})i = 1. Let (T, " T, = e (T " T - {i}) = {r}
and T,, N T, — {i.r} = {a}. wherea € T,,,. m # . Then the block determined by
(T, uTw) " Ty and T,; N T5,, — {a.i} would either not meet at least one of B and

B’ or meet one of them at two points. d

Fix u € B—- B’. v € B" - B. Let B” be the block determined by {:.j.u.v}.

where i.j € {a.b.c}.

Lemma 3.25. L. |{[B" - (BuUB)|NTii=1 forl=a.b.c.
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2. Fora fized [ = {1.j}. B" " {Tyu — {I})i =0 or2 for k = 1.2.3. 4. Moreover.
there ezists only one k = {1.2.3.4} such that 'B" ~ (T, — {{}' = 0.

3. Forr< {a.b.c} —{1.)} we have B" ~T,, =1or3(; =1.2.3.4) and there

exists only one k = {1.2.3.1} such that B" ~ T, =3.

Proof. The results are the consequence of lemma 3.23 and the fact thar anv two

blocks meet either at one point or three points. -

Lemma 3.26. Let A, (¢ = L.2.3) he the three hlocks which meet B _ B’ only at c
and v. wherer = B - B'.

I. If £ = u. then

4. "(B"-B_B=1.:=123
and
(4, oA oAy (B"-B_B"Y = B" -B _ B
2. [fr = n. then one of A;. Ay and Ay does not meet B” — B _ B’. and the

remammng two meet B” — B _ B’ at two powmts.

Proof. Since A, - (B _ B = 5. 4, meets one of T} — {a.b.c}. Tn = {a.b.c} and

T3 — {a.b.c} at three points. and meets each of the remaining two at one point.

Let

Ty = {a.b.coo. I~ 0}
T ={a.b.c.r.y.z w}
T3 = {a.b.c.p.q.s.t}

and B” = {a.b.u.v.a.x.p}.
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. If r = u. then from u.v € 4," B” we know that {4, 7 (B”" - BiUuB')| =1 for

t=1.2.3.

In order to prove (4, i Ay U Ay (B” - BUuB’) = B” - BuB’. we anly
need to prove that A, " (B" - BUB') £ A,n(B" -B_B')if i1 # ;. Suppose
A (B”" - BUB') = 4,0 (B"” - BiuB’). without loss of generality we assume
A1 (B” = BuB’) = {«}. Then one of A and A, meets one of T, — {a.h.c}
and Ty — {a.b.c} at three points. say A; meets T, — {a.bh.c} at three points.
Then either r € 4, or r € A, Soeither {4, 7" B” > {or A, " B" > 4.
contradiction.

Now suppose r # u. Then {4, " (B”" - BuB’)=0or2for:=1.2.3.

If A, N (B” — Bu B")| = 0. suppose |4, 0 (T} — {a.b.c}){ = 3. then

A0 (T, — {a.b.c}) = {3.~.8}.

S0

A (T = {a.boep)t =1 = A3 (T — {a. b.e})l

Therefore.

A N (T = {a.b.c})] =3 = Az N (Ty - {a.b.c})]

or

|A2 V(T = {a.b.c})| =3 = A3 " (T — {a.b.c}).

Assume |A; N (T —~ {a.b.c})| =3 = A3 N (T3 — {a.b.c})].
If AaN(Ty - {a.b.c}) ¢ B" = BuUB or A3n(T, - {a.b.c}) ¢ B - BUB'.

then A, N (T» — {a.b.c}) or A3 N (T3 — {a.b.c}) would contain a point in
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B" - BUB' So
A (B”"-BLUB)=2=4;"(B"-B_B".

If'A, " (B”" -BLBY =2for:=1.2.3. then
3

U(’.—l. -B" = (A Ay Ay) =B =T\ =T, _.Ty) =t B" _{a.h.ch.

=1
U"i:‘(A, — B”) is a partition of (T} _T> - Ty) — ¢B” _ {a.h.c}). Let Ti; be

the block in lemma 3.25. which satisfies B” ~ (T, — {i}}. = 0. then
Ti - (i} 2Ty 2T W Ty) - (B”" - B_B).
S0
(Tue = {i}) " (Ay o Ao - Ay) = T = {2}
and
3
Y (Tu-{ih~ 4, =6
1=1

This is impossible since (T — {¢}) " A, =lor3for y =1.2.3.

3

ST Tu - {h 4, =35

J=1

9.

a

Let B and B’ be two blocks in S(4.7.23) with ;B™ B” = 1. We know that there

are twenty 6-secant blocks to B U B’. Moreover. we have

Lemma 3.27. On each point in § — (B U B’). there are two 6-secant blocks to

B U B’ and these two blocks meet only at this point.
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Proof. We only need to prove the following:

Suppose r ¢ B B’ If A is a 6-secant block to B B’ which contains r. then
{rfuB-(AnB)(BnB)U[B — (AN B) U(B™ B is a block.

Let A’ be the block determined by {r}UIB - (AN B)U (B B’)]. We prove A’
contains B’ - (47 BYu (BN BN,

First we prove A’ "B = 3. H'A'n B = [ then (A" 2*B)~ 4 =0. The
block determined by r. the point in A’ N B’. a point in A 7 B’ and a point in
B' - (BN B) (AN B)u(A'n B)] would meet B at two points. a contradiction.

If A""B =3 but (A'NB)YNA # O, then :((A'N B'Yn Al = 2. The block
determined by r. the two points in B’ —{( B B YU (AUA"Y and a point in AT A’ B’
would also meet B at two points.

SoA'~ B =B - (A" BYU(B" B -

3.6.2. I-blocking sets in 5(4.7.23).

Theorem 3.10. Let Cy be a 1-blocking set in S(1.7.23). Then 7 < ,Cy| < 17.

1. If Cy! = 7. then Cy = B with FV(Cy) = (0.112.0.140.0.0.0. 1). where B us

a block.

o

LIFC =T+ 1 €1 < 3. then C, = BuU X with frequency vectors
(0.70.42.105.35.0.0.1). (0.42.56.91.56.7.0.1) and (0.24.54.85.70.13.1.1.)
respectively; where B is a block. | X} =i and X "B = .

3. If|Ci| = 11, then C, is one of the follounng:

(a) Cy = Eg with FV(C,) = (0.22.0.165.0.66.0.0):

(b) Cy = E; with FV(Cy) = (0.11.55.55.110.11,11.0):

(¢) Cy = Bu B’ with FV(C,) = (0.12.48.75.80.36.0.2). where B and B’

are blocks with |BN B'| =3
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(d) Cy = B B’ — {z.y} wnth FV(C)) = (0.13.44.30.30.31. 1. ). where B

and B’ are blocks with B~ B" =1 and r.y = B' - B.
1. IfCy, = 12, then Cy s one of the follounny:
ta) Cy =8 - El with F‘/'(C[) =(0.11.11.110.55.55.11.0}:

(tby Cy = BL B _{a} unth FV(Cy) = (0.6.34.70.35.50.6.2). where B and
B’ are bivcks with B~ B" =3 anda £ B _ B’:

(c) C, = BB —{r} with FV(Cy) = (0.6.35.65.95.40.11. 1). where B and
B’ are blocks with B~ B" =1 and r =< B' - B:

(dy Cy = B:.B' _B" = {a.u}. FV(C,) =(0.7.30.75.35.45. 10, ). where B.
B’ and B" are blocks with BrB'~B" =2 anda = B'~B”"-B~B'~B".
w= B”" -(B_B".

3. If C\. = 13. then Cy s one of the follounng:

() Cy = B _ B _B" - {z.y}. FV(Cy} = 10.2.24.60.30. 75. 5. 4]. where B.
B’ and B" are blocks unth B~ B~ B" =3.r.y< B”" - 1B . B":

b) Cy =B _B' _B" _{u} - {z.y.z}. FV(Cy) = 0.3.21.60.90.60. 17.2).
where B. B’.B" are blocks. B~ B' ~B" =3.r.y.z = B" -(«B . B"
and « 2 B . B' . B”:

l¢c) Cy =B_B wB” - {x}. FV(Cy) =1(0.5.12.75.30.60.20. 1). where B.
B’. B” are blocks. BB~ B" =2andr =B~ B"-8B.

6. If 'Cy{! = 14. then C| is one of the follounng:

(a) Cy =8 ~(BC B —{a.u}). FV{Cy) =(0.1.13.46.36.77.26. 4). where B
and B’ are blocks with i B B =3 anda= B B'.ue BAB':

(b) C, =8 ~ (BB = {u.v}). FV(Cy) =(0.2.9.51.86.72.30.3). where B

and B’ are blocks with \BNB'I =3. u€ B- B and v« B’ - B.
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T.IfIC I =1T-n(l < n <3). then C; = S—(BUX ~{a}) with frequency vectors
(0.1.4.35.30.33.44.6), (0.1.0.20.75.31.66, 10) and (0.1.0.0.30.60.96. 16).

respectively. where B s a block. 1 = B. X' =n and X~ B =0.

Proof. By lemma 3.19 every blocking set in 5(4.7.23) contains at least eleven
points. so C| > 7. Bv definition there exists ar least aone block such rhat C| meets

this block at only one point. so (Cy, <23 -6 = 17.

1. If Cy, = 7. let B be a block contained in C:then C; = B.

2.0 C, = 7«1 (1 €1t < 3). let B he a hlock contained in C: rhen we
have C, = B _ X. where X' =i and X = B = 0. It is easy to see that when
'Cy. = Xor 9. Cy has no 6-secant block. so FViC,) = 10.70.42,105.35.0.0. 1}
aor (0.42.36.91.56.7.0.1): when €, = 10. C; has only one t-secant block
and so FV(C)) =(0.24.54.85.70.13. L. 1}.

3. Let Cy; = 11. If C| contains no block. then ' is a blocking set. so Cy, = £y
or E{. [f C| contains a block B. let B’ be the block determined by the tour
points of ', — B. theneither BT B =3or B~B' =1. I[f B~ B"” =3.rhen
C, = B_ B with FV(Cy) = 10.12.43.75.30.36.0.2): if B -~ B" = 1. then
Cy=BUB —{r.y}. FV(Cy) = 10.13.44.30.20.31. 4. 1). where r.y = B' - B.

1. Let Cy; = 12. If C| contains no block: then C| is a blocking set. so we have
C,=8-E,. FV(Cy) =(0.11.11.110.55.53. 1L1.0).

If Cy contains two blocks B. B'. then B~ B’ =3.C, = B B’ _ {a}.
where a 2 B B’. By lemma 3.25 we know that C, has six l-secant blocks.
Since B U B’ has no 6-secant block. C| contains only two blocks. So we have
FV(Cy) =(0.6.34.70.85.50.6.2).

Now suppose C| contains only one block B.
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If there is a block B’ which is 6-secant to (', and meets B at only one
point. then C; = Bu B’ — {r}. where r £ B’ — B. In this case C| has six
l-secant blocks. So FV'(C{) = (0.6.35.65.95.40.11.1).

If there is no block which is 6-secant to C; and meets B at one point.
then let B’ be a block such that B’ is 6-secant to C; and (B’ ™ B} = 3. and
let 2.y ¢ Cy - (BUuB’). a € B - C,. Let B” be the block on {r.y.a}
such that {B” N B| = 3. We claim that B" N B £ B - B’. Otherwise. let
B - B = {v.v.w.z} and B" " B = {u.v.w}: then consider the block A
on {r.y.z} which meets B’ at three points. If A" B’ £ B’ — B. then there
would exist two blocks on {zr.y.a} or B” — (B U B’) which meet B at three
points. this is impossible. So AN B’ Z B’ — B. Since there are five blocks on
{r.y.a}. we have a ¢ A. So |JANB| = 1. |ANCy| = 6. a contradiction. If
{B" (BN B’)| =1.then|B"N(B~B')| =2 = 8B""(B'- B). We consider
the block X determined by r. y and the two points in B’ - {Bu(B"mnB’)]. X
can not contain B"N(B'~B) —{a}. Ifa € X. then X would contain a point in
B - B'U{B”NB)|. The block determined by r.y.a and a point in BNB' - B".
would contain BN B’ — B” and the remaining point in B - {B’ _ (B” © B);.
So either there are only four blocks on {r.y.a} or the fifth block on {r.y.a}
would not meet B. contradiction. Therefore. we have |B” N (BN B)i = 2.
and Cy = Bu B’ U B"” — {a.u}. where u € B” - (Bu B’). By lemmas 3.23.
3.24. 3.25 and 3.26 we know that for a point p in B N B’. there is only one
block which meets BU B’ at p. but does not meet B” — (B B’): for a point
¢ in B — B’. there is also only one block which meets BU B’ at ¢ and a. but
does not meet B” — (B U B’ U {u}). So C, has seven l-secant blocks and

FV(C;) = (0.7.30.75.85.45.10.1).
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5. Let iCy} = 13.

If C, contains two blocks B and B’. then |Bn B’! = 3. Let B” be a block
which contains one point in C; — (BU B’) and meets BUB’ at BN B’. If B”
contains the other point in Cy — (B B’). then C, = Biu B U B" - {r.y}.
where r.y € B” - (BUB’}). By lemma 3.24. we know that C has two l-secant
blocks. these are two of the blocks which meet B U B’ oniy at one point o in
BriB’. The block determined by o. the two points in B —( BuB'U{r.y}) and
a point in B — B’ can not contain any point in S - (BU B’ = B" ~ {r.y}). So
it is contained in C;. We have two of this kind of block. Anv block contained
in C, other than B and B’ must be one of the two blocks. So C, contains
four blocks. and FV{C;) = (0.2.24.60.80.75.3.4).

If B” does not contain the other point in C, — (B~ B’). then we have
C,=B.uB sB"2{u}—{r.y.y.z}. wherer.y.z= € B” — (Bu B’). and
u g Bu B '_B”. By lemma 3.24 we can see that C| has three l-secant blocks
and contains only two blocks. So FV(C) = (0.3.21.60.90.60.17.2).

Now we assume C, contains only one block B. Let B’ be a block which
contains three points in C; — B and meets B at three points. Let B” be the
block on C, — (B U B’) and meets B at three points. [f BB Z B - B’.
then since C| contains only one block B. we have a € B”. Consider the four
blocks which meet B U B’ at a fixed point in BN B’. By lemma 3.23. one of
them contains C| — (B U B’). So there exist three blocks on Cy — (Bu B')
which meet B U B’ at one point in B n B’. Therefore. the fifth block on
C, - (Bu B") would contain B - (B’U B”) and B’ — (B U {a}). so it is
contained in Cy, a contradiction. Let B"NB ¢ B— B’. If B"n(B’' - B) = §.

then |B” N (B N B’)| = 1, so one of the blocks which meet B U B’ only at
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B B’ would contain two of the three points in C| — (BU B’). Using the same
argument developed in the first paragraph. we obtain that C; would contain
two blocks. a contradiction. So B” ~(B’ - B) # 0. hence B” " (B’ - B) = {a}.
and Cy = B2 B’ 2 B” -~ {a}. By lemmas 3.25 and 3.26 we know that C has
five l-secant blocks. Therefore. FV(C)) = {0.5.12.75.30.60.20. 1).

Let C;. = l4. Let B be a l-secant block to Cy: then S - (C, . B}l = 3.
Let B’ be the block on § — (Cy; - B) which meets B at three points. If
BrC, Z B . thenC, =8 —(B_B' -{a.u}}). wheren = Br B'. u = B' - B.
Bv lemma 3.23 we know rhat rhere exist four blocks which meet B _ B’ at
1. So C, contains four blocks. It is easy to see that C; has onlv one l-secant

block to B. Therefore.

FV(Cy) = (0.1.13.46.36. 77.26. ).

£ BrC, cB.thenC, =8 -8B _ B - {ur}). where 1 = B - B" and
v = B' - B. It is easy to prove that C; contains three blocks. and has two

l-secant blocks. So

FV(Cy) =10.2.9.51.86.72.30.2).

The cases of Cy; = 15. 16 and 17 can be proved similarly.

3.6.3. 2-blocking sets in 5(4.7.23).

Theorem 3.11. Let C, be a 2-blocking set 1n S(4.7.23). Then 12 < [Cyy < 18,

and
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L. If (Cs| = 12, then C; = BAB'. FV(C3) = {0.0.66.0.165.0.22.0). where B

and B’ are blocks with B B’ = 1.

[TV]
.

If Cy =13. then Cy = B_ B'. FV/(C3) = (0.0.36.30.120.45.20.2). where
B and B’ are blocks nith B~ B’ = 1.
3. If Cs: = 14. then C, 15 one of the follounng:

(a) Cay =B _ B _{a}. FV(Cy) = (0.0.18.36.96.72.27.4}. where B and B’
are blocks with B~ B =1 anda 2 B _ B':

(b) Ca = B_B _B" - {r.yz} and FVICy) = (0.0.14.56.56.112.7.3).
where B. B’ and B" are blocks with B~ B' = B~ B" =B~ B"~ B".
B'~"B"-B={r.y}and - B" - B".

1. If 'Caj = 15. then Ca is one of the follownng:

(a) Co =8~ (BB —{r.y.u}l.. FV(Ca} =1(0.0.7.35.70.98.35.3). where
B and B’ are blocks with B~ B =3.r.y=B "B and w= B.B:

(b) Ca =8 - (BB ={r.u.r}. FV(Cy) = (0.0.3.30.30.38.40. 7). where

B and B’ are blocks with B~ B" =3. r = B " B'. u = B - B and

IfiCy = 16. then Cy = S—{a.b.c.d.e. .y}, FVIiCy) =10.0.3.20.65.96.57. 12).

[V}

where a.h.c.d.¢e = B and r.y £ B.
6. If Col =17, then Cs = S~{a.b.c.d.e.r}. FV(Ca) = (0.0.1.10.50.95.77.20),

where a.b.c.d.e = B und £ ¢ B.

7. IfiCal = 13. then Cy = S — {a.b.c.d.e}. FV(Ca) = (0.0.1.0.40.80. 100.32).

where a.b.c.d.e € B.

Proof. Since the blocking sets in S(4.7.23) all have size greater than or equal to

eleven. and the blocking sets of size eleven are all 1-blocking sets. by lemma 3.20.
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result 3.9 and result 3.10. we know :C,{ > 12. Bv definition. C’; meets a block at

two points. so :Caj < 23 ~ 5 = 18.

l.

(3]

Since /C3 = 12. C'; contains no block. otherwise (s can not be a 2-blocking
set by lemma 3.20. result 3.10 and lemma 3.21. So C, is a blocking ser:
therefore Cy = BAB’. FV(C,) = (0.0.66.0.165.0.22.0). where B and B’
are blocks with iB~ B’ = 1.

If iCy| = 13. then since there is no blocking set of size thirteen in S(4.7.23).
C contains a block B. By lemma 3.20 there exists a block B’ such that
BN (Cy~B)l=450r6and B Bi=11If B~(Cy-B) =1or5. then
C, would not be a 2-blocking set. so B~ (Cy - B) =6,and C, = B _ B’
with ‘B~ B’ =1 and FV(C;) = (0.0.36.30. 120.45.20.2).

When 'C»: = 14. let B be a block. B = C,.

If there exists a block B’ which contains six points in C» — B. then
Cy=B_B _{a}. wherea 2 B_ B’ and B~ B" = 1. By lemma 3.27. C,;
contains four blocks. so FV(C,) = (0.0.18.36.96.72.27.4).

Suppose no six points in C> — B are contained in any block. Since Cy is a
2-blocking set. no block contains only five points in C; — B. By lemma 3.20.
there exists a block B’ such that B’ contains only four points in C2 — B and
iBPNBj=1. Let Ca — (B By = {a.b.c}. B - C> = {z.y}. We prove that

there exists a block B” such that

a.b.ce BH‘ Br\-BIC B”. B” ~ Bl—(Bﬁ B,J - {.r.y}.

Consider the five blocks on {a.b.c}. One of them meets B’ at three points.

let B” be this block. We prove B” has the above mentioned properties.
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Let BN B’ = {0}. B = {0.1.2.3.4.5.6}. First we prove 0 < B’ ~ B".
If0¢ B'n B”. then {z.y} C B” N B’. Let the other point in B” 7 B’ he
u. and let B” © B = {6}: then the block determined by {a.bh.u.r}. where
re B’ —(B” . B). would contain five points in C, — B.

So we have proved that 0 £ B" " B’.

We claim B"NB’ - {0} = {r.y}. Otherwise we would have r £ B” "B’ and
yé€ B"NB orr¢ B'"NB and y € B” " B’. In each case we would obtain a
block which contains five pointsin C» - B. Thus C, = BUB''UB"” - {r.y.z}.

where r.y € BN B" - Band : € B" - (BuU B’).

. When |{Ca]| = 15. let B be a block with {BNCyj = 2. and let

S —(Cyu B) = {p.q.r}. We consider the block B’ on {p.q.r} which meets B
at three points. It is easy to see that B’ (B Ca) #0. I |\ B'~(BNC,)l = 2.
then Co = S - {(BUB') - {z.y.u}|. wherer.y € BN B’ and u = B’ - B. By
lemma 3.23 C contains eight blocks. So FV(C,) = (0.0.7.35.70.98.35.3).
If| BN (BNCs)| =1.then Cy =S - i(BUB') - {z.u.v}]. wherer = B B’.
u€ B ~ B’ and v € B’ — B. [t can be proved that C'» contains seven blocks.

So FV(C2) = (0.0.38.30.80.38.40.7).

. If|Cs! = 16. then since Cs meets a block B at two points. we have

Cy =8 - {a.b.c.d.e.z.y}. where a.b.c.d.e € B and r.y ¢ B. By lemma
3.23 there are eight blocks which meet BuU B’ at one point in BN Ca. It can
be proved that on (B’ ~ B)N C, and a point in BN C, there are two blocks
which meet B U B’ only at the three points. So C; contains twelve blocks.
and FV(C2) = (0.0.3.20,65.96.57.12).

The set S — {a.b,c.d.e, r.y}. wherea.b.c.d.e € B. and z.y ¢ B. is indeed

a 2-blocking set, since any block B” # B meets B in at most three points:
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in the extreme case. if .y € B”. B” still has at least two paoints in common
with S — {a.b.c.d.e. r.y}.

6. Similarly we can prove that if [Cyj = I7. then Cy =S — {a. b.c.d.e. r}. where
a.b.c.d.e are in a block B and r £ B. FV'(Cy) =1(0.0.1.10.50.95.77.20).

I Cyi =18 then Cy =S — {a.h.c.d.¢}. where a.b.c.d.e are in a block. and

FV(C,) =10.0.1.0.40.30.100. 32).

3.6.4. t-blocking sets, ¢t > 3. in S(4.7.23).

Theorem 3.12. Let C'y he a 3-hlocking set in S(4.7.23): then 153 < Cy: < 19, and
l. of ' Cy = 15, then Cy = S — (BLAB"., FU(Cy) = 10.0.0.70.0. 168.0. 13).

where B. B’ are blocks with B B" = 3:

2. WfICyi = 16. then Cy = S—(BLB —{a}). FViCy) = (0.0.0.35.35. 126.42. 15}.
where B and B’ are blocks wnth BN B" =3 anda € B’ — B:

3. lflC;”

I

17. then Cy =S—{a.b.e.d.e. f}, FV(C3) =10.0.0.15.40.105.72.21).
where no five pownts m {a.b.c.d.c. f} are contained tn any block:

1. 1f 'Cyy = 18, then C3 = S — {a.b.c.d.e}. FV(Cy) =10.0.0.5.30.90.95.33).
where {a.b.c.d. e} ts not contarned m any hlock:

5. if|Cy; = 19, then Cy = S—{a.b.c.d} and FV(Cy) =10.0.0.1.16.72.112.52).

Proof. First we prove that X =8 — (B U B") — {o.r.y.a.b}] is not a 3-blocking
set in S(4.7.23), where B and B’ are blocks with BN B’ = {o}.a. b = B - {0}
and z.y € B" - {o}.

Let B — {0.a.b} = {c.d.e.f}, B' — {o.x.y} = {u.v.w.z}. We consider the
blocks on {u.v.w} and {u.c. =}, respectively. which meet B — {0} at three points.

One of them contains at most one point in {a. b}, so it meets .\ at at most 2 points.




By lemma 3.20 we know that (C3j > 15. Obviously :Cy; < 19.

If \C3j = 15. let B be a block with B Cy = {r.y.z}. S—(Cy 2 B) = {a.b.c.d}.
Let B’ be the block determined by {a.b.c.d}: then we have B~ B’ = {r.y.:}.
Cy =8 - {BAB’) and FV(Cy) = (0.0.0.70.0.168.0. 15).

[f ' C3i = 16. let B be a block with BN Cy = {z.y.z}. let S—(Cy_ B) = {a.b.c}
and B’ the block on {a. b. ¢} and meets B at three points: then BB’ can not contain
two points in B —{r.y.:}. Furthermore. we can prove that B’ ™ (B —{r.y.z}) = 0.
So B B" = {r.y.z} and Cy = S - (BAB' - {a}). where « = B’ - B. and

FV(Cy) = (0.0.0.35.35.126.42.153). 3. 4 and 5 can he proved similarly. 3

Theorem 3.13. Let Cy he a d4-blocking set in S(4.7.23): then Cy, = 20 and

Cy =8 -{a.b.c} and FVICy) =0.0.0.0.3.48. [20.30).

Theorem 3.14. Let C; be u 3-blocking set in 5(4.7.23); then C5. = 21 and
Cy =8 - {a.b} and FV(C5) =1(0.0.0.0.0.21.112,120).
Theorem 3.15. Let Cy; be a 6-blocking set in 5(1.7.23): then Cy; = 22 and

Cs =8 —{a} and FV(Cs) =i0.0.0.0.0.0.77.176).

Theorem 3.16. The 7-blocking set 1n S(4.7.23) s S.

3.7. t-blocking sets in S(5.3.24).

3.

.1. A general result on 5(5.3.24). Now we characterize the t-blocking sets
in 5(5.3.24). We use the same terminology and notations as in section 2.3.

First we prove the following

Lemma 3.28. [f C, contains a block. then |C,| > 12.
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Proof. Let B bhe a block. B Z C,. and let r.y.z.ww 2 B. Then there exists a
block B’ such that r.y.z.w € B’ and B~ B’ = 0. Let B” he the black such that

B"7 (BU B')=0. If iy < 12. then B" ~C, = 0. -

3.7.2. 1-blocking sets in 5(5.3.24).

Theorem 3.17. For the size of a L-blocking set Cy we have 11 < C <17,

1. If'Cyi = L. then Cy = My and FV(My) = (0.22. 110.165.330.66.66.0.0).

2. IfIC,| = 12. then Cy = I and FV(I) = 10.12.60. 130.255. 130.60. 12.0): or
Cy=R. FV(R) =(0.11.66.165.275.165.66.11.0).

3. If{Cyi = 13. then C, = B'_ B’ - {a}. where B and B’ are hlocks.

Br B =2 and FV(Cy) =(0.5.37.135.245.220.95.21. 1) a = BAB'.
1 IfIC, | =17 ~-r. (0<r<3). then
Ci=B_B _2B"-{abcde firy.r1.--- . I}
where B. B’ and B’ are blocks. and
BnB =BrnB” =B ~"B" =§. {a.b.c.d.e. fora} Z B . {r\.--- .x.} Z B".

The frequency vectors of C\ are

(0.2.19.96.215.250. 138, 36. 3).

{0.1.7.63.175.259.139.58.7).

(0.1.0.35.140.231. 252, 35. 15)

and

(0.1.0.0.140.140.336.112.30).

respectively.
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Proof. 1f C| contains a block. then by lemma 3.28. iC] > 12: if C; does not contain
a block. then Cy is a blocking set. so |C;| > 11. Since C, is a 1-blocking set. there

exists a block B such that {C; N B} = 1: therefore |C'| < 24 - 5 = IT.

1. If {Cy| = 11. then by lemma 3.28 C; is a blocking set. So
Cy = M,. It is no difficult to see that there is no 7T-secant block to My.So
FV (M) = (0.22,110. 165.330.66.66.0.0).

2. If |Cy| = 12. then C, is a blocking set. But in S(5.3.24) there are three
blocking sets of size twelve: I. R and M. of which M is a 2-blocking set. [
and R are l-blocking sets. so C; = [ or R.

Let R= BUB’' -{z.a}. where BN B’ = {z.w}. a € BAB'. Consider the
contraction of $(5.8.24) at =. By lemma 3.27 we know that on each point in
S - (B U B’). there exists a block in $(5.38.24) which meets B&B' — {a} at
six points. and meets B N B’ at z. We have ten of this kind of blocks. By
lemma 2.2 we know that BuU B’ contains only two blocks. B and B’. So R has
eleven 7-secant blocks. therefore. FV'(R) = (0.11.66.165.275.165.66.11.0).
We already know that FV(R) = (0.11.66.165.275.165.66.11.0).

3. If |C1i = 13. then because My T M. M contains no 7-secant block. so S — 1/
is a 2-blocking set. Therefore C| contains a block B. Let B’ be the block that
contains the 5 points of C; — B. Since C| is a l-blocking set and B’ " B # 0.
then |[BN B’ =2. Let a € B’ — Cy: then C; = BU B’ — {a}.

Now we prove that B U B’ — {a} is a 1-blocking set.

Since M C BuU B’ and the type of M is (2.4.6). every block meets the
set BUB' — {a}. Let B’ - B = {a.b.c.d.e. f}, and let B” be a block that

contains ¢, d.e. f and is disjoint from B; then S — (BU B”) is a block. and




this block meets B _ B’ only at {a.b}. so is l-secant to B . B’ — {a}. So
FV(Cy) =10.5.37.135.245.220.95.21. 1).

1. If Cy, =17 - r. 0 < r < 3. then by lemma 3.28. there exists a block B
such that B - C,. Since | is a l-blocking set. there is a block B’ such
that B’ ~C; = L. Therefore. B~ B’ =@ and B” =8 - B _ B’ is a block.
Let B - C; = {a.b.e.d.e. fory}. B" = Cy = {ry.--- .o} tIf r = 0. then
B"-C,=W:thenC; = B_B _B" ~{a.hec.de fory.ry.- - .£r}. and
BrB =B~ B"=B"B"=4.

When Cyi = 1d.r=3and Cy = BUB"_B" —{a.b.c.d.e. foroy. £y 3.0}
[t can be proved that on {r;.r..r;} there are rhree blocks which are disjoint
from B. So besides B’ there is only one l-secant block ro Cy. and there are
only two blocks which are contained in Cy. So
FV{(Cy) =(0.2.19.96.215.250. 138.36.3). When C|; = 15. it can be proved
that besides B rhere are six blocks which are contained in C). It is easy
to see that B’ is the only l-secant block to Cy. So in this case FV((C)) =
10.1.7.63.175.259. 189.538. 7). While C,; = 16 and 17. there is onlv one 1-
secant block to Cy. and there is no 2-secant block to C,. So the frequency vec-
tors of Cy are (0. 1.0.35.140.231.252.35. 15) and (0. 1.0.0. 140. 140.336. 112.30).

respectively.

3.7.3. 2-blocking sets in S(5.3.24).

Theorem 3.18. For the size of the 2-blocking set C» we have 12 < ‘C, < 18.

1. IfiCs| = 12, then C> = M. FV(\M) = (0.0.132.0.495.0. 132.0.0).

2. If|Caj = 13. then Cs = S ~ My, FV(Ca) = (0.0.66.66.330.165.110.22.0).
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3. [f Caj = 4. then Cy = B B'. FV(Ca) = (0.0.30.72.240. 240. 135.40.2).

where B and B’ are blocks, B~ B’ = 2.

. IfiCay = 15. then Ca = BUB"_{a}. FV(Cs) = (0.0.12.54. 180.264. 180.63.6).

where B and B’ are blocks. Br B =2. a2 B _B’.

5. If ' Cay = 18 —=r. 10 < r <2), thenCy =S - (B X) - {a.b}|. where B

s a block, a.b = B und X, = r unth X = B = V. The frequency rvectors
of Ca are (0.0.4.32.130.256.228.96. 13). {0.0. 1. 13.85.225.267. 141.25) and

(0.0. 1.0.60. 160. 300. 192, 46). respectively.

Proof. By the proof of lemma 3.28 we know rhat if C, contains a block. then

Cs > 13. By theorem 3.17. My is a 1-blocking set. Consequently C.; > 12. Since

Cs is a 2-blocking set. there exists a block B’ such that B’ ~ (., = 2. therefore

Ca <24 -6 = I8

CIf Caj = 12 then Cs = M and FV(M) = (0.0.132.0.495.0. 132.0.0).
2. 0f Ca = 13. then Ca = S = Ma.FU(Cs) = (0.0.066.66.330. 165. 110.22.0).

3. If 'Csy = 14. then since there is no blocking set of size 14. C'; must contain at

least one block. Let B beone of them. Assume B = {by.bs.b3.by4.b5.b45.b5.ba }.
and Cs ~ B = {«ay.a2.43.a4.u5.u6}: let B, be the unique block determined
by (Ca — B) = {a,}. i = [.--- .6. We claim that By = --- = Bs. as otherwise
we would have six different blocks: By.--- . Bg. Since C» is a 2-blocking set.
‘BN B, =2. But B, # B, (i # ) implies that (B B,)~ (B B,) = 0. and
therefore B contains at least 12 points. This contradicts the fact |B! = 8. Let
B'=By =--- = Bg; then Cy = B B'. Since BAB' is of tyvpe (2.4.6), C»

contains only two blocks. So FV(C) = (0.0.30.72.240.240. 135, 40. 2).
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1. IfiCyi = 15. let B be a block such that B = C,. We claim that there exists at
least one block B’ such that B’ contains six points in C> — B. Otherwise. let
Cs — B = {aj.a3.a3.a4.a5.a.h}. Consider the six blocks determined by the
six 3-subsets of {a,.a3.a3.a4.a5.a}. None of these blocks contains h. while
each of these blocks contains only five points in {a;.as.a3.a.a5.a}. If at
least two of these blocks do not meet B. then each of them would contain
three points in & — Cu: the other four blocks. each containing at least one
point in S — C». would contain four points in & — Ca: the six blocks would
contain ten points in § — C,. This is impossible. because § - C» has only
nine points. So among the six blocks. there exists at most one block which
does not meet B. Any block which meets B meets B at two points. so tive
blocks would meet B at ten points. this again is a contradiction. Since Ca is a
2-blocking set. we have B’™ B! =2. So Cy = B _ B’ _{a}. wherea £ B_B’.
B'_ B’ _{a} indeed is a 2-blocking set. In fact. let B” be a block which
contains 2 and three points in B’ - B. and is disjoint from B: then S —¢ Bi_ B"}

is a block which is 2-secant to B _ B’ _ {a}.
5. Let B be a block that meets C; at two points. and X =8 - Cy _ B): then

Xi=rand G, =8 - (B_ X) - {a.h}.. where a.b = B.

3
3.7.4. t-blocking sets, t > 3. in 5(5.3.24).
Theorem 3.19. Let C3 be a 3-blocking set in S(5.3.24); then (Cy, = 13 or 19.
L. If ICs) = 18. then C3 = § — {a.b.c.d.e. f}. where {a.b.c.d.e. f} is not

contained in any block.and FV(C,3) = (0.0.0.6.45. 180. 285. 198. 45).
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2 [fiC3 =19. then C3 =S — {a.b.c.d.e} and

FV(Cy3) =1(0.0.0.1.20.120.280.260.78).

Proof. Since Cy is a 3-blocking set. it meets at least one block at only three points:
therefore 'Cy; €24 -3 = 19.

If Cy <17, let {ay.as.a3.ay.a5.x.y} =8 — Cy. and let B be the block deter-
mined by {a;.a2.23.a4.a5}. Since C'y is a 3-blocking set. B contains rhree points of
C;. Let ag.a-.ay he the three points. Let B,. B» and By be the blocks determined
bv {r.y.ai.as.a3}. {r.y.a).as.a,} and {r.y.a;.as.a5}. respectively. Since Cy is
a 3-blocking set and B, has at least 3 points in common with B. (1 = [.2.3}. so B,
contains one of ag.ar.as. Assume ag = B). a- = B~ and ay = B4. The block B,
determined by {r.y.a3.44.a5} has at least three points a3. a4. a5 in common wirh
B. so it must contain one and only one of a;.as. ag.a7.ay. [f us = By. let A be the
block determined by {r.y.a:.a3.a,}: then a). a5, ar.a5.08 2 4. So A7~ B' = 3.
a contradiction. Therefore. ag £ By. Similarly we can prove that ar.ag £ By. So
B contains either a; or a,. therefore B, contains at most two points of Cy. this
contradicts C is a 3-blocking set. So Cy > IT.

1. IfCy = 13. then $-Cy; =6. Let S~Cy = {a.h.cd.e. f}ithen {a.b. e d. e, f}
can not be contained in any block.

2.[f.Cy) = 19. then Cy = § - {a.b.c.d.e}. |

Using the same method as above. we can prove

Theorem 3.20. Let C, be a 4-blocking set: then |Cyj = 20. and

C; =8 - {a.b.c.d} and FV(C;) = (0.0.0.5.64.240.320.130).
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Theorem 3.21. Let Cs be a 3-blocking set: then Cs; = 21. and C5 = & — {a.b.c}.

FV(Cs) =(0.0.0.0.0.21.168.360.210}.

Theorem 3.22. Let Cs be a 6-blocking set: then Cy = 22. and Cs = S — {a. b}

and FV(Cs) =(0.0.0.0.0.0.77.352.330).

Theorem 3.23. Let C- he a T-hlacking set: then C- =23, and Cr = § — {2} and

FV(C+) = (0.0.0.0.0.0.0.253.306).
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4. SEMIOVALS IN THE WITT DESIGNS

4.1. The definitions.

Definition 4.1. A block B of a t-design D is ralled a tangent to a set X of points

of D if B contains only one point in X.

If BN X = {r}. we also say that B is a tangent on r ta .X.

Definition 4.2. A semioval O is a set of points such that on every point of O there

exists only one tangent to O.

Semiovals have been studied by many authors (see ‘15. 30. 34:}. But much of the
previous work was focused on the semiovals of projective planes. In rhis section we
study the semiovals in the Witt designs and characterize all semiovals in the Witt

designs up to the frequency vectors.

1.2. Semiovals in S(4.5.11) and S(5.6.12). In S(4.5.11) we have

Ty =66.r[ =30.r_| = l‘.Z.r,; =-L.r_; = l.

Lemma 4.1. The type of a block in S(1.5.11) s (1.2.3.3) wath

ty = 15.¢9 =20.t3 = 30.t5 = 1.

Lemma 4.2. Let B. B’ be two blocks in S(4.5.11) with :B 1 B’ = 1. Then the

type of BU B’ is (3.4.5) with t3 = 12, t; = 36. t5 = 18.

By lemma 4.1 and lemnma 1.2 we can prove the following
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Lemma 4.3. Let B be a block 1n S(4.5.11). @ € B. Let B\. By and By he three
blocks which meet B only at a. Then |B," B, — {a}| =2 (i1 # j} and

BinB,NB; = {ﬂ.}

By the above lemmas we can prove

Lemma 4.4. Let B be a block in S(4.5.11}. Then for every a = B. there enist

exactly three blocks which meet B only at a.

Now we can prove

Theorem 4.1. There exists no semioval in 5(4.5.11).

Proof. Suppose there exists a semioval O in S(4.5.11). Then since there is no
blocking set in S(4.5.11). there must exist a block B such that either B Z O or
Bro =0

If B Z O. then by lemma 4.4. O — B £ 0. Let h £ O — B. By lemma 4.1 any
block which contains b meets B. So there is no tangent on b.

If BNO = 0. then by lemma 4.1. O} £ 6 and 1O} 2 5. So Ol = 5. Let
0¢ OUB. let u.v.w € O and let B’ be the block determined by {o.u.v.w}. Then
iB"N B} = 1. Let BN B = {a}. By lemma 4.3 there is a block B” such that
B”" N B = {a} and B” contains o and one of u.v and w. say u. There are four
blocks on {a.o0.u} and B’. B” are two of them. The other two can not contain any

points in B’AB"”. So both of them are tangents on u. contradiction. a

In S(5.6.12) we have

rg = 132.T| =66._r-1 =30.I‘3 = 12.1"4 =4d.r5 = L.
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Lemma 4.5. The type of a block in S(5.6.12) 15 (0.2.3.4.6) unth

to = L.ty =456.t3 = 40.t, = 45.t5 = 1.

Lemma 4.6. Let B. B’ be two disjoint blocks in S(5.6.12). Then for any two
pownts a.b € B. there enist exactly three blocks B,. B> and By such that
1. Blfq:B = B-.)IF‘.B = BgﬂB = {ﬂ.b} and;Bl«‘\.Bll = !B‘_)KA‘B,! = AB:“"B'! = 4:

2. B,NB,NB'=2and BN B2~ By~ B’ =0.

Lemma 4.7. Let B. B’ be two disjoint blocks tin 5(5.6.12). Then for any four
points a.b.c.d € B. there exist exactly three blocks A;. As and A3 such that

ANB=AnB =A3nB = {ab.c.d) and (AN B) U (AN B )U(A3n B') = B

Lemma 4.8. The blocking set in S(5.6.12) s a semoval.

Proof. The blocking set C in S(5.6.12) has the structure C = (B - {a}) - {r}.
wherea € Band r ¢ B.

Let B’ be a block disjoint from B: then r £ B’ and B’ is a tangent on r to C.
By lemma 1.5 the other blocks which contain r meet B in at least two points.

Let b€ B - {a}. By lemma 1.6 there are exactly three blocks By. B: and By
such that B, B = {a.b} (i = 1.2.3). and = is contained in only two of B(. B2 and
Bj. So one of these blocks is a tangent on b to C. The other blocks which contain

b meet B in at least three points. a

Theorem 4.2. If O is a semioval tn 5(5.6.12). then O is a blocking set.

Proof. Suppose O is not a blocking set. If O contains a block 4. then any block
which contains a point in A contains at least two points in 4. So O contains

no block: therefore there exists a block B and a point r such that BN O = 0
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and r £ B L O. By lemma 1.6 for « <= O there are three rangents on a to O.

contradiction. a

4.3. Semiovals in 5(3.6.22). In the sequel sometimes we will use the results about

5{3.6.22} in section 3.3 without explicit reference.

Lermma 4.9. A semuoval tn 5(3.6.22) ran not contain a Fano set.

Lemma 4.10. A4 semiowval in S(3.6.22) contains no hlock.

Lemma 4.11. 1 semioval :n S(3.6.22) ran not contain BAB’. where B and B’

are blocks.

Lemma 4.12. The set D := (B — {u}) - (B’ = {r}). wherr B and B’ are disjoint

blocks, u = B and v = B’. 15 a semuwoval.

Theorem 4.3. Let O he a sermoval m S(3.6.22). Then 9 < Ot < 10.

Proof. First we prove that J contains at most 10 points.

Let u.v = O. let B and B’ be the rangents on u and © respectively.

If B~ B’ = 9. then the points not in B .~ B’ can not all be contained in O.
If there is only one point £ 2 O. then the nine tangents on rhe other nine points
not in B _ B’ would all contain r and meet both B and B’: on r there are rwelve
blocks which meet only one of B. B’. None of these mentioned blocks contains all
of u.v.r. So there are at least twenty-two blocks on r. a contradiction.

If B B’ # §. then consider the four external blocks E,, E2, E3 and £, of
B U B’. By the proof of lemma 2.2 in (7| we know that |[E, N E,| = 2.if i = . and
(ENE)N(ENER) =0if {i.j} # {k.h}. Let E\NEy = {wr .y}, E3nEy = (s}

By lemma 4.10 and lemma 4.11 we only need to prove that the following sets are
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not semiovals.
a. Xy ={uv.ec} o Ei UEs o EyCEy - {r.z.p}. where p= E; ~ Ej:
b. Xo={u.v}JE  UE s E3UE - {r.p.q}. where p< E\ “Ey. q < Ex ™ Ey:
. Xa={uv} E\_Ex_Ey_ E,-{r.p.r}.wherep<= E, " Ey.r £ E; 7 E;.
The set X is not a semioval. Otherwise the tangenrts on the two points in £,7 E,
wotild all contain {r.z.p}.
The set X, is not a semioval. Otherwise the tangents on the points in E5 = E;
would all contain {r.p.q}.
Suppose X is a semioval. Then the tangent on the point in £, ~ £y~ {p} contains
p. but can not meet (Ey _ Ey Ey _ Ey) = (Ey ~ E3). So it meets (BLB") - {u.r}
at four points. Let A be the other block on E| = £ which does not meet E;: then
{u.v} = Ay and A ©(BAB"Y = 4. We can similarly prove that there is a block
Ason E) ~ Eysuch that 4o " Ey =0 {u.v} Z Asand A T(BLB"Y = 4. Let Ay

and 44 be the blocks on {u. ¢} which are disjoint from E,: then

Ey~Ey 7 AEs"Es TALE, T Ey ZA =304

So

ATEs " Eg = A (Es T Ept= A (B, Ey =1

Now, the block A5 determined by {u.c.y} would contain r and two points in
(BAB’Y — {u.v}. The blocks B. B’ and 45 are three external blocks to £3 _ Ej.
Let the forth external blockof E3 U E;be T:thenu.v # T and z.y € T. So T and
E, are two tangents on y.

Now we need to show that a semioval contains at least nine points. This can be

done by checking the frequency vectors in appendix A. a



Let B and B’ be two disjoint blocks of S(3.6.22). £ £ B:. B’. Define

P:=S-(B_B _{z}).

Theorem 4.4. The set P is a sermuoval of s1ze 9 and FV(PY = (2.9.36. 12. [5.0.0).

Proof. Let y = P. Since on {.r.y} there are four blocks which are all disjoint from
B or B’ and there are a total of five blocks on {r.y}. thus rhere is a block on
{r.y} which meets both B and B’. so this block is a rangent on y. The other
blocks on y all contain at least two points in P. [t is easyv to see that B and B’
are the only two blocks which do not meet P. P contains no block. So we have

FV(P) =1(2.9.36.12.13.0.0). -

Theorem 4.5. [f O s a semwouval of size 9. then O = P.

Pmof. First we prove that there is no 3-secant block ro O.

By solving the linear system (1} we know rhat the possible values for t5 are 0
and 4.

If t5 = 4. let B. B’ be rwo blocks which are 3-secant to OJ: then B~ B’ = ¢. If
B~ B’ Z 0. then O — (B'_ B’} has only one point. and on this point there are at
least rwo tangents. If B B’ is not contained in O. then O = B_ B’ - {r}. where
£ < B B'. Bylemma {.11 this is impossible.

So t; = 0 and therefore ty = 2. Let B. B’ bhe the two blocks which do not
meet 0. We claim that B B’ = 0. Otherwise. consider B U B’ _ {r}. where
r ¢ BB’ JO. Then there are two external blocks L and V' to B B’ _ {z} such
that U U V' contains only 8 points of O. The other point in O would lie on two of

the four external blocks of U U V. a contradiction. Therefore O = P. O




Let B = {r.y.z.£.§.2}. B’ = {a.b.c.a.b.é} be two disjoint blocks. and let o be
the point such that
F = {a.h.c.r.y.z.0} forms a Fano set. Let L be the block on r.y which does not

meet B’. Then o = L". We define

M =8—-(B_B _U - {a.b.c.o}l.

Theorem 4.6. The set M 1s a semioval of size 10 with (1.10.15.40.5.6.0) as its

frequency vector.

Proof. We only need to prove that on every point of M. rhere exists only one
tangent.
Let V.V £ B be the blocks on r. z and y. = respectively which are disjoint from

B’ let
U={ryol.23}V={rzod56}LW={_z0739"

then M = {a.h.c.0.4.5.6.7.3.9}.

[t is easy to see that L’ is a tangent on o.

Let X £ { be a block which containso. Then X" F =lor3. [f X~ F = L
then ' X ~ {a.b.é} = 2 or X "~ {£. 4.5} = 2. s0 X coatains two points in
{4.5.6.7.3.9}. Therefore. X is not a tangent to M. [f X~ Ft = 3. then
X {abeh = X {ry.z}i =lor X ~{aheh =2and X T {ry. 2} =0or
X{a.b.c} =0and | X {r.y.z}{ =2 In the first two cases. X is not a tangent
to M. In the last case. X = W so is not a tangent to M.

Let u € {a.b.c}.

Consider the blocks determined by {u.1.2}. {u.1.3} and {u.2.3}. respectively.

None of the three blocks contains any of r.y.z.0. So at most two of them meet V
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and W at two points in {4.53.6} and two points in {7.3.9}: therefore at least one

of them. say Y. meets B — {r.y.z} = {Z.§. 7} at two points. So Y is a tangent to

M.
Let X £ Y beablockonu. If'X™F' = 3.then X isnot atangent: if X~ F" = 1.
then X (Y ~0)Y =49 Thus X -0 =9. s0

Z} =2, Since X =}

then .\ ~ {I.j.
points in {4.5.6.7.3.9} and is not a tangent to M.

X contains two

Let v = {.5.6}.
Consider the blocks determined by {r.z.1}. {v.r.2} and {r.r.3} respectively.

Since o is not in anyv of these blocks. none of them contains y or =. So at most two
of them can meet either 1V or {a.h.c} at rwo points: therefore at least one of them.

say Z. meets B' — {a.b.c}. Z is a tangent to M.
If X~ F' = 3. then X contains n or at [east
X (ortherwise

-

= Z be a block on v.
since X = Z. we have r 2

Let X =
If X~ F =1.

one point in {a.b.c}.
y.z.0 % X. 50 X " {a.b.c} =0 and X has at least three points in common with

Z.and so X = 2). If : = X. then y 2 X. 50 X contains one point in {7.3.9}. If

= ¢ X. then X contains one point in {o.4.5.6} — {r}. So in either case .\ is not a

O

tangent to M.
I[f v {7.8.9}. we can similarly prove that there is only one rangent un ¢.
From the structure of a Fano set we can conclude that B is the only block which

toes not meet M. and M/ contains no block. So FV(W) = (1,10.15.40.5.6.0).
Theorem 4.7. Let O be a semioval of size 10. If O £ D. then O = M.
Proof. Checking the appendix B we can see that there is a block B such that

ONnB=4.
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Choose a point 0 € O and let U be the unique tangent on 0. Then using a similar
argument as in the third paragraph of the proof of theorem 4.3. we can prove that
UnB #40.

We claim that there exists a block B’ which contains three points in O and is
disjoint from BUU.

Let S - (BUL"UO) = {d.e.f}. Consider ihe two external blocks .X. ¥ of
By U u{d}. By lemma 4.10 and lemma 4.11. .Y _ Y™ contains eight points in O.
and (X NY)YNO #£0. If (X"Y)"~ O = L. then suppose ¢ = (X 7 Y) - O:
then f lies on only one of X and Y. say X. [n this case. there exist two points on
Y —~ X. the tangents of which would all contain {d.e. f}. This is impossible. So
{XNY)NO! =2. The three points d. e and f must all be contained in one of the
other two external blocks of B U U (otherwise. the tangents on the two points in
X NY would all contain d. e and f). Let this block be B’. then B’ ~ O = 3 and
B'n(Bul)=0.

Let B nO = {a.b.c}. let V.1V £ R(B) with 1" £ B’ £ I}, be the blocks on
{a.b} and {a.c} respectively and let o’ = (V' = W) — {a}.

Now we prove ¢’ = o.

If o’ # o. then we claim o’ ¢ U". Otherwise. let " = {r.y.0.0". u.v}. where
{r.y} =UnNB.let V = {a.bo u.l.2}. W = {a.co'.v.3.4}. Let Z £ R(B).
Z # B’. be the block on {b.c}. Then Z = {b.c.0’.0.5.6}. The tangent T on 3
would contain o’. u. v. a contradiction. So o 2 LU and therefore o’ € O.

Using the construction method of a Fano set to o'. {a.b.c} and B (see sec-
tion 3.4). we can partition B into two parts: B; and B:. Since o’ € U. then r and
y cannot be in the same part.

Let X be a block on o’: then | X N ({a.b.c.0’} U By)| =1or 3.




a1
If|.XN({a.b.c.0o’}UBy)| = L. then | XN[B,uU(B’ - {a.h.c})]| = 2. So X contains
at least one point in O — {a.b.c.0'}: hence | X " Ol > 2.
fIX " ({a.b.c.o’}u By} = 3. then either |[X N {a.b.c}| 2 lor i X8 =2 1If
IXNB,y| = 2. then | X B'l = 0.0 X contains at least one point in O~{BL_B"_{0"}).

So we have proved o' = 0. Therefore O = M. 3d

In the definition of M. there are six choices for U'. so there are six semiovals which

do not contain B.

4.4. Semiovals in S(4.7.23). By checking the frequency vectors in appendix B

we can see that the only set that could be a semioval is E.
Lemma 4.13. The set E| s a semioval.

Proof. By lemma 2.11 in [8] we know that on every point in B — B’. there exists
at least one tangent.

Let a € B'—{o.w}. Of the five blocks through {o. w.a}. only three meet B —{o}.
so there is ane which meets B U B’ only at 0. w and a. This block is a tangent on
the point a.

Of the five blocks through three fixed points in B’ = {o0.w}. four meet B — {o}.
so one meets B — {o} at three points. This block is a 6-secant to Ey. There are
(3) = 10 of these kind of blocks. So there are at least eleven 6-secant blocks to E}.
Let ¢ = 11 and solve (2.1) in {8] to get ¢, =22 —ts. So t; = tg = 11 and there are
only eleven tangents to E,. Hence on every point of E| there is only one tangent

to F|. and therefore F| is a semioval. a

4.5. The non-existence of semiovals in 5(5.8.24). In this section we use the

same notations and terminology as in [9].
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By checking the frequency vectors in appendix C we can see that the only set in

5(5.8.24) that could be a semioval is /.

Lemma 4.14. The set I is not a semioval.

Proof. Suppose I is a semioval: then since S — [ is rhe same type of blocking set as
[.&~1is also a semioval. Let I = (B—{u})_(B"—{r}). where B and B’ are blocks
with {BNB" =2. uce B-B’.v < B - Bandlet L be the tangenton nto S — [:
then U is T-secant to [. So U™ 1B—(B'_{u}}jl =3 and U~ B - (B _{v}) =4
Now [ Bl = 4. s0 by lemma 2.1(b) in 9;. I’ B is a block. But ("2 B)~B" =6.

a contradiction. |

So we have

Theorem 4.8. There exists no semwval in S(5.3.24).
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Appendix
We use n to denote the size of a point subset of S(¢t. k. ). The number of vectors
under each size n is the number of orbits under the action of the Mathieu group

12].

APPENDIX A. THE FREQUENCY VECTORS OF THE POINT SUBSETS IN 5(3.8.22)

n=40

(77.0.0.0.0.0.0).

(56.21.0.0.0.0.0).

(40.32.5.0.0.0.0).

(28.36.12.1.0.0.0).

(20.32.24.0.1.0.0). (19.36.13.1.0.0.0}.

{16.20.40.0.0.1.0).(12.35.20.10.0.0.0}. (12.35.20. 10.0.0.01. (13.31.26.6. L. 0. O}

(16.0.60.0.0.0.1). (6.36.15.20.0.0.0). (6.36. 15.20.0.0.0). (10.21.35. 10.0. L. 0.
{9.24.33.3.3.0.0). (3.28.27.12.2.0.0).

n="r

(0.42.0.35.0.0.0). (0.42.0.35.0.0.0). (10.6.45.15.0.0. 1). {7. 14.42.7.7.0.0),
(4.26.24.19.4.0.0). (4.26.24.19.1.0.0). (6.19.32.17.2. 1. 0). (5.22.30.15.5.0.0).

n==g8
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(7.0.56.0.14.0.0). (0.28.14.28.7.0.0). (0.28.14.28.7.0.0). (6.3.35.24.3.0. 1).
(4. 13.34.18.7.1.0).12.20.26.20.9.0.0). (3. 17.28.22.6. 1. 0). (3. 17.28.22.6. 1. U).
(4.14.30.24.3.2.0). (3.16.32.16.10.0.0).
n=>9
(4.3.40.16.12.2.0). (0.13.20.26.12. 1.0}. (0. 18.20.26. 12. 1. 0). (4.6.29.30.6. 1. 1}.
(3.9.27.28.9.0.1). (2, 11.28.24.10.2.0). (1. [4.26.22. 13. 1.0). (2. 12. 24. 30. £. 3. 0).
({2.12.24,.30.6.3.0). (2.9.36.12.18.0.0).
n =10
(4.0.27.32.12.0.2). (0. 12.18.28.18.0. 1). (2. 4.29. 24, 14. 4.0). (0. 11.21. 26. 16. 3. 0).
(0.11.21.26.16.3.0). (2.6.22.32.12.2. 1. (1.3.24,24.19.0.1). {1.8.23.28. 13. 4.0).
(0.10.25.20.20.2.0). (1.7.27.22.17.3.0). {1.10.15.40.5.6.0). (1. 10. 15. 40.5.6.0).
(2.0.45.0.30.0.0).

n=11

(V]
.

[ B
—
o

(0.6.20.25.20.6.0). (0.6.20.25.20.6.0). (2.2.18.33. 18.. LTL1TL2T022.30 1.
(1.3.22.27.17.7.0). (0.6.20.25.20.6.0). 10, 7. 16.31. 16.7.0).10.6.20.25.20.6.0).
(1.4.19.29.19. 4.1}, (1.5.15.35.15.5. 1). 10.7.16. 31. 16. 7. 0). (1.5. 15.35.15.5. 1}.

10.5.25.15.30. 1. 1). (1.1.30.15.25.5.0).(0.11.0.55.0. 11.0}. (0. 11.0.55.0. 1 1. O}.

APPENDIX B. THE FREQUENCY VECTORS OF THE POINT SUBSETS IN 5(4.7.23)

n=40
(253.0.0.0.0.0.0.0).
n=1
(176.77.0.0.0.0.0.0).
n=2

(120.112.21.0.0.0.0.0).
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(80.120.48.5.0.0.0.0).

(52.112.72.16.1.0.0.0).

(32.100.30.40.0.1.0.0). (33.95.90.30.5.0.0.0}.

(16.90.60.80.0.0.1.0). (21.72.105.40.15.0.0.0j. (20.77.95.50. 10. L.0.D).
n=7

(0.112.0.140.0.0.0. 1). (15.42.126.35.35.0.0.0}. (10.66.%81.75.20.0.L.0).
(12.57.96.65.20.3.0.0).

n=3y

(15.0.168.0.70.0.0.0). (0.70.42.105.35.0.0.1). (8.35.98.70.35.7.0.0).

(6.44.383.80.35.4.1.0). (7.40.88.80.30.8.0.0).

(8.7.112.56.56.14.0.0). (0,42.56.91.56.7.0.1). (4.26.77.86.46.13.1.0).
(3.30.72.86.51.9.2.0). (4.27.72.96.36.18.0.0).

n =10

(4.8.75.80.60.24.2.0). (0.24.54.85.70.18. 1. 1). (2.17.60.90.60.21.3.0).
(1.20.60.80.75.12.5.0). (2.20.45.120.30.36.0.0).

n=11

(0.12.48.75.80.36.0.2). (2.6.50.85.70.34.6.0). (0.13.44.80.30.31. 4. 1}.
(1.10.45.85.75.30.7.0). (1.11.40.95.65.35.6.0). (0.11.55.55.110.11.11.0).

(0.22.0.165.0.66.0.0).
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APPENDIX C. THE FREQUENCY VECTORS OF THE POINT SUBSETS IN 5(5.8.24)

n=20

(v59.0.0.0.0.0.0.0.0).

n=1
(506.253.0.0.0.0.0.0.0.
n=2
{330.352.77.0.0.0.0.0.0).
n=3

(210.360. 168.21.0.0.0.0.0).

n=-:14

{130.320.240.64.5.0.0.0).

n=>5

(78.260.280.120.20.1.0.0.0).

n=6

(46.192.300. 160.60.0.1.0.0}. (45.198.285.180.45.6.0.0.0).
n="7

(30.112.336.140. 140.0.0. 1.0). (25. 141.267.225.85. 15.1.0.0}.
n=38

{30.0.448.0.280.0.0.0. 1), (15.85.252,231.140.35.0. 1. 0).
(13.96.228.256.130.32.4.0.0).

n=29

(15.15.280.168.210.70.0.0.1), (7.58.189.259.175.63.7.1.0).

(6.63.180.264.180.54.12.0.0).

n=10




(7.16.175.224.210.112.14.0. 1). (3. 36. 138.250.215.96.19.2.0).
(2.40.135.240.240.72.30.0.0).

n=11
(3.12.108.219.230. 148.36.2. 1). {1.21.95.220.245. 135.37.5.0).
{0.22.110.165.330.66.66.0.0)

n =12
(3.0.72.192.225.192.72.0.3). (1.3.64, 134.245. [34.64. 3. 1],
(0.12.60. 130.255.130.60. 12.0). (0. L1.66.165.275.165.66. [ 1.0].

{0.0.132.0.495.0.132.0.0).
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